
COEVOLUTION FRAMEWORK TO SUPPORT OBJECT-
ORIENTED MODEL CHANGES USING COLOURED PETRI

NET PATTERNS

BASSAM ATIEH M.RAJABI

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

COEVOLUTION FRAMEWORK TO SUPPORT
OBJECT-ORIENTED MODEL CHANGES USING

COLOURED PETRI NET PATTERNS

BASSAM ATIEH M.RAJABI

THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITI MALAYA
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Bassam Atieh M.Rajabi

Registration/Matric No: WHA080009

Name of Degree: DOCTOR OF PHILOSOPHY

COEVOLUTION FRAMEWORK TO SUPPORT OBJECT-ORIENTED MODEL
CHANGES USING COLOURED PETRI NET PATTERNS

Field of Study: Software Components Change Management

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been acknowledged
in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action or
any other action as may be determined by UM.

 Candidate’s Signature Date

Subscribed and solemnly declared before,

 Witness’s Signature Date

Name: Prof. Lee Sai Peck

Designation:

1/2/2017

27/9/2017

Univ
ers

ity
 of

 M
ala

ya

iii

COEVOLUTION FRAMEWORK TO SUPPORT OBJECT-ORIENTED
MODEL CHANGES USING COLOURED PETRI NET PATTERNS

ABSTRACT

An effective change management technique is essential to keep track of changes and

to ensure that software projects are implemented in the most effective way. One of the

crucial challenges in software change management is to maintain coevolution among

software system artifacts. Object-Oriented (OO) software modelling is widely adopted

in software analysis and design. OO diagrams are divided into different perspectives in

modelling a problem domain. Preserving coevolution among these diagrams is very

crucial so that they can be updated continuously to reflect software changes. Decades of

research efforts have produced a wide spectrum of approaches in checking coevolution

among OO diagrams. These approaches can be classified into direct, transformational,

formal semantics, or knowledge representation approaches. Formal methods such as

Coloured Petri Nets (CPNs) are widely used in detecting and handling coevolution

between software artifacts. Although ample progress has been made, it still remains

much work to be done in further improving the effectiveness and accuracy of the state-

of-the-art coevolution techniques in managing changes in OO diagrams using formal

languages. In this research, a coevolution framework for supporting coevolution among

OO diagrams is proposed to trace the diagrams’ inconsistencies and to determine the

change impact incrementally after updating diagrams elements. A set of 84 coevolution

patterns is proposed to detect and resolve UML diagrams’ coevolution, inconsistencies,

change history, and change impact. Coevolution patterns are applied on UML class,

object, activity, statechart, and sequence diagrams to cover the different perspectives of

UML diagrams. The change impact and traceability analysis is performed with the help

of templates. A total of 45 templates are proposed to define information about the types

of change, change impact, diagrams dependency, and rules to maintain the diagrams’

Univ
ers

ity
 of

 M
ala

ya

iv

consistency. As part of the proposed framework, a new structure called Object Oriented

Coloured Petri Nets (OOCPNs) for the mutual integration of UML and CPNs modelling

languages is proposed to support coevolution between UML diagrams. The proposed

structure combines the advantages offered by CPNs formal language and the structured

capabilities offered by UML diagrams to solve the inconsistencies between UML

diagrams by integrating a set of consistency and integrity rules in the transformation

process of UML diagrams into CPNs model. As such, this research also provides

transformation rules for the diagrams provided in UML 2.3. The proposed OOCPNs

structure enhances the diagrams’ change support through building a consistent OOCPNs

model at the design time, and then applying the changes on the OOCPNs models. This

will provide OOCPNs model automatic coevolution and consistency check.

Additionally, the modularity in the hierarchical structure of the proposed framework

reduces interdependencies between the model components, and facilitates easy

maintenance and updates without impacting the entire model. The researcher uses CPNs

as a formal language of modelling case study models for the proposed framework and

CPNs Tools as the software that creates, simulates, and validates the models. CPNs

tools simulation and monitoring toolboxes are used to validate the proposed coevolution

framework models and to monitor and collect data about the proposed framework

quantitative results.

keywords: Coevolution , Patterns , UML, Coloured Petri Net

 Univ
ers

ity
 of

 M
ala

ya

v

RANGKA KERGA EVOLUSI-BERSAMA UNTUK MENYOKONG
PERUBAHAN MODEL BERORIENTTASIKAN-OBJECT DENGAN

MENGGUNAKAN CORAK PETRI NET BEWARNA

ABSTRAK

Teknik pengurusan perubahan yang berkesan adalah penting untuk ikut laluan

perubahan dan memastikan bahawa projek perisian dilaksanakan dengan cara yang

paling berkesan. Salah satu cabaran yang penting dalam pengurusan perubahan perisian

adalah untuk mengekalkan coevolusi antara artifak sistem. Pemodelan perisian

berorientasikan objek (OO) diterima dan dipakai secara meluas dalam analisis dan reka

bentuk perisian. Gambar rajah OO dibahagikan kepada beberapa perspektif yang

berbeza dalam pemodelan domain masalah. Memelihara coevolusi antara gambar rajah

tersebut adalah amat penting supaya ia boleh dikemaskini secara berterusan untuk

mencerminkan perubahan perisian. Usaha penyelidikan yang berdekad telah

menghasilkan pelbagai pendekatan dalam memeriksa coevolusi antara gambar rajah

OO. Pendekatan tersebut boleh dikelaskan kepada pendekatan langsung, transformasi,

semantik formal, atau perwakilan ilmu. Kaedah formal seperti Petri Nets Berwarna

(CPN) digunakan secara meluas dalam mengesan dan pengendalian coevolusi antara

artifak perisian. Walaupun kemajuan yang mencukupi telah diusahakan, masih kekal

lagi banyak kerja yang perlu dilakukan dalam meningkatkan lagi keberkesanan dan

ketepatan teknik coevolusi dalam menguruskan perubahan gambar rajah OO

menggunakan bahasa formal. Dalam kajian ini, satu rangka kerja coevolusi untuk

menyokong coevolusi antara gambar rajah OO adalah dicadangkan untuk mengesan

ketidakselarasan gambar rajah dan untuk menentukan kesan perubahan secara

berperingkat selepas pengemaskinian suatu rajah elemen. Satu set yang mengandungi

84 corak coevolusi adalah dicadangkan untuk mengesan dan menyelesaikan masalah

coevolusi gambar rajah UML dari segi ketidakselarasan dan kesan perubahan mengubah

sejarah. Corak coevolusi digunakan pada gambar rajah UML termasuk kelas, objek,

Univ
ers

ity
 of

 M
ala

ya

vi

aktiviti, statechart, dan turutan untuk menampung perspektif yang berbeza daripada

gambar rajah UML. Kesan perubahan dan analisasi susur galur dilakukan dengan

bantuan template. Sebanyak 45 template telah dicadangkan kepada menetapkan

maklumat mengenai jenis-jenis perubahan yang disokong, kesan perubahan,

kebergantungan antara gambar rajah, dan kaedah-kaedah untuk mengekalkan konsisten

gambar rajah. Sebagai sebahagian daripada rangka kerja yang dicadangkan, struktur

baru yang dikenali sebagai Petri Nets Berwarna Berorientasikan Objek (OOCPNs)

untuk integrasi bersama bahasa pemodelan UML dan CPNs adalah dicadangkan untuk

menyokong coevolusi antara gambar rajah UML. Struktur yang dicadangkan

menggabungkan kelebihan yang ditawarkan oleh bahasa formal CPNs dan keupayaan

berstruktur yang ditawarkan oleh gambar rajah UML untuk menyelesaikan

percanggahan antara gambar rajah UML. Satu set yang mengandungi 78 peraturan

konsisten dan integriti disepadukan dalam proses transformasi gambar rajah UML untuk

menghasilkan model CPNs. Oleh itu, kajian ini juga menyediakan peraturan

transformasi bagi gambar rajah UML 2.3. Struktur OOCPNs yang dicadangan

meningkatkan sokongan perubahan gambar rajah melalui pembinaan model yang

konsisten dipanggil model OOCPNs pada masa reka bentuk dan kemudian memakai

perubahan tersebut pada model OOCPNs. Ini akan memberikan model OOCPNs

mempunyai keupayaan coevolusi dan penyemakan konsistent secara automatik. Selain

itu, kebermodulan dalam struktur hierarki rangka kerja yang dicadangkan

mengurangkan kebergantungan antara komponen model dan memudahkan

penyelenggaraan mudah dan kemas kini tanpa menjejaskan keseluruhan model tersebut.

Pengkaji menggunakan CPNs sebagai bahasa rasmi model kajian kes untuk rangka

kerja yang dicadangkan dan alat CPNs sebagai perisian yang mencipta, menyerupai,

dan mengesahkan model. Alat simulasi CPNs dan peralatan pemantauan digunakan

untuk mengesahkan model rangka kerja coevolusi yang dicadangkan, dan untuk

Univ
ers

ity
 of

 M
ala

ya

vii

memantau dan mengumpul data mengenai keputusan kuantitatif rangka kerja yang

dicadangkan.

Kata Kunci: Corak Coevolusi, UML, Corak Petri Net

Univ
ers

ity
 of

 M
ala

ya

viii

ACKNOWLEDGEMENTS

First and foremost, Alhamdulillah, praise to Allah the Almighty who has bestowed

upon me and given me good health and time to go through this challenging period of

my life.

I would like to express my deepest appreciation to my supervisor, Professor Lee Sai

Peck who had the foresight to accept me as her doctoral student, believed in my

abilities, kept advising me to improve my knowledge and writing, and supported me at

crucial moments of my study at the University of Malaya. Her patience, kindness,

understanding, encouragement, careful reading of the manuscript and especially her

constructive criticisms and suggestions made the process of conducting this research

run smoothly. I have benefited from her experience, advice and the intellectual freedom

she afforded to me during the research period.

I would also like to thank the University of Malaya’s staff (especially Faculty of

Computer Science and Information Technology staff) for providing impeccable

assistance and academic resources. Thanks to Prof. Colette Rolland for her notes on my

contribution. I am very thankful to the Wajdi Foundation for Educational Development

for the financial support and Wajdi University College of Technology for the study

leave that has enabled me to pursue my academic dreams. Last but not least, my

appreciation also goes to those who were directly or indirectly involved in this research.

These include my mother and father, my wife, my sisters and brothers. Special thanks

and apologies to my loving wife Asma. May Allah bless you all for your kindness,

support, encouragement and willingness to help in completing this research.

To many others who have helped me in one way or other during my course of study

but whom I may have inadvertently left out, please kindly excuse me.

This research is supported by PPP University Malaya fund no. PS077/2009A.

Univ
ers

ity
 of

 M
ala

ya

ix

TABLE OF CONTENTS

Abstract ..iii

Abstrak .. v

Acknowledgements ..viii

Table of Contents ... ix

LIST of Figures .. xiv

LIST of Tables ...xxiii

LIST of Traceability Analysis and Change Impact Templates xxv

LIST of Coevolution Patterns ... xxvii

LIST of Sumbols and Abbreviations ... xxxi

LIST of Appendicies .. xxxiv

CHAPTER 1: INTRODUCTION ... 1

1.1 Problem Statement ... 6

1.2 Research Motivation .. 8

1.3 Research Objectives .. 10

1.4 Research Scope .. 10

1.5 Research Questions .. 11

1.6 Organisation of the Thesis ... 12

CHAPTER 2: LITERATURE REVIEW .. 14

2.1 Software Change .. 14

2.2 Software Coevolution .. 15

2.2.1 Direct Approaches .. 20

2.2.2 Transformational Approaches ... 21

2.2.3 Formal Semantics Approaches.. 23

Univ
ers

ity
 of

 M
ala

ya

x

2.2.4 Knowledge Representation Approaches. .. 25

2.2.5 UML Diagramming Tools Support ... 25

2.3 Patterns .. 27

2.4 Integration of UML and CPNs .. 29

2.5 Background on Software Modelling Languages ... 38

2.5.1 Graph-based Modelling Languages .. 38

2.5.2 Rule-based Modelling Languages ... 40

2.5.3 UML Diagrams ... 42

2.6 Discussion and Summary .. 46

CHAPTER 3: RESEARCH METHODOLOGY .. 49

3.1 Research Idea Phase .. 49

3.2 Literature Review Phase .. 50

3.3 Research Design Phase .. 51

3.4 Modelling and Development Phase ... 52

3.5 Analysis and Evaluation Phase .. 53

3.6 Chapter Summary .. 53

CHAPTER 4: PROPOSED COEVOLUTION FRAMEWORK 54

4.1 Software Model ... 56

4.1.1 Transformation of UML into CPNs .. 57

4.1.2 Design of Consistency Rules .. 60

4.2 Components Affected by a Change ... 61

4.3 Proposed Change Impact and Traceability Analysis Templates 69

4.4 Proposed Pattern Structure .. 72

4.5 Chapter Summary .. 77

Univ
ers

ity
 of

 M
ala

ya

xi

CHAPTER 5: TRANSFORMATION OF UML DIAGRAMS INTO CPNs 78

5.1 Class Diagram Transformation Rules .. 80

5.2 Object Diagram Transformation Rules .. 84

5.3 Package Diagram Transformation Rules ... 84

5.4 Composite Structure Diagram Transformation Rules ... 85

5.5 Implementation Diagrams (Component Diagrams and Deployment Diagrams) .. 85

5.6 Use Case Diagram Transformation Rules ... 86

5.7 Activity Diagram Transformation Rules ... 89

5.8 Statechart Diagram Transformation Rules .. 93

5.9 Sequence Diagram and Communication Diagram Transformation Rules 94

5.10 Interaction Overview Diagram Transformation Rule .. 97

5.11 Timing Diagram Transformation Rules .. 97

5.12 Chapter Summary .. 98

CHAPTER 6: COEVOLUTION PATTERNS .. 99

6.1 Pattern Foundation ... 99

6.2 Proposed Coevolution Patterns .. 100

6.2.1 Case Study Models ... 100

6.2.2 Proposed Coevolution Patterns ... 101

6.3 Patterns Simulation and Validation ... 106

6.4 Chapter Summary .. 109

CHAPTER 7: ANALYSIS AND DISCUSSION ... 110

7.1 Proposed OOCPNs Structure ... 110

7.2 Change Impact and Traceability Analysis Templates ... 117

7.2.1 Evaluation Metrics .. 121

7.3 Coevolution Patterns .. 129

Univ
ers

ity
 of

 M
ala

ya

xii

7.3.1 Validation and Performance Analysis .. 137

7.3.2 Discussion ... 141

7.4 Accomplishment of Research Objectives .. 141

7.5 Limitations of Research ... 144

7.6 Chapter Summary .. 144

CHAPTER 8: CONCLUSION AND FUTURE WORK 145

8.1 Thesis Summary .. 145

8.2 Research Contributions and Significance .. 146

8.3 Main Features and Outcomes .. 147

8.4 Recommendations for Future Research ... 148

References ... 149

List of Publications and Papers Presented .. 175

Appendix A. Change Impact and Traceability Analysis Templates....................... 176

A.1 Structural Diagrams Templates ... 176

A.2 Behavioural Diagrams Templates ... 180

A.3 Interaction Diagrams Templates ... 183

Appendix B. Case Study Models ... 185

A. Class Diagram ... 187

B. Object Diagram ... 191

C. Activity Diagram .. 194

D. Sequence Diagram .. 201

E. Statechart Diagram .. 210

Appendix C. Coevolution Patterns Implementation Model 211

C.1 Change Impact, Traceability Analysis and Consistency Check Patterns 211

C.2 Search Patterns ... 217

A. Class Diagram Search Patterns ... 217

Univ
ers

ity
 of

 M
ala

ya

xiii

B. Object Diagram Search Patterns ... 222

C. Activity Diagram Search Patterns ... 224

D. StateChart Diagram Search Patterns ... 235

E. Sequence Diagram Search Patterns... 235

C.3 Change History Patterns ... 244

C.4 Class Diagram Patterns .. 247

A. Class Diagram Create Patterns .. 247

B. Class Diagram Delete Patterns .. 252

C. Class Diagram Modify Patterns .. 256

C.5 Object Diagram Patterns .. 274

A. Object Diagram Create Patterns .. 275

B. Object Diagram Delete Patterns .. 276

C. Object Diagram Modify Patterns .. 277

C.6 Activity Diagram Patterns .. 277

A. AD Modify Patterns .. 277

C.7 Statechart Diagram Patterns ... 278

Appendix D. CPNs Codes .. 281

Univ
ers

ity
 of

 M
ala

ya

xiv

LIST OF FIGURES

Figure 2.1: Integration of OO Concepts into PNs Bastide (1995, p. 1) 31

Figure 2.2: Integration of PNs into OO Techniques (Bastide (1995, p. 2)) 31

Figure 2.3: Mutual integration of OO Techniques and PNs (Zapf and Heinzl (1999, p.

10)) .. 32

Figure 2.4: Hierarchy of UML Diagrams ... 42

Figure 3.1: Phases of Research Methodology ... 49

Figure 3.2: Research Context .. 50

Figure 3.3: Detailed Phases of Research Methodology .. 52

Figure 4.1: Contextual Diagram of Proposed Coevolution Framework 55

Figure 4.2: Components of Proposed Coevolution Framework 55

Figure 4.3: Steps of Proposed Coevolution Framework ... 56

Figure 4.4: Block Diagram for Transforming UML Diagrams into OOCPNs 58

Figure 4.5: Metamodel Diagram Changes (Elements Subject to Change) 61

Figure 4.6: UML Diagram Dependency ... 62

Figure 4.7: Types of Traceability and Consistency between UML Diagrams 64

Figure 4.8: Proposed Patterns Categories ... 72

Figure 5.1: Structural, Behavioural, and Interaction in UML Diagram Elements 79

Figure 5.2: Example of Class Diagram ... 81

Figure 5.3: CPN ML (MetaLanguage) Description of Figure 5.2 81

Figure 5.4: Example of Fusion Places .. 81

Figure 5.5: Example of CPNs for Generalization/Inheritance .. 82

Figure 5.6: Example of CPNs for Polymorphism ... 83

Figure 5.7: Example of Transformation of Actor and Use Case into CPNs 87

Figure 5.8: Example of transformation of extend Interface into CPNs 88

Univ
ers

ity
 of

 M
ala

ya

xv

Figure 5.9: Example of Transformation of Include Interface into CPNs........................ 88

Figure 5.10: Example of Transformation of Generalize Interface into CPNs 89

Figure 5.11: Example of Transformation of fork Node into CPNs 90

Figure 5.12: Example of Transformation of join Node into CPNs. 91

Figure 5.13: Example of Transformation of decision Node into CPNs. 91

Figure 5.14: Example of Transformation of Activity Sequence and Start/End Node into

CPNs ... 92

Figure 5.15: Example of Transformation of Activity Diagram Iteration/Loop into CPNs

 ... 92

Figure 5.16: Example of Transformation of Sequence Diagram Iteration/Loop into

CPNs ... 93

Figure 5.17: Example of Transformation of Sequence Diagram Messages into CPNs .. 95

Figure 5.18: Example of Transformation of alt Operator into CPNs 96

Figure 5.19: Example of Transformation of par Operator into CPNs 97

Figure 5.20: Example of Timing Diagram Modelled in CPNs 98

Figure 6.1: UML structural, Behavioural, and Interaction Patterns 102

Figure 6.2: Steps for Checking Pattern Design Correctness ... 107

Figure 6.3: Summary of Simulation Steps for Proposed Patterns Models 109

Figure 6.4: CPM Tools Toolbox for Exporting CPNs to Java Code 109

Figure 7.1: Mutual Integration between UML Models and CPNs 111

Figure 7.2: Number of Proposed Transformation Rules for Each Diagram 114

Figure 7.3: Number of Proposed Transformation Rules for Each Diagrams Category 115

Figure 7.4: Comparison between the Proposed OOCPNs Structure and Selected

Approaches Based on Diagrams Supported .. 117

Figure 7.5: Number of Proposed Templates for each Diagrams Category 120

Figure 7.6: Number of Proposed Templates for Each Structural Diagram 120

Univ
ers

ity
 of

 M
ala

ya

xvi

Figure 7.7: Number of Proposed Templates for Each Behavioural Diagram 120

Figure 7.8: Numbersof Proposed Templates for Each Interaction Diagram................. 121

Figure 7.9: Hierarchy of Change Levels (Traceability Distance) 121

Figure 7.10: Number of Update Operations Supported by Each UML Diagram 128

Figure 7.11: Number of Diagrams Affected by Updating UML Diagram 128

Figure 7.12: Diagrams Dependency/Change Effect ... 129

Figure 7.13: Diagrams Patterns ... 131

Figure 7.14: Number of Proposed Patterns ... 131

Figure 7.15: Example of Consistency between Diagrams .. 136

Figure 7.16: The Proposed Framework Model Elements-Model Size.......................... 138

Figure 7.17: Analysis of Marking Size Monitoring Average 139

Figure 7.18: Analysis of Marking Size Monitoring .. 139

Figure 7.19: Analysis of Patterns Marking Size Sum ... 140

Figure 7.20: Analysis of Patterns Marking Size Average ... 140

Figure B.1: Coevolution Patterns Choices .. 185

Figure B.2: All Diagrams .. 186

Figure B.3: Class Diagram .. 187

Figure B.4: Classes Subnets .. 188

Figure B.5: Class1 ... 188

Figure B.6: Class2 ... 189

Figure B.7: Class3 ... 189

Figure B.8: Class4 ... 189

Figure B.9: Class5 ... 190

Figure B.10: Class6 ... 190

Figure B.11: Class7 ... 190

Figure B.12: Class8 ... 191

Univ
ers

ity
 of

 M
ala

ya

xvii

Figure B.13: Class9 ... 191

Figure B.14: Object Diagram .. 191

Figure B.15: Detailed Object Diagram ... 192

Figure B.16: Create New Object ... 192

Figure B.17: Create Object ... 193

Figure B.18: Activity Diagrams .. 194

Figure B.19: Activity1 .. 195

Figure B.20: Activity2 .. 196

Figure B.21: SubActivity1 .. 196

Figure B.22: Activity3 .. 197

Figure B.23: Activity4 .. 197

Figure B.24: Loop ... 198

Figure B.25: Activity5 .. 198

Figure B.26: Activity6 .. 199

Figure B.27: Activity7 .. 199

Figure B.28: Activity8 .. 200

Figure B.29: Activity9 .. 200

Figure B.30: Sequence Diagrams ... 201

Figure B.31: SD Op1 .. 201

Figure B.32: SD Objects Op1 ... 202

Figure B.33: SD Op2 .. 202

Figure B.34: SD Objects Op2 ... 203

Figure B.35: SD Op3 .. 203

Figure B.36: SD Objects Op3 ... 204

Figure B.37: SD Op4 .. 204

Figure B.38: SD Objects Op4 ... 205

Univ
ers

ity
 of

 M
ala

ya

xviii

Figure B.39: SD Op5 .. 205

Figure B.40: SD Objects Op5 ... 206

Figure B.41: SD Op6 .. 206

Figure B.42: SD Objects Op6 ... 207

Figure B.43: SD Op7 .. 207

Figure B.44: SD Objects Op7 ... 208

Figure B.45: SD Op8 .. 208

Figure B.46: SD Objects Op8 ... 209

Figure B.47: SD Op9 .. 209

Figure B.48: SD Objects Op9 ... 210

Figure B.49: SCD Example .. 210

Figure C.1: Attribute Redundancy Check ... 211

Figure C.2: Operation Redundancy Check ... 212

Figure C.3: Class Redundancy Check... 213

Figure C.4: Class with No Operation or Attribute Consistency Check 214

Figure C.5: Class Element Redundancy Check .. 215

Figure C.6: Class with No Relation Consistency Check .. 216

Figure C.7: Check Object Name ... 217

Figure C.8: CD Search Pattern Choices .. 217

Figure C.9: CD Attribute Search .. 218

Figure C.10: CD Operation Search ... 219

Figure C.11: CD Class Search .. 219

Figure C.12: CD Association Search .. 220

Figure C.13: CD Composition Search .. 220

Figure C.14: CD Aggregation Search ... 221

Figure C.15: CD Generalization Search ... 221

Univ
ers

ity
 of

 M
ala

ya

xix

Figure C.16: OD Search Patterns Choices .. 222

Figure C.17: Objects Not Created ... 222

Figure C.18: Search Instance Name .. 223

Figure C.19: Search Object Exist .. 224

Figure C.20: Search Instance Class... 224

Figure C.21: AD Search Pattern Choices.. 225

Figure C.22: ADs Not Created .. 225

Figure C.23: Activity Search .. 226

Figure C.24: Objects Not in ADs .. 227

Figure C.25: AD Elements Not Created ... 228

Figure C.26: Search AD Element Choices.. 228

Figure C.27: AD Action Search .. 229

Figure C.28: AD Fork Search ... 230

Figure C.29: AD Guard Search ... 230

Figure C.30: AD Join Search .. 231

Figure C.31: AD Loop Search .. 232

Figure C.32: AD Call Behaviour Action Search .. 232

Figure C.33: AD Merge Search .. 233

Figure C.34: AD Decision Search .. 234

Figure C.35: AD Objects Search .. 234

Figure C.36: AD Sub-Activity Search .. 235

Figure C.37: SD Search Pattern Choices .. 235

Figure C.38: SDs Not Created .. 236

Figure C.39: SD Search .. 237

Figure C.40: Objects Not in SDs .. 237

Figure C.41: SD Elements Not Created .. 238

Univ
ers

ity
 of

 M
ala

ya

xx

Figure C.42: Search SD Element Choices .. 239

Figure C.43: SD Alt Search .. 239

Figure C.44: SD Par Search .. 240

Figure C.45: SD Loop Search ... 241

Figure C.46: SD Massage Search ... 241

Figure C.47: SD Guard Search ... 242

Figure C.48: SD Opt Search ... 243

Figure C.49: SD Ref Search .. 243

Figure C.50: SD Objects Search ... 244

Figure C.51: Change History Patterns .. 245

Figure C.52: Changes History ... 245

Figure C.53: Store in File .. 246

Figure C.54: Update New Version .. 246

Figure C.55: CD Create Ref Element Choices ... 247

Figure C.56: CD Create New Class .. 248

Figure C.57: CD Create New Operation ... 249

Figure C.58: CD Create New Attribute .. 250

Figure C.59: CD Create/Modify Association/Composition/Aggregation 251

Figure C.60: CD Create/Modify Generalize ... 252

Figure C.61: CD Delete Aggregation ... 252

Figure C.62: CD Delete Association... 253

Figure C.63: CD Delete Class ... 254

Figure C.64: CD Delete Composition ... 254

Figure C.65: CD Delete Attribute ... 255

Figure C.66: CD Delete Generalize .. 255

Figure C.67: CD Delete Operation ... 256

Univ
ers

ity
 of

 M
ala

ya

xxi

Figure C.68: CD Modify Class Name ... 257

Figure C.69: CD Modify Association Choices ... 257

Figure C.70: CD Modify Association Destination Multiplicity 258

Figure C.71: CD Modify Association Source Multiplicity ... 259

Figure C.72: CD Modify Association Role Name .. 259

Figure C.73: CD Modify Attribute Pattern Choices ... 260

Figure C.74: CD Modify Attribute Name ... 260

Figure C.75: CD Modify Attribute Visibility ... 261

Figure C.76: CD Modify Attrib Visibility .. 262

Figure C.77: CD Modify Attribute Property ... 263

Figure C.78: CD Modify Attr Property ... 263

Figure C.79: CD Modify Attribute Type .. 264

Figure C.80: CD Modify Attributer Typ ... 265

Figure C.81: CD Modify Attribute Value (A) .. 266

Figure C.82: CD Modify Attribute Value (B) .. 267

Figure C.83: CD Modify Generalize .. 268

Figure C.84: CD Modify Operation Choices .. 268

Figure C.85: CD Modify Operation Property ... 269

Figure C.86: CD Modify Operation Property ... 269

Figure C.87: CD Modify Operation Type ... 270

Figure C.88: CD Modify Operation Type ... 271

Figure C.89: CD Modify Operation Visibility .. 272

Figure C.90: CD Modify Operation Visibility .. 272

Figure C.91: Modify SD Name ... 273

Figure C.92: CD Modify Operation Name ... 274

Figure C.93: OD Pattern Choices ... 274

Univ
ers

ity
 of

 M
ala

ya

xxii

Figure C.94: OD Create Patterns .. 275

Figure C.95: Create Object ... 276

Figure C.96: OD Delete .. 276

Figure C.97: OD Modify Object Name .. 277

Figure C.98: Modify AD Name .. 278

Univ
ers

ity
 of

 M
ala

ya

xxiii

LIST OF TABLES

Table 2.1: Summary of Model-based Impact Analysis Techniques 18

Table 2.2: Summary of Some Code-based Change Impact Analysis Techniques 19

Table 2.3: Representation Capabilities of Some Related Works in Transforming UML

Diagrams to PNs and CPNs .. 36

Table 4.1: Structural Diagram Elements and Change Types .. 70

Table 4.2: Behavioural Diagram Elements and Change Types 70

Table 4.3: Interaction Diagram Elements and Change Types .. 71

Table 4.4: Proposed Class Diagram Coevolution Patterns ... 73

Table 4.5: Proposed Object Diagram Coevolution Patterns ... 74

Table 4.6: Proposed Activity Diagram Coevolution Patterns ... 74

Table 4.7: Proposed Statechart Diagram Coevolution Patterns 75

Table 4.8: Proposed Sequence Diagram Coevolution Patterns 76

Table 4.9: Proposed Change Control Coevolution Patterns ... 76

Table 6.1: Proposed Class Diagram Patterns .. 103

Table 6.2: Proposed Object Diagram Patterns .. 104

Table 6.3: Proposed Activity Diagram Patterns ... 104

Table 6.4: Proposed Statechart Diagram Patterns ... 105

Table 6.5: Proposed Sequence Diagram Patterns ... 106

Table 6.6: Proposed Change Control Coevolution Patterns ... 106

Table 6.7: Summary of Simulation Steps for Case Study Models................................ 108

Table 7.1: Rules for Transforming UML Structural Diagrams into CPNs 111

Table 7.2: Rules for Transforming UML Behavioural Diagrams into CPNs 112

Table 7.3: Rules for Transforming UML Interaction into CPNs 114

Table 7.4: Comparison between the Proposed OOCPNs Structure and Selected

Approaches Based on Diagrams Supported .. 116

Univ
ers

ity
 of

 M
ala

ya

xxiv

Table 7.5: Change Impact and Traceability Analysis Templates for UML Structural

Diagrams ... 117

Table 7.6: Change Impact and Traceability Analysis Templates for UML Behavioural

Diagrams ... 118

Table 7.7: Change Impact and Traceability Analysis Templates for UML Interaction

Diagrams ... 119

Table 7.8: The Change Effect on Diagrams Elements Based on the Proposed Templates

 ... 124

Table 7.9: Statistics in the Effect of Updating UML Diagram Elements 128

Table 7.10: The Patterns, Templates, and Diagrams affected Relationships 132

Table 7.11: The Model Elements in the Proposed Framework Model 137

Table 7.12: Analysis of Marking Size Monitoring Data ... 138

Univ
ers

ity
 of

 M
ala

ya

xxv

LIST OF TRACEABILITY ANALYSIS AND CHANGE IMPACT TEMPLATES

Template 1. CD Attribute Changes ... 176

Template 2. CD Operation Changes ... 176

Template 3. CD Class Changes .. 176

Template 4. CD Generalization/Class Inheritance Changes ... 176

Template 5. CD Association Changes .. 176

Template 6. CD Navigability Arrow Changes .. 177

Template 7. CD Polymorphism Operation Changes ... 177

Template 8. CD Multiplicity Changes .. 177

Template 9. CD Role Name Changes ... 177

Template 10. CD Interface Changes ... 177

Template 11. CD Dependency Changes ... 178

Template 12. OD Object (Class instance) Changes .. 178

Template 13. OD Object States Changes .. 178

Template 14. PD Package Changes .. 178

Template 15. PD Package Dependency Changes ... 179

Template 16. CoD and DD Node Changes ... 179

Template 17. CoD and DD Component Operation Changes .. 179

Template 18. CoD and DD Dependency Changes .. 179

Template 19. CSD Part/Port Changes ... 179

Template 20. UCD Actor Changes ... 180

Template 21. UCD Communication (association) Changes ... 180

Template 22. UCD Use case Changes .. 180

Template 23. UCD Extend/Include/Generalize/Use Relations Changes 180

Template 24. UCD Use Case Description Changes .. 180

Univ
ers

ity
 of

 M
ala

ya

xxvi

Template 25. AD Sub-Activity/SCD Activity Changes ... 180

Template 26. UCD, SCD, and AD Action Changes ... 181

Template 27. AD Control Flow Changes ... 181

Template 28. AD Object Flow Changes ... 181

Template 29. AD Control Nodes (Fork, Join, Merge, and Decision) Changes 181

Template 30. AD Activity Sequence Changes ... 181

Template 31. AD, SD, and CommD Iteration /Loop Changes 182

Template 32. AD and SCD Start/End Nodes Changes ... 182

Template 33. SCD State Changes ... 182

Template 34. SCD Event Changes .. 182

Template 35. SCD, AD, and SD Guard Condition Changes .. 182

Template 36. SCD Composite State and Sub-State Changes 183

Template 37. SD and CommD Object Changes ... 183

Template 38. SD Message Changes .. 183

Template 39. SD Synchronous and Asynchronous Messages Changes 183

Template 40. SD Operators (alt/ opt / ref / par) Changes ... 183

Template 41. SD Action Bars/Lifelines Changes ... 184

Template 42. CommD Message Sequence Number Changes....................................... 184

Template 43. IOD Activity or Interaction Diagram Elements Changes 184

Template 44. TD Task Changes .. 184

Template 45. TD Task Duration Changes .. 184

Univ
ers

ity
 of

 M
ala

ya

xxvii

LIST OF COEVOLUTION PATTERNS

Pattern 1. Attribute Redundancy Check Pattern ... 211

Pattern 2. Operation Redundancy Check Pattern .. 212

Pattern 3. Class Redundancy Check Pattern ... 212

Pattern 4. Class with No Operation or Attribute Consistency Check Pattern 213

Pattern 5. Class Element Redundancy Check Pattern ... 214

Pattern 6. Class with No Relation Consistency Check Pattern 215

Pattern 7. Check Object Name Pattern.. 216

Pattern 8. CD Attribute Search Pattern ... 217

Pattern 9. CD Operation Search Pattern.. 218

Pattern 10. CD Class Search Pattern ... 219

Pattern 11. CD Association Search Pattern ... 220

Pattern 12. CD Composition Search Pattern ... 220

Pattern 13. CD Aggregation Search Pattern.. 220

Pattern 14. CD Generalization Search Pattern .. 221

Pattern 15. Objects Not Created Pattern ... 222

Pattern 16. Search Instance Name Pattern .. 223

Pattern 17. Search Object Exists Pattern ... 223

Pattern 18. Search Instance Class Pattern ... 224

Pattern 19. ADs Not Created Pattern .. 225

Pattern 20. Activity Search Pattern ... 226

Pattern 21. Objects Not in ADs Pattern .. 226

Pattern 22. AD Elements Not Created Pattern .. 227

Pattern 23. AD Action Search Pattern .. 229

Pattern 24. AD Fork Search Pattern .. 229

Univ
ers

ity
 of

 M
ala

ya

xxviii

Pattern 25. AD Guard Search Pattern ... 230

Pattern 26. AD Join Search Pattern ... 231

Pattern 27. AD Loop Search Pattern ... 231

Pattern 28. AD Call Behavioural Action Search Pattern .. 232

Pattern 29. AD Merge Search Pattern ... 233

Pattern 30. AD Decision Search Pattern ... 233

Pattern 31. AD Object Search Pattern ... 234

Pattern 32. AD Sub-Activity Search Pattern ... 235

Pattern 33. SDs Not Created Pattern ... 236

Pattern 34. SD Search Pattern ... 236

Pattern 35. Objects Not in SDs Pattern ... 237

Pattern 36. SD Elements Not Created Pattern... 238

Pattern 37. SD Alt Search Pattern ... 239

Pattern 38. SD Par Search Pattern ... 240

Pattern 39. SD Loop Search Pattern ... 240

Pattern 40. SD Massage Search Pattern .. 241

Pattern 41. SD Guard Search Pattern .. 242

Pattern 42. SD Opt Search Pattern .. 242

Pattern 43. SD Ref Search Pattern .. 243

Pattern 44. SD Object Search Pattern ... 244

Pattern 45. Changes History Selection Patterns .. 244

Pattern 46. Store in File Pattern .. 246

Pattern 47. Update New Version Pattern .. 246

Pattern 48. CD Create New Class Patterns ... 247

Pattern 49. CD Create New Operation Patterns .. 248

Pattern 50. CD Create New Attribute Patterns ... 249

Univ
ers

ity
 of

 M
ala

ya

xxix

Pattern 51. CD Create Association or Composition or Aggregation Patterns 250

Pattern 52. CD Create Generalize Patterns ... 251

Pattern 53. CD Delete Aggregation Patterns .. 252

Pattern 54. CD Delete Association Patterns.. 253

Pattern 55. CD Delete Class Patterns .. 253

Pattern 56. CD Delete Composition Patterns .. 254

Pattern 57. CD Delete Attribute Patterns .. 254

Pattern 58. CD Delete Generalize Patterns ... 255

Pattern 59. CD Delete Operation Patterns .. 256

Pattern 60. CD Modify Class Name Patterns .. 256

Pattern 61. CD Modify Association Destination Multiplicity Patterns 257

Pattern 62. CD Modify Association Source Multiplicity Patterns 258

Pattern 63. CD Modify Role Name Patterns ... 258

Pattern 64. CD Modify Attribute Name Patterns .. 260

Pattern 65. CD Modify Attribute Visibility Patterns .. 261

Pattern 66. CD Modify Attribute Property Patterns .. 262

Pattern 67. CD Modify Attribute Type Patterns ... 264

Pattern 68. CD Modify Attribute Value Patterns .. 265

Pattern 69. CD Modify Generalize Patterns.. 267

Pattern 70. CD Modify Operation Property Patterns .. 268

Pattern 71. CD Modify Operation Type Patterns .. 270

Pattern 72. CD Modify Operation Visibility Patterns ... 271

Pattern 73. Modify SD Name Patterns .. 273

Pattern 74. Modify Operation Name Patterns ... 273

Pattern 75. OD Create Object Pattern ... 275

Pattern 76. OD Delete Object Pattern ... 276

Univ
ers

ity
 of

 M
ala

ya

xxx

Pattern 77. OD Modify Object Name Pattern ... 277

Pattern 78. ADs Modify AD Name Pattern .. 277

Pattern 79. SCDs Not Created Pattern .. 278

Pattern 80. SCD Event Search Pattern .. 278

Pattern 81. SCD Elements Not Created Pattern .. 279

Pattern 82. SCD Action Search Pattern .. 279

Pattern 83. SCD Guard Search Pattern ... 279

Pattern 84. SCD Loop Search Pattern ... 280

Univ
ers

ity
 of

 M
ala

ya

xxxi

LIST OF SYMBOLS AND ABBREVIATIONS

General

BP Business Process

BPs Business Processes

BPMN Business Process Modelling Notation

BPDM Business Process Definition Meta-model

EPC Event Driven Process Chain

iEPCs Integrated Event driven Process Chains

IT Information Technology

rBPMN Rule-based BPMN

WS-BPEL Web Services Business Process Execution Language

MDE Model Driven Engineering

Object-Oriented

AD Activity Diagram

CD Class Diagram

CSD Composite Structure Diagram

CoD Component Diagram

CommD Communication Diagram

DD Deployment Diagram

IOD Interaction Overview Diagram

OD Object Diagram

OO Object-Oriented

OOD Object Oriented Design

PD Package Diagram

SCD Statechart Diagram

Univ
ers

ity
 of

 M
ala

ya

xxxii

SD Sequence Diagram

TD Timing Diagram

UCD Use Case Diagram

UML Unified Modelling Language

Petri Nets

CPN Coloured Petri Net

CPNs Coloured Petri Nets

PN Petri Net

PNs Petri Nets

Object Oriented Petri Nets

HCPN Hierarchical Coloured Petri Net

HPN High Level PNs

LPN Low Level PNs

OOPN Object Oriented Petri Nets

OOCPNs Object Oriented Coloured Petri Nets

OOMPNets Object Oriented Petri Nets with Modularity

OPMs Object PN Models

RONs Reconfigurable Object Nets

Coevoloution Framework

∑ Finite set of non-empty types, called colour sets

A Set of directed arcs

alt alternative

B Behavioural diagram’s elements

C UML diagrams’ Categories

CI Change Impact

Eo, No UML Diagrams Elements

Univ
ers

ity
 of

 M
ala

ya

xxxiii

D CI Dependency

Fp Finite set of fusion places

G Guard function

GC Global Change

I Interaction diagram’s elements

LC Local Change

M0 Initial (coloured) marking

N Diagram Name

opt optional

P Finite set of places

par parallel

Pg Set of CPN pages

R Finite set of consistency and integrity rules

ref reference

S Structural diagram’s elements

SubT Finite set of substitution transitions

T Finite set of transitions

TA Traceability Analysis

TR Transformation Rule

CT: Change Type

AffectedD Affected Diagrams (Dependency)

SSG State Space Graph

Univ
ers

ity
 of

 M
ala

ya

xxxiv

LIST OF APPENDICES

Appendix A: Change Impact and Traceability Analysis Templates 176

Appendix B: Case Study Models ... 185

Appendix C Coevolution Patterns Implementation Model .. 211

Appendix D: CPNs Codes ... 281

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

Software change is continuous and unavoidable due to rapidly changing

requirements across software systems. It is the result of adding new requirements of

functionality, fixing faults, or change requests (Lehnert & Riebisch, 2013). Software

change management describes a software system’s ability to easily accommodate future

changes. It is a fundamental characteristic for making strategic decisions, increasing

economic value of software, and managing changes in an orderly fashion (Breivold,

Crnkovic, & Larsson, 2012). An effective change management will lead organisations

to the path of success, and it is an essential activity in the software project life cycle to

keep track of changes and to ensure that they are implemented in the most effective way

(Saif, Razzaq, Rehman, Javed, & Ahmad, 2013). Software engineers continue to face

challenges in designing adaptive and flexible software systems that can cope with

dynamic change where requirements are constantly changing (Khalil & Dingel, 2013;

Lehnert & Riebisch, 2013; Nurcan, 2008). Unmanaged change may lead to fault-prone

software, thereby increasing the testing and maintenance costs (Jönsson, 2005).

One of the crucial challenges in software change management is to preserve the

coevolution and consistency among software system artefacts (Langhammer, 2013; Liu,

2013; Puissant, Van Der Straeten, & Mens, 2013). Understanding the coevolution

which represents the dependency between artefacts that frequently change together is

important from the points of views of both practitioners and researchers (Jaafar, 2012).

Coevolution involves both change impact analysis and change propagation between

software artefacts or models, and hence, it is required to (Dubauskaite & Vasilecas,

2013; Etien & Salinesi, 2005; Puczynski, 2012; Puissant, et al., 2013):

• Check if the change in one of the artefacts ultimately affects the other artefacts

and may cause some unexpected changes in them,

Univ
ers

ity
 of

 M
ala

ya

2

• Ensure that these changes are implemented in the most effective manner, and

• Maintain the consistency between artefacts.

For an efficient coevolution check, change impact analysis is an important step. A

change impact analysis is the activity of analysing and determining the change effect,

identifying the parts that require retesting, and maintaining the consistency among

software artefacts (Abma, 2009; C.-Y. Chen, She, & Tang, 2007; Li, Sun, Leung, &

Zhang, 2012; Redding, 2009). Identifying all components affected by the change is

based on the traceability analysis which analyses the dependencies between and across

software artefacts at all levels of the software process (Mohan, Xu, Cao, & Ramesh,

2008). Detecting and resolving the coevolution between software artefacts can be done

through various techniques. Some of these techniques are analysing release histories or

versions, source code, and software architecture level analysis (Breivold, et al., 2012).

There are different approaches proposed in the literature that use these techniques to

manage changes in the software project life cycle including changes in software

requirements, design models, and programming code. Many of these approaches are

focused on the coevolution of software modelling, in particular, Object-Oriented (OO)

software modelling, due to its wide adoption in software modelling and design. The use

of OO diagrams in modelling a software system leads to a large number of

interdependent diagrams. OO diagrams are divided into different categories or

perspectives (e.g. structural, behavioural, and interaction as elaborated in (Barr and

Pettis (2007), Sharaff (2013), and Rajabi and Lee (2014))); each category focuses on

modelling a different perspective of a problem domain. One of the critical issues in

providing a change management technique for OO diagrams is to preserve the

coevolution among these diagrams so that they can be updated continuously to reflect

software changes (Langhammer, 2013; Liu, 2013; Lucas, Molina, & Toval, 2009;

Puissant, et al., 2013; Shinkawa, 2006).

Univ
ers

ity
 of

 M
ala

ya

3

Decades of research efforts have produced a wide spectrum of approaches and

techniques in checking the coevolution and inconsistency among OO diagrams. These

approaches can be classified into direct, transformational, formal semantics, or

knowledge representation approaches (Sapna & Mohanty, 2007). Direct approaches use

the constructs of OO and Object Constraints Language (OCL) (Briand, Labiche, &

O'sullivan, 2003; Briand, Labiche, & Yue, 2009). Transformational approaches derive a

common notation by transforming one model to another (García, Diaz, & Azanza, 2013;

Protic, 2011). Formal approaches develop formal semantics for the OO diagrams

(Shinkawa, 2006), while knowledge representation approaches use description logics as

a representation language (Bolloju, Schneider, & Sugumaran, 2012). A hybrid approach

is a combination between two or more different type of these approaches (Khalil &

Dingel, 2013).

According to Lucas et al. (2009), 75% of the approaches and techniques used for

detecting and handling the coevolution and inconsistencies problems are formal. The

most common formal methods used are state transitions methods such as Petri Nets

(PNs). Although ample progress has been made, there still remains much work to be

done in further improving the effectiveness and the accuracy of the state-of-the-art

coevolution techniques in managing changes in OO diagrams using formal languages.

In this research, a coevolution framework for supporting coevolution among OO

diagrams is proposed to trace the diagrams’ inconsistencies and to determine the effect

of change in these diagrams after each change operation. The proposed framework is

used to check the consistency, impact, and traceability incrementally after creating,

deleting, or modifying a diagram or diagram element. Additionally, a change history

between two versions created from the same diagram is addressed in this research.

Unified Modelling Language (UML) is the standard language for modelling OO

software (Bennett, McRobb, & Farmer, 2010; OMG, 2004, 2010). The coevolution and

Univ
ers

ity
 of

 M
ala

ya

4

inconsistencies between UML diagrams will be detected and resolved based on a set of

proposed coevolution patterns within the proposed coevolution framework. The concept

of pattern was introduced by Christopher Alexander (1979). Alexander defined a pattern

as:

“a three-part rule, which expresses a relation between a certain context, a

problem, and a solution” (1979, p. 247).

Patterns characterize the methods or techniques that have been encountered in

practice repeatedly (Nataliya Mulyar & van der Aalst, 2005). Design patterns in OO

design capture frequently recurring sub-designs or groups of objects that collaborate to

perform a certain task (Gamma , Helm, Johnson , & Vlissides, 1995; Gamma, Helm,

Johnson, & Vlissides, 2001).

The researcher studied the state of the art patterns mainly patterns proposed by

(Alexander, 1979) and Gamma’s (Gamma , et al., 1995; Gamma, et al., 2001) and

proposed a new set of patterns to support coevolution between UML diagrams including

change impact and traceability analysis of changes on diagrams elements. The change

impact and traceability analysis is performed with the help of templates for all types of

change in UML diagram elements. These templates define information about the types

of change supported for each diagram, information on change impact, dependency

between diagrams, and rules to maintain the integrity and consistency between

diagrams.

The proposed patterns are the basis of initiation for all update operations, and are

used to detect any elements affected by the change in systems modelled using UML

diagrams. In the scope of this research, change impact and traceability analysis

templates are defined for most of the diagrams’ elements provided in UML 2.3.

Coevolution patterns are applied on class, object, activity, statechart, and sequence

Univ
ers

ity
 of

 M
ala

ya

5

diagrams. These diagrams cover the three perspectives of UML diagrams (i.e.

structural, behavioural, and interaction).

UML is a powerful means for describing the static and dynamic aspects of systems

(Bennett, et al., 2010; Bruegge, 2010), but remains semi-formal and lacks techniques

for model validation and verification (Bousse, 2012; Niepostyn, 2015). According to

Lucas (2009), formal specifications and mathematical foundations such as Coloured

Petri Nets (CPNs) are widely used in handling of inconsistency problems among models

and to automatically validate and verify the model dynamic behaviour (Kurt Jensen &

Kristensen, 2009; Kurt Jensen, Kristensen, & Wells, 2007; Lucas, et al., 2009).

Due to the advantages offered by formal languages, the integration between UML

and formal languages is recommended to solve the inconsistencies between UML

diagrams (Lucas, et al., 2009). The advantages from the integration of UML and CPNs

are better representation of a system’s complexity as well as ease in adapting,

correcting, analysing, and reusing a model. Transformation rules are required to

transform UML diagrams elements to CPNs. Approaches discussed in the literature on

the transformation of UML diagrams to CPNs focus on the part of UML diagrams, in

particular, the behavioural diagrams. Additionally, the consistency check is based on a

set of rules applied on the Coloured Petri Nets (CPNs) model.

In this research, as part of the proposed coevolution framework, a new structure for

the mutual integration of UML and CPNs modelling languages is proposed to support

the coevolution between UML diagrams. In the proposed structure, consistency and

integrity rules are part of the transformation process and integrated in the transformed

CPNs model. As such, this research also provides transformation rules for the diagrams

provided in UML 2.3. The consistency rules include a set of rules to check and maintain

the consistency and integrity based on the relations between UML diagrams. CPNs as a

language of modelling are used to model case study models for the proposed

Univ
ers

ity
 of

 M
ala

ya

6

framework. Additionally, CPNs Tools are used as software to creates, simulates, and

validates the proposed framework models which represent the proposed transformation

rules, templates, and coevolution patterns.

1.1 Problem Statement

Software change is inevitable in software project lifecycle. When new changes are

applied to software, they would be having some impacts and inconsistencies with other

parts of the original software (Li, et al., 2012). Software engineering researchers have

stated that change management is concerned with what changes have been made and the

effect of changes (Tam, Greenberg, & Maurer, 2000). Nowadays, effective change

management is essential for organisational development and survival in order to keep

track of changes and to reduce risks and costs (Saif, et al., 2013; Sommervile, 2007;

Sommerville, 2011). Change management has been recognized as “the most difficult,

costly and labour-intensive activity in the software development life cycle” Li et al.

(2012).

One of the main issues in software change management is to detect and resolve the

coevolution among software artefacts to determine the change impact and change

propagation (Kchaou, Bouassida, & Ben-Abdallah, 2016; Langhammer, 2013; Liu,

2013; Lucas, et al., 2009; Puissant, et al., 2013; Shinkawa, 2006). Detecting and

resolving the coevolution among software models is of tremendous significance for the

field of software design and development to assess the change consequences. Software

models are highly dynamic and evolve from requirements through implementation

(Ivkovic & Kontogiannis, 2004). It is important to investigate how to integrate software

changes into software models (April & Abran, 2012; Mens et al., 2005b). A change

management technique is required to support the criteria of flexibility, adaptability, and

dynamic reaction to changes in software models.

Univ
ers

ity
 of

 M
ala

ya

7

OO modelling is widely used in software analysis and design. It describes a system

by modelling different perspectives using its structural, behavioural, and interaction

diagrams. One of the crucial issues in checking the coevolution among OO diagrams is

to control the change and to keep these different views or perspectives consistent

(Dubauskaite & Vasilecas, 2013; Puczynski, 2012; Puissant, et al., 2013). Spanoudakis

& Zisman (2001) define consistency as

“a state in which two or more overlapping elements of different software models

make assertions about the aspects of the system they describe which are jointly

satisfiable”

UML is the de-facto standard for modelling OO software systems (Huzar, Kuzniarz,

Reggio, & Sourrouille, 2005; Puczynski, 2012). UML 2.3 defines 13 different diagrams.

Relations between these diagrams are complex, and may lead to inconsistent UML

diagrams (Liu, 2013; Torre, Labiche, & Genero, 2014). Coevolution among different

perspectives or views of UML diagrams means that the modification in one diagram

should be reflected to other related diagrams to ensure the consistency of all diagrams.

According to Lucas et al. (2009), the consistency problem in UML diagrams is

linked to the multiple views of UML diagrams and the inconsistencies among these

views or perspectives could be a source of numerous errors in the software developed

which complicate diagrams management. If the effect of changes in UML diagrams is

not addressed adequately among diagrams, it will result in further defects, decreased

maintainability, and increased gaps between high-level design and implementation (N.

Ibrahim, Ibrahim, Saringat, Mansor, & Herawan, 2013; Lehnert, 2011; Lehnert &

Riebisch, 2013; Puczynski, 2012). Inconsistency problems could make the use of

models as a source of automatic code generation impossible, such that the accuracy of

generated code depends on UML models consistency (Simmonds & Bastarrica, 2005;

Univ
ers

ity
 of

 M
ala

ya

8

Usman, Nadeem, Kim, & Cho, 2008). As a summary of the main problems discussed in

this section:

• Software models are highly dynamic and evolve from requirements through

implementation. In order to respond quickly to varying requirements, it is

extremely important to provide a change management technique to keep track

of changes and to realise flexible and consistent software models.

• An OO modelling language describes a system by modelling different

perspectives using its structural, behavioural, and interaction diagrams. The

coevolution among these diagrams is high; therefore it is crucial to check the

coevolution between the perspectives in these diagrams in order to control the

change and keep these different views or perspectives consistent.

• UML as a standard language for modelling OO software systems is a semi-

formal language and does not automatically support validation and

verification of the coevolution between software models.

Hence, it is our concern to address the coevolution and inconsistency problems

discussed in this section. Therefore, it is the aim of this research to propose an efficient

coevolution framework for supporting coevolution between UML diagrams. The

proposed framework aims to keep track of changes in UML diagrams. This includes

ensuring the consistency between UML diagrams, tracing the diagrams’ dependency,

and determining the effect of the change in these diagrams after each change operation.

1.2 Research Motivation

Coping with software changes is one of the major issues in software analysis and

design. Providing a change management technique to manage the coevolution among

software models is one of the popular research areas in software analysis and design due

to their numerous applications, and to ensure the models correctness in response to

Univ
ers

ity
 of

 M
ala

ya

9

changes on them (Williams & Carver, 2010). Solving the coevolution and inconsistency

problems in software models especially UML diagrams is a highly active research in

which a considerable research work has been done (Dubauskaite & Vasilecas, 2013;

Puczynski, 2012; Puissant, et al., 2013). However, there are important gaps and

limitations still open for research.

Although the previous approaches in the state-of-the-art research provide solutions to

handle software changes in UML diagrams, these approaches are concerned with some

of the UML diagrams (i.e. the class, sequence, and statechart diagrams) and concentrate

on checking the consistency by comparing two different versions from the same model.

Additionally, there are limitations in managing the coevolution after adding, modifying,

or deleting new models or diagrams or diagram elements. There is a need to handle the

coevolution between UML diagrams perspectives and ensuring the consistency of all

diagrams comprehensively using all UML structural, behavioural, and interaction

diagrams including the diagrams relations.

Therefore, this research proposes a coevolution framework to cover the limitations

discussed about coevolution and consistency of UML diagrams. A formal modelling

language based on CPNs is used to model and simulate the proposed framework. The

rational of using CPN stems from the fact that it provides automatic validation and

verification. Formal methods improve software development specification, verification

and validation, and this is very important for UML diagrams consistency analysis.

According to Wordsworth (1999),

“a formal method of software development is a process for developing software that

exploits the power of mathematical notation and mathematical proofs”.

Univ
ers

ity
 of

 M
ala

ya

10

1.3 Research Objectives

The primary goal of this research is to enhance the representation capabilities of OO

and CPNs modelling languages to support model changes in a rapidly changing

environment. More specifically, this research aims to propose an efficient coevolution

framework to trace dependency and to manage the coevolution between UML diagrams

after each update operation, where UML diagrams are modelled from different

perspectives using UML structural, behavioural, and interaction diagrams. In order to

accomplish this primary goal, the following Research Objectives (RO) are outlined:

RO1: To propose a new structure for the integration of UML and CPNs (Object

Oriented Coloured Petri Nets (OOCPNs) including the transformation rules

applied between UML diagrams’ elements and OOCPNs.

RO2: To propose a set of change impact and traceability analysis templates for the

types of change in UML 2.3 diagrams, including rules to maintain consistency

and integrity.

RO3: To propose a set of coevolution patterns to model and simulate the proposed

diagrams changes. This includes the change impact and traceability analysis

templates for updating UML diagrams.

RO4: To propose a coevolution framework based on the proposed structure, templates,

and patterns.

RO5: To validate and verify the proposed framework, checking the correctness and

performance analysis of the proposed coevolution framework.

1.4 Research Scope

This research focuses on proposing a new coevolution framework to manage the

coevolution between software artefacts especially UML diagrams. This research

Univ
ers

ity
 of

 M
ala

ya

11

proposes, develops, and implements a coevolution framework for UML diagram

changes. In this capacity, the research covers issues related to changes to the elements

of the diagrams in general, and includes a set of coevolution patterns, change impact

and traceability analysis templates, and UML to OOCPNs transformation rules.

The idea of proposing a new structure for the integration between UML and

OOCPNs is to integrate the proposed change impact, traceability analysis templates,

and UML diagrams consistency rules into the transformation rules.

The proposed set of templates and the transformation rules into OOCPNs are defined

for UML diagrams supported in UML 2.3. The proposed OOCPNs structure and the

proposed templates cover all the UML diagrams provided in UML 2.3.

The proposed coevolution patterns are applied into the following UML diagrams

(class, object, activity, statechart, and sequence diagrams). These diagrams cover the

three perspectives of UML diagrams (structural, behavioural, and interaction). Several

studies such as (Langer, Mayerhofer, Wimmer, & Kappel, 2014; Reggio, Leotta, Ricca,

& Clerissi, 2013) mentioned that the class, activity, statechart, and sequence diagrams

are the mostly used diagrams in UML analysis and design. Additional patterns for

change control and management are also provided in the proposed framework. The

relations between these patterns are identified and stated clearly.

1.5 Research Questions

In order to achieve the research objectives, the following Research Questions (RQ)

are formulated to guide the research.

RQ1: How to integrate between UML and CPNs in order to perform diagrams

coevolution?

RQ2: How to formulate the diagram changes in a patterns and templates design?

Univ
ers

ity
 of

 M
ala

ya

12

RQ3: How to provide an efficient coevolution framework for the coevolution between

UML models in order to improve their flexibility to dynamic changes in a rapidly

changing environment?

RQ4: How can the performance of the proposed coevolution framework are

quantified?

1.6 Organisation of the Thesis

This chapter provides the context of the thesis along with the research motivation. In

addition, research problem statement, research motivation, research objectives and

questions, and research scope are identified and stated. The rest of the thesis is

organized as follows:

The second chapter presents a literature review for this research. This chapter is on

the theory building part of the research. A literature review on various concepts about

software modelling and change management concepts is presented. Then, the findings

from the literature review are summarized and the research direction is presented. This

chapter surveys previous literature studies relevant to the field of study.

Chapter three is concerned with the proposed research methodology. The process of

selecting the research idea, determining the research problem and objectives,

formulating the research design, collecting and analysing the research data are

discussed.

Chapter Four is concerned with the proposed coevolution framework to support

detecting and resolving the coevolution and inconsistencies among OO diagrams. The

proposed framework components and features are presented including a discussion

about the research design and research procedures adopted.

Chapter Five is dedicated to provide the proposed structure for the transformation of

UML diagrams into OOCPNs. This chapter discusses the proposed transformation rules

Univ
ers

ity
 of

 M
ala

ya

13

of UML diagrams’ elements into OOCPNs. Additionally, the integration of these rules

with the proposed change impact and traceability analysis templates is identified.

Chapter Six presents the proposed coevolution patterns to be applied to trace the

dependency and to determine the effect of change between UML diagrams’ elements. In

addition, patterns foundation, relations, and analysis are also identified. Additionally,

the simulation methodology, scenarios, and results are discussed.

Chapter Seven is dedicated to the framework analysis, discussion of results, and

performance analysis. The proposed framework is evaluated and compared to other

approaches considering a wide range of performance parameters and metrics. The

purpose of this chapter is to discuss the research findings.

Chapter Eight summarizes the thesis findings and highlights main contributions of

this research. Finally, conclusions are drawn and suggested recommendations for some

potential future research areas are highlighted.

Univ
ers

ity
 of

 M
ala

ya

14

CHAPTER 2: LITERATURE REVIEW

In this chapter, the results of a review of the literature on various topics related to the

proposed framework are provided. Approaches and studies related to software change

management, coevolution, and software modelling languages especially UML and

CPNs are discussed. A summary of the main findings is also provided.

2.1 Software Change

Software change is a strategy-driven organizational initiative to improve and

redesign processes to achieve competitive advantage in performance (Stemberger,

Kovacic, & Jaklic, 2007). There are many reasons for changes in software models, for

example, change of enterprise goals, change of client needs, and technological

innovations (Tripathi, Hinkelmann, & Feldkamp, 2008). Change, according to

Koomsub (1999), includes effects associated with strategy, structure, system, style,

staff, shared values (or subordinate goals), and skill. Change also occurs frequently

when the specification at design time is incomplete or when exceptional situations occur

during execution (Capra & Cazzola, 2007). The nature of the change could be

corrective, evolutionary, or ad hoc (Nurcan, 2008; W. Van Der Aalst, 1999). Corrective

changes are implemented to correct a design error or to react to an exception that

happens during execution. Evolutionary changes are required due to the redesign or

reconfiguration of models. Ad hoc changes are related to non predefined actions.

Software change management is essential in Information Technology (IT)

organizations and enterprises. Some approaches for managing the software change life

cycle are provided in (Ghosh, Sharma, & Mohabay, 2011a, 2011b, 2011c) and Bhat and

Deshmukh (2005). As a summary of these approaches, the main stages in software

change management are: understanding the changed elements that are impacted,

redesigning, and implementation.

Univ
ers

ity
 of

 M
ala

ya

15

An efficient mechanism for controlling and managing versions is required in a

change management process. A version is “a changed state of a specific target or

concept from an existing state or condition” (Kim, Kim, & Kim, 2007, p. 5). There are

two types of versions: revision and variant (Kradolfer, 2000; X. Zhao & Liu, 2007). A

revision is a version that is newly created by amending an existing version. A variant is

a version that is created when two or more versions are derived from an existing version.

2.2 Software Coevolution

Understanding coevolution, which represents the dependency between artifacts that

are frequently changed together, is important from the points of view of both

practitioners and researchers (Jaafar, 2012). Coevolution is also considered a change

propagation between diagrams at the same level of abstraction (Amar, Leblanc,

Coulette, & Dhaussy, 2013). Maintaining coevolution and consistency between OO

design elements could help practitioners to successfully perform their maintenance tasks

(Hammad, Collard, & Maletic, 2010). Software changes are one of the main reasons for

inconsistency problems in UML diagrams, where the change in one diagram element

should be reflected in other diagrams. Spanoudakis & Zisman (2001) define consistency

as:

“a state in which two or more overlapping elements of different software models

make assertions about the aspects of the system they describe which are jointly

satisfiable”(p.3).

Consistency is usually linked to the existence of multiple models or views that are

involved in the development process (Engels, Küster, Heckel, & Groenewegen, 2001;

Lucas, et al., 2009), and the set of activities for detecting and handling consistency

problems is called inconsistency management (Lucas, et al., 2009).

Univ
ers

ity
 of

 M
ala

ya

16

Change impact analysis and traceability analysis are very important in solving the

coevolution and inconsistency problems between UML diagrams. Software change

impact is defined in (Bohner, 1996, 2002) as:

“The determination of potential effects to a subject system resulting from a

proposed software change” (p.265).

Change impact analysis identifies the scope of modifications that need to be

implemented in response to a change (Jönsson, 2005). Traceability analysis is

performed to analyse the dependencies between and across software artefacts at all

levels of the software process (H. O. Ali, Rozan, & Sharif, 2012; S. Ibrahim, Idris,

Munro, & Deraman, 2005). Dependency analysis and traceability analysis are the two

primary methodologies for performing impact analysis (Kagdi, Gethers, & Poshyvanyk,

2012). The main difference between them is the level of abstraction. Dependency

analysis analyses software artefacts at the same level of abstraction (e.g., source code to

source code or design to design) and traceability analysis analyses software artefacts

across different levels of abstraction (e.g., source code to UML) (Lam, Shankararaman,

Jones, Hewitt, & Britton, 1998; Mohan, et al., 2008).

Traceability and consistency types are discussed in De Lucia, Fasano, and Oliveto

(2008), Mens, Van Der Straeten, and Simmonds (2005a), and Usman, Nadeem, Kim,

and Cho (2008). In summary, vertical traceability refers to the ability to trace dependent

artefacts within a model, while horizontal traceability refers to the ability to trace

artefacts between different models within the same version. Evolutionary traceability

indicates the consistency between different versions of the same model. Meanwhile,

semantic and syntactic consistency is based on the semantic meanings and

specifications defined by the UML metamodel.

Change impact and traceability analysis approaches can be code-based or model-

based (C.-Y. Chen & Chen, 2009; C.-Y. Chen, et al., 2007; Mahmood & Mahmood,

Univ
ers

ity
 of

 M
ala

ya

17

2015). Code-based impact analysis techniques require the implementation details of a

change request or a precise change implementation plan prior to determining change

impacts (C.-Y. Chen, et al., 2007). The approaches in Kung et al. (1994) and Weiser

(1984) are code-based impact analysis techniques. Model-based impact analysis

techniques identify and determine change impacts without using program code, and

make proper decisions before considering any change implementation details (C.-Y.

Chen, et al., 2007; Mohan, et al., 2008; Podgurski & Clarke, 1990). Model-based

techniques identify change impacts by tracking the dependencies of software objects

and classes within abstract models of the software design (C.-Y. Chen, et al., 2007).

Control and data flow dependencies are the basic types of program dependencies

(Podgurski & Clarke, 1990).

According to Lehnert (2011), assessment of model changes on a more abstract level

than source code can enable impact analysis in earlier stages of development, which has

become more important in recent years. Some approaches combine model-based and

code-based change impact analyses. Examples of these approaches are presented in

Murphy, Notkin, and Sullivan (1995) and Murphy, Notkin, and Sullivan (2001). Some

studies on consistency management of UML diagrams and change impact analysis

techniques are provided in Amar, Leblanc, Coulette, and Dhaussy (2013), Egyed (2006,

2011), Khalil and Dingel (2013), Li et al. (2012) , Lucas, Molina, and Toval (2009), and

Stephan and Cordy (2013). Some approaches for the code-based and model-based

change impact and traceability analyses are summarized in Table 2.1 and Table 2.2

respectively.

Univ
ers

ity
 of

 M
ala

ya

18

Table 2.1: Summary of Model-based Impact Analysis Techniques

Approach Approach Description

C.-Y. Chen et al. (2007) An approach for performing change impact analysis is
presented to describe changeable items (objects,
attributes, and linkages) and their relations and for
tracking the dependencies of software objects and
classes within abstract models of the software design.

Mohan et al. (2008)

Park et al.(2009)

A process slicing approach to find change impacts in
processes and activities is discussed. The process
slicing approach is designed to formally operate on the
software process by considering multiple perspectives
such as behavioural, informational, and organizational
perspectives. The traceability check is based on
software artefact relationships.

De Lucia et al. (2008) The work analyses the role of traceability relations in
impact analysis. Additionally, it analyses the impact
based on the relations between different artefacts.

(Ekanayake &
Kodituwakku, 2015)

UML class and sequence diagrams are translated into
XML Metadata Interchange format and then an
algorithm is applied to check the consistency among
these two diagrams.

Reder and Egyed (2012). The purpose of this research is to improve the
performance of the incremental consistency check. It
focuses on the parts that are affected by model change,
not on how to validate design rules.

Ali et al. (2006) This approach ensures the validity of the conceptual
model (class diagram) at the design stage by using
Object Constraints Language (OCL).

Ibrahim et al. (2013) This work uses use-case-driven-based rules to ensure
consistency of UML model using a logical approach.

Egyed (2006, 2011),
Elaasar and Briand
(2004), and Millan,
Sabatier, Le Thi, Bazex,
Reder and Egyed (2013),
Percebois (2009)

These works aim to ensure consistency between UML
diagrams by using OCL.

Shinkawa (2006) This approach involves a consistency check between
use case, activity, sequence and statechart diagram
using CPNs.

Gongzheng and
Guangquan (2010)

This approach checks the consistency between state
chart and sequence diagrams in UML 2.0. XYZ/E
formal language (Tang, 2002), which is based on
temporal logic (Pnueli, 1977), is used in the
consistency check.

Isaac and Navon (2013) Graph-based algorithms are used to identify which
elements are affected by a change.

Univ
ers

ity
 of

 M
ala

ya

19

Approach Approach Description

Puissant et al. (2013) An artificial intelligence technique using both
generated models and reverse-engineered models of
varying sizes is employed to resolve the
inconsistencies in UML models.

Table 2.2: Summary of Some Code-based Change Impact Analysis Techniques

Approach Approach Description

Weiser (1984) A process slicing approach is used to find the change
impact in processes and activities.

J. Zhao (2002)

(Bishop, 2004)

A program slicing technique is used to determine the
change impact.

Xing and Stroulia (2005) This work analyses the design evolution of OO
software from the logical view using Java
programming. This research focuses on detecting
evolutionary phases of classes.

Gethers et al. (2012) This work performs impact analysis from a given
change request to source code.

Costanza (2001),
Malabarba et al.(2000),
Vandewoude and Berbers
(2002)

Theses approaches uses runtime updates based on Java
programming.

Huang and Song (2007) Java programming is used to perform dependency
analysis between OO entities.

Kagdi, Gethers, and
Poshyvanyk (2012)

Both conceptual and evolutionary techniques are used
to support change impact analysis in source code.

X. Sun, Li, Tao, Wen, and
Zhang (2010)

This work analyses the impact mechanisms of
different change types in Java programming.

Torchiano and Ricca
(2010)

Source code comments and change logs in the
software repository are used to analyse change
impacts.

Kung et al. (1994)
Zalewski and Schupp
(2006)

This work concerned with code changes in OO
libraries

In the following subsections (sections 2.2.1 to 2.2.4), some approaches from the

literature on UML diagram coevolution, the inconsistency problem, and change impact

and traceability analysis are reviewed and discussed. These approaches are classified into

Univ
ers

ity
 of

 M
ala

ya

20

direct, transformational, formal semantics, or knowledge representation approaches.

Hybrid approaches combine two or more of the above approaches (Khalil & Dingel,

2013). In Section 2.2.5, the diagramming tools that support coevolution and consistency

management are reviewed. Some comments and discussions about these approaches are

provided in each section.

2.2.1 Direct Approaches

Object Constraints Language (OCL) is used in many approaches to ensure

consistency between UML diagrams as shown in Table 2.1 and Table 2.2. OCL is

considered to be a direct approach for checking consistency such as it is integrated in

some modelling tools (D. Chiorean, Paşca, Cârcu, Botiza, & Moldovan, 2004; D. I.

Chiorean, Petrascu, & Petrascu, 2008; Sapna & Mohanty, 2007). Some approaches that

use OCL to ensure consistency between UML diagrams are proposed in Egyed (2006,

2011), Ali et al. (2006), Elaasar and Briand (2004), Vasilecas, Dubauskaitė, and Rupnik

(2011), and Millan, Sabatier, Le Thi, Bazex, and Percebois (2009). However,

Standard OCL does not allow making changes to the model elements to resolve them

(Khalil & Dingel, 2013). Furthermore, CPNs can be used for checking and verifying the

UML model associated with OCL to check whether it meets the user requirement or not

(Sharaff, 2013).

In Briand et al. (2003) and Briand et al. (2009), an automatic change impact analysis

technique is developed to detect the changes between two different versions of a UML

model automatically. The UML model is composed of class, sequence, and statechart

diagrams. In addition, consistency rules, which are formalized using OCL, are proposed.

Horizontal and vertical traceability analyses are supported in this approach. This

approach is concerned with keeping the software models in a consistent state and

synchronized with the underlying source code (Lehnert, 2011). The following

Univ
ers

ity
 of

 M
ala

ya

21

approaches summarized the set of consistency rules between UML diagrams from the

literature (Briand, et al., 2003; Briand, et al., 2009; DAMIANO, LABICHE, &

GENERO, 2015; Torre, 2015) .

In Egyed (2006, 2007a, 2007b, 2011), the change impact scope is determined based

on a set of proposed consistency rules for UML class, sequence, and state diagrams.

UML/Analyser and Model/Analyser tools (Egyed, 2007b) are developed to automate and

evaluate the approach. A novel approach for improving the performance of incremental

consistency checking was proposed in Reder and Egyed (2012). The basic idea of this

approach is to focus on the parts that are affected by model changes and not to validate

design rules in their entirety.

The purpose of the research in Ali, Boufares, and Abdellatif (2006) is to emphasize

the importance of the global coherence of constraints in order to ensure the validity of

the conceptual model (class diagram) at the design stage. The authors classify the

integrity constraints that can be held in UML class diagrams from the conceptual

perspective. Some of these constraints are OCL constraints, intra-association constraints,

and interclass constraints (generalization, composition, and functional dependency

constraints).

2.2.2 Transformational Approaches

The coevolution of OO software design and implementation approach is proposed in

D’Hondt, De Volder, Mens, and Wuyts (2002) and Wuyts (2001). Logic

metaprogramming is proposed as a way to affect a bidirectional link between software

design and implementation. The automated coevolution of models using traceability

analysis based on model transformation to code is proposed in Amar et al. (2013).

Univ
ers

ity
 of

 M
ala

ya

22

A coevolution approach between a component-based architecture model and OO

source code is proposed in Langhammer (2013). The coevolution in this approach is

based on bidirectional mapping rules between architecture model and source code.

García, Diaz, and Azanza (2013), Cicchetti, Di Ruscio, Eramo, and Pierantoni (2008),

Wachsmuth (2007), and Hößler, Soden, and Eichler (2005) discuss the coevolution

between metamodels and models based on model transformation to metamodels. In these

approaches, new updates are stored in a new version from the metamodel. According to

Protic (2011), model coevolution describes the problem of adapting models when their

metamodels evolve.

Tracing model changes through a model synchronization approach is proposed in

Ivkovic et al. (2004) to achieve traceability consistency. In this approach, models are

transformed to use a graph metamodel. The transformed metamodel is then used to code

model dependencies while equivalence relations are used to evaluate model

synchronization. A change in a model is viewed as a combination of graph changes. A

graph transformation approach is defined in Fryz and Kotulski (2007) to check the

consistency between use case and class diagrams.

In Mens et al. (2005a), horizontal and evolutionary consistency rules between the

UML class, sequence, and statechart diagrams are classified. In addition, the authors

describe an extension to the UML metamodel to support the UML diagrams’ versions.

The authors discuss the importance of traceability analysis and change propagation in

UML diagrams but they provide no support for this (Herzig, Qamar, Reichwein, &

Paredis, 2011; Mäder, Gotel, & Philippow, 2009).

A tool for synchronous refactoring of UML activity diagrams using model-to-model

transformations is presented in (Einarsson & Neukirchen, 2012). Refactoring is applied

to improve the internal structure of source code (Fowler, 1999).

Univ
ers

ity
 of

 M
ala

ya

23

An evolution process at the requirement level based on the concept of gap analysis is

proposed in Etien, Rolland, and Salinesi (2004) and Salinesi, Etien, and Wäyrynen

(2004). The proposed evolution process is applied in the context of organizational

change. A metamodel and a generic typology of operators are used to express different

kinds of evolution.

The approaches in Costanza (2001) and Malabarba, Pandey, Gragg, Barr, and Barnes

(2000) are examples of runtime updates based on Java programming, where (Malabarba,

et al., 2000) focus specifically on dynamic Java. The authors extend the default Java

class loader in such a way that class definitions can be replaced and objects or dependent

classes can be updated. The replacement is initiated by the user through explicit calls to

the class loader in the application program. In Costanza (2001), interface changes are

allowed and do not require the application to be developed with evolution in mind based

on dynamic delegation with Lava (a variation of Java). However, according to

Spanoudakis and Zisman (2001), one drawback of this approach is the state space

explosion problem.

Also according to (Puissant, 2012), the graph transformation technique is limited to

check the structural inconsistencies only because it detects and resolves the

inconsistencies which can be expressed as a graph structure only. Other approaches in

consistency and coevolution based on transformational models are presented in other

studies (Dang & Gogolla, 2016; Demuth, Riedl-Ehrenleitner, Lopez-Herrejon, & Egyed,

2016; Khan & Porres, 2015; Kusel et al., 2015).

2.2.3 Formal Semantics Approaches

In this subsection, some approaches that develop formal semantics in order to ensure

the consistency and correctness of UML diagrams are discussed. Additionally, this

Univ
ers

ity
 of

 M
ala

ya

24

research contains a complete study on formal approaches that use CPNs to check the

consistency and correctness of UML diagrams which is discussed in Section 2.4.

A comprehensive survey of UML diagrams’ change impact analysis techniques is

discussed in Lucas, Molina, and Toval (2009). One of the findings of their survey is that

formal languages are highly used to support detecting and determining the consistency

and change impact between software models.

A CPNs approach to check the consistency of sequence diagrams with the system

requirements is presented in (Ouardani, Esteban, Paludetto, & Pascal, 2006). In this

approach, a technique for sequence diagram to Petri Nets (PNs) transformation is

presented for the purpose of requirements validation and verification.

Shinkawa’s (2006) approach requires a transformation from UML diagrams to other

notations (CPNs) before checking the consistency. A framework for the verification of

UML behavioural diagrams using PNs is proposed in Guerra and de Lara (2003) in

which UML statecharts, activity, and collaboration diagrams are transformed to PNs for

verification.

In Gongzheng and Guangquan (2010), XYZ/E formal language (Tang, 2002) which

is based on temporal logic (Pnueli, 1977), is used to check the consistency between

statechart and sequence diagrams in UML 2.0. A formal approach using graph

grammars to check the consistency of UML class and sequence diagrams is proposed in

(Tsiolakis & Ehrig, 2000).

According to N.C. Russell (2007), although more widely used as a systems modelling

technique, UML is also suitable for business process modelling where it can capture the

dynamic aspects of process modelling such as use case, activity, sequence, and statechart

diagrams. However, UML has no formal basis to describe how these models can be

integrated in order to provide a comprehensive view of a business process.

Univ
ers

ity
 of

 M
ala

ya

25

Formal languages such as Object-Z and CSP (Rasch & Wehrheim, 2003), have been

used to check the consistency between UML class and statechart diagrams. B formal

method is focused on refinement to code in checking the consistency between UML

diagrams Osami, et al. (2005), where refinement means “describing the new definitions

of some parts of the specification’s elements according to the required changes”

(Ossami, et al., 2005).

Formal approaches are widely used in describing the behaviour of UML diagrams

using the executional model’s capability provided in CPNs.

2.2.4 Knowledge Representation Approaches.

Knowledge-based approaches for OO diagram consistency checking are discussed in

Calì, Calvanese, De Giacomo, and Lenzerini (2002), Baader (2003), and Bolloju et al.

(2012). A knowledge-based system methodology to verify the consistency of a given

object model against a set of use cases (defined as a natural language narrative) is

proposed in (Bolloju, et al., 2012). In this methodology, missing and invalid diagram

elements are identified to help the analyst create object models that are consistent with

the requirements identified in the use case narratives. The use of use-case-driven-based

rules for ensuring consistency in the UML model approach is proposed in Ibrahim et al.

(2013). In Van Der Straeten, Mens, Simmonds, and Jonckers (2003), the UML

metamodel and user-defined models are transformed into descriptive logic to check for

consistency.

2.2.5 UML Diagramming Tools Support

A case study was undertaken by Amba (2009) to evaluate four management tools

(IBM Rational RequisitePro, Borland CaliberRM, TopTeam Analyst, and Telelogic

DOORS) in supporting change impact and traceability analysis. This study indicates all

Univ
ers

ity
 of

 M
ala

ya

26

these tools have poor impact analysis features. This shows that impact analysis in these

management tools is very limited and thus more effective methods are needed.

Some UML diagramming tools, such as the Visual Paradigm tool, detect the impact

analysis based on the physical connection between the elements of UML diagrams. The

Visual Paradigm tool analyses the connection between the diagrams’ elements based on

the user selection for the dependency between the diagrams. The ArgoUML tool detects

incremental consistency checks in UML diagrams, but it requires annotated consistency

rules (Egyed, 2006). According to Tam et al. (2000), the Rational Rose diagramming

tool provides change management by transforming a diagram into a hierarchical text

description and highlighting the changed items within the transformed text.

A set of rules to check consistency between UML diagrams is identified in (Liu,

2013). These rules are helpful for developers who need to check the consistency between

class, activity, statechart, sequence, and communication diagrams. The author discusses

methods of applying these consistency rules. These methods are: manual, compulsory

restriction, automatic maintenance, and dynamic check.

As a summary for the coevolution appraches discussed in this section, the direct

approaches use the constructs of OO and Object Constraints Language OCL,

transformational approaches derive a common notation by transforming one model to

another. Formal approaches develop formal semantics for the OO diagrams, while

knowledge representation approaches use description logics as a representation

language. A hybrid approach is a combination between two or more different type of

these approaches (Khalil & Dingel, 2013).

Univ
ers

ity
 of

 M
ala

ya

27

2.3 Patterns

A pattern “describes a problem which occurs over and over again in our

environment, and then describes the core of a solution to that problem, in such a way

that you can use this solution a million times over, without ever doing it the same way

twice” Alexander et al. (1977, p. 256). According to NA Mulyar (2009, p. 1), Nataliya

Mulyar and van der Aalst (2005), and Weber, Rinderle, and Reichert (2007),

“Pattern languages are based on experience; they express sound solutions for

problems frequently recurring in a certain domain in a pattern format”.

A pattern language helps developers to build efficient models by avoiding the

reinvention of already existing solutions to problems. Software models and patterns can

be integrated together in software development because patterns can be used as

templates for software development models (Côté & Heisel, 2009). Additionally,

patterns enhance the software structure by decoupling different components and this

makes the evolution tasks easier. In OO, design patterns make it easier to reuse

successful designs and architectures (Gamma , Helm, Johnson, and Vlissides (1995),

Gamma, Helm, Johnson, and Vlissides (2001), and Meijers (1996)). The following is a

definition of a pattern proposed by Alexander (1979):

Pattern name: The identifier of a pattern which captures the main idea of what the

pattern does;

Also known as: An alternative name for the pattern name;

Intent: describes in several sentences the main goal of a pattern, i.e. the problem for

which it offers a solution;

Motivation: Describes the actual context of the problem addressed and why the

underlined problem needs to be solved.

Problem description: Presents the problem addressed by the pattern;

Solution: Describes possible solutions to the problem;

Univ
ers

ity
 of

 M
ala

ya

28

Implementation of solution: Illustrates how to implement the described solution;

Applicability: The typical situations in which the pattern can be applied;

Consequences: Outlines the possible advantages/disadvantages of using the pattern;

in cases where the pattern supplies several solutions, this section elaborates on the

differences between them;

Examples: Lists several examples demonstrating the use of the pattern in practice;

Related patterns: Specifies relations between the pattern and other patterns.

Gamma, et al (Gamma , et al., 1995) and Gamma, et al (Gamma, et al., 2001) modify

the pattern definition proposed by (Alexander, 1997) for use in OO software design. The

modified pattern is as follows:

Intent: What does the design pattern do? What is its rationale and intent? What

particular design issue or problem does it address?

Motivation: A scenario that illustrates a design problem and how the class and

object structures in the pattern solve the problem. The scenario will help you

understand the more abstract description of the pattern that follows.

Applicability: What are the situations in which the pattern can be applied? What are

examples of poor designs that the pattern can address? How can you recognize these

situations?

Participants: The classes and/or objects participating in the design and their

responsibilities.

Collaborations: How the participants collaborate to carry out their responsibilities.

Diagram: A graphical representation of the pattern using a notation based on the

object modelling techniques.

Univ
ers

ity
 of

 M
ala

ya

29

Consequences: How does the pattern support its objective? What are the trade-offs

and results of using the pattern? What aspect of system structure does it let you vary

independently?

Implementation: What pitfalls, hints, or techniques should you be aware of when

implementing the pattern? Are these language-specific issues?

Example: Examples of the pattern found in real systems.

See Also: What design patterns are closely related to this one? What are the

important differences? With which other patterns should this one be used?

Patterns are used in many workflow software systems to manage and execute

operational processes involving people, applications, and/or information sources on the

basis of process models. These activities-based patterns are divided into general patterns,

workflow control flow patterns, service interaction patterns, and process flexibility

patterns (NA Mulyar (2009), Nataliya Mulyar and van der Aalst (2005), and (Weber,

Sadiq, and Reichert (2009)). Some of these patterns are modelled and simulated using

CPNs as in Nataliya Mulyar and van der Aalst (2005). Pattern language verification in

the model-driven design approach is introduced in (Zamani & Butler, 2013). A pattern

language for evolution reuse in component-based software architectures approach is

proposed in (Abbasi, 2015).

As reviewed in this section, patterns are used in two main areas of software

modelling: as design patterns and in the workflow software management system.

2.4 Integration of UML and CPNs

In this section, the benefits derived from the integration of UML and CPNs in

supporting software model coevolution and consistency checks are discussed. In

addition, the integration techniques and approaches are provided.

Univ
ers

ity
 of

 M
ala

ya

30

The use of UML diagrams as OO diagramming techniques has become extremely

popular because it offers powerful structuring facilities that place an emphasis on

encapsulation and promote software reuse; however, this approach remains semi-formal

and still lacks tools for automatic validation (Bousse, 2012). CPNs modelling language

is used for the formal specification. CPNs have a natural graphical representation,

which aids in the understanding of formal specifications and a range of automated and

semi-automated analysis techniques. However, the weakness of CPNs formalisms is

their inadequate support for compositionality, which means there is a need to provide

structuring facilities, encapsulation and inheritance (Charles Lakos, 2001).

The integration of OO and CPNs formalisms is crucial in enabling software

engineers and organizations to reap the complementary benefits of these two paradigms.

The main advantages that can be gained from the integration of OO and CPNs

modelling languages are the effective combination of the best characteristics of CPNs

and OO design methods and better representation of system complexity as well as ease

in adapting, correcting, analysing, and reusing a model (Chukwuogo, 2007; Kurt Jensen

& Kristensen, 2009; Kurt Jensen, et al., 2007; Lewis, 1996; Mikolajczak & Sefranek,

2003). According to Bastide (1995), the three directions for integrating the PNs and OO

concepts are:

a. Integration of OO concepts into PNs: PNs control the overall dynamic

behaviour of a system, while ‘tokens’ represent objects that model the

system’s static properties, as shown in Figure 2.1. The LOOP (Charles Lakos

& Keen, 1994; Charles Lakos, Keen, & Hobart, 1991), Macronet (Keller,

Shen, & Bochmann, 1994), and SimCon (Verkoulen, 1994) are examples of

the integration of OO concepts into PNs.

Univ
ers

ity
 of

 M
ala

ya

31

Figure 2.1: Integration of OO Concepts into PNs Bastide (1995, p. 1)

b. Integration of PNs into OO techniques: Here, a system is structured with

OO techniques. First, the relevant objects of the discourse world and their

mutual relationships are identified. Then, the description of the object

behaviour and the communication between objects is specified with the help

of PNs (Zapf & Heinzl, 1999), as shown in Figure 2.2. The OOBM (Hanish &

Dillon, 1997) is an example of the integration of PNs into OO techniques.

Figure 2.2: Integration of PNs into OO Techniques (Bastide (1995, p. 2))

c. Mutual integration of OO techniques and PNs: This approach is perceived

as a further development in embedding PN models into objects. Here, objects

are initially used to determine the structure of a system. Subsequently, the

behaviour of the objects is modelled with the help of nets (Zapf & Heinzl,

1999), as shown in Figure 2.3. The OOPNL (Esser, 1997) and COOPN/2

Univ
ers

ity
 of

 M
ala

ya

32

(Biberstein, Buchs, & Guelfi, 1996) are examples of the mutual integration of

OO techniques and PNs.

Figure 2.3: Mutual integration of OO Techniques and PNs (Zapf and Heinzl (1999, p.

10))

According to Tadj and Laroussi (2005), the representation of objects in CPNs is as

follows: object classes and states classes are represented by places; object instances are

represented by tokens; and the object value state is represented by function. Object

Oriented Petri Net (OOPN) modelling is a collection of elements comprising constants,

variables, net elements (places and transitions), class elements (object nets, method nets,

synchronous ports, and message selectors), classes, object identifiers, and method net

instance identifiers.

An OOPN has an initial class and initial object identifier as well. The so-called

universe of an OOPN contains (nested) tuples of constants, classes, and object

identifiers (Krena & Vojnar, 2001). An OOPN is applied in different domains (Zapf &

Heinzl, 1999), for example, in technical computer science (in modelling and simulation

of distributed and concurrent systems, modelling of network protocols, real-time and

embedded systems), in software engineering (in modelling of graphical user interfaces,

design of database applications, and prototyping of OO design models), and in

information systems (in enterprise modelling, office information systems, workflow

Univ
ers

ity
 of

 M
ala

ya

33

systems and automation techniques). A framework to transform UML statecharts and

collaboration diagrams into CPNs is proposed in Hu and Shatz (2004) to provide a

dynamic model analysis. In this approach, statechart diagrams are converted into CPNs,

and collaboration diagrams are used to connect the statecharts into a single CPN model.

Object PN Models (OPMs) (Saldhana & Shatz, 2000) are used to generate a Petri Net

(PN) model from a UML object diagram. In this approach, object classes and state

classes are represented using CPN places, while object instances are represented by

CPN tokens. The generation of object CPNs from UML statechart diagrams is proposed

in Bokhari and Poehlman (2006). An abstract node approach is used to transform an OO

model into a hierarchical CPN model (Bauskar & Mikolajczak, 2006). Using this

approach, class and sequence diagrams can be transformed to CPNs.

The transformation of UML 2.0 sequence diagrams into CPNs is presented in

Fernandes et al. (2007) and (Khadka, 2007). The aim of the approach presented by Shin

et al (Shin, Levis, & Wagenhals, 2003; Shin, Levis, Wagenhals, & Kim, 2005) is to

model the transformation of the UML use case, class, and collaboration diagrams to CPN

models. The integration of OO design with CPNs is developed by Motameni et al.

(2008) for analysis purposes. In their work, the CPN model is used to verify the UML

diagrams before implementation. The metamodelling and formalism transformation

framework proposed by (Guerra & de Lara, 2003) is a general framework for the

analysis of software systems using model-checking. This framework transforms the

UML model into PNs for further analysis. The UML model is composed of classes,

statecharts, and sequence diagrams.

A hierarchical OOPN integrates hierarchical PN with OO concepts to support OO

features including abstraction, encapsulation, modularization, message passing,

inheritance, and polymorphism (Hong & Bae, 2001; Xiaoning, Zhuo, & Guisheng,

2008). A metalevel and highly automated technique based on a graph transformation

Univ
ers

ity
 of

 M
ala

ya

34

approach is presented in Zhao et al. (2004). This approach formally transforms UML

statecharts and behavioural diagrams into PNs for verification.

A methodology to derive CPNs from UML object, sequence, statechart, and

collaboration diagrams is proposed in Bouabana-Tebibel and Belmesk (2004, 2005).

Some of the PN modelling languages adapt the OO concepts in PN and are called

OOPN, as in Niu, Zou, and Ren (2003). The main concepts upon which these approaches

are based are as follows: the OOPN is a set of class nets; a class is specified by a set of

object nets, method nets, synchronous ports, negative predicates, and message selectors;

object nets and method nets can be inherited; and a token represents an object or instance

of class. Synchronous ports are special transitions which cannot fire alone; they are only

dynamically fused to some regular transitions.

The approach to integrate OO design with CPNs was developed by Bauskar and

Mikolajczak (2006) and Motameni et al. (2008) to check the correctness of the designed

system. The approach integrates OO techniques at the design level and uses CPNs at the

verification and validation level. The approach includes a technique to transform an OO

design into a hierarchical CPNs model by using the abstract node approach (Bauskar &

Mikolajczak, 2006).

The Object Oriented Petri Nets with Modularity (OOMPNets) model (Wang & Wang,

2007) is an advanced CPNs model that introduces CPNs into OO techniques. In this

approach, the analysis techniques based on CPNs can be applied to reduce the effects of

specification errors. The OOMPNets model supports gradual progress in modelling

software requirements with formal representation of the actor, data views, control flow,

and data flow. The incomplete specifications are encapsulated in nodes with hierarchical

presentation to support forward and backward traces. The flexibility to present

incomplete specifications in a formal format can allow the analysis of these

specifications by those techniques used in CPNs. More approaches for transforming

Univ
ers

ity
 of

 M
ala

ya

35

UML structural, behavioural, and interaction overview diagrams are provided in Campos

and Merseguer (2006), Jørgensen (2003), Liles (2008), Merseguer and Campos (2003) ,

and Miller (2003).

A comparative study of software tools that support the transformation of UML static

and dynamic diagrams to PNs/CPNs models is presented in Rajabi and Lee (2009b).

Some of these tools are ArgoSPE (Gómez-Martínez & Merseguer, 2006) and WebSPN

(WebSPN-Research-Group, 2009). A summary of this comparative study is provided in

Table 2.3.

Univ
ers

ity
 of

 M
ala

ya

36

Table 2.3: Representation Capabilities of Some Related Works in Transforming UML Diagrams to PNs and CPNs

 Diagrams supported
 Approach Structural Diagrams Behavioural

Diagrams Interaction Diagrams

CD OD PD CSD CoD DD UCD AD SCD SD CommD IOD TD
ArgoSPE (Gómez-Martínez & Merseguer,
2006)

√ √ √ √

Calderon Prototype (Calderon, 2005) √ √ √
Chen (2000) √ √ √
Baresi (2002) √ √ √
Hu and Shatz (2004) √ √
Barros and Gomes (2004) Wang (2007),
Watanabe et al. (1998), Shengyuan and
Yuan (2007), and He (2000)

√

Bokhari and Poehlman (2006) √
van der Aalst (2002) √ √ √
Guerra and de Lara (2003) and (Yao &
Shatz, 2006)

√ √ √

Abstract Node (2006) √ √
Lassen (2007) √
Shin et al. (2003), Barros and Jorgensen
(2005)

√ √ √

Elkoutbi (2000)

√ √ √ Univ
ers

ity
 of

 M
ala

ya

37

 Diagram supported
 Approach Structural Diagrams Behavioural

Diagrams Interaction Diagrams

 CD OD PD CSD CoD DD UCD AD SCD SD CommD IOD TD
Maqbool (2005), Liles (2008),
Tričković (2000), Bouabana-Tebibel
(2007), Garrido and Gea (2002) and
Staines (2008)

 √

AMABULO(Bruckmann & Gruhn, 2008a;
Brückmann & Gruhn, 2008b)

√ √ √

Emadi and Shams (2008, 2009) √ √ √
Object Dynamics and Behaviour
(Bouabana-Tebibel & Belmesk, 2004)

 √ √ √ √

OPMs (Saldhana & Shatz, 2000) √

Wagenhals, Haider, & Levis (2002,
2003)

√ √ √ √

Note: CD: Class Diagram, OD: Object Diagram, PD: Package Diagram, CoD: Component Diagram, DD: Deployment
Diagram, CSD: Composite Structure Diagram, UCD: Use Case Diagram, AD: Activity Diagram, SCD: Statechart Diagram,
SD: Sequence Diagram, CommD: Communication Diagram, TD: Timing Diagram, and IOD: Interaction Overview
Diagram.

Univ
ers

ity
 of

 M
ala

ya

38

2.5 Background on Software Modelling Languages

In this section, a brief background on software modelling languages is provided. First,

the graph-based and rule-based modelling languages are reviewed. Second, UML

diagrams and PNs/CPNs are discussed in detail.

Software modelling is one of the most important activities in software analysis and

design. It provides a high-level specification independent from the implementation of

such a specification. Software models can be evolved into a new version, and can be

used to generate executable code (Van Der Straeten, 2005).

Graph-based formalism and rule-based formalism are the two most predominant

formalisms in the development of modelling languages. Graph-based formalism has its

roots in graph theory or its variants, while rule-based formalism is based on formal logic

(Lu & Sadiq, 2007). Graph-based languages have the visual appeal of being intuitive and

explicit, even for those who have little or no technical background. However, rule-based

modelling languages require a good understanding of propositional logic and the syntax

of logical expressions, and thus, are less attractive from the usability point of view (Lu &

Sadiq, 2007).

2.5.1 Graph-based Modelling Languages

In a graph-based modelling language, the process definition is specified in graphical

process models, where activities are represented as nodes and control flow and data

dependencies between activities are shown as arcs. The graphical process models

provide an explicit specification for process requirements (Lu & Sadiq, 2007). Graph-

based modelling addresses the need to present software models to various stakeholders

in as straightforward a manner as possible (Kowalkiewicz, Lu, Bäuerle, Krümpelmann,

& Lippe, 2008). The following are examples of graph-based modelling languages:

Univ
ers

ity
 of

 M
ala

ya

39

OO Methodology: An established technique for structured software design (Aguilar-

Saven, 2004). It supports inheritance, polymorphism, and dynamic binding. It is useful

for designing software that is comprehensible, maintainable, and flexible (Bauskar &

Mikolajczak, 2006). One of the main advantages of the OO method is the effectiveness

of the process in terms of identifying and refining objects (Aguilar-Saven, 2004).

Techniques for OO analysis and design primarily support the representation and

integration of static system properties from a function and data perspective. Dynamic

properties are supported from a process perspective (Zapf & Heinzl, 1999). UML is used

as a language for specifying, visualizing, constructing, and documenting the artifacts of

OO software systems, as well as for business modelling (Bauskar & Mikolajczak, 2006;

N. Russell, van der Aalst, Ter Hofstede, & Wohed, 2006).

UML Activity Diagram (OMG, 2004, 2010; N. Russell, et al., 2006): Designed for

modelling business process and flows in software systems. It also provides a high-level

means of modelling dynamic system behaviour (N. Russell, et al., 2006).

Business Process Definition Metamodel (BPDM) (OMG, 2004, 2010): The BPDM

does not provide its own graphical notation, which is specified as a UML 2.0 profile.

The BPDM is used to define a generic metamodel in order to support the mapping

between different tools and languages. Business Process Modelling Notation (BPMN)

(Owen & Raj, 2003) is designed for modelling business processes and transforming them

into an execution language.

PN theory: Widely used in graph-based modelling languages (K Jensen, 1992; Kurt

Jensen, 1994, 1998; TGIgroup, 2013). Places and transitions are the main components of

a PN model, and arcs are used to connect them. The main characteristics of CPNs are

data structures and hierarchical structures (K Jensen, 1992; Kurt Jensen, et al., 2007).

These characteristics are used to represent the object dynamics and to check the model’s

correctness (Kurt Jensen & Kristensen, 2009; Kurt Jensen, et al., 2007; Michael

Univ
ers

ity
 of

 M
ala

ya

40

Westergaard & Verbeek, 2013). Object PNs extend the formalism of CPNs with OO

features, including inheritance, polymorphism, and dynamic binding (Koci, Janousek, &

Zboril, 2008; Liui, Yin, & Zhang, 2008; Miyamoto & Kumagai, 2005, 2007; Yu & Cai,

2006). Timed PNs, as the name implies, introduce time in PNs.

Flow charts, data flow diagrams, role activity diagrams, role interaction diagrams, and

the integrated definition for function modelling are also approached from a graph-based

perspective and are discussed in detail in Aguilar-Saven (2004).

2.5.2 Rule-based Modelling Languages

A rule-based language integrates complex process logic into a process model to

support dynamic changes (Lu & Sadiq, 2007; zur Muehlen, Indulska, & Kamp, 2007;

Zur Muehlen, Indulska, & Kittel, 2008). In a typical rule-based modelling language,

process logic is abstracted into a set of rules, each of which is associated with one or

more activities specifying the properties of the activity such as the pre and post

conditions of execution (Lu & Sadiq, 2007).

There are several classification schemas for business rules. According to Halle and

Ronald (2001), there are four kinds of business rules: constraint rules, action enabler

rules, computation rules, and inference rules. Fuzzy business rules were added later, as

described in Thomas, Dollmann, and Loos (2007). The following are examples of rule-

based modelling languages:

• Event-driven Process Chain (EPC) (Knolmayer, Endl, & Pfahrer, 2000;

Scheer, 1994, 2000): The basic elements of this modelling language are

functions and events. Functions model the activities, while events are created

by processing functions or by actors outside the model.

• Integrated Event-driven Process Chains (iEPCs): Basically, these extend EPCs

by using formal concepts of object flow and a role perspective (Mendling, La

Univ
ers

ity
 of

 M
ala

ya

41

Rosa, & ter Hofstede, 2008). The main idea is to show how any of these

formalizations can be enhanced with transition rules that consider object

existence and role availability as part of the state concept.

• PLMflow (Zeng, Flaxer, Chang, & Jeng, 2002) and ADEPT system (Jennings

et al., 2000): These both provide a set of business inference rules that is

designed to dynamically generate and execute workflows.

• ConDec language (Pesic & van der Aalst, 2006): A declarative language to

specify which tasks are possible. Users can execute such a model according to

their own preferences; they can choose which tasks to execute and how many

times, and in which order to execute them.

However, the rigidity of graph-based approaches leads to problems such as lack of

flexibility when faced with dynamic changes and lack of adaptability, which

compromise the ability of the graph-based processes to react to dynamic model changes

and exceptional circumstances (Lu & Sadiq, 2007). On the other hand, the rule-based

approach is intended to integrate complex process logic into a process model as rules in

order to support dynamic changes. More approaches for graph-based and rule-based

modelling languages are provided in Rajabi and Lee (2009a).

Workflow management tools enable the runtime system to assist users in coordinating

and scheduling the tasks of a business process in workflow management systems

(Hollingsworth & Hampshire, 1993) by adding, deleting, or changing the sequence of

process executions during runtime. These approaches are based on activity-oriented

approaches. OO approaches have comprehensive modelling constructs of object

orientation to capture business processes (N. Russell, et al., 2006), where the processes

are modularized along key business objects rather than activity decompositions

(Redding, 2009). Some examples of these approaches are provided in (Weske (1998),

(Dadam & Reichert, 2009; Manfred Reichert & Dadam, 1998, 2009; MU Reichert,

Univ
ers

ity
 of

 M
ala

ya

42

Rinderle, Kreher, & Dadam, 2005), Sun and Jiang (2009), (Lu, 2008), Wörzberger et al.

(2008), Milanovic et al. (2008), and Van Hee et al. (Grossmann, Mafazi, Mayer, Schrefl,

& Stumptner, 2015; 2006)) .

2.5.3 UML Diagrams

UML diagrams are interrelated; some components for one diagram may be derived

from other diagrams. UML 2.3, which is one of the most recent versions of UML (Barr

& Pettis, 2007; Bennett, et al., 2010; OMG, 2010), supports a variety of diagrams to

model software systems from different perspectives using UML structural, behavioural,

and interaction diagrams (Fowler, 2004), as shown in Figure 2.4.

Figure 2.4: Hierarchy of UML Diagrams

The different perspectives of UML diagrams are discussed in the following

subsections. Examples of UML diagram software tools are: Visual Paradigm (Curtis,

Clarence, & Ying, 2005; VisualParadigmCompany, 2011), MagicDraw (MagicDraw,

2009), and IBM Rational Rose (IBMSoftware, 2011).

2.5.3.1 UML Structural Diagram Perspectives

Structural diagram perspectives are used to construct the information structure. These

diagrams are briefly described below:

Hierarchy of UML Diagrams

Behavioural Diagrams Structural Diagrams Interaction Diagrams

Activity
Diagram

Object
Diagram

Package
Diagram

Components
Diagram

Deployment
Diagram

Composite
Structure
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Communication
Diagram

Timing
Diagram

Use
Case
Diagram

Class
Diagram

Statechart
Diagram

Univ
ers

ity
 of

 M
ala

ya

43

• A class diagram is useful to represent information about the actors, roles,

organizational unit, and relevant data (Yang & Chen, 2003).

• Actors and data stores are objects in the object diagram.

• A package diagram organizes the diagram elements into related groups to

minimize the dependencies between different diagrams’ elements.

• A composite structure diagram can be used to show the internal structure and

possible collaborations.

• A component diagram shows the dependencies among software components.

• A deployment diagram depicts a static view of the runtime configuration of

the hardware nodes and the software components that run on those nodes

(Miller, 2003).

2.5.3.2 UML Behavioural Diagram Perspectives

Behavioural diagram perspectives show how a system operates. These diagrams are

briefly outlined below:

• The static interactions between diagrams and their external objects are

expressed using a use case diagram (Yang & Chen, 2003). This type of

diagram is used to express functionality, goals, and responsibility (C.-Y. Chen,

et al., 2007).

• An activity diagram describes the dynamic behaviour of use cases. It is used

to model the logical steps and the dynamic behaviour derived from the use

cases (Chang, Chen, Chen, & Chen, 2000; Hongmei, Biqing, & Shouju, 2000).

It concentrates on the dynamic relationships among business activities (Yang

& Chen, 2003).

• A statechart diagram describes the process behaviour of states and events

(Merseguer & Campos, 2003).

Univ
ers

ity
 of

 M
ala

ya

44

2.5.3.3 UML Interaction Diagram Perspectives

Interaction diagram perspectives can be considered a subset of behavioural diagrams.

These diagrams are described in brief below:

• Sequence diagrams and communication diagrams are used to describe the

interactions and flow of control among business objects based on messages.

They represent the relationships between diagrams and actors. A sequence

diagram focuses on the message times, while a communication diagram

focuses on object roles. A communication diagram can be used to show the

use case’s objects and the sequence of messages passed between them.

• An interaction overview diagram is a modification of the activity diagram that

is used to compose interactions through sequence, iteration, concurrency, or

choice concepts (Marzeta, 2007; Ribeiro & Fernandes, 2006).

• A timing diagram shows the behaviour of the processes in a given period of

time; these diagrams could have a starting and finishing time to determine the

sequence of activities or execution order.

2.5.3.4 Petri Nets and Coloured Petri Nets

Petri Nets are a powerful instrument for modelling, analysing, and simulating

dynamic systems with concurrent and nondeterministic behaviour. They are useful for

describing information systems that are characterized as being concurrent,

asynchronous, distributed, parallel, nondeterministic and/or stochastic (Kurt Jensen &

Kristensen, 2009). The graphical representation and executable nature of a PN model

make the PN suitable for use in the simulation, rapid prototyping and verification of

systems (Le Bail, Alla, & David, 1991). According to Aguilar-Saven (2004) and Murata

Univ
ers

ity
 of

 M
ala

ya

45

(1989), a PN is a directed graph that mainly consists of two different nodes: places and

transitions, where places represent possible states of the system and transitions are

events or actions that cause the change of state (Milanovic, et al., 2008; Scheer, 1994).

However, early attempts to use PNs in practice revealed two serious drawbacks

(Aguilar-Saven, 2004). First, there were no data concepts and hence the models often

became excessively large because all data manipulations have to be represented directly

in the net structure. Second, there were no hierarchy concepts, and thus it was not

possible to build a large model via a set of separate sub-models with well-defined

interfaces. High-level PNs (HPNs) and Low-level PNs (LPNs) (Miyamoto & Kumagai,

2007; Wolf, 2009) are types of PNs. HPNs support abstract data types and state

transitions with data processing, but LPNs do not have a data type and data processing

mechanism. The choice of LPNs or HPNs depends on what kind of system is to be

modelled. Generally, analysis of LPNs is comparatively easy, but a net of this type

generally grows large. In contrast, HPNs can express a system in a compact net, but on

the other hand, analysis of HPNs is difficult.

A CPN model (Aguilar-Saven, 2004; Kurt, 1997) incorporates both data structuring

and hierarchical decomposition without compromising the qualities of the original PNs

and thus removes these two serious problems that are inherent in PNs. Timed PNs

(Holliday & Vernon, 1987) introduced time in PNs, while hybrid PNs (Le Bail, et al.,

1991) can model a system where discrete state transitions and continuous state

transitions coexist. CPN tools perform syntax and type checking as well as simulation

code generation. More details about PNs theory, structure, and applications are provided

in Kurt Jensen and Kristensen (2009) and Kordic (2008). A CPNs structure is defined

formally as a set of (∑, P, T, A, N, C, G, E, M0, I, O) (Kordic, 2008; Kurt, 1997),

where:

∑: A finite set of non-empty types, called a colour set
P: Finite set of places

Univ
ers

ity
 of

 M
ala

ya

46

T: Finite set of transitions
A: Represents a set of directed arcs, known as flow relationships. An arc exists
between a place and a transition, or vice versa
N: A node function
C: A colour function
G: A guard function defined from T into expressions
E: An arc expression function defined from A into expressions
M0: The initial (coloured) marking defined from P into closed expressions
I: A function which determines the input multiplicity for each input arc
O: A function which determines the output multiplicity for each output arc.

2.6 Discussion and Summary

Making sure there is coevolution between the perspectives of UML diagrams and

ensuring that there is consistency between all diagrams are important activities in

software analysis and design. However, it is difficult to maintain coevolution and

consistency between UML diagrams because these diagrams are continuously updated in

order to reflect software changes. In this chapter, the researcher reviewed and discussed

the approaches related to software change management, especially software models

coevolution. The approaches that deal with solving the coevolution and inconsistency

problems in UML diagrams and the approaches that address the integration between

UML diagrams and CPNs were discussed in detail.

Detecting and resolving the coevolution between software artifacts can be achieved

by using various techniques. Some of these techniques are: analysing release histories or

versions, source code, and software architecture level analysis (Breivold, et al., 2012).

These techniques can be classified into code-based and model-based approaches.

Furthermore, assessments of model changes on a more abstract level than source code

can enable impact analysis in earlier stages of development (Lehnert, 2011).

Decades of research efforts have produced a wide spectrum of approaches and

techniques for checking the coevolution and inconsistency among OO diagrams. Some

Univ
ers

ity
 of

 M
ala

ya

47

of these approaches can be classified into direct, transformational, or formal semantics

approaches (Sapna & Mohanty, 2007). The main ideas and weaknesses of these

approaches are: Standard OCL as a direct approach is concerned with keeping the

software models in a consistent state and synchronized with the underlying source code

and does not allow for making changes to the model elements to resolve them (Khalil &

Dingel, 2013; Lehnert, 2011). CPNs can be used to check and verify the UML model

associated with the OCL to ascertain whether or not it meets the user requirement

(Sharaff, 2013). The coevolution in transformational approaches is based on

bidirectional mapping rules between the architecture model and source code. The graph

transformation technique is limited to checking the structural inconsistencies only

because it can only detect and resolve the inconsistencies that can be expressed as a

graph structure (Puissant, 2012). Formal approaches are widely used for describing the

behaviour of UML diagrams using the executable model capability provided in CPNs.

As regards the usage of patterns in software modelling, researchers have concentrated

on using patterns as design patterns and in the workflow software management system.

Updating the pattern design to manipulate the software changes and change impact also

could facilitate software change design. Improving the effectiveness and the accuracy of

state-of-the-art coevolution techniques in managing OO diagram changes is an

important issue and much work is still needs to be done to fully provide flexibility,

adaptability, and dynamic reaction to changes.

Transforming UML diagrams into a formal modelling language such as CPN models

is considered one of the most effective ways to solve software performance evaluation

problems (Lian-Zhang & Fan-Sheng, 2012). The integration of UML and CPNs

approaches is based on the combination of the best characteristics of the CPNs and UML

design methods. While UML describes the static aspects of systems, the CPNs model

system dynamics and behavioural aspects. The graphical representation and automated

Univ
ers

ity
 of

 M
ala

ya

48

analysis techniques in CPN tools are used to aid the understanding of formal

specifications (Barros & Gomes, 2004; Barros & Jorgensen, 2005; Niu, et al., 2003;

Michael Westergaard & Verbeek, 2013). The transformation approaches discussed in

this chapter have certain weaknesses, such that each transformation approach uses only a

subset of UML diagrams, and most of these transformations are based on behavioural

UML diagrams, as shown in Table 2.3. Additionally, these approaches focus only on a

comparison between two versions from the same model to check if there are differences

between them. There is a need to support the change incrementally (i.e, during the

design process and to also check the consistency between diagrams based on the

diagram relations. Additionally, there is a need to support the changes by adding new

diagrams). The needs and details of the coevolution framework for this research are

discussed in the following two chapters.

Univ
ers

ity
 of

 M
ala

ya

49

CHAPTER 3: RESEARCH METHODOLOGY

In this chapter, the general steps of the research methodology are outlined. This

research methodology consists of several phases, as shown in Figure 3.1. These phases

are:

• Research Idea Phase

• Literature Review Phase

• Research Design Phase

• Modelling and Development Phase

• Analysis and Evaluation Phase

Figure 3.1: Phases of Research Methodology

3.1 Research Idea Phase

In this phase, the research idea is outlined. This includes the problem statement,

research objectives, and research questions. The determination of the research problem,

involves a few different stages, but mainly this research starts with the context of the

research, which is the field of software change management, as shown in Figure 3.2.

Research Idea Phase

Literature Review Phase

Modelling and Development Phase

Research Design Phase

Analysis and Evaluation Phase

 Univ
ers

ity
 of

 M
ala

ya

50

This research focuses on studying the impact of software changes on modelling

techniques and languages (basically on graph-based and model-based approaches)

because it is one of the main issues in software design. OO software modelling is

widely used in software modelling and design, and OO diagrams are divided into

different perspectives for modelling a problem domain. This research focuses on

determining the main issues that need to be addressed to preserve the coevolution

among these diagrams so that they can be updated continuously to reflect software

changes. In addition to these steps in determining the research problem, a clear

statement of research objectives and research questions are defined.

Figure 3.2: Research Context

3.2 Literature Review Phase

In this phase, various software modelling concepts and change management concepts

are presented. Then, the findings from the literature review are summarized and the

research direction is presented. Based on the stages discussed in Section 3.1, the

literature review phase consistes of the following:

Software Change Management

Graph / Model Based Approaches

Diagraming/ Modeling Methdologies or
Techniques

Maintain the Coevolution between
Different Artifact

Maintain OO Diagrams Coevolution

Code Based Approaches

R
esearch C

ontext

Univ
ers

ity
 of

 M
ala

ya

51

I. Studying the state of the art on consistency checking and coevolution between

UML diagrams;

II. Studying the importance of design patterns in the software design process;

III. Studying the integration between UML diagrams and CPNs. This research

proposes a comprehensive survey on the integration between UML diagrams

and CPNs including consistency and integrity rules (Rajabi & Lee, 2009b,

2014); and

IV. Studying the state of the art on coevolution and consistency validation and

verification techniques. This includes simulation techniques and consistency

checking tools.

3.3 Research Design Phase

The main steps in the research design phase are shown in Figure 3.3 and are

discussed in the following sections. These steps are:

I. Proposing a new structure for the integration of UML and CPNs (named

Object Oriented Coloured Petri Nets (OOCPNs)) including the transformation

rules to be applied between UML diagram elements and OOCPNs;

II. Proposing a set of change impact and traceability analysis templates for all

types of change in most of the UML 2.3 diagrams, including rules to maintain

consistency and integrity;

III. Proposing a set of coevolution patterns to model and simulate the proposed

diagrams changes. This set includes the change impact and traceability

analysis templates for updating UML diagrams. These patterns can help

developers to build efficient models, while avoiding reinvention of already

existing solutions of problems;

Univ
ers

ity
 of

 M
ala

ya

52

IV. Proposing a coevolution framework based on the proposed structure,

templates, and patterns; and

V. Validating and verifying the proposed framework and checking the

correctness and complexity of the proposed coevolution patterns.

Figure 3.3: Detailed Phases of Research Methodology

3.4 Modelling and Development Phase

Based on the research justification in the previous chapters, a formal modelling

language, CPNs, is used to model and simulate the proposed framework. The rationale

for using CPNs stems from the fact that it provides automatic validation and verification.

UML as a standard language for modelling OO software systems is a semi-formal

language and does not automatically support validation and verification of the

coevolution between software models. In contrast, CPNs is a formal and executable

modelling language that is widely used to handle inconsistency problems among models

and to automatically validate and verify the model’s dynamic behaviour. A case study is

Modelling and
Simulation

Using

Transformation
Rules

Based On

Change Impact Traceability Analysis

Coevolution Patterns OOCPNs
Model

UML Metamodel

Model
Changes

Consistency and Integrity Rules
How to apply the automatic coevolution
check on the proposed OOCPNs model

Theoretical Foundation

Univ
ers

ity
 of

 M
ala

ya

53

modelled in CPNs in order to apply the proposed transformation rules, change impact

and traceability analysis templates, and coevolution patterns.

3.5 Analysis and Evaluation Phase

In this phase, the proposed framework is discussed and its performance is evaluated.

This includes comparisons with the state of art. The main stages in this phase are:

• Providing case study models;

• Explaining the quantitative results of the research;

• Analysing and discussing the research results in comparison with those of

related works. This includes a quantitative analysis of the research results.

Dynamic verification of the formal method using the CPNs Tools simulation

is used to verify the proposed framework. Dynamic formal analysis looks at

the behaviour of the model (M Westergaard, 2007);

• Discussing the accomplishment of the research objectives; and

• Discussing the main limitations of the proposed framework.

3.6 Chapter Summary

In this chapter, the phases of the research methodology were identified and discussed.

The intent of each phase was also identified. In the next chapter, the proposed

coevolution framework will be discussed in detail. Univ
ers

ity
 of

 M
ala

ya

54

CHAPTER 4: PROPOSED COEVOLUTION FRAMEWORK

In this research, a coevolution framework is proposed in order to provide a systematic

and methodical approach for managing changes among UML structural, behavioural,

and interaction diagrams. The proposed framework is used to check the consistency,

impact, and traceability incrementally after a diagram or diagram element has been

created, deleted, or modified. Additionally, the provision of a change history between

two versions created from the same diagram is addressed. The coevolution and

inconsistencies between UML diagrams will be detected and resolved based on a set of

proposed coevolution patterns within the proposed coevolution framework.

Impact and traceability analysis is important in order to identify the parts that require

retesting and to improve the overall efficiency of software change management

techniques. In this research, a set of model-based change impact and traceability

analysis templates is proposed for all types of change. These templates are the basis of

the initiation of all update operations and are used to detect any elements affected by a

change to a system modelled using UML diagrams. The nature of the change could be

corrective or evolutionary. Corrective changes are implemented to correct a design

error. Evolutionary changes are required due to the redesign or reconfiguration of

processes. The change effect could be local if the change in one diagram does not

impact on other diagrams or it could be global if it concerns relations between

diagrams.

These changes are represented by consistency and integrity rules, which are

discussed in Section 4.1.2. These rules are modelled using the proposed coevolution

patterns. The proposed coevolution patterns are identified and categorized based on

UML diagram categories and relations (structural, behavioural, and interaction

diagrams).

Univ
ers

ity
 of

 M
ala

ya

55

The proposed framework is a hybrid of the transformational and formal semantic

approaches. The transformational approach is required for the mutual integration of

UML and CPNs modelling languages. The formal approach is used to model, simulate,

and validate the proposed coevolution framework and patterns using the CPNs formal

modelling tool (TGIgroup, 2013; Michael Westergaard & Verbeek, 2013).

The proposed framework, which is a type of software configuration management

technique, is shown in Figure 4.1.

Figure 4.1: Contextual Diagram of Proposed Coevolution Framework

The main components of the proposed framework are shown in Figure 4.2 and

Figure 4.3. These components are discussed in detail in the following subsections of this

chapter.

Figure 4.2: Components of Proposed Coevolution Framework

Integrated
UML and

CPN models

Version Control Patterns

Change Impact
Patterns

Consistency
Management Patterns

New Change
Patterns

Configuration Management

Software Configuration Management

Software Change Impact and Traceability Analysis

Proposed Coevolution Framework

Univ
ers

ity
 of

 M
ala

ya

56

Figure 4.3: Steps of Proposed Coevolution Framework

4.1 Software Model

A complete model can be represented using UML diagrams. UML 2.3 supports a

variety of diagrams which allows developers to model software systems from different

perspectives using UML structural, behavioural, and interaction diagrams (OMG, 2010).

UML diagrams are interrelated; some components for one diagram may be derived from

other diagrams. For example, an activity diagram can be used to model an operation

Formulate the change as a rule
(Rule Design)

New Change Integration (Change
Impact and Traceability Analysis)

Change Control Patterns

New Change
(Rule)

Coevolution Patterns

Structural
Patterns

Behavioral
Patterns

Interaction
Patterns

Change Type Examples
Change to correct errors, enhance
functionalities, adapt new data, and
improve efficiency

Software Model

UML diagrams
in OOCPNs

OO Model (UML)

UML into OOCPNs
Transformation Rules

Versions History
and Control

Patterns

Univ
ers

ity
 of

 M
ala

ya

57

associated with a use case or a class diagram. Since UML diagrams can be divided into

different categories, where each category focuses on a different perspective of a problem

domain, one of the critical issues that needs to be addressed is the maintenance of

consistency among diagrams (Shinkawa, 2006).

The patterns proposed in this research are applied to the following UML diagrams

(class, object, activity, statechart, and sequence diagrams). These diagrams cover the

three perspectives of UML diagrams, namely structural, behavioural, and interaction. A

class diagram is useful for representing information about actors, roles, organizational

units, and relevant data (Yang & Chen, 2003). Actors and data stores are objects in the

object diagram. The activity diagram is concerned with the control flow and the

sequence diagram is concerned with the object flow. The statechart diagram describes

the process behaviour produced by states and events. The dependency between these

diagrams is very high. It is crucial to transform UML diagrams into executable models

that are ready for analysis, and providing an automated technique that can transform

these diagrams into a mathematical model such as CPNs avoids redundancy in writing

specifications.

4.1.1 Transformation of UML into CPNs

Many approaches for integrating OO modelling and PNs/CPNs have been

investigated and developed. The transformation of UML diagrams into CPNs is partially

supported for a subset of UML diagrams, as discussed in Rajabi and Lee (2009b). This

research focuses on the transformation of UML diagrams from the structural,

behavioural, and interaction perspectives. In addition, a new structure, Object Oriented

Coloured Petri Nets (OOCPNs) which includes rules to maintain consistency and

Univ
ers

ity
 of

 M
ala

ya

58

integrity, is proposed to support model changes. A block diagram of the transformation

process is shown in Figure 4.4.

Figure 4.4: Block Diagram for Transforming UML Diagrams into OOCPNs

The components of UML structural, behavioural, and interaction diagrams are

transformed into CPN elements based on the proposed transformation rules. The

consistency and integrity rules are checked during the transformation process and after

updating the CPN model. The proposed structure can be described formally as a tuple of

<OOCPNs structure, Relations, Rules>

The OOCPNs structure is described formally in Definition 1. The OOCPNs model

elements are grouped together according to the relations between UML diagrams. The

rules used to maintain the consistency and integrity of the transformed model are

provided in Definition 2.

Definition 1. Proposed OOCPNs Structure:

The proposed OOCPNs structure is defined by the tuple n = (∑, Pg, P, Fp, T, SubT,

A, N, C, G, E, M0, R), where:

∑: is a finite set of non-empty types, called colour sets
Pg: {Pg0, Pg1….Pgn} is a set of pages, where Pg0 is the main page
P: {p1,p2, …,pn} is a finite set of places
Fp: {fp1, fp2, …,fpn} is a finite set of fusion places

UML Structural
Diagrams

UML Behavioural
Diagrams

UML Interaction
Diagrams

Transformation of UML Diagrams to OOCPNs

Consistency and Integrity Rules

OOCPN Model
Components

Updating OOCPN Model
Components

Univ
ers

ity
 of

 M
ala

ya

59

T: {t1, t2, …, tn} is a finite set of transitions
SubT = {Subt1, …, Subtn} is a finite set of substitution transitions
A: A ⊆ T × P ∪ P × T represents a set of directed arcs
N: A → T × P ∪ P × T is a node function
C: P → ∑ is a colour function
G: is a guard function
E: is an arc expression function
M0: P → C is the initial (coloured) marking
R: {r1, …,rn} is a finite set of consistency and integrity rules.

Definition 2. OOCPNs Model Relations and Rules:

The proposed transformation rules are used to transform the UML diagram elements

into OOCPNs elements. The OOCPNs elements are grouped together according to the

UML diagram relations as follows:

Let O be an OO software system represented by a set of UML diagram elements

(Eo) where Eo = {E1, E2,……, En}. Let TRo = {TR1, TR2,…TRn} be the set of

transformation rules. Let OOCPNo= {OOCPN1, OOCPN2,… OOCPNn} be the set of

equivalent OOCPNs elements of Eo. The transformation rule between {Ej,

OOCPNj} can be defined as follows:

∀ Diagram element ∈ Eo: Ej 𝑇𝑇𝑇𝑇𝑇𝑇
�� OOCPNj // Ej is a diagram element

The OO diagrams are organized in OOCPNs as a set of {S, B, and I}, where S is the

UML structural diagram elements, B is the UML behavioural diagram elements, and I is

the UML interaction diagram elements. The OO diagram elements in the OOCPNs are a

set of:

{S (E1, E2,…, En), B (E1, E2,…, En), I(E1, E2,…, En)}

{CD(E1,.., En), OD (E1,.., En), AD (E1,.., En), SCD(E1,.., En) ,SD (E1,.., En) }

The proposed transformation rules include information about the following:

• Rules to transform UML diagram elements into OOCPNs;

• Consistency and integrity rule(s) to maintain consistency and integrity during

the transformation and after updating the OOCPNs model components.

Univ
ers

ity
 of

 M
ala

ya

60

4.1.2 Design of Consistency Rules

The UML structural, behavioural, and interaction diagram elements are all subject to

change to accommodate new requirements. The scope of a change is determined by its

impact (local or global). The types of change supported in UML diagrams are shown in

Figure 4.5. The new changes are represented as rules to update diagram elements or

relations incrementally. If a change to an element is based on other elements, those

elements must exist. To ‘update’ means creating, deleting, or modifying diagram

elements. Each update operation is represented as a pattern; examples of the proposed

patterns are provided in CHAPTER 6:

Consistency and integrity rules to maintain the consistency between UML diagrams

and their relations are proposed in Section 4.2. The details of the complete

transformation of UML diagrams into the proposed OOCPNs structure are provided

in CHAPTER 5: These rules have the structure:

If (set of input conditions)
Then (set of output conditions)

Else (set of output conditions)

These rules are checked and applied during the change impact and traceability

analysis process. Rule conditions, actions, and pre and post conditions are also

considered. All consistency constraints are maintained before and after the new changes

have been updated. If any one of these constraints is not satisfied then it is rejected in

accordance with Rules 1 to 3 as formulated in Section 4.2. Data integrity is a critical

issue and needs to be validated against certain constraints before and after applying a

change. Integrity rules express constraints and define the acceptable relationships

between data elements, as well as ensuring completeness. In this research, these rules

are checked incrementally after each update operation, and any sequence of updates that

occurs must not result in a state that violates any of the constraints. For example, the

proposed rules disallow the deletion of referenced data.

Univ
ers

ity
 of

 M
ala

ya

61

Figure 4.5: Metamodel Diagram Changes (Elements Subject to Change)

4.2 Components Affected by a Change

In the proposed patterns, the UML diagram elements affected by a change are

determined based on the object dependency graph of the diagram objects and their

relations. Control flow dependency and other dependencies such as inheritance,

aggregation, encapsulation, polymorphism, and dynamic binding are supported by the

patterns. Figure 4.6 shows a graph that represents the dependency between the UML

diagrams.

Any update operation in a structural diagram will cause a change in the behavioural

and interaction diagrams. Also, the behavioural and interaction diagrams are

Meta-model Diagram Changes (Elements Subject to Change)

Class Diagram
Elements

1. Attribute
2. Value (input,
output, and attribute
value)
3. Operation
4. Class
5. Abstract class
6. Communication
method and dynamic
binding
7. Generalization/
Class inheritance
8. Association
9. Aggregation
10. Composition
11. Navigability
arrow
12. Polymorphism
13. Multiplicity
14. Role name
15. Interface
16. Dependency

Object Diagram
Elements

1. Object (class

instance)
2. Object state
3. Links

Sequence Diagram
Elements
1. Object & object

state
2. Message
3. Operation call and

self calls
4. Synchronous and

asynchronous
messages

5. Condition
6. alt (alternative

choice)
7. opt (optional

operator)
8. ref (reference

operator)
9. par (short for

parallel)
10. Iteration/Loop
11. Note
12. Creation and

deletion
13. Action

bar/Lifeline

Activity Diagram
Elements

1. Sub-activity
2. Action
3. Call behaviour

action
4. Control flow
5. Object flow
6. Object node
7. Start node
8. Guard condition
9. Join node
10. Fork node
11. Decision node
12. Branch
13. Merge node
14. Activity sequence
15. Activity iteration/

Loop
16. End node

Statechart
Diagram
Elements

1. Initial state
2. States
3. Events
4. A guard
condition
5. Actions
6. An activity
7. Composite
states and the
sub-states
8. Final state

Univ
ers

ity
 of

 M
ala

ya

62

interdependent; if a change has happened in one of the behavioural diagrams, then it will

affect at least one interaction diagram and vice versa. The following formal definitions

(Definitions 3 to 5) are used to determine the dependencies between the UML diagram

elements.

Figure 4.6: UML Diagram Dependency

Definition 3. Impact-related Elements:

Let X, Y ∈ Eo, where Eo is the set of UML diagram elements and X ≠ Y; Y is said to

be an impact-related element of X, if Y is changed then X is considered changed (Briand,

et al., 2003; Briand, et al., 2009). In the proposed patterns, this definition can be used to

determine the impact of a change between any structural diagram’s elements (S),

behavioural diagram’s elements (B), and interaction diagram’s elements (I) according to

the following relations:

∀ X∈ S, Y ∈ B, Z ∈ I: X is an impact-related element of Y and Z,

If (X is updated) Then (Y and Z are changed elements);

∀ X∈ S, Y ∈ B, Z ∈ I: Y is an impact-related element of X and Z,

If (Y is updated) Then (X and Z are changed elements);

∀ X∈ S, Y ∈ B, Z ∈ I: Z is an impact-related element of X and Y,

If (Z is updated) Then (X and Y are changed elements).

Structural Diagram
Changes

Behavioural Diagram
Changes

Interaction Diagram
Changes

Dependency
relation

Univ
ers

ity
 of

 M
ala

ya

63

Definition 4. Reflexive Relation:

Given that D is the Change Impact (CI) dependency, and A is a UML diagram, the

reflexive relation as defined by Lee (1998):

A D A: A depends on itself. This means that if A is impacted, it will impact itself

This definition describes vertical consistency, which is shown in Figure 4.7. Therefore

in general, the reflexive relations are:

S D S, B D B, and I D I

Definition 5. Transitive Relation:

Suppose X, Y, and Z are UML diagrams, then the transitive relation as defined by Lee

(1998) is:

X D Y and Y D Z ⇒ X D Z // This means that if X impacts Y and Y impacts Z, then X impacts Z

In the proposed patterns, examples of the transitive relations between S, B, and I are:

S D B and B D I ⇒ S D I

 S D I and I D B ⇒ S D B

For example, a change to the class diagram will affect the activity diagram (direct

impact) and a chang to the activity diagram will affect the sequence diagram (direct

impact). As a result, a change to the class diagram will affect the sequence diagram

(indirect impact). The change impact dependencies between the UML structural,

behavioural, and interaction diagrams are defined using the relations between diagrams.

The UML diagram relations are used to determine and classify all types of change in

UML diagrams and the impact on other diagram elements. Horizontal, vertical, and

evolutionary traceability and consistency types are supported to maintain consistency

and compatibility between the UML diagrams and their versions, as shown in Figure 4.7.

The horizontal relation between the diagram elements is affected by a change and the

change types can be described formally as in Definition 6. The evolutionary relation

Univ
ers

ity
 of

 M
ala

ya

64

between the diagram versions can be described formally as in Definition 7. The change

impact is determined for both direct and indirect change effects. A direct effect occurs

when the change to one diagram element directly impacts the definition of another

diagram element. An indirect effect occurs when the impacted diagram element in turn

impacts other diagram elements.

Figure 4.7: Types of Traceability and Consistency between UML Diagrams

Definition 6. Relation between UML Diagram Elements and Change Types:

Let O be an OO software system represented by a set of UML diagram elements (Eo),

where Eo = {E1, E2,……, En}. Let To = {t1, t2,……, tn} be the set of change types that can be

carried out on O such that for a given change{tj, Ej}, we can define:

Fimpact {tj, Ej} {E1, E2,…, Ek} (Ajila, 1995)

//where k is the number of the affected diagram elements,

where Fimpact is the impact function and {E1, E2,…, Ek} is the set of diagram elements

affected by applying change (tj) on element (Ej). The Fimpact can be extended to include

the UML diagram categories (C): S, B, and I as in the following:

Fimpact {tj, Cj} {S (E1, E2,…, Ek), B (E1, E2,…, Ek), I(E1, E2,…, Ek)}

Structural

Diagrams V2
Behavioural

Diagrams V2
Interaction

Diagrams V2

Structural
Diagrams V1

Behavioural
Diagrams V1

Interaction
Diagrams V1

Horizontal

Evolutionary

Refined
Structural
Diagrams

Refined
Behavioural
Diagrams

Refined Interaction
Diagrams

Vertical

Univ
ers

ity
of

Mala
ya

65

Fimpact {tj, Cj} {CD(E1,.., Ek), OD (E1,.., Ek), AD (E1,.., Ek), SCD (E1,..,

Ek), SD(E1,.., Ek)}

This definition describes horizontal consistency, which is shown in Figure 4.7.

Definition 7. Relation between UML Diagram Versions:

Based on the definition of Fimpact, the new version created from the impacted diagram

elements is

Fimpact {t’j, E’j} {E’1, E’2,…, E’k.}.

The new version from the UML diagram categories (C’): S’, B’, and I’ is:

{S’ (E’1, E’2,…, E’k), B’ (E’1, E’2,…, E’k), I’(E’1, E’2,…, E’k)}

such that: ∀ Ej ∈ Eo, If (Ej is changed), then (E’j is created as new version from Ej).

The new version of the diagrams is:

{CD’(E’1,.., E’k), OD’ (E’1,.., E’k), AD’ (E’1,.., E’k), SCD’(E1,.., E’k), SD’(E1,.., E’k)}

This definition describes the relations between the UML diagram versions and the

evolutionary consistency types. Definitions 1 to 5 are considered as change impact and

dependency rules. The dependency between the business model’s components and its

impact analysis can be supported efficiently through the proposed change impact and

traceability templates which include the following information for each change in the

UML diagram elements (this information is the main part of the proposed patterns):

The Change Type represents the rule. It could be creating, deleting or modifying

a diagram element;

The Change Impact value is ‘LC’ for a local change, ‘GC’ if the change affects

other diagram elements, or ‘Null’ if the update operation is not allowed;

The Affected Diagrams (Dependency) is the list of the affected diagrams;

Univ
ers

ity
 of

 M
ala

ya

66

The Consistency and Integrity Rules are designed to maintain the consistency

between UML diagrams and their relations. These rules are checked and applied

during the change impact and traceability analysis process. The structure of the

rules is provided in Section 4.1.2.

The proposed change impact and traceability analysis templates are discussed and

defined formally in Section 4.3. This research proposes the following general

consistency and integrity rules:

Rule 1: Deleting/modifying a referenced element

If (an update is to delete/modify a referenced element), then (deleting/modifying the

referenced element is not allowed) // A referenced element is an element defined by another

diagram. For example, diagram attributes are defined by the CD.

The change impact value will be ‘Null’, and the dependency value will be ‘None’. The

change impact and dependency value for the following examples of update operations

are determined based on Rule 1:

a. Deleting the following diagram elements:

- A CD attribute, operation, class, class inheritance, association, or

navigability arrow

- An object in the OD, SD.

b. Modifying the following diagram elements:

- A CD attribute name, operation name, class name, inherited class name,

navigability arrow direction, polymorphic operation name, or interface

element name

- An object name in the OD, SD

- A SD message name or a message attribute name.

Univ
ers

ity
 of

 M
ala

ya

67

Rule 2: Creating/deleting/modifying a non-referenced element

If (an update is to create/delete/modify a non-referenced element), then (the change

impact is local).

The change impact value will be ‘LC’, and the dependency value will be ‘None’. The

change impact and dependency value for the following examples of update operations

are determined based on Rule 2:

a. Creating the following diagram elements:

- A CD value

- An OD instance variable or variable/message data type

- A SD note.

b. Deleting the following diagram elements:

- A CD multiplicity range, interface, polymorphic operation or role name

- A SD message

- An OD instance variable

- A SD note.

c. Modifying the following diagram elements:

- A SCD and AD start or end node name

- An OD instance variable or variable/message data type

- A SD note.

Rule 3: Consistency and integrity constraints

Rule 3.1: The class attribute name and the association role name cannot have the

same name (Briand, et al., 2003).

Rule 3.2: Two associations with the same name and role name are not allowed.

Univ
ers

ity
 of

 M
ala

ya

68

Rule 3.3: No private attribute or operation can be accessed by an operation of

another class.

Rule 3.4: All diagram attributes/operations must be defined in the CD.

Rule 3.5: A cycle is not allowed in any directed paths.

Rule 3.6: For any update operation, the affected diagrams should also be

updated.

Rule 3.7: A diagram element cannot update an attribute if the attribute

changeability is not ‘changeable’.

Coevolution patterns are proposed for the changes in the UML diagram elements.

These patterns can be applied to detect a direct or indirect change effect for all the

diagram elements listed in Figure 4.5. These patterns also describe the change impact

and traceability analysis information for UML diagram elements. This information is

used in the vertical and horizontal consistency check types between UML diagrams.

Algorithm 1 given below is used to find the diagram elements affected by the change

based on the objects dependency graph. Data dependency is checked a pre and post

condition for each change.

Algorithm 1: Components affected by the change

Input: Diagram Name (N), Diagram Elements, Change Impact (CI)
Output: Diagrams Affected (Dependency)
Process:

O: an OO software system represented by a set of UML diagram elements
(Eo)
D: CI dependency
No: a set of UML diagram elements
Nj: a specific element in the diagram
S: Structural diagram elements, B: Behavioural diagram elements, I:
Interaction diagram elements

Begin
If (CI is LC) Then

- Nj D Nj // Nj depends on itself. This means that if Nj is impacted, it will impact
itself.

Univ
ers

ity
 of

 M
ala

ya

69

- ∀ Nj ∈ No, If (Nj is changed) Then (N’j is created as a new version from
Nj)

Else //global changes
If (Nj ∈ S) Then

- ∀ X∈ S, Y ∈ B, and Z ∈ I: X is an impact-related element of Y and Z,
If (X is updated) Then (Y and Z are changed elements)
- X’, Y’, and Z’ are created as new versions from X, Y, and Z,
respectively.

Else If (Nj ∈ B) Then
- ∀ X∈ S, Y ∈ B, Z ∈ I: Y is an impact-related element of X and Z, If (Y is

updated) Then (X and Z are changed elements)
- X’, Y’, and Z’ are created as new versions from X, Y, and Z, respectively.

Else (If Nj ∈ I) Then
- ∀ X∈ S, Y ∈ B, Z ∈ I: Z is an impact-related element of X and Y,
- If (Z is updated) Then (X and Y are changed elements)
- X’, Y’, and Z’ are created as new versions from X, Y, and Z, respectively.

endif endif endif
Versions update
endif
End

The version management technique is based on the revision version type. It stores

two versions of the UML diagrams: the existing version and the newly created version.

4.3 Proposed Change Impact and Traceability Analysis Templates

In this section, the proposed change impact and traceability analysis templates are

defined. The proposed templates are used to define the change type, change impact,

affected diagrams, and consistency and integrity rule for each diagram element. The

structural, behavioural, and interaction diagram elements together with their change

types are listed in Table 4.1, Table 4.2, and Table 4.3 respectively, where the complete

templates are provided in Appendix A.

The proposed impact and traceability analysis template is defined by the tuple n =

(CT, CI, AffectedD, ConstR), where:

CT is the change type that represents the rule, which could be creating, deleting,
or modifying a diagram element;

CI is the change impact value, where ‘LC’ denotes a local change, ‘GC’ denotes
a change that affects the elements of other diagrams, and ‘Null’ is where the
update operation is not allowed;

Univ
ers

ity
 of

 M
ala

ya

70

AffectedD defines affected diagrams (dependency), i.e. is a list of affected
diagrams; and

ConstR defines the consistency and integrity rules to maintain the consistency
between UML diagrams and their relations. These rules are checked and applied
during the change impact and traceability analysis process.

Table 4.1: Structural Diagram Elements and Change Types

Diagram Element Change Type
CD Attribute Create an attribute
CD Operation Create a new operation
CD Class Create a new class
CD Generalization/Class Inheritance Create a class inheritance
CD Association Create an association

Modify an association name
CD Aggregation Create an aggregation
CD Composition Create a composition
CD Navigability Arrow Create a navigability arrow
CD Communication Method and
Dynamic Binding

Create a communication method and
dynamic binding

CD Polymorphism Operation Create a polymorphic operation
CD Multiplicity Create/Modify a multiplicity range
CD Role Name Create/Modify a role name
CD Interface Create an interface
CD Dependency Create/Modify a class dependency

Delete a class dependency
OD Object (Class instance) Create a new object
OD Object States Create/Modify a variable/message data

type
Create/Delete/Modify a message

PD Package Create /Delete a package
PD Package Dependency Create/Delete a package dependency
CoD and DD Node Create /Delete a node
CoD and DD Component Operation Create /Delete a new component

operation
CoD and DD Dependency Create/Delete a dependency relation
CSD Part/Port Create/Delete a part/ port

Table 4.2: Behavioural Diagram Elements and Change Types

Diagram Element Change Type
UCD Actor Create an actor
UCD Communication (association) Create/Delete communications
UCD Use case Create a use case
UCD Extend/Include/Generalize/Use
Relations

Create/Delete/Modify a use case
relation

UCD Use Case Description Create/Delete/Modify a use case
description

Univ
ers

ity
 of

 M
ala

ya

71

Diagram Element Change Type
AD Sub-Activity/SCD Activity Create a sub-activity

Delete /Modify a sub-activity
AD, UCD, and SCD, Action Create /Delete an action

Modify an action condition
AD Control Flow Create / Delete a control flow
AD Object Flow Create an object
AD Control Nodes (Fork, Join, Merge,
and Decision)

Create/Delete/Modify a control node

AD Activity Sequence Create/Delete/Modify an activity
sequence

AD, SD, and CommD Iteration /Loop Create/ Delete an iteration
Modify an iteration decision node
Modify an iteration condition

AD Call Behaviour Action Create an AD call behaviour action
AD and SCD Start/End Nodes Create/Delete a start or end node
SCD State Create a state
SCD Event Create an event
SCD, AD, and SD Guard Condition Create/Delete/Modify a guard

condition
SCD Composite State and Sub-State The same as in SD message changes

Table 4.3: Interaction Diagram Elements and Change Types

Diagram Element Change Type
SD Iteration /Loop Create/ Delete an iteration

Modify an iteration decision node
Modify an iteration condition

SD Guard Condition Create/Delete/Modify a guard condition
SD and CommD Object Create an object
SD Message Create a message
SD Operation Call Create an operation call
SD Creation and Deletion Create a creation and deletion
SD Synchronous and Asynchronous
Messages

Create a synchronous and asynchronous
message

SD Operators (alt/ opt / ref / par)
Changes

Create/Delete/Modify operators

SD Action Bars/Lifelines Create/Modify an action bar
SD and CommD Message Sequence
Number

Create/Delete/Modify a message
sequence number

IOD Activity or Interaction Diagram
Elements

Create an activity or interaction diagram
element

TD Task Create a task
TD Task Duration Create/Delete/Modify a task duration

Univ
ers

ity
 of

 M
ala

ya

72

4.4 Proposed Pattern Structure

The proposed UML diagram change patterns are categorized based on the UML

diagram categories and relations (structural, behavioural, and interaction), as shown in

Figure 4.8.

Figure 4.8: Proposed Patterns Categories

The proposed new pattern modifies Gamma , et al (Gamma , et al., 1995) and Gamma

, et al (Gamma, et al., 2001) to include the change impact and traceability analysis

information. The proposed pattern is defined as follows:

Pattern Name: The identifier of a pattern that captures the main idea of what the

pattern does;

Intent: What does the design pattern do? What is its rationale and intent? What

particular design issue or problem does it address?

Motivation: A scenario that illustrates a design problem. The scenario help to

understand the more abstract description of the pattern that follows.

Problem description: Presents the problem addressed by the pattern;

Solution/Diagram: Describes possible solutions to the problem; a graphical

representation of the pattern using a notation based on the proposed OOCPNs

structure and CPN modelling techniques.

Proposed Coevolution Patterns

Structural Diagram
Patterns

Behavioural Diagram
Patterns

Interaction
Diagram
Patterns

Control and
Versions History

Patterns

Univ
ers

ity
 of

 M
ala

ya

73

Change impact and traceability analysis: As discussed in Section 4.2 above, this

includes the following information: (Change Type, Change Impact, Affected

Diagrams (Dependency), and Consistency and Integrity Rules);

Example: One or more examples of the pattern found in real systems when needed.

CPN places initial and final marking examples are provided.

Related patterns: What design patterns are closely related to this one? What are the

important differences? With which other patterns should this one be used?

The proposed coevolution patterns are discussed and defined formally in CHAPTER

6: The complete lists of the proposed patterns for each diagram element are provided in

Table 4.4 to Table 4.9.

Table 4.4: Proposed Class Diagram Coevolution Patterns

Diagram Element Pattern Supported
Class Create a class

Delete a class
Modify a class name
Class redundancy check
Class search
Class with no operation or attribute
Consistency check
Class element redundancy check
Class with no relation consistency check

Attribute Create an attribute
Delete an attribute
Modify attribute name
Modify attribute visibility
Modify attribute property
Modify attribute type
Modify attribute value
Attribute redundancy check
Attribute search

Operation Create an operation
Delete an operation
Modify operation property
Modify operation type
Modify operation visibility
Modify operation name
Operation redundancy check
Operation search

Univ
ers

ity
 of

 M
ala

ya

74

Diagram Element Pattern Supported
Generalization/Class
Inheritance

Create a class inheritance
Delete generalization relationship
Modify generalization relationship
 Generalization relationship search

Association Create an association relationship
Delete an association relationship
Association relationship search

Aggregation Create an aggregation relationship
Delete an aggregation relationship
Aggregation relationship search

Composition Create a composition relationship
Delete a composition relationship
Composition relationship search

Multiplicity Modify association destination multiplicity
Modify association source multiplicity

Role Name Modify role name

Table 4.5: Proposed Object Diagram Coevolution Patterns

Diagram Element Pattern Supported
Object (Class instance) Create an object

Delete an object
Modify object name
Search instance name
Search object Exist
Search instance class

Object States Create/Delete/Modify a variable/message
These two patterns are the same as the class
diagram attribute and operation patterns

Consistency Check Check object name
Objects not created

Table 4.6: Proposed Activity Diagram Coevolution Patterns

Diagram Element Pattern Supported
Activity Create an activity

Delete an activity
Activity search

Sub-Activity Create a sub-activity
Delete /Modify a sub-activity
Sub-activity search

Control Nodes (Fork, Join,
Merge, and Decision)

Create/Delete/Modify a control node
Fork search
Join search
Decision search
Merge search

Object Objects not in ADs
Object search

Univ
ers

ity
 of

 M
ala

ya

75

Diagram Element Pattern Supported
Action and Call Behaviour
Action

Action search
Create /Delete/Modify an action—Lists for
the activity diagram action are stored in the
proposed OOCPNs structure

Iteration /Loop Create/ Delete/Modify an iteration—Lists for
the activity diagram loop elements (such as
decision and iteration condition) are stored in
the proposed OOCPNs structure
Loop Search

Guard Condition Create/Delete/Modify a guard condition —
Lists for the activity diagram guard conditions
are stored in the proposed OOCPNs structure
Guard Search

Consistency Check ADs not created
AD elements not created
Modify AD name

Table 4.7: Proposed Statechart Diagram Coevolution Patterns

Diagram Element Pattern Supported
Event Create an event

Delete /Modify an event
Event search

State Create a state
Action Action search

Create /Delete/Modify an action—Lists for
the statechart diagram action are stored in the
proposed OOCPNs structure

Start/End Node Create/Delete a start or end node
Iteration /Loop Create/ Delete/Modify an iteration—lists for

the statechart diagram loop elements (such
as decision and iteration condition) are stored
in the proposed OOCPNs structure
Loop Search

Guard Condition Create/Delete/Modify a guard condition —
lists for the statechart diagram guard
conditions are stored in the proposed
OOCPNs structure
Guard Search

Consistency Check SCDs not created
SCD elements not created
Modify SCD name

Univ
ers

ity
 of

 M
ala

ya

76

Table 4.8: Proposed Sequence Diagram Coevolution Patterns

Diagram Element Pattern Supported
SD Object Create an object

Object search
SD Message Message search

Create a message—list of the sequence
diagram massages are stored in the proposed
OOCPNs structure

SD Iteration /Loop Create/ Delete/Modify an iteration—lists for
the sequence diagram loop elements (such
as decision and iteration condition) are
stored in the proposed OOCPNs structure
Loop Search

SD Guard Condition Create/Delete/Modify a guard condition —
lists for the sequence diagram guard
conditions are stored in the proposed
OOCPNs structure
Guard Search

SD Operators (alt/ opt / ref /
par)

Create/Delete/Modify operators
Opt search
Ref search
Alt search
Par search

Consistency Check SDs not created
SD search
SD elements not created
Objects not in SDs
Modify SD name

Table 4.9: Proposed Change Control Coevolution Patterns

Pattern Name Description
Search Patterns Find a diagram element patterns. Used to

check the existing of a diagram element
Class Diagram Search Patterns Find a class diagram element patterns
Object Diagram Search Patterns Find an object diagram element patterns
Activity Diagram Search Patterns Find an activity diagram element patterns
Sequence Diagram Search
Patterns

Find a sequence diagram element patterns

Change History Patterns Changes history selection
Store in file
Update new version

Univ
ers

ity
 of

 M
ala

ya

77

4.5 Chapter Summary

Coevolution between diagrams involves both impact analysis and change propagation.

In this chapter, a coevolution framework was proposed to trace the diagram dependency

and to determine the effect of the change between UML diagrams incrementally after

each change operation. A set of change impact and traceability analysis templates and

patterns was proposed for all types of change in the UML diagram elements. These

pattern templates are the basis of the initiation of all update operations and are used to

detect any elements affected by the change in the systems modelled using UML

diagrams. The proposed change impact and traceability analysis templates were defined

and discussed. In the next chapter, the proposed structure for the integration between

UML diagrams and CPNs including the transformation rules will be defined. This

integration is based on the change impact and traceability analysis templates provided in

this chapter.

Univ
ers

ity
 of

 M
ala

ya

78

CHAPTER 5: TRANSFORMATION OF UML DIAGRAMS INTO CPNS

In this chapter, transformation rules to transform the structural, behavioural, and

interaction elements of UML diagrams into OOCPNs are provided. The general

structure for the CPN model after the transformation of UML diagrams is as follows:

Attributes and operations in the CPN model are transformed from the class diagram

(CD). These attributes and operations are used by other CPN model components.

Classes are organized into subpages or subnets. These subpages can be instantiated

using tokens which represent the objects. Related subpages can be grouped together

according to the package diagram (PD) and composite structure diagram (CSD). The

behaviour and interaction of objects are described using the transformed behavioural

and interaction diagrams. The statechart diagram (SCD) describes the object’s

behaviour by states and events. The activity diagram (AD) describes the control flow

from activity to activity. The sequence diagram (SD) describes the control flow from

object to object. Each activity can have a starting and finishing time to determine the

sequence of activities or execution order as described in the timing diagram (TD).

Communication between objects is described using SD and communication diagram

(CommD). Sequence diagrams focus on the times that messages are sent.

Communication diagrams focus on object roles. A communication model can be used to

show the use case objects and the sequence of messages passed between them. A

complete set of UML diagram elements is summarized in Figure 5.1. Univ
ers

ity
 of

 M
ala

ya

79

Figure 5.1: Structural, Behavioural, and Interaction in UML Diagram Elements

UML Diagram Elements

Structural Diagram Elements Behavioural Diagram Elements Interaction Diagram Elements

Class Diagram
1. Attributes
2. Values (input, output, and

attribute value)
3. Operations
4. Classes
5. Abstract classes
6. Communication methods and

dynamic binding
7. Generalization/class

inheritance
8. Associations
9. Aggregation (consists-of)
10. Composition (is-part-of)
11. Navigability arrow
12. Polymorphism
13. Multiplicity
14. Role name
15. An interface
16. Dependency

Object Diagram
Create/Delete/Modify

1. Object (class instance)
2. Object state

Package Diagram Patterns
1. Package
2. Packages dependency

Composite Structure Diagram
1. Parts
2. Interconnection between

classes/objects (ports)

Component and Deployment
Diagram

1. Nodes
2. A component operation
3. Connection between nodes
4. Interfaces
5. A dependency

Activity Diagram
1. A sub-activity
2. An action
3. A call behaviour action
4. A control flow
5. An object flow
6. An object node
7. Start node
8. A guard expression
9. A join
10. A fork
11. Decision nodes
12. A branch
13. A merge
14. An activity sequence
15. An activity iteration/loop
16. End state

Use Case Diagram
1. Actors
2. Communications (associations)
3. Use cases
4. Extend
5. Include
6. Generalize
7. Use pattern
8. Use case description
9. Actions

Sequence Diagram
1. Objects
2. Messages
3. Operation call and self call
4. Synchronous and asynchronous messages
5. A condition
6. alt (alternative choice)
7. opt (optional operator)
8. ref pattern
9. par (short for parallel)
10. An iteration/loop
11. A note
12. Creation and deletion
13. Action bars/lifelines

Collaboration/Communication Diagram
1. Objects and object states
2. Messages
3. Message data type
4. Message sequence numbers
5. Synchronous and asynchronous messages
6. Iteration and self call

Statechart Diagram
1. Initial state
2. States
3. Events
4. A guard condition
5. Actions
6. An activity
7. Composite states and the sub-

states
8. Final state

Interaction Overview Diagram
1. Activity diagram elements
2. Activity behaviour

Timing Diagrams
1. Tasks, task duration, priorities Univ

ers
ity

 of
 M

ala
ya

80

5.1 Class Diagram Transformation Rules

A CD is used to describe the structural and architectural composition of a system by

identifying classes and their interrelations or associations. The main components for

every CD are classes, associations, and multiplicities. Associations represent structural

relationships between objects and describe the relationships between instances at

runtime. Optional items are also provided for clarity in the CD such as navigability and

roles. The role name clarifies the association nature and the navigability arrow shows

the association direction. Aggregation, composition, and generalization are special kinds

of associations. Multiplicity is the number of possible class instances; it can be

expressed as single numbers or ranges of numbers. Examples are zero or one instance,

no limit of instances, and exactly one instance. Class diagram elements are transformed

into OOCPNs according to the following transformation rules:

1. CD attribute ⇒ CPN place

Consistency and integrity rule: the same as in Template 1

2. CD attributes type ⇒ CPN colour set

3. CD values ⇒ CPN tokens // Values: input, output, or attribute value

4. CD value type ⇒ CPN colour set

5. CD operation ⇒ CPN subpage.

Consistency and integrity rules: the same as in Template 2

6. CD class transformation into CPNs

• CD class ⇒ CPN subpage

• CD class instance ⇒ CPN substitution transition

• CD class name and attribute ⇒ CPN place with appropriate colour type.

Example: The CD in Figure 5.2 is transformed into CPNs as shown in

Figure 5.3.

Univ
ers

ity
 of

 M
ala

ya

81

Consistency and integrity rule: the same as in Template 3

Figure 5.2: Example of Class Diagram

Figure 5.3: CPN ML (MetaLanguage) Description of Figure 5.2

7. CD communication method and dynamic binding transformation into CPNs

• CD synchronous request ⇒ CPN transition fusion

• CD asynchronous request ⇒ CPN fusion places

Figure 5.4 provides an example of fusion places.

Consistency and integrity rules are the same as in the SD message

transformation into CPNs.

The following diagram elements are transformed into CPNs in the same way as

in the CD communication method and dynamic binding:

- SD and CommD synchronous and asynchronous messages

- Component Diagram (CoD) and Deployment Diagram (DD) interfaces

Figure 5.4: Example of Fusion Places

T1

Fusion 1Fusion 1

T2

Fusion 1Fusion 1

var Operation_Date: STRING;
var Amount: STRING;
colset Transaction = product STRING * STRING;

// Transaction class colour set is a product of the
class attributes’ colours

Univ
ers

ity
 of

 M
ala

ya

82

8. CD generalization ⇒ Hierarchical Coloured Petri Net (HCPN) by net addition

(place and/or transition fusion).

Figure 5.5 shows the transformation of generalization into CPNs. The colour set

is used to model the class name, as described in Figure 5.3 for the “Transaction”

class.

Consistency and integrity rule: the same as in Template 4

Figure 5.5: Example of CPNs for Generalization/Inheritance

9. CD associations ⇒ CPN places connected between the classes’ subnets

Consistency and integrity rule: the same as in Template 5

10. CD aggregation ⇒ HCPN by net addition (place and/or transition fusion)

Consistency and integrity rule: the same as in Template 5

The aggregation relation means that the target subnet needs to contain some

instances of the source subnet. Communication between subnets is the same as

in the CD communication method and dynamic binding. Composition (is-part-

of) can be modelled in the same way as in aggregation, but the difference is that

the target subnet needs to contain one instance of the source subnet.

11. CD navigability arrow ⇒ CPN arc

Consistency and integrity rules: the same as in Template 6

Method 2

Method 2

[ClassName C or D]

Method 1

Method 1

[ClassName A or B]

Outport

Method 2
Out

Method 1
Out

Inport

Method 1 Method 2

Method 1
Exit

Method 2
Exit

Univ
ers

ity
 of

 M
ala

ya

83

12. CD polymorphism ⇒ HCPN by net addition (place and/or transition fusion), in

addition to the net inscription as shown in Figure 5.6. An inherited attribute

(polymorphism token) can hold tokens of the superclasses and subclasses. It is

connected to the transition that represents the overriding operation.

Consistency and integrity rule: the same as in Template 7

Figure 5.6: Example of CPNs for Polymorphism

13. CD multiplicity ⇒ CPN tokens and substitution transition

Consistency and integrity rules: the same as in Template 8

14. CD role name ⇒ CPN auxiliary text

Consistency and integrity rule: the same as in Template 9

15. CD interface ⇒ the same as in CD class transformation except that it lacks

instance variables and implemented methods

Consistency and integrity rule: the same as in

Template 10

16. PD dependency ⇒ CPN arcs

Consistency and integrity rule: the same as in Template 11

ObjB Method ()

Method

[ClassName=ObjB]

ObjA Method ()

Method

[ClassName=ObjA]

Outport

Polymorphism
token

OutOut

Inport

Method Method

ObjB Method
Exit

ObjA Method
Exit

Univ
ers

ity
 of

 M
ala

ya

84

5.2 Object Diagram Transformation Rules

An object diagram (OD) consists of objects that show the instances of classes

communicating by sending each other message. Attributes and behaviours/operations

are the main components of the OD. Object attribute values determine the object state.

Object diagram elements are transformed into OOCPNs according to the following

transformation rules:

1. OD object transformation into CPNs

• OD, SD, and CommD object (class instance)⇒ CPN tokens

Number of tokens is equal to (∑Occi , i > 0, where Occi is the number of

instances).

• OD object attribute ⇒ CPN token colour

Consistency and integrity rule: the same as in Template 12

2. OD object states transformation into CPNs

• OD instance variable ⇒ CPN place

• OD variable type ⇒ CPN place colour

• OD message data type ⇒ CPN product data type supported in CPNs for all

the message attributes

• OD behaviour transformation into CPNs is the same as in the CD

operation transformation

• OD communication transformation into CPNs is the same as in SD

messages transformation

Consistency and integrity rule: the same as in Template 13

5.3 Package Diagram Transformation Rules

A PD is a collection of logically related UML elements. It is used to simplify

Univ
ers

ity
 of

 M
ala

ya

85

complexity in UML by grouping related classes into packages. Two packages are

dependent if the change in one package could force changes in the other (Miller, 2003).

Package diagram elements are transformed into OOCPNs according to the following

transformation rules:

1. PD packages ⇒ HCPN by net addition (place and/or transition fusion)

Consistency and integrity rules: the same as in Template 14

2. PD dependency ⇒ CPN arcs

Consistency and integrity rule: the same as in Template 15

5.4 Composite Structure Diagram Transformation Rules

A CSD shows the internal structure of a class (parts) and possible collaborations

(ports). It is used to explore runtime instances of interconnected instances collaborating

over communication links (Ambler's, 2009). These parts must be defined in the CD or

ODs. Composite structure diagram elements are transformed into OOCPNs according to

the following transformation rules:

• CSD part ⇒ the same as in CD and OD element transformation

• CSD ports ⇒ CPN places

Consistency and integrity rules: the same as in Template 19

5.5 Implementation Diagrams (Component Diagrams and Deployment

Diagrams)

A component is a code module. A CoD reflects the actual implementation of a system

(Miller, 2003). A DD is a graph of nodes connected by communication associations. It

covers the physical architecture in terms of the system hardware and software. In

addition, it shows the configuration of runtime processing elements, software

components, processes, and the objects that live on them (Miller, 2003).Component

Univ
ers

ity
 of

 M
ala

ya

86

diagram and DD elements are transformed into OOCPNs according to the following

transformation rules:

1. CoD and DD Node ⇒ subnet in HCPN, each subnet contains components and

interfaces communicate together by message passing

Consistency and integrity rules: the same as in Template 16

2. CoD and DD component operation transformation into CPNs is the same as in

CD operation transformation

Consistency and integrity rules: the same as in Template 17

3. CoD and DD dependency ⇒ CPN arc

Consistency and integrity rule: the same as in Template 18

5.6 Use Case Diagram Transformation Rules

A use case diagram (UCD) shows actors and use cases together with their

communications. It describes the functional requirements of a system in terms of actors

and use cases. An actor in the UCD may be a user, an invoked application, a database,

or system/device hardware. The provision of a short textual description also helps

readers understand the meaning of each use case and actor. Use cases may be dependent

on each other. There are many types of dependencies and relationships between use

cases such as Include, Extend, Generalize, and Use. An alternative path that a use case

might take if the appropriate condition holds is modelled by using the “extend”

dependency. A use case that is used by other use cases is modelled by using the

“include” dependency. “Use” relationships are used to show the decomposition of a use

case into sub-use cases (Calderon, 2005). In the generalized interface, the child use case

replaces the parent use case without interrupting the execution. This is the main

difference between the “generalize” and “extend” relationships (Emadi & Shams,

2009). Use case diagram elements are transformed into OOCPNs according to the

Univ
ers

ity
 of

 M
ala

ya

87

following transformation rules:

1. USD actors ⇒ CPN places

Consistency and integrity rule: the same as in Template 20

2. UCD communications between the uses cases ⇒ CPN arcs

Consistency and integrity rule: the same as in Template 21

3. UCD use case transformation into CPNs

• UCD use case ⇒ CPN transition

• UCD use case condition ⇒ CPN input place with transition guard

The use case can return values to the calling actors and these can also be

modelled using place and transition. An example of UCD actor and use case

transformation is shown in Figure 5.7.

Consistency and integrity rule: the same as in Template 22

Figure 5.7: Example of Transformation of Actor and Use Case into CPNs

4. UCD use case description transformation into CPNs

• UCD action ⇒ CPN transition

• UCD action pre and post conditions ⇒ CPN transition guard function and

code segment

Consistency and integrity rule: the same as in Template 24

Transition

Use Case1

Actor

Univ
ers

ity
 of

 M
ala

ya

88

5. UCD extend dependency

The extend interface between two use cases is executed as follows:

If (use case B extends use case A)

Then (the execution of use case B is optional after the execution of use case A).

The extend interface between uses cases is transformed into CPNs as shown in

Figure 5.8.

Consistency and integrity rule: the same as in Template 23

Figure 5.8: Example of transformation of extend Interface into CPNs

6. UCD include dependency

In the include interface between two use cases, the execution of the included use

case is mandatory as shown in Figure 5.9.

Consistency and integrity rule: the same as in Template 23

Figure 5.9: Example of Transformation of Include Interface into CPNs

T Use CaseBUse Case AActor

Use Case A

T Use CaseBUse Case AActor

Univ
ers

ity
 of

 M
ala

ya

89

7. UCD generalize dependency

In the generalize interface, use case B can replace use case A without

interrupting the execution (Emadi & Shams, 2009) as shown in Figure 5.10.

This is the main difference between the generalize and extend relationships. The

use relationship is transformed into substitution transitions for each use case that

is decomposed into sub-use cases. Each substitution transition is modelled in the

same way as in the use cases transformation into CPNs.

Consistency and integrity rule: the same as in Template 23

Figure 5.10: Example of Transformation of Generalize Interface into CPNs

5.7 Activity Diagram Transformation Rules

An AD is a directed graph consisting of actions and flows (Shinkawa, 2006). It

focuses on the flow of activities involved in a single process and how those activities

depend on one another. There are three kinds of nodes in activity models:

executable/action, control, or object nodes. Other AD nodes include object swimlane,

transition, branch, guard expression, and control node (Fork, Join, Merge, and Decision)

(Miller, 2003). Activity diagram elements are transformed into OOCPNs according to

the following transformation rules:

1. AD sub-activity/ State Chart Diagram (SCD) activity ⇒ CPN subpage

T1

T2

Selection
Place

Use Case A

Use CaseB

Univ
ers

ity
 of

 M
ala

ya

90

Consistency and integrity rule: the same as in Template 25

2. UCD, SCD, and AD action ⇒ CPN transition (it takes a specific input from

some places and produces a specific output to other places)

Consistency and integrity rule: the same as in Template 26

3. AD control flow ⇒ CPN places with input/output arcs

Consistency and integrity rule: the same as in Template 27

4. AD object flow transformation into CPNs

• AD object flow ⇒ CPN places with input/output arcs

• AD object node ⇒ CPN place

Consistency and integrity rule: the same as in Template 28

5. AD control nodes (Fork, Join, and Merge) transformation into CPNs

• AD control node ⇒ CPN transition

• AD control node input and output flow ⇒ CPN places

AD control nodes (Fork, Join, and Merge) are modelled as a CPN transition.

Each input flow and each output flow of the control node is modelled by a CPN

place as shown in Figure 5.11 and Figure 5.12. The merge node and the decision

node have the same notation, but in the merge node there are multiple inputs and

one output (Maqbool, 2005).

Consistency and integrity rule: the same as in Template 29

Figure 5.11: Example of Transformation of fork Node into CPNs

T1

P3P2

P1
Univ

ers
ity

 of
 M

ala
ya

91

Figure 5.12: Example of Transformation of join Node into CPNs.

6. AD decision node ⇒ CPN arc inscription

The AD decision node is represented in CPNs by an arc inscription to control the

passing of tokens. Tokens represent the variables’ values. Each activity

connected to the transition node is transformed into a CPN transition as shown

in Figure 5.13. The AD branch undergoes the same transformation such that

each decision node represents a branch.

Figure 5.13: Example of Transformation of decision Node into CPNs.

7. SCD and AD start/end state transformation into CPNs

• AD start node ⇒ CPN place without any incoming arc

• AD end node ⇒ CPN place without any outgoing arc

Consistency and integrity rule: the same as in Template 32

8. AD activity sequence transformation into CPNs

• AD activity sequence ⇒ CPN page including a set of interconnected

activities

T1

P3

P2P1

T1

T2 T3

T4

Univ
ers

ity
 of

 M
ala

ya

92

• AD activity ⇒ CPN transition

• AD activity input and output ⇒ CPN places

An example of the transformation of an AD start/end node and activity sequence

into CPNs is shown in Figure 5.14.

Consistency and integrity rule: the same as in Template 30

Figure 5.14: Example of Transformation of Activity Sequence and Start/End Node into

CPNs

9. An example of the transformation of an AD activity iteration/loop and SD

activity iteration/loop into CPNs is shown in Figure 5.15 and Figure 5.16,

respectively.

Consistency and integrity rule: the same as in Template 31

Figure 5.15: Example of Transformation of Activity Diagram Iteration/Loop into CPNs

Start

A

C

B

End

A
Condition

Test

B

[True]

[False]Univ
ers

ity
 of

 M
ala

ya

93

Figure 5.16: Example of Transformation of Sequence Diagram Iteration/Loop into

CPNs

5.8 Statechart Diagram Transformation Rules

A SCD shows the possible states of the object and transitions (arrows from one state

to another) that cause a change in states (Merseguer & Campos, 2003; Miller, 2003). A

SCD contains states (simple or composite) and transitions (events or actions). Complex

statecharts are those that contain composite states (Saldhana & Shatz, 2000). A state has

several parts: name, entry action, exit action, internal transitions, sub-states, and

deferred events. A composite state is decomposed into two or more concurrent sub-

states or into mutually exclusive disjoint sub-states (Merseguer & Campos, 2003). A

transition has several parts: source state, event trigger for transition firing, guard

condition, and target state. Statechart diagram elements are transformed into OOCPNs

according to the following transformation rules:

1. SCD state ⇒ CPN place

//input place is for the input state and output place is for the output state.

Consistency and integrity rule: the same as in Template 33

2. SCD event transformation into CPNs

• SCD event ⇒ CPN transition

• SCD event arguments ⇒ CPN token colours

Consistency and integrity rule: the same as in Template 34

[True]

[False]

Message 1

Start Loop

Condition
Test []

End Loop

Message2

Univ
ers

ity
 of

 M
ala

ya

94

3. SCD composite state and sub-state transformation into CPNs

Composite states and sub-states are necessary when an activity involves synchronous

and asynchronous sub-activities. Communications between the sub-states are described

using SD and CommD message passing. Composite states and sub-states are modelled

in the same way as in the SD messages transformation into CPNs and CD

communication method and dynamic binding transformation into CPNs.

Consistency and integrity rule: the same as in Template 36

4. SCD note ⇒ CPN auxiliary text

SD note has the same transformation.

5.9 Sequence Diagram and Communication Diagram Transformation Rules

A SD is used to represent the life cycle of an object or the sequence of interactions

between objects by message passing (how operations are carried out, what messages are

sent and when) (Hu & Shatz, 2004; Khadka, 2007). Sequence diagrams are organized

according to time. The vertical line represents the life cycle of an object and the

horizontal line represents the interaction between objects. Objects are listed according

to when they take part in the message sequence (Miller, 2003). An activation bar

represents message execution duration. Iteration is represented by the asterisk on the

self call. Square brackets represent the conditions. A message represents a

communication between objects. Messages are classified into synchronous and

asynchronous messages, based on whether the sender waits for the reply (Shinkawa,

2006). Communication diagrams focus on objects and their relations with the

communication method, and also on object roles instead of the message times. The

communication method is represented by the message flow between objects. The object

roles are labelled with either class or object names or both. Sequence numbers are

attached to messages to describe a certain chain of communications. Messages at the

Univ
ers

ity
 of

 M
ala

ya

95

same level are sent during the same call (Miller, 2003). Sequence diagram elements are

transformed into OOCPNs according to the following transformation rules:

1. SD message ⇒ CPN transition

SD messages are transformed into CPN transitions as shown in Figure 5.17. The

order of transitions is according to the order of the messages in the SD. Tokens flow

between places and transitions are modelled to fire the transitions (execution of

messages). Places represent the objects used during message execution.

Consistency and integrity rule: the same as in Template 38

Transforming the following diagram elements into CPNs is the same as message

transformation into CPNs:

- CoD and DD connections

- AD call behaviour

- SD and CommD operation call

- SD creation and deletion

- CommD (messages and self call)

Figure 5.17: Example of Transformation of Sequence Diagram Messages into CPNs

2. SD, AD, and SCD condition ⇒ CPN place

Consistency and integrity rule: the same as in Template 35

3. SD action bars/lifelines ⇒ CPN places to represent the beginning and the end of

the action bar (Shinkawa, 2006)

Message2

Message1

Places represent
the objects

Univ
ers

ity
 of

 M
ala

ya

96

Consistency and integrity rule: the same as in Template 41

4. SD alt

SD alt (alternative choice) is used to represent choices (nested branches). Each

choice is transformed into CPNs as in messages transformation. Choices are selected

for execution based on the true value of the choice guard. The branches are combined

together using shared input and output places as shown in Figure 5.18.

Figure 5.18: Example of Transformation of alt Operator into CPNs

Consistency and integrity rule: the same as in Template 40

5. opt (optional operator)

opt can be transformed into CPNs in the same way as in alt operator, because opt is

considered as an alternative choice with only one branch whose guard is not the

“else” (Ribeiro & Fernandes, 2006).

6. ref

The ref construct is transformed into a CPN substitution transition to include/reuse

a SD inside another SD.

7. par (parallel)

par is used to represent number of branches that occur in parallel. Each branch is

transformed into CPNs as in messages transformation, then these branches are

combined together using shared input and output places and transitions as shown in

Figure 5.19.

[else][]

Message 1 Message 2

Univ
ers

ity
 of

 M
ala

ya

97

Figure 5.19: Example of Transformation of par Operator into CPNs

5.10 Interaction Overview Diagram Transformation Rule

Interaction overview diagram elements are transformed into OOCPNs according to

the following transformation rule: the AD’s elements are transformed as described in the

AD transformation. The activity behaviour, which can be implemented using SD is

transformed into a CPN subnet. The subnet is modelled as described in the SD

transformation.

Consistency and integrity rule: the same as in Template 43

5.11 Timing Diagram Transformation Rules

Timing diagrams are used to explore the objects’ behaviours throughout a given

period of time (Ambler's, 2009). It is used for task scheduling purposes. Figure 5.20 is

an example of TD modelled in CPNs. Timing diagram elements are transformed into

OOCPNs according to the following transformation rules:

1. TD task ⇒ CPN transition

Consistency and integrity rule: the same as in Template 44

2. TD duration ⇒ timed CPN token (token with time stamp)

Consistency and integrity rule: the same as in Template 45

Parallel Start

Message 1 Message 2

Parallel End

Univ
ers

ity
 of

 M
ala

ya

98

3. TD priority ⇒ represented by CPN ML

For example, the following ML function calculates the highest priority between

two tasks:

fun higherPriority (p1, p2) =(p1>p2);

(* p1 has higher priority than p2 if p1 is greater than p2 *)

Tasks

T1
T2
T3

 0 5 8 11
Time

Figure 5.20: Example of Timing Diagram Modelled in CPNs

5.12 Chapter Summary

In this chapter, the transformations of the structural, behavioural, and interaction

diagram UML elements into OOCPNs were provided and discussed in detail based on

the proposed OOCPNs structure. In the next chapter, the proposed coevolution patterns

will be defined and discussed.

T1 T2
1' @ 0 1'@ 5 1'@8

T3

Univ
ers

ity
 of

 M
ala

ya

99

CHAPTER 6: COEVOLUTION PATTERNS

Generaly, developers have focused on using patterns in software modelling as design

patterns and in the workflow software management system. In this research, a new

pattern design for the coevolution between UML diagrams is suggested. The proposed

pattern design includes the proposed change impact and traceability analysis templates.

In this work, coevolution patterns are identified and categorized based on UML diagrams

categories and relations (Structural, Behavioural, and Interaction). Several issues related

to the checking of the correctness of rules (changes) including the checking of data

integrity and consistency, and versions history and control are discussed. Pattern

simulation methodologies and results are also analyzed.

6.1 Pattern Foundation

The proposed new pattern design modifies Gamma , et al (Gamma , et al., 1995) and

Gamma , et al (Gamma, et al., 2001) includes the change impact and traceability analysis

information. The proposed pattern design is defined as follows:

Pattern Name: The identifier of a pattern that captures the main idea of what the

pattern does;

Intent: What does the design pattern do? What is its rationale and intent? What

particular design issue or problem does it address?

Motivation: A scenario that illustrates a design problem. The scenario help to

understand the more abstract description of the pattern that follows.

Problem description: Presents the problem addressed by the pattern;

Solution/Diagram: Describes possible solutions to the problem; a graphical

representation of the pattern using a notation based on the proposed OOCPNs

structure and CPN modelling techniques.

Univ
ers

ity
 of

 M
ala

ya

100

Change impact and traceability analysis: As discussed in Section 4.2 above, this

includes the following information: (Change Type, Change Impact, Affected

Diagrams (Dependency), and Consistency and Integrity Rules);

Example: One or more examples of the pattern found in real systems when needed.

CPN places initial and final marking examples are provided.

Related patterns: What design patterns are closely related to this one? What are the

important differences? With which other patterns should this one be used?

A summary of the proposed UML diagrams patterns and the change control patterns

are provided in Figure 6.1.

6.2 Proposed Coevolution Patterns

6.2.1 Case Study Models

Case study models are modelled for the class, object, activity, statechart, and

sequence diagram. These models are provided and discussed in Appendix B. All the

patterns are applied based on these models. CPNs Tools simulation and monitoring

toolboxes are used to validate the case study models and for monitoring and analyses.

The case study models are divided in the following main sections:

Class Diagram: Figure B.3 to Figure B.13 show the class diagrams (eight classes).

Additionally, the class operations and attributes are shown in each class diagram. The

class diagram elements that are modelled in CPNs are attributes, values (input, output,

and attribute value), operations, classes, abstract classes, communication methods and

dynamic binding, generalization/class inheritance, associations, aggregation (consists-

of), composition (is-part-of), navigability arrow, polymorphism, multiplicity, role name,

an interface, and dependency.

Univ
ers

ity
 of

 M
ala

ya

101

Object Diagram: Figure B.14 and Figure B.15 show the object diagram models. Th

object diagram elements that are modelled in CPNs are object (class instance), and

object state.

Activity Diagram: Figure B.18 to Figure B.29 show the activity diagrams models.

The ctivity diagram elements that are modelled in CPNs are sub-activity, action, call

behaviour action, control flow, object flow, object node, start node, guard expression,

join, fork, decision nodes, branch, merge, activity sequence, activity iteration/loop, and

end state.

Sequence Diagram: Figure B.30 to Figure B.48 show the sequence diagram models.

The sequence diagram elements that are modelled in CPNs are objects, messages,

operation call and self call, synchronous and asynchronous messages, condition, alt

(alternative choice), opt (optional operator), ref, par, iteration/loop, note, creation and

deletion, action bars/lifelines.

Statechart Diagram: The statechart diagram elements that are modelled in CPNs

are event, state, action, start/end node, iteration/loop, and guard condition. These

elements are modelled based on the diagrams relations. Figure B.49 shows an example

of a statechart diagram in CPNs.

6.2.2 Proposed Coevolution Patterns

The proposed coevolution patterns are interconnected patterns that enable

incremental coevolution in a software system, which means decomposing the

coevolution process into a manageable set of scenarios that can be addressed in a step-

wise manner assuming that each pattern provides a solution to a given coevolution

scenario. The list of proposed patterns can be found in Figure 6.1.

Univ
ers

ity
 of

 M
ala

ya

102

Figure 6.1: UML structural, Behavioural, and Interaction Patterns

UML Diagrams Patterns

Structural Diagrams Patterns Behavioral Diagrams Patterns Interaction Diagrams Patterns

Class Diagram
Create/Delete/Modify

1. Attributes
2. Values (input, output,

and attribute value)
3. Operations
4. Classes
5. Generalization/class

inheritance
6. Associations
7. Aggregation

(consists-of)
8. Composition (is-part-

of)
9. Role name

Object Diagram
Create/Delete/Modify
1. Object (Class

instance)
2. Object State

Activity Diagram
Create/Delete/Modify

1. A sub-activity
2. An action
3. Object
4. An Object node
5. Start node
6. A guard expression
7. A join
8. A fork
9. Decision nodes
10. A branch
11. A merge
12. An activity sequence
13. An activity

iteration/loop

Sequence Diagram
Create/Delete/Modify

1. Objects
2. Messages and

Operation call
(Synchronous and
asynchronous
messages)

3. A condition
4. alt (alternative

choice)
5. opt (optional

operator)
6. ref Pattern
7. par (short for

parallel)
8. An iteration/Loop
9. A note
10. Creation and

deletion

Statechart Diagram
Create/Delete/Modify

1. Initial state
2. States
3. Events
4. A guard condition
5. Actions
6. An activity
7. Composite states
and the sub-states
8. Final state

Univ
ers

ity
 of

 M
ala

ya

103

Table 6.1 to Table 6.7 provide the main details of the proposed patterns for the class,

object, activity, statechart, and sequence diagrams, respectively, grouped by the change

type in addition to the change control patterns. The complete details of these patterns

are provided in Appendix B and Appendix C.

Table 6.1: Proposed Class Diagram Patterns

Update Type Patterns Group
Create an element Create a class

Create an attribute
Create an operation
Create a class inheritance
Create an association relationship
Create an aggregation relationship
Create a composition relationship

Modify an element Modify class name
Modify attribute name
Modify attribute visibility
Modify attribute property
Modify attribute type
Modify attribute value
Modify operation property
Modify operation type
Modify operation visibility
Modify operation name
Modify generalization relationship
Modify association destination multiplicity
Modify association source multiplicity
Modify role name

Delete an element Delete a class
Delete an attribute
Delete an operation
Delete a generalization relationship
Delete an association relationship
Delete an aggregation relationship
Delete a composition relationship

Search about an element Class search
Attribute search
Operation search
Generalization relationship search
Association relationship search
Aggregation relationship search
Composition relationship search

Univ
ers

ity
 of

 M
ala

ya

104

Update Type Patterns Group
Consistency check Class redundancy check

Class with no operation or attribute consistency
check
Class element redundancy check
Class with no relation consistency check
Attribute redundancy check
Operation redundancy check

Table 6.2: Proposed Object Diagram Patterns

Diagram Element Pattern Supported
Create an element Create a message data type

Create a variable/message //these are the same
as theclass diagram attribute and operation
patterns

Modify an element Modify object name
Modify a message data type
Modify a variable/message

Delete an element Delete an object
Delete a variable/message

Search about an element Search instance name
Search object exist
Search instance class

Consistency check Check object name
Objects not created

Table 6.3: Proposed Activity Diagram Patterns

Diagram Element Pattern Supported
Create an element Create an activity

Create a sub-activity
Create a control node
Create an action
Create an iteration
Create a guard condition

Modify an element Modify a sub-activity
Modify a control node
Modify an action
Modify an iteration
Modify a guard condition

Delete an element Delete an activity
Delete a sub-activity
Delete a control node
Delete an action
Delete an iteration
Delete a guard condition

Univ
ers

ity
 of

 M
ala

ya

105

Diagram Element Pattern Supported
Search about an element Activity search

Sub-activity search
Action search
Fork search
Join search
Decision search
Merge search
Object search
Loop search
Guard search
Call behaviour action

Consistency check Objects not in ADs
ADs not created
AD elements not created
Modify AD name

Table 6.4: Proposed Statechart Diagram Patterns

Diagram Element Pattern Supported
Create an element Create a start or end node

Create an event
Create a state
Create an action
Create an iteration
Create a guard condition

Modify an element Modify an event
Modify an action
Modify an iteration
Modify a guard condition

Delete an element Delete an event
Delete a start or end node
Delete an action
Delete an iteration
Delete a guard condition

Search about an element Event search
Action search
Guard search
Loop search

Consistency check SCDs not created
SCD elements not created
Modify SCD name

Univ
ers

ity
 of

 M
ala

ya

106

Table 6.5: Proposed Sequence Diagram Patterns

Diagram Element Pattern Supported
Create / Modify / Delete an
element

Create an object
Create a message
Create/ Delete/Modify an iteration
Create/Delete/Modify a guard condition
Create/Delete/Modify operators

Search about an element Object search
Message search
Loop search
Guard search
Opt search
Ref search
Alt search
Par search

Consistency check SDs not created
SD search
SD elements not created
Objects not in SDs
Modify SD name patterns

Table 6.6: Proposed Change Control Coevolution Patterns

Pattern Name Description
Search Patterns Find a diagram element patterns. Used to

check the existing of a diagram element
Class Diagram Search Patterns Find a class diagram element patterns
Object Diagram Search Patterns Find an object diagram element patterns
Activity Diagram Search Patterns Find an activity diagram element patterns
Sequence Diagram Search Patterns Find a sequence diagram element patterns
Change History Patterns Changes history selection

Store in file
Update new version

6.3 Patterns Simulation and Validation

In this research, the benefits of the graphical representation, simplicity, and

executable nature of a CPNs model, are exploited to check the correctness of the

proposed patterns and to simulate them. The correctness of the proposed patterns is

checked based on the stages shown in Figure 6.2.

Univ
ers

ity
 of

 M
ala

ya

107

Figure 6.2: Steps for Checking Pattern Design Correctness

These stages are:

• Designing the pattern diagram;

• Running the simulation;

• The CPN simulator represents the ongoing simulation directly on the model

by highlighting the enabled and occurring transitions and by showing how

the markings of the individual places change.

• Some of the interactive simulation steps are controlled by some test cases to

check the correctness of the model using more than one test case. Some test

cases are based on automatic simulation steps.

All the designs and codes of the patterns are provided in Appendix B, Appendix C,

and Appendix D. CPNs Tools provides all the means of creating the model’s elements

(places, transitions, arcs expressions, functions …etc). Moreover, simulation based

performance analysis is supported via automatic simulation combined with data

collection. The CPNs Tools toolboxes can perform a model simulation in one step or in

a certain number of steps. Additionally, design verification is one of the important

features in CPNs Tools. In CPNs Tools, models are verified by using different graphs.

One of these graphs is a directed graph called the State Space Graph (SSG), which

Pattern
Modeling/

Design

Running the
Simulator

CPN Simulation
Checking the

Design

Design Correct

Re-evaluate
Design

[correct]

[incorrect]

Univ
ers

ity
 of

 M
ala

ya

108

represents the reachable states and state changes of the model. The state explosion

problem makes the verification of a large system extremely difficult.

In this research, validation and verification of the proposed patterns was done

through following and tracing the simulation steps (one or a certain number of

simulation steps). As shown in the patterns diagrams in Appendix C, a set of

notifications and error messages is provided in these models in order to check the

reachability of the nodes (places and transitions).

In the simulation steps of the proposed framework, the simulation starts with the

diagram simulation (class, object, activity, statechart, and sequence). Then, the pattern

models are simulated to check pattern correctness. In all steps, an initial token is

provided for each of the nodes in order to trace the simulation process by transferring

these tokens from the input to output places. Table 6.7 and Figure 6.3 summarize the

simulation steps needed for the case study models provided in Appendix B and the

proposed patterns models provided in Appendix C.

Table 6.7: Summary of Simulation Steps for Case Study Models

Diagram Element Simulation Steps Count
Class Diagram Models 445
Object Diagram Models 246
Activity Diagram Models 503
Statechart Diagram Models 96
Sequence Diagram Models 768
Proposed Patterns Models 1301

Univ
ers

ity
 of

 M
ala

ya

109

Figure 6.3: Summary of Simulation Steps for Proposed Patterns Models

In CPNs Tools, all the CPNs models can be translated into Java code using the

‘Export to Java code’ option provided in the Net tool box as shown in Figure 6.4.

Figure 6.4: CPM Tools Toolbox for Exporting CPNs to Java Code

6.4 Chapter Summary

In this chapter, the proposed coevolution patterns foundation and relationships are

identified. Additionally, the proposed patterns that are applied to trace the dependency

between UML diagram elements and to determine the change effect on those UML

diagrams were discussed in detail. The pattern design and simulation process was also

described. In the next chapter, the proposed framework results will be analysed and

discussed.

Class
Diagram
Models

Object
Diagram
Models

Activity
Diagram
Models

Statechart
Diagram
Models

Sequence
Diagram
Models

Proposed
Patterns
Models

Simulation Steps Count 445 246 503 96 768 1301

0

200

400

600

800

1000

1200

1400

Simulation Steps Count

Univ
ers

ity
 of

 M
ala

ya

110

CHAPTER 7: ANALYSIS AND DISCUSSION

To accommodate changes in the software process, a framework for coevolution

patterns has been proposed for determining the change effect on the various elements of

UML diagrams. The proposed patterns can be applied to detect the elements affected by

a change in a software system designed using UML diagrams. The framework also

includes a way to control the evolution of UML diagrams by identifying and managing

the model changes, ensuring the correctness and consistency of the models, identifying

the impact of the changes, and determining the relationships between the model

diagrams. In this chapter, the performance of the proposed framework is analysed and

discussed also compared with the state-of-the-art.

7.1 Proposed OOCPNs Structure

Software models are modelled from different perspectives using UML structural,

behavioural, and interaction diagrams rather than a sequence of activities. In this

research a new OOCPNs structure is proposed that includes change impact and

traceability analysis for UML diagrams elements.

CPNs Tools version 3.4 (Michael Westergaard & Verbeek, 2013) is used to model,

simulate, and validate the transformation of UML into the proposed OOCPNs structure

and patterns. This provides two main features: an executable model and an automatic

consistency check. The modularity in the hierarchical structure of the proposed

framework reduces interdependencies between the model components and also

facilitates easy maintenance and updates without impacting the entire model. Control

flow dependency ando other dependencies such as inheritance, aggregation,

encapsulation, polymorphism, and dynamic binding are supported.

The proposed new OOCPNs structure supports diagrams coevolution is based on

mutual integration between OO diagrams and CPNs as shown in Figure 7.1.

Univ
ers

ity
 of

 M
ala

ya

111

Figure 7.1: Mutual Integration between UML Models and CPNs

This mutual integration, which includes a consistency check during the

transformation of UML into CPNs enhances the support for diagrams changes through

building a consistent model at design time and then applying the changes to the

consistent model. Table 7.1 to Table 7.3 summarize rules for transforming UML

diagrams into CPNs.

Table 7.1: Rules for Transforming UML Structural Diagrams into CPNs

Template Name Transformation into CPNs
CD Attribute Changes CD attribute ⇒CPN place

CD attributes type ⇒ CPN colour set
CD values ⇒ CPN tokens

Values: input, output, or attribute value
CD value type ⇒ CPN colour set

CD Operation Changes CD operation ⇒ CPN subpage
CD Class Changes CD class ⇒ CPN subpage

CD class instance ⇒ CPN substitution transition
CD class name and attribute ⇒ CPN place with
appropriate colour type.

CD Generalization/Class
Inheritance Changes

CD generalization ⇒ Hierarchical Coloured Petri
Net (HCPN) by net addition (place and/or transition
fusion)

CD Association Changes CD associations ⇒ CPN places connected between
the classes’ subnets

CD Aggregation Changes CD aggregation and composition ⇒ HCPN by net
addition (place and/or transition fusion) CD Composition Changes

CD Navigability Arrow
Changes

CD navigability arrow ⇒ CPN arc

CD Communication Method
and Dynamic Binding
Changes

CD synchronous request ⇒ CPN transition fusion
CD asynchronous request ⇒ CPN fusion places

CD Polymorphism Operation
Changes

CD polymorphism ⇒ HCPN by net addition(place
and/or transition fusion)

CPNs
More Structuring

Capabilities

UML Diagrams
Consistent Diagrams

after Each Update

Univ
ers

ity
 of

 M
ala

ya

112

Template Name Transformation to CPNs
CD Multiplicity Changes CD multiplicity ⇒ CPN tokens and substitution

transition
CD Role Name Changes CD role name ⇒ CPN auxiliary text
CD Interface Changes CD interface ⇒ the same as in the CD class

transformation except that it lacks instance
variables and implemented methods

CD Dependency Changes CD dependency ⇒ CPN arcs
OD Object (Class Instance)
Changes

OD, SD, and CommD object (class instance)⇒
CPN tokens
Number of tokens is equal to (∑Occi , i > 0. where
Occi is the number of instances).
OD object attribute ⇒ CPN token colour

OD Object State Changes OD instance variable ⇒ CPN place
OD variable type ⇒ CPN place colour
OD message data type ⇒ CPN product data type
supported in CPNs for all the message attributes
OD behaviour transformation to CPNs is the same
as in the CD operation transformation
OD communication transformation to CPNs is the
same as in the SD message transformation

PD Package Changes PD packages ⇒ HCPN by net addition (place
and/or transition fusion)

PD Package Dependency
Changes

PD dependency ⇒ CPN arcs

CoD and DD Node Changes CoD and DD Node ⇒ subnet in HCPN, each
subnet contains components and interfaces that
communicate with each other by message passing

CoD and DD Component
Operation Changes

CoD and DD component operation transformation
to CPNs is the same as in the CD operation
transformation

CoD and DD Dependency
Changes

CoD & DD dependency
𝟕𝟕
⇒ CPN arc

CSD Part/Port Changes CSD part ⇒ the same as in the class and object
diagrams’ elements transformation
CSD ports ⇒ CPN places

Table 7.2: Rules for Transforming UML Behavioural Diagrams into CPNs

Template Name Transformation to CPNs
UCD Actor Changes USD actors ⇒ CPN places
UCD Communication
(Association) Changes

UCD communications between the uses cases ⇒
CPN arcs

UCD Extend/ Include/ Use/
Generalize Relations Changes

Diagrams are provided in CHAPTER 5:.

Univ
ers

ity
 of

 M
ala

ya

113

Template Name Transformation to CPNs
UCD Use Case Changes UCD use case ⇒ CPN transition

UCD use case condition ⇒ CPN input place with
transition guard. The use case could return values
to the calling actors and these are also modelled
using place and transition

UCD Use Case Description
Changes

UCD use case description ⇒ CPN page which
includes a set of interconnected actions
UCD action ⇒ CPN transition
UCD action pre and post conditions ⇒ CPN
transition guard function and code segment

AD Sub-Activity/SCD
Activity Changes

AD sub-activity/ SCD activity ⇒ CPN subpage

AD , UCD, and SCD, Action
Changes

UCD, SCD, and AD action ⇒ CPN transition (it
takes a specific input from some places and
produces a specific output to places)

AD Control Flow Changes AD control flow ⇒ CPN places with input/output
arcs

AD Object Flow Changes AD object flow ⇒ CPN places with input/output
arcs
AD object node ⇒ CPN place

AD Control Nodes (Fork,
Join, Merge, and Decision)
Changes

AD control node ⇒ CPN transition
AD control node input and output flow ⇒ CPN
places

AD Activity Sequence
Changes

AD activity sequence ⇒ CPN page including a
set of interconnected activities
AD activity ⇒ CPN transition
AD activity input and output ⇒ CPN places

AD, SD, and CommD
Iteration /Loop Changes

Diagrams are provided in CHAPTER 5:.

AD Call Behaviour Action
Changes

AD Call Behaviour Action ⇒ CPN transition

AD and SCD Start/End Nodes
Changes

AD start node ⇒ CPN place without any
incoming arc
AD end node ⇒ CPN place without any outgoing
arc

SCD State Changes SCD state ⇒ CPN place
SCD Event Changes SCD event ⇒ CPN transition

SCD event arguments ⇒ CPN token colours
SCD, AD, and SD Guard
Condition Changes

SD, AD, and SCD condition ⇒ CPN place

SCD Composite State and
Sub-State Changes

The same as in the SD message transformation

Univ
ers

ity
 of

 M
ala

ya

114

Table 7.3: Rules for Transforming UML Interaction into CPNs

Template Name Transformation to CPNs
SD Iteration /Loop Changes
SD Guard Condition Changes SD, AD, and SCD condition ⇒ CPN place
SD and CommD Object
Changes

The same as in the OD object transformation

SD Message Changes SD message ⇒ CPN transition
SD Operation Call Changes The same as in CD operation transformation
SD Creation and Deletion
Changes
SD Synchronous and
Asynchronous Message
Changes

Diagrams are provided in CHAPTER 5:.

SD Operators (alt/ opt / ref /
par) Changes

Diagrams are provided in CHAPTER 5:.

SD Action Bars/Lifelines
Change

SD action bars/lifelines ⇒ CPN places to
represent the beginning and the end of the action
bar

SD and CommD Message
Sequence Number Change

Diagrams are provided in CHAPTER 5:.

IOD Activity or Interaction
Diagram Elements Changes

Diagrams are provided in CHAPTER 5:.

TD Task Changes TD task ⇒ CPN transition
TD Task Duration Changes TD duration ⇒ timed CPN token(token with time

stamp)

Figure 7.2 and Figure 7.3 summarize the number of transformation rules proposed

for each diagram and for each diagrams category, respectivly.

Figure 7.2: Number of Proposed Transformation Rules for Each Diagram

20

7
2 3 3 2

8

14

6 7

1 2 3

Transformation Rules

Transformation Rules

Univ
ers

ity
 of

 M
ala

ya

115

Figure 7.3: Number of Proposed Transformation Rules for Each Diagrams Category

In comparison with the approaches in (Bokhari & Poehlman, 2006; Bruckmann &

Gruhn, 2008a; Wang & Wang, 2007) and with the approaches in Table 2.3, this

research can be considered more comprehensive due to the greater number of UML

diagrams supported in the transformation between UML diagrams and CPNs. Table 7.4

and Figure 7.4 present a comparison between the proposed OOCPNs structure and some

approaches from related works in term of the number of diagrams supported in the

transformation process.

Structural
Diagrams

Behavioural
diagrams

Interaction
Diagrams

Series1 37 28 13

0
5

10
15
20
25
30
35
40

of

 T
ra

ns
fo

rm
at

io
n

Ru
le

s

of Transformation Rules for Each Category

Univ
ers

ity
 of

 M
ala

ya

116

Table 7.4: Comparison between the Proposed OOCPNs Structure and Selected Approaches Based on Diagrams Supported

 Diagrams supported
 Approach Structural Diagrams Behavioural

Diagrams Interaction Diagrams

CD OD PD CSD CoD DD UCD AD SCD SD CommD IOD TD
ArgoSPE (Gómez-Martínez & Merseguer,
2006)

√ √ √ √

Calderon Prototype (Calderon, 2005) √ √ √

Baresi (2002) √ √ √

Barros and Gomes (2004) Wang (2007) √

Bokhari and Poehlman (2006) √

van der Aalst (2002) √ √ √

Guerra and de Lara (2003) √ √ √

Abstract Node (2006) √ √

Shin et al. (2003), Barros and Jorgensen
(2005)

√ √ √

AMABULO(Bruckmann & Gruhn, 2008a;
Brückmann & Gruhn, 2008b)

√ √ √

Graph Transformation (Y. Zhao, et al.,
2004)

 √

Emadi and Shams (2008, 2009) √ √ √

Maqbool (2005), Liles (2008), Bouabana-
Tebibel (2007), Garrido and Gea (2002)

 √

Proposed transformation in this research √ √ √ √ √ √ √ √ √ √ √ √ √
Univ

ers
ity

 of
 M

ala
ya

117

Figure 7.4: Comparison between the Proposed OOCPNs Structure and Selected
Approaches Based on Diagrams Supported

7.2 Change Impact and Traceability Analysis Templates

This research proposed 45 templates as explained in Appendix A. Some of these

templates are shared between multiple diagrams based on the relations between

diagrams. Table 7.5 to Table 7.7 summarize the proposed change impact and traceability

analysis templates.

Table 7.5: Change Impact and Traceability Analysis Templates for UML Structural
Diagrams

Template Name Change Type
CD Attribute Changes Create an attribute
CD Operation Changes Create a new operation
CD Class Changes Create a new class
CD Generalization/Class Inheritance
Changes

Create a class inheritance

CD Association Changes Create an association
Modify an association name

0

2

4

6

8

10

12

14

TD

IOD

CommD

SD

SCD

AD

UCD

DD

CoD

CSD

PD

OD

CD

Univ
ers

ity
 of

 M
ala

ya

118

Template Name Change Type
CD Aggregation Changes Create an aggregation
CD Composition Changes Create a composition
CD Navigability Arrow Changes Create a navigability arrow
CD Communication Method and
Dynamic Binding Changes

Create a communication method and
dynamic binding

CD Polymorphism Operation
Changes

Create a polymorphic operation

CD Multiplicity Changes Create/Modify a multiplicity range
CD Role Name Changes Create/Modify a role name
CD Interface Changes Create an interface
CD Dependency Changes Create/Modify classes dependency

Delete a class dependency
OD Object (Class Instance) Changes Create a new object
OD Object State Changes Create/Modify a variable/message data

type
Create/Delete/Modify a message

PD Package Changes Create /Delete a package
PD Package Dependency Changes Create/Delete a package dependency
CoD and DD Node Changes Create /Delete a node
CoD and DD Component Operation
Changes

Create /Delete a new component operation

CoD and DD Dependency Changes Create/Delete a dependency relation
CSD Part/Port Changes Create/Delete a part/ port

Table 7.6: Change Impact and Traceability Analysis Templates for UML Behavioural
Diagrams

Template Name Change Type
UCD Actor Changes Create an actor
UCD Communication (Association)
Changes

Create/Delete communications

UCD Use Case Changes Create a use case
UCD Extend/Include/Generalize/Use
Relations Changes

Create/Delete/Modify a use case relation

UCD Use Case Description Changes Create/Delete/Modify a use case
description

AD Sub-Activity/SCD Activity
Changes

Create a sub-activity
Delete /Modify a sub-activity

AD , UCD, and SCD, Action
Changes

Create /Delete an action
Modify an action condition

AD Control Flow Changes Create / Delete a control flow
AD Object Flow Changes Create an object
AD Control Nodes (Fork, Join,
Merge, and Decision) Changes

Create/Delete/Modify a control node

AD Activity Sequence Changes Create/Delete/Modify an activity sequence
AD, SD, and CommD Iteration /Loop
Changes

Create/ Delete an iteration
Modify an iteration decision node
Modify an iteration condition

AD Call Behaviour Action Changes Create an AD call behaviour action

Univ
ers

ity
 of

 M
ala

ya

119

Template Name Change Type
AD and SCD Start/End Node
Changes

Create/Delete a start or end node

SCD State Changes Create a state
SCD Event Changes Create an event
SCD, AD, and SD Guard Condition
Changes

Create/Delete/Modify a guard condition

SCD Composite State and Sub-State
Changes

The same as in the SD message changes

Table 7.7: Change Impact and Traceability Analysis Templates for UML Interaction
Diagrams

Template Name Change Type
SD Iteration /Loop Changes Create/ Delete an iteration

Modify an iteration decision node
Modify an iteration condition

SD Guard Condition Changes Create/Delete/Modify a guard condition
SD and CommD Object Changes Create an object
SD Message Changes Create a message
SD Operation Call Changes Create an operation call
SD Creation and Deletion Changes Create a creation and deletion
SD Synchronous and Asynchronous
Message Changes

Create a synchronous and asynchronous
message

SD Operators (alt/ opt / ref / par)
Changes

Create/Delete/Modify operators

SD Action Bars/Lifelines Changes Create/Modify an action bar
SD and CommD Message Sequence
Number Changes

Create/Delete/Modify a message
sequence number

IOD Activity or Interaction Diagram
Elements Changes

Create an activity or interaction diagram
element

TD Task Changes Create a task
TD Task Duration Changes Create/Delete/Modify a task duration

Figure 7.5 shows the distribution of these templates over the UML diagrams

categories. In total, 22 templates are proposed for structural diagrams, 18 templates are

proposed for behavioural diagrams, and 13 templates are proposed for interaction

diagrams. Some of these templates are shared by more than one diagram based on the

relations between the diagrams. For example, the same template is proposed for the

activity diagram and sequence diagram iteration /loop changes.

Univ
ers

ity
 of

 M
ala

ya

120

Figure 7.5: Number of Proposed Templates for each Diagrams Category

Figure 7.6 show the number of proposed templates for each structural diagram.

Figure 7.6: Number of Proposed Templates for Each Structural Diagram

Figure 7.7 show the numbersof proposed templates for each structural diagram.

Figure 7.7: Number of Proposed Templates for Each Behavioural Diagram

Structural
Diagrams

Behavioural
diagrams

Interaction
Diagrams

Series1 22 18 13

0

5

10

15

20

25

of

 T
em

pl
at

es

of Templates for Each Category

14

2 2 3
1

CD OD PD CoD CsD

Structural Diagrams Templates

Structural Diagrams

5

9

4

UCD AD SCD

Behavioural diagrams Templates

Behavioural diagrams Univ
ers

ity
 of

 M
ala

ya

121

Figure 7.8 show the number of proposed templates for each structural diagram.

Figure 7.8: Numbersof Proposed Templates for Each Interaction Diagram

7.2.1 Evaluation Metrics

In this research, quantification of the change impact is based on two metrics: the set

of diagrams/ diagrams elements affected by the change and the change levels.

A. Metrics for Change Level

An algorithm has been proposed to determine the change impact and the dependency

between the elements the UML diagrams. Corrective and evolutionary changes are

supported. Figure 7.9 shows the hierarchy of the change levels.

Figure 7.9: Hierarchy of Change Levels (Traceability Distance)

The change level is used to determine the distance between the changed element and

the impacted elements. The change distance is calculated according to the following rule:

If (the change in S, B, or I is local)

10

1 2

SD IOD TD

Interaction Diagrams Templates

Interaction Diagrams

Change Levels

B S I

B I I B

Level 1

Level 2
S S Univ

ers
ity

 of
 M

ala
ya

122

Then (change distance is 1)

Else (change distance is 2). //the number of affected diagrams (n) by the change is
n ≥ 1.

B. Metrics for Affected Diagrams and Elements

This metric is related to the set of diagrams or diagram elements affected by a

change. It is also referred to as the cost of the change. The higher the impact on the

diagrams and elements, the more severe the change. As shown in the figures and tables

provided in this section, the results show that the relation between the class diagram and

other models is strong. This explains the large number of change impact templates and

patterns proposed for the class diagram.

The dependency between UML diagrams has also been defined formally in

Definitions 1 to 5. The change impact on the diagrams’ elements can be defined based

on the dependency relations; some examples of these relations are given below:

• ∃ e(diagram element) ∈ CD: If (e is changed) Then (all diagrams are affected)

Classes, attributes, and operations in the class diagram are used or invoked in
all UML diagrams.

• ∃ e ∈ OD: If (e is changed) Then (all diagrams are affected except the CD)

Objects are used in the structural, behavioural, and interaction diagrams

• ∃ e ∈ CoD : If (e is changed) Then (DD is affected)

CoD and DD are dependent on each other; a change in one of them will affect
the other.

• ∃ e ∈ DD: If (e is changed) Then (CoD is affected)

• ∃ e ∈ UCD: If (e is changed) Then (AD, SCD, SD, CommD, TD, and IOD are

affected)

The dynamic behaviour of the UCD is described using the AD, SCD, SD, and
CommD. The flow of control in the AD is from activity to activity. The flow of
control in the SD and CommD is from object to object. TD and IOD are affected
indirectly by the change in the UCD because their elements are derived from the
AD and interaction diagrams.

Univ
ers

ity
 of

 M
ala

ya

123

• ∃ e ∈ AD: If (e is changed) Then (UCD, SCD, SD, CommD, IOD, and TD are

affected)

An AD represents the internal behaviour of the CD, UCD, and SCD. The IOD
and TD elements are derived from the AD elements, in addition to interaction
elements added in the IOD. The AD shows how those activities depend on one
another.

• ∃ e ∈ SCD: If (e is changed) Then (UCD,AD, SD, CommD, TD, and IOD are

affected)

The dynamic behaviour of the SCD is described using the AD, SD, and CommD.
TD and IOD are affected indirectly by the SCD changes because their elements
are derived from the AD and interaction diagrams.

• ∃ e ∈ SD: If (e is changed) Then (UCD, AD, SCD, CommD, and IOD are

affected)

• ∃ e ∈ CommD: If (e is changed) Then (UCD, AD, SCD, SD, and IOD are

affected)

• ∃ e ∈ PD, CSD, IOD, and TD: If (e is changed) Then (no diagrams are

affected)

Table 7.8 illustrates the change effect on the diagrams and diagrams elements based

on the proposed templates. The table also shows the elements that are shared between

diagrams. These shared elements represent the relationships between the templates. The

same thing will be applied to the patterns relations. Note that in the table, the symbol ‘√’

means the diagram is affected and in some cases examples of the affected elements are

provided. Univ
ers

ity
 of

 M
ala

ya

124

Table 7.8: The Change Effect on Diagrams Elements Based on the Proposed Templates

Template # / Diagram CD OD PD CSD CoD DD UCD AD SCD SD CommD IOD TD

Template 1. CD Attribute
Changes

√

 √
Object
States

√ √ √ √ √ √
Object
States

 √
variables

 √
Object
States

 √
Object
States

√ √

Template 2. CD Operation
Changes

√

√
Object
States

√ √ √
component
operation

√
component
operation

√
Use
 case

√
Activities
and Sub

Activities,
Actions

 √
Events

√
Sequence
diagrams

states,
Messages

√
Messages

√ √

Template 3. CD Class Changes √

 √
Object

Instance

√ √ √ √ √ √
Object

Instance

 √ √
Object

Instance

 √
Object

Instance

√ √

Template 4. CD
Generalization/Class Inheritance
Changes

√ √ √ √ √ √ √ √ √ √ √ √ √

Template 5. CD Association
Changes

√ √ √ √ √ √ √ √
Seq. of

Activities,
cntrl

node, call
behaviour

 √ √
operators

√ √ √

Template 6. CD Navigability
Arrow Changes

√ √
Object
Flow

√ √ √ √ √ √
Object

and
Control

Flow

 √ √
Object
Flow

√ √ √

Template 7. CD Polymorphism
Operation Changes

√ √ √ √ √ √ √ √ √ √ √ √ √

Template 8. CD Multiplicity
Changes

 √

Template 9. CD Role Name
Changes

√

Template 10. CD Interface
Changes

√
Univ

ers
ity

 of
 M

ala
ya

125

Template # / Diagram CD OD PD CSD CoD DD UCD AD SCD SD CommD IOD TD

Template 11. CD Dependency
Changes

 √ √
 dependency

 √
dependency

 √
 dependency

Template 12. OD Object (Class
instance) Changes

 √
Object

Instances

√ √ √ √ √ √
Object

Instances

 √ √
Object

Instances

√
Object

Instances

√ √

Template 13. OD Object States
Changes

 √
Object
States

 √
Object
States

 √
Object
States

 √
Object
States

Template 14. PD Package
Changes

√

Template 15. PD Package
Dependency Changes

√

Template 16. CoD and DD Node
Changes

√ √
Node

√
Node

Template 17. CoD and DD
Component Operation Changes

 √
component
operation

√
component
operation

Template 18. CoD and DD
Dependency Changes

 √
dependency

relation

√
dependency

relation

Template 19. CSD Part/Port
Changes

 √

Template 20. UCD Actor
Changes

 √ √ √ √ √ √ √

Template 21. UCD
Communication (association)
Changes

 √ √
Objects

links

√
Objects

links

Template 22. UCD Use case
Changes

 √ √ √ √ √ √ √

Template 23. UCD
Extend/Include/Generalize/Use
Relations Changes

 √ √
Seq. of

Activities,
cntrl

node, call
behaviour

 √
operators

√ √ Univ
ers

ity
 of

 M
ala

ya

126

Template # / Diagram CD OD PD CSD CoD DD UCD AD SCD SD CommD IOD TD

Template 24. UCD Use Case
Description Changes

 √ √
sequence

of
Activities

 √

Template 25. AD Sub-
Activity/SCD Activity Changes

 √ √
Activity/

Sub-
Activity

√
Event

√
Operators

√ √ √

Template 26. UCD, SCD, and
AD Action Changes

 √
Action

√
Action

√
Action

√
Operators

√ √

Template 27. AD Control Flow
Changes

 √ √
Object
Flow

 √
Object
Flow

√
Object
Flow

√

Template 28. AD Object Flow
Changes

 √
Object/
control
Flow

 √
Object
Flow

√
Object
Flow

Template 29. AD Control Nodes
(Fork, Join, Merge, and
Decision) Changes

 √
relationships

√
Control
Nodes

 √
operators

√ √

Template 30. AD Activity
Sequence Changes

 √
description

√ √ √ √ √ √

Template 31. AD, SD, and
CommD Iteration /Loop
Changes

 √ √
Loop/

branches

√
Loop/

branches

√
Loop/

branches

√
Loop/

branches

√

Template 32. AD and SCD
Start/End Nodes Changes

 √ √

Template 33. SCD State
Changes

 √ √ √ √ √ √

Template 34. SCD Event
Changes

 √ √ √ √ √ √

Template 35. SCD, AD, and SD
Guard Condition Changes

 √
Guard

√
Guard

√
Guard

√
Guard

√
Guard

√
Guard

 Univ
ers

ity
 of

 M
ala

ya

127

Template # / Diagram CD OD PD CSD CoD DD UCD AD SCD SD CommD IOD TD

Template 36. SCD Composite
State and Sub-State Changes

 √ √
message
passing

√
message
passing

Template 37. SD and CommD
Object Changes

 √ √ √ √ √

√

Template 38. SD Message
Changes

√
Comm
method
dynamic
binding

 √ √ √ √
synchronous
asynchronous

messages

√
synchronous
asynchronous

messages

√

Template 39. SD Synchronous
and Asynchronous Messages
Changes

√
Comm
method
dynamic
binding

 √
interface

√
interface

 √
events

√
synchronous
asynchronous

messages

√
synchronous
asynchronous

messages

Template 40. SD Operators (alt/
opt / ref / par) Changes

 √
Description,
relationships

√
Cntrl
node

branches

 √ √ √

Template 41. SD Action
Bars/Lifelines Changes

 √
Activity
sequence

 √ √ √

Template 42. CommD Message
Sequence Number Changes

 √

Template 43. IOD Activity or
Interaction Diagram Elements
Changes

 √

Template 44. TD Task Changes √

Template 45. TD Task Duration
Changes

 √

 Univ
ers

ity
 of

 M
ala

ya

128

Information about the number of diagrams affected by updating each UML diagram

and the number of update operations supported is provided in Table 7.9, Figure 7.10,

and Figure 7.11. Self, direct, and indirect dependencies are considered. Further

information about the dependency between diagrams (change effect between diagrams)

is provided in Figure 7.12.

Table 7.9: Statistics in the Effect of Updating UML Diagram Elements

Diagram Name No of Affected
Diagrams

No of Update
Operations

Class Diagram (CD) 13 41
Object Diagram (OD) 12 9
Package Diagram (PD) 1 5
Component Diagram (CoD) and Deployment
Diagram (DD)

2

13

Composite Structure Diagram (CSD) 1 6
Use Case Diagram (UCD) 7 12
Activity Diagram (AD) 7 17
Statechart Diagram (SCD) 7 18
Sequence Diagram (SD) 6 23
Communication Diagram (CommD) 6 17
Interaction Overview Diagram (IOD) 1 3
Timing Diagram (TD) 1 5

Figure 7.10: Number of Update Operations Supported by Each UML Diagram

Figure 7.11: Number of Diagrams Affected by Updating UML Diagram

Univ
ers

ity
 of

 M
ala

ya

129

Figure 7.12: Diagrams Dependency/Change Effect

In comparison with the approaches mentioned in Table 2.3 such as (Gongzheng &

Guangquan, 2010; Shinkawa, 2006), the change impact and traceability analysis rules

are supported in the transformation between UML diagrams and CPNs and for most of

the UML diagrams. Additionally, It is not check only the consistency between two

versions from the same diagram as proposed by (Van Der Straeten, et al., 2003) and

other approaches. In the state of the art approaches (Al-Khiaty & Ahmed, 2016; Lehnert

& Riebisch, 2013; Li, et al., 2012; X. Sun, et al., 2010), some metrics (such as

precision, recall, and F-measure) are used in determining the average time needed to

detect the inconsistencies between diagrams and the effectiveness of the change impact.

These metrics are used for code-based change impact analysis techniques.

7.3 Coevolution Patterns

In this research, coevolution patterns are proposed as a way to determine and classify

the types of changes in UML diagrams and their impact on other diagrams. The

consistency between diagrams is checked according to the consistency and integrity

0

2

4

6

8

10

12

14

TD

IOD

CommD

SD

SCD

AD

UCD

DD

CoD

CSD

PD

OD

Univ
ers

ity
 of

 M
ala

ya

130

rules provided in each pattern. Vertical, horizontal, and evolutionary consistency types

are checked. The proposed patterns trace the dependency and determine the effect of a

change in the UML diagrams elements incrementally; the patterns are used to check the

consistency, impact, and traceability after creating, deleting, or modifying any diagram

element by applying the same idea of syntax checking incrementally to CPNs. A

comparison of two versions derived from the same diagram is supported. The proposed

patterns were discussed in detail in CHAPTER 6: The main elements in the proposed

patterns are:

Pattern Name: short description of the problem, its solution, and

consequences;

Problem: when to apply the pattern (problem, and context);

Solution: generalized solution to the problem; and

Related Patterns: show the dependency between diagrams elements.

In this research, the challenge was to propose a set of empirically gathered patterns in

OOCPNs in pattern format. The main goal was to find a way to utilize OOCPNs

patterns as a source of sound solutions for problems that may appear during modelling.

In order to help developers in selecting a suitable pattern, this research classifies the

patterns and analyses the relationships between the patterns to enable easy navigation

through the patterns.

This research proposes 84 patterns to support changes in the diagrams elements as

shown in Figure 7.13 and Figure 7.14. The new proposed pattern design modifies

Gamma , et al (Gamma , et al., 1995) and Gamma , et al (Gamma, et al., 2001) to

include the change impact and traceability analysis information.

Univ
ers

ity
 of

 M
ala

ya

131

Figure 7.13: Diagrams Patterns

Figure 7.14: Number of Proposed Patterns

Table 7.10 summarizes the change effect on the diagrams and diagrams elements

based on the proposed templates and patterns. Additionally, this table provides the

relationships and intersections between the proposed templates and patterns. Where

there is an intersection, this means that the pattern or template is shared between

diagrams and it can be applied to the intersecting diagrams elements. Note that in the

table, the symbol ‘√’ means the diagram is affected and in some cases examples of the

affected elements are provided.

0

5

10

15

20

25

30

CD OD AD SCD SD

Diagrams Patterns

of Patterns

0

2

4

6

8

10

12

14

16

CD OD AD SCD SD Search Change
History

Create

Modify

Delete

Search

Change History

Univ
ers

ity
 of

 M
ala

ya

132

Table 7.10: The Patterns, Templates, and Diagrams affected Relationships

Patterns Provided Template Affected Diagrams and Elements

CD OD AD SD SCD

Pattern 1. Attribute Redundancy Check Pattern
Pattern 4. Class with No Operation or Attribute
Consistency Check Pattern
Pattern 5. Class Element Redundancy Check Pattern
Pattern 8. CD Attribute Search Pattern
Pattern 50. CD Create New Attribute Patterns
Pattern 57. CD Delete Attribute Patterns
Pattern 64. CD Modify Attribute Name Patterns
Pattern 65. CD Modify Attribute Visibility Patterns
Pattern 66. CD Modify Attribute Property Patterns
Pattern 67. CD Modify Attribute Type Patterns
Pattern 68. CD Modify Attribute Value Patterns

Template 1. CD Attribute Changes
Template 13. OD Object States Changes

√
Attributes

√
Object
States

√
Object
States

√
Object States

√
Variables

Pattern 2. Operation Redundancy Check Pattern
Pattern 4. Class with No Operation or Attribute
Consistency Check Pattern
Pattern 5. Class Element Redundancy Check Pattern
Pattern 9. CD Operation Search Pattern
Pattern 19. ADs Not Created Pattern
Pattern 20. Activity Search Pattern
Pattern 22. AD Elements Not Created Pattern
Pattern 23. AD Action Search Pattern
Pattern 33. SDs Not Created Pattern
Pattern 34. SD Search Pattern
Pattern 49. CD Create New Operation Patterns
Pattern 59. CD Delete Operation Patterns
Pattern 70. CD Modify Operation Property Patterns
Pattern 71. CD Modify Operation Type Patterns
Pattern 72. CD Modify Operation Visibility Patterns
Pattern 73. Modify SD Name Patterns

Template 2. CD Operation Changes
Template 13. OD Object States Changes

√
Operations

√
Object
States

√
Activities
and Sub

Activities,
Actions

√
Sequence
diagrams

states,
Messages

√
Events

Univ
ers

ity
 of

 M
ala

ya

133

Patterns Provided Template Affected Diagrams and Elements

CD OD AD SD SCD

Pattern 74. Modify Operation Name Patterns
Pattern 78. ADs Modify AD Name Pattern
Pattern 79. SCDs Not Created Pattern
Pattern 80. SCD Event Search Pattern
Pattern 81. SCD Elements Not Created Pattern
Pattern 82. SCD Action Search Pattern

Previous page

Pattern 3. Class Redundancy Check Pattern
Pattern 7. Check Object Name Pattern
Pattern 10. CD Class Search Pattern
Pattern 21. Objects Not in ADs Pattern
Pattern 31. AD Object Search Pattern
Pattern 35. Objects Not in SDs Pattern
Pattern 44. SD Object Search Pattern
Pattern 55. CD Delete Class Patterns
Pattern 60. CD Modify Class Name Patterns
Pattern 76. OD Delete Object Pattern
Pattern 77. OD Modify Object Name Pattern

Template 3. CD Class Changes √
Classes

√
Objects
instances

√
Objects

Instances,

√
Objects
instances

√

Pattern 6. Class with No Relation Consistency
Check Pattern
Pattern 14. CD Generalization Search Pattern
Pattern 52. CD Create Generalize Patterns
Pattern 58. CD Delete Generalize Patterns
Pattern 69. CD Modify Generalize Patterns

Template 4. CD Generalization/Class
Inheritance Changes

√
Classes

Relation/
inheritance
Relations

√ √ √ √

Pattern 6. Class with No Relation Consistency
Check Pattern
Pattern 11. CD Association Search Pattern
Pattern 12. CD Composition Search Pattern
Pattern 13. CD Aggregation Search Pattern
Pattern 14. CD Generalization Search Pattern

Template 5. CD Association Changes √
Associations
Aggregation
Composition

√ √
Seq. of

Activities,
cntrl node,

call
behaviour

√
operators

√

Univ
ers

ity
 of

 M
ala

ya

134

Patterns Provided Template Affected Diagrams and Elements

CD OD AD SD SCD

Pattern 51. CD Create Association or Composition
or Aggregation Patterns
Pattern 53. CD Delete Aggregation Patterns
Pattern 56. CD Delete Composition Patterns

Previous page

Pattern 54. CD Delete Association Patterns Template 6. CD Navigability Arrow
Changes
Template 27. AD Control Flow Changes
Template 28. AD Object Flow Changes

√
Associations

√
Object
Flow

√
Object and

Control
Flow

√
Object
 Flow

√

Pattern 61. CD Modify Association Destination
Multiplicity Patterns
Pattern 62. CD Modify Association Source
Multiplicity Patterns

Template 8. CD Multiplicity Changes √

Pattern 63. CD Modify Role Name Patterns Template 9. CD Role Name Changes √

Pattern 7. Check Object Name Pattern
Pattern 15. Objects Not Created Pattern
Pattern 16. Search Instance Name Pattern
Pattern 17. Search Object Exists Pattern
Pattern 18. Search Instance Class Pattern
Pattern 21. Objects Not in ADs Pattern
Pattern 35. Objects Not in SDs Pattern
Pattern 44. SD Object Search Pattern
Pattern 75. OD Create Object Pattern

Template 12. OD Object (Class instance)
Changes
Template 37. SD and CommD Object
Changes

 √
Object

Instances

√
Object

Instances

√
Object

Instances

√

Pattern 32. AD Sub-Activity Search Pattern Template 25. AD Sub-Activity/SCD
Activity Changes

 √
Activity/

Sub-
Activity

√
SD Ref

Operator

√

Univ
ers

ity
 of

 M
ala

ya

135

Patterns Provided Template Affected Diagrams and Elements

CD OD AD SD SCD

Pattern 23. AD Action Search Pattern
Pattern 28. AD Call Behavioural Action Search
Pattern
Pattern 82. SCD Action Search Pattern

Template 26. UCD, SCD, and AD Action
Changes

 √
Action

√
Operators

√
Action

Pattern 27. AD Loop Search Pattern
Pattern 39. SD Loop Search Pattern
Pattern 84. SCD Loop Search Pattern

Template 31. AD, SD, and CommD
Iteration /Loop Changes

 √
Loop/

branches

√

Loop

√

Loop
Pattern 24. AD Fork Search Pattern
Pattern 26. AD Join Search Pattern
Pattern 29. AD Merge Search Pattern
Pattern 30. AD Decision Search Pattern

Template 29. AD Control Nodes (Fork,
Join, Merge, and Decision) Changes

 √
Control
nodes

√
operators

√

Pattern 25. AD Guard Search Pattern
Pattern 41. SD Guard Search Pattern
Pattern 83. SCD Guard Search Pattern

Template 35. SCD, AD, and SD Guard
Condition Changes

 √
Guard

condition

√
Guard

condition

√
Guard

condition
Pattern 40. SD Massage Search Pattern Template 38. SD Message Changes

Template 39. SD Synchronous and
Asynchronous Messages Changes

√
Comm
method
dynamic
binding

 √
synchronous
asynchronous

messages

√

Pattern 37. SD Alt Search Pattern
Pattern 38. SD Par Search Pattern
Pattern 42. SD Opt Search Pattern
Pattern 43. SD Ref Search Pattern

Template 40. SD Operators (alt/ opt / ref /
par) Changes

 √
Cntrl node
branches

√
Operators

√

Pattern 45. Changes History Selection Patterns
Pattern 46. Store in File Pattern
Pattern 47. Update New Version Pattern

 Change Versions and History

Pattern 36. SD Elements Not Created Pattern Search about sequence diagram or activity diagram
elements not created

 Univ
ers

ity
 of

 M
ala

ya

136

The proposed pattern design supports the automatic checking of consistency during

the diagrams design process not just the checking of the consistency of the diagrams

when they are updated. This can be considered a major advantage over the state-of-the-

art approaches presented in Table 2.3. It also helps in solving the inconsistency

detection problem. The search patterns proposed in this research can be used to detect

inconsistencies before applying any diagrams changes. For example, the pattern design

includes the following rule: Each message in a sequence diagram needs to have a

corresponding operation that needs to be owned by the message receiver's class’. As

shown in Figure 7.15, when there is any contradiction with this rule the change is

rejected. The same things are applied for all the consistency rules proposed in this

research.

Figure 7.15: Example of Consistency between Diagrams

As illustrated above in (Table 7.9, Figure 7.10, and Figure 7.11), the metrics for

quantifying the change impact/cost of the change in each coevolution pattern are based

on the set of diagrams/diagrams elements affected by the change. The higher numbers

explain the degree of coevolution between the diagrams also explain the high number of

patterns proposed for the class diagram. The proposed coevolution patterns models were

simulated in CPNs Tools as discussed in detail in Section 6.3. Additionally, these

models can be exported to Java code.

Univ
ers

ity
 of

 M
ala

ya

137

7.3.1 Validation and Performance Analysis

The proposed framework validation and performance analysis is based on the CPNs

Tools simulation and monitoring tool-boxes options, the results of which are shown in

the following tables and figures. The monitoring and simulation tool-boxes allow

checking at runtime that the system is behaving correctly.

A. Framework Validation

The simulation capabilities of CPNs Tools are used to execute the OOCPNs model

over a set of test cases. The appropriate inputs for each test case were provided by

placing tokens on the CPN places. The CPN model was then executed using the

simulator toolbox to determine if the correct output was generated and if the correct

logical paths were chosen. It should be noted that due to the state explosion problem it

is very difficult to generate state space reports for the proposed framework. Therefore,

in this research, the reachability of the places and transitions were detected through the

use of marking size monitoring for all patterns as shown in Figure 7.17 to Figure 7.20.

B. Data Collector Monitoring:

Table 7.11 and Figure 7.16 illustrate the proposed framework model elements

statistics. These statistics were derived from the CPNs Tools monitoring toolbox. These

data also represent the model size or the scalability of the model.

Table 7.11: The Model Elements in the Proposed Framework Model

Diagram Element Statistics (Number of Elements)
Places 2126
Place Instances 2274
Transitions 942
Transitions Instances 1418
Arcs 3638
Arcs Instances 4450
Pages 191

Univ
ers

ity
 of

 M
ala

ya

138

Diagram Element Statistics (Number of Elements)
Pages Instances 267
Declaration (full CPN Tools declarations are
provided in Appendix D)

262

Types 132
Variables 141

Figure 7.16: The Proposed Framework Model Elements-Model Size

C. Marking Size Monitoring:

Table 7.12 , Figure 7.17, and Figure 7.18 summarize the marking size monitoring

data and data analysis results. The average metrics are calculated by Sum/Count.

Name Count Sum Average
Class Diagrams 445 8 0.017937
Object Diagrams 246 19 0.076923
Activity Diagrams 503 11 0.021825
Sequence Diagrams 768 8 0.010296
Statechart Diagram 97 2 0.020619
Patterns 1301 1217 0.935434
Change History 1297 1206 0.929838

Table 7.12: Analysis of Marking Size Monitoring Data

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

The Proposed Framework Model Elements

Number of Elements

Univ
ers

ity
 of

 M
ala

ya

139

Figure 7.17: Analysis of Marking Size Monitoring Average

Figure 7.18: Analysis of Marking Size Monitoring

Detailed marking size monitoring analyses for each pattern are provided in

Figure 7.19 and Figure 7.20.

0

0.2

0.4

0.6

0.8

1

Class
Diagrams

Object
Diagrams

Activity
Diagrams

StateChart
Diagrams

Sequence
Diagrams

Patterns Change
History

Marking Size Average Analysis

Average

-500

0

500

1000

1500

0 2 4 6 8M
ar

ki
ng

 S
iz

e
Da

ta

CPN Modeling

Count

Sum

Linear (Count)

Linear (Sum)

Univ
ers

ity
 of

 M
ala

ya

140

Figure 7.19: Analysis of Patterns Marking Size Sum

Figure 7.20: Analysis of Patterns Marking Size Average

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80 90

M
ar

ki
ng

 S
um

 V
al

ue
s

Pattern No.

Sum

Linear (Sum)

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90

M
ar

ki
ng

 S
iz

e
Av

er
ag

e

Pattern No.

Average

Linear (Average)

Univ
ers

ity
 of

 M
ala

ya

141

7.3.2 Discussion

In related works (Kim, et al., 2007; NA Mulyar, 2009; Nataliya Mulyar & van der

Aalst, 2005; N. C. Russell, 2007; Weber, et al., 2007; Wörzberger, et al., 2008) the

patterns that are provided are specified only for modelling the business process and

workflow software management system. On the other hand, the patterns approaches in

(Gamma , et al., 1995; Gamma, et al., 2001) are used as design patterns. In contrast, the

patterns in the framework proposed in this research can be used to deal with software

changes in any OO diagrams design.

According to (Côté & Heisel, 2009), patterns exist not only as design patterns, but

for every phase of software development, including requirements analysis, architectural

design, implementation , and testing. The patterns in the proposed framework can also

be applied to these phases in addition to the software maintenance phase. The proposed

framework produces a precise set of dynamic impacts for UML diagrams by eliminating

the changes through incremental consistency checks during the design stage and by

identifying the change impact in the software maintenance/evolution stage.

in comparision with the state of the art approaches:

• Effectiveness and Soundness:

 The proposed patterns help developers to build their models efficiently, while

avoiding reinvention of already existing solutions of problems.

 The proposed patterns express sound solutions for problems frequently

recurring in a certain domain in a pattern format. Knowing a problem at hand,

a developer can look up a solution for the problem in the pattern catalog,

while spending less effort on the development and also ensuring the

soundness of a solution.

Univ
ers

ity
 of

 M
ala

ya

142

 This research classifies the patterns and analyses the relationships between

the patterns to enable easy navigation through the patterns and this makes the

evolution tasks easier.

 The modularity in the hierarchical structure of the proposed framework

reduces interdependencies between the model components, and facilitates

easy maintenance and updates without impacting the entire model.

 The change impact and traceability analysis rules are supported in the

transformation of UML diagrams, this will improve the overall efficiency in

software change management.

 Not a comparison between two versions only.

• Maintainability:

 Enhances the diagrams’ change support through building a consistent

OOCPNs model at the design time, and then applying the changes on the

OOCPNs models. not just the checking of the consistency of the diagrams

when they are updated.

 This will provide incremental and automatic coevolution and consistency

check.

 Executable OOCPNs model - Incremental and Automatic correctness check

using CPNs simulation and monitoring tools.

• Integrity:

 Integrate the new changes with the current diagrams.

• Completeness and Functionality:

 Cover all UML 2.3 diagrams in the proposed OOCPNs structure and in the

proposed change impact and traceability analysis Templates.

Univ
ers

ity
 of

 M
ala

ya

143

7.4 Accomplishment of Research Objectives

The primary goal of this research was accomplished through the proposal of a new

coevolution framework to enhance the representation capabilities of OO and CPNs

modelling languages to support model changes. The proposed framework manages the

coevolution between UML diagrams after each update operation, where UML diagrams

are modelled from different perspectives using UML structural, behavioural, and

interaction diagrams. The main objectives of this research were achieved and the

research questions were answered as follows:

a. A new structure for the integration of UML and CPNs (Object Oriented

Coloured Petri Nets (OOCPNs)) was proposed and evaluated. In this structure,

transformation rules are applied between UML diagrams’ elements and

OOCPNs. The proposed structure also includes consistency and integrity rules

that are applied when updating diagrams and diagram elements. This answers

RQ1.

b. A set of change impact and traceability analysis templates for all types of

change in most of the UML 2.3 diagrams was proposed and evaluated. The

templates include, rules to maintain consistency and integrity. This answers

part of RQ2.

c. A set of coevolution patterns to model and simulate the proposed diagrams

changes was proposed and evaluated. The patterns include the change impact

and traceability analysis templates for updating UML diagrams. This

completely answers RQ2.

d. The development of the proposed coevolution framework answers RQ3.

To answer RQ4, the performance of the proposed coevolution framework was

quantified through simulation statistics and a framework analysis which were provided

in Sections 6.3 and 7.1 to 7.3.

Univ
ers

ity
 of

 M
ala

ya

144

7.5 Limitations of Research

The main limitations of this research are as follows:

1. The proposed framework is restricted on term of the range of UML diagrams

supported in the patterns design (specifically class, object, activity, statechart,

and sequence diagrams). Hence a more comprehensive framework is required

to cover all diagrams.

2. This research does not cover all the possible inconsistency checking rules for

all diagrams. This is because the research focuses on the most important

diagrams elements and rules.

3. Although the proposed OOCPNs patterns describe the UML diagrams

consistency problems and the solutions can be applied when modelling a wide

range of systems, the applicability of these patterns is limited to the CPNs

community because the implementation of the patterns is CPNs language

dependent.

7.6 Chapter Summary

This chapter discussed the research findings in detail. This chapter presented the

simulation methodology and some scenarios. Moreover, the framework results were

analysed and discussed, including the proposed integration between UML and CPNs

(i.e. the new OOCPNs structure including the transformation rules and the consistency

rules), the proposed change impact template, and the proposed coevolution patterns.

The next chapter will summarize the thesis outcomes and findings and will also

highlight the research contributions and limitations. Finally, some conclusions are

drawn and recommendations are made on some potential future research areas are

highlighted.

Univ
ers

ity
 of

 M
ala

ya

145

CHAPTER 8: CONCLUSION AND FUTURE WORK

8.1 Thesis Summary

As software evolves, analysis and design models need be modified, accordingly. To

cope with changes in the software process, in this research, a novel approach for a

coevolution framework was proposed to manipulate the change effect in the UML

diagrams’ elements. In this framework, UML diagrams are modelled from different

perspectives using UML structural, behavioural, and interaction diagrams. The

proposed framework can be applied to detect the diagram elements affected by a change

in a system design modelled using UML diagrams by utilising the proposed coevolution

patterns. This framework can be used to control the evolution of UML diagrams by

identifying and managing the model changes, ensuring the correctness and consistency

of the models, identifying the impact of changes based on the relationships between

diagrams, and analyzing the performance.

In addition, a set of model-based change impact and traceability analysis templates

was proposed to determine and classify the types of changes in UML diagrams and their

impact on other diagrams. The consistency between diagrams is checked according to

the consistency and integrity rules provided in each template. This includes the vertical,

horizontal, and evolutionary consistency types. Changes are modelled using coevolution

patterns. CPNs Tools toolboxes are used to model and simulate the proposed

framework.

This research also proposed a new structure for the mutual integration between UML

diagrams and CPNs to support model changes. This structure combines the advantages

of the formal and semi-formal modelling languages. The UML diagrams as a semi-

formal modelling language are used to provide powerful structuring capabilities in the

model design. The CPNs as a formal and executable modelling language describe the

behaviour of the UML model formally. In addition, transformation rules are proposed to

Univ
ers

ity
 of

 M
ala

ya

146

transform the UML diagrams into OOCPNs model. Moreover, rules to maintain the

consistency and integrity of the OOCPNs model are proposed to support the model

changes. The consistency and integrity rules are based on the UML diagrams relations

and the proposed OOCPNs structure.

In this research, UML diagrams offered in UML 2.3 are supported in the

transformation between UML diagrams into CPNs and in the proposed change impact

and traceability analysis templates. The proposed coevolution patterns support the UML

class, object, activity, statechart, and sequence diagrams because the coevolution

between these diagrams is very high (the class diagram and object diagram represent the

structured diagrams perspectives. The statechart diagram, activity diagram, and

sequence diagram represents the behavioural and interaction diagrams perspectives).

The proposed patterns support the checking of the consistency between UML diagrams

during the design process not just checking of the consistency when the diagrams are

updated. The coevolution is incremental; this means that if the Addition for a new

diagram element is related to other diagrams elements it must exist, as shown in

Figure 7.15 which provides an example of the incrementally consistency check.

Incremental checking includes consistency and integrity rules.

8.2 Research Contributions and Significance

The new framework proposed in this thesis will be of assistance to software engineers

because it is a systematic and methodical approach for change analysis and management.

This research started by addressing the transformation between UML diagrams and

CPNs as well as consistency checking rules. Then, a set of change impact and

traceability analysis templates for all types of change in UML diagrams was proposed,

including rules to maintain consistency and integrity. Finally, a set of coevolution

patterns was proposed to model and simulate the proposed framework, including the

Univ
ers

ity
 of

 M
ala

ya

147

change impact and traceability analysis templates for updating OO diagrams. The

proposed patterns were used to validate and verify the software model based on checking

the correctness and complexity after updating the model using these patterns.

The proposed framework can be implemented for actual deployments in any system

modelled using UML diagrams, such as those in large universities, industrial factories,

large or small companies, to provide software model analysis and design. The proposed

framework has the following benefits:

1. It enables comprehensive modelling for changes in UML diagrams;

2. It provides coevolution patterns and templates in OOCPNs for UML diagram

changes. i.e. it improves pattern support in software analysis and design;

3. It provides a new structure for the integration between UML and CPNs to

support model changes; and

4. It increases the structuring capabilities of CPNs.

8.3 Key Features and Outcomes

The main features and outcomes of this research are as follows:

Short-term outcomes:

 A coevolution framework to support UML diagram changes using OOCPNs

patterns;

 A consistent integration of UML and CPNs based on the new proposed OOCPNs

structure for the integration of UML and CPNs and the transformation rules

applied between UML diagram elements and CPNs;

 A set of change impact and traceability analysis templates for all types of change

in UML diagrams, including rules to maintain consistency and integrity;

Univ
ers

ity
 of

 M
ala

ya

148

 A set of coevolution patterns to model and simulate the proposed framework

including the change impact and traceability analysis templates for updating

UML diagrams; and

 Validation and verification of the software model based on checking the

correctness and complexity after updating the model using coevolution patterns.

Long-term outcomes:

 Increased representation capability for UML modelling to support flexibility and

adaptability in UML diagrams changes;

 An effective coevolution framework for dynamic changes in software models

based on the integration of UML and CPNs modelling languages.

8.4 Recommendations for Future Research

The work done in this thesis could be extended in several directions:

 The proposed framework covers some of the UML diagrams in patterns design

(namely class, object, activity, statechart, and sequence diagram). A more

comprehensive framework could be attempted in a future research study.

 The provision of a software tool to automatically upload and transform UML

diagrams to CPNs could also be developed.

 The limitations of this research mentioned in Section 7.5 could be addressed.

 Extending the research by cosidering the semantic meanings of the model.

 Considering the coevolution between models and the source code.

 Applying the proposed framework on realistec case studies.

Univ
ers

ity
 of

 M
ala

ya

149

REFERENCES

Abbasi, A. A. (2015). A pattern language for evolution reuse in component-based
software architectures. Dublin City University.

Abma, B. (2009). Evaluation of requirements management tools with support for

traceability-based change impact analysis. Master’s thesis, University of
Twente.

Aguilar-Saven, R. S. (2004). Business process modelling: Review and framework.

International Journal of production economics, 90(2), 129-149.

Ajila, S. (1995). Software maintenance: an approach to impact analysis of objects

change. Software: Practice and Experience, 25(10), 1155-1181.

Al-Khiaty, M. A.-R., & Ahmed, M. (2016). UML Class Diagrams: Similarity Aspects

and Matching. Lecture Notes on Software Engineering, 4(1).

Alexander, C. (1979). The timeless way of building (Vol. 1): New York: Oxford

University Press.

Ali, A., Boufares, F., & Abdellatif, A. (2006). Checking constraints consistency in

UML class diagrams. Paper presented at the 2nd Information and
Communication Technologies. ICTTA'06. .

Ali, H. O., Rozan, M. Z. A., & Sharif, A. M. (2012). Identifying challenges of change

impact analysis for software projects. Paper presented at the International
Conference on Innovation Management and Technology Research (ICIMTR).

Amar, B., Leblanc, H., Coulette, B., & Dhaussy, P. (2013). Automatic Co-evolution of

Models Using Traceability Software and Data Technologies (pp. 125-139):
Springer.

Ambler's, S. W. (2009). Introduction to the Diagrams of UML 2.0, Retrieved 2010,

from http://www.agilemodeling.com/essays/umlDiagrams.htm

April, A., & Abran, A. (2012). Software maintenance management: evaluation and

continuous improvement: Wiley-IEEE Computer Society Press.

Univ
ers

ity
 of

 M
ala

ya

http://www.agilemodeling.com/essays/umlDiagrams.htm

150

Baader, F. (2003). The description logic handbook: theory, implementation, and
applications: Cambridge university press.

Baresi, L. (2002). Some preliminary hints on formalizing UML with Object Petri Nets.

Paper presented at the Proceedings of the Sixth Biennial World Conference on
Integrated Design and Process Technology.

Barr, P., & Pettis, J. (2007). UML 2.0 Diagrams, Petri Nets and Development of an

Executable Architecture to predict performance. . Paper presented at the
Conference on Systems Engineering Researh (CSER2007), Hoboken, NJ , USA.

Barros, J. P., & Gomes, L. (2004). On the use of coloured Petri nets for object-oriented

design Applications and Theory of Petri Nets 2004 (pp. 117-136): Springer.

Barros, J. P., & Jorgensen, J. B. (2005). A CASE STUDY ON COLOURED PETRI

NETS INl OBJECT-ORIENTED ANALYSIS AND DESIGN. Nordic Journal
of Computing l2, 50, 22.

Bastide, R. (1995). Approaches in unifying Petri nets and the object-oriented approach.

Paper presented at the 1st Workshop on Object-Oriented Programming and
Models of Concurrency, within 16th international conference on applications
and theory of Petri nets, ICATPN'95.

Bauskar, B. E., & Mikolajczak, B. (2006). Abstract node method for integration of

object oriented design with colored Petri nets. Paper presented at the Third
International Conference on Information Technology: New Generations. ITNG
2006.

Bennett, S., McRobb, S., & Farmer, R. (2010). Object-oriented systems analysis and

design using UML: 4th Edition, McGraw-Hill Berkshire, UK.

Bhat, J. M., & Deshmukh, N. (2005). Methods for modeling flexibility in business

processes. Paper presented at the Proceedings of the Sixth Workshop on
Business Process Modeling, Development, and Support, BPMDS'05.

Biberstein, O., Buchs, D., & Guelfi, N. (1996). COOPN/2: A specification language for

distributed systems engineering. Paper presented at the in DeVa 1st Year
Report.

Bishop, L. (2004). Incremental impact analysis for object-oriented software. Lowa State

University.

Univ
ers

ity
 of

 M
ala

ya

151

Bohner, S. A. (1996). Software change impact analysis: IEEE Computer Society Press
Bohner, S. A. (2002). Software change impacts-an evolving perspective. Paper

presented at the Proceedings. International Conference on Software
Maintenance.

Bokhari, A., & Poehlman, S. (2006). Translation of UML models to object coloured

Petri nets with a view to analysis. Software Engineering and Knowledge
Engineering (SEKE: 2006), 568-571.

Bolloju, N., Schneider, C., & Sugumaran, V. (2012). A knowledge-based system for

improving the consistency between object models and use case narratives.
Expert Systems with Applications, 39(10), 9398-9410.

Bouabana-Tebibel, T., & Belmesk, M. (2004). Formalization of UML object dynamics

and behavior. Paper presented at the IEEE International Conference on Systems,
Man and Cybernetics.

Bouabana-Tebibel, T., & Belmesk, M. (2005). Object-oriented workflow formalization.

Paper presented at the Proc. of the 2nd South-East European Workshop on
Formal Methods.

Bouabana-Tebibel, T., & Belmesk, M. (2007). An object-oriented approach to formally

analyze the UML 2.0 activity partitions. Information and Software Technology,
49(9), 999-1016.

Bousse, E. (2012). Requirements management led by formal verification. Ms in cs,

University of Rennes, 1.

Breivold, H. P., Crnkovic, I., & Larsson, M. (2012). A systematic review of software

architecture evolution research. Information and Software Technology, 54(1),
16-40.

Briand, L. C., Labiche, Y., & O'sullivan, L. (2003). Impact analysis and change

management of UML models. Paper presented at the International Conference
on Software Maintenance. ICSM 2003. .

Briand, L. C., Labiche, Y., & Yue, T. (2009). Automated traceability analysis for UML

model refinements. Information and Software Technology, 51(2), 512-527.

Univ
ers

ity
 of

 M
ala

ya

152

Bruckmann, T., & Gruhn, V. (2008a). Amabulo-a model architecture for business logic.
Paper presented at the 15th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems. ECBS 2008. .

Brückmann, T., & Gruhn, V. (2008b). AMABULO Meta-Model: Formal Description

and Formal Mapping into Coloured Petri Nets: University of Leipzig.

Bruegge, B. (2010). Object-Oriented Software Engineering: Using UML, Patterns and

Java 3/E: Prentice Hall.

Calderon, M. E. (2005). Model transformation support for the analysis of large-scale

systems. Master Thesis in Software Emgineering,
 , Texas Tech University.

Calì, A., Calvanese, D., De Giacomo, G., & Lenzerini, M. (2002). A formal framework

for reasoning on UML class diagrams Foundations of Intelligent Systems (pp.
503-513): Springer.

Campos, J., & Merseguer, J. (2006). On the integration of UML and Petri nets in

software development Petri Nets and Other Models of Concurrency-ICATPN
2006 (pp. 19-36): Springer.

Capra, L., & Cazzola, W. (2007). A reflective PN-based approach to dynamic workflow

change. Paper presented at the International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing. SYNASC.

Chang, Y.-L., Chen, S., Chen, C.-C., & Chen, I. (2000). Workflow process definition

and their applications in e-commerce. Paper presented at the International
Symposium on Multimedia Software Engineering. .

Chen, C.-Y., & Chen, P.-C. (2009). A holistic approach to managing software change

impact. Journal of Systems and Software, 82(12), 2051-2067.

Chen, C.-Y., She, C.-W., & Tang, J.-D. (2007). An object-based, attribute-oriented

approach for software change impact analysis. Paper presented at the IEEE
International Conference on Industrial Engineering and Engineering
Management.

Chen, S. M. (2000). Using UML and Petri Nets for Workflow Process Definition.

Master Thesis, National Central University- Computer Science and Information
Engineering.

Univ
ers

ity
 of

 M
ala

ya

153

Chiorean, D., Paşca, M., Cârcu, A., Botiza, C., & Moldovan, S. (2004). Ensuring UML

models consistency using the OCL Environment. Electronic Notes in
Theoretical Computer Science, 102, 99-110.

Chiorean, D. I., Petrascu, V., & Petrascu, D. (2008). How my favorite tool supporting

OCL must look like. Electronic Communications of the EASST, 15.

Chukwuogo, B. I. (2007). SCALBAILITY IN ANALYSIS OF SOFTWARE

ARCHITECTURE. Master Thesis, Texas Tech University.

Cicchetti, A., Di Ruscio, D., Eramo, R., & Pierantonio, A. (2008). Automating co-

evolution in model-driven engineering. Paper presented at the 12th International
IEEE Enterprise Distributed Object Computing Conference. EDOC'08.

Costanza, P. (2001). Dynamic object replacement and implementation-only classes.

Paper presented at the 6th International Workshop on Component-Oriented
Programming (WCOP 2001) at ECOOP.

Côté, I., & Heisel, M. (2009). Supporting Evolution by Models, Components, and

Patterns. Paper presented at the Proceedings of the 1. Workshop des GI-
Arbeitskreises Langlebige Softwaresysteme (L2S2): "Design for Future -
Langlebige Softwaresysteme".

Curtis, H. T., Clarence, S. L., & Ying, K. L. (2005). Object-Oriented Technology: From

Diagram to Code with Visual Paradigm for UML: McGraw-Hill.

D’Hondt, T., De Volder, K., Mens, K., & Wuyts, R. (2002). Co-evolution of object-

oriented software design and implementation Software Architectures and
Component Technology (pp. 207-224): Springer.

Dadam, P., & Reichert, M. (2009). The ADEPT project: a decade of research and

development for robust and flexible process support. Computer Science-
Research and Development, 23(2), 81-97.

DAMIANO, T., LABICHE, Y., & GENERO, M. (2015). A systematic identification of

consistency rules for UML diagrams. Carleton University, Technical Report
SCE-15-01

Dang, D.-H., & Gogolla, M. (2016). An OCL-Based Framework for Model

Transformations. VNU Journal of Science: Computer Science and
Communication Engineering, 32(1).

Univ
ers

ity
 of

 M
ala

ya

154

De Lucia, A., Fasano, F., & Oliveto, R. (2008). Traceability management for impact

analysis. Paper presented at the Frontiers of Software Maintenance, 2008. FoSM
2008.

Demuth, A., Riedl-Ehrenleitner, M., Lopez-Herrejon, R. E., & Egyed, A. (2016). Co-

evolution of metamodels and models through consistent change propagation.
Journal of Systems and Software, 111, 281-297.

Dubauskaite, R., & Vasilecas, O. (2013). Method on Specifying Consistency Rules

among Different Aspect Models, expressed in UML. Electronics and Electrical
Engineering, 19(3), 77-81.

Egyed, A. (2006). Instant consistency checking for the UML. Paper presented at the

Proceedings of the 28th international conference on Software engineering.

Egyed, A. (2007a). Fixing inconsistencies in UML design models. Paper presented at

the 29th International Conference on Software Engineering. ICSE 2007. .

Egyed, A. (2007b). Uml/analyzer: A tool for the instant consistency checking of uml

models. Paper presented at the 29th International Conference on Software
Engineering. ICSE 2007. .

Egyed, A. (2011). Automatically detecting and tracking inconsistencies in software

design models. Software Engineering, IEEE Transactions on, 37(2), 188-204.

Einarsson, H. ó., & Neukirchen, H. (2012). An approach and tool for synchronous

refactoring of UML diagrams and models using model-to-model
transformations. Paper presented at the Proceedings of the Fifth Workshop on
Refactoring Tools.

Ekanayake, E., & Kodituwakku, S. R. (2015). Consistency checking of UML class and

sequence diagrams. Paper presented at the 8th International Conference on Ubi-
Media Computing (UMEDIA). .

Elaasar, M., & Briand, L. (2004). An overview of UML consistency management.

Carleton University, Canada, Technical Report SCE-04-18.

Elkoutbi, M., & Keller, R. K. (2000). User interface prototyping based on UML

scenarios and high-level Petri nets Application and Theory of Petri Nets 2000
(pp. 166-186): Springer.

Univ
ers

ity
 of

 M
ala

ya

155

Emadi, S., & Shams, F. (2008). From UML component diagram to an executable model

based on Petri nets. Paper presented at the International Symposium on
Information Technology. ITSim 2008. .

Emadi, S., & Shams, F. (2009). Transformation of usecase and sequence diagrams to

petri nets. Paper presented at the ISECS International Colloquium on
Computing, Communication, Control, and Management. CCCM 2009. .

Engels, G., Küster, J. M., Heckel, R., & Groenewegen, L. (2001). A methodology for

specifying and analyzing consistency of object-oriented behavioral models.
Paper presented at the ACM SIGSOFT Software Engineering Notes.

Esser, R. (1997). An object oriented Petri net language for embedded system design.

Paper presented at the Software Technology and Engineering Practice, 1997.
Proceedings., Eighth IEEE International Workshop on [incorporating Computer
Aided Software Engineering].

Etien, A., Rolland, C., & Salinesi, C. (2004). Overview of a Gap-driven Evolution

Process. Paper presented at the Proceedings of Australian Workshop on
Requirements Engineering, AWRE.

Etien, A., & Salinesi, C. (2005). Managing requirements in a co-evolution context.

Paper presented at the 13th IEEE International Conference on Requirements
Engineering. .

Fernandes, J. M., Tjell, S., Jorgensen, J. B., & Ribeiro, Ó. (2007). Designing tool

support for translating use cases and UML 2.0 sequence diagrams into a
coloured Petri net. Paper presented at the Sixth International Workshop on
Scenarios and State Machines. SCESM'07: ICSE Workshops 2007. .

Fowler, M. (1999). Refactoring: improving the design of existing code: Addison-

Wesley Professional.

Fowler, M. (2004). UML Distilled: A Brief Guide to the Standard Object Modeling

Languange: Addison-Wesley Professional.

Fryz, L., & Kotulski, L. (2007). Assurance of system consistency during independent

creation of UML diagrams. Paper presented at the 2nd International Conference
on Dependability of Computer Systems. DepCoS-RELCOMEX'07. .

Univ
ers

ity
 of

 M
ala

ya

156

Gamma , E., Helm, R., Johnson , R., & Vlissides, J. (1995). Design Patterns: Rlements

of Reusable Object Oriented Software: Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2001). Design patterns: Abstraction

and reuse of object-oriented design: Springer.

García, J., Diaz, O., & Azanza, M. (2013). Model transformation co-evolution: A semi-

automatic approach Software Language Engineering (pp. 144-163): Springer.

Garrido, J. L., & Gea, M. (2002). A Coloured Petri Net Formalisation for a UML-Based

Notation Applied to Cooperative System Modelling Interactive Systems:
Design, Specification, and Verification (pp. 16-28): Springer.

Gethers, M., Dit, B., Kagdi, H., & Poshyvanyk, D. (2012). Integrated impact analysis

for managing software changes. Paper presented at the 34th International
Conference on Software Engineering (ICSE).

Ghosh, S., Sharma, H., & Mohabay, V. (2011a). Software change management–

Technological dimension. International Journal of International Journal of o
Smart Home Smart Home Smart Home 5(2).

Ghosh, S., Sharma, H., & Mohabay, V. (2011b). Analysis and Modelling of Change

Management Process Model. International Journal of Software Engineering and
Its Applications, 5(2).

Ghosh, S., Sharma, H., & Mohabay, V. (2011c). A Study of Software Change

Management Problem. International Journal of Database Theory and
Application 4(3).

Gómez-Martínez, E., & Merseguer, J. (2006). ArgoSPE: Model-based software

performance engineering Petri Nets and Other Models of Concurrency-ICATPN
2006 (pp. 401-410): Springer.

Gongzheng, L., & Guangquan, Z. (2010). An approach to check the consistency

between the UML 2.0 dynamic diagrams. Paper presented at the 5th
International Conference on Computer Science and Education (ICCSE).

Univ
ers

ity
 of

 M
ala

ya

157

Grossmann, G., Mafazi, S., Mayer, W., Schrefl, M., & Stumptner, M. (2015). Change
propagation and conflict resolution for the co-evolution of business processes.
International Journal of Cooperative Information Systems, 24(01), 1540002.

Guerra, E., & de Lara, J. (2003). A framework for the verification of UML models.

Examples using petri nets. Paper presented at the Proc. JISBD.

Halle, B. v., & Ronald, G. (2001). Business rules applied: building better systems using

the business rules approach: John Wiley & Sons, Inc.

Hammad, M., Collard, M. L., & Maletic, J. I. (2010). Measuring class importance in the

context of design evolution. Paper presented at the IEEE 18th International
Conference on Program Comprehension (ICPC).

Hanish, A. A., & Dillon, T. S. (1997). Object-oriented behaviour modelling for real-

time design. Paper presented at the Third International Workshop on Object-
Oriented Real-Time Dependable Systems.

He, X. (2000). Formalizing UML class diagrams-a hierarchical predicate transition net

approach. Paper presented at the The 24th Annual International Computer
Software and Applications Conference. COMPSAC 2000. .

Herzig, S., Qamar, A., Reichwein, A., & Paredis, C. J. (2011). A conceptual framework

for consistency management in model-based systems engineering. Paper
presented at the Proceedings of the ASME 2011 International Design
Engineering Technical Conferences & Computers and Information in
Engineering Conference IDETC/CIE 2011.

Holliday, M. A., & Vernon, M. K. (1987). A generalized timed Petri net model for

performance analysis. Software Engineering, IEEE Transactions on(12), 1297-
1310.

Hollingsworth, D., & Hampshire, U. (1993). Workflow management coalition the

workflow reference model Workflow Management Coalition (pp. 68).

Hong, J.-E., & Bae, D.-H. (2001). High-level Petri net for incremental analysis of

object-oriented system requirements. IEE Proceedings-Software, 148(1), 11-18.

Hongmei, G., Biqing, H., & Shouju, R. (2000). A UML and Petri Nets Integrated

Modeling Method for Business Processes in Virtual Enterprises. Paper presented
at the Bringing Knowledge to Business Processes: Papers from the 2000 AAAI
Symposium, March 20-22, Stanford, California.

Univ
ers

ity
 of

 M
ala

ya

158

Hößler, J., Soden, M., & Eichler, H. (2005). Coevolution of models, metamodels and

transformations. Models and Human Reasoning. Wissenschaft und Technik
Verlag, Berlin, 129-154.

Hu, Z., & Shatz, S. M. (2004). Mapping UML diagrams to a Petri net notation for

system simulation. Paper presented at the 16th Int. Conf. on Software
Engineering & Knowledge Engineering (SEKE 2004).

Huang, L., & Song, Y.-T. (2007). Precise dynamic impact analysis with dependency

analysis for object-oriented programs. Paper presented at the 5th ACIS
International Conference on Software Engineering Research, Management &
Applications. SERA 2007.

Huzar, Z., Kuzniarz, L., Reggio, G., & Sourrouille, J. L. (2005). Consistency problems

in UML-based software development UML Modeling Languages and
Applications (pp. 1-12): Springer.

IBMSoftware. (2011). IBM Software. Retrieved from http://www-

01.ibm.com/software/awdtools/developer/rose/

Ibrahim, N., Ibrahim, R., Saringat, M. Z., Mansor, R. D., & Herawan, T. (2013). Use

case driven based rules in ensuring consistency of UML model. AWERProcedia
Information Technology and Computer Science, 1.

Ibrahim, S., Idris, N. B., Munro, M., & Deraman, A. (2005). A requirements traceability

to support change impact analysis. Asian Journal of Information Tech, 4(4),
345-355.

Isaac, S., & Navon, R. (2013). A graph-based model for the identification of the impact

of design changes. Automation in Construction, 31, 31-40.

Ivkovic, I., & Kontogiannis, K. (2004). Tracing evolution changes of software artifacts

through model synchronization. Paper presented at the 20th IEEE International
Conference on Software Maintenance. Proceedings. .

Jaafar, F. (2012). On the analysis of evolution of software artefacts and programs. Paper

presented at the Proceedings of the 2012 International Conference on Software
Engineering.

Univ
ers

ity
 of

 M
ala

ya

http://www-01.ibm.com/software/awdtools/developer/rose/
http://www-01.ibm.com/software/awdtools/developer/rose/

159

Jennings, N. R., Faratin, P., Norman, T. J., O'Brien, P., Odgers, B., & Alty, J. L. (2000).
Implementing a business process management system using ADEPT: A real-
world case study. Applied Artificial Intelligence, 14(5), 421-463.

Jensen, K. (1992). Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use. . Monographs in Theoretical Computer Science, Springer-Verlag, 1.

Jensen, K. (1994). An introduction to the theoretical aspects of coloured petri nets:

Springer.

Jensen, K. (1998). An introduction to the practical use of coloured petri nets Lectures

on Petri Nets II: Applications (pp. 237-292): Springer.

Jensen, K., & Kristensen, L. M. (2009). Coloured Petri nets: modelling and validation

of concurrent systems: Springer Publishing Company, Incorporated.

Jensen, K., Kristensen, L. M., & Wells, L. (2007). Coloured Petri Nets and CPN Tools

for modelling and validation of concurrent systems. International Journal on
Software Tools for Technology Transfer, 9(3-4), 213-254.

Jönsson, P. (2005). Impact Analysis: Organisational Views and Support Techniques.

Jørgensen, J. B. (2003). Coloured Petri nets in development of a pervasive health care

system Applications and Theory of Petri Nets 2003 (pp. 256-275): Springer.

Kagdi, H., Gethers, M., & Poshyvanyk, D. (2012). Integrating conceptual and logical

couplings for change impact analysis in software. Empirical Software
Engineering, 1-37.

Kchaou, D., Bouassida, N., & Ben-Abdallah, H. (2016). Managing the Impact of UML

Design Changes on Their Consistency and Quality. Arabian Journal for Science
and Engineering, 1-19.

Keller, R. K., Shen, X., & Bochmann, G. v. (1994). Macronet-A Simple, yet Expressive

and Flexible Formalism for Business Modelling. Paper presented at the
Proceedings of the Workshop on Computer-Supported Cooperative Work, Petri
Nets and Related Formalisms during the 15th International Conference on
Application and Theory of Petri Nets. Zaragoza, Spain.

Khadka, B. (2007). Transformation of Live Sequence Charts to Colored Petri Nets. A

Masters Project Report, University Of Massachusetts Dartmouth.

Univ
ers

ity
 of

 M
ala

ya

160

Khalil, A., & Dingel, J. (2013). Supporting the Evolution of UML Models in Model

Driven Software Development: A Survey: Technical Report 2013-602 , School
of Computing, Queen’s University

Khan, A. H., & Porres, I. (2015). Consistency of UML class, object and statechart

diagrams using ontology reasoners. Journal of Visual Languages & Computing,
26, 42-65.

Kim, D., Kim, M., & Kim, H. (2007). Dynamic business process management based on

process change patterns. Paper presented at the International Conference on
Convergence Information Technology. .

Knolmayer, G., Endl, R., & Pfahrer, M. (2000). Modeling processes and workflows by

business rules Business Process Management (pp. 16-29): Springer.

Koci, R., Janousek, V., & Zboril, F. (2008). Object Oriented Petri Nets Modelling

Techniques Case Study. Paper presented at the Second UKSIM European
Symposium on Computer Modeling and Simulation. EMS'08. .

Koomsub, D. (1999). A Case Study of Change Management of ERP Implementation

Project Using SAP R/3. Thailand, Independent Study Project.

Kordic, V. (2008). Petri Net, Theory and Applications: InTech.

Kowalkiewicz, M., Lu, R., Bäuerle, S., Krümpelmann, M., & Lippe, S. (2008). Weak

dependencies in business process models. Business Information Systems, 177-
188.

Kradolfer, M. (2000). A workflow metamodel supporting dynamic, reuse-based model

evolution. PhD thesis, Department of Information Technology, University of
Zurich, Switzerland.

Krena, B., & Vojnar, T. (2001). Type Analysis in Object-Oriented Petri Nets.

Proceedings of ISM’01 Hradec nad moranici Czech Republic, 173-180.

Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., & Chen, C. (1994). Change impact

identification in object oriented software maintenance. Paper presented at the
International Conference on Software Maintenance. .

Univ
ers

ity
 of

 M
ala

ya

161

Kurt, J. (1997). Coloured Petri nets: Basic concepts, analysis methods and practical use.

EATCS Monographs on Theoretical Computer Science. 2nd edition, Berlin:
Springer-Verlag.

Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W., Schoenboeck, J.,

Schwinger, W., & Wimmer, M. (2015). Systematic Co-evolution of OCL
expressions. 11th APCCM, 27, 30.

Lakos, C. (2001). Object oriented modelling with object Petri nets Concurrent object-

oriented programming and petri nets (pp. 1-37): Springer.

Lakos, C., & Keen, C. (1994). LOOPN++: A new language for object-oriented Petri

nets: Department of Computer Science, University of Tasmania.

Lakos, C., Keen, C., & Hobart, T. (1991). Simulation with object-oriented petri nets.

Paper presented at the Australian Software Engineering Conference, Sydney.

Lam, W., Shankararaman, V., Jones, S., Hewitt, J., & Britton, C. (1998). Change

analysis and management: a process model and its application within a
commercial setting. Paper presented at the IEEE Workshop on Application-
Specific Software Engineering Technology. ASSET-98. Proceedings. .

Langer, P., Mayerhofer, T., Wimmer, M., & Kappel, G. (2014). On the Usage of UML:

Initial Results of Analyzing Open UML Models. Modellierung 19, 21.

Langhammer, M. (2013). Co-evolution of component-based architecture-model and

object-oriented source code. Paper presented at the Proceedings of the 18th
international doctoral symposium on Components and architecture.

Lassen, K. B. (2007). Translating UML 2.0 sequence charts into coloured Petri net

using process mining: Technical report, Department of Computer Science at the
University of Aarhus.

Le Bail, J., Alla, H., & David, R. (1991). Hybrid petri nets. Paper presented at the

European Control Conference.

Lee, M. L. (1998). Change impact analysis of object-oriented software. George Mason

University.

Univ
ers

ity
 of

 M
ala

ya

162

Lehnert, S. (2011). A review of software change impact analysis. Ilmenau University of
Technology, Tech. Rep.

Lehnert, S., & Riebisch, M. (2013). Rule-Based Impact Analysis for Heterogeneous

Software Artifacts. Paper presented at the 17th European Conference on
Software Maintenance and Reengineering (CSMR).

Lewis, G. A. (1996). Producing network applications using object-oriented petri nets.

Master Thesis, University of Tasmania.

Li, B., Sun, X., Leung, H., & Zhang, S. (2012). A survey of code ‐based cha

analysis techniques. Software Testing, Verification and Reliability.

Lian-Zhang, Z., & Fan-Sheng, K. (2012). Automatic Conversion from UML to CPN for

Software Performance Evaluation. Procedia Engineering, 29, 2682-2686.

Liles, S. W. (2008). On the characterization and analysis of system of systems

architectures. PhD Thesis, George Mason University.

Liu, X. (2013). Identification and Check of Inconsistencies between UML Diagrams.

Journal of Software Engineering and Applications, 6, 73-77.

Liui, X., Yin, G., & Zhang, Z. (2008). A Kind of Object-Oriented Petri Net and Its

Application. Paper presented at the International Conference on Internet
Computing in Science and Engineering. ICICSE'08. .

Lu, R. (2008). Constraint-Based Flexible Business Process Management. PhD Thesis,

School of Information Technology and Electrical Engineering, University of
Queensland.

Lu, R., & Sadiq, S. (2007). A survey of comparative business process modeling

approaches. Business Information Systems, 82-94.

Lucas, F. J., Molina, F., & Toval, A. (2009). A systematic review of UML model

consistency management. Information and Software Technology, 51(12), 1631-
1645.

Mäder, P., Gotel, O., & Philippow, I. (2009). Enabling automated traceability

maintenance through the upkeep of traceability relations. Paper presented at the
Model Driven Architecture-Foundations and Applications.

Univ
ers

ity
 of

 M
ala

ya

163

MagicDraw. (2009). MagicDraw-UML. Retrieved from www.magicdraw.com/

Mahmood, Z., & Mahmood, R. B. T. (2015). Category, Strategy and Validation of

Software Change Impact Analysis. International Journal Of Engineering And
Computer Science, 11(4), 11126-11128

Malabarba, S., Pandey, R., Gragg, J., Barr, E., & Barnes, J. F. (2000). Runtime support

for type-safe dynamic Java classes: Springer.

Maqbool, S. (2005). Transformation of a core scenario model and activity diagrams into

petri nets. Master Thesis, University of Ottawa.

Marzeta, R. (2007). Specification of design and verification of service-oriented systems.

Master’s thesis, Technical University of Denmark, Informatics and
Mathematical Modelling, DTU, IMM Publication.

Meijers, M. (1996). Tool support for object-oriented design patterns. Dept. of Computer

Science INF-SCR-96-28, Utrecht University (August 1996).

Mendling, J., La Rosa, M., & ter Hofstede, A. H. (2008). Correctness of business

process models with roles and objects: QUT ePrints Technical Report #13172,
Queensland University of Technology,Australia

Mens, T., Van Der Straeten, R., & Simmonds, J. (2005a). A framework for managing

consistency of evolving UML models. Software Evolution with UML and XML,
1-31.

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., & Jazayeri, M.

(2005b). Challenges in software evolution. Paper presented at the Eighth
International Workshop on Principles of Software Evolution.

Merseguer, J. e., & Campos, J. (2003). Software Performance Modeling using UML

and Petri nets, MASCOTS Tutorials: 265-289.

Mikolajczak, B., & Sefranek, C. (2003). Integrating object-oriented design with Petri

nets-case study of ATM system. Paper presented at the IEEE International
Conference on Systems, Man and Cybernetics. .

Univ
ers

ity
 of

 M
ala

ya

http://www.magicdraw.com/

164

Milanovic, M., Gasevic, D., & Wagner, G. (2008). Combining rules and activities for
modeling service-based business processes. Paper presented at the 12th
Enterprise Distributed Object Computing Conference Workshops.

Millan, T., Sabatier, L., Le Thi, T.-T., Bazex, P., & Percebois, C. (2009). An OCL

extension for checking and transforming UML models. Paper presented at the
International Conference on Software Engineering, Parallel and Distributed
Systems (SEPADS'09), Cambridge, United Kingdom.

Miller, R. (2003). Practical UML: A hands-on introduction for developers. White Paper,

Borland Developer Network.

Miyamoto, T., & Kumagai, S. (2005). A survey of object-oriented Petri nets and

analysis methods. IEICE transactions on fundamentals of electronics,
communications and computer sciences, 88(11), 2964-2971.

Miyamoto, T., & Kumagai, S. (2007). Application of Object-Oriented Petri Nets to

Industrial Electronics. Paper presented at the 33rd Annual Conference of the
IEEE Industrial Electronics Society. IECON 2007. .

Mohan, K., Xu, P., Cao, L., & Ramesh, B. (2008). Improving change management in

software development: Integrating traceability and software configuration
management. Decision Support Systems, 45(4), 922-936.

Motameni, H., Movaghar, A., Shirazi, B., Aminzadeh, M., & Samadi, H. (2008).

Analysis Software with an object-oriented Petri net model. World Applied
Sciences Journal, 3(4), 565-576.

Mulyar, N. (2009). Patterns for process-aware information systems: an approach based

on colored Petri nets. PhD Thesis, Eindhoven: Technische Universiteit
Eindhoven.

Mulyar, N., & van der Aalst, W. M. (2005). Towards a pattern language for colored

petri nets. Paper presented at the sixth workshop and tutorial on practical use of
coloured Petri nets and the CPN tools.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4), 541-580.

Murphy, G. C., Notkin, D., & Sullivan, K. (1995). Software reflexion models: Bridging

the gap between source and high-level models. Paper presented at the ACM
SIGSOFT Software Engineering Notes.

Univ
ers

ity
 of

 M
ala

ya

165

Murphy, G. C., Notkin, D., & Sullivan, K. J. (2001). Software reflexion models:

Bridging the gap between design and implementation. Software Engineering,
IEEE Transactions on, 27(4), 364-380.

Niepostyn, S. J. (2015). The Sufficient Criteria For Consistent Modelling Of The Use

Case Realization Diagrams With A New Functional-Structure-Behaviour UML
Diagram. Przegląd Elektrotechniczny Sigma NOT(2), 31-35.

Niu, J., Zou, J., & Ren, A. (2003). OOPN: Object-oriented Petri Nets and Its Integrated

Development Environment. Paper presented at the Proceedings of the Software
Engineering and Applications, SEA.

Nurcan, S. (2008). A survey on the flexibility requirements related to business

processes and modeling artifacts. Paper presented at the Proceedings of the 41st
Annual Hawaii International Conference on System Sciences.

OMG. (2004). Business Process Definition Metamodel. Version 1.0.2. Revised

submission bei/2004-01-02.

OMG. (2010). Documents associated with UML Version 2.3, Retrieved from

http://www.omg.org/spec/UML/2.3/.

Ossami, D. D. O., Jacquot, J.-P., & Souquières, J. (2005). Consistency in UML and B

multi-view specifications. Integrated Formal Methods 386-405.

Ouardani, A., Esteban, P., Paludetto, M., & Pascal, J.-C. (2006). A Meta-modeling

Approach for Sequence Diagrams to Petri Nets Transformation within the
requirements validation process. Paper presented at the Proceedings of the
European Simulation and Modeling Conference.

Owen, M., & Raj, J. (2003). BPMN and business process management. Introduction to

the New Business Process Modeling Standard.

Park, S., Kim, H., & Bae, D.-H. (2009). Change impact analysis of a software process

using process slicing. Paper presented at the 9th International Conference on
Quality Software. QSIC'09. .

Pesic, M., & van der Aalst, W. M. (2006). A declarative approach for flexible business

processes management. Paper presented at the Business Process Management
Workshops.

Univ
ers

ity
 of

 M
ala

ya

http://www.omg.org/spec/UML/2.3/

166

Pnueli, A. (1977). The temporal logic of programs. Paper presented at the 18th Annual

Symposium on Foundations of Computer Science

Podgurski, A., & Clarke, L. (1990). A formal model of program dependencies and its

implication for software testing, debugging and maintenance. IEEE Transactions
on Software Engineering, 16(9), 352-357.

Protic, Z. (2011). Configuration management for models: Generic methods for model

comparison and model co-evolution. PhD thesis, Eindhoven University of
Technology, Eindhoven, The Netherlands.

Puczynski, P. J. (2012). Checking consistency between interaction diagrams and state

machines in UML models. Technical University of Denmark.

Puissant, J. P. (2012). Resolving Inconsistencies in Model-Driven Engineering using

Automated Planning. PhD thesis, Universit de Mons.

Puissant, J. P., Van Der Straeten, R., & Mens, T. (2013). Resolving model

inconsistencies using automated regression planning. Software & Systems
Modeling, 1-21.

Rajabi, B. A., & Lee, S. P. (2009a). Change management in business process modeling

survey. Paper presented at the ICIME'09. International Conference on
Information Management and Engineering. .

Rajabi, B. A., & Lee, S. P. (2009b). A Study of the Software Tools Capabilities in

Translating UML Models to PN Models. International Journal of Intelligent
Information Technology Application (IJIITA), , 2(5), 224-228.

Rajabi, B. A., & Lee, S. P. (2010). Modeling and analysis of change management in

dynamic business process. International Journal of Computer and Electrical
Engineering, 2(1), 181-189.

Rajabi, B. A., & Lee, S. P. (2014). Consistent Integration between Object Oriented and

Coloured Petri Nets Models. The International Arab Journal of Information
Technology, 11(4).

Rasch, H., & Wehrheim, H. (2003). Checking consistency in UML diagrams: Classes

and state machines Formal Methods for Open Object-Based Distributed Systems
(pp. 229-243): Springer.

Univ
ers

ity
 of

 M
ala

ya

167

Redding, G. M. (2009). Object-centric process models and the design of flexible

processes. PhD Thesis, Faculty of Science and Technology, Queensland
University of Technology, Brisbane, Australia.

Reder, A., & Egyed, A. (2012). Incremental consistency checking for complex design

rules and larger model changes Model Driven Engineering Languages and
Systems (pp. 202-218): Springer.

Reder, A., & Egyed, A. (2013). Determining the Cause of a Design Model

Inconsistency. IEEE Transactions on Software Engineering, 1.

Reggio, G., Leotta, M., Ricca, F., & Clerissi, D. (2013). What are the used UML

diagrams? A Preliminary Survey. Paper presented at the EESSMOD@
MoDELS.

Reichert, M., & Dadam, P. (1998). ADEPTflex—Supporting dynamic changes of

workflows without losing control. Journal of Intelligent Information Systems,
10(2), 93-129.

Reichert, M., & Dadam, P. (2009). Enabling Adaptive Process-aware Information

Systems with ADEPT2, In Handbook of Research on Business Process
Modeling: Information Science Reference, Hershey, New York.

Reichert, M., Rinderle, S., Kreher, U., & Dadam, P. (2005). Adaptive Process

Management with ADEPT2 Paper presented at the Proceedings of the 21st
International Conference on Data Engineering

Ribeiro, O. R., & Fernandes, J. M. (2006). Some rules to transform sequence diagrams

into coloured Petri nets. Paper presented at the 7th Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools (CPN 2006).

Russell, N., van der Aalst, W. M., Ter Hofstede, A. H., & Wohed, P. (2006). On the

suitability of UML 2.0 activity diagrams for business process modelling. Paper
presented at the Proceedings of the 3rd Asia-Pacific conference on Conceptual
modelling-Volume 53.

Russell, N. C. (2007). Foundations of process-aware information systems. PhD,

Queensland University of Technology, Brisbane, Australia.

Univ
ers

ity
 of

 M
ala

ya

168

Saif, N., Razzaq, N., Rehman, S. U., Javed, A., & Ahmad, B. (2013). The Concept of
Change Management in Today’s Business World. Information and Knowledge
Management, 3, 28-33.

Saldhana, J., & Shatz, S. M. (2000). Uml diagrams to object petri net models: An

approach for modeling and analysis. Paper presented at the International
Conference on Software Engineering and Knowledge Engineering.

Salinesi, C., Etien, A., & Wäyrynen, J. (2004). Towards a Systematic Propagation of

Evolution Requirements in IS Adaptation Projects. Paper presented at the
Proceeding of Australian Conference on Information System ACIS.

Sapna, P., & Mohanty, H. (2007). Ensuring consistency in relational repository of UML

models. Paper presented at the 10th International Conference on Information
Technology,(ICIT 2007).

Scheer, A. W. (1994). ARIS toolset: a software product is born. Information Systems,

19(8), 607-624.

Scheer, A. W. (2000). ARIS: business process modeling: Springer.

Sharaff, A. (2013). A Methodology for Validation of OCL Constraints Using Coloured

Petri Nets. International Journal of Scientific & Engineering Research, 4(1).

Shengyuan, W., & Yuan, D. (2007). Improving Combinability of Petri Nets with

Inheritance, Aggregation and Association. Paper presented at the First Joint
IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering.
TASE'07. .

Shin, M. E., Levis, A. H., & Wagenhals, L. W. (2003). Transformation of UML-based

system model to design/CPN model for validating system behavior. Paper
presented at the Proc. of the 6th Int. Conf. on the UML/Workshop on
Compositional Verification of the UML Models.

Shin, M. E., Levis, A. H., Wagenhals, L. W., & Kim, D.-S. (2005). Analyzing Dynamic

Behavior of Large-Scale Systems through Model Transformation. International
Journal of Software Engineering and Knowledge Engineering, 15(01), 35-60.

Shinkawa, Y. (2006). Inter-model consistency in uml based on cpn formalism. Paper

presented at the 13th Asia Pacific Software Engineering Conference. APSEC
2006. .

Univ
ers

ity
 of

 M
ala

ya

169

Simmonds, J., & Bastarrica, M. C. (2005). A tool for automatic UML model

consistency checking. Paper presented at the Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering.

Sommervile, l. (2007). Software Engineering: 8th Edition, Addison Wesley.

Sommerville, I. (2011). Software Engineering: 9th edition. Pearson.

Spanoudakis, G., & Zisman, A. (2001). Inconsistency management in software

engineering: Survey and open research issues. Handbook of software
engineering and knowledge engineering, 1, 329-380.

Staines, T. S. (2008). Intuitive mapping of UML 2 activity diagrams into fundamental

modeling concept Petri net diagrams and colored Petri nets. Paper presented at
the 15th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems. ECBS 2008. .

Stemberger, M. I., Kovacic, A., & Jaklic, J. (2007). A methodology for increasing

business process maturity in public sector. Interdisciplinary Journal of
Information, Knowledge, and Management, 2, 119-133.

Stephan, M., & Cordy, J. R. (2013). A survey of model comparison approaches and

applications. Modelsward, 265-277.

Sun, P., & Jiang, C. (2009). Analysis of workflow dynamic changes based on Petri net.

Information and Software Technology, 51(2), 284-292.

Sun, X., Li, B., Tao, C., Wen, W., & Zhang, S. (2010). Change impact analysis based

on a taxonomy of change types. Paper presented at the IEEE 34th Annual
Computer Software and Applications Conference (COMPSAC).

Tadj, C., & Laroussi, T. (2005). Dynamic verification of an Object-Rule knowledge

base using Colored Petri Nets. Journal of Systemics, Cybernetics and
Informatics, 4(3), 23-31.

Tam, T., Greenberg, S., & Maurer, F. (2000). Change management. Paper presented at

the Western Computer Graphics Symposium, Panorama Mountain Village, BC,
Canada.

Univ
ers

ity
 of

 M
ala

ya

170

Tang, Z. (2002). Temporal logic programming and software engineering. Bering:
Science Press, vcI1.(1, 2), 5.

TGIgroup. (2013). Welcome to the Petri Nets World. Retrieved 2010, from

http://www.informatik.uni-hamburg.de/TGI/PetriNets/

Thomas, O., Dollmann, T., & Loos, P. (2007). Towards Enhanced Business Process

Models Based on Fuzzy Attributes and Rules. Paper presented at the
Proceedings of the 13th Americas Conference on Information Systems: August
09–12, Keystone, Colorado, USA.

Torchiano, M., & Ricca, F. (2010). Impact analysis by means of unstructured

knowledge in the context of bug repositories. Paper presented at the Proceedings
of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement.

Torre, D. (2015). On validating UML consistency rules. Paper presented at the IEEE

International Symposium on Software Reliability Engineering Workshops
(ISSREW).

Torre, D., Labiche, Y., & Genero, M. (2014). UML consistency rules: a systematic

mapping study. Paper presented at the Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering.

Trickovié, I. (2000). Formalizing activity diagram of UML by Petri nets. Novi Sad J.

Math, 30(3), 161-171.

Tripathi, U. K., Hinkelmann, K., & Feldkamp, D. (2008). Life cycle for change

management in business processes using semantic technologies. Journal of
Computers, 3(1), 24-31.

Tsiolakis, A., & Ehrig, H. (2000). Consistency analysis of UML class and sequence

diagrams using attributed graph grammars. Paper presented at the Proc. of Joint
APPLIGRAPH/GETGRATS Workshop on Graph Transformation Systems,
Berlin.

Usman, M., Nadeem, A., Kim, T.-h., & Cho, E.-s. (2008). A survey of consistency

checking techniques for uml models. Paper presented at the Advanced Software
Engineering and Its Applications. ASEA 2008.

Univ
ers

ity
 of

 M
ala

ya

http://www.informatik.uni-hamburg.de/TGI/PetriNets/

171

Van Der Aalst, W. (1999). How to handle dynamic change and capture management
information? An approach based on generic workflow models. Computer
Systems Science and Engineering, 16(5), 295-318.

Van Der Aalst, W. M. (2002). Inheritance of dynamic behaviour in UML. MOCA, 2,

105-120.

Van Der Straeten, R. (2005). Inconsistency Management in Model-Driven Engineering.

PhD thesis, Vrije Universiteit Brussel.

Van Der Straeten, R., Mens, T., Simmonds, J., & Jonckers, V. (2003). Using description

logic to maintain consistency between UML models «UML» 2003-The Unified
Modeling Language. Modeling Languages and Applications (pp. 326-340):
Springer.

Van Hee, K. M., Lomazova, I. A., Oanea, O., Serebrenik, A., Sidorova, N., &

Voorhoeve, M. (2006). Nested nets for adaptive systems Petri Nets and Other
Models of Concurrency-ICATPN 2006 (pp. 241-260): Springer.

Vandewoude, Y., & Berbers, Y. (2002). Run-time evolution for embedded component-

oriented systems. Paper presented at the International Conference on Software
Maintenance. Proceedings. .

Vasilecas, O., Dubauskaitė, R., & Rupnik, R. (2011). Consistency checking of UML

business model. Technological and Economic Development of Economy, 17(1),
133-150.

Verkoulen, P. A. (1994). A Framework for Information Systems Design based on

Object-Oriented Concepts and Petri Nets. Paper presented at the CAiSE
Workshop, Utrecht, The Netherlands.

VisualParadigmCompany. (2011). Visual-Paradigm. Retrieved from www.visual-

paradigm.com

Wachsmuth, G. (2007). Metamodel adaptation and model co-adaptation ECOOP 2007–

Object-Oriented Programming (pp. 600-624): Springer.

Wagenhals, L. W., Haider, S., & Levis, A. H. (2002). Synthesizing executable models

of object oriented architectures. Paper presented at the Proceedings of the
conference on Application and theory of petri nets: formal methods in software
engineering and defence systems-Volume 12.

Univ
ers

ity
 of

 M
ala

ya

http://www.visual-paradigm.com/
http://www.visual-paradigm.com/

172

Wagenhals, L. W., Haider, S., & Levis, A. H. (2003). Synthesizing executable models

of object oriented architectures. Systems Engineering, 6(4), 266-300.

Wang, C. H., & Wang, F. J. (2007). An Object-Oriented Modular Petri Nets for

Modeling Service Oriented Applications. Paper presented at the 31st Annual
International Computer Software and Applications Conference. COMPSAC
2007. .

Watanabe, H., Tokuoka, H., Wu, W., & Saeki, M. (1998). A technique for analysing

and testing object-oriented software using coloured Petri nets. Paper presented at
the Asia Pacific Software Engineering Conference.

Weber, B., Rinderle, S., & Reichert, M. (2007). Change patterns and change support

features in process-aware information systems. Paper presented at the Advanced
Information Systems Engineering.

Weber, B., Sadiq, S., & Reichert, M. (2009). Beyond rigidity–dynamic process lifecycle

support. Computer Science-Research and Development, 23(2), 47-65.

WebSPN-Research-Group. (2009). WebSPN 3.3 Web-accessible non Markovian Petri

net tool Retrieved 2009, from https://mdslab.unime.it/webspn/

Weiser, M. (1984). Program slicing. Software Engineering, IEEE Transactions on(4),

352-357.

Weske, M. (1998). Flexible modeling and execution of workflow activities. Paper

presented at the Proceedings of the Thirty-First Hawaii International Conference
on System Sciences.

Westergaard, M. (2007). Behavioural Verification and Visualisation of Formal Models

of Concurrent Systems. PhD dissertation.–Aarhus: University of Aarhus, 2007.–
183 с.

Westergaard, M., & Verbeek, H. M. W. (2013). CPN Tools, from http://cpntools.org/

Williams, B. J., & Carver, J. C. (2010). Characterizing software architecture changes: A

systematic review. Information and Software Technology, 52(1), 31-51.

Wolf, K. (2009). LoLA - A Low Level Petri Net Analyser. Retrieved from

http://wwwteo.informatik.uni-rostock.de/ls_tpp/lola/

Univ
ers

ity
 of

 M
ala

ya

http://cpntools.org/
http://wwwteo.informatik.uni-rostock.de/ls_tpp/lola/

173

Wordsworth, J. B. (1999). Getting the best from formal methods. Information and

Software Technology, 41(14), 1027-1032.

Wörzberger, R., Ehses, N., & Heer, T. (2008). Adding support for dynamics patterns to

static business process management systems. Paper presented at the Software
Composition.

Wuyts, R. (2001). A logic meta-programming approach to support the co-evolution of

object-oriented design and implementation. PhD thesis, Vrije Universiteit
Brussel.

Xiaoning, F., Zhuo, W., & Guisheng, Y. (2008). Hierarchical Object-Oriented Petri Net

Modeling Method Based on Ontology. Paper presented at the International
Conference on Internet Computing in Science and Engineering. ICICSE'08. .

Xing, Z., & Stroulia, E. (2005). Analyzing the evolutionary history of the logical design

of object-oriented software. Software Engineering, IEEE Transactions on,
31(10), 850-868.

Yang, S. J., & Chen, C.-C. (2003). An Integrated Approach for Workflow Process

Modeling and Analysis Using UML and Petri Nets. MIS Review, 11, 47-75.

Yao, S., & Shatz, S. M. (2006). Consistency checking of UML dynamic models based

on petri net techniques. Paper presented at the 15th International Conference on
Computing, CIC'06. .

Yu, Z., & Cai, Y. (2006). Object-oriented Petri nets based architecture description

language for multi-agent systems. IJCSNS, 6(1).

Zalewski, M., & Schupp, S. (2006). Change impact analysis for generic libraries. Paper

presented at the 22nd IEEE International Conference on Software Maintenance.
ICSM'06. .

Zamani, B., & Butler, G. (2013). Pattern Language Verification in Model Driven

Design. Information Sciences, 237, 343-355.

Zapf, M., & Heinzl, A. (1999). Techniques for Integrating Petri-Nets and Object-

Oriented Concepts: Working Papers in Information Systems, University of
Bayreuth.

Univ
ers

ity
 of

 M
ala

ya

174

Zeng, L., Flaxer, D., Chang, H., & Jeng, J.-J. (2002). PLM flow—Dynamic Business

Process Composition and Execution by Rule Inference Technologies for E-
Services (pp. 141-150): Springer.

Zhao, J. (2002). Change impact analysis for aspect-oriented software evolution. Paper

presented at the Proceedings of the International Workshop on Principles of
Software Evolution.

Zhao, X., & Liu, C. (2007). Version management in the business process change

context Business Process Management (pp. 198-213): Springer.

Zhao, Y., Fan, Y., Bai, X., Wang, Y., Cai, H., & Ding, W. (2004). Towards formal

verification of UML diagrams based on graph transformation. Paper presented at
the IEEE International Conference on E-Commerce Technology for Dynamic E-
Business.

zur Muehlen, M., Indulska, M., & Kamp, G. (2007). Business process and business rule

modeling: a representational analysis. Paper presented at the Eleventh
International IEEE EDOC Conference Workshop. EDOC'07. .

Zur Muehlen, M., Indulska, M., & Kittel, K. (2008). Towards integrated modeling of

business processes and business rules. Paper presented at the Proceedings of the
19h Australasian Conference on Information Systems (ACIS)-Creating the
Future: Transforming Research into Practice, Christchurch, New Zealand.

Univ
ers

ity
 of

 M
ala

ya

175

LIST OF PUBLICATIONS AND PAPERS PRESENTED

Academic Journals

• Bassam Rajabi and Sai Peck Lee. 2017. Change Management Framework to
Support UML Diagrams Changes. International Arab Journal of Information
Technology. Accepted September 2017 (ISI/SCOPUS Indexed Publication)

• Rajabi, B.A. & Lee, S.P., (2017). Change Management Technique for
supporting Object Oriented Diagrams Changes. Computer Systems Science and
Engineering. (ISI-Indexed ISSN 0267-6192)

• Rajabi, B.A. & Lee, S.P., (2013). Consistent Integration between Object
Oriented and Coloured Petri Nets Models. The International Arab Journal of
Information Technology Volume 11(4). (ISI Indexed ISSN: 1683-3198)

• Rajabi, B., & Lee, S. P. (2010). Modelling and Analysis of Change Management
in Dynamic Business Process. International Journal of Computer and Electrical
Engineering (IJCEE), Volume 2, Number 1, 199-206. (Indexed by EI INSPEC
ISSN: 1793-8198)

• Rajabi, B., & Lee, S. P. (2009b). Change Management in Business Process
Modelling Based on Object Oriented Petri Net. International Journal of
Business, Economics, Finance and Management Sciences, Volume 1 Number 1
2009, 72-77. (Indexed by Scopus ISSN:2073-0519)

• Rajabi, B., & Lee, S. P. (2009e). A Study of the Software Tools Capabilities in
Translating UML Models to PN Models. International Journal of Intelligent
Information Technology Application (IJIITA), Volume 2 (5), 224-228. (Indexed
by EI INSPEC, Zentralblatt MATH,CAB Abstracts, and EBSCO)

Conference Proceedings

• Rajabi, B., & Lee, S. P. (2009a). Change Management in Business Process
Modelling Based on Object Oriented Petri Net. Proceedings of World Academy
of Science, Engineering and Technology, Volume 38, pp. 12-17. Penang,
Malaysia. (Indexed by Scopus ISSN:2070-3740)

• Rajabi, B., & Lee, S. P. (2009c). Runtime Change Management Based on Object
Oriented Petri Net. International Conference on Information Management and
Engineering (ICIME 2009). 13, pp. 42-46. Kuala Lumpur, Malaysia: IEEE
Computer Society. (ISI Indexed ISBN:978-1-4244-3774-0)

• Rajabi, B., & Lee, S. P. (2009d). Change Management in Business Process
Modelling Survey. International Conference on Information Management and
Engineering (ICIME 2009). 13, pp. 37-41. Kuala Lumpur,Malaysia: IEEE
Computer Society. (ISI Indexed ISBN:978-1-4244-3774-0)

Univ
ers

ity
 of

 M
ala

ya

	CHAPTER 1: INTRODUCTION
	1.1 Problem Statement
	1.2 Research Motivation
	1.3 Research Objectives
	1.4 Research Scope
	1.5 Research Questions
	1.6 Organisation of the Thesis

	CHAPTER 2: LITERATURE REVIEW
	2.1 Software Change
	2.2 Software Coevolution
	2.2.1 Direct Approaches
	2.2.2 Transformational Approaches
	2.2.3 Formal Semantics Approaches
	2.2.4 Knowledge Representation Approaches.
	2.2.5 UML Diagramming Tools Support

	2.3 Patterns
	2.4 Integration of UML and CPNs
	2.5 Background on Software Modelling Languages
	2.5.1 Graph-based Modelling Languages
	2.5.2 Rule-based Modelling Languages
	2.5.3 UML Diagrams
	2.5.3.1 UML Structural Diagram Perspectives
	2.5.3.2 UML Behavioural Diagram Perspectives
	2.5.3.3 UML Interaction Diagram Perspectives
	2.5.3.4 Petri Nets and Coloured Petri Nets

	2.6 Discussion and Summary

	CHAPTER 3: RESEARCH METHODOLOGY
	3.1 Research Idea Phase
	3.2 Literature Review Phase
	3.3 Research Design Phase
	3.4 Modelling and Development Phase
	3.5 Analysis and Evaluation Phase
	3.6 Chapter Summary

	CHAPTER 4: PROPOSED COEVOLUTION FRAMEWORK
	4.1 Software Model
	4.1.1 Transformation of UML into CPNs
	4.1.2 Design of Consistency Rules

	4.2 Components Affected by a Change
	4.3 Proposed Change Impact and Traceability Analysis Templates
	4.4 Proposed Pattern Structure
	4.5 Chapter Summary

	CHAPTER 5: TRANSFORMATION OF UML DIAGRAMS INTO CPNs
	5.1 Class Diagram Transformation Rules
	5.2 Object Diagram Transformation Rules
	5.3 Package Diagram Transformation Rules
	5.4 Composite Structure Diagram Transformation Rules
	5.5 Implementation Diagrams (Component Diagrams and Deployment Diagrams)
	5.6 Use Case Diagram Transformation Rules
	5.7 Activity Diagram Transformation Rules
	5.8 Statechart Diagram Transformation Rules
	5.9 Sequence Diagram and Communication Diagram Transformation Rules
	5.10 Interaction Overview Diagram Transformation Rule
	5.11 Timing Diagram Transformation Rules
	5.12 Chapter Summary

	CHAPTER 6: COEVOLUTION PATTERNS
	6.1 Pattern Foundation
	6.2 Proposed Coevolution Patterns
	6.2.1 Case Study Models
	6.2.2 Proposed Coevolution Patterns

	6.3 Patterns Simulation and Validation
	6.4 Chapter Summary

	CHAPTER 7: ANALYSIS AND DISCUSSION
	7.1 Proposed OOCPNs Structure
	7.2 Change Impact and Traceability Analysis Templates
	7.2.1 Evaluation Metrics

	7.3 Coevolution Patterns
	7.3.1 Validation and Performance Analysis
	7.3.2 Discussion

	7.4 Accomplishment of Research Objectives
	7.5 Limitations of Research
	7.6 Chapter Summary

	CHAPTER 8: CONCLUSION AND FUTURE WORK
	8.1 Thesis Summary
	8.2 Research Contributions and Significance
	8.3 Key Features and Outcomes
	8.4 Recommendations for Future Research

	Appendix A. Change Impact and Traceability Analysis Templates
	A.1 Structural Diagrams Templates
	A.2 Behavioural Diagrams Templates
	A.3 Interaction Diagrams Templates

	Appendix B. Case Study Models
	A. Class Diagram
	B. Object Diagram
	C. Activity Diagram
	D. Sequence Diagram
	E. Statechart Diagram

	Appendix C. Coevolution Patterns Implementation Model
	C.1 Change Impact, Traceability Analysis and Consistency Check Patterns
	C.2 Search Patterns
	A. Class Diagram Search Patterns
	B. Object Diagram Search Patterns
	C. Activity Diagram Search Patterns
	D. StateChart Diagram Search Patterns
	E. Sequence Diagram Search Patterns

	C.3 Change History Patterns
	C.4 Class Diagram Patterns
	A. Class Diagram Create Patterns
	B. Class Diagram Delete Patterns
	C. Class Diagram Modify Patterns

	C.5 Object Diagram Patterns
	A. Object Diagram Create Patterns
	B. Object Diagram Delete Patterns
	C. Object Diagram Modify Patterns

	C.6 Activity Diagram Patterns
	A. AD Modify Patterns

	C.7 Statechart Diagram Patterns

	Appendix D. CPNs Codes

