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ABSTRACT 

Nanofluid is the suspension of nanoparticles in a base fluid. Nanofluids are promising 

fluids for heat transfer enhancement due to their anomalously high thermal conductivity. 

At present, there is a significant discrepancy in nanofluid thermal conductivity data 

obtained from various experimental models & researches conducted.  

In the first part of this research report, a detailed study on nanofluid had been discussed 

and found that three properties of nanofluid are being a promising coolant which are 

increased thermal conductivity, increased single phase heat transfer and its stability.  

Types of nanofluid that possibly be used as coolant for water chillers, properties of 

nanofluid and how it could improve in enhancement of heat transfer of water chillers 

using nanofluid had been discussed. Moreover, characteristics of nanofluid for the 

improvement of heat transfer rate due to the effect of some parameters such as particle 

size and shape, particle materials, and temperature on the thermal conductivity models 

are also explained. Mechanism of thermal conductivity of nanofluid, challenges and 

future development of nanofluid was also included in this study. 

In the second part, studies on what is chiller, types of chillers, detail explanation of 

water chillers and its working principle had been performed. Adding on, the purpose of 

cooling system for water chillers, types of coolant used for heat transfer purposes, and 

advantages of using nanofluid in water chiller had been explained.  

In the final part of this study, a comparison calculation had been performed for heat 

transfer performance investigation of water chiller using water and two different types 

of nanoparticles which is Al2O3 & TiO2, which are used as coolant for water chillers in 

this research report. 

It was observed that the highest heat transfer rate achieved using Al2O3 nanofluid was 

29,128.62 W with 5.0 m/s inlet velocity by 0.5% particle volume fraction, followed by 

TiO2 nanofluid 29,126.19 W with 0.5% particle volume fraction at 5m/s inlet velocity, 

and finally using pure water in water chiller with 26,661.18 W at 5.0m/s inlet velocity. 
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ABSTRAK 

Nanofluid terdiri daripada nanopartikel di dalam bendalir asas. Nanofluid adalah cecair 

yang digunakan untuk meningkatkan kadar pemindahan haba disebabkan oleh 

kekonduksian haba mereka yang amat tinggi. Pada masa kini, terdapat satu perbezaan 

yang amat ketara dalam data kekonduksian haba nanofluid yang diperolehi daripada 

pelbagai model penyelidikan dan ujikaji yang dilaksanakan oleh para penyelidik. 

 

Dalam bahagian pertama, kajian mengenai nanofluid telah dibincangkan dan didapati 

terdapat tiga ciri-ciri nanofluid dijadikan sebagai bahan penyejuk iaitu peningkatan 

kekonduksian haba, peningkatan fasa tunggal pemindahan haba dan kestabilannya. 

 

Jenis nanofluid yang digunakan sebagai bahan penyejuk untuk pendingin air, sifat-sifat 

nanofluid dan cara ia dapat meningkatkan pemindahan haba bagi pendingin air 

menggunakan nanofluid telah dibincangkan. Selain itu, ciri-ciri nanofluid dikaji 

mengenai kesan penambahbaikan nanofluid disebabkan oleh factor seperti saiz zarah 

dan bentuk, bahan-bahan zarah, dan suhu diterangkan. Mekanisme keberalihan haba 

nanofluid, cabaran dan pembangunan masa depan nanofluid juga dibincangkan.  

 

Dalam bahagian kedua, kajian mengenai pendingin air, iaitu jenis pendingin air, dan 

prinsip penggunaan pendingin air, telah dilakukan. Disamping itu, tujuan sistem 

penyejukan untuk pendingin air, jenis bahan penyejuk yang digunakan untuk pendingin 

air bagi tujuan pemindahan haba, dan kelebihan menggunakan nanofluid dalam 

pendingin air juga telah diterangkan. 

 

Dalam bahagian terakhir pula, pengiraan perbandingan telah dilakukan bagi penyiasatan 

prestasi pemindahan haba pendingin air menggunakan air dan dua jenis nanopartikel 

iaitu Al2O3 & TiO2, yang digunakan sebagai bahan penyejuk untuk pendingin air. 

 

Didapati bahawa kadar pemindahan haba tertinggi dicapai dengan menggunakan Al2O3 

nanofluid sebanyak 29,128.62 W dengan halaju masuk 5.0 m / s oleh zarah 0.5% jumlah 

pecahan, diikuti oleh TiO2 nanofluid sebanyak 29,126.19 W dengan jumlah pecahan 

zarah 0.5% pada 5m / s masuk halaju, dan akhirnya menggunakan air tulen di dalam 

penyejuk air dengan sebanyak 26,661.18 W pada halaju masuk 5.0m /s. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of the study 

The purpose of this research report is to investigate the heat transfer performance of the 

water cooled chiller with nanofluid compared to water. This is achieved by using two 

different types of nanofluid, which are TiO2 & Al2O3 particles with volume fractions, Ø 

of 0.5%, 0.8%, 1.5%, 2.0% and 4% used along with water, which is used as base fluid, 

to calculate and compare the heat transfer performance of the water chiller. The 

comparisons are done by comparing the nanofluid with pure water.  

 

1.2 Overview 

At present days, cooling system is the most pressing needs for most of the industrial 

technology due to ever increasing of heat generation rate at micro-level such as 

microprocessor and followed by macro level such as cooling for chillers and car engine, 

etc [Choi et al, 2008]. 

 

The air conditioning machine that cools the water is called a chiller. In the chiller, 

refrigerant that flows through the coils which will eventually cool the room’s air. The 

chilled water is pumped through a piping loop to air handlers in the spaces to be cooled, 

where the heat it absorbed is released to the refrigerant through the chillers evaporator 

coil [Nadeem Ener, 2001] 
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As for water cooled chillers, water flows through the condenser to cool the hot 

discharge gas to condensing temperature. The normal temperature for chilled water 

leaving the chiller is about 44°C or 45°C [Adnot et al, 2003]. 

 

Today, there are many researches had been conducted by utilizing nanofluids that could 

provide a basis for an enormous innovation for heat transfer intensification, which is 

pertinent to a number of industrial sectors including micro-manufacturing, heating, 

cooling system, ventilation, and air-conditioning industry. 

 

We could observe that the thermal performance and heat transfer in the water chillers 

are greatly improved with the presence of nanoparticles, based on experiment models 

which are discussed in the subsequent sections.  

 

1.3 Objective 

The objective of this study is to establish that water cooled chillers operated with 

nanofluid has better heat transfer performance as compared to water. The study is 

divided into three main parts, for the first part a detail study on nanofluid had been 

done, followed by part two which covers study on water chiller system and for part 

three, the calculation and discussions on heat transfer using water and nanofluid had 

been performed. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

2.1 Nanofluid 

Nanofluid is a fluid containing nanometer-sized particles, called nanoparticles. These 

fluids are engineered colloidal suspensions of nanoparticles in a base fluid. The 

nanoparticles used in nanofluids are typically made of metals, oxides, carbides, or 

carbon nanotubes. Common base fluids include water, ethylene glycol and oil [Cheng, 

2009]. 

 

 

 

 

 

 

 

Figure 2.1: Nanofluids used for cooling purpose with the presence of nanoparticles 

 

Nano technology is an emerging science in which new materials and tiny structures are 

built atom-by-atom, or molecule-by-molecule, instead of the more conventional 

approach of sculpting parts from pre-existing materials. Nano is a premix meaning one-

billionth, so a nanometer is one-billionth of a meter. Just as antibiotics, the silicon 
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transistor and plastics affected nearly every aspect of society in the 20th century. 

Nanotechnology is expected to have profound influences in the 21st century. 

 

Nanofluids are conventional heat transfer liquids, such as water of glycol mixtures, 

which contain small volume fraction of suspended nanoparticles in a colloidal solution 

and studies have indicated that by adding nanoparticles to conventional fluids, they can 

alter the thermo physical and transport properties of the base fluid [Cheng, 2009]. 

 

 

Figure 2.2 : Schematic cross section of Nanofluid structure 

 

Numerous experiments on the thermal conductivity of these fluids have revealed a 

greater-than expected effective thermal conductivity, and thus there is a great interest in 

utilizing the nanofluids for heat transfer applications. 

 

Compared to a conventional liquid and conventional two-phase mixture, the nanofluid 

has higher thermal conductivity, does not block flow channels, and induces a very small 

pressure drop. Solid particles are added as they conduct heat much better that a liquid. 

In addition, nanoparticles resist sedimentation, as compared to larger particles, due to 
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Brownian motion and interparticle forces and possess much higher surface area     

(1,000-time) which enhances the heat conduction of nanofluids since the heat transfer 

occurs on the surface of the fluid [Singh et al, 2009],[Raghu et al, 2005]. 

It has been identified thorough many researches that there are three properties that can 

make nanofluids promising coolant which are [Das et al, 2006] :- 

(i) Increased thermal conductivity 

(ii) Increased single-phase heat transfer, and  

(iii) Increased critical heat flux. 

 

2.2 Types of nanofluid 

Nanofluid has many types, it can be categorized as tribology nanofluid, heat transfer 

nanofluid, pharmaceutical nanofluid, chemical nanofluid and process nanofluids. 

 

The particles are made of stable metal (silver, gold, copper, etc), metal oxide (alumina, 

silica, titania, etc), oxide ceramic (Al2O3, CuO, etc), metal carbide, metal nitride, carbon 

in different forms (diamond, graphite, fullerene, carbon nanotubes, etc) [Cheng, 2009]. 

 

Figure 2.3 : Types of nanofluid made of different particles 
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Different mechanics has put forth to explain thermal transport enhancement such as 

interfacial resistance, nanoparticle motion, liquid layering at particle liquid interface and 

nanoparticle clustering, but the Brownian motion received more attention in researches 

so far. 

 

 

2.3 Synthesis of Nanofluids 

Choi et al, first prepared nanofluids by mixing nano particles with fluids. Since then, 

there has been a rapid development in the synthesis techniques for nanofluids. However, 

there is not yet a standard preparation method for nanofluids [Choi et al ,2008],     

[Xiang et al, 2008]. 

 

Different studies show different approaches in preparing nanofluids. However, there are 

two fundamental methods to obtain nanofluids [Choi et al, 2008],[Xiang et al, 2008]: 

 

(a) Two-step process in which nanoparticles are first produced as a dry powder, 

typically by an inert gas. The resulting nanoparticles are then dispersed into a fluid. This 

method may result in a large degree of nanoparticle agglomeration. 

 

(b) Chemical approach using wet technology, a single-step approach, is emerging as a 

powerful method for growing nanostructures of different metals, semiconductors, non-

metals, and hybrid systems. 

 

Moreover, nanofluids made using this method showed higher conductivity enhancement 

than the ones made using 2-step method. Furthermore, the base fluids contain other 

irons and reaction products that are difficult or impossible to separate from the fluids. 

Using either of these two approaches, nanoparticles are inherently produced from 

processes that involve reduction reactions or ion exchange. 
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2.4 Advantages of nanofluids 

Compared to conventional solid-liquid suspensions for heat transfer intensifications, 

properly engineered thermal nanofluids possess the following advantages: 

(i) High specific surface area and therefore more heat transfer surface between 

particles and fluids. 

(ii) High dispersion stability with predominant Brownian motion of particles. 

(iii) Reduced pumping power as compared to pure liquid to achieve equivalent 

heat transfer intensification 

(iv) Reduced particle clogging as compared to conventional slurries, thus 

promoting system miniaturization 

(v) Adjustable properties, including thermal conductivity and surface wet-

ability, by varying particle concentrations to suit different applications. 
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2.5 Application of Nanofluid 

Nanofluids are used for many applications [Xiang et al, 2008],[Kaufui et al, 2010]. 

Among those are :- 

(i) Automotive Application 

Nanofluids are used in Engine oils, automatic transmission fluids, coolants, 

lubrications, and other synthetic high-temperature heat transfer fluids found 

in conventional truck thermal systems-radiators, engines, heating, ventilation 

and air-conditioning (HVAC) – have inherently poor heat transfer properties. 

These could benefit from the high thermal conductivity offered by 

nanofluids that resulted form addition of nanoparticles. 

 

 

 

 

 

 

 

 

 

Figure 2.4 : Engine cooling using nanofluid coolant 

 

(ii) Biomedical Applications 

They are used for nano-drug delivery, for cancer therapeutics, 

cryopreservation, nanocryosurgery, sensing and imaging. 
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(iii) Electronic Application 

Nanofluids are used for cooling of microchips in computers and elsewhere. 

They are also used in other electronic applications which use microfluidic 

applications. 

 

Figure 2.5 : Nanofluid used for cooling purposes in Computer (CPU Unit) 

 

2.6 Challenges of Nanofluid 

At current stage, research and development for nanofluid, it shows that most of the 

types of nanofluids which are been manufactured encounters many challenges [Cheng, 

2009],[Saidur et al, 2011]. Among those are:- 

(i) lack of agreement of results obtained  by different researchers 

(ii) lack of theoretical understanding of the mechanisms 

(iii) responsible for changes in properties 

(iv) poor characterization of suspensions 

(v)  stability of nanoparticles dispersion 

(vi) increased pressure drop and pumping power 

(vii) nanofluids thermal performance in turbulent flow and fully developed region 

(viii) higher viscosity, lower specific heat 

(ix) high cost of nanofluids 
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2.7 Properties that can help to enhance the nanofluid 

Nanofluids have novel properties that make them potentially useful in many 

applications in heat transfer, as mentioned above in Section 2.5. They exhibit enhanced 

thermal conductivity and the convective heat transfer coefficient compared to the base 

fluid.  

 

The thermal conductivity of heat transfer fluid plays an important role in the 

development of energy-efficient heat transfer equipment’s including electronics, 

HVAC, chemical processing, and transportation. Development of advanced heat transfer 

fluids is clearly essential to improve the effective heat transfer behavior of conventional 

heat transfer fluids. With a tiny addition of nanoparticle, significant rise of thermal 

conductivity is achieved without suffering considerable pressure drop penalty. 

 

Here, we are going to discuss further on the characteristics of nanofluid that could 

potentially help to improve the current water chiller system and subsequently 

revolutionize the mathematical calculation based on the design of the water chiller itself 

using nanofluid in the subsequent parts. 
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2.7.1 Thermal Conductivity 

The main characteristic of nanofluid, that is attracting a lot of interest, is basically the 

thermal conductivity it has; compared to the current water chiller coolant which is only 

water. It is said that nanofluid’s thermal conductivity can be twice the conductivity of 

the pure base fluid [Choi et al,2008]. 

 

Figure 2.6 : Thermal conductivities of commonly used liquids and materials at room 

temperature 

 

The main reason behind the increase in thermal conductivity of the fluid has to do with 

the addition of the nanoparticles into the base fluid [Kasaee et al, 2010]. The typical 

length of the particles added into the base fluid ranges from 1 to 100 nm and the 

particles have to have higher thermal conductivity than the fluid they will be dispersed 

into [Kasaee et al, 2010]. 

 

With the additional nanoparticle being augmented into the base fluid, it actually 

increases the thermal conductivity of the fluid, for example, by adding 1-5% of 

nanoparticle, the thermal conductivity could increase up to 20% [Maiga et al, 2006]. 
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Table below shows a complete summary of experimental studies on thermal 

conductivity of various nanofluids together with their observations [Xiang et al, 2008]. 

 

Table 2.1 : Summary of experimental studies on thermal conductivity of nanofluids 

 

Brazilian Journal of Chemical Engineering Vol. 25, No. 04, pp. 631 - 648, October - 

December, 2008 

 

There is also another study mentioned by Sakar and Selvam in their article that the 

thermal conductivity of a nanofluid could improve up to 150% with the addiction of 

maximum of 2% metal particles [Sarkar et al, 2007]. 

 

In general, it can be said that the thermal conductivity of a nanofluid is augmentation 

dependence means that the heat transfer efficiency of the fluid is very much 

proportional to the solid volume fraction of the added particle [Das et al, 2009]. 
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This proves to be correctly demonstrated by Sakar and Selvam in their study of 

nanofluid as based on the experiment and calculations done by Green-Kubo method by 

EMD simulation, they discovered that the higher the percentage of the particles added, 

the higher the thermal conductivity be [Sarkar et al, 2007],[Chein et al, 2005]. In the 

experiment which they used copper as the added particles, they prepared 6 different 

types of solutions with 0.2%, 0.4%, 1%, 2%, 4% and 8% of copper loading and the 

finding agreed with what they had expected. The fluid with 0.4% of copper loading had 

its thermal conductivity measured at 0.145W/m-K while the fluid with 1% and 2% 

produced the results of 0.156 W/m-K and 0.165 W/m-K respectively                  

[Sarkar et al, 2007]. The plot below shows the result obtained by Sakar and Selvam. 

 

Figure 2.7 : Experiment conducted to show the effect of percentage of particle to 

thermal conductivity (Sakar & Selvam, 2007) 

 

However, despite the fact that by dispersing more particles into the fluid will increase 

the thermal conductivity of the fluid, it could also increase the wall shear stress that 

could lead to higher pressure drop along the tube [Moghaddami et al, 2011]. Higher the 

pressure drop, it will have an impact on the pump as it will push the pump harder and 

could eventually end up breaking it. 
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2.7.2 Temperature 

Temperature also plays an important role on nanofluid performance. In the study done 

by Das et al. they discovered that the nanofluids prepared using Al2O3, and CuO had the 

thermal conductivities increased almost (3) times as the fluid temperature increased 

from 21°C to 50°C [Das et al, 2006]. 

 

According to them, increase in thermal conductivity is proportional to the temperature 

due to the fact that as the temperature of the fluid increases, the energy absorbed by the 

particles increases as well and it resulted in a much more rapid movement of the 

particles.  The more the particles move, the higher the frequency they collide with each 

other and the collision actually help to distribute the heat [Das et al, 2006]. 

 

Based on the Figure 2.8 below, it can be clearly noticed and proves that the thermal 

conductivity of Al2O3, and CuO is higher at higher temperature, with respect to volume 

concentration. 

 

Figure 2.8 : Experiment research on nanofluid thermal conductivity effect to 

temperature 

 

 

 14



2.7.3 Stability 

Nanofluids are not a simple mixture of liquid and solid particles. Nanoparticles tend to 

aggregate with the time elapsed for its high surface-activity. Another characteristic of 

nanofluid that is believed to be beneficial, if it is to be used as a water chiller coolant, is 

its stability. According to Das, Choi and Patel, due to the tiny size of the particles, 

mostly measured in nano meter (nm), the weight can be simply treated as negligible and 

thus the possibility of sedimentation to occur is less. [Das et al, 2006],                  

[Anoop et al, 2009].  

 

Stability of nanofluids can be determined using many methods such as sedimentation 

method where the variation of concentration with sediment time is obtained with a 

special apparatus [Yanjiao et al, 2009], [Mohammeda, et al, 2011]. 

 

It should be noted that proper method to produce stable nanofluids is still not fully 

achieved and many researches and standardized methods need to be established in order 

to obtain a systematic conclusion on stability of nanofluids. With this, the most vital 

factor in determining the stability of the nanoparticles suspensions is its concentrations, 

dispersant, viscosity of base fluid and pH values [Mohammeda et al, 2011]. 

 

2.7.3.1 Augmented particles 

The thermal conductivity of the nanofluid is mainly determined by the characteristics of 

the nanoparticles used to be added into the base fluid. The normal practice is to have the 

augmented particles to have higher thermal conductivity property than the base fluid 

[Yu et al, 2008] and the base fluids that are easily accessible are water and ethylene 

glycol while the nanoparticles are normally oxide and metals [Sinha et al, 2009]. 
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2.7.3.2 Augmented particle’s size and shape 

A common difficulty encountered in nanofluid manufacture is nanoparticles tendency to 

agglomerate into larger particles, which limits the benefits of the high surface are 

nanoparticles. To counter this tendency, particle dispersion additives are often added to 

the base fluid with the nanoparticles.  

 

Unfortunately, this practice can change the surface properties of the particles, and 

nanofluids prepared in this way may contain unacceptable levels of impurities. With 

this, by increasing the surface area of the conducted material, heat transfer rate can be 

improved and the rule still applies to the particles. 

 

Heat transfer rate of nanoparticle increases as the surface area of the particles increases 

[Das et al, 2006]. There is however a limitation on how big the particles can be, and as 

bigger the particles, it will have a higher tendency of clogging the line [Das et al, 2006]. 

 

According to Yu et al., the normal size of the nanoparticle shoue be within the range of 

1 to 100 nm [Yu et al, 2008] and with the nano size of the particles, the possibility of 

having the line clogged is very minimal. There is also a study conducted saying that as 

the size o the particles decreases, the heat transfer capability increases due to the more 

effective heat distribution by the nano atom [Tzeng et al, 2005]. This result appears to 

be contrary to what was highlighted by Yu et al. as based on the experiment performed 

using particles with the sizes of 28nm, 38nm and 60nm in which the smallest size 

particle that was expected to be the least effective appears to be in between 38 nm and 

60nm [Kasaee et al, 2010]. 
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The particle’s shape also is believed to have an impact on the thermal conductivity of 

the fluid. According to the article published by Yu et al. the cylindrical shape particle 

exhibits increase thermal conductivity compared to spherical shape particle                 

[Yu et al, 2008]. The diagram below shows how much difference the shape of the 

particle will have an impact on the thermal conductivity of the fluid.  

 

 

Figure 2.9 : Effect of paricle shape on thermal conductivity (Yu et al, 2008) 

 

2.7.3.3 Augmented particle’s materials 

The type of material used to prepare the augmented particles also play a vital role in 

determining the effectiveness of nanofluid especially on the heat transfer capability. It 

was mentioned earlier that the particles added into the base fluid should have higher 

thermal conductivity than the base fluid [Yu et al, 2008] and the widely used materials 

are made mostly of oxides and metals [Sinha et al, 2009]. 

 

In one of the experiment conducted to determine the effect of the materials type on the 

heat transfer capability of nanofluid conducted by Sinha et al. it was observed that 
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copper nanoparticles exhibit better thermal conductivity compared to iron nanoparticles 

with the increase in thermal conductivity recorded was 25% to 70% and 11% to 33% 

respectively [Sinha et al, 2009]. 

 

Both nanoparticles used in their experiment were prepared in such a way that both 

particles had similar properties geometrically in term of crystallize size, particle size 

and morphology [Sinha et al, 2009]. 

 

 

 

Figure 2.10 : Micro-scale size of Nanofluid particles 

 

Another study done by Das, Choi and Patel on the type of particles used in nanofluid 

also shows that different particles have different effect on the thermal conductivity of 

the fluid [Das et al, 2006]. In their experiment, they tested (3) types of particles which 

are metallic, ceramic and carbon polymer and the results show that the greatest 

enhancement was observed by carbon and polymer nanoparticles [Das et al, 2006]. 
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The other experiment conducted by Yu el al. also produced similar results that agreed 

with other studies on the effect of nanoparticles materials to the thermal conductivity of 

the fluid. In their experiment, Yu el al used (3) different types of particle, Al2O3, Cu and 

Fe [Yu et al, 2008]. They found out that the metal particles produced better heat transfer 

enhancement compared to oxide particles at lower concentration [Yu et al, 2008]. 

 

All these studies show that different types of particle exhibit different performance in 

term of thermal conductivity when they are used to create the nanofluids.  

 

 

2.8 Heat transfer Properties and characteristics of Nanofluid 

 

Compared to conventional solid-liquid suspensions of heat transfer intensifications, 

engineered nanofluids has the following added advantages:- [Mohammeda et al, 2011] 

 

i. Reduced pumping power compared to pure liquid to achieve equivalent heat 

transfer intensification 

ii. High specific surface area and more heat transfer surface between particles and 

fluids.  

iii. Adjustable properties inclusive of thermal conductivity and surface wettability 

iv. High dispersion stability with predominant Brownian motion of particles 

v. Reduced particle clogging as compared to conventional slurries 
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2.9 Enhancement of heat transfer using nanofluid 

Based on Xuan and Roetzel, they have mentioned on the experimental studies that two 

phase enhancement of thermal dispersion model with assumption convective heat 

transfer enhancement in nanofluid comes from two factor: [Godson et al, 2010] 

i. higher thermal conductivity 

ii. thermal dispersion of the nanoparticles & its coefficient 

Hence, the convective heat transfer enhancement was obtained with a decrease in the 

viscosity and consequent thinning of the laminar sub-layer. 

 

2.10 Mechanism of thermal conductivity enhancement of nanofluids 

 

Kelblinski and Eastman from experimental studies mentioned that four possible 

explanations for thermal conductivity enhancement of nanofluids depends on Brownian 

motion of nanoparticles, molecular-level layring of the liquid at the liquid/particle 

interface, nature of heat transport in the nanoparticles, and the effects of nanoparticles 

clustering, which is shown in Figure 2.11 [Xiang, 2007],[Keblinski et al, 2005]. 

 

Figure 2.11 : Schematic diagram of several possible mechanisms; (a) Enhancement of k due to 

formation of highly conductive layer-liquid structure at the liquid/particle interface; (b) Ballistic 

and diffusive phonon transport in a solid particle; (c) Enhancement of k due to increased 

effective φ of highly conducting clusters. 
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Xuan and Li also mentioned based on experimental studies that four possible reasons 

for the improved effective thermal conductivity of nanofluids which is : 

i. increased thermal conductivity of the fluid 

ii. increased surface area due to suspended nanoparticles 

iii. intensified mixing fluctuation and turbulence of the fluid 

iv. interaction and collision among particles  

 

Based on Xie et al studies, they proposed another four factor that influence thermal 

conductivity enhancement of nanofluids which is :- 

i. micro convection caused by Brownian movement of nanoparticles 

ii. the effect of nonlinear heat transfer in nanopaticles 

iii. base fluid 

iv. congregation of nanoparticles and orderly array of liquid molecules at the 

interface between the nanoparticles surface 

 

From all three (3) different studies, we can clearly see that there are no any 

commonly accepted conclusion was obtained to explain the thermal behavior of 

nanofluids. More theoretical and experimental work need to be done as controversy still 

exits. 

 

2.11 Challenges of Nanofluid 

At current stage, research and development for nanofluid, it shown much of the 

nanofluid researches more concerned on thermal conductivity rather than its behavior 

during heat transfer. Most of the experiments carry out on single phase flow instead of 

two phases flow. Less paper are available for two phase flow and its thermal physics 
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(pool boiling, flow boiling and condensation) [Cheng, 2009]. This has also been 

discussed in Section 2.6 

 

 

2.12 Future Development 

There are many challenges in the study of nanofluid two-phase flow and themal physics 

as mentioned aforegoing. Explanations and new theories are also needed to be taken 

into account all the important characteristics of nanofluid. 

 

So far, no systematic knowledge of their effect is available. Therefore, it is 

recommended that two-phase flow and thermal physics (pool boiling, flow boiling and 

condensation with nanofluids) should also be investigated in the future. In future too, 

the nanofluid should not only be a limited role as water chiller coolant only.  
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2.13 Chillers 

Chillers are a key component of air conditioning systems for large buildings. A typical 

chiller is rated between 15 to 1000 tons (180,000 to 12,000,000 BTU/h or 53 to 3,500 

kW) in cooling power [Chein et al, 2005].  

They produce cold water to remove heat from the air in the building. They also provide 

cooling for process loads such as file-server rooms and large medical imaging 

equipment. As with other types of air conditioning systems, most chillers extract heat 

from water by mechanically compressing a refrigerant. 

 

Chillers are complex machines that are expensive to purchase and operate. Different 

types of chillers are typically distinguished from one another based on the compressor 

technology they employ. Choosing the right type of chillers are very vital to maximize 

energy efficiency, balance cooling costs, and stay cool on hot summer days. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 : Chiller and associated HVAC systems 
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2.14 Types of Chillers 

The classification of chillers can be done based on various factors like portability, 

working, etc. Here we have classified chillers based on the basis of their functioning. 

However, in this study, water chiller will be further studied on heat transfer effect using 

nanofluid [Adnot et al, 2003]. 

 

2.14.11 Mechanical compression 

During the compression cycle, the refrigerant passes through four major components 

within the chiller which is evaporator, the compressor, the condenser, and a flow-

metering device such as an expansion valve. The evaporator is the low-temperature 

(cooling) side of the system and the condenser is the high temperature (heat-rejection) 

side of the system. 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 : The refrigeration cycle 

 

2.14.12 Mechanical compressor chillers 

Mechanical compression chillers are classified by compressor type which is either 

reciprocating, rotary screw, centrifugal and frictionless centrifugal. 
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2.14.13 Reciprocating Chiller 

Reciprocating chillers utilizes an internal piston contained within a cylindrical 

compartment. As gaseous refrigerant enters the compressor, the piston compresses the 

refrigerant to increase the pressure. Once the pressure levels have risen to a high 

enough point, an exhaust valve releases the compressed refrigerant so it can re-enter 

the cooling system and claim more heat energy from the building.  

 

 

Figure 2.14 : Reciprocating compressor 

 

2.14.14 Scroll Chiller 

Scroll compressors feature the smallest capacity of all chiller models, and can handle 

loads between 30 and 60 tons. They use two interlocking coils, with one stationary 

and one rotating. As refrigerant enter the compressor, it gets caught between the walls 

of the coils and compressed down into the center of the two coils, where it exits 

through an exhaust port.  It is mainly used in automobile air conditioners as well as 

small industrial cooling systems. 
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2.14.15 Rotary Chiller 

Rotary chiller can handle loads as high as 300 tons, making them appropriate for large 

residential and most commercial applications. These units feature an internal roller 

that rotates within a steel cylinder. As refrigerant enters the cylinder through an intake 

valve, the rotating roller compresses it between the roller and the wall of the cylinder. 

As the roller continues to rotate, it forces the compressed refrigerant out through an 

exhaust valve to complete the cooling cycle.  

 

 

Figure 2.15 : Rotary screw compressor 

 

 

2.14.16 Absorption chillers 

Absorption chillers are used as a heat source such as natural gas or district steam to 

create a refrigerant cycle that does not used mechanical compression.  
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2.14.17 Centrifugal Chiller 

Centrifugal chillers use an impeller to rapidly accelerate refrigerant from an intake 

port to the walls of a cylinder. The centrifugal force causes the gas to collect along the 

walls, then directs it to an exhaust port to continue to the cycle. Many commercial 

systems use multiple impellers to compress large quantities of refrigerant 

simultaneously. These systems have the largest capacity of all chillers, and are often 

used on applications requiring 300 tons of cooling capacity or greater. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 : Centrifugal compressor 

 

2.14.18 Air-cooled chillers  

An air-cooled chiller absorbs heat from process water and is transferred to the ambient 

air. They are mostly used in applications where the heat discharged is not a factor. 

They don’t need a cooling tower and condense water pump. The maintenance of air 

cooled chillers are less than water cooled units. However they consume 10% more 

power. 
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2.14.19Water chillers 

Water chillers whereby absorb the heat from process water and is transferred to a 

separate water source like a river, pond, cooling tower, etc. It is mainly used at the 

places where the heat generated by air cooled chillers pose a problem. Due to their 

less consumption of power they are usually preferred by those seeking optimum 

efficiency of power consumption. 

 

Water Chillers are used in many applications to cool or chill fluid. These applications 

include, but not limited to, manufacturing processes, comfort cooling and rental 

cooling system. 

 

 

Figure 2.17 : Hydro Thrift - Water Chiller 
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2.14.20 Frictionless Centrifugal Chiller 

This highly energy-efficient design employs magnetic bearing technology. The 

compressor requires no lubricant and has a variable-speed DC motor with direct-drive 

for the centrifugal compressor. Capacities range from 60 to 300 tons. 

 

 

Figure 2.18 : Frictionless Turbocor centrifugal compressor 

 

2.15 Water Chiller Efficiency 

Chillers represent a substantial capital investment and are a major contributor to 

operating costs in institutional and commercial facilities. For many organizations, 

chillers are the largest single energy users, and comprehensive maintenance is critical to 

ensure their reliability and efficient operation [Nadeem Ener, 2001] 

 

This is the reason chiller efficiencies are highly important and have improved steadily 

over the past decades due to advances in controls, refrigerants and equipment design. As 

a result, chillers now have tighter operational tolerances, and regular services and 

maintenance are more crucial than ever.  
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Below are 5 steps for water chiller efficiency  

Step 1 : Maintaining a daily operating log 

Chiller performance, which includes operating conditions are documented and analyzed 

on daily basis with an accurate and detailed log. Today’s chillers are controlled via 

microprocessor controls, so operators can automate this process using microprocessor-

controlled building automatic systems  

 

Step 2 : Keep tubes Clean 

One large potential hindrance to desire chiller performance is heat-transfer efficiency. 

Chiller performance and efficiency relate directly to its ability to transfer heat, which 

begins with clean evaporator and condenser tubes. Keeping large surfaces clean is vital 

for maintaining high-efficiency performance. 

 

Most chiller manufacturer recommend cleaning condenser tubes annually, and 

recommend cleaning evaporator tubes once every three years for closed system.  

 

Step 3 : Ensure a Leak-free unit 

Manufacturers recommend quarterly tests of compressors for leaks. Although these 

chillers are the most common in today’s facilities, it is difficult to create a perfectly 

sealed machine, and leaks allow air and moisture to enter the unit. 

 

Moisture in a chiller also can create acids that corrode motor windings and bearing s 

and create rust inside the shell. Fines on tubes will result in decrease in the units heat 

transfer effectiveness and overall efficiency. This could even result in costly tube 

repairs. The best way to monitor leaks is to track purge-unit runtime and the amount of 

moisture accumulation at the purge unit.  
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Step 4 : Sustain Proper Water Treatment  

Most chillers uses water for heat transfer, so the water must be properly treated to 

prevent scale, corrosion and biological growth. A one-time chemical treatment is 

required for closed-water systems. 

 

Poor chemical treatment of the evaporator and condenser-water system could result in 

scaling. The quality of the water had to be tested every three months and correct water 

treatment program is highly important. 

 

Step 5 : Analyze oil and Refrigerant  

Annual chemical analysis of oil and refrigerant can aid in detecting chiller 

contamination problems before they become serious.  

 

Oil analysis can help is detecting other chiller problems, for example, high moisture 

content in the oil can signal problem with the purge unit, and changes in oil 

characteristics can signal problems with the purge unit, and changes in oil 

characteristics can signal the development of unacceptable compressor wear. 

 

As for refrigerant testing, it is done to determine contaminations that might lead to 

reliability and efficiency problems. One main contaminant is oil that migrates into the 

refrigerant.  

 

 

 

 

 

 31



2.16 Water Chiller & it’s Working Principle 

The main function of a water chiller is to remove heat from one substance and pass it to 

other sources like ambient water or air. A chilled-water applied system uses chilled 

water to transport heat energy between the airside, chillers and outdoors. These systems 

are more commonly found in large HVAC installations, given their efficiency 

advantages [Raghu et al, 2005]. 

 

A chiller consists of a few major components. Water chiller is compressor based 

equipment that cools and controls the temperature of a liquid. Besides compressor other 

components of a water chiller are, an evaporator heat exchanger, a condenser heat 

exchanger, an expansion valve or two and some piping and controls are the basics. 

 

 

Figure 2.19: Chilled Water applied system 

 

Compressors are usually reciprocating, scroll, centrifugal, or rotary screw types. The 

evaporator heat exchanger is usually of shell and tube constructions and is the 

exchanger where chilled water would be produced [Raghu et al, 2005]. 
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The condenser heat exchanger can be either air-cooled, a coil or coils and a fan or fans, 

or water cooled, another shell and tube heat exchanger cooled by cooling tower or other 

water. 

 

 

2.17 How does the water chiller functions? 

Below are the working principles of a typical water chiller 

i. The cycle begins in the evaporator where a liquid refrigerant flows over the 

evaporator tube bundle and evaporates 

ii. The heat from the chilled water circulating is then absorbed through the bundle. 

iii. The refrigerant vapor is drawn out of the evaporator by the compressor 

iv. The compressor then pumps the refrigerant vapor to the condenser raising its 

pressure and temperature 

v. Then the refrigerant condenses on or in the condenser tubes, giving up its heat to 

the cooling water.  

vi. High pressure liquid refrigerant from the condenser then passes through the 

expansion device that eventually reduces the refrigerant pressure and 

temperature as it enters the evaporator. 

vii. Refrigerant will flow again over the chilled water coils, absorbing more heat and 

completing the cycle.  

viii. As a result, the indoor is thus cooled. 
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Benefit of water chiller applied system is the refrigerant containment. Having the 

refrigeration equipment installed in a central location minimizes the potential for 

refrigerant leaks, simplifies refrigerant handling practices, and typically makes it easier 

to contain a leak if one does occur. 

 

Factors affecting the decision to selecting a Water Chiller system includes :- 

 installation cost 

 energy consumption 

 space requirements 

 system cooling and heating capacity 

 centralized maintenance 

 

When selecting the right water chiller, there are some key specifications need to be 

taken into consideration, which is:-  

 

 Total life cycle cost 

 Power source 

 Cooling capacity 

 Evaporator capacity, material and type 

 Condenser material and capacity 

 Ambient temperature 

 Coolant requirements 

 Number and type of compressors 
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2.18 Applications of Chillers 

Cooling equipment’s are used in a number of industries. Some of the most common 

application of chillers are [Singh et al, 2009],[Saidur et al, 2011],[Xiang et al, 

2008],[Kaufui et al, 2010]: 

 Chillers are used to cool the hot plastic in the plastic industry. It cools the plastic 

that is injected, blown extruded or stamped. They are also used to cool down the 

equipment used in the manufacturing process. 

 In the printing industry, chillers are used to remove the heat generated by the 

printing rollers. They also help cooling the paper when it comes out of the ink 

drying ovens. 

 Sophisticated chillers are used in the high powered electronics inside the 

machines like MRI and PET used in the latest diagnostic tools. 

 Chillers cool down the lasers and the source of power supply used to power 

them 

 

Figure 2.20: Upright chiller used at 

convenience store 

 

 

  

 

Figure 2.21: Chiller used in heavy 

industries 
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2.19 Liquid Cooling 

Liquid cooling is essentially a radiator for the water cooling system. Just like a radiator 

for a car, a liquid cooling system circulates a liquid through a heat sink attached to the 

water cooling system. As the liquid passes through the heat sink, heat is transferred 

from the hot source to the cooler liquid.  

 

The hot liquid then moves out to from the water chiller and transfer heat to the ambient 

air outside. The cooled liquid then travels back through the system to the water chiller to 

continue the process. 

Liquid cooling is a much more efficient system at removing heat away from the water 

chiller and outside of the system. This is the prime reason why nanofluids are used to 

enhance the heat transfer inorder to release more heat and keeping the system cool. 

 

2.20 Coolant / Refrigeration used in Water Chiller for cooling purpose 

There are many refrigerants options are available when selecting a chiller, the 

application cooling temperature requirements and refrigerant’s cooling characteristics 

need to be matched. Important parameters to be considered are the operating 

temperatures and operating pressures. There are also several environmental factors that 

concerns refrigerants, and also affect the future availability for chiller applications 

[Adnot et al, 2003]. 

 

A coolant is a fluid which flows through a device to prevent its overheating, transferring 

the heat produced by the device to other devices that use to dissipate it. An ideal coolant 

has high thermal capacity, low viscosity, it low-cost, non-toxic, and chemically inert, 

neither causing not promoting corrosion of the cooling system. Some applications also 

require the coolant to be an electrical insulator. 
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While the term coolant is commonly used in automotive, residential and commercial 

temperature-control applications, in industrial processing, heat transfer fluid is one 

technical term more often used, in high temperature as well as low temperature 

manufacturing applications [Adnot et al, 2003]. 

 

Emerging and new classes of coolants are nanofluids. As discussed in Section 2.1, 

nanofluid are engineered colloids made of a base fluid and nanoparticles (1-100nm) 

[Tillman et al, 2005]. Common base fluid includes water, organic liquid (e.g ethylene, 

tri-glycol, refrigerants, etc), oil and lubricants, bio-fluids, polymeric solutions and other 

common liquids.   

 

It consists of a carrier liquid, such as water, dispersed with tiny nano-scale particles 

known as nanoparticles. Purpose designed nanoparticles of e.g CuO, Alumina, Titanium 

Dioxide, Carbon nanotubes, Silica or metals (e.g. copper, or silver nano-rods) dispersed 

into the carrier liquid the enhances the heat transfer capabilities of the resulting coolant 

compared to the carrier liquid alone [Chein et al, 2005]. 

 

Types of coolants that are used for water chillers are mostly water (R718) since it is a 

natural refrigerant, ethylene glycol mixture – water based, R134a or R12, R502, R404 

and many more [Yunus et al, 2006]. 

 R11 – used in large-capacity water chillers serving air conditioning systems in 

buildings 

 R22 – used in window air conditioning, heat pumps, air conditioning of 

commercial buildings, etc 

 R134a – (replaced R-12, which damages ozone layer) is used in domestic 

refrigerators and freezers, as well as automotive air conditioners. 

 R502 – (a blend of R115 and R22) is the dominant refrigerant used in 

commercial refrigerant system such as those in supermarkets.  
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2.21 Selecting the right refrigerant for water chiller 

Selections of the right refrigerant are very important, for water chiller. Two important 

parameters that need to be considered in the selection a refrigerant are the temperatures 

of the two media (the refrigerant space and the environment) with which the refrigerant 

exchanges heat [Yunus et al, 2006]. 

 

Among other characteristics that have to be considered is vapor pressure, transport 

properties, lubricant and material compatibility, thermodynamic performance, cost, 

flammability, toxicity, stability and environmental properties. 
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CHAPTER III 

 

METHODOLOGY 

 

3.1 Nanofluid side calculation 

In this study, two different types of nanofluid, which are TiO2 & Al2O3 particles used 

along with water which is used as base fluid were used to calculate and compare the 

heat transfer performance of the water chiller. The comparisons are done by comparing 

the nanofluid with pure water.  

 

The thermophysical property which comprises the density, viscosity, specific heat and 

thermal conductivity of TiO2, Al2O3 and water at 25ºC are presented in Table 3.1 and 

will be further used in the subsequent calculatations. The volume fractions, Ø of 0.5%, 

0.8%, 1.5%, 2.0% and 4% are used for thermophysical calculations from the following 

Equations (3.1) to (3.4). The calculation workings are presented in Appendix A. 

 

Density of nanofluid:         

ρnf = (1 – Ø)ρf + Øρp                 (3.1) 
 

Viscosity of nanofluid: 

µnf = µbf (1 +2.5Ø)         (3.2) 
 

Specific heat of nanofluid: 

(ρCp)nf = (1– Ø) (ρCp)f + Ø(ρCp)p       (3.3) 
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Thermal conductivity of nanofluid:       (3.4) 

kp + (n – 1) kf  – (n – 1)Ø(kf – kp) 
knf =  

       kp + (n – 1) kf  + Ø(kf – kp) 
 kf

 

The spherical particles are assumed with n=2 for the nanoparticles. 

 

Table 3.1 : Thermophysical properties of water and nanoparticles at T=25ºC 

[Mohammad et al, 2010] 

Properties Nanoparticle Nanoparticle Base Fluid
 Al2O3 TiO2 (Water) 

ρ (kg/m3) 3970 4197 997.1 
Cp (J/kg K) 765 710 4179 
k (W/m K) 40 8.4 0.613 
μ (Ns/m2)   0.001003 

 

The parameters which are required to be calculated and compared on the heat transfer 

performance of the water chillers are nanofluid hydraulic diameter (Dh), Reynolds 

number (Re), Prandtl number (Pr), Nusselt number (Nu), heat transfer coefficient (h), 

pressure drop (ΔP), pumping power (P), and total heat transfer rate (Q). 

 

3.2 Minichannel Heat Sink (Heat Exchanger) 

In this study, the concept of minichannel heat sink is used to drive the development of 

efficient heat distribution (heat exchanger) in order to maintain high performance of the 

cooling devices. With having minichannel in the heat sink (heat exchanger) for liquid 

cooling, it will lead to the increase in heat transfer rate [Mohammad et al, 2010]. 

 

As such, heat is supplied to rectangular minichannel heat sink aluminum substrate by 

flowing nanofluid through a number of minichannels is studied [Mohammad et al, 

2010]. The dimensions of the rectangular minichannel heat sink were taken from the 

H.A Mohammaed et al. [Mohammad et al, 2010] and shown in Table 3.2. 
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        Figure 3.1 : (a) Schematic diagram of the computational domain  

                            (b) Cross section of the rectangular shaped minichannel 

 

Table 3.2 : Dimensions of the rectangular minichannel heat sink [Mohammad et al, 2010] 

Dh (μm)  Hch  (μm)  Wch  (μm)  Lch  (μm)  S  (μm) 

339.15  430  280  10,000  500 
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At the minichannel sections, the hydraulic diameter, Dh is calculated based on Equation 

(3.5). The calculation workings are presented in Appendix A. 

 

Hydraulic diameter, Dh        (3.5) 

4A 2Hch Wch 
Dh =  

P 
= 

Hch + Wch 
 

By utilizing the hydraulic diameter Dh, the Reynolds number, Re can be calculated from 

the Equation (3.6). In this case, Reynolds number is measured using two different inlet 

velocity (um), which is 1.5 m/s and 5.0 m/s. The calculation workings are presented in 

Appendix A. 

 

Reynolds number, Re        (3.6) 

ρnf umD 
Renf = 

µnf  
          

Prandtl number, Pr is calculated using Equation (3.7). The calculation workings are 

presented in Appendix A. 

 

Prandtl number, Pr          (3.7) 

µnf Cpnf 
Prnf = 

knf  
   

        

Nusselt number, Nu is calculated using Equation (3.8). In this case, Nusselt number is 

measured using two different inlet velocity (um), which is 1.5 m/s and 5.0 m/s. The 

calculation workings are presented in Appendix A. 

 

Nusselt number, Nu          (3.8) 

Nunf = 0.021Re0.8
nf  Pr0.5

nf
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With the calculated Nusselt number above, the heat transfer coefficient, h can be 

calculated using Equation (3.9). The heat transfer coefficient is measured using two 

different inlet velocity (um), which is 1.5 m/s and 5.0 m/s. The calculation workings are 

presented in Appendix A. 

 

Heat transfer coefficient, h         (3.9) 

Nuknf
h = 

Dh 
  

          

For the Pressure drop, ΔP can be calculated using Equation  (3.10). The Pressure drop is 

measured using two different inlet velocity (um), which is 1.5 m/s and 5.0 m/s. The 

calculation workings are presented in Appendix A. 

 

Pressure drop, ΔP          (3.10) 

L ρV2
m ΔP = f 

Dh 
x 

2 
          

Where indicates 

f = (1.82logRe – 1.64)-2 

 

Vm = Um 

 

The Pumping power, P can be calculated using Equation (3.11). The Pumping power is 

measured using two different inlet velocity (um), which is 1.5 m/s and 5.0 m/s, causing 

two different volumetric flow rates used in the measurement. The calculation workings 

are presented in Appendix A. 
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Pumping power, P          (3.11) 

P = V ΔP 

           

Where indicates 

V  = N Wch Lch unf 

 

For the overall heat transfer rate, Q can be calculated using Equation (3.12). The heat 

transfer rate is measured using two different inlet velocity (um), which is 1.5 m/s and 5.0 

m/s. The calculation workings are presented in Appendix A. 

 

Overall heat transfer rate, Q        (3.12) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 

         

The temperate difference is measure at 20ºC 

Where indicates 

ṁnf = Pnf V  

V  = N Wch Lch unf 

 

3.3 Water side calculation 

From Table 3.1, heat transfer rate for water can be computed from Equation (3.13) 

below: 

Qw = ṁwCpw(Tin – Tout)w         (3.13) 
  

The temperate difference is measure at 20ºC 

Where indicates 

ṁw = Pw V  

V  = N Wch Lch unf 

 

The calculation workings are presented in Appendix A. 
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CHAPTER IV 

 

RESULTS & DISCUSSION 

 

4.1 Heat Transfer of water chiller using nanofluid 

Based on the calculation done for Al2O3 & TiO2 nanofluid using Equation (3.1) to 

Equation (3.4), we can notice that the thermophysical properties calculated, will 

increase with the increase of particle volume fraction, Ø. This has been shown in Table 

4.1 and Table 4.2 below: 

 

Table 4.1 : Thermophysical properties of (Al2O3) Nanofluid 

Nanoparticle (Al2O3)  
Properties 

 Ø = 0.5 % Ø = 0.8 % Ø = 1.5 % Ø = 2.0 % Ø = 4.0 % 

ρ (kg/m3) 1,011.96 1,020.88 1,041.69 1,056.56 1,116.02 

Cp (J/kg K) 4,112.05 4,072.80 3,983.85 3,922.44 3,693.22 
k (W/m K) 0.6190 0.6226 0.6311 0.6373 0.6625 

μ (Ns/m2) 1.0155 x 10-3 1.0231x 10-3 1.0406 x 10-3 1.0532 x 10-3 1.1033 x 10-3 

 

Table 4.2 : Thermophysical properties of (TiO2) Nanofluid 

Nanoparticle (TiO2)  
Properties 

  Ø = 0.5 % Ø = 0.8 % Ø = 1.5 % Ø = 2.0 % Ø = 4.0 % 

ρ (kg/m3) 1,013.10 1,022.70 1,045.10 1,061.10 1,125.10 

Cp (J/kg K) 4,107.14 4065.11 3970.04 3904.58 3661.38 
k (W/m K) 0.6183 0.6215 0.6291 0.6459 0.6569 

μ (Ns/m2) 1.0155 x 10-3 1.0231x 10-3 1.0406 x 10-3 1.0532 x 10-3 1.1033 x 10-3 
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Heat transfer coefficient, (h) for both the nanofluids increases with the increase of 

particle volume fraction, Ø. Figure 4.1 below shows at 1.5m/s inlet velocity for Al2O3 

nanofluid with particle volume fraction of 4% has the highest heat transfer coefficient of 

15,018.82 W/m2 K and 14987.55 W/m2 K for TiO2 at 4% particle volume fraction. 

From Figure 4.2  at 5.0 m/s inlet velocity for Al2O3 nanofluid with particle volume 

fraction of 4% has heat transfer coefficient of 39,349.75 W/m2 K followed by 39267.57 

W/m2 K for TiO2 at  4% particle volume fraction. This shows that for higher particle 

volume fraction and higher inlet velocity, it has the higher value of heat transfer 

coefficient. From above statement, heat transfer enhancement is increasing as the 

concentration of nanoparticle increases. 
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Figure 4.1 : Heat transfer coefficient at various particle volume fraction with 1.5m/s 

inlet velocity 
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Figure 4.2 : Heat transfer coefficient at various particle volume fraction with 5.0 m/s 

inlet velocity 

 

 

 

By having higher heat transfer coefficient, the thermal conductivity of the nanofluid 

also increases. Thermal conductivity for both the nanofluid increases with increasing the 

particle volume fraction. This can be seen from Figure 4.3 whereby the thermal 

conductivity for Al2O3 nanofluid with 4% particle volume fraction has the highest value 

which is 0.6625 W/m K and for TiO2 with 4% particle volume fraction has the highest 

value which is 0.6569 W/m K.  
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Figure 4.3 : Thermal conductivity of nanofluid at various particle volume fraction 

 

 

With the presence of higher thermal conductivity of the nanofluid, it will have higher 

Reynolds number. This is shown in Figure 4.4 and Figure 4.5 , whereby the highest 

Reynolds Number with 1.5m/s inlet velocity is 514.59 for Al2O3 nanofluid with 0.6625 

W/m K thermal conductivity and highest Reynolds Number is 518.78 for TiO2 

nanofluid with 0.6569W/m K thermal conductivity. For Reynolds Number with 5.0m/s 

inlet velocity has highest value of 1715.31 for Al2O3 nanofluid with 0.6625 W/m K 

thermal conductivity and highest Reynolds Number is 1729.26 for TiO2 nanofluid with 

0.6569W/m K thermal conductivity 
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Figure 4.4 : Effect of thermal conductivity on Reynolds Number at 1.5 m/s inlet velocity 
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Figure 4.5 : Effect of thermal conductivity on Reynolds Number at 5.0 m/s inlet velocity 
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In this study, it was noticed that from calculations conducted, the value obtained for 

Prandtl number for both the nanofluid, decreases with the increase of particle volume 

fraction, as shown in Figure 4.6. It can be seen that the highest Prandtl number for 

Al2O3 nanofluid is 6.7460 at 0.5% particle volume fraction, whereby TiO2 nanofluid is 

6.7456 at 0.5% particle volume fraction. The reason of this phenomenon is due to the 

higher thermal conductivity of the nanofluid, caused by increasing of the particle 

volume fraction and due to the formula correlations used to compute Prandtl number. 

Having lower value of Prandtl number with the increase in the particle volume fraction, 

it will also cause the Nusselt number to be decreasing, based on calculation done and 

shown in Figure 4.7. 
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Figure 4.6 : Effect of various particle volume fraction to Prandtl number. 
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Figure 4.7 : Effect of various particle volume fraction to Nusselt number at 1.5 m/s inlet 

velocity. 

 

 

4.2 Pressure Drop and Pumping Pressure 

From calculation done in using Equation (3.9) and Equation (3.10) it is noticed that both 

the pressure drop and pumping power for the nanofluid increases with the increasing of 

the particle volume fraction, and it also increases along with the mass flow rate. The 

density and inlet velocity are the dependent variables for the increase in values of the 

pressure drop and eventually causing the increase in pumping power. This is due to the 

formula correlations used to compute Prandtl number as computed in Equation (3.7).  

 

Based on Figure 4.8, we can notice that the highest pressure drop for Al2O3 nanofluid 

with 1.5 m/s inlet velocity is 4,092.02 Pa at 4.0% particle volume fraction and highest 

pressure drop for TiO2 nanofluid with 1.5 m/s inlet velocity is 4,109.28 Pa at 4.0% 

particle volume fraction.  
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Referring to Figure 4.9, we can notice that the highest pressure drop for Al2O3 

nanofluid with 5.0 m/s inlet velocity is 2,162.27 Pa at 4.0% particle volume fraction and 

highest pressure drop for TiO2 nanofluid with 5.0 m/s inlet velocity is 2,176.01 Pa at 

4.0% particle volume fraction. The reason for the increase in pressure drop as the 

particle volume fraction increase is due to particle deposition that increasing the wall 

roughness. 

 

As for the highest pumping power seen from Figure 4.8, for Al2O3 nanofluid with 1.5 

m/s inlet velocity is 0.4297 W at 4.0% particle volume fraction and highest pumping 

pressure for TiO2 nanofluid with 1.5 m/s inlet velocity is 0.4315 W at 4.0% particle 

volume fraction.  

 

As for the highest pumping power seen Figure 4.9, for Al2O3 nanofluid with 5.0 m/s 

inlet velocity is 0.7568 W at 4.0% particle volume fraction and highest pumping 

pressure for TiO2 nanofluid with 1.5 m/s inlet velocity is 0.7616 W at 4.0% particle 

volume fraction. The reason for the increase in the pumping power is due to the increase 

in the particle volume fraction and heat transfer coefficient which in return will also 

increase thermal conductivity of the nanofluid. 
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        Figure 4.8 : Effect of pressure drop and Pumping power to Particle Volume Fraction at 
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Figure 4.9 : Effect of pressure drop and Pumping power to Particle Volume Fraction at 

5.0 m/s inlet velocity 
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4.3 Heat Transfer rate using Water in Water Chiller 

From water side calculation in, heat transfer rate for water with inlet velocity of 5m/s 

has higher value compared to 1.5m/s. The Figure 4.10 below shows the comparison at 

different inlet velocity. This due to it’s higher mass flow rate for water inlet velocity of 

5m/s compared to 1.5m/s.  
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Figure 4.10 : Heat Transfer of Water with 1.5 m/s and 5.0 m/s inlet velocity 

 

 

4.4 Overall Heat Transfer Rate 

The overall heat transfer rate is calculated from Equation (3.13) for water and Equation 

(3.12) for nanofluid. By comparison, it is noted that the highest heat transfer rate is 

achieved using Al2O3 nanofluid which is 29,128.62 W with 5.0 m/s inlet velocity by 

0.5% particle volume fraction, followed by TiO2 nanofluid 29,126.19 W with 0.5% 

particle volume fraction at 5m/s inlet velocity, and finally using pure water in water 

chiller with 26,661.18 W at 5.0m/s inlet velocity. 

 54



 

CHAPTER V 

 

CONCLUSION 

 

This study on heat transfer performance investigation of water chiller using nanofluids 

is done by comparing water chiller using pure water as coolant with nanofluids with 

regards to thermophysical properties, heat transfer coefficient, thermal conductivity, 

heat transfer rate, pumping power and pressure drop. 

  

Based on the calculations done, the thermophysical properties will increase with the 

increase of particle volume fraction. Moreover, heat transfer coefficient also increases 

with the increase of particle volume fraction, causing the thermal conductivity of the 

nanofluid to increase. At 4% of particle volume fraction, thermal conductivity of 

nanofluid had increased 7.47% for Al2O3 nanofluid and 6.68% for TiO2 nanofluid. 

 

For Al2O3 nanofluid, the maximum pumping power is 0.4297 W for 4% particle volume 

fraction with 1.5m/s inlet velocity and 4,092.02 Pa of Pressure drop is achieved. For 

inlet velocity of 5.0m/s, the pumping power found to be 0.7568 Pa. As for TiO2 

nanofluid, maximum pumping power is 0.4315 W for 4% particle volume fraction with 

1.5m/s inlet velocity and 4,109.28 Pa of Pressure drop is achieved. For inlet velocity of 

5.0m/s, the pumping power found to be 0.7616 Pa 
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As for the overall heat transfer rate, based on calculation it can be mentioned that heat 

transfer rate is much higher using Al2O3 nanofluid, followed by TiO2 nanofluid and 

finally using pure water.  

 

Finally, it can be mentioned that from the calculation done above, the heat transfer of 

water chiller using nanofluid is much more higher compared to water. This is with 

regards to the characteristics, properties and capability of nanofluid to disperse more 

heat compared to pure water.  

 

With all the studies, literature reviews and calculations conducted, as a conclusion, all 

three (3) objectives had been achieved. 
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APPENDIX 

 

Appendix A : Calculation workings from Equation 3.1 to Equation 3.13 

 

From Equation (3.1) 

Density of Al2O3 (w

ρnf = (1 – Ø)ρf + Øρp 

ith Ø = 0.5%) 

ρ = (1-0.5%) 997.1 + 0.5% (3970) 

   = 1,011.96 kg/m3 

 

Density of Al2O3 (w

ρnf = (1 – Ø)ρf + Øρp 

ith Ø = 0.8 %) 

ρ = (1-0.8%) 997.1 + 0.8% (3970) 

   = 1,020.88 kg/m3 

 

Density of Al2O3 (w

ρnf = (1 – Ø)ρf + Øρp 

ith Ø = 1.5%) 

ρ = (1-1.5%) 997.1 + 1.5% (3970) 

   = 1,041.69 kg/m3 

 

Density of Al2O3 (w

ρnf = (1 – Ø)ρf + Øρp 

ith Ø = 2.0%) 

ρ = (1-2.0%)997.1 + 2.0%(3970) 

   = 1,056.56 kg/m3 

 

Density of Al2O3 (w

ρnf = (1 – Ø)ρf + Øρp 

ith Ø = 4.0%) 

ρ = (1-4.0%)997.1 + 4.0%(3970) 

   = 1,116.02 kg/m3 
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Density of TiO2 (w

ρnf = (1 – Ø)ρf + Øρp 

ith Ø = 0.5%) 

ρ = (1-0.5%)997.1+0.5%(4197) 

   = 1,013.10 kg/m3 

 

Density of TiO2 (w

ρnf = (1 – Ø)ρf + Øρp 

ith Ø = 0.8%) 

ρ = (1-0.8%)997.1+0.8%(4197) 

   = 1,022.70 kg/m3 

 

Density of TiO2 (w

ρnf = (1 – Ø)ρf + Øρp 

ith Ø = 1.5%) 

ρ = (1-1.5%)997.1+1.5%(4197) 

   = 1,045.10 kg/m3 

 

Density of TiO2 (w

ρnf = (1 – Ø)ρf + Øρp 

ith Ø = 2.0%) 

ρ = (1-2.0%)997.1+2.0%(4197) 

   = 1,061.10 kg/m3 

 

Density of TiO2 (w

ρnf = (1 – Ø)ρf + Øρp 

ith Ø = 4.0%) 

ρ = (1-4.0%)997.1+4.0%(4197) 

   = 1,125.10 kg/m3 
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From Equation (3.2) 

Viscosity of Al2O3 

µnf = µbf (1 +2.5Ø) 

(with Ø = 0.5 %) 

 μ = 0.001003(1+2.5x0.5%) 

    = 1.0155 x 10-3 Ns/m2 

Viscosity of Al2O3 

µnf = µbf (1 +2.5Ø) 

(with Ø = 0.8 %) 

 μ = 0.001003(1+2.5x0.8%) 

    = 1.0231 x 10-3 Ns/m2 

 

Viscosity of Al2O3 

µnf = µbf (1 +2.5Ø) 

(with Ø = 1.5 %) 

 μ = 0.001003(1+2.5x1.5%) 

    = 1.0406 x 10-3 Ns/m2 

 

Viscosity of Al2O3 

µnf = µbf (1 +2.5Ø) 

(with Ø = 2.0 %) 

 μ = 0.001003(1+2.5x2.0%) 

    = 1.0532 x 10-3 Ns/m2 

 

Viscosity of Al2O3 

µnf = µbf (1 +2.5Ø) 

(with Ø = 4.0 %) 

 μ = 0.001003(1+2.5x4.0%) 

    = 1.1033 x 10-3 Ns/m2 

 

Viscosity of TiO2 (

µnf = µbf (1 +2.5Ø) 

with Ø = 0.5 %) 

 μ = 0.001003(1+2.5x0.5%) 

    = 1.0155 x 10-3 Ns/m2 

 

 

 59



Viscosity of TiO2 (

µnf = µbf (1 +2.5Ø) 

with Ø = 0.8 %) 

 μ = 0.001003(1+2.5x0.8%) 

    = 1.0231 x 10-3 Ns/m2 

 

Viscosity of TiO2 (

µnf = µbf (1 +2.5Ø) 

with Ø = 1.5 %) 

 μ = 0.001003(1+2.5x1.5%) 

    = 1.0406 x 10-3 Ns/m2 

 

Viscosity of TiO2 (

µnf = µbf (1 +2.5Ø) 

with Ø = 2.0 %) 

 μ = 0.001003(1+2.5x2.0%) 

    = 1.0532 x 10-3 Ns/m2 

 

Viscosity of TiO2 (

µnf = µbf (1 +2.5Ø) 

with Ø = 4.0 %) 

 μ = 0.001003(1+2.5x4.0%) 

    = 1.1033 x 10-3 Ns/m2 

 

 

From Equation (3.3) 

Specific heat of Al2O  (with Ø =

(ρCp)nf = (1– Ø) (ρCp)f + Ø(ρCp)p 

3  0.5 %) 

      = (1-0.5%)(997.1x4179)+0.5%(3970x765)/ 1011.96 

      = 4,112.05 J/kg K 

 

Specific heat of Al2O  (with Ø =

(ρCp)nf = (1– Ø) (ρCp)f + Ø(ρCp)p 

3  0.8 %) 

      = (1-0.8%)(997.1x4179)+0.8%(3970x765)/ 1020.88 

      = 4,072.80 J/kg K 
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Specific heat of Al2O  (with Ø =

(ρCp)nf = (1– Ø) (ρCp)f + Ø(ρCp)p 

3  1.5 %) 

      = (1-1.5%)(997.1x4179)+1.5%(3970x765)/ 1041.69 

      = 3,983.85 J/kg K 

 

Specific heat of Al2O  (with Ø =

(ρCp)nf = (1– Ø) (ρCp)f + Ø(ρCp)p 

3  2.0 %) 

      = (1-2.0%)(997.1x4179)+2.0%(3970x765)/ 1056.56 

      = 3,922.44 J/kg K 

 

Specific heat of Al2O  (with Ø =

(ρCp)nf = (1– Ø) (ρCp)f + Ø(ρCp)p 

3  4.0 %) 

      = (1-4.0%)(997.1x4179)+4.0%(3970x765)/ 1116.02 

      = 3,693.22 J/kg K 

 

Specific heat of TiO2 (with Ø =

(ρCp)nf = (1– Ø) (ρCp)f + Ø(ρCp)p 

  0.5 %) 

      = (1-0.5%)(997.1x4179)+0.5%(4197x710)/ 1013.10 

      = 4,107.14 J/kg K 

 

Specific heat of TiO2 (with Ø =

(ρCp)nf = (1– Ø) (ρCp)f + Ø(ρCp)p 

  0.8 %) 

      = (1-0.8%)(997.1x4179)+0.8%(4197x710)/ 1022.70 

      = 4,065.11 J/kg K 

 

Specific heat of TiO2 (with Ø =

(ρCp)nf = (1– Ø) (ρCp)f + Ø(ρCp)p 

  1.5 %) 

      = (1-1.5%)(997.1x4179)+1.5%(4197x710)/ 1045.10 

      = 3,970.04 J/kg K 
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Specific heat of TiO2 (with Ø =

(ρCp)nf = (1– Ø) (ρCp)f + Ø(ρCp)p 

  2.0 %) 

      = (1-2.0%)(997.1x4179)+2.0%(4197x710)/ 1061.10 

      = 3,904.58 J/kg K 

 

Specific heat of TiO2 (with Ø =

(ρCp)nf = (1– Ø) (ρCp)f + Ø(ρCp)p 

  4.0 %) 

      = (1-4.0%)(997.1x4179)+4.0%(4197x710)/ 1125.10 

      = 3,661.38 J/kg K 

 

 

 

From Equation (3.4) 

Thermal conductivity of Al2O (with Ø = 0.5 %) 3 

kp + (n – 1) k – (n – )Ø(kf – kp) f   1

       kp + (n – 1) kf  + Ø(kf – kp) 
knf =    kf

 

         = 0.6190 W/m K 

 

Thermal conductivity of Al2O (with Ø = 0.8 %) 3 

kp + (n – 1) k – (n – )Ø(kf – kp) f   1

       kp + (n – 1) kf  + Ø(kf – kp) 
knf =    kf

 

         = 0.6226 W/m K 

 

Thermal conductivity of Al2O (with Ø = 1.5 %) 3 

kp + (n – 1) k – (n – )Ø(kf – kp) f   1

       kp + (n – 1) kf  + Ø(kf – kp) 
knf =    kf

 

         = 0.6311 W/m K 
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Thermal conductivity of Al2O (with Ø = 2.0 %) 3 

kp + (n – 1) k – (n – )Ø(kf – kp) f   1

       kp + (n – 1) kf  + Ø(kf – kp) 
knf =    kf

 

         = 0.6373 W/m K 

 

Thermal conductivity of Al2O (with Ø = 4.0 %) 3 

kp + (n – 1) k – (n – )Ø(kf – kp) f   1

       kp + (n – 1) kf  + Ø(kf – kp) 
knf =    kf

 

         = 0.6625 W/m K 

 

Thermal conductivity of TiO2 th Ø = 0.5 %) (wi

kp + (n – 1) k – (n – )Ø(kf – kp) f   1

       kp + (n – 1) kf  + Ø(kf – kp) 
knf =    kf

 

         = 0.6183 W/m K 

 

Thermal conductivity of TiO2 th Ø = 0.8 %) (wi

kp + (n – 1) k – (n – )Ø(kf – kp) f   1

       kp + (n – 1) kf  + Ø(kf – kp) 
knf =    kf

 

         = 0.6215 W/m K 

 

Thermal conductivity of TiO2 th Ø = 1.5 %) (wi

kp + (n – 1) k – (n – )Ø(kf – kp) f   1

       kp + (n – 1) kf  + Ø(kf – kp) 
knf =    kf

 

         = 0.6291 W/m K 
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Thermal conductivity of TiO2 th Ø = 2.0 %) (wi

kp + (n – 1) k – (n – )Ø(kf – kp) f   1

       kp + (n – 1) kf  + Ø(kf – kp) 
knf =    kf

 

         = 0.6459 W/m K 

 

Thermal conductivity of TiO2 th Ø = 4.0 %) (wi

kp + (n – 1) k – (n – )Ø(kf – kp) f   1

       kp + (n – 1) kf  + Ø(kf – kp) 
knf =    kf

 

         = 0.6569 W/m K 

 

 

 

From Equation (3.5): 

The hydraulic diam r h f the microchannel ete , D o

H  4A 2 ch Wch

Hch + Wch
Dh =  P 

= 

 

Dh = 2 (430x10-6 x 280x10-6) / 430x10-6 + 280x10-6 

     = 3.3915 x 10-4 m 

 

 

From Equation (3.6) : 

The Reynolds number of Al2O3 (with Ø = 0.5 % & um = 1.5 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1011.96)(1.5)(3.3915 x 10-4) / 1.0155 x 10-3 

     = 506.95 
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The Reynolds number of Al2O3 (with Ø = 0.8 % & um = 1.5 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1020.88)(1.5)(3.3915 x 10-4) / 1.0231 x 10-3 

     = 507.62 

The Reynolds number of Al2O3 (with Ø = 1.5 % & um = 1.5 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1041.69)(1.5)(3.3915 x 10-4) / 1.0406 x 10-3 

     = 509.26 

 

The Reynolds number of Al2O3 (with Ø = 2.0 % & um = 1.5 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1056.56)(1.5)(3.3915 x 10-4) / 1.0532 x 10-3 

     = 510.35 

 

The Reynolds number of Al2O3 (with Ø = 4.0 % & um = 1.5 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1116.02)(1.5)(3.3915 x 10-4) / 1.1033 x 10-3 

     = 514.59 
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The Reynolds number of Al2O3 (with Ø = 0.5 % & um = 5.0 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1011.96)(5.0)(3.3915 x 10-4) / 1.0155 x 10-3 

     = 1,689.83 

 

The Reynolds number of Al2O3 (with Ø = 0.8 % & um = 5.0 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1020.88)(5.0)(3.3915 x 10-4) / 1.0231 x 10-3 

     = 1,692.07 

 

The Reynolds number of Al2O3 (with Ø = 1.5 % & um = 5.0 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1041.69)(5.0)(3.3915 x 10-4) / 1.0406 x 10-3 

     = 1,697.53 

 

The Reynolds number of Al2O3 (with Ø = 2.0 % & um = 5.0 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1056.56)(5.0)(3.3915 x 10-4) / 1.0532 x 10-3 

     = 1,701.16 
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The Reynolds number of Al2O3 (with Ø = 4.0 % & um = 5.0 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1116.02)(5.0)(3.3915 x 10-4) / 1.1033 x 10-3 

     = 1,715.31 

 

The Reynolds number of TiO2 (with Ø = 0.5 % &um = 1.5 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1013.10)(1.5)(3.3915 x 10-4) / 1.0155 x 10-3 

     = 507.52 

 

The Reynolds number of TiO2 (with Ø = 0.8 % &um = 1.5 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1022.70)(1.5)(3.3915 x 10-4) / 1.0231 x 10-3 

     = 508.53 

 

The Reynolds number of TiO2 (with Ø = 1.5 % &um = 1.5 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1045.10)(1.5)(3.3915 x 10-4) / 1.0406 x 10-3 

     = 510.92 
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The Reynolds number of TiO2 (with Ø = 2.0 % &um = 1.5 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1061.10)(1.5)(3.3915 x 10-4) / 1.0532 x 10-3 

     = 512.54 

 

The Reynolds number of TiO2 (with Ø = 4.0 % &um = 1.5 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1125.10)(1.5)(3.3915 x 10-4) / 1.1033 x 10-3 

     = 518.78 

 

The Reynolds number of TiO2 (with Ø = 0.5 % & um = 5.0 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1013.10)(5.0)(3.3915 x 10-4) / 1.0155 x 10-3 

     = 1,691.74 

 

The Reynolds number of TiO2 (with Ø = 0.8 % & um = 5.0 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1022.70)(5.0)(3.3915 x 10-4) / 1.0231 x 10-3 

     = 1,695.09 
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The Reynolds number of TiO2 (with Ø = 1.5 % & um = 5.0 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1045.10)(5.0)(3.3915 x 10-4) / 1.0406 x 10-3 

     = 1,703.08 

 

The Reynolds number of TiO2 (with Ø = 2.0 % & um = 5.0 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1061.10)(5.0)(3.3915 x 10-4) / 1.0532 x 10-3 

     = 1,708.47 

 

The Reynolds number of TiO2 (with Ø = 4.0 % & um = 5.0 m/s) 

ρnf   umD
µnf  

Renf  = 

 

Re = (1125.10)(5.0)(3.3915 x 10-4) / 1.1033 x 10-3 

     = 1,729.26 

 

 

 

From Equation (3.7) 

Prandtl number of Al2O3 (with Ø = 0.5 %) 

µnf   Cpnf
knf  

Prnf  = 

 

          = 6.7460 
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Prandtl number of Al2O3 (with Ø = 0.8 %) 

µnf   Cpnf
knf  

Prnf  = 

 

          = 6.6927 

 

Prandtl number of Al2O3 (with Ø = 1.5 %) 

µnf   Cpnf
knf  

Prnf  = 

 

          = 6.5688 

Prandtl number of Al2O3 (with Ø = 2.0 %) 

µnf   Cpnf
knf  

Prnf  = 

 

          = 6.4822 

 

Prandtl number of Al2O3 (with Ø = 4.0 %) 

µnf   Cpnf
knf  

Prnf  = 

 

          = 6.1505 

 

Prandtl number of TiO2 (with Ø = 0.5 %) 

µnf   Cpnf
knf  

Prnf  = 

 

          = 6.7456 

 

Prandtl number of TiO2 (with Ø = 0.8 %) 

µnf   Cpnf
knf  

Prnf  = 

 

          = 6.6919 
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Prandtl number of TiO2 (with Ø = 1.5 %) 

µnf   Cpnf
knf  

Prnf  = 

 

          = 6.5669 

 

Prandtl number of TiO2 (with Ø = 2.0 %) 

µnf   Cpnf
knf  

Prnf  = 

 

          = 6.3668 

 

Prandtl number of TiO2 (with Ø = 4.0 %) 

µnf   Cpnf
knf  

Prnf  = 

 

           = 6.1495 

 

 

From Equation (3.8) 

Nu selt numbe  A

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for l2O3 (with Ø = 0.5 % & um = 1.5 m/s) 

        

        = 7.9564 

 

Nu selt numbe  A

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for l2O3 (with Ø = 0.8 % & um = 1.5 m/s) 

 

        = 7.9332 

 

Nu selt numbe  A

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for l2O3 (with Ø = 1.5 % & um = 1.5 m/s) 

 

        = 7.8798 
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Nu selt numbe  A

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for l2O3 (with Ø = 2.0 % & um = 1.5 m/s) 

 

        = 7.8411 

 

Nu selt numbe  A

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for l2O3 (with Ø = 4.0 % & um = 1.5 m/s) 

 

        = 7.6885 

 

Nu selt numbe  A

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for l2O3 (with Ø = 0.5 % & um = 5.0 m/s) 

 

        = 20.8457 

 

Nu selt numbe  A

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for l2O3 (with Ø = 0.8 % & um = 5.0 m/s) 

 

        = 20.7852 

 

Nu selt numbe  A

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for l2O3 (with Ø = 1.5 % & um = 5.0 m/s) 

 

        = 20.6451 

 

Nu selt numbe  A

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for l2O3 (with Ø = 2.0 % & um = 5.0 m/s) 

 

        = 20.5436 

 

Nu selt numbe  A

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for l2O3 (with Ø = 4.0 % & um = 5.0 m/s) 

 

        = 20.1441 

 

 72



Nu selt numbe  T

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for iO2 (with Ø = 0.5 % & um = 1.5 m/s) 

 

        = 7.9633 

 

Nu selt numbe  T

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for iO2 (with Ø = 0.8 % & um = 1.5 m/s) 

 

        = 7.9441 

 

Nu selt numbe  T

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for iO2 (with Ø = 1.5 % & um = 1.5 m/s) 

 

        = 7.8992 

 

Nu selt numbe  T

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for iO2 (with Ø = 2.0 % & um = 1.5 m/s) 

 

        = 7.7976 

 

Nu selt numbe  T

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for iO2 (with Ø = 4.0 % & um = 1.5 m/s) 

 

        = 7.7379 

 

Nu selt numbe  T

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for iO2 (with Ø = 0.5 % & um = 5.0 m/s) 

 

        = 20.8639 

 

Nu selt numbe  T

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for iO2 (with Ø = 0.8 % & um = 5.0 m/s) 

 

        = 20.8136 
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Nu selt numbe  T

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for iO2 (with Ø = 1.5 % & um = 5.0 m/s) 

 

        = 20.6961 

 

Nu selt numbe  T

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for iO2 (with Ø = 2.0 % & um = 5.0 m/s) 

 

        = 20.4299 

 

Nu selt numbe  T

Nunf = 0.021Re0.8nf  Pr0.5nf 

s r for iO2 (with Ø = 4.0 % & um = 5.0 m/s) 

 

        = 20.2734 

 

 

From Equation (3.9) 

Heat Transfer Coefficient for Al2O3 (with Ø = 0.5 % & um = 1.5 m/s) 

N fukn
Dh 

h  = 

 

      = 14,521.63 W/m2 K 

 

Heat Transfer Coefficient for Al2O3 (with Ø = 0.8 % & um = 1.5 m/s) 

N fukn
Dh 

h  = 

 

      = 14,563.50 W/m2 K 

 

Heat Transfer Coefficient for Al2O3 (with Ø = 1.5 % & um = 1.5 m/s) 

N fukn
Dh 

h  = 

 

      = 14,662.96 W/m2 K 
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Heat Transfer Coefficient for Al2O3 (with Ø = 2.0 % & um = 1.5 m/s) 

N fukn
Dh 

h  = 

 

      = 14,734.29 W/m2 K 

 

Heat Transfer Coefficient for Al2O3 (with Ø = 4.0 % & um = 1.5 m/s) 

N fukn
Dh 

h  = 

 

      = 15,018.82 W/m2 K 

 

Heat Transfer Coefficient for Al2O3 (with Ø = 0.5 % & um = 5.0 m/s) 

N fukn
Dh 

h  = 

 

      = 38,046.55 W/m2 K 

 

Heat Transfer Coefficient for Al2O3 (with Ø = 0.8 % & um = 5.0 m/s) 

N fukn
Dh 

h  = 

 

     = 38,156.76 W/m2 K 

 

Heat Transfer Coefficient for Al2O3 (with Ø = 1.5 % & um = 5.0 m/s) 

N fukn
Dh 

h  = 

 

      = 38,416.99 W/m2 K 
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Heat Transfer Coefficient for Al2O3 (with Ø = 2.0 % & um = 5.0 m/s) 

N fukn
Dh 

h  = 

 

      = 38,603.67 W/m2 K 

 

Heat Transfer Coefficient for Al2O3 (with Ø = 4.0 % & um = 5.0 m/s) 

N fukn
Dh 

h  = 

 

      = 39,349.75 W/m2 K 

 

Heat Transfer Coefficient for TiO2 (with Ø = 0.5 % & um = 1.5 m/s) 

N fukn
Dh 

h  = 

 

      = 14,517.79 W/m2 K 

 

Heat Transfer Coefficient for TiO2 (with Ø = 0.8 % & um = 1.5 m/s) 

N fukn
Dh 

h  = 

 

      = 14,557.74 W/m2 K 

 

Heat Transfer Coefficient for TiO2 (with Ø = 1.5 % & um = 1.5 m/s) 

N fukn
Dh 

h  = 

 

      = 14,636.94 W/m2 K 
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Heat Transfer Coefficient for TiO2 (with Ø = 2.0 % & um = 1.5 m/s) 

N fukn
Dh 

h  = 

 

     = 14,850.27 W/m2 K 

 

Heat Transfer Coefficient for TiO2 (with Ø = 4.0 % & um = 1.5 m/s) 

N fukn
Dh 

h  = 

 

      = 14,987.55 W/m2 K 

 

Heat Transfer Coefficient for TiO2 (with Ø = 0.5 % & um = 5.0 m/s) 

N fukn
Dh 

h  = 

 

     = 38,036.71 W/m2 K 

 

Heat Transfer Coefficient for TiO2 (with Ø = 0.8 % & um = 5.0 m/s) 

N fukn
Dh 

h  = 

 

      = 38,141.39 W/m2 K 

 

Heat Transfer Coefficient for TiO2 (with Ø = 1.5 % & um = 5.0 m/s) 

N fukn
Dh 

h  = 

 

     = 38,389.85 W/m2 K 
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Heat Transfer Coefficient for TiO2 (with Ø = 2.0 % & um = 5.0 m/s) 

N fukn
Dh 

h  = 

 

     = 38,908.07 W/m2 K 

 

Heat Transfer Coefficient for TiO2 (with Ø = 4.0 % & um = 5.0 m/s) 

N fukn
Dh 

h  = 

 

     = 39,267.57 W/m2 K 

 

 

 

From Equation 3.10 

Pressure dr  for O  (with Ø = 0.5 % & um = 1.5 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 3,737.23 Pa 

 

Pressure dr  for O  (with Ø = 0.8 % & um = 1.5 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 3,767.78 Pa 

 

Pressure dr  for O  (with Ø = 1.5 % & um = 1.5 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 3,838.65 Pa 
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Pressure dr  for O  (with Ø = 2.0 % & um = 1.5 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 3,889.44 Pa 

 

Pressure dr  for O  (with Ø = 4.0 % & um = 1.5 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 4,092.02 Pa 

 

Pressure dr  for O  (with Ø = 0.5 % & um = 5.0 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 2,025.35 Pa 

 

Pressure dr  for O  (with Ø = 0.8 % & um = 5.0 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 2,037.19 Pa 

 

Pressure dr  for O  (with Ø = 1.5 % & um = 5.0 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 2,064.87 Pa 
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Pressure dr  for O  (with Ø = 2.0 % & um = 5.0 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 2,084.46 Pa 

 

Pressure dr  for O  (with Ø = 4.0 % & um = 5.0 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 2,162.27 Pa 

 

Pressure drop for TiO2 with Ø = 0.5 % & um = 1.5 m/s) (

ρV m L

Dh

  2

2 
ΔP  =  f  x 

 

        = 3,739.43 Pa 

 

Pressure dr  for O  (with Ø = 0.8 % & um = 1.5 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 3,771.28 Pa 

 

Pressure dr  for O  (with Ø = 1.5 % & um = 1.5 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 3,845.18 Pa 
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Pressure dr  for O  (with Ø = 2.0 % & um = 1.5 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 3,898.13 Pa 

 

Pressure dr  for O  (with Ø = 4.0 % & um = 1.5 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 4,109.28 Pa 

 

Pressure dr  for O  (with Ø = 0.5 % & um = 5.0 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 2,027.11 Pa 

 

Pressure dr  for O  (with Ø = 0.8 % & um = 5.0 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 2,040.05 Pa 

 

Pressure dr  for O  (with Ø = 1.5 % & um = 5.0 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 2,070.13 Pa 
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Pressure dr  for O  (with Ø = 2.0 % & um = 5.0 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 2,091.48 Pa 

 

Pressure dr  for O  (with Ø = 4.0 % & um = 5.0 m/s) op

 

Al2 3

ρV m L

Dh

2

2 
ΔP  =  f  x 

 

        = 2,176.01Pa 

 

V is the volumetric flow rate of the nanofluid used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x1.5  

     = 1.05 x 10-4 m3 

 

V  is the volumetric flow rate of the nanofluid used (for um = 5.0 m/s with N = 25) 

V  = N Wch Lch unf   =  25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 

 

 

From Equation 3.11 

Pumping power for Al2O3 (with Ø =0.5 % & um = 1.5 m/s) 

P = V ΔP 
 

P = 0.3924 W 

 

Pumping power for Al2O3 (with Ø =0.8 % & um = 1.5 m/s) 

P = V ΔP 
 

P = 0.3956 W 
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Pumping power for Al2O3 (with Ø =1.5 % & um = 1.5 m/s) 

P = V ΔP 
 

P = 0.4031 W 

 

Pumping power for Al2O3 (with Ø =2.0 % & um = 1.5 m/s) 

P = V ΔP 
 

P = 0.4084 W 

 

Pumping power for Al2O3 (with Ø =4.0 % & um = 1.5 m/s) 

P = V ΔP 
 

P = 0.4297 W 

 

Pumping power for Al2O3 (with Ø =0.5 % & um = 5.0 m/s) 

P = V ΔP 
 

P = 0.7089 W 

 

Pumping power for Al2O3 (with Ø =0.8 % & um = 5.0 m/s) 

P = V ΔP 
 

P = 0.7131 W 

 

Pumping power for Al2O3 (with Ø =1.5 % & um = 5.0 m/s) 

P = V ΔP 
 

P = 0.7227 W 
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Pumping power for Al2O3 (with Ø =2.0 % & um = 5.0 m/s) 

P = V ΔP 
 

P = 0.7296 W 

 

Pumping power for Al2O3 (with Ø =4.0 % & um = 5.0 m/s) 

P = V ΔP 
 

P = 0.7568 W 

 

Pumping power for TiO2 (with Ø =0.5 % & um = 1.5 m/s) 

P = V ΔP 
 

P = 0.3926 W 

 

Pumping power for TiO2 (with Ø =0.8 % & um = 1.5 m/s) 

P = V ΔP 
 

P = 0.3960 W 

 

Pumping power for TiO2 (with Ø =1.5 % & um = 1.5 m/s) 

P = V ΔP 
 

P = 0.4037 W 

 

Pumping power for TiO2 (with Ø =2.0 % & um = 1.5 m/s) 

P = V ΔP 
 

P = 0.4093 W 
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Pumping power for TiO2 (with Ø =4.0 % & um = 1.5 m/s) 

P = V ΔP 
 

P = 0.4315 W 

 

Pumping power for TiO2 (with Ø =0.5 % & um = 5.0 m/s) 

P = V ΔP 
 

P = 0.7095 W 

 

Pumping power for TiO2 (with Ø =0.8 % & um = 5.0 m/s) 

P = V ΔP 
 

P = 0.7140 W 

 

Pumping power for TiO2 (with Ø =1.5 % & um = 5.0 m/s) 

P = V ΔP 
 

P = 0.7245 W 

 

Pumping power for TiO2 (with Ø =2.0 % & um = 5.0 m/s) 

P = V ΔP 
 

P = 0.7320 W 

 

Pumping power for TiO2 (with Ø =4.0 % & um = 5.0 m/s) 

P = V ΔP 
 

P = 0.7616 W 
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From Equation 3.12 

Heat Transfer rate for Al2O3 (with Ø =0.5 % & um = 1.5 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the nanofluid used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf = 25 x 0.00028 x 0.01x1.5  
     = 1.05 x 10-4 m3 

ṁnf = ρnf V  

       =0.10626 kg/s  

Q = 8,738.93 W 

 

Heat Transfer rate for Al2O3 (with Ø =0.8 % & um = 1.5 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the nanofluid used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf = 25 x 0.00028 x 0.01x1.5  
     = 1.05 x 10-4 m3 

ṁnf = ρnf V  

       = 0.10719 kg/s  

Q = 8,731.27 W 

 

Heat Transfer rate for Al2O3 (with Ø =1.5 % & um = 1.5 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

 

V  is the volumetric flow rate of the nanofluid used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x1.5  

     = 1.05 x 10-4 m3 
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ṁnf = ρnf V  

       = 0.10938 kg/s  

Q = 8,715.07 W 

 

Heat Transfer rate for Al2O3 (with Ø =2.0 % & um = 1.5 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the nanofluid used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x1.5  

     = 1.05 x 10-4 m3 

 

ṁnf = ρnf V  

       = 0.11094 kg/s  

Q = 8,703.11 W 

 

Heat Transfer rate for Al2O3 (with Ø =4.0 % & um = 1.5 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the nanofluid used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x1.5  

     = 1.05 x 10-4 m3 

ṁnf = ρnf V  

       =0.11718 kg/s  

Q = 8,655.43 W 
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Heat Transfer rate for Al2O3 (with Ø =0.5 % & um = 5.0 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the water used (for um = 5.0 m/s N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 

ṁnf = ρnf V  

       = 0.354186 kg/s  

Q = 29,128.62 W 

 

 

Heat Transfer rate for Al2O3 (with Ø =0.8 % & um = 5.0 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the water used (for um = 5.0 m/s N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 

ṁnf = ρnf V  

       = 0.357308 kg/s  

Q = 29,104.88 W 

 

Heat Transfer rate for Al2O3 (with Ø =1.5 % & um = 5.0 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the water used (for um = 5.0 m/s N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 
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ṁnf = ρnf V  

       = 0.36459 kg/s  

Q = 29,049.44 W 

 

Heat Transfer rate for Al2O3 (with Ø =2.0 % & um = 5.0 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the water used (for um = 5.0 m/s N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 

ṁnf = ρnf V  

       = 0.3698 kg/s  

Q = 29,010.37 W 

 

Heat Transfer rate for Al2O3 (with Ø =4.0 % & um = 5.0 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the water used (for um = 5.0 m/s N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 

ṁnf = ρnf V  

       = 0.39061 kg/s  

Q = 28,852.17 W 
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Heat Transfer rate for TiO2 (with Ø =0.5 % & um = 1.5 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the nanofluid used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x1.5  

     = 1.05 x 10-4 m3 

ṁnf = ρnf V  

       =0.10638 kg/s  

Q = 8,738.35 W 

 

Heat Transfer rate for TiO2 (with Ø =0.8 % & um = 1.5 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the nanofluid used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x1.5  

     = 1.05 x 10-4 m3 

ṁnf = ρnf V  

       =0.10738 kg/s  

Q = 8,730.23 W 

 

 

Heat Transfer rate for TiO2 (with Ø =1.5 % & um = 1.5 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the nanofluid used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x1.5  

     = 1.05 x 10-4 m3 
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ṁnf = ρnf V  

       =0.10974 kg/s  

Q = 8,713.44 W 

 

 

Heat Transfer rate for TiO2 (with Ø =2.0 % & um = 1.5 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the nanofluid used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x1.5  

     = 1.05 x 10-4 m3 

ṁnf = ρnf V  

       =0.11142 kg/s  

Q = 8,700.97 W 

 

 

Heat Transfer rate for TiO2 (with Ø =4.0 % & um = 1.5 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the nanofluid used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x1.5  

     = 1.05 x 10-4 m3 

ṁnf = ρnf V  

       =0.11814 kg/s  

Q = 8,651.11 W 
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Heat Transfer rate for TiO2 (with Ø =0.5 % & um = 5.0 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the water used (for um = 5.0 m/s N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 

ṁnf = ρnf V  

       = 0.35458 kg/s  

Q = 29,126.19 W 

 

 

Heat Transfer rate for TiO2 (with Ø =0.8 % & um = 5.0 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the water used (for um = 5.0 m/s N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 

ṁnf = ρnf V  

       = 0.35794 kg/s  

Q = 29,101.31 W 

 

Heat Transfer rate for TiO2 (with Ø =1.5 % & um = 5.0 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the water used (for um = 5.0 m/s N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 

 92



ṁnf = ρnf V  

       = 0.36578 kg/s  

Q = 29,043.22 W 

 

 

Heat Transfer rate for TiO2 (with Ø =2.0 % & um = 5.0 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the water used (for um = 5.0 m/s N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 

ṁnf = ρnf V  

       = 0.37138 kg/s  

Q = 29,001.66 W 

 

 

Heat Transfer rate for TiO2 (with Ø =4.0 % & um = 5.0 m/s) 

Qnf = ṁnf Cpnf (Tout – Tin)nf 
 

V  is the volumetric flow rate of the water used (for um = 5.0 m/s N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 

ṁnf = ρnf V  

       = 0.39378 kg/s  

Q = 28,835.56 W 
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From Equation 3.13 

V  is the volumetric flow rate of the water used (for um = 1.5 m/s with N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x1.5  

     = 1.05 x 10-4 m3 

 

V  is the volumetric flow rate of the water used (for um = 5.0 m/s N = 25) 

V  = N Wch Lch unf  = 25 x 0.00028 x 0.01x5.0  

     = 3.5 x 10-4 m3 

ṁw= ρnf V  

ṁw = 0.10269 kg/s (for um = 1.5 m/s) 

 

ṁw= ρnf V  

ṁw = 0.31899 kg/s (for um = 5.0 m/s) 

 

So, Heat transfer rate for water with (um = 1.5 m/s), Q = 0.10269 x 4179 x 20  

                                                                                      = 8,582.83 W 

 

So, Heat transfer rate for water with (um = 5.0 m/s), Q = 0.31899 x 4179 x 20  

                                                                                      = 26,661.18 W 
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