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ABSTRACT 

Smartphones, tablets, and other mobile devices have quickly become ubiquitous due to 

their highly personal and powerful attributes. Android has been the most popular mobile 

operating system. Such popularity, however, also extends to attackers. The amount of 

Android malware has risen steeply during the last few years, making it the most targeted 

mobile operating system. Although there have been important advances made on malware 

analysis and detection in traditional PCs during recent decades, adopting and adapting 

those methods to mobile devices poses a considerable challenge. Power consumption is 

one major constraint that makes traditional detection methods impractical for mobile 

devices, while cloud-based techniques raise many privacy concerns. This study examines 

the problem of Android malware, and aims to develop and implement new approaches to 

help users confront such threats more effectively, considering the limitations of these 

devices. First, we present a comprehensive analysis on the development of mobile 

malware, specifically Android, over recent years, as well as the most useful and salient 

analysis and detection methods for Android malware. We also discuss a compilation of 

available tools for Android malware analysis. Secondly, we propose a number of new and 

distinctive Android malware analysis and detection methods. More specifically, we 

introduce AndroDialysis, which is a static analysis method. Recent research has focused 

on analysing Android Intent in the XML file. We propose a new method of analysing 

Android Intent in Java code, which includes implicit intent and explicit intent. We used a 

Drebin data sample, which is a collection of 5,560 applications, as well as clean data 

sample containing 1,846 applications. The results show a detection rate of 91% using 

Android Intent against 83% using Android permission. We also introduce a dynamic 

analysis method, AndroPsychology, in order to analyse the network communications of 

Android applications. We extracted 30 different features from network traffic. We then 

used feature selection algorithms and deep learning algorithms to build a detection model. 
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The results show that network traffic is an appropriate candidate for Android malware 

detection. Finally, we assembled AndroDialysis and AndroPsychology in order to build 

a comprehensive analysis and detection system for Android, called DroidProtect. Unlike 

current systems that either perform analyses on the device or send the whole application 

to a server for analyses, our system has the distinction of extracting features on the device 

and analysing them on the Google App Engine servers using an offloading technique. Our 

extensive experiments show that the energy consumption of the proposed system is less 

than currently available systems. 
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ABSTRAK 

Telefon pintar, tablet dan peranti mudah alih berada dimana-mana sahaja dengan 

begitu cepat disebabkan oleh sifatnya yang sangat peribadi dan berkuasa. Sehingga 2016, 

Android merupakan sistem operasi mudah alih yang paling popular di kalangan 

pengguna. Populariti itu meliputi penyerang juga. Bilangan perisian hasad Android telah 

melonjak dalam beberapa tahun kebelakangan ini, menjadikannya sistem operasi mudah 

alih itu yang paling disasarkan. Walaupun kepentigan kemajuan telah dibuat bagi analisis 

pada perisian hasad dan pengesanan dalam tradisional komputer peribadi dalam tempoh 

sedekad yang lalu, mengguna pakai dan menyesuaikan analisis untuk peranti mudah alih 

merupakan satu masalah yang mencabar. Penggunaan kuasa adalah salah satu kekangan 

utama yang menyebabkan kaedah pengesanan tradisional tidak praktikal untuk 

dilaksanakan pada peranti mudah alih, manakala teknik berasaskan awan menimbulkan 

banyak kebimbangan privasi. Kajian ini mengkaji masalah perisian hasad Android, yang 

bertujuan untuk membangunkan dan melaksanakan pendekatan baru untuk lebih 

membantu pengguna bagi menghadapi ancaman tersebut, dengan mempertimbangkan 

had peranti mudah alih. Pertama, kami membentangkan analisis komprehensif mengenai 

evolusi perisian hasad mudah alih, khususnya Android, sejak beberapa tahun lepas, serta 

kaedah yang paling berguna dan penting bagi kaedah analisis dan pengesanan dalam 

pengesanan perisian hasad Android. Kedua, kami mencadangkan beberapa kaedah 

analisis dan pengesanan terbaru bagi perisian hasad Android. Lebih khusus lagi, kita 

memperkenalkan AndroDialysis yang merupakan kaedah analisis static. Kerja 

penyelidikan yang terbaru telah memberi tumpuan kepada menganalisis tujuan Android 

dalam fail XML. Kami mencadangkan kaedah terbaru menganalisis tujuan Android 

didalam kod Java, dimana termasuk niat tersirat dan niat yang jelas. Selepas mengekstrak 

tujuan, model pengesanan dibina menggunakan algoritma Bayesian Network. Kami 

menggunakan sampel data Drebin iaitu terdapat 5,560 koleksi applikasi terdiri daripada 
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179 keluarga perisian yang berbeza, serta sampel data bersih yang mengandungi 1,846 

applikasi. Keputusan menunjukkan kadar pengesanan sebanyak 91% dengan 

menggunakan tujuan Android terhadap 83% yang menggunakan kebenaran aplikasi 

Android. Kami juga memperkenalkan kaedah analisis dinamik, AndroPsychology, untuk 

menganalisis komunikasi rangkaian bagi aplikasi Android. Kaedah ini memberi tumpuan 

kepada komunikasi rangkaian yang dijana oleh aplikasi Android. Kami mengekstrak 30 

ciri yang berbeza daripada rangkaian trafik. Kemudian, kami menggunakan algoritma 

pemilihan ciri dan algoritma pembelajaran mesin, untuk membina sebuah model 

pengesanan. Keputusan menunjukkan bahawa rangkaian trafik adalah calon yang sesuai 

untuk pengesanan perisian hasad Android. Akhir sekali, kami mengabungkan 

AndroDialysis dan AndroPsychology untuk membina sistem analisis dan pengesanan 

yang komprehensif untuk Android, yang dipanggil DroidProtect. Berbeza dengan sistem 

semasa yang melaksanakan analisis pada peranti atau menghantar keseluruhan aplikasi 

kepada pelayan untuk dianalisis, sistem kami membawa sesuatu yang baru dalam 

mengekstrak ciri pada peranti, dan menganalisis aplikasi pada pelayan Engine Google 

App menggunakan teknik pemunggahan. Tidak perlu dikatakan bahawa eksperimen kami 

yang meluas menunjukkan penggunaan sistem tenaga adalah kurang pada sistem yang 

dicadangkan berbanding dengan sistem yang sedia ada. 
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CHAPTER 1: INTRODUCTION 

1.1 Background Information 

Smartphones have emerged as popular portable devices with increasingly powerful 

computing, networking and sensing capabilities, and they are now far more powerful than 

the early PCs. In addition, their popularity has been repeatedly corroborated by recent 

surveys (Gartner, 2017). Unlike PCs, the portability of mobile devices makes them 

attractive to users. In addition, their small size in relation to PCs plays an important role 

in increasing their popularity. Furthermore, users are becoming increasingly interested in 

Rich Mobile Applications (RMA), such as Google Maps, which deliver rich user 

experiences along with a high level of interaction (Knoernschild, 2010). 

The popularity of such devices is clearly increasing, despite the current limitations of 

mobile devices such as battery life (B. X. Chen & Bilton, 2014). Gartner, an American 

information technology research and advisory firm, reported that the total shipment of 

mobile devices increased in 2013 by 5.9% and reached 2.35 billion units compared to the 

previous year (Gartner, 2013). Shipments of mobile devices increased by six percent in 

the third quarter of 2016 compared to 2015 (Gartner, 2016). On the other hand, the 

shipment of PCs declined by 4.3 percent to 63 million units in 2017 compared to 61 

million units in 2016 (Gartner, 2017). Gartner also reported that the shipment of PCs 

declined by 5.7 percent in the third quarter of 2016 to roughly 68.9 million units. 

According to the report, PC shipment has decreased for eight quarters in a row (Ram, 

2016). In terms of mobile device usage, Walker Sands published a report indicating that 

internet traffic pertaining to mobile devices has increased. Based on the report, 51.3% of 

all web traffic came from mobile devices compared to 48.7% of visits from PCs 

(StarCounter, 2016). 
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There are numerous mobile operating systems in the market, namely Android, iOS, 

Windows Phone and BlackBerry. Android has generally dominated the mobile device 

industry. Based on a report, a total of 261.1 million devices were shipped in the third 

quarter of 2013, and 81.3% of those shipped devices were operating the Android system 

(CNET, 2013). It has also been reported that Android had 88% of the worldwide market 

share of mobile operating systems in the third quarter of 2016 (Gartner, 2016). 

Such popularity poses serious security and privacy threats, and widens the potential for 

various other malicious activities. The number of Android attacks is steadily increasing. 

Based on a report from F-Secure, Android was subject to 79% of all malware in 2012 

compared to 66.7% in 2011 and just 11.25% in 2010 (F-Secure, 2013). Similarly, 

Symantec has said that the amount of Android malware increased almost four times 

between June 2012 and June 2013 (Symantec, 2013). In addition, during the period April 

2013 to June 2013 there was a dramatic increase of almost 200% in Android malware. 

Fortinet (Fortinet, 2014), a world leader in high performance network security, announced 

that between January 1, 2013 and December 31, 2013, they discovered over 1,800 new 

distinct families of malware, the majority of which was Android malware. In February 

2014, Symantec stated that an average of 272 new malware and five new malware 

families are discovered every month, targeting specifically the Android operating system 

(Symantec, 2014a). 

The reason for such an enormous increase in Android malware lies in the fact that Android 

is an open source operating system, and the application market for Android, known as 

Google Play, is not monitored meticulously in terms of security (Teufl et al., 2013). 

Moreover, there are also unofficial Android markets, for example SlideME, in which 

security issues are simply not taken seriously. Furthermore, as already mentioned, the 
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market share of Android is high. Consequently, attackers target Android in order to gain 

more benefits compared to other operating systems. 

1.2 Motivation 

This dissertation is motivated by the following open research issues: there is more mobile 

malware than before, and it is becoming more sophisticated. 

a) There is sustained growth in the number of mobile devices sold, as well as in mobile 

malware. Based on a report by Gartner, sales of mobile devices increased by 4.3% in the 

second quarter of 2016 compared to the same period in 2015. The Android operating 

system in particular had 86.2% of the market share in 2016 compared to 82.2% in 2015 

(Gartner, 2016). A similar trend is seen for mobile malware. The first half of 2016 saw a 

sharp rise in mobile malware; it almost doubled compared to the same period in 2015 

(Nokia, 2016). 

b) There is also an increase in the sophistication of mobile malware. As malware 

detection methods evolve, attackers use new techniques to evade these methods. 

Android.Obad is most complex malware discovered to the date, and it was dubbed villain 

of the year of 2013 (Kaspersky, 2013). It uses heavy encryption in its code. In February 

2016, Kaspersky Lab reported the discovery of Acecard, one of the most dangerous types 

of malware. In March 2016, they announced that they had discovered Triada, described 

as a complex, stealthy, and professionally written malware. It is capable of making any 

application an agent for performing malicious activities (Kaspersky, 2016b). 

These issues call for new and distinctive detection methods. Google, as the owner of 

Android, has taken security precautions in order to tackle mobile malware. In 2012, it 

introduced Bouncer, a system that vets applications prior to publishing on Google Play. 

Google announced that they scan six billion applications per day. It is not feasible, 

however, to introduce very strict rules, as they affect privacy issues. 
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Thus, the situation leads to an urgent need for new detection techniques. However, this 

poses major challenges. One issue is the limited resources of devices, such as battery life. 

Many applications consume too much power, resulting in limitations. This situation 

challenges us to develop new methods, with power consumption as an important factor. 

1.3 Problem Statement 

Since the introduction of the Android operating system, its popularity has increased, and 

continues to do so. Over time, attackers saw Android as a lucrative target. Thus, they 

developed malware for Android. The growth of Android malware has been steady, in 

terms of both volume and complexity. 

Many researchers have addressed malware detection experimentation. However, 

attackers have always tried to find a way to evade new detection methods. It is necessary 

to develop new analysis and detection methods in order to detect malicious activities. 

Furthermore, as already mentioned, Google introduced a system called Bouncer to 

analyse applications before publishing them in Google Play store (Google, 2016). 

However, this system has proved to be ineffective, since malware are still seen inside the 

store (Kaspersky, 2016a). 

Moreover, despite recent advances in processing power and memory, battery life remains 

a limitation in mobile devices. Many applications, including current detection methods, 

consume too much power. (Polakis et al., 2015) conducted an experiment in which the 

power consumption of malware detection applications was measured. They calculated the 

energy consumed by the device display and the CPU. Figure 1.1 shows the average energy 

consumption of the applications, namely AVG, Dr.Web, Sophos, Avast, Norton, and NQ. 

It is worth mentioning that the authors were unable to measure the energy consumption 

of the display for the NQ security application, which is the reason it is not present in sub-

figure a. 
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Figure 1.1. Average Energy Consumed Per Second During ‘On Demand’ Scan 

(Polakis et al., 2015) 

We have calculated the energy consumption of YouTube during 10 minutes of usage. 

Table 1.1 shows the comparison between NQ and YouTube applications, considering the 

lowest amount in sub-figure b to be around 6,000 for the NQ application. 

Table 1.1. Energy Consumption of Two Applications during 10 Minutes of Usage 

Application Energy Consumption in Joules 

YouTube 551.59 

NQ 3,600 

We calculated the energy consumption of the NQ application for 10 minutes as follows. 

The 6,000 millijoules mentioned is for one second, and the YouTube consumption of 

551.59 Joules is for 10 minutes. If we multiply 6,000 by 600 (to get 10 minutes of usage), 

and divide it by 1000 (for a millijoule to joule conversion), the result is 3,600 Joules in 

10 minutes. It is clear that the NQ application consumes approximately 6.52 times more 

energy than the YouTube application. It is worth noting that the calculations were made 

for the lowest level of energy consumption of the malware detection applications. Others 

will consume much more energy than the NQ application. 

This dissertation therefore deals with the problem of the implementation of mobile 

malware analysis and detection methods on Android devices. It focuses specifically on 

the limitations of the battery life of such devices. 
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1.4 Aims and Objectives 

The aim of this study is to propose a new framework for analysing and detecting Android 

malware, focusing on minimising the energy consumption of the proposed solution. In 

order to achieve this aim, several issues need to be thoroughly examined, analysed, and 

evaluated. They are: 

a) To study the development and current state of Android malware as well as current 

analysis and detection methods. 

b) To design and propose a new framework for Android malware analysis and 

detection. 

c) To evaluate the proposed framework in terms of detection accuracy by using real-

world malware. 

d) To implement the proposed framework and measure energy consumption of the 

application, comparing it with similar products. 

Due to the overwhelming amount of Android malware, this work centres on the Android 

operating system. However, the general principle and proposed architecture is applicable 

to other mobile devices. 

The above objectives are dealt with in the following chapters, the structure of which is 

presented in the next section. 

1.5 Thesis Structure 

Chapter 2 presents an overview of the development of Android malware since its 

appearance. It then discusses Android architecture in detail. This section helps to 

understand various parts of the operating system used in malware detection. The 

characteristics of Android malware are discussed in the next section. Discussing malware 

traits helps to develop detection methods. We treat in some depth malware analysis 

Univ
ers

ity
 of

 M
ala

ya



7 

methods, which in turn helps to address the question of what to analyse. This entails 

examination of a selection of mobile features; feature selection is an important part of any 

experiment. The next section addresses the question of how to analyse. Analysis methods 

are categorized into three groups: static, dynamic, and hybrid. Each category is explored 

comprehensively by providing definitions and examining related research works. The 

next section addresses the question of how to detect. Malware detection methods are 

discussed, describing their benefits and disadvantages. The final section of this chapter 

relates to the question of where to detect. It discusses the point of detection, which is the 

location in which malware detection is used. 

Chapter 3 is called DroidLab. It investigates different tools used in Android malware 

analysis and detection. The chapter has three sections. The first section concerns static 

analysis tools that inspect Android installation files and extract various components. The 

second section deals with dynamic analysis tools for analysing the behaviours of Android 

applications. The third section discusses the available tools used in machine learning 

approaches, while the fourth section discusses those used to measure the energy 

consumption of mobile applications. 

Chapter 4 outlines the proposed malware analysis and detection system for Android 

devices. It discusses various parts of the system along with their functions. Process flow 

and data flow are discussed, using numerous diagrams. In addition, methods and services 

used in the system are explained. 

Chapter 5 evaluates the proposed system by performing four different experiments. The 

first one relates to static analysis. It explores the use of Android Intent and shows that it 

is a rich and undervalued component for malware analysis. The results from Android 

Intent are presented and compared to those from Android permission, which is a well-

known component in Android malware analysis. The second and third experiments are 
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related to dynamic analysis. They explain the rationale behind choosing network traffic 

as a selected dynamic feature. The second experiment chooses the best network-related 

features by using four feature selection algorithms. The results are presented and analysed 

at the end of this evaluation. The third experiment uses an advanced deep learning 

algorithm to detect malware. The fundamentals of such an algorithm are explained, along 

with the detection results. The final experiment serves the objective of this study by 

measuring the energy consumption of the proposed system. The results are then compared 

to similar systems. 

Chapter 6 presents a prototype system that includes all the elements of the proposed 

framework. First, the development process is described, which includes the technical 

preparation of the prototype. Following this, the various parts of the system are illustrated 

in the form of screenshots. 

Finally, Chapter 7 concludes this work by discussing its contributions, limitations, and 

offering suggestions for future work. 

In addition, there are number of appendices included at the end of this study. They include 

a list of reviewed work from the literature, a list of malware families in the MalGenome 

data sample, and list of publications derived from this research work. 
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CHAPTER 2: MOBILE MALWARE EVOLUTION, CHARACTERISTICS AND 

DETECTION METHODS 

Mobile malware has witnessed many changes since its first appearance. They include 

simple annoyance malware up to the most sophisticated. The objective of this chapter is 

first to walk through the development of mobile malware in order to establish a context 

for this study. Android architecture and its security features are also explained in detail. 

We then discuss and evaluate some of the most useful and salient research work, nominate 

available gaps in the literature, and clarify the problem addressed in this study. 

2.1 Mobile Malware Evolution 

The history of mobile malware goes back to 2004. A coder named Vallez developed a 

proof-of-concept malware known as Cabir for the Symbian operating system. Soon 

afterwards, malicious coders developed malware based on Cabir (TrendMicro, 2012). In 

the same year, attackers made use of Cabir code to develop Qdial, a malware that sends 

a short messaging service (SMS) to premium numbers. This caused users to receive 

unexpectedly expensive phone bills. Also in November of the same year, Skulls malware 

infected mobile devices. It altered files on devices, causing applications to stop 

functioning, replacing their icons with a skull and crossbones. 

By 2005, mobile malware had begun to steal users’ information. Pbstealer was a malware 

that collected the address books from devices and transmitted them to a nearby Bluetooth-

enabled device. Considering that some entries in the address book may have contained 

usernames and passwords, such types of malware brought a new kind of danger to mobile 

devices (TrendMicro, 2012). At the time, malware tended to spread via Bluetooth, since 

devices were not equipped with Wi-Fi chips. In this context, another major development 

in malware was the use of multimedia messaging services (MMS) as a way of spreading 
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the malware. Commwarrior was one of the first malware to use this method (Adeel & 

Tokarchuk, 2011). 

By 2009 the growth of mobile malware was steadily rising. In addition to the Symbian 

operating system, attackers developed malware in Java language. This was because of the 

introduction of a Java-based mobile operating system, which gave attackers more options 

for infecting a broader range of devices. 

The introduction of two new mobile operating systems radically changed the spectrum of 

mobile malware in 2010. Gartner reported that the sale of mobile devices had increased 

by 72% compared to 2009 (Gartner, 2011). Attackers saw this steep increase as an 

opportunity to develop new malware based on the newly introduced operating systems, 

namely Google’s Android and Apple’s iOS. By 2011 it was reported that Android had 

obtained almost 50% of the worldwide market share of mobile operating systems 

(MashableAsia, 2011). 

Attackers followed the same malicious behaviour as Symbian malware. DROIDSMS was 

the first malware for Android, and was first detected in August 2010. It sent SMS 

messages to premium numbers (TrendMicro, 2010a). However, the capabilities of mobile 

devices at that time offered new opportunities for attackers. In the same year, a modified 

version of DROIDSMS was detected as a disguised version of the Tap Snake game. It 

collected the GPS location of the victim’s device and transmitted it to the attacker over 

the Hypertext Transfer Protocol (HTTP) connection (TrendMicro, 2010b). 

Android malware growth sharply increased in the years following 2010. According to a 

report from F-Secure, Android accounted for 79% of malware in 2012, up from 66.7% in 

2011 and from just 11.25% in 2010 (Amos et al., 2013). Additionally, Android malware 
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continued to become more sophisticated. Android.Obad is the most complex malware 

discovered to date; it was dubbed villain of the year 2013 (Kaspersky, 2013). 

Kaspersky lab announced that they had discovered 2,961,727 malicious installation 

packages and 884,774 new malicious mobile programs in 2015, a threefold increase from 

the previous year. Figure 2.1 shows the geographical distribution of Android malware in 

2015. 

 

Figure 2.1. The geography of mobile malware by the number of attacked users in 

2015 (Kaspersky, 2016a) 

The 10 countries with the highest number of victims in 2015 are tabulated in Table 2.1. 

China is ranked first with 37%; this means that 37% of users of mobile security products 

in China encountered a mobile threat at least once during the year. The reason for this is 

that many unofficial application markets are popular, and users tend to download 

applications from such sources. Accordingly, attackers publish their malicious 

application in third-party markets, where security monitoring is not very rigorous. 
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Table 2.1. Top 10 countries by percentage of attacked users in 2015 

Rank Country Attacked Users Rank Country Attacked Users 

1 China 37% 6 Vietnam 22% 

2 Nigeria 37% 7 Iran 21% 

3 Syria 26% 8 Russia 21% 

4 Malaysia 24% 9 Indonesia 19% 

5 Ivory Coast 23% 10 Ukraine 19% 

The propagation strategy developed alongside malware itself. Prior to Android, attackers 

relied on SMS, MMS and Bluetooth to infect more devices. Following the introduction 

of Android, attackers tried to spread their malicious applications through Google Play. 

Android users use the official application market, known as Google Play, to download 

applications. However, some users choose to download applications from third-party 

markets, such as SlideME. 

The propagation strategy gained popularity, as in March 2011 it was discovered that 50 

applications inside Google Play were infected with DroidDream malware. This malware 

steals the IMEI and ISMI numbers of devices along with other personal information 

(AndroidPolice, 2011). Google introduced Bouncer in 2012 in response to rapidly 

growing Android malware inside Google Play. This is a security mechanism that vets 

applications before publishing to the market. Google announced that they check over six 

billion applications per day in order to prevent malicious applications from being 

published (Google, 2016). Despite such efforts, in early October 2015 Kaspersky came 

across several malware in the official Google Play market that stole victims’ usernames 

and passwords. About a month later a new modification of the same malware was 

unearthed, which was also distributed via Google Play. Attackers published this malware 

10 times on the official market under different names over a period of several months. 

The number of downloads for all versions was estimated at between 100,000 and 500,000 

(Kaspersky, 2016a). 
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2.2 Android Operating System 

This section describes Android architecture and examines the Android installation 

package. It sheds light on the foundations of the Android operating system. It also 

discusses available Android security mechanisms. 

2.2.1 Android Operating System Architecture 

Android is based on the Linux 2.6 kernel. The kernel is the first layer on top of the 

hardware that interacts with the device’s hardware. Figure 2.2 shows the Android 

architecture.

 

Figure 2.2. The Android Architecture (Gunasekera, 2012) 

The kernel layer is responsible for directly interacting with hardware and performing 

different tasks such as display, USB, Wi-Fi, audio, etc. The runtime layer is comprised 

of library components written in C/C++ language. Android developers access libraries 
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through the Java application program interface (API) in order to use them in their 

applications. 

Additionally, this layer consists of the Dalvik Virtual Machine (DVM), in which system 

and third-party applications are executed. The Dalvik was written by Dan Bornstein, who 

named it after a small village in Iceland. The Dalvik was written because mobile devices 

have limited resources (although memory and CPU power have increased over the years, 

battery limitations remain a challenge). It allows Android to run applications efficiently 

considering the limitations of the device. 

Android applications are written in Java language that creates class and jar files. Upon 

compiling written applications, Java files are converted to Dalvik format and stored in 

DEX file used by the DVM to run applications. Figure 2.3 shows the conversion from 

Java to Dalvik format. 

 

Figure 2.3. Conversion of Java to Dalvik Format (Gunasekera, 2012) 

Noticeably, the constants in each class file are combined into a shared pool of constants, 

and other data sections are assembled into one section in the DEX file. Not only does this 
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conversion make applications run faster on devices, but it also reduces the size of the 

DEX file. 

The framework layer consists of many APIs, giving developers access to building 

blocks of applications (e.g. buttons, text boxes, notification area, etc.). The APIs in 

runtime layer give developers access to fundamental actions that require interaction with 

the kernel layer and the hardware. However, APIs in the framework layer are used for 

many application components. Finally, the application layer is the layer that users 

interact with. The messaging applications, contacts, games, third-party applications are 

located in this Android layer, which is the layer closest to users, taking input to 

applications and providing output to users (Gunasekera, 2012). 

2.2.2 Android Application Package Structure 

As discussed earlier, Android applications are written in Java language and then 

compiled into a DEX file. This process is shown in Figure 2.4. 

 
Figure 2.4. The Build Process of Android APK File1 

The process of packaging an Android Application Package (APK) file starts with 

compiling the source code, resource files (pictures, icons, sound files etc.), and Android 

                                                 

1 https://developer.android.com/studio/build/index.html 
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Interface Definition Language (AIDL) files, along with any dependencies that the code 

may have used (including libraries and JAR files). It is worth mentioning that AIDL 

allows developers to define the programming interface that both the client and service 

agree upon in order to communicate with each other using inter-process communication 

(IPC). The output of this compilation is a DEX file. The process could result in more than 

one DEX file. The total number of references that can be invoked by the code within a 

single DEX file is 65,536. Exceeding this number results in the creation of a second DEX 

file, which is why it is mentioned as DEX file(s) in Figure 2.4. 

The next step is to prepare the debug or release the keystore. Android requires that all 

APKs are digitally signed with a certificate before they can be installed. A keystore is a 

binary file that contains one or more private keys. When debugging applications, 

developers need to sign their APK with a debug certificate; the final version of an 

application is signed with the release keystore. Lastly, APK packager uses the DEX file 

and the keystore to produce the APK file. 

The generated APK file has many components (including a DEX file). It is used to install 

applications on Android devices. Part of the malware analysis and detection method is 

based on APK files. It is thus helpful to understand its structure. It is an archive file that 

can be opened with the WinZip program. The components of an APK file are as follows: 

a) AndroidManifest.xml: An XML file holding meta information on an application, 

such as descriptions and security permissions. Prior to installation of an Android 

application, the application provides prospective users with a list of permissions that are 

available in the file. 
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b) Classes.dex: This contains the source code of an application written in Java and 

compiled for Android that the machine converts it to a special file format with a DEX 

extension. 

c) Resources: This entails all the resources the application needs to run, such as 

pictures used in the application, the layout of the application, its appearance to a user, the 

use of a database, as well as data stored in the database. 

2.2.3 Android Security Features 

Since the Android operating system runs on top of the Linux 2.6 kernel, it inherits its 

security structure from Linux, and adds some modifications to suite mobile devices. In 

this section, many security components of Android are discussed in order to better 

understand current research. 

Android applications run inside a virtual machine. They are unable to see other 

applications. The DVM was presented in Figure 2.2 as part of the runtime layer of the 

Android system. Figure 2.5 shows the concept of the DVM from a different perspective 

and in more detail. 

 

Figure 2.5. The Dalvik Virtual Machine (DVM) in Android Architecture 

(Gunasekera, 2012) 
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The Android applications (system or third-party applications) have their own virtual 

machine. Since starting a virtual machine from scratch is time consuming, resulting in 

delays in the functionality of applications, Android relies on a pre-loaded virtual machine. 

A process known as Zygote is responsible for starting up an application using a pre-loaded 

virtual machine, and initializing core library classes required by that application 

(Armando et al., 2012). 

However, upon launching, each application has some very basic access to various system 

components. In case it should require additional resources, it requests permission for that 

resource. The Android permission is a security feature derived from Linux. The Android 

checks to see if an application has been granted proper permission before performing an 

activity (e.g. permission for using a camera, accessing a users’ location, making a call) 

(Felt et al., 2011). 

Intent is a complex messaging system in the Android platform, and is considered a 

security mechanism for hindering applications from gaining access to other applications 

or system functions directly (e.g. sending an SMS, making a phone call, opening a link 

in a browser, etc.). This is a way of controlling what applications can do once they are 

installed in Android (Aftab & Karim, 2014). Android permission and Android Intent work 

closely together to provide security. As an example, Android applications ask permission 

to make a phone call. They then use Intent to actually make the phone call. Therefore, 

Android checks to see if applications have specific permissions to use Intent. 

2.3 Mobile Malware Characteristics 

In this section, we discuss the various types of Android malware and their characteristics. 

We also discuss the type of malware that this work focuses on, which clarifies the target 

of this work. 
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Before categorizing mobile malware, a definition of mobile malware will be provided. 

Techopedia defines mobile malware as follows: “Mobile malware is malicious software 

that is specifically built to attack mobile phone or smartphone systems. These types of 

malware rely on exploits of particular operating systems (OS) and mobile phone software 

technology, and represent a significant portion of malware attacks in today’s computing 

world, where mobile phones are increasingly common” (Techopedia, 2016). 

Webopedia defines mobile malware as “Malicious software ("malware") that is designed 

specifically to target a mobile device system, such as a tablet or smartphone to damage 

or disrupt the device. Most mobile malware is designed to disable a mobile device, allow 

a malicious user to remotely control the device or to steal personal information stored on 

the device” (Webopedia, 2016). 

Based on the two mentioned definitions, we deal with malware that exploits mobile 

devices to steal personal information. There is a variety of attacks particular to Android, 

ranging from adware to the most sophisticated and dangerous kind. The purpose of 

adware is to advertise a product or a website; it is harmless but annoying. The most 

dangerous and sophisticated malware is capable of accessing personal data on the device 

as well as hijacking the mobile device itself. We have categorized mobile malware based 

on their behaviours and characteristics as follows. 

2.3.1 Adware 

Although some Android applications are free, they show advertisements while operating. 

Sometimes the advertising is aggressive and annoys users. Apart from pushing 

advertisements in devices without the user’s consent, they are able to change internet 

browser settings, showing icons on the home section of devices, and in minor cases 

collecting user information. 
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Android Dowgin is an example of an adware that installs itself on an Android device as 

a bundle with other applications. It then displays advertisements in the notification area 

of the device and is not easily removed. It is estimated that between 10,000 to 50,000 

users are infected with this adware (AVG.ThreatLabs, 2013). It has been spreading since 

July 2013 and continues to proliferate (Eset, 2013). The alarming issue is that, as of 

December 2013, some of the more prominent antivirus software such as Symantec, 

TrendMicro, and McAfee were not able to detect it (Virustotal, 2013). 

2.3.2 Trojan and Bots 

Trojan is a seemingly clean application containing a malicious code. Once it is installed 

onto mobile devices, the malicious part is activated. It then performs various malicious 

activities including corrupting the operating system, collecting personal information, 

gaining root access, and sending user information to attackers. 

A botnet comprises a network of infected devices scattered geographically that is used to 

attack other systems for malicious purposes. The botnet is under the command of a 

hacker. The hacker is able to command the bots, also known as zombies, to attack a 

specific victim. An infected device communicates with the hacker through a rendezvous 

point called the command and control (C&C) server. 

The reason for putting Trojan and bots in the same category is the aggressive nature of 

Android malware. Trojan and bots share the same characteristics. They start by 

representing themselves as a normal, clean application. Upon installation, however, they 

show their true nature by performing malicious activity. This trait categorizes them as 

Trojan. Following this, they contact their master through the C&C server and report their 

activity or receive commands to perform further damage to the device, which defines 

them as bots. 
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Security analysts discovered, for instance, an infected version of the Angry Birds Space 

application in April 2012. It functions like a normal application without suspicious 

symptoms. However, it uses a software trick known as GingerBreak to acquire root access 

that allows it to do tasks outside of its privilege. It secretly downloads malicious codes 

from a server and opens a back door for attackers, upon which the device eventually joins 

the botnet (Sophos, 2013). Another example is the ZeroAccess botnet that adds 

approximately 100,000 new infections weekly. It receives a considerable sum of money 

from its clients each week in order to generate new associated infections. It had an 88.65% 

share of the botnet dominance in 2013 (Fortinet, 2014). 

Xbot was discovered in February 2016. This is a cocktail of different types of Android 

malware. It starts by infecting a device as a Trojan. It then collects banking and credit 

card information as the users enter their credentials. It acts as a bot by contacting the C&C 

server and passing the collected information on to the attacker. The attacker has the ability 

to lock and encrypt files on the device and SD card, and then demands 100 USD ransom 

from the victim. Researchers have unearthed 22 applications infected with Xbot, some of 

which target Australian banks (C. Zheng et al., 2016). 

The Android attackers sometimes have financial encouragements and have recently also 

become more aggressive (Symantec, 2014a). Upon installation, some applications send 

expensive SMS messages to premium numbers without the users’ knowledge, and this 

reflects itself in the user’s bills. Such applications have been on the rise for years. A report 

published in 2013 shows that some attackers earn up to 12,000 USD per month via such 

malware (The.Register, 2013). Based on a report by Sophos, a malicious version of the 

popular Angry Bird game secretly sends premium SMS for 15 GBP per message. Each 

time the user starts the application, it sends a premium SMS. It is estimated that 1,391 

devices are infected with this malware, and it has been estimated that developers of this 

Univ
ers

ity
 of

 M
ala

ya



22 

malicious application have earned 27,850 GBP through sending SMS messages to 

premium numbers (Sophos, 2012). 

Recently attackers have adopted a new approach towards infecting mobile devices. Thus 

far, attackers had been dependant on tempting users to download their malicious 

applications, after which the application performs malicious activities without the users’ 

knowledge. It has been observed that PCs have been used as a conduit for Android 

devices, which are called hybrid threats (Symantec, 2014a). Trojan Droidpak uses hybrid 

threats to infect mobile devices. It first gains access to a personal computer and, based on 

that, a malicious APK file downloads itself. When the user connects an Android device 

to the computer, the malicious file attempts to install itself on the device. After successful 

installation it attempts to convince the user to download and install an infected version of 

a Korean banking application (Symantec, 2014a). 

Based on a report from Kaspersky, Trojan for mobile devices constitutes 49% of Android 

malware (Kaspersky, 2012). Additionally, in terms of malware dangerousness, trojans 

and bots are more dangerous than other categories of malware. Such families include 

Obad, Shedun, Godless, Hummingbad, and Gunpoder (Milin-Ashmore, 2016). We 

therefore focus on the analysis and detection of this category in this study, which covers 

the majority of the Android malware spectrum. 

2.3.3 Ransomware 

This type of malicious application is new to the mobile malware ecosystem. Ransomware 

takes mobile devices hostage and demands ransom. Android.Simplocker was the first 

Android ransomware, and was detected in 2013. Symantec found a fake security 

application called Android Defender that encrypts files, locks the device, and renders it 

useless. It demands ransom in order to unlock the device (Symantec, 2014b). To increase 
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the victim’s fear, this variant of malware uses the front camera to display the victim’s 

photo (ESET, 2016). 

Lock-screen ransomware and crypto-ransomware are two categories of this type of 

malware. The lock-screen method hijacks resources and locks the device, hindering the 

user from using it. The crypto-ransomware hijacks files by using encryption. In both 

methods the attacker demands ransom in order to unlock or decrypt the device (ESET, 

2016). 

MacAfee reported an increase of 26% in the amount of ransomware in the last quarter of 

2015 (MacAfee, 2016). This type of malware is new; it has been estimated to increase 

over time and spread to Android-based smartwatches. Smartwatches introduced new 

types of smart devices that connect to mobile devices. They offer new opportunities for 

attackers to spread their malicious applications (Symantec, 2015). 

2.4 Mobile Malware Analysis and Detection Methods 

The previous sections of this chapter formed a basis for reviewing Android malware 

analysis and detection methods. The scope of this study demands that we examine the 

current literature from four different perspectives corresponding to each section. They are 

as follows: A) features to analyse (Section 2.4.1), B) how to analyse the selected features 

(Section 2.4.2), C) how to detect mobile malware using the analysed features (Section 

2.4.3), and D) where to detect mobile malware (Section 2.4.4). The full list of reviewed 

works is available in Appendix A. 

2.4.1 Feature Selection in Mobile Malware Detection 

Numerous studies have developed methods to thwart attacks on mobile devices. In order 

to develop an effective detection system, a subset of features from hundreds of available 

features must be chosen. This section investigates the different features available for 
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analysis. Android applications consist of various elements such as permissions, Java code, 

certification, the behaviour of the application on the device, and its behaviour on the 

network. Selecting the most useful subset of features from a massive number of available 

features changes the result of the whole experiment (Guyon & Elisseeff, 2003). Some of 

the benefits of feature selection are as follows: 

a) Feature selection makes it possible to reduce the dimensionality of the datasets, 

because with less data it is possible to easily visualize the trend in data (Liu & Motoda, 

2007). 

b) Datasets involve analysing vast amounts of data; therefore, reducing them to a 

useful subset not only saves the time and cost of experiments, but also minimises the time 

required for real-world implementation (Liu & Motoda, 2007). Furthermore, selecting a 

useful subset of the features considerably reduces the runtime of the machine learning 

algorithms during the training phase. 

c) Feature selection removes noisy and irrelevant data from datasets, leading to more 

accurate results from machine learning algorithms (Jensen & Shen, 2008). 

We conducted two experiments in order to examine the effect of features on results. We 

collected the network traffic of over 800 Android applications, including normal and 

malicious, from the MalGenome (Yajin & Xuxian, 2012) data sample. The dataset 

consists of ten network traffic features, out of which we selected five features for each 

experiment. The dataset comprises of 504,148 records. The K-nearest neighbour classifier 

with three neighbours was used. Table 2.2 shows the results of the experiments. 
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Table 2.2. Results of the Experiments 

 
Experiment 1 Experiment 2 

Features 

frame.len, 

frame.number, 

frame.time_delta, 

frame.time_relative, 

tcp.srcport 

tcp.dstport, 

tcp.window_size value, 

tcp.seq, 

ip.src, 

ip.dst 

True Positive Rate (TPR) 98.63% 99.98% 

False Positive Rate (FPR) 1.37% 0.02% 

As Table 2.2 illustrates, different features yield different results, despite the fact that the 

data collection process and the used classifier are the same for both experiments. Thus, 

the effect of feature selection is conspicuous. In addition, selection of the most useful 

features is an important and challenging task. 

We studied 100 of the most salient related research works with respect to feature selection 

in mobile malware detection. We categorize available features into four groups, namely 

static features, dynamic features, hybrid features, and application metadata. 

2.4.1.1 Static Features 

Static features include features available in the APK file such as Androidmanifest.xml 

files and Java code files. Out of 100 papers reviewed, 45 papers used static features to 

conduct their experiments. Among static features, researchers used permission in 36% of 

the papers, more than other static features. Selection of Java code came second in 29% of 

the papers. The following sections discuss static features in details. 

(a) Android Permission 

We know that the Android operating system has a Linux core, from which it inherits 

important parts of the Linux security architecture. Prior to installation of an application, 

the Android provides a list of requested permissions to the user. Upon the permissions 
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being granted, the application installs itself on the device. There are 130 official Android 

permissions (Moonsamy et al., 2013b). Google categorizes them into four groups, 

namely, normal, dangerous, signature, and signatureOrSystem (Google, 2014). 

Researchers take different approaches in analysing Android permissions. Some use 

permissions to evaluate applications and rank them based on possible risks (Au et al., 

2012; Grace, Zhou, Zhang, et al., 2012; Pandita et al., 2013; Peng et al., 2012). Numerous 

studies simply extract permissions and utilize machine learning to detect malicious 

applications (Aung & Zaw, 2013; Samra et al., 2013; Borja Sanz, Santos, Laorden, 

Ugarte-Pedrero, Bringas, et al., 2013; Suleiman Y Yerima et al., 2014), to name a few. 

Researchers argue that merely analysing the requested permissions is not sufficient for 

detecting malicious applications (C. Y. Huang et al., 2013; Moonsamy et al., 2013b). 

They analyse the used permissions in addition to the requested permissions in order to 

detect malware. Malicious applications tend to request more permissions than they need, 

which is a way of identifying them. AppGuard has gone one step further and has extended 

Android’s permission system to alleviate current vulnerabilities (Backes et al., 2013). The 

approach is claimed to be a practical extension for the Android permission system, as it 

is possible to use it on devices without any modification or root access. 

Why is Android permission the most used static feature? As mentioned earlier, the 

Android operating system has Linux architecture. Permission is the first barrier to 

attackers. Even though the Java code contains malicious code, some of API calls in the 

code need permission to be invoked (D.-J. Wu et al., 2012b). Permission-protected API 

calls are part of the security features of the Android operating system. For example, before 

sending a message or accessing the camera, Android checks if the application has 

permission to do so (Felt et al., 2011). Based on that scenario, researchers focus on 

permission features to detect malware based on the demanded permissions. 
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(b) Android Java Code 

Developers write the Java code, which is the main part of Android application files, and 

subsequently compile them to a special format called Dalvik that is proprietary to the 

Android operating system. Researchers have used various analysis approaches on Java 

code. Some researchers use API calls to detect malware (Deshotels et al., 2014a; Grace, 

Zhou, Wang, et al., 2012; V. Rastogi et al., 2014; S. Y. Yerima et al., 2013; M. Zheng et 

al., 2013b). Every Android application needs to have API calls to interact with the device. 

As an example, there are API calls to the telephony manager of the operating system to 

retrieve phone ID and subscriber ID. API calls in a method are sequential. Researchers 

consider such a sequence as a signature that is unique to that application. However, 

changing the sequence of the API calls is a strategy called code obfuscation that is used 

by attackers to bypass the detection process. Analysing control flow of the Java code is 

another approach adopted by researchers (Crussell et al., 2012; Suarez-Tangil et al., 2014; 

Xu et al., 2013). Attackers can change the sequence of API calls or rename the calls to 

evade the detection system. However, the flow of the Java code does not change and 

researchers use it to develop stronger detection systems. 

(c) Other Static Features 

Besides permissions and Java code, some researchers analyse several other static features 

as follows. 

1) Intent: As discussed in Section 2.2.3, Intent is one of the security features in 

Android. Application developers use Intent in Java code and XML file. It is used in Java 

code to perform actions. Moreover, it is one of the elements described in 

Androidmanifest.xml file. It is declaration of capability to perform an action. For 

instance, when an application is able to open a text file, it declares it in the XML file. This 

way, the Android knows what application to use to open a text file. 
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Researchers have been using Intent for malware detection, since attackers command 

malware to collect private data, which requires the presence of intentions in the Android 

Intent. 

In DroidMat, various features from an Android file including intents are extracted and 

analysed (D.-J. Wu et al., 2012b). The authors utilized several machine learning 

algorithms such as k-means, K-Nearest Neighbours, and naïve bayes, to develop malware 

detection systems. The evaluation of the DroidMat showed an improvement over similar 

systems in that time. 

The A3 system was published that considers several features including intents in the 

Android installation file (Luoshi et al., 2013). It then constructs a call graph that 

represents the flow of the Java code execution. Afterwards, it uses A* algorithm to 

determine the shortest path that subsequently shows the behaviour of malware. 

DREBIN presents a broad static analysis (Arp et al., 2014). The approach collects static 

features of Android installation files including intents. The authors used a support vector 

machine (SVM) for detection purposes. The results of the experiment showed that 

DREBIN detected 94% of the malware, with a low rate of false alarms. 

So far, research has focused on analysing Intent in the XML file. Therefore, the Intent in 

Java code is an undervalued feature. As a result, we choose it for our experiments (more 

detail on the rationale behind in Section 5.2). 

2) Network address: Attackers instruct malware to contact them and report their 

status or to send users’ personal data. To do so, attackers embed the address of the C&C 

server in the malicious code of the malware. Researchers look for the network or the IP 

address of the C&C server in the code of the Android installation file. Luoshi et al. and 

Arp et al. incorporated the network address as one of the static features in their systems 
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(Arp et al., 2014; Luoshi et al., 2013). However, attackers started to encrypt the address 

of C&C servers to evade detection methods, for example in the DroidKungFu malware 

family. 

3) Strings: Sanz et al. stated that one of the widely used techniques in classic malware 

detection is analysing strings available in the file (Borja Sanz et al., 2014). They applied 

the same technique for Android malware by extracting every printable string in the 

Android file, such as menus in applications or server addresses with which the application 

connects. The authors used the Vector Space Model (VSM) (Baeza-Yates et al., 1999) to 

represent the strings as vectors in multidimensional space. Afterwards, the authors used 

distance measures, such as Manhattan distance, Euclidean distance and Cosine similarity 

to calculate the anomaly of the data. The authors evaluated the results with 666 samples 

of Android applications. They achieved an accuracy of 83.51% and a true positive rate 

(TPR) of 94% in the experiments. 

4) Hardware components: DREBIN used hardware components as a static feature 

(Arp et al., 2014). As part of Androidmanifest.xml file, applications request combinations 

of hardware that they need in order to function, for example the camera or GPS. 

Combinations of requested hardware imply harmfulness of the application, for example, 

3G and GPS access implies a malware that reports the location of users to attackers. 

2.4.1.2 Dynamic Features 

We define dynamic features as behaviour of applications in interaction with operating 

system or network connectivity. There are two main types of dynamic features: system 

calls and network traffic. Every application demands resources and services from the 

operating system by issuing system calls, such as read, write and open. 

Network traffic is another dynamic feature used by researchers. Applications tend to 

connect to a network to send and receive data, receive updates, or maliciously leak 
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personal data to attackers. Monitoring network traffic of mobile devices is a way of 

catching a culprit in the act. 

Based on our analysis, 42 out of 100 papers used dynamic features. Twenty-two papers 

used system calls as their dynamic feature and 10 papers used network traffic. The 

remaining 10 papers selected other dynamic features, such as system components or user 

interaction. 

(a) Android System Call 

There are more than 250 system calls in a Linux kernel, which includes Android 

(Burguera et al., 2011). Analysing system calls leads to anomaly detection in the 

application’s behaviour (Feizollah et al., 2013). Applications use system calls to perform 

specific tasks such as read, write and open, since they cannot directly interact with the 

Android operating system. Upon issuing a system call in user mode, the Android 

operating system switches to kernel mode to perform the required task. System call is the 

most selected feature among the dynamic features, constituting more than half of the 

reviewed papers. Research works such as (Burguera et al., 2011; Khune & Thangakumar, 

2012; Su et al., 2012; L. K. Yan & Yin, 2012; Zhao et al., 2011b) captured and analysed 

system calls to detect malicious applications. 

(b) Android Network Traffic 

The majority of applications (normal or malicious) require network connectivity. 

MalGenome authors stated that 93% of their collected Android malware samples need a 

network connection in order to connect to attackers (Yajin & Xuxian, 2012). Additionally, 

a research work was published in 2012 in which they analysed permissions of Android 

files (Sarma et al., 2012). They examined over 150,000 applications and found that 

68.50% of normal applications require network access, while 93.38% of malicious 

applications do. 
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Similarly, Sanz et al. analysed permissions of 2,000 applications (Borja Sanz, Santos, 

Laorden, Ugarte-Pedrero, Bringas, et al., 2013). Based on their analysis, over 93% of 

malicious applications requested network connectivity. It is evident that the majority of 

applications request network access, particularly the malicious ones. Therefore, it 

behoves researchers to focus on analysing network traffic for effective Android malware 

detection. 

Despite the effectiveness of the network traffic feature in mobile malware detection, it 

has not attracted researchers’ attention as much as the other dynamic features. Utilizing 

network traffic imposes the challenge of dealing with massive numbers of network 

records, possibly as many as a million, in the dataset. Furthermore, analysing collected 

network traffic requires profound understanding of network architecture. Thus, we select 

this feature for our experiment (details in Section 5.3). 

(c) Other Dynamic Features 

In addition to system calls and network traffic, researchers have been using other dynamic 

features. They are as follows: 

1) System components: Mobile devices have similar components to PCs, such as 

CPU and memory. Some researchers investigated detection of Android malware by using 

system components. In MADAM, the authors analysed CPU usage, free memory, and 

running processes of mobile devices that are considered the kernel level of the operating 

system (Dini et al., 2012). In addition, it examined user/application level features, such 

as Bluetooth and Wi-Fi status of the device. The collected data were used to train the K-

Nearest Neighbours algorithm. 

STREAM was introduced in 2013 for the Android operating system (Amos et al., 2013). 

It collects data regarding system components like cpuUser, cpuIdle, cpuSystem, 
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cpuOther, memActive, and memMapped. It subsequently uses machine learning 

algorithms to train the system in order to detect Android malware. Other works that also 

use system components as dynamic features are (Hoffmann et al., 2013; Hyo-Sik & Mi-

Jung, 2013). 

2) User interaction: Users are potential victims of malicious applications. Analysing 

users’ interaction with applications is one of the possible solutions in malware detection. 

PuppetDroid captures users’ interaction with applications (Gianazza et al., 2014). The 

authors consider features such as pushing a button and navigating through pages as user 

interaction, and evaluated the system with 15 Android applications. The goal is that after 

capturing user interactions related to a malware, the system looks for similar user 

interaction to detect malicious applications. Dynodroid is another system that was 

developed based on user interaction analysis (Machiry et al., 2013). It collects users’ 

activities, such as tapping the screen, long pressing and dragging. The evaluation of 

Dynodroid involves analysing 50 Android applications. The results found bugs in 

Android applications. 

2.4.1.3 Hybrid Features 

Hybrid features are the most comprehensive; they consist of static and dynamic features 

features. They involve vetting Android application installation files as well as analysing 

the behaviour of the application in runtime. Blasing et al. developed AASandbox, which 

analyses static and dynamic features (Blasing et al., 2010). It extracts permissions and 

Java code from the APK file and uses them as static features. It then installs the 

application, logs system calls, and uses it as dynamic feature. Authors of ProfileDroid 

examined Androidmanifest.xml and Java code as static features (Wei et al., 2012). They 

chose user interaction, system calls and network traffic as dynamic features. Similar 
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works that chose hybrid features include (Eder et al., 2013; Spreitzenbarth et al., 2013; 

Xu et al., 2013; Zhou et al., 2013). 

2.4.1.4 Android Applications Metadata 

A few researchers opted to utilize Android applications’ metadata for malware detection. 

Metadata are defined as the information users see prior to download and installation of 

applications, such as the description, the requested permissions, their rating, and 

information regarding the developer. The applications’ metadata cannot be categorized 

as static or dynamic features as they have nothing to do with the applications themselves. 

WHYPER collected permissions requested by applications in the market and used Natural 

Language Processing (NLP) to look for sentences that justify the need for the requested 

permissions (Pandita et al., 2013). It achieved 82.8% precision for three permissions 

(address book, calendar and record audio) that protect sensitive and personal data. 

Similarly, Teufl et al. used a sophisticated knowledge discovery process and lean 

statistical methods to analyse the metadata gathered from Google Play (Teufl et al., 2013). 

The authors argue that metadata analysis should complement static or dynamic analysis. 

They collected data including the last time modified, category, price, description, 

permissions, rating, and number of downloads. The authors mentioned that the following 

data could also be used as metadata: creator ID, contact email, contact website, 

promotional video, number of screenshots, promo texts, recent changes, ID, package 

name, installation size, version, application type, ratings count, and application title. The 

approach also used machine learning algorithms. Definitions of some of the 

aforementioned metadata are shown below. 

a) Last time modified: Applications in Google Play go through changes and updates. 

The date of last modification is a metadata. 
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b) Category: Google Play categorizes applications based on their types, such as games, 

applications and book. Each game type is further subcategorized as action, adventure, 

arcade, and board. 

c) Description: Developers provide a brief description to describe the main 

functionality of their applications. 

d) Permissions: Upon opting to install an application, it prompts the user with a list of 

permissions that the application requires to function properly. 

e) Rating: Users rate applications based on their experience with it. It is helpful for 

new users to decide whether to download the application. 

f) Creator ID: Every developer has an ID in Google Play. They use their ID to publish 

applications. When detecting a malicious application, Google is able to identify the 

developer and terminate their ID. 

2.4.2 Malware Analysis 

This subsection is dedicated to discussing analysis methods. Malware analysis is the 

process of analysing a sample of a malicious application or a malware family in order to 

find a pattern and trait. Such traits are then used for detection methods. There are three 

types of Android malware analysis: static, dynamic, and hybrid. For each type we intend 

to examine the current research works, and point out their weaknesses as well as their 

strengths. 

2.4.2.1 Static Analysis 

Static analysis is the process of dissection and examination of an Android installation file 

known as APK to detect suspicious applications. For instance, Huang et al. conducted a 

study in which the requested and required permissions were inspected to detect malicious 

applications (C. Y. Huang et al., 2013). The requested permissions are presented to users 

upon installation, whereas required permissions are those that are actually used in the 
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applications’ code. They used four algorithms including AdaBoost, Naïve Bayes, 

Decision Tree, and SVM to evaluate the performance. The evaluation shows that their 

system detects 81% of malicious applications. 

Seo et al. took a different approach by proposing a system to detect mobile threats to 

homeland security via static analysis (Seo et al., 2014). They developed a tool called 

DroidAnalyzer that inspects applications to detect potential threats by looking for usage 

of risky APIs and keywords in the Java code such as IMEI leakage, phone number 

leakage, su command, reboot command, etc. The DroidAnalyzer was evaluated by 

analysing applications in various categories such as banking, flight booking and tracking, 

and home and office monitoring applications. 

Chen et al. used a NiCad clone detector in their experiment. It is a method to detect Near-

Miss Intentional Clones (J. Chen et al., 2015). It takes a source directory as input, and 

finds classes of clones in the provided code. This process is implemented for one 

malware; the clone classes are used as a signature to find similar code in other source 

codes (Cordy & Roy, 2011). Their results show that this method is able to detect 95% of 

previously known malware in their dataset. However, it is not useful for a new variant of 

malware, as this method relies on a signature. 

APPraiser is a system that differentiates between malicious and legitimate versions of 

similar applications (Ishii et al., 2016). It first extracts similar applications using the 

appearance analysis. It then extracts relatives, using several intrinsic fingerprints such as 

developer identities and application package names. Finally, it classifies clones using the 

code difference analysis and antivirus checkers. 

However, the problem with static analysis is that some malware families such as 

DroidKungFuUpdate stealthily download malicious codes (Yajin & Xuxian, 2012), 
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which is known as dynamically-loaded code method. Thus, the malicious code is 

undetectable via static analysis. Similarly, permission-based analysis is less effective 

regarding malware such as Basebridge, which hides an updated version within the original 

application, and as a result slips into a mobile device without the user’s knowledge and 

bypasses the permission system (C. Y. Huang et al., 2013). Static analysis is simple to 

implement, but it produces less information, thus limiting the extraction of possible 

features from malware activities. In addition, attackers use various methods such as code 

obfuscation to evade detection through static analysis. Code obfuscation is a method used 

to bypass static analysis, and it is defined as the act of changing the code so that it is 

difficult to understand and disassemble, but performs as the original code (Ishii et al., 

2016). 

Java reflection is another method used by attackers to evade detection. It is defined as 

modifying or examining the run time behaviour of a class. Reflection for Android apps 

can also be used to access all of an API library’s hidden and private classes, methods, and 

fields. Android malware such as Android.Obad and FakeInstaller (F. Ruiz, 2012) call 

their methods indirectly through reflection, and the real method name is kept encrypted. 

Moreover, the name of the target method is unknown prior to execution of the 

applications. Thus, by converting any method call to a reflective call with the same 

function, it becomes difficult for static analysis to discover exactly which method was 

called. 

2.4.2.2 Dynamic Analysis 

Dynamic analysis fixes the problem of obfuscation in static analysis by identifying 

malware based on their behaviour. It is done by running applications on mobile devices 

or emulators, and observing their behaviours and interactions with the Android operating 

system. For one, Crowdroid collects the device’s kernel system calls and sends them to a 
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remote server for processing (Burguera et al., 2011). The collected data are classified 

using K-Means algorithm. Self-written malware used to evaluate Crowdroid achieved 

100% detection rate. Additionally, two real malware families used or evaluation achieved 

85% and 100% respectively. By using system call as one of the features, malware can be 

detected based on similar behaviours and patterns. However, the evaluation method is not 

realistic, as it only used self-implemented malware and two real malware families. 

Furthermore, Crowdroid needs a constant network connection to send the collected data 

to the server for processing, which consumes bandwidth, and poses a challenge in case 

the connectivity is lost. 

Andromaly monitored different system values such as CPU consumption, number of 

network packages, number of running processes, and battery level (Shabtai et al., 2012). 

The framework adopted feature selection methods such as chi-square, fisher score and 

information gain to enhance the detection accuracy. It then identified the best 

classification method out of six classifiers, namely Decision Tree, Naïve Bayes, Bayesian 

Network, K-Means, histogram, and logistic regression using the Andromaly framework. 

As a result, Andromaly managed to achieve a 99.9% accuracy rate with the Decision Tree 

classifier and Information Gain as feature selection method. Although this framework 

achieved great accuracy, the authors used self-written malware to evaluate their system, 

which could have produced unrealistic results. 

The MADAM was introduced that is a multi-level detector prototype based on dynamic 

analysis by combining two system call levels, kernel and user level (Dini et al., 2012). 

With twelve system calls as the main features together with the K-Nearest Neighbours 

(KNN) classifier, they successfully obtained a 93% accuracy rate for ten malware. 

Although this approach is promising, it is incapable of detecting malware that avoids the 
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system call with root permission, for example SMS malware that is invisible in the kernel 

level (PandaSecurity, 2011). 

Su et al. presented a smartphone dual defence protection framework, which has two 

phases, a verification service and a network monitoring tool. The first, the verification 

service phase, applies system call statistics to differentiate between malicious and normal 

codes in an application. The second phase monitors any possible malicious codes 

identified in the first phase. The two simulated classifiers to evaluate the proposed 

framework are Decision Tree and Random Forest. The former classifier achieved 96.67% 

and the latter 91% detection accuracy (Su et al., 2012). 

Although dynamic analysis rectifies weaknesses of static analysis, it has code coverage 

problem. While running applications, there is no guarantee that the execution path in Java 

code stimulates and triggers malicious behaviour of malware, which is defined as code 

coverage. Some of the recent research works began to address code coverage (Gianazza 

et al., 2014; Ho et al., 2014), however, they were unable to fully solve the problem. 

2.4.2.3 Hybrid Analysis 

Hybrid analysis is the optimum approach for malware analysis as it uses both static and 

dynamic analyses. Hybrid solutions could therefore combine static and dynamic analyses 

so that their added strengths mitigate both weaknesses. 

For example, Zhou et al. proposed DroidRanger that uses hybrid analysis. It uses static 

analysis to extract permissions, and matches applications’ permission-based footprint 

with malware-specific footprint signatures (Y. Zhou et al., 2012). The researchers also 

proposed a heuristics-based filtering scheme that inspects applications for suspicious 

behaviour such as dynamically loaded code. The suspicious applications are observed 

using dynamic analysis to confirm whether they are malicious or not. In case malware is 
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detected, the DroidRanger generates its signature and adds it to the database. The authors 

evaluated DroidRanger by downloading applications from five different Android 

markets, and used their system to detect malware. The results show that they detected 171 

malicious applications and two zero-day malware. 

Mobile-Sandbox also combines static and dynamic analyses (Spreitzenbarth et al., 2013). 

For static analysis, it first analyses the permissions requested by an application. Then, it 

converts the application’s Dalvik bytecode to smali code using baksmali5 and looks for 

dangerous methods, statically coded URL strings, and calls to encryption libraries. 

Information on timers and broadcasts as event triggers are also collected in order to 

improve code coverage during its dynamic analysis stage. In its dynamic analysis, 

Mobile-Sandbox logs runtime information at the three following levels: (i) Dalvik level 

monitoring using TaintDroid and a customized version of DroidBox; (ii) native code 

monitoring using ltrace; and (iii) network traffic monitoring. External events, such as 

incoming calls or SMS messages are simulated to trigger potentially malicious behaviour. 

The publication of TaintDroid brought new a perspective to the research community by 

paying attention to a privacy leakage in the Android system and Android malware (Enck 

et al., 2010). AppSealer performs static taint tracking on an Android application and then 

follows the app along the respective propagation paths to monitor actual leaks at runtime, 

effectively ruling out false positives introduced by the static analysis (M. Zhang & Yin, 

2014). It then fixes component-hijacking vulnerabilities at runtime if sensitive data reach 

a sink. This approach, however, cannot find leaks missed by the static analysis and thus 

inherits the problem of reflective method calls. 

The Harvester tool can reduce obfuscation generated by encrypted strings and reflective 

methods with its hybrid methods (Rasthofer et al., 2015). It first uses static analysis by 

pinpointing sensitive variables in the code, and uses a program slicing method to separate 
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parts of the code involved in calculating the variable of interest. Using dynamic analysis, 

it executes the sliced piece of code and monitors its behaviour. The authors of Harvester 

claim that it usually extracts target phone number, body of SMS messages, decryption 

keys, or URL that are called inside the applications. They also mention that it is rigid 

against code obfuscation and dynamically loaded code. 

AppDoctor also follows a similar approach by slicing Android applications to find user 

interactions that lead to application crashes (Hu et al., 2014). Although Harvester’s hybrid 

slice-and-run principle is similar to AppDoctor, AppDoctor executes the complete 

derived user interface actions, while Harvester’s slices only contain code contributing to 

the concrete value of interest. 

Andro-Dumpsys uses hybrid analysis for malware detection (Jang et al., 2016). Andro-

Dumpsys is based on similarity matching of malware creator-centric and malware-centric 

information. Andro-Dumpsys detects and classifies malware samples into similar 

behaviour groups by exploiting their footprints, which are equivalent to unique behaviour 

characteristics. The client application sends the package name or APK to the server. The 

server extracts memory dump, serial number of certificate, suspicious API sequence, 

permission distribution, intent, system command, and existence of forged files. It then 

uses machine learning for detection. The experimental results demonstrate that Andro-

Dumpsys is scalable and performs well in detecting malware and classifying malware 

families with low false positives and false negatives, and is capable of finding zero-day 

threats. 

Therefore, due to the comprehensiveness of hybrid analysis, we choose to follow this 

approach. It combines static and dynamic analysis to overcome their respective 

weaknesses, which results in a robust analysis method. 
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2.4.3 Mobile Malware Detection 

This subsection discusses types of detection methods. After analysing malware families, 

their characteristics and behaviours are used for detection purpose. There are misuse-

based detection and anomaly-based detection. For each type, we investigate several 

related research works and analyse them in terms of their weaknesses and strengths. 

2.4.3.1 Misuse-based Detection 

With the aim of confronting malware, mobile devices have adopted traditional approaches 

such as antivirus in PCs. The misuse-based methods are also known as signature-based 

methods, and are mainly used by antivirus software that relies on detecting malware based 

on unique signatures. This tactic is not as efficient (Sohr et al., 2011) against mobile 

device malware, as it requires continuous signature database updating, and mobile 

malware is constantly modified to circumvent various detection methods. For instance, 

the first version of DroidKungFu surfaced in June 2011, and seemed one of the most 

sophisticated kinds of malware at that time. Shortly afterwards, the second and third 

versions appeared in July and August. The fourth version was detected in October and 

the fifth soon after that. The variants tend to utilize assorted encryption keys to protect 

themselves. Such malware adaptation indicates hackers’ insistent attempts to bypass 

detection, as (Yajin & Xuxian, 2012) demonstrated that traditional antivirus software is 

able to detect malware up to 79.6%. 

The signature-based approach can be further categorized into behaviour-based signature 

and static-based signature. 

(a) Behaviour-based signature 

AntiMalDroid generates a behaviour signature by running applications and monitoring 

their behaviour (Zhao et al., 2011b). The authors define behaviour as intent issued and 

accessing system resources. AntiMalDroid creates a signature database from the analysed 
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applications. In order to categorize an application as normal or malicious, AntiMalDroid 

runs the application and generates its behaviour signature. It then compares the signature 

to the database to check whether it matches any known signature. The evaluation included 

100 normal applications and 2 types of malware, and was tested by 200 applications. The 

results show a detection rate between 90% and 93%. 

SimBehavior is a similar system that is based on behaviour signature (H. Lu et al., 2014). 

The authors argue that the commonly used system call dependency method is too complex 

for mobile devices, and propose a lightweight method based on a resource differentiation 

scheme, which is abbreviated as DiffHandle. Malware makes sequences of system calls 

by using obfuscation technologies. Similarly, it prevents detection methods from gaining 

common behaviours in samples of the malware family. Thus, the authors presented an 

Iterative Sequence Alignment (ISA) method to defeat disorders introduced by malware 

obfuscation. After DiffHandle generalizes resources that system calls operate on, and ISA 

gains common system calls from these generalized but disordered system call sequences 

of the same family, SimBehavior obtains handle dependencies and order restrictions 

between common system calls by mapping these system calls into original system call 

sequences. Finally, these common system calls handle dependencies and order 

restrictions between these system calls’ makeup of the DiffHandle-signature of the same 

family. The evaluation was performed on 331 malware families, categorized into eight 

families. SimBehavior achieved an average detection rate of 92.4%. 

ALTERDROID is a dynamic analysis approach for detecting hidden or obfuscated 

malware components that are distributed as parts of an app package. The key idea behind 

ALTERDROID is analysing the behavioural differences between the original app and a 

number of automatically generated versions of it, where a number of modifications have 

been carefully injected. Observable differences in terms of activities that appear or vanish 
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in the modified app are recorded, and the resulting differential signature is analysed 

through a pattern-matching process driven by rules that relate different types of hidden 

functionalities with patterns found in the signature. The extensive experimental results 

obtained by testing ALTERDROID over relevant apps and malware samples support the 

quality and viability of this system (Suarez-Tangil et al., 2016). 

(b) Static-based Signature 

AndroSimilar uses static-based signature by examining the Java code of the Android 

applications (Faruki et al., 2013). It extracts statistical features to detect malicious 

applications. The authors claim that their proposed method is effective against code 

obfuscation and repackaging, widely used techniques to evade signature-based detection 

methods. To calculate features that remain persistent among related samples, normalized 

entropy features are assigned with precedence by associating normalized bytes based on 

empirical observations. This rank is a measure of the occurrence of features obtained by 

reading the byte content. A feature whose likelihood of occurrence is lowest receives a 

low rank. Certain features having a very high or low score receive a null score to avoid 

the introduction of weak features during attribute selection. The evaluation shows 98.89% 

detection rate. 

DroidAnalytics is an Android malware detection system based on static-based signature, 

which automatically collects, extracts and analyses signatures of Android application files 

(M. Zheng et al., 2013b). It extracts methods and classes from the application’s Java code 

and employs them as signatures. Subsequently, the generated signatures are used to detect 

malicious applications. Nonetheless, the aforementioned method is useful only for known 

malware, whereas with the advent of new threats, the same process must be performed 

and the generated signature has to be added to the database. 

Univ
ers

ity
 of

 M
ala

ya



44 

Overall, the misuse-based approach is precise for known malware; however, it is unable 

to detect zero-day malware. A new variant of malware has a different signature to 

previously known malware. Thus, analysts need to generate its signature and update the 

database. However, by the time the database is updated, the malware has already damaged 

mobile devices. Due to such weaknesses, researchers turned to anomaly-based approach. 

2.4.3.2 Anomaly-based Detection 

Anomaly-based methods depend on classifiers to train a system to differentiate between 

normal and malware behaviour, which can be used to detect anomalies to discover 

unknown malware. 

(Sangkatsanee et al., 2011) proposed an anomaly detection system that contains 12 

features of network traffic, such as source and destination port, Transmission Control 

Protocol (TCP) flags (i.e. fin, syn, push and urgent flag), UDP and ICMP packets. The 

adopted classifier was a decision tree, and it successfully obtained a 99.4% accuracy rate. 

Previously mentioned work performed by Su et al. also followed anomaly-based detection 

by using machine learning classifiers (Su et al., 2012). 

Sahs and Khan extracted Android file permissions and control flow graphs (CFG) (Allen, 

1970). Then they used a SVM to make the system learn to distinguish between patterns 

of malicious applications and normal ones. With a 93% detection rate the results were 

accurate (Sahs & Khan, 2012). 

DroidMat is another example of machine learning in malware detection (D.-J. Wu et al., 

2012b). The authors used K-means to inspect an application, obtaining 87.39% detection 

accuracy as opposed to the misuse-based methods mentioned earlier with only 79.6%. 

Shabtai et al. identified the best classification method out of six classifiers, namely 

Decision Tree, Naïve Bayes, Bayesian Network, K-means, histogram, and logistic 
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regression, using the Andromaly framework. The framework adopts feature selection 

methods such as chi-square, fisher score, and information gain to enhance detection 

accuracy. As a result, they managed to achieve a 99.9% accuracy rate with the decision 

tree classifier and information gain method. Although they achieved acceptable accuracy, 

they used self-written malware to test their framework, which could have produced 

unrealistic results (Shabtai et al., 2012). 

RobotDroid was proposed which is based on the SVM machine learning classifier to 

detect unknown malware in mobile devices. The focus was on privacy information 

leakage and hidden payment services. They evaluated three malware types, namely 

Gemini, DroidDream and Plankton. As a result, this framework is limited to a few 

malware types, and more would be required to increase detection accuracy (Zhao et al., 

2012). 

DroidScreening employs an anomaly-based approach to detect Android malware (J. Yu 

et al., 2016). It extracts many features from Android application installation files. The 

features are requested permissions, existence of native code in the Java code, use of 

reflection in the Java code, and issued system calls. This system then applies a lazy 

associative classification (LAC) algorithm to the extracted features to build a detection 

model. The detection model is used to categorize the Android application as normal or 

malicious. It achieved a 97% detection rate using a dataset of 1,554 malware samples. 

Thus, the anomaly-based detection techniques were chosen for the purpose of this study 

because they are capable of detecting anomalies based on what they learn. 

2.4.4 Point of Detection 

We categorize related research works based on where the detection is implemented. They 

are local-based and cloud-based. As resources, such as battery power, are limited in 
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mobile devices, this grouping compares the practicality of the proposed approaches. The 

strengths and weaknesses of each category are discussed in the following sections. 

2.4.4.1 Local-based Detection 

The local-based detection process is implemented directly on mobile devices. TaintDroid 

detects leakage of private data (Enck et al., 2010). It labels important data and follows 

them to see whether they leave the device. 

The MADAM was implemented on a device. They claimed that the overall performance 

overhead is acceptable, with 3% memory consumption, 7% CPU overhead, and 5% 

battery usage (Dini et al., 2012). Similarly, Andromaly was evaluated on five different 

devices (Shabtai et al., 2012). Feature extraction and application of machine learning 

algorithms were performed on devices. Unfortunately, information regarding 

Andromaly’s resource consumption is not available. 

2.4.4.2 Cloud-based Detection 

Cloud-based detection is defined as replicating a real device on the cloud, and reporting 

any changes of the device to the servers. Thus, the replicated device is used to monitor 

the real device; processing and analysis are also done on the replicated device that is on 

the cloud. Therefore, the real device does not take a heavy workload. Any suspicious 

activity is then reported to the users. 

Zonouz et al. proposed a cloud-based smartphone malware detection called Secloud. It 

analyses malware in a real test bed with a direct network connection to the cloud. It 

emulates a replica of mobile devices on the cloud and keeps it synchronised by 

continuously reporting every changes in the real devices. Secloud also redirects the 

devices’ network traffic to the cloud through a proxy. This way the whole analysis process 

takes place in the cloud (Zonouz et al., 2013). 
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Similarly, CloudShield was designed for peer-to-peer networks (Barbera et al., 2012). It 

is based on virtual copies of real devices that run on the cloud. The peer-to-peer network 

of clones is used to compute the best strategy to patch the smartphones in such a way that 

the number of devices to patch is low. The authors simulated worm attacks that affect the 

network load. They explored the idea of a peer-to-peer network of virtual smartphone 

clones running on the cloud, which can help stop worm attacks spreading from 

smartphone to smartphone on the mobile network. The worm propagates by using 

Bluetooth connections, MMS messages, phone calls, or any other means of infection 

available among smartphones. The final experiments show that CloudShield outperforms 

state-of-the art worm-containment mechanisms for mobile wireless networks. 

Paranoid Android is another related work that duplicates the real device on the cloud and 

passes any changes of device to the cloud (Portokalidis et al., 2010). It is capable of 

running multiple detection methods simultaneously. The aforementioned works need a 

constant network connection to the cloud to report every single event and changes of 

devices (i.e. new application installation, application update, system calls, etc.) to the 

server. Such a design is not practical in a situation where network connectivity is not 

available. Furthermore, it consumes bandwidth that could be costly for the user; energy 

consumption is also another concern for this approach. 

This study opts for the cloud-based approach; however, the offloading method is used. 

The cloning approach has various disadvantages as opposed to the offloading approach, 

which offers processing on the cloud without cloning mobile devices. The details of this 

technique are explained in Section 4.3.1. 
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2.5 Discussion 

This section points out key aspects of Android features, analysis and detection methods, 

and point of detection. It also discusses the weaknesses, strengths, and potential gaps in 

each section. 

a) Android Features: As discussed earlier, Android features are grouped into static, 

dynamic and hybrid features. Among static features, permission is the most used one. 

After that, Intent comes in the second place. Intent is declared by the application in XML 

file and in Java code. This work chose Intent in Java code over permission, since Intent 

potentially is a rich feature and there is a gap in literature as no other work has evaluated 

its importance. Therefore, the choice of Intent sounds promised. 

Among dynamic features, system calls and network traffic are two most important 

features. System call represents application’s behaviour in the device, while network 

traffic represents behaviour of the application outside the device. The main reason for 

choosing network traffic for this work is that it represents malware conversation with 

attacker as it leaks user’s data or receives command from the attacker. The other reason 

is that network traffic is not analysed thoroughly in literature and there is a potential to 

analyse it further. It is also worth noting that collecting system calls in Android requires 

rooted device and complicated methods as opposed to network traffic. By choosing static 

and dynamic features, we will have a dataset of hybrid features that is a comprehensive 

group of features. 

b) Mobile Malware Analysis: It is categorized into static, dynamic, and hybrid. Static 

analysis is examination of Android installation file and its content. Dynamic analysis is 

analysis of Android application behaviour after execution. Static analysis has problem of 

code obfuscation, Java reflection, and dynamically-loaded code. Dynamic analysis has 

weakness of code coverage. Therefore, combining the two method results in more robust 
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analysis, which is called hybrid analysis. Among various recent works discussed in 

Section 2.4.2.3, DroidRanger and Mobile-Sandbox analyse permission for static analysis 

that is bypassed by malware such as Basebridge. TaintDroid cannot find reflective method 

calls. The Harvester and AppDoctor take complicated approach that are difficult to 

implement. Andro-Dumpsys relies on replica of the device on the cloud, which has its 

own disadvantages (Section 2.4.4). Overall, available Android hybrid analyses are 

difficult to implement for the end user, and they employ features that are bypassed by 

malware. Therefore, this work adopts hybrid analysis by analysing Intent in Java code for 

static analysis and network traffic for dynamic analysis.  

c) Mobile Malware Detection: It is divided into misuse-based detection and 

anomaly-based detection. The misuse-based detection uses signature of malware to detect 

a particular malicious application that matches the signature. The attackers have easily 

bypassed this detection method by slightly changing their code. Therefore, we chose 

anomaly-based detection that uses machine learning to detect malware. 

d) Point of Detection: The detection process is performed on the device or in cloud. 

Since running detection process on the device consumes lots of battery power, we choose 

to implement cloud-based detection using offloading technique (4.2.1).  

e) Energy Consumption Measurement: It is worth noting that in current literature, 

it is not a custom to measure energy consumption of the proposed method. It is an 

important and an oversight issue. The best methods become unproductive if they drain 

battery of the device. It is not appealing to users. This work tends to introduce this concept 

to research community and hopes that future works measure energy consumption of their 

method as they measure accuracy. 
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2.6 Summary 

This chapter has overviewed the evolution of mobile malware, their characteristics, the 

Android operating system, and its security features. Additionally, malware analysis and 

detection methods were reviewed. We have analysed the most related research works 

from four different perspectives. They are feature selection, analysis methods, detection 

approach, and point of detection. Apart from reviewing research works, this chapter lays 

the foundation of this study as we decide which features to select, what analysis methods 

to choose, what detection approach to choose, and where to implement the detection 

method. Various tools are needed to apply the selected methods on a raw dataset. In the 

next chapter, we focus on analysis and detection tools. 
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CHAPTER 3: DROIDLAB - MOBILE MALWARE ANALYSIS TOOLS 

The previous chapter discussed research works related to this study. These works used 

various tools to analyse and conduct their experiments. Becoming familiar with the 

available tools profoundly extends the understanding of malware analysis techniques. 

This chapter gathers several monitoring and analysis tools. These tools have been used in 

research works to perform experiments on malware. Structurally, this chapter consists of 

three sections with relevant sub-sections. We have categorized analysis tools into static 

tools and dynamic tools, based on their monitoring and analysis approach, in Sections 3.1 

and 3.2 respectively. Section 3.3 discusses available tools in measuring energy 

consumption. The description and drawback of each one is mentioned, and our selected 

tool is specified. 

3.1 Static Analysis Tools 

Static analysis tools are used to analyse Android APK files. Technically, they are capable 

of inspecting various components of the APK file. The following sub-sections discuss 

several static analysis tools. 

3.1.1 Androguard 

Androguard (Anthony Desnos, 2010) is an interactive static analysis tool for Android 

applications. It is capable of dissecting the Android application into its components 

through its API.2 It also allows further analysis of the binary code and access to its various 

parts such as class names, method names, variables, strings, etc. The Androguard API has 

the following features: 

                                                 

2 http://doc.androguard.re/html/index.html 
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a) APK. The Android Application Package (APK) is the file type used to install 

Android applications. It entails several components such as AndroidManifest.xml, DEX 

file, and resources. The Androguard dissects the XML file and returns its elements such 

as activities, permissions, minimum SDK version, maximum SDK version, etc. It is also 

capable of accessing the binary code of the APK file. 

b) DVM. The Dalvik Virtual Machine (DVM) is an important component of the 

Android operating system, responsible for running each application in its own virtual 

machine. This feature of Androguard allows access to the DEX file of the Android 

application, which contains the application code. More specifically, it retrieves Java 

metadata about an application, the name and size of its classes, methods, and variables 

among other static features from the DVM (Suarez-Tangil, 2014). 

c) Analysis. This part of the API provides more details on the Java code. It specifies 

permissions that are used in Java code, rather than permissions declared by the application 

inside the xml file. It also identifies whether certain libraries are used in the code such as 

crypto, dynamic code, native code, and reflection code. Additionally, it also provides a 

Control Flow Graph (CFG) representation of the Dalvik code flow (Suarez-Tangil, 2014). 

d) Bytecode. The Dalvik code executed by the DVM is a compact and efficient 

instruction set (numeric codes, constants, and references) that encodes executable 

programs into a portable language called bytecode. This bytecode is translated into native 

machine code at run time. This facilitates the portability of the bytecode itself across 

different hardware-specific platforms. However, it also makes the reverse engineering 

analysis of Android apps easier. This component of Androguard provides a number of 

methods that aid bytecode analysis (Suarez-Tangil, 2014). 

3.1.2 ApkTool 

ApkTool is a reverse engineering tool for Android applications (Wiśniewski, 2010). As 

mentioned in Section 2.2.1, Android applications are written in Java and compiled to 
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DEX file. ApkTool is used to reverse this process and decode applications into nearly the 

original form, which is smali3 code. It is possible to modify smali code and rebuild the 

application to APK format. Therefore, we describe two main functions of the Apktool as 

follows: 

a) Decompile. It reverses the Android application to a readable format called smali 

bytecode. In addition to Java code, it decompiles other APK components like the XML 

file, resources folder, libraries, and assets. 

b) Recompile. After decompiling the application, the user may modify its content and 

then recompile the modified application using Apktool, which results in a new 

application. The new application may differ from the original one in functionality. 

3.1.3 AXMLPrinter 

The AXMLPrinter is a static analysis tool designed to merely decode the 

AndroidManifest.xml file in the APK package. It is useful when an analyst intends to 

extract some data relating to the application. This command line tool is faster as compared 

to Apktool, as it just decodes the xml file that contains the minimum SDK version, 

maximum SDK version, activities, permissions, intent-filters, etc. 

3.2 Dynamic Analysis Tools 

Dynamic analysis tools help monitor applications’ behaviours. Based on their behaviour, 

it is possible to identify their characteristics and categorize them as benign or malicious. 

In the following, we discuss the most famous dynamic analysis tools. 

                                                 

3 https://github.com/JesusFreke/smali 
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3.2.1 Wireshark 

The Wireshark is a well-known network protocol analyser that captures network traffic 

and represents it in a graphical way. For each packet, various network layers such as 

physical layer, IP layer, network layer, and if applicable HTTP layer is shown. The 

Wireshark is used for network troubleshooting, analysis and communication protocol 

design. The output file of the Wireshark has a PCAP extension, which can be opened with 

other programs such as tcpdump. The displayed data can be refined with filters available 

in the software. In addition, it is possible to detect VoIP traffic and decode the data. Any 

media data such as pictures and videos from the captured traffic can be recovered and 

played. Various graphs and statistics that help to understand the network traffic when 

dealing with massive data volumes can be drawn from the software. 

In this study, the Wireshark is used to filter TCP packets from numerous types of packets 

such as ARP, DNS, etc. Furthermore, Tshark is a command line version of the Wireshark. 

It is a more powerful tool than the Wireshark, since it gives a user the power to extract 

different network features such as packet size and connection duration from a myriad of 

network packets with a line of command. Windows shell scripting can also be used to 

automate the process of feature extraction, as applying same command to a pool of 

captured network traffic is time consuming. 

3.2.2 DroidBox 

DroidBox4 performs dynamic analyses of Android applications. The following 

information is generated when an analysis is complete: 

a) Hashes for the analysed package 

                                                 

4 https://github.com/pjlantz/droidbox 
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b) Incoming/outgoing network data 

c) File read and write operations 

d) Started services and loaded classes through DexClassLoader 

e) Information leaks via the network, file and SMS 

f) Circumvented permissions 

g) Cryptographic operations performed using Android API 

h) Listing broadcast receivers 

i) Sent SMS and phone calls 

Additionally, two graphs are generated, visualizing the behaviour of the package, one 

showing the temporal order of operations and the other a treemap (Shneiderman & 

Wattenberg, 2001) that can be used to check similarity between analysed packages. 

3.2.3 TaintDroid 

We discussed TaintDroid in Section 2.4.2.3. It marks sensitive data in applications’ code 

and tracks them while the applications are running. Basically, it tracks how applications 

use sensitive information, which is acquired by integrating TaintDroid into the Android 

platform at a low level. It also shows the information flow inside Android applications. 

Figure 3.1 depicts TaintDroid architecture as illustrated by Enck et al. (Enck et al., 2010). 
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Figure 3.1. TaintDroid Architecture as Depicted in (Enck et al., 2010) 

TaintDroid source code is available at the author’s site5 for several versions of Android 

e.g. Android 2.1 and Android 2.3. 

3.3 Machine Learning Tools 

We chose to follow the anomaly-based detection method, as discussed in Section 2.4.3. 

To do so, the following tools are used in this work and discussed in the following sections. 

3.3.1 WEKA 

Weka is a flightless bird with an inquisitive nature that is found only on the islands of 

New Zealand. Waikato Environment for Knowledge Analysis (WEKA) is a collection of 

machine learning algorithms for data mining tasks. The algorithms can either be applied 

directly to a dataset or called from your own Java code. Weka contains tools for data pre-

processing, classification, regression, clustering, association rules, and visualization. It is 

also well suited for developing new machine learning schemes. Weka is an exquisite 

                                                 

5 http://appanalysis.org 
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choice as it provides a graphical user interface and is easy to work with and understand 

(Hall et al., 2009). 

3.3.2 TensorFlow 

TensorFlow is an open source library for machine learning, including deep learning. It 

was developed by Google and released in November 2015. It is used in various Google 

services such as speech recognition, Gmail, Google Photos, and searches. TensorFlow 

can be used to build deep learning systems for any task. A machine learning system can 

be represented in TensorFlow using the data flow graph. This is a directed graph where 

the nodes contain computations and the edges are the flow of tensors through this graph. 

Tensors are mathematical objects that can be described using an n-dimensional array. 

They are the primary data type in TensorFlow: they are used to store data, which can be 

transformed by operations. These operations describe the actual functionality of the 

computation, and an instantiation of an operation corresponds to a node in the data flow 

graph. The input and output of operations are zero or more tensors. To create a machine 

learning system in TensorFlow, it needs to be expressed as a data flow graph. This data 

flow graph can then be interacted with in a session. The most important function of a 

session is to run the data flow graph. When running a computation, a dictionary of inputs 

is fed to the graph. The graph then executes the operations, and outputs the result of the 

final operation (van Niedek, 2016). TensorFlow has been used in various research fields 

such as the prediction of financial markets (Vahala), learning structured representations 

for geometry (B. Kim, 2016), and phonetic classification (van Niedek, 2016). It is worth 

mentioning that TensorFlow is capable of running in mobile devices6. 

                                                 

6 https://www.tensorflow.org/mobile/ 

Univ
ers

ity
 of

 M
ala

ya



58 

3.4 Energy Consumption Profilers 

The rapid advancements of the communication and computing capabilities of mobile 

devices have led to faster depletion of batteries. Since 1999, energy profilers have 

therefore been receiving attention. An energy profiler is defined as a system that monitors 

and characterizes the energy consumption of a device (Tarkoma et al., 2014). Although 

Android has built-in energy APIs, they typically allow applications to query and subscribe 

to coarse-grained information, such as battery voltage, battery health, battery capacity, 

and temperature. Thus, various energy consumption profilers have been proposed to 

access fine-grained and per-application information. Table 3.1 lists well-known systems 

in chronological order. 

Table 3.1. A List of Energy Consumption Profilers 

Name Year Purpose 

PowerScope  1999 Energy profiling of device and processes 

Nokia Energy Profiler 2006–2007 On-device standalone profiler 

PowerTutor 2009 Hybrid profiler based on PowerBooter 

eProf 2012 Fine-grained power model to identify 

energy bugs in applications 

AppScope 2012 Fine-grained energy profiler for 

applications based on DevScope 

 

The PowerScope (Flinn & Satyanarayanan, 1999) is an example of early energy profiler 

developed in 1999. It analyses the energy consumption for each process in the operating 

system. The Nokia Energy Profiler (Creus & Kuulusa, 2007) is another system 

implemented in 2006-2007. It was developed for the Symbian7 Series 60 devices to 

determine the power consumption. The PowerTutor (L. Zhang et al., 2010) is an Android 

application that shows energy use in a similar way to Android’s built-in API, but with 

                                                 

7 http://series60.kiev.ua 
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breakdowns per resource, such as CPU, Wi-Fi, and screen. The PowerTutor does not 

consider the effects of running multiple applications simultaneously but rather estimates 

the energy consumption for each application separately. The eProf (Pathak et al., 2012) 

is used to identify energy bugs in applications. It is useful for application developers to 

debug their product from the energy consumption point of view. 

The energy profiler of our choice for this study is AppScope (Yoon et al., 2012) due to 

its accuracy, and the fact that it provides fine-grained information about each application, 

its processes, and resource consumption (i.e. CPU, display, etc.). Alternatively, 

PowerTutor is also considered for this study. Despite working well and producing 

accurate results, AppScope is designed to work on a specific old device. In addition, some 

applications do not work on old devices. Therefore, PowerTutor is our alternate option 

for measuring energy consumption. The following sections provide more details on 

AppScope and PowerTutor. 

3.4.1 AppScope 

AppScope is an energy profiler that monitors kernel activity of Android devices. It 

collects usage information from the monitored device and estimates consumption of each 

running application using an energy model provided by DevScope (Jung et al., 2012). 

AppScope displays the categorized amount of energy consumed by an application, where 

each category is associated with a component of the device (CPU, Wi-Fi, cellular, etc.). 

AppScope uses an event-driven monitoring method that uses little power and provides 

high accuracy. In fact, its authors report that AppScope incurs approximately 35mW and 

2.1% in power consumption and CPU utilization overhead, respectively. AppScope 

provides information about the power consumed by different applications running in the 

device. Additionally, it also offers information about the energy consumed by each 

individual process executed by every app. 
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3.4.2 PowerTutor 

PowerTutor was developed by the University of Michigan Ph.D. students Mark Gordon, 

Lide Zhang, and Birjodh Tiwana. It is an application that displays the power consumed 

by major system components such as CPU, network interface, display, GPS receiver, and 

different applications. PowerTutor uses a power consumption model built by direct 

measurements during careful control of device power management states. This model 

generally provides power consumption estimates within 5% of actual values. A 

configurable display for power consumption history is provided. It also provides users 

with a text-file based output containing detailed results. PowerTutor can also be used to 

monitor the power consumption of a specific application (Z Yang, 2012). 
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3.5 Summary 

This chapter discussed several tools available for Android malware analysis. We 

categorized them into static analysis tools and dynamic analysis tools. Moreover, it 

explored different tools for applying machine learning algorithms, and for measuring the 

energy consumption of mobile applications. 

Having reviewed the related research works and analysis tools, it is time to discuss our 

proposed system. The next chapter describes the proposed framework for this study. 

Various components of the framework are discussed along with techniques and services 

used to develop the framework.  
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CHAPTER 4: MOBILE MALWARE ANALYSIS AND DETECTION: THE 

FRAMEWORK 

The previous chapter explored research works related to this study, and identified their 

weaknesses and strengths. Additionally, overviews of various tools used in malware 

analysis helped to explain the methodology of the analysis methods. This chapter details 

the proposed framework, aiming at minimising energy consumption of the analysis and 

detection processes while achieving high detection accuracy. The following sections 

discuss the architecture of the proposed system, along with its different modules and the 

rationale behind them. 

4.1 The DroidProtect Traits 

The proposed architecture has the following advantages over the current methods. 

1) Intelligent: This methodology employs machine learning to detect malware, 

whereas the current methods are based on a signature database that needs to be updated 

constantly. 

2) Hybrid Analysis: Our method monitors static and dynamic features of the device. 

The static analysis is done on Android Intent, which manifests real intentions of 

applications (details in Section 5.2). The dynamic analysis part monitors network traffic 

of Android devices and examines the traffic to detect anomalies. This way, we have a 

higher chance of detecting malware, given the fact that over 90% of malware request 

network connectivity to connect to a malicious server and receive spiteful commands 

(Feizollah et al., 2015). 

3) Lightweight: the proposed method uses an offloading technique, where 

monitoring, capturing, feature extraction is done on the devices, and the features are sent 

to a remote server. The heavy workload of the extensive detection process (using machine 

learning) is performed on servers. 
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4) Scalable: As mentioned earlier, a machine learning model is used to classify an 

application as malicious or clean. The system administrator is able to extend the dataset 

by adding more applications, and to update the model by re-training the machine learning 

algorithm. Thus, the result is a robust and more powerful malware detection model for 

the Android operating system. 

5) Offloading: The proposed architecture uses offloading technique to upload only 

important features from a device to servers. Offloading has been used in various research 

fields and proved to be efficient. However, this is the first time that we propose to use it 

for mobile malware detection. 

6) Feature Engineered: This work meticulously examines available features in 

Android malware detection and selects the most effective ones. In fact, the choice of 

implicit and explicit Intents is a novel one that has not been used before. It is also efficient 

and effective compared to Android permission that has been widely used (Section 5.2.1). 

The network traffic feature is also chosen carefully to make sure that it is effective in 

malware detection. The use of TCP and HTTP protocols to analyse mobile malware is 

unprecedented in this work (Section 5.3.3). 

4.2 The Architecture 

As mentioned earlier, with the prevalence of mobile devices, security threats are growing 

in number and seriousness. Among the mobile operating systems, Google’s Android has 

been attacked more than others. From April 2013 until June 2013, the number of malware 

for Android doubled. Such growth prompted the antivirus industry to respond to contain 

the multiplication of malware. Their response was similar to that to malware in PCs, 

namely by developing antivirus applications for Android devices. However, the 

characteristics of Android devices are different to those of PCs. The Android operating 

system has different approaches for controlling the system’s resources, hardware and 

application resources. PCs treat programs as trusted ones, giving them access to various 
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parts of the system, whereas Android devices limit access of each application to its own 

data. Therefore, antivirus applications have difficulty accessing other applications’ 

directories. Moreover, resources (i.e. CPU, memory, battery) on Android devices are 

limited. To adapt antivirus programs on PCs to Android devices, we propose 

DroidProtect. This system attacks malware by performing static and dynamic analysis 

and extracting selected features on the device. The heavy process of identifying a malware 

is done on servers and the response is sent back to the device. This way, the energy 

consumption of the devices is reduced. Figure 4.1 depicts the architecture of the 

DroidProtect. 

Internet

Android Applications

Extracting Features

Integrating Features

Capturing Network Traffic

Reporting Results

Storing Results

Android Applications

Static Feature Extraction

Applying Trained Algorithms

Bayesian Network, KNN, etc.

Androguard

Apktool

Smali/Baksmali

Dex2Jar

All 

Network 

Traffic

Dynamic 

Features
Static 

Features

 

Figure 4.1. Architecture of the DroidProtect 

Univ
ers

ity
 of

 M
ala

ya



65 

The above figure consists of three modules: static analysis module, dynamic analysis 

module and server module. 

The static analysis module is responsible for analysing the APK file of applications and 

extracting related features. The extracted features are sent to the server for the malware 

detection process. The dynamic analysis module collects network traffic of the device and 

extracts network-related features. Similar to the static analysis module, the extracted 

features are sent to the server for malware detection purposes. All the extracted features 

are received and integrated in the server modules. 

The extracted static and dynamic features are received from the mobile device. They are 

thoroughly analysed to determine the cleanness of the device. The process is performed 

by feeding the data to the machine learning model. The model is prepared offline by a 

system administrator. A data sample consisting of thousands of malware and clean 

applications is selected for this process. Various features are extracted and the final 

dataset is fed to machine learning algorithms. Based on their performance and accuracy, 

the best algorithm is selected. At the end of this process, a model is produced. The model 

is then used in the server module to determine the cleanness of new data received from 

the mobile device. The process of producing the model and their effectiveness is 

discussed in detail in the next chapter. At the end, the results of the experiments are sent 

back to the device, and presented to the user. Univ
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Layer 2: Data Storage

Storing data in a database

Layer 1: Application Program Interface
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Layer 3: Machine Learning Algorithms

Algorithms used to detect anomalies

Integrating Features Reporting Results

Experiments Results
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Apktool Androguard Dex2JarSmali/Baksmali

 

Figure 4.2. Layer Architecture of the DroidProtect 

Figure 4.2 shows the architecture in a layer structure. Each layer represents a function in 

the respective modules. For each layer, a specific action or tool is mentioned. For 

instance, the API layer in the mobile device performs network traffic capturing and 

features extraction for static and dynamic data. It is also necessary to show the flow of 

the process in DroidProtect. Figure 4.3 shows layers interactions and the process flow. 

 

Figure 4.3. Layers Interactions 
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4.3 The Used Methods and Services 

In this section, various methods and services used in the proposed architecture are 

discussed. 

4.3.1 Computation Offloading 

Mobile devices suffer from limited battery life, thus running resource-intensive 

applications is a gruelling task. To overcome this situation, an offloading technique was 

introduced where the heavy computation task runs in a different environment than the 

mobile device. Computation offloading is also different from the migration model used 

in multiprocessor systems and grid computing, where a process may be migrated for load 

balancing (Powell & Miller, 1983). The key difference is that computation offloading 

migrates programs to servers outside of the users’ immediate computing environment; 

process migration for grid computing typically occurs from one computer to another 

within the same computing environment (Kumar et al., 2013). 

This method is helpful in our architecture in which the collected features (static and 

dynamic) are sent to servers for analysis. This way, mobile devices save on the battery 

usage otherwise required to perform a heavy workload. 

4.3.2 Machine Learning Tools 

Machine learning classifiers have for several years helped in developing intelligent 

systems by training machines on how to make decisions. With a dataset labelled as input, 

machine learning constructs a model that is applicable to new data to identify pattern 

similarities. Numerous studies with significant detection results have adopted a similar 

approach, with the intention of detecting intrusions effectively (Feizollah et al., 2013; 

Narudin et al., 2016; Sangkatsanee et al., 2011; Zhao et al., 2012). 
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4.4 Summary 

This chapter proposed a framework (DroidProtect) for mobile malware analysis and 

detection. Its many components were explained via architecture figures and layer 

interactions. Additionally, the methods and services used were discussed in order to better 

understand this framework. Moreover, the characteristics of DroidProtect were explained 

to show its contributions. 

Proposing a framework requires validation to show that it is capable of fulfilling the 

mentioned objectives. The next chapter serves this purpose by performing four 

comprehensive experiments on the DroidProtect. 
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CHAPTER 5: EVALUATION OF THE MOBILE MALWARE ANALYSIS AND 

DETECTION FRAMEWORK 

The previous chapter proposed a novel framework for mobile malware analysis and 

detection. The novelty of the framework is to extract features on the device and send them 

to a server for processing. This way, the heavy process of analysis and detection is 

performed on the server rather than on the device. Furthermore, it is unnecessary to 

duplicate the real device on the cloud and synchronise every change, which raises security 

concerns. 

The objective of this chapter is to evaluate the proposed framework in terms of feasibility, 

soundness, and validity. The evaluation is carried out to verify how well the system fulfils 

the intended objectives. In order to perform a comprehensive evaluation of the system, 

appropriate evaluation criteria that address system performance issues are used. This 

chapter performs extensive experiments related to various parts of the framework to 

achieve final results. 

Structurally, this chapter starts by describing the data samples used in this study, as it is 

a vital part of every experiment to include valid and trustworthy data. The rest of this 

chapter includes four experiments pertaining to static analysis, dynamic analysis, and 

energy consumption of the framework. Experiment one investigates the static analysis 

section. It analyses Android Intent (explicit and implicit) as a new feature in Android 

malware detection. It fills the gap in recent research works (Section 5.2.1) by examining 

the effectiveness of this feature. The same experiment is also performed on Android 

permission under the same experimental conditions. At the end, the results of the two 

experiments are compared. The second and the third experiments (Section 5.3) relate to 

dynamic analysis, specifically the network traffic of Android applications. In the two 

experiments, the best network-related features are selected by using the described 
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algorithms, and the best classifier is chosen according to the results, which are compared 

to the recent research works to magnify the contributions of this study. The fourth 

(Section 5.4) experiment aims to satisfy the problem statement of this study by calculating 

the energy consumption of the proposed framework under various conditions. 

Additionally, the results are compared to other available solutions in this domain. 

5.1 Dataset Description 

Every experiment requires a dataset based on which the authors evaluate their proposed 

system. Android malware is a relatively new research area. The first Android malware 

was discovered in 2010 (Lookout, 2010). Initially, researchers did not have a solid and 

standard dataset of samples to work with. Instead, they tended to write their own malware 

and assessed their system on self-written malware (Chekina et al., 2012; Shabtai, 2010). 

Other researchers tried to collect samples through some websites that shared Android 

malware samples, such as Contagio.8 Therefore, the weakness was the limitation of 

malware samples that in turn made the evaluation of their system unreliable. This section 

discusses details of the most widely used Android malware data samples. 

5.1.1 MalGenome 

The MalGenome data sample includes 1,260 Android malwares in 49 different families 

(Yajin & Xuxian, 2012). A malware family is a collection of malware presenting similar 

a behaviour. This collection was gathered between August 2010 and October 2011 by the 

North Carolina State University. The authors analysed the data samples and found that 

around one third (36.7%) of the collected malware samples leverage root-level exploits 

to fully compromise Android security, posing the highest level of threats to users’ security 

and privacy. Additionally, more than 90% of malware turn the compromised devices into 

                                                 

8 http://contagiominidump.blogspot.com 
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a botnet controlled through network or short messages. Among the 49 malware families, 

28 (with 571 or 45.3% samples) of them have the built-in support of sending out messages 

(to premium-rate numbers) or making phone calls without user awareness. They 

mentioned that 27 malware families (with 644 or 51.1% samples) are harvesting users’ 

information, including user accounts and short messages stored on the devices (Appendix 

B). Table 5.1 tabulates malware families available in MalGenome along with number of 

samples per family and their discovery date. 

Table 5.1. Malware Families in MalGenome Data Sample 

Malware Family 
No. of 

samples 

Discovery 

Month 

Malware 

Family 

No. of 

samples 

Discovery 

Month 

ADRD 22 2011-02 GingerMaster 4 2011-08 

AnserverBot 187 2011-09 GoldDream 47 2011-07 

Asroot 8 2011-09 Gone60 9 2011-09 

Basebridge 122 2011-06 GPSSMSSpy 6 2010-08 

BeanBot 8 2011-10 HippoSMS 4 2011-07 

BgServ 9 2011-03 Jifake 1 2011-10 

CoinPirate 1 2011-07 jSMSHider 16 2011-06 

CruseWin 2 2011-07 Kmin 52 2011-10 

DogWars 1 2011-08 Lovetrap 1 2011-07 

DroidCoupon 1 2011-09 NickyBot 1 2011-08 

DroidDeluxe 1 2011-09 Nickyspy 2 2011-07 

DroidDream 16 2011-03 Pjapps 58 2011-02 

DroidDreamLight 46 2011-05 Plankton 11 2011-06 

DroidKungFu1 34 2011-06 RogueLemon 2 2011-10 

DroidKungFu2 30 2011-07 RogueSPPush 9 2011-08 

DroidKungFu3 309 2011-08 SMSReplicator 1 2010-11 

DroidKungFu4 96 2011-10 SndApps 10 2011-07 

DroidKungFuSapp 3 2011-10 Spitmo 1 2011-09 

DroidKungFuUpdate 1 2011-10 TapSnake 2 2010-08 

Endofday 1 2011-05 Walkinwat 1 2011-03 

FakeNetflix 1 2011-10 YZHC 22 2011-06 

FakePlayer 6 2010-08 zHash 11 2011-03 

GamblerSMS 1 2011-07 Zitmo 1 2011-07 

Geinimi 69 2010-13 zSone 12 2011-05 

GGTracker 1 2011-06    
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5.1.2 Drebin 

Based on the nature of malware, they change shape and infecting technique to evade 

detection. Therefore, it behoves researchers to update the data samples to develop systems 

that are more effective. By introducing Drebin in 2014, this need was fulfilled. The Drebin 

data sample was published in 2014 by Arp et al. (Arp et al., 2014). It is a collection of 

5,560 Android malware categorized into 179 different families. It was collected between 

August 2010 and October 2012. The authors scanned the Drebin with antivirus 

applications. They report that while the best scanners detected over 90% of the malware, 

others detected less than 10% of the data sample. The Drebin was well-accepted among 

researchers (Dash et al., 2016; Varsha et al., 2016). Upon requesting the data sample, we 

acquired it for this study. 

5.1.3 AndroZoo 

Unlike the mentioned data samples, AndroZoo is a growing collection of Android 

applications from several sources, including the official Google Play. As of writing this 

thesis, AndroZoo contains more than five million Android applications. Not only does 

this data sample accommodate Android malware, but it contains benign applications as 

well (Allix et al., 2016). Crawling various sources started in late 2011 and has continued 

ever since. 

The 14 sources include Google Play, Anzhi, AppChina, 1mobile, AnnGeeks, Slideme, 

HiApk, ProAndroid, etc. The AndroZoo sends all the downloaded applications to the 

VirusTotal for scanning. The number of antivirus software that detect an application as 

malicious is stored in the metadata file, as vt_detection. The metadata file is available on 

the AndroZoo website9 and is updated regularly. As a result, if vt_detection is zero, then 

                                                 

9 http://androzoo.uni.lu 
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the application is clean. Otherwise, it is considered as malware. This feature allows 

researchers to use AndroZoo not only as a malware repository, but also as a clean 

application repository. 

5.1.4 Malware Repositories 

Apart from the aforementioned data samples, other data samples are also available. IccRE 

(Icc Repository) is a collection of 445 Android malware that leak privacy data through 

inter-component communication (Li et al., 2015). The authors performed inter-

component analysis to detect privacy leaks between components of Android applications. 

Their system reached a precision of 95%. They decided to share the data sample with the 

research community on a request basis. 

VirusShare10 is another repository of malware samples that provides security researchers, 

incident responders, and forensic analysts access to samples of malicious code. Access to 

the site is granted by invitation only. To request, researchers need to email the 

administrator and explain their intention of accessing the repository. It contains Android 

malware samples as well as Microsoft Windows. The Android section has two sets of 

data samples. One contains 11,080 malware with size of 5.18 GB, and the other contains 

24,317 samples with a size of 47.64 GB. 

5.2 Static-related Analysis 

As mentioned in Section 2.4.2.1, static analysis is the process of analysing the Android 

applications’ installation file, APK. In this section, we elaborate on the details of our 

novel static analysis method. During the process of evaluating recent research works, we 

noticed that Android Intent, more specifically explicit Intent and implicit Intent, is a 

                                                 

10 https://virusshare.com 

Univ
ers

ity
 of

 M
ala

ya



74 

semantically rich element in the APK files, and has the potential to be a candidate feature 

in Android malware detection. Furthermore, to the best of our knowledge, there has been 

no attempt at comprehensive analysis of Android Intent, which was our motivation to 

conduct this experiment. 

5.2.1 Experiment 1: Evaluating Effectiveness of Android Intent in Malware 

Detection 

The objective of this experiment is to propose Android Intent as a feature for malware 

detection, and to evaluate its effectiveness by comparing the results to Android 

permission. In order to achieve that, the following sub-sections focus on more detail in 

Android Intent, and justify the reason for considering it a feature in Android malware 

detection. Next, the specification of the chosen algorithm is described. In the evaluation, 

a Drebin data sample and clean applications from AndroZoo repository are used, and the 

experiment is conducted on Android Intent and Android permission. Subsequently the 

results are compared to reach the conclusion. 

5.2.1.1 Android Intent 

Intent is a complex messaging system in the Android platform, and is considered as a 

security mechanism to hinder applications from gaining direct access to other 

applications. Applications must have specific permissions to use Intent. This is a way of 

controlling what applications can do once they are installed in Android. An Intent-filter 

(defined in AndroidManifest.xml file) announces the type of Intent the application is 

capable of receiving. 

Applications use Intents for intra-application and inter-application communications. 

Intra-application communication takes place between activities inside an application. An 

Android application consists of many activities, each referring to buttons, labels, and texts 

available on a single page of the application, with which the user interacts. When 
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interacting with the application, the user moves from activity to activity (i.e. from page 

to page). Android Intents assist developers in performing interactions among the 

activities. Furthermore, Intents are used in pushing data from one activity to another, 

carrying the results at the end of any particular activity (Aftab & Karim, 2014). 

Inter-application communication is achieved when applications send messages or data to 

other applications through Intent. The applications should also be able to receive data 

from other applications. To receive Intents, applications must define what type of Intent 

they accept in the Intent section of the AndroidManifest.xml file, as intent-filter. Many 

past studies (Chakradeo et al., 2013; Feng et al., 2014; Luoshi et al., 2013) refer to this 

type of Intent. The actual communication between two applications occurs through the 

Binder, which handles all inter-process communications. The Binder provides the 

features for binding functions and data between one execution environment and another, 

as each Android application runs in its own Dalvik environment. The Intent mechanism 

is considered higher than Binder, hence, it is built on top of Binder. 

 

Figure 5.1. Inter-application Communication Using Android Intent and Binder 

Figure 5.1 shows the architecture of inter-application communication. The Binder driver 

manages part of the address space of each application and makes it as read-only; all 

writing is done by the kernel section of Android. When application A sends a message to 

application B, the kernel allocates some space in the destination application’s memory, 

Application A Application B
Conceptual Function Call

Binder

Android Kernell

IntentIntent

Actual Function Call
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and copies the message directly from the sending application. It then queues a short 

message to the receiving application, telling it the location of the received message. The 

recipient can then access that message directly because it is in its own memory space. 

When application B has finished processing the message, it notifies the Binder driver to 

mark the memory as free (Hellman, 2013). 

There are two types of Intent: explicit and implicit. When developers know exactly what 

component to use to perform a specific action, they use explicit Intent. This component 

can be any activity, service, or broadcast receiver. Explicit Intent is used for intra-

application and inter-application communications, and developers use this type of Intent 

to navigate from an activity to another activity inside applications, as well as to exchange 

messages between applications. For instance, there are some applications that are used 

for browsing, such as the default browser on the device or Google Chrome. Developers 

use explicit Intent to request Android to open a link specifically using Google Chrome. 

Implicit Intent is used by developers when asking Android to open a link, but without 

specifying the exact target application. In response, Android offers a list of all 

applications capable of opening a link to the user. Such a list is populated based on the 

intent-filter section of AndroidManifest.xml files. Table 5.2 shows a sample code of 

explicit and implicit Intents. 

Table 5.2. Sample Code Snippet of Explicit and Implicit Intents 

Explicit Intent 

String url=”www.yahoo.com”; 

Intent explicit=new Intent(Intent.ACTION_VIEW); 

explicit.setData(Uri.parse(url)); 

explicit.setPackage(”com.android.chrome”); 

startActivity(explicit); 

Implicit Intent 

String url=”www.yahoo.com”; 

Intent implicit=new Intent(Intent.ACTION_VIEW); 

implicit.setData(Uri.parse(url)); 

startActivity(implicit); 
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Table 5.2 shows that implicit Intent uses Intent.ACTION_VIEW to open the specified 

URL. However, explicit Intent states the exact component’s name (in this case 

com.android.chrome) to open the URL. In our study, our aim is to extract both implicit 

and explicit Intents and conduct a comprehensive evaluation of their effectiveness in 

malware detection. 

Intents have three components: action, category, and data. The action component 

describes what kind of action is to be executed by the Intent such as MAIN, CALL, 

BATTERY LOW, SCREEN ON, and EDIT. Intents specify the category they belong to, 

such as LAUNCHER, BROWSABLE and GADGET. The data components provide the 

necessary data to the action component. For instance, the CALL action requires a phone 

number, and the EDIT action needs a document or HTTP URL to complete. 

5.2.1.2 Data Collection and Analysis 

For our experiment, we used real-world applications that include both clean and infected 

applications. We gathered clean applications from Google Play and scanned them with 

VirusTotal11 to ensure the cleanness of the applications. The applications collected 

include both free and paid types, as ProfileDroid (Wei et al., 2012) mentioned that paid 

applications behave differently from free ones, and it is important to include all such 

applications. Google Play applications were categorized into 27 main application 

categories, and the games category had 17 sub-categories. We gathered samples from 24 

main application categories (including the game category itself) and 17 games sub-

categories to cover a wide variety of applications, as shown in Table 5.3. 

 

                                                 

11 www.virustotal.com 
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Table 5.3. Categories of Gathered Applications 

Books & References Medical Tools Games - adventure 

Business Weather Games - action Games - strategy 

Comics Travel Games - card Games- simulation 

Communication Photography Games - casino Games – family 

Education Productivity Games - casual Games – racing 

Entertainment Shopping Games - educational Games – sports 

Finance Social Games - music Games – arcade 

Health & Fitness Sports Games - puzzle  

Music & Audio Media & Video Games -role playing  

News & Magazines Transportation Games - word  

Personalization Live Wallpaper Games - board  

 

The clean dataset contains 1,846 applications. Additionally, we used DREBIN (Arp et 

al., 2014) as infected dataset. It is a collection of 5,560 applications from 179 different 

malware families. We used our Python code to extract permission and Intent from 

applications in our dataset. The top 10 permissions of both clean and infected applications 

are shown in Table 5.4. Google classifies Android permissions into four groups, namely 

normal, dangerous, signature, and signatureOrSystem (Google, 2014). 

Table 5.4. Top 10 Permissions in Clean and Infected Applications 

Clean Applications Infected Applications 

Permissions Frequency Permissions Frequency 

INTERNET 98% INTERNET 98% 

ACCESS_NETWORK_STATE 89% READ_PHONE_STATE 89% 

WRITE_EXTERNAL_STORA

GE 
83% 

WRITE_EXTERNAL_STORA

GE 
67% 

WAKE_LOCK 53% SEND_SMS 54% 

READ_PHONE_STATE 52% RECEIVE_SMS 38% 

ACCESS_WIFI_STATE 48% WAKE_LOCK 38% 

GET_ACCOUNTS 42% READ_SMS 37% 

VIBRATE 41% 
ACCESS_COARSE_LOCATIO

N 
32% 

BILLING 39% ACCESS_FINE_LOCATION 30% 

ACCESS_COARSE_LOCATIO

N 
24% READ_CONTACTS 23% 
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Table 5.4 also shows that five permissions are common, as highlighted, between clean 

and infected applications, such as, INTERNET, WRITE_EXTERNAL_STORAGE, 

WAKE_LOCK, ACCESS_COARSE_LOCATION, and READ_PHONE_STATE. 

However, these applications have five different permissions among the top 10 

permissions. Infected applications request SEND_SMS, RECEIVE_SMS and READ 

SMS permissions, which are classified as dangerous. In fact, WRITE_SMS, which is also 

dangerous, should be included in the list of the top frequent permissions. It is ranked 11th 

in our dataset, and it is requested by 22% of infected applications. Therefore, it is evident 

that infected applications request four SMS-related permissions to have full access to 

SMS functionality of the devices. In our experiment, 30% of infected applications 

requested the ACCESS_FINE_LOCATION permission to access the precise location, 

and 33% of them requested the ACCESS_COARSE_LOCATION permission, which is 

a common permission, to access a proximate location. In general, the viciousness of 

infected applications can be gauged through permissions. We also extracted Intent of 

applications, as shown in Table 5.5, which shows top 10 Intents used in clean and infected 

applications. It is worth noting that the VIEW Intent was removed from the top 10 Intents, 

as it is used in all clean and infected applications. 

Table 5.5. Top 10 Intents in Clean and Infected Applications 

Clean Applications Infected Applications 

Intents Frequency Intents Frequency 

SEND_MULTIPLE 45% BOOT_COMPLETED 56% 

SCREEN_OFF 23% SENDTO 45% 

USER_PRESENT 18% DIAL 42% 

SEARCH 17% SCREEN_OFF 37% 

PICK 10% TEXT 28% 

DIAL 9.5% SEND 27% 

GET_CONTENT 9% USER_PRESENT 22% 

EDIT 8.7% PACKAGE_ADDED 21% 

MEDIA_MOUNTED 8% SCREEN_ON 18% 

BATTERY_CHANGED 7% CALL 10% 
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Malicious applications wait for BOOT_COMPLETED to start their malicious activity. 

CALL and DIAL are used for making phone calls. CALL requires CALL_PHONE 

permission, whereas DIAL does not require such permission. As presented in Table 5.5, 

DIAL is used more than CALL, which allows the malicious application to make a 

premium phone call without the user’s knowledge. 

 

Figure 5.2. Percent of Applications That Request Specific Number of Permissions 

 

Figure 5.3. Percent of Applications That Request Specific Number of Intents 

 Figure 5.2 shows the percentage of applications that requested permissions (clean and 

infected) in two datasets. The graph shows that infected applications request more 
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permissions as there are spikes at multiple points in the figure. Furthermore, only 2% of 

clean applications requested between 35-55 permissions, compared to 7% of infected 

applications. This is indicative of the vicious intentions of infected applications. 

Similarly, Figure 5.3 shows the percentage of applications that requested Intents (implicit 

and explicit) in two datasets. When comparing Figure 5.2 and Figure 5.3, the difference 

between their x-axis is obvious. While permissions have a maximum number of 55, the 

number of Intents ends at 250. The wide difference is due to the fact that developers use 

Intents much more frequently than permissions in the code to perform actions. 

Intent and permission are potentially useful features for Android malware detection. 

However, according to Moonsamy et al. (Moonsamy et al., 2013b), there are requested 

permissions as well as required permissions. It is possible that actual permissions used by 

applications are different from the requested permissions that are sent to the user for 

approval. However, Intent reflects the actual intentions of applications resulting directly 

from activities. This indicates that Intent is more effective for malware detection. 

5.2.1.3 The Architecture 

Figure 5.4 shows the architecture for our experiment, AndroDialysis.12 The top level of 

the architecture, the Android application framework, refers to applications installed on 

the device. The detector module performs the main task of detection. It consists of four 

sub-modules: decompiler, extractor, intelligent learner, and decision maker. The system 

sends the results to users through the graphical user interface. The following sections 

describe four sub-modules in more detail. 

                                                 

12 Android Deep Intent Analysis 
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Figure 5.4. Overview of AndroDialysis 

(a) Decompiler 

The decompiler sub-module is responsible for dissecting the APK files and decoding their 

components. Every APK file has various components. AndroidManifest.xml is a 

scrambled file and needs to be decoded in order to make it readable. Similarly, the DEX 

file is a Java source code compiled in Dalvik format and needs to be decompiled. After 

decompilation, the produced file is not a pure Java code, but it is easy to read. We used 

Apktool for decompiling Android files, as it utilizes the latest Android SDK, which is 

better in optimizing files (Wiśniewski, 2010). Decompiling files results in readable 

AndroidManifest.xml files and generates smali versions of Java code. 

(b) Extractor 

The extractor sub-module extracts explicit Intent, implicit Intent, and permission from 

Java code and AndroidManifest.xml file for processing in subsequent sub-modules. The 

BeautifulSoup package of the Python language is used to extract permission section from 

the AndroidManifest.xml file (Richardson, 2007). In order to extract Intents from Java 
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code, we used Androguard to reverse DEX files and get Intents (implicit and explicit) 

from the code. The extracted data are stored in a feature database for use in the next 

process. Furthermore, a copy of the data is sent to the decision maker sub-module for 

determining maliciousness of the data, which will be discussed later. 

(c) Intelligent Learner 

This sub-module takes data from the features database and uses the Bayesian Network 

algorithm to learn the pattern of the data. It then sends the output model to the decision 

maker sub-module. The Bayesian Network algorithm (Friedman et al., 1997) was chosen 

to evaluate AndroDialysis because it has been successfully used in real-world problems. 

Cohen et al. (Cohen et al., 2003) for example used the Bayesian Network in human facial 

expression recognition and achieved a good outcome. It is a dual-process algorithm; it 

first learns network structure, and then it learns probability tables. The Bayesian Network 

uses local score metrics to learn the network structure of data. It is considered an 

optimization problem in which the quality of the network is optimized. To calculate the 

local score, the Bayesian Network employs search algorithms. Once the network structure 

of the data has been learnt, the Bayesian Network utilizes estimators to learn the 

probability tables (Bielza & Larrañaga, 2014). Two widely used estimators are the simple 

and multinomial estimator. The aforementioned two steps are defined as follows: 

Suppose that 𝑉 =  {𝑥1, … … . . , 𝑥𝑘}, 𝑘 ≥ 1 is a set of variables. Bayesian Network B over 

V is a network structure BS that is a directed acyclic graph known as DAG over the set of 

variables V. It is also a set of probability tables 𝐵𝑃 =  {𝑝(𝑣|𝑝𝑎(𝑣))|𝑣 ∈ 𝑉} where 𝑝𝑎(𝑣) 

is the set of parents of v in BS. Finally, a Bayesian Network represents a probability 

distribution 𝑃(𝑉) =  ∏ 𝑝(𝑣|𝑝𝑎(𝑣))𝑣∈𝑉 . 

Compared to other algorithms, the Bayesian Network has the following advantages: 
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a) It is a fast algorithm with low computational overhead once trained. 

b) It has the ability to model both expert and learning systems with relative ease. It 

integrates probabilities into the system. It is also considered a performance-tuning tool, 

but without incurring computational overhead. 

c) Many outstanding real-world applications have used this algorithm and have 

performed comparably well against other state-of-the-art algorithms (Bielza & Larrañaga, 

2014). 

As mentioned above, Bayesian Networks are collections of directed acyclic graphs 

(DAGs), where the nodes are random variables, and where the arcs specify the 

independence assumptions between these variables. It is difficult to find the Bayesian 

Network that best reflects the dependence relationship in a database of cases because of 

the large number of possible DAG structures, given even a small number of nodes to 

connect. As a result, researchers have developed various search algorithms to overcome 

this problem. In this paper, we use four search algorithms for our experiments: K2, 

Geneticsearch, HillClimber, and LAGDHillClimber algorithms. 

The K2 algorithm heuristically searches for the most probable belief network structure 

in a given database of cases, which includes different combinations of values for attributes 

(C. Ruiz, 2005). The Geneticsearch algorithm uses the genetic algorithm to find the 

optimum result in a Bayesian Network. The algorithm is based on the mechanics of 

natural selection and natural genetics. Although it is capable of solving complex 

problems, it is a time consuming algorithm for some data (see Table 5.9) (L. J. Yan & 

Cercone, 2010). It combines survival of the fittest among string structures with a 

structured, yet randomized, information exchange to form a search algorithm that under 

certain conditions evolves into the optimum with a probability that is arbitrarily close to 

one (Larrañaga et al., 1996). 
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The HillClimber search algorithm starts learning by initializing the structure of the 

Bayesian Network. Unlike previous algorithms that potentially get stuck in the search 

process, the Hill Climber solves that problem (Chickering et al., 1995). Each possible arc 

from any node is then evaluated using leave-one-out cross validation to estimate the 

accuracy of the network with that arc added. If no arc shows any improvement in 

accuracy, the current structure is determined. An arc that has the most improvement is 

retained, but the node the arc points to is removed. This process is repeated until there is 

just one node remaining, or no arc can be added to further improve upon the classification 

accuracy (Jo et al., 2011). The LAGDHillClimber search algorithm uses a Look Ahead 

Hill Climbing algorithm. Unlike Hill Climber, it does not calculate a best arc (by adding, 

deleting or reversing an arc), but considers a sequence of best arcs instead of considering 

the best arc at each step. As it is very time consuming to find the best sequence among all 

the possible arcs, it must first find a set of good arcs and then find the best sequence of 

arcs among them (Salehi & Gras, 2009). This improvement over the Hill Climber 

algorithm results in better performance (see Table 5.6). 

We evaluate the performance of the Bayesian Network using k-fold cross validation. In 

this method, the dataset is divided into k subsets, and the holdout method is repeated k 

times. Each time, one of the k subsets serves as the test set and the other k-1 subsets are 

compiled to form a training set. Then, the average error across all k trials is computed. 

The advantage of this method is that it matters less how the data are divided. Every data 

point gets to be in a test set exactly once, and in a training set k-1 times. The variance of 

the resulting estimate is reduced as k increases (Feizollah et al., 2013). Specifically, a 10-

fold option is used, which is described as applying the classifier to data 10 times and every 

time the dataset is divided into 90:10 groups - 90% of data used for training, and 10% 

used for testing, which is widely used among researchers (Damopoulos et al., 2012). At 

the end, this sub-module produces a model that is based on available data in the features 

Univ
ers

ity
 of

 M
ala

ya



86 

database that is used for detection purpose. It is worth noting that the intelligent learner 

is constantly learning from the data added to the features database. 

(d) Decision Maker 

The decision maker sub-module is responsible for determining whether the data are clean 

or malicious. It receives two sets of data from the extractor and the intelligent learner sub-

modules. A set of data from the intelligent learner sub-module contains a produced model 

based on the collection of data in the features database. The model is then used to vet the 

data received from the extractor sub-module. Another set of data that is received from the 

extractor sub-module contains extracted data of one application. The decision maker sub-

module utilizes the model to determine the maliciousness of the application. The final 

decision is passed to the user interface module, which prepares an appropriate message 

for the user and presents it through the graphical user interface. This design of the decision 

maker sub-module ensures faster detection and higher performance, as it was adopted by 

Shabtai et al. (Shabtai et al., 2014). 

5.2.1.4 Results 

In this section, we discuss our results and findings. It is important to restate that the 

purpose of this experiment is to study the effectiveness of Android Intent (implicit and 

explicit) in malware detection, and not malware detection per se. We present the results 

from experiments conducted on permissions, Intents, and both in Android malware 

detection. Additionally, to get a better assessment of the current development of Android 

Intent, we analyse our datasets. 

(a) Intent Analysis and Attacks 

We analyse Intents in our datasets from the security standpoint to assess the current status 

or importance of Intents. As mentioned in Section 5.2.1.1, implicit Intent does not specify 

its destination component. However, it is offered to entities that can receive a specific 
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type of Intent. Therefore, when an application sends an implicit Intent, there is no 

guarantee that the Intent will be received by the intended recipient. A malicious 

application can intercept an implicit Intent simply by declaring an intent-filter (in 

AndroidManifest.xml file) with all the actions, data, and categories listed in the Intent. 

This situation (unauthorized Intent receipt) causes the malicious application to gain 

access to all the data in any matching Intent, resulting in activity hijacking (Chin et al., 

2011). 

In  the collected  dataset, infected applications declare intent-filter 7.5 times more often 

than clean applications. On average, each clean application declares 1.18 intent-filters, 

whereas each infected application declares 1.61 intent-filters. Thus, it is evident that 

infected applications tend to intercept Intents using intent-filters until they succeed in 

hijacking the activities. 

In view of this threat, it is suggested that developers use explicit Intent so that the recipient 

is clearly specified in order to hinder malicious applications from hijacking the activities. 

We have analysed our dataset with regard to this threat, and found that 28.78% of Intents 

used were implicit and 71.22% were explicit. In general, developers are doing what is 

appropriate; nevertheless, it is essential to remain vigilant, as attackers are known to 

frequently change their attack plans. 

(b) Experimental Results 

This experiment was performed on a Sony Xperia Z3 Compact device, model D5803. It 

is running Android Marshmallow, version 6.0.1, with the latest updates. The device has 

2GB of RAM and 16GB of storage. 
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We aim to answer the following questions. A. Is Intent a plausible feature for Android 

malware detection? B. What are best configurations in the Bayesian Network that produce 

the best results? C. How effective is Android Intent compared to Android permission? 

i Effectiveness 

We employed the Bayesian Network with different configurations for our experiment. As 

discussed earlier, the Bayesian Network uses a search algorithm for calculating the local 

score metrics, and an estimator algorithm for learning the probability table. In order to 

achieve the best results, we experimented with different configurations, and the results 

are presented in Table 5.6. It shows results of permission and Intent with simple estimator 

and multinomial estimator algorithms; and K2, Geneticsearch, HillClimber, and 

LAGDHillClimber as search algorithms. 

Table 5.6. Results of Android Permission and Android Intent Experiments 

 Android Permission Android Intent 

 Simple 

Estimator 
Multinomial 

Simple 

Estimator 
Multinomial 

 TPR FPR TPR FPR TPR FPR TPR FPR 

K2 82% 18% 24% 76% 89% 11% 19% 81% 

Geneticsearch 83% 17% Null Null 91% 9% Null Null 

HillClimber 82% 18% 24% 76% 89% 11% 19% 81% 

LAGDHillClimber 83% 17% Null Null 91% 9% Null Null 

 

The results of the experiments reflect the performance of our method. Detection rate, also 

known as a true positive rate (TPR), is the probability of correctly detecting an instance 

as a malware. In contrast, false positive rate (FPR) is another measurement that is defined 

as wrongly detecting normal traffic as being infected. The higher the TPR, the better the 

result. Conversely, the lower the FPR, the better the result. The best results were obtained 

by combining a simple estimator and Geneticsearch, and a simple estimator and 
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LAGDHillClimber, both combinations achieving 83% TPR for Android permission, and 

91% for Android Intent. We conducted our experiment in 30 iterations. As the number of 

iterations increased, the system learnt the pattern of the data more accurately. Figure 5.5 

shows the TPR and the false positive rate for each iteration of the experiment. 

 

Figure 5.5. True Positive Rate versus False Positive Rate for 30 Iterations 

Figure 5.5 shows that TPR increased from just above 80% to 90% as the number of 

iterations increased. However, the FPR did not follow the same rate of increase as the 

TPR. It started from 6% and increased to 9%, which is considered as a good result, 

considering that the TPR increased by 10%. 

Additionally, we conducted experiments for each malware family to assess the 

effectiveness of Android Intent for an individual family. The results are tabulated in Table 

5.7 and the best result for each family is highlighted. The experiments were conducted on 

the families with the highest number of malware samples in our dataset. As our previous 

results with a multinomial algorithm were not encouraging, we used a simple estimator 

for this experiment. The lowest detection rate, among all families, belongs to the 

DroidKungfu family for either K2 or HillClimber algorithm. This malware gains root 

access in the device and installs an application called legacy that pretends to be a 

legitimate Google Search application bearing the same icon. The DroidKungfu then 
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performs its malicious activities through the legacy application (Jiang, 2011). We believe 

that this strategy makes it trickier to detect, as malicious activities are performed by an 

agent application other than the main one. Other malware families showed relatively high 

detection results. 

Table 5.7. The results of Android Intent Experiments for Each Malware Family 

Malware 

Family 
Measurements K2 Geneticsearch HillClimber 

LAGD 

HillClimber 

Number 

of 

malware 

FakeInstaller 
TPR 85.78% 84.02% 84.91% 84.02% 

925 
FPR 14.21% 15.97% 15.08% 15.97% 

DroidKungFu 
TPR 76.41% 76.14% 76.41% 76.14% 

667 
FPR 23.58% 23.85% 23.58% 23.85% 

Plankton 
TPR 79.59% 79.59% 79.34% 79.54% 

625 
FPR 20.40% 20.40% 20.65% 20.45% 

Opfake 
TPR 93.06% 93.06% 92.76% 93.06% 

613 
FPR 6.93% 6.93% 7.23% 6.93% 

GinMaster 
TPR 77.35% 77.35% 77.15% 77.58% 

339 
FPR 22.64% 22.64% 22.84% 22.41% 

BaseBridge 
TPR 81.96% 81% 83% 80.17% 

330 
FPR 18.03% 19% 17% 19.82% 

Iconosys 
TPR 76.74% 76.87% 76.74% 76.87% 

152 
FPR 23.25% 23.12% 23.25% 23.12% 

FakeDoc 
TPR 81.89% 81.65% 81.89% 81.65% 

132 
FPR 18.10% 18.34% 18.10% 18.34% 

Geinimi 
TPR 87.39% 87.39% 79.91% 80.55% 

92 
FPR 12.60% 12.60% 20.08% 19.44% 

 Total 3,875 

 

It is necessary to verify that Android Intent is in fact an effective feature, and that our 

results were not just a coincidence. Therefore, we conducted experiments using both 

features (Android permissions and Android Intents). This was essential to show that the 

features are not overlapping, and Android Intent can really increase the detection rate. 
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Table 5.8 represents the results of the experiments on the combination of Android 

Permissions and Android Intents. Not only do the results show that Android Intent 

(explicit and implicit) is an effective feature, it also boosts other features (i.e. Android 

permissions) in malware detection. 

Table 5.8. Results of Experiments Using Both Permissions and Intents 

 Simple Estimator 

 TPR FPR 

K2 95.5% 4.4% 

Geneticsearch 95.4% 4.5% 

HillClimber 95.5% 4.4% 

LAGDHillClimber 95.4% 4.5% 

 

It is worth noting that the choice of Android permissions in this study is based on the fact 

that this feature has been widely explored and its importance and effectiveness has been 

established. Feizollah et al. (Feizollah et al., 2015) conducted an extensive study on 

Android features. Among static features, Android permission is the most widely used 

feature. Various approaches have been taken to analyse Android permissions. Some 

uthors used permissions to evaluate applications and rank them based on possible risk  

(Au et al., 2012; Grace, Zhou, Zhang, et al., 2012; Pandita et al., 2013; Peng et al., 2012). 

Numerous studies simply extracted permissions and utilized machine learning to detect 

malicious application, (Aung & Zaw, 2013; Samra et al., 2013; Borja Sanz, Santos, 

Laorden, Ugarte-Pedrero, Bringas, et al., 2013; Suleiman Y Yerima et al., 2014). Some 

researchers argue that merely analysing requested permissions is not sufficient for 

detecting malicious applications (C. Y. Huang et al., 2013; Moonsamy et al., 2013b). 

They analysed the used permissions in addition to the requested permissions in order to 

detect malware. AppGuard (Backes et al., 2013) has gone one step further and has 

extended Android’s permission system to alleviate current vulnerabilities. They claim 

that their system is a practical extension for the Android permission system as it is 
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possible to use it on devices without any modification or root access. As a result, Android 

permissions is a strong candidate for this paper in order to compare it with Android 

Intents. 

ii Efficiency 

Besides evaluating the effectiveness of our system, we calculated the time taken by each 

combination to produce the results of Table 5.6, as shown in Table 5.9. 

Table 5.9. Time Taken to Produce Results (seconds) 

 Android Permission Android Intent 

 Simple 

Estimator 
Multinomial 

Simple 

Estimator 
Multinomial 

K2 0.06 0.89 0.01 0.07 

Geneticsearch 2.86 Null 0.91 Null 

HillClimber 0.02 0.87 0.01 0.07 

LAGDHillClimber 0.05 Null 0.05 Null 

Based on Table 5.9, results in Android permission are produced faster when the simple 

estimator and HillClimber are combined. With regard to Android Intent, combining the 

simple estimator with LAGDHillClimber achieved a TPR of 91% in less time than 

Geneticsearch. 

In addition, we show the Receiver Operating Characteristic (ROC) curve for the best 

results of permission and Intent. The ROC curve is normally used to measure performance 

in detecting intrusions. It indicates how the detection rate changes, as the internal 

threshold is varied to generate more or fewer false alarms. It plots intrusion detection 

accuracy against false positive probability. ROC curves signify the tradeoff between false 

positive and true positive rates, which means that any increase in the true positive rate is 

accompanied by a decrease in the FPR. As the ROC curve line is closer to the left-hand 
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border and the top border, it indicates that it produces the best results among other curves. 

The ROC curves for Android permission and Android Intent are shown in Figure 5.6. 

 

Figure 5.6. ROC Curve for Android Permission and Android Intent 

The ROC curves are difficult to compare, as they seem to be almost similar under some 

situations, therefore, the area under the curve (AUC) is used to measure the accuracy of 

detection. An area of 1 means a perfect result, while an area of 0.5 is a worthless result. 

The AUC point system is as follows: 0.90 - 1.00 = excellent (A); 0.80 - 0.90 = good (B); 

0.70 - 0.80 = fair (C); 0.60 - 0.70 = poor (D); and 0.50 - 0.60 = fail (F). The AUC of 

Android permissions is 0.7897, and Android Intent is 0.8929. This shows that Android 

Intent performed better. 

5.2.1.5 Conclusion 

This experiment showed that Android Intent is in fact an effective feature for mobile 

malware detection. Moreover, the combination of Intent and permission achieved higher 

results, which indicates that Android Intent is also considered complementary to other 

features. As this is the first experiment on implicit and explicit Intent, we could not 

compare our results to other works; however, comparing the results with Android 

permission showed that Android Intent (implicit and explicit) produces good results in 

mobile malware detection. 
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5.3 Dynamic-related Analysis 

The dynamic analysis complements static analysis in order to have a comprehensive 

analysis and detection system. This section consists of two experiments. The first one 

examines the pool of available network traffic features to identify the best ones by using 

feature selection algorithms. Each algorithm is described in terms of functionality and its 

advantages. The second experiment investigates machine learning classifiers to find the 

best one with the highest results in terms of accuracy. 

5.3.1 Android Malware Network Traffic 

Two of the most important behaviours used in the dynamic analysis are system calls and 

network traffic. When an application is running, it should request some operations from 

an operating system, such as read, write, or open, in order to perform tasks. Therefore, if 

an application is calling too many functions, it would sound suspicious. Crowdroid 

(Burguera et al., 2011) focused on collecting system calls and processing them to detect 

an anomaly. As the Android operating system has the Linux kernel, collecting system 

calls is a complicated task as described in (Burguera et al., 2011). In most cases, the device 

must be rooted, which means disabling part of the operating system’s security 

architecture, consequently leaving the device more vulnerable against threats. Network 

traffic is collected on the device by an application such as tPacketCapturePro.13 

Therefore, we present AndroPsychology, an experiment on analysing the network 

behaviour of the Android application. 

5.3.2 Description of the Experiment 

AndroPsychology is presented in Figure 5.7. For these experiments, 50,000 malware 

samples as well as 50,000 clean applications were specifically acquired from AndroZoo. 

                                                 

13 https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.packetcapturepro 
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The network traffic process was captured by running each application for 20 minutes and 

collecting the generated network traffic in the format of a PCAP file. 

 

Figure 5.7. The AndroPsychology Architecture 

The first process is extracting features that include TCP related and HTTP related 

features. The Tshark command line program was used to extract 30 features. The second 

process is selecting the best features by using feature selection algorithms. This process 

is explained as experiment 2 in Section 5.3.3. 
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5.3.3 Experiment 2: Selecting Best Network-related Features 

This experiment deals with the selection of the best network-related features. Network 

traffic contains hundreds of features and protocols. It is essential to choose the appropriate 

features from those available. 

The problem of identifying applications by analysing the network traffic they generate 

has received significant attention in the literature over the past decade and a half. This is 

for the following reason. With growing adoption of traffic compression, as well as 

stronger internet privacy legislation, HTTP payloads are increasingly becoming 

inaccessible to traffic monitors (Sicker et al., 2007; White et al., 2013). consequently, 

analysis that relies on TCP/IP headers is most useful (Alan & Kaur, 2016). 

However, Android malware families have used TCP and HTTP to perform malicious 

activities. TrendMicro discovered that 400 Android applications inside Google Play were 

infected with DressCode malware. As many as 500,000 unique users downloaded 

infected applications. Successful installation enables the malware to connect to its 

command and control (C&C) servers via TCP protocol. Whenever the C&C responds 

back, an attacker can create a TCP connection between himself and the infected device. 

That link empowers the attacker to issue commands to the infected device (Duan, 2016). 

Another example is Fake Installer malware that steals information from the device, and 

sends it to a specific server. The communications with the external server are transmitted 

over HTTP. This includes some commands that are sent to the infected device in order to 

steal specific information (TrustGo, 2012). 

The aforementioned malware families are small examples from hundreds of Android 

malware that use TCP and HTTP as communication channels between devices and 

attackers. Among related research works, some have used HTTP, while others have used 

TCP. Table 5.10 lists related works and shows whether they analysed TCP or HTTP. 
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Table 5.10. Comparison of Different Approaches in Related Works 

Reference TCP HTTP Reference TCP HTTP 

(Shabtai et al., 2012) √ - (Arora et al., 2014) √ - 

(Dai et al., 2013) - √ (Conti et al., 2015) √ - 

(Tongaonkar et al., 2013) - √ (X. Wu et al., 2015) - √ 

(Shabtai et al., 2014) √ - (Aresu et al., 2015) - √ 

(Narudin et al., 2016) √ √ This study √ √ 

 

Table 5.10 shows that except one work, others selected TCP or HTTP, which is not 

comprehensive. Narudin et al. selected both TCP and HTTP; however, their experiment 

was done on a MalGenome data sample with 1,260 applications (Narudin et al., 2016). 

This work analyses TCP and HTTP of 50,000 applications. Thus, the focus of this study 

is on TCP and HTTP protocols for malware detection. 

As mentioned previously, the collection of network traffic was performed using 50,000 

clean applications and 50,000 malware samples gathered from AndroZoo. With the help 

of Wireshark documentation14, 30 features are selected and presented in Table 5.11. 

Features begin with TCP or HTTP, which represents their respective category. In 

addition, the table assigns a number to each feature, which is used in the following section 

to show the results of feature selection algorithms. 

 

                                                 

14 https://www.wireshark.org/docs/dfref/ 
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Table 5.11. Extracted Network-related Features 

1 tcp.analysis.bytes_in_flight 16 http.content_length 

2 tcp.analysis.keep_alive 17 http.leading_crlf 

3 tcp.analysis.keep_alive_ack 18 http.next_request_in 

4 tcp.analysis.push_bytes_sent 19 http.next_response_in 

5 tcp.analysis.retransmission 20 http.prev_request_in 

6 tcp.checksum.status 21 http.prev_response_in 

7 tcp.dstport 22 http.proxy_connect_port 

8 tcp.hdr_len 23 http.request_in 

9 tcp.len 24 http.request_number 

10 tcp.options.rvbd.trpy.dst.port 25 http.response.code 

11 tcp.port 26 http.response_in 

12 tcp.window_size 27 http.response_number 

13 http.chat 28 http.ssl_port 

14 http.chunk_size 29 http.subdissector_failed 

15 http.chunkd_and_length 30 http.te_and_length 

In total, there are 18 HTTP and 12 TCP features. The next section describes feature 

selection algorithms. 

5.3.3.1 Feature Selection Algorithms 

Researchers have been using several feature selection algorithms for years. Section 2.4.1 

mentioned the benefits of feature selection, such as reducing the dimensionality of 

databases, saving time and cost of experiments, and yielding more accurate results by 

removing noisy data. Such benefits also apply in choosing network-related features. 

There are two main types of feature selection mechanisms, known as filter approach and 

wrapper approach. Filter approaches use an evaluation function that relies only on the 

properties of the data. Wrapper approaches use learning algorithms to estimate the value 

of a given subset. In the former, the measure of significance or relevance is defined 

independently of the learning algorithm, while in the latter, the measure of significance 
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is directly defined from the learning algorithm. In this study, we focus on the ranker-

based filter technique, as there is more advantage in using the filter approach as compared 

to that of the wrapper approach (Kojadinovic & Wottka, 2000). The filter method is fast 

and simple, which makes it more suitable for high dimensional data (L. Yu & Liu, 2003) 

than wrapper methods, because when the dimensionality becomes very large, the filter 

method has lesser computational time complexity. Therefore, we chose four algorithms 

for this experiment, namely correlation-based feature selection, symmetrical uncertainty, 

information gain, and relief algorithms. 

A correlation-based algorithm evaluates the worth of an attribute by measuring the 

correlation between it and the class. Nominal attributes are considered on a value by value 

basis by treating each value as an indicator. An overall correlation for a nominal attribute 

is arrived at via a weighted average. So, an indicator for the value of a nominal attribute 

is a numeric binary attribute that takes on the value of 1 when the value occurs in an 

instance and 0 otherwise (Hall, 1999). 

Symmetrical uncertainty evaluates features individually by measuring their 

symmetrical uncertainty with respect to the class. The symmetrical uncertainty measure 

is based on the concept of entropy, which is a measure of the uncertainty of a random 

variable. The entropy of a variable 𝑋 is defined as 𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖) log2(𝑃(𝑥𝑖)). The 

amount by which the entropy of 𝑋 decreases reflects additional information about X 

provided by Y, given by 𝐻(𝑋|𝑌) =  − ∑ 𝑃(𝑦𝑖) ∑ 𝑃(𝑥𝑖|𝑦𝑗) log2(𝑃(𝑥𝑖|𝑦𝑗))𝑗𝑖 . Where 

𝑃(𝑥𝑖) is the prior probabilities for all values of 𝑋 and 𝑃(𝑥𝑖|𝑦𝑗) is the posterior 

probabilities of 𝑋 given the values of 𝑌. 

The values of symmetrical uncertainty are within the range of [0,1] with the value 1, 

indicating that knowledge of either one of the values completely predicts the value of the 

other, and the value 0, indicating that 𝑋 and 𝑌 are independent. The symmetrical 
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uncertainty value has two main functions: (1) to remove the features with symmetrical 

uncertainty below the threshold and (2) to calculate every feature’s weight that is to be 

used to guide the initialization of the population for genetic algorithms in a memetic 

framework. The feature with larger symmetrical uncertainty value gets a higher weight. 

The feature with the lower symmetrical uncertainty value is removed (Senthamarai 

Kannan & Ramaraj, 2010). 

Information gain also uses entropy to select the best features. It measures the amount of 

information about class prediction in bits, if the only information available is the presence 

of a feature and the corresponding class distribution. Concretely, it measures the expected 

reduction in entropy, which is the uncertainty associated with a random feature. 

A relief algorithm selects relevant features using a statistical method. Relief does not 

depend on heuristics; it is accurate even if features interact, and it is noise-tolerant. It 

requires only linear time in the number of given features and the number of training 

instances, regardless of the target concept’s complexity. It randomly samples a given 

number of instances from the training set and updates the relevance estimation of each 

feature based on the difference between the selected instance and the two nearest 

instances of the same and opposite classes. Moreover, it evaluates the worth of an attribute 

by repeatedly sampling an instance and considering the value of the given attribute for 

the nearest instance of the same and different classes. 

5.3.3.2 Results and Discussion 

The results of applying the algorithms on sets of features are tabulated in Table 5.12, 

which shows the feature number and the weight for each algorithm. Weight is result of 

feature selection algorithms and ranges from 0 (lowest score) to 1 (highest score). 
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Table 5.12. Results of Network-related Feature Selection Algorithms 

Info Gain Correlation Relief Symmetrical 

Feature Weight Feature Weight Feature Weight Feature Weight 

11 0.232647 13 0.19405 9 0.012695531637 12 0.10994 

12 0.211327 4 0.14945 11 0.01137271429 7 0.10994 

7 0.211327 9 0.13003 7 0.0086361702 11 0.10809 

13 0.042779 1 0.09362 12 0.0086361702 1 0.04743 

1 0.033345 6 0.0815 1 0.00761390791 4 0.0445 

4 0.028688 20 0.06425 13 0.00573305723 13 0.04052 

9 0.020678 21 0.04955 14 0.005380952380 9 0.03103 

16 0.0138 8 0.04225 25 0.005356671381 16 0.02603 

25 0.006304 29 0.03155 4 0.004432393299 25 0.0156 

6 0.005549 23 0.03132 5 0.004095238095 6 0.00945 

8 0.005549 30 0.02635 23 0.003850767085 8 0.00945 

20 0.002463 26 0.0258 26 0.0032215935879 20 0.00675 

21 0.001686 11 0.02501 30 0.002761904761 21 0.00468 

29 0.001344 14 0.02236 15 0.001732442181 29 0.00358 

30 0.000896 16 0.022 29 0.001666666666 30 0.00242 

17 0 27 0.01777 24 0.001166067342 17 0 

28 0 25 0.01745 16 0.000805223125 28 0 

5 0 24 0.01743 27 0.000652023809 5 0 

3 0 15 0.01717 8 0.0002404761904 3 0 

26 0 7 0.0158 21 0.000061723602 26 0 

2 0 12 0.0158 28 0.0000367857142 2 0 

27 0 5 0.01527 20 0.0000291005291 27 0 

24 0 28 0.00837 6 0 24 0 

14 0 22 0.00812 10 0 14 0 

19 0 17 0.0076 2 0 19 0 

18 0 2 0 19 0 18 0 

22 0 3 0 18 0 22 0 

23 0 19 0 3 0 23 0 

10 0 18 0 17 -0.00000000 10 0 

15 0 10 0 22 -0.000071428 15 0 
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Based on the results, we select the top 10 features of each algorithm for our analysis. A 

closer look at the results reveals that some features are repeated in the results of all four 

algorithms. For example, feature number 13, which is http.chat, is among the top 10 

features in all algorithms. This repetition qualifies this feature for inclusion in the final 

selected dataset. The 10 chosen features based on the number of repetitions are shown in 

Table 5.13. 

Table 5.13. Top 10 Features for Final Dataset 

Rank 
Feature 

number 
Feature Rank 

Feature 

number 
Feature 

1 13 http.chat 6 11 tcp.port 

2 1 tcp.analysis.bytes_in_flight 7 12 tcp.window_size 

3 4 tcp.analysis.push_bytes_sent 8 7 tcp.dstport 

4 9 tcp.len 9 6 tcp.checksum.status 

5 25 http.response.code 10 16 http.content_length 

Reducing the dimensionality of the dataset (from 30 to 10 features), enables us to analyse 

each feature more thoroughly. Such analysis ensures that the distribution of data is 

appropriate for classification algorithms. For instance, features with zero values 

throughout are not suitable for classification purpose, as they mislead algorithms. Figure 

5.8 shows the distribution of data in each of the top 10 features. It is worth noting that the 

x-axis in all figures represents the data in the dataset. Moreover, the y-axis shows the 

range of data in that particular feature. 
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Figure 5.8. Data Distribution of Top 10 Network-related Features 
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As can be seen from Figure 5.8, the data of http.response.code feature are not distributed. 

In fact, the data focus on 0, 200, and 400. Although the algorithms select this feature as 

one of the best, it has the potential of confusing machine learning algorithms. The same 

situation is true for tcp.checksum.status, where data are concentrated around 0 and 2. This 

analysis is useful when analysing the effect of each feature in Section 5.3.4.2(c). 
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5.3.4 Experiment 3: Evaluating Deep Learning Classifiers 

The previous experiment selected the top 10 features in network traffic on Android 

applications. The purpose of this experiment is to evaluate popular deep learning 

algorithms in mobile malware detection. The deep learning scheme has recently received 

particularly much attention. These methods have dramatically improved the state-of-the-

art in speech recognition, visual object recognition, object detection, drug discovery, 

genomics, and many other domains. Deep learning discovers intricate structures in large 

data sets by using the backpropagation algorithm to indicate how a machine should 

change the internal parameters used to compute an outcome. However, it is essential to 

investigate the performance of deep learning in mobile malware detection. To the best of 

our knowledge, this is a gap in the current literature.  

5.3.4.1 Deep Learning Algorithms 

In this study, we evaluate the performance of deep neural networks (DNN) and long short-

term memory (LSTM). The LSTM is a type of recurrent neural network (RNN) that is 

discussed in the following sections. 

The concept of neural networks and deep neural networks has been around since the 

1980s. DNNs have recently become popular for two reasons, i.e. today’s growing 

computing power and the dramatic increase in the amount of data and appearance of big 

data (Hashem et al., 2015). These reasons are compelling enough to revisit the concept of 

DNNs (LeCun et al., 2015). 

A DNN consists of three basic layers, an input layer, a hidden layer, and an output layer. 

The difference between neural networks and DNNs is the number of hidden layers; two 

hidden layers and more are considered a deep network. A basic neural network consists 

of a fundamental unit called a neuron. Every neuron accepts input values and is given a 

weight. The neuron computes some functions on the weighted inputs to produce output. 
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The output of the neuron is transmitted as inputs to the next neuron. Connection of 

neurons form a network that is called neural network, as shown in Figure 5.9. 

 

Figure 5.9. Representation of a Neural Network 

The first step in a neural network is the forward propagation in which the inputs are 

propagated across the layers. In addition, the network predicts the output based on inputs. 

Based on the explanations, the following functions are defined in the forward 

propagation. 

𝑧1 = 𝑥𝑊1 + 𝑏1 

𝑎1 = tanh(𝑧1) 

𝑧2 = 𝑎1𝑊2 + 𝑏2 

𝑦2 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧2) 

The equations 𝑧1 and 𝑧2 are functions that take 𝑥 as input and use 𝑊 and 𝑏 as weight and 

bias respectively. The 𝑡𝑎𝑛ℎ is an activation function that takes 𝑧1 as input and passes the 

result to the next layer. In the output layer, the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is used to calculate 𝑦2 

that is the prediction of the neural network. 

Input Layer

Hidden Layer

Output Layer

1z

1a

2z

2y

x

Univ
ers

ity
 of

 M
ala

ya



107 

The next phase is backpropagation, where the actual learning happens. It involves two 

steps: calculating the loss, and performing optimization. The loss is calculated by 

comparing the predicted output (𝑦2) with the actual value of data. Then, the purpose of 

the optimization function is to minimise the loss function by adjusting 𝑊 and 𝑏 (LeCun 

et al., 2015). As mentioned earlier, a DNN has the same structure as a neural network, but 

has two or more hidden layers. 

A RNN is a new type of neural network that considers sequential information. In a 

traditional neural network, it is assumed that all inputs and outputs are independent of 

each other. Nevertheless, for many real-world problems that is not the case. RNNs are 

called recurrent because they perform the same task for every element of a sequence, with 

the output being dependent on the previous computations. Another way to think about 

RNNs is that they have a memory, which captures information about what has been 

calculated so far. They are capable of looking back only a few steps. Figure 5.10 shows 

the structure of a RNN graph. 

 
Figure 5.10. A Recurrent Neural Network 

The 𝑥, 𝑠, and 𝑜 represent input, hidden, and output layers respectively. The 𝑈, 𝑉, and 𝑊 

are parameters or the weights that need to be adjusted during training. The difference 

between the traditional neural network and the RNN is an additional input of 𝑠𝑡−1 that is 

fed into the hidden layer 𝑠𝑡. Basically, the RNN considers previous steps in its hidden 
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layer computation, thus it considers sequential information rather than only one piece of 

data at a time. 

A popular variant of RNN is called long short-term memory (LSTM). It was first 

introduced in 1997 by Sepp Hochrieiter and Jürgen Schmidhuber. LSTMs are capable of 

bridging time intervals in excess of 1000 time steps15 even in case of noisy, 

incompressible input sequences, without loss of short time lag capabilities (Hochreiter et 

al., 2001). The architecture enforces a constant error flow through the internal states of a 

special unit known as the memory cell. 

There are three gates to the cell: the forget gate, input gate, and output gate. These gates 

are sigmoid functions that determine how much information to pass or block from the 

cell. Sigmoid functions take in values and output them in the range of [0,1]. In terms of 

acting as a gate, a value of 0 means letting nothing through, and a value of 1 means letting 

everything through. These gates have their own weights that are adjusted via gradient 

descent in the training phase. 

 

Figure 5.11. The Hidden Layer of LSTM (Mikami, 2016) 

                                                 

15 Time step is the number of previous results that the algorithm can remember. 
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In the equations listed under the forget gate, input gate, and output gate in the diagram, 

ℎ𝑡−1 is the previous hidden state, 𝑥𝑡 is the current input, 𝑊 is the weight matrix, and 𝑏 is 

the bias. The first step is the forget gate, in which the sigmoid function outputs a value 

ranging from 0 to 1 to determine how much information of the previous hidden state and 

current input it should retain. Forget gates are necessary for the performance of LSTM, 

because the network does not necessarily need to remember everything that has happened 

in the past. 

The next step involves two parts. First, the input gate determines what new information 

to store in the memory cell. Next, a tanh layer creates a vector of new candidate values to 

be added to the state. 

To determine what to output from the memory cell, we again apply the sigmoid function 

to the previous hidden state and current input, then multiply that with tanh applied to the 

new memory cell (this will establish the values between -1 and 1). 

The extra complications with the gates may make it difficult to see exactly why the LSTM 

is better than RNN. The LSTM has an actual memory built into the architecture, which is 

lacking in RNN. We update the cell memory by adding new information, highlighted with 

a green star in diagram 5.11, which makes the LSTM maintain a constant error when it 

must be backpropagated at depth. Instead of determining the subsequent cell state by 

multiplying its current state with the new input, the addition prevents the gradient from 

exploding or vanishing. However, we still have to multiply the forget gate to the memory 

cell. 

5.3.4.2 Results 

This section presents the results of an experiment on deep learning classifiers. The 

experiment was performed on a desktop PC, with Intel Core i5-2400 at 3.10 GHz and 20 
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GB of RAM, running Microsoft Windows 10 with the latest updates. Python 2.7 and 

TensorFlow were also installed on the machine. Depending on the extent of our 

experiments, we either performed them on the PC or on the Google Cloud ML platform. 

This section is divided into three parts: preliminary results, the effect of hyperparameter 

optimization, and the effect of features. 

Since this experiment is continuation of pervious one, the same dataset is used, which is 

a list of selected features. For this experiment, we divided the data into training and testing 

set with ratio of 70% to 30% respectively. The evaluation results are presented by using 

two common metrics. Accuracy is a ratio of all correct predictions made by an algorithm. 

Logarithmic loss (or loss) is a performance metric for evaluating the predictions of 

probabilities of membership to a given class. The scalar probability between 0 and 1 can 

be seen as a measure of confidence for a prediction by an algorithm. Predictions that are 

correct or incorrect are rewarded or punished proportionally to the confidence of the 

prediction. 

(a) Preliminary Results 

This section reports the results of the experiments using DNN and LSTM algorithms. The 

experiments used the top 10 features and default settings of the algorithms. The purpose 

of these experiments was to observe the performance of DNN and LSTM as a baseline, 

without tweaking any algorithms. Table 5.14 shows the results of the experiments. 

Table 5.14. Preliminary Results of DNN and LSTM 

 Accuracy Loss 

Deep Neural Network (DNN) 80.93% 0.18 

Long Short-term Memory (LSTM) 81.96% 0.13 
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The above results show that LSTM performed better than DNN, with an accuracy of 

81.96%. It means that out of all predictions made by the algorithm, 81.96% was correct. 

The results also show that the LSTM performed better than DNN, as expected. It is due 

to its neurons’ architecture that can memorize data. It makes predictions based on current 

and previous data. 

(b) The Effect of Hyperparameter Optimization 

In the previous section we mentioned that internal parameters are adjusted during training. 

There are two types of parameters, those that are adjusted during training, and those that 

can be tuned by us. In this section the effects of the latter type of parameters (known as 

hyperparameters) are thoroughly investigated. 

The process of finding a set of hyperparameter values that gives us the best model is 

called hyperparameter optimization. Epoch (or global step as referred to in Figure 5.11) 

is the number of iterations that the training dataset shows to an algorithm during training. 

Batch size is another parameter that is optimized. It is a number of data inputs to show to 

the algorithm during the training process, based on which weight is updated internally. 

Some algorithms such as LSTM are sensitive to the batch size (Bergstra & Bengio, 2012). 

An optimizer (discussed in Section 5.3.4.1) is another parameter that can be tuned for 

better output. 

Table 5.15 shows the results of parameter optimization for epoch and batch size for DNN 

and LSTM algorithms. Epochs of 10, 50, 100, 500, and 1000 were evaluated. 

Additionally, batch sizes of 10, 20, 40, 60, 80, and 100 were tested. The accuracy for the 

combination of epoch and batch size is available in Table 5.15. Based on the results, an 

epoch of 50 and batch size of 20 achieved an accuracy of 81.2857%, which is higher than 

the other configurations for DNN algorithms. Similarly, an epoch of 50 and batch size of  
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Table 5.15. Results of Hyperparameter Optimization for Epoch and Batch Size 

DNN LSTM 

Accuracy 

(%) 

Number of 

Epochs 

Batch 

Size 

Accuracy 

(%) 

Number of 

Epochs 

Batch 

Size 

72.2857 10 10 80.4286 10 10 

43.8333 50 10 82.5952 50 10 

45.8571 100 10 80.9762 100 10 

72.8571 500 10 81.0714 500 10 

55.5 1000 10 80.9286 1000 10 

80.5476 10 20 80.6667 10 20 

81.2857 50 20 80.9286 50 20 

27.8333 100 20 81.381 100 20 

72.0238 500 20 81.3571 500 20 

71.0952 1000 20 81.7143 1000 20 

53.5714 10 40 80.5476 10 40 

55.0476 50 40 80.9762 50 40 

53.6905 100 40 80.9286 100 40 

54.7381 500 40 81.4524 500 40 

63.9048 1000 40 81.6429 1000 40 

77.6667 10 60 72.0476 10 60 

71.3333 50 60 80.8095 50 60 

53.7381 100 60 82.0952 100 60 

72.7857 500 60 81.5952 500 60 

53.0952 1000 60 80.8333 1000 60 

53.3333 10 80 57.619 10 80 

62.4762 50 80 80.9048 50 80 

54.5238 100 80 81.1429 100 80 

62.8333 500 80 81.4762 500 80 

35.9762 1000 80 81.5238 1000 80 

64.2857 10 100 61.0238 10 100 

45.5714 50 100 81.4524 50 100 

54.2619 100 100 80.7857 100 100 

54.6667 500 100 80.9762 500 100 

44.9048 1000 100 81 1000 100 
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10 achieved 82.5952%; that is the best result compared to the other configurations for 

LSTM algorithms. 

Moreover, we evaluate different optimizers for DNN and LSTM algorithms to identify 

the best one for each algorithm. Specifically, SGD, RMSprop, adagrad, adadelts, adam, 

adamax, and nadam optimizers are tested. The results are shown in Table 5.16. For DNN 

algorithms, the adam optimizer achieved the best result with an accuracy of 80.9286%. 

Similarly, the nadam optimizer achieved 82.6429% accuracy for the LSTM algorithm. It 

is deduced that running DNN and LSTM algorithms on our data using adam and nadam, 

respectively, results in the best performance. 

Table 5.16. Results of Hyperparameter Optimization for Optimizers 

DNN LSTM 

Accuracy (%) Optimizer Accuracy (%) Optimizer 

27.8333 SGD 80.4048 SGD 

61.9048 RMSprop 80.9286 RMSprop 

51.3095 Adagrad 81.4762 Adagrad 

80.9048 Adadelta 81.5238 Adadelta 

80.9286 Adam 81.0238 Adam 

65.5952 Adamax 81 Adamax 

80.0238 Nadam 82.6429 Nadam 

 

(c) Effect of Features 

In this study, 10 network-related features were selected. It is often asked how to know if 

10 is the optimum number of features that yield the best results. It is also asked if each 

feature has positive effect of the results. In this section, we explore the effect of the 

selected features on the final results. As the previous results of the LSTM were higher 

than for DNN, the former algorithm is used in this section. Furthermore, this experiment 
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utilizes the optimized values of hyperparameters obtained from the previous section. 

Table 5.17 shows the results of this experiment. 

Table 5.17. Results of Effects of Number of Features Experiment 

Number of Features 
Accuracy 

(%) 
Loss 

10 81.96 0.13 

9 57.91 28.96 

8 83.81 0.1308 

7 83.93 0.1386 

6 82.37 0.1405 

5 82.55 0.1409 

4 80.05 0.1645 

3 80.98 0.1516 

2 93.06 0.0694 

It is worth noting that order of the features corresponds to Table 5.13. Based on Table 

5.17, choosing ten features results in 81.96% of accuracy. This accuracy drops to 57.91% 

using nine features, and increases to 83.81% for eight features. It is believed that the ninth 

feature (tcp.checksum.status) introduces noise to data, removing of which results in 

increase in results (83.81%). It is also believed that having a tenth feature 

(http.content_length) in the dataset masks the noisiness of the ninth feature. When using 

seven to three features, the results range between 80.05% and 83.93%. Experiments using 

two features (http.chat, tcp.analysis.bytes_in_flight) show that they achieve 93.06% 

accuracy, which is the best result among the experiments.  

Although two features result in the best achieved accuracy, they are most effective among 

10 selected features. tcp.analysis.bytes_in_flight shows amount of data that has been sent, 

which indicate the data sent from a device to a server. A malware leaks user’s data to 
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attacker, and this feature represents the leaked data. However, normal applications also 

send data to a server. Another feature (http.chat) is combined with 

tcp.analysis.bytes_in_flight to help differentiate malware from normal. This feature is a 

label that shows availability of back and forth transmission between the device and a 

server. The combination of these two features along with capability of machine learning 

to learn patterns in data, make the two features more effective than others. 

As mentioned earlier, accuracy and loss are two measures that are calculated for the 

LSTM algorithm. Figure 5.12 shows the accuracy of the LSTM during the experiment. 

The experiment has 50 epochs that are shown as x-axis, and the y-axis represents the 

corresponding accuracy value for each epoch. 

 
Figure 5.12. The Accuracy Result of LSTM 

It is visible that the accuracy is increasing throughout the experiment, showing that the 

algorithm is learning to produce results that are more accurate. Figure 5.13 shows the loss 

during the experiment. 
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Figure 5.13. The “Loss” Result of LSTM 

Figure 5.13 shows that as the results increase, the loss is decreasing. This means that the 

algorithm is adjusting its internal parameters to produce results that are less incorrect. The 

x-axis represents the number of epochs, which is 50 in this experiment. Similarly, the      

y-axis shows the loss in value for each epoch. Figure 5.14 depicts values of weight in 

each layer of the LSTM algorithm. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.14. The Values of Weight in Four Layers During LSTM Experiment 
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The LSTM algorithm adjusts its weight parameters as it learns the data during the training 

phase. Figure 5.14 shows variations of the weight parameter in four layers of the LSTM. 

The x-axis is that value of the weight in each layer, and the y-axis is the epoch in the 

experiment. The represented graph is a histogram chart, showing the distributions of the 

values in each layer. Generally, the darker, more central, bands have more values in that 

range while the lighter, wider bands have fewer values. It is beneficial to think of each 

band as a bin in a regular histogram chart, the darker bands are the taller bins, etc. The 

difference is that the TensorFlow draw the histograms over time. 

It is beneficial to compare the results to other related works. Zhu et al. performed taint 

analysis on Android APK files, which analyses leak data and finds the methods the 

attackers use to access them. This type of analysis can easily be bypassed by attackers 

using obfuscation method. The authors chose deep belief networks to conduct their 

experiment. Their dataset contains 3,000 benign applications and 8,000 malicious 

applications. The final results show 95.05% of detection score (Zhu et al., 2017). 

Yu et al. used permissions and system calls to build a neural network. They constructed 

feed forward network and recurrent network as chosen types for neural network (W. Yu 

et al., 2014). They evaluated their system using 96 benign applications and 92 malware 

applications. Although the achieved results seem to have achieved high score of 95%, 

their evaluation was performed on very small dataset as opposed to 100,000 samples in 

this work. As size of dataset increases, the final system can be generalized to wider types 

of application and detect broader types of malware. 

Martinelli et al. chose convolutional neural network to conduct their experiment. This 

type of neural network is best suited for image and video classification due to the layers’ 

structure, however, the authors decided to use it in their experiment. They collected 

features pertaining to UI interactions and system events, such as touches, gestures, 
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reception of SMS, incoming call, etc. They used Monkey program to mimic user’s 

interaction with the device, which is not as accurate as the real user. The experiment 

results show precision of 75% and 80% for UI interaction and system events respectively 

(Martinelli et al., 2017). 

Xiao et al. used system calls for analysing Android applications. They claim that 

considering there is some semantic information in system call sequences as the natural 

language, they treat one system call sequence as a sentence in the language and construct 

a classifier based on the Long Short-Term Memory (LSTM) language model. However, 

not all Android system calls can be treated as a sentence in natural language, such as 

closehandle. The experiments show that this approach can achieve recall of 96.6% (Xiao 

et al., 2017). 

Overall, the mentioned works merely used deep neural networks and output the results. 

However, the neural network algorithms consist of many parameters that can be tuned, 

which results in better outcome. In this work, we dedicated a sub-section for 

hyperparameters optimization to find out the optimum value for each parameter. 

Additionally, our data sample of 100,000 Android applications is much larger than other 

works that translates to having more generalized and accurate results. 

5.3.5 Conclusion 

Experiments 2 and 3 were related to dynamic analysis. In Experiment 2, we extracted 30 

features from network traffic of Android applications. Then, using four algorithms, the 

top 10 features were selected. The selected features were used in experiment 3 to evaluate 

the performance of deep learning algorithms (DNN and LSTM). At the end, the results 

show an accuracy of 93.06% and a loss of 0.0694, which reveals that network traffic is 

an effective feature in malware detection.  
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At this stage, we have proposed and evaluated the framework (DroidProtect) that fulfils 

the objectives b and c (Section 1.4). 
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5.4 Experiment 4: Evaluation of Energy Consumption 

As mentioned in Section 1.4, the main objective of this study (objective d) is to propose 

a malware analysis and detection system that minimises energy consumption. The 

purpose of this experiment is to serve that objective by measuring the energy usage of the 

developed prototype and compare it with the energy consumption of other available 

similar products. 

5.4.1 Energy Consumption Fundamentals 

Section 3.4 mentioned the definition of energy profilers, and discussed the evolution of 

such products. In this section, we will further explore the basics of measuring energy 

consumption. 

The first topic is the difference between energy and power. The former denotes the 

capacity of a system to perform work. The latter is the rate of energy consumption that is 

how much work the system is doing. This concept is clearer with an analogy involving 

water. Power is gallons per minute, which goes to zero if the usage stops. Energy, 

however, is the total gallons used, and does not go to zero if the usage stops. Thus, we are 

looking to measure the total energy consumed by our application. 

The unit for energy is joule (𝐽) defined as the amount of energy required to continuously 

produce one watt for one second (𝑊𝑠). The unit for power is watt (𝑊) defined as one 

joule per second (
𝐽

𝑆
). Therefore, the relationship between energy and power is defined as 

in equation 𝐸(𝑗) =  𝑃(𝑤) ×  𝑡(𝑠), where the unit for power is watt and the unit for time is 

seconds. 

The second topic relates to the methodology of calculating energy consumption. As 

mentioned in Section 3.4, this study employs AppScope and PowerTutor for calculating 

consumption. Simply put, these frameworks calculate energy consumption based on a 
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power model. That model is generated either off-device for various devices, by the 

developer, or is generated on-device by observing the device’s consumption pattern. The 

research community has adopted both frameworks (Barbera et al., 2013; Chang et al., 

2011; X. Chen et al., 2013; Saipullah et al., 2012). 

PowerTutor is developed based on PowerBooter, which is an automated power model 

creation technique that uses on-device voltage sensors and battery discharge curves based 

on the Rint model to estimate power consumption (L. Zhang et al., 2010). The power 

consumption is then correlated with individual components using regression. The system 

does not require external measurement equipment; however, a smartphone-specific 

discharge curve is needed. The new idea of PowerBooter was to use battery-state-based 

power model generation. This involves keeping smartphone components in specific 

power states so that their power consumption can be determined through the change in 

the battery’s state of discharge (SOD) using a voltage sensor. This change can be used to 

estimate the average power draw. When the component-specific average power draw is 

known, it is possible to derive the power model using regression. 

 

Figure 5.15. Overview of the PowerBooter Model 

Figure 5.15 illustrates the key phases of PowerBooter. In the first step, the battery 

discharge curve for the phone is constructed. The discharge curve varies from phone to 

phone due to differences in battery type, age, temperature, and operating parameters. The 
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discharge curve can be obtained online and on-device by observing the constant discharge 

behaviour from a fully charged state. In the second step, the power consumption is 

determined for each component state. The state of a component is varied while keeping 

the rest of the system in a static configuration. The battery voltage is recorded at the 

beginning and end of a discharge interval. The voltage is measured for 1 minute and the 

battery is discharged for 15 minutes between the component voltage measurements. In 

the third step, regression is used to create the power model. The battery voltage 

differences for each discharge interval are used to determine the average power draw of 

the 15-minute intervals. Regression is then used to create the power model based on the 

component average power draw estimates. 

AppScope uses the DevScope power model to estimate energy consumption. DevScope 

(Jung et al., 2012) is an example of an energy profiler that uses a smart battery interface 

to generate an on-device dynamic linear regression-based power model. The DevScope 

authors observed that the smart battery interface has a low update rate. They proposed a 

synchronisation technique between the update rate and component-specific control. The 

profiler works by probing the OS to obtain information about the components and the 

configuration, such as the CPU details. The profiler also examines the smart battery 

interface and determines the update rate of the battery interface. 

Similar to PowerBooter and Sesame, the profiler then creates a component control 

scenario for power analysis for the specific smartphone. The control scenario is then run 

and DevScope first classifies the data to the terms of the power model and then analyses 

the classified data to update the power coefficients of the regression model. For example, 

each CPU frequency is tested with zero and maximum use, to derive the information 

needed for the CPU model. To alleviate the slow update rate of the smart battery interface, 

DevScope synchronises the smart battery update events with the component tests. This 
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contrasts with Sesame’s solution of averaging battery readings for higher accuracy at a 

slower rate. DevScope also tries to recognize power-state transitions; however, this 

requires knowledge of the power-state durations and the battery update interval. 

Automatic detection of power-state transitions is difficult, because the state transitions 

are governed by the workload and the operating conditions. During component testing, 

DevScope repeatedly uses different workload sizes to determine the threshold size that 

results in a power-state change. This technique is applied for cellular and Wi-Fi 

connections to determine the wireless network parameters and power state details. 

5.4.2 Results and Discussion 

This work aims at proposing mobile malware analysis and detection methods that 

consume less energy compared to similar products. Thus, this experiment serves that 

purpose. The results are presented as follows. First, the energy consumption of a number 

of normal applications is calculated in order to establish a baseline of how much energy 

is consumed by applications that are used every day. 

Second, we show how much energy our framework (DroidProtect) consumes when it is 

implemented using a local approach (refer to Section 2.4.4.1), which is running the 

analysis and detection on the device. Third, the amount of consumed energy is calculated 

when implementing the DroidProtect using the offloading method (refer to Section 

2.4.4.2). The objective is to show that the offloading method consumes less energy than 

the local method. We have mentioned benefits of offloading in Section 4.3.1. It is 

beneficial to prove that practically. Fourth, the energy consumption of similar products is 

calculated and the results are compared to the previous experiments, to see whether this 

study achieved its objectives. It is worth noting that the screen brightness of the device 

was set to 50% during the following experiments. 
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Table 5.18 shows the energy consumption of normal applications during 10 minutes of 

usage. Four popular applications were measured that were selected from four categories 

of popular activities, i.e. multimedia, games, social networking and messaging. It is worth 

mentioning that the usage of these applications was medium, such as watching video with 

480p resolution on YouTube, checking news feed on Facebook, etc. 

Table 5.18. Energy Consumption (in Joules) of Three Popular Applications During 

10 Minutes Usage 

Application CPU Communications Display Total 

YouTube 30.11 12.59 508.90 551.59 

MX Moto 129.24 5.75 509.54 644.52 

Facebook 137.76 27.42 471.42 637.27 

WhatsApp 39.8 24.1 458.7 522.6 

The calculations were performed in the form of several time series, each one associated 

with a component of the device, namely CPU, Wi-Fi or cellular communications, and 

display. Table 5.19 shows the results of the energy consumption test of the DroidProtect 

when analysing one application. The test was performed on the application with the size 

of 1.3 MB. The analysis took around two minutes for each type of analysis. The estimated 

consumption during 10 minutes is shown in parenthesis inside Table 5.19. 

Table 5.19. The Results of Energy Consumption Test for DroidProtect (Joules) 

 Local Offloading 

 CPU C D Total CPU C D Total 

Static Analysis 18.7 - 49.4 68.1 

(340.5) 

14.6 1.0 28.1 43.7 

(218.5) 

Dynamic Analysis 5.3 - 27.1 32.4 

(162) 

1.6 1.1 21.6 24.3 

(121.5) 

C = communications, D = display 

As can be seen from Table 5.19, the experiment was performed using local and offloading 

approaches. Thus, the difference between the two approaches is visible. In the static 
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analysis, the local approach consumed 68.1 Joules while the offloading approach 

consumed 43.7 Joules. As the detection process (the use of machine learning) is 

performed on the device in the local approach, it is expected to consume more energy 

than the offloading approach. 

The dynamic analysis consumed 32.4 Joules using the local approach while it used 24.3 

Joules using the offloading approach. The same rationale is also applicable here, namely 

that as the detection is performed on the device, the energy consumption is higher. 

Another outcome of this experiment derives from comparing the static and dynamic 

analysis. Choosing either local or offloading methods reveals that the static analysis used 

more energy than the dynamic analysis. It is believed that since the static analysis involves 

decompiling the DEX file to Java, it consumes more energy than observing and collecting 

network traffic (dynamic analysis). 

It is also inferred that the offloading method consumes energy to send the collected 

features to servers, which does not occur in the local approach. Despite that there is an 

additional component drawing energy in the offloading method, the overall process 

consumes less energy compared to the local approach. 

Next, we mention energy consumption of similar security applications. As mentioned in 

Section 1.3, Polakis et al. analysed a number of security applications with regard to their 

energy consumption. Their results are presented in Figure 5.16 for AVG, Dr. Web, 

Sophos, Avast, Norton, and NQ. It shows that NQ uses the least and Dr. Web uses the 

most energy among the applications. The results are presented based on millijoules per 

second, while we calculated Joules per ten minutes in the previous experiments. It is 

estimated that NQ uses 3,600 Joules and Dr. Web uses 28,800 Joules in ten minutes (refer 

to Section 1.3). 
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Figure 5.16. The Results of Energy Consumption Test for Security Applications 

(Polakis et al., 2015) 

The comparison between the DroidProtect and the similar security applications shows 

that the DroidProtect consumes less energy. Considering 10 minutes of usage, while NQ 

uses 3,600 Joules energy, our proposed framework uses 121.5 Joules. The comparison 

was made between the least consumed energy in our work and similar products. 

Moreover, the comparison between normal applications and this study shows that the 

DroidProtect uses less energy. 
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5.5 Summary 

The purpose of this chapter was to evaluate the proposed framework. It started by 

evaluating a static analysis of Android Intent using real-world applications. This was 

followed by a dynamic analysis of network traffic, including choosing the best network-

related features and evaluating deep learning algorithms. The next experiment was related 

to energy consumption of the proposed framework, which fulfils the objectives of this 

study. 

The next chapter implements the proposed framework to show how it works as a 

standalone application. It also discusses an activity diagram, and includes screenshots 

from various functions of the application. 
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CHAPTER 6: A PROTOTYPE IMPLEMENTATION OF MOBILE MALWARE 

ANALYSIS AND DETECTION SYSTEM 

Following the system evaluation described in the previous chapter, this chapter presents 

the design and implementation process of a prototype of DroidProtect. This stage is 

crucial as the system is put into practice, and its various parts constitute a complete 

prototype. The implementation is divided into two sections: mobile and server. The 

mobile device section is further divided into static and dynamic sections. Each section is 

discussed in the following parts. 

Java programming language was chosen for the implementation. Android Studio and 

Eclipse were selected for developing the mobile and server section respectively. They are 

well-known integrated development environments (IDE), offering various tools for 

programming and debugging. Google App Engine was selected for developing the server 

side of this work for the following reasons: 

1) It performs better in terms of maintainability and scalability for mobile applications 

compared to Amazon EC2 and Microsoft Azure. Google App Engine automatically 

creates additional instances of the application when required due to the increase of usage 

(Jonge, 2011). 

2) Google App Engine is characterized as a software developers’ platform, whereas 

Amazon EC2 is characterized as a system administrators’ platform. Whereas software 

developers upload their code to Google App Engine and test their application, users of 

Amazon EC2 need to configure several settings to run their applications, making the 

process more complex (Jonge, 2011). 

Moreover, Google App Engine uses some security mechanisms. For instance, prior to 

uploading a file, the application first requests an upload URL. Upon receiving the upload 
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URL, the file is sent to the servers. Afterwards, the same link does not work to upload a 

new file, and a new request must be established. This mechanism prevents the upload of 

malicious files to the server. Another mechanism specifies the content type when 

uploading a file. Applications can set their own content type. Retrieving the file requires 

knowing the correct content type. Thus, the server is protected from cross-site scripting 

(XSS) attacks in which attackers can use text/html content type to gain access to files 

(Grossman, 2007). 

6.1 Activity Diagram 

Before describing each section in detail, it is beneficial to look at the process flow of this 

prototype through an activity diagram. An activity diagram describes the sequential or 

concurrent control flow between activities, and can be used to model the dynamic aspects 

of a group of objects, or the control flow of an operation. It emphasizes the activities of 

the object; hence, it is well suited to describe the realization of the operation in the design 

phase. Moreover, it describes the sequence of activities among the objects involved in the 

control flow during the implementation of an operation, the relationship between the 

activity and the object in the message flow, the state change of object in the object flow, 

and the execution of the activity (Linzhang et al., 2004). Figure 6.1 shows the activity 

diagram of DroidProtect. 
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Figure 6.1. Activity Diagram of DroidProtect 

The activity diagram includes five components, which are described as follows, based on 

the process flow of the system. 

a) Mobile interface. The process starts when the user logs into the mobile application. 

The login process is designed to be very simple and requires no registration. The user can 

log in using Google account credentials. The mobile application collects only basic data 

such as name and email address. Upon logging in, the user starts the packet capturing and 

Intent extraction processes. These processes are designed to be lightweight and not to 

interfere with the user’s activity. The user simply starts the processes and resumes 

working with other applications, as the processes are performed in the background. At 

the end, an ARFF file is produced that contains extracted features. Then this file is 

uploaded to the servers. 

b) Blobstore. Blobstore is the name of a storage space inside the Google App Engine. 

It is designed to be fast and reliable. The mobile application requests an upload URL from 

the Blobstore. After receiving the URL, the ARFF file is uploaded. Then a unique key 
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(known as blob key) for the uploaded file is sent to the mobile application. Afterwards, 

the blob key and the user’s data are sent to the server for further processing. 

c) Server. The server retrieves the ARFF file and sends it to machine learning models. 

First, the machine learning algorithms are trained, and a model is generated. Models are 

used to predict the maliciousness of the incoming data. At the end, the results are 

produced and sent to the user’s device and an SQL server. 

d) SQL server. The machine learning results are stored in the SQL database along with 

the user’s data. Hence, the results and their history can be retrieved and displayed on a 

web site. 

e) Web interface. In addition to the mobile application, we developed a web interface 

(also hosted on the App Engine), so that the results are available online. This is more 

convenient for the user to manage the detection results, and to review the history of the 

analysis and detection processes. 

6.2 Implementation of the Mobile Application 

The mobile application consists of two sub-sections, static analysis and dynamic analysis. 

The objective of this application is to collect static and dynamic data, extract features, 

and send the features to the server for analysis. Each visible page of an Android 

application is called an activity. Figure 6.2 shows the first activity of the prototype, which 

appears after launching the application. 

The first activity is designed to be very simple and intuitive. The only button is for signing 

in with the user’s Google account. The user is then asked to grant permission so that the 

application can access basic data such as name and email address, as shown in Figure 6.3. 

This allows the application to get access to basic information. 
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Figure 6.2. The First Activity of 

Mobile Application 

 

Figure 6.3. Google Asks Permission to Share 

User's Data 

Subsequently we divide the application into two sections, static analysis and dynamic 

analysis. As mentioned in Section 2.4.1.1(c), Android Intent is our choice for static 

analysis. Similarly, network traffic was selected for the dynamic analysis. 

Static analysis employs Java code to reverse the APK file to DEX file, and then to semi-

readable Java files. The former process uses smali APIs and the latter uses Jadx APIs. 

Figure 6.4(a) shows the results of conversion from APK to DEX. Figure 6.4(b) shows 

that after decompiling the DEX file, an Android folder is created. The content of this 

folder is presented in Figure 6.4(c). Figure 6.4(d) shows the content of the produced files. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.4. Screenshots of the Results of Static Analysis 
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Although the final results are not pure Java codes, it is possible to search for Android 

Intent in the code. Thus, at the end the Intent feature is extracted by searching the Java 

code. The mentioned processes are performed as a background service so that they do not 

interfere with the user’s activity. 

The dynamic analysis is similar to the static analysis. The network traffic is captured by 

the TCPDUMP program. The collected traffic is saved as a PCAP file, and Java code is 

used to extract the features. The extracted features are saved as an ARFF file. The ARFF 

file is utilized by Weka for further processing. Figure 6.5 shows the above processes. 

 

(a) 

 

(b) 

Figure 6.5. Screenshots of Dynamic Analysis Process of the Mobile Application 
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(a) 

 

(b) 

Figure 6.6. Screenshots of the Upload Process from Mobile to Servers 

Figure 6.5(a) shows the steps of the dynamic analysis section of the mobile application. 

Capturing network traffic and extracting features produces a PCAP and an ARFF file 

respectively, as shown in Figure 6.5(b). Figure 6.6(a) shows the application after 
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uploading the ARFF file in which the server returns a unique key representing the file. 

Afterwards, the key is used to refer to that specific file for analysis. Figure 6.6(b) shows 

the server side of this process, where the file is stored on the server, with the same key as 

presented on the mobile application. Figure 6.6(b) also displays the Google App Engine 

and the Blobstore section where the files are stored. 

On the server side, the static and dynamic features are integrated. Then, a prepared 

machine learning model is used to determine the maliciousness of the data. At the end, 

the results are sent back to user’s device. In addition, the results are stored on Google 

SQL server, which is part of the Google Cloud Services. 

On the SQL server, each user is identified by the email address used when logging in with 

his Google account. Thus, the email address is the primary key in the SQL server. 

Another component of this system is a website, which allows the users to check the results 

of the detection process. Users also can view their detection history. 
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6.3 Summary 

This chapter demonstrated the implementation of the proposed framework in form of a 

prototype through screenshots. In addition, the activity diagram was illustrated, and each 

of its components was discussed. 

The purpose of this chapter was to show the proposed framework as a final product. It 

helps to understand how the DroidProtect and its components work. Due to time 

constraints, it was not possible to show every detail of the DroidProtect. Achievements, 

limitations, and suggestions for future works are discussed in the next chapter. 
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CHAPTER 7: CONCLUSION 

This chapter summarises the study by pointing out its achievements. It reviews the 

important findings as well as the limitations. The discussed limitations highlight potential 

areas for future improvement. A separate section is also dedicated to exploring future 

studies and how this work could be improved. 

7.1 Research Contributions and Achievement of Objectives 

This study began by providing an overview of the evolution of mobile malware since its 

inception. It then explored various components of the Android operating system and its 

security features, to establish the necessary fundamentals for discussing current research 

works. Subsequently current research studies were reviewed, which involved 

categorizing them into different groups based on their analysis and detection methods, as 

well as the used features. Afterwards, based on shortfalls of the reviewed works and 

available gaps, the study proposed a framework named DroidProtect. This framework 

was evaluated using real-world malware to examine its benefits over the related systems. 

The achievements of this study are detailed as follows. 

1. Comprehensive analysis of the most related and salient works. We started by 

studying related works published in the span of five years. They were categorized into 

four different perspectives (Chapter 2). First, we studied them based on the Android 

features they used, as deciding what features to choose for analysis is an important step. 

Second, malware analysis methods were scrutinized, which is how malware families were 

analysed. Third, detection approaches of the current studies were reviewed. Lastly, we 

investigated the location in which the detection process is performed. The tools available 

for malware analysis and detection were also reviewed, as they helped to carry out our 

experiments (Chapter 3). This satisfies the first objective of this study (Section 1.4). 
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2. Feature engineering.16 This work paid special attention to feature selection, as it 

determines the outcome of experiments (Section 2.4.1). Android Intent (explicit and 

implicit) was chosen as a static feature. To the best of our knowledge, analysis of this 

Android feature is unprecedented. Extensive analysis showed that this feature is indeed 

effective, especially when combined with other static features such as Android permission 

(Section 5.2.1.1). The achievements in this field are the selection of TCP and HTTP 

protocols for analysis and the analysis of 50,000 applications, which is a novel approach 

(Section 5.3.1). 

3. A framework for mobile malware analysis and detection. Based on drawbacks and 

available gaps in the literature, we proposed a framework for mobile malware analysis 

and detection (Chapter 4). The framework uses hybrid analysis, which consists of static 

and dynamic analyses. Android Intent and network traffic were chosen as static and 

dynamic features respectively (Chapter 2). The novelty of the framework is based on the 

fact that feature collection and extraction are performed on the device and the results are 

sent to remote servers for further analysis. Current approaches perform the whole analysis 

on the device that in turn consumes more energy, or they send whole applications to the 

server, which could be intercepted and thus pose a security risk. This achievement fulfils 

our second objective (Section 1.4). 

4. Thorough evaluation of the proposed framework. The proposed framework 

underwent extensive evaluation by using real-world malware. The objective of the 

evaluation was to examine whether the framework is effective enough in terms of 

malware detection. The static analysis component of the framework, named 

AndroDialysis, was evaluated using the Drebin data sample (Section 5.2.1.4). The 

dynamic analysis section, named AndroPsychology, was evaluated using an AndroZoo 

                                                 

16 Feature engineering is the process of transforming raw data into features that better represent the 

underlying problem to the predictive models, resulting in improved model accuracy on unseen data. 
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data sample (Section 5.3). Results of the evaluations and the comparison to related works 

showed a high performance of the framework. This achievement fulfils our third objective 

(Section 1.4). 

5. Evaluating the energy consumption of the framework. Based on the problem 

statement, the main objective of this study is to propose a framework that is effective and 

considers the limited battery resources of mobile devices. Thorough experiments were 

carried out to measure energy consumption of the framework under various situations. 

We calculated the energy consumed by static and dynamic components, as well as by 

using local detection and offloading detection methods, to show that the offloading 

method is more efficient. The comparison of the results with similar products shows that 

the proposed framework consumes less energy. This satisfies our last objective (Section 

1.4). 

6. Implementation of the proposed framework. In order to examine the feasibility and 

practicality of the framework, we implemented it as a client application on a mobile 

device and a remote server. We also designed a web module that displays detection 

results, as well as the detection history of the user. This design offers convenience to the 

user. This contribution ensures that the proposed system actually works in the real-world 

situation. 

Overall, it is believed that the objectives of this study have been achieved (Section 1.4). 
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7.2 Limitations of This Study 

As discussed in the previous section, this study has achieved its objectives. However, 

limitations were encountered during this process. The limitations that relate to this study 

are discussed in this section. 

1. Limitation of static analysis. During the experiment, the decompilation process 

stopped responding due to RAM limitation. This issue occurred on applications with very 

large APK files. Low-size applications were running smoothly during the static analysis. 

2. The Android emulator. This study required gathering network traffic for dynamic 

analysis. As running the whole data sample of 100,000 applications on a physical device 

was not possible, this process was carried out by running them on an emulator. Some 

malware families, e.g. Obad malware, are able to detect whether they run on an emulator 

and hide their malicious behaviour. 

3. The implementation of the framework. The implementation of the proposed 

framework was presented in Chapter 6. The presentation shows the major components of 

the system. However, some aspects, such as different types of potential errors, or user 

interface experience, were not presented. Despite this limitation, the overall result of this 

work remains. 

4. Test on limited number of physical devices. The implemented framework was tested 

on two physical devices, namely Samsung Galaxy Grand Quattro GT-I8552 and Sony 

Xperia Z3 Compact. Although these are medium and high-end devices respectively, it is 

beneficial to test the framework on various devices, to observe its performance and 

identify potential setbacks. Due to time and budget constraints, such evaluation was not 

possible. 

Univ
ers

ity
 of

 M
ala

ya



142 

7.3 Suggestions for Future Work 

Although this study achieved its objectives, a number of suggestions for future studies 

have been identified. This section presents suggestions for future works based on the 

discussed limitations. 

Attackers always try to evade detection methods by finding new ways to bypass such 

methods. Although this work experimented on a vast number of real-world malware 

families, it is advantageous to collect more samples of malware. This enables researchers 

to discover new behaviours and attack methods of malware families. 

The development of an advanced version of the Android emulator would enable 

researchers to analyse more malware samples in less time, with more realistic results. The 

Android emulators lack some features compared to the real device, such as IMEI, routing 

table, timing attacks, sensory output, and serial number. Research on this issue would 

benefit the research community in the future. 
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APPENDIX A: A LIST OF THE REVIEWED RESEARCH WORKS 

This appendix includes the research works reviewed in this study. 

Reference Title Objective 

Peng et al. (Peng et 

al., 2012) 

Using Probabilistic 

Generative Models for 

Ranking Risks of 

Android Apps 

Using of the Android permissions in risk 

ranking the apps 

Grace et al. (Grace, 

Zhou, Wang, et al., 

2012) 

Systematic Detection of 

Capability Leaks in 

Stock Android 

Smartphones 

They analyzed permissions and java code of 

Android application to detect malicious 

applications that leak data from the device to 

the attacker 

Wu et al. (D.-J. Wu 

et al., 2012a) 

DroidMat: Android 

Malware Detection 

through Manifest and 

API Calls Tracing 

Using permissions, API calls in code, intent 

and applying machine learning algorithms to 

detect malwares 

Sanz et al.(Borja 

Sanz, Santos, 

Ugarte-Pedrero, et 

al., 2013) 

Instance-based 

Anomaly Method for 

Android Malware 

Detection 

They used applications’ permissions and 

calculated the Manhattan distance, 

Euclidean distance and Cosine similarity to 

determine the deviation of an application 

from normal application 

Sanz et al. (Borja 

Sanz, Santos, 

Laorden, Ugarte-

Pedrero, Bringas, et 

al., 2013) 

PUMA: Permission 

Usage to detect 

Malware in Android 

They extracted applications’ permissions 

and used machine learning algorithms to 

identify the malicious applications 

Samra et al. (Samra 

et al., 2013) 

Analysis of Clustering 

Technique in Android 

Malware Detection 

Permissions were extracted from apk files 

and clustering technique was used to 

categorize the applications 

Aung and Zaw 

(Aung & Zaw, 

2013) 

Permission-Based 

Android Malware 

Detection 

Extracted permissions were fed to the k-

means clustering algorithm for Android 

malware detection 
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Sanz et al. (Borja 

Sanz, Santos, 

Laorden, Ugarte-

Pedrero, Nieves, et 

al., 2013) 

MAMA: Manifest 

Analysis For Malware 

Detection In Android 

Analysis of the Androidmanifest.xml file, 

which includes permissions, and machine 

learning algorithms to detect malwares 

 

Aafer et al. (Aafer 

et al., 2013) 

DroidAPIMiner: 

Mining API-Level 

Features for Robust 

Malware Detection in 

Android 

Extracting API calls and requested 

permissions and using classifiers to detect 

malwares 

Zhou et al. (Zhou 

et al., 2013) 

Fast, Scalable Detection 

of “Piggybacked” 

Mobile Applications 

detecting piggybacked android applications 

through analyzing permissions and API calls 

in java code 

Yerima et al. 

(Suleiman Y 

Yerima et al., 

2014) 

Analysis of Bayesian 

classification-based 

approaches for Android 

malware detection 

Analyzing Android malwares via static 

analysis with Bayesian approach. They used 

permissions and java code as static features 

Seo et al. (Seo et 

al., 2014) 

Detecting mobile 

malware threats to 

homeland security 

through static analysis 

Using permissions and API calls in java 

code to identify malicious applications 

pertaining to mobile banking, flight tracking 

and booking, etc. 

Shabtai et al. (A. 

Shabtai et al., 

2010) 

Automated Static Code 

Analysis for Classifying 

Android Applications 

Using Machine 

Learning 

They extracted some components from the 

java code such as strings, types, prototypes, 

methods, fields, static value, inheritance and 

opcodes. Machine learning methods applied 

to the extracted components for analysis. 

Desnos (A. Desnos, 

2012) 

Android : Static 

Analysis Using 

Similarity Distance 

It generates the signature from API calls, 

strings, exceptions and control flow. It then 

calculates the similarity between the 

generated signature and the malwares 

signature to detect malwares 
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Lu et al. (L. Lu et 

al., 2012) 

CHEX: Statically 

Vetting Android Apps 

for Component 

Hijacking 

Vulnerabilities 

CHEX analysis applications from the data-

flow perspective. 

Zhou et al. (W. 

Zhou et al., 2012) 

Detecting Repackaged 

Smartphone 

Applications in Third-

Party Android 

Marketplaces 

They (DroidMOSS) extracted operands and 

opcodes from the java code. To confront 

obfuscation, they removed the operands and 

retained the opcodes, which are much harder 

to change. 

Zheng et al. (M. 

Zheng et al., 

2013a) 

DroidAnalytics: A 

Signature Based 

Analytic System to 

Collect, Extract, 

Analyze and Associate 

Android Malware 

DroidAnalytics uses API calls to generate 

signature for a method. It then generates 

another signature based on methods in a 

class. The generated signatures are used to 

detect malwares 

Yerima et al. (S. Y. 

Yerima et al., 

2013) 

A New Android 

Malware Detection 

Approach Using 

Bayesian Classification 

The API calls in the java code are monitored 

for suspicious usage such as accessing 

messages or phone service 

Deshotels et al. 

(Deshotels et al., 

2014b) 

DroidLegacy: 

Automated Familial 

Classification of 

Android Malware 

DroidLegacy uses java code to create a 

signature for the application. It uses the API 

calls in the code 

Suarez-Tangil et al. 

(Suarez-Tangil et 

al., 2014) 

Dendroid: A Text 

Mining Approach to 

Analyzing and 

Classifying Code 

Structures in Android 

Malware Families 

Dendroid analysis the structure of java code. 

It constructs the control flow graph which 

represents how the code executes in runtime 
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Rastogi et al. (V. 

Rastogi et al., 

2014) 

Catch Me if You Can: 

Evaluating Android 

Anti-malware against 

Transformation Attacks 

It checks for the changes in the java code 

such as renaming of the class, method or 

field identifier; changing package name; 

code reordering by detecting goto 

instruction 

Huang et al. (J. 

Huang et al., 2014) 

AsDroid: Detecting 

Stealthy Behaviors in 

Android Applications 

by User Interface and 

Program Behavior 

Contradiction 

AsDroid monitors the API calls related to 

the user interaction. Additionally, it 

monitors the user interaction with the 

device. The semantic mismatch of the two 

monitored events indicate a stealthy 

behavior of the application which is one of 

the main characteristics of the Android 

malwares 

Rasthofer et al.  

(Rasthofer et al., 

2014) 

A Machine-learning 

Approach for 

Classifying and 

Categorizing Android 

Sources and Sinks 

The authors extracted details of java code 

such as method name, return value type, 

parameter type, method modifier, class 

name, etc. They then used machine learning 

classifiers to analyze the collected details. 

Burguera et al. 

(Burguera et al., 

2011) 

Crowdroid: Behavior-

Based Malware 

Detection System for 

Android 

Crowdroid is a cloud-based mobile malware 

detection system that processes system calls 

of the mobile devices. An agent application 

is installed on the device and logs system 

calls and sends it to the remote server for 

further analysis using machine learning 

technique. 

Zhao et al. (Zhao et 

al., 2011a) 

AntiMalDroid: An 

Efficient SVM-Based 

Malware Detection 

Framework for Android 

It generates dynamic behavioral signature 

using system calls along other features. It 

then updates database of behavioral 

signatures. 

Yan and Yin (L. K. 

Yan & Yin, 2012) 

DroidScope: 

Seamlessly 

Reconstructing the OS 

and Dalvik Semantic 

Views for Dynamic 

DroidScope uses system call as one of its 

features to analyze the malwares. In 

addition, it uses the virtualization method. 
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Android Malware 

Analysis 

Su et al. (Su et al., 

2012) 

Smartphone Dual 

Defense Protection 

Framework: Detecting 

Malicious Applications 

in Android Markets 

The authors developed dual protection 

system for mobile devices. The first layer is 

analyzing the system calls. They used 

numerous machine learning algorithms for 

their system 

Khune and 

Thangakumar 

(Khune & 

Thangakumar, 

2012) 

A Cloud-Based 

Intrusion Detection 

System for Android 

Smartphones 

They developed a cloud-based intrusion 

detection and recovery system using 

replicated and synchronized mobile devices 

on the cloud. System call is among several 

chosen features. 

Reina et al (Reina 

et al., 2013) 

A System Call-Centric 

Analysis and 

Stimulation Technique 

to Automatically 

Reconstruct Android 

Malware Behaviors 

CopperDroid collects and analyzes the 

system calls and the inter-process 

communication for Android malware 

detection. 

Lin et al (Lin et al., 

2013) 

Identifying android 

malicious repackaged 

applications by thread-

grained system call 

sequences 

SCSdroid believes that the malicious 

behavior of malwares reflects in the system 

calls. It collects the sequence of the system 

calls and analyzes them to detect Android 

malwares. 

Victor van der 

Veen (Veen, 2013) 

Dynamic Analysis of 

Android Malware 

TraceDroid collects system calls of the 

Android applications and analyzes them to 

identify the malware. It shows an 

improvement over similar systems 

Ham and Lee (Ham 

& Lee, 2014) 

Detection of Malicious 

Android Mobile 

Applications Based on 

Aggregated System 

Call Events 

The author collected system calls from 

normal and malicious application and 

determined the Android malware 
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Ham et al (Ham et 

al., 2014) 

Android Mobile 

Application System 

Call Event Pattern 

Analysis for 

Determination of 

Malicious Attack 

They collected system calls of normal and 

malicious applications and analyzed their 

pattern. Through the similarity of the system 

calls, the malicious application is 

determined 

Iland et al (Iland et 

al., 2011) 

Detecting Android 

Malware on Network 

Level 

It analyzes network traffic and looks for 

HTTP links to discover leaked data by 

malware. It parses the HTTP data to 

discover the transferred data such as IMEI, 

IMSI and credit card numbers 

Wei et al (Wei et 

al., 2012) 

ProfileDroid: Multi-

layer Profiling of 

Android Applications 

ProfileDroid is a multi-layer monitoring and 

profiling system. It has four layers, namely, 

static, user interaction, operating system and 

network traffic 

Baliga et al (Baliga 

et al., 2013) 

Titan: A Carrier-based 

Approach for Detecting 

and Mitigating Mobile 

Malware 

Titan analyzes network traffic of the mobile 

devices. It uses several filter such as packet 

filter to inspect the network traffic 

Zonouz et al 

(Zonouz et al., 

2013) 

Secloud: A Cloud-

based Comprehensive 

and Lightweight 

Security Solution for 

Smartphones 

Secloud uses cloud-based detection system. 

It emulates exact copy of the mobile device 

on the cloud. It analyzed the device using 

log data from a lightweight agent application 

on the device. It examines the network 

traffic and several other features 

Feizollah et al 

(Feizollah et al., 

2013) 

a Study Of Machine 

Learning Classifiers For 

Anomaly-Based Mobile 

Botnet Detection 

It collects network traffic and employs 

machine learning approach to train 

algorithms for Android malware detection 

Maggi et al (Maggi 

et al., 2013) 

AndroTotal: A Flexible, 

Scalable Toolbox and 

Service for Testing 

Mobile Malware 

Detectors 

AndroTotal collects system changes such as 

user interface, log files and network traffic. 

It then compare the collected data with the 

malware database 

Univ
ers

ity
 of

 M
ala

ya



175 

Shabtai et al 

(Shabtai et al., 

2014) 

Mobile Malware 

Detection through 

Analysis of Deviations 

in Application Network 

Behavior 

They analyzed Android applications to 

discover pattern in network traffic. They 

used machine learning approach to train 

algorithms for anomaly detection 

Blasing et al. 

(Blasing et al., 

2010) 

An Android 

Application Sandbox 

System for Suspicious 

Software Detection 

AASandbox analyzes static and dynamic 

features. It extracts permissions and java 

code from the APK file and uses them as 

static features. It then installs the 

application; logs system calls, and uses it as 

dynamic feature. 

Zhou et al. (Y. 

Zhou et al., 2012) 

Hey, You, Get Off of 

My Market: Detecting 

Malicious Apps in 

Official and Alternative 

Android Markets 

It extracts permissions and API calls from 

the APK file and collects system calls in 

runtime 

Wei et al. (Wei et 

al., 2012) 

ProfileDroid: Multi-

layer Profiling of 

Android Applications 

Examining Androidmanifest.xml and java 

code are static features chosen for 

ProfileDroid. User interaction, system calls 

and network traffic are dynamic features 

Spreitzenbarth et 

al. (Spreitzenbarth 

et al., 2013) 

Mobile-Sandbox: 

Having a Deeper Look 

into Android 

Applications 

This system chose permissions, intents, java 

code and API calls as static feature; system 

calls, network traffic and user interaction as 

dynamic features. 

Eder et al. (Eder et 

al., 2013) 

ANANAS – A 

Framework For 

Analyzing Android 

Applications 

ANANAS extracts static features from 

Androidmanifest.xml file and collects 

system calls, network traffic and file 

systems as dynamic features 
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Xu et al.  (Xu et 

al., 2013) 

MobSafe: Cloud 

Computing Based 

Forensic Analysis for 

Massive Mobile 

Applications Using 

Data Mining 

MobSafe examines java code for static 

features and collects network traffic for 

dynamic analysis 

Moonsamy et al. 

(Moonsamy et al., 

2013a) 

Mining Permission 

Patterns for Contrasting 

Clean and Malicious 

Android Applications 

The authors collected the requested 

permissions from APK file, static feature, 

and required permissions from running the 

application, dynamic feature. The difference 

signifies the maliciousness of the application 
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The table below categorizes the reviewed works based on analysis type. It also mentions 

the number of malware samples they used for evaluation phase. It is worth mentioning 

that this study was conducted using 100,000 android applications, which is more than 

majority of the reviewed works. The number of malware samples ensures that the 

proposed system is evaluated with as many real-world malware samples as possible. 

Thus, the validity of the framework is ensured. 

Reference Approach Number of Malware 

(Zhemin Yang & Yang, 2012) Static 1,750 

(Arzt et al., 2014) Static - 

(Suleiman Y Yerima et al., 2014) Static 2,000 

(A. Desnos, 2012) Static - 

(Apvrille & Apvrille, 2013) Static - 

(Aung & Zaw, 2013) Static 500 

(Grace, Zhou, Wang, et al., 2012) Static - 

(Feng et al., 2014) Static - 

(V. Rastogi et al., 2014) Static - 

(Faruki et al., 2013) Static 6,779 

(Suarez-Tangil et al., 2014) Static 1,231 

(Rosen et al., 2013) Static 2,782 

(Peng et al., 2012) Static 325,036 

(Grace, Zhou, Zhang, et al., 2012) Static 118,318 

(L. Lu et al., 2012) Static 5,486 

(Crussell et al., 2012) Static 9,400 

(Sarma et al., 2012) Static 158,062 

(Samra et al., 2013) Static 18,174 

(Arp et al., 2014) Static 129,013 

(Deshotels et al., 2014a) Static 1,100 

(Luoshi et al., 2013) Static - 

(Gascon et al., 2013) Static 12,158 

(Borja Sanz, Santos, Laorden, Ugarte-Pedrero, 

Bringas, et al., 2013) 
Static 3,013 
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(Walenstein et al., 2012) Static - 

(Borja Sanz, Santos, Laorden, Ugarte-Pedrero, 

Nieves, et al., 2013) 
Static 666 

(D.-J. Wu et al., 2012b) Static 1,738 

(J. Huang et al., 2014) Static 125,249 

(W. Zhou et al., 2012) Static 91,093 

(Aafer et al., 2013) Static 20,000 

(Lee & Jin, 2013) Static - 

(S. Y. Yerima et al., 2013) Static 2,000 

(A. Shabtai et al., 2010) Static 2,285 

(Sahs & Khan, 2012) Static 2,172 

(M. Zheng et al., 2013b) Static 150,368 

(Borja Sanz et al., 2014) Static 2,060 

(Zhou et al., 2013) Static 84,767 

(C. Y. Huang et al., 2013) Static 182 

(Almohri et al., 2014) Static 405 

(M. Zheng et al., 2013b) Static 24,009 

(B. Sanz et al., 2012) Static 2,144 

(Paturi et al., 2013) Static - 

(Seo et al., 2014) Static 1,257 

(Rasthofer et al., 2014) Static 11,000 

(Liang et al., 2013) Static 52 

(X. Wu et al., 2015) Static - 

(Tchakounté & Dayang, 2013) Dynamic - 

(Hyo-Sik & Mi-Jung, 2013) Dynamic 14,794 

(L. Yu & Liu, 2003) Dynamic - 

(Shabtai & Elovici, 2010) Dynamic 43 

(Chekina et al., 2012) Dynamic 10 

(Backes et al., 2013) Dynamic - 

(Baliga et al., 2013) Dynamic 9 

(Vaibhav Rastogi et al., 2013) Dynamic 3,968 

(Burguera et al., 2011) Dynamic - 

(L. K. Yan & Yin, 2012) Dynamic - 
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(Dini et al., 2012) Dynamic 56 

(Enck et al., 2010) Dynamic 30 

(Portokalidis et al., 2010) Dynamic - 

(Choi et al., 2013) Dynamic - 

(Gianazza et al., 2014) Dynamic 15 

(Ham & Lee, 2014) Dynamic 1,257 

(Ham et al., 2014) Dynamic 1,257 

(Y. Zhang et al., 2013) Dynamic 1,249 

(Su et al., 2012) Dynamic 120 

(Maggi et al., 2013) Dynamic 18,758 

(Zhao et al., 2011b) Dynamic 200 

(Shabtai et al., 2014) Dynamic 500,000 

(Kou & Wen, 2011) Dynamic - 

(Houmansadr et al., 2011) Dynamic - 

(Iland et al., 2011) Dynamic 18 

(Amos et al., 2013) Dynamic 1,738 

(Karami et al., 2013) Dynamic 20 

(Damopoulos et al., 2012) Dynamic - 

(Reina et al., 2013) Dynamic 1,200 

(Khune & Thangakumar, 2012) Dynamic - 

(Zonouz et al., 2013) Dynamic - 

(Isohara et al., 2011) Dynamic 230 

(Feizollah et al., 2013) Dynamic 1,257 

(Feizollah et al., 2014) Dynamic 1,000 

(Hoffmann et al., 2013) Dynamic - 

(H. Lu et al., 2014) Dynamic 331 

(Lin et al., 2013) Dynamic 100 

(Asaf Shabtai et al., 2010) Dynamic 5 

(Veen, 2013) Dynamic - 

(Bente, 2013) Dynamic - 

(Machiry et al., 2013) Dynamic 50 

(Jang et al., 2016) Dynamic 709 

(Spreitzenbarth et al., 2013) Hybrid 36,000 

Univ
ers

ity
 of

 M
ala

ya



180 

(Y. Zhou et al., 2012) Hybrid 204,040 

(Moonsamy et al., 2013b) Hybrid 1,227 

(Wei et al., 2012) Hybrid 27 

(Eder et al., 2013) Hybrid 1,260 

(Blasing et al., 2010) Hybrid - 

(D.-u. Kim et al., 2013) Hybrid 1,003 

(Xu et al., 2013) Hybrid 100,000 

(M. Zheng et al., 2013b) Hybrid 19 

(Shalaginov & Franke, 2013) Hybrid 604 

(Guido et al., 2013) Hybrid - 

(Teufl et al., 2013) Metadata - 

(Pandita et al., 2013) Metadata - 

(Kou & Wen, 2011) Metadata - 
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APPENDIX B: A COMPLETE LIST OF MALGENOME MALWARE 

FAMILIES 

This appendix includes list of malware families available in the MalGenome data sample 

along with the number of samples, discovery date, and their characteristics. 

No 
Malware 

Family Name 

No. 

of 

sample 

Discovery 

Month 
Characteristics 

1 ADRD 22 2011-02 Sending out device info 

2 AnserverBot 187 2011-09 

Silently downloads an update 

for an application on run time 

containing a malicious code 

from a hacker 

3 Asroot 8 2011-09 
Root exploits without user 

permission 

4 Basebridge 122 2011-06 

Silently updates an 

application and downloads a 

malicious code from a hacker 

5 BeanBot 8 2011-10 

Sends out IMEI, IMSI and 

phone number, sends SMS to 

a premium number 

6 BgServ 9 2011-03 Sends out IMEI, device info 

7 CoinPirate 1 2011-07 
Sends out device model, SDK 

version, IMEI, IMSI 

8 CruseWin 2 2011-07 

Deletes itself, deletes SMS, 

sends SMS to a premium 

number 

9 DogWars 1 2011-08 

Sends SMS to all the contacts 

in the phone without the 

user's awareness 

10 DroidCoupon 1 2011-09 
Root exploits without user 

permission 

11 DroidDeluxe 1 2011-09 
Root exploits without user 

permission 

12 DroidDream 16 2011-03 

Hijacks an application and 

controls the UI and performs 

commands received from a 

hacker 

13 
DroidDreamLig

ht 
46 2011-05 

Sends out IMEI, IMSI, 

model, etc. 
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14 DroidKungFu1 34 2011-06 

Malicious code is encrypted 

and it steals a user's phone 

number and sends it to a 

hacker 

15 DroidKungFu2 30 2011-07 

Malicious code is encrypted 

and it steals a user's phone 

number and sends it to a 

hacker 

16 DroidKungFu3 309 2011-08 

Malicious code is encrypted 

and it steals a user's phone 

number and sends it to a 

hacker 

17 DroidKungFu4 96 2011-10 

C&C server address is in the 

native program but in cipher 

text. It receives commands 

from a hacker 

18 
DroidKungFuSa

pp 
3 2011-10 

Sends out IMEI, phone info, 

data on SD card 

19 
DroidKungFuUp

date 
1 2011-10 

Remotely updates an 

application and downloads a 

malicious code from a hacker 

20 Endofday 1 2011-05 Leaks user’s data via SMS 

21 FakeNetflix 1 2011-10 

Steals user's credentials and 

sends back to ground SMS 

messages. 

22 FakePlayer 6 2010-08 

Sends premium SMS without 

user's knowledge and steals 

user's phone number. Sends 

stolen data to a hacker 

23 GamblerSMS 1 2011-07 
Sends out incoming/outgoing 

SMS, outgoing phone call 

24 Geinimi 69 2010-13 

Makes phone calls in 

background and sends 

premium SMS. Commands 

are received from a hacker 

25 GGTracker 1 2011-06 

Apps advertisement redirects 

link to malicious web and 

malware subscribes premium-

rate service. 

26 GingerMaster 4 2011-08 
Obfuscates the file names of 

associated root exploits 

27 GoldDream 47 2011-07 

Makes phone calls in 

background and sends 

premium SMS. Commands 

are received from a hacker 
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28 Gone60 9 2011-09 
Sends out contacts, SMS, call 

list, visited URLs 

29 GPSSMSSpy 6 2010-08 

Listens to SMS-based 

commands to record and 

upload the victim’s current 

location. 

30 HippoSMS 4 2011-07 

Sends out SMS to a premium 

number, deletes incoming 

SMS from a certain number. 

31 Jifake 1 2011-10 

Sends premium SMS without 

user's knowledge and steals 

user's phone number. Sends 

stolen data to a hacker. 

32 jSMSHider 16 2011-06 

Uses a publicly available 

private key by Android open 

source project and includes 

infected apps. Opens a 

backdoor. 

33 Kmin 52 2011-10 

Sends premium SMS without 

user's knowledge. Commands 

are received from a hacker. 

34 Lovetrap 1 2011-07 
Sends out IMSI and geo 

location 

35 NickyBot 1 2011-08 Executes commands via SMS 

36 Nickyspy 2 2011-07 Sends out call list, GPS, SMS 

37 Pjapps 58 2011-02 

Sends premium SMS without 

user's knowledge and steals 

user's phone number. Sends 

stolen data to a hacker 

38 Plankton 11 2011-06 
Downloads malicious code as 

an update from a hacker 

39 RogueLemon 2 2011-10 
Sends SMS and subscribes to 

service 

40 RogueSPPush 9 2011-08 

Sends premium SMS without 

user's knowledge by hiding 

confirmation SMS. Sends 

stolen data to a hacker 

41 SMSReplicator 1 2010-11 
Transmits incoming SMS to 

another device 

42 SndApps 10 2011-07 

Collects user's email 

addresses and sends them to 

remote sever. 

43 Spitmo 1 2011-09 
Steals user's sensitive 

banking information 

44 TapSnake 2 2010-08 Sends out GPS info 
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45 Walkinwat 1 2011-03 
Sends out name, phone 

number, IMEI 

46 YZHC 22 2011-06 
Sends SMS to a premium 

number 

47 zHash 11 2011-03 
Root exploits without user 

permission 

48 Zitmo 1 2011-07 
Steal user's sensitive banking 

information 

49 zSone 12 2011-05 

Hijacks an application, 

controls the UI and performs 

commands received from a 

hacker 
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