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Abstract 

 

 

This research report presents a numerical simulation of projectile impact on a 

rubber panel. The simulation is conducted in order to explore the possibilities of using 

rubber panel as additional safety device to sand materials which are currently used as 

“End Butt” at the 600 meters closed shooting range of Weapon Technology Division 

(WTD), STRIDE. The rubber panel should be able to stop and trap the bullet and should 

be light enough to be transferred from one position to the other position in the shooting 

range. Through simulation, we investigate the capability of rubber panel in resisting 

penetration of the bullet. The geometry and configuration of rubber panel capable to 

stop and trap the bullet are proposed. The proposed rubber panel should be suitable to 

be used in the shooting range. The numerical simulation is conducted using a 

commercial finite element code MSC. Dytran program which is available at WTD, 

STRIDE. The solver Lagrangian explicit method is used in the simulation and the 

failure behavior of contact problem is treated using Adaptive Contact Master-Slave 

Surface. The simulation result shows that the rubber panel is a potential material to be 

selected as additional safety device provided that appropriate geometry and 

configuration of the panel are chosen.  
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Abstrak 

 

 

Laporan ini membentangkan satu kajian simulasi numerik hentaman peluru ke 

atas panel getah. Simulasi ini dijalankan untuk mengkaji atau mengenalpasti  

kebolehgunaan panel getah sebagai panel keselamatan tambahan kepada bahan pasir 

yang pada masa sekarang ini digunakan sebagai “End Butt” di lapangsasar tertutup 600 

meter di Bahagian Teknologi Persenjataan (BTP), STRIDE. Panel getah ini mestilah 

boleh memberhenti dan memerangkap peluru dan juga mestilah cukup ringan untuk 

boleh dipindah-pindahkan daripada satu tempat ke satu tempat di dalam lapangsasar. 

Melaluli ujian simulasi, kami mengkaji keupayaan panel getah didalam menghalang 

penembusan peluru. Geometri dan konfigurasi panel getah yang boleh memberhenti dan 

memerangkap peluru adalah dicadangkan. Panel getah yang dicadangkan mestilah 

sesuai untuk digunakan di dalam lapangsasar. Ujian simulasi ini menggunakan kod 

finite element yang terdapat dipasaran daripada  program MSC. Dytran yang terdapat di 

BTP, STRIDE. Kaedah penyelesaian “Lagrangian explicit” digunakan pada ujian 

simulasi ini dan di dalam kelakuan kegagalan pada permasalahan “contact” kaedah 

“Adaptive Contact Master-Slave Surface” telah dipilih. Hasil daripada ujian simulasi 

menunjukkan panel getah berpotensi digunakan sebagai panel keselamatan tambahan 

dengan syarat ianya hendaklah menggunakan atau mengaplikasikan geometri dan 

konfigurasi panel yang sesuai. 
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CHAPTER 1:    Introduction 

 

 

 

1.1 Background of the Problem 

STRIDE is one of the departments in Ministry of Defence of Malaysia. 

Previously it is known as Defence Technology Centre (DTC) from 1968 – 1972, 

Defence Research Centre (DRC) from 1972 – 1985, Pusat Sains dan Teknologi 

Pertahanan (PSTP) from 1985 – 2002 then Science and Technology Research Institute 

for Defence (STRIDE) from 2002 until now (Yunus 2009). The main functions of 

STRIDE are conducting research related to defence technology and testing and 

evaluating of equipments of Malaysian Armed Forces such as radio communications, 

materials, weapons, bullets, etc. STRIDE has 5 technical divisions. One of the divisions 

is known as Weapons Technology Division (WTD) based at Batu Arang, Selangor. The 

research and evaluation focus in this division is related to the weaponry and explosive 

technology. Under WTD there are 5 sections: Weapon Section, Ballistic Section, 

Ordnance Section, Propulsion Section and Weaponry Technical Support Section. 

There are several types of weapon and bullet testing. One of the testing is firing 

activity. The objective of this activity is to study the functionality of the weapon or 

bullet and the resulting of bullet trajectory. For this purpose WTD has a closed or 

covered shooting range. The existing shooting range is 600 meters in length measured 

from the firing position. It has a tunnel-like construction with wall and roof made from 

concrete as illustrated in Figure 1.1.  
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Figure 1.1: Tunnel-like construction of shooting range 

 

Regarding the bullet used in WTD, the highest size of calibre or diameter of the 

bullet fired in this shooting range is 12.7 mm. During the test, the weapon is positioned 

at one end of the tunnel. In order to stop the tested bullet, an arrangement of sand in the 

sacks, known as “End Butt”, is permanently installed at another end of the tunnel. Since 

the firing position is also fixed, the shooting range cannot be modified, i.e fixed at 600 

meters. The firing position cannot be transferrable because at this position all of the test 

and sensitive measuring equipment are being installed permanently. For example, the 

test weapon system has heavy mounting and fixed at this position. The requirement of 

muzzle velocity and environment measuring system has to be closed with the control 

room.  The test weapon system and measuring equipment system are shown in Figure 

1.2. 

Wall Wall 

Roof 

Floor 
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Figure 1.2: The position of test weapon and measuring equipment system 

  

1.2 Problem Statement 

In testing activity, when weapons fired from this firing position not all bullets 

will reach the end butt due to the height, angle of firing and the required distance of 

target. Furthermore, the target is positioned normally at 100 meters, 200 meters or 300 

meters from the firing position. If the target is positioned at 100 meters or less, the 

bullet fired will not reach to the end butt. This bullet will hit the ground or hitting the 

wall of the range at first. This is very dangerous to the user and also damaging to the 

electric cables or others equipments around the closed shooting range. 

The present material of end butt is using sand materials. They are stored in 

different sacks called sand bags. The sand bags are arranged in stacks occupying the 

Weapon System 

Doppler Radar System 

Velocity System 

Target Position 
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whole area of end butt. The use of sand bags as a medium to stop the bullet has 

drawbacks which can be summarized as follow: 

a. Sand dust will scatter and fly around the end butt area polluting the air when the 

bullet hits and tears the sand bags.  This condition will increase the time require 

for clearance process, which is a part of safety procedures, required before 

conducting the subsequent test.  

b. The broken sand bags have to be replaced regularly. In the current practice at 

STRIDE, all broken sand bags are replaced every six months. In order to 

increase the service duration of sand bags, which in turn will reduce the 

maintenance cost, the numbers of broken sand bags have to be minimised. 

 

 

Figure 1.3: Sand out from sacks at the end butt 
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c. The sand bags arrays are not easily transferred to the new position according to 

the requirement of testing range.  

To overcome problems mentioned above it is desirable to have a portable end 

butt, with a relatively small size in dimension, easy in handling and light weight. The 

existing and desired schematic diagram layouts are shown in the Figure 1.4 and 1.5 

respectively. 

For this propose, the study of potential material to be used as the above 

additional safety device has to be conducted. The safety device should be light weight 

and able to stop completely the bullet at the required distance of testing. Therefore the 

potential material should have sufficient damping capacity. 

 

 

Figure 1.4: The existing schematic diagram layout of shooting range 
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Figure 1.5: The desired schematic diagram layout of shooting range with 

portable rubber panel 

 

1.3 Aims of the Study and Objectives 

The objective of the present study can be summarized as follow:  

a. To conduct the feasibility study on rubber material as a possible additional 

safety device (portable panel end butt). 

b. To simulate the mechanical response of rubber material under impact 

loading condition. 

c. To propose a new design of geometry and configuration of the portable 

rubber panel end butt. 

 

 

Portable end butt 
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1.4 Scopes of Study and Methodology 

In the present study only numerical simulation method is considered. All 

material parameters involved in the simulation are obtained from the literature. The 

bullet calibre or diameter under consideration is 7.62 mm ball which is the one currently 

used at WTD, STRIDE.  

The methodology conducted in this research is as followed: 

a. Literature review on the FEA simulation materials under bullet impact. 

b. Conducting the FEA penetration simulation on rubber materials. 

c. Study on mechanical behaviour of materials. 

d. Design new geometry and configuration of portable rubber panel. 

e. Discussion of the results. 

f. Conclusions and Recommendations. 
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Figure 1.6: Methodology Flowchart 
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CHAPTER 2 : Literature review 

 

 

 

2.1 Finite Element Analysis (FEA) 

Many literatures stated the finite element analysis has started since 1940s. In 

1941 Hrennikoff has developed the finite element analysis in the field of structural 

engineering and Mc Henry in 1943 used collection of bars and beams to solve the 

stresses in continuous solids (Reddy 1984; Logan 2002). It was known as one-

dimensional (1D) finite element analysis. The two-dimensional (2D) finite element 

analysis was introduced in 1956 by Turner, Clough, Martin and Topp. They were solved 

the problems for truss elements, beam elements, and two-dimensional triangular and 

rectangular elements in plane stress. The three-dimensional (3D) finite element analysis 

was introduced by Martin in 1961, Gallagher et al. in 1962, and Melosh in 1963 (Logan 

2002). They were studying the problems through 3D method by developing tetrahedral 

stiffness matrix. Since then, the finite element analysis has evolved and become the 

“must” tool in solving any engineering problems and become more important since the 

development of high speed computer. As known the finite element analysis is able to be 

used in analysing structural and non-structural problems. It is such as stress/strain 

analysis, buckling, vibration, heat transfer, fluid flow, and distribution of electric and 

magnetic potential. 

 The basic concept of the finite element analysis is an idea to simplify the 

complicated object by developing small pieces of simple blocks. Logan said in his book 

(Logan 2002), “The finite element method involves modelling the structure using small 
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interconnected elements called finite elements. A displacement function is associated 

with each finite element. Every interconnected element is linked, directly or indirectly, 

to every other element through common (or shared) interfaces, including nodes and/or 

boundary lines and/or surfaces. By using known stress/strain properties for the material 

making up the structure, one can determine the behaviour of a given node in terms of 

the properties of every other element in the structure. The total set of equations 

describing the behaviour of each node results in a series of algebraic equations best 

expressed in matrix notation”. 

Generally before we can operate and run the finite element analysis programme 

and get the reliable results, we have to follow the procedures or steps in a finite element 

formulation of a problem. First of all we have to divide the models into the same system 

of finite element and choosing element type.  The second step is defining the material 

behaviour on each element. The third step is defining the equations for the models such 

as loads and boundary conditions. The fourth step is solving the equations and the last 

step is obtaining the information required. 

 

2.2 Review of Finite Element Analysis  

Studying the mechanics of rubber under impact as additional safety device to 

sand material for 600 meters closed shooting range is a good innovation for WTD, 

STRIDE if able to materialise. Under this study we are using MSC. Software simulation 

workstation which is available at WTD, STRIDE.  The FEA study on material under 

impact has been done before and most of it is for personnel protection, military 

vehicles, aerospace and other defence and civilian applications. They are still trying to 

solve and understand the mechanics of material that can give the best material choice to 

be used as bullet stopper. Types of materials they are studied such as composite, 
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ceramics, aluminium plates, ductile steel and textiles. There are two methods of 

studying the materials under impact. First method is conducted through experimental 

firing in the laboratory and the second method is using FEA simulation software. In this 

study it will focus on FEA simulation only. There are many FEA software available in 

the market such as AUTODYN, LS-DYNA, IMPETUS, MSC. DYTRAN, ABAQUS, 

and etc. There are several studies on materials under impact have been done with FEA 

simulation and available in the journals. Most of them found that the result of 

experimental and the FE simulations gave a good agreement between them. 

Borvik et al. (Børvik, Olovsson et al. 2011) studied on the normal and oblique 

impact on 20 mm thick AA6082-T4 aluminium plates. The bullets size is 7.62 x 63 mm 

NATO soft lead core and 7.63 x 63 mm APM2 hard steel core. The angle of impacts is 

0⁰, 15⁰, 30⁰, 45⁰ and 60⁰ and the impact velocity is 830 m/s. They are trying to fine 

which angle of impact that can give the worst scenario when hit the plate material. They 

found that the angle that can give higher depth of penetration for both bullets is 0⁰ to 

60⁰. They are using LS-DYNA 3D non-linear FE simulation and using failure criterion 

of modified Johnson-Cook constitutive relation and the Cockcroft-Latham.  

The FEA simulation of impact on ceramic composite armour material known as 

ultra high molecular weight polyethylene (UHMWPE) was done by Krishnan et al 

(Krishnan, Sockalingam et al. 2010). They are using LS-DYNA explicit finite element 

analysis and the material model Johnson-Holmquist was selected to model the impact 

phenomenon for ceramic material. The purpose of studying is to develop a finite 

element model as a predictive tool in design to balance the requirements given by 

weight, thickness and cost of body armour for a particular threat level.   

The other study of impact on composites done by Gama et al (Gama and 

Gillespie Jr 2011). They studied the impact, damage evaluation and penetration of thick 
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section composites.  LS-DYNA explicit dynamic finite element analysis was used and 

the material model MAT162 was selected to simulate the progressive composite 

damage. They tried to develop a systematic model-experiment methodology in 

validating the finite element model from static to impact loading conditions. They also 

develop the 3D finite element model of the ballistic impact. 

The study of impact by hemispherical-nose, cylindrical projectile on the 

lightweight composite sandwich panels consisting of fiber-reinforced E-glass polyester 

polymer facesheets and Divinycell H130 polymeric foam core was done by Hoo Fat and 

Sirivolu (Hoo Fatt and Sirivolu 2010). This paper is tried to develop an analytical model 

use to quantify the deformation and failure of composite sandwich panel subjected to 

high velocity impact of projectile. The result of transient deflection and velocity of the 

projectile and sandwich panel is fairly well between ABAQUS Explicit and continuum 

C3D8R elements and published experimental data. 

Ong et al. (Ong, Boey et al. 2011) was using AUTODYN to design composite 

personnel armour by optimizing the role of each layer plays during projectile defeat. 

They investigating layered concept in armour plate technology based on fundamental 

shock physics to stop a projectile penetration. The studied using composite plate 

consisting of a very hard 1
st
 layer, for the 2

nd
 layer a wave spreading function, and 

shock absorbing place as the 3
rd

 layer. They concluded that the sequence concept of the 

layering armour is fundamentally correct due to it performed better than the 

conventional armour steel of equivalent areal density. 

Works on impact of various projectiles on ceramic/steel armour by using finite 

element analysis was done by Lamberts (Lamberts 2007). He tried to get high strain 

rates and high pressure by using various constitutive models. The study shows the 



 

   13 

Johnson-Holmquist-Beissel model is the most appropriate to be used. In his study he 

used MSC. DYTRAN code.  

The FEA simulation is also able to calculate the performance of plastics 

components under impact (Dean and Read 2001).  They are working with the high value 

of stress and plastic strain when the plastics components received an impact. They 

found that for strain rate higher than 1 s
-1

, errors in measurement occur associated with 

the generation of transient forces and difficulties to measurement strain. 

Zeng et al. (Zeng, Pattofatto et al. 2010) study the perforation behaviour of 

sandwich plates with graded hollow sphere cores under impact using LS-DYNA. The 

material they were use for plate is 0.8 mm 2024 T3 aluminium alloy skin sheet and 

graded polymer. It is found that the first layer of skin sheet should be rather weaker than 

the core material. The weaker skin sheet material will folds into the core and cause 

much more energy to consume during perforation process. They were used finite 

element analysis to get the key of local information which is not experimentally 

available during the perforation process. 

Iqbal et al. (Iqbal, Chakrabarti et al. 2010) studied the impact on ductile target 

by using 3D numerical simulation method using ABAQUS finite element analysis code. 

They studied the behaviour of Weldox 460 E steel and 1100-H12 aluminum targets 

when impacted with conical and ogive nosed steel projectiles respectively. The material 

is made in single and double layered target. The thickness for double layer target is 

same with a single layer target. They found that the monolithic material target has 

higher ballistic resistance than the double layered material target of the same thickness. 

This study shows the mechanics of perforation is quite complex and depends on various 

parameters including thickness and material properties of the target and shape of the 

projectile. 
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Rittel et al. (Dorogoy, Rittel et al. 2010) studied on polymethylmethacrylate 

(PMMA) plate under impact. They want to understand ductile failure and tensile failure. 

The effect of kinetic energy of projectile under angle trajectory of impact was also in 

their study. The ductile failure criterion enforces a straight trajectory in the initial 

velocity direction and the tensile failure criterion controls the deflection and ricochet 

phenomenon. They study by using ABAQUS explicit finite element code. 

Qasim (Qasim H 2009) works on plastic deformation of a thin rectangular 

polycarbonate armour plate subjected to single and multiple impacts. The impacts were 

conducted on horizontal and diagonal path. He is using the result from LS-DYNA and 

compared with the experimental work. The results show close agreement between them. 

Sareen (Ashish K. Sareen 1996) studied the impact and penetration of projectiles 

to a generic fluid-filled tank and a composite wing structure containing fuel cells. She is 

using MSC. DYTRAN finite element-code in her study. She found that the MSC. 

DYTRAN is a promising tool for improving ballistic tolerance designs and in guiding 

pre-test specimen setup. 

 Nyström et al. (Nyström and Gylltoft 2011) were studied in comparative 

numerical studies of projectile impacts on plain and steel-fibre reinforced concrete.  

They were using AUTODYN in studying the different amounts of fibres. The amount of 

fibres will influence the depth of penetration and crater formation on the front and rear 

face of a concrete target. He concluded that scabbing crater can be reduced in size by 

using fibre-reinforced concrete and the depth of penetration is only slightly less than the 

depth of penetration in plain concrete.  

Duan et al. (Duan, Keefe et al. 2006) studied the influence of projectile-fabric 

friction and yarn-yarn friction during ballistic impact of a rigid sphere onto a square 

fabric panel. The result showed friction affected the fabric deformation within the 
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impact region and also contribute in the fabric energy absorption. They used LS-DYNA 

explicit nonlinear FEA code in running the simulation. 

Wang et al. (Wang, Miao et al. 2010) and Barauskas et al. (R. Barauskas 2005) 

worked on digital element approach for simulating impact and penetration of textiles 

and woven structures.  They satisfied with the results found and the study can be done 

with simulation software.   

Sands et al. (Sands, Fountzoulas et al. 2009) studied the influence of defects on 

the failure of laminates, for statically and dynamically  testing in ceramic materials.  

They are using a transparent magnesium aluminate spinel (MgAl2O4) striking-ply 

backed by polycarbonate. The finite element analysis is used to predict unsuccessful 

designs and reduce the number of laminate configurations in experimental testing. They 

are using ANSYS/AUTODYN to simulate the penetration. According to them the result 

of simulation gave a good agreement with the experimental result.  

Sauer (M 2011) studied the impacts of projectiles on fluid-filled aluminium plate 

containers. He was using LS-DYNA to simulate the penetration of high velocity impact. 

Lagrangian finite element method, non-commercial codes with explicit time integration 

was used. He found that the result has a good agreement with the experimental 

observations for deformation, water spread and residual velocity. 
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2.3 Polymer 

Polymer is a material that can be in the form of crystalline and amorphous. 

Traugott Fischer (Fischer 2009) said “Rubber is a natural or synthetic polymer with a 

molecular structure that allows it to stretch by large amounts”. A polymer consists of 

repeated units called as mers or monomers (McHenry 2010). Mer is referred to a unit of 

atoms or molecules of polymer foundation. A few molecular units or mers (≤ 50) 

repeated as a group typically known as oligomer. Polymer is usually has more than 50 

mers or maybe thousands of mers. Therefore, polymer is formed from many mers linked 

together and become a long chain. This can be called as macromolecules. The process 

of creating polymers properties is called the degree of polymerization. It has two 

processes which are known as addition polymerization and condensation polymerization 

(Donald R. Askeland 2003).  

Polymer can be classified according to the molecular structure. It is known as a 

linear polymer, a branched polymer or a network polymer. A linear polymer has one 

backbone with no branches and it does not mean as a straight line. A branched polymer 

has smaller secondary chains which is emanating from the primary chain. The branched 

structure tends to lower the degree of crystallinity and density of the polymer. Cross-

linking polymers is branched molecules are formed between separated polymer chain 

molecules.  

The polymer in crystalline or in solids form such as plastics or o-ring, the chain 

of molecules are rigidly fixed in space and entangled between the polymer chains. 

Therefore it has higher density. The polymer in amorphous or in liquid form, the chain 

of molecules are freely in space. So it has low density. 
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The classification of polymers is based on thermal and mechanical properties. 

The mechanical properties of polymers such as modulus of elasticity, tensile, impact, 

and fatigue strength are the same with the parameters for metallic materials. 

Furthermore, polymers are highly sensitive to the rate of deformation, temperature and 

chemical in environment. The polymers can behave as brittle characteristic at the lower 

temperature, and will yielding and plastic deformation and totally elastic or termed as 

elastomers at the higher temperature.  

The polymers can be classes as thermoplastic polymers, thermosetting polymers, 

and elastomers. Thermoplastic polymers have long, linear, or branched chains that are 

not cross-linked. This polymer is soften when heated therefore it can be repeated again 

and again to the other forms. Thermosetting polymers have long linear or branched 

chains that are strongly cross-linked. This polymer is irreversibility of the cross-linking 

reaction and it makes reprocessing of these polymers difficult. It behaves like the other 

brittle solid material. If the thermosetting polymer contains surface flaws or sharp 

notches, the stress will be high at these location to break covalent bonds and cause 

fracture to the polymer materials. Elastomers (or rubbers) can be thermoplastics or 

weakly cross-linked molecules thermosetting polymers and can be are distinguished by 

the large elastic elongation. 

Viscoelasticity is a property of deformation of rubber and it has capacity of large 

elastic deformation. It is because this kind of property material has molecule structure 

like shape of coils spring. In deformation action, it is actually straightening these coils. 

The viscoelasticity property is in between elastic at low temperature and viscous or 

liquid like behaviour at high temperature.  
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Creep is a deformation at slow and steady process and increase in the 

deformation because of a constant load. It happen at above the glass transition 

temperature but it also can happen at room temperature and below. It is depend on the 

temperature and the load given.  Usually this kind of deformation in polymers is called 

viscoelastic creep. 

 

2.3.1 Constitutive Modelling 

In the stress-strain relations of the hyperelastic material such as natural rubber is 

generally characterized by strain energy potentials. It is because natural rubber is a non-

linear elastic isotropic behaviour and incompressible. In this study the define properties 

used in the software is according to Mooney-Rivlin function.  From Zhao et al. and 

Leow et al. (Loew and Meier 2007; Li, Zhao et al. 2009) the Mooney-Rivlin function of 

strain energy potential is expressed as 

𝑊 =  𝐶𝑖𝑗

𝑁

𝑖+𝑗=1

 𝐼1 − 3 𝑖 𝐼2 − 3 𝑗 +  
1

2
𝑘  𝐼3 − 1 

2
 

     

where Cij is a material parameter from the material test, k is the volume modulus or bulk 

modulus, I1,I2,I3 are the invariants of the deformation tensor or the first order, second 

order and third order invariants strain values, respectively. The invariants are calculated 

from the principal stretch ratio λ1, λ2, and λ3. The λ1, λ2, and λ3 are defined as the ratio of 

extended length of the specimen to the original length of the specimen in three principal 

stress directions.  The invariants are defines as 

𝐼1 =  𝜆1
2  +  𝜆2

2 +  𝜆3
2 

𝐼2 =  (𝜆1𝜆2)2  +  (𝜆2𝜆3)2 +  (𝜆1𝜆3)2 
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𝐼3 =  (𝜆1𝜆2𝜆3)2 

In the uniaxial stress state, the principal stretch ratios λ1, λ2, and λ3 are as  

𝜆1 =  𝜆𝑢   and  𝜆2 =  𝜆3 =  1  𝜆1  

where λu is the principal stretch ratio in the applied loading direction, λ2, and λ3 are the 

principal stretch ratios on the planes which is perpendicular to loading directions. Due 

to the material has incompressibility behaviour and constant volume, the I3 invariant is 

1, therefore the volume modulus or bulk modulus become 0 (Loew and Meier 2007).  

 

2.4 Small Arms Ammunition 

Naturally when said small arms ammunition it is for weapons such as pistols, 

sub-machine guns, rifles and machine guns. By definitions small arms ammunition is 

for calibre or diameter of bullet below 15 mm (Halsey 1982) or from other reference the 

diameter of bullet is below 20 mm (Omar 2003). Sometime small arms ammunition is 

also referred as a round of ammunition. The histories stated, small arms ammunition 

began since 1320 after the black powder was introduced (Halsey 1982). The function of 

ammunition is to incapacitate personnel or killing the animals through extensive wound 

effect on the body. 

A complete round of ammunition consists of cartridge case, ignition system or 

cap, propellant and bullet (Donald E. Carlucci 2008). The typical overview of 

ammunition is shows in Figure 2.1.  
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Figure 2.1: Typical round (Halsey 1982) 

 

2.4.1 Cartridge Case 

The functions of cartridge case are to accommodate the propellant charge, the 

ignition system and hold the bullet at its mouth. Beside that it also functions as a sealing 

system which means preventing gas from escaping to the rear side of barrel when the 

generated gas pushing bullet moves forward out of the barrel muzzle. A cartridge case is 

usually made from cartridge brass or cuprous-nickel or gilding metal. The alloy 

composition of cartridge brass is 70/30 copper zinc alloy in proportions, cuprous-nickel 

is a copper nickel alloy of about 80/20 in proportions and gilding metal is a copper zinc 

alloy of about 90/10 in proportions (Omar 2003).  
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2.4.2 Bullet 

The function of bullet is to carry pure kinetic energy and transferring to the 

target when hit (Donald E. Carlucci 2008). Kinetic energy bullet for military purposes 

are fully jacketed or enveloped to cover an inner core metal. This is to achieve stability 

during flight and cause high wounding potential to the target. It is also to follow the 

Hague Convention guidelines 1900 (Halsey 1982). The conventional jacketed bullet is 

sometime described as a full metal jacket (FMJ) bullet. It is shown in Figure 2.2. 

The jacket metal is usually from copper alloy such as gilding metals 

combination of 95% copper and 5% zinc.  The inner core metal of the bullet is made 

from an alloy such as lead and antimony with ratio 9:1 to give a good bullet penetration 

and reasonable weight. The jacket does not fully cover the core of the bullet. It rolls 

over the base to leave the core exposed. The exposed part will provide what they called 

“set-up” or the base of bullet expanding during firing in assisting the jacket or envelope 

to engrave with the “land” inner part of the barrel. The expand bullet base subjected to 

gas pressure enable the earliest seal of gas to be formed. This is to prevent the excessive 

amounts of gas from escaping through the front of the bullet. High velocity bullets are 

made tapered or known as “boat-tailed” towards the base of the bullet. This is to reduce 

drag of the bullet in flight.  
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Figure 2.2: Diagram of bullet jacket and core  

 

2.4.3 Ignition System 

The ignition system functions when the percussion cap composition is crushed 

by a firing pin to produce flame. The flame then passing through the fire holes to burn 

the main propellant. The most used ignition system known as berdan cap and boxer cap 

(Omar 2003). The berdan cap consists of a cap that fits over and anvil in the base of 

cartridge case. The boxer caps manufactured incorporates a brass anvil assembly on the 

top of the closing disc or it consists a cap incorporates its own built-in anvil. The 

ignition composition commonly based on mercury fulminate and for the present day it is 

made from lead styphnate. 
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2.4.4 Propellant 

Propellant used in the small arms ammunition normally has two types. It is 

known as single base propellant and double base propellant. The single base propellant 

is based on nitrocellulose (NC) only. NC may be in the form of flakes, grains or 

cylinders depending on the rate of burn desired. Double base propellant contained 

approximately 90% NC and 8% Nitroglycerin (NG). The advantage of double base 

propellant is it is more energetic but produces greater flame temperature than single 

base propellant. The other disadvantage is it increases erosion at the inner part of the 

barrel particularly at commencement of rifling. 

    

2.5 Technical Data Bullet 7.62 mm, 5.56 mm, and 9 mm  

Bullet 7.62 mm and 5.56 mm is purposely for rifle which is able to hit target at 

the long distance. Bullet 7.62 x 51 mm ball is able to reach target at distance more than 

2 km and still carries sufficient energy to incapacitate target while bullet 5.56 mm is 

able to reach target up to 1 km (C J Marchant Smith 1982). The muzzle velocity of 

these bullets is high: about 800 m/s for bullet 7.62 mm and 900 m/s for bullet 5.56 mm.  

Pistol and submachine-gun normally have bullet diameter or calibre 9 mm. It is 

for engaging closer target for about 100 meters in range since the muzzle velocity is 

lower: about 400 m/s. The summary technical data of bullet 7.62 mm, 5.56 mm and 9 

mm is shown in Table 2.1. 
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Table  2.1: Bullet Data (Terry J Gander 2000) 

 

2.6 MSC. Dytran Code 

STRIDE has bought MSC. Software in 2007 with the purpose to develop the 

capability of research in material designs by using the computer-aided engineering 

(CAE).   The MSC. Software Corporation which is formerly known as MacNeal-

Schwendler Corporation has been supplying the sophisticated computer-aided 

engineering tools since 1963 (1997). The products of MSC. Software cover the 

engineering disciplines such as structural analysis, heat transfer, crash dynamics, 

electromagnetic field analysis and graphics pre- and post-processing. The main product 

is MSC. Nastran used finite element structural program for linear analysis, vibration and 

classic dynamic and the original development of this software began in 1966 (1997). 

The other software products marketed by the MSC Software Corporation are MSC. 

Marc, MSC. Dytran, MSC. Patran, MSC. Marc Mentat, MSC. Adams, MSC. Fatigue, 

and etc.   

In calculating the mechanical response on impact simulation, the finite element 

analysis code MSC. Dytran is used. According to the MCS. Dytran 2005 r3 Theory 

Manual (2006) the solution technique of this program uses the Lagrangian explicit 

method to solve the equation of motion and it as follows. 

 

BulletType 

Muzzel 

Velocity 

Muzzel 

Energy 

Bullet 

Weight 

7.62 x 51 mm Ball M80 854 m/s 3519 J 9.65 g 

5.56 x 45 mm Ball M193 975 m/s 1692 J 3.56 g 

5.56 x 45 mm Steel Core SS109 930 m/s 1708 J 4.00 g 

9 x 19 mm Parabellum 396 m/s 583 J 7.45 g 
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The equation of motion 

𝑀𝑎𝑛  +  𝐶𝑣𝑛  +  𝐾𝑑𝑛 =  𝐹𝑛
𝑒𝑥𝑡         

where M is the mass matrix, C is the damping matrix and K is the stiffness 

matrix. The an is acceleration, vn is velocity, dn is displacement and F
ext

n is vector  of 

external applied loads. 

Then the equation can be written as   

𝑀𝑎𝑛 =  𝐹𝑛
𝑒𝑥𝑡  −  𝐹𝑛

𝑖𝑛𝑡                                                                                               

𝑎𝑛 =  𝑀−1𝐹𝑛
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙                                                                                                 

where 𝐹𝑛
𝑖𝑛𝑡  is vector of internal load (Cvn + Kdn) and 𝐹𝑛

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  is  residual load 

vector (𝐹𝑛
𝑒𝑥𝑡  −  𝐹𝑛

𝑖𝑛𝑡 ). 

The acceleration found by inverting the mass matrix (𝑀−1) and multiplying it by 

the residual load vector (𝐹𝑛
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ). 

From the MCS. Dytran 2005 r3 Theory Manual (2006) an explicit method does 

not require matrix decomposition or matrix solution. The loop is carried out for each 

time step as shown in the Figure 2.3 and it follows in calculating the material response. 

Since the accelerations assumed to be constant over the time step, therefore the time 

step has to be chosen small. In the reason of stability, it must be chosen smaller than the 

smallest natural period in the mesh. It is means that the time step has to be smaller than 

the time for a stress wave to travel through the smallest element.  
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Figure 2.3: Loop of Explicit Method for each time step (2006) 

 

MSC. Dytran is used also for studying sheet metal forming, contact analysis and 

plastic container forming. MSC, Dytran actually has two solving techniques known as 

Lagrangian method solver and Eulerian mothod solver. The solving method can be used 

either one or both and can couple the methods to define an interaction.  

According to the MCS. Dytran 2005 r3 Theory Manual (2006) the Lagrangian 

method solver is used commonly for engineering applications or structural modelling. 

With the Lagrangian method solver the grid points are located on the body. The 

elements of material with constant mass connect the grid points forming a mesh. As the 

body deforms, the grid points will move with the body and the elements (mesh) distort 

as shown in Figure 2.4. The Lagrangian method solver is then calculating the motion of 
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elements of constant mass. The Lagrangian processor is used explicit formulation and 

allows large deflection with material and geometric non-linearities. 

 

 

Figure 2.4: Lagrangian Solver Method (2006) 

 

According to the MCS. Dytran 2005 r3 Theory Manual (2006) the Eulerian 

method solver is used for analyses fluids or materials undergo very large deformation or 

Fluid Modelling. With Eulerian method solver the grid points remain fixed in space and 

the elements are simply partitions of the space defined by connected grid points, 

defining fixed volumes or elements. The Eulerian mesh is a „fixed frame of reference‟. 

The material of the body moves through these Euler elements mesh, the mass, 

momentum and energy of the material is transported from one element to another as 

shown in Figure 2.5. The Eulerian solver calculates the motion of material through 
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elements of constant volume. The Eulerian processor is essentially an explicit inviscid 

computational fluid dynamics code. 

 

Figure 2.5:  Eulerian Solver Method (2006) 

 

In this study we are using Adaptive Contact under Contact from load and 

boundary condition menu. Adaptive contact is selected to command the failure 

behaviour between the bullet and the panel material model. From the MCS. Dytran 

2005 r3 Theory Manual (2006), it allows a penetrating object to go through a closed 

surface after elements in its path have failed, without causing holes in its connectivity. 

Any contact failure behaviour requires master/slave designations for the contacting 

surface. In this simulation the bullet is designated as master and the panel material 

model as slave. Every time step, MSC. Dytran will checks the adaptive contact for the 

grid points of the bullet to see if any have penetrated into the element of the panel 
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material model. If penetration is found, a force is applied on the bullet grid in the 

direction opposite the penetration. An equal and opposite force is also applied to the 

grids which are connected to the element being penetrated. What makes the contact 

adaptive is its ability to allow the projectile to punch through the hole created when the 

elements in front of it have failed. When an element in the contact region fails, the 

adaptive contact algorithm stops applying force to it and also stops applying force from 

it on the penetrating object (2006). 

 

2.6.1 Constitutive Model RUBBER1 

The material behaviour in the MSC Dytran followe to Mooney-Rivlin 

hyperelastic model. It can be used with Lagrangian solid elements only.  In the MSC. 

Dytran theory manual (2006), “The strain energy density function is defined according 

to the Mooney-Rivlin model: 

𝑾 𝐼1, 𝐼2, 𝐼3 =  𝑨 𝐼1 −  3 +  𝑩 𝐼2 −  3 +  𝑪 
1

𝐼3
2 −  1 +  𝑫(𝐼3 −  1)2 

The constants A and B, and Poissons‟s ratio v are the input parameters for the 

model. The constants C and D are related to the input parameters as: 

𝑪 =  
1

2
𝑨 + 𝑩 

𝑫 =  
𝐴 5𝒗 − 2 +  𝐵(11𝒗 − 5)

2(1 − 2𝒗)
 

I1, I2, and I3 are strain invariants in terms of stretches. Stretches are defined as: 

𝛿𝑥𝑖

𝛿𝑋𝑗
=  𝜆𝑖𝑗     



 

   30 

where xi and Xj are respectively, the coordinates of the deformed and the original 

geometry. 

For rubber-like materials, the shear modulus G is much less than the bulk 

modulus K. In this case, 

𝑮 = 2 𝑨 + 𝑩  

The stresses are computed as: 

τ = (detF)-1 x F x σ x FT  

Where σ is the second Piola-Kirchhoff stress tensor: 

σ = 2(∂W/∂C)  

The Cauchy-Green stretch tensor C is defined as: 

C = F
T
F 

where F is the deformation gradient tensor 

F =  
𝛿𝑥 

𝛿𝑋  
 

In terms of principal stretches λ1, λ2, λ3 (for example, the stretches in the 

coordinate system where all shear strains and shear stresses varnish) the expressions for 

the deformation gradient tensor F, and the Cauchy-Green stretch tensor C simplify to    

F =   

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

  ,           C =  

𝜆1
2 0 0

0 𝜆2
2 0

0 0 𝜆3
2

  

The strain invariants I1, I2, and I3 read  

𝐼1 =  𝜆1
2 +  𝜆2

2 +  𝜆3
2 

𝐼2 =  𝜆1
2𝜆2

2 +  𝜆2
2𝜆3

2 +  𝜆3
2𝜆1

2 
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𝐼3 =  𝜆1
2𝜆2

2𝜆3
2 

The stresses can be written as 

𝐽𝜏𝑖𝑖 =  𝜆𝑖

𝜕𝑊

𝜕𝜆𝑖
 

Where 𝐽 =  𝜆1𝜆2𝜆3 =  
𝑑𝑉

𝑑𝑉0
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CHAPTER 3 : Methodology 

 

 

The main purpose of this study is to investigate the depth of penetration of the 

bullet in the rubber panel. We set the properties of bullet constant such as the bullet 

dimension, bullet initial velocity and bullet weight. First of all, the models of bullet 

and target panel are drawn using the Computer Aided Design (CAD) SolidWorks 

2007 Software. The data of the bullet properties, the rubber properties and the 

reinforce material properties are obtained from the available references. The 

simulation modelling is carried out in three-dimensions (3D). The numerical 

simulation is carried out with the MSC. DYTRAN software with solver Lagrangian 

explicit finite element code and the failure behaviour command of penetration is 

using Adaptive Contact Master-Slave Surface. 

 

3.1 The MSC-Dytran Environment 

Before running the simulation, the sequence of setting the model and to retrieve 

the result in the MSC. Dytran environment have to follow steps as stated below. First, 

the model of the bullet and the model of the panel have to be loaded. Second step is the 

models have to be meshed according to the appropriate element shape. Third step is 

creating the material properties and input the data of material use in the analysis. Then 

the forth step is to assign the model with the material property created in step three.  

The fifth step is assigned the boundary condition and the initial velocity to the models. 

In this step the failure behaviour of material is also assign to the models. Step sixth is 

selecting the output data required in the analysis menu and time duration to run the 
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analysis. The last step is run the analysis using the MSC-Dytran Explorer.  The data of 

penetration can be retrieved from MSC-Dytran Explorer. If we want to view the image 

of penetration, we can use the Result menu by using the .arc file. The environment of 

MSC-Dytran is shown in Figure 3.1. and the MSC.Dytran Explorer is shown in Figure 

3.2.   

 

 

Figure 3.1: The MSC. Dytran environment 

 



 

   34 

 

Figure 3.2: The MSC. Dytran Explorer environment 

 

3.2 Bullet 

There are wide varieties of bullet diameter or calibre in the market. But the 

bullet calibre or diameter studied is only the bullets use in the WTD, STRIDE shooting 

range. Most of the bullets type used in the WTD, STRIDE shooting range are used by 

Malaysian Army. These bullets called full metal jacket (FMJ) type. The diameter of 

bullet choose in this study is 7.62 mm since it carried the highest energy when 

comparing with the diameter bullet 5.56 mm and 9 mm. Therefore bullet 7.62 mm has 

the higher energy of penetration capability than the diameters bullet 5.56 mm and 9 

mm. The data of bullet used in this study shows in Table 3.1. 
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Table 3.1: Data of Bullet 7.62 mm (Terry J Gander 2000) 

 

3.2.1 Bullet Model 

The model of the bullet illustrated in Figure 3.3 corresponds to the outer shape 

dimension of 7.62 x 51 mm NATO Ball M80 (with a soft lead core). The dimension of 

the ogivel nose part is 76.2 mm in radius, the overall length is 28.633 mm, and the 

diameter is 7.62 mm (Terry J Gander 2000).  

 

 

Figure 3.3: Bullet drawing and dimensions 

Bullet Type Muzzel Velocity Muzzel Energy Bullet Weight 

7.62 x 51 mm Ball M80 854 m/s 3519 J 9.65 g 
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The mesher of bullet model is assigned as surface type and using tetrahedral 

elements shape with paver meshing algorithm with Tria 3 topology. The total number of 

shell element counted is 255 elements. The finite element solid model shown in Figure 

3.4 and the wire mesh frame shown in Figure 3.5.   

The material constitutive model of bullet is assigned as Rigid (MATRIG) body 

which means it does not deform during impact. The bullet model assigned as a rigid 

body because to make sure that the panel will receive the highest energy on impact. If 

the bullet breaks the energy will reduce and make the depth of penetration reduce. The 

initial velocity assigned to the model of bullet is 800 m/s. This initial velocity is 

assigned at the node of the elements shown in Figure 3.6. In the Adaptive Contact 

Master-Slave Surface failure behaviour, the bullet is assigned as master. 

  

 

Figure 3.4: The view of solid finite element model 
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Figure 3.5: The example view of wire mesh frame of the bullet model 

 

 

Figure 3.6: The initial velocity is assigned at the node of the elements 
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3.3 Material Panel 

The material use in this study is rubber and the reinforce material. The first 

study is totally concentrated with the rubber panel. Since the rubber alone is not 

sufficient to stop the bullet penetration (500 mm thickness), the reinforce material is 

introduced.  The reinforce material under study has two types of material. It is known as 

Steel Alloy 4140 and Stainless Alloy 304. The panel will be assembled in sandwich 

between rubber-reinforce material. At the end of study we will select between these two 

reinforce material which one is the best that can be used with the rubber panel.  

  

3.3.1 Rubber Material 

The properties data of the rubber material are obtained from the available 

references and shown in Table 3.2. The rubber panel model is drawn in 3D and the 

dimension of the panel is 100 mm in length, 100 mm in width. In the study, the 

rubber panel model has different thickness per model. The thickness of the panel 

model is 200 mm, 300 mm, 400 mm and 500 mm.  

The rubber panel is uniformly meshed using hexahedron eight-noded shape 

with IsoMesh algorithms. The mesher is compact or dense at the centre part of 

panel from upper surface to the bottom surface.  The numbers of element is 8000 

elements and the example plot of mesh is shown in Figure 3.7. The boundary 

condition of the panel is fully fixed on every finite element node at the edge of the 

panel. All edges of the rubber are constrained in all degrees of freedom.  

The material entry of the constitutive model is a user define material model 

Rubber(RUBBER 1) with the element type is Lagrangian solid (2006). The RUBBER1 

is following the failure behaviour of a Mooney-Rivlin rubber model which more 
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suitable for hyperelastic material (2006). All setting of the calculation simulation is by 

default. The rubber panel material is assumed as isotropic. 

 

 

 

 

 

Table 3.2: Properties of Rubber Material (Roberts 1977) 

 

 

Figure 3.7: The example view mesh of Rubber Panel  

Serial Property 

1 Density 1.1 kg/m
3
 

2 Constant A 0.89 Mpa 

3 Constant B 0.46 Mpa 

4 Poisson Ratio 0.5 or 0.49999 
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3.3.2 Plate Material 

After studying the rubber panel, the next work consist in using sandwich panel 

i.e combination between rubber materials and reinforce materials. The reinforce 

material is in the form of thin plate. The sandwich panel has 200 mm in length and 200 

mm in width. The thickness of the plate is 5 mm. The dimension of length and width is 

different for this sandwich panel with the rubber panel because 200mm x 200 mm is 

easier to handle. The plate is assembled in sandwich with rubber. The selection of the 5 

mm plate thickness is because it is the normal thickness for plate available in the 

Malaysian market. The properties of the plates show in Table 3.3.  

 

Table 3.3: Properties of Plates (Callister 2007) 

 

 The material entry of constitutive model of plate is a user define material model 

ElasPlas (DYMAT 24) for piecewise Linear Plasticity with the element type is 

Lagrangian solid (2006).  All setting of the calculation simulation is by default. The 

material is assumed as isotropic. The meshing element is same as per rubber panel 

mesher, it is the uniform mesh hexahedron eight-noded shape with IsoMesh algorithms. 

Serial Property Material 

    Steel Alloy 4140 Stainless Alloy 304 

1 Density 7850 kg/m
3
 8000 kg/m

3
 

2 Elastic Modulus 207 GPa 193 GPa 

3 Poisson Ratio 0.3 0.3 

4 Yield Stress 290 MPa (hot roll) 515 MPa (cold work) 

5 

% of plastic 

elongation 0.2 0.4 
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The mesh element number for plate is 800 elements. The failure effect of the model is 

come from the Maximum Plastic Failure which is the % of Plastic Elongation. Same as 

rubber panel all edges of the plate are constrained in all degrees of freedom. The yield 

failure model is check using Von Mises profile.  

 

3.4 The Setting of Depth of Penetration Simulation on Rubber Panel 

In the penetration study, the models are arranged in vertical position. The bullet 

is position above and centre of the panel surface with some small distance. The distance 

between the bullet and the panel surface is 2 mm. We set the angle of impact is normal 

incidence (0⁰ obliquity) to the top surface of the panel. MSC. Dytran is simulate only 

single impact event and is assigned to hit at the centre of the panel in the vertical path. 

In the failure behaviour material of Adaptive Contact Master-Slave Surface, the bullet is 

assigned as master and the rubber panel is assigned as slave.  

The depth of penetration study started with different value of Constant A with 

thickness of the panel 500 mm. After that, the simulation continues with different 

thickness of rubber panel 400 mm , 300 mm, and 200 mm. The value of Constant A is 

increasing started from 1.0 x 0.89 MPa, then 1.2 x 0.89 MPa, 1.4 x 0.89 MPa, 1.6 x 0.89 

MPa, 1.8 x 0.89 MPa, and 2.0 x 0.89 MPa. The result then collected on every simulation 

testing panel. This analysis is trying to fine the best value of Constant A which can give 

the suitable depth of penetration and the bullet not perforate the rubber panel. 

The other variable input is studied. It is the Linear Viscosity Constant (LVC). 

The LVC is considered as the dampers property in the rubber panel. Adding value into 

this input is to reduce the effect hyperelastic of the rubber material. The LVC values are 
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set from 0.01, 0.001, and 0.0001. We study the effect of LVC by maintaining the rubber 

panel plate thickness at 500 mm and Constant A at value 1.4 x 0.89 MPa.  

 

3.5 Design of New Material for End Butt 

The new design of new material for end butt is consist of rubber and plate metal. 

Adding plate is a requirement in design in order to increase the capability of absorbing 

energy from bullet impact during penetration. The rubber and plate are arranged 

successively to form a sandwich panel as illustrated in Figures 3.5 to 3.7. The 

dimension of this design is 200 mm in length, 200 mm in width. The thickness of the 

rubber panel is kept constant at 50 mm and the thickness of the plate also is kept 

constant at 5 mm. The total thickness of new design is depending on the number of 

layers use. The purpose of layers is to make the design of new material for end butt 

more compact. We are doing the simulation for both plate material properties. 

The arrangement of bullet, panel position and the angle of impact are the same 

with the explanation given in section 3.4. The geometry of the bullet and assigned 

properties are similar with the previous simulation. The difference is only on total 

number of shell element which is increasing to 367 elements as per given by default.  

The first design is started with total 4 layers of rubber-plate in sandwich pattern 

arrange alternately. In this sandwich panel has 2 layers of rubber and 2 layers of plate. 

The total numbers element for this design during simulation is 5600. The total thickness 

of the 4 layers is 110 mm. We are simulating the same thing with the second and third 

design but with 6 layers and 8 layers accordingly. The second design has total numbers 

element is 8400 with total thickness of 165 mm. The third design has total numbers 

element is 11200 with total thickness of 220 mm. 
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Figure 3.8: View of mesh elements and Sandwich panel 4 layers 
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Figure 3.9: View of mesh elements and Sandwich panel 6 layers 
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Figure 3.10: View of mesh elements and Sandwich panel 8 layers 
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CHAPTER 4 : Results and Discussions 

 

 

 

In this chapter, we present the results and discuss the finding of the study. As 

mentioned previously, the new material will be used as additional safety device to sand. 

For that, Natural Rubber Filled material was selected to be studied. The numerical 

simulation was conducted to study the capability of rubber panel in resisting the 

penetration of the bullet impact.  Then study the response of rubber panel if the 

properties of material have changed. The final result needed is the depth of penetration 

of the bullet in the material. 

The input data required to run the simulation is the initial velocity of bullet is set 

800 m/s, the weight of bullet is set 9.65 g, the dimension of bullet is constant and the 

bullet is set as a rigid body. The variable input of material properties of Natural Rubber 

Filled, Steel Alloy 4140 and Stainless Alloy 304 material are as per in Chapter 3 above.  

The results are based on the panel thickness, different values of Constant A of 

rubber property, different values of Linear Viscosity Constant (LVC) of constitutive 

material property, design of rubber panel in layers when combine in sandwich with the 

other plate materials and different values material properties of plate.  
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4.1 Result for Rubber Panel 

4.1.1 Depth of Penetration into the Different Panel Thickness 

4.1.1.1 Rubber Panel Thickness is 500 mm 

Figure 4.1 shows how the depth of penetration is affected by the Constant A for 

rubber. It is found that the bullet penetrates and perforates the rubber panel when 

Constant A is set with value 1.0 x 0.89 MPa and 1.2 x 0.89 MPa. Increasing the value 

Constant A to 1.4 x 0.89 MPa makes the depth of penetration reduces to 327 mm from 

the rubber panel surface. Increasing further the value of Constant A from 1.6 x 0.89 

MPa, 1.8 x 0.89 MPa, and 2.0 x 0.89 MPa, the bullet is only able to penetrate the rubber 

panel up to 21.8 mm, 22 mm and 19 mm respectively.  

 

 

Figure 4.1: Penetration vs Constant A of Rubber Panel Thickness 500 mm 
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4.1.1.2 Rubber Panel Thickness is 400 mm. 

Figure 4.2 also shows how the depth of penetration is affected by the Constant A 

for rubber. The Constant A is set with 1.4 x 0.89 MPa, 1.5 x 0.89 MPa and 1.6 x 0.89 

MPa. It is found that for Constant A 1.4 x 0.89 MPa, the bullet is penetrated and 

perforated the rubber panel. The result for Constant A at 1.5 x 0.89 MPa, is same with 

Constant A 1.4 x 0.89 MPa which is penetrated and perforated the rubber panel. The 

result for Constant A at 1.6 x 0.89 MPa, it is only penetrating 22 mm of the rubber 

panel.  

 

 

Figure 4.2: Penetration vs Constant A of Rubber Panel Thickness 400 mm 
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4.1.1.3 Rubber Panel Thickness is 300 mm. 

Figure 4.3 also shows how the depth of penetration is affected by the Constant A 

for rubber. Values of Constant A are set with 1.4 x 0.89 MPa, 1.6 x 0.89 MPa and 1.8 x 

0.89 MPa.  It is found that the result for Constant A at value 1.4 x 0.89 MPa and 1.6 x 

0.89 MPa, the bullet is penetrate and perforate the rubber panel. Constant A set at 1.8 x 

0.89 MPa, the depth of penetration is 153 mm. 

 

 

Figure 4.3: Penetration vs Constant A of Rubber Panel Thickness 300 mm 
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4.1.1.4 Rubber Panel Thickness is 200 mm.  

Figure 4.4 also shows how the depth of penetration is affected by the Constant A 

for rubber. The value of Constant A is set with 1.40 x 0.89 MPa, 1.5 x 0.89 MPa, and 

1.6 x 0.89 MPa. It is found that the bullet is penetrate and perforate all the rubber panel  

for all values of Constant A.  

 

 

Figure 4.4: Penetration vs Constant A of Rubber Panel Thickness 200 mm 
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4.1.2 Effect of Linear Viscosity Constant (LVC) on the Depth of Penetration  

Figure 4.5 shows how the depth of penetration is affected by the LVC for 

rubber. In this simulation, the Constant A parameter is maintained at 1.4 x 0.89 MPa 

and the thickness of the rubber panel is 500 mm. It is found that for value LVC is 

0.0001, the bullet is penetrating deeper when compared with value LVC 0.01 and value 

LVC 0.001. The depth of penetration value for LVC 0.0001 is 250 mm before exit at the 

side of the panel. For values LVC 0.01 and LVC 0.001, the depth of penetration is only 

22 mm.  

 

 

Figure 4.5: Depth of Penetration vs Linear Viscosity Constant (LVC) 
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4.2 Discussion for Rubber Panel Result 

The results of penetration show that for rubber panel thickness of 500 mm, the 

depth of penetration is reduced when the value of Constant A rubber property 

increasing. At the first two value of Constant A the bullet is penetrating and perforating 

the rubber panel, but for Constant A of 1.4 x 0.89 MPa the bullet penetrate the rubber 

panel and stop at 327 mm from the front panel surface. The bullet is unable to penetrate 

more than 22 mm in depth for Constant A of 1.6 x 0.89 MPa, 1.8 x 0.89 MPa, and 2.0 x 

0.89 MPa.  

The depth of penetration for various thickness of rubber panel of 400 mm, 300 

mm, and 200 mm is investigated. The selections of Constant A are set between 1.4 x 

0.89 MPa to 1.8 x 0.89 MPa. Observation on the result for thickness 400 mm shows that 

none of the value Constant A can be used. Indeed, for Constant A of 1.4 x 0.89 MPa 

and 1.5 x 0.89 MPa the bullet penetrates and perforates the panel. For Constant A of 1.6 

x 0.89 MPa it allows partial penetration of the bullet into the rubber panel.  

Result for the thickness of rubber panel 300 mm shows, the bullet is penetrate 

and perforate the panel for Constant A of 1.4 x 0.89 MPa and 1.6 x 0.89 MPa. The 

penetration of the bullet is 153 mm for Constant A of 1.8 x 0.89 MPa. The results for 

thickness of rubber panel 200 mm show that the bullet penetrates and perforates the 

rubber panel. This result shows that this rubber panel thickness cannot be used to stop 

the bullet.  

  Most of the results show that the bullet always rebound back when reached the 

maximum depth of penetration as shown in the Annex. As we know rubber is a 

hyperelastic or non-linear elastic material. This kind of material is able to store and 

release energy again after impact. The constitutive model of Rubber(RUBBER1) in the 

MSC Dytran is purely for hyperelastic material to introduce the damping effect, the 
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Linear Viscosity Constant (LVC) is used. In this simulation testing the values of LVC 

selected are 0.01, 0.001 and 0.0001. The result shows that by applying the values LVC 

in the property input, the material is able to reduce the rebound effect as shown in 

Figure 4.6. For value LVC 0.01 and LVC 0.001, both values are also given the same 

result of penetration. Therefore we choose the value 0.01 of LVC to be put in the rubber 

material property menu.  

 

 

Figure 4.6: Bounce effect reducing by time shows on graph Penetration vs Time 

for Linear Viscosity Constant 0.01.  
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In this simulation testing, different types of rubber material have been 

considered. The different types of rubber are known from different value of Constant A 

input. The results show depth of penetration is reduced with the increasing of Constant 

A. Therefore, the best parameter of rubber panel refers to the results of simulation is 

Constant A 1.4 x 0.89 MPa with the panel thickness 500 mm. Referring to the thickness 

500 mm for the rubber panel, it is too large to handle and difficult in process of 

manufacturing. Due to that the rubber alone as a panel is not sufficient. Therefore, the 

panel consists of sandwich structure between rubber and reinforcing material is 

proposed. 

 

4.3 Result for Sandwich Panel 

In this study we consider 4 Layers, 6 Layers and 8 Layers of sandwich panels. 4 

layers panels means it has 2 rubber layers and 2 plate layers, for 6 layers panel it has 3 

rubber layers and 3 plate layers and for 8 layers panel it has 4 rubber layers and 4 plate 

layers. Every rubber panel thickness is 50 mm and every plate panel is 5 mm. For the 

plate material, 2 different materials are considered in this study: Steel Alloy 4140 and 

Stainless Alloy 304.  

 

4.3.1 Depth of Penetration for the Different Sandwich Panel 

4.3.1.1 Sandwich Panel of Rubber-Steel Alloy 4140 

Figure 4.7 shows how the depth of penetration is affected by impacting the 

bullet on the Rubber-Steel Alloy 4140 sandwich panel. It is found that the 4 layers panel 

is penetrated up to 65 mm, and the bullet is bounced back out from the front surface of 
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the panel. The 6 layers panel has depth of penetration 164 mm and for the 8 layers panel 

the bullet penetrate up to 106 mm. 

 

 

Figure 4.7: Depth of Penetration vs Total No of Layers of Sandwich Panel 

Rubber-Steel Alloy 4140 

 

4.3.1.2 Sandwich Panel of Rubber-Stainless Alloy 304 
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bullet on the Rubber-Stainless Alloy 304 sandwich panel. It is found that for the 4 

layers panel, the bullet penetrate and perforate the sandwich panel. The 6 layers panel is 

penetrated up to 130 mm and the 8 layers panel is penetrated up to 166 mm of the 

sandwich panel.  
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Figure 4.8: Depth of Penetration vs Total No of Layers of Sandwich Panel 

Rubber-Stainless Alloy 304 

 

4.3.2 Effect of Plate Yield Strength (YS) of Steel Alloy 4140  

  The sandwich panel selected in this testing is 6 layers panel with total 
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is reduced 20% for every step. The value of YS is 290 MPa, 232 MPa, 174 MPa, 

and 116 MPa. Figure 4.9 shows how the depth of penetration is affected by the 

Yield Strength (YS) of the Steel Alloy 4140 sandwich panel. It is found that the 

depth of penetration for YS 290 MPa is 155 mm, YS 232 MPa is 105 mm, YS 174 

MPa is 114 mm, and YS 116 MPa is 165 mm. For YS 116 MPa the bullet has 

perforated the panel. 
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Figure 4.9: Depth of Penetration vs Yield Strength of Sandwich Rubber-Steel 

Alloy 4140 Panel 6 Layers  
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Figure 4.10: Depth of Penetration vs % of Plastic Elongation of Sandwich 

Rubber-Steel Alloy 4140 Panel 6 Layers 
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it shows that the bullet is bounce back and off the panel from the front surface. For the 

sandwich panel of rubber-Stainless Alloy 304, the bullet penetrates and perforates the 

sandwich panel. Therefore, for safety reason both panels are not suitable to be used as a 

bullet stopper.  

The results for the 6 layers sandwich panel show that the sandwich panel of 

rubber-Steel Alloy 4140 and sandwich panel of rubber-Stainless Alloy 304 are able to 

stop the bullet. The depth of penetration into the panels is 164 mm and 130 mm 

respectively. The bullet is trapped at the second last and the last layer of the panel. 

These panels are not suitable to be used because the bullets are able to reach the second 

and last layer of the panel. If the bullet has higher velocity, it may perforate the panel. 

The results for the 8 layers of sandwich panel show that both panels are able to 

stop the bullet. The depth of penetration is 106 mm for sandwich of rubber-Steel Alloy 

4140 panel and 166 mm for sandwich of rubber-Stainless Alloy 304 panel. For the 

rubber-Steel Alloy 4140 panel, the bullet is stopped at layer no 4. For the rubber-

Stainless Alloy 304 panel, the bullet is stopped at layer no 6. These results show that the 

8 layers sandwich panel for both type of reinforce material selection are suitable to be 

used as the bullet stopper and trap. Between the two, the rubber- Steel Alloy 4140 is 

more suitable to be used because it is capable to stop bullet at layer no 4. 

The further study is done by varying the YS and % of Plastic Elongation in order 

to investigate their effect of depth of penetration.  The study is started with reducing the 

YS and keeps maintaining the rubber parameters and % of Plastic Elongation. The 

second study is increasing the % of Plastic Elongation and keeps maintaining the YS 

and the rubber parameters. In this study the parameters property of the rubber is keep 

maintained as per in Table 3.2 and the original properties of the plate material is as per 
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in Table 3.3. The simulation is conducted using the 6 layers of sandwich panel with the 

reinforce plate of Steel Alloy 4140 only.  

The results for reducing the YS show that the depth of penetration is reducing 

before it is increasing again at about 50% of the original of YS. The results for 

increasing the % of Plastic Elongation show that the depth of penetration is reducing 

before it is increasing again at about 0.5% of Plastic Elongation of the original data. 

From the simulation, both results show that the change in the YS and % of Plastic 

Elongation of reinforce material will have the effect on the depth of penetration. 

By comparing the depth of penetration between the panels of rubber alone and 

the sandwich panel, the depth of penetration for sandwich panel is much lower than the 

rubber panel. The rubber panel alone requires the thickness of 500 mm which is larger 

than the sandwich panel of 220 mm in thickness. For that, the sandwich panel is easier 

to handle in the shooting range due to small in size. Furthermore, the value use of 

Constant A is also lower for the sandwich panel, therefore it does not require excessive 

carbon black filler.  

In this study we are selecting rubber as the main material because it is easily 

available in Malaysia. Indeed, Malaysia supplies rubber of about 46% of the world need 

and cultivates rubber about 2 to 4 million acres or about 65% of total land used for 

cultivation (Kishore 2010) . The price of this material is relatively cheap. Therefore, the 

cost in producing the rubber panel is low.  
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CHAPTER 5:    Conclusions and Recommendations 

 

 

 

5.1 Conclusions 

In this study, the numerical simulation of rubber panel under impact loading was 

considered. The rubber panel will be used as a potential additional safety device during 

the firing test conducted at WTD, STRIDE. Indeed, the current practice of firing test has 

several drawbacks including those related to safety, maintenance cost and pollution 

issues as detailed in Chapter 1. The additional safety device should be portable, with a 

relatively small size in dimension, easy in handling and light weight. Moreover, it 

should be capable to stop completely the bullet during the test, i.e. it should have 

sufficient damping capacity. Considering the above requirements, rubber materials are 

chosen as the potential material for the panel. 

The numerical simulations on the feasibility study of rubber materials used as 

portable panel have been successfully conducted using MSC. Dytran software available 

at WTD, STRIDE. The Mooney-Rivilin hyperelastic strain energy was used during the 

simulation to represent the rubber failure behaviour.  The effect of different material 

parameters including damping capacity on the depth of penetration was investigated. 

Based on this result, the chosen material parameters of rubber to be used in the design 

of the new panel are A = 1.4 x 0.89 MPa, B= 0.46 MPa, LVC=0.01.   
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The numerical simulations on mechanical responses of rubber material under 

impact loading were investigated. Different types of rubber were considered. Through 

study, it was found that the depth of penetration is reduced with the increasing of 

parameter A. However the result show that the rubber alone as a material for panel is 

not sufficient. Indeed, the required panel geometry will be too large (500 mm in 

thickness) to be used in practice at WTD, STRIDE. Moreover, producing such massive 

rubber panel would be difficult. Therefore, it was proposed that the panel should consist 

of sandwich structure between rubber and reinforcing materials. For simplicity two type 

of steel were considered: Steel Alloy 4140 and Stainless Alloy 304. 

For each type of reinforcing material, 3 types of sandwich arrangement were 

investigated: 4 layers sandwich panel, 6 layers sandwich panel and 8 layers sandwich 

panel. The result shows that 8 layers panel give better result than 4 or 6 layers. Further 

numerical simulations on the effect of the yield strength and % of plastic elongation of 

reinforcing material on the depth of penetration were established. It was found that the 

depth of penetration reduces when both yield strength and % of plastic elongation 

increase before the penetration increases for further increase of yield strength and % of 

plastic elongation.  

To conclude, all of the objectives of the study are achieved.  

 

5.2 Recommendations 

The following are suggested for future investigation: 

1. The numerical results should be validated and compared with experimental 

observations. Therefore, appropriate experimental set-up to probe the 

mechanical response of rubber panel under impact loading is required. 
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2. In real engineering applications, many industrial rubber components exhibit 

strong viscoelastic response. Therefore, the validity of hyperelastic 

constitutive equation to describe rubber behaviour should be evaluated. In 

the case where strong viscoelastic response is observed, additional 

subroutine describing the viscous effect should be developed and 

implemented into MSC. Dytran. 

3. The effect of temperature on the behaviour of the rubber panel should be 

investigated. 

4. Further investigation on the optimum geometry and configuration of rubber 

panel is needed. For this purpose the comprehensive studies involving cost 

analysis of materials fabrication and maintenance should be conducted. 

5. The current workstation available at WTD, STRIDE should be improved in 

order to get accurate results within relatively short period of time. 
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APPENDIX 

Results of Penetration of Simulation 

 

 

Figure A1: Penetration vs Time of Constant A 1.0 x 0.89 MPa with Panel Thickness 

500 mm 

 

 

 

Figure A2: Penetration vs Time of Constant A 1.2 x 0.89 MPa with Panel Thickness 

500 mm 
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Figure A3: Penetration vs Time of Constant A 1.4 x 0.89 MPa with Panel Thickness 

500 mm 

 

 

 

Figure A4: Penetration vs Time of Constant A 1.6 x 0.89 MPa with Panel Thickness 

500 mm 
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Figure A5: Penetration vs Time of Constant A 1.8 x 0.89 MPa with Panel Thickness 

500 mm 

 

 

 

Figure A6: Penetration vs Time of Constant A 2.0 x 0.89 MPa with Panel Thickness 

500 mm 
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Figure A7: Penetration vs Time of Constant A 1.4 x 0.89 MPa with Panel Thickness 

200 mm 

 

 

 

Figure A8: Penetration vs Time of Constant A 1.5 x 0.89 MPa with Panel Thickness 

200 mm 
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Figure A9: Penetration vs Time of Constant A 1.6 x 0.89 MPa with Panel Thickness 

200 mm 

 

 

 

Figure A10: Penetration vs Time of Constant A 1.4 x 0.89 MPa with Panel Thickness 

300 mm 
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Figure A11: Penetration vs Time of Constant A 1.6 x 0.89 MPa with Panel Thickness 

300 mm 

 

 

 

Figure A12: Penetration vs Time of Constant A 1.8 x 0.89 MPa with Panel Thickness 

300 mm 
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Figure A13: Penetration vs Time of Constant A 1.4 x 0.89 MPa with Panel Thickness 

400 mm 

 

 

 

Figure A14: Penetration vs Time of Constant A 1.5 x 0.89 MPa with Panel Thickness 

400 mm 
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Figure A 15: Penetration vs Time of Constant A 1.6 x 0.89 MPa with Panel Thickness 

400 mm 

 

 

 

Figure A16: Penetration vs Time of Constant A 1.4 x 0.89 MPa with Panel Thickness 

500 mm and LVC 0.0001 
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Figure A17: Penetration vs Time of Constant A 1.4 x 0.89 MPa with Panel Thickness 

500 mm and LVC 0.001 

 

 

 

Figure A18: Penetration vs Time of Constant A 1.4 x 0.89 MPa with Panel Thickness 

500 mm and LVC 0.01 
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Figure A19: Penetration vs Time of Sandwich Panel 4 Layers Rubber-Stainless Alloy 

304 with Panel Thickness 110 mm 

 

 

 

Figure A20: Penetration vs Time of Sandwich Panel 4 Layers Rubber-Steel Alloy 4140 

with Panel Thickness 110 mm 
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Figure A21: Penetration vs Time of Sandwich Panel 6 Layers Rubber-Stainless Alloy 

304 with Panel Thickness 165 mm 

 

 

 

 

Figure A22: Penetration vs Time of Sandwich Panel 6 Layers Rubber-Steel Alloy 4140 

with Panel Thickness 165 mm 
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Figure A23: Penetration vs Time of Sandwich Panel 8 Layers Rubber-Stainless Alloy 

304 with Panel Thickness 220 mm 

 

 

 

 

Figure A24: Penetration vs Time of Sandwich Panel 8 Layers Rubber-Steel Alloy 4140 

with Panel Thickness 220 mm 
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Figure A25: Penetration vs Time of Sandwich Panel 6 Layers Rubber-Steel Alloy 4140 

with Panel Thickness 165 mm and Yield Strength Reduced 20% 

 

 

 

Figure A26: Penetration vs Time of Sandwich Panel 6 Layers Rubber-Steel Alloy 4140 

with Panel Thickness 165 mm and Yield Strength Reduced 40% 
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Figure A27: Penetration vs Time of Sandwich Panel 6 Layers Rubber-Steel Alloy 4140 

with Panel Thickness 165 mm and Yield Strength Reduced 60% 

 

 

 

Figure A28: Penetration vs Time of Sandwich Panel 6 Layers Rubber-Steel Alloy 4140 

with Panel Thickness 165 mm and % of Plastic Elongation 0.4 
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Figure A29: Penetration vs Time of Sandwich Panel 6 Layers Rubber-Steel Alloy 4140 

with Panel Thickness 165 mm and % of Plastic Elongation 0.6 

 

 

 

Figure A30: Penetration vs Time of Sandwich Panel 6 Layers Rubber-Steel Alloy 4140 

with Panel Thickness 165 mm and % of Plastic Elongation 0.8 
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