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ABSTRACT

Tower cranes are amongst the most important machines used in industrial activities;

therefore, understanding the natural frequency of these structures for optimal

performance remains an essential field of study.

Vibration, from an origin such as ‘Swing of the payload’, creates a dynamic load

on the tower crane structure which may result in fatigue, weakness and ultimately collapse

of the crane. The purpose of this thesis is to identify the dynamic behavior of planar model

tower cranes under the pendulum motions of the payload. By doing this, hypotheses will

be generated that may aid in improving the performance and safety of the crane.

In this thesis, Pendulation motion equations, after adjusting for cable stiffness along

the crane’s jib, will be defined based on the Lagrange Equations and solved using the

numerical method based on the Runge-Kutta fifth order.

The crane will be modeled and analysed using finite element software (FEM), and

the first few natural frequencies of the complex planar model will be compared by

analytical methods in order to verify the data. Continued load effects will be determined

by the numerical solution of differential equations, and these will be entered into the finite

element software for the purpose of analysis. Research results will present any changes

in the effect of vibration, such as stress and deformation, when the payload is placed at

different positions along the crane’s jib and body
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ABSTRAK

Kren menara adalah antara mesin yang paling penting yang digunakan dalam

aktiviti-aktiviti perindustrian, oleh itu, memahami frekuensi semulajadi struktur ini untuk

prestasi optimum kekal sebagai bidang penting dalam kajian.

Getaran, daripada sumber yang seperti 'Swing daripada muatan', mewujudkan beban

dinamik pada struktur kren menara yang boleh mengakibatkan keletihan, kelemahan dan

akhirnya kejatuhan kren. Tujuan projek ini adalah untuk mengenal pasti tingkah laku yang

dinamik satah kren menara model di bawah usul bandul muatan. Dengan cara ini,

hipotesis akan dijana yang boleh membantu dalam meningkatkan prestasi dan

keselamatan kren.

Dalam tesis ini, persamaan gerakan Pendulation, selepas pelarasan untuk

ketegangan kabel sepanjang jib kren, akan ditakrifkan berdasarkan Persamaan Lagrange

dan diselesaikan menggunakan kaedah berangka berdasarkan perintah kelima Runge-

Kutta.

Kren akan dimodelkan dan dianalisis menggunakan perisian unsur terhingga

(FEM), dan yang pertama frekuensi semula jadi beberapa model satah kompleks akan

dibandingkan dengan kaedah analisis untuk mengesahkan data. Kesan beban berterusan

akan ditentukan oleh penyelesaian berangka persamaan pembezaan, dan ini akan

dimasukkan ke dalam perisian unsur terhingga bagi tujuan analisis. Hasil kajian akan

membentangkan apa-apa perubahan dalam kesan getaran, seperti tekanan dan ubah

bentuk, apabila muatan itu diletakkan pada kedudukan yang berbeza di sepanjang jib kren

dan badan
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CHAPTER 1: INTRODUCTION

1.1. Background of Study

Cranes are useful and frequently used equipment which have a wide, global

application. The construction of large and tall structures is impossible without the use of

a crane. In most building construction, tower cranes are used to lift and move payloads.

Payloads always have a tendency to sway about the vertical position under excitations.

This sway results in a payload pendulum motion which leads to vibrations and an

unwanted dynamic load on the crane body. In turn, this shortens the life time of the crane.

As stress, strain and fatigue are all factors which can damage the structure of a crane,

these all need to be fully understood and studied carefully and methodically before a crane

is designed.

An in depth understanding of the physical nature of the crane will assist the engineer

in re-designing the crane structure where necessary; it will also ensure a safe and stable

system.

To date, most of the analysis carried out on cranes has only into account the simple

pendulum motion of the payload, whist ignoring cable flexibilities (Kim & Hong, 2009;

Oguamanam et al., 2001). In this project a 2-D crane was analyzed whilst taking both the

pendulum motion of the payload, the cable flexibility, and wide angle for pendulation

into consideration.
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1.2. Objective of Study

The study objectives are outlined below:

 Derive the non-simplified Pendulum Equation of motion based on the Lagrange

Equation and Rayleigh’s dissipation function and solve it numerically based on

the Runge-Kutta method.

 Modal analyses the mathematically model of the 2-D tower crane based on the

“System linked by two coordinates” approach and find the first four natural

frequencies.

 Create and modal analysis of the soft model of tower crane and verification of

the modal result with mathematical model, using the obtain data of the equation

and run the dynamic response of the crane by Ansys Workbench.

1.3. Scope of Study

To determine the effects of vibrations on a tower crane, using a model of 2-D crane

while taking into consideration both the pendulum motion of the payload and the

flexibility of the cable. Pendular motion of the payload with an elastic cable causes

transverse and longitudinal vibration that has a detrimental effect on the crane (Lahres et

al., 2000). The purpose of this study is to show the effects of this vibration on the tower

crane body when the payload is attached to different points on the Jib.

1.4. Gap of Knowledge

After reviewing the research into this area, it became evident that several

parameters of the tower crane had not been studied simultaneously. Up to know research
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into this field has only analyzed the simple pendulum motion of the payload and has

ignored cable flexibilities and wide pendulation angle. Because of this gap of knowledge,

this study plans to take these factors into consideration.

1.5. Significance of this Study

Up to now, the dynamic analysis of the tower crane is composed of a collection of

assumptions that have neglected to investigate certain important aspects, or to combine

the research. There are several strengths to this study: the actual dimensions for the crane

soft model have been taken into consideration, in addition to the non-rigid cable, wide

angle and several attachment points along the jib simultaneously. Further to this, three

software combine in order to analysis (Ansys Workbench, MATLAB and AutoCAD) and

a mathematical model of the tower crane has been formulated.
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CHAPTER 2: LITERATURE REVIEW

2.1. Introduction

Tower cranes are one of the intricate pieces of machinery constructed and they

exhibit complex dynamic behaviours (Neitzel et al., 2001). Their design has to take into

account the diverse and varied environmental conditions they may operate in, such as on

land or at sea, or in adverse weather conditions with winds up to 36 m/s (Ju & Choo,

2003). The cranes system has been studied theoretically, along with its optimized control

factors and non-linear dynamics behaviour. Most of the research to date has limited itself

to  several assumptions regarding the crane, such as it has a rigid structure or boom, and

a simple beam (Kiliçslan et al., 1999).

2.2. Mathematical Model for Pendulum Motion

2.2.1. Lagrange Equations and Pendulum Motions

Lagrange’s Equations have been derived from Newton’s laws. They are in fact a

restatement of Newton’s laws written out in term of appropriate variables that allow

constraint forces to be eliminated from consideration.(José & Saletan, 1998)

Lagrangian formulation is easier to apply to dynamical system other than the

simplest. It brings out the connection between conservation laws and important symmetry

properties of dynamical system. The properties of the system that determine the choice

are geometric: they are the number of freedoms and the shape, in which the system is free

to move.
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Since the early nineteen- nineties many methods have been created to control the

pendulum motion of the payload. One method, described by Golafshani and Aplevich

(2002) to decrease the swing of the load in the tower crane, is the ‘Time-Optimal

Trajectory’ method. This method, when applied to the crane model, had five degrees of

freedom and a mathematical model that was based on Lagrange Equations. In this model

the tower crane was divided into two parts: the rotating boom with moveable trolley and

the suspended load from the trolley. Assumptions for this model included: a rigid crane

body; a hook, load and trolley which were considered as point masses, a frictionless

model, a weightless and rigid rope and; no air resistance. In addition, to decrease the

swing of the load the ‘sub-optimal’ method was proposed. The results, after solving the

equations and taking into account the simulation, gave proof of the efficiency of this

method; however it should be noted that the model was theoretical in nature and had never

been tested on an actual tower crane.

The degree of pendulation in the crane system is directly affected by the length of

the cable. Because of this, adjusting the length of the cable, in order to control the

pendulation, and so reduce the vibration of the load, can be used as a solution. This was

demonstrated by Abdel-Rahman and Nayfeh (2002). In both, a 2-D and 3-D model, with

the assumptions that there was a point mass and rigid cable. 2-D and 3-D models of this

pendulum were formed by Euler–Lagrange Equations. After comparison of the

pendulation, the weakness of the 2-D model for analyzing and predicting the system was

evident. Although this system had no force damping, except for the natural one, it was

found that changing the cable length was extremely effective in the manipulation and

control of pendulation.
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Dynamic load causes vibration in cranes which results in such detrimental side

effects as fatigue. Jerman et al. (2004) illustrate this in a study they carried out to examine

the slewing motion of a suspended load from the jib. They did this by building an actual

model of a crane, and then comparing the results of this model to the acquired results of

the mathematical model that was based on the Lagrange Equation of motions. The

investigators tested the accelerating and decelerating forces and their effect on the load

sway using different input data. In this study the mass of the jib, crab and payload were

all considered as a point mass, the rope and mass connection were weightless, and the

rope’s stiffness, damping and moment of friction were all taken into account. Another

factor, air resistance, was also present and acting on the point masses. The mathematical

model was validated by measurements of the physical model and results were almost

similar. Considering the good initial condition and assumption in the mathematical model

caused the similarity at results in compare with the physical model measurements.

Mobile cranes are very important tools in industrial areas because of their versatility

and movement ability. Several approaches for controlling the slewing action of the load

in tower cranes have been established. Kosiski (2005) suggested a method to control and

minimize the sway of the pay load using the slewing motion at the end point in the mobile

crane and created a mathematical and physical model to demonstrate this. In addition to

this, a hydraulic system was modeled based on the mathematical equations. This consisted

of a system for minimizing the tangential component of the payload swing movement

vector (SMV) and a system for controlling the angular position of the hydraulic motor

drive shaft (SAC), along with a block completed by a proportional integral derivative

(PID) controller. This model was effective for controlling swing and luffing motions

under maximal permissible velocity movements. The following assumptions were made

during the crane mathematical modeling analysis: the crane and boom had a rigid body;
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there were six degrees of freedom; rotation of boom crane occurred around the vertical

axis only; payload was considered as a mass point and; the rope was both weightless and

rigid. In an additional frictionless model without a damping part, linear elastic deflection

was also assumed. Experimental and simulation results demonstrated the ability of this

design to effectively control the slewing motion of the crane.

One of the biggest human challenges when dealing with load transferring of the

tower crane is oscillation of the payload, and how best to manipulate it safely, quickly

and accurately. If the mass of the hook is greater than the mass of the payload, then a

second mode of these two masses will appear which results in a phenomenon known as

double-pendulation (Lacarbonara et al., 2001). To address this issue, a control system

with the ability to decrease the effects of double-pendulation was designed (Singhose &

Kim, 2007). This method was developed for two modes of frequency only, with the

following assumptions:  there is no air resistance on the mass point of the hook and load,

and; the length of the cable and rigging does not have an influence on the lifting process.

In this investigation, as the tower crane body had no effect on what was being studied, it

was not included in the model. The final experimental results from the model showed the

efficiency of this controller in decreasing the number of collisions.

Terashima et al. (2007). presented a method to control the sway of the load by using

‘straight transfer transformation’ (STT) (Y. Shen et al., 2003). This method allows the

controller to transfer the load in a straight line by changing the rope length and luffing.

When using the STT mode as three movements of the crane are combined (rotation,

luffing and changing the rope length), the three dimensional movement is converted into

a two dimensional one, thereby eliminating the centrifugal force. In addition, this

controller has the ability to decrease the transfer time. In this model the crane body and
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weightless rope were considered to be rigid structures, and the reaction time of the boom

and crane, as well as the friction of the rotary torque, were neglected. The advantages to

this are that the calculation of the proposed approach using the STT model is faster and

cheaper compared to other similar methods because there are fewer sensors required.

Comparison between the simulation and experimental data from this model showed the

efficiency and accuracy of this controller when using the STT model.

When double-pendulation does not occur, mobile boom cranes are a good choice.

The analysis of double-pendulum in the mobile boom crane has been presented by Fujioka

et al. (2009). In this model, the crane consisted of a thin plate which acted as a cart, with

four springs and dampers instead of wheels. It contained a boom, a weightless but rigid

rope, a frictionless crane body and a simple or double-pendulum attached to the tip of the

boom. The investigators considered three stages in their stability analysis: static, semi

dynamic and fully dynamic stability, and compared the results from the three stages with

each other. In conclusion, the researchers found the semi dynamic analysis to be the most

simple and useful method for determining stability in mobile cranes which have double-

pendulation effects.

Ahmad (2009) investigated the anti-sway angle system in gantry cranes using a

fuzzy logic controller in 2-D space. Gantry cranes consist of simple pendulum attached

to the moveable cart. For the purpose of this study MATLAB and Simulink were used to

simulate this controller and the Lagrange method was used to derive the Equation of

motion. Both the delayed feedback signal system and proportional-derivative type fuzzy

logic were used as controllers. The assumptions of this investigation were: the point mass

of the cart and payload, weightless and rigid rope, no friction on the sliding of the cart
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and no air resistance. The simulation results for this system demonstrated the performance

of the controller in terms of sway angle suppression and disturbances cancellation.

2.2.2. Generalised Coordinates

In analytical mechanics especially for dynamics system, a system should be

described by parameters; these parameters must be unique and define the configuration

of the system, which is called generalized coordinates (Ginsberg, 1998). Suppose that a

system is subject to geometrical constraints only. Then the position vector  ir of its

particle are not independent variables, but are related to each other by those constrains. A

possible ‘position’ of such system is called a configuration. A set of values for the position

vectors  ir that is consist with the geometrical constraint is a configuration of the

system(Gregory, 2006).

To select the new coordinates, they must be independent of each other, but are still

sufficient to specify the configuration of the system. Those new coordinates are called

generalised coordinates. When it is said the generalised coordination must be independent

variables, that means there must be no functional relation connecting them. If there were,

one of the coordination could be removed and remaining  1n  coordinates would still

determine the configuration of the system. The set of generalized coordinates must not be

reducible in this way (Gregory, 2006).

Generalised coordinates 1,..., nq q determined the configuration of the system S, it

means, when the value of the coordinates  1,..., nq q are given, the position of every
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particle of S is determined. In the other words, the position vectors  ir of the particle

must be known functions of the independent variables 1,..., nq q (Scheck, 1999), that is:

   1,..., ,  1,...,i i nr r q q i N  (2.1)

Generalised coordinates are remarkably easy to use. They are chosen to be

displacements or angles that appear naturally in the problem.(Gregory, 2006)

2.2.3. Lagrange’s Equations

To derive the dynamic equations of motion for the planar pendulum in the crane

system, total energy needs to be computed using the Lagrangian approach (Fowles &

Cassiday, 1999). After which the Euler-Lagrange formulation should be considered to

characterize the dynamic behavior of the system.

Lagrangian Equation of motion for a conservative system with the generalised

coordinates q is written in terms of the kinetic and potential energy (Fowles & Cassiday,

1999),

 ,T T q q  (2.2)

 V V q (2.3)

In any motion of the system, the coordinates  q t have to satisfy the system of the

Equations (Gregory, 2006),
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 ,  1
i i i

d T T V i n
dt q q q
   

        
(2.4)

These are Lagrangian’s Equations for the conservative system. Kinetic and

potential Equations can be expressed as single function,

L T V  (2.5)

That is called the Lagrangian function (José & Saletan, 1998) or in simple terms,

Lagrangian. If 0iV q   , then the Equation (2.4) can be written into the new form,

 ,  1
i i i i

d T T d V V i n
dt q q dt q q
      

              
(2.6)

If L T V  is substituted into the Equation, another form called the Lagrangian

Equation (Fowles & Cassiday, 1999) is derived,

 0,  1, 2,3,...,
i i

d L L i n
dt q q
  

     
(2.7)

2.2.4. Dissipative System

A general Lagrange Equation for conservative system has been expressed

(Chapter 2.2.3). However, in some systems where friction or air resistance dissipate

energy and make the system non-conservative, Lagrange Equations should be adapted.

For non-conservative force, generalized force (Fowles & Cassiday, 1999) is calculated

by:
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 i j j ij
Q F r q    (2.8)

Then the Lagrange’s Equations can be written as:

 ,  1, 2,3,...,i
i i

d L L Q i n
dt q q
  

      (2.9)

Rayleigh’s (Baruh, 1999) suggested a modification for Lagrange’s Equation, which

is known as Rayleigh’s Dissipation Function (Fowles & Cassiday, 1999).

 2 2 2

1

1
2

N

xi i yi i zi i
i

D c x c y c z


      (2.10)

Dissipative generalized forces (Török, 2000) are derive from the D function, hence,

1

1

n
nc
i i

i
n

i
i i

W Q q

D q
q

 










 





 

(2.11)

With the Rayleigh’s Dissipation function D (Török, 2000), the corresponding

generalized force is given by:

j j j
i fj v v

j i i i i

r r r DQ F D D
q q q q
   

        
     
  

  
 

(2.12)

Lagrange modification by using the Rayleigh’s function (Török, 2000) is written

as,

 , 1, 2,3,...,
i i i

d L L D i n
dt q q q
   

        
(2.13)
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2.2.5. Numerical Method for Differential Equation

Some of the general differential Equations can be solved analytically, however,

when there is no analytical solution a numerical approach is often used by engineers and

physicists to solve the Equations. Several methods for numerical computation of partial

differential Equations exist, such as the Taylor series, Euler and Runge-Kutta approach

(Riley et al., 1999).

The general form of the ordinary differential Equation is:

 ,dy f x y
dx
 (2.14)

Numerical methods for solving this Equation can be written in another general

form:

new value old value slope step size   (2.15)

A mathematical term of the expression (Equation (2.15)) is:

1i iy y h   (2.16)

Based on the Equation (2.16), a slope estimate of () is used to extrapolate from an

old value ( iy ) to a new value ( 1iy  ) over a distance (h). This Equation can be applied

step by step to compute all the required values.

The higher-order of classical Runge-Kutta is still one of the more accurate methods

for differential Equations. In addition, Runge-Kutta is stable which means that small

errors aren’t amplified (Arfken et al., 2005). The fifth-order of Runge-Kutta, also known
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as the Butcher method, is slightly superior in comparison to the classical method. The

Runge-Kutta fifth-order approach Equation (Chapra & Canale, 1998) is expressed as:

 1 1 3 4 5 6
1 7 32 12 32 7

90i iy y k k k k k h       (2.17)

Where

 1 i ik f x y  (2.18)

2 1
1 1,
4 4i ik f x h y k h    

 
(2.19)

3 1 2
1 1 1,
4 8 8i ik f x h y k h k h     

 
(2.20)

4 2 3
1 1,
2 2i ik f x h y k h k h     

 
(2.21)

5 1 4
3 3 9,
4 16 16i ik f x h y k h k h     

 
(2.22)

6 1 2 3 4 5
3 2 12 12 8,
7 7 7 7 7i ik f x h y k h k h k h k h k h        

 
(2.23)

Where  i if x y is the differential Equation evaluated at (xi) and (yi) and (h) is step size.

System of Equations

Many practical problems in engineering and science require the solution of a system

of simultaneous ordinary differential Equations, rather than a single Equation. In general,

such systems (Chapra & Canale, 1998) may be represented as:
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 

 

 

1
1 1 2

2
1 1 2

1 1 2

, , ,...,

, , ,...,

.

.

.

, , ,...,

n

n

n
n

dy f x y y y
dx
dy f x y y y
dx

dy f x y y y
dx







(2.24)

The general solution of such a system requires that an initial condition must be

known at the starting value of (x).

2.3. Mathematical Approach, Natural Frequency of the Crane

2.3.1. Crane Analytical Model

The use of cranes is not restricted to the ground; they are widely used on the ocean.

Witz (1995) carried out a general investigation to look at the relationship between sea

vessels and crane dynamics. In it, he analyzed the parametric excitation of the crane on

vessels in an intermediate sea state, applying the numerical solution of the Equation for

motion models. He used six degrees of freedom for modeling purposes and applied the

Pierson-Moskowitx spectral formulation (Pierson Jr & Moskowitz, 1964) for random

force on a vessel. Although many parameters, such as the vessel body and how it is

attached to the crane, the structure of the crane, damping, friction, and lifting were not

defined in this paper, the investigation was strengthened by the application of the Pierson-

Moskowitx method (Pierson Jr & Moskowitz, 1964).

Crane lifting can be modeled as a simple pendulum with variable mass. An

investigation of this model was presented by Cveticanin (1995). Influence of reactive
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force which appeared because of mass variation on the system was studied and the

fundamental assumptions in this study were: a constant rate of relative mass and length

variation; variation in damping and; wind force. According to this investigation, the

vibrations of the load decrease when the damping coefficient is equal to, or greater than,

the relative mass variation rate (Cveticanin, 1995); this demonstrates the influence of the

damping coefficient. The findings from this study showed that when the mass separation

velocity is set at zero, the system acts like a constant mass system. A mathematical model

of the simple pendulum under special conditions was also studied analytically from this

and it was concluded that when the relative mass variation rate is fixed, the absolute

velocity of unloading and damping has a vital effect.

Cranes are dynamic, nonlinear systems with infinite modes. A non-linear control

system was designed by Tabata et al. (2003) in order to convert a nonlinear system into a

linear one. To simplify the crane construction, the crane body and rope were considered

to be rigid objects and the mass of the rope was ignored. In addition, the crane angle and

rope length were constants and the effects of the joints and friction were not taken into

consideration. This system provides a simple method to analyze and control the load sway

in crane rotations.

Transferring goods in a harbor is one application for a mobile crane, but because of

the nonlinearity in dynamic behaviors and the difficulties encountered in measuring the

rope angle, there are few existing approaches to control mobile cranes (Schaub, 2008).

To address this, an anti-sway system that uses the boom crane to control the sway through

a decentralized trajectory tracking control approach has been proposed by Matthews and

DeCarlo (1988) and Sawodny et al. (2002). This system has been applied to LIEBHERR

LHM 400 harbor mobile cranes with a capacity of 104 tons. The investigators used
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Lagrange Equations to describe the luffing movement system that consists of a jib with

mass and moment, a weightless rope and point mass payload. In addition, the

investigators modeled and analyzed a hydraulic cylinder with Equations derived from the

standard model. To address the difficulty of measuring rope angles, two gyroscopes were

used in the crane hook. This controller used an actual boom crane and the results showed

the ability of anti-sway system based on the decentralized trajectory tracking (CHEN &

JIA, 2008).

The telescopic mobile crane is another type of crane which has the ability to change

the length of the boom. Maczynski and Wojciech (2003) carried out an investigation to

study the optimization of the slewing motion and dynamics of the telescopic mobile crane

by using a 3-D model of the crane. One of the goals of their research was to address the

safety aspects involved in transferring the load with the minimum oscillations. The crane

structure was modeled at six degree of freedom, and Lagrange second order Equations

are the basis of all derived formulas. Kinematic and potential energy methods were used

for the vehicle chassis and all the jacks and the upper part of the crane was modeled as a

supporting beam with a variable cross-section(Maczynski & Wojciech, 2003). Massless

rope and servo-motor has been modeled as simple spring and damper, and also effect of

servo-motor kinetic energy on the system has been neglected. Servo-motor parts with its

flexibility and damping by neglecting the kinematic energy of its motors, weightless rope

with flexibility and contact of the load with ground have been considered.

Analysis of the telescopic mobile crane is difficult because of the nonlinearity in

the system. Sa irli et al. (2003) took this into account when modeling their telescopic

rotary crane which has been modeled based on the 4GO45L45 manufactured by Gelisim

Automotive, ISTANBUL, for study purposes. In addition, they considered the elasticity
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of the boom and the hydraulic system, and calculated the effective force with the aid of

Bond Graph techniques. In this research a mathematical model of an actual crane was

built and the Equation of motion to improve the model was derived by assuming that the

main telescopic boom was an elastic structure, whereas all other parts, such as supports,

chassis and the main body, were rigid. This model was able to rotate in both vertical and

horizontal plane. In addition to this, the hydraulic system with its compressible fluid was

modeled. In this model, a rigid and weightless rope connected the point of mass load to

the boom. Rotational damping was ignored and vertically damping used as overall on tip

of the boom.

Controlling the rotary boom crane that solely rotates around the vertical axis has

proven impossible, to date, with a smooth controller. Kondo and Shimahara (2005)

examined changes in system stabilization for this rotation using different controls: an

energy control, an open-loop control and a feedback control. Assumptions in this paper

were formed on the basis that the crane only rotates about the vertical axis and not about

the horizontal axis. The crane model used in this study was similar to a simple pendulum

and thus, neither the boom mass nor air resistance had any effect on this system.

Simulations on that rotary crane has verified the stabilization method via switching

control.

Controlling the sway of dangerous and heavy loads that transfer with Gantry cranes

in industrial areas was the  basis of a study carried out by Omar and Nayfeh (2005). The

investigators used the feedback controller method to control sway whilst taking into

account the friction of the parts. Mathematical models based on Lagrange Equation were

derived. The crane model consisted of a simple pendulum that attached to a moveable

trolley. For estimation of friction in the crane parts a standard model of a DC motor with
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a known friction coefficient was used. A crane with a closed loop controller with variable

rope lengths and masses formed the basis of this study. Experimental and numerical

results were compared; this outcome demonstrated the efficiency of this controller which

reduced the load oscillation during the load transferring.

Crane slewing motion induces the horizontal inertial force on the suspended

payload (Jerman & Kramar, 2008). For this research, they used previous mathematical

crane models which included factors such as nonlinearity and deformability. Equations

of motion were derived from second order Lagrange Equations, and by using the

appropriate values they were able to make their model more comparable to standard and

linear crane motions. In this paper, environmental effects, such as air resistance, were

considered in Equations and the point force masses of the crane and payload were shown

as a point mass and moment of inertia. Rope mass was neglected and the mean damping

coefficient and stiffness were used instead of structure damping and stiffness. In addition,

moment of friction was used to represent slewing ring friction.

2.3.2. Analytical System Linked By Two Coordinates (an Approach for

Crane Mathematical Model)

The Receptance

The receptance method has been proposed to find the natural frequencies and

vibration modes of combined structures (Hayashi et al., 1964). For the vibrating system

which has n degree of freedom or assemblies composed (R. E. D. Bishop & Johnson,

2011), there will be n simultaneous Equations of motion. These can usually be set up most

conveniently by the method of Lagrange. The Equations may be solved by trial solution
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in which all the displacements vary harmonically at the disturbing frequency. This theory

(Hayashi et al., 1964) has existed for many years.

Figure 2-1, Displacement of the rigid mass under the harmonic force

Let a harmonic force i tFe  act at some points of a dynamical system so that the

system takes up a steady motion with the same frequency (ω), such that the point of the

application of the force has the displacement (R. E. D. Bishop & Johnson, 2011):

i tx Xe  (2.25)

Then, if the Equations of motion are linear, this may be written (R. E. D. Bishop &

Johnson, 2011), (Huang & Chen, 2007):

i tx Fe  (2.26)

Where (α) depends upon the nature of the system and the frequency (ω) but not

upon the amplitude (F) of the force. The quantity (α) is termed “the direct receptance at

(x)”.

If on the other hand (x) is displacement at some point of the system other than that

at which the force is applied, then Equation (2.26) defines a cross receptance α.
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The displacement (x) of the rigid mass (M) of the Figure 2-1 is given (R. E. D.

Bishop & Johnson, 2011) by:

i tMx Fe  (2.27)

So that, if the displacement varies sinusoidally, then it is possible to write i tx Xe 

and it then follows that (R. E. D. Bishop & Johnson, 2011),

2M X F  (2.28)

That is to say

2
1

M



  (2.29)

Which is the direct receptance at (x).

By virtue of certain simple properties of the receptances, it is often possible to break

down a complex system into simple parts in which the receptances are known, and then

to analyze it. After simplifying the system, the receptances, the principal modes, and the

frequency Equation of the complex system can then be calculated using this information.

This method often saves much of the time and effort that is required for the determination

of receptances by direct substitution into Equations of motion (R. Bishop & Johnson,

1960). The (α) symbol is used for the whole system receptances. The simple parts of the

system can also be denoted by symbols: (β) and (γ) are used for each simple part.

For finding the two block system reacceptance as in Figure 2-2 is presented:
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Figure 2-2, System Block Diagram

Using the notation shown (R. E. D. Bishop & Johnson, 2011), we have

1 11 1 12 2

2 21 1 22 2

b b b

b b b

X F F
X F F

 
 





 
 

(2.30)

And

1 11 1 12 2

2 21 1 22 2

c c c

c c c

X F F
X F F

 
 





 
 

(2.31)

The applied forces are 1
i tF e  and 2

i tF e  , where:

1 1 1

2 2 2

b c

b c

F F F
F F F





 
 

(2.32)

Since the systems are linked

1 1 1

2 2 2

b c

b c

X X X
X X X





 
 

(2.33)
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If F2=0 so that excitation is applied at (x1) only (R. E. D. Bishop & Johnson, 2011),

then it may be shown from the Equations that

   
    

2 2
11 11 22 12 11 11 22 121

11 2
1 11 11 22 22 12 12

X
F

       


     

  
 

   
(2.34)

And

   
    

12 11 22 12 12 12 11 22 12 122
21 2

1 11 11 22 22 12 12

X
F

         


     

  
 

   
(2.35)

Again, assume that the subscripts of the cross-receptances may be interchanged.

Also, if (F1=0), so that excitation is applied at (x2) only, then (α12) is found to be given by

the above (R. E. D. Bishop & Johnson, 2011) expression for (α12) and

   
    

2 2
22 11 22 12 22 11 22 122

222
2 11 11 22 22 12 12

X
F

       


     
  

 
   

(2.36)

The frequency Equation for the composite system is obtained, as usual, from the

resonance condition at which all the receptances become infinite (R. E. D. Bishop &

Johnson, 2011). This is when

     211 11 22 22 12 12 0          (2.37)

2.4. Finite Element Method for Cranes

Okubo et al. (1997) carried out a study to examine how a system controls the

vibration of a girder and the containers concurrently in a container crane. In their study,



24

the container crane was modeled as a mass and spring damper, with a trolley and sheave

masses. rope as spring and load mass were define for this model. Load positions for this

controller were detected by a CCD camera (Charge Coupled Device), and through this it

was observed that the vibration of the girder had an effect on the container. Numerical

simulation and experimental data on the actual model demonstrated the ability of the

controller to decrease the vibrations on the trolley and also increased the speed and

effectiveness of load carrying. During the crane operation, this controller was able to

decrease the maximum vibration on the girder by 50% and increase the damping constant

by up to 11.5 times, with no residual vibration remaining in the system.

Mobile cranes which stand on the ground with their jacks have been defined as rigid

structures. The stability of these cranes was examined by Towarek (1998) in an

investigation that took into account the effect of soil dynamics during the boom rotation.

In this investigation, six degrees of freedom was used for modeling purposes, an elastic

rope attached the point mass load to the boom, and the crane body and boom were

considered to be rigid structures. 12 weightless springs were used to hold the crane body

onto the ground and soil dynamics were described by Duhamel integral (Kreyszig, 2007).

Simulation results for each crane support in both states of soil (with and without

deformation) were calculated and compared to each other; results indicated that due to

the dynamic behavior of the soil there was a real possibility of danger if this effect was

not taken into consideration.

Operators usually control cranes. Human commands are the input data for systems,

but this can be a weakness as it is not linear data. An investigation of the nonlinear input

that is executed by an operator was carried out by Parker et al. (2002). This method

depicted real-time control to prevent the sway of the payload in a ship boom crane. A
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model of an actual Navy crane with a scale of 1/16 was designed. This model had the

ability to reduce the oscillation of the payload and thus increase the safety and efficiency

of the crane. Under specific terms which are the low speeds of crane operation, this linear

filter can be applied directly to operator's commands. The shapes or forms of the cranes

which were used for the investigation consisted of a point mass that attached to the boom,

with a weightless rope and a varying lift-line length. One of the weaknesses of this design

was the linear filter which had difficulty working within small ranges of crane speeds.

One method to control sway in rotary cranes is the addition of a straight transfer

transformation (STT). Y Shen et al. (2003) built a model of a crane and derived the

geometric parameters. The investigators used the optimization method of Davidon-

Fletcher-Powell (DFP) (Fletcher & Powell, 1963) to eliminate the sway at the end point

of transfer. The experimental results from their simulations indicate that the centrifugal

force in the STT mode (2-D) was ignored. In addition, the time of optimization was seen

to be slower in the 2-D model than it was in three-dimensional (3-D) space. In this study,

most of the parameters were considered with the exception of friction in the torque

mechanism, elongation and mass of the rope and environmental effects. Experimental

result verified the simulation result of STT model.

As the experience of an operator is a strong influencing factor, a highly experienced

operator is necessary to control the boom crane. Based on this knowledge, Arnold et al.

(2003) have proposed a method to optimally control the sway in the boom crane in order

to let those with lower levels of experience function as crane operators. In order to achieve

their objective, the researchers applied the Newton-Euler method for non-linear dynamic

systems, and solved the optimal control issue with the numerical method in the 9th order

of ODE (Ordinary Differential Equation). Luffing and slewing of the crane was extended
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to the hydraulic drives. The actual data which demonstrates this method of control was

taken from the LIEBHERR LHM 400. The small difference that was found between the

final luffing angle and minute sway of this model could be improved by tuning. This

model assumed a point mass of payload with no air resistance, a weightless rope, a

moveable boom with moment of mass, and a hydraulic system for luffing. This system

was mounted on an actual crane and comparison between the simulation and experimental

data have shown its ability, and reliability.

To complete their previous research Sun et al. (2005) used a new method, the

Timoshenko beam element (Davis et al., 1972) method, for the finite element calculation

of a boom crane. In this study, a hydraulic system was used for a secondary hoisting

system. Hoisting system was described in three elements types which were drum rope,

hoisting rope and pulley-rope; then the Equation of system dynamics was established

according to these three assumptions. The speed of hoisting and braking was used for the

input data and the output data included the dynamic response and control. In this model,

other parameters, such as oil flow, stability and motor output, were studied

simultaneously. Technically, data for the mathematical model in simulation was taken

from the actual crane. This paper focused on three elements of the hoisting system,

created a mathematical model of each of them and solved these Equations simultaneously.

The final analysis of the paper included three areas: a) hoisting, which was divided in

three parts: the hoisting drum, the rope and the pulley; b) the crane steel structure like jib

and boom and; c) the hydraulic system.

There are three main motions of the mobile crane that can define the position of the

load: the rotation of boom in the horizontal, the vertical plane and finally the change in

rope length. The operator can control the position, but not the swing of the load, by using
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these movements. Neupert et al. (2010) examined the relationship between operator

commands and swing control of a load in a mobile harbor crane. The focus of the

controller was on a semi-automatic model which consisted of two sub-controller: 1/

disturbance observers; 2/ a model predictive trajectory generation module (Neupert et al.,

2010). Input data in the mathematical model and control approach consisted of Linearized

Operator commands. Assumptions of the model included a weightless and rigid rope, a

rigid crane body and a mass pointed load with a small swing angle. In addition, mixed

sway of the load was neglected and rope length was considered a constant due to the slow

hoisting speed. The hydraulic system and its oil flow, which is responsible for luffing,

was also modeled and disturbance of centrifugal effects was added to the radial controller.

Encoders were used for measuring the crane position, and two gyroscopes were employed

to correct for angular velocity and radial direction. This controller was executed on a real

harbor mobile crane (LIEBHERR LHM 400), experimental results demonstrated the

efficiency of the controller.
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CHAPTER 3: METHODOLOGY

3.1. Introduction

Tower cranes are widely used for moving loads in construction, industry and

transportation. Load swinging imparts the forces to the support point, and this can be

considered as vibrations. Typically, the payload is modeled as a point mass suspended

from a rigid cable that is moving in a horizontal plane.(Ghigliazza & Holmes, 2002). Aim

of present research is to investigate the 2-D tower crane dynamics under the planar

pendulation motions of the payload including the elastic cable. The method of calculation

is carefully built upon stages ranging from Lagrange equations and mass force relation

from Newton's law. For the first stage, Lagrange principal is used to derive the dynamic

model of the pendulum systems as partial differential Equations. A wide displacement of

approximately 10 m and elastic cable is considered in the calculation. The Newton's

second law is used to treat forces induced by the swinging gain in the cable. MATLAB

software is used to solve the set of the partial differentials Equations. Numerical

calculations give the results of the force reaction at the base. In addition, all real structures

potentially have an infinite number of displacements. Therefore, the most critical phase

of a structural analysis is to create a computer model with a finite number of members

and a finite number of node (joint) displacements that will simulate the behavior of the

real structure(Wilson, 1996).

Real structure has an infinite numbers of displacements. Therefore dynamic

analysis can be done by the computer with finite members of the elements. Soft model of
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the tower crane is created by AutoCAD, the final result will be used for dynamic analysis

of the tower crane under the pendulation motion of the load by Ansys Workbench.

Firstly, to demonstrate the software accuracy, a simple model of the crane was

analysed using the Modal technique, in addition to a mathematical model. By comparing

the results of the mathematical and software model, the accuracy of the analysis could be

verified and confirmed.

3.2. Mathematical Model of Pendulum Motion

3.2.1. Pendulation Motion Based on the Lagrange’s Equation

To obtain the Lagrangian Equations for pendulum system (Figure 3-1), kinetic and

potential energy, and consequently Lagrangian function (L) are written in terms of the

generalised coordinate as expressed in Chapter 2.2.3, Equations (2.2) and (2.3).

Pendulum consists of a mass which hang by a rope or cable from a fixed point. For

the purpose of simple calculation, most of the pendulums are simplified, and a rigid cable

( 0dr d t  ) (Yi et al., 2003) as well as a small displacement (sin  ) (Cho & Lee,

2000) are the most common assumptions. After taking this into account the whole

equation can be written as one parameter, (θ). In this study non-simplified pendulum was

taken into consideration and a large displacement  sin  and non-rigid cable

 0dr dt  were assumed. Generalized coordinates for the pendulum (Figure 3-1) were

defined as: (r) and (θ), or cable length and cable angle between the resting and current

position respectively.
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Figure 3-1, Pendulum swinging in the x-y plane

Generalised coordinates (Chapter 2.2.2) have been set based on the polar

coordinates (r,θ) for the pendulum motion. Potential and Kinetics Equations based on two

generalized coordinates (r,θ) are obtained by the Lagrange’s Equations of motion

(Ferreira & Ewins, 1996) are:

21
2

T mr  (3.1)

21
2

V k r mgr    (3.2)

And also:

2r r r 
   (3.3)

Where (m), (k) and (g) are payload mass, cable stiffness and gravity acceleration,

respectively.
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Lagrangian function of the system (Figure 3-1) based on Equation (2.5) is

L T V  . By substituting the potential and kinetic energy into the Lagrangian function,

we got:

L T V 

2 21 1
2 2

L mr k r mgr     
 

 

      
2 22

0
1 1 cos
2 2

L m r r k r r mgr       
 

 (3.4)

Air resistance has been taken account which makes this system non-conservative,

as another assumption for pendulum Equation of motion.

The Rayleigh's dissipation function (Chapter 2.2.4) associated with the air

resistance is then based on the Equation (2.11) and it is possible to get:

21
2

D cq  (3.5)

Air resistance is based on the dissipation function in polar coordinates and can be

written along with the coordinates,

   221 1
2 2

D c r r   (3.6)

Two generalized coordinate can create two set of the Lagrange’s Equations, where

d L L D
dt r r r
d L L D
dt   

             


           

 

 

(3.7)
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Each part of the Lagrange is found, and then after taking derivations based on the

(r) the formula is:

   2
0 cos

d L mr
dt r
L mr k r r mg
r
D cr
r

 

    

   















Whereat the derivation based on the variable (θ) gives:

 

2

2

2

sin

d L mrr mr
dt
L mg

D cr

 








     

 







 




Substituting the derivations inside the Lagrange’s Equations, yield,

   

 

2
0

2 2

cos

2 sin

mr mr k r r mg cr

mr mrr mg cr

 

   

      


    

 

  
(3.8)

By rearranging the parameters, two set of final Equations (3.8) are denoted as

Equation (3.9):

   

 

2
0 cos 0

2 sin 0

k cr r r r r g
m m

c gr r
r m r

 

   

      

    


 

  
(3.9)



33

The differential Equation of pendulation motion (Equation(3.9)) is shown in its

general form, therefore to compute using that Equation initial conditions are

required.Table 3-1 and Table 3-2 give the specification such as stiffness (Torkar &

Arzenek, 2002) and initial condition of the payload.

Table 3-1, Payload and Cable Properties

Specification symbol unit

Payload mass m 1000 (kg)

Cable stiffness k 1 (MN)

Table 3-2, Pendulum Initial Condition

Initial specification symbol unit

Initial angle of the

cable
0 0 (Rad)

Initial rope length r0 30 (m)

Initial incitation ω0 0.05 (Rad/sec)

Two set of partial differential Equations are the result of the Lagrange’s Equations

which then have to be solved simultaneously. If there is no analytical solution for these
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sets of Equations, then numerical methods must be utilized in order to solve the

Equations.

3.2.2. Numerical Differential Equation by Using MATLAB

Equations (3.9) define the position of the payload during the time in the (X-Y)

plane. As there is no analytical answer for these sets of Equations, the numerical method

will be used to define the answer. The Runge-Kutta approach is one of the methods for

governing the optimized answer, and MATLAB software has been employed to solve that

Equations numerically based on the Runge-Kutta method (Chapter 2.2.5, Equation (2.17)

based on the Equation(2.24)). MATLAB code is written as several functions which are

expressed in Appendix A.

3.2.3. Dynamics of the Forces

All real structures behave dynamically when subjected to displacements or loads

(Wilson, 1996). Second law of Newton’s dictates that a change of motion is proportional

to the applied force and takes place in the direction of the straight line along which that

force acts (Scheck, 1999)
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Figure 3-2, Pendulum force reaction on the tower crane

To state the Newton's second law for objects, a free diagram of the applicable forces

is required to show the direction and components of these forces. For simplification,

Pendulum can be assumed as a mass point and a cable with stiffness, Figure 3-2 illustrates

the state of the pendulum. In addition, Cartesian coordinates have been placed on the

pendulum base and Polar coordinates on the mass.

Newton’s second law is written in terms of velocity and acceleration, expressed in

Polar coordinates (McGill & King, 1995). Acceleration of the swinging mass can be

divided into two components (Meriam & Kraige, 2006), which have been placed on the

diagram as polar coordinates  ,r  ,

F m r
  (3.10)

Where:

2r r r 
   (3.11)
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The second law of Newton’s is written along the r direction. The reason is, the force

can act only along this coordinates (Hibbeler, 2002), This is written by:

 2F m r r    (3.12)

Simplification of the Equation (Groesberg, 1968) yield:

 0 cosF k r r mg    (3.13)

Where cable stiffness (k) (Beer & Johnston, 2011) is expressed as:

EAk
r
 (3.14)

Where (E), (A) and (r0) are the Young's modulus, cable cross area sectional and free

length of cable respectively (Chaplin, 1995; Torkar & Arzenek, 2002). (r) and (θ) are the

variable parameters and their approximate value is calculated using a numerical solution

derived from  the values which resulted from the set of Partial Differential Equations (3.9)

Figure 3-3, Components of the Force Reaction of Pendulum
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Force reaction on the jib can be expressed as two components along the (x) and (y)

axis (Figure 3-3); thus,

sinx tF F  (3.15)

cosy tF F  (3.16)

Solving the Equations (3.15) and (3.16) based on the obtained (r) and (θ), gives the

force reaction components. According to Figure 3-2, (T) and (F) are the same in value

but their figures lie in opposite directions.

3.3. Mathematical Approach for Modal Analysis of the Tower Crane

The tower Crane complex body can be simplified and modeled as a frame which is

composed of two uniform segments, and can be found by using the receptances of the

separate segments. In the following diagram Figure 3-4, the frame is shown as two joint

beams at right angles:

Figure 3-4, Crane System and its Related Block Diagram
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Before discussing the calculations for this system, it should be noted that the

arrangement shown in Figure 3-4(a) also represents the first step involved in the

construction of other types of systems which originate  from straight members, and that

there is no limit to the complexity of such a system

However, although this is the case, there are also several practical limitations on the

extent to which our methods of analysis may be applied to a system that has a large

number of members. In particular, it should be kept in mind that as the number of

members increase, and the number of ways in which they may be oriented relative to each

other also increase, new terms have to be included in the Equations of motion. Thus, when

going from the straight beam to the bent cantilever, the additional effect must be included

in the longitudinal motion of the member that is remote from the clamp; even if the

discussion is confined to vibration in the plane of the cantilever. If the vibrations out of

that plane are to be examined, then the torsional characteristic of the clamped member

must be taken into account.

Furthermore, when analyzing the motion of a cantilever which is built up from

three uniform beams, it is helpful to keep in mind that, in general, all applied methods

may involve torsion, in addition to bending if the bars are not co-planar. If a system is

examined in which the uniform members are sufficient in number to be arranged to form

closed polygons, as in the two-story portal frame or in space frames, then torsional and

flexural motion of all the members should be allowed for. However, despite the

differences, the process of setting up the Equations is not fundamentally altered.

For the purposes of calculation, the strip may be divided into the two subsystems

shown in Figure 3-4(b), so that (B) is a clamped-free beam and (C) is a free-pinned beam

which is capable of longitudinal motion. The motion in the latter beam may be treated as
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rigid body motion, as it is assumed that the natural frequencies which we are concerned

with are much lower than the natural frequencies that result from the longitudinal

vibration of the bar (C). The linking coordinates, (q1) and (q2), are illustrated in

Figure 3-4(b) and the complete system is shown in block form in Figure 3-4(c).

The frequency Equation for the composite system has been derived from (2.37) and

the relevant receptances (R. E. D. Bishop & Johnson, 2011), (Huang & Chen, 2007) are:

5
311

4

F

EI F





 (3.17)

6
22

4

F
EI F




 (3.18)

1
12 2

4

F
EI F




 (3.19)

11 2
1

A l


 


 (3.20)

4
22

5

F
EI F




 (3.21)

12 0  (3.22)

In which:

  1 sin sinhF l l  (3.23)

  2 cos coshF l l  (3.24)

  3 cos cosh 1F l l   (3.25)

  4 cos cosh 1F l l   (3.26)

     5 cos sinh sin coshF l l l l     (3.27)

     6 cos sinh sin coshF l l l l     (3.28)

   7 sin sinhF l l   (3.29)
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   8 sin sinhF l l   (3.30)

   9 cos coshF l l   (3.31)

   10 cos coshF l l   (3.32)

In writing these expressions, no distinguishing suffixes have been added to (A), (E),

(I), (l), () and () because all these quantities are the same for the two beams. Further to

this, since the argument (l) of the functions (F) is the same for each beam, these too,

carry no letter subscripts. When the receptances have been substituted into Equation

(2.37) the resulting Equation may be simplified by multiplying throughout by (EI4). This

gives (R. E. D. Bishop & Johnson, 2011):

2

5 6 4 1

4 4 5 4

1 0F F F F
F l F F F

    
    

    
    (3.33)

Substituting Equations (3.23) to (3.32) into (3.33) yields,

       
   

       
   

   
       

   
   

2

cos sinh sin cosh cos sinh sin cosh1
cos cosh 1 cos cosh 1

cos cosh 1 sin sinh
0

cos sinh sin cosh cos cosh 1

l l l l l l l l
l l l l l

l l l l
l l l l l l

       
    

   
     

   
        

  
        

(3.34)

Solving the Equation for the values of ( l ) can be used for finding the natural

frequency. Natural frequency can be expressed as,



41

 2
2

n
n

l EI
l A





 
  

 
(3.35)

Natural frequencies are gained by several parameters (Room & Hall, 2012) which

those parameters are defined at Table 3-3.

Table 3-3, Properties of mathematical crane model

Young Modulus E 210 Gpa

Density p 7688 kg/m3

Moment of Inertia I 0.01

Cross Sectional Area A 0.02 m2

Stripe Length l 54.20 m

When Equation (3.34) has been solved and the first four roots have been found,

then Equation (3.35) is used to calculate the natural frequency of the simple model of the

tower crane.

3.4. Modal Analysis and Dynamic Response of the Tower Crane Using the Ansys

Workbench

FEA (finite element analysis) include three main steps which are: pre-processing,

solution and post-processing phase. Ansys Workbench is a kind of finite elements

analysis software. Those three main steps divide into several steps which are:
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 Modelling

 Material selection

 Meshing

 Apply Constrain

 Apply Load (Dynamics or Statics)

 Solving the problem

 Print out the result

Analysis steps which have implemented at this thesis are expressed concisely.

Application of pendulation Equation of motion and Mathematical approach for modal

analysis (Chapter 3.2 and Chapter 3.3) based on the FEA sequences is presented at

Figure 3-5.

Figure 3-5, Ansys Workbench sequences for the current problem
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3.4.1. Tower Crane Modelling

AutoCAD software was used to create the soft model of the tower crane based on

the actual dimensions (LIEBHERR 132 HC, Appendix C); Figure 3-6 shows the feature

of the program and design.

Figure 3-6, Tower Crane in AutoCAD

Figure 3-7 shows the dimensions of several parts of the tower crane. This model is

rigid and was exported to the Ansys Workbench for modal and dynamic analysis.
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Figure 3-7, Crane Dimensions Detail

3.4.2. Material Selection

Material selection is great step towards getting the good result of the analysis, all

the materials are defined by some properties such as Density, Young's modulus, Poisson's

ratio and so on. Table 3-4 shows the crane material specification for this case of the study

(Hibbeler & Fan, 2004).
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Table 3-4, Tower Crane Material Properties

Young’s Modulus (Pa) E 2e+11

Poisson’s Ration  0.3

Density (kg/m3)  7850

Tensile Strength (Pa) 2.5e+8

Compressive Yield Strength (Pa) 2.5e+8

Tensile Ultimate Strength (Pa) 4.6e+8

3.4.3. Meshing

An essential and complex pre-process step at finite element software is Meshing.

Meshing system consist of points (Node) which make a grid (Mesh). At meshing step the

geometry model divide into elements. Mesh contains the material and structure

properties. Density is assigned to the Nodes and high stress regions usually have more

node density than the little or no stress. Mesh behaviour is as same as spider web which

formed by node. Material properties are carried by this web of vector.

Software use two method of meshing: manual and automatic. Manual meshing is

happened just by taking a long time. The other way which is automatic meshing, which

is done by the system algorithm and it is common way of the meshing. Auto-mesh has

been used for this tower crane.
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3.4.4. Load and Constrain

Payload dynamic behavior during the swinging motion has been calculated from

the Equations (Chapter 3.2.3). Data from other Equations were used to calculate the

effects of the force on the reaction at the base point of the payload. Force reaction data is

required in the analysis of the tower crane dynamic response when using the Ansys

Workbench. In order to analyze the cranes behavior under the pendulation motion, six

points along the jib will be considered. Figure 3-8 shows the dimension and position of

those six points.

Figure 3-8, Pay Load Positions along the Jib

Where,

1 7916 ( )
2 8500 ( )
3 6807 ( )

X mm
X mm
X mm


 
 

Based on the real situation, cranes are fixed at the ground to avoid collapsing during

the operation. This tower crane supposed attached to the ground then tow line (Nodes and

Grids) at the base of the crane has been chosen as fixed and non-moveable support

(Figure 3-9).
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Figure 3-9, Apply the constrain at the base of the tower crane

3.4.5. Solving the Problem and Result

Load and constrain have been defined. Dynamic load is applied at each point (six

point totally) and solving bottom is pressed. Analysis of the each point presented by the

digits which those information give the crane reaction under the payload excitation.

Figure 3-10 shows the feature of the Ansys Workbench and how the loads attached along

the jib.

Figure 3-10, Attaching the Force along the Jib at Workbench



48

CHAPTER 4: RESULT AND DISCUSTION

4.1. Pendulation Equation of Motion Output

Based on the previous chapters (Chapters (2.2) and (3.2)), the pendulum differential

Equation (Equation (3.9)) was derived, and MATLAB code (Appendix A) was applied in

order to obtain the results. Figure 4-1 and Figure 4-2 show the (r) and (θ) over a time

span of 22 seconds.

Figure 4-1,  variations in 22 seconds

As both the cable and the mass have pendulation motion, then the angle between

the resting and the current position will also change. Figure 4-1 shows the change over a

22 second period (2 cycles).
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Figure 4-2, Cable length variations in 22 seconds

In Figure 4-2 the band of the variation of the cable length illustrates that the cable

length changes extremely fast during the cycles.

Figure 4-3 gives a more focused snapshot of a 0.3 second portion of the 22 second

time, while displaying a clearer picture of the wide band seen in Figure 4-2. As it shown,

the rope change is about 0.008 mm with high frequency (0.045 Hz) at longitudinal

vibration.

Figure 4-3, Cable length variation in 0.3 second
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Variation of (r) and (θ) were shown at Figure 4-1 and Figure 4-2. These data use

for calculation of the force reactions on the base of the pendulum (Based on Chapter3.2.3

and Equations (3.13), (3.15) and (3.16)).

Figure 4-4 and Figure 4-5 were plotted to show the Fx and Fy variation based on

(r) and (θ). From this, it becomes obvious that the high longitudinal vibration along the

cable has influence on the force reaction, mostly Fy. Small change at the cable length

(≈0.008 mm) made the force reaction in both directions (x-y) nonlinear, especially, Fy has

change about 150N.

Figure 4-4, Variations of the Fx in time

Figure 4-5, Variations of the Fy in time
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To show the portion of the Fy variation (Figure 4-5), Figure 4-6 has been plotted

over a 0.3 second period.

Figure 4-6, Fy variation in 0.3 second

4.2. Mathematical Model of the Tower Crane

Mathematical modal analysis for the simple 2-D tower crane has been explained in

previous chapters (Chapter 2.3.2 and Chapter 0). Solving the Equation (3.34) and finding

the first four roots yields,

1 1.2165l 

2 1.2479l 

3 3.1399l 

4 3.1416l 

Based on the Equation (3.35), nl and Table 3-3 the first four natural frequencies

( n ) can be calculated as:
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     
2 2

1
1 2 2

1.2165 3235 1.39 / sec 0.22
54.2

l EI rad Hz
l A





  
    

 

     
2 2

2
2 2 2

1.2479 3235 1.46 / sec 0.23
54.2

l EI rad Hz
l A





  
    

 

     
2 2

3
3 2 2

3.1399 3235 9.27 / sec 1.47
54.2

l EI rad Hz
l A





  
    

 

     
2 2

4
4 2 2

3.1416 3235 9.28 / sec 1.48
54.2

l EI rad Hz
l A





  
    

 

Table 4-1 shows the analytical calculations of the first four natural frequencies of

the simple mathematical model of the 2-D tower crane. This table is presented for

verification of the output data from the software.

Table 4-1, First Four Natural Frequencies of Analytical Method

Mode Frequency (Hz)

1st 0.22

2nd 0.23

3rd 1.47

4th 1.48
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4.3. Dynamic Analysing of the Tower Crane

Equation (3.9) was solved as part of this experiment. As one of the factors that was

defined during the oscillation was time (θt), this allowed for Equations (3.15) and (3.16)

to also be solved, based on the (θt). For the purpose of this investigation, time duration

was divided into small segments (0.1s) and all the force components were defined in these

segments; these were also used in the finite element software calculations. Table 4-2

shows some of the force components at play in each time segment.

Table 4-2, Variations of the (Fx) and (Fy) during a 22 second time period

T (s) 0 0.1 0.2 0.3 … 21.7 21.8 21.9 22

Fx (N) -851.7 -850.4 -846.3 -839.6 … -841.5 -847.6 -851 -851.7

Fy (N) 9735.5 9736 9737.4 9739.8 … 9739.1 9737 9735.8 9735.5

In order to calculate the dynamic behavior of the tower crane during the specified

time period, the jib was divided into 6 semi equal parts. The results of the force

components Table 4-2 were also used as input data for the software calculations.

4.3.1. Modal Analysis of the Tower Crane

Modal analysis of the tower crane, by using the Ansys Workbench, yields both the

mode shapes and the related frequencies. Table 4-3 shows the first four modes analyzed.
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Table 4-3, First Four Mode of the Tower Crane

Mode Frequency (Hz)

1st 0.20

2nd 0.51

3rd 0.59

4th 1.51

These four natural frequencies illustrate the critical frequency of the tower crane.

When comparing these data with both the software and analytical method data Table 4-4,

the accuracy of the finite elements software, as well as that of the analytic data, is verified.

Table 4-4, Comparison between the Analytical and software modal frequencies

Mode Analytical Frequency (Hz) Software Frequency (Hz)

1 0.22 0.20

2 0.23 0.51

3 1.47 0.59

4 1.48 1.51

First and fourth modes of vibrations ( 1 and 4 ) are on the crane body (Tower and

Jib) that’s why Mathematical and software method had almost same result (2% and 10%

error), but second and third modes ( 2 and 3 ) are on the crane suspensions rod and

showed the error on simplified and complex model.
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Figure 4-7, Tower Crane Deformation (Scale 4.3x)

Figure 4-8, Workbench Feature of the Modal Flexible Dynamics Analysis
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4.3.2. Result of the Six Points along the Jib

For showing the reaction of the tower crane under the swinging of the payload, all

of six points (Chapter 3.4.4 and Figure 3-8) have been analyzed. Results are shown in

the figures and clarify the effect of the distance under the same load excitation (Figure 4-4

and Figure 4-5).

Figure 4-9, Total Deformation Effects of the Crane Body
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Figure 4-9 shows the total deformation of the tower crane from the original position

under the same swinging payload force at different position. To illustrate the effects of

the load position and compare them together Figure 4-10 has been printed.

Figure 4-10, Total deformation effects on the tower crane under the same excitation but

different positions of payload

Figure 4-11, Comparison of total deformation effects based on the length of jib length
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Figure 4-12, Y-Axis Direction Deformation Reaction of the Crane
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Figure 4-13, X -Axis Direction Deformation Reaction of the Crane

Figure 4-9 showed the overall total deformation from original point but

Figure 4-12 and Figure 4-13 show the maximum and minimum deformations at (x) and

(y) directions which clarify the effects of distance and time at each coordinates.
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Figure 4-14, Stress of Crane Base (Based on the Maximum Principal

Stress is most important parameter for designer. Overload and high stresses are a

danger and can collapse the structure which can kill people, waist the time and money.

That’s why; first option which is considered by designer is stress. Payload motion effects

also appear as stress on the crane body. Figure 4-14 shows the stress during the swing

motion of the payload and its effect on the base of the tower crane. Figure 4-15
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illuminates all six point stresses at one figure. This figure also clarifies, the points which

are near the tip of the Jib, have critical condition.

Figure 4-15, Stress effects on the base of tower crane under the same excitation but

different positions of payload

Figure 4-16, Comparison of the stress effects based on the jib dimension
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If material deformation exceed over the elastic limit, it cannot go back to the

original shape; then plastic deformation happens (Wang et al., 2010). To avoid the plastic

deformation elastic strain should be under its limitations. Figure 4-17 has been plotted to

illuminate the strain of the crane body under the payload dynamics load.

Figure 4-17, Elastic Stain of Crane Base (Based on the Maximum Principal)
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Figure 4-18, Total, X and Y Directional Force Reaction of the Crane

One of the useful information in the crane analysis is Force Reaction. Figure 4-18

shows that reaction at the fixed support (base of the crane) and its variation during the

time. Knowing about the reaction at the base will help to design the safe structures such

as Crane. Total force is summation of two components. Figure 4-18 also shows the force

reaction components in (x) and (y) directions.
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CHAPTER 5: CONCLUSIONS

For the purpose of this investigation a model of a tower crane was constructed, and

results were analysed and compared using Mathematical and FEM software (Table 4-1

and Table 4-3). The first four natural frequencies ( ,  :1, 2,3, 4n n ) of the two methods

(Mathematical and FEM model) were compared, and the accuracy of the FEA software

was demonstrated (Table 4-4). Results, using the Payload Equation of motion, showed

that cable stiffness is an important factor to consider as, not only did it cause small

changes in the cable length (≈0.008mm) but, at each fluctuation, it also generated

nonlinear force variation (≈150N) at the base of the cable where it attached to the jib. In

addition, it caused high frequency (≈22.21Hz) vibration which appeared as force along

the cable. Six analyses were executed using the FEA software for the six different points

where the payload was attached to the jib. Initial condition and force reactions were kept

at the same value for each point analysed (Table 3-1 and Table 3-2). Based on the

acquired results, the length difference between the first and the sixth point was

approximately 6.15 times, whereas the crane deformation showed an increase of

approximately 62 times. In addition, the stress at the crane base, which was induced by

the pendulum vibration, was also seen to increase by approximately 8.8 times between

point 1 and point 6. These observations demonstrate the important and influential role of

position of the load along the jib. Further to this, the swinging effect of the payload on

the tower crane body was studied. The results (Figure 4-9 to Figure 4-18) provided

insight into the importance of this factor, and offered information that may prove useful

to enhance the safety of future tower crane designs.

In summary, this investigation found that during high wind or storm conditions,

when a tower crane was operating under a heavy load which was attached near the tip of
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the jib, the swinging of the load put it at a higher risk for collapse. This risk was seen to

decrease as the position of the load moved away from the tip. Inevitably, as collapse could

lead to workplace injuries and fatalities, this is an important finding requiring further

consideration.

Future Work

After critically analysing the steps in this investigation and considering the results

from it, I plan to build on the findings and take the study a step further, by creating a 3D

model of the tower crane with the actual elements, shapes and sizes. Only through the

analysis of payload effects using a 3D model can the real reaction of the tower crane be

explored.



66

REFERENCES

Abdel-Rahman, EM, & Nayfeh, AH. (2002). Pendulation reduction in boom cranes using
cable length manipulation. Nonlinear Dynamics, 27(3), 255-269.

Ahmad, MA. (2009). Sway Reduction on Gantry Crane System using Delayed Feedback
Signal and PD-type Fuzzy Logic Controller: A Comparative Assessment.
International Journal of Computer Systems Science and Engineering, 4(3).

Arfken, G.B., Weber, H.J., & Harris, F.E. (2005). Mathematical Methods For Physicists
International Student Edition: Academic press.

Arnold, E, Sawodny, O, Hildebrandt, A, & Schneider, K. (2003). Anti-sway system for
boom cranes based on an optimal control approach.

Baruh, H. (1999). Analytical dynamics: WCB/McGraw-Hill.

Beer, F.P., & Johnston, E.R. (2011). Statics and mechanics of materials: McGraw-Hill.

Bishop, R.E.D., & Johnson, D.C. (2011). The mechanics of vibration: Cambridge
University Press.

Bishop, RED, & Johnson, DC. (1960). The mechanics of vibration 1960: Cambridge
University Press.

Chaplin, CR. (1995). Failure mechanisms in wire ropes. Engineering Failure Analysis,
2(1), 45-57.

Chapra, SC, & Canale, RP. (1998). Numerical Method for Engineers [M J. USA: the
McGraw—Hil Companies: Inc.

CHEN, G.D., & JIA, P.F. (2008). Robust decentralized trajectory tracking control of
robot manipulators based on extended state observer. Acta Automatica Sinica,
34(7), 828-832.

Cho, S.K., & Lee, H.H. (2000). An anti-swing control of a 3-dimensional overhead crane.

Cveticanin, L. (1995). Dynamic behavior of the lifting crane mechanism* 1. Mechanism
and machine theory, 30(1), 141-151.

Davis, R., Henshell, RD, & Warburton, GB. (1972). A Timoshenko beam element.
Journal of Sound and Vibration, 22(4), 475-487.

Ferreira, JV, & Ewins, DJ. (1996). Nonlinear receptance coupling approach based on
describing functions.

Fletcher, R., & Powell, M.J.D. (1963). A rapidly convergent descent method for
minimization. The Computer Journal, 6(2), 163-168.



67

Fowles, G.R., & Cassiday, G.L. (1999). Analytical mechanics: Saunders College Pub.

Fujioka, DD, Rauch, A, Singhose, WE, & Jones, T. (2009). Tip-over stability analysis of
mobile boom cranes with double-pendulum payloads.

Ghigliazza, RM, & Holmes, P. (2002). On the dynamics of cranes, or spherical pendula
with moving supports. International journal of non-linear mechanics, 37(7),
1211-1221.

Ginsberg, J.H. (1998). Advanced engineering dynamics: Cambridge University Press.

Golafshani, AR, & Aplevich, JD. (2002). Computation of time-optimal trajectories for
tower cranes.

Gregory, R.D. (2006). Classical mechanics: an undergraduate text: Cambridge Univ Pr.

Groesberg, S.W. (1968). Groesberg (1968) Advanced mechanics.

Hayashi, C., Shepard, S., Winkler, I., Glenn, S., Harris, E., Quaid, D., Hershey, B.,
Kaufman, P., Chartoff, R., & Wolfe, T. (1964). Nonlinear oscillations in physical
systems (Vol. 33): McGraw-Hill New York.

Hibbeler, R.C. (2002). Engineering mechanics: Pearson Education.

Hibbeler, R.C., & Fan, SC. (2004). Statics and mechanics of materials (Vol. 2): Prentice
Hall.

Huang, D.T., & Chen, DK. (2007). Dynamic characteristics of a structure with multiple
attachments: A receptance approach. Journal of Sound and Vibration, 307(3),
941-952.

Jerman, B, & Kramar, J. (2008). A study of the horizontal inertial forces acting on the
suspended load of slewing cranes. International Journal of Mechanical Sciences,
50(3), 490-500.

Jerman, B, Podraj, P, & Kramar, J. (2004). An investigation of slewing-crane dynamics
during slewing motion--development and verification of a mathematical model.
International Journal of Mechanical Sciences, 46(5), 729-750.

José, J.V., & Saletan, E.J. (1998). Classical dynamics: a contemporary approach:
Cambridge Univ Pr.

Ju, F., & Choo, YS. (2003). Dynamics Characteristic of Tower Cranes.

Kiliçslan, S., Balkan, T., & Ider, SK. (1999). Tipping loads of mobile cranes with flexible
booms. Journal of Sound and Vibration, 223(4), 645-657.

Kim, C.S., & Hong, K.S. (2009). Boundary control of container cranes from the
perspective of controlling an axially moving string system. International Journal
of Control, Automation and Systems, 7(3), 437-445.



68

Kondo, R, & Shimahara, S. (2005). Anti-sway control of a rotary crane via switching
feedback control.

Kosiski, J. (2005). Swing-free stop control of the slewing motion of a mobile crane.
Control Engineering Practice, 13(4), 451-460.

Kreyszig, E. (2007). Advanced engineering mathematics: John Wiley & Sons.

Lacarbonara, W., Soper, R.R., Nayfeh, A.H., & Mook, D.T. (2001). A nonclassical
vibration absorber for pendulation reduction. Journal of Vibration and Control,
7(3), 365-393.

Lahres, S., Aschemann, H., Sawodny, O., & Hofer, E.P. (2000). Crane automation by
decoupling control of a double pendulum using two translational actuators. Paper
presented at the American Control Conference, 2000. Proceedings of the 2000.

Maczynski, A, & Wojciech, S. (2003). Dynamics of a Mobile Crane and Optimisation of
the Slewing Motion of Its Upper Structure. Nonlinear Dynamics, 32(3), 259-290.

Matthews, G.P., & DeCarlo, R.A. (1988). Decentralized tracking for a class of
interconnected nonlinear systems using variable structure control. Automatica,
24(2), 187-193.

McGill, D.J., & King, W.W. (1995). Engineering mechanics: Pws-Kent.

Meriam, J.L., & Kraige, L.G. (2006). Engineering Mechanic (Vol. 2) Dynamics 5Th Ed:
Wiley-India.

Neitzel, R.L., Seixas, N.S., & Ren, K.K. (2001). A review of crane safety in the
construction industry. Applied Occupational and Environmental Hygiene, 16(12),
1106-1117.

Neupert, J, Arnold, E, Schneider, K, & Sawodny, O. (2010). Tracking and anti-sway
control for boom cranes. Control Engineering Practice, 18(1), 31-44.

Oguamanam, DCD, Hansen, JS, & Heppler, GR. (2001). Dynamics of a three-
dimensional overhead crane system. Journal of Sound and Vibration, 242(3), 411-
426.

Okubo, Y, Fujii, T, Kono, S, Monzen, T, & Uchida, K. (1997). Development of Vibration
Control System on Container Crane Girder. MITSUBISHI JUKO GIHO, 34, 50-
53.

Omar, HM, & Nayfeh, AH. (2005). Gantry cranes gain scheduling feedback control with
friction compensation. Journal of Sound and Vibration, 281(1-2), 1-20.

Parker, GG, Groom, K, Hurtado, J, Robinett, RD, & Leban, F. (2002). Command shaping
boom crane control system with nonlinear inputs.



69

Pierson Jr, W.J., & Moskowitz, L. (1964). A proposed spectral form for fully developed
wind seas based on the similarity theory of SA Kitaigorodskii. Journal of
geophysical research, 69(24), 5181-5190.

Riley, KF, Hobson, MP, Bence, SJ, & Spector, D. (1999). Mathematical methods for
physics and engineering. American Journal of Physics, 67, 165.

Room, WH, & Hall, W. (2012). Advanced mechanics of materials.

Sa irli, A, Bo oçlu, ME, & Ömürlü, VE. (2003). Modeling the Dynamics and Kinematics
of a Telescopic Rotary Crane by the Bond Graph Method: Part I. Nonlinear
Dynamics, 33(4), 337-351.

Sawodny, O, Aschemann, H, Kumpel, J, Tarin, C, & Schneider, K. (2002). Anti-sway
control for boom cranes.

Schaub, H. (2008). Rate-based ship-mounted crane payload pendulation control system.
Control Engineering Practice, 16(1), 132-145.

Scheck, F. (1999). Mechanics: from Newton's laws to deterministic chaos.

Shen, Y, Yano, K, & Terashima, K. (2003). Sway control of rotary crane using straight
transfer transformation method considering the variation of rope length.

Shen, Y., Terashima, K., & Yano, K. (2003). Optimal Control of Rotary Crane Using the
Straight Transfer Transformation Method to Eliminate Residual Vibration.
DAGGER. Transactions, 39(9), 817-826.

Singhose, W, & Kim, D. (2007). Manipulation with tower cranes exhibiting double-
pendulum oscillations.

Sun, G, Kleeberger, M, & Liu, J. (2005). Complete dynamic calculation of lattice mobile
crane during hoisting motion. Mechanism and machine theory, 40(4), 447-466.

Tabata, Y, Ichise, K, Ouchi, S, & Liu, KZ. (2003). Anti-sway control system of a
rotational crane using a nonlinear controller.

Terashima, K, Shen, Y, & Yano, K. (2007). Modeling and optimal control of a rotary
crane using the straight transfer transformation method. Control Engineering
Practice, 15(9), 1179-1192.

Torkar, M, & Arzenek, B. (2002). Failure of crane wire rope. Engineering Failure
Analysis, 9(2), 227-233.

Török, J.S. (2000). Analytical mechanics: With an introduction to dynamical systems:
Wiley.

Towarek, Z. (1998). The dynamic stability of a crane standing on soil during the rotation
of the boom. International Journal of Mechanical Sciences, 40(6), 557-574.



70

Wang, H., Wu, PD, Tomé, CN, & Huang, Y. (2010). A finite strain elastic–viscoplastic
self-consistent model for polycrystalline materials. Journal of the Mechanics and
Physics of Solids, 58(4), 594-612.

Wilson, E.L. (1996). Three-Dimensional Static and Dynamic Analysis of Structures.
Computers and Structures, Inc., Berkeley, CA.

Witz, JA. (1995). Parametric excitation of crane loads in moderate sea states. Ocean
Engineering, 22(4), 411-420.

Yi, J., Yubazaki, N., & Hirota, K. (2003). Anti-swing and positioning control of overhead
traveling crane. Information Sciences, 155(1), 19-42.



71

Appendix



72

Appendix A

A.1. MATLAB Functions

In Chapter 3.2 a pendulum differential Equation of motion was derived. As an exact

solution for that differential Equation does not exist, then the Runge-Kutta fifth-order

(Butcher) was used as a numerical method (Chapter 2.2.5) to solve this set of multi

variable differential Equations. In addition, MATLAB software was used to evaluate the

answer

 2
0 cos 0

2 sin 0

k cr r r r r g
m m

c gr r
r m r

 

   

      

    


 

  

Definition of two parameters (r) and (), and also their derivations ( r) and ().

 1y r ;

 2y  ;

 3y r  ;

 4y   ;

Replacement of the functions based on the software methods.
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   1 1 3Fy y   ;

   2 2 4Fy y   ;

 3
2(1)* (4) ( / )*( (1)3 ) * ( (2))F y y k m y ry g cos y    ;

                  4 2 / 1 * 3 * 4 / * / 1 * 2 ;4 4F y y y c m y g y sin yy     

A.1.1. Equation of Motion Function:

function F = fex7_5(x,y)

F = zeros(1,2);

g=9.81;

r=30;

c=10;

m=1000;

k=100000;

F(1)=y(3);

F(2)=y(4);

F(3)=y(1)*y(4)^2-(k/m)*(y(1)-r)-g*cos(y(2));

F(4)=-2/(y(1))*y(3)*y(4)-(c/m)*y(4)-(g/y(1))*sin(y(2));
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A.1.2. Butcher Function:

function [xSol,ySol] = Butcher(dEqs,x,y,xStop,h)

if size(y,1) > 1 ; y = y'; end % y must be row vector

xSol = zeros(2,1); ySol = zeros(2,length(y));

xSol(1) = x; ySol(1,:) = y;

i = 1;

while x < xStop

i = i + 1;

h = min(h,xStop - x);

K1 = h*feval(dEqs,x,y);

K2 = h*feval(dEqs,x + h/4, y + K1/4);

K3 = h*feval(dEqs,x + h/4, y + K1/8 + K2/8);

K4 = h*feval(dEqs,x + h/2, y - K2/2 + K3);

K5 = h*feval(dEqs,x +3*h/4,y+(K1*3 + K4*9)/16);

K6 = h*feval(dEqs,x + h,   y+(-3*K1+2*K2+12*K3-12*K4+8*K5)/7);

y = y+(7*K1+32*K3+12*K4+32*K5+7*K6)/90;

x = x+h;
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xSol(i) = x; ySol(i,:) = y;

end

A.1.3. Cable Tenssion Function:

m=1000;

g=9.81;

r=30;

D=5 % Rope Angle In Degree

T0=D*pi/180 % Rope Angle In Radian T0=0.0873

T=[-T0:T0/10:T0]

t=[0:0.1:5];  % Time

R=g.*m.*(2*cos(T0)-cos(T)) %Cable tension

Rx=R.*sin(T)

Ry=R.*cos(T)

V=sqrt(2.*g.*r.*(cos(T)-cos(T0))) %Payload Velocity

%g/r=0.327
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%TS=dsolve('D2T+(0.327)*T=0','T(0)=0.0873','DT(0)=0')

T1=0.0873*cos(0.572*t)

R1=g.*m.*(2*cos(T0)-cos(T1)) %Cable tension Vs Time

R1x=R1.*sin(T1)

R1y=R1.*cos(T1)

wn=sqrt(g/r)

f=wn/(2*pi)

Per=2*pi/wn

CR=max(R1)

CT=max(T1)

A=subplot(2,1,1);plot(T,R)

grid on

xlabel('time (s)')

ylabel('Fx (N)')
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subplot(2,1,2);plot(t,R1)

grid on

xlabel('time (s)')

ylabel('Fy (N)')
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Appendix B

Analysis report of the Workbench (Sample)

The project was completed using Ansys Workbench version 14.0 Release

5.1. Units

Table 0-1, Units Defined

Unit System Metric (m, kg, N, s, V, A) Degrees rad/s Celsius

Angle Degrees

Rotational Velocity rad/s

Temperature Celsius

5.2. Model

5.2.1. Geometry

Table 0-2, Model Geometry

Object Name Geometry

State Fully Defined

Definition
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Type DesignModeler

Length Unit Millimeters

Element Control Program Controlled

2D Behavior Plane Stress

Display Style Body Color

Bounding Box

Length X 62.061 m

Length Y 60.5 m

Properties

Volume 6.1483 m³

Mass 48264 kg

Surface Area(approx.) 61.483 m²

Scale Factor Value 1.

Statistics

Bodies 1

Active Bodies 1

Nodes 13497

Elements 3617

Mesh Metric None

Basic Geometry Options

Parameters Yes

Parameter Key DS

Attributes No

Named Selections No

Material Properties No

Advanced Geometry Options

Use Associativity Yes

Coordinate Systems No
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Reader Mode Saves Updated File No

Use Instances Yes

Smart CAD Update No

Attach File Via Temp File Yes

Analysis Type 2-D

Decompose Disjoint Faces No

Enclosure and Symmetry Processing Yes

Table 0-3, Model (D4, E4, F4) Geometry Parts

Object Name Part 1

State Meshed

Graphics Properties

Visible Yes

Transparency 1

Definition

Suppressed No

Stiffness Behavior Flexible

Coordinate System Default Coordinate System

Reference Temperature By Environment

Thickness 0.1 m

Thickness Mode Manual

Material

Assignment Structural Steel

Nonlinear Effects Yes

Thermal Strain Effects Yes

Bounding Box
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Length X 62.061 m

Length Y 60.5 m

Properties

Volume 6.1483 m³

Mass 48264 kg

Centroid X 8.9022 m

Centroid Y -11.435 m

Centroid Z 0. m

Moment of Inertia Ip1 1.917e+007 kg·m²

Moment of Inertia Ip2 6.7846e+006 kg·m²

Moment of Inertia Ip3 2.5955e+007 kg·m²

Surface Area(approx.) 61.483 m²

Statistics

Nodes 13497

Elements 3617

Mesh Metric None

5.2.2. Coordinate Systems

Table 0-4, Model Coordinate Systems

Object Name Global Coordinate System

State Fully Defined

Definition

Type Cartesian

Coordinate System ID 0.

Origin
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Origin X 0. m

Origin Y 0. m

Directional Vectors

X Axis Data [ 1. 0. ]

Y Axis Data [ 0. 1. ]

5.2.3. Mesh

Table 0-5, Model Mesh

Object Name Mesh

State Solved

Defaults

Physics Preference Mechanical

Relevance 0

Sizing

Use Advanced Size Function Off

Relevance Center Coarse

Element Size Default

Initial Size Seed Active Assembly

Smoothing Medium

Transition Fast

Span Angle Center Coarse

Minimum Edge Length 2.0187e-002 m

Inflation



83

Use Automatic Inflation None

Inflation Option Smooth Transition

Transition Ratio 0.272

Maximum Layers 5

Growth Rate 1.2

Inflation Algorithm Pre

View Advanced Options No

Patch Conforming Options

Triangle Surface Mesher Program Controlled

Advanced

Shape Checking Standard Mechanical

Element Midside Nodes Program Controlled

Number of Retries Default (4)

Extra Retries For Assembly Yes

Rigid Body Behavior Dimensionally Reduced

Mesh Morphing Disabled

Defeaturing

Use Sheet Thickness for Pinch No

Pinch Tolerance Please Define

Generate Pinch on Refresh No

Sheet Loop Removal No

Automatic Mesh Based Defeaturing On

Defeaturing Tolerance Default

Statistics

Nodes 13497

Elements 3617

Mesh Metric None
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5.3. Modal

Table 0-6, Model Analysis

Object Name Modal (D5)

State Solved

Definition

Physics Type Structural

Analysis Type Modal

Solver Target Mechanical APDL

Options

Environment Temperature 22. °C

Generate Input Only No

Table 0-7, Modal Initial Condition

Object Name Initial Condition

State Fully Defined

Definition

Pre-Stress Environment None

Table 0-8, Modal Analysis Settings

Object Name Analysis Settings

State Fully Defined
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Options

Max Modes to Find 15

Limit Search to Range No

Solver Controls

Damped No

Solver Type Program Controlled

Rotordynamics Controls

Coriolis Effect Off

Campbell Diagram Off

Output Controls

Stress Yes

Strain Yes

Nodal Forces No

Calculate Reactions No

Store Modal Results Program Controlled

General Miscellaneous No

Analysis Data Management

Future Analysis MSUP Analyses

Scratch Solver Files Directory

Save MAPDL db Yes

Delete Unneeded Files Yes

Solver Units Active System

Solver Unit System mks

Table 0-9, Modal Loads

Object Name Fixed Support
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State Fully Defined

Scope

Scoping Method Geometry Selection

Geometry 2 Edges

Definition

Type Fixed Support

Suppressed No

5.3.1. Solution

Table 0-10, Model Modal Solution

Object Name Solution (D6)

State Solved

Adaptive Mesh Refinement

Max Refinement Loops 1.

Refinement Depth 2.

Information

Status Done

The following bar chart indicates the frequency at each calculated mode.
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Figure 0-1, Model Modal Solution

Table 0-11, Model Modal Solution

Mode Frequency [Hz]

1. 0.20287

2. 0.50618

3. 0.59179

4. 1.5128

5. 1.8882

6. 2.9393

7. 2.9805

8. 4.0676

9. 4.676

10. 4.8446
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11. 5.2101

12. 7.2248

13. 7.8432

14. 7.8832

15. 9.4914

Table 0-12, Model Modal Solution, Solution Information

Object Name Solution Information

State Solved

Solution Information

Solution Output Solver Output

Newton-Raphson Residuals 0

Update Interval 2.5 s

Display Points All

FE Connection Visibility

Activate Visibility Yes

Display All FE Connectors

Draw Connections Attached To All Nodes

Line Color Connection Type

Visible on Results No

Line Thickness Single

Display Type Lines
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Table 0-13, Model Modal Solution Results

Object Name
Total

Deformation

Total Deformation

2

Total Deformation

3

Total Deformation

4

Total Deformation

5

State Solved

Scope

Scoping Method Geometry Selection

Geometry All Bodies

Definition

Type Total Deformation

Mode 1. 2. 3. 4. 5.

Identifier

Suppressed No

Results

Minimum 0. m

Maximum 8.7054e-003 m 2.2197e-002 m 2.3535e-002 m 3.0643e-002 m 4.3251e-002 m

Information

Reported Frequency 0.20287 Hz 0.50618 Hz 0.59179 Hz 1.5128 Hz 1.8882 Hz

Table 0-14, Model Modal Solution Total Deformation

Mode Frequency [Hz]

1. 0.20287

2. 0.50618

3. 0.59179

4. 1.5128

5. 1.8882

6. 2.9393

7. 2.9805

8. 4.0676
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9. 4.676

10. 4.8446

11. 5.2101

12. 7.2248

13. 7.8432

14. 7.8832

15. 9.4914

Table 0-15, Model Modal Solution Total Deformation 2

Mode Frequency [Hz]

1. 0.20287

2. 0.50618

3. 0.59179

4. 1.5128

5. 1.8882

6. 2.9393

7. 2.9805

8. 4.0676

9. 4.676

10. 4.8446

11. 5.2101

12. 7.2248

13. 7.8432

14. 7.8832

15. 9.4914
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Table 0-16, Model Modal Solution Total Deformation 3

Mode Frequency [Hz]

1. 0.20287

2. 0.50618

3. 0.59179

4. 1.5128

5. 1.8882

6. 2.9393

7. 2.9805

8. 4.0676

9. 4.676

10. 4.8446

11. 5.2101

12. 7.2248

13. 7.8432

14. 7.8832

15. 9.4914

Table 0-17, Model Modal Solution Total Deformation 4

Mode Frequency [Hz]

1. 0.20287

2. 0.50618

3. 0.59179

4. 1.5128

5. 1.8882
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6. 2.9393

7. 2.9805

8. 4.0676

9. 4.676

10. 4.8446

11. 5.2101

12. 7.2248

13. 7.8432

14. 7.8832

15. 9.4914

Table 0-18, Model Modal Solution Total Deformation 5

Mode Frequency [Hz]

1. 0.20287

2. 0.50618

3. 0.59179

4. 1.5128

5. 1.8882

6. 2.9393

7. 2.9805

8. 4.0676

9. 4.676

10. 4.8446

11. 5.2101

12. 7.2248

13. 7.8432
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14. 7.8832

15. 9.4914

5.4. Flexible Dynamic

Table 0-19, Model Analysis

Object Name Flexible Dynamic (F5)

State Not Solved

Definition

Physics Type Structural

Analysis Type Transient

Solver Target Mechanical APDL

Options

Environment Temperature 22. °C

Generate Input Only No

Table 0-20, Model Flexible Dynamic Initial Conditions

Object Name Initial Conditions

State Fully Defined
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Table 0-21, Model Flexible Dynamic Initial Conditions Initial Condition

Object Name Modal (None)

State Fully Defined

Definition

Pre-Stress Environment None

Table 0-22, Model Flexible Dynamic Analysis Settings

Object Name Analysis Settings

State Fully Defined

Restart Analysis

Restart Type Program Controlled

Load Step 1000

Substep 1

Time 19.98 s

Step Controls

Number Of Steps 1101.

Current Step Number 264.

Step End Time 5.26 s

Auto Time Stepping On

Define By Time

Carry Over Time Step On

Minimum Time Step 2.e-002 s

Maximum Time Step 2.e-002 s

Time Integration On

Solver Controls



95

Solver Type Program Controlled

Weak Springs Program Controlled

Large Deflection On

Restart Controls

Generate Restart Points Program Controlled

Retain Files After Full Solve No

Nonlinear Controls

Force Convergence Program Controlled

Moment Convergence Program Controlled

Displacement Convergence Program Controlled

Rotation Convergence Program Controlled

Line Search Program Controlled

Stabilization Off

Output Controls

Stress Yes

Strain Yes

Nodal Forces Yes

Contact Miscellaneous No

General Miscellaneous No

Calculate Results At All Time Points

Max Number of Result Sets 1000.

Damping Controls

Stiffness Coefficient Define By Direct Input

Stiffness Coefficient 0.

Numerical Damping Manual

Numerical Damping Value 0.1

Analysis Data Management

Future Analysis None
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Scratch Solver Files Directory

Save MAPDL db No

Delete Unneeded Files Yes

Nonlinear Solution Yes

Solver Units Active System

Solver Unit System mks

Table 0-23, Model Flexible Dynamic Loads

Object Name Fixed Support Force Force 2 Force 3 Force 4

State Fully Defined Suppressed

Scope

Scoping Method Geometry Selection

Geometry 2 Edges 1 Edge

Definition

Type Fixed Support Force

Suppressed No Yes

Define By Components

Coordinate System Global Coordinate System

X Component Tabular Data

Y Component Tabular Data
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Figure 0-2, Model Flexible Dynamic Force

5.4.1. Solution

Table 0-24, Model Flexible Dynamic Solution

Object Name Solution (F6)

State Solve Failed

Adaptive Mesh Refinement

Max Refinement Loops 1.

Refinement Depth 2.

Information

Status Solve Required, Restart Available
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Table 0-25, Model Flexible Dynamic Solution Information

Object Name Solution Information

State Solve Failed

Solution Information

Solution Output Solver Output

Newton-Raphson Residuals 0

Update Interval 2.5 s

Display Points All

FE Connection Visibility

Activate Visibility Yes

Display All FE Connectors

Draw Connections Attached To All Nodes

Line Color Connection Type

Visible on Results No

Line Thickness Single

Display Type Lines

Table 0-26, Model Flexible Dynamic Solution Results

Object Name
Total

Deformation

Y Axis - Directional

Deformation

X Axis - Directional

Deformation

Maximum

Principal Stress

Maximum Principal

Elastic Strain

State Solved

Scope

Scoping Method Geometry Selection

Geometry All Bodies

Definition
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Type
Total

Deformation
Directional Deformation

Maximum

Principal Stress

Maximum Principal

Elastic Strain

By Time

Display Time 2.8 s Last 7. s Last

Calculate Time

History
Yes

Identifier

Suppressed No

Orientation Y Axis X Axis

Coordinate

System
Global Coordinate System

Results

Minimum 0. m -1.6926 m -8.3202e-005 m 0. Pa 3.4812e-008 m/m

Maximum 1.5712 m 7.5022 m 6.4049 m 1.1214e+009 Pa 5.7369e-003 m/m

Minimum Value Over Time

Minimum 0. m -10.025 m -6.4672 m 0. Pa 9.5103e-011 m/m

Maximum 0. m -3.406e-004 m -1.5701e-006 m 0. Pa 2.0269e-007 m/m

Maximum Value Over Time

Minimum
3.4414e-004

m
1.6762e-005 m 3.4632e-006 m 3.1493e+006 Pa 1.5221e-005 m/m

Maximum 12.34 m 11.01 m 6.883 m 2.3702e+009 Pa 1.2189e-002 m/m

Information

Time 2.8 s 19.98 s 7. s 19.98 s

Load Step 141 1000 351 1000

Substep 1

Iteration

Number
283 2051 704 2051

Integration Point Results

Display Option Averaged
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Figure 0-3, Model Total Deformation
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Figure 0-4, Model Y-Axis Directional Deformation

Figure 0-5, Model X-Axis Directional Deformation
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Figure 0-6, Model Maximum Principal Stress
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Figure 0-7, Model Maximum Principal Elastic Strain

Table 0-27, Model Flexible Dynamic Solution Probes

Object Name Deformation Probe Stress Probe Force Reaction

State Solved

Definition

Type Deformation Stress Force Reaction

Location Method Geometry Selection Boundary Condition

Geometry 1 Face

Suppressed No

Boundary Condition Fixed Support

Orientation Global Coordinate System

Options

Result Selection Total Maximum Principal All

Display Time End Time

Spatial Resolution Use Maximum

Results

Total 8.528 m 2.1791e+005 N

Maximum Principal 1.1214e+009 Pa

X Axis 1.7492e+005 N

Y Axis -1.2995e+005 N

Maximum Value Over Time

Total 12.34 m 5.7495e+005 N

Maximum Principal 2.3702e+009 Pa

X Axis 4.4928e+005 N

Y Axis 5.7032e+005 N

Minimum Value Over Time

Total 3.4414e-004 m 394.94 N

Maximum Principal 3.1493e+006 Pa

X Axis -5.5664e+005 N

Y Axis -3.6531e+005 N
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Information

Time 19.98 s

Load Step 1000

Substep 1

Iteration Number 2051

Figure 0-8, Model Deformation Probe
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Figure 0-9, Model Stress Probe
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Figure 0-10, Model Force Reaction

5.5. Material Data

5.5.1. Structural Steel

Table 0-28, Structural Steel Constants

Density 7850 kg m^-3

Isotropic Secant Coefficient of Thermal

Expansion
1.2e-005 C^-1

Specific Heat 434 J kg^-1 C^-1

Isotropic Thermal Conductivity 60.5 W m^-1 C^-1

Isotropic Resistivity 1.7e-007 ohm m

Table 0-29, Structural Steel Compressive Ultimate Strength

Compressive Ultimate Strength Pa

0

Table 0-30, Structural Steel Compressive Yield Strength

Compressive Yield Strength Pa
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2.5e+008

Table 0-31, Structural Steel Tensile Yield Strength

Tensile Yield Strength Pa

2.5e+008

Table 0-32, Structural Steel Tensile Ultimate Strength

Tensile Ultimate Strength Pa

4.6e+008

Table 0-33, Structural Steel Isotropic Secant Coefficient of Thermal Expansion

Reference Temperature C

22

Table 0-34, Structural Steel Alternating Stress Mean Stress

Alternating Stress Pa Cycles Mean Stress Pa

3.999e+009 10 0

2.827e+009 20 0

1.896e+009 50 0

1.413e+009 100 0
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1.069e+009 200 0

4.41e+008 2000 0

2.62e+008 10000 0

2.14e+008 20000 0

1.38e+008 1.e+005 0

1.14e+008 2.e+005 0

8.62e+007 1.e+006 0

Table 0-35, Structural Steel Strain-Life Parameters

Strength

Coefficient Pa

Strength

Exponent

Ductility

Coefficient

Ductility

Exponent

Cyclic

Strength

Coefficient Pa

Cyclic Strain

Hardening

Exponent

9.2e+008 -0.106 0.213 -0.47 1.e+009 0.2

Table 0-36, Structural Steel Isotropic Elasticity

Temperature C
Young's Modulus

Pa
Poisson's Ratio Bulk Modulus Pa

Shear Modulus

Pa

2.e+011 0.3 1.6667e+011 7.6923e+010
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Appendix C

Configurations of the Tower crane LIEBHERR 132HC
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