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ABSTRACT 

Elastomers are increasingly used as engineering materials due to their high manufacturability, 

low weight, low cost and excellent mechanical properties. During the service, elastomer 

degradation can occur as the result of interaction with the environment. In the case of exposure 

to aggressive liquids or solvents such as palm biodiesel, degradation in the form of swelling can 

occur which leads to a reduction in its properties. Nitrile Butadiene Rubber (NBR) is one type of 

elastomers which is widely used where high oil resistance is required such as in automotive 

seals, gaskets, or other items subject to contact with oils. 

The objective of this dissertation is to investigate the effect of swelling on the creep behavior of 

elastomeric pipe under internal pressure using finite element simulation. For this purpose, the 

commercial finite element code ANSYS is used to simulate the creep response of dry and swollen 

NBR. Two swelling levels are considered. During simulation, both dry and swollen elastomers 

are assumed to be visco-hyperelastic, isotropic and incompressible. The shear relaxation 

modulus of elastomers is obtained from experimental works conducted by other students. The 

results showed significant creep on both dry and swollen elastomers. Moreover, it is observed 

that the creep decreases as the swelling level increases. These results are consistent with the 

experimental finding in the literature. 

 

 

 

 



 

ABSTRAKT 

Elastomer semakin kerap digunakan sebagai bahan kejuruteraan kerana sifat ringan, berkos 

rendah, mudah dibuati dan mempunyai sifat-sifat mekanik yang baik. Sepanjang digunakan, 

degradasi elastomer boleh berlaku akibat interaksi dengan persekitaran. Sekiranya ia terdedah  

kepada cecair yang agresif atau pelarut seperti biodiesel sawit, degradasi dalam bentuk bengkak 

boleh berlaku yang membawa kepada penurunan dalam sifat-sifatnya. Getah Nitril Butadiena 

(NBR) adalah salah satu jenis elastomer yang digunakan secara meluas di dalam keadaan yang 

memerlukan  rintangan minyak yang tinggi diperlukan seperti dalam seal  automotif, gasket, 

atau barangan lain yang bersentuhan dengan minyak. 

Objektif disertasi ini adalah untuk mengkaji kesan bengkak pada kelakuan rayapan paip 

elastomerik bawah tekanan dalaman dengan menggunakan simulasi unsur terhingga. Bagi 

tujuan ini,perisian unsur terhingga iaitul ANSYS digunakan untuk mensimulasikan tindak balas 

rayapan NBR kering dan bengkak. Dua tahap bengkak digunapakai didalam simulasi ini. 

Semasa simulasi, kedua-dua elastomer kering dan bengkak dianggap sebagai Visco-hiperelastik, 

isotropik dan tidak mampat. Kelonggaran modulus ricih elastomer diperoleh dari eksperimen 

yang dijalankan oleh pelajar lain. Keputusan menunjukkan rayapan yang besar berlaku ke atas 

kedua-dua elastomer kering dan bengkak. Selain itu, dapat diperhatikan bahawa rayapan 

berkurang apabila kenaikan tahap bengkak. Keputusan ini adalah selaras dengan dapatan 

eksperimen dalam bahan rujukan terdahulu. 
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CHAPTER1: Introduction 

 

1.1 Overview 

Elastomer is one of the types of polymers. They are widely used owing to their properties like 

rebound, tensile strength, resistance to petroleum products, sustainability in cold & hot weather. 

Wide variety of elastomers like nitrile, EPDM, silicone, neoprene, HNBR, butyl, natural rubber, 

urethane rubber, fluorosilicone & fluorocarbon etc. are available today. Below mentioned 

elastomers are commonly used in automobile industry.Elastomers, example nitrile butadiene and 

acrylonitrile butadiene are being utilized in an increasing number of long term, load bearing 

applications, used under severe high-temperature, and high-pressure conditions. 

 The mechanical properties of polymers are time-dependent, in order to intelligently design a 

product for a specific applications, it is necessary to know how these materials will respond to 

stress and deformation well below the nominal yield stress or strain of the material which may be 

applied to the product for periods of years or decades. 

Properties that are particularly important for extended service are creep resistance and stress 

relaxation. When an instantaneous load is applied to an elastic part, the resulting deformation can 

be roughly predicted by the tensile modulus of the elastic. Deformation then continues at a 

slower rate indefinitely until the part ruptures. Upon removal of the load, some portion of the 

part's original dimensions will be recovered. Some portion of the deformation will remain 

permanent. This time, temperature and load dependent deformation is called creep and it is a 

result of the viscoelasctic nature of rubber materials. In the other words, creep occurs when a 

constant force is continuously applied on a component, causing it to deform gradually. 
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Elastomer degeradation occurs  as the  result  of a  chemical  reaction  between  the  elastomer 

and the medium or by  absorption of the medium into the elastomer. This attack  results  in  a  

swelling of  the elastomer  and  a  reduction  in  its  tensile  strength.  The temperature and 

concentration of the corrodent will determine the degree of deterioration. Unlike metals, 

elastomers absorb varying quantities of the material  they  are  in  contact  with,  especially 

organic  liquids and bio fuel. This  can  result  in  swelling,  and  cracking, swelling can  cause 

softening of the  elastomer  and  in  a lined  vessel  introduce high stresses and failure of the 

bond. 

When loading is more than momentary, creep data must be considered for purposes of material 

selection and design. The creep modulus represents the modulus of a material at a specific stress 

level and temperature over a specified period of time. By substituting the time, temperature, load 

dependent creep or apparent modulus for the instantaneous modulus in appropriate design 

equations, creep can be predicted. In this thesis the creep on pipe made of swollen rubber under 

constant internal pressure has investigated. 

1.2 Objectives and Scopes of Study 

The objectives of the present dissertation are: 

1. To simulate the creep response of dry and swollen nitrile butadiene rubber (NBR) pipes 

under constant internal pressure using finite element code ANSYS. 

2. To investigate the effect of swelling on the creep response of NBR pipe. 

In this dissertation, no experimental work was conducted. The data pertaining to the relaxation 

modulus of dry and swollen NBR were collected from experimental works of other students. 

Moreover, Finite Element Analysis (FEA) was conducted on three types of NBR:                  
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1) Not Swollen or Dry        2) 2 days swollen or D2S           3) 5 days swollen or D5S 

                                                                                                

1.3 Dissertation Lineament 

The dissertation encompasses a detailed study of the mechanical properties of rubbers with the 

focus on creep deformation. It is organized into five chapters which include introduction, 

literature review, research methodology, results and discussion, and conclusion. The followings 

give brief description of each chapter. 

Chapter one is an introduction of this project. It gives an overview of dry and swollen rubbers 

and shows the importance of creep study. 

Literature review of the project is discussed in chapter two. This chapter includes a general 

review on history and development of rubbers, outline background information about the 

material properties and theory applied to the creep behavior of rubbers. An in-depth analysis of 

the mechanical properties of the polymers – rubbers is also presented in this chapter. 

Chapter three focuses on research methodology, where the finite elements are discussed. This 

chapter discusses the creep simulation for the nitrile Butadiene swollen pipe under specific 

constant internal pressure. 

Chapter four presents a discussion of the experimental results from the creep test, simulation test. 

Finally, chapter five concludes the research findings and highlights the problems encountered 

during the research study. This chapter also includes the features of the limitations as well as the 

weaknesses of the creep simulation and recommendations for future work.     
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CHAPTER 2: LITERATURE REVIEW 

2.1 Description of Elastomers 

      2.1.1 History and Development 

The different properties of the elastomers (elastic polymers) are based on arrangement and 

synthesis of these monomers. Elastomers are increasingly used as engineering materials due to 

their high manufacturability, low weight, low cost and good mechanical properties. 

The elastomer with the longest history of use is natural rubber, which is made from the milky 

sap, or latex, of the Hevea and other trees.  Natural rubber is still an important industrial 

polymer, but it now competes with a number of synthetic elastomers, such as styrene-butadiene rubber 

and polybutadiene, which are derived from by-products of petroleum and natural gas. More than half of 

all rubber produced goes into automobile tires; the rest goes into mechanical parts such as mountings, 

gaskets, belts, and hoses, as well as consumer products such as shoes, clothing, furniture, and toys. 

Elastomers in general are used as shock absorbers because of their low modulus and high 

damping characteristics[1]. Due to their high damping characteristics, elastomers are 

increasingly used in applications that are subjected to shock, impact and vibrations. Thus, 

understanding the mechanical behavior of elastomers over a wide range of strain-rates and 

temperatures could significantly improve the design capabilities of such applications. 

 

2.1.2 Structure of Elastomers 

 

The term 'elastomer' (from "elastic polymer") refers to any member of a class of polymeric 
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substances that possess the quality of elasticity, i.e., the ability to regain shape after deformation.  

Elastomers are the base material for all rubber products, both natural and synthetic, and for many 

adhesives. 

Most elastomers are hydrocarbons; i.e., they are composed principally of carbon and hydrogen 

and their compounds. Some occur naturally—e.g., polyisoprene, which is formed in the latex of 

the rubber tree and is processed into natural rubber.  Most elastomers, however, are produced 

synthetically from derivatives of petroleum and natural gas[2].  Monomers such as isoprene, 

butadiene, and butylene are subjected to various polymerization reactions in which they are built 

up into large molecules. In many cases other chemical elements or compounds are incorporated 

into the polymer in order to modify basic properties—e.g., chlorine in polychloroprene 

(neoprene) and sulfur in polyalkylene polysulfide (Thiokol), which contribute to the oil-

resistance of these rubbers. Properties can also be modified by producing elastomers as 

copolymers, i.e., polymers made up of more than one type of monomer. Examples include nitrile 

rubber (an acrylonitrile-butadiene copolymer) and butyl rubber (a copolymer of isobutylene and 

isoprene). In another method, some elastomers are blended with various plastic polymers such as 

polypropylene or polystyrene; the resultant materials, known as thermoplastic elastomers, or 

TPR's (thermoplastic rubber), retain the resilience of rubber but, unlike others, can be remolded 

and reprocessed upon the application of heat (a property important in recycling).[3] 

A elastomeric molecule consists of several thousand chemical repeating units, or monomers, 

linked together by covalent bonds. The assemblage of linked units is often referred to as the 

“chain,” and the atoms between which the chemical bonding takes place are said to make up the 

“backbone” of the chain.   
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In most cases elastomers are made up of carbon backbones—that is, chains of carbon (C) atoms 

linked together by single (C−C) or double (C=C) bonds. In theory, carbon chains are highly 

flexible, because rotation around carbon-carbon single bonds allows the molecules to take up 

many different configurations. In order to be made into useful rubber products, elastomeric 

materials must be subjected to various modifications. These include: strengthening of the 

material by cross-linking the polymer chains (for instance, by sulfur atoms in the process known 

as vulcanization); further strengthening by fillers such as carbon black; and treatment with 

chemicals that provide resistance to weathering and chemical attack[4]. For fabrication into 

adhesives, elastomers are often dissolved in organic solvents and treated with various other 

additives to improve their application, adhesion, and durability. 

 

      2.1.3 NBR 

Nitrile rubber, like other synthetic elastomers (elastic polymers), was a product of research that 

took place during and between the two world wars. A group of acrylonitrile-butadiene 

copolymers, given the name Buna N, was patented in 1934 by German chemists Erich Konrad 

and Eduard Tschunkur, working for IG Farben. Buna N was produced in the United States 

during World War II as GR-N (Government Rubber-Nitrile), and subsequently the group of 

acrylonitrile-butadiene elastomers became known as nitrile rubber.[5]   

In the production of NBR, acrylonitrile (CH2=CHCN) and butadiene (CH2=CH-CH=CH2) are 

emulsified in water and then polymerized (their single-unit molecules linked into large, multiple-

unit molecules) through the action of free-radical initiators. The amount of acrylonitrile present 

in the final copolymer varies from 15 to 50 percent. With increasing acrylonitrile content the 
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rubber shows higher strength, greater resistance to swelling by hydrocarbon oils, and lower 

permeability to gases. At the same time, however, the rubber becomes less flexible at lower 

temperatures, owing to the higher glass transition temperature of Acrylonitrile (i.e., the 

temperature below which the molecules are locked into a rigid, glassy state).[5] 

 

      2.1.4 Application of NBR 

NBR owes its many applications to its special mechanical properties; however, on the other 

hand, the especially nonlinear mechanical properties make the analysis of NBR very difficult. It 

is necessary to take into account of the nonlinear stress—strain relations and incompressible 

behavior of such material, in addition to its vast amount of deformation. In the past, a great deal 

of work has been devoted to such incompressible hyperelasticity and its implementation into 

various finite element codes. Especially, the finite element method is popular to investigate the 

performance of elastomeric seals when designing a new geometry or analyzing an existing one 

[6]It is very useful to evaluate the stress and strain state, contact pressure on surfaces, friction 

force and so on. The main uses of NBR are in fuel hoses, gaskets, rollers, and other products in which 

oil resistance is required. It is also employed in textiles, where its application to woven and non-woven 

fabrics improves the finish and waterproofing properties. A hydrogenated version, abbreviated as HNBR, 

is also highly resistant to thermal and oxidative deterioration and remains flexible at lower temperatures. 

Nitrile rubber is mostly used where high oil resistance is required, as in automotive seals, 

gaskets, or other items subject to contact with hot oils. The rolls for spreading ink in printing and 

hoses for oil products are other obvious uses. NBR is also employed in textiles, where its 

application to woven and nonwoven fabrics improves the finish and waterproofing properties. 

NBR is made in a hydrogenated version (abbreviated HNBR) that is highly resistant to thermal 
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and oxidative deterioration and remains flexible at lower temperatures. HNBRs are widely used 

in the automotive industry for a multitude of seals, belts and hoses because of its strength and 

retention of its properties after long term exposure to heat, oil and fuel. They are also used as 

sealing materials in oil exploration and its processing. 

 

2.2  Mechanical characteristics of Elastomers  

  2.2.1 Hyper elasticity and modulus for hyper elastic material 

Throughout this text we focus for simplicity on homogeneous (or homogenized) materials. A 

material is said to be homogeneous when the distribution of the internal structure is such, that 

every material point has the same mechanical behavior. On the other hand, in a heterogeneous 

material the strain-energy function will additionally depend on the position of the material point 

in the reference placement X.  

Hence, the strain-energy density is a postulated scalar-valued function of one tensorial variable, 

namely the deformation gradient F. For convenience we require this function to vanish in the 

reference placement where F = I, i.e., the reference placement is stress free. From physical 

observations we conclude that the strain energy increases monotonically with the deformation, 

                                              ( )          ( )                                             (2-1) 

The strain energy function attains its global minimum for F = I at the stress free state. Moreover, 

let us require that an infinite amount of energy is necessary to expand a body infinitely and to 

compress a body to zero volume, respectively.  

 ( )                                                                                      (2-2) 
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 ( )                                                                                       (2-3) 

The strain-energy density W(F) and the resulting constitutive equation must, of course, fulfil 

some requirements which arise from mathematical theory as well as from the physical nature of 

the material under consideration. 

 

  2.2.1.1 Isotropy 

A special but very important class of materials is isotropic materials. From the physical point of 

view isotropic materials are materials without any preferred direction. In terms of material 

symmetry an elastic material is said to be isotropic if its symmetry group S ≡ SO(3). It is said to 

be anisotropic otherwise.[7] 

For isotropic materials the strain-energy function can be represented as a function of the 

invariants of the right Cauchy-Green tensor 

                       ( )   (   
      

    
  )                                                        (2-4) 

                          
    ( )   

                          
   

 

 
 (  (  )     ( ) )                                                     (2-5) 

                          
       ( )       

Note that this representation follows from the strain-energy function being invariant upon 

rotations and, thus, equation (2-5) may equivalently be written in terms of the invariants of the 

left Cauchy-Green tensor W(b) = W(I  , I  , I  ) or its related strain measures. 

With similar arguments the strain-energy function of an isotropic material can be expressed as a 

function of the Eigen values of the right Cauchy-Green tensor 
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                                        ( )   (   
    

    
 )                                           (2-6) 

Here we made use of the fact that the Eigen values of tensor C,   
 , α = 1, 2, 3, are the squares of 

the Eigen values of tensor U,    . Moreover, in isotropic materials the principal directions of 

stress tensor and work conjugate deformation tensor coincide. 

In order to express the constitutive relation in terms of strain invariants we exploit the fact that 

the stress-strain relation is given by an isotropic tensor function; 

                                                       ( )    (    )                              (2-7) 

which is not restricted to isotropic materials. An isotropic tensor function W(C) can explicitly be 

represented as: 

                   
  ( )

  
                      

                                                    (2-8) 

where the αi, are scalar coefficients (so-called response coefficients), which may be evaluated for 

each material law in terms of tensor C,      (    
      

        
 )                     (2-9) 

Equation (2-9) is known as Richter representation or first representation theorem for isotropic 

tensor functions. By some algebra (see, e.g., [8, 9])it can alternatively be formulated as 

                              
  ( )

  
    ̂       ̂        ̂   

                                       (2-10)        

which is known as the alternative Richter representation or second representation theorem for 

isotropic tensor functions. The fundamental message of these theorems is that the stress response 

on the straining of an isotropic material is uniquely determined by only three parameters. 



14 
 

 2.2.1.2 Elastic material models 

The stress-strain relation of an elastic material follows by equation (2-4) from a strain energy 

potential, which, of course, should map the physical properties for every specific material under 

consideration. Consequently there exists a huge number of strain-energy functions and 

corresponding constitutive theories. The aim of this section is to summarize some well 

established and frequently employed models for reference. 

More sophisticated elastic models are required for organic materials. Some of them exhibit a 

nonlinear stress-strain behavior even at modest strains. More importantly, there is a wide range 

of polymers and also biological tissues which are elastic up to huge strains. These materials show 

complex (and very different) nonlinear stress-strain behaviors. Specific strain energy-functions 

are designed to account for these phenomena. 

The typical example for a material undergoing large strains is natural rubber. Many polymers 

also show (above a critical temperature) a rubbery behavior – the response is elastic without 

much rate or history dependence. Polymers with a heavily cross-linked molecular structure 

(elastomers) are the most likely to behave like ideal rubber, but also soft biological tissue shows 

rubbery behavior. Besides being elastic, the following feature is typical of rubbery materials: the 

material strongly resists volume changes. The bulk modulus is comparable to that of metals. On 

the other hand, rubbery material is very compliant in shear; the shear modulus μ is of orders of 

magnitudes smaller than the shear resistance of most metals. This observation motivates the 

modeling of rubbery materials as being incompressible, i.e., the volume remains constant during 

deformation, detF = 1. 
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To assure incompressibility of an elastic material the strain-energy function is postulated to be of 

the form 

                                        ( )    (   )                                            (2-11) 

where p plays the role of a Lagrangian multiplier. By equation (3-4) follows for the first Piola-

Kirchhoff stress tensor the relation 

                        P= Ƥ      
  

  
                                                                            (2-12) 

and for the second Piola-Kirchhoff stresses and the Cauchy stresses :                                                                                                             

S= Ƥ              
  

  
  =   Ƥ      2 

  

  
                                    (2-13) 

                     

                               σ =  ƤI  
  

  
     =   ƤI +F(

  

  
 )                                           (2-14) 

These relations illustrate that pressure p cannot be determined from the materials response but 

only from additional equilibrium equations and boundary conditions [10]. To account later for 

both, volume preserving as well as volumetric deformations, we decompose the deformation 

gradient into an isochoric (or deviatoric) part : 

           and a volume related part          = √    ( ) 
 I 

                    F=               =    
 

 
  
                                                           (2-15)            
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Figure 2. 1:  Stress-Strain relations in uniaxial tension[11] 

Let us now summarize the classical strain-energy functions for incompressible material  

(        )  but omit the superscript isochor for simplicity. As before,      
 

  denotes the i-th 

principle invariant of the (isochoric part of) tensor C, equation (2-10). 

The simplest model is the Neo-Hookean solid, 

                                   W(C) =  
 

 
  (    

   )                                                            (2-16) 

First used by Treloar [11], the parameter μ was originally determined from an elementary 

statistical mechanics treatments predicting that     
 

 
   where N is the number of polymer 

chains per unit volume, k is the Boltzmann constant and T is the temperature. Today this model 
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is widely used with shear modulus μ determined by experiments. The stress-strain relation 

follows from (2-12 , 2-14). 

In Figure 2.1 the stress-strain relations in uniaxial tension are displayed. The red dash dotted line 

shows the Neo-Hookean model (2-16) whereas the black dashed line results from the Saint-

Vernant Kirchhoff model . In the undeformed placement the tangent on both curves is the 

straight line of the Hookean law . The limited validity of the Saint-Vernant Kirchhoff is clearly 

visible. If    ⁄           instability occurs, thence for rising compression a reduced stress is 

observed. Clearly, the model makes sense only for small compressive strains. (The critical strain 

value does not depend on the material data.). On the other hand, the Neo-Hookean model 

captures the physics for the full range of straining. From experiments we know that for rubbery 

materials under moderate straining up to 30 - 70 % the Neo-Hookean model usually fits the 

material behavior with sufficient accuracy. 

To model rubber at high strains the one-parametric Neo-Hookean model (2-16) is meanwhile 

replaced by a more sophisticated development of Ogden [12, 13]. Instead of using strain 

invariants this model expresses the strain energy density in terms of principal stretches λα,           

α = 1, 2, 3, 

                    W = ∑
  

  
   

   (    
        

           
    )                                        (2-17) 

where N, μp and αp are material constants. In general, the shear modulus results from                

                                            2      ∑   
                                                            (2-18) 

The three principal values of the Cauchy stresses can be computed from (2-17) as 
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             =      
  

   
                                      (            )             (2-19) 

and the principal first and second Piola-Kirchhoff stresses follow by 

                                
                          and                         

                       (2-20) 

With N = 3 and values summarized in Table 2.1 the Ogden material reaches an almost perfect 

agreement to the experimental data of Treloar. Therefore and because it is computational simple, 

equation (2-17) is the reference material law for natural rubber. 

Neo -Hookian         = 4.225 x      
  ⁄  

Ogden          = 6.3 x      
  ⁄  

          = 0.012 x      
  ⁄  

            = -  0.1 x      
  ⁄  

Moony - Rivilin          = 3.6969 x      
  ⁄  

            = - 0.5281 x      
  ⁄  

Arruda - Boyce           = 3.380 x      
  ⁄  

Baltz - Ko         = 4.225 x      
  ⁄  

St.Vernant - Kirchhoff         = 4.225 x      
  ⁄  

 

Table 2. 1: Material parameters 

For particular values of material constants, the Ogden model (2-17) will reduce to either the Neo-

Hookean solid (N = 1, α = 2) or the Mooney-Rivlin material. The Mooney- Rivlin material can 

be derived from (3-39) with N = 2 and    = 2,    = −2, or, in other form 

                  W(C) = 
  

 
(    

 
  ) 

  

 
(    

 
  )                                                   (2-21)        

together with equation (2-18). The Mooney-Rivlin material was originally also developed for 

rubber but is today often applied to model (incompressible) biological tissue, e.g. in [14-16]. 
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In polymers or industrial rubbers the shear modulus μ usually depends on the deformation. 

Earlier as natural rubber these materials exhibit a rising resistance against straining. A physically 

inspired model for carbon filled rubber is the Arruda-Boyce model. It is also sometimes called 

the 8-chain model because it was derived by idealizing a polymer as 8 elastic chains inside a box 

[17]. This constitutive law has a strain energy density given by: 

                                 W(C)    ∑   
   

  

     
     ((   

 )     )                                     (2-22)                                    

Here, μ0 is the (initial) shear modulus, cp are constants following from statistical theory, 

     and N are material constants of the underlying chain model, namely the limiting chain 

extensibility and the number of rigid links, (see [18] for illuminating explanations). Evaluating 

the first three terms of expression (2-19) gives 

        W(C)   (
 

 
 (   

    )  
 

       
  ((  

 )   )   
  

         
  ((  

 )    )         (2-23)                                                       

In the example below the limiting chain extensibility is set to      = 3 and the initial shear 

modulus is 80% of the Neo-Hookean shear modulus. The special feature of this model is a high 

strain resistance at strains > 300% (controlled by the choice of parameters). In other words, the 

model has the ability to reflect the dependence of the resulting shear modulus on the 

deformation.Porous (or foamed) elastomers cannot be regarded as incompressible anymore. 

Blatz and Ko [19]proposed, basing on theoretical arguments and experimental data for 

polyurethane rubbers, a strain-energy density of the form 

                            

                   ( )   
 

 
(  

   )   
 

  
((  

 )    )                                                 (2-24) 
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where β is computed from shear modulus μ and Poisson number ν as    
 

    
 In the 

incompressible limit is   
    and equation (2-24) reduces to the Neo-Hookean solid. Here the 

model is introduced because it is — either as Blatz-Ko model or as Neo- Hookean extended to 

the compressible range — applied for (porous) biological tissue, see e.g. [20, 21] 

 

Figure 2. 2: Constitutive relations for rubbery materials in uniaxial tension[21] 

Exemplarily, let us now consider an incompressible material under uniaxial tension .In 

particular; let the stretch ratio       
⁄ be given. Then it finds after differentiation according to 

the principal stresses                          ∑   
 
     

  
                               (2-25)       
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 with values for Neo-Hookean, Mooney-Rivlin and Ogden material. Pressure p is determined 

from incompressibility and boundary condition        . With (2-20) the constitutive 

equation reduces to a single equation of the form 

                                ∑ (  
 
     

    
      

  
 
 
 
  

 )                                      (2-26) 

For the Arruda-Boyce model we get by differentiation 

              (   
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 )(      

  
)          (2-7) 

 The Blatz and Ko model coincides in the incompressible case with the Neo-Hookean solid. 

Figure 3.1 shows the corresponding stress-strain curves for rubbery materials with material data 

from Table 2.1. 

 

  2.2.2 Viscoelasticity  

   A viscoelastic substance loses energy when a load is applied, then removed. Hysteresis is 

observed in the stress-strain curve, with the area of the loop being equal to the energy lost during 

the loading cycle.[22] The ability to dissipate energy is one of the main reasons for using 

viscoelastic materials for any application to cushion shock, from running shoes to packing 

materials[16]. The two other main characteristics associated with viscoelastic materials are stress 

relaxation and creep. 

In viscoelastic material energy changes to heat while exposes and releases by a load. 
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       2.2.2.1 stress relaxation 

Stress relaxation testing provides a methodology for investigating the viscoelasticity of rubber or 

rubberlike materials. Stress relaxation refers to the behavior of stress reaching a peak and then 

decreasing or relaxing over time under a fixed level of strain. 

 

        2.2.2.1 Creep 

The long-term stress-strain behavior of polymers is generally more important than short-term 

properties where the product is expected to sustain a stress or strain in service. Not like most of 

the metals which only exhibit creep at higher temperatures, polymeric materials possess 

significant creep even at room temperature. 

Polymers are used in applications that demand high performance and extreme reliability. Many 

components, conventionally made from metals, are now made from polymers. Thorough studies 

on the behavior of polymer under long-term load and varying temperatures are needed. 

When a polymer is subjected to a constant load, it deforms quickly to a strain roughly predicted 

by its stress-strain modulus, and then continues to deform slowly with time-dependant response 

until rupture or yielding causes failure, sometimes described as the primary, secondary and 

tertiary phase of creep [23]. This phenomenon of deformation under constant load over time is 

called creep. The secondary phase is dominant and is essentially combined with the primary 

phase in engineering models for engineering applications. The tertiary phase is important as an 

indication of initial rupture [24]. At high stresses, the rupture occurs sooner than at lower 

stresses. However, at low enough stresses failure may never occur [24]. All polymers creep to 

certain extent which its degree depends upon several factors, such as amount of load, loading 
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time, temperature, types of plastic, the component geometry and fabrication method [24]. Figure 

2.4 showed the effect of stresses on creep curves. 

As mentioned previously, the long-term properties are more useful, the short-term stress-strain 

data is of little practical value in actual designing the part, since such data does not take into 

account the effect of long-term loading on elastomers. Creep behavior varies considerably 

among types of plastics; however, under proper stress and temperature conditions, all elastomers 

will exhibit a characteristic type of creep behavior. 

 

Figure 2.3: Tensile creep curve with various stresses [25, 26] 
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Figure 2.4: Characteristic creep Curve with linear time scale [27] 

The response of the specimen loaded by    at time t= 0 can be divided into an elastic and a 

plastic part as 

                     
  

 ( )
    (    )                                                             (2-28) 

 Where E(T) is the modulus of elasticity. The creep strain in Figure 2.6 can then be expressed 

according to 

                                          ( )      
                                                 (2-29) 

Where k <1 in the primary, k=1 in the secondary and k>1 in the tertiary creep stage. These terms 

correspond to a decreasing, constant and increasing strain rate, respectively, and were introduced 

by Betten [25] and Andrade [27].  
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The result of equations (2.4) and (2.5) from the creep test justified a classification of material 

behavior in three disciplines: elasticity, plasticity and creep mechanics. 

The creep curve in Figure 2.6 shows that there is typically an almost instantaneous elastic strain 

AB followed by a time-dependent strain, which divided into three stages: primary or transient 

creep, BC (stage I), secondary or steady-state creep, CD (stage II) and tertiary or accelerated 

creep, DE (stage III) [28]. The initial strain, AB represents the instantaneous elastic deformation. 

In primary stage, the strain occurs rapidly but at a decreasing rate. The dislocation microstructure 

develops to reduce strain rate at this stage. It is essentially similar in mechanism to retarded 

elasticity and as such, is recoverable if the stress is removed. 

The straight portion of the curve (CD) is characterized by a constant rate of creep. The strain rate 

during this state is commonly referred to as the creep rate. It determines the useful life of the 

material. The equilibrium of deformation and recovery mechanisms is established to maintain 

this constant rate of creep. This process is also called “cold flow”. It is non-recoverable because 

it is essentially viscous in character. The stage III is marked by an increase in creep rate as an 

increase in the true stress due to the cross section reduces (necking) and leading to failure or 

creep rupture typically logarithmic curve [23].  

If the applied load is released before the creep rupture occurs, an immediate elastic recovery, 

substantially equal to elastic deformation followed by a period of slow recovery is observed. The 

material in most cases does not recover to the original shape and permanent set remains. The 

magnitude of the permanent set depends upon length of the time, amount of stress applied, and 

temperature [23].  



26 
 

The total mechanical response of a specimen includes perfect elasticity (related with the 

instantaneous strain in Figure 2.7), a coupling of elastic and viscous components, called 

anelasticity and a total irreversible flow [29]. The creep behavior of a polymer can be 

represented by an appropriate combination of mechanical models of Maxwell and Voight 

element. Although there are no discrete molecular structures which behave like the individual 

elements of the models, but they aid in understanding the response of polymer materials. 

The creep test is more common and probably simpler since dead weight loading can be used with 

multiple creep stations. The uniaxial tensile test is considered most useful for producing accurate 

and consistent results that can be easily interpreted [30].  Creep data is usually obtained for a 

number of different stresses, as creep modulus will only independent of stress over limited 

ranges. It may also be important to obtain data as a function of temperature. Commonly, 

isochronous stress-strain curves are derived from the creep curves at different stress levels as a 

useful way of displaying the information. 

Tensile creep measurements are made by applying the constant load to a tensile test specimen 

and measuring its extension as a function of time. The extension measurement can be carried out 

in several different ways. The simplest way is to make two gauge marks on the tensile specimen 

and measure the distance between the marks at specified time intervals. The percent creep strain 

is determined by dividing the extension by initial gauge length and multiplying by 100. 

For a linear viscoelastic material, the effect of an applying stress, σ to the strain, ε(t) can be 

divided into three parts by assuming linearity [31] 

(I) ε, an essentially instantaneous response, similar to that of an elastic solid; 1 
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(II) ε(t), which tends to a constant value as t tends to ∞; and 2 

(III) ε(t) which is linear in time. 3 

So, a time-dependent creep compliance, J(t) can be defined as [31] 

                ( )   
 ( ) 

 
 

   

 
 

  ( ) 

 
 

  ( ) 

 
  

 
  

 
( )   

 
( )                              (2-30) 

The creep percentage is plotted against time to obtain a tensile creep curve as illustrated in 

Figure 2.7. The J3(t) corresponds to flow and will be assumed as zero. The term J1 corresponds 

to a response that is faster than can be observed experimentally, rather than an instantaneous one. 

The strain ε1 can be called the unrelaxed response, in contrast to the relaxed response observed at 

long time ε(∞). Jand J1 2(t) are not usually considered separately in what follows, so that J(t) is 

equals to J+J(t) [31] 
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Figure 2.5: Creep of a viscoelastic under a constant stress [31] 

The tensile stress values are also determined at specified time intervals to facilitate plotting a 

stress-rupture curve. The more accurate measurements require the use of a strain gauge, which is 

capable of measuring and amplifying small changes in length with time and directly plotting 

them on a chart paper. The test is also carried out at different stress levels and temperatures to 

study their effects on tensile properties. 
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   2.2.3 Swollen Elastomers 

All long, flexible polymer molecules naturally become entangled, like spaghetti. Although all 

such molecules will disentangle and flow under stress, their physical entanglements will act as 

temporary “interlinks,” especially when the molecules are long and slow-moving.[32] It is 

therefore difficult at first sight to distinguish a covalently interlinked elastomer from one that is 

merely tangled or (as is described below) one that is held together by strong intermolecular 

associations. One means of distinguishing is to test whether the polymer dissolves in a 

compatible solvent or merely swells without dissolving  [33, 34].Covalently interlinked 

molecules do not dissolve. Interlinking is therefore necessary for good solvent resistance or for 

use at high temperatures. 

Crosslinked elastomers networks can absorb solvents and swell many times to their initial 

volume. Swelling is used by plants to regulate the transport of water,(1) and is exploited in 

consumer products such as contact lenses (2) and superabsorbent diapers. (3) Swelling 

elastomers have been developed as vehicles for drug delivery, (4) and as actuators and sensors in 

microfluidics. (5) [24] 

 

2.3 Finite Element Analysis   

   2.3.1 Terminology 

    In order to understand FEA, several terms need to be defined and understood: 

1. Element. The structure to be analyzed is broken down into pieces called "elements," which are 

usually triangles or quadrilaterals. When these elements are joined together they form a mesh 

which fully describes the geometry of the component to be analyzed. 
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2. Node. A "node" is a point where elements are joined. There is always a node at the corners of 

the elements, and some elements also have mid-side nodes, which need to be specified. A mid-

side node adjacent to an element without a midside node needs to be tied back to the corner 

node. 

3. DOF. Each node has certain degrees of freedom (DOF). This means that the node is capable of 

moving in various directions, depending on the boundary conditions imposed on the node. The 

possible movements consist of displacements in three mutually perpendicular directions and 

rotation about these three axes for a total of six DOF. 

4. Mesh or Grid. These two terms are generally used interchangeably and refer to the joined 

elements that look like a "grid" or "mesh". 

5. Boundary Conditions. The "boundary conditions" describe the loading to beapplied to the 

component, and include deflections, pressures, forces, body forces, friction, and thermal loads. 

6. Contact Surfaces. Contact surfaces are like boundary conditions, but they do not need to be in 

initial contact in the FEA model. It may be specified that the component can stick, can slide but 

not lift off; or can lift off, but not slide on the contact surface. Contact surfaces are rigid bodies. 

A FEA program for the analysis of elastomer components needs a robust contact surface 

capability [35] 
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Figure 2.6: FEA Nomenclature 

 

       2.3.2 Types of FEA Models 

Four types of FEA models can be constructed depending on the component to be analyzed and 

the capabilities of the FEA program being used. The most common model is a two-dimensional 

(2-D) cross-section of the component with an axis of symmetry. This is also called an axi-

symmetric model. The second type of model is a plane strain model, which is also a cross-section 

of the component. This model does not necessarily have a plane of symmetry. A generalized 

plane strain problem assumes that the out-of-plane displacement is constant over the entire 

model. 
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The third type of model is a plane stress model, which is like the plane strain model except it is 

assumed that the out-of-plane stress is constant. This model has some thickness to it. If you had a 

long strip of seal and wanted to evaluate how it would react to a uniform compression deflection, 

then a plane stress model could be used. 

The fourth type of FEA model, and the most complex, is a three-dimensional (3-D) model. This 

type of model does not usually have a plane of symmetry or a continuous cross-section. A three-

dimensional model is generally difficult to build and requires skill in interpreting the results. It 

should only be attempted after experience in using 2-D models. Sometimes a three dimensional 

model does not need to be a full 3-D model if a plane of symmetry is present, or if the 

component is cyclic symmetric. It is important to keep the number of elements to a minimum in 

a three-dimensional model. 

 

   2.3.3 Model Building 

The initial step in solving a problem using FEA is to take the geometry of the component and 

break it down into an element mesh that accurately describes the geometry. This is accomplished 

by locating each node in a defined coordinate system and connecting the nodes to form the 

elements. During this connectivity operation, the element type and the element material type are 

usually specified. The element type needs to be compatible with the type of model, the material 

properties and the type of analysis (linear or non-linear). Care must be taken to provide a 

sufficiently fine grid in regions that have high strain gradients[21].   

These regions may be determined by experience, or by solving the FEA problem using an initial 

coarse mesh to locate the high gradient regions and refining the element mesh in these regions. 



33 
 

Another method to obtain a finer mesh in local areas is to invoke "adaptive meshing" which is 

available in some FEA programs. This automatically refines the mesh as specified criteria, such 

as strain energy level or elements in contact, are encountered. These regions usually occur at 

discontinuities such as fillets, corners, at points of contact, and at the edge of the elastomer near a 

bond line. 

Every attempt should be made to construct the FEA model using quadrilaterals, avoiding 

triangular elements. Triangular elements are generally stiffer than quadrilaterals and usually 

exhibit constant strain across the element. It is true that if sufficient triangular elements are 

specified, the solution approaches the quadrilateral solution. The penalty is too many elements 

and high run times. Some programs on the market today scan the elements and identify those 

which have a poor aspect ratio, or are skewed too much. If triangular or poor quadrilaterals are 

unavoidable, locate them in non-critical regions of the model. 

The elastomer portion of the component needs to have an element specified which is formulated 

to handle the near incompressibility of rubber. This is generally accomplished using a Herrmann 

"mixed method" solution for incompressible and nearly incompressible isotropic materials. His 

solution incorporates a "mean pressure" function as an independent variable. These elements 

need to be compatible with the elements specified for the non-elastomeric components. 

Some FEA programs permit the geometry to be defined within the pre-processor; some require 

the geometry to be defined in some type of CAD package; and some permit both methods to be 

used. Most FEA programs read, as a minimum, an IGS file, while some have translators for most 

popular CAD programs. It is generally significantly quicker to define the geometry in a CAD 

program and read an IGS file into the FEA program for meshing than to attempt to define the 
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geometry within the FEA package, which isnormally not intended to be used as a full CAD 

package[21]. 

   2.3.4 Modeling Hints For Non-Linear FEA 

1. In non-linear FEA, you usually need a more refined model than in linear FEA. In other words, 

a given mesh is less accurate in predicting non-linear response than in predicting linear response, 

except in very special cases. 

2. If the mesh distorts badly during a non-linear analysis, you need to re-zone the model and 

change the mesh density in the deformed shape between load steps. 

3. Keep the model as simple as possible. 

4. A 3-D problem is always more complicated to analyze than a 2-D one. This is especially true 

in non-linear FEA. You should do your best to represent the problem in two dimensions, and see 

whether it makes sense to solve it as a plane strain, plane stress, or axi-symmetric problem. A 

simple model is much easier to develop, validate, execute, and evaluate. 

5. Whenever possible, take advantage of symmetry in the structure and loading to 

reduce the size of your model. This is particularly true in non-linear FEA. 

6. In non-linear FEA, lower-order elements are often preferred over higher-order 

elements, because of reasonable accuracy at reduced cost and their robustness for large 

deformation analysis and contact problems. Use a linear element in preference to quadratic and 

cubic elements. 
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7. When using lower-order elements, 4-node quadrilaterals are generally preferred over 3-node 

triangles in 2-D problems. Similarly, 8-node brick elements perform significantly better than 4-

node tetrahedra in 3-D problems. In non-linear FEA, such as plasticity and rubber analysis, it is 

well known that the "linear" 3-node triangle and 4-node tetrahedron can give incorrect results 

because they are too stiff. The implication is that if you are using a pre-processor that generates 

such triangular and tetrahedral elements for a non-linear analysis, be careful of the results. 

8. If you are using elements with different degrees of freedom, you need to provide appropriate 

constraints to account for the dissimilarity. 

9. When constructing the mesh, place elements so that discontinuities in loads and material 

properties are located on the element boundaries, not inside elements. Three common 

discontinuities are (1) interfaces between different material or physical properties; (2) step 

changes in loads; (3) concentrated loads. 

10. Be careful how a joint is modeled. Is it stiff, does it have some rotation, or can it be 

smeared? 

11. Be careful of how the support structure is modeled. If the stress-strain data around the 

support point are of interest, then there needs to be mesh refinement in that area and the support 

needs to be defined accurately. 
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     2.3.5 Boundary Conditions 

After the mesh is generated, the boundary conditions are applied. For all types of FEA analysis, 

the boundary conditions need to be applied with caution. FEA of Elastomers requires extreme 

caution due to the special nature of elastomeric materials. 

The most common boundary condition is when a surface of the component is firmly attached to 

another component or the ground. When the FEA surface (or node) is fixed, all of the DOFs are 

set equal to zero and the node cannot move in any direction. If the component is resting on a 

surface, but can move parallel to it, then only the DOF normal to the surface needs to be set to 

zero, leaving the component free to move parallel to the surface. This is like setting the surface 

on rollers. 

The loading can be applied as a force or pressure. Forces are usually applied at the nodes, while a 

pressure is applied along a surface. In either event, it is essential to remember the type of model 

being used and specify the loading accordingly. A plane problem usually requires the loading to 

take into consideration the length and depth of the model. In an axi-symmetric problem, the 

modeled cross-section is assumed to be a part of a 360° model. Therefore, the loading is either 

specified per radian, per arc length, or as force per unit area (pressure). 

The loading can be applied as a deflection at the nodes, along a surface, or with a rigid body 

contact surface. If you know how a surface moves, this is the easiest and most appropriate 

method of loading an elastomeric component. To apply a force or a pressure over a surface, 

information about how it is distributed (which is usually unknown) is necessary. 

Application of a pressure to an elastomer surface for a non-linear analysis introduces potential 

problems. The pressure has to be applied in steps to arrive at a solution. While this iterative 
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procedure is attempting to arrive at an equilibrium point for each load step, significant changes in 

geometry may occur. This requires very small pressure increases in each step to attain 

convergence, and the pressure needs to be specified as following the surface to which it is 

applied. The use of contact surfaces is an excellent way to apply a deflection to a model.[21] The 

characteristics of the contact surface can be specified to let the component stick, lift off, or slide 

on the surface. Friction can also be specified. 

 

     2.3.6 Solution 

Modern non-linear FEA programs offer "automated" load stepping procedures to help users find 

the best solution at the least cost. These solution techniques should be more accurately called 

"semi-automatic," because the engineer still needs to make decisions regarding the tolerance 

desired in the answers, convergence criteria, load/time step size selection, appropriateness of 

material properties, the need for adaptive meshing, mesh rezoning, uniqueness or instability of 

the solutions, etc. 

    2.3.6.1 Tangent Stiffness 

In large deformation analysis, the relationship between incremental load and displacement is 

called a tangent stiffness. This stiffness has three components: the elastic stiffness, the initial 

stress stiffness and the geometric stiffness. The elastic stiffness is the same as that used in linear 

FEA. The second term represents the resistance to load caused by realigning the current internal 

stresses when displacements occur. The third term represents the additional stiffness due to the 

non-linear strain-displacement relationship. 
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In solving this type of problem, the load is increased in small increments, the incremental 

displacements are found, the next value of the tangent stiffness is found, and so on. There are 

three approaches available to solve these types of problems: 

   1. Total Lagrangian Method refers everything to the original undeformed geometry. This is 

applicable to problems exhibiting large deflections and large rotations, but with small strains, 

such as thermal stress, creep, and civil engineering structures. It is also used in rubber analysis 

where large elastic strains are possible. 

2. In the Updated Lagrangian Method, the mesh coordinates are updated after each increment. 

This applies to problems featuring large inelastic strains such as metal forming. 

3. In the Eulerian Method, the mesh is fixed in space and the material flows through the mesh. 

This is suitable for steady-state problems, such as extrusion and fluid mechanics problems. 

 

     2.3.6.2 Newton-Raphson 

Two popular incremental methods used to solve non-linear equilibrium equations are full 

Newton-Raphson and modified Newton-Raphson. The full Newton-Raphson (N-R) method 

assembles and solves the stiffness matrix at every iteration, and is thus expensive for large 3-D 

problems. It has quadratic convergence problems, which means that in subsequent iterations, the 

relative error decreases quadratically. It gives good results for most non-linear problems. The 

modified Newton-Raphson method does not reassemble the stiffness matrix during iteration. It 

costs less per iteration, but the number of iterations may increase substantially over that of the 

full N-R method. It is effective for mildly non-linear problems. 



39 
 

    2.3.6.3 Non-Linear Material Behavior 

When stresses go beyond the linear elastic range, material behavior can be broadly divided into 

two classes: (1) time-independent behavior (plasticity that is applicable to most ductile metals; 

non-linear elasticity that is applicable to rubber); (2) time-dependent behavior (creep, and 

viscoelasticity that are applicable to high-temperature uses; viscoelasticity that is applicable to 

elastomers and plastics). 

Creep is continued deformation under constant load, and is a type of time-dependent inelastic 

behavior that can occur at any stress level. Creep is generally represented by a Maxwell model, 

which consists of a spring and a viscous dashpot in series. For materials that undergo creep, with 

the passing of time, the load decreases for a constant deformation. This phenomenon is termed 

relaxation. 

    2.3.6.4 Visco-Elasticity  

Visco-elasticity, as its name implies, is a generalization of elasticity and viscosity. It is often 

represented by a Kelvin model, which assumes a spring and dashpot in parallel. Rubber exhibits 

a rate-dependent behavior and can be modeled as a visco-elastic material, with its properties 

depending on both temperature and time (creep, stress relaxation, hysteresis). Linear visco-

elasticity refers to a material which follows the linear superposition principle, where the 

relaxation rate is proportional to the instantaneous stress. It is applicable at small strains. Non-

linear visco-elasticity behavior may result when the strain is large. In practice, modified forms of 

the Mooney-Rivlin, Ogden, and other polynomial strain energy functions are implemented in 

non-linear FEA codes. 
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    2.3.6.5 Model Verification 

After the mesh is generated, it should be plotted to verify 

1. that the mesh is defining the component correctly 

2. that the nodes are correctly joined 

3. that the correct boundary conditions are applied at the correct locations 

4. that the correct material property is specified for each element 

5. that the correct element types are specified at the correct locations 

   2.3.7 Results 

Normally, data extracted from FEA solutions for steel or aluminum components are in terms of 

stress because the stress levels of one steel part can be readily compared with another steel part, 

and most of the material property data is expressed in terms of stress. On the other hand, 

comparison and evaluation of FEA stress results from the analysis of elastomeric components 

can be made only if the specified elastomer material properties are identical. Comparing the 

analysis of a component using a shear modulus  G = I MPa (145 psi) with another using G = 1.5 

MPa (217.5 psi) is not valid in terms of stress. 

Evaluation and comparison of elastomeric component analytical results need to be done in terms 

of strain energy if different elastomers are to be considered. If the component with  G = I MPa 

has a shear stress of 0.5 MN/m2, its shear strain is 50% strain, and its strain energy is 125 kJ/m3, 

while the component with G = 1.5 MPa under the same shear stress would have a shear strain of 

33% and a shear strain energy of only 83 kJ/m3. 
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The interface between the elastomer and the metal to which it is bonded is a critical location to 

be checked during the analysis. A significant number of finite element programs do not 

distinguish between the two materials when the data along this interface is processed. The stress 

levels in the steel and the stress levels in the elastomer are averaged at the nodes and reported. 

This is not valid. When carrying out FEA of an elastomer component with metal as part of your 

model, verify that the program is in fact reporting the actual stress-strain values in the elastomer 

and not "smearing" the data from the metal together with the elastomer results. Various forms of 

plotted output can usually be obtained from FEA results.  

The movement of a particular point within a component, or the change in stress or strain during a 

non-linear analysis, is sometimes of particular interest. This may be done using a history plot. 

The better the plotting capability of the FEA program, the more usable is the analysis. 
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CHAPTER 3: RESEARCH METHODOLOGY 

 

Dynamic stress analysis models for rubber must include time dependent material behavior to be 

realistic. For some materials, step-strain relaxation test data suggests that the stress can be 

approximated as a linear superposition of time independent (long term) and the time dependent 

(short term) components. For example, carbon black filled rubber-like materials often have short 

term stress components equal to or larger in magnitude than their long term or quasi-static 

components[30]. This is especially true at large strains in which case the time dependent 

components are known to depend on the strain state for step-strain tensile, biaxial and shear tests. 

Methods for analyzing large dynamic strains and stresses in rubber have been under development 

for at least forty years and a great deal of insight and understanding has been obtained from those 

studies. Typical issues of interest to engineers are: (a) Can the viscoelastic model be used to 

predict material response for loadings other than those used to determine its constants, and (b) 

can its constitutive constants be determined from tests which are not difficult to conduct?  

For example, quasi-static constitutive models for rubber are typically determined by fitting the 

stress data obtained from tensile, biaxial and shear tests to constitutive formulas computed from 

assumed forms of a strain energy density function. 

 

  3.1 Materials   

    The data related to the materials used in present study are obtained from the experiments 

conducted by other students in our department [32]. Commercial grade of NBR with 60 shore 

hardness A ±5 used in this research were provided by MAKA Engineering Sdn. Bhd., Malaysia. 

The NBR has specific gravity of 1.4 ± 0.1 and 25 wt.% of carbon black. For this type of rubber 
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compound, the vulcanization process was performed by compression molding process at 165 "C 

for 5 min under a pressure of approximately 6.89 MPa from an electrical resistance heating 

press. The rubber specimens for swelling and mechanical tests are annular cylindrical block with 

outside diameter of 50 mm, inner diameter of 38 mm and height of 10 mm. Note that no standard 

is followed in the determination of specimen geometry. Indeed, the wall thickness of the 

specimen is chosen such that swelling in the specimen during the immersion test can occur in a 

relatively short period of time while ensuring that specimen buckling will not occur during the 

compression test. 

The palm biodiesel (B100) was purchased from Am Bio-fuels Sdn. Bhd., Malaysia. Table 3.1 

shows the analysis report of the palm biodiesel used in the present study. 

 

Table 3 . 1: Properties of B100 palm biodiesel [32] 

 

The swollen specimens are obtained by immersion duration the dry specimens in biodiesel for two and 

five days. 
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  3.2 Elasticity 

Let us consider an infinitesimal material neighborhood undergoing a deformation along a path “ 

Γ ”. The deformation is defined by a deformation gradient F : [  , t2] → GL+(3, IR). 

Then, the work of deformation associated with this path is: 

                                            W= ∫  ( )  ( )  
  

  
                                         (3-1) 

A material is said to be an elastic material if the work of deformation is path independent . 

Consequently holds: 

                                         ∫           = ∫                                                 (3-2) 

for all paths of deformation Γ′, Γ′′ ∈ GL+(3, IR) defined by functions F′,F′′ :  

 [  ,    ] → GL+(3, IR) such that F′(  ) = F′′(  ) and F′(  ) = F′′(  ). 

For all closed paths of deformation the work of deformation is zero. 

 

3.2.1 Variational form 

The definition of elasticity implies that for any deformation path  Γ starting at a fixed reference 

placement and terminating at F the strain energy density W is of the form : 

                                                 W= ∫    
 

                                                           (3-3) 

Clearly, the elastic strain energy density is a function of the deformation only. In addition we 

know the gradient, i.e., the work conjugate stress tensor:            
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                                                            (F) = 
  

     
 (F)                                                     (3-4) 

The strain energy density acts as a potential for the stress tensor .Relation (3-4) is, therefore, the 

general variational form of elastic constitutive laws[30]. Elastic materials with variational 

constitutive relations like (3-4) are also called hyperelastic materials. In contrast to that, models 

with an ad hoc formulation of the elastic constitutive law are called hypoelastic materials. The 

hypoelastic constitutive relation is formulated in rate form, i.e., the stress rate is defined. In 

original hypoelastic theory [53], the stress rate is a function of the rate of deformation tensor 

(2.47) and additional contributions, e.g., the stress itself  f(    ,     , . . . ). 

However, such constitutive relations (which are not elastic in the sense of the above definition) 

are not employed in modern constitutive theories. Instead, the name hypoelastic mostly refers to 

a rate formulation of the elastic law, e.g., 

                                                          ̂( )         ( ) ( )                           (3-5) 

where  ̂ denotes a physical meaningful (objective) time derivative of the Cauchy stress tensor. 

The components of the stiffness tensor        ( ) are expressions of the elastic constants which 

in turn depend on the actual definition of the stress rate (and thus on the deformation). Because 

of the properties of the rate of deformation tensor hypoelastic constitutive laws do not strictly 

reflect the path independence of elasticity. Moreover, the derivation of objective rates of stress 

tensors and the corresponding stiffness tensors is not trivial, see, e.g. [8] 

From the theoretical point of view there is no reason to work with hypoelastic constitutive 

relations. However, the majority of commercial finite element programs still applies constitutive 
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relations like (3-5). For that reason we mention this approach here. In the remaining of this text 

we speak about elasticity meaning the constitutive equations in its variational form (3-3, 3-4). 

 

3.2.2 Internal energy, stresses and elasticity tensor 

The of a strain-energy function W(F) of an elastic material corresponds to the Helmholtz free 

energy density  

To be more precise, inserting (3-4) into the mechanical energy balance equation (3.3) gives the 

identity : 

                                               U = W(F) = A(F)                                               (3-6) 

which states that the internal energy density of an elastic body coincides (up to an 

inconsequential additive constant) with the strain energy density. 

From the definition of elasticity it follows that a material is elastic if and only if for all closed 

paths of deformation the rate of free energy vanishes, i.e., if the deformation of the material does 

not entail dissipation or hysteresis. This yields to the definition of elasticity in terms of 

continuum thermodynamics where a material is said to be elastic if it produces no entropy. The 

second law of thermodynamics degenerates to an equation. 

Following a strategy known as Coleman-Noll procedure we expand the Clausius-Planck 

inequality to write: 

                                          P .  ̇    ̇  (   
  ̇

  
 )   ̇ = 0                                        (3-7) 
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Only if the term in brackets vanishes equation (3-7) holds for every rate of deformation. In 

consequence, this relates the stresses to the energy function as in the constitutive relation (3-4). 

In order to obtain numerical solutions of nonlinear finite-deformation problems the linearized 

stress state is of central importance. Therefore we proceed expressing relation (3-4) in 

incremental from. This can be accomplished in a number of mathematically equivalent ways. For 

instance, taking differentials of (3-4) gives 

                                                       ( )                                                           (3-8) 

where CiJkL(F) are the Lagrangian elastic moduli. The elastic moduli are the components of the 

fourth-order elasticity tensor         ( ) in material description 

          =                             with             ( )    
   

          
  ( )                   (3-9) 

The elasticity tensor is always symmetric in its first and second and in its third and fourth index. 

This symmetry is known as minor symmetry, 

                                                                                                                    (3-10) 

If derived from a scalar-valued energy function as presumed here by (3-9), the tensor         also 

possesses major symmetry, i.e., it is symmetric in the sense 

                                                                                                          (3-11) 

A standard exercise shows that a fourth-order tensor with major and minor symmetry has only 21 

independent components. 
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3.3 NBR Pipe Modeling in Ansys 

 

   ANSYS is a very effective FEA tool for composite beams. Apart from structural analysis it can 

handle modal analysis, too. In the present research work, ANSYS has been used to model a pipe 

using material and geometries used in [1]. The pipe made of Nitrile Butadiane Rubber is a 

special viscoelastic material . 

The basic steps of ANSYS modeling are Preferencing, Preprocessing, Solving, and Post 

processing and are discussed in detail in the following sections. 

    3.3.1 Preferences 

   First step in ansys is defining the CUI filtering. There are some individual segments consist of 

Structural, Thermal, Ansys fluid, Flotran CFD and Electromagnetic. In this simulation Structural 

has chosen. 

    3.3.2 Preprocessor 

In this step the material properties are defined and the geometrical model is created.  

 

    3.3.2.1 Defining material properties: 

Nonlinear viscoelastic material properties; method is to first obtain the Prony  parameters 

through a curve-fit procedure, then save all those values. ANSYS can generate the parameters 

and define the properties of the nonlinear viscoelastic material. Here, this method has been 

adopted to define the properties of the viscoelastic material.  
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The steps for Viscoelastic Curve fitting are: 
 

Prepare Experimental Data, Input the Data into ANSYS, Select a Material Model Option, 

Initialize the Coefficients, Specify Control parameters and Solve, and Plot the Experimental Data 

and Analyze, and Write Data to TB Command. 

 

                  

Figure 3. 1: Excerpt of data (a) time vs. shear modulus and (b) time vs. bulk modulus [5] 

 

 Preparing experimental data: in this step, time, shear stress, and/or bulk modulus data at certain 

temperature are /temp, 25 /1, time /2, smod or /2, bmod. Figure 3.1 shows shear modulus and 

Bulk modulus vs. time data prepared separately for each temperature. Here, the temperature is 

25  The data file must be a plain text file and must contain the extension “.exp.” 

 Enter the “case name” of the material. Here, it is named NS1. Then, consider five shears and 

bulk terms (expansion of first five terms of shear and bulk modulus). For temperature dependent 

test data, we can consider “Williams-Landau-Ferry (WLF)” or “Tool-Narayanaswamy (TN)” 

shift functions. First, uncheck the “partial solve” for the “bulk terms” and the “shift function” 

and only solve for shear terms, as shown in Figure 3.2 & 3.3. Enter the number of iterations, here 
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1000. Once this set of data is generated, we can repeat the same procedure for the bulk terms. 

Finally, check all “partial solve” box to obtain the complete solution, including the shift function, 

as shown in Figure 3.4. Where, we can see that all coefficients have been generated, including 

the WLF coefficients, C1 and C2. 

 

 

 

Figure 3.2: Shear terms solution data in ANSYS’s Curve fit 
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Figure 3.3: Shear terms solution data in ANSYS’s Curve fit 

 

Figure 3.4: ANSYS’s Curve fit generating the complete solution. 
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 Once, we have generated the complete solution we can check its curve fit by plotting both shear 

terms and bulk terms vs. time, as shown in Figure 3.5. We can also compare or check any point 

by locating its coordinate or zoom-in on a portion of the curve. In these plots the Experimental 

data plot (black points) is in perfect fit with the ANSYS generated data plot (red curve) for both 

Shear and Bulk moduli. 

 

Figure 3.5: Curve fit plots for shear modulus vs. time and bulk modulus vs. time 

 

  ANSYS can generate Prony series terms by itself when we save and close the curve-fit 

generated results. We can check these Prony terms, as shown in Figure 3.6, when we go into 

Structural > NonLinear > viscoelastic > prony. We can find the shear response, bulk response 

and shift function, corresponding to the reference temperature. The data are shown here for the 

shear response only. 
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Figure 3.6: ANSYS generates the Prony terms 

By the end of this step we have obtained the Prony series parameters, which mean that we have 

defined the nonlinear behavior as a nonlinear decrement of the shear/bulk moduli with respect to 

time. This completes the material defining procedure in ANSYS. 

 

3.3.2.3 Geometric modeling of the Pipe: 

The cylindrical shape pipe has three different dimensions L, R1 and R2 for internal and external 

radius, respectively. This pipe is considered with different boundary 

 

   3.3.2.4  Defining Pipe dimensions: 

For pipe , L=150 mm, R1= 25 mm, and R2= 30 mm, these variables can be entered as 

“Parameters.” In some symmetric case like cylindrical shape, A quarter of shape should be 
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chosen to save the time and the energy. Figure 3.7 shows a partial cylinder created through 

dimensions. 

Preprocessor > Modeling > Create > Volumes > Cylinder > Partial Cylinder 

 

Figure 3.7: Creating quarter of Cylinder in ANSYS 

 

  3.3.2.5   Defining element type: 

It is essential to define element type before meshing any area. Here, we are dealing with a pipe 

with a nonlinear viscoelastic material. Therefore, this is a very important step of the Finite 

Element Analysis. The selected element type must be compatible with layers and nonlinear 

properties. 

For element type, Solid 186 has been used. for the viscoelastic material. This element type is 

selected due to its compatibility with nonlinear material and good mesh generation properties. 

Preprocessor > Element Type > Add > Solid > 20node 186 
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 3.3.2.6 Meshing: 

It is the way of discretizing the area with the help of selected element type. The area after 

meshing has nodes and elements. Following are the steps involved in meshing: 

Preprocessor > Mesh > Mesh Tools 

Figure 3.8 shows how meshing of the pipe with the selected element “20 node 186” has been 

performed. Here, Quadrilateral shape and free meshing method have been usedto generate 

uniform meshing through the cylinder volume. SOLID186 is a higher order 3-D 20-node solid 

element that exhibits quadratic displacement behavior. The element is defined by 20 nodes 

having three degrees of freedom per node: translations in the nodal x, y, and z directions. The 

element supports plasticity, hyperelasticity, creep, stress stiffening, large deflection, and large 

strain capabilities. It also has mixed formulation capability for simulating deformations of nearly 

incompressible elastoplastic materials, and fully incompressible hyperelastic materials. 

           

Figure 3.8: Meshing area using Meshing Tools 
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 3.3.3 Solution 

In this part boundary condition and solve condition are defined: 

 3.3.3.1 Applying loads/ constraints: 

Following are the steps to be followed to constrain pipe (partial cylinder).Hence, constraint a 

degrees of freedom equal to zero to its front and rear.Figure 3.9 & 3.10. 

Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Area 

 

Figure 3.9: Defining boundary condition in ANSYS 
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Figure 3.10: Defining boundary condition in ANSYS 

 

       This process are repeated for X and Y directions. To expose pipe by internal pressure which 

varied with time, tabular loads should be defined.  There are essentially three steps in using 

tabular loads: 

• Create a table parameter 

• Fill in values of the table parameter 

• Apply table parameter as a load to the model 
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Figure3. 11: Defining the load in ANSYS 

 

Utility Menu > Parameters > Array Parameters > Define/Edit …> Click on [Add] Button 

 

Figure 3.12: Defining the load in ANSYS 
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To confirm the applied loads by obtaining listings and displaying load symbols; then save the 

database. Figure 3.11 &3.12 

Utility Menu > List> Loads > DOF Constraints > on All Areas > Close 

    3.3.3.2 Solve 

To initiation the solution first need to turn non linear geometry situation on simply by; 

NLGEOM,ON > Enter   

And after that in Ansys main menu: Solution > Solve >Ok 

 

3.3.4 General Postprocessing  

In this step we obtain the solution. Here, we can plot either the nodal solution or the element 

solution and “List results” and “Plot results” are the two important tools to display the results.  

 -ANSYS main Menu -General Postproc > Read Results > First Set > Plot Results > Deformed   

Shape > Ok 
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Figure 3.13: Plot deformed shape in ANSYS 

-General Postproc >Plot Results > Nodal Solu > DOF solution > Displacement vector sum 

 

Figure 3.14: Plot results in ANSYS 
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-General Postproc >Plot Results > Nodal Solu > DOF solution >  Elastic strain > 1st
 
 Principle                                                   

elastic strain 

 

Figure 3.15: Plot results in ANSYS 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

     In previous chapter, NBR pipe with 3 different mentioned conditions.(Dry ,2 days and 5 days 

immersed in biodiesel ) simulated. Each condition has simulated in 5 different times. 

In this chapter the results of simulation of non-swollen (Dry) condition for first chosen time step 

is showed in brief. In continue, the results of the all situations have demonstrated in figures 4.1 to 

4.4. The numerical and some figured results attached in Appendix. 

For first time step (t=0.3), the results of stress and strain for different points of NBR pipe 

obtained by Ansys simulation are: 

 

 

 

Figure 4.1: Deformed shape in result 
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4.1 Displacement Analysis 

Displacement Vector sum is the affection of a strains in 3 directions(X, Y and Z).As it seen  in 

Figure 4.2, The highest displacement regard to initially position occur in inner surface of pipe. 

For DOF solution: 

 

  

X-component of Displacement                             Y-component of Displacement 

 

   

Displacement Vector Sum                                 Z-component of Displacement 

                       

Figure 4.2: Displacements in different directions 
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4.2 Stress Analysis 

  
X-component of stress                                           Y-component of stress 

 

   
Z-component of stress                                           von Mises stress 

 

   
1st principal of stress                                            3st principal of stress 

 
Figure 4.3: Stress in different directions 
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 4.3 Strain Analysis : 

    
X-component of elastic strain                              Y-component of elastic strain 

 

    
XY Shear elastic strain                                  YZ Shear elastic strain 

 

   
 

1st principal of elastic strain                                                  XZ Shear elastic strain 
Figure 4.4: Elastic strain in different directions 
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           2

st
 principal of elastic strain                                         3

st
 principal of elastic strain                 

 

Figure 4.5: Elastic strain in different directions 
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In this chapter mostly focused on analysis on Displacement vector sum and 1
st
 principal elastic 

strain to find out different situation regard to time. The effect of the swelling on the time-

dependent behavior of the elastomeric materials can be probed with various displacements 

illustrated in the inset of Figure 4.6 

 

Figure 4.6: Displacement vector sum 

Also if the 1
st
 principal elastic strain results are showed in a Figure 4.7: 

 

Figure 4.7: 1st principal elastic strain 
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To find the creep, each point should compare to other points. More investigation on creep is 

showed in figure 4.8 , where the normalized displacement vector sum an 1
st
 principal elastic 

strain is plotted as a function of their changes for different time under internal pressure. These 

two figures the normalized displacement is defined by ratio between the value of displacement 

during the creep in specific time, Dis(s) and the beginning displacement achieved in t=0.3.  

 

Figure 4.8:Normalized Displacement vector sum 

 

 

Figure 4.9:Normalized 1st principal elastic strain 
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According to Figures 4.8 & 4.9 which show same trends, it is obvious swollen NBR under 

loading becomes closer to the equilibrium state than dry (not swollen) NBR. Indeed, the creep is 

found to be smaller in the case of swollen rubber than the one in dry one. Also higher rate of 

swelling in NBR leads the viscous (time-dependent) contribution becomes smaller to the 

mechanical response.  
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CHAPTER5: CONCLUSION 

 

In this dissertation, the numerical simulation of creep in swollen elastomeric pipe was conducted. 

The simulation was performed using finite element code ANSYS. During simulation, it was 

assumed that both dry and swollen elastomers to be visco-hyperelastic, isotropic and 

incompressible. Two swelling levels were considered. The shear relaxation modulus need for the 

simulation was obtained from the experimental observation conducted by other student. 

When a polymer is subjected to a constant load, it deforms quickly to a strain roughly predicted 

by its stress-strain modulus, and then continues to deform slowly with time-dependant response 

until rupture or yielding causes failure, sometimes described as the primary, secondary and 

tertiary phase of creep. It was found that the higher rate of swelling causes relatively higher 

deformation on short internal pressure durations. But in continue and longer internal pressure 

duration, higher rate of swelling causes less creep deformation .The diffusion of solvent into 

rubber appeared to reduce the strength of rubber. The long-term properties are more useful, the 

short-term stress-strain data is of little practical value in actual designing the part, since such data 

does not take into account the effect of long-term loading on Elastomers. However, the amount 

of the creep in swollen rubbers was found to be significantly lower than that in dry rubbers. 

Finally, it is to note that these simulations focused only on the stress due to internal pressure in 

swollen pipe. Further investigations on the effect of other stress states on the swelling and the 

resulting creep are needed. 
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APPENDIX 
 

 

 

Shear moduli are collected from examples conducted by other students.(d=0.0001) 
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                       Results of NBR states(Dry , 2 days and 5 days swollen) in different  times. 
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