
A MALWARE ANALYSIS AND DETECTION SYSTEM

FOR MOBILE DEVICES

ALI FEIZOLLAH

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Ali Feizollah

Matric No: WHA140017

Name of Degree: Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

A Malware Analysis and Detection System for Mobile Devices

Field of Study:

Network Security, Malware Detection

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or

reproduction of any copyright work has been disclosed expressly and

sufficiently and the title of the Work and its authorship have been

acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the

making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the

University of Malaya (“UM”), who henceforth shall be owner of the copyright

in this Work and that any reproduction or use in any form or by any means

whatsoever is prohibited without the written consent of UM having been first

had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any

copyright whether intentionally or otherwise, I may be subject to legal action

or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

ABSTRACT

Smartphones, tablets, and other mobile devices have quickly become ubiquitous due to

their highly personal and powerful attributes. Android has been the most popular mobile

operating system. Such popularity, however, also extends to attackers. The amount of

Android malware has risen steeply during the last few years, making it the most targeted

mobile operating system. Although there have been important advances made on malware

analysis and detection in traditional PCs during recent decades, adopting and adapting

those methods to mobile devices poses a considerable challenge. Power consumption is

one major constraint that makes traditional detection methods impractical for mobile

devices, while cloud-based techniques raise many privacy concerns. This study examines

the problem of Android malware, and aims to develop and implement new approaches to

help users confront such threats more effectively, considering the limitations of these

devices. First, we present a comprehensive analysis on the development of mobile

malware, specifically Android, over recent years, as well as the most useful and salient

analysis and detection methods for Android malware. We also discuss a compilation of

available tools for Android malware analysis. Secondly, we propose a number of new and

distinctive Android malware analysis and detection methods. More specifically, we

introduce AndroDialysis, which is a static analysis method. Recent research has focused

on analysing Android Intent in the XML file. We propose a new method of analysing

Android Intent in Java code, which includes implicit intent and explicit intent. We used a

Drebin data sample, which is a collection of 5,560 applications, as well as clean data

sample containing 1,846 applications. The results show a detection rate of 91% using

Android Intent against 83% using Android permission. We also introduce a dynamic

analysis method, AndroPsychology, in order to analyse the network communications of

Android applications. We extracted 30 different features from network traffic. We then

used feature selection algorithms and deep learning algorithms to build a detection model.

Univ
ers

ity
 of

 M
ala

ya

iv

The results show that network traffic is an appropriate candidate for Android malware

detection. Finally, we assembled AndroDialysis and AndroPsychology in order to build

a comprehensive analysis and detection system for Android, called DroidProtect. Unlike

current systems that either perform analyses on the device or send the whole application

to a server for analyses, our system has the distinction of extracting features on the device

and analysing them on the Google App Engine servers using an offloading technique. Our

extensive experiments show that the energy consumption of the proposed system is less

than currently available systems.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Telefon pintar, tablet dan peranti mudah alih berada dimana-mana sahaja dengan

begitu cepat disebabkan oleh sifatnya yang sangat peribadi dan berkuasa. Sehingga 2016,

Android merupakan sistem operasi mudah alih yang paling popular di kalangan

pengguna. Populariti itu meliputi penyerang juga. Bilangan perisian hasad Android telah

melonjak dalam beberapa tahun kebelakangan ini, menjadikannya sistem operasi mudah

alih itu yang paling disasarkan. Walaupun kepentigan kemajuan telah dibuat bagi analisis

pada perisian hasad dan pengesanan dalam tradisional komputer peribadi dalam tempoh

sedekad yang lalu, mengguna pakai dan menyesuaikan analisis untuk peranti mudah alih

merupakan satu masalah yang mencabar. Penggunaan kuasa adalah salah satu kekangan

utama yang menyebabkan kaedah pengesanan tradisional tidak praktikal untuk

dilaksanakan pada peranti mudah alih, manakala teknik berasaskan awan menimbulkan

banyak kebimbangan privasi. Kajian ini mengkaji masalah perisian hasad Android, yang

bertujuan untuk membangunkan dan melaksanakan pendekatan baru untuk lebih

membantu pengguna bagi menghadapi ancaman tersebut, dengan mempertimbangkan

had peranti mudah alih. Pertama, kami membentangkan analisis komprehensif mengenai

evolusi perisian hasad mudah alih, khususnya Android, sejak beberapa tahun lepas, serta

kaedah yang paling berguna dan penting bagi kaedah analisis dan pengesanan dalam

pengesanan perisian hasad Android. Kedua, kami mencadangkan beberapa kaedah

analisis dan pengesanan terbaru bagi perisian hasad Android. Lebih khusus lagi, kita

memperkenalkan AndroDialysis yang merupakan kaedah analisis static. Kerja

penyelidikan yang terbaru telah memberi tumpuan kepada menganalisis tujuan Android

dalam fail XML. Kami mencadangkan kaedah terbaru menganalisis tujuan Android

didalam kod Java, dimana termasuk niat tersirat dan niat yang jelas. Selepas mengekstrak

tujuan, model pengesanan dibina menggunakan algoritma Bayesian Network. Kami

menggunakan sampel data Drebin iaitu terdapat 5,560 koleksi applikasi terdiri daripada

Univ
ers

ity
 of

 M
ala

ya

vi

179 keluarga perisian yang berbeza, serta sampel data bersih yang mengandungi 1,846

applikasi. Keputusan menunjukkan kadar pengesanan sebanyak 91% dengan

menggunakan tujuan Android terhadap 83% yang menggunakan kebenaran aplikasi

Android. Kami juga memperkenalkan kaedah analisis dinamik, AndroPsychology, untuk

menganalisis komunikasi rangkaian bagi aplikasi Android. Kaedah ini memberi tumpuan

kepada komunikasi rangkaian yang dijana oleh aplikasi Android. Kami mengekstrak 30

ciri yang berbeza daripada rangkaian trafik. Kemudian, kami menggunakan algoritma

pemilihan ciri dan algoritma pembelajaran mesin, untuk membina sebuah model

pengesanan. Keputusan menunjukkan bahawa rangkaian trafik adalah calon yang sesuai

untuk pengesanan perisian hasad Android. Akhir sekali, kami mengabungkan

AndroDialysis dan AndroPsychology untuk membina sistem analisis dan pengesanan

yang komprehensif untuk Android, yang dipanggil DroidProtect. Berbeza dengan sistem

semasa yang melaksanakan analisis pada peranti atau menghantar keseluruhan aplikasi

kepada pelayan untuk dianalisis, sistem kami membawa sesuatu yang baru dalam

mengekstrak ciri pada peranti, dan menganalisis aplikasi pada pelayan Engine Google

App menggunakan teknik pemunggahan. Tidak perlu dikatakan bahawa eksperimen kami

yang meluas menunjukkan penggunaan sistem tenaga adalah kurang pada sistem yang

dicadangkan berbanding dengan sistem yang sedia ada.

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

The past three years have so far been the most interesting, challenging, and rewarding

years of my life. First of all, I would like to express my sincere gratitude to my supervisor

Dr Nor Badrul Anuar Bin Juma'at for his patience and knowledge during this long

journey; the journey that began at the commencement of my Master’s degree. He has been

a devoted mentor not only in research, but in many aspects of life. I am grateful for his

tremendous academic support, and for giving me wonderful opportunities during these

years.

Similar profound gratitude goes to Dr Rosli Bin Salleh, who has been a patient and

dedicated mentor. His support and constant faith in my work encouraged me every day to

be more diligent in my research.

I am also hugely appreciative of Dr Lorenzo Cavallaro from the Royal Holloway

University of London, for accepting my collaboration offer. His professionalism and

dedication have inspired me throughout our work.

Of course, this work would not be possible without the support of my beloved parents

and my dear siblings. Their continuous support has given me strength to finish this study.

Above all, I want to thank God for all the blessings he has bestowed upon me. His

benevolence and grace enabled me to accomplish this study.

“One does not discover new lands without consenting

 to lose sight of the shore for a very long time.”

 Andre Gide

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

Abstract .. iii

Abstrak .. v

Acknowledgements ... vii

Table of Contents ... viii

List of Figures .. xiii

List of Tables... xv

List of Symbols and Abbreviations .. xvi

List of Appendices ... xviii

CHAPTER 1: INTRODUCTION .. 1

1.1 Background Information .. 1

1.2 Motivation.. 3

1.3 Problem Statement ... 4

1.4 Aims and Objectives .. 6

1.5 Thesis Structure ... 6

CHAPTER 2: MOBILE MALWARE EVOLUTION, CHARACTERISTICS AND

DETECTION METHODS ... 9

2.1 Mobile Malware Evolution .. 9

2.2 Android Operating System .. 13

2.2.1 Android Operating System Architecture .. 13

2.2.2 Android Application Package Structure ... 15

2.2.3 Android Security Features .. 17

2.3 Mobile Malware Characteristics .. 18

2.3.1 Adware ... 19

Univ
ers

ity
 of

 M
ala

ya

ix

2.3.2 Trojan and Bots .. 20

2.3.3 Ransomware ... 22

2.4 Mobile Malware Analysis and Detection Methods ... 23

2.4.1 Feature Selection in Mobile Malware Detection 23

2.4.1.1 Static Features ... 25

2.4.1.2 Dynamic Features .. 29

2.4.1.3 Hybrid Features ... 32

2.4.1.4 Android Applications Metadata .. 33

2.4.2 Malware Analysis ... 34

2.4.2.1 Static Analysis ... 34

2.4.2.2 Dynamic Analysis ... 36

2.4.2.3 Hybrid Analysis ... 38

2.4.3 Mobile Malware Detection ... 41

2.4.3.1 Misuse-based Detection .. 41

2.4.3.2 Anomaly-based Detection ... 44

2.4.4 Point of Detection ... 45

2.4.4.1 Local-based Detection ... 46

2.4.4.2 Cloud-based Detection .. 46

2.5 Discussion .. 48

2.6 Summary .. 50

CHAPTER 3: DROIDLAB - MOBILE MALWARE ANALYSIS TOOLS 51

3.1 Static Analysis Tools ... 51

3.1.1 Androguard ... 51

3.1.2 ApkTool .. 52

3.1.3 AXMLPrinter ... 53

3.2 Dynamic Analysis Tools.. 53

Univ
ers

ity
 of

 M
ala

ya

x

3.2.1 Wireshark ... 54

3.2.2 DroidBox .. 54

3.2.3 TaintDroid .. 55

3.3 Machine Learning Tools .. 56

3.3.1 WEKA .. 56

3.3.2 TensorFlow ... 57

3.4 Energy Consumption Profilers .. 58

3.4.1 AppScope ... 59

3.4.2 PowerTutor ... 60

3.5 Summary .. 61

CHAPTER 4: MOBILE MALWARE ANALYSIS AND DETECTION: THE

FRAMEWORK ... 62

4.1 The DroidProtect Traits ... 62

4.2 The Architecture .. 63

4.3 The Used Methods and Services.. 67

4.3.1 Computation Offloading ... 67

4.3.2 Machine Learning Tools .. 67

4.4 Summary .. 68

CHAPTER 5: EVALUATION OF THE MOBILE MALWARE ANALYSIS AND

DETECTION FRAMEWORK .. 69

5.1 Dataset Description .. 70

5.1.1 MalGenome .. 70

5.1.2 Drebin ... 72

5.1.3 AndroZoo ... 72

5.1.4 Malware Repositories ... 73

Univ
ers

ity
 of

 M
ala

ya

xi

5.2 Static-related Analysis ... 73

5.2.1 Experiment 1: Evaluating Effectiveness of Android Intent in Malware

Detection .. 74

5.2.1.1 Android Intent ... 74

5.2.1.2 Data Collection and Analysis .. 77

5.2.1.3 The Architecture .. 81

5.2.1.4 Results ... 86

5.2.1.5 Conclusion ... 93

5.3 Dynamic-related Analysis ... 94

5.3.1 Android Malware Network Traffic .. 94

5.3.2 Description of the Experiment ... 94

5.3.3 Experiment 2: Selecting Best Network-related Features.......................... 96

5.3.3.1 Feature Selection Algorithms .. 98

5.3.3.2 Results and Discussion .. 100

5.3.4 Experiment 3: Evaluating Deep Learning Classifiers 105

5.3.4.1 Deep Learning Algorithms .. 105

5.3.4.2 Results ... 109

5.3.5 Conclusion .. 118

5.4 Experiment 4: Evaluation of Energy Consumption ... 120

5.4.1 Energy Consumption Fundamentals... 120

5.4.2 Results and Discussion ... 123

5.5 Summary .. 127

CHAPTER 6: A PROTOTYPE IMPLEMENTATION OF MOBILE MALWARE

ANALYSIS AND DETECTION SYSTEM .. 128

6.1 Activity Diagram ... 129

6.2 Implementation of the Mobile Application ... 131

Univ
ers

ity
 of

 M
ala

ya

xii

6.3 Summary .. 137

CHAPTER 7: CONCLUSION ... 138

7.1 Research Contributions and Achievement of Objectives 138

7.2 Limitations of This Study .. 141

7.3 Suggestions for Future Work ... 142

References ... 143

List of Publications and Papers Presented .. 163

Appendix A: A List of the reviewed research works .. 169

Appendix B: A Complete list of malgenome malware families 181

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF FIGURES

Figure 1.1. Average Energy Consumed Per Second During ‘On Demand’ Scan (Polakis

et al., 2015) ... 5

Figure 2.1. The geography of mobile malware by the number of attacked users in 2015

(Kaspersky, 2016a)... 11

Figure 2.2. The Android Architecture (Gunasekera, 2012) .. 13

Figure 2.3. Conversion of Java to Dalvik Format (Gunasekera, 2012) 14

Figure 2.4. The Build Process of Android APK File .. 15

Figure 2.5. The Dalvik Virtual Machine (DVM) in Android Architecture (Gunasekera,

2012)... 17

Figure 3.1. TaintDroid Architecture as Depicted in (Enck et al., 2010) 56

Figure 4.1. Architecture of the DroidProtect .. 64

Figure 4.2. Layer Architecture of the DroidProtect .. 66

Figure 4.3. Layers Interactions.. 66

Figure 5.1. Inter-application Communication Using Android Intent and Binder 75

Figure 5.2. Percent of Applications That Request Specific Number of Permissions 80

Figure 5.3. Percent of Applications That Request Specific Number of Intents 80

Figure 5.4. Overview of AndroDialysis .. 82

Figure 5.5. True Positive Rate versus False Positive Rate for 30 Iterations 89

Figure 5.6. ROC Curve for Android Permission and Android Intent 93

Figure 5.7. The AndroPsychology Architecture ... 95

Figure 5.8. Data Distribution of Top 10 Network-related Features 103

Figure 5.9. Representation of a Neural Network .. 106

Figure 5.10. A Recurrent Neural Network .. 107

Figure 5.11. The Hidden Layer of LSTM (Mikami, 2016) ... 108

Univ
ers

ity
 of

 M
ala

ya

xiv

Figure 5.12. The Accuracy Result of LSTM... 115

Figure 5.13. The “Loss” Result of LSTM ... 116

Figure 5.14. The Values of Weight in Four Layers During LSTM Experiment 116

Figure 5.15. Overview of the PowerBooter Model ... 121

Figure 5.16. The Results of Energy Consumption Test for Security Applications (Polakis

et al., 2015) ... 126

Figure 6.1. Activity Diagram of DroidProtect .. 130

Figure 6.2. The First Activity of Mobile Application ... 132

Figure 6.3. Google Asks Permission to Share User's Data ... 132

Figure 6.4. Screenshots of the Results of Static Analysis ... 133

Figure 6.5. Screenshots of Dynamic Analysis Process of the Mobile Application 134

Figure 6.6. Screenshots of the Upload Process from Mobile to Servers....................... 135

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF TABLES

Table 1.1. Energy Consumption of Two Applications during 10 Minutes of Usage........ 5

Table 2.1. Top 10 countries by percentage of attacked users in 2015 12

Table 2.2. Results of the Experiments .. 25

Table 3.1. A List of Energy Consumption Profilers ... 58

Table 5.1. Malware Families in MalGenome Data Sample .. 71

Table 5.2. Sample Code Snippet of Explicit and Implicit Intents 76

Table 5.3. Categories of Gathered Applications ... 78

Table 5.4. Top 10 Permissions in Clean and Infected Applications 78

Table 5.5. Top 10 Intents in Clean and Infected Applications.. 79

Table 5.6. Results of Android Permission and Android Intent Experiments 88

Table 5.7. The results of Android Intent Experiments for Each Malware Family.......... 90

Table 5.8. Results of Experiments Using Both Permissions and Intents 91

Table 5.9. Time Taken to Produce Results (seconds) ... 92

Table 5.10. Comparison of Different Approaches in Related Works 97

Table 5.11. Extracted Network-related Features ... 98

Table 5.12. Results of Network-related Feature Selection Algorithms 101

Table 5.13. Top 10 Features for Final Dataset .. 102

Table 5.14. Preliminary Results of DNN and LSTM ... 110

Table 5.15. Results of Hyperparameter Optimization for Epoch and Batch Size......... 112

Table 5.16. Results of Hyperparameter Optimization for Optimizers 113

Table 5.17. Results of Effects of Number of Features Experiment 114

Table 5.18. Energy Consumption (in Joules) of Three Popular Applications During 10

Minutes Usage .. 124

Table 5.19. The Results of Energy Consumption Test for DroidProtect (Joules) 124

Univ
ers

ity
 of

 M
ala

ya

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

AIDL : Android Interface Definition Language

API : Application Program Interface

APK : Android Application Package

ARFF : Attribute-Relation File Format

C&C : Command & Control

CFG : Control Flow Graphs

CPU : Central Processing Unit

DNN : Deep Neural Network

DVM : Dalvik Virtual Machine

GPS : Global Positioning System

GUI : Graphical User Interface

HTTP : Hypertext Transfer Protocol

IDE : Integrated Development Environment

IMEI : International Mobile Equipment Identity

IP : Internet Protocol

ISA : Iterative Sequence Alignment

JVM : Java Virtual Machine

LAC : Lazy Associative Classification

LSTM : Long short-term memory

MMS : Multimedia Messaging Service

OS : Operating System

PC : Personal Computer

PCAP : Packet Capture

RNN : Recurrent Neural Network

Univ
ers

ity
 of

 M
ala

ya

xvii

SDK : Software Development Kit

SMS : Short Message Service

SOD : State of Discharge

SQL : Structured Query Language

SVM : Support Vector Machine

TCP : Transmission Control Protocol

URL : Uniform Resource Locator

USB : Universal Serial Bus

VM : Virtual Machine

VoIP : Voice over IP

XML : eXtensible Markup Language

XSS : Cross-site Scripting

Univ
ers

ity
 of

 M
ala

ya

xviii

LIST OF APPENDICES

Appendix A: A List of All the Reviewed Research Works.................................... 169

Appendix B: A Complete List of MalGenome Malware Families………………. 181

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Background Information

Smartphones have emerged as popular portable devices with increasingly powerful

computing, networking and sensing capabilities, and they are now far more powerful than

the early PCs. In addition, their popularity has been repeatedly corroborated by recent

surveys (Gartner, 2017). Unlike PCs, the portability of mobile devices makes them

attractive to users. In addition, their small size in relation to PCs plays an important role

in increasing their popularity. Furthermore, users are becoming increasingly interested in

Rich Mobile Applications (RMA), such as Google Maps, which deliver rich user

experiences along with a high level of interaction (Knoernschild, 2010).

The popularity of such devices is clearly increasing, despite the current limitations of

mobile devices such as battery life (B. X. Chen & Bilton, 2014). Gartner, an American

information technology research and advisory firm, reported that the total shipment of

mobile devices increased in 2013 by 5.9% and reached 2.35 billion units compared to the

previous year (Gartner, 2013). Shipments of mobile devices increased by six percent in

the third quarter of 2016 compared to 2015 (Gartner, 2016). On the other hand, the

shipment of PCs declined by 4.3 percent to 63 million units in 2017 compared to 61

million units in 2016 (Gartner, 2017). Gartner also reported that the shipment of PCs

declined by 5.7 percent in the third quarter of 2016 to roughly 68.9 million units.

According to the report, PC shipment has decreased for eight quarters in a row (Ram,

2016). In terms of mobile device usage, Walker Sands published a report indicating that

internet traffic pertaining to mobile devices has increased. Based on the report, 51.3% of

all web traffic came from mobile devices compared to 48.7% of visits from PCs

(StarCounter, 2016).

Univ
ers

ity
 of

 M
ala

ya

2

There are numerous mobile operating systems in the market, namely Android, iOS,

Windows Phone and BlackBerry. Android has generally dominated the mobile device

industry. Based on a report, a total of 261.1 million devices were shipped in the third

quarter of 2013, and 81.3% of those shipped devices were operating the Android system

(CNET, 2013). It has also been reported that Android had 88% of the worldwide market

share of mobile operating systems in the third quarter of 2016 (Gartner, 2016).

Such popularity poses serious security and privacy threats, and widens the potential for

various other malicious activities. The number of Android attacks is steadily increasing.

Based on a report from F-Secure, Android was subject to 79% of all malware in 2012

compared to 66.7% in 2011 and just 11.25% in 2010 (F-Secure, 2013). Similarly,

Symantec has said that the amount of Android malware increased almost four times

between June 2012 and June 2013 (Symantec, 2013). In addition, during the period April

2013 to June 2013 there was a dramatic increase of almost 200% in Android malware.

Fortinet (Fortinet, 2014), a world leader in high performance network security, announced

that between January 1, 2013 and December 31, 2013, they discovered over 1,800 new

distinct families of malware, the majority of which was Android malware. In February

2014, Symantec stated that an average of 272 new malware and five new malware

families are discovered every month, targeting specifically the Android operating system

(Symantec, 2014a).

The reason for such an enormous increase in Android malware lies in the fact that Android

is an open source operating system, and the application market for Android, known as

Google Play, is not monitored meticulously in terms of security (Teufl et al., 2013).

Moreover, there are also unofficial Android markets, for example SlideME, in which

security issues are simply not taken seriously. Furthermore, as already mentioned, the

Univ
ers

ity
 of

 M
ala

ya

3

market share of Android is high. Consequently, attackers target Android in order to gain

more benefits compared to other operating systems.

1.2 Motivation

This dissertation is motivated by the following open research issues: there is more mobile

malware than before, and it is becoming more sophisticated.

a) There is sustained growth in the number of mobile devices sold, as well as in mobile

malware. Based on a report by Gartner, sales of mobile devices increased by 4.3% in the

second quarter of 2016 compared to the same period in 2015. The Android operating

system in particular had 86.2% of the market share in 2016 compared to 82.2% in 2015

(Gartner, 2016). A similar trend is seen for mobile malware. The first half of 2016 saw a

sharp rise in mobile malware; it almost doubled compared to the same period in 2015

(Nokia, 2016).

b) There is also an increase in the sophistication of mobile malware. As malware

detection methods evolve, attackers use new techniques to evade these methods.

Android.Obad is most complex malware discovered to the date, and it was dubbed villain

of the year of 2013 (Kaspersky, 2013). It uses heavy encryption in its code. In February

2016, Kaspersky Lab reported the discovery of Acecard, one of the most dangerous types

of malware. In March 2016, they announced that they had discovered Triada, described

as a complex, stealthy, and professionally written malware. It is capable of making any

application an agent for performing malicious activities (Kaspersky, 2016b).

These issues call for new and distinctive detection methods. Google, as the owner of

Android, has taken security precautions in order to tackle mobile malware. In 2012, it

introduced Bouncer, a system that vets applications prior to publishing on Google Play.

Google announced that they scan six billion applications per day. It is not feasible,

however, to introduce very strict rules, as they affect privacy issues.

Univ
ers

ity
 of

 M
ala

ya

4

Thus, the situation leads to an urgent need for new detection techniques. However, this

poses major challenges. One issue is the limited resources of devices, such as battery life.

Many applications consume too much power, resulting in limitations. This situation

challenges us to develop new methods, with power consumption as an important factor.

1.3 Problem Statement

Since the introduction of the Android operating system, its popularity has increased, and

continues to do so. Over time, attackers saw Android as a lucrative target. Thus, they

developed malware for Android. The growth of Android malware has been steady, in

terms of both volume and complexity.

Many researchers have addressed malware detection experimentation. However,

attackers have always tried to find a way to evade new detection methods. It is necessary

to develop new analysis and detection methods in order to detect malicious activities.

Furthermore, as already mentioned, Google introduced a system called Bouncer to

analyse applications before publishing them in Google Play store (Google, 2016).

However, this system has proved to be ineffective, since malware are still seen inside the

store (Kaspersky, 2016a).

Moreover, despite recent advances in processing power and memory, battery life remains

a limitation in mobile devices. Many applications, including current detection methods,

consume too much power. (Polakis et al., 2015) conducted an experiment in which the

power consumption of malware detection applications was measured. They calculated the

energy consumed by the device display and the CPU. Figure 1.1 shows the average energy

consumption of the applications, namely AVG, Dr.Web, Sophos, Avast, Norton, and NQ.

It is worth mentioning that the authors were unable to measure the energy consumption

of the display for the NQ security application, which is the reason it is not present in sub-

figure a.

Univ
ers

ity
 of

 M
ala

ya

5

Figure 1.1. Average Energy Consumed Per Second During ‘On Demand’ Scan

(Polakis et al., 2015)

We have calculated the energy consumption of YouTube during 10 minutes of usage.

Table 1.1 shows the comparison between NQ and YouTube applications, considering the

lowest amount in sub-figure b to be around 6,000 for the NQ application.

Table 1.1. Energy Consumption of Two Applications during 10 Minutes of Usage

Application Energy Consumption in Joules

YouTube 551.59

NQ 3,600

We calculated the energy consumption of the NQ application for 10 minutes as follows.

The 6,000 millijoules mentioned is for one second, and the YouTube consumption of

551.59 Joules is for 10 minutes. If we multiply 6,000 by 600 (to get 10 minutes of usage),

and divide it by 1000 (for a millijoule to joule conversion), the result is 3,600 Joules in

10 minutes. It is clear that the NQ application consumes approximately 6.52 times more

energy than the YouTube application. It is worth noting that the calculations were made

for the lowest level of energy consumption of the malware detection applications. Others

will consume much more energy than the NQ application.

This dissertation therefore deals with the problem of the implementation of mobile

malware analysis and detection methods on Android devices. It focuses specifically on

the limitations of the battery life of such devices.

Univ
ers

ity
 of

 M
ala

ya

6

1.4 Aims and Objectives

The aim of this study is to propose a new framework for analysing and detecting Android

malware, focusing on minimising the energy consumption of the proposed solution. In

order to achieve this aim, several issues need to be thoroughly examined, analysed, and

evaluated. They are:

a) To study the development and current state of Android malware as well as current

analysis and detection methods.

b) To design and propose a new framework for Android malware analysis and

detection.

c) To evaluate the proposed framework in terms of detection accuracy by using real-

world malware.

d) To implement the proposed framework and measure energy consumption of the

application, comparing it with similar products.

Due to the overwhelming amount of Android malware, this work centres on the Android

operating system. However, the general principle and proposed architecture is applicable

to other mobile devices.

The above objectives are dealt with in the following chapters, the structure of which is

presented in the next section.

1.5 Thesis Structure

Chapter 2 presents an overview of the development of Android malware since its

appearance. It then discusses Android architecture in detail. This section helps to

understand various parts of the operating system used in malware detection. The

characteristics of Android malware are discussed in the next section. Discussing malware

traits helps to develop detection methods. We treat in some depth malware analysis

Univ
ers

ity
 of

 M
ala

ya

7

methods, which in turn helps to address the question of what to analyse. This entails

examination of a selection of mobile features; feature selection is an important part of any

experiment. The next section addresses the question of how to analyse. Analysis methods

are categorized into three groups: static, dynamic, and hybrid. Each category is explored

comprehensively by providing definitions and examining related research works. The

next section addresses the question of how to detect. Malware detection methods are

discussed, describing their benefits and disadvantages. The final section of this chapter

relates to the question of where to detect. It discusses the point of detection, which is the

location in which malware detection is used.

Chapter 3 is called DroidLab. It investigates different tools used in Android malware

analysis and detection. The chapter has three sections. The first section concerns static

analysis tools that inspect Android installation files and extract various components. The

second section deals with dynamic analysis tools for analysing the behaviours of Android

applications. The third section discusses the available tools used in machine learning

approaches, while the fourth section discusses those used to measure the energy

consumption of mobile applications.

Chapter 4 outlines the proposed malware analysis and detection system for Android

devices. It discusses various parts of the system along with their functions. Process flow

and data flow are discussed, using numerous diagrams. In addition, methods and services

used in the system are explained.

Chapter 5 evaluates the proposed system by performing four different experiments. The

first one relates to static analysis. It explores the use of Android Intent and shows that it

is a rich and undervalued component for malware analysis. The results from Android

Intent are presented and compared to those from Android permission, which is a well-

known component in Android malware analysis. The second and third experiments are

Univ
ers

ity
 of

 M
ala

ya

8

related to dynamic analysis. They explain the rationale behind choosing network traffic

as a selected dynamic feature. The second experiment chooses the best network-related

features by using four feature selection algorithms. The results are presented and analysed

at the end of this evaluation. The third experiment uses an advanced deep learning

algorithm to detect malware. The fundamentals of such an algorithm are explained, along

with the detection results. The final experiment serves the objective of this study by

measuring the energy consumption of the proposed system. The results are then compared

to similar systems.

Chapter 6 presents a prototype system that includes all the elements of the proposed

framework. First, the development process is described, which includes the technical

preparation of the prototype. Following this, the various parts of the system are illustrated

in the form of screenshots.

Finally, Chapter 7 concludes this work by discussing its contributions, limitations, and

offering suggestions for future work.

In addition, there are number of appendices included at the end of this study. They include

a list of reviewed work from the literature, a list of malware families in the MalGenome

data sample, and list of publications derived from this research work.

 Univ
ers

ity
 of

 M
ala

ya

9

CHAPTER 2: MOBILE MALWARE EVOLUTION, CHARACTERISTICS AND

DETECTION METHODS

Mobile malware has witnessed many changes since its first appearance. They include

simple annoyance malware up to the most sophisticated. The objective of this chapter is

first to walk through the development of mobile malware in order to establish a context

for this study. Android architecture and its security features are also explained in detail.

We then discuss and evaluate some of the most useful and salient research work, nominate

available gaps in the literature, and clarify the problem addressed in this study.

2.1 Mobile Malware Evolution

The history of mobile malware goes back to 2004. A coder named Vallez developed a

proof-of-concept malware known as Cabir for the Symbian operating system. Soon

afterwards, malicious coders developed malware based on Cabir (TrendMicro, 2012). In

the same year, attackers made use of Cabir code to develop Qdial, a malware that sends

a short messaging service (SMS) to premium numbers. This caused users to receive

unexpectedly expensive phone bills. Also in November of the same year, Skulls malware

infected mobile devices. It altered files on devices, causing applications to stop

functioning, replacing their icons with a skull and crossbones.

By 2005, mobile malware had begun to steal users’ information. Pbstealer was a malware

that collected the address books from devices and transmitted them to a nearby Bluetooth-

enabled device. Considering that some entries in the address book may have contained

usernames and passwords, such types of malware brought a new kind of danger to mobile

devices (TrendMicro, 2012). At the time, malware tended to spread via Bluetooth, since

devices were not equipped with Wi-Fi chips. In this context, another major development

in malware was the use of multimedia messaging services (MMS) as a way of spreading

Univ
ers

ity
 of

 M
ala

ya

10

the malware. Commwarrior was one of the first malware to use this method (Adeel &

Tokarchuk, 2011).

By 2009 the growth of mobile malware was steadily rising. In addition to the Symbian

operating system, attackers developed malware in Java language. This was because of the

introduction of a Java-based mobile operating system, which gave attackers more options

for infecting a broader range of devices.

The introduction of two new mobile operating systems radically changed the spectrum of

mobile malware in 2010. Gartner reported that the sale of mobile devices had increased

by 72% compared to 2009 (Gartner, 2011). Attackers saw this steep increase as an

opportunity to develop new malware based on the newly introduced operating systems,

namely Google’s Android and Apple’s iOS. By 2011 it was reported that Android had

obtained almost 50% of the worldwide market share of mobile operating systems

(MashableAsia, 2011).

Attackers followed the same malicious behaviour as Symbian malware. DROIDSMS was

the first malware for Android, and was first detected in August 2010. It sent SMS

messages to premium numbers (TrendMicro, 2010a). However, the capabilities of mobile

devices at that time offered new opportunities for attackers. In the same year, a modified

version of DROIDSMS was detected as a disguised version of the Tap Snake game. It

collected the GPS location of the victim’s device and transmitted it to the attacker over

the Hypertext Transfer Protocol (HTTP) connection (TrendMicro, 2010b).

Android malware growth sharply increased in the years following 2010. According to a

report from F-Secure, Android accounted for 79% of malware in 2012, up from 66.7% in

2011 and from just 11.25% in 2010 (Amos et al., 2013). Additionally, Android malware

Univ
ers

ity
 of

 M
ala

ya

11

continued to become more sophisticated. Android.Obad is the most complex malware

discovered to date; it was dubbed villain of the year 2013 (Kaspersky, 2013).

Kaspersky lab announced that they had discovered 2,961,727 malicious installation

packages and 884,774 new malicious mobile programs in 2015, a threefold increase from

the previous year. Figure 2.1 shows the geographical distribution of Android malware in

2015.

Figure 2.1. The geography of mobile malware by the number of attacked users in

2015 (Kaspersky, 2016a)

The 10 countries with the highest number of victims in 2015 are tabulated in Table 2.1.

China is ranked first with 37%; this means that 37% of users of mobile security products

in China encountered a mobile threat at least once during the year. The reason for this is

that many unofficial application markets are popular, and users tend to download

applications from such sources. Accordingly, attackers publish their malicious

application in third-party markets, where security monitoring is not very rigorous.

Univ
ers

ity
 of

 M
ala

ya

12

Table 2.1. Top 10 countries by percentage of attacked users in 2015

Rank Country Attacked Users Rank Country Attacked Users

1 China 37% 6 Vietnam 22%

2 Nigeria 37% 7 Iran 21%

3 Syria 26% 8 Russia 21%

4 Malaysia 24% 9 Indonesia 19%

5 Ivory Coast 23% 10 Ukraine 19%

The propagation strategy developed alongside malware itself. Prior to Android, attackers

relied on SMS, MMS and Bluetooth to infect more devices. Following the introduction

of Android, attackers tried to spread their malicious applications through Google Play.

Android users use the official application market, known as Google Play, to download

applications. However, some users choose to download applications from third-party

markets, such as SlideME.

The propagation strategy gained popularity, as in March 2011 it was discovered that 50

applications inside Google Play were infected with DroidDream malware. This malware

steals the IMEI and ISMI numbers of devices along with other personal information

(AndroidPolice, 2011). Google introduced Bouncer in 2012 in response to rapidly

growing Android malware inside Google Play. This is a security mechanism that vets

applications before publishing to the market. Google announced that they check over six

billion applications per day in order to prevent malicious applications from being

published (Google, 2016). Despite such efforts, in early October 2015 Kaspersky came

across several malware in the official Google Play market that stole victims’ usernames

and passwords. About a month later a new modification of the same malware was

unearthed, which was also distributed via Google Play. Attackers published this malware

10 times on the official market under different names over a period of several months.

The number of downloads for all versions was estimated at between 100,000 and 500,000

(Kaspersky, 2016a).

Univ
ers

ity
 of

 M
ala

ya

13

2.2 Android Operating System

This section describes Android architecture and examines the Android installation

package. It sheds light on the foundations of the Android operating system. It also

discusses available Android security mechanisms.

2.2.1 Android Operating System Architecture

Android is based on the Linux 2.6 kernel. The kernel is the first layer on top of the

hardware that interacts with the device’s hardware. Figure 2.2 shows the Android

architecture.

Figure 2.2. The Android Architecture (Gunasekera, 2012)

The kernel layer is responsible for directly interacting with hardware and performing

different tasks such as display, USB, Wi-Fi, audio, etc. The runtime layer is comprised

of library components written in C/C++ language. Android developers access libraries

Univ
ers

ity
 of

 M
ala

ya

14

through the Java application program interface (API) in order to use them in their

applications.

Additionally, this layer consists of the Dalvik Virtual Machine (DVM), in which system

and third-party applications are executed. The Dalvik was written by Dan Bornstein, who

named it after a small village in Iceland. The Dalvik was written because mobile devices

have limited resources (although memory and CPU power have increased over the years,

battery limitations remain a challenge). It allows Android to run applications efficiently

considering the limitations of the device.

Android applications are written in Java language that creates class and jar files. Upon

compiling written applications, Java files are converted to Dalvik format and stored in

DEX file used by the DVM to run applications. Figure 2.3 shows the conversion from

Java to Dalvik format.

Figure 2.3. Conversion of Java to Dalvik Format (Gunasekera, 2012)

Noticeably, the constants in each class file are combined into a shared pool of constants,

and other data sections are assembled into one section in the DEX file. Not only does this

Univ
ers

ity
 of

 M
ala

ya

15

conversion make applications run faster on devices, but it also reduces the size of the

DEX file.

The framework layer consists of many APIs, giving developers access to building

blocks of applications (e.g. buttons, text boxes, notification area, etc.). The APIs in

runtime layer give developers access to fundamental actions that require interaction with

the kernel layer and the hardware. However, APIs in the framework layer are used for

many application components. Finally, the application layer is the layer that users

interact with. The messaging applications, contacts, games, third-party applications are

located in this Android layer, which is the layer closest to users, taking input to

applications and providing output to users (Gunasekera, 2012).

2.2.2 Android Application Package Structure

As discussed earlier, Android applications are written in Java language and then

compiled into a DEX file. This process is shown in Figure 2.4.

Figure 2.4. The Build Process of Android APK File1

The process of packaging an Android Application Package (APK) file starts with

compiling the source code, resource files (pictures, icons, sound files etc.), and Android

1 https://developer.android.com/studio/build/index.html

Source Code

Resource Files

AIDL Files

Library Modules

AAR Libraries

JAR Libraries

Compilers

DEX File(s)

Compiled Resources

Debug or release

Keystore

APK Packager
Debug or release

APK

Univ
ers

ity
 of

 M
ala

ya

16

Interface Definition Language (AIDL) files, along with any dependencies that the code

may have used (including libraries and JAR files). It is worth mentioning that AIDL

allows developers to define the programming interface that both the client and service

agree upon in order to communicate with each other using inter-process communication

(IPC). The output of this compilation is a DEX file. The process could result in more than

one DEX file. The total number of references that can be invoked by the code within a

single DEX file is 65,536. Exceeding this number results in the creation of a second DEX

file, which is why it is mentioned as DEX file(s) in Figure 2.4.

The next step is to prepare the debug or release the keystore. Android requires that all

APKs are digitally signed with a certificate before they can be installed. A keystore is a

binary file that contains one or more private keys. When debugging applications,

developers need to sign their APK with a debug certificate; the final version of an

application is signed with the release keystore. Lastly, APK packager uses the DEX file

and the keystore to produce the APK file.

The generated APK file has many components (including a DEX file). It is used to install

applications on Android devices. Part of the malware analysis and detection method is

based on APK files. It is thus helpful to understand its structure. It is an archive file that

can be opened with the WinZip program. The components of an APK file are as follows:

a) AndroidManifest.xml: An XML file holding meta information on an application,

such as descriptions and security permissions. Prior to installation of an Android

application, the application provides prospective users with a list of permissions that are

available in the file.

Univ
ers

ity
 of

 M
ala

ya

17

b) Classes.dex: This contains the source code of an application written in Java and

compiled for Android that the machine converts it to a special file format with a DEX

extension.

c) Resources: This entails all the resources the application needs to run, such as

pictures used in the application, the layout of the application, its appearance to a user, the

use of a database, as well as data stored in the database.

2.2.3 Android Security Features

Since the Android operating system runs on top of the Linux 2.6 kernel, it inherits its

security structure from Linux, and adds some modifications to suite mobile devices. In

this section, many security components of Android are discussed in order to better

understand current research.

Android applications run inside a virtual machine. They are unable to see other

applications. The DVM was presented in Figure 2.2 as part of the runtime layer of the

Android system. Figure 2.5 shows the concept of the DVM from a different perspective

and in more detail.

Figure 2.5. The Dalvik Virtual Machine (DVM) in Android Architecture

(Gunasekera, 2012)

Univ
ers

ity
 of

 M
ala

ya

18

The Android applications (system or third-party applications) have their own virtual

machine. Since starting a virtual machine from scratch is time consuming, resulting in

delays in the functionality of applications, Android relies on a pre-loaded virtual machine.

A process known as Zygote is responsible for starting up an application using a pre-loaded

virtual machine, and initializing core library classes required by that application

(Armando et al., 2012).

However, upon launching, each application has some very basic access to various system

components. In case it should require additional resources, it requests permission for that

resource. The Android permission is a security feature derived from Linux. The Android

checks to see if an application has been granted proper permission before performing an

activity (e.g. permission for using a camera, accessing a users’ location, making a call)

(Felt et al., 2011).

Intent is a complex messaging system in the Android platform, and is considered a

security mechanism for hindering applications from gaining access to other applications

or system functions directly (e.g. sending an SMS, making a phone call, opening a link

in a browser, etc.). This is a way of controlling what applications can do once they are

installed in Android (Aftab & Karim, 2014). Android permission and Android Intent work

closely together to provide security. As an example, Android applications ask permission

to make a phone call. They then use Intent to actually make the phone call. Therefore,

Android checks to see if applications have specific permissions to use Intent.

2.3 Mobile Malware Characteristics

In this section, we discuss the various types of Android malware and their characteristics.

We also discuss the type of malware that this work focuses on, which clarifies the target

of this work.

Univ
ers

ity
 of

 M
ala

ya

19

Before categorizing mobile malware, a definition of mobile malware will be provided.

Techopedia defines mobile malware as follows: “Mobile malware is malicious software

that is specifically built to attack mobile phone or smartphone systems. These types of

malware rely on exploits of particular operating systems (OS) and mobile phone software

technology, and represent a significant portion of malware attacks in today’s computing

world, where mobile phones are increasingly common” (Techopedia, 2016).

Webopedia defines mobile malware as “Malicious software ("malware") that is designed

specifically to target a mobile device system, such as a tablet or smartphone to damage

or disrupt the device. Most mobile malware is designed to disable a mobile device, allow

a malicious user to remotely control the device or to steal personal information stored on

the device” (Webopedia, 2016).

Based on the two mentioned definitions, we deal with malware that exploits mobile

devices to steal personal information. There is a variety of attacks particular to Android,

ranging from adware to the most sophisticated and dangerous kind. The purpose of

adware is to advertise a product or a website; it is harmless but annoying. The most

dangerous and sophisticated malware is capable of accessing personal data on the device

as well as hijacking the mobile device itself. We have categorized mobile malware based

on their behaviours and characteristics as follows.

2.3.1 Adware

Although some Android applications are free, they show advertisements while operating.

Sometimes the advertising is aggressive and annoys users. Apart from pushing

advertisements in devices without the user’s consent, they are able to change internet

browser settings, showing icons on the home section of devices, and in minor cases

collecting user information.

Univ
ers

ity
 of

 M
ala

ya

20

Android Dowgin is an example of an adware that installs itself on an Android device as

a bundle with other applications. It then displays advertisements in the notification area

of the device and is not easily removed. It is estimated that between 10,000 to 50,000

users are infected with this adware (AVG.ThreatLabs, 2013). It has been spreading since

July 2013 and continues to proliferate (Eset, 2013). The alarming issue is that, as of

December 2013, some of the more prominent antivirus software such as Symantec,

TrendMicro, and McAfee were not able to detect it (Virustotal, 2013).

2.3.2 Trojan and Bots

Trojan is a seemingly clean application containing a malicious code. Once it is installed

onto mobile devices, the malicious part is activated. It then performs various malicious

activities including corrupting the operating system, collecting personal information,

gaining root access, and sending user information to attackers.

A botnet comprises a network of infected devices scattered geographically that is used to

attack other systems for malicious purposes. The botnet is under the command of a

hacker. The hacker is able to command the bots, also known as zombies, to attack a

specific victim. An infected device communicates with the hacker through a rendezvous

point called the command and control (C&C) server.

The reason for putting Trojan and bots in the same category is the aggressive nature of

Android malware. Trojan and bots share the same characteristics. They start by

representing themselves as a normal, clean application. Upon installation, however, they

show their true nature by performing malicious activity. This trait categorizes them as

Trojan. Following this, they contact their master through the C&C server and report their

activity or receive commands to perform further damage to the device, which defines

them as bots.

Univ
ers

ity
 of

 M
ala

ya

21

Security analysts discovered, for instance, an infected version of the Angry Birds Space

application in April 2012. It functions like a normal application without suspicious

symptoms. However, it uses a software trick known as GingerBreak to acquire root access

that allows it to do tasks outside of its privilege. It secretly downloads malicious codes

from a server and opens a back door for attackers, upon which the device eventually joins

the botnet (Sophos, 2013). Another example is the ZeroAccess botnet that adds

approximately 100,000 new infections weekly. It receives a considerable sum of money

from its clients each week in order to generate new associated infections. It had an 88.65%

share of the botnet dominance in 2013 (Fortinet, 2014).

Xbot was discovered in February 2016. This is a cocktail of different types of Android

malware. It starts by infecting a device as a Trojan. It then collects banking and credit

card information as the users enter their credentials. It acts as a bot by contacting the C&C

server and passing the collected information on to the attacker. The attacker has the ability

to lock and encrypt files on the device and SD card, and then demands 100 USD ransom

from the victim. Researchers have unearthed 22 applications infected with Xbot, some of

which target Australian banks (C. Zheng et al., 2016).

The Android attackers sometimes have financial encouragements and have recently also

become more aggressive (Symantec, 2014a). Upon installation, some applications send

expensive SMS messages to premium numbers without the users’ knowledge, and this

reflects itself in the user’s bills. Such applications have been on the rise for years. A report

published in 2013 shows that some attackers earn up to 12,000 USD per month via such

malware (The.Register, 2013). Based on a report by Sophos, a malicious version of the

popular Angry Bird game secretly sends premium SMS for 15 GBP per message. Each

time the user starts the application, it sends a premium SMS. It is estimated that 1,391

devices are infected with this malware, and it has been estimated that developers of this

Univ
ers

ity
 of

 M
ala

ya

22

malicious application have earned 27,850 GBP through sending SMS messages to

premium numbers (Sophos, 2012).

Recently attackers have adopted a new approach towards infecting mobile devices. Thus

far, attackers had been dependant on tempting users to download their malicious

applications, after which the application performs malicious activities without the users’

knowledge. It has been observed that PCs have been used as a conduit for Android

devices, which are called hybrid threats (Symantec, 2014a). Trojan Droidpak uses hybrid

threats to infect mobile devices. It first gains access to a personal computer and, based on

that, a malicious APK file downloads itself. When the user connects an Android device

to the computer, the malicious file attempts to install itself on the device. After successful

installation it attempts to convince the user to download and install an infected version of

a Korean banking application (Symantec, 2014a).

Based on a report from Kaspersky, Trojan for mobile devices constitutes 49% of Android

malware (Kaspersky, 2012). Additionally, in terms of malware dangerousness, trojans

and bots are more dangerous than other categories of malware. Such families include

Obad, Shedun, Godless, Hummingbad, and Gunpoder (Milin-Ashmore, 2016). We

therefore focus on the analysis and detection of this category in this study, which covers

the majority of the Android malware spectrum.

2.3.3 Ransomware

This type of malicious application is new to the mobile malware ecosystem. Ransomware

takes mobile devices hostage and demands ransom. Android.Simplocker was the first

Android ransomware, and was detected in 2013. Symantec found a fake security

application called Android Defender that encrypts files, locks the device, and renders it

useless. It demands ransom in order to unlock the device (Symantec, 2014b). To increase

Univ
ers

ity
 of

 M
ala

ya

23

the victim’s fear, this variant of malware uses the front camera to display the victim’s

photo (ESET, 2016).

Lock-screen ransomware and crypto-ransomware are two categories of this type of

malware. The lock-screen method hijacks resources and locks the device, hindering the

user from using it. The crypto-ransomware hijacks files by using encryption. In both

methods the attacker demands ransom in order to unlock or decrypt the device (ESET,

2016).

MacAfee reported an increase of 26% in the amount of ransomware in the last quarter of

2015 (MacAfee, 2016). This type of malware is new; it has been estimated to increase

over time and spread to Android-based smartwatches. Smartwatches introduced new

types of smart devices that connect to mobile devices. They offer new opportunities for

attackers to spread their malicious applications (Symantec, 2015).

2.4 Mobile Malware Analysis and Detection Methods

The previous sections of this chapter formed a basis for reviewing Android malware

analysis and detection methods. The scope of this study demands that we examine the

current literature from four different perspectives corresponding to each section. They are

as follows: A) features to analyse (Section 2.4.1), B) how to analyse the selected features

(Section 2.4.2), C) how to detect mobile malware using the analysed features (Section

2.4.3), and D) where to detect mobile malware (Section 2.4.4). The full list of reviewed

works is available in Appendix A.

2.4.1 Feature Selection in Mobile Malware Detection

Numerous studies have developed methods to thwart attacks on mobile devices. In order

to develop an effective detection system, a subset of features from hundreds of available

features must be chosen. This section investigates the different features available for

Univ
ers

ity
 of

 M
ala

ya

24

analysis. Android applications consist of various elements such as permissions, Java code,

certification, the behaviour of the application on the device, and its behaviour on the

network. Selecting the most useful subset of features from a massive number of available

features changes the result of the whole experiment (Guyon & Elisseeff, 2003). Some of

the benefits of feature selection are as follows:

a) Feature selection makes it possible to reduce the dimensionality of the datasets,

because with less data it is possible to easily visualize the trend in data (Liu & Motoda,

2007).

b) Datasets involve analysing vast amounts of data; therefore, reducing them to a

useful subset not only saves the time and cost of experiments, but also minimises the time

required for real-world implementation (Liu & Motoda, 2007). Furthermore, selecting a

useful subset of the features considerably reduces the runtime of the machine learning

algorithms during the training phase.

c) Feature selection removes noisy and irrelevant data from datasets, leading to more

accurate results from machine learning algorithms (Jensen & Shen, 2008).

We conducted two experiments in order to examine the effect of features on results. We

collected the network traffic of over 800 Android applications, including normal and

malicious, from the MalGenome (Yajin & Xuxian, 2012) data sample. The dataset

consists of ten network traffic features, out of which we selected five features for each

experiment. The dataset comprises of 504,148 records. The K-nearest neighbour classifier

with three neighbours was used. Table 2.2 shows the results of the experiments.

Univ
ers

ity
 of

 M
ala

ya

25

Table 2.2. Results of the Experiments

Experiment 1 Experiment 2

Features

frame.len,

frame.number,

frame.time_delta,

frame.time_relative,

tcp.srcport

tcp.dstport,

tcp.window_size value,

tcp.seq,

ip.src,

ip.dst

True Positive Rate (TPR) 98.63% 99.98%

False Positive Rate (FPR) 1.37% 0.02%

As Table 2.2 illustrates, different features yield different results, despite the fact that the

data collection process and the used classifier are the same for both experiments. Thus,

the effect of feature selection is conspicuous. In addition, selection of the most useful

features is an important and challenging task.

We studied 100 of the most salient related research works with respect to feature selection

in mobile malware detection. We categorize available features into four groups, namely

static features, dynamic features, hybrid features, and application metadata.

2.4.1.1 Static Features

Static features include features available in the APK file such as Androidmanifest.xml

files and Java code files. Out of 100 papers reviewed, 45 papers used static features to

conduct their experiments. Among static features, researchers used permission in 36% of

the papers, more than other static features. Selection of Java code came second in 29% of

the papers. The following sections discuss static features in details.

(a) Android Permission

We know that the Android operating system has a Linux core, from which it inherits

important parts of the Linux security architecture. Prior to installation of an application,

the Android provides a list of requested permissions to the user. Upon the permissions

Univ
ers

ity
 of

 M
ala

ya

26

being granted, the application installs itself on the device. There are 130 official Android

permissions (Moonsamy et al., 2013b). Google categorizes them into four groups,

namely, normal, dangerous, signature, and signatureOrSystem (Google, 2014).

Researchers take different approaches in analysing Android permissions. Some use

permissions to evaluate applications and rank them based on possible risks (Au et al.,

2012; Grace, Zhou, Zhang, et al., 2012; Pandita et al., 2013; Peng et al., 2012). Numerous

studies simply extract permissions and utilize machine learning to detect malicious

applications (Aung & Zaw, 2013; Samra et al., 2013; Borja Sanz, Santos, Laorden,

Ugarte-Pedrero, Bringas, et al., 2013; Suleiman Y Yerima et al., 2014), to name a few.

Researchers argue that merely analysing the requested permissions is not sufficient for

detecting malicious applications (C. Y. Huang et al., 2013; Moonsamy et al., 2013b).

They analyse the used permissions in addition to the requested permissions in order to

detect malware. Malicious applications tend to request more permissions than they need,

which is a way of identifying them. AppGuard has gone one step further and has extended

Android’s permission system to alleviate current vulnerabilities (Backes et al., 2013). The

approach is claimed to be a practical extension for the Android permission system, as it

is possible to use it on devices without any modification or root access.

Why is Android permission the most used static feature? As mentioned earlier, the

Android operating system has Linux architecture. Permission is the first barrier to

attackers. Even though the Java code contains malicious code, some of API calls in the

code need permission to be invoked (D.-J. Wu et al., 2012b). Permission-protected API

calls are part of the security features of the Android operating system. For example, before

sending a message or accessing the camera, Android checks if the application has

permission to do so (Felt et al., 2011). Based on that scenario, researchers focus on

permission features to detect malware based on the demanded permissions.

Univ
ers

ity
 of

 M
ala

ya

27

(b) Android Java Code

Developers write the Java code, which is the main part of Android application files, and

subsequently compile them to a special format called Dalvik that is proprietary to the

Android operating system. Researchers have used various analysis approaches on Java

code. Some researchers use API calls to detect malware (Deshotels et al., 2014a; Grace,

Zhou, Wang, et al., 2012; V. Rastogi et al., 2014; S. Y. Yerima et al., 2013; M. Zheng et

al., 2013b). Every Android application needs to have API calls to interact with the device.

As an example, there are API calls to the telephony manager of the operating system to

retrieve phone ID and subscriber ID. API calls in a method are sequential. Researchers

consider such a sequence as a signature that is unique to that application. However,

changing the sequence of the API calls is a strategy called code obfuscation that is used

by attackers to bypass the detection process. Analysing control flow of the Java code is

another approach adopted by researchers (Crussell et al., 2012; Suarez-Tangil et al., 2014;

Xu et al., 2013). Attackers can change the sequence of API calls or rename the calls to

evade the detection system. However, the flow of the Java code does not change and

researchers use it to develop stronger detection systems.

(c) Other Static Features

Besides permissions and Java code, some researchers analyse several other static features

as follows.

1) Intent: As discussed in Section 2.2.3, Intent is one of the security features in

Android. Application developers use Intent in Java code and XML file. It is used in Java

code to perform actions. Moreover, it is one of the elements described in

Androidmanifest.xml file. It is declaration of capability to perform an action. For

instance, when an application is able to open a text file, it declares it in the XML file. This

way, the Android knows what application to use to open a text file.

Univ
ers

ity
 of

 M
ala

ya

28

Researchers have been using Intent for malware detection, since attackers command

malware to collect private data, which requires the presence of intentions in the Android

Intent.

In DroidMat, various features from an Android file including intents are extracted and

analysed (D.-J. Wu et al., 2012b). The authors utilized several machine learning

algorithms such as k-means, K-Nearest Neighbours, and naïve bayes, to develop malware

detection systems. The evaluation of the DroidMat showed an improvement over similar

systems in that time.

The A3 system was published that considers several features including intents in the

Android installation file (Luoshi et al., 2013). It then constructs a call graph that

represents the flow of the Java code execution. Afterwards, it uses A* algorithm to

determine the shortest path that subsequently shows the behaviour of malware.

DREBIN presents a broad static analysis (Arp et al., 2014). The approach collects static

features of Android installation files including intents. The authors used a support vector

machine (SVM) for detection purposes. The results of the experiment showed that

DREBIN detected 94% of the malware, with a low rate of false alarms.

So far, research has focused on analysing Intent in the XML file. Therefore, the Intent in

Java code is an undervalued feature. As a result, we choose it for our experiments (more

detail on the rationale behind in Section 5.2).

2) Network address: Attackers instruct malware to contact them and report their

status or to send users’ personal data. To do so, attackers embed the address of the C&C

server in the malicious code of the malware. Researchers look for the network or the IP

address of the C&C server in the code of the Android installation file. Luoshi et al. and

Arp et al. incorporated the network address as one of the static features in their systems

Univ
ers

ity
 of

 M
ala

ya

29

(Arp et al., 2014; Luoshi et al., 2013). However, attackers started to encrypt the address

of C&C servers to evade detection methods, for example in the DroidKungFu malware

family.

3) Strings: Sanz et al. stated that one of the widely used techniques in classic malware

detection is analysing strings available in the file (Borja Sanz et al., 2014). They applied

the same technique for Android malware by extracting every printable string in the

Android file, such as menus in applications or server addresses with which the application

connects. The authors used the Vector Space Model (VSM) (Baeza-Yates et al., 1999) to

represent the strings as vectors in multidimensional space. Afterwards, the authors used

distance measures, such as Manhattan distance, Euclidean distance and Cosine similarity

to calculate the anomaly of the data. The authors evaluated the results with 666 samples

of Android applications. They achieved an accuracy of 83.51% and a true positive rate

(TPR) of 94% in the experiments.

4) Hardware components: DREBIN used hardware components as a static feature

(Arp et al., 2014). As part of Androidmanifest.xml file, applications request combinations

of hardware that they need in order to function, for example the camera or GPS.

Combinations of requested hardware imply harmfulness of the application, for example,

3G and GPS access implies a malware that reports the location of users to attackers.

2.4.1.2 Dynamic Features

We define dynamic features as behaviour of applications in interaction with operating

system or network connectivity. There are two main types of dynamic features: system

calls and network traffic. Every application demands resources and services from the

operating system by issuing system calls, such as read, write and open.

Network traffic is another dynamic feature used by researchers. Applications tend to

connect to a network to send and receive data, receive updates, or maliciously leak

Univ
ers

ity
 of

 M
ala

ya

30

personal data to attackers. Monitoring network traffic of mobile devices is a way of

catching a culprit in the act.

Based on our analysis, 42 out of 100 papers used dynamic features. Twenty-two papers

used system calls as their dynamic feature and 10 papers used network traffic. The

remaining 10 papers selected other dynamic features, such as system components or user

interaction.

(a) Android System Call

There are more than 250 system calls in a Linux kernel, which includes Android

(Burguera et al., 2011). Analysing system calls leads to anomaly detection in the

application’s behaviour (Feizollah et al., 2013). Applications use system calls to perform

specific tasks such as read, write and open, since they cannot directly interact with the

Android operating system. Upon issuing a system call in user mode, the Android

operating system switches to kernel mode to perform the required task. System call is the

most selected feature among the dynamic features, constituting more than half of the

reviewed papers. Research works such as (Burguera et al., 2011; Khune & Thangakumar,

2012; Su et al., 2012; L. K. Yan & Yin, 2012; Zhao et al., 2011b) captured and analysed

system calls to detect malicious applications.

(b) Android Network Traffic

The majority of applications (normal or malicious) require network connectivity.

MalGenome authors stated that 93% of their collected Android malware samples need a

network connection in order to connect to attackers (Yajin & Xuxian, 2012). Additionally,

a research work was published in 2012 in which they analysed permissions of Android

files (Sarma et al., 2012). They examined over 150,000 applications and found that

68.50% of normal applications require network access, while 93.38% of malicious

applications do.

Univ
ers

ity
 of

 M
ala

ya

31

Similarly, Sanz et al. analysed permissions of 2,000 applications (Borja Sanz, Santos,

Laorden, Ugarte-Pedrero, Bringas, et al., 2013). Based on their analysis, over 93% of

malicious applications requested network connectivity. It is evident that the majority of

applications request network access, particularly the malicious ones. Therefore, it

behoves researchers to focus on analysing network traffic for effective Android malware

detection.

Despite the effectiveness of the network traffic feature in mobile malware detection, it

has not attracted researchers’ attention as much as the other dynamic features. Utilizing

network traffic imposes the challenge of dealing with massive numbers of network

records, possibly as many as a million, in the dataset. Furthermore, analysing collected

network traffic requires profound understanding of network architecture. Thus, we select

this feature for our experiment (details in Section 5.3).

(c) Other Dynamic Features

In addition to system calls and network traffic, researchers have been using other dynamic

features. They are as follows:

1) System components: Mobile devices have similar components to PCs, such as

CPU and memory. Some researchers investigated detection of Android malware by using

system components. In MADAM, the authors analysed CPU usage, free memory, and

running processes of mobile devices that are considered the kernel level of the operating

system (Dini et al., 2012). In addition, it examined user/application level features, such

as Bluetooth and Wi-Fi status of the device. The collected data were used to train the K-

Nearest Neighbours algorithm.

STREAM was introduced in 2013 for the Android operating system (Amos et al., 2013).

It collects data regarding system components like cpuUser, cpuIdle, cpuSystem,

Univ
ers

ity
 of

 M
ala

ya

32

cpuOther, memActive, and memMapped. It subsequently uses machine learning

algorithms to train the system in order to detect Android malware. Other works that also

use system components as dynamic features are (Hoffmann et al., 2013; Hyo-Sik & Mi-

Jung, 2013).

2) User interaction: Users are potential victims of malicious applications. Analysing

users’ interaction with applications is one of the possible solutions in malware detection.

PuppetDroid captures users’ interaction with applications (Gianazza et al., 2014). The

authors consider features such as pushing a button and navigating through pages as user

interaction, and evaluated the system with 15 Android applications. The goal is that after

capturing user interactions related to a malware, the system looks for similar user

interaction to detect malicious applications. Dynodroid is another system that was

developed based on user interaction analysis (Machiry et al., 2013). It collects users’

activities, such as tapping the screen, long pressing and dragging. The evaluation of

Dynodroid involves analysing 50 Android applications. The results found bugs in

Android applications.

2.4.1.3 Hybrid Features

Hybrid features are the most comprehensive; they consist of static and dynamic features

features. They involve vetting Android application installation files as well as analysing

the behaviour of the application in runtime. Blasing et al. developed AASandbox, which

analyses static and dynamic features (Blasing et al., 2010). It extracts permissions and

Java code from the APK file and uses them as static features. It then installs the

application, logs system calls, and uses it as dynamic feature. Authors of ProfileDroid

examined Androidmanifest.xml and Java code as static features (Wei et al., 2012). They

chose user interaction, system calls and network traffic as dynamic features. Similar

Univ
ers

ity
 of

 M
ala

ya

33

works that chose hybrid features include (Eder et al., 2013; Spreitzenbarth et al., 2013;

Xu et al., 2013; Zhou et al., 2013).

2.4.1.4 Android Applications Metadata

A few researchers opted to utilize Android applications’ metadata for malware detection.

Metadata are defined as the information users see prior to download and installation of

applications, such as the description, the requested permissions, their rating, and

information regarding the developer. The applications’ metadata cannot be categorized

as static or dynamic features as they have nothing to do with the applications themselves.

WHYPER collected permissions requested by applications in the market and used Natural

Language Processing (NLP) to look for sentences that justify the need for the requested

permissions (Pandita et al., 2013). It achieved 82.8% precision for three permissions

(address book, calendar and record audio) that protect sensitive and personal data.

Similarly, Teufl et al. used a sophisticated knowledge discovery process and lean

statistical methods to analyse the metadata gathered from Google Play (Teufl et al., 2013).

The authors argue that metadata analysis should complement static or dynamic analysis.

They collected data including the last time modified, category, price, description,

permissions, rating, and number of downloads. The authors mentioned that the following

data could also be used as metadata: creator ID, contact email, contact website,

promotional video, number of screenshots, promo texts, recent changes, ID, package

name, installation size, version, application type, ratings count, and application title. The

approach also used machine learning algorithms. Definitions of some of the

aforementioned metadata are shown below.

a) Last time modified: Applications in Google Play go through changes and updates.

The date of last modification is a metadata.

Univ
ers

ity
 of

 M
ala

ya

34

b) Category: Google Play categorizes applications based on their types, such as games,

applications and book. Each game type is further subcategorized as action, adventure,

arcade, and board.

c) Description: Developers provide a brief description to describe the main

functionality of their applications.

d) Permissions: Upon opting to install an application, it prompts the user with a list of

permissions that the application requires to function properly.

e) Rating: Users rate applications based on their experience with it. It is helpful for

new users to decide whether to download the application.

f) Creator ID: Every developer has an ID in Google Play. They use their ID to publish

applications. When detecting a malicious application, Google is able to identify the

developer and terminate their ID.

2.4.2 Malware Analysis

This subsection is dedicated to discussing analysis methods. Malware analysis is the

process of analysing a sample of a malicious application or a malware family in order to

find a pattern and trait. Such traits are then used for detection methods. There are three

types of Android malware analysis: static, dynamic, and hybrid. For each type we intend

to examine the current research works, and point out their weaknesses as well as their

strengths.

2.4.2.1 Static Analysis

Static analysis is the process of dissection and examination of an Android installation file

known as APK to detect suspicious applications. For instance, Huang et al. conducted a

study in which the requested and required permissions were inspected to detect malicious

applications (C. Y. Huang et al., 2013). The requested permissions are presented to users

upon installation, whereas required permissions are those that are actually used in the

Univ
ers

ity
 of

 M
ala

ya

35

applications’ code. They used four algorithms including AdaBoost, Naïve Bayes,

Decision Tree, and SVM to evaluate the performance. The evaluation shows that their

system detects 81% of malicious applications.

Seo et al. took a different approach by proposing a system to detect mobile threats to

homeland security via static analysis (Seo et al., 2014). They developed a tool called

DroidAnalyzer that inspects applications to detect potential threats by looking for usage

of risky APIs and keywords in the Java code such as IMEI leakage, phone number

leakage, su command, reboot command, etc. The DroidAnalyzer was evaluated by

analysing applications in various categories such as banking, flight booking and tracking,

and home and office monitoring applications.

Chen et al. used a NiCad clone detector in their experiment. It is a method to detect Near-

Miss Intentional Clones (J. Chen et al., 2015). It takes a source directory as input, and

finds classes of clones in the provided code. This process is implemented for one

malware; the clone classes are used as a signature to find similar code in other source

codes (Cordy & Roy, 2011). Their results show that this method is able to detect 95% of

previously known malware in their dataset. However, it is not useful for a new variant of

malware, as this method relies on a signature.

APPraiser is a system that differentiates between malicious and legitimate versions of

similar applications (Ishii et al., 2016). It first extracts similar applications using the

appearance analysis. It then extracts relatives, using several intrinsic fingerprints such as

developer identities and application package names. Finally, it classifies clones using the

code difference analysis and antivirus checkers.

However, the problem with static analysis is that some malware families such as

DroidKungFuUpdate stealthily download malicious codes (Yajin & Xuxian, 2012),

Univ
ers

ity
 of

 M
ala

ya

36

which is known as dynamically-loaded code method. Thus, the malicious code is

undetectable via static analysis. Similarly, permission-based analysis is less effective

regarding malware such as Basebridge, which hides an updated version within the original

application, and as a result slips into a mobile device without the user’s knowledge and

bypasses the permission system (C. Y. Huang et al., 2013). Static analysis is simple to

implement, but it produces less information, thus limiting the extraction of possible

features from malware activities. In addition, attackers use various methods such as code

obfuscation to evade detection through static analysis. Code obfuscation is a method used

to bypass static analysis, and it is defined as the act of changing the code so that it is

difficult to understand and disassemble, but performs as the original code (Ishii et al.,

2016).

Java reflection is another method used by attackers to evade detection. It is defined as

modifying or examining the run time behaviour of a class. Reflection for Android apps

can also be used to access all of an API library’s hidden and private classes, methods, and

fields. Android malware such as Android.Obad and FakeInstaller (F. Ruiz, 2012) call

their methods indirectly through reflection, and the real method name is kept encrypted.

Moreover, the name of the target method is unknown prior to execution of the

applications. Thus, by converting any method call to a reflective call with the same

function, it becomes difficult for static analysis to discover exactly which method was

called.

2.4.2.2 Dynamic Analysis

Dynamic analysis fixes the problem of obfuscation in static analysis by identifying

malware based on their behaviour. It is done by running applications on mobile devices

or emulators, and observing their behaviours and interactions with the Android operating

system. For one, Crowdroid collects the device’s kernel system calls and sends them to a

Univ
ers

ity
 of

 M
ala

ya

37

remote server for processing (Burguera et al., 2011). The collected data are classified

using K-Means algorithm. Self-written malware used to evaluate Crowdroid achieved

100% detection rate. Additionally, two real malware families used or evaluation achieved

85% and 100% respectively. By using system call as one of the features, malware can be

detected based on similar behaviours and patterns. However, the evaluation method is not

realistic, as it only used self-implemented malware and two real malware families.

Furthermore, Crowdroid needs a constant network connection to send the collected data

to the server for processing, which consumes bandwidth, and poses a challenge in case

the connectivity is lost.

Andromaly monitored different system values such as CPU consumption, number of

network packages, number of running processes, and battery level (Shabtai et al., 2012).

The framework adopted feature selection methods such as chi-square, fisher score and

information gain to enhance the detection accuracy. It then identified the best

classification method out of six classifiers, namely Decision Tree, Naïve Bayes, Bayesian

Network, K-Means, histogram, and logistic regression using the Andromaly framework.

As a result, Andromaly managed to achieve a 99.9% accuracy rate with the Decision Tree

classifier and Information Gain as feature selection method. Although this framework

achieved great accuracy, the authors used self-written malware to evaluate their system,

which could have produced unrealistic results.

The MADAM was introduced that is a multi-level detector prototype based on dynamic

analysis by combining two system call levels, kernel and user level (Dini et al., 2012).

With twelve system calls as the main features together with the K-Nearest Neighbours

(KNN) classifier, they successfully obtained a 93% accuracy rate for ten malware.

Although this approach is promising, it is incapable of detecting malware that avoids the

Univ
ers

ity
 of

 M
ala

ya

38

system call with root permission, for example SMS malware that is invisible in the kernel

level (PandaSecurity, 2011).

Su et al. presented a smartphone dual defence protection framework, which has two

phases, a verification service and a network monitoring tool. The first, the verification

service phase, applies system call statistics to differentiate between malicious and normal

codes in an application. The second phase monitors any possible malicious codes

identified in the first phase. The two simulated classifiers to evaluate the proposed

framework are Decision Tree and Random Forest. The former classifier achieved 96.67%

and the latter 91% detection accuracy (Su et al., 2012).

Although dynamic analysis rectifies weaknesses of static analysis, it has code coverage

problem. While running applications, there is no guarantee that the execution path in Java

code stimulates and triggers malicious behaviour of malware, which is defined as code

coverage. Some of the recent research works began to address code coverage (Gianazza

et al., 2014; Ho et al., 2014), however, they were unable to fully solve the problem.

2.4.2.3 Hybrid Analysis

Hybrid analysis is the optimum approach for malware analysis as it uses both static and

dynamic analyses. Hybrid solutions could therefore combine static and dynamic analyses

so that their added strengths mitigate both weaknesses.

For example, Zhou et al. proposed DroidRanger that uses hybrid analysis. It uses static

analysis to extract permissions, and matches applications’ permission-based footprint

with malware-specific footprint signatures (Y. Zhou et al., 2012). The researchers also

proposed a heuristics-based filtering scheme that inspects applications for suspicious

behaviour such as dynamically loaded code. The suspicious applications are observed

using dynamic analysis to confirm whether they are malicious or not. In case malware is

Univ
ers

ity
 of

 M
ala

ya

39

detected, the DroidRanger generates its signature and adds it to the database. The authors

evaluated DroidRanger by downloading applications from five different Android

markets, and used their system to detect malware. The results show that they detected 171

malicious applications and two zero-day malware.

Mobile-Sandbox also combines static and dynamic analyses (Spreitzenbarth et al., 2013).

For static analysis, it first analyses the permissions requested by an application. Then, it

converts the application’s Dalvik bytecode to smali code using baksmali5 and looks for

dangerous methods, statically coded URL strings, and calls to encryption libraries.

Information on timers and broadcasts as event triggers are also collected in order to

improve code coverage during its dynamic analysis stage. In its dynamic analysis,

Mobile-Sandbox logs runtime information at the three following levels: (i) Dalvik level

monitoring using TaintDroid and a customized version of DroidBox; (ii) native code

monitoring using ltrace; and (iii) network traffic monitoring. External events, such as

incoming calls or SMS messages are simulated to trigger potentially malicious behaviour.

The publication of TaintDroid brought new a perspective to the research community by

paying attention to a privacy leakage in the Android system and Android malware (Enck

et al., 2010). AppSealer performs static taint tracking on an Android application and then

follows the app along the respective propagation paths to monitor actual leaks at runtime,

effectively ruling out false positives introduced by the static analysis (M. Zhang & Yin,

2014). It then fixes component-hijacking vulnerabilities at runtime if sensitive data reach

a sink. This approach, however, cannot find leaks missed by the static analysis and thus

inherits the problem of reflective method calls.

The Harvester tool can reduce obfuscation generated by encrypted strings and reflective

methods with its hybrid methods (Rasthofer et al., 2015). It first uses static analysis by

pinpointing sensitive variables in the code, and uses a program slicing method to separate

Univ
ers

ity
 of

 M
ala

ya

40

parts of the code involved in calculating the variable of interest. Using dynamic analysis,

it executes the sliced piece of code and monitors its behaviour. The authors of Harvester

claim that it usually extracts target phone number, body of SMS messages, decryption

keys, or URL that are called inside the applications. They also mention that it is rigid

against code obfuscation and dynamically loaded code.

AppDoctor also follows a similar approach by slicing Android applications to find user

interactions that lead to application crashes (Hu et al., 2014). Although Harvester’s hybrid

slice-and-run principle is similar to AppDoctor, AppDoctor executes the complete

derived user interface actions, while Harvester’s slices only contain code contributing to

the concrete value of interest.

Andro-Dumpsys uses hybrid analysis for malware detection (Jang et al., 2016). Andro-

Dumpsys is based on similarity matching of malware creator-centric and malware-centric

information. Andro-Dumpsys detects and classifies malware samples into similar

behaviour groups by exploiting their footprints, which are equivalent to unique behaviour

characteristics. The client application sends the package name or APK to the server. The

server extracts memory dump, serial number of certificate, suspicious API sequence,

permission distribution, intent, system command, and existence of forged files. It then

uses machine learning for detection. The experimental results demonstrate that Andro-

Dumpsys is scalable and performs well in detecting malware and classifying malware

families with low false positives and false negatives, and is capable of finding zero-day

threats.

Therefore, due to the comprehensiveness of hybrid analysis, we choose to follow this

approach. It combines static and dynamic analysis to overcome their respective

weaknesses, which results in a robust analysis method.

Univ
ers

ity
 of

 M
ala

ya

41

2.4.3 Mobile Malware Detection

This subsection discusses types of detection methods. After analysing malware families,

their characteristics and behaviours are used for detection purpose. There are misuse-

based detection and anomaly-based detection. For each type, we investigate several

related research works and analyse them in terms of their weaknesses and strengths.

2.4.3.1 Misuse-based Detection

With the aim of confronting malware, mobile devices have adopted traditional approaches

such as antivirus in PCs. The misuse-based methods are also known as signature-based

methods, and are mainly used by antivirus software that relies on detecting malware based

on unique signatures. This tactic is not as efficient (Sohr et al., 2011) against mobile

device malware, as it requires continuous signature database updating, and mobile

malware is constantly modified to circumvent various detection methods. For instance,

the first version of DroidKungFu surfaced in June 2011, and seemed one of the most

sophisticated kinds of malware at that time. Shortly afterwards, the second and third

versions appeared in July and August. The fourth version was detected in October and

the fifth soon after that. The variants tend to utilize assorted encryption keys to protect

themselves. Such malware adaptation indicates hackers’ insistent attempts to bypass

detection, as (Yajin & Xuxian, 2012) demonstrated that traditional antivirus software is

able to detect malware up to 79.6%.

The signature-based approach can be further categorized into behaviour-based signature

and static-based signature.

(a) Behaviour-based signature

AntiMalDroid generates a behaviour signature by running applications and monitoring

their behaviour (Zhao et al., 2011b). The authors define behaviour as intent issued and

accessing system resources. AntiMalDroid creates a signature database from the analysed

Univ
ers

ity
 of

 M
ala

ya

42

applications. In order to categorize an application as normal or malicious, AntiMalDroid

runs the application and generates its behaviour signature. It then compares the signature

to the database to check whether it matches any known signature. The evaluation included

100 normal applications and 2 types of malware, and was tested by 200 applications. The

results show a detection rate between 90% and 93%.

SimBehavior is a similar system that is based on behaviour signature (H. Lu et al., 2014).

The authors argue that the commonly used system call dependency method is too complex

for mobile devices, and propose a lightweight method based on a resource differentiation

scheme, which is abbreviated as DiffHandle. Malware makes sequences of system calls

by using obfuscation technologies. Similarly, it prevents detection methods from gaining

common behaviours in samples of the malware family. Thus, the authors presented an

Iterative Sequence Alignment (ISA) method to defeat disorders introduced by malware

obfuscation. After DiffHandle generalizes resources that system calls operate on, and ISA

gains common system calls from these generalized but disordered system call sequences

of the same family, SimBehavior obtains handle dependencies and order restrictions

between common system calls by mapping these system calls into original system call

sequences. Finally, these common system calls handle dependencies and order

restrictions between these system calls’ makeup of the DiffHandle-signature of the same

family. The evaluation was performed on 331 malware families, categorized into eight

families. SimBehavior achieved an average detection rate of 92.4%.

ALTERDROID is a dynamic analysis approach for detecting hidden or obfuscated

malware components that are distributed as parts of an app package. The key idea behind

ALTERDROID is analysing the behavioural differences between the original app and a

number of automatically generated versions of it, where a number of modifications have

been carefully injected. Observable differences in terms of activities that appear or vanish

Univ
ers

ity
 of

 M
ala

ya

43

in the modified app are recorded, and the resulting differential signature is analysed

through a pattern-matching process driven by rules that relate different types of hidden

functionalities with patterns found in the signature. The extensive experimental results

obtained by testing ALTERDROID over relevant apps and malware samples support the

quality and viability of this system (Suarez-Tangil et al., 2016).

(b) Static-based Signature

AndroSimilar uses static-based signature by examining the Java code of the Android

applications (Faruki et al., 2013). It extracts statistical features to detect malicious

applications. The authors claim that their proposed method is effective against code

obfuscation and repackaging, widely used techniques to evade signature-based detection

methods. To calculate features that remain persistent among related samples, normalized

entropy features are assigned with precedence by associating normalized bytes based on

empirical observations. This rank is a measure of the occurrence of features obtained by

reading the byte content. A feature whose likelihood of occurrence is lowest receives a

low rank. Certain features having a very high or low score receive a null score to avoid

the introduction of weak features during attribute selection. The evaluation shows 98.89%

detection rate.

DroidAnalytics is an Android malware detection system based on static-based signature,

which automatically collects, extracts and analyses signatures of Android application files

(M. Zheng et al., 2013b). It extracts methods and classes from the application’s Java code

and employs them as signatures. Subsequently, the generated signatures are used to detect

malicious applications. Nonetheless, the aforementioned method is useful only for known

malware, whereas with the advent of new threats, the same process must be performed

and the generated signature has to be added to the database.

Univ
ers

ity
 of

 M
ala

ya

44

Overall, the misuse-based approach is precise for known malware; however, it is unable

to detect zero-day malware. A new variant of malware has a different signature to

previously known malware. Thus, analysts need to generate its signature and update the

database. However, by the time the database is updated, the malware has already damaged

mobile devices. Due to such weaknesses, researchers turned to anomaly-based approach.

2.4.3.2 Anomaly-based Detection

Anomaly-based methods depend on classifiers to train a system to differentiate between

normal and malware behaviour, which can be used to detect anomalies to discover

unknown malware.

(Sangkatsanee et al., 2011) proposed an anomaly detection system that contains 12

features of network traffic, such as source and destination port, Transmission Control

Protocol (TCP) flags (i.e. fin, syn, push and urgent flag), UDP and ICMP packets. The

adopted classifier was a decision tree, and it successfully obtained a 99.4% accuracy rate.

Previously mentioned work performed by Su et al. also followed anomaly-based detection

by using machine learning classifiers (Su et al., 2012).

Sahs and Khan extracted Android file permissions and control flow graphs (CFG) (Allen,

1970). Then they used a SVM to make the system learn to distinguish between patterns

of malicious applications and normal ones. With a 93% detection rate the results were

accurate (Sahs & Khan, 2012).

DroidMat is another example of machine learning in malware detection (D.-J. Wu et al.,

2012b). The authors used K-means to inspect an application, obtaining 87.39% detection

accuracy as opposed to the misuse-based methods mentioned earlier with only 79.6%.

Shabtai et al. identified the best classification method out of six classifiers, namely

Decision Tree, Naïve Bayes, Bayesian Network, K-means, histogram, and logistic

Univ
ers

ity
 of

 M
ala

ya

45

regression, using the Andromaly framework. The framework adopts feature selection

methods such as chi-square, fisher score, and information gain to enhance detection

accuracy. As a result, they managed to achieve a 99.9% accuracy rate with the decision

tree classifier and information gain method. Although they achieved acceptable accuracy,

they used self-written malware to test their framework, which could have produced

unrealistic results (Shabtai et al., 2012).

RobotDroid was proposed which is based on the SVM machine learning classifier to

detect unknown malware in mobile devices. The focus was on privacy information

leakage and hidden payment services. They evaluated three malware types, namely

Gemini, DroidDream and Plankton. As a result, this framework is limited to a few

malware types, and more would be required to increase detection accuracy (Zhao et al.,

2012).

DroidScreening employs an anomaly-based approach to detect Android malware (J. Yu

et al., 2016). It extracts many features from Android application installation files. The

features are requested permissions, existence of native code in the Java code, use of

reflection in the Java code, and issued system calls. This system then applies a lazy

associative classification (LAC) algorithm to the extracted features to build a detection

model. The detection model is used to categorize the Android application as normal or

malicious. It achieved a 97% detection rate using a dataset of 1,554 malware samples.

Thus, the anomaly-based detection techniques were chosen for the purpose of this study

because they are capable of detecting anomalies based on what they learn.

2.4.4 Point of Detection

We categorize related research works based on where the detection is implemented. They

are local-based and cloud-based. As resources, such as battery power, are limited in

Univ
ers

ity
 of

 M
ala

ya

46

mobile devices, this grouping compares the practicality of the proposed approaches. The

strengths and weaknesses of each category are discussed in the following sections.

2.4.4.1 Local-based Detection

The local-based detection process is implemented directly on mobile devices. TaintDroid

detects leakage of private data (Enck et al., 2010). It labels important data and follows

them to see whether they leave the device.

The MADAM was implemented on a device. They claimed that the overall performance

overhead is acceptable, with 3% memory consumption, 7% CPU overhead, and 5%

battery usage (Dini et al., 2012). Similarly, Andromaly was evaluated on five different

devices (Shabtai et al., 2012). Feature extraction and application of machine learning

algorithms were performed on devices. Unfortunately, information regarding

Andromaly’s resource consumption is not available.

2.4.4.2 Cloud-based Detection

Cloud-based detection is defined as replicating a real device on the cloud, and reporting

any changes of the device to the servers. Thus, the replicated device is used to monitor

the real device; processing and analysis are also done on the replicated device that is on

the cloud. Therefore, the real device does not take a heavy workload. Any suspicious

activity is then reported to the users.

Zonouz et al. proposed a cloud-based smartphone malware detection called Secloud. It

analyses malware in a real test bed with a direct network connection to the cloud. It

emulates a replica of mobile devices on the cloud and keeps it synchronised by

continuously reporting every changes in the real devices. Secloud also redirects the

devices’ network traffic to the cloud through a proxy. This way the whole analysis process

takes place in the cloud (Zonouz et al., 2013).

Univ
ers

ity
 of

 M
ala

ya

47

Similarly, CloudShield was designed for peer-to-peer networks (Barbera et al., 2012). It

is based on virtual copies of real devices that run on the cloud. The peer-to-peer network

of clones is used to compute the best strategy to patch the smartphones in such a way that

the number of devices to patch is low. The authors simulated worm attacks that affect the

network load. They explored the idea of a peer-to-peer network of virtual smartphone

clones running on the cloud, which can help stop worm attacks spreading from

smartphone to smartphone on the mobile network. The worm propagates by using

Bluetooth connections, MMS messages, phone calls, or any other means of infection

available among smartphones. The final experiments show that CloudShield outperforms

state-of-the art worm-containment mechanisms for mobile wireless networks.

Paranoid Android is another related work that duplicates the real device on the cloud and

passes any changes of device to the cloud (Portokalidis et al., 2010). It is capable of

running multiple detection methods simultaneously. The aforementioned works need a

constant network connection to the cloud to report every single event and changes of

devices (i.e. new application installation, application update, system calls, etc.) to the

server. Such a design is not practical in a situation where network connectivity is not

available. Furthermore, it consumes bandwidth that could be costly for the user; energy

consumption is also another concern for this approach.

This study opts for the cloud-based approach; however, the offloading method is used.

The cloning approach has various disadvantages as opposed to the offloading approach,

which offers processing on the cloud without cloning mobile devices. The details of this

technique are explained in Section 4.3.1.

Univ
ers

ity
 of

 M
ala

ya

48

2.5 Discussion

This section points out key aspects of Android features, analysis and detection methods,

and point of detection. It also discusses the weaknesses, strengths, and potential gaps in

each section.

a) Android Features: As discussed earlier, Android features are grouped into static,

dynamic and hybrid features. Among static features, permission is the most used one.

After that, Intent comes in the second place. Intent is declared by the application in XML

file and in Java code. This work chose Intent in Java code over permission, since Intent

potentially is a rich feature and there is a gap in literature as no other work has evaluated

its importance. Therefore, the choice of Intent sounds promised.

Among dynamic features, system calls and network traffic are two most important

features. System call represents application’s behaviour in the device, while network

traffic represents behaviour of the application outside the device. The main reason for

choosing network traffic for this work is that it represents malware conversation with

attacker as it leaks user’s data or receives command from the attacker. The other reason

is that network traffic is not analysed thoroughly in literature and there is a potential to

analyse it further. It is also worth noting that collecting system calls in Android requires

rooted device and complicated methods as opposed to network traffic. By choosing static

and dynamic features, we will have a dataset of hybrid features that is a comprehensive

group of features.

b) Mobile Malware Analysis: It is categorized into static, dynamic, and hybrid. Static

analysis is examination of Android installation file and its content. Dynamic analysis is

analysis of Android application behaviour after execution. Static analysis has problem of

code obfuscation, Java reflection, and dynamically-loaded code. Dynamic analysis has

weakness of code coverage. Therefore, combining the two method results in more robust

Univ
ers

ity
 of

 M
ala

ya

49

analysis, which is called hybrid analysis. Among various recent works discussed in

Section 2.4.2.3, DroidRanger and Mobile-Sandbox analyse permission for static analysis

that is bypassed by malware such as Basebridge. TaintDroid cannot find reflective method

calls. The Harvester and AppDoctor take complicated approach that are difficult to

implement. Andro-Dumpsys relies on replica of the device on the cloud, which has its

own disadvantages (Section 2.4.4). Overall, available Android hybrid analyses are

difficult to implement for the end user, and they employ features that are bypassed by

malware. Therefore, this work adopts hybrid analysis by analysing Intent in Java code for

static analysis and network traffic for dynamic analysis.

c) Mobile Malware Detection: It is divided into misuse-based detection and

anomaly-based detection. The misuse-based detection uses signature of malware to detect

a particular malicious application that matches the signature. The attackers have easily

bypassed this detection method by slightly changing their code. Therefore, we chose

anomaly-based detection that uses machine learning to detect malware.

d) Point of Detection: The detection process is performed on the device or in cloud.

Since running detection process on the device consumes lots of battery power, we choose

to implement cloud-based detection using offloading technique (4.2.1).

e) Energy Consumption Measurement: It is worth noting that in current literature,

it is not a custom to measure energy consumption of the proposed method. It is an

important and an oversight issue. The best methods become unproductive if they drain

battery of the device. It is not appealing to users. This work tends to introduce this concept

to research community and hopes that future works measure energy consumption of their

method as they measure accuracy.

Univ
ers

ity
 of

 M
ala

ya

50

2.6 Summary

This chapter has overviewed the evolution of mobile malware, their characteristics, the

Android operating system, and its security features. Additionally, malware analysis and

detection methods were reviewed. We have analysed the most related research works

from four different perspectives. They are feature selection, analysis methods, detection

approach, and point of detection. Apart from reviewing research works, this chapter lays

the foundation of this study as we decide which features to select, what analysis methods

to choose, what detection approach to choose, and where to implement the detection

method. Various tools are needed to apply the selected methods on a raw dataset. In the

next chapter, we focus on analysis and detection tools.

Univ
ers

ity
 of

 M
ala

ya

51

CHAPTER 3: DROIDLAB - MOBILE MALWARE ANALYSIS TOOLS

The previous chapter discussed research works related to this study. These works used

various tools to analyse and conduct their experiments. Becoming familiar with the

available tools profoundly extends the understanding of malware analysis techniques.

This chapter gathers several monitoring and analysis tools. These tools have been used in

research works to perform experiments on malware. Structurally, this chapter consists of

three sections with relevant sub-sections. We have categorized analysis tools into static

tools and dynamic tools, based on their monitoring and analysis approach, in Sections 3.1

and 3.2 respectively. Section 3.3 discusses available tools in measuring energy

consumption. The description and drawback of each one is mentioned, and our selected

tool is specified.

3.1 Static Analysis Tools

Static analysis tools are used to analyse Android APK files. Technically, they are capable

of inspecting various components of the APK file. The following sub-sections discuss

several static analysis tools.

3.1.1 Androguard

Androguard (Anthony Desnos, 2010) is an interactive static analysis tool for Android

applications. It is capable of dissecting the Android application into its components

through its API.2 It also allows further analysis of the binary code and access to its various

parts such as class names, method names, variables, strings, etc. The Androguard API has

the following features:

2 http://doc.androguard.re/html/index.html

Univ
ers

ity
 of

 M
ala

ya

52

a) APK. The Android Application Package (APK) is the file type used to install

Android applications. It entails several components such as AndroidManifest.xml, DEX

file, and resources. The Androguard dissects the XML file and returns its elements such

as activities, permissions, minimum SDK version, maximum SDK version, etc. It is also

capable of accessing the binary code of the APK file.

b) DVM. The Dalvik Virtual Machine (DVM) is an important component of the

Android operating system, responsible for running each application in its own virtual

machine. This feature of Androguard allows access to the DEX file of the Android

application, which contains the application code. More specifically, it retrieves Java

metadata about an application, the name and size of its classes, methods, and variables

among other static features from the DVM (Suarez-Tangil, 2014).

c) Analysis. This part of the API provides more details on the Java code. It specifies

permissions that are used in Java code, rather than permissions declared by the application

inside the xml file. It also identifies whether certain libraries are used in the code such as

crypto, dynamic code, native code, and reflection code. Additionally, it also provides a

Control Flow Graph (CFG) representation of the Dalvik code flow (Suarez-Tangil, 2014).

d) Bytecode. The Dalvik code executed by the DVM is a compact and efficient

instruction set (numeric codes, constants, and references) that encodes executable

programs into a portable language called bytecode. This bytecode is translated into native

machine code at run time. This facilitates the portability of the bytecode itself across

different hardware-specific platforms. However, it also makes the reverse engineering

analysis of Android apps easier. This component of Androguard provides a number of

methods that aid bytecode analysis (Suarez-Tangil, 2014).

3.1.2 ApkTool

ApkTool is a reverse engineering tool for Android applications (Wiśniewski, 2010). As

mentioned in Section 2.2.1, Android applications are written in Java and compiled to

Univ
ers

ity
 of

 M
ala

ya

53

DEX file. ApkTool is used to reverse this process and decode applications into nearly the

original form, which is smali3 code. It is possible to modify smali code and rebuild the

application to APK format. Therefore, we describe two main functions of the Apktool as

follows:

a) Decompile. It reverses the Android application to a readable format called smali

bytecode. In addition to Java code, it decompiles other APK components like the XML

file, resources folder, libraries, and assets.

b) Recompile. After decompiling the application, the user may modify its content and

then recompile the modified application using Apktool, which results in a new

application. The new application may differ from the original one in functionality.

3.1.3 AXMLPrinter

The AXMLPrinter is a static analysis tool designed to merely decode the

AndroidManifest.xml file in the APK package. It is useful when an analyst intends to

extract some data relating to the application. This command line tool is faster as compared

to Apktool, as it just decodes the xml file that contains the minimum SDK version,

maximum SDK version, activities, permissions, intent-filters, etc.

3.2 Dynamic Analysis Tools

Dynamic analysis tools help monitor applications’ behaviours. Based on their behaviour,

it is possible to identify their characteristics and categorize them as benign or malicious.

In the following, we discuss the most famous dynamic analysis tools.

3 https://github.com/JesusFreke/smali

Univ
ers

ity
 of

 M
ala

ya

54

3.2.1 Wireshark

The Wireshark is a well-known network protocol analyser that captures network traffic

and represents it in a graphical way. For each packet, various network layers such as

physical layer, IP layer, network layer, and if applicable HTTP layer is shown. The

Wireshark is used for network troubleshooting, analysis and communication protocol

design. The output file of the Wireshark has a PCAP extension, which can be opened with

other programs such as tcpdump. The displayed data can be refined with filters available

in the software. In addition, it is possible to detect VoIP traffic and decode the data. Any

media data such as pictures and videos from the captured traffic can be recovered and

played. Various graphs and statistics that help to understand the network traffic when

dealing with massive data volumes can be drawn from the software.

In this study, the Wireshark is used to filter TCP packets from numerous types of packets

such as ARP, DNS, etc. Furthermore, Tshark is a command line version of the Wireshark.

It is a more powerful tool than the Wireshark, since it gives a user the power to extract

different network features such as packet size and connection duration from a myriad of

network packets with a line of command. Windows shell scripting can also be used to

automate the process of feature extraction, as applying same command to a pool of

captured network traffic is time consuming.

3.2.2 DroidBox

DroidBox4 performs dynamic analyses of Android applications. The following

information is generated when an analysis is complete:

a) Hashes for the analysed package

4 https://github.com/pjlantz/droidbox

Univ
ers

ity
 of

 M
ala

ya

55

b) Incoming/outgoing network data

c) File read and write operations

d) Started services and loaded classes through DexClassLoader

e) Information leaks via the network, file and SMS

f) Circumvented permissions

g) Cryptographic operations performed using Android API

h) Listing broadcast receivers

i) Sent SMS and phone calls

Additionally, two graphs are generated, visualizing the behaviour of the package, one

showing the temporal order of operations and the other a treemap (Shneiderman &

Wattenberg, 2001) that can be used to check similarity between analysed packages.

3.2.3 TaintDroid

We discussed TaintDroid in Section 2.4.2.3. It marks sensitive data in applications’ code

and tracks them while the applications are running. Basically, it tracks how applications

use sensitive information, which is acquired by integrating TaintDroid into the Android

platform at a low level. It also shows the information flow inside Android applications.

Figure 3.1 depicts TaintDroid architecture as illustrated by Enck et al. (Enck et al., 2010).

Univ
ers

ity
 of

 M
ala

ya

56

Figure 3.1. TaintDroid Architecture as Depicted in (Enck et al., 2010)

TaintDroid source code is available at the author’s site5 for several versions of Android

e.g. Android 2.1 and Android 2.3.

3.3 Machine Learning Tools

We chose to follow the anomaly-based detection method, as discussed in Section 2.4.3.

To do so, the following tools are used in this work and discussed in the following sections.

3.3.1 WEKA

Weka is a flightless bird with an inquisitive nature that is found only on the islands of

New Zealand. Waikato Environment for Knowledge Analysis (WEKA) is a collection of

machine learning algorithms for data mining tasks. The algorithms can either be applied

directly to a dataset or called from your own Java code. Weka contains tools for data pre-

processing, classification, regression, clustering, association rules, and visualization. It is

also well suited for developing new machine learning schemes. Weka is an exquisite

5 http://appanalysis.org

Univ
ers

ity
 of

 M
ala

ya

57

choice as it provides a graphical user interface and is easy to work with and understand

(Hall et al., 2009).

3.3.2 TensorFlow

TensorFlow is an open source library for machine learning, including deep learning. It

was developed by Google and released in November 2015. It is used in various Google

services such as speech recognition, Gmail, Google Photos, and searches. TensorFlow

can be used to build deep learning systems for any task. A machine learning system can

be represented in TensorFlow using the data flow graph. This is a directed graph where

the nodes contain computations and the edges are the flow of tensors through this graph.

Tensors are mathematical objects that can be described using an n-dimensional array.

They are the primary data type in TensorFlow: they are used to store data, which can be

transformed by operations. These operations describe the actual functionality of the

computation, and an instantiation of an operation corresponds to a node in the data flow

graph. The input and output of operations are zero or more tensors. To create a machine

learning system in TensorFlow, it needs to be expressed as a data flow graph. This data

flow graph can then be interacted with in a session. The most important function of a

session is to run the data flow graph. When running a computation, a dictionary of inputs

is fed to the graph. The graph then executes the operations, and outputs the result of the

final operation (van Niedek, 2016). TensorFlow has been used in various research fields

such as the prediction of financial markets (Vahala), learning structured representations

for geometry (B. Kim, 2016), and phonetic classification (van Niedek, 2016). It is worth

mentioning that TensorFlow is capable of running in mobile devices6.

6 https://www.tensorflow.org/mobile/

Univ
ers

ity
 of

 M
ala

ya

58

3.4 Energy Consumption Profilers

The rapid advancements of the communication and computing capabilities of mobile

devices have led to faster depletion of batteries. Since 1999, energy profilers have

therefore been receiving attention. An energy profiler is defined as a system that monitors

and characterizes the energy consumption of a device (Tarkoma et al., 2014). Although

Android has built-in energy APIs, they typically allow applications to query and subscribe

to coarse-grained information, such as battery voltage, battery health, battery capacity,

and temperature. Thus, various energy consumption profilers have been proposed to

access fine-grained and per-application information. Table 3.1 lists well-known systems

in chronological order.

Table 3.1. A List of Energy Consumption Profilers

Name Year Purpose

PowerScope 1999 Energy profiling of device and processes

Nokia Energy Profiler 2006–2007 On-device standalone profiler

PowerTutor 2009 Hybrid profiler based on PowerBooter

eProf 2012 Fine-grained power model to identify

energy bugs in applications

AppScope 2012 Fine-grained energy profiler for

applications based on DevScope

The PowerScope (Flinn & Satyanarayanan, 1999) is an example of early energy profiler

developed in 1999. It analyses the energy consumption for each process in the operating

system. The Nokia Energy Profiler (Creus & Kuulusa, 2007) is another system

implemented in 2006-2007. It was developed for the Symbian7 Series 60 devices to

determine the power consumption. The PowerTutor (L. Zhang et al., 2010) is an Android

application that shows energy use in a similar way to Android’s built-in API, but with

7 http://series60.kiev.ua

Univ
ers

ity
 of

 M
ala

ya

59

breakdowns per resource, such as CPU, Wi-Fi, and screen. The PowerTutor does not

consider the effects of running multiple applications simultaneously but rather estimates

the energy consumption for each application separately. The eProf (Pathak et al., 2012)

is used to identify energy bugs in applications. It is useful for application developers to

debug their product from the energy consumption point of view.

The energy profiler of our choice for this study is AppScope (Yoon et al., 2012) due to

its accuracy, and the fact that it provides fine-grained information about each application,

its processes, and resource consumption (i.e. CPU, display, etc.). Alternatively,

PowerTutor is also considered for this study. Despite working well and producing

accurate results, AppScope is designed to work on a specific old device. In addition, some

applications do not work on old devices. Therefore, PowerTutor is our alternate option

for measuring energy consumption. The following sections provide more details on

AppScope and PowerTutor.

3.4.1 AppScope

AppScope is an energy profiler that monitors kernel activity of Android devices. It

collects usage information from the monitored device and estimates consumption of each

running application using an energy model provided by DevScope (Jung et al., 2012).

AppScope displays the categorized amount of energy consumed by an application, where

each category is associated with a component of the device (CPU, Wi-Fi, cellular, etc.).

AppScope uses an event-driven monitoring method that uses little power and provides

high accuracy. In fact, its authors report that AppScope incurs approximately 35mW and

2.1% in power consumption and CPU utilization overhead, respectively. AppScope

provides information about the power consumed by different applications running in the

device. Additionally, it also offers information about the energy consumed by each

individual process executed by every app.

Univ
ers

ity
 of

 M
ala

ya

60

3.4.2 PowerTutor

PowerTutor was developed by the University of Michigan Ph.D. students Mark Gordon,

Lide Zhang, and Birjodh Tiwana. It is an application that displays the power consumed

by major system components such as CPU, network interface, display, GPS receiver, and

different applications. PowerTutor uses a power consumption model built by direct

measurements during careful control of device power management states. This model

generally provides power consumption estimates within 5% of actual values. A

configurable display for power consumption history is provided. It also provides users

with a text-file based output containing detailed results. PowerTutor can also be used to

monitor the power consumption of a specific application (Z Yang, 2012).

Univ
ers

ity
 of

 M
ala

ya

61

3.5 Summary

This chapter discussed several tools available for Android malware analysis. We

categorized them into static analysis tools and dynamic analysis tools. Moreover, it

explored different tools for applying machine learning algorithms, and for measuring the

energy consumption of mobile applications.

Having reviewed the related research works and analysis tools, it is time to discuss our

proposed system. The next chapter describes the proposed framework for this study.

Various components of the framework are discussed along with techniques and services

used to develop the framework.

Univ
ers

ity
 of

 M
ala

ya

62

CHAPTER 4: MOBILE MALWARE ANALYSIS AND DETECTION: THE

FRAMEWORK

The previous chapter explored research works related to this study, and identified their

weaknesses and strengths. Additionally, overviews of various tools used in malware

analysis helped to explain the methodology of the analysis methods. This chapter details

the proposed framework, aiming at minimising energy consumption of the analysis and

detection processes while achieving high detection accuracy. The following sections

discuss the architecture of the proposed system, along with its different modules and the

rationale behind them.

4.1 The DroidProtect Traits

The proposed architecture has the following advantages over the current methods.

1) Intelligent: This methodology employs machine learning to detect malware,

whereas the current methods are based on a signature database that needs to be updated

constantly.

2) Hybrid Analysis: Our method monitors static and dynamic features of the device.

The static analysis is done on Android Intent, which manifests real intentions of

applications (details in Section 5.2). The dynamic analysis part monitors network traffic

of Android devices and examines the traffic to detect anomalies. This way, we have a

higher chance of detecting malware, given the fact that over 90% of malware request

network connectivity to connect to a malicious server and receive spiteful commands

(Feizollah et al., 2015).

3) Lightweight: the proposed method uses an offloading technique, where

monitoring, capturing, feature extraction is done on the devices, and the features are sent

to a remote server. The heavy workload of the extensive detection process (using machine

learning) is performed on servers.

Univ
ers

ity
 of

 M
ala

ya

63

4) Scalable: As mentioned earlier, a machine learning model is used to classify an

application as malicious or clean. The system administrator is able to extend the dataset

by adding more applications, and to update the model by re-training the machine learning

algorithm. Thus, the result is a robust and more powerful malware detection model for

the Android operating system.

5) Offloading: The proposed architecture uses offloading technique to upload only

important features from a device to servers. Offloading has been used in various research

fields and proved to be efficient. However, this is the first time that we propose to use it

for mobile malware detection.

6) Feature Engineered: This work meticulously examines available features in

Android malware detection and selects the most effective ones. In fact, the choice of

implicit and explicit Intents is a novel one that has not been used before. It is also efficient

and effective compared to Android permission that has been widely used (Section 5.2.1).

The network traffic feature is also chosen carefully to make sure that it is effective in

malware detection. The use of TCP and HTTP protocols to analyse mobile malware is

unprecedented in this work (Section 5.3.3).

4.2 The Architecture

As mentioned earlier, with the prevalence of mobile devices, security threats are growing

in number and seriousness. Among the mobile operating systems, Google’s Android has

been attacked more than others. From April 2013 until June 2013, the number of malware

for Android doubled. Such growth prompted the antivirus industry to respond to contain

the multiplication of malware. Their response was similar to that to malware in PCs,

namely by developing antivirus applications for Android devices. However, the

characteristics of Android devices are different to those of PCs. The Android operating

system has different approaches for controlling the system’s resources, hardware and

application resources. PCs treat programs as trusted ones, giving them access to various

Univ
ers

ity
 of

 M
ala

ya

64

parts of the system, whereas Android devices limit access of each application to its own

data. Therefore, antivirus applications have difficulty accessing other applications’

directories. Moreover, resources (i.e. CPU, memory, battery) on Android devices are

limited. To adapt antivirus programs on PCs to Android devices, we propose

DroidProtect. This system attacks malware by performing static and dynamic analysis

and extracting selected features on the device. The heavy process of identifying a malware

is done on servers and the response is sent back to the device. This way, the energy

consumption of the devices is reduced. Figure 4.1 depicts the architecture of the

DroidProtect.

Internet

Android Applications

Extracting Features

Integrating Features

Capturing Network Traffic

Reporting Results

Storing Results

Android Applications

Static Feature Extraction

Applying Trained Algorithms

Bayesian Network, KNN, etc.

Androguard

Apktool

Smali/Baksmali

Dex2Jar

All

Network

Traffic

Dynamic

Features
Static

Features

Figure 4.1. Architecture of the DroidProtect

Univ
ers

ity
 of

 M
ala

ya

65

The above figure consists of three modules: static analysis module, dynamic analysis

module and server module.

The static analysis module is responsible for analysing the APK file of applications and

extracting related features. The extracted features are sent to the server for the malware

detection process. The dynamic analysis module collects network traffic of the device and

extracts network-related features. Similar to the static analysis module, the extracted

features are sent to the server for malware detection purposes. All the extracted features

are received and integrated in the server modules.

The extracted static and dynamic features are received from the mobile device. They are

thoroughly analysed to determine the cleanness of the device. The process is performed

by feeding the data to the machine learning model. The model is prepared offline by a

system administrator. A data sample consisting of thousands of malware and clean

applications is selected for this process. Various features are extracted and the final

dataset is fed to machine learning algorithms. Based on their performance and accuracy,

the best algorithm is selected. At the end of this process, a model is produced. The model

is then used in the server module to determine the cleanness of new data received from

the mobile device. The process of producing the model and their effectiveness is

discussed in detail in the next chapter. At the end, the results of the experiments are sent

back to the device, and presented to the user. Univ
ers

ity
 of

 M
ala

ya

66

Layer 2: Data Storage

Storing data in a database

Layer 1: Application Program Interface

Functions on the Server

Layer 3: Machine Learning Algorithms

Algorithms used to detect anomalies

Integrating Features Reporting Results

Experiments Results

Decision Tree Random Forest Naïve BayesK Nearest Neighbors

Applying Trained Algorithms

Layer 4: Data Storage

Storing data in a database

Collected all Network Traffic Dynamic Features Static Features

Layer 1: Interface

User interface, frontend of the system

Mobile Application Web Page

Layer 2: Application Program Interface

Various functions of the application

Capturing Network Traffic Extracting Features Static Feature Extraction

Layer 3: Static Analysis Tools

Analysis tools to dissect applications

Apktool Androguard Dex2JarSmali/Baksmali

Figure 4.2. Layer Architecture of the DroidProtect

Figure 4.2 shows the architecture in a layer structure. Each layer represents a function in

the respective modules. For each layer, a specific action or tool is mentioned. For

instance, the API layer in the mobile device performs network traffic capturing and

features extraction for static and dynamic data. It is also necessary to show the flow of

the process in DroidProtect. Figure 4.3 shows layers interactions and the process flow.

Figure 4.3. Layers Interactions

Univ
ers

ity
 of

 M
ala

ya

67

4.3 The Used Methods and Services

In this section, various methods and services used in the proposed architecture are

discussed.

4.3.1 Computation Offloading

Mobile devices suffer from limited battery life, thus running resource-intensive

applications is a gruelling task. To overcome this situation, an offloading technique was

introduced where the heavy computation task runs in a different environment than the

mobile device. Computation offloading is also different from the migration model used

in multiprocessor systems and grid computing, where a process may be migrated for load

balancing (Powell & Miller, 1983). The key difference is that computation offloading

migrates programs to servers outside of the users’ immediate computing environment;

process migration for grid computing typically occurs from one computer to another

within the same computing environment (Kumar et al., 2013).

This method is helpful in our architecture in which the collected features (static and

dynamic) are sent to servers for analysis. This way, mobile devices save on the battery

usage otherwise required to perform a heavy workload.

4.3.2 Machine Learning Tools

Machine learning classifiers have for several years helped in developing intelligent

systems by training machines on how to make decisions. With a dataset labelled as input,

machine learning constructs a model that is applicable to new data to identify pattern

similarities. Numerous studies with significant detection results have adopted a similar

approach, with the intention of detecting intrusions effectively (Feizollah et al., 2013;

Narudin et al., 2016; Sangkatsanee et al., 2011; Zhao et al., 2012).

Univ
ers

ity
 of

 M
ala

ya

68

4.4 Summary

This chapter proposed a framework (DroidProtect) for mobile malware analysis and

detection. Its many components were explained via architecture figures and layer

interactions. Additionally, the methods and services used were discussed in order to better

understand this framework. Moreover, the characteristics of DroidProtect were explained

to show its contributions.

Proposing a framework requires validation to show that it is capable of fulfilling the

mentioned objectives. The next chapter serves this purpose by performing four

comprehensive experiments on the DroidProtect.

Univ
ers

ity
 of

 M
ala

ya

69

CHAPTER 5: EVALUATION OF THE MOBILE MALWARE ANALYSIS AND

DETECTION FRAMEWORK

The previous chapter proposed a novel framework for mobile malware analysis and

detection. The novelty of the framework is to extract features on the device and send them

to a server for processing. This way, the heavy process of analysis and detection is

performed on the server rather than on the device. Furthermore, it is unnecessary to

duplicate the real device on the cloud and synchronise every change, which raises security

concerns.

The objective of this chapter is to evaluate the proposed framework in terms of feasibility,

soundness, and validity. The evaluation is carried out to verify how well the system fulfils

the intended objectives. In order to perform a comprehensive evaluation of the system,

appropriate evaluation criteria that address system performance issues are used. This

chapter performs extensive experiments related to various parts of the framework to

achieve final results.

Structurally, this chapter starts by describing the data samples used in this study, as it is

a vital part of every experiment to include valid and trustworthy data. The rest of this

chapter includes four experiments pertaining to static analysis, dynamic analysis, and

energy consumption of the framework. Experiment one investigates the static analysis

section. It analyses Android Intent (explicit and implicit) as a new feature in Android

malware detection. It fills the gap in recent research works (Section 5.2.1) by examining

the effectiveness of this feature. The same experiment is also performed on Android

permission under the same experimental conditions. At the end, the results of the two

experiments are compared. The second and the third experiments (Section 5.3) relate to

dynamic analysis, specifically the network traffic of Android applications. In the two

experiments, the best network-related features are selected by using the described

Univ
ers

ity
 of

 M
ala

ya

70

algorithms, and the best classifier is chosen according to the results, which are compared

to the recent research works to magnify the contributions of this study. The fourth

(Section 5.4) experiment aims to satisfy the problem statement of this study by calculating

the energy consumption of the proposed framework under various conditions.

Additionally, the results are compared to other available solutions in this domain.

5.1 Dataset Description

Every experiment requires a dataset based on which the authors evaluate their proposed

system. Android malware is a relatively new research area. The first Android malware

was discovered in 2010 (Lookout, 2010). Initially, researchers did not have a solid and

standard dataset of samples to work with. Instead, they tended to write their own malware

and assessed their system on self-written malware (Chekina et al., 2012; Shabtai, 2010).

Other researchers tried to collect samples through some websites that shared Android

malware samples, such as Contagio.8 Therefore, the weakness was the limitation of

malware samples that in turn made the evaluation of their system unreliable. This section

discusses details of the most widely used Android malware data samples.

5.1.1 MalGenome

The MalGenome data sample includes 1,260 Android malwares in 49 different families

(Yajin & Xuxian, 2012). A malware family is a collection of malware presenting similar

a behaviour. This collection was gathered between August 2010 and October 2011 by the

North Carolina State University. The authors analysed the data samples and found that

around one third (36.7%) of the collected malware samples leverage root-level exploits

to fully compromise Android security, posing the highest level of threats to users’ security

and privacy. Additionally, more than 90% of malware turn the compromised devices into

8 http://contagiominidump.blogspot.com

Univ
ers

ity
 of

 M
ala

ya

71

a botnet controlled through network or short messages. Among the 49 malware families,

28 (with 571 or 45.3% samples) of them have the built-in support of sending out messages

(to premium-rate numbers) or making phone calls without user awareness. They

mentioned that 27 malware families (with 644 or 51.1% samples) are harvesting users’

information, including user accounts and short messages stored on the devices (Appendix

B). Table 5.1 tabulates malware families available in MalGenome along with number of

samples per family and their discovery date.

Table 5.1. Malware Families in MalGenome Data Sample

Malware Family
No. of

samples

Discovery

Month

Malware

Family

No. of

samples

Discovery

Month

ADRD 22 2011-02 GingerMaster 4 2011-08

AnserverBot 187 2011-09 GoldDream 47 2011-07

Asroot 8 2011-09 Gone60 9 2011-09

Basebridge 122 2011-06 GPSSMSSpy 6 2010-08

BeanBot 8 2011-10 HippoSMS 4 2011-07

BgServ 9 2011-03 Jifake 1 2011-10

CoinPirate 1 2011-07 jSMSHider 16 2011-06

CruseWin 2 2011-07 Kmin 52 2011-10

DogWars 1 2011-08 Lovetrap 1 2011-07

DroidCoupon 1 2011-09 NickyBot 1 2011-08

DroidDeluxe 1 2011-09 Nickyspy 2 2011-07

DroidDream 16 2011-03 Pjapps 58 2011-02

DroidDreamLight 46 2011-05 Plankton 11 2011-06

DroidKungFu1 34 2011-06 RogueLemon 2 2011-10

DroidKungFu2 30 2011-07 RogueSPPush 9 2011-08

DroidKungFu3 309 2011-08 SMSReplicator 1 2010-11

DroidKungFu4 96 2011-10 SndApps 10 2011-07

DroidKungFuSapp 3 2011-10 Spitmo 1 2011-09

DroidKungFuUpdate 1 2011-10 TapSnake 2 2010-08

Endofday 1 2011-05 Walkinwat 1 2011-03

FakeNetflix 1 2011-10 YZHC 22 2011-06

FakePlayer 6 2010-08 zHash 11 2011-03

GamblerSMS 1 2011-07 Zitmo 1 2011-07

Geinimi 69 2010-13 zSone 12 2011-05

GGTracker 1 2011-06

Univ
ers

ity
 of

 M
ala

ya

72

5.1.2 Drebin

Based on the nature of malware, they change shape and infecting technique to evade

detection. Therefore, it behoves researchers to update the data samples to develop systems

that are more effective. By introducing Drebin in 2014, this need was fulfilled. The Drebin

data sample was published in 2014 by Arp et al. (Arp et al., 2014). It is a collection of

5,560 Android malware categorized into 179 different families. It was collected between

August 2010 and October 2012. The authors scanned the Drebin with antivirus

applications. They report that while the best scanners detected over 90% of the malware,

others detected less than 10% of the data sample. The Drebin was well-accepted among

researchers (Dash et al., 2016; Varsha et al., 2016). Upon requesting the data sample, we

acquired it for this study.

5.1.3 AndroZoo

Unlike the mentioned data samples, AndroZoo is a growing collection of Android

applications from several sources, including the official Google Play. As of writing this

thesis, AndroZoo contains more than five million Android applications. Not only does

this data sample accommodate Android malware, but it contains benign applications as

well (Allix et al., 2016). Crawling various sources started in late 2011 and has continued

ever since.

The 14 sources include Google Play, Anzhi, AppChina, 1mobile, AnnGeeks, Slideme,

HiApk, ProAndroid, etc. The AndroZoo sends all the downloaded applications to the

VirusTotal for scanning. The number of antivirus software that detect an application as

malicious is stored in the metadata file, as vt_detection. The metadata file is available on

the AndroZoo website9 and is updated regularly. As a result, if vt_detection is zero, then

9 http://androzoo.uni.lu

Univ
ers

ity
 of

 M
ala

ya

73

the application is clean. Otherwise, it is considered as malware. This feature allows

researchers to use AndroZoo not only as a malware repository, but also as a clean

application repository.

5.1.4 Malware Repositories

Apart from the aforementioned data samples, other data samples are also available. IccRE

(Icc Repository) is a collection of 445 Android malware that leak privacy data through

inter-component communication (Li et al., 2015). The authors performed inter-

component analysis to detect privacy leaks between components of Android applications.

Their system reached a precision of 95%. They decided to share the data sample with the

research community on a request basis.

VirusShare10 is another repository of malware samples that provides security researchers,

incident responders, and forensic analysts access to samples of malicious code. Access to

the site is granted by invitation only. To request, researchers need to email the

administrator and explain their intention of accessing the repository. It contains Android

malware samples as well as Microsoft Windows. The Android section has two sets of

data samples. One contains 11,080 malware with size of 5.18 GB, and the other contains

24,317 samples with a size of 47.64 GB.

5.2 Static-related Analysis

As mentioned in Section 2.4.2.1, static analysis is the process of analysing the Android

applications’ installation file, APK. In this section, we elaborate on the details of our

novel static analysis method. During the process of evaluating recent research works, we

noticed that Android Intent, more specifically explicit Intent and implicit Intent, is a

10 https://virusshare.com

Univ
ers

ity
 of

 M
ala

ya

74

semantically rich element in the APK files, and has the potential to be a candidate feature

in Android malware detection. Furthermore, to the best of our knowledge, there has been

no attempt at comprehensive analysis of Android Intent, which was our motivation to

conduct this experiment.

5.2.1 Experiment 1: Evaluating Effectiveness of Android Intent in Malware

Detection

The objective of this experiment is to propose Android Intent as a feature for malware

detection, and to evaluate its effectiveness by comparing the results to Android

permission. In order to achieve that, the following sub-sections focus on more detail in

Android Intent, and justify the reason for considering it a feature in Android malware

detection. Next, the specification of the chosen algorithm is described. In the evaluation,

a Drebin data sample and clean applications from AndroZoo repository are used, and the

experiment is conducted on Android Intent and Android permission. Subsequently the

results are compared to reach the conclusion.

5.2.1.1 Android Intent

Intent is a complex messaging system in the Android platform, and is considered as a

security mechanism to hinder applications from gaining direct access to other

applications. Applications must have specific permissions to use Intent. This is a way of

controlling what applications can do once they are installed in Android. An Intent-filter

(defined in AndroidManifest.xml file) announces the type of Intent the application is

capable of receiving.

Applications use Intents for intra-application and inter-application communications.

Intra-application communication takes place between activities inside an application. An

Android application consists of many activities, each referring to buttons, labels, and texts

available on a single page of the application, with which the user interacts. When

Univ
ers

ity
 of

 M
ala

ya

75

interacting with the application, the user moves from activity to activity (i.e. from page

to page). Android Intents assist developers in performing interactions among the

activities. Furthermore, Intents are used in pushing data from one activity to another,

carrying the results at the end of any particular activity (Aftab & Karim, 2014).

Inter-application communication is achieved when applications send messages or data to

other applications through Intent. The applications should also be able to receive data

from other applications. To receive Intents, applications must define what type of Intent

they accept in the Intent section of the AndroidManifest.xml file, as intent-filter. Many

past studies (Chakradeo et al., 2013; Feng et al., 2014; Luoshi et al., 2013) refer to this

type of Intent. The actual communication between two applications occurs through the

Binder, which handles all inter-process communications. The Binder provides the

features for binding functions and data between one execution environment and another,

as each Android application runs in its own Dalvik environment. The Intent mechanism

is considered higher than Binder, hence, it is built on top of Binder.

Figure 5.1. Inter-application Communication Using Android Intent and Binder

Figure 5.1 shows the architecture of inter-application communication. The Binder driver

manages part of the address space of each application and makes it as read-only; all

writing is done by the kernel section of Android. When application A sends a message to

application B, the kernel allocates some space in the destination application’s memory,

Application A Application B
Conceptual Function Call

Binder

Android Kernell

IntentIntent

Actual Function Call

Univ
ers

ity
 of

 M
ala

ya

76

and copies the message directly from the sending application. It then queues a short

message to the receiving application, telling it the location of the received message. The

recipient can then access that message directly because it is in its own memory space.

When application B has finished processing the message, it notifies the Binder driver to

mark the memory as free (Hellman, 2013).

There are two types of Intent: explicit and implicit. When developers know exactly what

component to use to perform a specific action, they use explicit Intent. This component

can be any activity, service, or broadcast receiver. Explicit Intent is used for intra-

application and inter-application communications, and developers use this type of Intent

to navigate from an activity to another activity inside applications, as well as to exchange

messages between applications. For instance, there are some applications that are used

for browsing, such as the default browser on the device or Google Chrome. Developers

use explicit Intent to request Android to open a link specifically using Google Chrome.

Implicit Intent is used by developers when asking Android to open a link, but without

specifying the exact target application. In response, Android offers a list of all

applications capable of opening a link to the user. Such a list is populated based on the

intent-filter section of AndroidManifest.xml files. Table 5.2 shows a sample code of

explicit and implicit Intents.

Table 5.2. Sample Code Snippet of Explicit and Implicit Intents

Explicit Intent

String url=”www.yahoo.com”;

Intent explicit=new Intent(Intent.ACTION_VIEW);

explicit.setData(Uri.parse(url));

explicit.setPackage(”com.android.chrome”);

startActivity(explicit);

Implicit Intent

String url=”www.yahoo.com”;

Intent implicit=new Intent(Intent.ACTION_VIEW);

implicit.setData(Uri.parse(url));

startActivity(implicit);

Univ
ers

ity
 of

 M
ala

ya

77

Table 5.2 shows that implicit Intent uses Intent.ACTION_VIEW to open the specified

URL. However, explicit Intent states the exact component’s name (in this case

com.android.chrome) to open the URL. In our study, our aim is to extract both implicit

and explicit Intents and conduct a comprehensive evaluation of their effectiveness in

malware detection.

Intents have three components: action, category, and data. The action component

describes what kind of action is to be executed by the Intent such as MAIN, CALL,

BATTERY LOW, SCREEN ON, and EDIT. Intents specify the category they belong to,

such as LAUNCHER, BROWSABLE and GADGET. The data components provide the

necessary data to the action component. For instance, the CALL action requires a phone

number, and the EDIT action needs a document or HTTP URL to complete.

5.2.1.2 Data Collection and Analysis

For our experiment, we used real-world applications that include both clean and infected

applications. We gathered clean applications from Google Play and scanned them with

VirusTotal11 to ensure the cleanness of the applications. The applications collected

include both free and paid types, as ProfileDroid (Wei et al., 2012) mentioned that paid

applications behave differently from free ones, and it is important to include all such

applications. Google Play applications were categorized into 27 main application

categories, and the games category had 17 sub-categories. We gathered samples from 24

main application categories (including the game category itself) and 17 games sub-

categories to cover a wide variety of applications, as shown in Table 5.3.

11 www.virustotal.com

Univ
ers

ity
 of

 M
ala

ya

78

Table 5.3. Categories of Gathered Applications

Books & References Medical Tools Games - adventure

Business Weather Games - action Games - strategy

Comics Travel Games - card Games- simulation

Communication Photography Games - casino Games – family

Education Productivity Games - casual Games – racing

Entertainment Shopping Games - educational Games – sports

Finance Social Games - music Games – arcade

Health & Fitness Sports Games - puzzle

Music & Audio Media & Video Games -role playing

News & Magazines Transportation Games - word

Personalization Live Wallpaper Games - board

The clean dataset contains 1,846 applications. Additionally, we used DREBIN (Arp et

al., 2014) as infected dataset. It is a collection of 5,560 applications from 179 different

malware families. We used our Python code to extract permission and Intent from

applications in our dataset. The top 10 permissions of both clean and infected applications

are shown in Table 5.4. Google classifies Android permissions into four groups, namely

normal, dangerous, signature, and signatureOrSystem (Google, 2014).

Table 5.4. Top 10 Permissions in Clean and Infected Applications

Clean Applications Infected Applications

Permissions Frequency Permissions Frequency

INTERNET 98% INTERNET 98%

ACCESS_NETWORK_STATE 89% READ_PHONE_STATE 89%

WRITE_EXTERNAL_STORA

GE
83%

WRITE_EXTERNAL_STORA

GE
67%

WAKE_LOCK 53% SEND_SMS 54%

READ_PHONE_STATE 52% RECEIVE_SMS 38%

ACCESS_WIFI_STATE 48% WAKE_LOCK 38%

GET_ACCOUNTS 42% READ_SMS 37%

VIBRATE 41%
ACCESS_COARSE_LOCATIO

N
32%

BILLING 39% ACCESS_FINE_LOCATION 30%

ACCESS_COARSE_LOCATIO

N
24% READ_CONTACTS 23%

Univ
ers

ity
 of

 M
ala

ya

79

Table 5.4 also shows that five permissions are common, as highlighted, between clean

and infected applications, such as, INTERNET, WRITE_EXTERNAL_STORAGE,

WAKE_LOCK, ACCESS_COARSE_LOCATION, and READ_PHONE_STATE.

However, these applications have five different permissions among the top 10

permissions. Infected applications request SEND_SMS, RECEIVE_SMS and READ

SMS permissions, which are classified as dangerous. In fact, WRITE_SMS, which is also

dangerous, should be included in the list of the top frequent permissions. It is ranked 11th

in our dataset, and it is requested by 22% of infected applications. Therefore, it is evident

that infected applications request four SMS-related permissions to have full access to

SMS functionality of the devices. In our experiment, 30% of infected applications

requested the ACCESS_FINE_LOCATION permission to access the precise location,

and 33% of them requested the ACCESS_COARSE_LOCATION permission, which is

a common permission, to access a proximate location. In general, the viciousness of

infected applications can be gauged through permissions. We also extracted Intent of

applications, as shown in Table 5.5, which shows top 10 Intents used in clean and infected

applications. It is worth noting that the VIEW Intent was removed from the top 10 Intents,

as it is used in all clean and infected applications.

Table 5.5. Top 10 Intents in Clean and Infected Applications

Clean Applications Infected Applications

Intents Frequency Intents Frequency

SEND_MULTIPLE 45% BOOT_COMPLETED 56%

SCREEN_OFF 23% SENDTO 45%

USER_PRESENT 18% DIAL 42%

SEARCH 17% SCREEN_OFF 37%

PICK 10% TEXT 28%

DIAL 9.5% SEND 27%

GET_CONTENT 9% USER_PRESENT 22%

EDIT 8.7% PACKAGE_ADDED 21%

MEDIA_MOUNTED 8% SCREEN_ON 18%

BATTERY_CHANGED 7% CALL 10%

Univ
ers

ity
 of

 M
ala

ya

80

Malicious applications wait for BOOT_COMPLETED to start their malicious activity.

CALL and DIAL are used for making phone calls. CALL requires CALL_PHONE

permission, whereas DIAL does not require such permission. As presented in Table 5.5,

DIAL is used more than CALL, which allows the malicious application to make a

premium phone call without the user’s knowledge.

Figure 5.2. Percent of Applications That Request Specific Number of Permissions

Figure 5.3. Percent of Applications That Request Specific Number of Intents

 Figure 5.2 shows the percentage of applications that requested permissions (clean and

infected) in two datasets. The graph shows that infected applications request more

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 5 10 15 20 25 30 35 40 45 50 55

P
e
rc

e
n
t
o
f
A

p
p
s
 R

e
q
u
e
s
ti
n
g
 X

 P
e
rm

is
s
io

n
s

Number of Permissions

Clean

Infected

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

P
e
rc

e
n
t
o
f
A

p
p
s
 R

e
q
u
e
s
ti
n
g
 X

 I
n
te

n
ts

Number of Intents

Clean

Infected

Univ
ers

ity
 of

 M
ala

ya

81

permissions as there are spikes at multiple points in the figure. Furthermore, only 2% of

clean applications requested between 35-55 permissions, compared to 7% of infected

applications. This is indicative of the vicious intentions of infected applications.

Similarly, Figure 5.3 shows the percentage of applications that requested Intents (implicit

and explicit) in two datasets. When comparing Figure 5.2 and Figure 5.3, the difference

between their x-axis is obvious. While permissions have a maximum number of 55, the

number of Intents ends at 250. The wide difference is due to the fact that developers use

Intents much more frequently than permissions in the code to perform actions.

Intent and permission are potentially useful features for Android malware detection.

However, according to Moonsamy et al. (Moonsamy et al., 2013b), there are requested

permissions as well as required permissions. It is possible that actual permissions used by

applications are different from the requested permissions that are sent to the user for

approval. However, Intent reflects the actual intentions of applications resulting directly

from activities. This indicates that Intent is more effective for malware detection.

5.2.1.3 The Architecture

Figure 5.4 shows the architecture for our experiment, AndroDialysis.12 The top level of

the architecture, the Android application framework, refers to applications installed on

the device. The detector module performs the main task of detection. It consists of four

sub-modules: decompiler, extractor, intelligent learner, and decision maker. The system

sends the results to users through the graphical user interface. The following sections

describe four sub-modules in more detail.

12 Android Deep Intent Analysis

Univ
ers

ity
 of

 M
ala

ya

82

Figure 5.4. Overview of AndroDialysis

(a) Decompiler

The decompiler sub-module is responsible for dissecting the APK files and decoding their

components. Every APK file has various components. AndroidManifest.xml is a

scrambled file and needs to be decoded in order to make it readable. Similarly, the DEX

file is a Java source code compiled in Dalvik format and needs to be decompiled. After

decompilation, the produced file is not a pure Java code, but it is easy to read. We used

Apktool for decompiling Android files, as it utilizes the latest Android SDK, which is

better in optimizing files (Wiśniewski, 2010). Decompiling files results in readable

AndroidManifest.xml files and generates smali versions of Java code.

(b) Extractor

The extractor sub-module extracts explicit Intent, implicit Intent, and permission from

Java code and AndroidManifest.xml file for processing in subsequent sub-modules. The

BeautifulSoup package of the Python language is used to extract permission section from

the AndroidManifest.xml file (Richardson, 2007). In order to extract Intents from Java

D
e
te

ct
o
r

M
o
d
u
le

Decision Maker

Intelligent Learner

User Interface

Android Application Framework

Features

Extractor

Permission

Decompiler

dex file xml file

Implicit Intent

Explicit Intent

Univ
ers

ity
 of

 M
ala

ya

83

code, we used Androguard to reverse DEX files and get Intents (implicit and explicit)

from the code. The extracted data are stored in a feature database for use in the next

process. Furthermore, a copy of the data is sent to the decision maker sub-module for

determining maliciousness of the data, which will be discussed later.

(c) Intelligent Learner

This sub-module takes data from the features database and uses the Bayesian Network

algorithm to learn the pattern of the data. It then sends the output model to the decision

maker sub-module. The Bayesian Network algorithm (Friedman et al., 1997) was chosen

to evaluate AndroDialysis because it has been successfully used in real-world problems.

Cohen et al. (Cohen et al., 2003) for example used the Bayesian Network in human facial

expression recognition and achieved a good outcome. It is a dual-process algorithm; it

first learns network structure, and then it learns probability tables. The Bayesian Network

uses local score metrics to learn the network structure of data. It is considered an

optimization problem in which the quality of the network is optimized. To calculate the

local score, the Bayesian Network employs search algorithms. Once the network structure

of the data has been learnt, the Bayesian Network utilizes estimators to learn the

probability tables (Bielza & Larrañaga, 2014). Two widely used estimators are the simple

and multinomial estimator. The aforementioned two steps are defined as follows:

Suppose that 𝑉 = {𝑥1, … … . . , 𝑥𝑘}, 𝑘 ≥ 1 is a set of variables. Bayesian Network B over

V is a network structure BS that is a directed acyclic graph known as DAG over the set of

variables V. It is also a set of probability tables 𝐵𝑃 = {𝑝(𝑣|𝑝𝑎(𝑣))|𝑣 ∈ 𝑉} where 𝑝𝑎(𝑣)

is the set of parents of v in BS. Finally, a Bayesian Network represents a probability

distribution 𝑃(𝑉) = ∏ 𝑝(𝑣|𝑝𝑎(𝑣))𝑣∈𝑉 .

Compared to other algorithms, the Bayesian Network has the following advantages:

Univ
ers

ity
 of

 M
ala

ya

84

a) It is a fast algorithm with low computational overhead once trained.

b) It has the ability to model both expert and learning systems with relative ease. It

integrates probabilities into the system. It is also considered a performance-tuning tool,

but without incurring computational overhead.

c) Many outstanding real-world applications have used this algorithm and have

performed comparably well against other state-of-the-art algorithms (Bielza & Larrañaga,

2014).

As mentioned above, Bayesian Networks are collections of directed acyclic graphs

(DAGs), where the nodes are random variables, and where the arcs specify the

independence assumptions between these variables. It is difficult to find the Bayesian

Network that best reflects the dependence relationship in a database of cases because of

the large number of possible DAG structures, given even a small number of nodes to

connect. As a result, researchers have developed various search algorithms to overcome

this problem. In this paper, we use four search algorithms for our experiments: K2,

Geneticsearch, HillClimber, and LAGDHillClimber algorithms.

The K2 algorithm heuristically searches for the most probable belief network structure

in a given database of cases, which includes different combinations of values for attributes

(C. Ruiz, 2005). The Geneticsearch algorithm uses the genetic algorithm to find the

optimum result in a Bayesian Network. The algorithm is based on the mechanics of

natural selection and natural genetics. Although it is capable of solving complex

problems, it is a time consuming algorithm for some data (see Table 5.9) (L. J. Yan &

Cercone, 2010). It combines survival of the fittest among string structures with a

structured, yet randomized, information exchange to form a search algorithm that under

certain conditions evolves into the optimum with a probability that is arbitrarily close to

one (Larrañaga et al., 1996).

Univ
ers

ity
 of

 M
ala

ya

85

The HillClimber search algorithm starts learning by initializing the structure of the

Bayesian Network. Unlike previous algorithms that potentially get stuck in the search

process, the Hill Climber solves that problem (Chickering et al., 1995). Each possible arc

from any node is then evaluated using leave-one-out cross validation to estimate the

accuracy of the network with that arc added. If no arc shows any improvement in

accuracy, the current structure is determined. An arc that has the most improvement is

retained, but the node the arc points to is removed. This process is repeated until there is

just one node remaining, or no arc can be added to further improve upon the classification

accuracy (Jo et al., 2011). The LAGDHillClimber search algorithm uses a Look Ahead

Hill Climbing algorithm. Unlike Hill Climber, it does not calculate a best arc (by adding,

deleting or reversing an arc), but considers a sequence of best arcs instead of considering

the best arc at each step. As it is very time consuming to find the best sequence among all

the possible arcs, it must first find a set of good arcs and then find the best sequence of

arcs among them (Salehi & Gras, 2009). This improvement over the Hill Climber

algorithm results in better performance (see Table 5.6).

We evaluate the performance of the Bayesian Network using k-fold cross validation. In

this method, the dataset is divided into k subsets, and the holdout method is repeated k

times. Each time, one of the k subsets serves as the test set and the other k-1 subsets are

compiled to form a training set. Then, the average error across all k trials is computed.

The advantage of this method is that it matters less how the data are divided. Every data

point gets to be in a test set exactly once, and in a training set k-1 times. The variance of

the resulting estimate is reduced as k increases (Feizollah et al., 2013). Specifically, a 10-

fold option is used, which is described as applying the classifier to data 10 times and every

time the dataset is divided into 90:10 groups - 90% of data used for training, and 10%

used for testing, which is widely used among researchers (Damopoulos et al., 2012). At

the end, this sub-module produces a model that is based on available data in the features

Univ
ers

ity
 of

 M
ala

ya

86

database that is used for detection purpose. It is worth noting that the intelligent learner

is constantly learning from the data added to the features database.

(d) Decision Maker

The decision maker sub-module is responsible for determining whether the data are clean

or malicious. It receives two sets of data from the extractor and the intelligent learner sub-

modules. A set of data from the intelligent learner sub-module contains a produced model

based on the collection of data in the features database. The model is then used to vet the

data received from the extractor sub-module. Another set of data that is received from the

extractor sub-module contains extracted data of one application. The decision maker sub-

module utilizes the model to determine the maliciousness of the application. The final

decision is passed to the user interface module, which prepares an appropriate message

for the user and presents it through the graphical user interface. This design of the decision

maker sub-module ensures faster detection and higher performance, as it was adopted by

Shabtai et al. (Shabtai et al., 2014).

5.2.1.4 Results

In this section, we discuss our results and findings. It is important to restate that the

purpose of this experiment is to study the effectiveness of Android Intent (implicit and

explicit) in malware detection, and not malware detection per se. We present the results

from experiments conducted on permissions, Intents, and both in Android malware

detection. Additionally, to get a better assessment of the current development of Android

Intent, we analyse our datasets.

(a) Intent Analysis and Attacks

We analyse Intents in our datasets from the security standpoint to assess the current status

or importance of Intents. As mentioned in Section 5.2.1.1, implicit Intent does not specify

its destination component. However, it is offered to entities that can receive a specific

Univ
ers

ity
 of

 M
ala

ya

87

type of Intent. Therefore, when an application sends an implicit Intent, there is no

guarantee that the Intent will be received by the intended recipient. A malicious

application can intercept an implicit Intent simply by declaring an intent-filter (in

AndroidManifest.xml file) with all the actions, data, and categories listed in the Intent.

This situation (unauthorized Intent receipt) causes the malicious application to gain

access to all the data in any matching Intent, resulting in activity hijacking (Chin et al.,

2011).

In the collected dataset, infected applications declare intent-filter 7.5 times more often

than clean applications. On average, each clean application declares 1.18 intent-filters,

whereas each infected application declares 1.61 intent-filters. Thus, it is evident that

infected applications tend to intercept Intents using intent-filters until they succeed in

hijacking the activities.

In view of this threat, it is suggested that developers use explicit Intent so that the recipient

is clearly specified in order to hinder malicious applications from hijacking the activities.

We have analysed our dataset with regard to this threat, and found that 28.78% of Intents

used were implicit and 71.22% were explicit. In general, developers are doing what is

appropriate; nevertheless, it is essential to remain vigilant, as attackers are known to

frequently change their attack plans.

(b) Experimental Results

This experiment was performed on a Sony Xperia Z3 Compact device, model D5803. It

is running Android Marshmallow, version 6.0.1, with the latest updates. The device has

2GB of RAM and 16GB of storage.

Univ
ers

ity
 of

 M
ala

ya

88

We aim to answer the following questions. A. Is Intent a plausible feature for Android

malware detection? B. What are best configurations in the Bayesian Network that produce

the best results? C. How effective is Android Intent compared to Android permission?

i Effectiveness

We employed the Bayesian Network with different configurations for our experiment. As

discussed earlier, the Bayesian Network uses a search algorithm for calculating the local

score metrics, and an estimator algorithm for learning the probability table. In order to

achieve the best results, we experimented with different configurations, and the results

are presented in Table 5.6. It shows results of permission and Intent with simple estimator

and multinomial estimator algorithms; and K2, Geneticsearch, HillClimber, and

LAGDHillClimber as search algorithms.

Table 5.6. Results of Android Permission and Android Intent Experiments

 Android Permission Android Intent

 Simple

Estimator
Multinomial

Simple

Estimator
Multinomial

 TPR FPR TPR FPR TPR FPR TPR FPR

K2 82% 18% 24% 76% 89% 11% 19% 81%

Geneticsearch 83% 17% Null Null 91% 9% Null Null

HillClimber 82% 18% 24% 76% 89% 11% 19% 81%

LAGDHillClimber 83% 17% Null Null 91% 9% Null Null

The results of the experiments reflect the performance of our method. Detection rate, also

known as a true positive rate (TPR), is the probability of correctly detecting an instance

as a malware. In contrast, false positive rate (FPR) is another measurement that is defined

as wrongly detecting normal traffic as being infected. The higher the TPR, the better the

result. Conversely, the lower the FPR, the better the result. The best results were obtained

by combining a simple estimator and Geneticsearch, and a simple estimator and

Univ
ers

ity
 of

 M
ala

ya

89

LAGDHillClimber, both combinations achieving 83% TPR for Android permission, and

91% for Android Intent. We conducted our experiment in 30 iterations. As the number of

iterations increased, the system learnt the pattern of the data more accurately. Figure 5.5

shows the TPR and the false positive rate for each iteration of the experiment.

Figure 5.5. True Positive Rate versus False Positive Rate for 30 Iterations

Figure 5.5 shows that TPR increased from just above 80% to 90% as the number of

iterations increased. However, the FPR did not follow the same rate of increase as the

TPR. It started from 6% and increased to 9%, which is considered as a good result,

considering that the TPR increased by 10%.

Additionally, we conducted experiments for each malware family to assess the

effectiveness of Android Intent for an individual family. The results are tabulated in Table

5.7 and the best result for each family is highlighted. The experiments were conducted on

the families with the highest number of malware samples in our dataset. As our previous

results with a multinomial algorithm were not encouraging, we used a simple estimator

for this experiment. The lowest detection rate, among all families, belongs to the

DroidKungfu family for either K2 or HillClimber algorithm. This malware gains root

access in the device and installs an application called legacy that pretends to be a

legitimate Google Search application bearing the same icon. The DroidKungfu then

Univ
ers

ity
 of

 M
ala

ya

90

performs its malicious activities through the legacy application (Jiang, 2011). We believe

that this strategy makes it trickier to detect, as malicious activities are performed by an

agent application other than the main one. Other malware families showed relatively high

detection results.

Table 5.7. The results of Android Intent Experiments for Each Malware Family

Malware

Family
Measurements K2 Geneticsearch HillClimber

LAGD

HillClimber

Number

of

malware

FakeInstaller
TPR 85.78% 84.02% 84.91% 84.02%

925
FPR 14.21% 15.97% 15.08% 15.97%

DroidKungFu
TPR 76.41% 76.14% 76.41% 76.14%

667
FPR 23.58% 23.85% 23.58% 23.85%

Plankton
TPR 79.59% 79.59% 79.34% 79.54%

625
FPR 20.40% 20.40% 20.65% 20.45%

Opfake
TPR 93.06% 93.06% 92.76% 93.06%

613
FPR 6.93% 6.93% 7.23% 6.93%

GinMaster
TPR 77.35% 77.35% 77.15% 77.58%

339
FPR 22.64% 22.64% 22.84% 22.41%

BaseBridge
TPR 81.96% 81% 83% 80.17%

330
FPR 18.03% 19% 17% 19.82%

Iconosys
TPR 76.74% 76.87% 76.74% 76.87%

152
FPR 23.25% 23.12% 23.25% 23.12%

FakeDoc
TPR 81.89% 81.65% 81.89% 81.65%

132
FPR 18.10% 18.34% 18.10% 18.34%

Geinimi
TPR 87.39% 87.39% 79.91% 80.55%

92
FPR 12.60% 12.60% 20.08% 19.44%

 Total 3,875

It is necessary to verify that Android Intent is in fact an effective feature, and that our

results were not just a coincidence. Therefore, we conducted experiments using both

features (Android permissions and Android Intents). This was essential to show that the

features are not overlapping, and Android Intent can really increase the detection rate.

Univ
ers

ity
 of

 M
ala

ya

91

Table 5.8 represents the results of the experiments on the combination of Android

Permissions and Android Intents. Not only do the results show that Android Intent

(explicit and implicit) is an effective feature, it also boosts other features (i.e. Android

permissions) in malware detection.

Table 5.8. Results of Experiments Using Both Permissions and Intents

 Simple Estimator

 TPR FPR

K2 95.5% 4.4%

Geneticsearch 95.4% 4.5%

HillClimber 95.5% 4.4%

LAGDHillClimber 95.4% 4.5%

It is worth noting that the choice of Android permissions in this study is based on the fact

that this feature has been widely explored and its importance and effectiveness has been

established. Feizollah et al. (Feizollah et al., 2015) conducted an extensive study on

Android features. Among static features, Android permission is the most widely used

feature. Various approaches have been taken to analyse Android permissions. Some

uthors used permissions to evaluate applications and rank them based on possible risk

(Au et al., 2012; Grace, Zhou, Zhang, et al., 2012; Pandita et al., 2013; Peng et al., 2012).

Numerous studies simply extracted permissions and utilized machine learning to detect

malicious application, (Aung & Zaw, 2013; Samra et al., 2013; Borja Sanz, Santos,

Laorden, Ugarte-Pedrero, Bringas, et al., 2013; Suleiman Y Yerima et al., 2014). Some

researchers argue that merely analysing requested permissions is not sufficient for

detecting malicious applications (C. Y. Huang et al., 2013; Moonsamy et al., 2013b).

They analysed the used permissions in addition to the requested permissions in order to

detect malware. AppGuard (Backes et al., 2013) has gone one step further and has

extended Android’s permission system to alleviate current vulnerabilities. They claim

that their system is a practical extension for the Android permission system as it is

Univ
ers

ity
 of

 M
ala

ya

92

possible to use it on devices without any modification or root access. As a result, Android

permissions is a strong candidate for this paper in order to compare it with Android

Intents.

ii Efficiency

Besides evaluating the effectiveness of our system, we calculated the time taken by each

combination to produce the results of Table 5.6, as shown in Table 5.9.

Table 5.9. Time Taken to Produce Results (seconds)

 Android Permission Android Intent

 Simple

Estimator
Multinomial

Simple

Estimator
Multinomial

K2 0.06 0.89 0.01 0.07

Geneticsearch 2.86 Null 0.91 Null

HillClimber 0.02 0.87 0.01 0.07

LAGDHillClimber 0.05 Null 0.05 Null

Based on Table 5.9, results in Android permission are produced faster when the simple

estimator and HillClimber are combined. With regard to Android Intent, combining the

simple estimator with LAGDHillClimber achieved a TPR of 91% in less time than

Geneticsearch.

In addition, we show the Receiver Operating Characteristic (ROC) curve for the best

results of permission and Intent. The ROC curve is normally used to measure performance

in detecting intrusions. It indicates how the detection rate changes, as the internal

threshold is varied to generate more or fewer false alarms. It plots intrusion detection

accuracy against false positive probability. ROC curves signify the tradeoff between false

positive and true positive rates, which means that any increase in the true positive rate is

accompanied by a decrease in the FPR. As the ROC curve line is closer to the left-hand

Univ
ers

ity
 of

 M
ala

ya

93

border and the top border, it indicates that it produces the best results among other curves.

The ROC curves for Android permission and Android Intent are shown in Figure 5.6.

Figure 5.6. ROC Curve for Android Permission and Android Intent

The ROC curves are difficult to compare, as they seem to be almost similar under some

situations, therefore, the area under the curve (AUC) is used to measure the accuracy of

detection. An area of 1 means a perfect result, while an area of 0.5 is a worthless result.

The AUC point system is as follows: 0.90 - 1.00 = excellent (A); 0.80 - 0.90 = good (B);

0.70 - 0.80 = fair (C); 0.60 - 0.70 = poor (D); and 0.50 - 0.60 = fail (F). The AUC of

Android permissions is 0.7897, and Android Intent is 0.8929. This shows that Android

Intent performed better.

5.2.1.5 Conclusion

This experiment showed that Android Intent is in fact an effective feature for mobile

malware detection. Moreover, the combination of Intent and permission achieved higher

results, which indicates that Android Intent is also considered complementary to other

features. As this is the first experiment on implicit and explicit Intent, we could not

compare our results to other works; however, comparing the results with Android

permission showed that Android Intent (implicit and explicit) produces good results in

mobile malware detection.

Univ
ers

ity
 of

 M
ala

ya

94

5.3 Dynamic-related Analysis

The dynamic analysis complements static analysis in order to have a comprehensive

analysis and detection system. This section consists of two experiments. The first one

examines the pool of available network traffic features to identify the best ones by using

feature selection algorithms. Each algorithm is described in terms of functionality and its

advantages. The second experiment investigates machine learning classifiers to find the

best one with the highest results in terms of accuracy.

5.3.1 Android Malware Network Traffic

Two of the most important behaviours used in the dynamic analysis are system calls and

network traffic. When an application is running, it should request some operations from

an operating system, such as read, write, or open, in order to perform tasks. Therefore, if

an application is calling too many functions, it would sound suspicious. Crowdroid

(Burguera et al., 2011) focused on collecting system calls and processing them to detect

an anomaly. As the Android operating system has the Linux kernel, collecting system

calls is a complicated task as described in (Burguera et al., 2011). In most cases, the device

must be rooted, which means disabling part of the operating system’s security

architecture, consequently leaving the device more vulnerable against threats. Network

traffic is collected on the device by an application such as tPacketCapturePro.13

Therefore, we present AndroPsychology, an experiment on analysing the network

behaviour of the Android application.

5.3.2 Description of the Experiment

AndroPsychology is presented in Figure 5.7. For these experiments, 50,000 malware

samples as well as 50,000 clean applications were specifically acquired from AndroZoo.

13 https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.packetcapturepro

Univ
ers

ity
 of

 M
ala

ya

95

The network traffic process was captured by running each application for 20 minutes and

collecting the generated network traffic in the format of a PCAP file.

Figure 5.7. The AndroPsychology Architecture

The first process is extracting features that include TCP related and HTTP related

features. The Tshark command line program was used to extract 30 features. The second

process is selecting the best features by using feature selection algorithms. This process

is explained as experiment 2 in Section 5.3.3.

Univ
ers

ity
 of

 M
ala

ya

96

5.3.3 Experiment 2: Selecting Best Network-related Features

This experiment deals with the selection of the best network-related features. Network

traffic contains hundreds of features and protocols. It is essential to choose the appropriate

features from those available.

The problem of identifying applications by analysing the network traffic they generate

has received significant attention in the literature over the past decade and a half. This is

for the following reason. With growing adoption of traffic compression, as well as

stronger internet privacy legislation, HTTP payloads are increasingly becoming

inaccessible to traffic monitors (Sicker et al., 2007; White et al., 2013). consequently,

analysis that relies on TCP/IP headers is most useful (Alan & Kaur, 2016).

However, Android malware families have used TCP and HTTP to perform malicious

activities. TrendMicro discovered that 400 Android applications inside Google Play were

infected with DressCode malware. As many as 500,000 unique users downloaded

infected applications. Successful installation enables the malware to connect to its

command and control (C&C) servers via TCP protocol. Whenever the C&C responds

back, an attacker can create a TCP connection between himself and the infected device.

That link empowers the attacker to issue commands to the infected device (Duan, 2016).

Another example is Fake Installer malware that steals information from the device, and

sends it to a specific server. The communications with the external server are transmitted

over HTTP. This includes some commands that are sent to the infected device in order to

steal specific information (TrustGo, 2012).

The aforementioned malware families are small examples from hundreds of Android

malware that use TCP and HTTP as communication channels between devices and

attackers. Among related research works, some have used HTTP, while others have used

TCP. Table 5.10 lists related works and shows whether they analysed TCP or HTTP.

Univ
ers

ity
 of

 M
ala

ya

97

Table 5.10. Comparison of Different Approaches in Related Works

Reference TCP HTTP Reference TCP HTTP

(Shabtai et al., 2012) √ - (Arora et al., 2014) √ -

(Dai et al., 2013) - √ (Conti et al., 2015) √ -

(Tongaonkar et al., 2013) - √ (X. Wu et al., 2015) - √

(Shabtai et al., 2014) √ - (Aresu et al., 2015) - √

(Narudin et al., 2016) √ √ This study √ √

Table 5.10 shows that except one work, others selected TCP or HTTP, which is not

comprehensive. Narudin et al. selected both TCP and HTTP; however, their experiment

was done on a MalGenome data sample with 1,260 applications (Narudin et al., 2016).

This work analyses TCP and HTTP of 50,000 applications. Thus, the focus of this study

is on TCP and HTTP protocols for malware detection.

As mentioned previously, the collection of network traffic was performed using 50,000

clean applications and 50,000 malware samples gathered from AndroZoo. With the help

of Wireshark documentation14, 30 features are selected and presented in Table 5.11.

Features begin with TCP or HTTP, which represents their respective category. In

addition, the table assigns a number to each feature, which is used in the following section

to show the results of feature selection algorithms.

14 https://www.wireshark.org/docs/dfref/

Univ
ers

ity
 of

 M
ala

ya

98

Table 5.11. Extracted Network-related Features

1 tcp.analysis.bytes_in_flight 16 http.content_length

2 tcp.analysis.keep_alive 17 http.leading_crlf

3 tcp.analysis.keep_alive_ack 18 http.next_request_in

4 tcp.analysis.push_bytes_sent 19 http.next_response_in

5 tcp.analysis.retransmission 20 http.prev_request_in

6 tcp.checksum.status 21 http.prev_response_in

7 tcp.dstport 22 http.proxy_connect_port

8 tcp.hdr_len 23 http.request_in

9 tcp.len 24 http.request_number

10 tcp.options.rvbd.trpy.dst.port 25 http.response.code

11 tcp.port 26 http.response_in

12 tcp.window_size 27 http.response_number

13 http.chat 28 http.ssl_port

14 http.chunk_size 29 http.subdissector_failed

15 http.chunkd_and_length 30 http.te_and_length

In total, there are 18 HTTP and 12 TCP features. The next section describes feature

selection algorithms.

5.3.3.1 Feature Selection Algorithms

Researchers have been using several feature selection algorithms for years. Section 2.4.1

mentioned the benefits of feature selection, such as reducing the dimensionality of

databases, saving time and cost of experiments, and yielding more accurate results by

removing noisy data. Such benefits also apply in choosing network-related features.

There are two main types of feature selection mechanisms, known as filter approach and

wrapper approach. Filter approaches use an evaluation function that relies only on the

properties of the data. Wrapper approaches use learning algorithms to estimate the value

of a given subset. In the former, the measure of significance or relevance is defined

independently of the learning algorithm, while in the latter, the measure of significance

Univ
ers

ity
 of

 M
ala

ya

99

is directly defined from the learning algorithm. In this study, we focus on the ranker-

based filter technique, as there is more advantage in using the filter approach as compared

to that of the wrapper approach (Kojadinovic & Wottka, 2000). The filter method is fast

and simple, which makes it more suitable for high dimensional data (L. Yu & Liu, 2003)

than wrapper methods, because when the dimensionality becomes very large, the filter

method has lesser computational time complexity. Therefore, we chose four algorithms

for this experiment, namely correlation-based feature selection, symmetrical uncertainty,

information gain, and relief algorithms.

A correlation-based algorithm evaluates the worth of an attribute by measuring the

correlation between it and the class. Nominal attributes are considered on a value by value

basis by treating each value as an indicator. An overall correlation for a nominal attribute

is arrived at via a weighted average. So, an indicator for the value of a nominal attribute

is a numeric binary attribute that takes on the value of 1 when the value occurs in an

instance and 0 otherwise (Hall, 1999).

Symmetrical uncertainty evaluates features individually by measuring their

symmetrical uncertainty with respect to the class. The symmetrical uncertainty measure

is based on the concept of entropy, which is a measure of the uncertainty of a random

variable. The entropy of a variable 𝑋 is defined as 𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖) log2(𝑃(𝑥𝑖)). The

amount by which the entropy of 𝑋 decreases reflects additional information about X

provided by Y, given by 𝐻(𝑋|𝑌) = − ∑ 𝑃(𝑦𝑖) ∑ 𝑃(𝑥𝑖|𝑦𝑗) log2(𝑃(𝑥𝑖|𝑦𝑗))𝑗𝑖 . Where

𝑃(𝑥𝑖) is the prior probabilities for all values of 𝑋 and 𝑃(𝑥𝑖|𝑦𝑗) is the posterior

probabilities of 𝑋 given the values of 𝑌.

The values of symmetrical uncertainty are within the range of [0,1] with the value 1,

indicating that knowledge of either one of the values completely predicts the value of the

other, and the value 0, indicating that 𝑋 and 𝑌 are independent. The symmetrical

Univ
ers

ity
 of

 M
ala

ya

100

uncertainty value has two main functions: (1) to remove the features with symmetrical

uncertainty below the threshold and (2) to calculate every feature’s weight that is to be

used to guide the initialization of the population for genetic algorithms in a memetic

framework. The feature with larger symmetrical uncertainty value gets a higher weight.

The feature with the lower symmetrical uncertainty value is removed (Senthamarai

Kannan & Ramaraj, 2010).

Information gain also uses entropy to select the best features. It measures the amount of

information about class prediction in bits, if the only information available is the presence

of a feature and the corresponding class distribution. Concretely, it measures the expected

reduction in entropy, which is the uncertainty associated with a random feature.

A relief algorithm selects relevant features using a statistical method. Relief does not

depend on heuristics; it is accurate even if features interact, and it is noise-tolerant. It

requires only linear time in the number of given features and the number of training

instances, regardless of the target concept’s complexity. It randomly samples a given

number of instances from the training set and updates the relevance estimation of each

feature based on the difference between the selected instance and the two nearest

instances of the same and opposite classes. Moreover, it evaluates the worth of an attribute

by repeatedly sampling an instance and considering the value of the given attribute for

the nearest instance of the same and different classes.

5.3.3.2 Results and Discussion

The results of applying the algorithms on sets of features are tabulated in Table 5.12,

which shows the feature number and the weight for each algorithm. Weight is result of

feature selection algorithms and ranges from 0 (lowest score) to 1 (highest score).

Univ
ers

ity
 of

 M
ala

ya

101

Table 5.12. Results of Network-related Feature Selection Algorithms

Info Gain Correlation Relief Symmetrical

Feature Weight Feature Weight Feature Weight Feature Weight

11 0.232647 13 0.19405 9 0.012695531637 12 0.10994

12 0.211327 4 0.14945 11 0.01137271429 7 0.10994

7 0.211327 9 0.13003 7 0.0086361702 11 0.10809

13 0.042779 1 0.09362 12 0.0086361702 1 0.04743

1 0.033345 6 0.0815 1 0.00761390791 4 0.0445

4 0.028688 20 0.06425 13 0.00573305723 13 0.04052

9 0.020678 21 0.04955 14 0.005380952380 9 0.03103

16 0.0138 8 0.04225 25 0.005356671381 16 0.02603

25 0.006304 29 0.03155 4 0.004432393299 25 0.0156

6 0.005549 23 0.03132 5 0.004095238095 6 0.00945

8 0.005549 30 0.02635 23 0.003850767085 8 0.00945

20 0.002463 26 0.0258 26 0.0032215935879 20 0.00675

21 0.001686 11 0.02501 30 0.002761904761 21 0.00468

29 0.001344 14 0.02236 15 0.001732442181 29 0.00358

30 0.000896 16 0.022 29 0.001666666666 30 0.00242

17 0 27 0.01777 24 0.001166067342 17 0

28 0 25 0.01745 16 0.000805223125 28 0

5 0 24 0.01743 27 0.000652023809 5 0

3 0 15 0.01717 8 0.0002404761904 3 0

26 0 7 0.0158 21 0.000061723602 26 0

2 0 12 0.0158 28 0.0000367857142 2 0

27 0 5 0.01527 20 0.0000291005291 27 0

24 0 28 0.00837 6 0 24 0

14 0 22 0.00812 10 0 14 0

19 0 17 0.0076 2 0 19 0

18 0 2 0 19 0 18 0

22 0 3 0 18 0 22 0

23 0 19 0 3 0 23 0

10 0 18 0 17 -0.00000000 10 0

15 0 10 0 22 -0.000071428 15 0

Univ
ers

ity
 of

 M
ala

ya

102

Based on the results, we select the top 10 features of each algorithm for our analysis. A

closer look at the results reveals that some features are repeated in the results of all four

algorithms. For example, feature number 13, which is http.chat, is among the top 10

features in all algorithms. This repetition qualifies this feature for inclusion in the final

selected dataset. The 10 chosen features based on the number of repetitions are shown in

Table 5.13.

Table 5.13. Top 10 Features for Final Dataset

Rank
Feature

number
Feature Rank

Feature

number
Feature

1 13 http.chat 6 11 tcp.port

2 1 tcp.analysis.bytes_in_flight 7 12 tcp.window_size

3 4 tcp.analysis.push_bytes_sent 8 7 tcp.dstport

4 9 tcp.len 9 6 tcp.checksum.status

5 25 http.response.code 10 16 http.content_length

Reducing the dimensionality of the dataset (from 30 to 10 features), enables us to analyse

each feature more thoroughly. Such analysis ensures that the distribution of data is

appropriate for classification algorithms. For instance, features with zero values

throughout are not suitable for classification purpose, as they mislead algorithms. Figure

5.8 shows the distribution of data in each of the top 10 features. It is worth noting that the

x-axis in all figures represents the data in the dataset. Moreover, the y-axis shows the

range of data in that particular feature.

Univ
ers

ity
 of

 M
ala

ya

103

Figure 5.8. Data Distribution of Top 10 Network-related Features

0

2000

4000

6000

8000

10000

0% 20% 40% 60% 80% 100%

tcp.analysis.bytes_in_flight

0

20000

40000

60000

80000

0% 20% 40% 60% 80% 100%

http.chat

0

5000

10000

15000

20000

25000

0% 20% 40% 60% 80% 100%

tcp.analysis.push_bytes_sent

0

500

1000

1500

0% 20% 40% 60% 80% 100%

tcp.len

0

100

200

300

400

500

0% 20% 40% 60% 80% 100%

http.response.code

0

10000

20000

30000

40000

50000

60000

70000

0% 20% 40% 60% 80% 100%

tcp.port

0

10000

20000

30000

40000

50000

60000

70000

0% 20% 40% 60% 80% 100%

tcp.window_size

0

10000

20000

30000

40000

50000

60000

70000

0% 20% 40% 60% 80% 100%

tcp.dstport

0

0.5

1

1.5

2

2.5

0% 20% 40% 60% 80% 100%

tcp.checksum.status

0

10000

20000

30000

40000

50000

60000

70000

0% 20% 40% 60% 80% 100%

http.content_length

Univ
ers

ity
 of

 M
ala

ya

104

As can be seen from Figure 5.8, the data of http.response.code feature are not distributed.

In fact, the data focus on 0, 200, and 400. Although the algorithms select this feature as

one of the best, it has the potential of confusing machine learning algorithms. The same

situation is true for tcp.checksum.status, where data are concentrated around 0 and 2. This

analysis is useful when analysing the effect of each feature in Section 5.3.4.2(c).

Univ
ers

ity
 of

 M
ala

ya

105

5.3.4 Experiment 3: Evaluating Deep Learning Classifiers

The previous experiment selected the top 10 features in network traffic on Android

applications. The purpose of this experiment is to evaluate popular deep learning

algorithms in mobile malware detection. The deep learning scheme has recently received

particularly much attention. These methods have dramatically improved the state-of-the-

art in speech recognition, visual object recognition, object detection, drug discovery,

genomics, and many other domains. Deep learning discovers intricate structures in large

data sets by using the backpropagation algorithm to indicate how a machine should

change the internal parameters used to compute an outcome. However, it is essential to

investigate the performance of deep learning in mobile malware detection. To the best of

our knowledge, this is a gap in the current literature.

5.3.4.1 Deep Learning Algorithms

In this study, we evaluate the performance of deep neural networks (DNN) and long short-

term memory (LSTM). The LSTM is a type of recurrent neural network (RNN) that is

discussed in the following sections.

The concept of neural networks and deep neural networks has been around since the

1980s. DNNs have recently become popular for two reasons, i.e. today’s growing

computing power and the dramatic increase in the amount of data and appearance of big

data (Hashem et al., 2015). These reasons are compelling enough to revisit the concept of

DNNs (LeCun et al., 2015).

A DNN consists of three basic layers, an input layer, a hidden layer, and an output layer.

The difference between neural networks and DNNs is the number of hidden layers; two

hidden layers and more are considered a deep network. A basic neural network consists

of a fundamental unit called a neuron. Every neuron accepts input values and is given a

weight. The neuron computes some functions on the weighted inputs to produce output.

Univ
ers

ity
 of

 M
ala

ya

106

The output of the neuron is transmitted as inputs to the next neuron. Connection of

neurons form a network that is called neural network, as shown in Figure 5.9.

Figure 5.9. Representation of a Neural Network

The first step in a neural network is the forward propagation in which the inputs are

propagated across the layers. In addition, the network predicts the output based on inputs.

Based on the explanations, the following functions are defined in the forward

propagation.

𝑧1 = 𝑥𝑊1 + 𝑏1

𝑎1 = tanh(𝑧1)

𝑧2 = 𝑎1𝑊2 + 𝑏2

𝑦2 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧2)

The equations 𝑧1 and 𝑧2 are functions that take 𝑥 as input and use 𝑊 and 𝑏 as weight and

bias respectively. The 𝑡𝑎𝑛ℎ is an activation function that takes 𝑧1 as input and passes the

result to the next layer. In the output layer, the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is used to calculate 𝑦2

that is the prediction of the neural network.

Input Layer

Hidden Layer

Output Layer

1z

1a

2z

2y

x

Univ
ers

ity
 of

 M
ala

ya

107

The next phase is backpropagation, where the actual learning happens. It involves two

steps: calculating the loss, and performing optimization. The loss is calculated by

comparing the predicted output (𝑦2) with the actual value of data. Then, the purpose of

the optimization function is to minimise the loss function by adjusting 𝑊 and 𝑏 (LeCun

et al., 2015). As mentioned earlier, a DNN has the same structure as a neural network, but

has two or more hidden layers.

A RNN is a new type of neural network that considers sequential information. In a

traditional neural network, it is assumed that all inputs and outputs are independent of

each other. Nevertheless, for many real-world problems that is not the case. RNNs are

called recurrent because they perform the same task for every element of a sequence, with

the output being dependent on the previous computations. Another way to think about

RNNs is that they have a memory, which captures information about what has been

calculated so far. They are capable of looking back only a few steps. Figure 5.10 shows

the structure of a RNN graph.

Figure 5.10. A Recurrent Neural Network

The 𝑥, 𝑠, and 𝑜 represent input, hidden, and output layers respectively. The 𝑈, 𝑉, and 𝑊

are parameters or the weights that need to be adjusted during training. The difference

between the traditional neural network and the RNN is an additional input of 𝑠𝑡−1 that is

fed into the hidden layer 𝑠𝑡. Basically, the RNN considers previous steps in its hidden

Univ
ers

ity
 of

 M
ala

ya

108

layer computation, thus it considers sequential information rather than only one piece of

data at a time.

A popular variant of RNN is called long short-term memory (LSTM). It was first

introduced in 1997 by Sepp Hochrieiter and Jürgen Schmidhuber. LSTMs are capable of

bridging time intervals in excess of 1000 time steps15 even in case of noisy,

incompressible input sequences, without loss of short time lag capabilities (Hochreiter et

al., 2001). The architecture enforces a constant error flow through the internal states of a

special unit known as the memory cell.

There are three gates to the cell: the forget gate, input gate, and output gate. These gates

are sigmoid functions that determine how much information to pass or block from the

cell. Sigmoid functions take in values and output them in the range of [0,1]. In terms of

acting as a gate, a value of 0 means letting nothing through, and a value of 1 means letting

everything through. These gates have their own weights that are adjusted via gradient

descent in the training phase.

Figure 5.11. The Hidden Layer of LSTM (Mikami, 2016)

15 Time step is the number of previous results that the algorithm can remember.

Univ
ers

ity
 of

 M
ala

ya

109

In the equations listed under the forget gate, input gate, and output gate in the diagram,

ℎ𝑡−1 is the previous hidden state, 𝑥𝑡 is the current input, 𝑊 is the weight matrix, and 𝑏 is

the bias. The first step is the forget gate, in which the sigmoid function outputs a value

ranging from 0 to 1 to determine how much information of the previous hidden state and

current input it should retain. Forget gates are necessary for the performance of LSTM,

because the network does not necessarily need to remember everything that has happened

in the past.

The next step involves two parts. First, the input gate determines what new information

to store in the memory cell. Next, a tanh layer creates a vector of new candidate values to

be added to the state.

To determine what to output from the memory cell, we again apply the sigmoid function

to the previous hidden state and current input, then multiply that with tanh applied to the

new memory cell (this will establish the values between -1 and 1).

The extra complications with the gates may make it difficult to see exactly why the LSTM

is better than RNN. The LSTM has an actual memory built into the architecture, which is

lacking in RNN. We update the cell memory by adding new information, highlighted with

a green star in diagram 5.11, which makes the LSTM maintain a constant error when it

must be backpropagated at depth. Instead of determining the subsequent cell state by

multiplying its current state with the new input, the addition prevents the gradient from

exploding or vanishing. However, we still have to multiply the forget gate to the memory

cell.

5.3.4.2 Results

This section presents the results of an experiment on deep learning classifiers. The

experiment was performed on a desktop PC, with Intel Core i5-2400 at 3.10 GHz and 20

Univ
ers

ity
 of

 M
ala

ya

110

GB of RAM, running Microsoft Windows 10 with the latest updates. Python 2.7 and

TensorFlow were also installed on the machine. Depending on the extent of our

experiments, we either performed them on the PC or on the Google Cloud ML platform.

This section is divided into three parts: preliminary results, the effect of hyperparameter

optimization, and the effect of features.

Since this experiment is continuation of pervious one, the same dataset is used, which is

a list of selected features. For this experiment, we divided the data into training and testing

set with ratio of 70% to 30% respectively. The evaluation results are presented by using

two common metrics. Accuracy is a ratio of all correct predictions made by an algorithm.

Logarithmic loss (or loss) is a performance metric for evaluating the predictions of

probabilities of membership to a given class. The scalar probability between 0 and 1 can

be seen as a measure of confidence for a prediction by an algorithm. Predictions that are

correct or incorrect are rewarded or punished proportionally to the confidence of the

prediction.

(a) Preliminary Results

This section reports the results of the experiments using DNN and LSTM algorithms. The

experiments used the top 10 features and default settings of the algorithms. The purpose

of these experiments was to observe the performance of DNN and LSTM as a baseline,

without tweaking any algorithms. Table 5.14 shows the results of the experiments.

Table 5.14. Preliminary Results of DNN and LSTM

 Accuracy Loss

Deep Neural Network (DNN) 80.93% 0.18

Long Short-term Memory (LSTM) 81.96% 0.13

Univ
ers

ity
 of

 M
ala

ya

111

The above results show that LSTM performed better than DNN, with an accuracy of

81.96%. It means that out of all predictions made by the algorithm, 81.96% was correct.

The results also show that the LSTM performed better than DNN, as expected. It is due

to its neurons’ architecture that can memorize data. It makes predictions based on current

and previous data.

(b) The Effect of Hyperparameter Optimization

In the previous section we mentioned that internal parameters are adjusted during training.

There are two types of parameters, those that are adjusted during training, and those that

can be tuned by us. In this section the effects of the latter type of parameters (known as

hyperparameters) are thoroughly investigated.

The process of finding a set of hyperparameter values that gives us the best model is

called hyperparameter optimization. Epoch (or global step as referred to in Figure 5.11)

is the number of iterations that the training dataset shows to an algorithm during training.

Batch size is another parameter that is optimized. It is a number of data inputs to show to

the algorithm during the training process, based on which weight is updated internally.

Some algorithms such as LSTM are sensitive to the batch size (Bergstra & Bengio, 2012).

An optimizer (discussed in Section 5.3.4.1) is another parameter that can be tuned for

better output.

Table 5.15 shows the results of parameter optimization for epoch and batch size for DNN

and LSTM algorithms. Epochs of 10, 50, 100, 500, and 1000 were evaluated.

Additionally, batch sizes of 10, 20, 40, 60, 80, and 100 were tested. The accuracy for the

combination of epoch and batch size is available in Table 5.15. Based on the results, an

epoch of 50 and batch size of 20 achieved an accuracy of 81.2857%, which is higher than

the other configurations for DNN algorithms. Similarly, an epoch of 50 and batch size of

Univ
ers

ity
 of

 M
ala

ya

112

Table 5.15. Results of Hyperparameter Optimization for Epoch and Batch Size

DNN LSTM

Accuracy

(%)

Number of

Epochs

Batch

Size

Accuracy

(%)

Number of

Epochs

Batch

Size

72.2857 10 10 80.4286 10 10

43.8333 50 10 82.5952 50 10

45.8571 100 10 80.9762 100 10

72.8571 500 10 81.0714 500 10

55.5 1000 10 80.9286 1000 10

80.5476 10 20 80.6667 10 20

81.2857 50 20 80.9286 50 20

27.8333 100 20 81.381 100 20

72.0238 500 20 81.3571 500 20

71.0952 1000 20 81.7143 1000 20

53.5714 10 40 80.5476 10 40

55.0476 50 40 80.9762 50 40

53.6905 100 40 80.9286 100 40

54.7381 500 40 81.4524 500 40

63.9048 1000 40 81.6429 1000 40

77.6667 10 60 72.0476 10 60

71.3333 50 60 80.8095 50 60

53.7381 100 60 82.0952 100 60

72.7857 500 60 81.5952 500 60

53.0952 1000 60 80.8333 1000 60

53.3333 10 80 57.619 10 80

62.4762 50 80 80.9048 50 80

54.5238 100 80 81.1429 100 80

62.8333 500 80 81.4762 500 80

35.9762 1000 80 81.5238 1000 80

64.2857 10 100 61.0238 10 100

45.5714 50 100 81.4524 50 100

54.2619 100 100 80.7857 100 100

54.6667 500 100 80.9762 500 100

44.9048 1000 100 81 1000 100

Univ
ers

ity
 of

 M
ala

ya

113

10 achieved 82.5952%; that is the best result compared to the other configurations for

LSTM algorithms.

Moreover, we evaluate different optimizers for DNN and LSTM algorithms to identify

the best one for each algorithm. Specifically, SGD, RMSprop, adagrad, adadelts, adam,

adamax, and nadam optimizers are tested. The results are shown in Table 5.16. For DNN

algorithms, the adam optimizer achieved the best result with an accuracy of 80.9286%.

Similarly, the nadam optimizer achieved 82.6429% accuracy for the LSTM algorithm. It

is deduced that running DNN and LSTM algorithms on our data using adam and nadam,

respectively, results in the best performance.

Table 5.16. Results of Hyperparameter Optimization for Optimizers

DNN LSTM

Accuracy (%) Optimizer Accuracy (%) Optimizer

27.8333 SGD 80.4048 SGD

61.9048 RMSprop 80.9286 RMSprop

51.3095 Adagrad 81.4762 Adagrad

80.9048 Adadelta 81.5238 Adadelta

80.9286 Adam 81.0238 Adam

65.5952 Adamax 81 Adamax

80.0238 Nadam 82.6429 Nadam

(c) Effect of Features

In this study, 10 network-related features were selected. It is often asked how to know if

10 is the optimum number of features that yield the best results. It is also asked if each

feature has positive effect of the results. In this section, we explore the effect of the

selected features on the final results. As the previous results of the LSTM were higher

than for DNN, the former algorithm is used in this section. Furthermore, this experiment

Univ
ers

ity
 of

 M
ala

ya

114

utilizes the optimized values of hyperparameters obtained from the previous section.

Table 5.17 shows the results of this experiment.

Table 5.17. Results of Effects of Number of Features Experiment

Number of Features
Accuracy

(%)
Loss

10 81.96 0.13

9 57.91 28.96

8 83.81 0.1308

7 83.93 0.1386

6 82.37 0.1405

5 82.55 0.1409

4 80.05 0.1645

3 80.98 0.1516

2 93.06 0.0694

It is worth noting that order of the features corresponds to Table 5.13. Based on Table

5.17, choosing ten features results in 81.96% of accuracy. This accuracy drops to 57.91%

using nine features, and increases to 83.81% for eight features. It is believed that the ninth

feature (tcp.checksum.status) introduces noise to data, removing of which results in

increase in results (83.81%). It is also believed that having a tenth feature

(http.content_length) in the dataset masks the noisiness of the ninth feature. When using

seven to three features, the results range between 80.05% and 83.93%. Experiments using

two features (http.chat, tcp.analysis.bytes_in_flight) show that they achieve 93.06%

accuracy, which is the best result among the experiments.

Although two features result in the best achieved accuracy, they are most effective among

10 selected features. tcp.analysis.bytes_in_flight shows amount of data that has been sent,

which indicate the data sent from a device to a server. A malware leaks user’s data to

Univ
ers

ity
 of

 M
ala

ya

115

attacker, and this feature represents the leaked data. However, normal applications also

send data to a server. Another feature (http.chat) is combined with

tcp.analysis.bytes_in_flight to help differentiate malware from normal. This feature is a

label that shows availability of back and forth transmission between the device and a

server. The combination of these two features along with capability of machine learning

to learn patterns in data, make the two features more effective than others.

As mentioned earlier, accuracy and loss are two measures that are calculated for the

LSTM algorithm. Figure 5.12 shows the accuracy of the LSTM during the experiment.

The experiment has 50 epochs that are shown as x-axis, and the y-axis represents the

corresponding accuracy value for each epoch.

Figure 5.12. The Accuracy Result of LSTM

It is visible that the accuracy is increasing throughout the experiment, showing that the

algorithm is learning to produce results that are more accurate. Figure 5.13 shows the loss

during the experiment.

0.0800

0.000 5.000 10.000 15.000 20.000 25.000 30.000 35.000 35.00040.000 45.000 50.000

0.1600

0.2401

0.3201

0.400

0.4802

0.5602

0.6403

0.7203

0.800

0.880

0.9605

A
cc

ur
ac

y

Epoch

Univ
ers

ity
 of

 M
ala

ya

116

Figure 5.13. The “Loss” Result of LSTM

Figure 5.13 shows that as the results increase, the loss is decreasing. This means that the

algorithm is adjusting its internal parameters to produce results that are less incorrect. The

x-axis represents the number of epochs, which is 50 in this experiment. Similarly, the

y-axis shows the loss in value for each epoch. Figure 5.14 depicts values of weight in

each layer of the LSTM algorithm.

(a)

(b)

(c)

(d)

Figure 5.14. The Values of Weight in Four Layers During LSTM Experiment

0.0694

0.000 5.000 10.000 15.000 20.000 25.000 30.000 35.000 35.00040.000 45.000 50.000

0.0696

0.0695

0.0697Lo
ss

Epoch

0.0696

0.0697

0.0698

0.0698

0.0698

Univ
ers

ity
 of

 M
ala

ya

117

The LSTM algorithm adjusts its weight parameters as it learns the data during the training

phase. Figure 5.14 shows variations of the weight parameter in four layers of the LSTM.

The x-axis is that value of the weight in each layer, and the y-axis is the epoch in the

experiment. The represented graph is a histogram chart, showing the distributions of the

values in each layer. Generally, the darker, more central, bands have more values in that

range while the lighter, wider bands have fewer values. It is beneficial to think of each

band as a bin in a regular histogram chart, the darker bands are the taller bins, etc. The

difference is that the TensorFlow draw the histograms over time.

It is beneficial to compare the results to other related works. Zhu et al. performed taint

analysis on Android APK files, which analyses leak data and finds the methods the

attackers use to access them. This type of analysis can easily be bypassed by attackers

using obfuscation method. The authors chose deep belief networks to conduct their

experiment. Their dataset contains 3,000 benign applications and 8,000 malicious

applications. The final results show 95.05% of detection score (Zhu et al., 2017).

Yu et al. used permissions and system calls to build a neural network. They constructed

feed forward network and recurrent network as chosen types for neural network (W. Yu

et al., 2014). They evaluated their system using 96 benign applications and 92 malware

applications. Although the achieved results seem to have achieved high score of 95%,

their evaluation was performed on very small dataset as opposed to 100,000 samples in

this work. As size of dataset increases, the final system can be generalized to wider types

of application and detect broader types of malware.

Martinelli et al. chose convolutional neural network to conduct their experiment. This

type of neural network is best suited for image and video classification due to the layers’

structure, however, the authors decided to use it in their experiment. They collected

features pertaining to UI interactions and system events, such as touches, gestures,

Univ
ers

ity
 of

 M
ala

ya

118

reception of SMS, incoming call, etc. They used Monkey program to mimic user’s

interaction with the device, which is not as accurate as the real user. The experiment

results show precision of 75% and 80% for UI interaction and system events respectively

(Martinelli et al., 2017).

Xiao et al. used system calls for analysing Android applications. They claim that

considering there is some semantic information in system call sequences as the natural

language, they treat one system call sequence as a sentence in the language and construct

a classifier based on the Long Short-Term Memory (LSTM) language model. However,

not all Android system calls can be treated as a sentence in natural language, such as

closehandle. The experiments show that this approach can achieve recall of 96.6% (Xiao

et al., 2017).

Overall, the mentioned works merely used deep neural networks and output the results.

However, the neural network algorithms consist of many parameters that can be tuned,

which results in better outcome. In this work, we dedicated a sub-section for

hyperparameters optimization to find out the optimum value for each parameter.

Additionally, our data sample of 100,000 Android applications is much larger than other

works that translates to having more generalized and accurate results.

5.3.5 Conclusion

Experiments 2 and 3 were related to dynamic analysis. In Experiment 2, we extracted 30

features from network traffic of Android applications. Then, using four algorithms, the

top 10 features were selected. The selected features were used in experiment 3 to evaluate

the performance of deep learning algorithms (DNN and LSTM). At the end, the results

show an accuracy of 93.06% and a loss of 0.0694, which reveals that network traffic is

an effective feature in malware detection.

Univ
ers

ity
 of

 M
ala

ya

119

At this stage, we have proposed and evaluated the framework (DroidProtect) that fulfils

the objectives b and c (Section 1.4).

Univ
ers

ity
 of

 M
ala

ya

120

5.4 Experiment 4: Evaluation of Energy Consumption

As mentioned in Section 1.4, the main objective of this study (objective d) is to propose

a malware analysis and detection system that minimises energy consumption. The

purpose of this experiment is to serve that objective by measuring the energy usage of the

developed prototype and compare it with the energy consumption of other available

similar products.

5.4.1 Energy Consumption Fundamentals

Section 3.4 mentioned the definition of energy profilers, and discussed the evolution of

such products. In this section, we will further explore the basics of measuring energy

consumption.

The first topic is the difference between energy and power. The former denotes the

capacity of a system to perform work. The latter is the rate of energy consumption that is

how much work the system is doing. This concept is clearer with an analogy involving

water. Power is gallons per minute, which goes to zero if the usage stops. Energy,

however, is the total gallons used, and does not go to zero if the usage stops. Thus, we are

looking to measure the total energy consumed by our application.

The unit for energy is joule (𝐽) defined as the amount of energy required to continuously

produce one watt for one second (𝑊𝑠). The unit for power is watt (𝑊) defined as one

joule per second (
𝐽

𝑆
). Therefore, the relationship between energy and power is defined as

in equation 𝐸(𝑗) = 𝑃(𝑤) × 𝑡(𝑠), where the unit for power is watt and the unit for time is

seconds.

The second topic relates to the methodology of calculating energy consumption. As

mentioned in Section 3.4, this study employs AppScope and PowerTutor for calculating

consumption. Simply put, these frameworks calculate energy consumption based on a

Univ
ers

ity
 of

 M
ala

ya

121

power model. That model is generated either off-device for various devices, by the

developer, or is generated on-device by observing the device’s consumption pattern. The

research community has adopted both frameworks (Barbera et al., 2013; Chang et al.,

2011; X. Chen et al., 2013; Saipullah et al., 2012).

PowerTutor is developed based on PowerBooter, which is an automated power model

creation technique that uses on-device voltage sensors and battery discharge curves based

on the Rint model to estimate power consumption (L. Zhang et al., 2010). The power

consumption is then correlated with individual components using regression. The system

does not require external measurement equipment; however, a smartphone-specific

discharge curve is needed. The new idea of PowerBooter was to use battery-state-based

power model generation. This involves keeping smartphone components in specific

power states so that their power consumption can be determined through the change in

the battery’s state of discharge (SOD) using a voltage sensor. This change can be used to

estimate the average power draw. When the component-specific average power draw is

known, it is possible to derive the power model using regression.

Figure 5.15. Overview of the PowerBooter Model

Figure 5.15 illustrates the key phases of PowerBooter. In the first step, the battery

discharge curve for the phone is constructed. The discharge curve varies from phone to

phone due to differences in battery type, age, temperature, and operating parameters. The

Keep device in one power state

for 15 minutes

Apply regression to determine

the power model

Place device in low power state

for 1 minute

Obtain battery discharge curve

Iterate devicesUniv
ers

ity
 of

 M
ala

ya

122

discharge curve can be obtained online and on-device by observing the constant discharge

behaviour from a fully charged state. In the second step, the power consumption is

determined for each component state. The state of a component is varied while keeping

the rest of the system in a static configuration. The battery voltage is recorded at the

beginning and end of a discharge interval. The voltage is measured for 1 minute and the

battery is discharged for 15 minutes between the component voltage measurements. In

the third step, regression is used to create the power model. The battery voltage

differences for each discharge interval are used to determine the average power draw of

the 15-minute intervals. Regression is then used to create the power model based on the

component average power draw estimates.

AppScope uses the DevScope power model to estimate energy consumption. DevScope

(Jung et al., 2012) is an example of an energy profiler that uses a smart battery interface

to generate an on-device dynamic linear regression-based power model. The DevScope

authors observed that the smart battery interface has a low update rate. They proposed a

synchronisation technique between the update rate and component-specific control. The

profiler works by probing the OS to obtain information about the components and the

configuration, such as the CPU details. The profiler also examines the smart battery

interface and determines the update rate of the battery interface.

Similar to PowerBooter and Sesame, the profiler then creates a component control

scenario for power analysis for the specific smartphone. The control scenario is then run

and DevScope first classifies the data to the terms of the power model and then analyses

the classified data to update the power coefficients of the regression model. For example,

each CPU frequency is tested with zero and maximum use, to derive the information

needed for the CPU model. To alleviate the slow update rate of the smart battery interface,

DevScope synchronises the smart battery update events with the component tests. This

Univ
ers

ity
 of

 M
ala

ya

123

contrasts with Sesame’s solution of averaging battery readings for higher accuracy at a

slower rate. DevScope also tries to recognize power-state transitions; however, this

requires knowledge of the power-state durations and the battery update interval.

Automatic detection of power-state transitions is difficult, because the state transitions

are governed by the workload and the operating conditions. During component testing,

DevScope repeatedly uses different workload sizes to determine the threshold size that

results in a power-state change. This technique is applied for cellular and Wi-Fi

connections to determine the wireless network parameters and power state details.

5.4.2 Results and Discussion

This work aims at proposing mobile malware analysis and detection methods that

consume less energy compared to similar products. Thus, this experiment serves that

purpose. The results are presented as follows. First, the energy consumption of a number

of normal applications is calculated in order to establish a baseline of how much energy

is consumed by applications that are used every day.

Second, we show how much energy our framework (DroidProtect) consumes when it is

implemented using a local approach (refer to Section 2.4.4.1), which is running the

analysis and detection on the device. Third, the amount of consumed energy is calculated

when implementing the DroidProtect using the offloading method (refer to Section

2.4.4.2). The objective is to show that the offloading method consumes less energy than

the local method. We have mentioned benefits of offloading in Section 4.3.1. It is

beneficial to prove that practically. Fourth, the energy consumption of similar products is

calculated and the results are compared to the previous experiments, to see whether this

study achieved its objectives. It is worth noting that the screen brightness of the device

was set to 50% during the following experiments.

Univ
ers

ity
 of

 M
ala

ya

124

Table 5.18 shows the energy consumption of normal applications during 10 minutes of

usage. Four popular applications were measured that were selected from four categories

of popular activities, i.e. multimedia, games, social networking and messaging. It is worth

mentioning that the usage of these applications was medium, such as watching video with

480p resolution on YouTube, checking news feed on Facebook, etc.

Table 5.18. Energy Consumption (in Joules) of Three Popular Applications During

10 Minutes Usage

Application CPU Communications Display Total

YouTube 30.11 12.59 508.90 551.59

MX Moto 129.24 5.75 509.54 644.52

Facebook 137.76 27.42 471.42 637.27

WhatsApp 39.8 24.1 458.7 522.6

The calculations were performed in the form of several time series, each one associated

with a component of the device, namely CPU, Wi-Fi or cellular communications, and

display. Table 5.19 shows the results of the energy consumption test of the DroidProtect

when analysing one application. The test was performed on the application with the size

of 1.3 MB. The analysis took around two minutes for each type of analysis. The estimated

consumption during 10 minutes is shown in parenthesis inside Table 5.19.

Table 5.19. The Results of Energy Consumption Test for DroidProtect (Joules)

 Local Offloading

 CPU C D Total CPU C D Total

Static Analysis 18.7 - 49.4 68.1

(340.5)

14.6 1.0 28.1 43.7

(218.5)

Dynamic Analysis 5.3 - 27.1 32.4

(162)

1.6 1.1 21.6 24.3

(121.5)

C = communications, D = display

As can be seen from Table 5.19, the experiment was performed using local and offloading

approaches. Thus, the difference between the two approaches is visible. In the static

Univ
ers

ity
 of

 M
ala

ya

125

analysis, the local approach consumed 68.1 Joules while the offloading approach

consumed 43.7 Joules. As the detection process (the use of machine learning) is

performed on the device in the local approach, it is expected to consume more energy

than the offloading approach.

The dynamic analysis consumed 32.4 Joules using the local approach while it used 24.3

Joules using the offloading approach. The same rationale is also applicable here, namely

that as the detection is performed on the device, the energy consumption is higher.

Another outcome of this experiment derives from comparing the static and dynamic

analysis. Choosing either local or offloading methods reveals that the static analysis used

more energy than the dynamic analysis. It is believed that since the static analysis involves

decompiling the DEX file to Java, it consumes more energy than observing and collecting

network traffic (dynamic analysis).

It is also inferred that the offloading method consumes energy to send the collected

features to servers, which does not occur in the local approach. Despite that there is an

additional component drawing energy in the offloading method, the overall process

consumes less energy compared to the local approach.

Next, we mention energy consumption of similar security applications. As mentioned in

Section 1.3, Polakis et al. analysed a number of security applications with regard to their

energy consumption. Their results are presented in Figure 5.16 for AVG, Dr. Web,

Sophos, Avast, Norton, and NQ. It shows that NQ uses the least and Dr. Web uses the

most energy among the applications. The results are presented based on millijoules per

second, while we calculated Joules per ten minutes in the previous experiments. It is

estimated that NQ uses 3,600 Joules and Dr. Web uses 28,800 Joules in ten minutes (refer

to Section 1.3).

Univ
ers

ity
 of

 M
ala

ya

126

Figure 5.16. The Results of Energy Consumption Test for Security Applications

(Polakis et al., 2015)

The comparison between the DroidProtect and the similar security applications shows

that the DroidProtect consumes less energy. Considering 10 minutes of usage, while NQ

uses 3,600 Joules energy, our proposed framework uses 121.5 Joules. The comparison

was made between the least consumed energy in our work and similar products.

Moreover, the comparison between normal applications and this study shows that the

DroidProtect uses less energy.

Univ
ers

ity
 of

 M
ala

ya

127

5.5 Summary

The purpose of this chapter was to evaluate the proposed framework. It started by

evaluating a static analysis of Android Intent using real-world applications. This was

followed by a dynamic analysis of network traffic, including choosing the best network-

related features and evaluating deep learning algorithms. The next experiment was related

to energy consumption of the proposed framework, which fulfils the objectives of this

study.

The next chapter implements the proposed framework to show how it works as a

standalone application. It also discusses an activity diagram, and includes screenshots

from various functions of the application.

Univ
ers

ity
 of

 M
ala

ya

128

CHAPTER 6: A PROTOTYPE IMPLEMENTATION OF MOBILE MALWARE

ANALYSIS AND DETECTION SYSTEM

Following the system evaluation described in the previous chapter, this chapter presents

the design and implementation process of a prototype of DroidProtect. This stage is

crucial as the system is put into practice, and its various parts constitute a complete

prototype. The implementation is divided into two sections: mobile and server. The

mobile device section is further divided into static and dynamic sections. Each section is

discussed in the following parts.

Java programming language was chosen for the implementation. Android Studio and

Eclipse were selected for developing the mobile and server section respectively. They are

well-known integrated development environments (IDE), offering various tools for

programming and debugging. Google App Engine was selected for developing the server

side of this work for the following reasons:

1) It performs better in terms of maintainability and scalability for mobile applications

compared to Amazon EC2 and Microsoft Azure. Google App Engine automatically

creates additional instances of the application when required due to the increase of usage

(Jonge, 2011).

2) Google App Engine is characterized as a software developers’ platform, whereas

Amazon EC2 is characterized as a system administrators’ platform. Whereas software

developers upload their code to Google App Engine and test their application, users of

Amazon EC2 need to configure several settings to run their applications, making the

process more complex (Jonge, 2011).

Moreover, Google App Engine uses some security mechanisms. For instance, prior to

uploading a file, the application first requests an upload URL. Upon receiving the upload

Univ
ers

ity
 of

 M
ala

ya

129

URL, the file is sent to the servers. Afterwards, the same link does not work to upload a

new file, and a new request must be established. This mechanism prevents the upload of

malicious files to the server. Another mechanism specifies the content type when

uploading a file. Applications can set their own content type. Retrieving the file requires

knowing the correct content type. Thus, the server is protected from cross-site scripting

(XSS) attacks in which attackers can use text/html content type to gain access to files

(Grossman, 2007).

6.1 Activity Diagram

Before describing each section in detail, it is beneficial to look at the process flow of this

prototype through an activity diagram. An activity diagram describes the sequential or

concurrent control flow between activities, and can be used to model the dynamic aspects

of a group of objects, or the control flow of an operation. It emphasizes the activities of

the object; hence, it is well suited to describe the realization of the operation in the design

phase. Moreover, it describes the sequence of activities among the objects involved in the

control flow during the implementation of an operation, the relationship between the

activity and the object in the message flow, the state change of object in the object flow,

and the execution of the activity (Linzhang et al., 2004). Figure 6.1 shows the activity

diagram of DroidProtect.

Univ
ers

ity
 of

 M
ala

ya

130

Figure 6.1. Activity Diagram of DroidProtect

The activity diagram includes five components, which are described as follows, based on

the process flow of the system.

a) Mobile interface. The process starts when the user logs into the mobile application.

The login process is designed to be very simple and requires no registration. The user can

log in using Google account credentials. The mobile application collects only basic data

such as name and email address. Upon logging in, the user starts the packet capturing and

Intent extraction processes. These processes are designed to be lightweight and not to

interfere with the user’s activity. The user simply starts the processes and resumes

working with other applications, as the processes are performed in the background. At

the end, an ARFF file is produced that contains extracted features. Then this file is

uploaded to the servers.

b) Blobstore. Blobstore is the name of a storage space inside the Google App Engine.

It is designed to be fast and reliable. The mobile application requests an upload URL from

the Blobstore. After receiving the URL, the ARFF file is uploaded. Then a unique key

Activity Diagram of DroidProtect

Mobile Interface Server SQL Server Web InterfaceBlobstore

START

User Logs in

Traffic Capturing

Feature
Extraction

Prepare ARFF File

Machine Learning
Algorithms

Display Results

Send Blob Key and User
Data

Receive Blob Key and User
Data

Prepare Upload
URL

Request Upload URL

Upload ARFF File
Prepare Blob

Key

Retrieve ARFF File

Prepare ARFF
File

Send User Data
and Results

Send Results
to Device

Store User Data
and Results

User Logs in

User Requests
Results

Prepare Results Display Results

Preparing Java
Code

Intent Extraction

Univ
ers

ity
 of

 M
ala

ya

131

(known as blob key) for the uploaded file is sent to the mobile application. Afterwards,

the blob key and the user’s data are sent to the server for further processing.

c) Server. The server retrieves the ARFF file and sends it to machine learning models.

First, the machine learning algorithms are trained, and a model is generated. Models are

used to predict the maliciousness of the incoming data. At the end, the results are

produced and sent to the user’s device and an SQL server.

d) SQL server. The machine learning results are stored in the SQL database along with

the user’s data. Hence, the results and their history can be retrieved and displayed on a

web site.

e) Web interface. In addition to the mobile application, we developed a web interface

(also hosted on the App Engine), so that the results are available online. This is more

convenient for the user to manage the detection results, and to review the history of the

analysis and detection processes.

6.2 Implementation of the Mobile Application

The mobile application consists of two sub-sections, static analysis and dynamic analysis.

The objective of this application is to collect static and dynamic data, extract features,

and send the features to the server for analysis. Each visible page of an Android

application is called an activity. Figure 6.2 shows the first activity of the prototype, which

appears after launching the application.

The first activity is designed to be very simple and intuitive. The only button is for signing

in with the user’s Google account. The user is then asked to grant permission so that the

application can access basic data such as name and email address, as shown in Figure 6.3.

This allows the application to get access to basic information.

Univ
ers

ity
 of

 M
ala

ya

132

Figure 6.2. The First Activity of

Mobile Application

Figure 6.3. Google Asks Permission to Share

User's Data

Subsequently we divide the application into two sections, static analysis and dynamic

analysis. As mentioned in Section 2.4.1.1(c), Android Intent is our choice for static

analysis. Similarly, network traffic was selected for the dynamic analysis.

Static analysis employs Java code to reverse the APK file to DEX file, and then to semi-

readable Java files. The former process uses smali APIs and the latter uses Jadx APIs.

Figure 6.4(a) shows the results of conversion from APK to DEX. Figure 6.4(b) shows

that after decompiling the DEX file, an Android folder is created. The content of this

folder is presented in Figure 6.4(c). Figure 6.4(d) shows the content of the produced files.
Univ

ers
ity

 of
 M

ala
ya

133

(a)

(b)

(c)

(d)

Figure 6.4. Screenshots of the Results of Static Analysis

Univ
ers

ity
 of

 M
ala

ya

134

Although the final results are not pure Java codes, it is possible to search for Android

Intent in the code. Thus, at the end the Intent feature is extracted by searching the Java

code. The mentioned processes are performed as a background service so that they do not

interfere with the user’s activity.

The dynamic analysis is similar to the static analysis. The network traffic is captured by

the TCPDUMP program. The collected traffic is saved as a PCAP file, and Java code is

used to extract the features. The extracted features are saved as an ARFF file. The ARFF

file is utilized by Weka for further processing. Figure 6.5 shows the above processes.

(a)

(b)

Figure 6.5. Screenshots of Dynamic Analysis Process of the Mobile Application

Univ
ers

ity
 of

 M
ala

ya

135

(a)

(b)

Figure 6.6. Screenshots of the Upload Process from Mobile to Servers

Figure 6.5(a) shows the steps of the dynamic analysis section of the mobile application.

Capturing network traffic and extracting features produces a PCAP and an ARFF file

respectively, as shown in Figure 6.5(b). Figure 6.6(a) shows the application after

Univ
ers

ity
 of

 M
ala

ya

136

uploading the ARFF file in which the server returns a unique key representing the file.

Afterwards, the key is used to refer to that specific file for analysis. Figure 6.6(b) shows

the server side of this process, where the file is stored on the server, with the same key as

presented on the mobile application. Figure 6.6(b) also displays the Google App Engine

and the Blobstore section where the files are stored.

On the server side, the static and dynamic features are integrated. Then, a prepared

machine learning model is used to determine the maliciousness of the data. At the end,

the results are sent back to user’s device. In addition, the results are stored on Google

SQL server, which is part of the Google Cloud Services.

On the SQL server, each user is identified by the email address used when logging in with

his Google account. Thus, the email address is the primary key in the SQL server.

Another component of this system is a website, which allows the users to check the results

of the detection process. Users also can view their detection history.

Univ
ers

ity
 of

 M
ala

ya

137

6.3 Summary

This chapter demonstrated the implementation of the proposed framework in form of a

prototype through screenshots. In addition, the activity diagram was illustrated, and each

of its components was discussed.

The purpose of this chapter was to show the proposed framework as a final product. It

helps to understand how the DroidProtect and its components work. Due to time

constraints, it was not possible to show every detail of the DroidProtect. Achievements,

limitations, and suggestions for future works are discussed in the next chapter.

Univ
ers

ity
 of

 M
ala

ya

138

CHAPTER 7: CONCLUSION

This chapter summarises the study by pointing out its achievements. It reviews the

important findings as well as the limitations. The discussed limitations highlight potential

areas for future improvement. A separate section is also dedicated to exploring future

studies and how this work could be improved.

7.1 Research Contributions and Achievement of Objectives

This study began by providing an overview of the evolution of mobile malware since its

inception. It then explored various components of the Android operating system and its

security features, to establish the necessary fundamentals for discussing current research

works. Subsequently current research studies were reviewed, which involved

categorizing them into different groups based on their analysis and detection methods, as

well as the used features. Afterwards, based on shortfalls of the reviewed works and

available gaps, the study proposed a framework named DroidProtect. This framework

was evaluated using real-world malware to examine its benefits over the related systems.

The achievements of this study are detailed as follows.

1. Comprehensive analysis of the most related and salient works. We started by

studying related works published in the span of five years. They were categorized into

four different perspectives (Chapter 2). First, we studied them based on the Android

features they used, as deciding what features to choose for analysis is an important step.

Second, malware analysis methods were scrutinized, which is how malware families were

analysed. Third, detection approaches of the current studies were reviewed. Lastly, we

investigated the location in which the detection process is performed. The tools available

for malware analysis and detection were also reviewed, as they helped to carry out our

experiments (Chapter 3). This satisfies the first objective of this study (Section 1.4).

Univ
ers

ity
 of

 M
ala

ya

139

2. Feature engineering.16 This work paid special attention to feature selection, as it

determines the outcome of experiments (Section 2.4.1). Android Intent (explicit and

implicit) was chosen as a static feature. To the best of our knowledge, analysis of this

Android feature is unprecedented. Extensive analysis showed that this feature is indeed

effective, especially when combined with other static features such as Android permission

(Section 5.2.1.1). The achievements in this field are the selection of TCP and HTTP

protocols for analysis and the analysis of 50,000 applications, which is a novel approach

(Section 5.3.1).

3. A framework for mobile malware analysis and detection. Based on drawbacks and

available gaps in the literature, we proposed a framework for mobile malware analysis

and detection (Chapter 4). The framework uses hybrid analysis, which consists of static

and dynamic analyses. Android Intent and network traffic were chosen as static and

dynamic features respectively (Chapter 2). The novelty of the framework is based on the

fact that feature collection and extraction are performed on the device and the results are

sent to remote servers for further analysis. Current approaches perform the whole analysis

on the device that in turn consumes more energy, or they send whole applications to the

server, which could be intercepted and thus pose a security risk. This achievement fulfils

our second objective (Section 1.4).

4. Thorough evaluation of the proposed framework. The proposed framework

underwent extensive evaluation by using real-world malware. The objective of the

evaluation was to examine whether the framework is effective enough in terms of

malware detection. The static analysis component of the framework, named

AndroDialysis, was evaluated using the Drebin data sample (Section 5.2.1.4). The

dynamic analysis section, named AndroPsychology, was evaluated using an AndroZoo

16 Feature engineering is the process of transforming raw data into features that better represent the

underlying problem to the predictive models, resulting in improved model accuracy on unseen data.

Univ
ers

ity
 of

 M
ala

ya

140

data sample (Section 5.3). Results of the evaluations and the comparison to related works

showed a high performance of the framework. This achievement fulfils our third objective

(Section 1.4).

5. Evaluating the energy consumption of the framework. Based on the problem

statement, the main objective of this study is to propose a framework that is effective and

considers the limited battery resources of mobile devices. Thorough experiments were

carried out to measure energy consumption of the framework under various situations.

We calculated the energy consumed by static and dynamic components, as well as by

using local detection and offloading detection methods, to show that the offloading

method is more efficient. The comparison of the results with similar products shows that

the proposed framework consumes less energy. This satisfies our last objective (Section

1.4).

6. Implementation of the proposed framework. In order to examine the feasibility and

practicality of the framework, we implemented it as a client application on a mobile

device and a remote server. We also designed a web module that displays detection

results, as well as the detection history of the user. This design offers convenience to the

user. This contribution ensures that the proposed system actually works in the real-world

situation.

Overall, it is believed that the objectives of this study have been achieved (Section 1.4).

Univ
ers

ity
 of

 M
ala

ya

141

7.2 Limitations of This Study

As discussed in the previous section, this study has achieved its objectives. However,

limitations were encountered during this process. The limitations that relate to this study

are discussed in this section.

1. Limitation of static analysis. During the experiment, the decompilation process

stopped responding due to RAM limitation. This issue occurred on applications with very

large APK files. Low-size applications were running smoothly during the static analysis.

2. The Android emulator. This study required gathering network traffic for dynamic

analysis. As running the whole data sample of 100,000 applications on a physical device

was not possible, this process was carried out by running them on an emulator. Some

malware families, e.g. Obad malware, are able to detect whether they run on an emulator

and hide their malicious behaviour.

3. The implementation of the framework. The implementation of the proposed

framework was presented in Chapter 6. The presentation shows the major components of

the system. However, some aspects, such as different types of potential errors, or user

interface experience, were not presented. Despite this limitation, the overall result of this

work remains.

4. Test on limited number of physical devices. The implemented framework was tested

on two physical devices, namely Samsung Galaxy Grand Quattro GT-I8552 and Sony

Xperia Z3 Compact. Although these are medium and high-end devices respectively, it is

beneficial to test the framework on various devices, to observe its performance and

identify potential setbacks. Due to time and budget constraints, such evaluation was not

possible.

Univ
ers

ity
 of

 M
ala

ya

142

7.3 Suggestions for Future Work

Although this study achieved its objectives, a number of suggestions for future studies

have been identified. This section presents suggestions for future works based on the

discussed limitations.

Attackers always try to evade detection methods by finding new ways to bypass such

methods. Although this work experimented on a vast number of real-world malware

families, it is advantageous to collect more samples of malware. This enables researchers

to discover new behaviours and attack methods of malware families.

The development of an advanced version of the Android emulator would enable

researchers to analyse more malware samples in less time, with more realistic results. The

Android emulators lack some features compared to the real device, such as IMEI, routing

table, timing attacks, sensory output, and serial number. Research on this issue would

benefit the research community in the future.

Univ
ers

ity
 of

 M
ala

ya

143

REFERENCES

Aafer, Y., Du, W., & Yin, H. (2013, 2013/01/01). DroidAPIMiner: Mining API-Level

Features for Robust Malware Detection in Android. Proceedings of the 9th

International Conference on Security and Privacy in Communication Networks,

Sydney, Australia, pp. 86-103.

Adeel, M., & Tokarchuk, L. N. (2011). Analysis of Mobile P2P Malware Detection

Framework through Cabir & Commwarrior Families. Proceedings of the Third

International Conference on Privacy, Security, Risk and Trust, Boston, USA, pp.

1335-1343.

Aftab, M. U. B., & Karim, W. (2014). Learning Android Intents: Packt Publishing.

Alan, H. F., & Kaur, J. (2016). Can Android Applications Be Identified Using Only

TCP/IP Headers of Their Launch Time Traffic? Proceedings of the 9th ACM

Conference on Security & Privacy in Wireless and Mobile Networks, Darmstadt,

Germany, pp. 61-66.

Allen, F. E. (1970). Control flow analysis. SIGPLAN Not., 5(7), pp. 1-19.

Allix, K., Bissyand, T. F., Klein, J., & Traon, Y. L. (2016). AndroZoo: collecting millions

of Android apps for the research community. Proceedings of the 13th

International Conference on Mining Software Repositories, Austin, USA, pp.

468-471.

Almohri, H. M. J., Yao, D., & Kafura, D. (2014). DroidBarrier: know what is executing

on your android. Proceedings of the 4th ACM Conference on Data and

Application Security and Privacy, San Antonio, Texas, USA, pp. 257-264.

Amos, B., Turner, H., & White, J. (2013). Applying machine learning classifiers to

dynamic Android malware detection at scale. Proceedings of the 2013 9th

International Wireless Communications and Mobile Computing Conference

(IWCMC), Sardinia, Italy, pp. 1666-1671.

AndroidPolice. (2011). The Mother Of All Android Malware Has Arrived. Retrieved

1st July, 2016, from http://www.androidpolice.com/2011/03/01/the-mother-of-

all-android-malware-has-arrived-stolen-apps-released-to-the-market-that-root-

your-phone-steal-your-data-and-open-backdoor/

Apvrille, L., & Apvrille, A. (2013). Pre-filtering mobile malware with Heuristic

techniques. Proceedings of the 2nd International Symposium on Research in

Grey-Hat Hacking, Grenoble, France,

Aresu, M., Ariu, D., Ahmadi, M., Maiorca, D., & Giacinto, G. (2015). Clustering Android

Malware Families by Http Traffic. Proceedings of the 10th International

Conference on Malicious and Unwanted Software, Puerto Rico, pp. 128-135.

Armando, A., Merlo, A., Migliardi, M., & Verderame, L. (2012). Would You Mind

Forking This Process? A Denial of Service Attack on Android (and Some

Univ
ers

ity
 of

 M
ala

ya

144

Countermeasures). Proceedings of the 27th Information Security and Privacy

Conference (SEC 2012), Crete, Greece, pp. 13-24.

Arora, A., Garg, S., & Peddoju, S. K. (2014). Malware detection using network traffic

analysis in android based mobile devices. Proceedings of the Eighth International

Conference on Next Generation Mobile Apps, Services and Technologies

(NGMAST), Oxford, United Kingdom, pp. 66-71.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., & Rieck, K. (2014). DREBIN:

Effective and Explainable Detection of Android Malware in Your Pocket.

Proceedings of the 2014 Network and Distributed System Security (NDSS)

Symposium, San Diego, USA, pp. 1-15.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., McDaniel, P. (2014).

FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for Android apps. SIGPLAN Not., 49(6), pp. 259-269.

Au, K. W. Y., Zhou, Y. F., Huang, Z., & Lie, D. (2012). Pscout: analyzing the android

permission specification. Proceedings of the 2012 ACM Conference on Computer

and Communications Security, Raleigh, NC, USA, pp. 217-228.

Aung, Z., & Zaw, W. (2013). Permission-Based Android Malware Detection.

International Journal of Scientific & Technology Research, 2(3), pp. 228-234.

AVG.ThreatLabs. (2013). Android/Dowgin. Retrieved 1st July, 2016, from

http://www.avgthreatlabs.com/virus-and-malware-information/info/android-

dowgin/

Backes, M., Gerling, S., Hammer, C., Maffei, M., & Styp-Rekowsky, P. v. (2013).

AppGuard: enforcing user requirements on android apps. Proceedings of the 19th

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, Rome, Italy, pp. 543-548.

Baeza-Yates, R.A., & Ribeiro-Neto. (1999). Modern Information Retrieval. Boston:

Addison-Wesley Longman Publishing Co.

Baliga, A., Bickford, J., & Daswani, N. (2013). Titan: A Carrier-based Approach for

Detecting and Mitigating Mobile Malware: AT&T.

Barbera, M. V., Kosta, S., Mei, A., & Stefa, J. (2013, 14-19 April 2013). To offload or

not to offload? The bandwidth and energy costs of mobile cloud computing.

Proceedings of the IEEE INFOCOM, Turin, Italy, pp. 1285-1293.

Barbera, M. V., Kosta, S., Stefa, J., Hui, P., & Mei, A. (2012, 3-5 Sept. 2012).

CloudShield: Efficient anti-malware smartphone patching with a P2P network on

the cloud. Proceedings of the 12th International Conference on Peer-to-Peer

Computing (P2P), Tarragona, Spain, pp. 50-56.

Bente, I. (2013). Towards a network-based approach for smartphone security. Universität

der Bundeswehr München.

Univ
ers

ity
 of

 M
ala

ya

145

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. The

Journal of Machine Learning Research, 13(1), pp. 281-305.

Bielza, C., & Larrañaga, P. (2014). Discrete Bayesian network classifiers: a survey. ACM

Computing Surveys (CSUR), 47(1), pp. 5.

Blasing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S. A., & Albayrak, S. (2010, 19-20

Oct. 2010). An Android Application Sandbox system for suspicious software

detection. Proceedings of the 2010 5th International Conference on Malicious

and Unwanted Software (MALWARE), Nancy, France, pp. 55-62.

Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011). Crowdroid: behavior-based

malware detection system for Android. Proceedings of the 1st ACM Workshop on

Security and Privacy in Smartphones and Mobile Devices, Chicago, Illinois, USA,

pp. 15-26.

Chakradeo, S., Reaves, B., Traynor, P., & Enck, W. (2013). MAST: triage for market-

scale mobile malware analysis. Proceedings of the Sixth ACM Conference on

Security and Privacy in Wireless and Mobile Networks, Budapest, Hungary, pp.

13-24.

Chang, H. C., Agrawal, A. R., & Cameron, K. W. (2011, Nov. 30 2011-Dec. 2 2011).

Energy-aware computing for android platforms. Proceedings of the 2011

International Conference on Energy Aware Computing, Istanbul, Turkey, pp. 1-

4.

Chekina, L., Mimran, D., Rokach, L., Elovici, Y., & Shapira, B. (2012). Detection of

deviations in mobile applications network behavior. Proceedings of the Annual

Computer Security Applications Conference, Orlando, USA, pp. 1-10.

Chen, B. X., & Bilton, N. (2014). Building a Better Battery. Retrieved 1st February,

2014, from http://www.nytimes.com/2014/02/03/technology/building-a-better-

battery.html?_r=0

Chen, J., Alalfi, M. H., Dean, T. R., & Zou, Y. (2015). Detecting Android Malware Using

Clone Detection. Journal of Computer Science and Technology, 30(5), pp. 942-

956.

Chen, X., Chen, Y., Ma, Z., & Fernandes, F. C. A. (2013). How is energy consumed in

smartphone display applications? Proceedings of the 14th Workshop on Mobile

Computing Systems and Applications, Jekyll Island, Georgia, USA, pp. 1-6.

Chickering, D., Geiger, D., & Heckerman, D. (1995). Learning Bayesian networks:

Search methods and experimental results. Proceedings of the Fifth Conference on

Artificial Intelligence and Statistics, Florida, USA, pp. 112-128.

Chin, E., Felt, A. P., Greenwood, K., & Wagner, D. (2011). Analyzing inter-application

communication in Android. Proceedings of the 9th International Conference on

Mobile Systems, Applications, and Services, Bethesda, Maryland, USA, pp. 239-

252.

Univ
ers

ity
 of

 M
ala

ya

146

Choi, S., Sun, K., & Eom, H. (2013). Android malware detection using library api call

tracing and semantic-preserving signal processing techniques. Proceedings of the

International Conference on Security and Management (SAM), pp. 1.

CNET. (2013). Android dominates 81 percent of world smartphone market. Retrieved

1st February, 2014, from http://news.cnet.com/8301-1035_3-57612057-

94/android-dominates-81-percent-of-world-smartphone-market/

Cohen, I., Sebe, N., Gozman, F. G., Cirelo, M. C., & Huang, T. S. (2003, 18-20 June

2003). Learning Bayesian network classifiers for facial expression recognition

both labeled and unlabeled data. Proceedings of the 2003 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, Wisconsin, USA, pp.

I-595-I-601 vol.591.

Conti, M., Mancini, L. V., Spolaor, R., & Verde, N. V. (2015). Can't you hear me

knocking: Identification of user actions on android apps via traffic analysis.

Proceedings of the 5th ACM Conference on Data and Application Security and

Privacy, San Antonio, USA, pp. 297-304.

Cordy, J. R., & Roy, C. K. (2011). The NiCad clone detector. Proceedings of the IEEE

19th International Conference on Program Comprehension (ICPC), Kingston,

Ontario, Canada, pp. 219-220.

Creus, G. B., & Kuulusa, M. (2007). Optimizing Mobile Software with Built-in Power

Profiling Mobile Phone Programming: Application to Wireless Networking (pp.

449-462). Dordrecht, Netherlands: Springer

Crussell, J., Gibler, C., & Chen, H. (2012). Attack of the Clones: Detecting Cloned

Applications on Android Markets. Proceedings of the 17th European Symposium

on Research in Computer Security, Pisa, Italy, pp. 37-54.

Dai, S., Tongaonkar, A., Wang, X., Nucci, A., & Song, D. (2013). Networkprofiler:

Towards automatic fingerprinting of android apps. Proceedings of the

INFOCOM, Turin, Italy, pp. 809-817.

Damopoulos, D., Menesidou, S. A., Kambourakis, G., Papadaki, M., Clarke, N., &

Gritzalis, S. (2012). Evaluation of anomaly-based IDS for mobile devices using

machine learning classifiers. Security and Communication Networks, 5(1), pp. 3-

14.

Dash, S. K., Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi, M., Kinder, J., & Cavallaro,

L. (2016). DroidScribe: Classifying Android Malware Based on Runtime

Behavior. Proceedings of the Mobile Security Technologies (MoST 2016), San

Jose, USA, pp. 1-12.

Deshotels, L., Notani, V., & Lakhotia, A. (2014a). DroidLegacy: Automated Familial

Classification of Android Malware. Proceedings of the ACM on Program

Protection and Reverse Engineering Workshop, San Diego, CA, USA, pp. 1-12.

Deshotels, L., Notani, V., & Lakhotia, A. (2014b). DroidLegacy: Automated Familial

Classification of Android Malware. Proceedings of the ACM SIGPLAN on

Univ
ers

ity
 of

 M
ala

ya

147

Program Protection and Reverse Engineering Workshop, San Diego, CA, USA,

pp. 1-12.

Desnos, A. (2010). Reverse engineering, Malware and goodware analysis of Android

applications. Retrieved 1st September, 2016, from

https://github.com/androguard/androguard/

Desnos, A. (2012, 4-7 Jan. 2012). Android: Static Analysis Using Similarity Distance.

Proceedings of the 2012 45th Hawaii International Conference on System Science

(HICSS), Maui, USA, pp. 5394-5403.

Dini, G., Martinelli, F., Saracino, A., & Sgandurra, D. (2012). MADAM: A Multi-level

Anomaly Detector for Android Malware. Proceedings of the 6th International

Conference on Mathematical Methods, Models and Architectures for Computer

Network Security, Saint Petersburg, Russia, pp. 240-253.

Duan, E. (2016). DressCode and its Potential Impact for Enterprises. Retrieved 1st

January, 2017, from http://blog.trendmicro.com/trendlabs-security-

intelligence/dresscode-potential-impact-enterprises/

Eder, T., Rodler, M., Vymazal, D., & Zeilinger, M. (2013, 2-6 Sept. 2013). ANANAS -

A Framework for Analyzing Android Applications. Proceedings of the 2013

Eighth International Conference on Availability, Reliability and Security (ARES),

Regensburg, Germany, pp. 711-719.

Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P., & Sheth, A. (2010).

TaintDroid: An Information-Flow Tracking System for Realtime Privacy

Monitoring on Smartphones. Proceedings of the 9th USENIX Conference on

Operating Systems Design and Implementation, pp. 393-407.

Eset. (2013). Eset Virusradar. Retrieved 1st July, 2016, from

http://www.virusradar.com/en/Android_Adware.Dowgin/chart/history

ESET. (2016). The Rise of Android Ransomware. Retrieved 1st July, 2016, from

http://www.welivesecurity.com/wp-

content/uploads/2016/02/Rise_of_Android_Ransomware.pdf

F-Secure. (2013). Android Accounted For 79% Of All Mobile Malware In 2012, 96% In

Q4 Alone, Says F-Secure. Retrieved 1st October, 2016, from http://www.f-

secure.com/static/doc/labs_global/Research/Mobile%20Threat%20Report%20Q

4%202012.pdf

Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M. S., & Bharmal, A. (2013). AndroSimilar:

robust statistical feature signature for Android malware detection. Proceedings of

the 6th International Conference on Security of Information and Networks,

Aksaray, Turkey, pp. 152-159.

Feizollah, A., Anuar, N. B., Salleh, R., & Amalina, F. (2014). Comparative Evaluation of

Ensemble Learning and Supervised Learning in Android Malwares Using

Network-Based Analysis. Proceedings of the 1st International Conference on

Communication and Computer Engineering (ICOCOE), Melaka, Malaysia, pp. 1-

11.

Univ
ers

ity
 of

 M
ala

ya

148

Feizollah, A., Anuar, N. B., Salleh, R., Amalina, F., Ma’arof, R. u. R., & Shamshirband,

S. (2013). A Study Of Machine Learning Classifiers for Anomaly-Based Mobile

Botnet Detection. Malaysian Journal of Computer Science, 26(4), pp. 251-265.

Feizollah, A., Anuar, N. B., Salleh, R., & Wahab, A. W. A. (2015). A review on feature

selection in mobile malware detection. Digital Investigation, 13(C), pp. 22-37.

Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. (2011). Android permissions

demystified. Proceedings of the 18th ACM Conference on Computer and

Communications Security, Chicago, Illinois, USA, pp. 627-638.

Feng, Y., Anand, S., Dillig, I., & Aiken, A. (2014). Apposcopy: semantics-based

detection of Android malware through static analysis. Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software

Engineering, Hong Kong, China, pp. 576-587.

Flinn, J., & Satyanarayanan, M. (1999). PowerScope: A Tool for Profiling the Energy

Usage of Mobile Applications. Proceedings of the Second IEEE Workshop on

Mobile Computer Systems and Applications, Washington DC, USA, pp. 2.

Fortinet. (2014). Fortinet's FortiGuard Labs Reports 96.5% Of All Mobile Malware

Tracked Is Android-Based. Retrieved 1st July, 2016, from

http://www.fortinet.com/resource_center/whitepapers/threat-landscape-report-

2014.html

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers.

Machine Learning, 29(2-3), pp. 131-163.

Gartner. (2011). Gartner Says Worldwide Mobile Device Sales to End Users Reached 1.6

Billion Units in 2010. Retrieved 1st July, 2016, from

http://www.gartner.com/newsroom/id/1543014

Gartner. (2013). Gartner Says Worldwide PC, Tablet and Mobile Phone Shipments to

Grow 5.9 Percent in 2013 as Anytime-Anywhere-Computing Drives Buyer

Behavior. Retrieved 1st February, 2014, from

http://www.gartner.com/newsroom/id/2525515

Gartner. (2016). Gartner Says Five of Top 10 Worldwide Mobile Phone Vendors

Increased Sales in Second Quarter of 2016. Retrieved 1st December, 2016, from

http://www.gartner.com/newsroom/id/3415117

Gartner. (2017). Gartner Says Worldwide PC Shipments Declined 4.3 Percent in Second

Quarter of 2017. Retrieved 1st September, 2017, from

http://www.gartner.com/newsroom/id/3759964

Gascon, H., Yamaguchi, F., Arp, D., & Rieck, K. (2013). Structural detection of android

malware using embedded call graphs. Proceedings of the 2013 ACM Workshop

on Artificial Intelligence and Security, Berlin, Germany, pp. 45-54.

Gianazza, A., Maggi, F., Fattori, A., Cavallaro, L., & Zanero, S. (2014). PuppetDroid: A

User-Centric UI Exerciser for Automatic Dynamic Analysis of Similar Android

Applications. http://arxiv.org/abs/1402.4826

Univ
ers

ity
 of

 M
ala

ya

149

Google. (2014). permission. Retrieved 1st April, 2016, from

http://developer.android.com/guide/topics/manifest/permission-element.html

Google. (2016). Android Security 2015 Annual Report. Retrieved 1st July, 2016, from

https://security.googleblog.com/2016/04/android-security-2015-annual-

report.html

Grace, M., Zhou, Y., Wang, Z., & Jiang, X. (2012). Systematic Detection of Capability

Leaks in Stock Android Smartphones. Proceedings of the 19th Network and

Distributed System Security Symposium, San Diego, USA,

Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2012). RiskRanker: scalable and

accurate zero-day android malware detection. Proceedings of the 10th

International Conference on Mobile Systems, Applications, and Services, Low

Wood Bay, Lake District, UK, pp. 281-294.

Grossman, J. (2007). XSS Attacks: Cross-site scripting exploits and defense: Syngress.

Guido, M., Ondricek, J., Grover, J., Wilburn, D., Nguyen, T., & Hunt, A. (2013).

Automated identification of installed malicious Android applications. Digital

Investigation, 10, pp. S96-S104.

Gunasekera, S. A. (2012). Android Apps Security: Apress.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The

Journal of Machine Learning Research, 3, pp. 1157-1182.

Hall, M. (1999). Correlation-based Feature Selection for Machine Learning. The

University of Waikato, Hamilton, NewZealand. Retrieved from

http://www.cs.waikato.ac.nz/~mhall/thesis.pdf

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).

The WEKA data mining software: an update. SIGKDD Explor. Newsl., 11(1), pp.

10-18.

Ham, Y. J., & Lee, H.-W. (2014). Detection of Malicious Android Mobile Applications

Based on Aggregated System Call Events. International Journal of Computer and

Communication Engineering, 3(2), pp. 149-154.

Ham, Y. J., Moon, D., Lee, H.-W., Lim, J. D., & Kim, J. N. (2014). Android Mobile

Application System Call Event Pattern Analysis for Determination of Malicious

Attack. International Journal of Security and Its Applications, 8(1), pp. 241-236.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S.

(2015). The rise of “big data” on cloud computing: Review and open research

issues. Information Systems, 47, pp. 98-115.

Hellman, E. (2013). Android programming: Pushing the limits: John Wiley & Sons.

Ho, T.-H., Dean, D., Gu, X., & Enck, W. (2014). PREC: practical root exploit

containment for android devices. Proceedings of the 4th ACM Conference on

Univ
ers

ity
 of

 M
ala

ya

150

Data and Application Security and Privacy, San Antonio, Texas, USA, pp. 187-

198.

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in

recurrent nets: the difficulty of learning long-term dependencies. Retrieved 1st

January, 2017, from http://www.bioinf.jku.at/publications/older/ch7.pdf

Hoffmann, J., Neumann, S., & Holz, T. (2013). Mobile Malware Detection Based on

Energy Fingerprints — A Dead End? Proceedings of the 16th International

Symposium on Research in Attacks, Intrusions and Defenses (RAID), Rodney

Bay, Saint Lucia, pp. 348-368.

Houmansadr, A., Zonouz, S. A., & Berthier, R. (2011). A cloud-based intrusion detection

and response system for mobile phones. Proceedings of the 2011 IEEE/IFIP 41st

International Conference on Dependable Systems and Networks Workshops

(DSN-W), pp. 31-32.

Hu, G., Yuan, X., Tang, Y., & Yang, J. (2014). Efficiently, effectively detecting mobile

app bugs with AppDoctor. Proceedings of the Ninth European Conference on

Computer Systems, Amsterdam, Netherlands, pp. 1-15.

Huang, C. Y., Tsai, Y. T., & Hsu, C. H. (2013). Performance Evaluation on Permission-

Based Detection for Android Malware. Proceedings of the International

Computer Symposium ICS 2012, Hualien, Taiwan, pp. 111-120.

Huang, J., Zhang, X., Tan, L., Wang, P., & Liang, B. (2014). AsDroid: Detecting Stealthy

Behaviors in Android Applications by User Interface and Program Behavior

Contradiction. Proceedings of the 36th International Conference on Software

Engineering, Hyderabad, India, pp. 1036-1046.

Hyo-Sik, H., & Mi-Jung, C. (2013). Analysis of Android malware detection performance

using machine learning classifiers. Proceedings of the 2013 International

Conference on ICT Convergence (ICTC), Jeju, South Korea, pp. 490-495.

Iland, D., Pucher, A., & Schauble, T. (2011). Detecting Android Malware on Network

Level: UC Santa Barbara.

Ishii, Y., Watanabe, T., Akiyama, M., & Mori, T. (2016). Clone or Relative?:

Understanding the Origins of Similar Android Apps. Proceedings of the 2016

ACM on International Workshop on Security And Privacy Analytics, New

Orleans, Louisiana, USA, pp. 25-32.

Isohara, T., Takemori, K., & Kubota, A. (2011, 3-4 Dec. 2011). Kernel-based Behavior

Analysis for Android Malware Detection. Proceedings of the 2011 Seventh

International Conference on Computational Intelligence and Security, pp. 1011-

1015.

Jang, J.-w., Kang, H., Woo, J., Mohaisen, A., & Kim, H. K. (2016). Andro-Dumpsys:

Anti-malware system based on the similarity of malware creator and malware

centric information. Computers & Security, 58(May 2016), pp. 125-138.

Univ
ers

ity
 of

 M
ala

ya

151

Jensen, R., & Shen, Q. (2008). Computational Intelligence and Feature Selection: Rough

and Fuzzy Approaches. New Jersey, USA: John Wiley & Sons.

Jiang, X. (2011). New Sophisticated Android Malware DroidKungFu Found in

Alternative Chinese App Markets. Retrieved 1st November, 2016, from

https://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html

Jo, N. Y., Lee, K. C., & Park, B.-W. (2011). Exploring the optimal path to online game

loyalty: Bayesian networks versus theory-based approaches Ubiquitous

Computing and Multimedia Applications (pp. 428-437): Springer.

Jonge, A. d. (2011). Essential App Engine: Building High-Performance Java Apps with

Google App Engine: Addison-Wesley.

Jung, W., Kang, C., Yoon, C., Kim, D., & Cha, H. (2012). DevScope: a nonintrusive and

online power analysis tool for smartphone hardware components. Proceedings of

the eighth International Conference on Hardware/Software Codesign and System

Synthesis (IEEE/ACM/IFIP), Scottsdale, AZ, USA, pp. 353-362.

Karami, M., Elsabagh, M., Najafiborazjani, P., & Stavrou, A. (2013, 18-20 June 2013).

Behavioral Analysis of Android Applications Using Automated Instrumentation.

Proceedings of the 2013 IEEE Seventh International Conference on Software

Security and Reliability Companion, pp. 182-187.

Kaspersky. (2012). Android OS Mobile Malware Up by 3x this 2012. Retrieved 1st July,

2016, from http://gb-sb.blogspot.my/2012/08/android-os-mobile-malware-up-by-

3x-this.html

Kaspersky. (2013). Kaspersky Lab detects 315,000 new malicious files every day.

Retrieved 1st July, 2016, from

http://www.kaspersky.co.uk/about/news/virus/2013/Kaspersky_Lab_detects_31

5000_new_malicious_files_every_day_

Kaspersky. (2016a). Mobile malware evolution 2015. Retrieved 1st July, 2016, from

https://securelist.com/analysis/kaspersky-security-bulletin/73839/mobile-

malware-evolution-2015/

Kaspersky. (2016b). Rise of the Triada: mobile malware becomes very sophisticated.

Retrieved 1st December, 2016, from https://business.kaspersky.com/rise-of-the-

triada/5280/

Khune, R. S., & Thangakumar, J. (2012, 21-22 Dec. 2012). A cloud-based intrusion

detection system for Android smartphones. Proceedings of the 2012 International

Conference on Radar, Communication and Computing (ICRCC),

Tiruvannamalai, India, pp. 180-184.

Kim, B. (2016). Learning Structured Representations for Geometry. Swiss Federal

Institute of Technology Zurich. Retrieved from http://e-

collection.library.ethz.ch/eserv/eth:50260/eth-50260-01.pdf

Kim, D.-u., Kim, J., & Kim, S. (2013). A Malicious Application Detection Framework

using Automatic Feature Extraction Tool on Android Market. Proceedings of the

Univ
ers

ity
 of

 M
ala

ya

152

3rd International Conference on Computer Science and Information Technology

(ICCSIT’2013), Bali, Indonesia, pp. 4-5.

Knoernschild, K. (2010). Rich Mobile Application Platforms for the Smartphone 2010:

Burton Group.

Kojadinovic, I., & Wottka, T. (2000). Comparision between a filter and a wrapper

approach to variable subset selection in regression problems. Proceedings of the

European Symposium on Intelligent Techniques (ESIT), Aachen Germany, pp.

311-321.

Kou, X., & Wen, Q. (2011, 28-30 Oct. 2011). Intrusion detection model based on

Android. Proceedings of the 4th IEEE International Conference on Broadband

Network and Multimedia Technology, pp. 624-628.

Kumar, K., Liu, J., Lu, Y.-H., & Bhargava, B. (2013). A Survey of Computation

Offloading for Mobile Systems. Mobile Networks and Applications, 18(1), pp.

129-140.

Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R. H., & Kuijpers, C. M. (1996).

Structure learning of Bayesian networks by genetic algorithms: A performance

analysis of control parameters. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 18(9), pp. 912-926.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Retrieved 1st January,

2017, from http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

Lee, S.-H., & Jin, S.-H. (2013). Warning system for detecting malicious applications on

android system. International Journal of Computer and Communication

Engineering, 2(3), pp. 324.

Li, L., Bartel, A., Bissyandé, T. F., Klein, J., Le Traon, Y., Arzt, S., McDaniel, P. (2015).

IccTA: Detecting inter-component privacy leaks in Android apps. Proceedings of

the 37th International Conference on Software Engineering-Volume 1, pp. 280-

291.

Liang, S., Keep, A. W., Might, M., Lyde, S., Gilray, T., Aldous, P., & Horn, D. V. (2013).

Sound and precise malware analysis for android via pushdown reachability and

entry-point saturation. Proceedings of the Third ACM workshop on Security and

privacy in smartphones & mobile devices, Berlin, Germany, pp. 21-32.

Lin, Y.-D., Lai, Y.-C., Chen, C.-H., & Tsai, H.-C. (2013). Identifying android malicious

repackaged applications by thread-grained system call sequences. Computers &

Security, 39, Part B(November 2013), pp. 340-350.

Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., & Guoliang, Z. (2004).

Generating test cases from UML activity diagram based on gray-box method.

Proceedings of the 11th Asia-Pacific Software Engineering Conference,

Washington DC, USA, pp. 284-291.

Liu, H., & Motoda, H. (2007). Computational Methods of Feature Selection. USA: CRC

Press.

Univ
ers

ity
 of

 M
ala

ya

153

Lookout. (2010). Security Alert: Geinimi, Sophisticated New Android Trojan Found in

Wild. Retrieved 21st April, 2014, from

https://blog.lookout.com/blog/2010/12/29/geinimi_trojan/

Lu, H., Zhao, B., Su, J., & Xie, P. (2014). Generating lightweight behavioral signature

for malware detection in people-centric sensing. Wireless Personal

Communications, 75(3), pp. 1591-1609.

Lu, L., Li, Z., Wu, Z., Lee, W., & Jiang, G. (2012). CHEX: statically vetting Android

apps for component hijacking vulnerabilities. Proceedings of the 2012 ACM

conference on Computer and communications security, Raleigh, North Carolina,

USA, pp. 229-240.

Luoshi, Z., Yan, N., Xiao, W., Zhaoguo, W., & Yibo, X. (2013). A3: Automatic Analysis

of Android Malware. Proceedings of the 1st International Workshop on Cloud

Computing and Information Security, Shanghai, China, pp. 89-93.

MacAfee. (2016). MacAfee Labs Threats Report. Retrieved 1st July, 2016, from

http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2016.pdf

Machiry, A., Tahiliani, R., & Naik, M. (2013). Dynodroid: an input generation system

for Android apps. Proceedings of the 9th Joint Meeting on Foundations of

Software Engineering, Saint Petersburg, Russia, pp. 224-234.

Maggi, F., Valdi, A., & Zanero, S. (2013). AndroTotal: a flexible, scalable toolbox and

service for testing mobile malware detectors. Proceedings of the Third ACM

workshop on Security and privacy in smartphones & mobile devices, Berlin,

Germany, pp. 49-54.

Martinelli, F., Marulli, F., & Mercaldo, F. (2017). Evaluating Convolutional Neural

Network for Effective Mobile Malware Detection. Procedia Computer Science,

112, pp. 2372-2381.

MashableAsia. (2011). Android Captures Nearly 50% of Global Smartphone Market.

Retrieved 1st July, 2016, from http://mashable.com/2011/08/02/android-market-

share

Mikami, A. (2016). Long Short-Term Memory Recurrent Neural Network Architectures

for Generating Music and Japanese Lyrics. (Ph.D.), Boston College. Retrieved

from http://cslab1.bc.edu/~csacademics/pdf/16Mikami.pdf

Milin-Ashmore, J. (2016). 5 of the Most Dangerous Android Viruses and How to Get Rid

of Them. Retrieved 1st September, 2017, from

https://www.maketecheasier.com/dangerous-android-viruses/

Moonsamy, V., Rong, J., & Liu, S. (2013a). Mining permission patterns for contrasting

clean and malicious android applications. Future Generation Computer Systems.

http://www.sciencedirect.com/science/article/pii/S0167739X13001933

Moonsamy, V., Rong, J., & Liu, S. (2013b). Mining permission patterns for contrasting

clean and malicious android applications. Future Generation Computer Systems,

36(July 2014), pp. 122–132.

Univ
ers

ity
 of

 M
ala

ya

154

Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2016). Evaluation of machine

learning classifiers for mobile malware detection. Soft Computing, 20(1), pp. 343-

357.

Nokia. (2016). Smartphone Infections Rise 96% In H1-2016: Malware Study. Retrieved

1st December, 2016, from http://www.darkreading.com/vulnerabilities---

threats/smartphone-infections-rise-96--in-h1-2016-malware-study/d/d-

id/1326949

PandaSecurity. (2011). Rootkits: almost invisible malware. Retrieved 1st July, 2016,

from http://www.pandasecurity.com/homeusers/security-info/types-

malware/rootkit/

Pandita, R., Xiao, X., Yang, W., Enck, W., & Xie, T. (2013). WHYPER: towards

automating risk assessment of mobile applications. Proceedings of the 22nd

USENIX Security Symposium, Washington, D.C, USA, pp. 527-542.

Pathak, A., Hu, Y. C., & Zhang, M. (2012). Where is the energy spent inside my app?

fine grained energy accounting on smartphones with Eprof. Proceedings of the

7th ACM European Conference on Computer Systems, Bern, Switzerland, pp. 29-

42.

Paturi, A., Cherukuri, M., Donahue, J., & Mukkamala, S. (2013, 20-24 May 2013).

Mobile malware visual analytics and similarities of Attack Toolkits (Malware

gene analysis). Proceedings of the International Conference on Collaboration

Technologies and Systems (CTS), pp. 149-154.

Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Molloy, I. (2012). Using

probabilistic generative models for ranking risks of Android apps. Proceedings of

the 2012 ACM Conference on Computer and Communications Security, Raleigh,

North Carolina, USA, pp. 241-252.

Polakis, I., Diamantaris, M., Petsas, T., Maggi, F., & Ioannidis, S. (2015). Powerslave:

Analyzing the Energy Consumption of Mobile Antivirus Software. Proceedings

of the 12th Conference of Detection of Intrusions and Malware, and Vulnerability

Assessment, Milan, Italy, pp. 165-184.

Portokalidis, G., Homburg, P., Anagnostakis, K., & Bos, H. (2010). Paranoid Android:

versatile protection for smartphones. Proceedings of the Proceedings of the 26th

Annual Computer Security Applications Conference, Austin, Texas, USA, pp.

347-356.

Powell, M. L., & Miller, B. P. (1983). Process migration in DEMOS/MP. ACM SIGOPS

Operating Systems Review, 17(5), pp. 110-119.

Ram, A. (2016). More bad news for the PC industry. Retrieved 1st November, 2016,

from https://www.digitalnewsasia.com/personal-tech/more-bad-news-pc-

industry

Rasthofer, S., Arzt, S., & Bodden, E. (2014, 14, 23-26 February 2014). A Machine-

learning Approach for Classifying and Categorizing Android Sources and Sinks.

Univ
ers

ity
 of

 M
ala

ya

155

Proceedings of the 2014 Network and Distributed System Security (NDSS)

Symposium, San Diego, CA, USA,

Rasthofer, S., Arzt, S., Miltenberger, M., & Bodden, E. (2015). Harvesting runtime data

in android applications for identifying malware and enhancing code analysis:

Technische Universität Darmstadt.

Rastogi, V., Chen, Y., & Enck, W. (2013). AppsPlayground: automatic security analysis

of smartphone applications. Proceedings of the third ACM conference on Data

and application security and privacy, San Antonio, Texas, USA, pp. 209-220.

Rastogi, V., Yan, C., & Xuxian, J. (2014). Catch Me If You Can: Evaluating Android

Anti-Malware Against Transformation Attacks. IEEE Transactions on

Information Forensics and Security, 9(1), pp. 99-108.

Reina, A., Fattori, A., & Cavallaro, L. (2013). A system call-centric analysis and

stimulation technique to automatically reconstruct android malware behaviors.

Proceedings of the 6th European Workshop on Systems Security, Prague, Czech

Republic, pp. 1-6.

Richardson, L. (2007). Beautiful soup documentation. Retrieved 1st April, 2016, from

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Rosen, S., Qian, Z., & Mao, Z. M. (2013). Appprofiler: a flexible method of exposing

privacy-related behavior in android applications to end users. Proceedings of the

third ACM Conference on Data and Application Security and Privacy, pp. 221-

232.

Ruiz, C. (2005). Illustration of the K2 algorithm for learning Bayes net structures.

Retrieved 1st January, 2017, from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.7306

Ruiz, F. (2012). Fakeinstaller leads the attack on android phones. Retrieved 1st July,

2016, from https://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-

on-android-phones/

Sahs, J., & Khan, L. (2012). A Machine Learning Approach to Android Malware

Detection. Proceedings of the 2012 European Intelligence and Security

Informatics Conference (EISIC), Odense, Denmark, pp. 141-147.

Saipullah, K. M., Anuar, A., Ismail, N. A., & Soo, Y. (2012). Measuring power

consumption for image processing on android smartphone. American Journal of

Applied Sciences, 9(12), pp. 2052.

Salehi, E., & Gras, R. (2009). An empirical comparison of the efficiency of several local

search heuristics algorithms for Bayesian network structure learning. Proceedings

of the Learning and Intelligent Optimization Workshop (LION 3),

Samra, A. A. A., Yim, K., & Ghanem, O. A. (2013). Analysis of Clustering Technique in

Android Malware Detection. Proceedings of the 2013 Seventh International

Conference on Innovative Mobile and Internet Services in Ubiquitous Computing

(IMIS), Taichung, Taiwan, pp. 729 - 733.

Univ
ers

ity
 of

 M
ala

ya

156

Sangkatsanee, P., Wattanapongsakorn, N., & Charnsripinyo, C. (2011). Practical real-

time intrusion detection using machine learning approaches. Computer

Communications, 34(18), pp. 2227-2235.

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P., & Álvarez, G. (2013).

PUMA: Permission Usage to Detect Malware in Android International Joint

Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions (Vol. 189, pp. 289-

298): Springer Berlin Heidelberg.

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., & Bringas, P. G. (2012, 14-17 Jan.

2012). On the automatic categorisation of android applications. Proceedings of

the 2012 IEEE Consumer Communications and Networking Conference (CCNC),

Las Vegas, USA, pp. 149-153.

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Nieves, J., Bringas, P. G., & Álvarez

Marañón, G. (2013). MAMA: Manifest Analysis for Malware Detection in

Android. Cybernetics and Systems, 44(6-7), pp. 469-488.

Sanz, B., Santos, I., Ugarte-Pedrero, X., Laorden, C., Nieves, J., & Bringas, P. (2014).

Anomaly Detection Using String Analysis for Android Malware Detection.

Proceedings of the International Joint Conference SOCO’13-CISIS’13-

ICEUTE’13, Salamanca, Spain, pp. 469-478.

Sanz, B., Santos, I., Ugarte-Pedrero, X., Laorden, C., Nieves, J., & Bringas, P. G. (2013).

Instance-based Anomaly Method for Android Malware Detection. Proceedings of

the 10th International Conference on Security and Cryptography, Reykjavík,

Iceland, pp. 387-394.

Sarma, B. P., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C., & Molloy, I. (2012).

Android permissions: a perspective combining risks and benefits. Proceedings of

the 17th ACM symposium on Access Control Models and Technologies, Newark,

New Jersey, USA, pp. 13-22.

Senthamarai Kannan, S., & Ramaraj, N. (2010). A novel hybrid feature selection via

Symmetrical Uncertainty ranking based local memetic search algorithm.

Knowledge-Based Systems, 23(6), pp. 580-585.

Seo, S.-H., Gupta, A., Mohamed Sallam, A., Bertino, E., & Yim, K. (2014). Detecting

mobile malware threats to homeland security through static analysis. Journal of

Network and Computer Applications, 38, pp. 43-53.

Shabtai, A. (2010, 23-26 May 2010). Malware Detection on Mobile Devices. Proceedings

of the 2010 Eleventh International Conference on Mobile Data Management

(MDM), Kansas City, USA, pp. 289-290.

Shabtai, A., & Elovici, Y. (2010, 2010/01/01). Applying Behavioral Detection on

Android-Based Devices. Proceedings of the Mobile Wireless Middleware,

Operating Systems, and Applications, Chicago, IL, USA, pp. 235-249.

Shabtai, A., Fledel, Y., & Elovici, Y. (2010, 11-14 Dec. 2010). Automated Static Code

Analysis for Classifying Android Applications Using Machine Learning.

Univ
ers

ity
 of

 M
ala

ya

157

Proceedings of the 2010 International Conference on Computational Intelligence

and Security (CIS), Nanning, China, pp. 329-333.

Shabtai, A., Kanonov, U., & Elovici, Y. (2010). Intrusion detection for mobile devices

using the knowledge-based, temporal abstraction method. Journal of Systems and

Software, 83(8), pp. 1524-1537.

Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2012). Andromaly: a

behavioral malware detection framework for android devices. Journal of

Intelligent Information Systems, 38(1), pp. 161-190.

Shabtai, A., Tenenboim-Chekina, L., Mimran, D., Rokach, L., Shapira, B., & Elovici, Y.

(2014). Mobile malware detection through analysis of deviations in application

network behavior. Computers & Security, 43(June 2014), pp. 1-18.

Shalaginov, A., & Franke, K. (2013). Automatic rule-mining for malware detection

employing neuro-fuzzy approach. Norsk informasjonssikkerhetskonferanse

(NISK).

Shneiderman, B., & Wattenberg, M. (2001). Ordered treemap layouts. Proceedings of the

IEEE Symposium on Information Visualization, San Diego, California, USA,

Sicker, D. C., Ohm, P., & Grunwald, D. (2007). Legal issues surrounding monitoring

during network research. Proceedings of the 7th ACM SIGCOMM Conference on

Internet Measurement, San Diego, California, USA, pp. 141-148.

Sohr, K., Mustafa, T., & Nowak, A. (2011). Software security aspects of Java-based

mobile phones. Proceedings of the 2011 ACM Symposium on Applied Computing,

Taichung, Taiwan, pp. 1494-1501.

Sophos. (2012). Angry Birds malware - Firm fined £50,000 for profiting from fake

Android apps. Retrieved 1st July, 2016, from

http://nakedsecurity.sophos.com/2012/05/24/angry-birds-malware-fine/

Sophos. (2013). Security Threat Report 2013. Retrieved 1st July, 2016, from

http://www.sophos.com/en-

us/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf

Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., & Hoffmann, J. (2013). Mobile-

sandbox: having a deeper look into android applications. Proceedings of the 28th

Annual ACM Symposium on Applied Computing, Coimbra, Portugal, pp. 1808-

1815.

StarCounter. (2016). Mobile internet usage surpasses desktop usage for the first time in

history. Retrieved 1st September, 2017, from

http://bgr.com/2016/11/02/internet-usage-desktop-vs-mobile/

Su, X., Chuah, M., & Tan, G. (2012). Smartphone Dual Defense Protection Framework:

Detecting Malicious Applications in Android Markets. Proceedings of the 2012

Eighth International Conference on Mobile Ad-hoc and Sensor Networks (MSN),

Chengdu, China, pp. 153-160.

Univ
ers

ity
 of

 M
ala

ya

158

Suarez-Tangil, G. (2014). Mining structural and behavioral patterns in smart malware.

(PhD), Universidad Carlos III de Madrid.

Suarez-Tangil, G., Tapiador, J. E., Lombardi, F., & Di Pietro, R. (2016). ALTERDROID:

Differential Fault Analysis of Obfuscated Smartphone Malware. IEEE

Transactions on Mobile Computing, 15(4), pp. 789-802.

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Blasco, J. (2014). Dendroid: A text

mining approach to analyzing and classifying code structures in Android malware

families. Expert Systems with Applications, 41(4, Part 1), pp. 1104-1117.

Symantec. (2013). Android Madware and Malware Trends. Retrieved 1st August, 2017,

from http://www.symantec.com/connect/blogs/android-madware-and-malware-

trends

Symantec. (2014a). The Future of Mobile Malware. Retrieved 1st July, 2016, from

http://www.symantec.com/connect/blogs/future-mobile-malware

Symantec. (2014b). Simplocker: First Confirmed File-Encrypting Ransomware for

Android. Retrieved 1st July, 2016, from

http://www.symantec.com/connect/blogs/simplocker-first-confirmed-file-

encrypting-ransomware-android

Symantec. (2015). The dawn of ransomwear: How ransomware could move to wearable

devices. Retrieved 1st July, 2016, from

http://www.symantec.com/connect/blogs/dawn-ransomwear-how-ransomware-

could-move-wearable-devices

Tarkoma, S., Siekkinen, M., Lagerspetz, E., & Xiao, Y. (2014). Smartphone Energy

Consumption: Modeling and Optimization: Cambridge University Press.

Tchakounté, F., & Dayang, P. (2013). System calls analysis of malwares on android.

International Journal of Science and Technology, 2(9), pp. 669-674.

Techopedia. (2016). What is Mobile Malware? Retrieved 1st July, 2016, from

https://www.techopedia.com/definition/29477/mobile-malware

Teufl, P., Ferk, M., Fitzek, A., Hein, D., Kraxberger, S., & Orthacker, C. (2013). Malware

detection by applying knowledge discovery processes to application metadata on

the Android Market (Google Play). Security and Communication Networks, 9(5),

pp. 389–419.

The.Register. (2013). Earn £8,000 a month with bogus apps from Russian malware

factories. Retrieved 1st July, 2016, from

http://www.theregister.co.uk/2013/08/05/mobile_malware_lookout/

Tongaonkar, A., Dai, S., Nucci, A., & Song, D. (2013). Understanding mobile app usage

patterns using in-app advertisements. Proceedings of the International

Conference on Passive and Active Network Measurement, Hong Kong, pp. 63-72.

Univ
ers

ity
 of

 M
ala

ya

159

TrendMicro. (2010a). ANDROIDOS_DROIDSMS.A. Retrieved 1st July, 2016, from

http://www.trendmicro.com/vinfo/us/threat-

encyclopedia/malware/ANDROIDOS_DROIDSMS.A

TrendMicro. (2010b). Malicious Android App Spies on User’s Location. Retrieved 1st

July, 2016, from http://blog.trendmicro.com/trendlabs-security-

intelligence/malicious-android-app-spies-on-users-location/

TrendMicro. (2012). A Brief History of Mobile Malware. Retrieved 1st July, 2016, from

https://countermeasures.trendmicro.eu/wp-content/uploads/2012/02/History-of-

Mobile-Malware.pdf

TrustGo. (2012). New Virus FakeLookout.A Discovered by TrustGo Security Labs.

Retrieved 1st January, 2017, from http://blog.trustgo.com/fakelookout/

Vahala, J. Prediction of Financial Markets Using Deep Learning. Masaryk University.

Retrieved from http://is.muni.cz/th/422802/fi_b/bakalarka_final.pdf

van Niedek, T. (2016). Phonetic Classification in TensorFlow. Radboud University.

Retrieved from

http://www.cs.ru.nl/bachelorscripties/2016/Timo_van_Niedek___4326164___Ph

onetic_Classification_in_TensorFlow.pdf

Varsha, M., Vinod, P., & Dhanya, K. (2016). Identification of malicious android app

using manifest and opcode features. Journal of Computer Virology and Hacking

Techniques, pp. 1-14.

Veen, V. v. d. (2013). Dynamic Analysis of Android Malware. (Master), VU University

Amsterdam, Netherland. Retrieved from http://tracedroid.few.vu.nl/thesis.pdf

Virustotal. (2013). Antivirus. Retrieved 1st July, 2016, from

https://www.virustotal.com/en/file/9add7b00a23efb96d487247d586a3be9878b1

f3922a91ffa20e45398c873d5c3/analysis/

Walenstein, A., Deshotels, L., & Lakhotia, A. (2012). Program structure-Based feature

selection for android malware analysis. Proceedings of the International

Conference on Security and Privacy in Mobile Information and Communication

Systems, pp. 51-52.

Webopedia. (2016). What is Mobile Malware? Retrieved 1st July, 2016, from

http://www.webopedia.com/TERM/M/mobile_malware.html

Wei, X., Gomez, L., Neamtiu, I., & Faloutsos, M. (2012). ProfileDroid: multi-layer

profiling of android applications. Proceedings of the 18th Annual International

Conference on Mobile Computing and Networking, Istanbul, Turkey, pp. 137-148.

White, A. M., Krishnan, S., Bailey, M., Monrose, F., & Porras, P. (2013). Clear and

Present Data: Opaque Traffic and its Security Implications for the Future.

Proceedings of the Network & Distributed System Security Symposium (NDSS),

San Diego, USA, pp. 1-16.

Univ
ers

ity
 of

 M
ala

ya

160

Wiśniewski, R. (2010). ApkTool -A tool for reverse engineering Android apk files.

Retrieved 1st September, 2016, from https://ibotpeaches.github.io/Apktool/

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., & Wu, K.-P. (2012a, 9-10 Aug. 2012).

DroidMat: Android Malware Detection through Manifest and API Calls Tracing.

Proceedings of the 2012 Seventh Asia Joint Conference on Information Security

(Asia JCIS), Tokyo, Japan, pp. 62-69.

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., & Wu, K.-P. (2012b). DroidMat: Android

Malware Detection through Manifest and API Calls Tracing. Proceedings of the

Seventh Asia Joint Conference on Information Security (Asia JCIS), Tokyo,

Japan, pp. 62-69.

Wu, X., Zhang, D., Su, X., & Li, W. (2015). Detect repackaged Android application based

on HTTP traffic similarity. Security and Communication Networks, 8(13), pp.

2257-2266.

Xiao, X., Zhang, S., Mercaldo, F., Hu, G., & Sangaiah, A. K. (2017). Android malware

detection based on system call sequences and LSTM. Multimedia Tools and

Applications, pp. 1-21.

Xu, J., Yu, Y., Chen, Z., Cao, B., Dong, W., Guo, Y., & Cao, J. (2013). MobSafe: cloud

computing based forensic analysis for massive mobile applications using data

mining. Tsinghua Science and Technology, 18(4), pp. 418-427.

Yajin, Z., & Xuxian, J. (2012). Dissecting Android Malware: Characterization and

Evolution. Proceedings of the 2012 IEEE Symposium on Security and Privacy

(S&P), San Fransico, USA, pp. 95-109.

Yan, L. J., & Cercone, N. (2010). Bayesian network modeling for evolutionary genetic

structures. Computers & Mathematics with Applications, 59(8), pp. 2541-2551.

Yan, L. K., & Yin, H. (2012). DroidScope: seamlessly reconstructing the OS and Dalvik

semantic views for dynamic Android malware analysis. Proceedings of the 21st

USENIX Conference on Security symposium, Bellevue, WA, USA, pp. 29-29.

Yang, Z. (2012). Powertutor-a power monitor for android-based mobile platforms (Vol.

2, pp. 19). University of Michigan.

Yang, Z., & Yang, M. (2012). Leakminer: Detect information leakage on android with

static taint analysis. Proceedings of the Third World Congress on Software

Engineering (WCSE), pp. 101-104.

Yerima, S. Y., Sezer, S., & McWilliams, G. (2014). Analysis of Bayesian classification-

based approaches for Android malware detection. IET Information Security, 8(1),

pp. 25-36.

Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013). A New Android Malware

Detection Approach Using Bayesian Classification. Proceedings of the 2013

IEEE 27th International Conference on Advanced Information Networking and

Applications (AINA), Barcelona, Spain, pp. 121-128.

Univ
ers

ity
 of

 M
ala

ya

161

Yoon, C., Kim, D., Jung, W., Kang, C., & Cha, H. (2012). Appscope: Application energy

metering framework for android smartphone using kernel activity monitoring.

Proceedings of the 2012 USENIX Annual Technical Conference (USENIX ATC

12), Boston, USA, pp. 387-400.

Yu, J., Huang, Q., & Yian, C. (2016). DroidScreening: a practical framework for real‐
world Android malware analysis. Security and Communication Networks, 9(11),

pp. 1435–1449.

Yu, L., & Liu, H. (2003). Feature Selection for High-Dimensional Data: A Fast

Correlation-Based Filter Solution. Proceedings of the 20th International

Conference on Machine Learning, Washington, DC, USA, pp. 856-863.

Yu, W., Ge, L., Xu, G., & Fu, X. (2014). Towards neural network based malware

detection on android mobile devices. Proceedings of the Cybersecurity Systems

for Human Cognition Augmentation, pp. 99-117.

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P., Mao, Z. M., & Yang, L. (2010).

Accurate online power estimation and automatic battery behavior based power

model generation for smartphones. Proceedings of the eighth IEEE/ACM/IFIP

international conference on Hardware/software codesign and system synthesis,

Scottsdale, Arizona, USA, pp. 105-114.

Zhang, M., & Yin, H. (2014). AppSealer: Automatic Generation of Vulnerability-Specific

Patches for Preventing Component Hijacking Attacks in Android Applications.

Proceedings of the 21st Annual Network and Distributed System Security

Symposium (NDSS), San Diego, California, USA,

Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Zang, B. (2013). Vetting

undesirable behaviors in android apps with permission use analysis. Proceedings

of the 2013 ACM SIGSAC Conference on Computer & Communications Security,

Berlin, Germany,

Zhao, M., Ge, F., Zhang, T., & Yuan, Z. (2011a, 2011/01/01). AntiMalDroid: An

Efficient SVM-Based Malware Detection Framework for Android. Proceedings

of the Second International Conference ICICA, Qinhuangdao, China, pp. 158-166.

Zhao, M., Ge, F., Zhang, T., & Yuan, Z. (2011b). AntiMalDroid: An Efficient SVM-

Based Malware Detection Framework for Android. Proceedings of the 2nd

International Conference on Intelligent Computing and Applications,

Qinhuangdao, China, pp. 158-166.

Zhao, M., Zhang, T., Ge, F., & Yuan, Z. (2012). RobotDroid: A Lightweight Malware

Detection Framework On Smartphones. Journal of Networks, 7(4), pp. 715-722.

Zheng, C., Xiao, C., & Xu, Z. (2016). New Android Trojan “Xbot” Phishes Credit Cards

and Bank Accounts, Encrypts Devices for Ransom. Retrieved 1st July, 2016,

from http://researchcenter.paloaltonetworks.com/2016/02/new-android-trojan-

xbot-phishes-credit-cards-and-bank-accounts-encrypts-devices-for-ransom/

Zheng, M., Sun, M., & Lui, J. (2013a). DroidAnalytics: A Signature Based Analytic

System to Collect, Extract, Analyze and Associate Android Malware. arXiv

Univ
ers

ity
 of

 M
ala

ya

162

preprint arXiv:1302.7212. Retrieved 1st October, 2013, from

http://arxiv.org/abs/1302.7212

Zheng, M., Sun, M., & Lui, J. (2013b). DroidAnalytics: A Signature Based Analytic

System to Collect, Extract, Analyze and Associate Android Malware.

Proceedings of the 12th IEEE International Conference on Trust, Security and

Privacy in Computing and Communications, Melbourne, Australia, pp. 163 - 171.

Zhou, W., Zhou, Y., Grace, M., Jiang, X., & Zou, S. (2013). Fast, scalable detection of

"Piggybacked" mobile applications. Proceedings of the Third ACM conference on

Data and application security and privacy, San Antonio, Texas, USA, pp. 185-

196.

Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012). Detecting repackaged smartphone

applications in third-party android marketplaces. Proceedings of the second ACM

conference on Data and Application Security and Privacy, San Antonio, Texas,

USA, pp. 317-326.

Zhou, Y., Wang, Z., Zhou, W., & Jiang, X. (2012). Hey, you, get off of my market:

Detecting malicious apps in official and alternative android markets. Proceedings

of the 19th Annual Network and Distributed System Security Symposium (NDSS),

San Diego, USA, pp. 5-8.

Zhu, D., Jin, H., Yang, Y., Wu, D., & Chen, W. (2017). DeepFlow: Deep learning-based

malware detection by mining Android application for abnormal usage of sensitive

data. Proceedings of the IEEE Symposium on Computers and Communications

(ISCC), Crete, Greece, pp. 438-443.

Zonouz, S., Houmansadr, A., Berthier, R., Borisov, N., & Sanders, W. (2013). Secloud:

A cloud-based comprehensive and lightweight security solution for smartphones.

Computers & Security, 37(September 2013), pp. 215-227.

Univ
ers

ity
 of

 M
ala

ya

163

LIST OF PUBLICATIONS AND PAPERS PRESENTED

Journal Papers:

Paper 1:

Feizollah, A., Anuar, N. B., Salleh, R., & Wahab, A. W. A. (2015). A review on feature

selection in mobile malware detection. Digital Investigation, 13(C), pp. 22-37.

Paper 2:

Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2016). Evaluation of machine

learning classifiers for mobile malware detection. Soft Computing, 20(1), pp. 343-357.

Paper 3:

Tam, K., Feizollah, A., Anuar, N. B., Salleh, R., & Cavallaro, L. (2017). The Evolution

of Android Malware and Android Analysis Techniques. ACM Computing Surveys, 49(4),

pp. 1-41.

Paper 4:

Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017).

AndroDialysis: Analysis of Android Intent Effectiveness in Malware Detection.

Computers & Security, 65(C), pp. 121-134.

Univ
ers

ity
 of

 M
ala

ya

168

Awards:

Ali Feizollah, Nor Badrul Anuar, Rosli Salleh., Malware Analysis and Detection System

for Android Devices, IEEE Young Professionals Poster Competition, (2016),

First Runner-up.

Univ
ers

ity
 of

 M
ala

ya

169

APPENDIX A: A LIST OF THE REVIEWED RESEARCH WORKS

This appendix includes the research works reviewed in this study.

Reference Title Objective

Peng et al. (Peng et

al., 2012)

Using Probabilistic

Generative Models for

Ranking Risks of

Android Apps

Using of the Android permissions in risk

ranking the apps

Grace et al. (Grace,

Zhou, Wang, et al.,

2012)

Systematic Detection of

Capability Leaks in

Stock Android

Smartphones

They analyzed permissions and java code of

Android application to detect malicious

applications that leak data from the device to

the attacker

Wu et al. (D.-J. Wu

et al., 2012a)

DroidMat: Android

Malware Detection

through Manifest and

API Calls Tracing

Using permissions, API calls in code, intent

and applying machine learning algorithms to

detect malwares

Sanz et al.(Borja

Sanz, Santos,

Ugarte-Pedrero, et

al., 2013)

Instance-based

Anomaly Method for

Android Malware

Detection

They used applications’ permissions and

calculated the Manhattan distance,

Euclidean distance and Cosine similarity to

determine the deviation of an application

from normal application

Sanz et al. (Borja

Sanz, Santos,

Laorden, Ugarte-

Pedrero, Bringas, et

al., 2013)

PUMA: Permission

Usage to detect

Malware in Android

They extracted applications’ permissions

and used machine learning algorithms to

identify the malicious applications

Samra et al. (Samra

et al., 2013)

Analysis of Clustering

Technique in Android

Malware Detection

Permissions were extracted from apk files

and clustering technique was used to

categorize the applications

Aung and Zaw

(Aung & Zaw,

2013)

Permission-Based

Android Malware

Detection

Extracted permissions were fed to the k-

means clustering algorithm for Android

malware detection

Univ
ers

ity
 of

 M
ala

ya

170

Sanz et al. (Borja

Sanz, Santos,

Laorden, Ugarte-

Pedrero, Nieves, et

al., 2013)

MAMA: Manifest

Analysis For Malware

Detection In Android

Analysis of the Androidmanifest.xml file,

which includes permissions, and machine

learning algorithms to detect malwares

Aafer et al. (Aafer

et al., 2013)

DroidAPIMiner:

Mining API-Level

Features for Robust

Malware Detection in

Android

Extracting API calls and requested

permissions and using classifiers to detect

malwares

Zhou et al. (Zhou

et al., 2013)

Fast, Scalable Detection

of “Piggybacked”

Mobile Applications

detecting piggybacked android applications

through analyzing permissions and API calls

in java code

Yerima et al.

(Suleiman Y

Yerima et al.,

2014)

Analysis of Bayesian

classification-based

approaches for Android

malware detection

Analyzing Android malwares via static

analysis with Bayesian approach. They used

permissions and java code as static features

Seo et al. (Seo et

al., 2014)

Detecting mobile

malware threats to

homeland security

through static analysis

Using permissions and API calls in java

code to identify malicious applications

pertaining to mobile banking, flight tracking

and booking, etc.

Shabtai et al. (A.

Shabtai et al.,

2010)

Automated Static Code

Analysis for Classifying

Android Applications

Using Machine

Learning

They extracted some components from the

java code such as strings, types, prototypes,

methods, fields, static value, inheritance and

opcodes. Machine learning methods applied

to the extracted components for analysis.

Desnos (A. Desnos,

2012)

Android : Static

Analysis Using

Similarity Distance

It generates the signature from API calls,

strings, exceptions and control flow. It then

calculates the similarity between the

generated signature and the malwares

signature to detect malwares

Univ
ers

ity
 of

 M
ala

ya

171

Lu et al. (L. Lu et

al., 2012)

CHEX: Statically

Vetting Android Apps

for Component

Hijacking

Vulnerabilities

CHEX analysis applications from the data-

flow perspective.

Zhou et al. (W.

Zhou et al., 2012)

Detecting Repackaged

Smartphone

Applications in Third-

Party Android

Marketplaces

They (DroidMOSS) extracted operands and

opcodes from the java code. To confront

obfuscation, they removed the operands and

retained the opcodes, which are much harder

to change.

Zheng et al. (M.

Zheng et al.,

2013a)

DroidAnalytics: A

Signature Based

Analytic System to

Collect, Extract,

Analyze and Associate

Android Malware

DroidAnalytics uses API calls to generate

signature for a method. It then generates

another signature based on methods in a

class. The generated signatures are used to

detect malwares

Yerima et al. (S. Y.

Yerima et al.,

2013)

A New Android

Malware Detection

Approach Using

Bayesian Classification

The API calls in the java code are monitored

for suspicious usage such as accessing

messages or phone service

Deshotels et al.

(Deshotels et al.,

2014b)

DroidLegacy:

Automated Familial

Classification of

Android Malware

DroidLegacy uses java code to create a

signature for the application. It uses the API

calls in the code

Suarez-Tangil et al.

(Suarez-Tangil et

al., 2014)

Dendroid: A Text

Mining Approach to

Analyzing and

Classifying Code

Structures in Android

Malware Families

Dendroid analysis the structure of java code.

It constructs the control flow graph which

represents how the code executes in runtime

Univ
ers

ity
 of

 M
ala

ya

172

Rastogi et al. (V.

Rastogi et al.,

2014)

Catch Me if You Can:

Evaluating Android

Anti-malware against

Transformation Attacks

It checks for the changes in the java code

such as renaming of the class, method or

field identifier; changing package name;

code reordering by detecting goto

instruction

Huang et al. (J.

Huang et al., 2014)

AsDroid: Detecting

Stealthy Behaviors in

Android Applications

by User Interface and

Program Behavior

Contradiction

AsDroid monitors the API calls related to

the user interaction. Additionally, it

monitors the user interaction with the

device. The semantic mismatch of the two

monitored events indicate a stealthy

behavior of the application which is one of

the main characteristics of the Android

malwares

Rasthofer et al.

(Rasthofer et al.,

2014)

A Machine-learning

Approach for

Classifying and

Categorizing Android

Sources and Sinks

The authors extracted details of java code

such as method name, return value type,

parameter type, method modifier, class

name, etc. They then used machine learning

classifiers to analyze the collected details.

Burguera et al.

(Burguera et al.,

2011)

Crowdroid: Behavior-

Based Malware

Detection System for

Android

Crowdroid is a cloud-based mobile malware

detection system that processes system calls

of the mobile devices. An agent application

is installed on the device and logs system

calls and sends it to the remote server for

further analysis using machine learning

technique.

Zhao et al. (Zhao et

al., 2011a)

AntiMalDroid: An

Efficient SVM-Based

Malware Detection

Framework for Android

It generates dynamic behavioral signature

using system calls along other features. It

then updates database of behavioral

signatures.

Yan and Yin (L. K.

Yan & Yin, 2012)

DroidScope:

Seamlessly

Reconstructing the OS

and Dalvik Semantic

Views for Dynamic

DroidScope uses system call as one of its

features to analyze the malwares. In

addition, it uses the virtualization method.

Univ
ers

ity
 of

 M
ala

ya

173

Android Malware

Analysis

Su et al. (Su et al.,

2012)

Smartphone Dual

Defense Protection

Framework: Detecting

Malicious Applications

in Android Markets

The authors developed dual protection

system for mobile devices. The first layer is

analyzing the system calls. They used

numerous machine learning algorithms for

their system

Khune and

Thangakumar

(Khune &

Thangakumar,

2012)

A Cloud-Based

Intrusion Detection

System for Android

Smartphones

They developed a cloud-based intrusion

detection and recovery system using

replicated and synchronized mobile devices

on the cloud. System call is among several

chosen features.

Reina et al (Reina

et al., 2013)

A System Call-Centric

Analysis and

Stimulation Technique

to Automatically

Reconstruct Android

Malware Behaviors

CopperDroid collects and analyzes the

system calls and the inter-process

communication for Android malware

detection.

Lin et al (Lin et al.,

2013)

Identifying android

malicious repackaged

applications by thread-

grained system call

sequences

SCSdroid believes that the malicious

behavior of malwares reflects in the system

calls. It collects the sequence of the system

calls and analyzes them to detect Android

malwares.

Victor van der

Veen (Veen, 2013)

Dynamic Analysis of

Android Malware

TraceDroid collects system calls of the

Android applications and analyzes them to

identify the malware. It shows an

improvement over similar systems

Ham and Lee (Ham

& Lee, 2014)

Detection of Malicious

Android Mobile

Applications Based on

Aggregated System

Call Events

The author collected system calls from

normal and malicious application and

determined the Android malware

Univ
ers

ity
 of

 M
ala

ya

174

Ham et al (Ham et

al., 2014)

Android Mobile

Application System

Call Event Pattern

Analysis for

Determination of

Malicious Attack

They collected system calls of normal and

malicious applications and analyzed their

pattern. Through the similarity of the system

calls, the malicious application is

determined

Iland et al (Iland et

al., 2011)

Detecting Android

Malware on Network

Level

It analyzes network traffic and looks for

HTTP links to discover leaked data by

malware. It parses the HTTP data to

discover the transferred data such as IMEI,

IMSI and credit card numbers

Wei et al (Wei et

al., 2012)

ProfileDroid: Multi-

layer Profiling of

Android Applications

ProfileDroid is a multi-layer monitoring and

profiling system. It has four layers, namely,

static, user interaction, operating system and

network traffic

Baliga et al (Baliga

et al., 2013)

Titan: A Carrier-based

Approach for Detecting

and Mitigating Mobile

Malware

Titan analyzes network traffic of the mobile

devices. It uses several filter such as packet

filter to inspect the network traffic

Zonouz et al

(Zonouz et al.,

2013)

Secloud: A Cloud-

based Comprehensive

and Lightweight

Security Solution for

Smartphones

Secloud uses cloud-based detection system.

It emulates exact copy of the mobile device

on the cloud. It analyzed the device using

log data from a lightweight agent application

on the device. It examines the network

traffic and several other features

Feizollah et al

(Feizollah et al.,

2013)

a Study Of Machine

Learning Classifiers For

Anomaly-Based Mobile

Botnet Detection

It collects network traffic and employs

machine learning approach to train

algorithms for Android malware detection

Maggi et al (Maggi

et al., 2013)

AndroTotal: A Flexible,

Scalable Toolbox and

Service for Testing

Mobile Malware

Detectors

AndroTotal collects system changes such as

user interface, log files and network traffic.

It then compare the collected data with the

malware database

Univ
ers

ity
 of

 M
ala

ya

175

Shabtai et al

(Shabtai et al.,

2014)

Mobile Malware

Detection through

Analysis of Deviations

in Application Network

Behavior

They analyzed Android applications to

discover pattern in network traffic. They

used machine learning approach to train

algorithms for anomaly detection

Blasing et al.

(Blasing et al.,

2010)

An Android

Application Sandbox

System for Suspicious

Software Detection

AASandbox analyzes static and dynamic

features. It extracts permissions and java

code from the APK file and uses them as

static features. It then installs the

application; logs system calls, and uses it as

dynamic feature.

Zhou et al. (Y.

Zhou et al., 2012)

Hey, You, Get Off of

My Market: Detecting

Malicious Apps in

Official and Alternative

Android Markets

It extracts permissions and API calls from

the APK file and collects system calls in

runtime

Wei et al. (Wei et

al., 2012)

ProfileDroid: Multi-

layer Profiling of

Android Applications

Examining Androidmanifest.xml and java

code are static features chosen for

ProfileDroid. User interaction, system calls

and network traffic are dynamic features

Spreitzenbarth et

al. (Spreitzenbarth

et al., 2013)

Mobile-Sandbox:

Having a Deeper Look

into Android

Applications

This system chose permissions, intents, java

code and API calls as static feature; system

calls, network traffic and user interaction as

dynamic features.

Eder et al. (Eder et

al., 2013)

ANANAS – A

Framework For

Analyzing Android

Applications

ANANAS extracts static features from

Androidmanifest.xml file and collects

system calls, network traffic and file

systems as dynamic features

Univ
ers

ity
 of

 M
ala

ya

176

Xu et al. (Xu et

al., 2013)

MobSafe: Cloud

Computing Based

Forensic Analysis for

Massive Mobile

Applications Using

Data Mining

MobSafe examines java code for static

features and collects network traffic for

dynamic analysis

Moonsamy et al.

(Moonsamy et al.,

2013a)

Mining Permission

Patterns for Contrasting

Clean and Malicious

Android Applications

The authors collected the requested

permissions from APK file, static feature,

and required permissions from running the

application, dynamic feature. The difference

signifies the maliciousness of the application

Univ
ers

ity
 of

 M
ala

ya

177

The table below categorizes the reviewed works based on analysis type. It also mentions

the number of malware samples they used for evaluation phase. It is worth mentioning

that this study was conducted using 100,000 android applications, which is more than

majority of the reviewed works. The number of malware samples ensures that the

proposed system is evaluated with as many real-world malware samples as possible.

Thus, the validity of the framework is ensured.

Reference Approach Number of Malware

(Zhemin Yang & Yang, 2012) Static 1,750

(Arzt et al., 2014) Static -

(Suleiman Y Yerima et al., 2014) Static 2,000

(A. Desnos, 2012) Static -

(Apvrille & Apvrille, 2013) Static -

(Aung & Zaw, 2013) Static 500

(Grace, Zhou, Wang, et al., 2012) Static -

(Feng et al., 2014) Static -

(V. Rastogi et al., 2014) Static -

(Faruki et al., 2013) Static 6,779

(Suarez-Tangil et al., 2014) Static 1,231

(Rosen et al., 2013) Static 2,782

(Peng et al., 2012) Static 325,036

(Grace, Zhou, Zhang, et al., 2012) Static 118,318

(L. Lu et al., 2012) Static 5,486

(Crussell et al., 2012) Static 9,400

(Sarma et al., 2012) Static 158,062

(Samra et al., 2013) Static 18,174

(Arp et al., 2014) Static 129,013

(Deshotels et al., 2014a) Static 1,100

(Luoshi et al., 2013) Static -

(Gascon et al., 2013) Static 12,158

(Borja Sanz, Santos, Laorden, Ugarte-Pedrero,

Bringas, et al., 2013)
Static 3,013

Univ
ers

ity
 of

 M
ala

ya

178

(Walenstein et al., 2012) Static -

(Borja Sanz, Santos, Laorden, Ugarte-Pedrero,

Nieves, et al., 2013)
Static 666

(D.-J. Wu et al., 2012b) Static 1,738

(J. Huang et al., 2014) Static 125,249

(W. Zhou et al., 2012) Static 91,093

(Aafer et al., 2013) Static 20,000

(Lee & Jin, 2013) Static -

(S. Y. Yerima et al., 2013) Static 2,000

(A. Shabtai et al., 2010) Static 2,285

(Sahs & Khan, 2012) Static 2,172

(M. Zheng et al., 2013b) Static 150,368

(Borja Sanz et al., 2014) Static 2,060

(Zhou et al., 2013) Static 84,767

(C. Y. Huang et al., 2013) Static 182

(Almohri et al., 2014) Static 405

(M. Zheng et al., 2013b) Static 24,009

(B. Sanz et al., 2012) Static 2,144

(Paturi et al., 2013) Static -

(Seo et al., 2014) Static 1,257

(Rasthofer et al., 2014) Static 11,000

(Liang et al., 2013) Static 52

(X. Wu et al., 2015) Static -

(Tchakounté & Dayang, 2013) Dynamic -

(Hyo-Sik & Mi-Jung, 2013) Dynamic 14,794

(L. Yu & Liu, 2003) Dynamic -

(Shabtai & Elovici, 2010) Dynamic 43

(Chekina et al., 2012) Dynamic 10

(Backes et al., 2013) Dynamic -

(Baliga et al., 2013) Dynamic 9

(Vaibhav Rastogi et al., 2013) Dynamic 3,968

(Burguera et al., 2011) Dynamic -

(L. K. Yan & Yin, 2012) Dynamic -

Univ
ers

ity
 of

 M
ala

ya

179

(Dini et al., 2012) Dynamic 56

(Enck et al., 2010) Dynamic 30

(Portokalidis et al., 2010) Dynamic -

(Choi et al., 2013) Dynamic -

(Gianazza et al., 2014) Dynamic 15

(Ham & Lee, 2014) Dynamic 1,257

(Ham et al., 2014) Dynamic 1,257

(Y. Zhang et al., 2013) Dynamic 1,249

(Su et al., 2012) Dynamic 120

(Maggi et al., 2013) Dynamic 18,758

(Zhao et al., 2011b) Dynamic 200

(Shabtai et al., 2014) Dynamic 500,000

(Kou & Wen, 2011) Dynamic -

(Houmansadr et al., 2011) Dynamic -

(Iland et al., 2011) Dynamic 18

(Amos et al., 2013) Dynamic 1,738

(Karami et al., 2013) Dynamic 20

(Damopoulos et al., 2012) Dynamic -

(Reina et al., 2013) Dynamic 1,200

(Khune & Thangakumar, 2012) Dynamic -

(Zonouz et al., 2013) Dynamic -

(Isohara et al., 2011) Dynamic 230

(Feizollah et al., 2013) Dynamic 1,257

(Feizollah et al., 2014) Dynamic 1,000

(Hoffmann et al., 2013) Dynamic -

(H. Lu et al., 2014) Dynamic 331

(Lin et al., 2013) Dynamic 100

(Asaf Shabtai et al., 2010) Dynamic 5

(Veen, 2013) Dynamic -

(Bente, 2013) Dynamic -

(Machiry et al., 2013) Dynamic 50

(Jang et al., 2016) Dynamic 709

(Spreitzenbarth et al., 2013) Hybrid 36,000

Univ
ers

ity
 of

 M
ala

ya

180

(Y. Zhou et al., 2012) Hybrid 204,040

(Moonsamy et al., 2013b) Hybrid 1,227

(Wei et al., 2012) Hybrid 27

(Eder et al., 2013) Hybrid 1,260

(Blasing et al., 2010) Hybrid -

(D.-u. Kim et al., 2013) Hybrid 1,003

(Xu et al., 2013) Hybrid 100,000

(M. Zheng et al., 2013b) Hybrid 19

(Shalaginov & Franke, 2013) Hybrid 604

(Guido et al., 2013) Hybrid -

(Teufl et al., 2013) Metadata -

(Pandita et al., 2013) Metadata -

(Kou & Wen, 2011) Metadata -

Univ
ers

ity
 of

 M
ala

ya

181

APPENDIX B: A COMPLETE LIST OF MALGENOME MALWARE

FAMILIES

This appendix includes list of malware families available in the MalGenome data sample

along with the number of samples, discovery date, and their characteristics.

No
Malware

Family Name

No.

of

sample

Discovery

Month
Characteristics

1 ADRD 22 2011-02 Sending out device info

2 AnserverBot 187 2011-09

Silently downloads an update

for an application on run time

containing a malicious code

from a hacker

3 Asroot 8 2011-09
Root exploits without user

permission

4 Basebridge 122 2011-06

Silently updates an

application and downloads a

malicious code from a hacker

5 BeanBot 8 2011-10

Sends out IMEI, IMSI and

phone number, sends SMS to

a premium number

6 BgServ 9 2011-03 Sends out IMEI, device info

7 CoinPirate 1 2011-07
Sends out device model, SDK

version, IMEI, IMSI

8 CruseWin 2 2011-07

Deletes itself, deletes SMS,

sends SMS to a premium

number

9 DogWars 1 2011-08

Sends SMS to all the contacts

in the phone without the

user's awareness

10 DroidCoupon 1 2011-09
Root exploits without user

permission

11 DroidDeluxe 1 2011-09
Root exploits without user

permission

12 DroidDream 16 2011-03

Hijacks an application and

controls the UI and performs

commands received from a

hacker

13
DroidDreamLig

ht
46 2011-05

Sends out IMEI, IMSI,

model, etc.

Univ
ers

ity
 of

 M
ala

ya

182

14 DroidKungFu1 34 2011-06

Malicious code is encrypted

and it steals a user's phone

number and sends it to a

hacker

15 DroidKungFu2 30 2011-07

Malicious code is encrypted

and it steals a user's phone

number and sends it to a

hacker

16 DroidKungFu3 309 2011-08

Malicious code is encrypted

and it steals a user's phone

number and sends it to a

hacker

17 DroidKungFu4 96 2011-10

C&C server address is in the

native program but in cipher

text. It receives commands

from a hacker

18
DroidKungFuSa

pp
3 2011-10

Sends out IMEI, phone info,

data on SD card

19
DroidKungFuUp

date
1 2011-10

Remotely updates an

application and downloads a

malicious code from a hacker

20 Endofday 1 2011-05 Leaks user’s data via SMS

21 FakeNetflix 1 2011-10

Steals user's credentials and

sends back to ground SMS

messages.

22 FakePlayer 6 2010-08

Sends premium SMS without

user's knowledge and steals

user's phone number. Sends

stolen data to a hacker

23 GamblerSMS 1 2011-07
Sends out incoming/outgoing

SMS, outgoing phone call

24 Geinimi 69 2010-13

Makes phone calls in

background and sends

premium SMS. Commands

are received from a hacker

25 GGTracker 1 2011-06

Apps advertisement redirects

link to malicious web and

malware subscribes premium-

rate service.

26 GingerMaster 4 2011-08
Obfuscates the file names of

associated root exploits

27 GoldDream 47 2011-07

Makes phone calls in

background and sends

premium SMS. Commands

are received from a hacker

Univ
ers

ity
 of

 M
ala

ya

183

28 Gone60 9 2011-09
Sends out contacts, SMS, call

list, visited URLs

29 GPSSMSSpy 6 2010-08

Listens to SMS-based

commands to record and

upload the victim’s current

location.

30 HippoSMS 4 2011-07

Sends out SMS to a premium

number, deletes incoming

SMS from a certain number.

31 Jifake 1 2011-10

Sends premium SMS without

user's knowledge and steals

user's phone number. Sends

stolen data to a hacker.

32 jSMSHider 16 2011-06

Uses a publicly available

private key by Android open

source project and includes

infected apps. Opens a

backdoor.

33 Kmin 52 2011-10

Sends premium SMS without

user's knowledge. Commands

are received from a hacker.

34 Lovetrap 1 2011-07
Sends out IMSI and geo

location

35 NickyBot 1 2011-08 Executes commands via SMS

36 Nickyspy 2 2011-07 Sends out call list, GPS, SMS

37 Pjapps 58 2011-02

Sends premium SMS without

user's knowledge and steals

user's phone number. Sends

stolen data to a hacker

38 Plankton 11 2011-06
Downloads malicious code as

an update from a hacker

39 RogueLemon 2 2011-10
Sends SMS and subscribes to

service

40 RogueSPPush 9 2011-08

Sends premium SMS without

user's knowledge by hiding

confirmation SMS. Sends

stolen data to a hacker

41 SMSReplicator 1 2010-11
Transmits incoming SMS to

another device

42 SndApps 10 2011-07

Collects user's email

addresses and sends them to

remote sever.

43 Spitmo 1 2011-09
Steals user's sensitive

banking information

44 TapSnake 2 2010-08 Sends out GPS info

Univ
ers

ity
 of

 M
ala

ya

184

45 Walkinwat 1 2011-03
Sends out name, phone

number, IMEI

46 YZHC 22 2011-06
Sends SMS to a premium

number

47 zHash 11 2011-03
Root exploits without user

permission

48 Zitmo 1 2011-07
Steal user's sensitive banking

information

49 zSone 12 2011-05

Hijacks an application,

controls the UI and performs

commands received from a

hacker

Univ
ers

ity
 of

 M
ala

ya

