

ON THE PREVENTION OF CROSS-VM CACHE-BASED SIDE
CHANNEL ATTACKS

ZAKIRA INAYAT

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

ON THE PREVENTION OF CROSS-VM CACHE-BASED SIDE

CHANNEL ATTACKS

ZAKIRA INAYAT

THESIS SUBMITTED IN THE FULFILMENT

OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND INFORMATION

TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Zakira Inayat

Registration/Matric No: WHA130033

Name of Degree: Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis: (“On the Prevention of

Cross-VM Cache-Based Side Channel Attacks”):

Field of Study: Information Security (Computer Science)

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or

reproduction of any copyright work has been disclosed expressly and

sufficiently and the title of the Work and its authorship have been

acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the

making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the

University of Malaya (“UM”), who henceforth shall be owner of the copyright

in this Work and that any reproduction or use in any form or by any means

whatsoever is prohibited without the written consent of UM having been first

had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any

copyright whether intentionally or otherwise, I may be subject to legal action

or any other action as may be determined by UM.

 Candidate’s Signature Date:

Subscribed and solemnly declared before,

 Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

ON THE PREVENTION OF CROSS-VM CACHE-BASED SIDE CHANNEL

ATTACKS

ABSTRACT

The state-of-the-art Cloud Computing (CC) has been commercially popular for shared

resources of third party applications. A cloud platform enables to share resources among

mutually distrusting CC clients and offers cost-effective, on-demand scaling. With the

exponential growth of CC environment, vulnerabilities and their corresponding

exploitation of the prevailing cloud resources may potentially increase. While it provides

numerous benefits to the CC tenant, however, resource sharing and Virtual Machine

(VM) physical co-residency raising the potential for sensitive information leakages such

as side channel (SC) attacks. In particular, physical co-residency features allow attackers

to communicate with another VM on the same physical machine and leak the confidential

information due to inadequate logical isolation. We investigate SC attacks involving the

CPU cache and identify that traditional prevention mechanisms for SC attacks are not

appropriate for prevention of cross-VM cache-based SC attacks. We go on to demonstrate

the prevention mechanisms, however, the existing prevention techniques either require

the client to change the software or the underlying hardware and suffer from performance

degradation leading to reduce cache usage and increase overhead. To address this problem

and improve performance, we investigate that new technique such as dynamic cache

partition is necessary to mitigate these sorts of attacks in a cloud environment which is

hypervisor-based and does not need the client to change their software and the underlying

hardware. Finally, we propose new hypervisor-based mitigation technique, implementing

them in a state-of-the-art cloud system which guarantees the security and performance

feature of the system. The proposed prevention mechanism is evaluated using various

benchmarking experiments. The evaluation results show that merging our proposed

Univ
ers

ity
 of

 M
ala

ya

iv

method into hypervisor can prevent cross-VM cache-based SC attacks without affecting

the performance of hypervisor. Our dynamic partitioned (HBP-DCP based) hypervisor

improves the bearable load by increasing the number of request per second by 45% and

by decreasing the average response time by 5.58%. Moreover, improve cache utilization

that each VM has access to by increasing cache read/modify/write, cache read, and cache

write bandwidth in combine by 53.5% and increasing the cache access time by 15.53%,

as a result substantially increase the efficiency as significant.

Keywords: Cloud Computing, Cache-based SC Attacks, Cross-VM SC Cache-based SC

Attacks, Countermeasure, Dynamic Cache Partition

Univ
ers

ity
 of

 M
ala

ya

v

PENCEGAHAN SERANGAN SALURAN SISI BERASASKAN SILANG-VM

CACHE

ABSTRAK

Kajian semasa dalam bidang Pengkomputeran Awan (CC) secara komersialnya telah

popular dalam perkongsian sumber aplikasi pihak ketiga. Platform awan membenarkan

perkongsian sumber di antara pelanggan CC yang saling tidak mempercayai dan

menawarkan penskalaan yang kos efektif dan berdasarkan permintaan. Dengan

pertumbuhan persekitaran CC yang pesat, kelemahan dan eksplotasi yang berkaitan

antara sumber awan semasa, berpotensi boleh meningkat. Walaupun ia menyediakan

pelbagai faedah kepada penyewa pengkomputeran awan, perkongsian sumber dan fizikal

mesin maya (VM), ia boleh meningkatkan potensi untuk kebocoran maklumat sensitif

seperti serangan saluran sisi. Secara khususnya, ciri-ciri fizikal residensi bersama

membolehkan penyerang untuk berkomunikasi dengan VM lain pada mesin fizikal yang

sama dan membocorkan maklumat sulit yang disebabkan oleh kekurangan pengasingan

logik. Kami menyiasat tentang serangan saluran sisi yang melibatkan cache CPU dan

mengenalpasti bahawa mekanisma pencegahan tradisional bagi serangan saluran sisi

tidak sesuai untuk pencegahan serangan saluran sisi berasaskan silang-VM cache. Kami

memilih untuk menunjukkan mekanisma pencegahan, walau bagaimanapun, teknik-

teknik pencegahan sedia ada sama ada memerlukan pelanggan untuk menukar perisian

atau perkakasan asas akan menyebabkan kemerosotan prestasi yang boleh mengurangkan

penggunaan cache dan meningkatkan overhed. Bagi menangani masalah ini dan

meningkatkan prestasi, kami menyiasat teknik baru iaitu pemetakan cache secara

dinamik. Ia adalah perlu untuk mengatasi serangan di dalam persekitaran awan yang

berasaskan hypervisor tanpa perlu menukar perisian dan perkakasan pelanggan. Akhir

sekali, kami mencadangkan mitigasi baru berasaskan hypervisor, melaksanakannya

Univ
ers

ity
 of

 M
ala

ya

vi

dalam sistem awan yang mengikut aliran semasa bagi menjamin keselamatan dan ciri-ciri

prestasi sistem. Mekanisma pencegahan yang dicadangkan dinilai dengan menggunakan

pelbagai eksperimen penandaarasan. Keputusan penilaian menunjukkan bahawa

penggabungan kaedah cadangan kami ke hypervisor boleh mencegah serangan SC

berasaskan silang-VM cache tanpa menjejaskan prestasi hypervisor. Pemetakan secara

dinamik (berasaskan HBP-DCP) hypervisor telah meningkatkan tanggungan beban

dengan pertambahan jumlah permintaan setiap saat sebanyak 45% dan pengurangan

purata masa respon sebanyak 5.58%. Selain itu, ia juga meningkatkan penggunaan cache

di mana setiap VM mempunyai akses dan peningkatan jalur lebar bagi operasi

baca/kemaskini/tulis cache sebanyak 53.5%, peningkatan masa capaian cache sebanyak

15.53% dan keputusan ini menunjukkan kecekapan meningkat secara purata.

Keywords: Pengkomputeran Awan, Serangan SC, Serangan saluran sisi berasaskan

silang-VM cache, tindak balas, Pemetakan cache dinamik

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

ALLAH Almighty provides the courage, knowledge, and resources to every human

being in this world. I am thankful to ALLAH Almighty for blessing me in every form of

human quality such that I have reached this point of life and completed my PhD thesis.

My hearty thanks must go to my advisors, family (Especially in Laws), and friends who

have supported and encouraged me through difficult times of life. I am highly thankful to

my supervisor Prof. Dr. Abdullah Gani who has patiently provided the vision,

encouragement and advice necessary for me to proceed through this doctoral program

and complete my PhD. I‘d like also to extend my gratitude to my co-supervisor, Dr. Nor

Badrul Anuar for his deep commitments and continued help and support. Their

continuous support and guidance helped me producing a valuable piece of research

reported in this thesis.

I would like to sincerely thank my dearest and loveliest parents for their faith in me

and allowing me to be as ambitious as I wanted. I owe them everything and I hope that

this work makes them proud. I would also like to gratefully express my special

appreciation and thanks to my beloved husband, Rahat Ali, for his great support,

encouragement and unwavering and unconditional love. Words cannot express how

grateful I am to my dearest brother Shahid Anwar for his great support. He had always

been a tremendous mentor for me.

Finally, I would like to thank the Malaysian Ministry of Higher Education, Malaysia for

the financial support and assistance of the entire period of my PhD. I am also thankful to

FSKTM support staff at WISMA RND and University for lending their support and

resources. I dedicate this thesis to my beloved parents and husband for their constant

support and unconditional love, who believes in me under any circumstances, cheers on

my trivial achievements, and always stands beside me in the face of difficulties.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

On The Prevention Of Cross-Vm Cache-Based Side Channel Attacks III

Pencegahan Serangan Saluran Sisi Berasaskan Silang-Vm Cache V

Acknowledgements ... VII

Table Of Contents .. VIII

List Of Figures ... XIII

List Of Tables ... XVI

List Of Symbols And Abbreviations .. XIX

CHAPTER 1: INTRODUCTION .. 1

1.1 Background .. 1

1.2 Motivation.. 5

1.3 Statement of the Problem... 8

1.4 Statement of Objectives ... 10

1.5 Research Methodology .. 11

1.6 Thesis Layout... 14

CHAPTER 2: LITERATURE REVIEW .. 17

2.1 Background .. 18

2.1.1 Cloud Computing .. 19

2.1.1.1 Virtualization ... 20

2.1.1.2 Cloud Model .. 21

2.1.2 Side Channel Attacks .. 22

2.1.3 Taxonomy of Side Channel Attacks ... 24

2.1.3.1 Side Channel Attacks based on the Computing

Location ... 24

(a) Intra-VM Side Channel Attacks .. 24

(b) Cross Platform Side Channel Attacks 25

(c) Cross-VM Side Channel Attacks ... 25

2.1.3.2 Side Channel Attacks based on Implementation 26

(a) Sequential Side Channel Attacks .. 27

Univ
ers

ity
 of

 M
ala

ya

ix

(b) Parallel Side Channel Attacks .. 27

2.1.3.3 Side Channel Attacks based on the Way of

Accessing the Module ... 28

(a) Invasive/ Hardware Side Channel Attacks 29

(b) Non-invasive/ Software Side Channel Attacks 29

(c) Semi-invasive SC Attacks .. 30

2.2 Cross-VM Cache-based Side Channel Attacks ... 32

2.3 Causes of the Cross-VM Cache-based Side Channel Attacks 34

2.3.1 Last Level Cache Memory .. 35

2.3.2 Memory Deduplication ... 40

2.3.3 Big Data Deduplication ... 41

2.3.4 Huge Pages .. 43

2.4 Types of Cross-VM Cache-based Side Channel Attacks 44

2.4.1 Time driven Side Channel Attacks ... 44

2.4.2 Trace–Driven Side Channel Attacks ... 46

2.4.3 Access-Driven Side Channel Attacks ... 47

2.5 Prevention of Cross-VM Cache-based Side Channel Attacks 55

2.5.1 Existing Countermeasures ... 57

2.5.1.1 Hardware-based Countermeasure 57

2.5.1.2 Software-based Solutions .. 58

2.5.2 Proposed Countermeasures ... 63

2.5.2.1 Disable Huge Size Pages ... 63

2.5.2.2 Cache Partition Using Cache Coloring 63

2.5.2.3 Private LLC Cache Slices ... 64

2.5.2.4 Controlling Clflush Instruction 64

2.5.2.5 Preventing Page Sharing ... 65

2.5.2.6 Prefetching Cache Memory 65

2.5.2.7 Flushing Cache Memory ... 65

2.5.2.8 Hardware Masking of Addresses 66

2.5.2.9 Address Translation using Shadow Page Table 67

2.5.2.10 Dynamic Software Diversity 68

2.6 Research Challenges .. 68

2.6.1 Efficient Cache Utilization .. 68

Univ
ers

ity
 of

 M
ala

ya

x

2.6.2 Server Side Solution Transparent to Guest OS and Client Software 69

2.6.3 Predicting Cache Contention .. 69

2.6.4 Determining Optimal Cache Partition Policy at run time with low

Overhead ... 70

2.6.5 Improving the Xen Credit Scheduler .. 70

2.6.6 Hiding Memory Access Pattern .. 70

2.6.7 Cache-Aware Scheduler for Optimum Cache Partition 71

2.6.8 Soft Isolation as a Solution ... 71

2.7 Discussion .. 72

2.8 Conclusion ... 76

CHAPTER 3: PROBLEM ANALYSIS .. 78

3.1 Experimental Methodology ... 79

3.2 How cache based side channel attack works ... 80

3.2.1 Implementation of Cross-VM Cache-based SC Attack by using Flush

+ Reload technique ... 82

3.2.1.1 Flush + Reload Attack Scenario 83

(a) Flushing step... 83

(b) Target accessing step.. 84

(c) Reloading step .. 84

(d) Discussion ... 84

3.2.2 Implementation of Cross-VM cache-based SC attack by using Prime

+ Probe technique ... 86

3.2.3 Experimental Setup ... 87

3.2.3.1 Attack1 Setup: Attack in Native Operating System

and in Single VM .. 87

3.2.3.2 Attack2 Setup: Cross-VM Attacks 89

3.2.4 Experimental Results .. 90

3.2.4.1 Result in Native Operating System 91

3.2.4.2 Result of Attacks in Single VM and in Cross-VM ... 91

3.3 Prevention Mechanism .. 94

3.3.1 Cache Partitioning as a Prevention Mechanism 97

3.3.2 Phoronix Test Suite ... 100

3.4 Evaluation Parameters ... 100

Univ
ers

ity
 of

 M
ala

ya

xi

3.4.1 Load Testing with varying numbers of VMs and Partitions 101

3.4.2 Cache Utilization with varying numbers of VMs and Partitions 103

3.4.3 Memory Access Rate with varying numbers of VMs and Partitions .. 104

3.5 Conclusion ... 105

CHAPTER 4: HYPERVISOR-BASED PREVENTION MECHANISM USING

DYNAMIC CACHE PARTITIONING: HBP-DCP .. 108

4.1 Hypervisor-based Prevention mechanism using Dynamic Cache Partitioning ... 109

4.1.1 Features of the Proposed HBP-DCP Prevention Mechanism 109

4.2 System Architecture... 111

4.2.1 Virtual Machine Provisioning ... 113

4.2.2 Page Coloring .. 115

4.2.3 Paging Mechanism in Xen Hypervisor ... 116

4.3 Components of the Proposed HBP-PDC Prevention Mechanism 119

4.3.1 Server Side Admission Control ... 120

4.3.2 Global Scheduler vs Xen Scheduler .. 121

4.3.3 Cache Usage Monitor .. 122

4.3.4 Color-Aware Page Migrator .. 125

4.4 HBP-DCP Prevention Mechanism Algorithm ... 126

4.5 Data Design ... 128

4.5.1 Performance Evaluation Metrics ... 129

(a) Load Testing ... 129

(b) Cache Usage ... 130

(c) Memory Access Rate ... 130

4.5.2 Data Collection Tool ... 130

4.5.3 Performance Evaluation Method... 131

4.6 Conclusion ... 131

CHAPTER 5: EVALUATION ... 133

5.1 Evaluation Process ... 134

5.1.1 Experimental Setup ... 135

Univ
ers

ity
 of

 M
ala

ya

xii

5.1.2 Effect of our HBP-DCP based Hypervisor on the Cross-VM SC

Attack .. 137

5.2 Benchmark Applications ... 142

5.2.1 Apache Benchmark ... 143

5.2.2 Cachebench Benchmark .. 143

5.2.3 Cachegrind Benchmark ... 144

5.3 Evaluation methods ... 145

5.3.1 Descriptive statistics.. 145

5.3.2 Confidence Interval ... 145

5.3.3 Paired Samples T-Test .. 146

5.3.4 Linear Regression.. 147

5.4 Evaluation Metrics ... 148

5.4.1 Load Testing.. 148

5.4.2 Cache Utilization ... 158

5.4.3 Memory Access Rate .. 175

5.5 Conclusion ... 186

CHAPTER 6: RESULTS AND DISCUSSION .. 188

6.1 Performance Evaluation Results .. 188

6.1.1 Load Testing.. 189

6.1.2 Cache Utilization ... 198

6.1.3 Memory Access Rate .. 204

6.2 Conclusion ... 212

CHAPTER 7: CONCLUSION ... 215

7.1 Research Objectives... 215

7.2 Contribution ... 218

7.3 Significance of the work .. 220

7.4 Limitation and Future Work .. 221

REFERENCES .. 223

LIST OF PUBLICATIONS AND PAPERS PRESENTED 230

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF FIGURES

Figure 1.1: Year wise Progression of Cloud Computing Usage (Irazoqui, Inci et al. 2014)

 ... 5

Figure 1.2: Research Methodology ... 12

Figure 1.3: Summary of Chapters Presented in this Thesis .. 16

Figure 2.1: Layered Model of Cloud Computing.. 19

Figure 2.2: Virtualization .. 21

Figure 2.3: Types of Side Channel Attack in Hypervisors (XEN) 26

Figure 2.4: Taxonomy of Side Channel Attacks ... 31

Figure 2.5: Sources of Information Leakage on Shared Hardware 35

Figure 2.6: Virtual Machine CORE 2 Duo Memory Allocation Hierarchy 39

Figure 2.7: Virtual Machine CORE i7 Memory Allocation Hierarchy 39

Figure 2.8: Overview of Countermeasure for Side Channel Attacks 67

Figure 3.1: Number of the Key Bytes of AES Key Correctly Guessed vs Number of

Needed Encryption .. 86

Figure 3.2: Number of Recovered Key Bytes Correctly Guessed vs Number of Requested

Encryption for Native OS, Single-VM, and Cross-VM in XEN 92

Figure 3.3: Problem Visualization .. 96

Figure 3.4: Static Cache Partition Using Page Coloring ... 98

Figure 3.5: Load Testing in Static Partitioned Hypervisor with Varying Number of VMs

and Partitions ... 102

Figure 3.6: Cache Utilization with Varying Number of VMs and Partitions 104

Figure 3.7: Cache Access Rate in Static partitioned based Hypervisor 105

Figure 4.1: Proposed Hypervisor-based Prevention Mechanism Using Dynamic Cache

Partitioning .. 113

Figure 4.2: Process of VM Provisioning ... 114

Univ
ers

ity
 of

 M
ala

ya

file:///G:/Final%20Thesis%20(Sent%20for%20Exam).docx%23_Toc494533073

xiv

Figure 4.3: Mapping between the Physical Address and Cache Lines (Overlapped Bits

are Used for Page Coloring) .. 116

Figure 4.4: Paging Mechanism in Hypervisor .. 119

Figure 4.5: Flow of the Prevention Mechanism Using Dynamic Cache Partitioning ... 128

Figure 5.1: Effect of Dynamic Cache Partition on the PTP technique 139

Figure 5.2: Result of Apache Benchmark with Varying Number of Concurrent Requests

 ... 157

Figure 6.1: Load Testing of Unmodified (Default/Insecure) Hypervisor 190

Figure 6.2: Load Testing of Static Partitioned Hypervisor ... 190

Figure 6.3: Load Testing of Modified (Dynamic Partitioned/Secure/HBP-DCP)

Hypervisor ... 191

Figure 6.4: Average Response Time for Concurrent Request without VMs for Modified

(Default) and Unmodified (Dynamic Partitioned) Hypervisor 192

Figure 6.5: Number of Requests per Second Time for (10-150) Concurrent Request

without VMs for both Unmodified and Modified (Partitioned) Hypervisor................. 193

Figure 6.6: Number of Requests per Second in Unmodified (Default) Hypervisor with

Varying Number of VMs, Partitions, and Number of Concurrent Requests 194

Figure 6.7: Number of Requests per Second in Static Partitioned Hypervisor with Varying

Number of VMs, Partitions, and Number of Concurrent Requests 194

Figure 6.8: Number of Requests per Second in Modified (Dynamic Partitioned/HBP-

DCP) Hypervisor with Varying Number of VMs, and Number of Concurrent Requests

 ... 195

Figure 6.9: Average Number of Request per Second with Varying Number of VMs in

Unmodified, Static Partitioned, and Modified (Dynamic Partitioned/HBP-DCP)

Hypervisors ... 196

Figure 6.10: Average Response Time for Concurrent Request with Varying Number of

VMs in Unmodified (Default) and Modified (Dynamic Partitioned) Hypervisor 197

Figure 6.11: Cache Read/Modify/Write Bandwidth in Unmodified and Modified

(Dynamic Partitioned) Hypervisors .. 199

Figure 6.12: Cache Read/Modify/Write Bandwidth in Static Partitioned and Modified

(Dynamic Partitioned/HBP-DCP) Hypervisors .. 200

Univ
ers

ity
 of

 M
ala

ya

xv

Figure 6.13: Cache Read Bandwidth in Unmodified and Modified (Dynamic

Partitioned/HBP-DCP) Hypervisor ... 201

Figure 6.14: Cache Read Bandwidth in Static Partitioned and Modified (Dynamic-

Partitioned/HBP-DCP) Hypervisor ... 202

Figure 6.15: Cache Write of Unmodified and Modified Hypervisor 203

Figure 6.16: Cache Write of Static Partitioned and Dynamic Partitioned (HBP-DCP)

Hypervisor ... 204

Figure 6.17: Average LLC Memory References in Unmodified Hypervisor for Varying

VMs (1VM-10VMs) ... 205

Figure 6.18: Average LLC Memory References in Static Partitioned Hypervisor for

Varying VMs (1VM-10VMs) ... 206

Figure 6.19: Average LLC Memory References in HBP-DCP based Hypervisor for

Varying VMs (1VM-10VMs) ... 207

Figure 6.20: Comparison of LLC Memory References in Unmodified, Static and HBP-

DCP based (Dynamic partitioned) Hypervisors .. 208

Figure 6.21: Average LLC Memory Hit Rate with Varying VMs 209

Figure 6.22: Average LLC Memory Miss Rate with Varying VMs 210

Figure 6.23: Comparison of Average LLC Memory Access Time in both Unmodified and

HBP-DCP (Dynamic Partitioned) Hypervisors .. 211

Figure 6.24: Comparison of Average LLC Memory Access Time in Static Partitioned and

HBP-DCP (Dynamic Partitioned) Hypervisors .. 212

Univ
ers

ity
 of

 M
ala

ya

xvi

LIST OF TABLES

Table 2.1: Characteristic of CC ... 20

Table 2.2: Side channel Attack in Virtualized and Non-Virtualized Environment 51

Table 2.3: Required Modification in the Existing Solutions of Cache-based Side Channel

Attacks... 57

Table 2.4: Countermeasures for Cross VM Cache-based Side Channel Attacks 60

Table 3.1: Experimental Environment in Problem Analysis .. 80

Table 3.2: Algorithm for Implementing Cache based Side Channel Attacks 81

Table 3.3: Comparison of Correctly Recovered Key in Single and Cross-VM 93

Table 3.4: Comparison of Cache-based Side Channel Attacks in XEN and VMware ... 94

Table 3.5 : Load Testing with Varying Number of VMs and Partitions 101

Table 3.6: Cache Utilization with Varying Number of VMs and Partitions 103

Table 5.1: Comparison of Correctly Recovered Key in Single and Cross-VM in

Unmodified Hypervisor (Insecure/Default) .. 140

Table 5.2: Comparison of Correctly Recovered Key in Single and Cross-VM in Modified

Hypervisor (Secure/Dynamic Partitioned/HBP-DCP) .. 141

Table 5.3: Parametric Evaluation with Benchmarking ... 144

Table 5.4: Experimental Environment in benchmarking Analysis 148

Table 5.5: Load Testing of Unmodified, Static Partitioned, and Dynamic Partitioned

Hypervisors without any VM and with Varying Number of Concurrent Requests 150

Table 5.6: Number of Requests per Second in Unmodified (Default/insecure) Hypervisor

with Varying Number of VMs and Concurrent Users/Requests 151

Table 5.7: Number of Request per Second in Modified (Dynamic Partitioned) Hypervisor

with Varying Number of Virtual Machines and Concurrent Requests 152

Table 5.8: Load Testing in Modified and Unmodified Hypervisor with Varying Number

of VMs (Average for 10 to 100 Concurrent Request/users for each VM) 153

Table 5.9: Load Testing with Varying Number of VMs and Partitions in Static Partitioned

Hypervisor ... 154

Univ
ers

ity
 of

 M
ala

ya

xvii

Table 5.10: Load Testing with Varying Number of VMs in Dynamic Partitioned

Hypervisor ... 155

Table 5.11: Comparison of Load Testing in Static-Partitioned and Dynamic-Partitioned-

based Hypervisors with Varying Number of VMs and Partitions (Average for 10 to 100

Concurrent Request for each VM) .. 156

Table 5.12: Regression Statistics Summary for Load Testing of Varying VMs 158

Table 5.13: Cache Utilization of Unmodified Hypervisor .. 161

Table 5.14: Cache Utilization of Modified Hypervisor .. 163

Table 5.15 Average Bandwidth (MB/Sec) of Cache Read and Cache Write of Varying

VMs (1VM-10VM) in Un-Modified and Modified Hypervisor 165

Table 5.16: Bandwidth of Cache Read/Write/Modify in Static Partitioned Hypervisor

 ... 166

Table 5.17: Average Bandwidth of cache Read/Modify/Write in Static and Dynamic

Partitioned Hypervisors ... 167

Table 5.18: Average Bandwidth of Cache Read in Static and Dynamic Partitioned

Hypervisors ... 169

Table 5.19: Average Bandwidth of Cache Write in Static and Dynamic Partitioned

Hypervisors ... 170

Table 5.20: Comparison of cache Read/Modify/Write in Unmodified and Modified

(HBP-DCP) Hypervisors ... 171

Table 5.21: Comparison of Cache Read in Unmodified and Modified (HBP-DCP)

Hypervisor ... 172

Table 5.22: Comparison of Cache Write in Unmodified and Modified (HBP-DCP)

Hypervisor ... 172

Table 5.23: Regression Statistics Summary for Cache Utilization of Virtual Machines

 ... 174

Table 5.24: Last Level Cache (LLC) Memory Accesses in Unmodified Hypervisor .. 177

Table 5.25: Last Level Cache (LLC) Memory Accesses in Modified Hypervisor 177

Table 5.26: Descriptive statistics of LLC Memory Accesses Data Generated by Standard

Experimentation .. 179

Univ
ers

ity
 of

 M
ala

ya

xviii

Table 5.27: Average Cache Access Rate, Cache Hit, and Miss Rate of LLC in Unmodified

(Default/Insecure) Hypervisor .. 180

Table 5.28: Average Cache Access Rate, Cache Hit and Miss Rate of LLC in Static

Partitioned Hypervisor (1, 2, 4, 8, and 16 partitions) .. 181

Table 5.29: Average Access Rate, Cache Hit, and Miss Rate of LLC Memory in Modified

(Dynamic Partitioned/HBP-DCP) Hypervisor .. 182

Table 5.30: Average Cache Access Rate of Varying VMs in Unmodified and Modified

Hypervisors ... 183

Table 5.31: Comparison of Average Cache Access Rate of Varying VMs in Static and

Dynamic-Partitioned Hypervisors ... 185

Table 5.32: Regression Statistics Summary of Memory Access Rate for varying VMs

 ... 186

Univ
ers

ity
 of

 M
ala

ya

xix

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols Description

AES Advance Encryption Standard

CC Cloud Computing

CMOS Complementary metal–Oxide–Semiconductor

CMP Chip Multi-Processing

Cross-VM Cross-Virtual Machine

DES Data Encryption Standard

DPA Differential Power Analysis

FA Fault Analysis

HBP-DCP Hypervisor-based Prevention Mechanism using Dynamic

Cache Partitioning

IaaS Infrastructure as a Service

IPS Intrusion Prevention System

IRS Intrusion Response System

ISA Instruction Set Architecture

IT Information Technology

KSM Kernel Same-page Merging

LLC Last Level Cache

MFN Machine Frame Number

OS Operating System

PaaS Platform as a Service

PFN Physical Frame number

PLcache Partition Locked Cache

RPCache Random Permutation Cache

PTP Prime + Trigger + Probe

SaaS Software as a Service

SC Side Channel

SMP Symmetric Multi-Processing

SMT

SPA

SPT

Simultaneous Multi-Threading

Simple Power Analysis

Shadow Page Table

SSL Secure Sockets Layer

TLB Translation Lookaside Buffer

VM Virtual Machine

VMM Virtual Machine Manager

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

This chapter introduces the basis of the research work carried out in this thesis. The

background of our initial research domain, Cloud Computing (CC) and Side Channel

(SC) is provided. It explains the key motivations in the establishment of a research

problem of the thesis leading to highlight our research problem and objectives. The

research problem is highlighted from a broad perspective in the form of statements of the

problem. The research aim and objectives are highlighted in the domain of side channel

attacks in CC. Furthermore, the research methodology employed to address the research

problem is presented.

The structure of the remainder of the chapter is as follows: Section 1.1 presents the

background knowledge of the field of research namely CC, cache-based SC attack, and

cross-VM SC attacks. Section 1.2 presents the motivation of inspiring the research

provided in this thesis. In Section 1.3, the established research problem is presented.

Section 1.4 provides the research aim and objectives. In Section 1.5, the research

methodology employed to address the research problem is defined. Finally, Section 1.6

presents the layout of the rest of the thesis.

1.1 Background

Cloud Computing (CC) can be defined as a new paradigm that delivers computing

and IT as services. The cloud resources on-demand concept has attracted end users to

utilize various CC services, such as “Software, Platform, and Infrastructure” as-a-service

(“SaaS, PaaS, and IaaS”) at low cost (Zhang, Cheng et al. 2010). As a new paradigm, CC

acquires more importance and brings unique features and vulnerabilities in today

Information Technology (IT) industry. Specifically, it introduces multi-tenancy to

facilitate the users to share computing physical resources provisioned over the Internet

and offers cost-effective, on-demand scaling to the CC tenants. Moreover, it establishes

Univ
ers

ity
 of

 M
ala

ya

2

the new concept in computing namely mutually distrusting co-resident clients as a valid

execution state. Although mutually distrusting co-resident and multi-tenancy provide

numerous benefits to the CC tenants, this paradigm introduces a new concept known as

client’s co-residence and VM’s physical co-residency. However, the security

vulnerabilities arise from these well-known concepts because it enables a new form of

sensitive information leakage. One of the security vulnerability to CC is the SC attacks

which exploit the information leakage channel at the micro-architectural level. The CC

infrastructure relies on the virtualized servers that provide the required logical isolation

between guest VMs through sandboxing. However, this isolation was described to be

imperfect in the past research work which exploited the information leakage channel to

extract the sensitive information across co-located VMs. Co-residence clients and

physical co-residency of VMs allow the attacker’s VM to communicate with the victim’s

VM running on the same physical device that by design they are unable to have access

(Ristenpart, Tromer et al. 2009).

Since CC is not equivalent to physically separated systems and due to an inadequate

logical isolation, it facilitates the co-located malicious VM to use the SC attacks to leak

sensitive information about the victim VM functionality and exploit the correlation

between the software and hardware. SC attacks use the unconventional methods including

cache access and timings to extract and transfer confidential data in a way that violate

security policies have been identified as a major issue in implementing cryptographic

algorithms. Although cryptographic algorithms provide security to the sensitive

information from attackers by encrypting and decrypting sensitive data. However, CC is

a big concern for cryptographers because they are putting their data and program out there

away from their trusted computers (Ristenpart, Tromer et al. 2009). The encryption keys

of the cryptographic algorithms e.g., Advance Encryption Standard (AES) are extracted

by the attackers using simple spying processes by the attacker to analyze information

Univ
ers

ity
 of

 M
ala

ya

3

about cache lines, which have been accessed. In addition, AES in various well known

cryptographic libraries namely OpenSSL, polarssl, and libcrypto are vulnerable to

information leakage attacks, when running in different hypervisors’ including XEN and

VMware used by cloud service providers. The current VM in the processor analyzes this

cache information. Although the cache data is protected, the metadata about cache is not

fully protected (Tromer, Osvik et al. 2010).

Since SC attacks are physical attacks, they require the fundamental characteristics of

computation including power consumption, timings it takes to run a program and

exploitation of hardware to extract the secret information of the cryptographic algorithms

(e.g., encryption key). This attack typically works by creating the correlation between the

functionality of the underlying hardware in the physical device and the software.

Moreover, this correlation can be used to exploit the co-located VMs by interpreting the

internal execution of the software program from the observed phenomena of hardware at

a specified time. This allows SC attack to be conducted in an environment where the

attacker and the victim have access to the same hardware in the absence of any prevention

mechanism. In order to exploit the physical properties of the machine, the attacker and

victim have to access the same hardware by using hardware and software SC attacks.

Although in a traditional system, gaining access to the same physical device as a target

was a difficult task in establishing SC attacks. However, CC environment makes it easy

to accomplish SC attacks. In a non-virtualized environment, it is difficult to launch the

SC attack as compared to in a virtualized environment. This is because, in a virtualized

environment, the attacker and the victim are co-located on the same physical machine.

Since SC attacks are used to extract the cryptographic information, thereby, can be

implemented on all those devices which used cryptography concepts for securing their

data such as smart cards, mobile phones, tablets, personal computers, and servers (Fisk,

Fisk et al. 2002).

Univ
ers

ity
 of

 M
ala

ya

4

SC attacks are categorized into various types according to the specific piece of

hardware medium they target and exploit and have been discussed in Chapter 2 in detail.

Since CPU caches are the high interacting and sharing devices between processes and are

always been targeted by the adversaries. Therefore, it enables us to categorize the SC

attacks in this thesis, specifically cache-based SC attacks and the prevention mechanism

based on the exploited hardware medium and physical characteristics of computation.

The state-of-the-art literature shows that a large number of cache-based SC attacks

have been studied in the past in non-virtualized multilevel systems including database,

Operating System (OS) and networking (Zander, Armitage et al. 2007). For instance,

Bernstein’s proposed SC attack based on the cache access time variation (Bernstein

2004). The author used the access time information (whether the data is being accessed

from the cache or from main memory) to extract AES key. Moreover, the co-residency

feature of CC makes cache-based SC attacks more effective in the virtualized

environment. In 2009, the first cache-based SC attack became visible in the community

when Ristenpart et al. (Ristenpart, Tromer et al. 2009) successfully implemented this

attack in the virtualized environment by using the co-residency feature. Because of these

information leakage channels, information security in a public or shared cloud

environment is a general concern that must be considered.

Since these attacks are always implemented by using the hardware or software

channels, therefore, the defensive mechanisms for such attacks are also implemented on

the hardware channel as well as through software (Zhang, Juels et al. 2012). Although

hardware-based prevention mechanisms provide security from SC attacks, these

mechanisms require changing the underlying hardware. The changing of hardware would

take longer time as well as expensive and the SC attacks would be succeeded before the

changing of hardware. Therefore, the software-based prevention mechanism is required

which prevents the SC attacks before occurring and which is hypervisor-based that

Univ
ers

ity
 of

 M
ala

ya

5

comply with the cloud model and does not need to change the software and the underlying

hardware.

1.2 Motivation

CC is a rapidly growing technology in terms of both research work and commercial

applications. Over the last five years, CC has grown exponentially from its origin to the

existing vast research and application development industry. It is predicted that CC

market will grow approximately to over $45.90 billion by 2018. Despite the

characteristics such as dynamic provisioning, multi-tenancy, scalability, and ease of

integration as shown in Table 2.1 in detail, CC is vulnerable to SC attacks because of its

easy accessibility and distributed infrastructure. In spite of this threat to CC, the users of

the cloud are increasing day by day as shown in Figure 1.1.

Figure 1.1: Year wise Progression of Cloud Computing Usage (Irazoqui, Inci et al.

2014)

Figure 1.1 shows the gradual increase from standard technology to virtualized

environment. Moreover, it shows an increase in the number of cloud users compared to

physical machine users. The statistic shows that from 2013 to 2017, there is

approximately one billion increase in the number of online users of cloud-based service

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Applications on Virtualized Infrastructure

Physical Hosts Virtual MachinesUniv
ers

ity
 of

 M
ala

ya

6

through all over the world. The increase in cloud-based service users is estimated from

the fact that in 2013 the cloud users was 2.4 billion and it is predicted that it would be

approximately exceeded to 3.5 billion in 2018 (Portal 2016).

According to a recent Tech News report (NEWS 2015), Apple announced a major

vulnerability to the security of iPhones that some Canadians attacked the iPhones and

iPads with malware that could extract their iCloud passwords and other personal

confidential data. Similarly, according to Digital Forensics Association (DFA), from

2009 to April 2016, the lost records’ quantity in data breaches ranged from 1 to

140,000,000 with an average of 407,926 (DFA 2016). Even if a packets contains only

single bit can be covertly transmitted , 26 GB of data could be leak on a large Internet

Site through SC attacks (Zander, Armitage et al. 2007). Moreover, the CERT statistics in

2017 indicated a 50% increase in the information leakage from insider attackers and

reported more than 40 % of SC attacks (Cert. 2017.). These reports prove that the effect

of SC attacks are unavoidable. This is the reason that motivated researchers to explore

information leakage channel namely SC attacks in cloud environment.

CC is a distributed computing paradigm that enables on-demand access to a shared

pool of scalable computing resources. As a new design paradigm in computing, the goal

of CC is computing consolidation and multi-tenancy. Multitenancy employs

virtualization to share computing physical resources among CC customers. Since CC

provide the logical isolation to cloud resources through sandboxing mechanism across

guest VMs and does not provide the physical isolation. Therefore, data is vulnerable to

information leakage due to the concept of co-residence clients and physically co-

residence VMs provided by CC (Irazoqui, Eisenbarth et al. 2015). Unlike other multilevel

systems (i.e., OSs, databases, networking etc.,), CC allows attackers to access the same

hardware and perform malicious activities among their own users. Specifically, attackers

exploit the physical characteristics of computation and hardware side-channels to access

Univ
ers

ity
 of

 M
ala

ya

7

the place such as cache that by design is restricted to them and gain the information. To

limit this leakage channel, the cache must be divided across the VMs through software

mechanism.

Unlike encryption, which protects confidential information from being decoded by

unauthorized persons, SC attacks aim to attack the encryption systems and to hide the

occurrence of communication. Since the evidence of the existence of communication is

sufficient to detect the physical properties of computation. So encryption is unable to

prevent attackers from detecting the pattern of communication (Zander, Armitage et al.

2007). Therefore, cloud provider, criminals, terrorist company, or government

organization have the interest to hide their confidential communication.

The Cloud features affected by cross-VM SC attacks are data outsourcing, multi-

tenancy, and co-residency. Presently, more than 79% of organizations attempt to utilize

data outsourcing, because approximately 75% of the total ownership cost is assigned to

manage of in-house huge storage. Since any co-resident VM can perpetrate cross-VM

attacks through a covert channel. Therefore, end-users trust will be declined on cloud-

based application.

Although there are several defensive mechanisms such as firewall, cryptography, and

access control, however, these are unable to protect cloud environment from SC attacks.

Moreover, some prevention mechanisms need to change the client software and the

underlying hardware. Therefore, there is a need for a prevention mechanism for cross-

VM cache-based SC attacks which is software-based and does not need to change the

client software and the underlying hardware. In this thesis, the software-based prevention

mechanism is proposed. Our proposed prevention mechanism for cross-VM cache-based

SC attacks, need to be followed by the two key points of the cloud model. First, it does

not need to modify the software on the client-end of interfaces it intends to run and second

it does not require the modification of underlying hardware.

Univ
ers

ity
 of

 M
ala

ya

8

1.3 Statement of the Problem

Although side-channel attacks have existed in the multilevel system including

databases and OSs in the past (Osvik, Shamir et al. 2006), the novel co-residency feature

of CC makes them more effective in virtualized environment. Due to shared technology,

the attacker is no longer required to gain unlawful or restricted access to the victim’s

hardware, which bypasses the first line of defense against such attacks. Because a side-

channel requires the exploitation of the underlying hardware and software, each defensive

mechanism must also be specifically adapted for the underlying hardware and software

channel. Therefore, it enables us to categorize side-channel attacks and the defensive

mechanism based on the hardware and software channel they exploit. Since each channel

provides unique vulnerabilities. The CPU cache is one of the most frequently used pieces

of shared hardware and often deals with sensitive data. Thus it become one of the most

common targets for use in a SC attack as it can more easily be used to extract useful data

at a high rate. An attack made over this channel is referred to as a cache-based SC attack.

Multiple prevention mechanisms are available to prevent cache-based SC attacks in

multiprocessing systems including OS, databases, and networking. However, these

existing mechanisms are unable to prevent the cross-VM cache-based SC attacks, as the

cloud facilitates the users with the shared resources (Kim, Chandra et al. 2004, Percival

2005). Determined adversaries have the ability to place malicious hosts in the cloud

environment on the same machine as a target host (Ristenpart, Tromer et al. 2009). The

malicious hosts are then able to monitor and manipulate the shared cloud resources,

including caches and other hardware resources in order to leak critical information from

the target hosts. In a cloud environment, the prevention mechanisms are divided into

hardware-based and software-based prevention mechanisms, and hardware-based are

implemented on the hardware level (Kim, Chandra et al. 2004, Percival 2005). However,

hardware based countermeasures are unable to provide an immediate solution to the

Univ
ers

ity
 of

 M
ala

ya

9

problem. They will take the time to develop and are failed to protect the existing

hardware. In addition, hardware-based prevention mechanisms are expensive and need

special design hardware to support cache control, or need individual cache, need to

disable the cache, or need to change the replacement policy of cache (Osvik, Shamir et

al. 2006). Consequently, for immediate mitigation of SC attack, software-based

prevention solutions are required. Because software-based solution can be implemented

in the already existed architecture. Therefore, there is a need for a software-based

mechanism for the prevention of cross-VM cache-based SC attacks.

One of the software-based prevention mechanism for cross-VM cache-based SC

attacks is static partition which use the page coloring technique to partition the entire

cache into static parts for various VMs during boot time. Page coloring allows the

hypervisor to limit the cache usage of any application and VMs. However, this method

can only configure the cache usage of each virtual machines at boot time and once the

VM is created we cannot change its configuration. For instance, if we partition the entire

cache into 16 parts during boot time and currently one VM is executing, then only one

part would be assign to that VM and the remaining 15 parts will be idle. We cannot change

the entire cache partition according to running VMs during execution. Moreover, static

cache partition degrades the performance in term of bearable load, cache utilization, and

cache access time. The VMs are only allowed to allocate the memory at boot time from

the same partition that belonging to the same VM.

Since a single VM running in a 4-way partitioned system, therefore, one-quarter of

the total memory is assigned to that VM may lead to wasted resources. Consequently, the

memory resources are maximized even balancing of loads. Therefore, there is a need for

a preventive mechanism for SC attacks which dynamically partition the entire cache for

each VM upon the creation of new VM. Once the VM is created then we would be able

to configure the entire cache for various VMs. For instance, if one VM is created then the

Univ
ers

ity
 of

 M
ala

ya

10

whole cache memory is assigned to that VM on a dynamic basis. If two or three VMs are

created then the cache memory is divided into 2 or 3 partitions accordingly and would be

assigned to those VMs. Moreover, prevention mechanism of SC attacks, need to be

followed by the two key points of the cloud model. First, it does not need to modify the

software on the client-end of interfaces it intends to run and second it does not need the

modification of underlying hardware.

Our goal is to provide a defense capable of preventing cache-based side-channels in

the Cloud while not interfering with the Cloud model and without degrading the system

performance. Using the code base of an open source hypervisor, Xen (Project 2016), we

have conducted our solution based on dynamic cache partition demonstrate to inhibit

cache-based side-channels from occurring within a Cloud server. In our solution, all cache

monitoring and cache partitioning operations are done transparently within the hypervisor

or VMM. Therefore it is applicable to commodity operating systems such as Windows,

of which the source code is unavailable. Second, because guest OSes are black boxes to

the VMM, this single mechanism is portable across all the OSes supported by the VMM.

Our solution is implemented in the hypervisor, therefore it provides cache partitioning

both within and across OSes and also provides more flexibility and opportunities for the

whole-system optimization.

1.4 Statement of Objectives

This research is undertaken with the aim to prevent cache-based SC attacks across

VMs and in CC with minimum overhead in terms of bearable load, cache utilization, and

cache access time. The research aim is accomplished by addressing the following

objectives:

 To study the existing SC attacks in virtualized and non-virtualized environment

involving CPU-cache to gain an insightful understanding to the performance

limitations of current state-of-the-art prevention mechanisms for these attacks.

Univ
ers

ity
 of

 M
ala

ya

11

 To investigate the identified problem by conducting the cross VM cache-based

SC attacks in the real environment and applied the existing prevention mechanism

based on the static cache partition and unveiling the impact of existing prevention

mechanism on the load, cache utilization, and cache access time as well as on the

cloud model.

 To propose a prevention mechanism based on the dynamic cache partition for the

prevention of cache based SC attacks across VMs that leads to an efficient cache

utilization among various VMs.

 To evaluate and validate the performance of our dynamic cache based prevention

mechanism considering three metrics namely: computing load, cache utilization,

and memory access rate and compare it with the state-of-the-art prevention

mechanisms.

1.5 Research Methodology

The research carried out in this thesis used the following four main steps in order to

achieve the four objectives defined in Section 1.4. The proposed research methodology

along with the detail description of research objectives corresponding to each research

phase is given in Figure 1.2.

 The state of the art SC attacks in CC with emphasize on cache-based SC attacks across

VMs are reviewed in the first phase. The SC attacks are generally categorized based

on the computing location, on the way of implementation, and on the way of accessing

the modules. Moreover, the SC attacks based on the computing location are classified

into: intra-VM, cross-platform, and cross-VM SC attacks. Similarly, the SC attacks-

based on the implementation are divided into sequential and parallel SC attacks. In

addition, the SC attacks based on the way of accessing the module is further divided

into invasive, non-invasive, and semi-invasive attacks. Since all the aforementioned

attacks have been discussed in the non-virtualized environment including database,

Univ
ers

ity
 of

 M
ala

ya

12

networking and OS for many years. Therefore, in this research work our focus is on

the cache-based SC attacks in the virtualized environment (e.g., Cross-VM cache-

based SC attacks). The aim of this thesis is to explore the SC attacks involving CPU-

cache and their mitigation techniques in a state-of-the-art cloud system to improve

security in CC. We also categorized the cross-VM cache-based SC attacks according

to the hardware medium they target and exploit, the ways they access the module and

the method they use to extract the confidential information. Through a comprehensive

literature review, we identify the most significant research problem to cross-VM

cache-based SC attacks to address in this research.

 Identifying the advantages

and disadvantages of the

existing work

 Conducting a comparison

based on the qualitative data

 Classifying the literature

review in the form of

taxonomy

 Identifying the open

research problems

Identified

Research Gap

Problem

Establishment

Formulated

Prevention

mechanism based

on Dynamic cache

partitioning

Verified and

Validated solution

To review the Cache-based

Side channel attacks across

Virtual Machines

To investigate the existing

prevention mechanisms for

cross-VM cache-based SC

attacks

To design and develop

prevention mechanism for

cross-VM cache based SC

attacks based on dynamic

cache partition

To evaluate the prevention

mechanism on load, cache

utilization, and memory access

rate parameters

 Conducting experiments on

implementation of cache

based SC attacks in cloud

computing

 Analyzing the result for

prevention mechanism

 Developing an algorithm for

cache monitoring

 Developing an algorithm for

dynamic cache partitioning

 Developing a hypervisor

model based on dynamic

cache partitioning

 Devising a hypervisor-based
prevention mechanism using

dynamic cache partition

 Identifying the performance

of modified hypervisor by

measuring the parameters

 Selecting the existing

prevention mechanism for

comparison

 Verifying by comparing the

benchmark system

 Validating by statistical

modeling and real time

expirements

Figure 1.2: Research Methodology

 The second phase of this research involves the investigation of the identified problem

and verification of its significance through experimental analysis between two VMs

using Xen hypervisor in a real CC environment. By real implementation of cache-

based SC attacks between two VMs in Xen and VMWare hypervisor, we analyzed

Univ
ers

ity
 of

 M
ala

ya

13

that these attacks are extracting the secret cryptographic key via cache information

and are very dangerous in the virtualized environment. The static cache partition at

boot time as a solution to these attacks is exercised to reveal degradation in the

performance in terms of load, cache utilization, and cache access time.

 In the third phase of this research work, we implement and design HBP-DCP

(Hypervisor-based Prevention Mechanism using Dynamic Cache Partitioning)

prevention mechanism that prevent cross-VM cache-based SC attacks to alleviate the

identified problem. HBP-DCP consists of two algorithms: one for cache monitoring

and one for page allocation to each requested VMs. These algorithms are embedded

into the source code of page allocator of existing hypervisor. The basic objective of

cache-based SC attacks is that target VM1 traces the cache access and access time

variation of the victim VM2 to extract the secret information of secret cryptographic

key of the encryption algorithms (e.g., AES, DES). To prevent the cache access

between VMs e.g., victim VM1 from attacker VM2, our proposed HBP-DCP

prevention mechanism divide the cache into partitions on dynamic basis that no VM

would access the partition assigned to another VM. In addition, it divide the cache

into different color on dynamic basis and assign the specific color to each VM.

 We implemented and evaluated the performance of our proposed HBP-DCP

prevention mechanism through benchmarking experiments in the last phase of our

research. A set of standard computation benchmarking along with matrix

multiplication and customized benchmark are used to evaluate the performance of our

proposed HBP-DCP prevention mechanism. A real testbed environment is created by

using Xen hypervisor. Load testing, cache utilization, and memory access rate are the

performance evaluation metrics in this experiment. We synthesize the result of these

three parameters using modified (dynamic partitioned /HBP-DCP/secure): the case of

our solution) with the result of the unmodified (default/insecure) and the static

Univ
ers

ity
 of

 M
ala

ya

14

partitioned hypervisor. Moreover, we devised a statistical model to analyze and

validate the result of performance evaluation metrics. The statistical model is devised

using regression model which is a predominant observation-based modeling and

analysis method. The statistical model is validated using split-sample validation

approach. The empirical results of our performance evaluation are validated through

the statistical regression model.

1.6 Thesis Layout

The research entitled “On the prevention of cross-VM cache-based SC attacks” is

comprising of an extensive study. Therefore, the thesis has been divided into chapters for

a clear reader understandability. The thesis is comprised of 7 chapters and the layout of

the thesis is presented in Figure 1.3.

Chapter 2 aims to review the research undertaken in the field of cross VM cache-

based SC attacks. The chapter describes knowledge about the CC and the vulnerability of

SC attacks to identify and classify the SC attacks across VMs and in CC. Moreover, in

this chapter, cross-VM cache-based SC attacks are focused and the detail about the

prevention mechanism for these attacks are provided which discover the deficiency of the

existing solution. We provide qualitative critical analysis in the aforementioned research

direction based on the metrics derived from the proposed taxonomy. The research

problems are identified by the literature review expose the need for the prevention

mechanism based on the dynamic cache partition for the cross-VM cache-based SC

attacks. Furthermore, several research issues are identified for the future research

direction.

In Chapter 3, we conducted the cache-based SC attacks in the cloud environment in

single VM and across VMs. Using series of experiments for conducting these attacks by

using the Prime + Probe and Flush + Reload techniques in Linux and across VM, we

analyzed that CC is vulnerable to the dangerous information leakage attacks.

Univ
ers

ity
 of

 M
ala

ya

15

Chapter 4 describes HBP-DCP mechanism for the prevention of cache-based SC

attacks across VM in the CC environment. The objectives and assumption undertaken by

the technique are presented. Moreover, the schematic presentation of the proposed

prevention mechanism is presented and each component of the technique is described in

detail. The significance of the proposed technique is highlighted and the performance

evaluation parameter is derived.

Chapter 5 reports on the performance evaluation methodology for the HBP-DCP

technique. The experimental setup is explained with accompanying benchmarks and the

devices. The data collection method regarding the experimental and evaluation methods

namely statistical modeling and benchmarking is described that have been utilized to

evaluate and validate the proposed technique performance. The benchmarking application

is described and the technique to evaluate the statistical modeling is also demonstrated.

In Chapter 6, we present the result of the experimental performance evaluation of the

HBP-DCP technique to prove its efficiency and significance. The experimental

evaluation is based on three parameters, namely load, cache utilization, and memory

access rate. We compare and contrast the result of benchmarking with the statistical

model result to validate the performance of the proposed method.

Finally, Chapter 7 concludes this work by revisiting the aim and objective of this

research that how it is fulfilled. The main contribution of the research is summarized and

the significance and the method proposed in this thesis are highlighted. The future

research directions and limitations conclude the chapter. Univ
ers

ity
 of

 M
ala

ya

16

Thesis Layout

Introduction

Problem Analysis

Review of cache-based Side

Channel Attacks across

Virtual Machine and

Prevention Mechanism

Conclusion

Evaluation of the

Proposed Method

Result & Discussion

Motivation

Problem Statement

Statement of Objectives

Proposed Research Methodology

To signify the undertaken research importance

Thesis Layout

To identify the problem to be addressed in this thesis

To identify the aim of the thesis and objectives to achieve the aim

To describe the steps taken to achieve the aims and objectives

To describe the structure of the demonstrated contents in the thesis

Background

Cross-VM Cache-based Side Channel Attacks

Causes of Cross-VM Cache-based SC Attacks

Types of Cross-VM Attacks

To gain insight in the domain of research in term of cloud computing and side channel attacks

Prevention of Cross-VM Attacks

To identify the cache based side channel attacks across VM

To identify the main reason which help to conduct these attacks

To describe and classify cross-VM side channel attacks

To describe the prevention of cross-VM attacks and proposed various countermeasures

Research Challenges To describe the structure of the demonstrated contents in the thesis

Proposed

Prevention Method

Schematic Presentation

Significance

Components of the Proposed Method

Data Design

To address the problem and present our proposed prevention method as a solution

To describe significance of our proposed prevention mechanism

To introduce the components of the proposed prevention mechanism

To describe the performance evaluation parameters to evaluate proposed prevention method

Conducting SC Attacks To conduct the cache based side channel attacks across VMs

Benchmarking To empirically investigate the existing prevention mechanisms and establish the problem

Research Objectives

Contributions

Significance of the work

Limitation and Future Work

To describe how aim and objectives are acheived

Statistical Modeling

To present the research contribution

To present the features of the proposed prevention mechnaims

To identify limitation of the research work and proposing future directions

To validate the performance of the proposed prevention mechanism

Benchmarking Modeling To evaluate the performance of the proposed prevention mechanism

Validation of Results To verify and validate the experimental results

Evaluation of Results
To highlight the effectiveness of the proposed prevention mechanism by

interpreting and analyzing the experimental results

Figure 1.3: Summary of Chapters Presented in this Thesis

Univ
ers

ity
 of

 M
ala

ya

17

CHAPTER 2: LITERATURE REVIEW

This chapter presents a literature review on the cache-based cross-VM SC attacks and

countermeasure for these attacks. The purpose of this chapter is to detail the literature

work related to our problem domain in order to identify the potential research issues in

the field of SC attacks and their countermeasures in virtualized environment. The primary

research issues identified through the literature review is that with the exponential growth

of CC environment, vulnerabilities and their corresponding exploitation of the prevailing

cloud resources may potentially increase. CC supports multi-tenancy, physical co-

residency features which enable resource sharing among mutually distrusting CC clients

and offers cost-effective, on-demand scaling. Although, these features provides numerous

benefits to the CC tenant, however, resource sharing and VMs physical co-residency

enable a new form of sensitive information leakage such as SC attacks. Unlike encryption,

which protects information from being decoded by unauthorized persons, SC attacks aim

to attack the encryption systems and to hide the existence of communication. Initially, SC

attacks were identified as the main threat on multi-level secure systems i.e. OS, database,

and networks. More recently the focus of researchers has shifted toward SC attacks in

CC. The target of this article is to explore SC attacks, especially cache-based cross-VM

SC attacks and countermeasure in CC and how they compare to traditional SC attacks

and countermeasure. The taxonomies are devised with reference to cache-based cross VM

SC attacks and countermeasures for these attacks. Qualitative comparison of the state-of-

the-art research works is detailed in each section. The chapter also provides the basic

knowledge of the technical elements found in the thesis such as cache-based SC attacks,

Cross-VM cache-based SC attack, and countermeasures for these attacks.

The rest of this chapter is organized is as follows: Section 2 discusses the background

detail of cache-based SC attacks and to classify the cache-based SC attacks into different

Univ
ers

ity
 of

 M
ala

ya

18

types. Section 3 describes the SC attacks in the cloud environment. Section 4 provides

the prevention mechanism for cross-VM SC attacks followed by the discussion on the

existing cross-VM SC attacks and proposed countermeasure. Finally, Sections 6 conclude

this chapter by comparing existing approaches and providing a general design approach

for prevention of SC attacks.

2.1 Background

This section describes the background detail about the CC, cache-based SC attacks,

and previous work related to SC attacks in the cloud. It also describes techniques to

implement cache-based SC attacks. Since the cloud users use the same hardware and the

computational properties of hardware channel namely power consumption and time are

mostly used for these types of attack. Since a cache is the most accessed hardware, most

targeted hardware channel for SC attacks, therefore, this study includes a detail

description of cache-based SC attacks and their typical prevention techniques.

Although there are existing surveys which explored SC attacks in detail (Osvik,

Shamir et al. 2006). However, they investigated the cache-based SC attacks in the non-

virtualized environment including database, networking, and OS. To the best of our

knowledge, this is the first survey which explores the cross-VM cache-based SC attacks

as well as cache-based SC attacks in CC and proposed some countermeasures in the

virtualized environment. The aim of this thesis is to explore the SC attacks involving

CPU-cache and their mitigation techniques in a state-of-the-art cloud system to improve

security in CC. We categorized the SC attacks according to the hardware medium they

target and exploit, based on the ways of accessing the module and the method used to

extract the confidential information. We also investigate countermeasures for their

prevention, required to improve the security in CC.

Univ
ers

ity
 of

 M
ala

ya

19

2.1.1 Cloud Computing

CC can be defined as a new paradigm that delivers computing and IT as a service as

shown in Figure 2.1. The cloud resources on-demand concept has attracted end users to

utilize various CC services, such as “Software, Platform, and Infrastructure” as-a-service

(“SaaS, PaaS, and IaaS”) at low cost (Zhang, Cheng et al. 2010). However, CC is a big

concern for cryptographers because they are putting their data and program out there away

from their trusted computers (Ristenpart, Tromer et al. 2009). Therefore, security in CC

is a critical issue given the distributed infrastructure and user-friendly nature of this

technology. Cyber threats to the cloud environment are different from the threats to

traditional systems (Security 2010).

Examples
End Users

Platform as a

Service (PaaS)

Infrastructure as a

Service (IaaS)

Application

Platform

Infrastructure

Hardware

Business Application,Web Services,

Multimedia

Software Framework (Java/Python/

.Net) Storage (DB/ File)

Computation (VM) Storage (block)

CPU, Memory, Disk, Bandwidth

Resource Managed at Each Layer

Google Apps,

Facebook, YouTube,

Salesforce.com

Microsoft Azure, Google

AppEngine, Amazon DB/

S3

Amazon EC2, GoGrid,

Flexiscale

Data Centers

Software as a

Service (SaaS)

Figure 2.1: Layered Model of Cloud Computing

As cloud service providers offer their customer unlimited use of shared cloud

resources, this makes the cloud environment vulnerable to attacks. Furthermore, CC

facilitates end users with a set of API and software interfaces, opening a window for

intruders. As company delivers services (SaaS, PaaS, IaaS) from cloud provider in a

scalable way, they provide an opportunity for intruders to gain an inappropriate level of

control over the cloud resources and this shared technology of CC enables intruders to

extract information in the form of SC attacks. Table 2.1 describes the characteristics of

Univ
ers

ity
 of

 M
ala

ya

20

CC. CC introduces a multitenancy feature, however, this new concept of co-residence

client and physical co-residency enables hardware and software covert and SC attacks.

Table 2.1: Characteristic of CC

Characteristics Description

Dynamic provisioning Mobile users execute their application in a flexible way without

any advance reservation for cloud resources

Scalability The deployment of mobile applications meet the unpredictable

demand

Multi-tenancy Multi-tenancy provides sharing technology of cloud resources

Ease of integration Multiple cloud services from different cloud service providers

can be integrated to meet user demands

Despite these characteristics, CC is vulnerable to SC attacks because of its easy

accessibility and distributed infrastructure. Although there are several defensive

techniques such as firewall, cryptography, and access control, however, are unable to

protect cloud environment from SC attacks. Therefore, there is a need for a preventive

mechanism for SC attacks.

2.1.1.1 Virtualization

Besides the benefits of multi-tenancy and physical co-residency, CC has another

characteristic called virtualization. Virtualization involves the abstraction of the physical

machine to OSs in multiple VM on the same physical device isolated by the Virtual

Machine Manager (VMM) or hypervisor. In virtualization, the hypervisor namely the

XEN and VMware are responsible for the communication between VM as shown in

Figure 2.2. Although the hypervisor uses sandboxing techniques to provide logical

isolation across guest VMs for modern virtualization, this logical VM isolation is not

equal to physical isolation. It is also not sufficient if the attacker uses the SC attacks to

circumvent them because VM uses the same hardware, which is a serious threat to VM

logical isolation (Ristenpart, Tromer et al. 2009). The literature shows that attackers can

use the SC attacks to acquire detail about the memory access pattern of another program

such as the cryptographic algorithm that performs the encryption with an unknown private

Univ
ers

ity
 of

 M
ala

ya

21

key. These SC attacks affect and observe the cache state and then analyze the effect on

the encryption’s execution time, during, or after the execution of encryption. Since the

VM resides on the same physical hardware, it is at risk to SC attacks in virtualized

environment and this has been a known problem for the last 10 years (Ristenpart, Tromer

et al. 2009). For instance, Ristenpart et al. (Ristenpart, Tromer et al. 2009) successfully

implemented the cache-based SC attack in the virtualized environment for the first time

and violate and break through the logical isolation supplied by a sandboxing mechanism.

In fact, he is not only able to co-locate two VM on the identical physical device but also

able to extract the key stroke by a victim VM. As described in the following section, the

prevention mechanism of SC attacks need to be followed by the two key points of the

cloud model.

CPU

Memory

Shared Resources

Virtual Machine Monitor (Hypervisor)

VM1

MEMMEMMEM

OPS2OPS1 OPS3

App3App2App1

VM3VM2
Side Channel

Attacks

Figure 2.2: Virtualization

2.1.1.2 Cloud Model

We refer the cloud model in this thesis as a specific relationship that the CC has

established with its users and the underlying hardware. The two key points that have been

highlighted by the cloud model has become commonplace in the CC environment (IBM

2012). According to the first key point, the users have no knowledge or permission to

change the cloud software they intend to run and is always able to run canonical software

Univ
ers

ity
 of

 M
ala

ya

22

on the cloud. The second point is that the users always run the software that does not need

to change the underlying hardware of cloud because the cloud is built on the canonical

hardware. According to these two key points of the cloud model, any modification to the

CC must comply with the listed two points. Therefore all the solution comply with the

cloud model if:

 If it does need any modification in the underlying hardware

 If it does not need the clients to change their software which they intend to run

on the cloud

If a solution is developed according to these two points then it complies with the cloud

model and can be easily applied to the CC environment without altering the already

established functionality of CC. We design our solution server based to keep in mind the

above mentioned two point and therefore transparent to the clients and the underlying

hardware. The client does not need to change their software as well as does not required

to change the underlying hardware.

2.1.2 Side Channel Attacks

Traditionally, in cryptography, cryptographic devices are thought of as black boxes.

It means that the only way attackers can gain access to these devices. Since the data and

computation are by giving them input and receiving the output of the computation, what

is going on within the devices is completely hidden from the attackers. Attackers use

physical attacks e.g., SC attacks to gain more information about the data used in the

devices. Over the last decade, side channels that transfer confidential data in a way that

violate security rules have been identified as a major issue in implementing cryptographic

algorithms. Although overt channels utilize the system's secure data object to transmit

confidential information in a way that does not violate the security rules. These channels

use the data object to hold the information including buffers, files, shared memories, and

thread signals. These data objects are normally viewed as a data container. On the other

Univ
ers

ity
 of

 M
ala

ya

23

hand, covert or side channels use system resources or entities to transfer information

between subjects that are not normally viewed as a data container. In this chapter, a survey

is conducted on the cross-VM cache-based SC attacks.

SC attacks are the physical attacks that use the physical process to extract the secret

information of the cryptographic algorithms such as encryption key. The computation is

a physical process that involves the use of all kinds of physical characteristics of

computation such as the timings it takes to run a program, the characteristic of the power

consumed during a program execution, electromagnetic radiation, acoustics, and

temperature to leak the confidential information. This attack typically works by creating

the correlation between the functionality of the underlying hardware in the physical

device and the software and this correlation can be used to infer the internal execution of

the software program at a specified time. Although the state-of-the-art literature studied

these attacks for numerous years in the context of a multi-level embedded system and

smart cards, the literature showed that the microprocessor is also vulnerable to these

attacks (Bernstein 2005, Percival 2005, Osvik, Shamir et al. 2006). Traditionally, to

accomplish a physical attack in multilevel embedded systems (e.g., database and OS) is

a difficult task because it requires gaining physical access to the system. However, in a

virtualized environment, because of resources sharing, gaining access to a system is very

easy.

Smart cards are the most targeted device for SC attacks and because of the noisy nature

of these attacks, it is very difficult to collect sensitive information and gain physical

access or proximity. However, a virtualized environment makes it possible to gain

physical access to the system. The more traditional attacks are used to attack and extract

the information from a general-purpose computer e.g., Attacks that authorize an attacker

to acquire physical access to the secret data of the entire system by exploiting flaws in

OS. SC attacks can be implemented on all devices including mobile phone, PC, tablet,

Univ
ers

ity
 of

 M
ala

ya

24

and server, which use a cryptographic algorithm for securing information. For instance,

the web browser has an embedded cryptographic algorithm called RSA, which is widely

used by the Secure Sockets Layer (SSL) today for secure communication and electronic

data transfer over the Internet. Moreover, these attacks are generally categorized into

hardware-based channel including power analysis, bus probing and a software-based

channel including timing attacks, cache attacks, and memory attacks.

2.1.3 Taxonomy of Side Channel Attacks

SC attacks can be categorized into different types based on the computing location

(virtualized and non-virtualized), the implementation, and the ways of accessing the

module. The detail of each category is given in the following sections as well as in Figure

2.3.

2.1.3.1 Side Channel Attacks based on the Computing Location

These attacks are categorized based on virtualized and non-virtualized environments

as shown in Figure 2.3. In addition, the attacks are also classified on the basis of whether

the victim and the attacker have existed in the same cores or in different cores as shown

in Figure 2.4. The SC attacks have been studied in a multiprocessing system including

the database, OS, and in networking for many years. In these systems, the SC attacks are

implemented on the same OS and on same cores and also on the different cores in the

same OS. However, in virtualized environment, the attacks are implemented on the

different guest OS either on the same or on different cores.

(a) Intra-VM Side Channel Attacks

These are also called process level SC Attacks. Malicious processes P1 and P2

are positioned in the same OS in the domain unit (Dom U) and in the same hardware with

different security levels. In the single VM, one higher level secure process P1 (attacker)

leaks the confidential information from the process P2 having a low-security level

Univ
ers

ity
 of

 M
ala

ya

25

(victim) using the SC attack. These attacks can be implemented in the guest VM where

the attacker and the victim have existed in the same or on different cores in the single

guest VM. However, process level SC attacks for the traditional personal computer have

been surveyed for many years, and several mature defensive mechanisms and analysis

techniques have been mentioned in the literature (Brickell, Graunke et al. 2006). The state

of the art literature shows several defensive mechanisms for intra-VM or process level

attacks (Bernstein 2005, Aciiçmez 2007, Acıiçmez, Brumley et al. 2010). The detail of

each one is given in Table 2.2.

(b) Cross Platform Side Channel Attacks

These attacks are also called network level SC attacks. Malicious processes P1

(attacker) and P2 (victim) are placed in different OSs and on different hardware platforms.

The network is the main source of communication between these two processes P1 and

P2, therefore, these processes use network storage and timing channels to transfer the

confidential data in such a way that violates the policy of the system security. SC attacks

are mainly based on the entire network, the literature showed the study on these attacks

in the non-virtualized environment since 1987 (Zander, Armitage et al. 2007, Irazoqui,

Eisenbarth et al. 2015). These attacks can also be implemented in the cloud environment

but its prevention solution is already available in the literature (Brickell, Graunke et al.

2006, Osvik, Shamir et al. 2006).

(c) Cross-VM Side Channel Attacks

These are the OS level SC attacks. Malicious processes P1 (attacker) and P2

(victim) are situated in distinct domains but the underlying hardware platform is same.

Cross-VM SC attacks are introduced by the hypervisor managed multi-tenancy and VM

Co-residency features (Ristenpart, Tromer et al. 2009, Suzaki, Iijima et al. 2011, Wu, Xu

et al. 2012, Zhang, Juels et al. 2012). Confidential information (e.g., extraction of a

Univ
ers

ity
 of

 M
ala

ya

26

cryptographic key) may be leaked by the SC attacks among VMs and competitive

companies that are physically co-located, which will bring huge economic losses to the

CC. Cross-VM cache-based SC attacks are further categorized into shared memory-,

CPU-load-, and cache-based attacks. In SC attacks based on the shared memory SC

attacks, different memory access intervals are used to extract the secret key of any

cryptographic algorithm and sensitive information about the memory. In CPU-load based

SC attacks, the physical characteristics of computation (e.g., physical resources) such as

CPU execution time is used to extract the confidential information and the secret key of

any cryptographic algorithm. While in cache-based SC attacks the different cache access

latencies (e.g., cache miss and cache hit) are used to transmit and extract data covertly.

Details of the cache-based SC attacks are given in the following section. In this thesis,

our focus is on the cross-VM cache-based SC attacks which we will elaborate in detail in

the upcoming section.

Shared Resources

Operating System

Virtual Machine Monitor (Hypervisor)(Vmem, VCPU, Shared memory)

Virtual Machine 1 Virtual Machine 2

Cross-VM Side Channel

Attacks

SysCalls SysCalls

HyperCallsHyperCalls

Process Level Side

Channel Attacks

Network Level Side

Channel Attacks

Process I Process J Process K Process L

Figure 2.3: Types of Side Channel Attack in Hypervisors (XEN)

2.1.3.2 Side Channel Attacks based on Implementation

SC attacks can also be classified into parallel and sequential attacks, based on the

implementation as given in Figure 2.4. These attacks are differentiated as to whether they

Univ
ers

ity
 of

 M
ala

ya

27

are conducted on parallel or sequential access to the cache memory of CPU. These types

of attacks are the most known cache-based SC attacks in CC. The following section

describes these two types of attacks in detail.

(a) Sequential Side Channel Attacks

In order to establish cache-based SC attacks, the victim and the attacker need to

share some portion of cache memory. In present-day hardware, two different approaches

are used to share caches between multiple cores. One approach is that cache is assigned

to one CPU core or the cache is accessed by two processes sequentially while the other is

for them to have parallel access or the CPU cache is shared between different CPU cores.

Sequential access requires a process context switch to be on the same CPU core, whereas

concurrent access can be achieved by having a shared cache between CPU distinct cores

based on hardware restriction. The literature shows that there is a lot of research for both

types of the channel (Wu, Xu et al. 2012). In both types the sequential access is typically

seen as more portable, as the concurrent access is to a cache is only allowed by some

systems. Sequential SC attacks work in a way that the receiver (attacker) will wait for a

message to be read until the sender (victim) writes a message. Due to the ordering, there

is a clear window in which the cache can be flushed for prevention purposes that are when

the context switch occurs between the attacker and the victim. All other cache-based

sequential SC attacks rely on this mechanism, making it a well-known example of a

canonical SC attack. Moreover, all cache-based cross-VM SC attacks have been based on

this fundamental method; an effective restriction of its principles could, therefore, prevent

all current SC attacks in the cloud (Zhang, Juels et al. 2012).

(b) Parallel Side Channel Attacks

Parallel SC can be achieved by adapting sequential SC on a shared-cache system

having Last Level Cache (LLC). In this approach, the probing (attacker) and target

Univ
ers

ity
 of

 M
ala

ya

28

(victim) processes are located on distinct cores but have concurrent access to the shared

LLC. Although the access to a cache memory in both sequential and parallel attacks are

the same, the parallel access method does not require to trigger between two VMs. This

is because there is no clear gap in the Trigger and the Probe steps and both have occurred

at the same time. Although similar to the sequential method, the process originates with

the probing executing the “Probe” step, however, unlike sequential this method has no

context switch so the target process is started after probe step. Once the cache is primed,

like the sequential, the target VM can execute the “Trigger” step rather than the “Trigger"

and “Probe" steps are executing concurrently. However, in comparison to a sequential SC

attack, the parallel technique is not so reliable as an attack medium because the more

noise in the system makes them unreliable, and also because while one VM reads a cache

line, the other VM modifies another cache line.

To date, the literature described that only a sequential SC attack can do a very serious

destruction in the cloud (Zhang, Juels et al. 2012). Although a parallel channel attack is

difficult to conduct, as it still holds the ability to be applied in such an attack and gain

unauthorized access to the information about a VM. In addition, it is difficult to flush the

cache in parallel access, because the VM might change the cache, rendering it useless and

generating too much overhead. Parallel cache-based SC attack can be avoided by

restricting the ability of co-resident VMs on the physical machine from evicting one

another’s data from the cache memory.

2.1.3.3 Side Channel Attacks based on the Way of Accessing the Module

Anderson et al. (Anderson, Bond et al. 2006), categorized SC attacks into invasive,

non-invasive and semi-invasive attacks based on whether these attacks have direct or

indirect access to the device as shown in Figure 2.4.

Univ
ers

ity
 of

 M
ala

ya

29

(a) Invasive/ Hardware Side Channel Attacks

In this section we discuss the physical attacks involving the interaction of

attackers with the chip package and direct physical access to the components by

depackaging the chip. The well-known example of this is the direct connection between

a wire and a data bus to observe the transfer of data. In addition, these attacks involve the

probing or modification of the chip once it is opened. Invasive attacks can be achieved

by getting direct access through electrical to the internal parts of the main crypto

processor. For instance, to capture signal of a bus line, the attackers place a micro probing

needle that can open a hole to get direct access to the passivation layer of a microcontroller

chip. These attacks are not limited to a smart card but can also be performed on

Complementary metal–Oxide–Semiconductor (CMOS) components. However, these

attacks are expensive, since they require the individual or physical access of the

compromised devices.

(b) Non-invasive/ Software Side Channel Attacks

SC attacks, also known as passive non-invasive attacks, exploit the directly

accessible interface of the cryptographic devices. However, these attacks do not leave

behind any evidence because the cryptographic device is not permanently modified.

These attacks involve playing with the clock signal and voltage, which exploit the

physical characteristics of computation (e.g., the unintentional leakage) such as execution

time and the power consumed to run a process. The device’s computation process can be

observed or manipulated by local non-invasive attacks. For instance, the fluctuation in

the current in a power analysis attack, consumed by the devices can be measured with the

high accuracy, and by correlating the measurements obtained with the computations of

the underline hardware the value of cryptographic keys can be extracted. These attacks

are dangerous as the owner of the compromised device is often unaware that the secret

key has been stolen.

Univ
ers

ity
 of

 M
ala

ya

30

Non-invasive attacks are further divided into power analysis and fault analysis SC

attacks. Power analysis is further categorized into Simple Power Analysis (SPA),

Differential Power Analysis (DPA), and Fault Analysis (FA) attacks. In SPA attacks, the

attackers try to leak information and the encryption key by observing the power

consumption of the device (Mangard 2002). While in a DPA (Kocher, Jaffe et al. 1999),

instead of looking for a direct relation between the secret data and the power consumption,

the attackers try to check the variance in power consumption over many iterations of the

algorithm. The power consumption of a unit is generally used to observe the internal

execution while an encryption operation is being performed. SPA and DPA are the non-

invasive SC attacks that allow the attackers to attack and harm the tamper-resistance

device by analyzing their power consumption (Countermeasures). DPA is a most

dangerous security threat for all the electronic devices which use cryptography for

performing encryption. The countermeasure for SPA and DPA attacks include hardware,

software, and protocol prevention solution that secure tamper-resistance electronic

devices from SC attacks. However, FA attacks generate fault in a system and investigate

the encryption algorithm to extract secret keys by using this faults (Aumüller, Bier et al.

2002). Fault analysis attacks can be further categorized into conventional and differential

fault analysis. A conventional FA attack (Li, Sakiyama et al. 2010) aims to retrieve secret

data by analyzing the result of faulty encryptions. While in differential FA attacks (Biham

and Shamir 1997), the attacker encrypts the same plaintext twice, once with and once

without an induced error. The attacker then tries to identify the round in which the fault

occurred by looking at the difference between the two obtained ciphertexts.

(c) Semi-invasive SC Attacks

Compared with the non-invasive attacks, semi-invasive attacks are very difficult

to implement as they involve the opening or depackaging of the chip. However, these

attacks have implemented without the requirement of an expensive equipment in

Univ
ers

ity
 of

 M
ala

ya

31

comparison to invasive attacks. Furthermore, the implementation of these attacks requires

only a short time. They can be achieved by depackaging the chip to get direct access to

the chip surface but without harming the chip passivation layer or making any illegal

electrical entry other than with the authorized interface. These attacks could be

accomplished using UV light, X-rays, electromagnetic fields, laser, and another source of

ionizing radiation. For example, the attacker can ionize a transistor by using a laser beam

and thus changing the flip-flop’s state that holds the device’s protection state (Aciiçmez,

Koç et al. 2007).

Figure 2.4: Taxonomy of Side Channel Attacks

Existing literature shows that these three attacks are local and can be easily prevented,

however, remote attacks are more challenging to prevent since they are not dependent on

the quality of the crypto processor hardware (Smith 2003). Having discussed the

Intra-VM

Side Channel Attacks

Cross Platform Side

Channel Attacks

Cross-VM Side

Channel Attacks

Trace Driven

Attacks

Differential

Power Analysis

Parallel Side

Channel Attacks

Access Driven

Attacks

Time Driven

Attacks

Classification

based on Computing

Location

Classification based on

the way of Accessing

the Module

Classification based on

the Implementation

Side Channel

Attacks

Non-Invasive

Attacks

Invasive Attacks

Semi-Invasive

Attacks

Shared memory-based

Side Channel Attacks

CPU-load based Side

Channel Attacks

Cache-based Side

Channel Attacks

Conventional

Fault Analysis

Simple Power

Analysis

Sequential Side

Channel Attacks

Cache Timing

Conventional

Timing

Fault Analysis

Attacks

Power Analysis

Attacks

Differential

Fault Analysis

Univ
ers

ity
 of

 M
ala

ya

32

vulnerability issues concerning CC, this current research focuses mainly on the defensive

mechanism of cache-based SC attacks (cross-VM attacks) in CC. Our proposed HBP-

DCP solution is based on the cache-based time-driven SC attacks. The detailed

classification of these attacks is given in Figure 2.4.

2.2 Cross-VM Cache-based Side Channel Attacks

SC attacks existed in the past in multilevel systems including database, OS, and

networking (Zander, Armitage et al. 2007), however, the co-residency feature of the CC

makes cross-VM cache-based SC attacks more effective in this paradigm (Ristenpart,

Tromer et al. 2009). It was very difficult to gain physical access to the system in the past,

but with shared resources, in the cloud, physical access can be easily accomplished

(Chang and Ramachandran 2016). Cross-VM Cache attacks are purely software based,

and they extract the full encryption key of the well-known cryptographic algorithms

including RSA, AES without any direct or physical interaction with the cryptographic

devices (Zhang, Juels et al. 2012). These attacks are deployed very easily and are efficient

as they require a short time to break the well-secured systems. Moreover, these attacks

use the spying process to collect information about the accessed cache line for extracting

the cryptographic key from Linux encrypted partition. Irazoqui et al. (Irazoqui G 2014)

conducted the Bernstein’s correlation attack in a virtual environment for the first time to

show the implementation of cross-VM SC attacks on KVM, VMware, and Xen.

Similarly, Irazoqui et al. (Irazoqui, Inci et al. 2014) established the Flush + Reload

cache-based SC attack across VM executing on a VMware hypervisor. They used a

memory deduplication technique known as transparent page sharing for launching the SC

attack and recovered the AES key in a very short time from the AES implemented in

OpenSSL 1.0.1. One of the main features of cache-based SC attacks is the memory

deduplication, which has been explained in the earlier section of this thesis. To this extent,

CPU Cache is seen as the attackers’ most targeted device in the cloud due to the device’s

Univ
ers

ity
 of

 M
ala

ya

33

high shared interaction between processes, cores, and VM. This interaction leads to

crosstalk between processes and VM, thus leaking the most fine-grain information of

computation (power, time) to attackers. Although the virtual memory mechanism secures

the stored data in the cache memory from SC attacks by, the “metadata” have the most

fine-grain information about the cache information and pattern of the memory access (i.e.

the addresses of which are being accessed) is not fully protected. Several approaches for

measurement that exploit crosstalk between processes have been identified. One approach

is to measure the effect of the cache on the encryption algorithm (requiring accurate

timings). Another approach analyzes the effect of the encryption algorithm on the cache

status. Despite using the partitioning method, which includes sandboxing and memory

protection, these attacks allow an unauthorized program (attacker) to attack the victim

processes on the same physical device running in parallel. These methods provide the

logical isolation but are unable to secure communication between processes that are

physically located on the same domain.

In comparison to hardware (physical) SC attacks, software cross-VM cache-based SC

attacks have a more serious impact on the systems and clients or cloud users. Since almost

all modern microprocessors contain cache, physical access to a system very easy in the

cloud, making the software attacks much easier to accomplish, and are also effective on

disparate platforms (Bernstein 2005, Percival 2005, Osvik, Shamir et al. 2006).

Consequently, this makes cross-VM cache-based SC attacks as a new weapon for the

adversaries and a much-discussed topic in the literature. These attacks can be achieved

without exploiting bus and memory probing since it is not must for software cache-based

SC attacks to gain physical access. The attacker can exploit the system by acting like a

legitimate user performing a normal operation without the requirement to find the system

flaws to perform unauthorized operations. The attacker and the victim are two processes

Univ
ers

ity
 of

 M
ala

ya

34

that do not have the same address space, therefore this always makes the attacker able to

leak confidential information about the victim’s activity.

 The cross-VM cache-based SC attacks are also called remote attacks involving

faraway observation of the normal input and output data of the device. Timing

observation, cryptanalysis, analysis of the protocol, and SC attacks on the programming

interfaces of applications are examples of remote timing attacks. The cross-VM cache

based SC attacks are further categorized into time-, access-, and trace-driven attacks,

which are explained in detail in the following section. Timing analysis attacks conducted

on shared caches memory have been widely studied in the cryptanalysis of cryptographic

algorithm, e.g. (Bonneau and Mironov 2006, Acıiçmez, Schindler et al. 2007, Intel 2007,

Brumley and Hakala 2009, Tromer, Osvik et al. 2010, ARM 2012) in a non-virtualized

environment. In this research work, we elaborate the cross-VM cache-based SC attacks

in detail. To the best of our knowledge, no prior works have conducted a survey on cross-

VM cache-based SC attacks and countermeasure. Therefore, the main contribution of this

chapter is to thoroughly study the literature on cross-VM cache-based SC attacks and

proposed countermeasure to these attacks.

2.3 Causes of the Cross-VM Cache-based Side Channel Attacks

Cross-VM attacks are conducted between the two VMs (victim and Attacker) in a

virtualized environment. In this section, the main causes in the memory management

system are described that allow the information leakage in virtualized environment.

Although sandboxing provides logical isolation across guest VMs, this isolation is

considered to be imperfect and the attacks exploit the memory deduplication and huge

pages to leak the secret information across VM boundaries. Since the cache is the most

interactive device between VM, it often becomes the targeted device for SC attacks in the

modern computers. Therefore, the source of information leakage by using cache in X86

computer is shown in the Figure 2.5.

Univ
ers

ity
 of

 M
ala

ya

35

Memo

Shared

X86

Memory Deduplication
Branch

Prediction Unit
Arithmetic

Logic Unit
CacheMemory Bus

Figure 2.5: Sources of Information Leakage on Shared Hardware

2.3.1 Last Level Cache Memory

The cache memory is located between RAM and CPU cores to remove the delay added

by the accessing of the data. The main objective of the cache memory is to decrease the

required time for accessing data from the main memory. Modern CPU have more than

one cache memory to improve the computation performance by improving the efficiency

of cache access. A unit of a cache memory is called line, which consists of a fixed number

of bytes. There are a fixed number of cache lines in each multiple cache sets and these

cache lines in a cache set is called an associative. The cache is divided into L1, L2, and

L3 level. The associative of L1 and L2 cache memory are 8-way associative while the L3

cache memory is a 12-way associative (Handy 1998).

Cache is classified into inclusive and exclusive on the basis of the design approach. In

the inclusive design approach, the data is stored in the L1 cache and is also duplicated in

the L2 and L3 cache at the same time. While in the exclusive design, the data is never

shared between all the cache levels. In modern Intel processors including Core I5 and

Core I7, the L3 or LLC is shared between all CPU cores. The salient characteristic of the

LLC is that it is by design an inclusive cache memory. Therefore, the data stored in the

L1 and L2 caches is also copied in the LLC. Consequently, in the case of a cache miss in

Univ
ers

ity
 of

 M
ala

ya

36

the L1 cache, the data will be checked in L2 in order to decrease the cache miss rate.

Furthermore, if the data is flushed or evicted from the LLC, it will automatically be erased

from all the other levels of the processor’s cache.

Although shared cache has some advantages such as increased utilization of cache

space, decreased cache miss rate, faster inter-core communication through shared LLC

(L3 and L2), and the elimination of undesired replication of cache lines to reduce

aggregate cache footprint. However, the major disadvantage of shared LLC is the

uncontrolled contention can occur by allowing CPU-cores to access the shared LLC on a

freely basis. Consequently, a scenario can occur where one core can easily access and

evict the useful content of LLC (L3and L2) belonging to another core result a high LLC

miss rate. This cache miss rate degrades the overall performance of the application and

system. Similarly, one core can easily extract the useful data of another core can cause

SC attacks.

The cache is divided into cache lines having fixed size of l bytes. A cache line contains

the information that can be fetched or written at the time of cache access. When the CPU

accessed the data stored in the memory for the first time, it first queries the cache memory

for data, if it is in the cache then the required time for fetching the data will be low. This

is because the memory line that contains the regained data is loaded into the cache

memory. If the same data is retrieved again from the identical memory line, then for the

same data access the access time will be minimized and this is called a cache hit.

However, if the needed data is not available in the cache then the CPU will fetch the data

from the main memory and the required time for fetching the data will be high and this is

called cache miss. The CPU fetches the data from the main memory when the cache miss

occurs and stores a copy in the cache. Therefore, encryption time for a cryptographic

algorithm directly depends on the position of the accessed table, which in turn depends

on the internal confidential state of the cipher. The secret key of the encryption algorithm

Univ
ers

ity
 of

 M
ala

ya

37

can be extracted by exploiting this timing information. In the case of unavailability of

cache lines, the data that is not recently being accessed are removed to create a space for

the input lines to cache. Therefore, the eviction of cache lines from the cache memory is

based on the not recently accessed cache line policy.

TLB (Translation-Lookaside Buffer) is the fastest hardware cache of virtual to

physical address translation is also called address translation cache. Upon each virtual to

physical translation, the hardware first checks the TLB cache whether the virtual memory

reference is already present in the TLB or not. If present in the TLB then the translation

is performed very quickly without consulting with the page table. TLB improve the

performance of the system by making virtual to physical translation possible. The

hardware can handle the TLB misses entirely by using page table base register that exactly

tell the location of the page table in memory. On the TLB miss the hardware check the

exact page table and extract the translation and update the translation in the TLB.

Cache hit rate= number of hits/ total number of access

When the TLB cache accesses the memory for the first time this misses always occur,

however, spatial locality improve the TLB performance. The elements of the array are

tightly couple so always TLB miss occurs only for accessing the first element of the array.

The idea behind hardware is to take advantage of locality. The functionality and

performance of TLB cache are always dependent on the spatial and temporal locality

features of cache. According to temporal locality the data or instruction that are recently

been accessed will likely be accessed again in the future (e.g., loop variables). In contrast,

with spatial locality, the data and the information in the nearby location of the already

accessed will be likely accessed in the future. Consequently, when the data is retrieved

from main memory by the processor, the copy of that data with nearby memory data will

be put in the cache memory to minimize the future access delay of data. The spatial

Univ
ers

ity
 of

 M
ala

ya

38

locality facilitates the CPU by storing the entire bigger block of data along with the data

in nearby locations. The execution performance can be improved by storing the entire

block of data because the data that is located nearby the originally retrieved values are

likely to be retrieved again. With address space identifier (ASID), the TLB is able to hold

and differentiate translation from the different process without any confusion during

context switching.

How do the attackers work? To exploit the timing information, the attacker chooses a

cache sized memory buffer and set the cache to a known state before the victim processes

an execution. The Attacker accesses all the lines in the buffer, loading the cache with its

data. When the victim executes, the victim replaces some memory in the cache. The

attacker then measures the time to access the buffer cache (Liu, Yarom et al. 2015).

Access to the cache line is faster than to evict lines. CPU caches are the most targeted

hardware devices by adversaries due to the high-rate interactions between processes,

shared among VMs or Cores, and have the most fine-grain information about the

computing processes. In the past, SC attacks are applied on L1 and L2 caches, and in

virtualized environment L2 cache in Core 2 duo system is the most targeted device for

cache-based SC attacks (Figure 2.6). Most of the attacker are still using L2 cache for

launching cache-based SC attacks (Godfrey and Zulkernine 2014).

However, in modern PC including Core i5 and Core i7, the LLC or L3 is the most

targeted device for SC attacks. This is because every core has their own L1 and L2 cache

but the L3 cache is shared between every core in modern architecture as shown in Figure

2.7. Consequently, the attackers always target LLC (L3) for SC attacks. Flush and Reload

attacks exploit the cache behavior and can be mostly implemented by using LLC. Figure

2.6 shows the architecture of Core i5 processor in which the L2 cache is always shared

between cores and VMs. Every cores have their own L1 data cache and instruction cache.

Univ
ers

ity
 of

 M
ala

ya

39

Virtual Machine Monitor (XEN, VMWare, KVM)

Main Memory

L2 Cache (Shared between cores)

L1 Data- Cache L1 Instruction-Cache

Hardware

CORE 2 Duo Memory Hierarchy

Core 1 Core 2

L1 Data- Cache L1 Instruction-Cache

VM 1 VM 2

Figure 2.6: Virtual Machine CORE 2 Duo Memory Allocation Hierarchy

In contrast to Core i5, Core i7 process have their L1 and L2 cache but L3 cache is

always shared between cores and VMs as shown in Figure 2.7. The access time for

accessing information from main memory or from L1 or L2 cache closer to main memory

is more than from accessing it from L3 cache closer to the core. Cache-based SC attacks

Virtual Machine Monitor (XEN, VMWare, KVM)

Virtual Machine 1 Virtual Machine 2

Main Memory

L3 Cache (Last Level Cache)

Core 1 Core 2 Core 3 Core 4

L1 Cache (data &

Instruction)

L2 Cache L2 Cache L2 Cache L2 Cache

Hardware

CORE i5 and i7 Memory Hierarchy

L1 Cache (data &

Instruction)

L1 Cache (data &

Instruction)

L1 Cache (data &

Instruction)

Figure 2.7: Virtual Machine CORE i7 Memory Allocation Hierarchy

Univ
ers

ity
 of

 M
ala

ya

40

exploit this cache access timing difference. There is a need for a prevention mechanism

that hides this timing difference from the attacker and which does not need any changes

in the software or hardware by the client (Mishra, Pilli et al. 2017).

2.3.2 Memory Deduplication

One of the major causes of SC attacks is content aware sharing or memory

deduplication. By using content aware sharing, the same pages are recognized and loaded

by the disk location (Miłós, Murray et al. 2009). By merging the identical pages and

making a single copy of the redundant data, many VMs are able to run on the host system

(e.g., Hypervisor) (Xiao, Xu et al. 2013). This technique improves the memory efficiency

by reducing the space and bandwidth requirements for data storage of multiple clients.

However, deduplication has a great impact on the security of the system and it opens the

door for cache-based SC attacks. The memory deduplication leaks sensitive information

due to the deficiency in the Intel x86 processor and the Flush + Reload attack exploits

this deficiency to monitor memory lines. The recent statistics (Russell 2010) showed that

deduplication is the most impactful storage technology and in the near future, 75% of all

backups will apply this. The memory deduplication mechanism, which first appeared in

the Linux kernel version 2.6.32, is KSM (Kernel Same-page Merging) (Suzaki, Iijima et

al. 2011). KSM is a memory saving feature and has also been suggested for virtualization

such as Satori (Miłós, Murray et al. 2009). However, this approach is a big security threat

for cryptographic algorithms in virtualized environment (Gullasch, Bangerter et al. 2011).

The memory deduplication feature is enabled by default in some hypervisor namely

VMware ESXI and Virtual Box. However, recognizing it as a major threat to security,

Amazon never enabled this memory deduplication feature on their compute cloud server

EC2.

The memory deduplication can be exploited by one of the low noise cache-based SC

attacks called flush reload attack. All the current LLC attacks (e.g., flush + reload attack

Univ
ers

ity
 of

 M
ala

ya

41

on L3) require deduplication. In these attacks, the target of the two processes is to access

the same physical memory location. This means no identical contents are stored in the

physical memory since the memory deduplication feature has eliminated the redundant

data from the memory allowing the cross-sharing of data between processes. However,

this mechanism creates a security vulnerability in CC. The system must protect data

shared between two non-cooperating processes. Due to the additional copy operation, the

access time to the normal page and de-duplicated page is different. Therefore, in

virtualized environment, the attackers can easily get the memory access information from

victim VM because the victim and attacker VM are collocated on the same physical

machine (Suzaki, Iijima et al. 2011, Suzaki, Iijima et al. 2011). For instance, the attacker

can easily detect whether the de-duplicated page exists in the collocated VM or not by

requesting the same page from the memory. Although the adversary cannot modify or

corrupt the data in the cache, parallel access rights and cross sharing can be exploited to

extract secrets from the process executed in VM.

2.3.3 Big Data Deduplication

In this era, as the volume of the data is increasing on daily basis, everyone is thinking

about for online storage to move and store data on the cloud side. Since this data is stored

in a huge amount, it is therefore needed to remove the redundant data for improving the

performance. In order to eliminate the repeated data, data deduplication mechanism is

used. Data deduplication is one of the data compression mechanism use for big data which

eliminate redundant copies of the data stored in multiple places in the storage of big data.

Although this mechanism is used to improve the utilization of big data storage and also

minimize the number of packets or bytes to be sent (Yu and Guo 2016). However, this is

because of data deduplication that big data storage is vulnerable to SC attacks. Big data

deduplication is one of the major cause of SC attacks. The overall cost can be reduced by

providing the same services to multiple clients and this can be achieved by deduplication

Univ
ers

ity
 of

 M
ala

ya

42

mechanism. Since data is generated from different resources in a big data environment,

everyone needs to think about the security of big data in CC. Similarly, the data is shared

between different VM in the virtualized environment. If you think about to store a huge

amount of data (big data) on the cloud side and to share your data with another VM then

you have to care about the security and cost as well. The security of the big data storage

is a major issue in CC which demotivates the cloud user and they are not further trusting

to move their data to cloud side. The big data has different characteristics and is not

equivalent to normal data, thereby security requirement for big data is different.

Data duplication can be categorized into various types including granularity, location,

and ownership on the basis of distinct criteria. Based on data granularity, the

deduplication is further divided into a file- and bloc-level deduplication. In file-level

deduplication, the big data is reduced by removing the redundant file. While in the block-

level, the redundant block of data is removed in the non-similar file (Stanek, Sorniotti et

al. 2014). According to location, the deduplication is divided into the client- and server-

side deduplication. The deduplication of redundant data performed on the client side is

called client-side deduplication otherwise target-based (server) deduplication. In the

target or server-based mechanism, the server does all the deduplication while the source

or client is completely unaware of the deduplication. The server-side deduplication

mechanism improves the overall storage but does not have improvement in the

bandwidth. While the deduplication on the client side improves both data storage and

bandwidth making the system more vulnerable to SC attacks. By using deduplication the

SC attackers can easily determine the big data storage. To store big data on the server side

is more secure as compared the big data storage on the client side. Based on the data

ownership, the deduplication mechanism is further classified into single-user and cross-

user deduplication. In a cross-user deduplication mechanism, the data interchange

between two users. The storage and bandwidth can be improved by using cross-user

Univ
ers

ity
 of

 M
ala

ya

43

deduplication. Although cross-user deduplication is more effective in CC, however, it

gives a chance to the attacker to leak the confidential information (Harnik, Pinkas et al.

2010). In (Wang, Cao et al. 2016), the author proposed the attribute-based encryption

which secures the big data storage from the SC attacks and is able to provide security to

the big data.

2.3.4 Huge Pages

Although cloud service providers and the virtualization company have disabled the

memory deduplication feature for the mitigation of cache-based SC attacks, another

security risk for the virtualized and non-virtualized environment in the form of huge pages

has come into existence. Huge pages are another root cause that attackers use for

launching SC attacks. The attackers gain the knowledge about the physical addresses of

the memory by using large size pages. The attacker takes the opportunity of the translation

of the virtual to physical addresses. All the processes have no direct accessed to the

physical address instead they are using the virtual addresses. The memory is divided into

continuous fix block called memory pages. The virtual memory is used to load these

memories when they are not present in the main memory. When some pages needed by a

process is not retrieved from the main memory then page fault occur and the required

pages are loaded from other storage. Therefore, before access to memory, a translation

stage between virtual to physical address is needed. Modern computer architectures

consist of Translation Lookaside Buffer (TLB) for the purpose to avoid the latency of

virtual to physical address translation.

The TLB behaves like a small cache is first observed before memory management

unit. If the memory is divided by increasing the size of the page into fewer pages then

this can be used to avoid TLB misses (Weisberg and Wiseman 2009, performance Feb

2016). The TLB misses will be reduced than 4KB pages because the translation between

virtual and physical addresses have significantly been reduced. Due to this reason, state-

Univ
ers

ity
 of

 M
ala

ya

44

of-the-art processors use the huge size pages of 1MB. The usage of huge pages is very

effective in virtualized environment where different VM use the same hardware resources

on the same physical machine. The huge pages by default are enabled in all VMM or

hypervisor including KVM, VMware, and XEN. Therefore, unlike Yarom’s Flush +

Reload (Yarom and Falkner 2014) that only works when the deduplication is enabled,

many other attacks can be launched by exploiting huge pages to extract the secret

information in virtualized and non-virtualized environment (Irazoqui, Eisenbarth et al.

2015). Liu et al. (Liu, Yarom et al. 2015) conducted SC attacks on the L3 cache by

exploiting huge memory pages. They extracted the cryptographic key from the ElGamal

encryption algorithm. Picking up from Liu et al (2015), Inci et al.(Inci, Gulmezoglu et al.

2015) conducted prime + probe attacks in the cloud environment. They used the huge

pages to extract the information about co-location and also the cryptographic key of

ElGamal algorithm.

2.4 Types of Cross-VM Cache-based Side Channel Attacks

Cross-VM cache-based attacks are categorized into time-, trace-, and access-driven.

The detail of each category is given in the following section.

2.4.1 Time driven Side Channel Attacks

In cryptography, an attack in which the attacker observes the execution time of the

cryptographic algorithm and use this information to compromise a cryptosystem is called

time-driven attacks. In addition, the attackers try to extract the cryptographic key by

learning the system’s sensitive information and by analyzing the computation’s time of

processes. It is an extremely powerful in CC because of the memory deduplication and

logical isolation. In CC, the sandboxing provides only the logical isolation, which is not

equal to the physical isolation. Therefore, the attacker in one VM can easily measure the

computation time of any encryption algorithm by accessing the cache to determine the

encryption key in use on the victim VM on the underlying hardware. The two co-resident

Univ
ers

ity
 of

 M
ala

ya

45

VM can easily access each other’s execution process and cache if the Transparent Page

Sharing between the two VMs is enabled. The victim and the attacker VM could be on

the same physical machine and could be remote. The attacks associated with the class of

time-driven attacks are explained in (Osvik, Shamir et al. 2006, Tromer, Osvik et al. 2010)

and the detailed example is given in Table 2.2.

In these attacks, the timing difference can be exploited by associating the cache to a

prior state known to a victim cryptographic operation. In addition, the following two

methods are used to extract information from the victim’s operation. The first method is

based on the time measurement which it takes for the victim to execute the cryptographic

operation. As this time is related to the cache’s state, when the victim executes the

operation, the attacker can evaluate the accessed cache lines by the victim and extract the

secret information (Bernstein 2005, Acıiçmez, Schindler et al. 2007). In the second

method, the attacker’s time for accessing the data after the victim’s operation is measured

(Aciiçmez 2007, Brumley and Hakala 2009, Acıiçmez, Brumley et al. 2010). The changes

in this time are dependent on the changes in the cache state before and after the victim

operation. In the literature, this problem has gained a lot of attention. Time-driven attacks

are further categorized into active and passive attacks. In a passive time-driven attack, the

total computation time of the victim’s process is measured by the attacker, in contrast, the

attacker observes the state of the cache in active time-driven attacks.

The main challenges in the measurements of timings in the time-driven attacks are the

increased level of noise (such as network latency and increased access time) and

unpredictability of correlation of timings. Many cryptographic algorithms lack a proper

defensive mechanism for cache based timing attacks. Therefore, the timing attacks can

easily be implemented on any cryptosystem. For instance, libgcrypt (used in GNUTLS

and GPG) and Cryptlib are not secure from the timing attacks. A defensive mechanism

against the timing attacks is present in the OpenSSL 0.9.7 as an option. However, this

Univ
ers

ity
 of

 M
ala

ya

46

option is not enabled in common applications such as the Apache SSL module and mod

SSL and therefore they are vulnerable to time-driven attacks. The following examples

show that cryptosystems are vulnerable to time-driven SC attacks.

Tsunoo et al. (Liu, Ge et al. 2016) implemented the initial practical results for cache-

based time-driven attacks and the authors were able to break the Data Encryption

Standard (DES) in 90% of their attempts. They found that the internal table lookup

collision in the cryptographic algorithms is the main cause for time-driven attacks.

Various attacks associated with the class of timing attacks on AES were explained in the

subsequent papers (Bernstein 2005, Osvik, Shamir et al. 2006, Acıiçmez, Schindler et al.

2007, Tromer, Osvik et al. 2010). In some of them, the first or the last round of AES

algorithm is required. These attacks execute the overall execution time of encryption

algorithms. The detail of these attacks is given in Table 2. Osvik et al. (Osvik, Shamir et

al. 2006) introduced the time-driven attack on the second round of AES algorithm for

analyzing the timings information. Similarly, Weiß et al. (Weiß, Heinz et al. 2012)

described the most relevant class of time-driven SC attack. In this work, they

implemented a time-driven SC attack against an embedded uniprocessor in virtualized

environment. In cache collision attack against AES (Bonneau and Mironov 2006), the

authors conducted cache-based timing attacks in which they extracted the secret key by

exploiting the cache collision due to the internal state of the table lookup operation in

AES.

2.4.2 Trace–Driven Side Channel Attacks

In these attacks, the attacker’s process has the ability to capture a profile of the cache

activity during the execution of the cryptographic algorithms. To launch this attack, the

attackers need to access the profile in which they observe and extract the profile of the

cache activity from other profile content. These attacks (Bertoni, Zaccaria et al. 2005,

Lauradoux 2005) are related to the class of trace-driven attacks. The result of this attack

Univ
ers

ity
 of

 M
ala

ya

47

produces a cache hit if the victim accesses the cache and cache miss for every access to

memory. Therefore, it is very easy to trace the S-box accesses for encryption algorithm

including AES and DES during the execution time. As opposed to a time-driven attack,

Osvik et al. (Osvik, Shamir et al. 2006) in his research conducted the two trace-driven

attacks including Prime + Probe and Evict + Time and their impact on AES algorithm.

They further investigated that both techniques can be applied during the attack

implementation to recover the encryption key of any cryptosystem.

In an Evict + Time attack, the cache is evicted before the encryption and then the cache

access is investigated in term of a cache hit and cache miss. While in the Prime + Probe

procedure, the cache is filled prior to encryption and after it has checked which cache line

has or has not been accessed. The information can be further used to extract the encryption

key. By using these attacks some features of the device are continuously monitored

throughout the cryptographic operation, for example, a processor leaks information by

analyzing electromagnetic radiation (e.g., (Gandolfi, Mourtel et al. 2001, Quisquater and

Samyde 2001) and by the power consumption of the device (e.g., (Kocher, Jaffe et al.

1999)). These attacks became powerful by the ability to continuously monitor the

processor computation but the limitation is in physical proximity of the device to the

timing and power measurements, an idea which was first introduced by Kocher in the

year of 1999 (Kocher, Jaffe et al. 1999). Here we described the continuation of these

attacks by measuring the cache access latency.

2.4.3 Access-Driven Side Channel Attacks

The most powerful attack is called an access-driven, in which the attacker tries to

investigate which cache line has been observed during the execution of cryptographic

algorithms. These different memory accesses are the main threat to cryptographic

software since the variations in the computation time provide information about the secret

key. These attacks evaluate the cache memory working with a fine-grain information,

Univ
ers

ity
 of

 M
ala

ya

48

rather than analyzing the overall computation time of the executable program. In these

attacks, the attacker and the victim’s programs are executed side by side on the same host

machine. The attacker executes a program on the same physical system that is executing

the cryptosystem and observes the operation of the shared architectural component to

extract confidential information about instruction and data cache.

The usage of a shared architectural components such as the instruction cache

(Aciiçmez 2007, Acıiçmez, Brumley et al. 2010), data cache (Percival 2005, Tromer,

Osvik et al. 2010) floating-point multiplier (Aciicmez and Seifert 2007), or branch

prediction cache (Aciiçmez, Koç et al. 2007) is monitored by the attacker’s program to

extract secret information about the cryptographic key. To implement this attack, the

researchers (Ristenpart, Tromer et al. 2009, Gullasch, Bangerter et al. 2011, Zhang, Juels

et al. 2012, Yarom and Falkner 2014) exploit a shared hardware cache between both VMs

and filled the cache with their own data. The target victim VM changed the cache by

overwriting some of its data, including information about the secret key. When they

rewrite their information in the cache, the attacker is able to detect the private encryption

key. The most effective and common method for implementing an access-driven SC

attack as conducted by Osvik et al. (Osvik, Shamir et al. 2006) is to Prime the cache and

then Probe, hence it is called the prime + probe protocol. Similarly, Neve et al, (Neve and

Seifert 2006) introduced access-driven SC attacks in which they target the last round of

AES. They showed in their research that the whole key can be extracted with a limited

set of encryption in a very short time. In addition, in (Neve and Seifert 2006, Gullasch,

Bangerter et al. 2011), the authors illustrated that these attacks are successful in a single

core, non-virtualized environment by attackers involved in game OS process scheduling.

Traditionally, unlawful access into a non-virtualized environment is very difficult,

however in virtualized environment, the co-residency of guest VMs make it possible to

gain access quite easily.

Univ
ers

ity
 of

 M
ala

ya

49

In a virtualized environment, Ris-tenpart et al (Ristenpart, Tromer et al. 2009)

implemented the first access-driven attack on modern Symmetric Multi-Processing

(SMP) and multi-core architectures. Their attack is able to provide information about the

cache utilization of guest VM, however, is unable to extract the cryptographic secrets. In

line with that, Percival, et al (Percival 2005) conducted an access-driven attack on the

data cache. In their attack, the shared architectural component is monitored to extract data

from the data cache during the execution of the RSA cryptosystem. Similarly, in (Owens

and Wang 2011), the authors implemented an access-driven attack to exploit the memory

deduplication in the victim VMware ESXI hypervisor for fingerprinting the OS. Zhang

et al. (Zhang, Juels et al. 2012) described the cross-VM SC attacks in a virtualized SMP

by extracting a cryptographic key from the VM. They perform the successful sequential

SC attacks by using the CPU cache and do serious damage to virtualized environment by

extracting the cryptographic secret from unwary hosts.

In the existing study, Gullasch et al. (Gullasch, Bangerter et al. 2011) implemented a

Flush + Reload SC attack that accessed specific memory lines in the AES memory by

utilizing cache behavior. The authors used the processor’s clflush instruction to expel the

observed memory lines and using this information, they extract the secret key in less than

100 encryptions. While this attack accesses specific memory lines, it generates a false

alarm by frequently interrupting the victim process. These authors (Acıiçmez, Brumley

et al. 2010, Gullasch, Bangerter et al. 2011) introduced the access-driven attacks called

asynchronous, meaning that in the trigger step, the attackers do not require the precise

time information of victim operations. The CPU with Simultaneous Multi-Threading

(SMT) feature or the OS process schedulers is more vulnerable to these attacks; SMP

settings are not vulnerable to these attacks. The class of asynchronous access-driven

attack is further extended by Zhang et al. (Zhang, Juels et al. 2012) to VMs running on

virtualized SMP systems. Furthermore, by using this attack they have extracted the most

Univ
ers

ity
 of

 M
ala

ya

50

fine-grain data from a victim VM across VMs in a virtualized environment. More

specifically, by using cache-based timing attacks an ElGamal decryption is recovered

from the victim VM. The authors used a hidden Markov model to reduce the errors and

cope with noise (e.g., network latency). The significance of this work is that the authors

have extracted the fine grain data across VMs for the first time, unlike Ristenpart et al.

(Ristenpart, Tromer et al. 2009) who managed to achieve the usage of CPU and recovered

keystroke patterns by co-location of VM. Table 2.2 describes the attack based on

execution environment and architecture. The execution environment categorizes the

attacks whether they are conducted in the virtualized or non-virtualized environment.

According to the architecture, Table 2.2 shows whether the attacks have conducted on a

single core or multi-core. In addition, it also describes the target of attacks (e.g., Attacks

on AES, RSA, and ElGamal or any other encryption algorithm).

Univ
ers

ity
 of

 M
ala

ya

 5
1

Table 2.2: Side channel Attack in Virtualized and Non-Virtualized Environment

Type of Attacks Ref Title Description Name of

Attacks

Method Target Of

Attacks

Execution

Environment

Architecture

Acces-Driven (Neve and

Seifert 2006)

Advances on access-driven

cache attacks on AES

To scrutinize the cache behavior with

a finer granularity, rather than

evaluating the overall execution time.

Side Channel Prime + Probe AES Non-Virtualized Single-Core

(Ristenpart,

Tromer et al.

2009)

Hey, you, get off of my

cloud: exploring

information leakage in

third-party compute clouds

To detect the co-residency of virtual

machine and then leak the

information (such as aggregate cache-

usage)

Side Channel Prime + Probe Leak

information

about cache

pattern

Virtualized Multi-Core

(Acıiçmez,

Brumley et al.

2010)

New result on intrusion

cache attacks

To monitor the instruction cache for

leaking the timing information of

cache

Side Channel Prime + Probe DSA,

Information

leakage

Non-Virtualized Multi-Core

(Gullasch,

Bangerter et

al. 2011)

Cache games–bringing

access-based cache attacks

on AES to practice

To extract the confidential key with a

less than 100 encryption by using

timing difference of cache access

Side Channel Flush+Reload AES Non-Virtualized Single-Core

(Owens and

Wang 2011)

Non-interactive OS Finger

printing through memory

de-duplication technique in

virtual machines.

To conduct access-driven attack to

exploit the memory deduplication in

the victim VMware ESXI hypervisor

for fingerprinting the OS

Side Channel Prime + Probe Information

leakage

Virtualized Multi-Core

(Zhang, Juels

et al. 2012)

Cross-VM Side Channels

and Their Use to Extract

Private Keys

To extract ElGamal decryption key

by using cache timing attack

Side Channel Prime + Probe ElGamal Virtualized Multi-Core

Univ
ers

ity
 of

 M
ala

ya

 5
2

Table 2.2: Continue…..

 (Suzaki,

Iijima et al.

2011)

Wait a minute! A fast,

Cross-VM attack on AES

To extract the AES key by exploiting

page deduplication feature in

VMware ESXI

Side Channel Flush+ Reload AES Virtualized Multi-Core

Trace-Driven (Gandolfi,

Mourtel et al.

2001)

Electromagnetic Analysis:

Concrete Results

To conduct attack on three different

CMOS chips to extract cryptographic

key

Side Channel N/A RSA, DES Non-Virtualized

(Smart Cards)

Single-core

 (Quisquater

and Samyde

2001)

Electromagnetic analysis

(ema): Measures and

counter-measures for smart

cards

To establish simple and differential

electromagnetic attack on the

implementation of RSA, DES,

cryptographic token and SSL

accelerator

Side Channel N/A DES, RSA Non-Virtualized

(Smart Cards)

Single-Core

 (Bertoni,

Zaccaria et al.

2005)

AES power attack based

on induced cache miss and

countermeasure

To leak information by using a power

side channel of MIPS microprocessor

Side Channel Flush+Reload AES Non-Virtualized Multi-Core

 (Aciiçmez

2007)

Yet another micro

architectural attack:

Exploiting I-cache

To discover that during execution of

RSA encryption the main cause for

leakage information is instruction

cache likewise the data cache

Side Channel Prime + Probe RSA Non-Virtualized Single-Core

 (Aciiçmez,

Koç et al.

2007)

On the Power of simple

branch prediction analysis.

To extract information by analyzing

the branch prediction cache

Side Channel Prime + Probe Extract key Non-Virtualized Single-Core

Univ
ers

ity
 of

 M
ala

ya

 5
3

Table 2.2: Continue…..

 (Yarom and

Falkner 2014)

Flush+ reload: a high

resolution, low noise, L3

cache side-channel attack

To extract the private encryption keys

of RSA from a victim program across

cores and across VM hosted by

VMware and KVM

Side Channel Flush+Reload RSA Virtualized Multi-Core

Time-Driven

(Bernstein

2005)

Cache-timing attacks on

AES

To attack the AES algorithm and

extract the cryptographic key

Side Channel Prime + Probe AES Non-Virtualized Single-Core

(Percival

2005)

Cache missing for fun and

profit

To describe a cache-based SC attack

on RSA on processors having

simultaneous multithreading.

Side Channel Prime + Probe RSA Non-Virtualized Multi-Core

(Brumley and

Boneh 2005)

Remote timing attacks are

practical

To launch a cache-based timing

attack to extract confidential keys

from a library used in web server and

SSL applications such as OpenSSL-

based

Side Channel Prime + Probe RSA Non-Virtualized Single-Core

(Wang and

Lee 2006)

Covert and Side Channels

due to Processor

Architecture

To identify two new attacks namely

Simultaneous Multithreading and

speculation

Covert and

Side Channel

Prime + Probe RSA Non-Virtualized Single-Core

(Osvik,

Shamir et al.

2006)

Cache attacks and

countermeasures: the case

of AES

To describe time-drive side channel

attacks which neither require the

plaintext or cipher text

Side Channel Evict + Time AES Non-Virtualized Multi-Core

(Bonneau and

Mironov

2006)

Cache-collision timing

attacks against AES,

To extract cryptographic key by

using cache-based timing attack

Side Channel Evict + Time AES Non-Virtualized Multi-Core

Univ
ers

ity
 of

 M
ala

ya

 5
4

Table 2.2: Continue…..

 (Acıiçmez,

Schindler et

al. 2007)

Cache based remote timing

attack on the AES

To establish cache-based timing

attack to measure the cache timing

for extracting secret key by using

statistically infer information

Side Channel Prime + Probe AES Non-Virtualized Single-Core

 (Weiß, Heinz

et al. 2012)

A cache timing attack on

AES in virtualization

environments

To launch a cache-based time-driven

attack against an embedded ARM

processor inside L4Re virtual

machine

Side Channel Prime + Probe AES Virtualized Single-Core

 (Irazoqui G

2014)

Fine grain Cross-VM

Attacks on Xen and

VMware are possible!

To conduct the Bernstein’s

correlation attack in a virtual

environment for the first time to show

the implementation of cross-VM SC

attacks on KVM, VMware, and Xen.

Side Channel Prime + Probe AES Virtualized Multi-Core

 (Irazoqui,

Eisenbarth et

al. 2015)

S $ A: A Shared Cache

Attack That Works across

Cores and Defies VM

Sandboxing--and Its

Application to AES

To conduct time-driven cache-based

attacks targeting L3 cache by using

huge pages

Side channel Prime + Probe

AES Virtualized Multi-Core

Univ
ers

ity
 of

 M
ala

ya

55

2.5 Prevention of Cross-VM Cache-based Side Channel Attacks

Although hypervisor enforces logical isolation to the cloud resources through a

mechanism called sandboxing, however as compared to physical isolation this logical

isolation has some security implications. For instance, we know that co-locating VMs on

the same platform are not physically isolated and can easily leak sensitive information of

each other’s which give a great opportunity to the attackers to do security interference.

Many researchers have shown the applicability of SC attacks to extract this confidential

information and have also demonstrated the mitigation of these security interferences in

this section. SC attacks use the fundamental characteristics of sensitive computation (e.g.,

power consumption, execution time, and the electromagnetic field sharing of a processor

core with an attacker) to leak this confidential information. Computations unintentionally

leak confidential data through either hyper threading or time division.

The main idea of SC attacks is that most cryptographic algorithms have memory access

pattern that are data dependent, which can be easily observed by cache miss and hit rate.

Most of the existing prevention mechanisms are adhoc and are unable to prevent SC

attacks because they are designed to prevent only specific attacks. No general prevention

mechanism has been proposed in the past which could prevent all types of attacks as well

as cache-based SC attacks (Singh and Chatterjee 2017). The proposed approaches for the

prevention mechanisms for the mitigation of cache-based SC are categorized into three

types. The first approach is to come up with new cache designs (e.g. (Wang and Lee 2006,

Wang and Lee 2007, Zhang, Juels et al. 2011, Irazoqui, Inci et al. 2014, Zhou, Reiter et

al. 2016)). In the second approach, Aviram et al. (Kong, Aciiçmez et al. 2009) described

that cache-based SC attacks in CC can be mitigated by forcing VM execution to be

deterministic, however, further research is still needed for this approach. The third

approach is to construct cryptographic algorithm in such a way that it can block the cache-

based access timing attacks (e.g., (Domnitser, Jaleel et al. 2012), (Intel 2007)). The

Univ
ers

ity
 of

 M
ala

ya

56

existing countermeasure for SC attacks has several limitations including high overhead,

the requirement to change the hardware and software, application-specific, or

inappropriate to mitigate the SC attacks (Page 2003).

Similarly, the operation and implementation of Flush + Reload is associated with the

combination of four factors (Yarom and Falkner 2014) including the flow of data between

sensitive information and memory access patterns, memory deduplication between victim

and attacker VM, the analysis and the measurement of high-resolution interval, and the

unrestricted use of clflush instruction. Preventing any of these can mitigate SC attack.

Techniques such as new cache designs, disallow cache sharing between VM, partitioning

the cache among tenants, and forced determinism could potentially mitigate the SC

attacks. However, these techniques will not be widely adapted in the future because they

require hardware changes (Coppens, Verbauwhede et al. 2009). One technique proposed

by Zhang et al. (Zhang, Juels et al. 2011) that enable its guest VMs to detect the exclusive

usage of the physical machine. In addition, it verifies the success or failure of the cache

isolation policies implemented by the service provider. In addition to the data cache, other

architectural SC includes the instruction cache (Acıiçmez, Brumley et al. 2010), the

shared functional units (Wang and Lee 2006, Aciicmez and Seifert 2007), and the branch

target cache (Aciiçmez, Koç et al. 2007, Zhang and Reiter 2013), all of which have been

exploited in the cryptosystem. The countermeasures for these attacks are divided into

hardware-based and software-based. Table 2.3 shows that existing solution for SC attacks

requires to changing either hardware or software consequently affect the overall

performance in term of load testing and cache utilization.

Univ
ers

ity
 of

 M
ala

ya

57

Table 2.3: Required Modification in the Existing Solutions of Cache-based Side

Channel Attacks

Implemented Solution Types Source Hardware Performance degradation

Obscure Cache-Data Correlation Y N N

Delay Timing Information Y N N

Normalize Cache State N N Y

Custom Hardware N Y N

Disable Cache N N Y

Cache Warming N N Y

Cache Partitioning N N Y

Cache Flushing N N Y

 Y for need to change, N mean does not need to change

2.5.1 Existing Countermeasures

The existing countermeasures for cache-based SC attacks are divided into hardware-

based and software-based countermeasure which are explained in the following section

in detail.

2.5.1.1 Hardware-based Countermeasure

The literature shows that cache-based SC attacks are mostly prevented by a hardware-

based solution that mainly focuses on altering the replacement policies of cache (Kim,

Chandra et al. 2004, Percival 2005). Although some of these solutions are effective, the

existing processors are unable to employ this because they need a special support of

hardware. For instance, Osvik et al. (Osvik, Shamir et al. 2006) proposed hardware-based

solutions to disable the cache or to utilize an individual cache for concurrent threads. Few

of the new proposed solutions include eviction strategies which minimize the eviction of

data of one thread used by another one (Percival 2005). In (Page 2003), the partitioned

cache initially designed for multimedia applications is exploited to block cache-based SC

attacks. The Instruction Set Architecture (ISA) is altered by adding new instructions to

make the cache a prominent part of the existing architecture that can define a partition,

Univ
ers

ity
 of

 M
ala

ya

58

cache line size, as well as other parameters. However, the authors also claimed that the

costs of the cache design and its computation can be high. As compared to software-based

solution, a hardware based solution cannot provide an efficient countermeasure and takes

more time to develop to block these attacks. As a result, this problem can be solved by

using an efficient countermeasure such as software-based solution.

Over the last decade, when the attention in the literature was given to SC attacks (Inci,

Gulmezoglu et al. 2015) many proposals for the mitigation of SC attacks (Page 2003,

Osvik, Shamir et al. 2006) were put forward. These proposed prevention mechanisms

were typically categorized into eight types as shown in Table 3. Various methods to

implement these prevention mechanisms, such as changing the usage of the cache to

cryptosystem and altering the hardware channel. In addition, the hardware-based solution

proposed (Kong, Aciiçmez et al. 2009, Domnitser, Jaleel et al. 2012), included coming

up with new designs for a shared cache. However, these existing prevention mechanisms

would require either modifying the source code, altering the cryptographic algorithm,

changing the hardware (e.g., changing cache design), or creating high computation cost

in term of high overhead. Designing new caches will take longer time and during this

time the SC attacks do a lot of damage. Therefore, there is a need for software-based

prevention mechanisms for the quick mitigation of SC attacks.

2.5.1.2 Software-based Solutions

Most of the existing prevention mechanisms for cache-based SC attacks are software-

based and are associated to a specific cryptosystem. The basic phenomenon of this

prevention mechanism is to edit the software in a new method that the SC attacks cannot

be established. Such as, to prevent SC attacks on AES, many types of mechanisms have

been proposed, such as 1) The AES tables must be loaded into the cache prior to executing

an encryption so that all accesses to AES create cache hit and hence have constant

encryption time, 2) During the AES execution, only mathematical operations should be

Univ
ers

ity
 of

 M
ala

ya

59

used instead of table lookups. For instance, Brickell et al. (Brickell, Graunke et al. 2006)

proposed a software solution, which mitigates the SC attacks by changing the

implementation of cryptographic algorithms including RSA and AES. Similarly, the

researchers in (Coppens, Verbauwhede et al. 2009, Aviram, Hu et al. 2010, Shi, Song et

al. 2011, Zhang and Reiter 2013, Godfrey and Zulkernine 2014) proposed software-based

countermeasure for the quick mitigation of SC attacks. Over the last decade, hardware-

based solutions have been used for the mitigation of SC attacks, however, recent security

activities motivate the implementation of software-based prevention mechanisms by

improving the software isolation properties.

Univ
ers

ity
 of

 M
ala

ya

 6
0

Table 2.4: Countermeasures for Cross VM Cache-based Side Channel Attacks

Ref Title Description Attack Types Implementation

Type

Used Method Limitation

(Aumüller,

Bier et al.

2002)

STEALTHMEM: System-

Level Protection Against

Cache-Based Side

Channel Attacks in the

Cloud

To propose system level design in which

hypervisor or OS give an individual

access to a particular sectioned portion of

the cache to each VM.

Trace-driven

Time-driven

Software-based - Locking page

- Page partitioning

Require user interaction

for client side

modification which does

not comply to the cloud

model

(Page 2005) Partitioned Cache

Architecture as a Side-

Channel Defense

Mechanism

To propose a cache partitioning method

against SC attacks that use data cache

and access to SBOX through this cache

Access-driven

Hardware-based - Partitioning Cache - High overhead

- Require hardware

modification

(Brickell,

Graunke et al.

2006)

Software mitigations to

hedge AES against cache-

based software side channel

vulnerabilities

To secure encryption algorithms (RSA

and AES), they proposed new

implementation of AES and RSA

Access-driven Software-based - Compact S-Box table

- Frequently

randomized Table

- Pre-loading of

relevant cache line

- Performance

degradation

- Require software

modification

(Osvik,

Shamir et al.

2006)

Cache attacks and

countermeasures: The case

of AES

To describe an active timing SC attack

and then prevent this attack by disabling

the cache or use separate cache for

simultaneous thread

Access-driven Hardware-based - Disabling cache - Need hardware change

(Wang and

Lee 2006)

Covert and Side Channel

due to processor architecture

To propose new cache design for

mitigation of attacks

 NA Hardware-based - Selective cache

partitioning

- Random permutation

cache

- Require hardware

change

- High Overhead

- Application specific

(Wang and

Lee 2007)

New cache designs for

thwarting software cache-

based side channel attacks.

To propose hardware based mitigation

technique by designing new cache or by

dividing the existing cache to hide cache

access pattern

Time-driven Hardware-based - Locking cache line

- Cache partitioning

- Require hardware

modification

- Performance Degradation Univ
ers

ity
 of

 M
ala

ya

 6
1

Table 2.4: Continue….

(Intel 2007) Faster and timing-attack

resistant AES-GCM

To construct a constant time

cryptographic AES implementation that

mitigates cache-based timing attacks

Time-driven Software-based - AES implementation - Require software changes

- Runtime time overhead

(Kong,

Aciiçmez et

al. 2009)

Determinating timing

channels in compute clouds

To mitigate timing side channels in

virtualized environment by forcing the

execution of VM to be deterministic

Time-driven Software-based - deterministic

execution

Need fine grain timing

information

(Zhang, Juels

et al. 2011)

Non deterministic caches: a

simple and effective defense

against side channel attacks

To introduce the cache decay approach

which controls cache and randomly

select the interval of the cache to create

non-deterministic behavior of the cache.

Access-driven Hardware-based - Cache decay

approach

- Require hardware

modification

- High overhead

(Shi, Song et

al. 2011)

Limiting cache-based side-

channel in multi-tenant

cloud using dynamic page

coloring.

To partitioned the cache and reserved a

small portion of the cache for each VM

and core by using page coloring

technique

Access-driven Hardware-based - Partitioning of cache

- Page coloring

Require the software

changes

(Domnitser,

Jaleel et al.

2012)

A fast and cache-timing

resistant implementation of

the AES

To construct a new implementation of

cryptographic algorithm that resists side-

channel attacks

Access-driven Software-based - Lookup-based

Implementation

- Runtime overhead

- Less data memory

- Application and Attacks

specific

(Kong,

Aciicmez et

al. 2013)

Architecting against

software cache-based side-

channel attacks

To propose a prevention mechanism that

hides the cache access by different cores

Access-driven Hardware-

Software

integrated

- Preloading

- Informing Load

- Software

Permutation scheme

Require Code changes

Performance degradation

(Irazoqui, Inci

et al. 2014)

Deconstructing New Cache

Designs for Thwarting

Software Cache

Based Side Channel Attacks

To propose new cache design namely

Random permutation cache and Partition

lock cache

Time-driven Hardware-based - Cache partitioning - Unable to prevent the

attack which built either

on cache collision or

cache sharing

- Need hardware

modification
Univ

ers
ity

 of
 M

ala
ya

 6
2

Table 2.4: Continue….

(Godfrey and

Zulkernine

2014)

Preventing Cache-Based

Side-Channel Attacks in a

Cloud Environment

To implement a server side solution

which complies Cloud model and does

not need any changes in the software or

underlying hardware

Access-driven Hypervisor-

based

- Cache flushing

- Static Cache

partitioning

- High Overhead

- Misuse Cache Utilization

(Crane,

Homescu et al.

2015)

Thwarting Cache Side-

Channel Attacks Through

Dynamic Software Diversity

To propose a solution which use

dynamic software diversification to

change the observable execution features

while preserving semantic of program

and just changing the replica at the

machine level instruction

Access-driven

Time-driven

Software-based - Diversifying

Transformation

- Inserting random

memory load

Require the changes in

cryptographic algorithms

(Zhou, Reiter

et al. 2016)

A Software Approach to

Defeating Side Channels in

Last-Level Cache

To proposed CacheBar approach which

automatically detects the concurrent

access to shared pages and prevents them

from evicting memory contents

Access-driven Software-based - Copy on access for

physical pages

- Cache ability

management

Running Overhead

(Liu, Ge et al.

2016)

CATalyst: Defeating Last-

Level Cache Side Channel

Attacks in Cloud Computing

To propose a solution that protects the

square-and-multiply algorithm in GnuPG

1.4.13 by dividing the cache into secure

and non-secure partition

Access-driven Hardware-based Cache partitioning Dependent on intel cache

specific design

Univ
ers

ity
 of

 M
ala

ya

63

2.5.2 Proposed Countermeasures

In the following sections, we discuss several prevention mechanisms that prevent the

exploitability of the shared level cache and SC attacks.

2.5.2.1 Disable Huge Size Pages

The main cause of SC attacks is the utilization of huge pages due to which attacks take

benefit of the additional memory address. Thus the attack by using huge pages can be

conducted in both virtualized and non-virtualized environment since in Linux and in the

CC, huge pages are enabled in advance in the hypervisor. In particular, Irazoqui et al.

(Irazoqui, Eisenbarth et al. 2015) established SC attacks by using huge pages. These

attacks can be prevented by not allowing the guest VM to use huge size pages. The VMM

or hypervisor is responsible for making decisions about huge size pages, based on precise

parameters such as the size or memory space resources that are needed by the

programming code.

2.5.2.2 Cache Partition Using Cache Coloring

Cache coloring is a software-based approach which is used for mapping memory pages

to cache lines and for the purpose of a cache hit optimization. The author in (Taylor,

Davies et al. 1990) introduced this as an OS performance optimization technique to

improve the performance between the physical and virtual memory. This technique is

designed to ensure that accesses to contiguous pages in virtual memory make the best use

of the processor cache. For instance, two instructions or two VMs that are consecutive in

the memory can evict one another data in the cache. Cache coloring solves this problem

by mapping the two consecutive memory addresses into non-consecutive locations of the

cache. Furthermore, the author used the cache coloring approach for the prevention of

cache-based SC attacks (Shi, Song et al. 2011) by dividing the cache into the various

portion. The partition of cache for each individual VMs is always implemented using

Univ
ers

ity
 of

 M
ala

ya

64

cache coloring approach which is used in the earlier research for the cache performance

improvement (Jin, Chen et al. 2009). There is two type of cache partition mechanism

namely static and dynamic cache partition. Static partition degrades the overall

performance of the system by decreasing the usable portion of the cache for each

individual VMs. In contrast dynamic partition improve the usable part of cache for each

VMs by diving the cache on the fly according to VMs requirement. Moreover, this thesis

conducted the dynamic cache partition approach for the prevention of cache-based SC

attacks as well as improve the cache usage for the various VMs.

2.5.2.3 Private LLC Cache Slices

The SC attacks can be prevented by making the cache slices per private VM, same as

to the prevention mechanism presented in (Wang and Lee 2007). Author’s means that two

co-located VMs are unable to use the identical cache slice at the same period of time or a

guest VM is not allowed to use it when it is being used by another co-located VM.

Therefore, the attacker cannot reach the victim‘s cache slice and may not able to decide

on the usage of memory lines by the attacker. However, this prevention mechanism

requires a change in the cache structure and a reduction in the length of the cache slices

for a VM. The creation of multiple Guest VMs on the multiple cache slices can also be

restricted.

2.5.2.4 Controlling Clflush Instruction

In X86 architecture the deficiency of authorization check for the clflush instruction is

the major cause for the SC attacks (Yarom and Falkner 2014). These attacks can be

mitigated by controlling or limiting the power of the clflush instruction. Clflush

instruction is used to enforce the memory coherence in the devices that do not support

memory coherence (Intel 2007). In addition, it also improves the efficiency of the

Univ
ers

ity
 of

 M
ala

ya

65

program by controlling the usage of cache memory and flushing the lines from the cache

that is not in use during the program execution.

2.5.2.5 Preventing Page Sharing

The Flush + Reload SC attacks can be mitigated by preventing the sharing of memory

between the victim and the attacker programs. However, this prevention mechanism will

degrade the overall performance as well as affect the functionality of the system by

opposing the increased page sharing trend in the OS and the hypervisor. The complete

prevention of memory sharing would increase the demand of memory for the OS and the

hypervisor and therefore it is not a good solution. However, this solution can be adapted

to prevent the sharing of the personal credential by changing the program loader code.

Furthermore, there is another possible solution for preventing a Flush + Reload attack is

to disable deduplication, which is disabled by default in the XEN hypervisor only (Suzaki,

Iijima et al. 2011, Suzaki, Iijima et al. 2011).

2.5.2.6 Prefetching Cache Memory

The prefetching of lookup tables or T tables of any encryption algorithm into the cache

before execution of the attacker program blocks the SC attacks. The attacker will never

analyze the difference in the memory access time because all the data will be loaded into

the cache prior to execution of attacker program. However, the prefetching of 4kb size T

tables requires more memory and more time. Consequently, it would increase the AES

encryption time and overall performance of the system. The assembly version of AES in

OpenSSL used the prefetching technique to stop cache memory information leakage

because of T table’s access.

2.5.2.7 Flushing Cache Memory

Flushing a cache increases the execution time on a modern processor, therefore, a

cache must be flushed only when it is needed. It has been disregarded as a prevention

Univ
ers

ity
 of

 M
ala

ya

66

mechanism for traditional cache-based SC due to the generation of large amounts of

overhead (Osvik, Shamir et al. 2006). Flushing the T tables after the execution of the

encryption algorithm (e.g., AES) from the cache memory produces the same result as

cache prefetching. The attackers check the access time difference by locating the T tables

in the memory. The generated overhead from cache flushing is based on two main

elements: the proportion of flushes to context switches and the context switching ratio in

the system. These two factors in combination generate the major source of overhead that

reduces the system performance. Additional context switches are needed for the increased

flushes and more overhead is generated when more flushes are needed. Cache flushing

for mitigating the cache-based SC attack in a non-virtualized environment is more

expensive (Osvik, Shamir et al. 2006) because in the non-virtualized environment, the

high rate cache flushing and overhead are required on the process-level. However, in

virtualized environment, the prevention of SC attacks on process-level is not required,

but the prevention of SC attacks across VM-level is required. By comparison, in the cloud

system, the context switch rate between VMs is comparatively much lesser than the rate

between programs in a regular OS because very few VMs are created when compared to

processes or programs.

2.5.2.8 Hardware Masking of Addresses

This prevention mechanism is conducted on the hardware level, which applies a mask

to the offset field. During the usage of huge pages, this mask to the offset field is applied

on the basis of some of the non-set addressing bits in the physical address. Since the offset

field is completely hidden from the users and they have no longer control over the offset

field. Thereby, the user is unable to lead the particular set, which he desires to target in

the LLC memory and is unable to decide whether the victim has used that particular set

or not (Irazoqui, Eisenbarth et al. 2015). The detail description of countermeasures is

given in Figure 2.8.

Univ
ers

ity
 of

 M
ala

ya

67

Common

Countermeasures

Disable Huge Pages

Side Channel Attacks

Private LLC Cache

Slices

Controlling Clflush

Instruction

Application Specific

Algorithm Masking

Address Translation using

Shadow Page Table

Disabling Cache Sharing

Hiding the Timing

Preventing Page

Sharing

Prefetching Cache

Memory

Flushing Cache

Memory

Hardware Masking of
Address

Cache Partioning

Alternative Lookup

Table

Dynamic Software

Diversity

Data Independent
Memory Access Pattern

Figure 2.8: Overview of Countermeasure for Side Channel Attacks

2.5.2.9 Address Translation using Shadow Page Table

In many architectures including X86, the CPU uses the shadow page table for address

translation. In the case of virtualized environment, the VMMs use the shadow page tables

for a virtual to virtual memory translation. For example, the shadow page tables are not

only responsible for the translation from VM’s virtual memory to the hypervisor (e.g.,

XEN and VMware) virtual memory but are also responsible for applying a mask based

on the non-cache-addressing bits. Therefore, the guest user is unaware of the masking

Univ
ers

ity
 of

 M
ala

ya

68

value applied by the guest VM, and he is unable to control the set that the LLC (L3) that

contain his data.

2.5.2.10 Dynamic Software Diversity

Dynamic software diversity approach is a protection mechanism against both online

and offline cache based SC attacks. The countermeasure for the attacks which rely on the

static properties of computation includes diversification of the program representation.

On the other hand, SC attacks rely on the dynamic properties of computation including

memory access timings, time of execution, and the power consumption. Consequently,

for the prevention of SC attacks the diversification will randomize the program’s

execution instead of representation.

2.6 Research Challenges

Through the detailed study of literature, we analyzed and found that there are some

research challenges related to prevention mechanisms. These research challenges are

listed in the following subsection.

2.6.1 Efficient Cache Utilization

Since the cache-based SC attacks are implemented using the shared L3 cache. The two

VMs using the same cache can evict and also extract each other confidential data. There

are prevention mechanisms which divide the shared L3 cache into a partition to restrict

the individual VMs to a specific part of the cache. However, this degrades the cache usage

for each VMs which affect the overall performance of the system. There must be a

mechanism which could divide the cache into a partitions in such a way which does not

reduce the cache utilization of individual VM and without affecting the performance of

the system.

Univ
ers

ity
 of

 M
ala

ya

69

2.6.2 Server Side Solution Transparent to Guest OS and Client Software

The literature showed that the attention has been given to SC attacks in the non-

virtualized environment since the 70s. Many prevention mechanisms including software-

based and hardware-based have been proposed to mitigate such attacks (Page 2003,

Osvik, Shamir et al. 2006, Tromer, Osvik et al. 2010). These include modification of the

hardware functionality (e.g., cache), to disable the hardware channel, modifying the

encryption algorithms (e.g., AES and RSA), or breaking the correlation between

hardware and program’s execution by altering the victim. Unfortunately, implementing

any of these defensive mechanisms would either require the cloud users to change their

software intended to be executed in the cloud (Aumüller, Bier et al. 2002, Shi, Song et al.

2011), or to customize all the underlying hardware needed to be used in the cloud (e.g.,

cache) (Page 2003). Both of these solutions contradict the relationship between the cloud

model and their users, as they would either restrict the client to change their software or

needed the hardware changes, consequently restrict the client to use the cloud. In the

virtualized environment, the hardware and software based solution are inappropriate

where VM is dynamically added and removed, so the security requirement is also

changing. Thereby a server-based prevention solution is required in virtualized

environment which is transparent to the clients and the underlying hardware and does not

need the changing of client software or hardware and always comply to the user relation

with the cloud.

2.6.3 Predicting Cache Contention

If several applications or VMs are accessing an identical part of the cache in parallel

as it is in the case of SMT or Chip Multi-Processing (CMP) and if there is not enough

cache associativity. Then the two executing applications or VMs displace each other data

in order to fill with their own data as well as to extract confidential information. In this

cache, the cache contention occurs when the VMs request for the displaced data has to be

Univ
ers

ity
 of

 M
ala

ya

70

re-fetched. There must be a cache contention co-aware scheduling where various VMs

running in parallel on the shared cache is to be aware of co-aware scheduling. Cache

contention co-aware scheduling can reduce the drawback initiated by cache contention

by an appropriate mapping of VMs to various CPU Cores and a proper scheduling of

VMs.

2.6.4 Determining Optimal Cache Partition Policy at run time with low Overhead

When two or more VMs running on the same physical system, they shared the LLC

(L2 or L3) even both are on the different cores. There are existing mechanisms including

cache partition, assign per VM cache, assign part of cache to secure algorithm, which

divides the cache for individual VM and restrict each VMs cache utilization. However,

these cache partitions degrade the cache usage for an individual user and consequently

degrade the overall performance of the system. Therefore there must be a mechanism

which monitors and determine the required cache of each VM and optimally partitions

the cache accordingly.

2.6.5 Improving the Xen Credit Scheduler

Some attackers perform the attacks based on the core-private-cache (e.g., L1 and L2)

by exploiting the Xen credit scheduler to extract the fine-grained information of the same

cores for two different VMs. There must be a mechanism to improve the functionality of

Xen scheduler to restrict the L1 (data & instruction cache), L2, and L3 cache usage in

order to not interfere with each other data.

2.6.6 Hiding Memory Access Pattern

The cryptographic algorithms have data-dependent memory access pattern, which can

be easily extracted by the attackers by observing the associated hit and miss rate of cache

memory. During encryption and decryption cache attacks depend on certain statistics to

leak the confidential information in the form of cryptographic key. The information

Univ
ers

ity
 of

 M
ala

ya

71

leakage is due to the low-level detail provided by the CPU namely the structure of the

cache memory, specifically forms a shared LLC which all the VMs compete for and thus

is affected by each VM. For instance, the attacker VM takes benefit from this shared

resources. Although virtual memory mechanism protects each VM data is cache,

however, the metadata about cache content and the memory access pattern is not fully

protected and is available to all running VMs. Therefore, there must be a mechanism in

the OS kernel which hides the memory access pattern of that physical system on which

different VM is running.

2.6.7 Cache-Aware Scheduler for Optimum Cache Partition

The scheduler must be cache-aware, that scheduler has the ability to monitor the cache

utilization of individual VM and decides the partition accordingly. Since various VMs

shared the local cache section, there is a change for cache interference to happen between

VMs. In this case, there must be a global coordination amongst schedulers on each core

for using cache in a proper manner. The likelihood of cache contention as a result of static

and dynamic cache partition can be reduced by proper scheduling of VMs and by sharing

the information on page color usage.

2.6.8 Soft Isolation as a Solution

In hard isolation, the hardware is dedicated to every VM, however it degrades the

performance and efficiency in term of reducing cache usage. In contrast, soft isolation

such as scheduler based prevention mechanism (Varadarajan, Ristenpart et al. 2014)

improve the performance and reduce the risk of sharing through better scheduling.

Although hard solution is more effective, however it cannot be applied in the existing real

processor because it is based on cache replacement policies (Kim, Chandra et al. 2004,

Qureshi and Patt 2006). In contrast, soft solution is not based on the hardware replacement

policies and it used the page coloring technique to change the source code of the Xen

Univ
ers

ity
 of

 M
ala

ya

72

scheduler or OS scheduler and can be very deployed without any additional hardware cost

(Tam, Azimi et al. 2007, Shi, Song et al. 2011).

2.7 Discussion

In the virtualized environment, the hardware and software based solution are

inappropriate where VM is dynamically added and removed, so the security requirement

is also changing. Thereby a hypervisor-based prevention solution is required in

virtualized environment which does not need the changing of client software or

underlying hardware and always comply to the user relation with the cloud. Our research

work in this thesis addresses the software attacks and does not consider the physical

attacks such as bus probing and the analysis of power. In addition, our focus is on software

solutions instead of the hardware solutions. In (Godfrey and Zulkernine 2014) the author

referred to the cloud relation with the user and underlying hardware as the cloud model.

According to the cloud model the prevention mechanism, which does not need hardware

or software changes is implemented for the prevention of SC attacks. In order to

implement any defensive mechanism, the two key points are highlighted that have

become commonplace in CC. Since the users’ is completely unaware of the cloud

environment, they may not have the permission to change their canonical software they

intend to run on the cloud. Secondly, a CC can be easily maintained and expanded,

because it is built from canonical hardware. In order to maintain the practicality of the

CC, these two key factors must be maintained.

One solution to SC attacks is the modification of the encryption algorithms (AES,

RSA, and ElGamal). The solution is based on writing constant time AES algorithm

because the variable timing AES has created an opportunity for attackers to launch an

attack. However, to write constant time AES encryption algorithm is very difficult

because constant time AES is unacceptable for many application. Kim et al. (Aumüller,

Bier et al. 2002) have implemented a prevention mechanism for active time-driven and

Univ
ers

ity
 of

 M
ala

ya

73

trace-driven cache-based SC attacks in the cloud environment. Hyperthreading,

preemptive scheduling, and multi-core OSs are the leakage channel which forms the basis

for these time-driven and trace-driven attacks. In preemptive scheduling, the attackers

VM and victim VM may use a single CPU core and its cache. In hyperthreading, multiple

hardware threads execute on a single CPU core. While in multi-core the attackers and

victim may be executing in parallel on a separate CPU core with a shared L3 cache. This

framework is compatible with the existing server hardware and tenant software and it will

not affect the system performance. In their prevention solution, they have given an

individual access to some part of the cache known as stealth page to prevent cache-based

SC attacks. However, in order to access these stealth pages by using software application,

their prevention mechanism requires to changing the software being run in the guest VM.

Since the modification of client software violates the cloud model and describes the

requirement for a transparent prevention mechanism to the client. The state of the art

literature showed very little work describing the severity of other side channels including

power consumption, electromagnetic radiation in the cloud as compared to cache-based

SC attacks. To this extent, the most interactive device is the CPU cache, thereby, is the

commonly targeted channel to exploit for the successful SC attacks in the cloud. This is

because it generates one of the highest and reliable communication speeds. Thereby, this

chapter describes the prevention mechanisms for cache-based SC attacks as opposed to

any other channel (Zhang, Juels et al. 2012).

Misiu et al., proposed a preventive mechanism for SC attacks without changing or

affecting cloud model. In addition, if a prevention mechanism can be compiled without

change or effect the existing hardware and software then it can be easily adapted to the

existing cloud system without any interference to the cloud functionality. For this, the

author used the Xen source code for the prevention of SC attacks without change the

client side or hardware. Wang et al., (Wang and Lee 2006) proposed the hardware-based

Univ
ers

ity
 of

 M
ala

ya

74

mitigation methods which reduce the cache accesses by designing new caches, or by

caches partitioning with dynamic or other efficient methods. However, this prevention

mechanism requires changing the underlying hardware and software. Mitigation of SC

attacks is very necessary at a hardware level since these channels of hardware level are

not affected by the strong mechanism of software isolation. The attackers steal the

information from the victim through shared functional unit that is dynamically allocated

to each of processes in every cycle. In this sharing process, one process can interfere with

another leading process through a side channel. In their paper, two methods are proposed

one is Selective Partitioning and the other is novel Random Permutation Cache

(RPCache). Selective partitioning by hardware (or software) can prevent the simultaneous

multithreading/functional unit covert channel problem. The RP cache solution is

implemented by using distinct memory location to cache mappings between a process

that need isolation from each other and is used to mitigate software cache-based SC

attacks. It can also find which cache location is used by another process. The main

advantage is low-performance degradation. While the disadvantage is extra overhead

when two cache sets are swapped.

Weiß et al. (Weiß, Heinz et al. 2012) conducted a cache timing attack on AES for the

first time in an L4Re VM running on an ARM processor inside a Fiasco.OC microkernel.

The attack is implemented using Bernstein’s correlation attack and the target of this attack

is many popular AES encryption algorithms including the one in OpenSSL. The

extraction of the most fine-grain information from inside a VM is the significance of this

work (AES vs. ElGamal keys in (Zhang, Juels et al. 2012)). The cipher text determines

the entry of the loaded table by a byte of the cipher state. Hence, information about the

confidential key of AES can be extracted by accessing the cache directly that during

execution which table data have been inserted into cache like trace-driven attacks. The

Univ
ers

ity
 of

 M
ala

ya

75

corresponding information can also be extracted by monitoring the behavior of timing

during various AES executions over time, like time-driven cache-based SC attacks.

 Yarom et al. (Yarom and Falkner 2014) demonstrate a trace-driven flush + reload

attack which accesses specific memory lines to evicts the data from the LLC and extract

the encryption key of the RSA algorithm. Furthermore, he noted that this attack could be

applied in CC. Similarly, Tiri et al. (Liu, Yarom et al. 2015) proposed an analytical model

which forecasts the symmetric key of ciphertext against timing attacks based on the

lookup table and length of cache lines. The access-driven cache attacks need the attacker

to monitor that which lines of cache have been monitored (like trace-driven attacks), but

similar to timing-driven SC attacks it does not need detailed information about the cache

that how and in what order the cache was accessed for data. Therefore, these classes of

attacks can be varied with each other based on the attacker's access capabilities. The

software-based countermeasure is needed for the mitigation of these types of attacks.

Because hardware based solution takes time and degrades the overall performance. The

hypervisor-based software solution for these type of attacks is cache flushing and cache

warming, however, it degrades the overall performance of the system in term of CPU

speed and load (Godfrey and Zulkernine 2014).

In (Godfrey and Zulkernine 2014), the author proposed a purely software-based server-

side defense for cache-based SC attacks in the cloud. To make it fully deployable on the

cloud model, the author implemented the solution in such a way that it does not require

the software used to run CC or hardware changes for the prevention of SC cache-based

attacks between co-resident VM. The prevention mechanism for SC attacks should be

invisible and secure from cloud provider as well as from client and only visible to the

cloud developer. Wang (Wang and Lee 2007) mitigate SC attacks by redesigning or

partitioning the cache. The author in (Wang and Lee 2007) identified two main solutions

namely Selective Partitioning such as Partition-Locked cache (PLcache) to hide the

Univ
ers

ity
 of

 M
ala

ya

76

access pattern of the cache by locking cache lines and the other is novel Random

Permutation cache (RPcache) to complicate patterns of the cache by randomizing cache

mappings. One of the solutions is to minimize the interference between cache lines by

partitioning the cache. The other class of solution is to allow sharing by randomizing the

interference between cache lines so that no useful confidential information can be

extracted. The RPcache solution is implemented by using distinct memory location to

cache mappings between the processes that need isolation from each other and is used to

mitigate software cache-based SC attacks. It can also find which cache location is used

by another process. These hardware-based solutions, however, is unable to provide

practical defensive mechanism until CPU designer and cloud provider purchase and

integrate them into CPUs and cloud providers purchase them. The main advantage is low-

performance degradation. While the disadvantage is extra overhead when two cache sets

are swapped.

2.8 Conclusion

CC is a shared open environment, which has its own characteristics and features such

as on-demand services and multi-tenancy. Specifically, it introduces multi-tenancy to

facilitate the users to share computing physical resources provisioned over the Internet

on-demand scaling. While multi-tenancy has many benefits, this paradigm introduces a

new concept known as clients’ co-residence and VM’s physical co-residency. This co-

residency arise security vulnerabilities to CC and enables a new form of sensitive

information leakage including SC attacks. Although there are many benefits to adopting

CC, however, security is the most significant barrier to adoption. In order to gain the trust

of clients, cloud provider must consider the security in CC. VM managers (VMMs)

namely XEN and VMware for modern virtualization systems enforce logical isolation

between VM by using sandboxing mechanism. Since this logical isolation is not

Univ
ers

ity
 of

 M
ala

ya

77

equivalent to physical isolation, the attackers can easily circumvent this logical isolation

by using SC attacks.

In this thesis, different hardware and software, specifically CPU cache-based SC

attacks and their countermeasure have been discussed. CPU cache is one of the most

prone hardware devices targeted by adversaries due to its high rate of interactions and

sharing between processes. In addition, several methods have been described by which

the attacker can observe the memory pattern of the victim process. e.g., one that executes

encryption algorithm with an unknown private key. These methods are categorized into

various type based on cache state. In one method, the affect the cache state is observed

and then measure and analyses the consequence on the encryption algorithm running time,

and in second methods the state of the cache is investigated after or during encryption.

The second method is found to be noise-resistant and particularly effective. For 10 years

it is a known problem in a virtualization environment. The most past attacks applied on

the L1 cache which exploits the hyper threading or scheduler weaknesses. However, the

existing LLC attacks (L2 or L3) such as the prime probe, flush reload, and LLC attacks

require memory deduplication and usage of huge pages. Some attacks do not have

restrictions such as hyper-threading and memory sharing. There is a need for prevention

mechanisms which is hypervisor-based and does not need any software by the client or

the changing of the underlying hardware. The hypervisor-based software solution for

these type of SC attacks is cache flushing and cache warming, however, it degrades the

overall performance of the system in term of CPU speed and load.Univ
ers

ity
 of

 M
ala

ya

78

CHAPTER 3: PROBLEM ANALYSIS

In this chapter, we aim to analyze the existence of the cross-VM cache-based SC

attacks and the performance of the existing prevention mechanism to mitigate these

attacks in the cloud environment. Although cache-based SC attacks and the prevention

mechanism for these attacks in multiprocessing systems namely in networks, in OS, and

in database systems have already been studied by the researcher for many years. However,

in CC this is a new topic for research. As we already discussed in detail in Chapter 2 when

two or more VMs run on a multiple cores system. One VM would be able to disturb the

cache access of another VM and can extract secret information, even if every VM is

running on a dedicated core. This situation has created a security risk in the form of cache-

based SC attacks in the cloud environment. Therefore, in this thesis, cache-based SC

attacks and the preventive countermeasures for these attacks in CC have been discussed.

The main objective of this chapter is to analyze the aforementioned research problems

discussed in Section 2.6 to establish the problem. The measurement parameter to analyze

and establish the problem is the implementation of the cache based SC attacks in the cloud

environment and to analyze the overhead of the existing prevention mechanism for cross-

VM cache-based SC attacks in term of CPU’s load and speed and cache usage. The

problem analysis for this thesis consists two parts.

The first part of the problem analysis is to implement the cache-based SC attacks in

the cloud and a non-cloud environment. This analysis is accomplished on the basis of

Prime + Probe and Flush + Reload method to check the existence of information leakage

through shared devices. We carried out the software based SC attacks, in which victim

program play the role of sender and the attacker program as a receiver. The attacker places

some code in the cache during the execution of victim program. The attackers observe

the difference in the cache access time and execution time of encryption algorithms

Univ
ers

ity
 of

 M
ala

ya

79

through software side channel to leak some confidential information to extract the full

encryption key or part of the encryption key.

The second part of the problem analysis is to formulate the overhead of the existing

prevention mechanism for cross-VM cache-based SC attacks. The initial findings are

verified through apache, cachebench, and cachegrind benchmarking experiments on a real

cloud environment. The results from two hypervisors including unmodified

(default/unsecure) and static partitioned unveil the performance degradation in terms of

bearable load, cache utilization and memory access time due to static cache partition as a

prevention mechanism. The remainder of this chapter is organized as follows. In Section

3.1, we present the experimental methodology for launching the SC attacks and for the

performance analysis of the prevention mechanism. In Section 3.2, we provide the

detailed investigation of the SC attacks and implement SC attacks by using flush + reload

and prime + probe techniques. In Section 3.3, static cache partition as a solution to SC

attacks is presented. Section 3.4 describe the performance evaluation of the static

partitioned based prevention mechanism by using various benchmarking experiment and

the chapter is concluded in Section 3.5.

3.1 Experimental Methodology

In this section, we report the details of the experimental setup for this study. In order

to evaluate the prevention mechanism for SC attack, we implemented the cache-based SC

attack in native OS, XEN, and VMware hypervisor. Because for the analysis of

prevention mechanism, it is needed to implement the attack first. For this, we utilize the

customized version of XEN hypervisor on Ubuntu and creates two VMs. We changed the

XEN source code according to our requirement and used different benchmarks. The main

focus of our work is to prevent the cache-based cross-VM SC attacks and to evaluate the

computational overhead of prevention mechanism in term of CPU load and CPU speed.

Univ
ers

ity
 of

 M
ala

ya

80

Table 3.1: Experimental Environment in Problem Analysis

Items Detail

CPU Processor Intel Core i5-3450 CPU @ 3.10GHz, 4 cores, Hyper Threading disabled

L1 Data-cache 32KB, 8 way associative, line size 64

L1 Instruction-cache 32KB, 8 way associative, line size 64

L2 Cache 256KB, 8 way associative, line size 64

L3 Cache 6144KB, 12 way associative, line size 64

Memory 11915MB DDR3 @1333MHz

VMM Xen Hypervisor with static cache partition

Virtual Machines HVM guest, 1GB memory, 1 dedicated core for individual VM

Guest OS Ubuntu 12.04.5

3.2 How cache based side channel attack works

As described in Section 2.4, the root causes of the cache-based cross-VM SC attacks

are the memory sharing and cache interference and specifically multitenancy and co-

residency in virtualized environment. PTP (Prime + Trigger + Probe) and Flush + Reload

are the two methods widely used for conducting SC attacks and the main causes for these

attacks are cache interference e.g., memory deduplication and usage of the huge pages.

Flush + Reload attacks are conducted by sharing some physical memory pages between

the attacker and victim (Zhang, Juels et al. 2012, Yarom and Falkner 2014). The PTP

technique does not require the sharing of memory pages between the attacker and the

victim. Instead, the PTP attacks are conducted by sharing the same CPU cache set

between the attacker and the victim (Irazoqui, Eisenbarth et al. 2015). PTP is mostly used

to launch time-driven attacks by using the whole cache set while access-driven attacks

are mostly conducted by using the Flush + Reload method (Tromer, Osvik et al. 2010),

which uses a specific single cache line. In the access-driven channel, the value sent by

the sender is written, and then the receiver reads and stores that value. While in timing

channels signaling information of the sender is observed and decoded by the receiver by

modulating the use of resources over time.

These two methods are proven to be conducted on the systems when the memory

deduplication feature is enabled by the VMM to share some pages between the attacker

Univ
ers

ity
 of

 M
ala

ya

81

and the victim processes (Yarom and Falkner 2014). Due to the sharing pages capability,

the attacker can know about the eviction of a particular memory line from all levels of the

cache. The spy observes the memory access timings to leak the secret information. The

Flush + Reload technique is a variation of Gullasch’s attack (Gullasch, Bangerter et al.

2011) which can be adapted for use in the multi-core and in virtualized environments.

Gullasch et al. (Gullasch, Bangerter et al. 2011) also conducted attacks on specific

memory lines. However, the victim process is frequently interrupted by the attacker and

as a result, it generates much false-positive. Similarly, Yarom et al. (Yarom and Falkner

2014) conducted the Flush + Reload attack to extract the secret key of RSA across

different cores in virtualized environment. Later on, Irazoqui et al. (Suzaki, Iijima et al.

2011) conducted the Yarom’s attack on cross-VM hosted by VMware in virtualized

environment to extract the cryptographic key of AES algorithm. In our thesis, we used

the Prime + Probe method to implement the Gorka’s attack. The basic algorithm which is

used for both prime + probe and flush + reload techniques in order to implement cache-

based SC attack is as follows:

Table 3.2: Algorithm for Implementing Cache based Side Channel Attacks

Sender queries Receiver queries

(Wait for receiver to perform some

queries)

for i := 0 to N −1 do

{Put Cache (i) into the cached state}

Access memory maps to Cache (i);

end for

for i := 0 to N −1 do

if DSend (i) = 1 then

{Put Cache (i) into the flushed state}

Access memory maps to Cache (i);

end if

end for

(Wait for sender to prepare the cache)

(Wait for receiver to read the cache) for i := 0 to N −1 do

Timed access memory maps to Cache (i);

{Detect the state of Cache (i) by latency}

if AccessTime > Threshold then

DRecv (i) := 1; {Cache (i) is flushed}

else

DRecv (i) := 0; {Cache(i) is cached}

end if

end for

Univ
ers

ity
 of

 M
ala

ya

82

3.2.1 Implementation of Cross-VM Cache-based SC Attack by using Flush +

Reload technique

In order to conduct cache-based SC attacks, Flush + Reload technique is used. This

technique consists the three phases.

Step 0: attacker will flush the cache (Flush)

Step1: Target victim access cache line and do some operation

Step 3: attacker measures the delay by reloading memory lines

During the first phase, the observed memory line is flushed from all the levels of cache

including L1, L2, and L3. In the second phase, the attacker will wait until the target victim

access to the memory line and do some operation before the third phase. During the third

phase, the spy measures the delay in the memory access timings by reloading the memory

lines. If the victim accesses the memory line during the wait phase, the cache hit occurs

and the reload time will be short because the monitored line will be available in the cache

memory. While a cache miss occurs when the victim is unable to access the cache

memory lines, the reload time will be high because the lines will be required to access

from the main memory. The flush reloads attack is always conducted on the LLC.

These attacks have become more powerful and dangerous due to two properties: First,

unlike the prior attacks which access some specific cache set, the attackers try to access

specific memory lines. Consequently, the Flush + Reload does not require any further

processing for detection and does not generate a false alarm. Flush reload attacks are only

conducted on the X86 architecture and are unable to be conducted on the ARM

architecture, although the ARM architecture has instruction for the eviction of cache lines.

However, it does not allow an unprivileged user process to use the eviction intrusion to

selectively evict the information from the cache memory (ARM 2012).

Univ
ers

ity
 of

 M
ala

ya

83

3.2.1.1 Flush + Reload Attack Scenario

We have implemented Gorka flush + reload attack in the VMware ESXI 5.5.0. We

used two VMs one for an attacker and the other for a victim, both are communicating

through local IP connection. Where we have executed the attacker in one VM and victim

program on another VM and on different cores. For the purpose of this attack, the authors

in (Ristenpart, Tromer et al. 2009) have been solved the co-location problem which

ensures that two VMs (attacker and victim) are running on the same physical machine.

The VMM such as XEN and VMware provide memory overcommitment feature,

however, Irazoqui et al. (Irazoqui G 2014) exploited this feature especially focusing on

memory deduplication in their attack which Suzaki et al. (Suzaki, Iijima et al. 2011) have

implemented in their research. The hypervisor (VMM) has the ability to search regularly

for the same pages and merge the identical pages and make a single copy of the redundant

data. Once the VMM execute this, this scenario enables the cache-based SC attack

because both the attacker and victim will access the same physical memory. The

implementation of this attack is such that target program is executed in VMware ESXI

5.5.0 running Ubuntu 12.04.5 64 bits, kernel version 3.11 for encryption using C

implementation of the AES OpenSSL 1.0.1f. We have conducted all experiments on a

machine having features an Intel i5-3450M four core clocked at 3.10GHz. Core i5 has

three level caches including L1, L2, and L3 but in this attack, the L3 cache is used because

this LLC is always shared between programs. The attacker and victim share this L3 cache

for launching SC attack. The attack steps are as follow:

(a) Flushing step

In this step, the attacker flush the desired memory from the L3 cache by using

the clflush command hence make sure that if needed next time they have to be accessed

and retrieved from the main memory. It is important to note that clflush command not

flush the desired memory lines from the L3 cache of the corresponding cores but it also

Univ
ers

ity
 of

 M
ala

ya

84

flushes from L1 and L2 of the of all the different cores in the same physical machine.

Because if it only flushed the cache of the corresponding, the attack would only work if

the victim and attacker’s program were co-locating on the same core.

(b) Target accessing step

 In this step, the attacker waits for the victim to run a fragment of code, which

might use the cache memory lines that have been flushed by the attacker in the first step.

(c) Reloading step

 The attacker reloads the previously flushed memory lines in this step and takes

all the measurements such as measure the reload time it takes for these flushed lines. On

the basis of these reloading time, the attacker knows whether the memory lines accessed

by the victim or not in case if accessed by victim the corresponding memory line would

be present in the cache (cache hit) otherwise will not be present in the cache if not

accessed by the victim (cache miss). The attacker takes the advantage of this timing

difference between a cache hit and a cache miss and can easily detect the encryption key

by analyzing the victim activity.

(d) Discussion

The victim is an encryption server receive encryption quires through socket

connection and in response sends back the ciphertext. The attacker sends the encryption

queries to the victim. In this attack, a package of 16 bytes (the plaintext) sends to the

encryption server unlike Bernstein's attack (Bernstein 2004), where the server receives

packages of 40 bytes (the plaintext). The attacker does not know about the confidential

encryption key used by the encryption server. The victim program receives the encryption

queries sent by the attacker program. All the measurement such as the required time for

the reload step is performed on the attacker side. In this attack, only a single line is

required to monitor. The flushing step is always occurs before encryption and reloading

can be done after encryption, i.e. the attacker will not interfere with the attack process.

Univ
ers

ity
 of

 M
ala

ya

85

In this attack, the attacker first discovers the offset of the T tables’ addresses with respect

to the beginning of the library. After gaining this information, the attacker is able to refer

to any memory line that the value of T table holds, even the ASLR (Address Space Layout

Randomization) is activated. Then, it sends encryption queries to the encryption server

and receives the interrelated ciphertext. After each encryption, the attacker checks the

value of the chosen T table by Flush + Reload technique whether its value have been

accessed or not.

We assume that the attacker monitors the memory line corresponding to the T table

first position, where T is the lookup table is applied to the i-th byte of the targeted AES

state before the last round. It is further assumed that n T table can adjust in the memory

lines, for instance, for this attack the memory lines will hold the first n T table position.

If any value of the T table entries is equal to si in the memory lines (i.e. Si Ɛ {0,…., n} if

the first n T table entries in the memory line) then the accesses memory line will be

present in the cache with a high probability shows that these memory lines been accessed

by the encryption server. However, si with a change value means that accessed memory

lines are not loaded in this step. The probability that encryption process did not access the

specific T table memory lines is given as:

Pr [no access to T ((i))] = (1 −
𝑡

256
)

𝑙

 (3.1)

Here l represents the number of accesses to the particular T table. Since each

encryption uses 40 access to each of the T table, therefore l=40 for OpenSSL 1.0.1 AES-

128. The probability that the cache line is not accessed is Pr (no access to T(i)) = 28%.

Therefore, we can easily distinguish about the accessing of memory lines whether it is

accessed or not. In order to distinguish whether the line is accessed or not is to measure

the reload time for the targeted memory lines. If the reload time is high it shows that the

Univ
ers

ity
 of

 M
ala

ya

86

memory lines are accessed and the low reload time shows that the memory line is not

accessed.

The key recovery step is then executed after all the measurement performed which

takes less than half a minute. The result is shown in Figure 3.1. The vertical access refers

to the correct bytes of key and the horizontal access refers to the number of encryption

needed to recover the key. Due to the noise ratio in the virtualized environment we need

different number of encryption for the attack in the Linux and for the cross-VM attacks.

We need 100 thousand encryption for the correct bytes of key in Linux and 400 thousand

encryption for recovering the correct bytes of key in cross-VM attack scenario.

Figure 3.1: Number of the Key Bytes of AES Key Correctly Guessed vs Number of

Needed Encryption

3.2.2 Implementation of Cross-VM cache-based SC attack by using Prime + Probe

technique

Similarly, the prime + probe method is used in order to conduct cache-based SC

attacks. The document form of SC attack was conducted by Ristenpart et al. (Ristenpart,

Tromer et al. 2009), by using PTP which consists of the following three steps:

 Step 0: attack fills the cache (prime)

Step1: Victim evicts cache lines while performing encryption

0

2

4

6

8

10

12

14

16

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

C
O

R
R

EC
T

K
EY

 B
YT

ES
 G

U
ES

SE
D

ENCRYPTION (X103)

Native

Cross-VM

VMware Cross-VM F +R

Univ
ers

ity
 of

 M
ala

ya

87

Step 3: attacker probes data to determine if the set was accessed or not

In the PRIME step, the attacker filled the CPU cache with his own data; in the IDLE

step the attacker waits for some random interval for the victim to perform some operation;

then finally in the PROBE step, the execution is resumed and the cache is refilled to

measure the delay between the cache access and memory access time. In addition, during

the first phase, the cache memory is divided into accessed and un-accessed categories. In

the prime phase, it generates cache hit and cache miss based on the accessed and not

accessed. Then finally, the probing instance has more values, which indicates how much

time is needed to access the cache line with a primed cache. Then the delay in the memory

access timings are observed to extract the secret information. This memory access timings

are considered to be an easier way to exploit the cryptosystem and functionality of the

system and is more difficult to control. The purpose of Ristenpart’s PTP attack was to

check if a cache-based SC attack could be established between the two co-located VM on

the same physical machine. This attack requires that the attacker VM and target VM must

be placed on the same physical machine. This SC was conducted such that the probing

instance or first VM could collect a message that the target instance or second VM

encodes in its usage of the cache.

3.2.3 Experimental Setup

We have implemented the cache-based SC attack by using prime + probe method. In

native setup we have installed the attacker and the victim programs on the same core

within same OS. For the cross-VM attack setup, the attacker and the victim programs

have been installed on different guest VM which has different cores and different OS but

both are sharing the same hardware.

3.2.3.1 Attack1 Setup: Attack in Native Operating System and in Single VM

In the native OS, the PTP technique is implemented in such a way that the attacker and

the victim programs are executing on the same core. Since VM is a guest operating

Univ
ers

ity
 of

 M
ala

ya

88

system, the execution of cache-based SC attack using PTP technique would be same as

SC attack in native OS. In both environment the attacker and victim programs will be

executed on the same core. In the PTP technique, the probing instance (attacker) first

divides the cache lines into the touched and the untouched category. Cache lines in the

touch category have been accessed by the target and in the untouched category have not

been accessed by the target. After categorization step, the probing instance primes the

monitored cache by filling his own data. Now in the victim accessing stage, the attacker

waits for the victim to perform some operation causing the eviction of some cache lines

that were primed by the attacker in the first stage. Now in the probing stage, the attacker

access the prime data again. When the attacker reloads the data from the set that has been

used by the victim causing a higher probe time because some of the primed cache lines

have been evicted. However, if the victim program did not use any set of the cache lines

in the primed set, causing a low probe time because all the primed cache lines will still

reside in the cache. The probing instance has a series of values which represent the access

latency for cache lines.

The latency difference for cache lines in the touched category compared to the

untouched category shows that the victim instance was trying to communicate. Later on

Wu et al. (Wu, Xu et al. 2012) refined the PTP technique, where they conducted a high-

speed channel by communicating a “1” or a “0” . The generation of these “1” and “0”

depends on the variation of timing category whether it is positive or negative (assuming

the variation is above a specific threshold value). In addition, their attack has the ability

to transfer bit-streams of over 190kb/s. So far, this SC attack is the most reliable and

robust cache-based SC attack in a virtualized environment. This technique is mostly used

for sequential cache-based SC attacks, making it a good example of a canonical attack.

Since all the cache-based SC attacks in the cloud rely on this basic PTP technique, a

successful prevention of its principle could prevent all the present cache-based SC attacks.

Univ
ers

ity
 of

 M
ala

ya

89

Therefore, in our research, we have implemented and analyzed Wu et al. attack for our

problem analysis (Wu, Xu et al. 2012).

3.2.3.2 Attack2 Setup: Cross-VM Attacks

We have also implemented Gorka et al. attack in which they used the PTP technique

for the extraction of cryptographic key targeting the AES algorithm running in victim

VM. Unlike Gorka flush + reload attack this attack is not rely on the deduplication,

instead, it uses the huge pages for conducting the SC attack by using PTP method. This

method can be used to extract information from any encryption algorithm (i.e. ELGamal,

RSA) but Gorka’s target is the AES algorithm. AES is also stored in a cache and the

attacker can leak the detail of AES to extract the cryptographic key. Unlike normal

information leakage, the leakage from AES algorithm is very dangerous. Because the

attackers can detect the complete key and by using that key they can easily detect the

confidential information. AES in most famous cryptographic libraries including

OpenSSL, PolarSSL, and Libgcrypt are vulnerable to Gorka attack when runing in the

most popular hypervisor such as Xen and VMware used by popular cloud service

providers (CSP) namely Amazon and Rackspace. The attack on AES has existed in the

literature for many years, however, in virtualized environment, this attack has been

introduced in 2009.

The implementation of this attack is executed in Ubuntu 12.04.5 64 bits, kernel version

3.11. We have executed target process using the C-implementation of AES in OpenSSL

1.0.1f for encryption. This is used when OpenSSL is configured with no-asm and no-hw

option. We want to remark that this is not the default option in the installation of OpenSSL

in most of the products. We have conducted all experiments on a machine having features

an Intel i5-3450M four core clocked at 3.10GHz. The cache hierarchy of Core i5 has

three-level: It is important to note that L1 and L2 cache are private to each core while L3

(LLC) is divided into slices and shared among all cores. When attacker and victim are in

Univ
ers

ity
 of

 M
ala

ya

90

the same core they use the L1 cache. When both attacker and victim are in the different

core they use the shared L3 cache. The L1 cache line size is 64 bytes and is 8-way

associative, with 215 bytes of size. The size of the L2 cache line is 64 bytes and a total

size of 218 bytes cache and is 8-way associative. The L3 cache is 12-way associative with

a 64 bytes cache line size and a total size of 222 bytes. The L2 cache in combined with

the memory deduplication feature performed by the VMM allows the attacker to learn

about cache accesses by the victim program. The attack scenario is such that one VM

receiving the encryption queries with a secret key. The attacker VM is co-located with

the victim encryption server but on different cores.

The communication between the attacker and victim is carried out through local IP and

by using this connection the attacker start the spy process and sends the plaintext to the

encryption server. The attacker start measuring the usage of L3 cache on the reception of

cipher text. There are four main steps in the Gorka attack on AES in Xen Hypervisor: in

the first step the attacker gain the knowledge about the LLC (L2 or L3), cache slice

number, and the cache lines that fills one of the sets in L3 cache. In the second step,

attacker tries to know about the set which T table occupies, because these T table needs

to be accessed again for recovering the secret key. In the third step the attacker perform

the prime, reprimes, and request encryption steps on the desired set to check whether the

cache lines have been accessed or not. Finally in the last step, the attacker recover the

cryptographic key used by the server by utilizing the measurements taken in step 3.

3.2.4 Experimental Results

In this section, we show the proof of the existence of SC attacks in virtualized

environment by conducting the experiment and analyzing the results. We perform the SC

attack and analyze the results in native OS, and in XEN hypervisor.

Univ
ers

ity
 of

 M
ala

ya

91

3.2.4.1 Result in Native Operating System

This is the basic setup in which we have executed the attack. We have executed two

program in the native OS in the same core. This experiment is based on the number of

encryption needed to recover the correct bytes of key. The Figure shows that due to low

noise in a native operating the number of encryption for recovering the correct key is very

low as compared to the virtualized environment. To distinguish L3 cache access from

main memory is more susceptible to noise as compared to differentiate between L1 cache

access and main memory access. Therefore, while L3 cache is mostly used for SC attacks,

its make the SC attack more challenging. Figure 3.2 shows the result.

3.2.4.2 Result of Attacks in Single VM and in Cross-VM

In this scenario we executed the attack in virtualized environment in which two VMs:

one is the attacker and the other is a victim are communicating through local IP. Due to

the noise ratio in virtualized environment more encryptions are needed to recover the

correct bytes of the key as shown in Figure 3-2. We have implemented Gorka attack and

analyze the different results in our thesis. It is important to note that attacker has the

administrator privileges in the cross-VM attacks due to the sharing resources in

virtualized environment. In the first stage, the spy process recognizes the L3 cache access

pattern in our Intel i5-3450M system and by using this method we can detect the division

of L3 cache into a slice. The spy process makes us able to know about the cache division

into two slices and that the selection method of the slice is based on the parity of the first

non-set addressing bit (i.e., a 17th bit). Thereby, for filling set in the odd slice we need 16

odd lines and to fill a set in the even slice we need 16 even lines. In the second stage, the

spy process recognizes the set in the LLC (L2 or L3) that each T table cache lines of the

hold.

In order to recognize the set, each possible set is monitored according to the obtained

offset from the shared library of the Linux feature. The set reserving of T table cache line

Univ
ers

ity
 of

 M
ala

ya

92

is used in the encryption process around 90% of times while the set will remain unused

around 10% of the time where 500 random encryptions in a cross-VM scenario in Xen

hypervisor were observed. It is to be noted that monitoring time for an unused set is more

stable which is in the range of 200-300 cycles as compared to the monitoring time of a

set used by T-tables which is 90% around of the time. The last step is to execute Gorka

attack to recover the AES key used by encryption server. Valid ciphertexts are to be

considered for the step of key recovery that are below the average time. The

measurements are taken in the customized Xen hypervisor-based when the corresponding

last line of T table is monitored and the key is 0xe1 in this case.

The attack was analyzed in native, single-VM, and in cross VM-scenario requiring

275.000 and 650.000 encryption respectively to recover 16 bytes key. It is shown in the

Figure 3.2 that in the single-VM and cross-VM environment more number of encryption

is needed as compared to the non-noisier environment such as native OS scenario.

Figure 3.2: Number of Recovered Key Bytes Correctly Guessed vs Number of

Requested Encryption for Native OS, Single-VM, and Cross-VM in XEN

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800

Native OS XEN Single VM XEN Cross-VM

Correctly guessed Key Bytes

Number of Encryptions (x103)

Cross-VM Univ
ers

ity
 of

 M
ala

ya

93

For example, the encryption key consists of 16 bytes. In the native setup, it is clear

from the Figure that 150.000 encryption is needed to recover the 16 bytes key. While in

the single-VM scenario 250.000 encryption is needed to recover the 16 bytes key. This is

because of noise that in the cross-VM scenario 650.000 encryption is needed to recover

the whole key as compared to another scenario in which low encryption is needed to

recover the whole bytes of the key.

Table 3.4 describes the correctly recovered key in number of bytes in both single VM

and cross-VM. Single VM means that attack is conducted in single in which the attacker

and victim programs are in the same VM. In cross-VM scenario, both the attacker and the

victim programs are in different VM and in different cores. Table 3.2 shows that the

required number of requested encryption for correctly recovered the whole bytes of key

in single VM is less than as compared to cross-VM. Because in cross VM the external

noise effect the results. We believe that due to noise SC attacks require a high number of

encryption in the cloud environment as compared to non-cloud environment. Table 3.2

shows the result of cache-based SC attacks in native, single VM, and in a cross-VM

scenario in XEN and VMware.

Table 3.3: Comparison of Correctly Recovered Key in Single and Cross-VM

In Single Virtual Machine (Single-Core) In Cross-Virtual Machine(Multi-Core)

Number of requested

encryption

Number of correctly

recovered key bytes

Number of requested

encryption

Number of correctly

recovered key bytes

10,000 1 30,000 2

90,000 6 60,000 2

130,000 10 100,000 4

150,000 10 200,000 8

200,000 13 260,000 9

250,000 13 300,000 11

260,000 14 350,000 12

265,000 14 450,000 13

270,000 15 500,000 15

275,000 16 650,000 16

Univ
ers

ity
 of

 M
ala

ya

94

 Similarly, Table 3.5 describes the comparison of cache-based SC attacks in both Xen

and VMware. This table shows the result of the SC attacks in both Xen and VMware

implemented by flush + reload and prime + probe methods. The need number of requested

encryption for correctly recovering the number of key bytes are different in each scenario.

Table 3.4: Comparison of Cache-based Side Channel Attacks in XEN and VMware

Name of Attack Scenario Platform Technique No of

Encryption

Flush + Reload Native OS i5-3450 L3 Cache Flush + Reload 250

 Cross-VM i5-3450 L3 Cache Flush + Reload 450

Prime + Probe Native OS i5-3450 L3 Cache 150

 Single-VM i5-3450 L3 Cache (Gorka attack) 275

 Cross-VM i5-3450 L3 Cache prime + probing 650

3.3 Prevention Mechanism

As we discussed in Chapter 2 in detail, the prevention mechanism is divided into two

types: Software-based and hardware-based. The hardware based prevention mechanism

need to change the underline hardware while for the software-based the client need to

change their software which violates the CC concepts. There are several existing

prevention mechanisms for cache-based SC attacks. These mechanisms may also prevent

cross-VM cache-based SC attacks. For instance, one prevention method is to rewrite the

software (AES) in a way that does not allow the known attacks to occur (Brickell,

Graunke et al. 2006). Similarly, there is another prevention mechanism that needs the

non-standard hardware to refine the processor architecture for the prevention of cache-

based SC attacks (Wang and Lee 2008). Some research work proposed the disability of

cache sharing for mitigating cache-based SC attacks (Oswald, Mangard et al. 2005). The

author in (Shi, Song et al. 2011) used the cache partition by using dynamic page coloring

technique. However, this approach requires the client to change their software which is

Univ
ers

ity
 of

 M
ala

ya

95

against the cloud rule. To use the cloud resources we need to follow the cloud rules and

according to cloud rule, we are unable to change the canonical software and hardware. In

addition, if a prevention mechanism can be compiled without change or effect the existing

hardware and software then it can be easily adapted to the existing cloud system without

any interference to the cloud functionality.

For instance, Misiu et al. (Godfrey and Zulkernine 2014), proposed a hypervisor

preventive mechanism for SC attacks without changing or affecting cloud model. We

evaluated this hypervisor-based solution using the Gorka’s cross-VM cache-based SC

attack. In order to evaluate the performance of hypervisor-based solution, the Gorka’s

attack was given an ideal condition to execute in. Specifically, for attack, the attacker VM

(probing instance) and the victim VM (target instance) and dom 0 VMs are running on a

hypervisor and all the three VM were pinned to different CPU cores. This is the ideal

configuration for launching cross-VM attacks and any variation in this configuration

would make difficult the success of the SC attack. The author in (Godfrey and Zulkernine

2014) used static cache partitioning approach for the prevention of SC attacks without

changing the client side or hardware. However, this hypervisor-based solution degraded

the overall performance of XEN hypervisor by reducing cache usage, because if the cache

size is 4MB and we divide it into 4 parts and make static partition of 1MB. For example,

if there are 4 active VMs. Two of them are using the cache and the other 2 are not using

the cache, however, each time hypervisor boot they will make the static partition

according to the active VM. The cache will be wasted and the performance will be

degraded. Because if one VM needed the more cache memory than the assigned one and

the other needed less memory than the assigned one. Then the assigned memory to each

VMs cannot be assigned other VM on the needed basis.

The authors in (Shi, Song et al. 2011) have tried to partition the cache dynamically. In

their proposed approach, they are given a small portion of the cache to the secure

Univ
ers

ity
 of

 M
ala

ya

96

encryption algorithms (AES, DES) to maintain the efficiency. However, their solution is

unable to secure the VMs from the leakage attacks. Secondly, their solution needs the

client’s software to change and to be informed about their partition approach to take

advantage of the partition. Our hypervisor-based solution by contrast partition the cache

dynamically and it does not need to change the client’s software, mean the software and

hardware do not need to change. The reason for hypervisor-based solution using dynamic

cache partition comes from the fact that we are dynamically partitioning the cache on the

hypervisor side to make the clients unaware of the solution. In addition, client’s software

does not need any changes for using this solution. Our solution will be compatible with

the existing software and hardware and will not degrade the system performance, which

will fulfill the CC criteria. Our solution applies preventive mechanism rather than a

reactive mechanism. Since according to our solution, two VMs cannot access the same

cache lines, therefore there is no chance to create side channel between two VMs. We

utilized a set of benchmark and Phoronix test suite for the evaluation.

 Leak Information of each other

 Cache Hierarchy

 Shared Cache by all VMs

L1 L2 L1 L2 L1 L2 L1 L2

CPU Cores

Core 1 Core 2 Core 3 Core 4

L3 Cache

 VM1 VM2 VM3 VM4

Figure 3.3: Problem Visualization

Univ
ers

ity
 of

 M
ala

ya

97

3.3.1 Cache Partitioning as a Prevention Mechanism

When multiple VMs run on multi-cores system, because of shared L3 cache one VM

can extract the information of another VM by disturbing the cache access, even every VM

is running on a dedicated core. Therefore fair partition of cache and cache-sharing is not

only considered in a multi-programming system but also is a hot topic for virtualized

environment. Cache partitioning mechanism is based on page coloring technique. Page

coloring is a software-based approach for memory mapping to leads that how memory

pages mapped to the specific cache set or cache lines (Soares, Tam et al. 2008, Zhang,

Dwarkadas et al. 2009). Furthermore, the memory management module is controlled by

page coloring approaches to ensure that a group of memory pages having the same color

will be mapped to particular cache lines. The figure shows the mapping of memory pages

to cache lines during memory management process. Page coloring technique is divided

into static and dynamic types (Tam, Azimi et al. 2007, Jin, Chen et al. 2009). Static page

coloring is the intuitive approach for the prevention of cache-based SC attacks (Jin, Chen

et al. 2009) which provides a strong degree of isolation between VMs. However, this

approach limits the number of VMs and degrade the overall performance in term of

reducing cache usage for individual VM. Although static partition of the cache can reduce

the eviction rate of cache data, consequently prevent the cache-based SC attacks.

However, it reduces the memory usage or the size of the usable part of cache for

individual VM. As a cache is divided into a static portion, it became smaller and many

VMs compete for the same portion usage of cache making that portion the more efficient.

These conflicting factors degrade the overall performance of this static partition based

prevention mechanism. The static partition using page coloring technique is shown in the

following Figure 3.4.

Univ
ers

ity
 of

 M
ala

ya

98

Main MemoryN-Way Associative L3 Cache

Virtual Machine 1

Virtual Machine 2

Physical Memory

VM1

VM1

VM2

VM2

Figure 3.4: Static Cache Partition Using Page Coloring

Since the performance of many applications depends on the cache size and utilization,

however, in virtualized environment, this approach proportionally limited the access to a

cache set that a VM can use to effect the overall performance. In addition, depending on

the cache total size and set associativity, the page coloring system is able to provide a

very limited number of colors that impose a restriction on the number of running VM on

a cache during VM provisioning. Since the cache color for a system is calculated as:

Number of Colors = (
𝐶𝑎𝑐ℎ𝑒 𝑆𝑖𝑧𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦 × Page Size
) (3.2)

 Moreover, since the partition is static it cannot be changed at runtime. It means that

the partition cannot be scaled up or down after booting the hypervisor correspond with

the number of running VMs. Therefore, the efficiency of static partition solution depends

on correctly balancing the number of VMs correspond to a number of partitions. If the

number of VMs are not correctly balancing correspond to the number of partition then

this little mismatch can lead to a significant overhead and can degrade the overall

performance very badly. For instance, if the shared cache (L3) is divided into four

partitions statically during boot time and the number of created VMs are eight then this

Univ
ers

ity
 of

 M
ala

ya

99

mismatch can lead to significance overhead in term of cache usage. Similarly, if the

number of partition is four and the number of created VM is one then other parts of cache

will be wasted and also has a bad impact on the speed because the cache size will be

reduced. Since the size of cache partition is static and it cannot be just changed unless the

system is rebooted.

To address this limitation, the author in (Shi, Song et al. 2011) proposed dynamic

cache partition approach. To maintain the efficiency, they have assigned a small portion

of the cache to the encryption algorithms. In their solution, they partitioned the cache

based on the page coloring technique and assigned a secure color to the encryption

algorithms e.g., AES and DES. It means that when two or more VMs would be using

cache, the hypervisor will not partition the cache. However, the hypervisor would be

partitioned the cache based on the execution of any encryption algorithm. Although this

prevention mechanism maintains the cache efficiency, it requires the client to change their

software e.g., encryption Algorithms, which does not comply with the cloud model.

Moreover, it gives a small portion of the to the encryption algorithm cache by using a

page coloring technique, mean it just secure the clients and programs which use the

encryption algorithm. For instance, if one VM wants to leak information from another

VM, then their solution is unable to prevent the information leakage across VMs.

Therefore, there is a need for server-based prevention mechanism which is transparent to

guest VM and the underlying hardware.

Moreover, this prevention mechanism prevents the extraction of the cryptographic key

as well as the normal information leakage. This prevention mechanism follows the cloud

rule as we discussed in Chapter 2 as a cloud model that does not need to change the client

software or the underlying hardware. Our solution does not need to reboot the system

every time for partitioning the cache on the provisioning of new VM. Additionally, if the

cache is divided dynamically according to the requirement of each VMs, and the

Cross-VM

Univ
ers

ity
 of

 M
ala

ya

100

individual VM does not have to worry about that other VM will evict its data.

Consequently, this improves the overall performance by increasing the cache hit and

cache miss rate and also the cache usage for each VM. This solution is more preventive

rather than reactive. There are two types of prevention mechanism: Intrusion response

system (IRS) and Intrusion prevention system (IPS). Since we cannot wait for a cache

channel might be forming we completely prevent the channel to form or occur, therefore

our solution is IPS e.g., Proactive response rather than IRS e.g., Reactive response.We

utilized the standard workload such as apache benchmark and Cache bench benchmark

from the open sourced Phoronix test suite for the evaluation of the amount of overhead

generated by the static-based partitioned hypervisor. These benchmarks are used because

these are open source.

3.3.2 Phoronix Test Suite

We utilized the apache and cachebench benchmark from the Phoronix test suite to

evaluate our proposed dynamic cache partitioned solution. The Phoronix test is

commonly used for the evaluation for the performance measurement of various system

attributes and subsystems. These attributes include cache usage, CPU load testing, cache

access rate and how the Xen hypervisor is able to handle the high load distributed among

different VMs. However, among the available tests, we focused on standard workload

namely Apache benchmark and the Cachebench benchmark to evaluate the various

performance attributes most significant in the virtualized environment. Apache was

chosen because it is the most widely used software for load testing and typically find in

the Cloud. Our solution is also related to virtualizing environment therefore, we chose

this benchmark and Cachebench was chosen because it shows the cache usage in more

detailed form.

3.4 Evaluation Parameters

The following test we performed by using the above mentioned benchmark.

Univ
ers

ity
 of

 M
ala

ya

101

 Load testing with varying numbers of VMS and partitions

 Cache Utilization with varying numbers of VMs and partitions

 Memory access rate with varying numbers of VM and partitions

3.4.1 Load Testing with varying numbers of VMs and Partitions

The Apache benchmark is a standard benchmarking tool based on HTTP webserver

(Foundation. 2013). We utilized apache benchmark from the open sourced Phoronix Test

Suite for the evaluation of the partitioned hypervisor. This benchmark is chosen because

this typical software is found very easy to use and frequently available in the cloud. Table

3.4 shows the performance of the static partition in term of load testing that the modified

hypervisor based on the static partition can tolerate how much load in term of request per

second. As shown in the table that with increasing number of VMs and partitions the

bearable load in term of number of request per second is decreasing.

Table 3.5 : Load Testing with Varying Number of VMs and Partitions

 Number of Requests per Second

Number of

Partitions

With 1 VM With 2VM With 4VM With 8 VM With 16 VM

Default (1) 3200 3500 3200 1500 700

Partition (2) 3200 3200 3100 1500 700

Partition (4) 2800 3100 3100 1500 600

Partition (8) 2600 2900 2800 1400 600

Partition (16) 2200 2100 2000 1100 400

We’re assuming that if there are four cores in the system then we will have 4 VM.

Dom 0 will divide the cache partition according to cache associative. If the cache is 24way

and VM is 4. Then 24/4=6. Each VM will get 6 partitions. We concluded from the various

experiments that if we will partition the cache into 16 at boot time then the overall

performance of the system will be degraded even one VM is executing on the partitioned

(16 parts) cache.

Univ
ers

ity
 of

 M
ala

ya

102

Figure 3.5: Load Testing in Static Partitioned Hypervisor with Varying Number of

VMs and Partitions

In Figure 3.5, the result of the conducting experiment in static partitioned hypervisor

is shown. We analyzed from this load experiments that as the number of partitions

increases the request per second is decreased which show the bearable load of a system

or load that a system can tolerate. The problem with the static partition during boot time

is: once we create the static partitions at boot time we cannot change the partitions until

we boot the system. For instance, once we divide the cache into 16 partitions and during

this time one VM is running then one VM will be executing on one part of the cache and

the remaining 15 partitions will be idle during execution of VM. Because we cannot

change the 16 partitions into single partition according to the executing single VM.

Moreover, we cannot change the partition into one partition with respect to the creation

or execution of one VM. We have concluded from the experiments that the ideal

distribution with minimum overhead would be an equal amount of VMs and amount of

partitions for each set of partitions. Although static partition prevents overhead from

cross-VM cache evictions, however, it would be very difficult to detect the number of

VMs and number of partitions at boot time.

0

500

1000

1500

2000

2500

3000

3500

4000

With 1 VM With 2VM With 4VM With 8 VM With 16 VMN
u

m
b

er
 o

f
R

eq
u

es
ts

 p
er

 s
ec

o
n

d

Number of Varying VMs

Load Testing with Varying Number of VMs and
Partitions

Default (1) Partitions(2) Partitions(4) Partitions(8) Partitions(16)

Univ
ers

ity
 of

 M
ala

ya

103

3.4.2 Cache Utilization with varying numbers of VMs and Partitions

We conducted this experiments by using cachebench benchmark. Cache utilization is

investigated for static portioned hypervisor to check the amount of data accessed in bytes

by each one. Cachebench includes various benchmark, however, we used the Cache

Read/Modify/Write to evaluate the different level of cache in term of accessed data. We

analyzed by conducting this experiment that in the static cache partition the amount of

cache bandwidth would be decreases with increasing number of VMs and number of

partitions. Consequently, static cache partition generates much more overhead as the

number of VMs and partitions increases. Table 3.7 shows the result of a statistically

partitioned hypervisor.

Table 3.6: Cache Utilization with Varying Number of VMs and Partitions

 Cache Bandwidth of Read/Modify/Write (MB per Second)

Number of Partition 1VM 2VMs 4 VMs 8 VMs 16 VMs

Default (1) 17923 17128 15289 13567 13889

Partition (2) 15628 14035 13878 11228 12556

Partition (4) 14289 13582 12728 10988 10454

Partition (8) 10989 9366 8800 8487 8000

Partition (16) 4896 4098 3789 3567 3089

Figure 3.6 shows a gradual decrease in the cache utilization for each VM as the number

of VMs and partitions increases. For 1 VM the cache bandwidth is more as compared to

the 16 VMs and partitions. It means when the number of VMs and partition is increases

the performance will be degraded because the cache bandwidth in term of cache

read/write/modify bandwidth will be decreased. Similarly, if the number of partition is

increased then the cache bandwidth for each VM will decrease even if one VM is running.

Univ
ers

ity
 of

 M
ala

ya

104

Figure 3.6: Cache Utilization with Varying Number of VMs and Partitions

3.4.3 Memory Access Rate with varying numbers of VMs and Partitions

The average memory access time is a valuable parameter to evaluate the performance

of a memory hierarchy configuration. When a processor demand to execute an item from

the main memory, it sends a load request to the cache memory. If the item resides in the

cache it will generate a cache hit and in the case of absence, it will generate a cache miss.

These cache miss and hit rate are used to calculate the memory access rate. We have

calculated the total cache references, cache miss, and cache hit rate by using a cachegrind

benchmark for the purpose to determine cache access rate. Then by using these values,

we have calculated the memory access rate by our own designed program in the static

cache partitioned-based hypervisor. Figure 3.7 shows the access latency for varying

number of partitions with increasing number of VMs. We have observed from the analysis

that the performance for 2-way and 4-way partitions are same as the default hypervisor.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1VM 2VMs 4 VMs 8 VMs 16 VMs

A
v
er

ag
e

B
an

d
w

id
th

 o
f

ca
ch

e
R

ea
d

/M
o

d
if

y
/W

ri
te

 (
M

B
/S

ec
)

Number of Virtual Machines

Cache Utilization with varying VMs and Partitions

Default (1) Partition (2) Partition (4) Partition (8) Partition (16)

Univ
ers

ity
 of

 M
ala

ya

105

Figure 3.7: Cache Access Rate in Static partitioned based Hypervisor

However, when we increase the number of partition and number of VMs, there is a

gradual decrease in the cache access time. When there is many numbers of VMs and

partitions then there are chances for eviction of each other data that’s why the memory

access rate would be increased as the data will not be present in the cache memory and

will be coming from the main memory. Since the program is running on the partitioned

hypervisor, therefore, the performance will be degraded. If our design program for the

calculation of cache access rate is run in the default/unmodified hypervisor then it will

generate more cache hit as compared to the program which is running in the static

partitioned based hypervisor. Because in the partitioned hypervisor case, our design

program gets a portion of the entire cache. This proves that the overall performance will

be degraded with the static cache partition.

3.5 Conclusion

In this chapter, the implementation of SC attacks by using two methods in the different

hypervisors is presented. Then the prevention mechanism for SC attacks has been

0

5

10

15

20

25

30

With 1 VM With 2VM With 4VM With 8 VM With 16 VM

A
v
er

ag
e

L
L

C
 M

em
o

ry
 A

cc
es

s
T

im
e

(n
s)

Number of Varying VMs

Average Memory Access Rate in Static Partitioned Hypervisor

Default (1) Partitions(2) Partitions(4) Partitions(8) Partitions(16)

Univ
ers

ity
 of

 M
ala

ya

106

discussed in detail. According to the studied literature, one intuitive defense to mitigate

cache-based SC attacks is the static partition of the cache is to divide the cache into

statistical partition according to the different scheme of color assignment and strictly

assign distinct page color to different VMs, so they access different parts of cache. We

conducted the real-time experiment for the prevention of SC attacks based on the static

partition solution and analyzed the load, cache utilization, and memory access time of this

existing solution. Consequently, we analyzed that there are some bearable differences in

the load, and memory access time between unmodified and modified (based on static

cache partition) hypervisor as we know security is always comes with some overhead.

However, there is a very large difference in the cache utilization of modified and

unmodified hypervisor.

Although the static cache partition is simple and provides isolation, it potentially

decreases the cache set for utilization. Consequently, the number of cache sets in typical

processor cores is very limited which could reduce the number of executable VMs in a

shared cache when using a static partition of cache. Consider, for instance, a system

having 4 cores with 64-page color and 16 MB of memory for individual color. Therefore,

this system support 64 VMs with one color each and every VM limited to footprint not

more than 16MB. Moreover, cache utilization is low when all cores and all VMs are

active. It was observed that once the static partition is created during the boot time, it

cannot be changed after creation of more VMs until we boot the system and change some

changes. In addition, existing page coloring mechanisms either is unable to adaptively

adjust cache partitions efficiently or they unable to identify phase transition of

application. To mitigate this problem, we extend page coloring with dynamic cache

partitioning capability by adding recoloring mechanism. In this dynamic partition

mechanisms, every VMs get their partition upon the creation without booting the system.

There are some other approaches to prevent cache-based SC attacks, however, they all

Univ
ers

ity
 of

 M
ala

ya

107

require the changes in the client software and in the underlying hardware. The prevention

mechanism for SC attacks can be improved in term of cache utilization and performance

improvement.

Univ
ers

ity
 of

 M
ala

ya

108

CHAPTER 4: HYPERVISOR-BASED PREVENTION MECHANISM USING

DYNAMIC CACHE PARTITIONING: HBP-DCP

This chapter aims to present the details of our Hypervisor-based Prevention

Mechanism using Dynamic Cache Partitioning (HBP-DCP) for the prevention of cross-

VM cache-based SC attacks. We describe the building blocks and components of the

proposed prevention mechanism and describe their functionality. The HBP-DCP is

comprised of three main components, namely, admission control, cache usage monitor,

and cache partitioner (Color-Aware Page Migrator). The admission control interprets and

analyzes the user requests and takes a decision based on the availability, capability, and

price of VM. The cache usage monitor analyzes and measures the number and utilized

cache of executing VMs. The cache partitioner then divides/partition the cache according

to executing VMs. The required amount of cache varies from VM to VM and the number

of VMs also varies, therefore, it is difficult to fulfill the demand of the each VM for the

different requested amount of cache in a static partition. Our approach divides the cache

according to the executing number of VMs and facilitates the VMs requested amount of

cache on the fly and also can prevent the cache-based SC attacks across VMs.

In the following sections, details of the HBP-DCP are provided. In Section 4.1, the

overview of the system requirements for HBP-DCP. Section 4.2 presents the VM

creation/provisioning in detail. Section 4.3 describes the various component of the

proposed prevention mechanism, such as admission control, cache usage monitor, and

cache partitioner in detail. In section 4.4 the significance of the proposed prevention

mechanism is provided. Section 4.5 describes the data designing followed by concluding

remarks in 4.6 for this section.

Univ
ers

ity
 of

 M
ala

ya

109

4.1 Hypervisor-based Prevention mechanism using Dynamic Cache

Partitioning

In this subsection, we present the overview of our HBP-DCP mechanism that is

capable of preventing cross-VM cache-based SC attacks. As already discussed in section

2.1.2, the basic idea behind cache-based SC attacks is the shared resources in CC as VMs

resides on the same physical devices and can easily extract each other data by using shared

L3 cache. Since it is clear from the name that hypervisor-based prevention has three main

phases. The first phase is that Xen hypervisor will check the VM request. This usually

includes whether the request is generated from the new VM or from existing VM. The

second phase is to check the cache usage that how many VMs already exist in the cache

and how much cache is assigned to those VM. The third phase is to reconfigure the cache

and re-divide the cache according to the requirement of the current running VMs. This

approach is to rewrite the software (Source code of Xen Hypervisor) in a way that no

known and unknown cache-based SC attacks between VMs can succeed. This solution is

more preventive than reactive. There are two types of prevention mechanism: Intrusion

response system (IRS) and Intrusion prevention system (IPS). Since we cannot wait for a

cache channel might be forming we completely prevent the channel from being forming

or occurring, therefore our solution is IPS (e.g., Proactive response) rather than IRS (e.g.,

Reactive response).

4.1.1 Features of the Proposed HBP-DCP Prevention Mechanism

The aim of the HBP-DCP is to mitigate cross-VM cache-based SC attacks. The

proposed prevention mechanism has the following features that distinguish it from the

existing prevention mechanism:

 Generalizable: The fundamental cause of any type (e.g., Trace-driven, Time-

driven, and access-driven) of cache-based SC attacks in the virtualized

environment is the cache memory. Since the cache is the most interactive devices

Univ
ers

ity
 of

 M
ala

ya

110

between VMs and it is always been targeted for SC attacks. As our proposed

prevention mechanism is based on the cache memory partition, therefore, it can

mitigate any type of cross-VM SC attacks which is based on the cache memory.

 Comply with Cloud Model: The existing solution does not comply with the cloud

model as they need the client to change their software or the underlying

hardware. As discussed in Section 2.1.1.2, our prevention mechanism

confirming to the cloud model because it can be directly implemented into the

hypervisor. Furthermore, it is transparent to the cloud model because it does not

need any modification in the underlying hardware and in the client software.

 Portability: Hypervisor can be installed almost on every type of computing

infrastructure. Since our prevention mechanism is hypervisor based means we

have implemented by using the source code of an open source hypervisor.

Therefore our prevention mechanism can be ported to any type of the supported

software (hypervisor) and computing infrastructure.

 Applicable to Commodity Operating System: To implement the cache partition

at the VMM (hypervisor) level is very beneficial. Since all the monitoring and

partitioning activity will be done on the hypervisor level. Therefore it is

applicable to Commodity OS the source code of which is unavailable such as a

window OS. Most of the previous work is done for the multi-programming

workload. However, our work enables the cache partitioning across and within

the OSs, as it is implemented in the hypervisor and therefore improve the whole

system optimization by providing more flexibility.

 Saving Cache Utilization: Hypervisor-based prevention mechanism is based on

the dynamic partition of the cache. Therefore the overall performance can be

improved by increasing the cache utilization for individual VM because VM is

only giving as much more cache memory as they are requested. Unlike static

Univ
ers

ity
 of

 M
ala

ya

111

partition, the dynamic system avoids having to reboot the system every time on

the VM provisioning so increase the overall performance of the system.

 Preventive rather than Reactive: Our solution is more preventive rather than

reactive. Since we cannot examine when SC attacks might occur, we simply

ensure that the two VMs would not be able to access the same cache lines for the

purpose to create SC attack. Preventive mean early prevention before occurring

of the attacks while reactive mean prevents attacks after occurring. Because once

the attack occurs, it will harm the system even in a minute, therefore, early

prevention of attack is more beneficial than post prevention.

4.2 System Architecture

We devise HBP-DCP mechanism for the mitigation of cross-VM cache-based SC

attacks. This prevention mechanism is based on the open source code of Xen hypervisor.

Since the source code of the Xen hypervisor is open source and freely available.

Therefore, we chose Xen hypervisor for the creation of VM and for the implementation

of our solution. Furthermore, our solution is also hypervisor-based and will be added to

the existing source code of Xen. However, this prevention mechanism can be applied in

other hypervisors namely VMware ESXI because it is general approach and is based on

the cache partitioning. This prevention mechanism is enabled by admission control and

VM provisioning rather than SC channel attacks. Therefore, we need to explain these

terms in our thesis according to the requirement of our HBP-DCP prevention mechanism.

Furthermore, for this thesis, first of all, we have implemented the attack on the shared

LLC (L3) cache, the detail of which is given in Chapter 3 in detail. Since we need to

check the cross-VM cache-based attack. Therefore, VM provisioning is must to create

two VMs on the Xen hypervisor. Since both the implementation of attack and solution

are based on the shared LL cache, therefore, LLC (L3) must be in the system. The salient

characteristic of the LLC is that it is by design an inclusive cache memory. Therefore, the

Univ
ers

ity
 of

 M
ala

ya

112

data stored in the L1 and L2 caches is also copied in the LLC. Consequently, in the case

of a cache miss in an L1 cache, the data will be checked in L2 in order to decrease the

cache miss rate. Furthermore, if the data is flushed or evicted from the LLC, it will

automatically be erased from all the other levels of the processor’s cache.

Although shared cache has some advantages such as increased utilization of cache

space, decreased cache miss rate, faster inter-core communication through shared LLC

(L3 and L2), and the elimination of undesired replication of cache lines to reduce

aggregate cache footprint. However, the major disadvantage of shared LLC is the

uncontrolled contention can occur by allowing CPU-cores to access the shared LLC on a

free basis. Moreover, HBP-DCP is always activated when the user sends a request to

admission control for VM creation and when the VM provisioning phase will be activated

by assigning VM to the specified client. The system requirements for the implementation

of our prevention mechanism includes Xen hypervisor and Intel Core i7 with shared LLC

(L3). We choose Core i7 having 4 cores because in this modern architecture each core

has a dedicated L1 (instruction and data cache) and L2 cache but the L3 cache is shared

amongst all cores. Therefore, the state of the art cache-based SC attacks target L3 cache.

Our proposed HBP-DCP prevention mechanism consists the following four

components, namely; (a) Admission Control module has been used as a general

mechanism to enforce the fair usage policy of resources on server, (b) After verification

and availability of resources, once the admission control grants the request, then after this

stage the global scheduler will assign the physical id of the underlying hardware to VM

on which new VM will be created, (c) Cache Usage Monitor has the ability to check the

status and utilization of cache of the underlying physical device and the executing VMS

on the fly, (d) and Cache Partitioner (Color-aware Page Migrator) repartitions the cache

dynamically according to the requested VM. The high level components of the proposed

prevention mechanism is depicted in Figure 4.1.

Univ
ers

ity
 of

 M
ala

ya

113

Global Schedular
Cache Usage

Monitor

Admission Control

User

Virtual Machine Monitor (XEN)

VM2 VMnVM1

Hardware

Request VM

Analyze

Cloud

Controller

Color Page

Migrator

Xen

Schedular

Analyze
Accept/Reject

Response

VMs
Assign cache to

VMS

Decision

Figure 4.1: Proposed Hypervisor-based Prevention Mechanism Using Dynamic

Cache Partitioning

Since our proposed prevention mechanism is based on the VM provisioning (When

VMs create and demand cache) and page coloring (assign the separate part of cache to

VM) technique. Admission control and global scheduler are based on the VM

provisioning, because these components are always activated with VM provisioning.

Therefore, we need to describe VM provisioning and page coloring terms according to

the requirement of our proposed prevention mechanism in the following section.

Moreover, we describe the Xen paging mechanism.

4.2.1 Virtual Machine Provisioning

VM provisioning is a management process for a system that creates new VMs on the

physical host server and computing resources are allocated to support these VMs. These

computing resources consist the entire cores or CPU cycles, Input/output cycles, storage

and memory spaces. Xen enables users to instantiate the guest operating systems (VM)

Univ
ers

ity
 of

 M
ala

ya

114

on the fly to execute whatever they desire and require. Furthermore, admission control is

performed/activated based on the provisioning or creation of new VM as shown in Figure

4.2. Each VM have to pay in some fashion for the resources it requires. We use this same

basic approach to building Xen, which multiplexes physical resources at the granularity

of an entire OS and is able to provide performance isolation between them. The task of

building the initial guest OS structures for a new domain is mostly delegated to Domain0

which uses its privileged control interfaces to access the new domain’s memory and

inform Xen of initial register state. VMs sees the allocated space whether the thick or thin

allocation is provided by Xen hypervisor. In thick allocation, the whole virtual disc is

provided to VMs while in thin approach only the required part of the virtual disk is

provided to VMs. VMs sees all the time the allocated virtual disk space but only used the

amount of capacity required to hold the current files. These virtual disks are allocated to

each VMs on the fly on the physical disk according to the requested user need.

Admission Control

Users Request For

VM creation

Load Operating

System + Appliances

Assi
gn Physic

al
Id to

VM

Send Request

Approve

Check capacity

Create VM using Xen

Server Pool

Resources Repository

Running Provision

VM

Start Server

Success

Provisioning failed

Verify and Register

Request

Failed

Verified

Cache Partitioning

System
Invoke hypercall

Figure 4.2: Process of VM Provisioning

Univ
ers

ity
 of

 M
ala

ya

115

4.2.2 Page Coloring

Our proposed prevention mechanism using dynamic cache partition is based on the

page coloring technique. Page coloring is a classical software based page allocation

technique that directs how pages are mapped to the cache memory lines. It is the basis for

the fine grain division of LLC namely L2 and L3 for the purpose of a cache hit

optimization. Despite, the primary use of the cache coloring as an optimization approach,

the particular mapping of the memory addresses to cache lines can be exploited for the

security of the system by mimicking VMs isolation across LLC (L2 or L3). In addition,

the memory management module is controlled by the page coloring systems to ensure

that the group of pages having the same color is assigned to the same cache lines to

enforce the security of the system.

In modern OS, the OS access physical memory and L3 cache by physical address. In

limited cache associative, there should be overlapped on bit field between physical page

number and L3 cache set number. Furthermore, there are some overlapped bit between

the set number of cache associative and the page number of machines which are directly

controlled by the cache coloring. These bits can be used to group the memory pages into

distinct color. For instance, the size of the physical page is 4KB and to represent page

offset there must be 12 bit. The remaining bits are assigned to the physical page number.

The size of the L2 cache is 512KB, 61-way associative, and the size of a cache line is

64B. So the physical page number has 3 lower bits that are overlapped with the higher 3

bits of cache set number. This overlapped part is called page color.

Similarly, in Figure 4.3, the physical page number has 4 bits that are overlapped with

the higher 4 bits of the cache. These 4 overlapped bits show the cache partition into 16

colors. Furthermore, 5 overlapped bit partition the cache into 32 part and for 3 overlapped

bits the cache will be divided into 8 partitions. This number can be varied according to

cache’s associativity, the size of the cache and cache line. In addition, the OS has full

Univ
ers

ity
 of

 M
ala

ya

116

control on these overlapped bits. OS decide how and which virtual page to be mapped

into which physical page. The hardware by itself fixes the mapping of the physical page

into a cache, which is the most important requirement for page coloring technique. OS

can use its control of virtual to physical mapping to control indirectly the mapping of

physical pages to cache lines. Distinct color could be mapped into distinct cache sets. The

steps for the color assignment are as follow:

 Each set has own color

 The same color has to be assigned the pages mapped on the same set

 A VM own one or more color

 Hypervisor assigns to VMs only pages of their own color

Last Level Cache

(Shared)

Cache Line Offset

Associative Set Number

63 15 11 6 0

Main Memory Page OffsetPhysical Page Number

Page Color

4 bits under control of OS

Figure 4.3: Mapping between the Physical Address and Cache Lines (Overlapped

Bits are Used for Page Coloring)

4.2.3 Paging Mechanism in Xen Hypervisor

As we discussed in the previous section that our proposed prevention mechanism uses

page coloring for the allocation of pages in Xen hypervisor. Therefore, in our thesis, we

need to discuss the Xen paging mechanism. In a traditional non-virtualized environment,

the OS is responsible for the assignment of physical memory to the running process inside

its own virtual address space. During the memory access, the virtual address of process

must be translated by the memory management unit to traverse the corresponding process

Univ
ers

ity
 of

 M
ala

ya

117

page table set up by the OS. However, in the hypervisor (e.g., virtualized environment)

one more indirection of memory translation from guest to host is performed. Xen

hypervisor supports para–virtualization and full-virtualization. The performance of para-

virtualization is better as compared to full virtualization, but it need change in the guest

OS source code. Therefore, for our prevention mechanism using dynamic cache partition,

we focused on full virtualization. Under full virtualization mode, Xen is responsible for

the translation of three address space namely machines-, guests-, and linear address-

space. The machine address-space is called the real machine address-space; while the

guest’s view of the real machine address space is the guest address space is also known

as pseudo-physical address space, and linear address space is provided by processor’s

MMU is a flat contiguous address space.

 As shown in Figure 4.4, there are three memory namely virtual memory, physical

memory, and machine memory. Virtual memory is mapped by application inside the guest

OS. While in physical memory the host presents physical pages to VMS and actual pages

allocated by the host in machine memory. Furthermore, when executing on the

hypervisor, the guest OS translates the guest virtual address to the physical address of

guest OS, and the hypervisor (VMM) maintain a mapping from the guest physical address

to machine physical address. Furthermore, this real memory address is used for accessing

the memory. The machine, the guest, and the linear address spaces are manipulated in a

unit knows as page frames. Particularly, the frame number of the machine physical

address space is called Machine Frame Number (MFN) while guest’s pseudo Physical

Frame number is known as PFN.

Furthermore, hypervisor detects the same pages in the memory of each guest VM and

maps these identical pages to the same physical memory. Hypervisor allocates frame

numbers and mapped a unique PFN of guest OS (VM) to a specific MFN (Barham,

Dragovic et al. 2003). The Xen hypervisor used the two hardware page table namely guest

Univ
ers

ity
 of

 M
ala

ya

118

physical to machine physical translation (P2M) in order to translate the guest physical

address to machine physical address and machine physical to guest physical translation

(M2P) in order to translate the machine to guest physical address. In addition, Xen

hypervisor used the shadow page table for the guest virtual address to host physical

address. P2M and M2P are the arrays of frames numbers indexed by either by machine

or physical frames, particularly P2M table for the mapping of PFN to MFN while the

M2P table is for the MFN to PFN mapping.

In full virtualization mode, the guest OS considers itself as a real machine. Therefore,

in page tables the frame numbers that they used to be MFN, which are in fact PFN. The

PFN entries filled in the page table cannot be accessed directly without translation to

corresponding MFN before the page table be committed to MMU. Xen handles this

problem by using a mechanism called Shadow Page Table. OS creates and maintains

shadow page table for the original page table in each VM for its virtual address spaces

without modification. But MMU hardware does not use these shadow page tables, these

tables just for the direct virtual to physical mapping. It uses the TLB for the translation of

virtual pages of a guest to machine page of a physical system. These tables are loaded

into the hypervisor (VMM) on context switching. VMM keeps its tables consistency with

the OS in such a way that it’s VM consistent with the OS VP. VMM maps page table

of OS as read-only. When OS tries to write to the page table then traps to VMM. VMM

applies write to shadow page table and OS page table and returns. This process is called

memory tracing. Original page table used by MMU will be locked on the creation of

shadow page table for further changes, the effect of every write to original page will be

captured and propagated to shadow page. A shadow page pool will be created by Xen for

every guest OS, then Xen is responsible for allocating a free page from the shadow page

pool to every guest OS which tries to access these pages as page table, or recycles a

shadow page to make it a target page shadow based on less frequently used and on no

Univ
ers

ity
 of

 M
ala

ya

119

availability of free page. Since it is common for page tables to reference each other,

Thereby Xen is responsible to organizes all shadow pages with both page level as keys

and PFN into a hash table.

Modern computer architecture has the hardware support for the memory virtualization

techniques. For instance, Extended Page Table (ETP) feature is enabled in Intel CPU by

Intel VT (Virtualization Technology) (Technology. 2016), the hardware MMU first walk

through the shadow page table used by the guest OS for each memory access by each VM

to translate from guest virtual address to guest physical address. Then access a separate

page table namely ETP setup by the hypervisor for the translation of guest physical

address to machine physical address. Thus, the conceptual P2M and M2P tables we have

mentioned above just map to the EPT table in the case of Intel architecture.

Virtual Machine Monitor (XEN)

Guest Page Table

Host Page Table

VMM

Guest OS

Guest Virtual Address

Host Virtual Address

Host Physical Address

GFN

MFN

Hypervisor

P2M

Guest Physical Address

Application Running on

Guest VM

Shadow Page Table

Figure 4.4: Paging Mechanism in Hypervisor

4.3 Components of the Proposed HBP-PDC Prevention Mechanism

The following section describes the components of the proposed prevention

mechanism which is admission control, Xen scheduler, cache usage monitor, and cache

Univ
ers

ity
 of

 M
ala

ya

120

partitioner. Although our prevention mechanism is mainly based on two components

namely cache usage monitor and color-aware page migrator. Cache usage monitor is

responsible for assigning initial page colors to the new creating VM and for monitoring

VM cache usage metrics. While the responsibility of color-aware page migrator is to

allocate page frames of a specific color. However, if the admission control accepts the

request for the new VM creation then the global scheduler will be activated and the main

components of our HBP-DCP will be activated based on the admission control and global

scheduler approval for new VM. Therefore, there is a need to explain these components.

4.3.1 Server Side Admission Control

The responsibility of admission control module is to enforce the fair utilization of

server resources. It uses various strategies to decide which user requests to be accepted in

order to minimize the performance impact, avoiding the overloading of resources and

penalties of service level agreement that decrease cloud provider’s profit (Wu, Garg et al.

2012). Admission control regulates the number of active cloud users based on the

utilization of the system or the policy manually defined by the system administrator. In

order to share the resources among various devices, a request from clients will be

processed and queued according to any scheduling policy namely round robin and FIFO

defined by the system administrator or selected on the fly based on the system load and

other metrics.

Furthermore, whenever the clients send a request for VM, the admission control will

communicate with the VMM (hypervisor) whether the VM can be created or not.

Thereafter, the admission control phase verifies the software platform availability and

analyses if the new request can be accepted then it will decide whether to queue it up in

an already initiated VM or by initiating a new VM. Hence, if both conditions are satisfied

then the request is transferred and the id of the physical CPU will be assigned to the

requested VM. Hence, firstly, the admission control checks if the new request can be

Univ
ers

ity
 of

 M
ala

ya

121

queued up by waiting for all accepted requests on any initiated VM. If this request cannot

wait in any initiated VM, then the admission control checks if it can be accepted by

initiating a new VM provided by the cloud provider. Once the request is granted by the

admission control then the global scheduler is responsible for the creation and scheduling

of VMs on the specific hypervisor of the underlying physical device from which user

request is generated for the VMs creation.

4.3.2 Global Scheduler vs Xen Scheduler

The scheduling and admission control are interlinked for VMs creation and resources

allocation to users. The global scheduler is responsible for delivering or rejecting services

to every user according to their request based on the admission control decision (Wu,

Garg et al. 2012). Once the admission control grants the request, then after this stage, the

global scheduler will assign the physical id of the underlying hardware to different VMs

on which the user send a request to the admission control for the creation of new VM.

The whole process of our proposed prevention mechanism is inter-related with the

creation of VMs. The Xen scheduler will check the cache memory after the creation of

new VM.

Xen scheduler is the local scheduler on the individual physical machine. Xen being a

virtualization hypervisor closely models the OS on which it is run. Therefore, the

scheduling of VM in the hypervisor is same as the process or thread scheduling in OS.

Just like the process in OS has multiple threads that can be processed on different cores,

the VMs have multiple virtual CPUs (VCPUs) that can be run on different physical CPUs

(PCPUs). Xen scheduler balances the load of one or more virtual CPU across physical

CPU. The basic difference between the OS and hypervisor is that the number of VCPUs

is static as compared to the process in OS because VMs and VCPUs are created and

deleted on a rare basis. In contrast, the process or thread are created and deleted on a

continuous basis. Since Xen scheduler controls the cache memory according to the new

Univ
ers

ity
 of

 M
ala

ya

122

requested VMs. Therefore, we change the existing code of Xen scheduler by adding code

for monitoring the cache utilization and cache partition module.

4.3.3 Cache Usage Monitor

During the physical system booting all cache memory is allocated to the Dom0 by

default. When the other guest VMs e.g., Dom U are executed, then they share the same

memory which is allocated to Dom0. The responsibility of cache usage monitor (CUM)

is to measure the cache for running VMs upon the creation of new VM and to make a

decision about the partition adjustment. Moreover, the responsibility of CUM upon the

new VM creation is to monitor the cache utilization, to assign the initial page colors to

VM, and to readjust the color assignment according to the requirement of VMs. The

CUM, reserve a memory pool for the page coloring during runtime, and partition this

memory according to the underlying cache infrastructure into different colors. The

memory pool is used in order to serve all page request. The free pages having the same

color inside the memory pool are linked together to form multiple list. The CUM divide

the cache into N portion of contiguous pages on a physical system having M processing

cores. Each cache section is then assigned to a particular CPU core, this specific core will

be considered a local core for a color if the color belongs to this core. All the core other

than local core will be considered as remote cores. When new VM is created then the

CPM will search the core having light weight and allocate the whole cache portion of the

core to this VM. Consequently, in a system, if the total number of page color is C then

the color assigned to every VM will be C/M. This means that the cache will be fully

utilized by N co-running VMs.

One intuitive defense to mitigate cache-based SC attacks is the static partition scheme

is to divide the cache into statistical partition according to the different schemes of color

assignment and strictly assign distinct page color to different VMs, so they access

different parts of cache. Although the static cache partition is simple and provides

Univ
ers

ity
 of

 M
ala

ya

123

isolation, it potentially decreases the cache utilization and consequently limits the number

of VMs. To mitigate this problem, we extend page coloring with dynamic cache

repartitioning capability by adding recoloring mechanism. In this scheme, we first assign

a default-sized partition and then gradually increase the size thorough re-partition (e.g.,

re-coloring). We devised an algorithm for cache usage monitor which is presented as

follows.

Algorithm 1 Cache Usage Monitor

1: Input: Current VM, Cache Miss Rate

2: if New VM creation = True then

3: Cache Usage Monitor: Pass the cache miss rate of the current VM to cache

usage monitor function

4: Function Cache_Usage_Monitor (Cache miss rate)

5: Assignment = Assignment of (current VM)

6: if cache miss rate > High-Threshold then

7: if IsNotShared (Number of VMs do not sharing the same color) = False

then

8: IsShared True

9: Return

10: End if

11: New = Assign_Color (c)

12: Assignment += new

13: IsNotShared False

14: End if

15: End if

16: End Function

17: Function Assign_Color (number)

18: New ϕ

19: While number > 0 do

20: If need-cache() then

21: new += pick_remote ()

22: else

23: new + = pick_local()

24: end if

25: number number -1

26: end While

27: return new

28: End Function

Thus the different parts of the cache will be assigned to different VMs to improve the

security of the system without impacting the overall performance of the system. Because

Univ
ers

ity
 of

 M
ala

ya

124

every VM can access different cache on a dynamic basis according to their requirements.

The system will be secure from the SC attacks because no VM can access the partition

assigned to another VM. The purpose of differentiating the VMs sharing the same color

to the VMs not sharing the same color is useful for restricting two VMs to not interfere

with each other data by assigning the new color which is not already shared to the new

created VM. There are two approaches coloring and recoloring. In the cache usage

monitor algorithm, the function Assign-Color is triggered to assign a specific color to a

new created VM, whenever it run outs of memory with its pre-existing color. Here c is

the configurable number of color. Moreover, in cache usage monitor algorithm, the

number of VMs using the same color as the definition of IsShared and refer the other one

IsNotShared when the VMs do not share the same cache. While the recoloring function

in color-page allocator has explained in the following section is invoked when a cache

demand exceeds its current assignment. This is determined by observing the ratio of the

cache miss rate to the total number of cache accesses by hardware performance counter

in modern processor over a period of time. Cache usage monitoring is responsible for

assigning an initial color to VM. We set up high-threshold and low-threshold as a global

variable for the cache miss rate when the system starts. VMs with the cache miss rate

greater than the high-threshold are the one required more space on the cache. While VM

with cache miss rate lower than the low-threshold is the ones willing to provide empty

space on cache for re-partitioning.

Function cache_usage_monitor in algorithm 1 is used to activate recoloring. It takes

the cache miss rate of the existing VMs upon the time of new VM creation. The

need_cache() function returns true if current VM has already been using the entire section

of the local cache. The number of VMs sharing the same color (IsShared) act as a signal

to indicate that a VM needs more page colors. Conversely, the number of VMs do not

share the same color (IsNotShared) is used to indicate when more page colors are

Univ
ers

ity
 of

 M
ala

ya

125

available. Functions pick_remote select a color in a section of remote cache belonging to

the existing VM. Similarly, pick_local choose a color in a local cache section, owned by

the current VM. Cache usage monitor considers both the number of cache references and

cache miss rate. If the cache reference for a VM is small then the cache miss rate for that

specific VM will be considered as zero.

4.3.4 Color-Aware Page Migrator

Color-aware page migrator is responsible for allocating page frame of specific color.

Upon receiving an allocation request from VM, the color-aware page migrator

communicate with the CUM to determine the colors already assigned to the requesting

VM. The color-aware page migrator then gets one of these colors in a round robin manner

and returns a page from the memory pool with that specific color. For instance, when a

new VM request for a page, the Xen hypervisor (VMM) allocate pages according to P2M

table created by CUM in term of page coloring. Therefore, the requested data for

individual VM will be placed in separate cache lines, this improves the security because

one VM cannot access or evict the data of another VM. In our prevention mechanism, a

memory pool is used to handle all the request from various VMs. Inside the memory pool,

free pages having the same colors are linked together to make multiple lists. The per-VM

color assignment is done in the cache usage monitor in order to reduce the complexity of

our prevention mechanism.

Once the admission control approves the request for new VM creation then upon the

receiving request of allocation for new VM, the color-aware page migrator (CPM)

communicate with the CUM to find the color already assigned to the created VMs. The

CPM then select one of these colors in a round robin manner and return a page of that

specific color to the requesting VM from the memory pool. If the memory pool does not

consist that requesting color then the page migrator assigned another color to the VM. If

the requesting color is not available then the page allocator of Xen hypervisor populate

Univ
ers

ity
 of

 M
ala

ya

126

the memory pool and organize the free pages in a machine using a buddy system, similar

to the Linux memory management mechanism. To implement our prevention mechanism

we have added our color-aware page migrator in addition to buddy system for memory

management. Using these color bits, the Xen hypervisor can make the color-aware page

migrator to control the mapping between physical pages and cache memory and can

assign a specific color page to the requesting VM.

4.4 HBP-DCP Prevention Mechanism Algorithm

Section 4.3 explains the basic building blocks of the proposed prevention mechanism.

In this section, we will present our proposed algorithm which starts from the interaction

between the components of the proposed prevention mechanism. The existing prevention

algorithm change the cache configuration at boot time based on the new VM creation.

Our proposed prevention mechanism is different from the static page coloring method in

that it allows cache usage of adjusting VMs on the fly. We achieve the dynamic cache

partition between VMs by changing the physical location of a VM’s logical page through

a set of hypercalls in the Xen source code. The dynamic cache partition algorithm is based

on the cache coloring approach which has already implemented in the OS for page

allocation (Tam, Azimi et al. 2007). However, the basic steps in generic dynamic cache

allocation can be summarized in the following steps:

1. Wait for new VM request.

2. Admission control approves the request for new VM creation and send

hypercalls to hypervisor.

3. The cache usage monitor component in hypervisor is responsible to get the

current partition of cache and the number of currently executing VMs.

4. Reconfigure existing VMs by shrinking its cache size through page recoloring.

5. Register a new cache partition for new VM with Xen hypervisor.

Univ
ers

ity
 of

 M
ala

ya

127

6. Create the requested VM with the new cache partition on dynamic basis and

assign a color page to the VM which represent a unique cache line.

7. Consequently, it prevents the cache-based SC attacks to occur because every

VMs get individual unique partition in the cache and is unable to access and evict

each other data.

Based on these generic steps and the components of our proposed solution, we present

our proposed cache usage monitor and dynamic cache partitioning algorithms to serve the

end users as algorithm 1 and algorithm 2 for the prevention of cross-VM cache-based SC

attacks.

Figure 4.5 shows the flow of our HBP-DCP prevention mechanism. As shown in the

figure when the user request for VM creation then the responsibility of the admission

control in combining with the global scheduler is to assign the physical id on a physical

Algorithm 2 Dynamic Cache Partitioning Algorithm

1: Input: L3 cache detail, VM-ID

2: Include Xen memory header file

3: While(1)

4: Input (src_mfn, dst_color)

5: Allocate a free machine page from the cache usage monitor

6: New free machine page dst_mfn

7: Store (src_mfn in SPT)

8: Remove all write permission in SPT where each entry pointing to src_mfn

9: Enable dirty page

10: If guest tries to access and modify src_mfn

11: then mark page as dirty page

12: Before starting the above steps lock the SPT or activate shadow lock

13: if (Copy src_mfn to dst_mfn)

14: for each copy

15: check whether the content is changed during the copying process

16: if (unchanged) then

17: Update P2M and M2P mapping

18: End While

Univ
ers

ity
 of

 M
ala

ya

128

machine to that created VM. Once the admission control assign the physical id then the

global scheduler send the hypercall to the Xen scheduler. Now VM is created, the

responsibility of cache usage monitor in our HBP-DCP mechanism is to monitor the

existing running VMs and their cache utilization. Now the responsibility of color-aware

page migrator to repartition the entire cache according to the new created VM. For

instance, if currently one VM is running then the entire cache is assigned to that VM.

Now if 2 more VMs are created and the demand of each VM for cache is different. Then

HBP-DCP mechanism monitor the entire cache and repartition the entire cache according

to the demand of 3 created VMs.

Admission Control
User Request For

VM creation

Physical

Machine

Assign Physical Id to

VM
Cloud Controller

Send Request

Response Request

Xen Scheduler

Cache Usage

Monitor

Color-Aware Page

Migrator

VM 1

VM 2

VM 3

VM 4

VM 5

Cache Memory

Veiw

Hypercall

Accept/Reject

VM 6

Assign individual part of cache to each

VM according to their need

Global Schedular

Each VM can not extract

each other data
Size of VM6, VM4, and VM1 is

different than others

Figure 4.5: Flow of the Prevention Mechanism Using Dynamic Cache Partitioning

4.5 Data Design

In this section, we present the features of our performance evaluation system namely

performance evaluation parameters and methods. We introduce and describe our

Univ
ers

ity
 of

 M
ala

ya

129

performance evaluation parameters. These parameters are selected to evaluate and

efficiently analyzes the lightweight characteristics of our proposed prevention

mechanism. In addition, we describe the methods to evaluate and validate the

performance of the proposed prevention mechanism.

4.5.1 Performance Evaluation Metrics

In this section, we describe the evaluating process of our proposed prevention

mechanism. It describes the criteria by which we evaluate the effectiveness of our solution

and the environment for conducting our experiment. We also describe the parameters or

metrics by which we evaluate our proposed prevention mechanism and compare to the

existing state-of-the-art prevention mechanism. These parameters are used to determine

under what conditions our proposed HBP-DCP prevention mechanism for cross-VM

cache-based SC attacks can be practically implemented into a commercial cloud

environment. Table 4.1 shows the evaluation parameters with the measurement unit.

Table 4.1: Metric for Performance Evaluation of the proposed Prevention

Mechanism

Evaluation

Metrics

Description Unit

Load Testing To evaluate the performance of a system in term

of generated overhead from normal (low) to

peak (high) load to find peak for the system

Seconds

Cache Usage To calculate cache usage by measuring

performance of the memory hierarchy more

specifically the level (L1, L2, and L3) of cache

MB/Sec

Memory Access

Rate

To calculate the time required to access data

from memory

Nanoseconds

(a) Load Testing

We measure the performance of our proposed prevention mechanism under the

normal and peak condition and consider the load testing which is mostly used method for

performance testing. The load testing of any system can be better expressed by the

Univ
ers

ity
 of

 M
ala

ya

130

maximum amount of work a system can handle without performance degradation. These

load testing can be done by many methods, however, we used Apache benchmark

explained in next chapter which is open source and easily benchmarks for the cloud.

(b) Cache Usage

We measure the performance of the memory hierarchy (e.g., cache usage) of the

system after deploying our prevention mechanism, specifically our focus is to

parameterize and evaluate the performance of cache level (e.g., L1, L2, and L3) present

on and off the processor. The performance of the system means that how much raw

bandwidth in megabyte per second after the dynamic partition of cache.

(c) Memory Access Rate

Memory access time is calculated during translation of guest virtual pages to

machine physical page. This is the total time, the computer takes to read data from a

storage device such as computer memory, physical memory, and cache or another

mechanism. The unit of measurement for memory access rate is commonly nanoseconds

or milliseconds. If the memory access time for any instruction is low then it is considered

to be a better access time as compared to high access time. For instance, if the memory

access time is 10ns for reading 100MB then it is considered faster than the 50ns for

accessing the same data.

4.5.2 Data Collection Tool

Although there are different methods and tool for generating and analyzing a load of a

system and also the data can be gathered by using different approaches. However, in order

to analyze the load of a system, we used Apache benchmark. In which we check that a

system can handle how many numbers of requests per second in a modified and

unmodified hypervisor. Similarly, there are a number of programs and benchmark for

extracting the cache usage, however, cachebench was expected to give more detailed

Univ
ers

ity
 of

 M
ala

ya

131

cache usage. Auto-generating of load testing and cache usage is beneficial in order to

avoid man-made mistakes and improving data integrity, accuracy and data reliability at

the stages of analyses and synthesis. The memory access rate and boot time are collected

by using our customized designed program. The program calculates and analyzes data

gathered by measuring the number of cycles required to access a set of memory addresses.

4.5.3 Performance Evaluation Method

The performance of this prevention mechanism is evaluated using benchmarking

experiments on the modified (static and dynamic partitioned) and unmodified Xen

hypervisor and on different numbers of VMs. The data are collected for analysis by using

many synthetic workloads. The statistical model is used to validate the results of our

benchmarking experiments. We developed the statistical model using the independent

replication model to train the regression model. The split-sample approach is used to

validate the identified statistical model. The validated model are used to generate the load

testing, cache usage, and memory access rate. Data analysis and synthesis testify the

proposed prevention mechanism performance.

4.6 Conclusion

In this chapter, we presented our proposed HBP-DCP prevention mechanism. The

basic objective of the HBP-DCP mechanism to prevent the cross-VM cache-based SC

attacks. HBP-DCP consists of cache usage monitor and color aware page migrator that

monitor the cache after VM creation and assign a specific part of cache to each VM. These

VMs will not interfere with each other data nor evict each other data. Moreover, HBP-

DCP mechanism partitions the entire cache dynamically according to VM creation. If we

partition the entire cache statically during boot time, then this will degrade the cache

usage and consequently the overall performance of the system. For instance, if there is

one VM in the running state but the cache is already partitioned into 4 equal parts during

Univ
ers

ity
 of

 M
ala

ya

132

boot time. Then this running VM will get the one small part of the entire cache while the

other three parts will be idle or wasted. As a result, the cache utilization will be degraded

and will affect the overall performance of the system. To solve this problem prevention

mechanism based on dynamic cache partition is proposed in our solution (HBP-DCP)

which will decide to partition and assign the cache to different VMs according to their

requirement on a dynamic basis.

Univ
ers

ity
 of

 M
ala

ya

133

CHAPTER 5: EVALUATION

In this chapter, we describe the performance evaluation approaches to evaluate the

proposed our modified dynamic partitioned hypervisor based on HBP-DCP mechanism

for cross-VM cache-based SC attacks based on dynamic cache partitioning. For this

purpose, we analyze the performance difference between unmodified (default/insecure),

static partitioned and our modified (dynamic partitioned/secure) hypervisors by

considering three performance metrics, namely load testing, cache utilization, and cache

access rate. The main motive of this chapter is to discuss and analyzes the data collection

methods, experimental setup, evaluation parameters, and to analyze the performance of

the proposed algorithms. To evaluate the proposed prevention mechanism and its

lightweight features, we utilized standardized synthetic benchmarking experiments

namely Apache benchmark and cachebench benchmark from the Phoronix test suite and

also cachegrind benchmark. In addition, we also used customized program to measure the

average number of cycles needed to access a set of memory addresses or the average

memory access time. The evaluation process also describes that how the results were

conducted and how many observation is performed in order to evaluate the proposed

prevention mechanism. Moreover, the data collection method for the proposed HBP-DCP

prevention mechanism is also described.

The evaluation results are validated through statistical modeling. We have used

independent replication method in order to build our statistical model and validate the

proposed prevention mechanism using split-sample approach. In another set of

experiments, we build a separate test-bed for the comparison of our proposed prevention

mechanism using dynamic cache partition to the static cache partition to describe the

lightweight features of our mechanism. Finally, we demonstrate the statistical data

analysis methods used to analyze and synthesis the results. The rest of this chapter is

organized as follow: Section 5.1 presented the process of evaluation at a high level.

Univ
ers

ity
 of

 M
ala

ya

134

Section 5.1.1 described the experimental method along with the data collection and data

generation method. The benchmarks and their input data are listed in Section 5.2. In

Section 5.3, the evaluation method is presented to explain how the statistical models are

validated. Section 5.4 described our parametric analysis in terms of bearable load, cache

usage, and memory access time by each hypervisors and demonstrated the statistical data

analysis observation used in this thesis to evaluate and synthesis the result. Finally,

Section 5.5 conclude the chapter.

5.1 Evaluation Process

The proposed prevention mechanism (HBP-DCP) is designed to prevent the cross-VM

cache-based SC attacks using dynamic cache partition. In this prevention mechanism, the

page coloring technique is implemented to divide the cache dynamically according to the

new VM request and demand. An efficient algorithm is developed to measure the cache

for new created VM and assign the specific color to the new requesting page of VM. Then

the color-aware page migrator component in the (HBP-DCP) receive these input and

allocate a separate partition in the cache to the new requesting VM on the fly. Multiple

compute intensive benchmarks application are selected from the Phoronix test suit to

analyze and evaluate the performance of the system. Since our solution is based on the

hypervisor source code, thereby, the data is collected is to run the application benchmark

in the unmodified, static partitioned, and modified (dynamic partitioned) hypervisors. For

load testing of the three hypervisors, we used Apache benchmark. For evaluating the

cache utilization of unmodified, static partitioned and dynamic partitioned hypervisors,

the data is collected through the cachebench benchmark. Similarly, the memory access

rate of unmodified, static partitioned, and our modified (dynamic partitioned) hypervisors

are evaluated through collecting data through our designed customized benchmarks. The

evaluation of our secure HBP-DCP hypervisor is based on acquiring the answers to the

two research questions: Does our secure hypervisor prevent the cross-VM cache based

Univ
ers

ity
 of

 M
ala

ya

135

SC attacks and what is the performance difference between our secure (modified/dynamic

partitioned) and insecure (unmodified/default) and static partitioned hypervisors. In order

to answer these questions, we have simulated a single server cloud environment. We have

conducted a cross-VM cache-based SC attack by using PTP technique in this

environment. Moreover, we have subject both static partitioned and our dynamic

partitioned hypervisor to a series of workload under different configuration for the

purpose of checking system behavior. The resulting completion indicates system

overhead.

5.1.1 Experimental Setup

In this section, we explain the needed hardware and software for conducting our

experiment and describe the methodology used to benchmark the unmodified, static

partitioned and our modified (dynamic cache partitioned) hypervisors when collecting the

data about load testing, cache usage, memory access pattern. We conducted real-time

experimental analysis for the evaluation of our proposed prevention mechanism. There

are various reason behind the utilization of real-time experiments. Firstly, in the field of

CC environment, simulation tools are not much mature and is unable to provide the

technical capabilities to conduct the research work of this nature. Secondly, simulation

tools simulate the real time metrics and consequently generates probabilistic estimation

and more overhead. Therefore, simulation tools are more vulnerable to result in

estimation that can lead to low accuracy. Moreover, the real-time analysis provides the

detailed knowledge of the system evaluation parameters that affect the performance of

the prevention mechanism.

Our performance evaluation for the proposed prevention was conducted on a machine

with Intel processor i7 having the quad-core processor and one hardware thread per core

and 4GBytes memory. We created two VMs namely the victim VM1 and attacker VM2.

These two co-located VMs can evict each other data to form a cross VM cache-based SC

Univ
ers

ity
 of

 M
ala

ya

136

attack by sharing the same hardware. We have solved this problem by using HBP-DCP

mechanism to prevent the two co-located VM from being able to evict each other data

from the cache by using dynamic cache partition. By using HBP-DCP we have assign

separate part of cache to each VM, so these two VMs are unable to access each other

cache. By assigning such partition, each VM would be able to use a part of the shared

cache without interfering with each other to ensure that no VM outside of its partition can

access the cache lines. To comply with the cloud model our dynamic partition would need

to be implemented entirely through software means.

The studied literature showed that some authors have done static cache partition,

however, this static partition degrades the cache usage that further degrades the overall

performance. Some authors have done dynamic cache partition, but that solution would

need to be required the clients to change their software’s or the underlying hardware

which does not obey the cloud model. Therefore, we need a prevention mechanism based

on dynamic cache partition that obey or comply with the cloud model. Since our

prevention mechanism is hypervisor-based, we changed the source code of Xen

hypervisor by implementing our solution in the page allocation algorithm of Xen memory

management. Now we need to evaluate our proposed prevention mechanism performance

in term of load testing, cache utilization, and memory access rate by analyzing the

benchmark results in the unmodified, static partitioned, and our HBP-DCP (dynamic

partitioned) hypervisors. To evaluate the performance of the proposed prevention

mechanism, we selected two standard and different synthetic benchmark. The selected

synthetic benchmarks are Apache and cachebench from the Phoronoix test suit for

evaluation of load testing and utilization of cache. These benchmarks have been discussed

in Chapter 3 in detail for the purpose of problem analysis.

The primary data for evaluating the performance of our proposed prevention

mechanism is gathered by conducting the experiments in three scenarios. In the first

Univ
ers

ity
 of

 M
ala

ya

137

scenario, the attacks and the benchmarks are executed in the unmodified or default

hypervisor. In the second scenario, the attacks and the benchmarks application are

executed in the modified hypervisor is known as a statically partitioned hypervisor.

Finally, in the third scenario, the attacks and the benchmarks are executed in our modified

hypervisor is referred to as dynamic partitioned hypervisor. In our solution, we changed

the source code of the open source customized hypervisor. The outcome of our solution

is a new hypervisor which dynamically assigned the cache to individual VM based on

their cache requirement. Consequently, no two VMs are able to evict or extract each other

data nor disrupt each other communication. The limitations of the static partition can be

solved here by assigning the cache partition during runtime based on the need and number

of executing VMs.

5.1.2 Effect of our HBP-DCP based Hypervisor on the Cross-VM SC Attack

The hypervisors (Unmodified, Static partitioned, and our modified based on the

dynamic cache partition (HBP-DCP)) are evaluated under the same cache-based SC

attack. The cache-based attacks were conducted by using prime + probe and flush &

reload methods as we explained in detail in Section 3.2.3 in Chapter 3. We have

implemented cache-based SC attack in three scenario namely in native OS, in single VM,

and across-VMs in virtualized environment. In the PTP technique, the side channel

receiver and sender programs are installed on two separate guests VMs. The receiver

program is called the probing instance while the receiver program performs the function

of the target instance. Both sender and receiver programs were executed simultaneously

by co-located VMs on the test-bed machine and pinned to separate CPU cores such that

L3 cache could not be used as an SC attacks. The attack was conducted between the target

(victim) and the probing instance (attacker) by sending an identifiable string of 160 bits

from the target to probing. In order to verify the consistency, the attack was executed on

each hypervisor ten times. Similarly, in order to conduct the cross-VM cache-based SC

Univ
ers

ity
 of

 M
ala

ya

138

attack by using the flush & reload technique, the flush & reload process (attacker) is

installed in one VM and the AES process (victim) is installed in another VM. Both

attacker and victim processes were executed simultaneously by co-located VMs on the

same physical machine and pinned to separate CPU cores. Consequently, the attacker

extract the encryption key of AES algorithm which we have explained in the chapter 3 in

detail.

The SC attacks were given an ideal condition for working to verify the secure (HBP-

DCP) and insecure hypervisor ability. Specifically, the Dom0, target instance, and the

probing instance were pinned to separate CPU cores and were the only VMs running on

the hypervisor. This configuration depicts the best possible condition for cache-based SC

attacks. Any variation in this setup would prevent the attack success. Our experimental

analysis concludes that if an attack can be prevented under these favorable conditions

then the same prevention mechanism would work for the environment more unfriendly

to the success of attacks. The viability of the implemented prevention mechanism should

not be affected by these configurations. The experimental results of our proposed

prevention mechanism on the PTP and F&R techniques are presented in Figure 5.1.

Dynamic cache partition as a solution would be able to assign different partition of shared

cache to the individual VM so each VM would be unable to access each other data as

shown in the Figure 5.1.

As we see in Figure 5.1, there are two VMs accessing the shared cache, so our

prevention mechanism divides the cache into two partitions according to the requirement

of each individual VM. The red dotted line part is reserved for VM1 and green dotted line

shows the VM2 partition. For instance, VM1 is the probing instance and the partition of

VM1 maps to the first two cache lines and the partition for VM2 (Target instance) maps

to the last six cache lines out of the eight shown. When the probing instance tries to access

and prime the cache lines it would be able to access the partition of the first two cache

Univ
ers

ity
 of

 M
ala

ya

139

lines which has already been assigned to it and cannot access the other six lines. Now

when the target instance tries to access and modify the cache lines it can just access their

own assigned six partitions and therefore unable to evicting VM1’s data from the cache

lines.

Cache Hit

Cache Hit

Cache Hit

Cache Hit

Cache Hit

Cache Hit

Cache Hit

Touch Category Cache Line Un-touch Category Cache Line

VM1 Data

No Data

VM1 Data

VM2 Data

No Data

VM2 Data

No Data

Cache Hit

No Data

Cache Hit

VM2 Data

No Data

VM2 Data

No Data

Trigger ProbePrime

The probing instance VM1 insert

data into every cache line. The

timed cache line reads yield cache

hit for every line

The target instance inserts data

into every second cache line

(touch category)

The probing instance repeats the

timed cache line reads, since VM2

could not access VM1 data so it

generates all the cache hit

Virtual machine 1 (Partition 1)Virtual machine 1 (Partition 1) Virtual Machine 2 (Partition 2)Virtual Machine 2 (Partition 2)

Every VM get their own partition in the shared cache

according to their demand

VM2 Can not access

VM1 partition

VM2 modifies
VM1 Read

No Context

Switch

Figure 5.1: Effect of Dynamic Cache Partition on the PTP technique

When the probing instance once again tries to access cache lines it would see no

difference from when it is left and therefore no communication would occur. Our

prevention mechanism is more than preventive as compared to reactive, it prevents the

cache-based SC attacks from occurring rather than reactive response after occurring the

attacks. Since there are two types of response for attacks namely preventive and reactive

response. In prevention response, the attacks would be able to prevent at the start before

occurring and it would not be occur. While, in reactive response, once the attacks occur

then the attacks would be cured or blocked after occurring. Therefore, the preventive

Univ
ers

ity
 of

 M
ala

ya

140

response is better than reactive response because once the attack occur it can damage the

system or extract the confidential information in a very short time.

If a VM is given a cache of half the size but does not have to worry about data being

evicted from it by other VMs then it may end up yielding a greater cache hit/miss ratio.

We are partitioning the entire memory pool to guarantee the complete security of the

system as compared to the work done by Shi et al. (Shi, Song et al. 2011) which have

attempted to partition a small memory of the cache and given a portion of memory by

using secure color to the encryption algorithm. By default, the hypervisor’s memory is

not bound to a specific partition as we are not aware of any side-channel attack that targets

the hypervisor. However, this could be easily implemented using the same technique.

Table 5.1 describes the correctly recovered whole key in number of bytes in both single

VM and cross-VM. Single VM means that attack is conducted in single in which the

attacker and victim programs are in the same VM. In cross-VM scenario, both the attacker

and the victim programs are in different VM and in different cores.

Table 5.1: Comparison of Correctly Recovered Key in Single and Cross-VM in

Unmodified Hypervisor (Insecure/Default)

In Single Virtual Machine (Single-Core) In Cross-Virtual Machine(Multi-Core)

Number of requested

encryption

Number of

correctly recovered

key bytes

Number of requested

encryption

Number of

correctly

recovered key

bytes

10,000 1 30,000 2

90,000 6 60,000 2

130,000 10 100,000 4

150,000 10 200,000 8

200,000 13 260,000 9

250,000 13 300,000 11

260,000 14 350,000 12

265,000 14 450,000 13

270,000 15 500,000 15

275,000 16 650,000 16

Univ
ers

ity
 of

 M
ala

ya

141

Table 5.1 shows that the required number of requested encryption for correctly

recovered the 16 bytes of key in single VM is 275,000 and in cross-VM is 650,000. Since

in cross VM the external noise effect the results, therefore, the number of requested

encryption in single VM is less than as compared to cross-VM. We believe that due to

noise SC attacks require a high number of encryption in the cloud environment as

compared to non-cloud environment.

The cross-VM cache-based attack is conducted in the modified (Secure/HBP-DCP

based) hypervisor. The evaluation result of cross-VM cache-based attacks is shown in

Table 5.2. The result in Table 5.2 describes the correctly recovered key in number of

bytes in both single VM and cross-VM in the presence of our HBP-DCP prevention

mechanism. Single VM means that attack is conducted in single VM in which the attacker

and victim programs are in the same guest VM/operating system.

Table 5.2: Comparison of Correctly Recovered Key in Single and Cross-VM in

Modified Hypervisor (Secure/Dynamic Partitioned/HBP-DCP)

In Single VM (Single-Core) In Cross-VM (Multi-Core)

Number of requested

encryption

Number of

correctly recovered

key bytes

Number of requested

encryption

Number of

correctly

recovered key

bytes

20,000 0 20,000 0

60,000 0 70,000 0

100,000 0 100,000 0

130,000 0 200,000 0

180,000 0 280,000 0

200,000 0 300,000 0

250,000 0 350,000 0

265,000 0 475,000 0

270,000 0 520,000 0

275,000 0 650,000 0

As shown in the Table 5.2, in cross-VM scenario, both the attacker (Flush & Reload)

and the victim (AES) programs are in different VMs and in different cores. The correctly

recovered key in both cases is zero. This zero byte result shows that our HBP-DCP

Univ
ers

ity
 of

 M
ala

ya

142

prevention mechanism is capable to prevent cross-VM cache-based SC attacks. Because

by implementing our HBP-DCP mechanism, no VM has the ability to communicate with

each other for the purpose to leak confidential information.

5.2 Benchmark Applications

This section describes the evaluation process of our HBP-DCP solution. It presents the

criteria by which we evaluate the effectiveness of our proposed solution and the

environment in which we conducted the experiments. We also describe the evaluation

metrics by which we compare our proposed solution to the existing state-of-the-art

prevention mechanisms. To evaluate the performance behavior of our proposed

prevention mechanism, we have considered two synthetic benchmarks namely Apache

and cachebench. We also ustilized two customized benchmarks namely: one is a program

for checking the memory access time and the other is a synthetic compute intensive

program with the different granularity of execution input.

We have discussed these benchmarks in Chapter 3 also because the same benchmarks

were utilized for the evaluation of performance of the static cache partitioning

mechanism. Selected benchmark applications investigate the load that modified (dynamic

partitioned) hypervisor can tolerate, the cache utilization, and the memory access rate

after partitioning the cache dynamically. These evaluation metrics are used to determine

under what condition our solution can be practically implemented into a commercial

cloud environment. There are different reasons behind choosing these benchmark

application. Firstly, selecting the benchmark applications, it is ensured that the chosen

benchmark is an open source. Secondly, our solution is based the on Xen hypervisor

source code (coded in C/C++). Therefore, it is considered during the selection process

that the selected benchmark is coded in C/C++ language. According to the above

Univ
ers

ity
 of

 M
ala

ya

143

constraints, we have selected Apache benchmark1, cachebench2, cachegrind3 and

customized benchmark namely memory access time.

5.2.1 Apache Benchmark

The Apache benchmark is a standard command line program used as HTTP web server

benchmarking tool. Apache benchmark was chosen because it is open source, commonly

available, frequently used a benchmarking service, and mostly used for web services one

would see as cloud-based applications. In addition, this benchmark was selected for

performance experiments because we believe that being a robust benchmark it constitutes

a credible Cloud workload. Apache benchmark is used to fire requests to a server in order

to find that in how much time and how fast the server could process these requests. We

used the apache benchmark to analyze the performance difference between our modified

based on dynamic cache partitioning, static partitioned, and unmodified hypervisors in

term of load testing.

5.2.2 Cachebench Benchmark

Since our HBP-DCP prevention mechanism is based on the dynamic cache partition

that is directly related to the cache. Thereby, in order to check the impact of our solution

on the cache usage, we must choose a benchmark which gives a more detailed information

about the cache usage. In our case, cachebench is a more suitable benchmark because it

is designed for the cache usage description. Cachebench is a synthetic benchmark

designed to evaluate the performance of the memory architecture and also to empirically

parameterize the performance of cache levels namely L1, L2, and L3 present on and off

the CPU processor. The performance is calculated in term of raw bandwidth in megabytes

1 https://en.wikipedia.org/wiki/ApacheBench

2 https://openbenchmarking.org/test/pts/cachebench

3 http://valgrind.org/info/tools.html

Univ
ers

ity
 of

 M
ala

ya

https://en.wikipedia.org/wiki/ApacheBench
https://openbenchmarking.org/test/pts/cachebench

144

per second such as cache read/modify/write, cache read and cache write bandwidth. The

objective of this benchmark is to establish high computation rate which gives the optimal

cache usage and to verify the effectiveness of compiler optimization. Moreover, the

purpose of using this benchmark is to verify the memory footprint of our proposed

prevention mechanism because the requirement for many application depends on the

resources in term of memory footprint. We check the memory footprint in term of the

cache hit and cache miss. Thus this benchmark gives us a good basis for our proposed

prevention mechanism performance.

5.2.3 Cachegrind Benchmark

We have used the cachegrind benchmark from the valgrind test suit for conducting the

data about cache miss and cache hit rate of all level cache including L1, L2, and L3. These

cache miss and cache hit is then used by our designed program to calculate the average

memory access rate and the effective memory access rate in case of our modified

(dynamic partitioned), static partitioned, and unmodified hypervisor. The parameters

along their measurement unit calculated as a result of these benchmarks are shown in the

following Table 5.3 in detail. Since our prevention mechanism is based on the partition

of cache memory, therefore by using this benchmark we analyzed the result of cache

access rate and memory access rate by executing matrix program in the modified, static

partitioned, and unmodified hypervisor.

Table 5.3: Parametric Evaluation with Benchmarking

Factor Parameters Calculated by Unit

Load

Testing

To calculate the load of modified

(partitioned) and unmodified

hypervisor in request per seconds

Apachebench Seconds

Cache

Utilization

To calculate bandwidth of a memory by

changing array sizes in MB/s

Cachebench MB/Sec

Memory

Access

Time

To calculate the time in nanoseconds

required to access data from memory

Customized

Benchmark +

Cachegrind

Nanoseconds

Univ
ers

ity
 of

 M
ala

ya

145

5.3 Evaluation methods

In order to analyze the reliability and validity of our research, several statistical

analyses are performed on the collected data through benchmark tools and executing

experiments in a different scenario. A statistical model is used to represent and analyze

generated data by an average and a standard deviation. The statistical model always

implies dependent and explanatory variable. Computation behind the statistical modeling

allows us to show the significance of our research. We present each of the statistical

methods that are used in this research in the following section.

5.3.1 Descriptive statistics

The descriptive statistics is used in this research in order to analyze data and to

highlight the significance of achievement of our modified HBP-DCP based hypervisor in

terms of cache utilization and prevention capability as compared to the static partitioned

and unmodified (insecure) hypervisors. In descriptive statistic, minimum, maximum,

mean and the standard deviation are determined. The desire descriptive data is acquired

based on the collected data are summarized in the graphical and tabular form to

accomplish the desired objectives.

5.3.2 Confidence Interval

According to the sample central limit theorem, approximately 95 % of the sample

means fall within 1.96 standard deviations of the population mean, showed that the

sample is greater than or equal to 30 (n ≥ 30). Therefore, all the experiments in this

research are executed 30 times for the performance evaluation of individual variable to

verify that the obtained value is under one of the representative samples. In the data

sample, the measurement of the central tendency of each experiment is calculated based

on the sample mean (-X), for the reason to discover that sample mean is a better point

estimate of the population mean as compared to median or mode. Data sampling includes

Univ
ers

ity
 of

 M
ala

ya

146

a range of intervals determined from the specified confidence level, a statistics, and the

factor of sampling error; hence the sample mean can differ from the population mean.

The level of confidence is the probability that the parameter is truly captured by the

confidence range. The most common Confidence Levels (CL) are 90%, 95%, and 99%.

Therefore, the interval estimate of each sample is determined in order to signify the

goodness of the calculated point estimate. The interval estimate for each sample mean of

the primary data is calculated with approximately 95% confidence interval of the sample

means within 1.96 standard deviations by using the following equation. Therefore, for

reporting the parametric results we raise the readability and confidence of the results up

to 95%. Equation 5.1 is used to calculate the margin of error in the sample (Intervals

2004).

 M= Z ∗ (
𝜎

√𝑛
) (5.1)

Whereas, M is the margin of error and Z indicates the value based on the confidence

interval percentage and σ is the standard deviation and n is the number of samples.

Equation 5.2 is used to calculate the confidence interval estimates for each sample mean

(X) of the primary data with a 95% confidence interval (Intervals 2004).

 µ = X ± 1.96 (
𝜎

√𝑛
) (5.2)

Whereas, σ is used to indicate the standard deviation in the sample values and n shows

the size of sample space.

5.3.3 Paired Samples T-Test

In this research, we performed the Paired Samples T-Test to ensure that there is a

significant difference between the mean values of the identical measurement performed

in three different hypervisors namely unmodified (insecure), static partitioned, and

modified (dynamic partitioned–based, the case of our solution) execution modes. In our

Univ
ers

ity
 of

 M
ala

ya

147

study, the unmodified, static partitioned and the modified (dynamic partitioned)

hypervisors parametric values are paired data of the same workload into three different

execution modes. We use this test to ensure that the execution modes of the unmodified,

static partitioned, and modified (dynamic partitioned) hypervisors have a significant

impact on the load, cache utilization, and memory access time or not. In other words, we

can conclude with the help of the generated results from the Paired Sample T-Test that

the bearable load, cache utilization, and memory access time in the unmodified (insecure)

static partitioned, and modified (secure as a case of our solution) hypervisors modes have

a significant difference. Furthermore, our modified HBP-DCP based hypervisor has the

ability to prevent cross-VM cache based SC attacks in the cloud environment.

5.3.4 Linear Regression

In this section, we explain our statistical analysis modeling. Using the statistical model

results, we can verify and validate the results of the conducted experiments in this

research work. We produce the statistical modeling of our performance parameters

including load testing, cache utilization, and memory access rate by employing the

independent replication method to generate independent datasets. These datasets consist

of load testing, cache utilization, and memory access rate for the new independent

workload in the unmodified (default/insecure), static partitioned and modified (dynamic

partitioned/HBP-DCP) hypervisors.

Moreover, we train the linear regression model to identify the correlation between the

load and the transferred number of request per seconds as well as between the cache size

and memory bandwidth in term of memory access rate. These regression models are used

to generate the load, cache utilization, memory access rate to validate the findings of the

performance evaluation parameters generated via experimental analysis. We leverage

split-sample approach and perform calibration-validation exercise to validate our

regression model. Therefore, partial datasets are used to build and train the model and the

Univ
ers

ity
 of

 M
ala

ya

148

remaining for validation of the model. We randomly split the sample into two different

size samples to perform validation and identification of the correlation between

dependent and independent variable. The model is valid in the case if the result values

support each other. The following section describe the parametric evaluation

5.4 Evaluation Metrics

In this section, we present the data collected in a number of experiments by using the

aforementioned benchmarks for the evaluation of the modified hypervisor based on the

proposed prevention mechanism (HBP-DCP) for the cache-based attacks across VMs.

The data are presented from the perspective of performance metrics (i) load testing, (ii)

cache utilization, and (iii) memory access time in three different scenario, namely (i)

conducting of attack in the static partitioned hypervisor, (ii) conducting of attack in the

unmodified (default/insecure) (iii) conducting of attack in the modified (dynamic

partitioned/ HBP-DCP) hypervisors. The experimental setup used in benchmarking

analysis is shown in the following Table 5.4.

Table 5.4: Experimental Environment in benchmarking Analysis

Items Detail

CPU Processor Intel Core i5-3450 CPU @ 3.10GHz, 4 cores, Hyper Threading disabled

L1 Data-cache 32KB, 8 way associative, line size 64

L1 Instruction-cache 32KB, 8 way associative, line size 64

L2 Cache 256KB, 8 way associative, line size 64

L3 Cache 6144KB, 12 way associative, line size 64

Memory 11915MB DDR3 @1333MHz

VMM Xen Hypervisor with dynamic cache partition

Virtual Machines HVM guest, 1GB memory, 1 dedicated core for individual VM

Guest OS Ubuntu 12.04.5

5.4.1 Load Testing

The load testing is investigated in order to support the load that a modified hypervisor

based on our proposed method HBP-DCP can tolerate. We have tested a load of

hypervisors in three modes, namely unmodified (default/insecure), static partitioned, and

Univ
ers

ity
 of

 M
ala

ya

149

modified (dynamic partitioned/secure) hypervisor by sending multiple requests through

Apache benchmark. We have created 10 VMs on each hypervisor namely unmodified,

static, and our modified hypervisors and have checked a load of each hypervisor by

sending many concurrent requests. For this, first, we have checked a load of unmodified

(insecure), static partitioned, and modified (secure is our solution) hypervisors without

creation of any VMs. Then after this, we have created 1VM, 2VM, 3VM, 4VM, 5VM,

6VM, 7VM, 8VM, 9VM, and 10 VMs on each hypervisor respectively and have checked

the bearable load of each hypervisors in each case. In each hypervisor, for load testing,

we have analyzed the average response time and the maximum number of requests per

second that hypervisors can tolerate under a large number of connections or simultaneous

users.

Table 5.5 shows the load testing of the unmodified, static partitioned, and dynamic

partitioned (HBP-DCP) hypervisors in term of sending the concurrent requests and

checking the average response time per request. We generate the different types of loads

for the system in form of sending the concurrent requests to the server and run the

experiment 30 times for 1 to 30 concurrent users. The Min and Maximum in the Table

5.5 representing the minimum and maximum ranges of generated number of requests per

second and average response time per request for varying number of concurrent

requests/users. In order to analyze that for what scenario the system will fail to work, we

executed the system for the different workload. In this case, we do not have created any

VM. The number of concurrent requests varies from 10 to 150. The number of concurrent

requests means that our modified hypervisor can handle how many numbers of concurrent

users. Table 5.5 shows that the difference in the average number of requests per second

and the response time per request in the unmodified, static partitioned ,and in our

modified (dynamic partitioned) hypervisors is significant as the T-test and P-test prove it.

As shown in the table, the p-values for number of request per seconds and response time

Univ
ers

ity
 of

 M
ala

ya

150

in the static and dynamic partitioned hypervisors are .037 and .421 and T-values are 2.323

and 1.923 respectively. These values prove the significance of the results.

Table 5.5: Load Testing of Unmodified, Static Partitioned, and Dynamic Partitioned

Hypervisors without any VM and with Varying Number of Concurrent Requests

 Unmodified

(Default/insecure)

Static Partitioned Hypervisor Modified (Dynamic

Partitioned/secure)

Concurrent

Requests

Number of

Requests per

Second

Average

Response Time

per request

Number of

Requests per

Second

Average

Response Time

per request

Number of

Requests per

Second

Average

Response

Time per

request

10 5502 1.749 5070 12.222 5105 5.851

20 5530 3.480 5007 25.324 5115 15.806

30 5047 5.882 4834 36.234 4949 20.65

40 4943 7.827 4237 38.765 4462 22.988

50 4904 9.788 4317 52.342 4535 25.629

60 4999 12.218 4295 54.232 4910 38.979

70 4980 13.995 4805 68.454 4827 39.954

80 4903 16.517 4628 79.345 4843 45.271

90 5150 18.162 4400 85.332 4924 49.13

100 5199 19.894 4349 98.393 4964 55.837

110 5280 22.823 4255 106.347 4970 58.846

120 5301 24.766 4195 120.776 4618 59.481

130 5377 30.858 4322 158.711 4751 65.154

140 4998 50.101 4275 185.872 4695 98.152

150 3640 159.041 3408 245.743 3430 201.03

Mean 5050.2 26.47 4426.47 91.21 4739.86 53.52

Median 5047 16.517 4322 79.345 4843 45.271

Min 3640 1.749 3408 12.222 3430 5.851

Maximum 5530 159.041 5070 245.743 5115 201.03

Std.

Deviation

442.592 38.664 407.70 64.63 410.050 47.00

Confidence.

Int.

223.978 19.566 206.32 32.71 207.510 23.78

P-Value .037 .0421 0.022 0.039 .0283/0.022 0.039

T-Value 1.992 1.721 2.099 1.826 1.992/2.099 1.826

The relationship between the number of requests and response time is that the average

response time per request is increasing as the number of the concurrent users are

increasing. Although there is a small increase in load in the case of modified (HBP-DCP)

hypervisor as compared to unmodified as shown in a table. However, the modified (HBP-

DCP/secure) hypervisor has the ability to secure the CC environment from cache-based

SC attacks as compared to the unmodified (insecure) hypervisor. Since we know that

security always comes with some overhead, therefore this is not a big difference in both

hypervisors.

Univ
ers

ity
 of

 M
ala

ya

151

Table 5.6 shows the load testing of unmodified (default/insecure) hypervisor in term

of sending the concurrent requests. In this case, we have created multiple VMs namely

1VM to 10VMs and have checked the bearable load in case of each VM. For instance,

first, we have created 1VM and have checked the load for 10 to 100 concurrent users.

Similarly, we repeated the same experiment for 2VM, 3VM, 4VM, 5VM, 6VM, 7VM,

8VM, 9VM, and 10VM respectively. The bearable load in term of number of requests per

second is shown in the following table.

Table 5.6: Number of Requests per Second in Unmodified (Default/insecure)

Hypervisor with Varying Number of VMs and Concurrent Users/Requests

Execution

Traces

Number of Requests per Second

Number of

concurrent users
1VM 2VM 3VM 4VM 5VM 6VM 7VM 8VM 9VM 10VM

10 3311 3246 3302 3198 3186 3203 3222 3240 3207 3150

20 3256 3225 3124 3154 3106 3162 3208 3204 3099 3132

30 3180 3207 3223 3134 3223 3144 3198 3229 3213 3128

40 3298 3185 3258 3118 3218 3132 3182 3284 3282 3112

50 3238 3162 3285 3110 3284 3127 3166 3289 3285 3173

60 3258 3146 3244 3107 3229 3120 3150 3248 3247 3168

70 3189 3121 3240 3112 3192 3112 3142 3259 3238 3072

80 3156 3102 3162 3102 3185 3114 3123 3172 3211 3039

90 3138 3088 3203 3105 3216 3112 3105 3198 3202 3023

100 3094 3066 3265 3069 3215 3110 3090 3208 3195 2988

Mean 3211.8 3154.8 3230.6 3120.9 3205.4 3133.6 3158.6 3233.1 3217.9 3098.5

Median 3213.5 3154 3242 3111 3215.5 3123.5 3158 3234.5 3212 3120

Std. Deviation 71.502 60.818 54.922 34.824 45.043 29.507 44.485 38.173 52.669 64.429

Confidence .Int. 44.317 37.694 34.040 21.584 27.918 18.289 27.572 23.659 32.644 39.933

Table 5.7 shows the load testing of our modified (secure/dynamic partitioned)

hypervisor in term of sending the concurrent request. In this case, we have repeated the

same procedure as we done for the unmodified hypervisor. We have created multiple

VMs namely 1VM to 10VMs and have checked the bearable load in case of each VM.

For instance, first, we have created 1VM and have checked the load for 10 to 100

concurrent users. Similarly, we repeated the same experiment for 2VM, 3VM, 4VM,

5VM, 6VM, 7VM, 8VM, 9VM, and 10VM respectively. We have calculated the average

Univ
ers

ity
 of

 M
ala

ya

152

for each VMs. The approximate difference in average for each VM is 10 number of

request in both unmodified and modified hypervisors.

Table 5.7: Number of Request per Second in Modified (Dynamic Partitioned)

Hypervisor with Varying Number of Virtual Machines and Concurrent Requests

Execution

Traces

Number of Requests per Second

Number of

concurrent

users

1VM 2VM 3VM 4VM 5VM 6VM 7VM 8VM 9VM 10VM

10 3301 3209 3301 3226 3164 3202 3228 3201 3238 3250

20 3243 3195 3114 3176 3085 3141 3192 3082 3076 3092

30 3171 3166 3219 3142 3138 3119 3214 3201 3204 3218

40 3286 3145 3247 3130 3119 3093 3274 3242 3200 3212

50 3225 3130 3236 3115 3112 3075 3273 3255 3253 3233

60 3249 3120 3224 3103 3105 3068 3232 3237 3149 3168

70 3178 3102 3210 3081 3093 3122 3241 3221 3159 3072

80 3141 3080 3192 3065 3071 3090 3162 3155 3122 3039

90 3120 3038 3187 3043 3055 3033 3181 3192 3113 3023

100 3043 3006 3175 3022 3021 3017 3201 3182 2992 2988

Mean 3195.7 3119.1 3210.5 3110.3 3096.3 3096 3219.8 3196.8 3150.6 3129.5

Median 3201.5 3125 3214.5 3109 3099 3091.5 3221 3201 3154 3130

Std. Deviation 80.38 65.00 49.32 61.83 41.25 53.69 37.18 50.37 79.19 97.54

Confidence

.Int.

49.82 40.29 30.57 38.32 25.57 33.28 23.04 31.22 49.08 60.45

Table 5.8 shows the number of requests and the average response time per request for

both unmodified (insecure) and modified (dynamic partitioned/secure) hypervisor. The

average number of requests per second is for the unmodified hypervisor is 3189.42 and

for modified is 3150.1. Similarly, the average response time per request for the

unmodified hypervisor is 18.42 and for modified is 19.52. There is only 1.24% difference

in bearable load in term of number of requests per second in both hypervisor and only

5.8% difference in the average response time per request. However, this is acceptable

because our modified (dynamic partitioned) hypervisor has the ability to prevent cross-

Univ
ers

ity
 of

 M
ala

ya

153

VM cache-based SC attacks. The T-test in the following Table 5.8 proves the significant

difference in the load of both unmodified and modified hypervisor.

Table 5.8: Load Testing in Modified and Unmodified Hypervisor with Varying

Number of VMs (Average for 10 to 100 Concurrent Request/users for each VM)

 Unmodified (Default Hypervisor) Modified (Dynamic Partitioned/secure)

Hypervisor

Number of VMs Average Number

of Requests per

Second

Average Response

Time per request

Average Number

of Requests per

Second

Average Response

Time per request

1 3231.8 16.024 3210.7 18.132

2 3228.8 17.108 3189.1 18.203

3 3216.6 17.901 3172.5 19.209

4 3210.9 18.479 3160.3 19.111

5 3198.4 18.551 3146.3 19.351

6 3187.6 18.732 3142.4 19.232

7 3172.6 18.98 3134.8 19.34

8 3161.1 19.201 3123.8 20.001

9 3149.9 19.57 3115.6 21.37

10 3136.5 19.611 3105.5 21.211

Min 3136.5 16.024 3105.5 18.132

Mean 3189.42 18.42 3150.1 19.52

Median 3193.0 18.6 3144.4 19.3

Maximum 3231.8 19.6 3210.7 21.4

Std. Deviation 33.46 1.13 33.30 1.08

Confidence Int. 20.74 0.70 20.64 0.67

P-Value 0.008 0.019 0.008 0.019

T-Value 2.53 2.220 2.53 2.220

Table 5.9 shows the bearable load in a statically partitioned hypervisor with varying

number of VMs and number of partitions. Since the partition is created during boot time,

therefore, we are unable to change the partitions during execution of VMs. As shown in

the table the bearable load in term of the number of request per second is decreasing as

the number of VMs and partitions are increasing. For instance, if we created 16 number

of partitions in the cache or we divided the cache into 16 parts and during runtime, we

need only one VM. Then this configuration cannot be changed during runtime and

therefore, one part of the cache would be assigned to single created VM and the remaining

Univ
ers

ity
 of

 M
ala

ya

154

15 parts of cache will be wasted. Consequently, degrade the performance in term of

bearable load because this single VM having limited part of cache accept the low number

of requests per second. For instance, if the number of created VM is one and the number

of partitions is 16, then the number of request per second will be very low regardless the

number of VMs. As shown in Table 5.9, if the number of VMs is greater than the number

of partition then the performance will be degraded. For instance, if there are 16 VMs and

the number of partitions is 2 then during runtime it will be difficult to manage the

partitions accordingly.

Table 5.9: Load Testing with Varying Number of VMs and Partitions in Static

Partitioned Hypervisor

 Number of Requests per Second

Number of

concurrent users

Number of

Partitions

With 1 VM With 2VM With 4VM With 8 VM With 16 VM

10 1 3200 3500 3200 1500 700

10 2 3200 3200 3100 1500 700

10 4 2800 2900 3100 1500 600

10 8 2300 1900 1700 1400 600

10 16 1900 1800 1600 1100 400

Conversely to the static partitioned mechanism, in the dynamic partitioned based

hypervisor, the number of cache partitions is not decided during boot time as shown in

Table 5.10. When VM is created then the cache is divided into partition accordingly. For

instance, if one VM is created then the whole cache is assigned to single VM during

runtime. While in the case of 8 or 16 VMs the whole cache is divided into 8 or 16 parts

respectively. As compared to static partition, the dynamic partition improves the

performance in term of the bearable load. For example, in the static partition, once we

create 16 partitions at boot time then in the case of one VM creation the cache is divided

into 16 parts. Consequently, degrade the performance because the other 15 parts of cache

will be idle during execution. While in dynamic partition the case is different because the

Univ
ers

ity
 of

 M
ala

ya

155

whole cache is assigned to that single VM. In the case of 8 or 16 VMs creation, the cache

will be divided into 8 or 16 parts respectively.

Table 5.10: Load Testing with Varying Number of VMs in Dynamic Partitioned

Hypervisor

 Number of Requests per Second

Number of

concurrent

users

1VM/Partition 2VM/Partition 4VM/Partition 8 VM/Partition 16VM/Partition

10 3301/1 3209/2 3197/4 3176/8 2764/16

20 3243/1 3195/2 3186/4 3162/8 2726/16

30 3221/1 3166/2 3169/4 3140/8 2698/16

40 3196/1 3145/2 3147/4 3125/8 2645/16

50 3175/1 3132/2 3116/4 3104/8 2622/16

Table 5.11 shows the comparison of load testing in static and dynamic partitioned

hypervisors. In both hypervisors, the bearable load is compared in term of the average

number of requests per second and response time per request for the 1,2,4,8, and 16 cache

partitions. As shown in the table, in the static partitioned hypervisor, the number of

requests per second is decreasing with the increasing number of VMs and partitions. For

instance, the average number of request per second 1977.28 in the static partitioned

hypervisor and 3157.88 in our dynamic partitioned (HBP-DCP) hypervisor. Similarly,

the average response time in the static partitioned hypervisor is 19.33 and 18.28 in our

dynamic partitioned (HBP-DCP). The number of request per second is increased by

45.33% and the average response time per request is decreased by 5.58%. Therefore, the

bearable load in term of request per second and average response time is improved in our

dynamic partitioned (HBP-DCP based) hypervisor. Since the number of partitions is

predefined during boot time, we cannot change during runtime. For instance, if we

partitioned the entire cache into 16 parts and we are executing one VM then only single

part of the entire cache will be assigned to that executing VM and the remaining 15 parts

will be idle. Consequently, degrade the performance in term of the load. While in our

Univ
ers

ity
 of

 M
ala

ya

156

dynamic partitioned hypervisor, the cache partition is not predefined but decided during

runtime according to the number of executingVMs. For instance, if we create one VM

then the entire cache will be assigned to that single VM while if we create 16 VMs then

the cache the cache will be divided into 16 parts. Therefore, the overall performance will

be improved.

Table 5.11: Comparison of Load Testing in Static-Partitioned and Dynamic-

Partitioned-based Hypervisors with Varying Number of VMs and Partitions

(Average for 10 to 100 Concurrent Request for each VM)

 Static Partitioned-based Hypervisor

(1,2,4,8,16 Static Partitions)

Dynamic Partitioned-based Hypervisor

(Dynamic Partition)

Number of VMs Average Number

of Requests per

Second

Average Response

Time per request

Average Number

of Requests per

Second

Average Response

Time per request

1 2684.5 18.132 3210.7 17.024

2 2660.8 18.203 3189.1 17.108

4 2540.2 19.111 3160.3 17.479

8 1400.6 20.001 3123.8 18.201

16 600.3 21.211 3105.5 19.611

Min 600.3 18.132 3105.5 17.024

Mean 1977.28 19.33 3157.88 18.28

Median 2540.2 19.111 3160.3 18.479

Maximum 2684.5 21.211 3210.7 19.611

Std. Deviation 937.13 1.30 43.81 1.18

Confidence Int. 821.42 1.14 38.40 1.04

T-Value 2.813 1.927 2.813 1.927

P-Value 0.11 .045 0.11 .045

Figure 5.2 shows the result of sending 170 concurrent request during execution. It

shows that with increasing number of concurrent request in each hypervisor namely

unmodified (default/insecure), static partitioned, and our modified HBP-DCP (dynamic

partitioned) hypervisors the number of request per second is decreasing. While the

average response time per request in increasing. The response time per request is 126ms.

The 126ms response time is showing the fastest request. If the response time per request

is or less than 175ms then it will be considered the fastest requests while the slowest

requests have the response time is or greater than 224ms.

Univ
ers

ity
 of

 M
ala

ya

157

Figure 5.2: Result of Apache Benchmark with Varying Number of Concurrent

Requests

Statistical model is designed in order to validate the results of performance

evaluation produced via experimental analysis. The result of statistical model for

load testing are presented here. We have designed the load estimation model to test

the load value for each VM based on the two variables namely request per seconds

and the average time per request. In order to build the statistical model, we have

taken 80 % data for the training and 20% for the validation. We have taken these

two values to train our model as much as possible to avoid biased results. The output

of the statistical model is shown in the following Table 5.12. The statistical model

for load is shown in the following Eq.5.3.

R lm (Load ∼ Number of Request + Time per Request)

𝑊 = ∑ (𝐿𝑉𝑀𝑖 + 𝑁𝑅𝑉𝑀𝑖 + 𝑇𝑃𝑅𝑉𝑀𝑖)
10
𝑖=1 (5.3)

Where i is = 1 to 10 (Number of Virtual Machines from 1 to 10)

Univ
ers

ity
 of

 M
ala

ya

158

The detail statistics of the statistical model of our linear regression are summarized in

Table 5.12. The R value shows significance correlation between the number of request

per second and the response time per request. The average R-squared value in the table

testifies that 99.20% of the load value can be explained using number of request per

second and response time per request. The F-statistics in the table ensure that available

data is appropriate to be used for linear regression and P-value shows the significance of

the result.

Table 5.12: Regression Statistics Summary for Load Testing of Varying VMs

Number of VM P-Value R-Squared Adjusted R-Squared F-Statistic

1VM 4.968e-05 0.993 0.9894 281.8

2VM 0.0008928 0.9907 0.9845 160.3

3VM 7.348e-07 0.991 0.988 329.5

4VM 3.633e-12 0.9998 0.9998 1.951e+04

5VM 2.77e-09 0.9999 0.9999 3.8e+04

6VM 1.09185-03 0.5488 0.9884 3.649

7VM 4.819e-06 0.9978 0.0067 909

8VM 1.529e-07 0.9996 0.9994 5112

9VM 5.636e-14 1 0.9999 7.824e+04

10VM 8.348e-11 0.9996 0.9994 6861

5.4.2 Cache Utilization

Since our HBP-DCP prevention mechanism for cross-VM cache-based SC attacks is

based on the dynamic partition of cache for each VM and the performance impact of our

prevention system depends on the cache functionality. Therefore, we used cache

utilization as our evaluation parameter that how much our solution effect the cache

bandwidth in term of cache read/write/modify, cache read, and cache write. Cache

utilization is investigated for unmodified, static partitioned, and modified (HBP-

DCP/Dynamic partitioned) hypervisors to check the amount of data accessed in bytes by

each one. We used the cache write, cache read and cache Read/Modify/Write from the

cachebench benchmark to evaluate the different level of cache in term of accessed data.

Each one executes repeated access to data items on varying vector lengths. For each

Univ
ers

ity
 of

 M
ala

ya

159

vector length, timings are taken based on the number of iterations. The total amount of

accessed data in bytes is calculated by computing the product of vector length and number

of iteration. A bandwidth figure (e.g., Megabytes as being 10242 or 1048576) in

megabytes per second is then computed by dividing this total data accessed by the total

time. Moreover, the average access time in nanoseconds per each data item is computed

and reported. For cache usage metric, the cache writes, cache read, cache

read/modify/write are conducted to evaluate both unmodified (insecure) and modified

(secure: our solution) hypervisor. Cachebench is used to run these three benchmarks in

order to measure the time in nanoseconds and bandwidth in MB/sec. Cache read

calculates the read bandwidth by varying vector length. The resulting bandwidth will be

high for the cases, where the vector length is less than cache size because the data will be

coming from the cache.

 Cache size and vector size are both independent variables. Cache size is how much

data is stored "locally" in some sense. Vector length is the amount of data to transmit and

can thus be any number. The measures of interest come when the vector is larger than the

cache as shown in the Table. As shown in Table 5.15, there is no significant difference

between the modified (dynamic partitioned) and unmodified (default) hypervisor with

increasing number of VMs despite the expectation to the contrary. To investigate why we

analyzed the source code of cachebench. It is clear from the code that cachebench obtain

its reading by measuring the response time for cache small sections at any specific time.

The dynamic cache partition will not affect the cache performance because these sections

are very small and have enough cache to work.

This benchmark shows that a program with both low and high memory footprint

should not be negatively affected by the dynamic partitioning of the cache. In contrast,

static partition does not affect the program with low partition, however, it has a negative

impact on the program with high memory footprint. Because, in the static partition, the

Univ
ers

ity
 of

 M
ala

ya

160

small program can entirely fit in the assigned smaller partition of cache to each VM while

the large memory footprint program can not fit entirely in the small partition assigned to

each VM at boot time. Conversely, in a dynamic partition, the program with both small

and large memory footprint can fit entirely in the assigned cache to each VM. Because in

the dynamic partition, if for example, 2 VMs are running then the whole cache would be

assigned to these 2 VMs and therefore large memory footprint program will not degrade

the overall performance. For instance, if a program just needs 8KB or 200KB of the cache

at any specific time then it will have no negative impact on the cache performance if there

are more than 10 partitions because, during dynamic partition, 512kb is assigned to each

VMs. However, if one or two VMs are running then the whole cache memory will be

assigned to one or two VM, in Core i5 the 2MB cache will be assigned to both VM.

Therefore, a program with the low memory footprint has no negative impact on the cache

performance during cache partitioning.

Table 5.13 and 5.14 present the data related to the cache utilized by varying vector

lengths in each VM e.g., 1VM, 2VMs, 3VMs, 4VMs, 5VMs, 6VMs, 7VMs, 8VMs,

9VMs, and 10VMs, which are collected in unmodified (insecure/default) and modified

(Secure/HBP-DCP/dynamic partitioned) hypervisors. Each Table summarizes the

bandwidth for varying vector lengths with 95% confidence interval for 30 number of

iteration for each VM e.g., 1VM to 10VMs. Similar to load testing for each VM, we

present bandwidth in MB/Sec for Cache Read/Modify/Write e.g., the total amount of data

accessed in bytes with 95% confidence interval to enable reliability of our data. The

benchmark Read/Modify/Write in cachebench is used to determine the bandwidth (how

much data is accessed) by varying vector lengths. The data in both tables show that there

is an acceptable difference between the cache utilization in term of bandwidth MB/Sec in

both hypervisors even the modified hypervisor has the ability to prevent cross-VM cache-

based SC attacks.

Univ
ers

ity
 of

 M
ala

ya

1
6

1

Table 5.13: Cache Utilization of Unmodified Hypervisor

 Bandwidth (MB/Sec) for Read/Modify/Write of Varying Virtual Machines

Execution

Traces

C-Size 1VM 2VM 3VM 4VM 5VM 6VM 7VM 8VM 9VM 10VM

1 256 18010.78 16320.03 18256.65 18374.66 18141.36 17673.91 18284.43 18238.125 17875.55 17407.48

2 336 17444.21 17436.02 17457.82 17422.24 17386.05 16942.28 17339.97 17350.963 16928.82 16410.65

3 424 18974.97 18986.7 18945.75 18856.22 18751.78 18322.14 18853.09 18800.384 18362.71 17874.6

4 512 20105.25 20115.28 20052.72 20023.84 19463.41 19475.4 19977.81 19914.018 19428.63 19272.44

5 680 21626.97 21622.58 21562.56 21515.29 20.941.81 20967.44 21505.72 21399.052 20785.12 20229.52

6 848 22669.82 22657.75 22573.36 22589.29 21877.59 21968.81 22543.28 22422.787 21678.64 21255.02

7 1024 23445.77 23420.64 23232.63 23360.52 22723.52 22716.04 23204.62 23123.022 22385.02 22119.99

8 1360 24449.76 24442.52 24338.14 24404.33 23706.65 23698.67 24335.17 24064.946 23251.82 23678.41

9 1704 25102.69 25120.47 25057.39 25002.8 24339.59 24354.7 24983.84 24711.307 23901.93 24322.07

10 2048 25571.66 25580.1 25541.13 25480.36 24769.92 24809.76 25470.57 25241.943 24329.22 24760.35

11 2728 26168.16 26145.53 26085.84 26030.6 25354.95 25398.21 26060.53 25892.23 24811.41 25340.84

12 3408 26540.02 26520.56 26457.35 26437.22 25731.23 25719.91 26410.5 26235.549 25208.98 25704.39

13 4096 26774.5 26779.57 26650.52 26695.41 25913.12 25894.68 26667.05 26499.885 25381.6 25930.89

14 5456 27044.14 27061.88 27038.92 27045.49 26313.17 26277.96 27000.67 26839.088 24930.03 26262.08

15 6824 27276.03 27300.06 27240.12 27254.47 26466.41 26475.72 27199.62 27048.748 25161.71 26457.36

16 8192 27422.45 27445.8 27344.61 27355.97 26526.88 26599.68 27340.21 27156.973 8192 27422.45

17 10920 27607.14 27608.08 27522.84 27519.55 26758.4 26771.99 27468.5 27318 10920 27607.14

18 13648 27597.66 27707.58 27633.22 27610.15 26864.49 26867.85 27561.91 27459.636 13648 27597.66

19 16384 27778.46 27771.29 27690.99 27708.51 26943.71 26925.28 27612.92 27512.886 16384 27778.46

20 21840 27863.58 27862.95 27784 27788.43 27021.39 27012.86 27697.67 27589.881 21840 27863.58

21 27304 27913.91 27913.22 27875.83 27821.62 27069.35 27063.09 27791.73 27607.307 27304 27913.91

22 32768 27944.52 27931.52 27885.8 27704 27090.11 26997.19 27809.4 27699.925 32768 27944.52

Univ
ers

ity
 of

 M
ala

ya

1
6

2

Table 5.13: Continue…

23 43688 27977.26 27982.49 27909.43 27895.51 27065.76 27126.44 27870.49 27536.417 43688 27977.26

24 54608 28017.56 27994.23 27949.03 27890.55 27161.52 27160.8 27893.35 27589.301 54608 28017.56

25 65536 28033.89 28025.99 27944.67 27910.99 27173.82 27156.75 27887.54 27764.86 65536 28033.89

26 87376 28046.01 28042.92 27983.92 27945.97 27184.51 27214.36 27853.62 27674.065 87376 28046.01

27 109224 28051.91 28063.72 27998.85 27960.02 27204.26 27211.66 27787.4 27803.388 109224 28051.91

28 131072 28063.83 28073.39 27993.38 27947.32 27204.54 27221.6 27975.84 27696.146 131072 28063.83

29 714760 28079.79 28082.25 27978.91 27927.25 27232.66 27242.34 27951.38 27783.632 714760 28079.79

30 218448 28132.23 28120.33 27989.24 27950.55 27240.56 27250.34 27982.32 27790.339 218448 28132.23

 Min 17444.21 16320.03 17457.82 17422.24 17386.05 16942.28 17339.97 17350.96 16928.82 16410.65

 Median 27349.24 27372.93 27292.37 27305.22 26526.88 26537.70 27269.92 27102.86 25314.25 26331.57

 Maximum 28132.23 28120.33 27998.85 27960.02 27240.56 27250.34 27982.32 27803.39 27848.38 27002.85

 Std. Deviation 3302.39 3451.20 3271.43 3258.45 3051.04 3190.86 3269.59 3227.04 2936.11 3254.17

 Confidence Int. 1181.72 1234.97 1170.65 1166.00 1091.78 1141.81 1169.99 1154.76 1050.65 1164.47

Univ
ers

ity
 of

 M
ala

ya

1
6

3

Table 5.14: Cache Utilization of Modified Hypervisor

 Bandwidth (MB/Sec) for Read/Modify/Write of Varying Virtual Machines

Execution

Traces

C-Size 1VM 2VM 3VM 4VM 5VM 6VM 7VM 8VM 9VM 10VM

1 256 17490.78 16300.03 18236.65 18354.66 18121.36 17653.91 18264.43 18218.125 17855.55 17387.48

2 336 17419.21 17411.02 17432.82 17397.24 17361.05 16917.28 17314.97 17325.963 16903.82 16385.65

3 424 18555.97 18967.7 18926.75 18837.22 18732.78 18303.14 18834.09 18781.384 18343.71 17855.6

4 512 20073.25 20093.28 20030.72 20001.84 19441.41 19453.4 19955.81 19892.018 19406.63 19250.44

5 680 21577.97 21599.58 21539.56 21492.29 20100.11 20944.44 21482.72 21376.052 20762.12 20206.52

6 848 22630.82 22636.75 22552.36 22568.29 21856.59 21947.81 22522.28 22401.787 21657.64 21234.02

7 1024 23393.77 23393.64 23205.63 23333.52 22696.52 22689.04 23177.62 23096.022 22358.02 22092.99

8 1360 24414.76 24417.52 24313.14 24379.33 23681.65 23673.67 24310.17 24039.946 23226.82 23653.41

9 1704 25065.69 25103.47 25040.39 24985.81 24322.59 24337.7 24966.84 24694.307 23884.93 24305.07

10 2048 25535.66 25564.11 25525.13 25464.36 24753.92 24793.76 25454.57 25225.943 24313.22 24744.35

11 2728 26121.16 26125.53 26065.84 26010.6 25334.95 25378.21 26040.53 25872.23 24791.41 25320.84

12 3408 26502.02 26497.56 26434.35 26414.22 25708.23 25696.91 26387.5 26212.549 25185.98 25681.39

13 4096 26735.35 26753.57 26624.52 26669.41 25887.12 25868.68 26641.05 26473.885 25355.6 25904.89

14 5456 27023.14 27040.88 27017.92 27024.49 26292.17 26256.96 26979.67 26818.088 24909.03 26241.08

15 6824 27214.03 27273.06 27213.12 27227.47 26439.41 26448.72 27172.62 27021.748 25134.71 26430.36

16 8192 27375.15 27419.8 27318.61 27329.97 26500.88 26573.68 27314.21 27130.973 25220.89 26492.44

17 10920 27473.24 27580.08 27494.84 27491.55 26730.4 26743.99 27440.5 27290.12 25561.34 26701.01

18 13648 27532.36 27688.58 27614.22 27591.15 26845.49 26848.85 27542.91 27440.636 25960.02 26818.27 Univ
ers

ity
 of

 M
ala

ya

1
6

4

Table 5.14: Continue…

19 16384 27741.4 27751.29 27670.99 27688.51 26923.71 26905.28 27592.92 27492.886 26024.53 26832.16

20 21840 27831.28 27833.95 27755.21 27759.43 26992.39 26983.86 27668.67 27560.881 25670.56 26879.6

21 27304 27790.91 27890.22 27852.83 27798.62 27046.35 27040.09 27768.73 27584.307 26147.74 26943.03

22 32768 27793.32 27901.52 27855.81 27674.21 27060.11 26967.19 27779.4 27669.925 25913.64 26967.68

23 43688 27884.12 27959.49 27886.43 27872.51 27042.76 27103.44 27847.49 27513.417 26315.71 26979.85

24 54608 27975.22 27969.23 27924.03 27865.55 27136.52 27135.8 27868.35 27564.301 26828.74 26878.88

25 65536 27970.82 28002.99 27921.67 27887.99 27150.82 27133.75 27864.54 27741.86 26082.77 26711.79

26 87376 27995.41 28021.92 27962.92 27924.97 27163.51 27193.36 27832.62 27653.065 26283.22 26591.34

27 109224 28016.86 28038.72 27973.85 27935.02 27179.26 27186.66 27762.4 27778.388 26367.67 26504.82

28 131072 28028.22 28047.39 27967.38 27921.32 27178.54 27195.6 27949.84 27670.146 27108.16 26445.88

29 714760 27997.21 28060.25 27956.91 27905.25 27210.66 27220.34 27929.38 27761.632 27163.41 26379.05

30 218448 28107.33 28100.33 27969.24 27930.55 27220.56 27230.34 27962.32 27770.339 27828.38 26135.57

 Min 17419.21 16300.03 17432.82 17397.24 17361.05 16917.28 17314.97 17325.96 16903.82 16385.65

 Median 27294.59 27346.43 27265.87 27278.72 26470.15 26511.20 27243.42 27076.36 25288.25 26310.07

 Maximum 28107.33 28100.33 27973.85 27935.02 27220.56 27230.34 27962.32 27778.39 27828.38 26979.85

 Std. Deviation 3357.68 3450.40 3270.67 3257.68 3129.66 3190.09 3268.82 3226.26 2935.50 3253.39

 Confidence Int. 1201.51 1234.69 1170.37 1165.72 1119.92 1141.54 1169.71 1154.48 1050.43 1164.19

Univ
ers

ity
 of

 M
ala

ya

165

Similarly, Table 5.15 shows the bandwidth of cache read and cache writes by varying

vector length i.e., c-size for both unmodified and modified hypervisor generated via

experiment.

Table 5.15 Average Bandwidth (MB/Sec) of Cache Read and Cache Write of Varying

VMs (1VM-10VM) in Un-Modified and Modified Hypervisor

Average Bandwidth (MB/Sec) of Varying VMs (VM1-VM10)

 Unmodified (default/insecure)

Hypervisor (1VM-10VMs)

Modified (Dynamic-Partitioned)

Hypervisor (1VM-10VMs)

Execution

Traces

C-Size Bandwidth of

Cache Read

(MB/Sec)

Bandwidth of

Cache Write

(MB/Sec)

Bandwidth of

Cache Read

(MB/Sec)

Bandwidth of

Cache Write

(MB/Sec)

1 256 1935.88 2139.74 1903.88 2127.74

2 336 1938.39 2173.34 1908.39 2161.34

3 424 1949.24 2178.98 1917.24 2166.98

4 512 1948.09 2042.00 1923.09 2030.00

5 680 1323.09 1933.28 1288.09 1921.28

6 848 1931.31 2068.73 1916.31 2056.73

7 1024 1939.8 2163.17 1924.8 2151.17

8 1360 1921.37 2156.73 1896.37 2144.73

9 1704 1952.07 2225.12 1927.07 2213.12

10 2048 1957.94 2224.35 1942.94 2212.35

11 2728 1969.46 2236.61 1954.46 2224.61

12 3408 1963.77 2273.94 1948.77 2261.94

13 4096 1975.43 2293.04 1960.43 2281.04

14 5456 1963.89 2214.23 1948.89 2199.23

15 6824 1968.47 2096.07 1947.47 2081.07

16 8192 1976.26 2182.09 1941.26 2167.09

17 10920 1397.06 2157.74 1342.06 2142.74

18 13648 1331.05 2019.30 1306.56 2004.30

19 16384 1330.59 2142.71 1235.59 2127.71

20 21840 1317.53 2296.77 1302.53 2281.77

21 27304 1313.01 2528.70 1268.01 2513.70

22 32768 1300.64 2310.62 1275.64 2295.62

23 43688 1009.88 2005.95 1044.88 1990.95

24 54608 1085.77 2329.79 1070.77 2314.79

25 65536 1310.22 1935.00 1295.22 1920.00

26 87376 1297.13 1930.16 1272.13 1915.16

27 109224 1353.34 2019.69 1328.34 2004.69

28 131072 1330.98 2233.06 1335.98 2218.06

29 174760 1191.13 2385.88 1276.13 2370.88

30 218448 1086.98 2133.25 1271.98 2118.25

Mean 1608.99 2167.67 1595.82 2153.97

Std.

Deviation

 358.86 138.41 346.29 138.36

Confidence

Int.

 128.41 49.53 123.92 49.51

T-Value 1.981 2.012 1.981 2.012

P-Value .0437 .0411 .0437 .0411

Univ
ers

ity
 of

 M
ala

ya

166

Cache read and cache write perform repeated access to the data item on varying vector

lengths such as varying c-size in Table 5.14. The average of cache read for unmodified is

1595.82 and for modified is 1608.99 and the average for cache write is 2153.97 for

unmodified and 2167.67 for modified are almost 14. The difference between the cache

read of both unmodified and our modified (dynamic partitioned) is .821% and in the cache

write is .634%. This is acceptable difference because our modified hypervisor has the

ability to prevent cross-VM cache-based SC attacks. The T-test proves the significant

difference of cache read and cache write in both unmodified and modified hypervisor.

Table 5.16 shows the average bandwidth of cache read/write/modify benchmark in the

static partitioned hypervisor. As the expected performance of our dynamic partitioned

hypervisor depends on the utilization of cache. Therefore, we execute the cache

read/write/modify to evaluate the cache utilization of static partitioned hypervisor. In

Table 5.16, the Min and Maximum in the first column representing the minimum and

maximum ranges of cache Read/write/Modify bandwidth in case of varying number of

VMs and partitions.

Table 5.16: Bandwidth of Cache Read/Write/Modify in Static Partitioned Hypervisor

 Average Bandwidth of cache Read/Write/Modify (MB per Second)

Number of Partition 1VM 2VMs 4 VMs 8 VMs 16 VMs

1 17923 17128 15289 13567 13889

2 15628 14035 13878 11228 12556

4 14289 13582 12728 10988 10454

8 10989 9366 8800 8487 8000

16 4896 4098 3789 3567 3089

Min 4896 4098 3789 3567 3089

Maximum 17923 17128 15289 13567 13889

Mean 12363.4 11347.9 10508.9 9281.6 9280.9

Std. Deviation 5054.6 5041.8 4648.9 3806.1 4266.6

Confidence Int. 4430.5 4419.2 4074.9 3336.1 3739.8

In static partitioned hypervisor, the average bandwidth of cache read/write/modify is

decreasing with increasing number of VMs and partitions. Even in the case of 1VM or 2

VMs, if the partitions are 16 then the cache bandwidth will be low because the cache is

Univ
ers

ity
 of

 M
ala

ya

167

divided into 16 parts. While in dynamic partitions, the bandwidth will be high in case of

1 or 2 VMs because the entire cache will be divided into 1 or 2 partitions. For instance,

in a static partition, if for 1VM the number of partition is 1 the bandwidth will be 17923

as shown in Table 5.16. While for 1VM, if the number of partitions is 16 then the

bandwidth will 4896 which is very low as compared to 17923 in the case of 1 partition.

Table 5.17 shows the comparison of cache read/write/modify in both static and

dynamic partitioned hypervisors. We have created 1VM, 2VM, 4VM, 8VM, and 16VM

in both hypervisors for checking the bandwidth of cache read/write/modify with varying

number of partitions. As compared to the dynamic partitioned hypervisor, the average

bandwidth of cache read/write/modify in the static partitioned hypervisor is decreasing

with increasing number of VMs and partitions. For instance, the average bandwidth of

cache read/modify/write in the static partitioned hypervisor is 13012.8 and 18234.7 in our

dynamic partitioned (HBP-DCP) hypervisor.

Table 5.17: Average Bandwidth of cache Read/Modify/Write in Static and Dynamic

Partitioned Hypervisors

Average Bandwidth (MB/Sec) of Cache Read/Modify/Write with varying VMs and partitions

Number of

Partitions

Static Partitioned

(Average of 1VM, 2VM, 4VM, 8VM

and 16VMs)

Dynamic partitioned (HBP-DCP)

(Average of 1VM, 2VM, 4VM, 8VM

and 16VMs)

1 14745.5 19645.848

2 13641.8 18629.448

4 13896.8 18110.181

8 11567.4 17012.904

16 11246.3 17585.894

Min 11246.3 17012.9

Maximum 14745.5 19645.85

Mean 13012.8 18234.7

Std.

Deviation

1532.059 1008.6

Confidence

Int.

1342.884 884.1

P-Value 0.00012

T-Value 6.311

Univ
ers

ity
 of

 M
ala

ya

168

Thus the average bandwidth of cache Read/Modify/Write is improved by 33.32% in

our HBP-DCP based hypervisor as compared to static partitioned hypervisor.

Consequently improves the cache utilization. Moreover, the T-test values namely P-value

and T-value in the Table 5.17 shows the validity of the results. Because in the static

partitioned hypervisor, the number of partitions is static and predefined during boot time.

Therefore, 16 partitions cannot change for 1 VM while in the case of the dynamic

partitioned hypervisor, the number of partitions will be changed according to created

VMs.

Similarly, Table 5.18 shows the comparison of cache read in both static and dynamic

partitioned hypervisors. We have analyzed the cache read bandwidth by varying number

of VMs and partitions in both static partitioned and dynamic partitioned hypervisors. The

average bandwidth of the cache read in static partitioned hypervisor is decreasing with

increasing number of VMs and partitions as shown in Table 5.18. For instance, the

average cache read bandwidth for 2 VMs in the case of 16 partitions is 946.3 in the static

partitioned hypervisor while in the dynamic partitioned hypervisor is 1225.375. The

cache read bandwidth of dynamic partitioned (HBP-DCP) is more as compared to static

partitioned. Since the 16 partitions are defined during boot time so the partition cannot

change even 2 VMs are running.

 Consequently, degrade the cache read bandwidth. While in dynamic if 2 VMs are

executing then the partitions will be changed into 2 according to the executing VMs. Thus

improve the average cache read bandwidth. For instance, the average bandwidth of cache

read in the static partitioned hypervisor is 1164.16 and 1474.07 in our dynamic partitioned

(HBP-DCP) hypervisor. Thus the average bandwidth of cache write is improved by

23.493% in our HBP-DCP based hypervisor. Furthermore, the P-value and T-value shows

the validity of the result as the P-value is less than 0.05. This improvement in the cache

Univ
ers

ity
 of

 M
ala

ya

169

read bandwidth improves the cache performance in term of cache utilization as compared

to static partitioned hypervisor.

Table 5.18: Average Bandwidth of Cache Read in Static and Dynamic Partitioned

Hypervisors

Average Bandwidth (MB/Sec) of Cache Read with varying VMs and partitions

Number of

Partitions

Static Partitioned

(Average of 1VM, 2VM, 4VM, 8VM

and 16VMs)

Dynamic partitioned (HBP-DCP)

(Average of 1VM, 2VM, 4VM, 8VM

and 16VMs)

1 1345.5 1585.212

2 1264.8 1552.323

4 1196.8 1532.333

8 1067.4 1475.134

16 946.3 1225.375

Min 946.3 1225.375

Maximum 1345.5 1585.212

Mean 1164.16 1474.07

Std.

Deviation

158.827 144.673

Confidence

Int.

139.215 126.809

P-Value 0.006

T-Value 3.225

Similarly, in Table 5.19, the bandwidth of cache write for both static partitioned and

modified (dynamic partitioned) hypervisors is shown. Similarly to the other two

bandwidth cache read bandwidth for the static partitioned hypervisor is less than the

dynamic partitioned hypervisor. The average bandwidth of cache write in the static

partitioned hypervisor is 1383.374 and 1908.416 in our dynamic partitioned (HBP-DCP)

hypervsior. Thus the average bandwidth of cache write is improved by 32% in our HBP-

DCP based hypervisor. Furthermore, the P-value and T-value shows the validity of the

result. Consequently, improves the cache performance in term of cache utilization as

compared to static partitioned hypervisor.

Univ
ers

ity
 of

 M
ala

ya

170

Table 5.19: Average Bandwidth of Cache Write in Static and Dynamic Partitioned

Hypervisors

Average Bandwidth (MB/Sec) of Cache Write with varying VMs and partitions

Number of

Partitions

Static Partitioned

(Average of 1VM, 2VM, 4VM, 8VM

and 16VMs)

Dynamic partitioned (HBP-DCP)

(Average of 1VM, 2VM, 4VM, 8VM

and 16VMs)

1 1710.201 2024.191

2 1630.451 2010.763

4 1445.134 1975.354

8 1202.543 1910.541

16 928.541 1621.232

Min 928.541 1621.232

Maximum 1710.201 2024.191

Mean 1383.374 1908.416

Std.

Deviation

320.644 166.462

Confidence

Int.

281.052 145.908

P-Value 0.005

T-Value 3.249

Table 5.20, 5.21, and 5.22 shows the average bandwidth in MB/Sec calculated from

the cache Read/Modify/Write, cache read, and cache write benchmarks for each VM

including VM 1 to 10VMs in the unmodified and modified hypervisor. The cache

read/write/modify generate much more memory traffic as compared to the cache read and

cache write because in the cache read/write/modify the data items must be first read from

the cache to register and then back to memory/cache. Therefore, the bandwidth for cache

read and cache write is less than the bandwidth of read/write/modify as shown in Table

5-20. The average for unmodified is 25625.64 and 25572.21 for modified hypervisor. The

difference is almost .208% between both unmodified and modified hypervisor. This

difference is acceptable because the modified hypervisor has the ability to prevent cross-

Univ
ers

ity
 of

 M
ala

ya

171

VM cache-based SC attacks. The T-test result proves the significant difference between

both values.

Table 5.20: Comparison of cache Read/Modify/Write in Unmodified and Modified

(HBP-DCP) Hypervisors

 Average Bandwidth (MB/Sec) of Cache Read/Modify/Write

Number of VMs Unmodified (Insecure) Modified (dynamic-partitioned)

1 25683.831 25645.848

2 25680.515 25629.448

3 25634.193 25610.181

4 25644.917 25612.904

5 25667.956 25585.894

6 25670.929 25613.862

7 25594.038 25570.093

8 25572.166 25543.093

9 25558.599 25538.542

10 25542.249 25522.272

Min 25542.25 25522.27

Maximum 25683.93 25645.85

Mean 25622.96 25586.69

Std. Deviation 53.77 42.11

Confidence Int. 33.32 26.10

T-Value 1.746

P-Value 0.0417

Table 5.21 shows the result of bandwidth in MB/Sec calculated by cache read

benchmark in the unmodified and modified (dynamic partitioned/HBP-DCP) hypervisor.

The average bandwidth of Cache Read for unmodified is 1546.433 and for our modified

(dynamic partitioned) hypervisor is 1514.567. The difference in cache Read bandwidth

of both is 2.08% which is acceptable because our modified hypervisor has the ability to

prevent cross-VM cache-based SC attacks. Since the cache Read/Modify/Write

benchmark first read the values from the cache and then will write in the cache. Therefore,

the resulting bandwidth for cache Read/Modify/Write benchmark will be high as

compared to cache read and cache write benchmarks for both modified and unmodified

Univ
ers

ity
 of

 M
ala

ya

172

hypervisor as shown in Table 5.20, 5.21, and 5.22. Furthermore, the T-test (P-value and

T-value) shows the validity of the result.

Table 5.21: Comparison of Cache Read in Unmodified and Modified (HBP-DCP)

Hypervisor

 Average Bandwidth (MB/Sec) of Cache Read

Number of VMs Unmodified (Insecure) Modified (dynamic-partitioned)

1 1610.157 1585.22

2 1585.222 1552.323

3 1572.211 1549.333

4 1566.777 1532.134

5 1553.221 1525.888

6 1540.554 1518.122

7 1529.212 1484.111

8 1519.454 1475.223

9 1505.291 1467.989

10 1482.234 1455.323

Mean 1546.433 1514.567

Std. Deviation 38.820 42.466

Confidence Int. 24.060 26.320

T-Value 1.751

P-Value 0.0421

Table 5.22 show the resulting bandwidth of the cache write benchmark in both

unmodified and modified (dynamic partitioned/HBP-DCP) hypervisor. The average

bandwidth for cache write in the unmodified hypervisor is 2184 and in the modified

hypervisor is 2126. The resulting difference in percentage in both hypervisor is almost

2.69%. Which is acceptable because our modified (partitioned hypervisor) has the ability

to prevent cache-based SC attacks between VMS. Furthermore, the T-value and P-value

show that the result is significant as the T-value is less than 2.2 and P-value is less than

0.05.

Univ
ers

ity
 of

 M
ala

ya

173

Table 5.22: Comparison of Cache Write in Unmodified and Modified (HBP-

DCP) Hypervisor

 Average Bandwidth (MB/Sec) of Cache Write

Number of VMs Unmodified (insecure) Modified (dynamic-partitioned)

1 2273.121 2224.191

2 2252.256 2210.763

3 2245.177 2195.354

4 2225.878 2162.823

5 2197.891 2134.871

6 2183.199 2117.783

7 2162.872 2101.234

8 2135.752 2067.553

9 2113.882 2047.812

10 2059.432 2006.232

Mean 2184.946 2126.862

Std. Deviation 67.897 72.739

Confidence Int. 42.082 45.083

T-Value 1.854

P-Value 0.0307

We have designed the cache bandwidth model to test the cache utilization for each VM

e.g., 1VM, 2VMs, 3VMs, 4VMs, 5VMs, 6VMs, 7VMs, 8VMs, 9VMs, and 10VMs based

on the two variables namely total time in nanoseconds and the total amount of data

accessed in bytes. In order to build the statistical model, we have taken 80 % data for the

training and 20% for the validation. We have taken these two values to train our model

as much as possible to avoid biased results. Similar to a statistical model for load testing,

in order to present a reliable and accurate estimation model of cache utilization in term of

cache read/modify/write, cache read, and cache write, we perform linear regression using

measured real data in cachebench benchmark in both unmodified and modified

hypervisor. We use data set of cache utilization including cache read/modify/write, cache

read, and cache write and use them for training the regression model to produce the

bandwidth model. For validation of our proposed model, we use the split sample

approach. Hence the cache utilization model can be presented as follow:

R lm (Data Accessed ∼ Total Iteration × (C-size)

Univ
ers

ity
 of

 M
ala

ya

174

R lm (C-utilization∼ Total Time × (Total Amount of Data Accessed in Bytes)

𝐵𝑚(𝑊𝑖) = ∑ (𝑇𝑉𝑀𝑖 × 𝐷𝑎𝑡𝑎𝑉𝑀𝑖)10
𝑖=1 (5.4)

Where Bm (Wi) is the total bandwidth in MB/Sec calculated by the total amount of data

accessed in bytes divided by the total time. The bandwidth is totally depends on the vector

length. Because if the vector length is less than cache size then, in this case, the whole

data will come from the cache and the resulting bandwidth will be high otherwise the

resulting bandwidth will be low. Timings are taken for every vector length based on a

number of iteration. The number of iteration is then multiplied by the vector length to

compute the total amount of accessed data in bytes. Finally, the total amount of accessed

data in bytes is divided by the total time to compute the bandwidth. The output of the

statistical model is shown in the following Table 5.23.

Table 5.23: Regression Statistics Summary for Cache Utilization of Virtual

Machines

The R value shows the significant correlation between the vector length and the

bandwidth. The P-value and R-squared values in Table 5.23 for each VM testify the

significance of the result using the statistical model for cache utilization. The detail

statistics of the statistical model are summarized in Table 5.23. The R value shows

significance correlation between the number of cache size and the bandwidth of

Number of VM P-Value R-Squared Adjusted R-Squared F-Statistic

1VM 3.238e-05 0.9910 0.9899 1.502e+04

2VM 0.0008928 0.9907 0.9889 3.8e+04

3VM 4.338e-04 0.9991 0.9899 3.649

4VM 2.633e-03 0.9997 0.9999 1.951e+04

5VM 1.2345e-09 0.9998 0.9998 3.8e+04

6VM 1.09185-04 0.9898 0.9887 3.649+04

7VM 4.323e-05 0.9989 0.9941 2.345e+03

8VM 2.512e-04 0.9996 0.9994 40189e+02

9VM 3.623e-08 0.9930 0.9989 7.824e+04

10VM 5.316e-11 0.9986 0.9999 2.502e+03 Univ
ers

ity
 of

 M
ala

ya

175

cache/read/write. The average R-squared value in the table testifies that 99.61% of the

load value can be explained using cache-size and cache read/modify/write. The F statistics

in the table ensure that available data is appropriate to be used for linear regression and

p-value shows the significance of the result.

5.4.3 Memory Access Rate

CPU cache is used to increase the speed of the memory access for the data which is

most commonly accessed. However, our proposed HBP-DCP prevention mechanism

divides the cache on the fly according to VMs requirement. Therefore, it is needed to

check memory access rate as a performance parameter in order to check the evaluation of

our prevention mechanism whether it will effect on the memory access rate or not.

Although profiling cache memory operation requires collaboration from the hardware,

however, it is also possible to collect information through software. The average memory

access time is a valuable parameter to evaluate the performance of a memory hierarchy

configuration. When a processor demand to execute an item from the main memory, it

sends a load request to the cache memory. If the item resides in the cache it will generate

the cache hit and in the case of absence, it will generate the cache miss. These cache miss

and hit rate are used to calculate the memory access rate. We have checked the memory

access rate in each hypervisor namely unmodified (Default), static partitioned, and

modified (dynamic partitioned) to check the performance difference between each one.

As compared to the RAM storage, the access to the cache memory is faster due to the

high latency of RAM storage. The total memory access time is calculated by the Eq. 5.8

while considering the cache and memory of the system as a target location. In Eq. 5.5,

HitRate represents the amount of data accessed from the cache memory. Alternatively,

MissRate describes the fraction of data accessed from the main memory. Moreover,

CacheAccessTime and RAMAccessTime represent the total time to access the data from the cache

and main memory respectively (Rixner, Dally et al. 2000). For instance, time to access

Univ
ers

ity
 of

 M
ala

ya

176

main memory is 100 ns in the majority of the system. The cache access time is proven to

be 10 times faster than the main memory. Consider a program that yields a hit ratio with

.92 for a reading request then the effective memory access time will be calculated by the

following Eq. 5.5 and Eq. 5.6.

EffectiveAccessTime = HITRate × CacheAccessTime + MissRate × RAMAccessTime (5.5)

EffectiveAccessTime =.092 × 10 + (1-0.92) × 100 ≈ 17ns (5.6)

The browsing experience can be improved by a high cache hit ratio while reducing

costs in terms of energy, bandwidth, and computation power. Therefore the effectiveness

of the caching system by monitoring the cache hit and cache miss ratio. We have written

a customized program for checking the total memory access rate of a matrix program in

the unmodified, static partitioned and HBP-DCP based hypervisors. For the program, we

calculated the cache miss and cache hit for the matrix program by using cachegrind which

is under the valgrind tool suit. We have collected the results for the average memory

access time by executing our programs in the unmodified (default), static partitioned, and

modified (dynamic partitioned) hypervisors.

Table 5.24 and 5.25 present the data related to the memory access rate by a matrix

program which is collected in the unmodified (insecure/default) and modified

(secure/dynamic partitioned) hypervisors execution modes for eight granularity levels of

matrices, respectively. Each Table summarizes the memory access rate in term of total

LLC memory access with 95% confidence interval for 30 number of iteration for each

VM e.g., 1VM, 2VM, 3VM, 4VM, 5VM, 6VM, 7VM, 8VM, 9VM,10VM in eight

intensity levels. Similar to cache utilization, we present the LLC references e.g., memory

access with 95% confidence interval to enable reliability of our data. The small value of

error estimate based on 95% confidence interval at the end of Table 5.24 and 5.25 testify

the result of collected LLC references data.

Univ
ers

ity
 of

 M
ala

ya

177

Table 5.24: Last Level Cache (LLC) Memory Accesses in Unmodified Hypervisor

 Total LLC Memory References in the Unmodified (Insecure) Hypervisor

 Matrix Multiplication Granularity

Number of VMs/

Partitions

 300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000

1/1 60973 114071 2315516 4054171 5065081 7212454 9121649 11264682

2/2 60974 114070 2315544 4054171 5065083 7212455 9121651 11264683

3/3 60975 114072 2316643 4054294 5065084 7212457 9121653 11264685

4/4 60978 114082 2316651 4054297 5065088 7212461 9121655 11264687

5/5 60979 114084 2316652 4054299 5065089 7212463 9121657 11264688

6/6 60980 114084 2316654 4054200 5065088 7212465 9121658 11264689

7/7 60982 114085 2316658 4054201 5065090 7212466 9121660 11264691

8/8 60984 114086 2316659 4054301 5065091 7212469 9121661 11264693

9/9 60980 114088 2316663 4054302 5065094 7212470 9121664 11264693

10/10 60981 114089 2316664 4054308 5065095 7212471 9121667 11264698

Min 60973 114070 2315516 4054171 5065081 7212454 9121649 11264682

Mean 60978.6 114081.1 2316430.4 5054248.44 5065087.55 7212462.22 9121657.5 11264688.9

Median 60979.5 114084 2316653 4054294 5065088 7212463 9121657.5 11264688.5

Maximum 60984 114089 2316664 4054302 5065094 7212470 9121667 11264698

Std. Deviation 3.60 7.26 474.64 60.43 4.16 5.89 5.70 4.98

Confidence Int. 2.23 4.50 294.18 37.45 2.58 3.65 3.53 3.08

Table 5.25: Last Level Cache (LLC) Memory Accesses in Modified Hypervisor

 Total LLC Memory References in the dynamic partitioned Hypervisor

 Matrix Multiplication Granularity

Number of

VMs/Partitions

300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000

1/1 60970 114069 2315503 4054168 5065080 7212452 9121644 11264678

2/2 60969 114068 2315501 4054168 5065079 7212450 9121645 11264677

3/3 60966 114058 2316640 4054291 5065080 7212455 9121644 11264677

4/4 60976 114080 2316648 4054294 5065087 7212459 9121650 11264683

5/5 60972 114082 2316649 4054296 5065088 7212461 9121652 11264684

6/6 60973 114082 2316651 4054197 5065087 7212463 9121653 11264685

7/7 60963 114083 2316655 4054198 5065089 7212464 9121655 11264687

8/8 60965 114084 2316656 4054298 5065090 7212467 9121656 11264689

9/9 60976 114086 2316660 4054299 5065093 7212468 9121659 11264689

10/10 60977 114087 2316661 4054305 5065094 7212469 9121662 11264694

Min 60963 114058 2315501 4054168 5065079 7212450 9121644 11264677

Mean 60970.7 114077.9 2316422.4 4054251.4 5065086.7 7212460.8 9121651 11264684.3

Median 60971 114082 2316650 4054292.5 5065087.5 7212462 9121652 11264684.5

Maximum 60977 114087 2316661 4054305 5065094 7212469 9121662 11264694

Std. Deviation 4.95 9.56 485.13 60.00 5.38 6.70 6.29 5.72

Confidence Int. 3.07 5.93 300.68 37.19 3.33 4.15 3.90 3.54

Univ
ers

ity
 of

 M
ala

ya

178

Table 5.25 shows the average memory access for the varying matrix granularity level.

The average memory access of modified (HBP-DCP base) hypervisor is less as compared

to the unmodified (default/insecure) hypervisor. Since in modified hypervisor, the cache

is divided into partitions, therefore, it effect the average cache access and it will be

reduced. The average memory refernces rate is increasing with increasing number of

matrix size. For instance the average memory access for 300×300 is less than as compared

to 1000×1000. The average standard deviation for unmodified (insecure) hypervisor is

70.83 and for modified (HBP-DCP) is 72.96. This small difference validate the result.

Table 5.26 shows the descriptive statistics of experimental results in unmodified

(default/insecure) and HBP-DCP (dynamic partitioned /secure) hypervisors including

minimum, maximum, and mean of the total cache references are summarized in eight

intensity levels. This statistics shows that there is minor difference between the standard

deviation of both hypervisors e.g., .05% difference in both modes is acceptable. As

descriptive statistics in the Table 5.26 shows that the difference between both hypervisors

is significant even the HBP-DCP based hypervisor has the ability to prevent cross-VM

cache-based SC attacks.

The total memory references are calculated by using cachegrind benchmark as shown

in Table 5.24 and 5.25. Then these cache references are used to calculate the cache hit

rate and average memory access rate. The equations for LLC hit rate and for memory

access time are as follows:

Cache Hit Rate = (Cache Hits / (Cache Hits + Cache Misses)) × 100% (5.7)

Avg. Memory Access Time = Hit Rate × TC + Miss Rate × M (5.8)

Where cache hit rate is calculated by the above Eq.5.7 and miss rate=1-hit rate. TC is

the time to access data from the cache which is mostly 10ns. LL cache miss is the memory

accesses percentage that does not find the desired information in the main memory and is

Univ
ers

ity
 of

 M
ala

ya

179

determined by the cachegrind benchmark and miss rate is calculated from the formula (1-

hit rate).

Table 5.26: Descriptive statistics of LLC Memory Accesses Data Generated by

Standard Experimentation

 Mode Min Mean Median Maximum Std.Dev Conf.Int

Mat. Mult.

(300×300)

Unmodified

(HBP-DCP)

60967

60963

60967

60970.7

60975

60971

60983

60977

5.51

4.95

1.97

1.77

Mat. Mult.

(400×400)

Unmodified

(HBP-DCP)

114060

114058

114080.1

114077.9

114084

114082

114091

114087

9.79

9.56

3.50

3.42

Mat. Mult.

(500×500)

Unmodified

(HBP-DCP)

1315504

2315501

2316425.7

2316422.4

2316653

2316650

2316667

2316661

485.30

485.13

173.66

173.60

Mat. Mult.

(600×600)

Unmodified

(HBP-DCP)

4054171

4054168

4054254.8

4054251.4

5054296

4054293

4054312

4054305

60.41

60.00

21.62

21.47

Mat. Mult.

(700×700)

Unmodified

(HBP-DCP)

5065081

5065079

5065088.7

5065086.7

5065088.5

5065088

5065099

5065094

5.70

5.38

2.04

1.92

Mat. Mult.

(800×800)

Unmodified

(HBP-DCP)

7212452

7212450

7212463.3

7212460.8

7212264

7212462

7212476

7212469

7.51

6.70

2.69

2.40

Mat. Mult.

(900×900)

Unmodified

(HBP-DCP)

9121649

9121644

9121657.4

9121652

9121658

9121653

9121671

9121662

7.07

6.29

2.53

2.25

 Mat. Mult.

(1000×1000)

Unmodified

(HBP-DCP)

11264681

11264677

11264681

11264684.3

11264689

11264685

11264703

11264694

6.78

5.72

2.43

2.05

M is the time to access information or data from the main memory. Then by using

these values, we can calculate the average access time by using our own written

customized program. Each level of memory including L1, L2, and L3 (LLC) cache will

have different values for these parameters.

Table 5.27 shows the cache hit, miss rate, and cache access time of LLC memory in

the unmodified hypervisor. In Table 5.27, the LLC references, LLC misses, and Miss

Rate are calculated for unmodified (insecure) by using cache grind benchmark. Then we

have written a customized program in order to determine the average cache access time

that can be determined by Eq. 5.8. In the customized program, the LLC references and

misses are used to calculate LLC hit values by using the LLC hit = LLC references – LLC

miss. The LLC hit rate over a period of time is calculated by dividing the cache hits by

Univ
ers

ity
 of

 M
ala

ya

180

the combined number of hits and misses and then multiply by 100. Moreover, the LLC

hit rate is determined over time by using Eq. 5.7.

Table 5.27: Average Cache Access Rate, Cache Hit, and Miss Rate of LLC in

Unmodified (Default/Insecure) Hypervisor

Table 5.28 shows the average access rate for 1VM, 2VMs, 3VMs, 4VMs, 5VMs,

6VMs, 7VMs, 8VMs, 9VMs, and 10VMs in the static partitioned hypervisor. Similarly

to unmodified and modified (dynamic partitioned) hypervisors, the LL cache references

and LL cache miss are calculated by using cache grind benchmark. The cache hit rate and

memory access rate is calculated by using Eq. 5.7 and 5.8 respectively. We calculated LL

cache references for 300×300 in single VM then in the case of 2 VMs and up to 10 VMs.

Similarly, for each corresponding matrix multiplication workload, we calculated the LL

 Average Cache Access Rate of 1VM to 10VMs

Varying

Number of

VMs

Matrix Size LL Cache

References

LL Cache

Hit

LL Cache

Miss

Hit Rate

(Read +

Write)

Miss Rate

(Read +

Write)

Cache

Access

Time

(ns)

1VM-10VM 300 x 300 60978.6 51777.6 9201 84.91% 15.09% 23.58

1VM-10VM 400 x 400 114081.1 100372.1 13709 87.98% 12.02% 20.82

1VM-10VM 500 x 500 2316430.4 2179943.4 136487 94.11% 5.89% 15.30

1VM-10VM 600 x 600 5054248.4 4863139.4 191109 96.22% 3.78% 13.40

1VM-10VM 700 x 700 5065087.6 4855126.6 209961 95.85% 4.15% 13.73

1VM-10VM 800 x 800 7212462.22 6902988.22 309474 95.71% 4.29% 13.86

1VM-10VM 900 x 900 9121657.22 8841722.22 279935 96.93% 3.07% 12.76

1VM-10VM 1000 x 1000 11264689 11035641 229048 97.97% 2.03% 11.83

Mean 5026204.32 4853838.82 172365.50 0.94 0.06 15.66

Median 5059668.00 4859133.00 200535.00 0.96 0.04 13.80

Std.

Deviation

 4081294.32 3984289.65 112395.60 0.05 0.05 4.22

Confidence

Int.

 2828140.70 2760921.13 77884.74 0.03 0.03 2.92

Univ
ers

ity
 of

 M
ala

ya

181

cache reference in the case of 1VM, 2VM, 3VM, 4VM, 5VM, 6VM, 7VM, 8Vm, 9VM,

and 10 VM.

Table 5.28: Average Cache Access Rate, Cache Hit and Miss Rate of LLC in Static

Partitioned Hypervisor (1, 2, 4, 8, and 16 partitions)

The total cache references for varying granularity level in the static partitioned

hypervisor is less than the dynamic partitioned hypervisor. In the static partitioned

hypervisor, if the of VMs is equal to the number of partitions then the cache access rate

will be high. However, we have analyzed the average cache access rate in all cases where

for one VM there may be 8 partitions or conversely for 8 VMs there may be single

partition. This configuration degrade the performance in term of cache access rate.

 Average Cache Access Rate of VM1 to VM10

Varying

Number of

VMs

Matrix Size LL Cache

References

LL Cache

Hit

LL Cache

Miss

Hit Rate

(Read +

Write)

Miss Rate

(Read +

Write)

Cache

Access

Time

(ns)

1VM-10VM 300 x 300 50920.7 40498.7 10422 79.53% 20.47% 28.42

1VM-10VM 400 x 400 94027.9 77023.9 17004 81.92% 18.08% 26.28

1VM-10VM 500 x 500 1716372.4 1532183.4 184189 89.27% 10.73% 19.66

1VM-10VM 600 x 600 3554201.4 3141106.4 413095 88.38% 11.62% 20.46

1VM-10VM 700 x 700 4465036.7 4003805.7 461231 89.67% 10.33% 19.30

1VM-10VM 800 x 800 6812410.8 6006936.8 805474 88.18% 11.82% 20.64

1VM-10VM 900 x 900 8421601 7530557 891044 89.42% 10.58% 19.52

1VM-10VM 1000 x 1000 9464634 8473379 991255 89.53% 10.47% 19.43

Mean 4322400.61 3850686.36 471714.25 0.87 0.13 21.71

Median 4009619.05 3572456.05 437163.00 0.89 0.11 20.06

Std.

Deviation

 3644422.22 3256216.36 389674.67 0.04 0.04 3.56

Confidence

Int.

 2525409.35 2256401.35 270025.81 0.03 0.03 2.47

Univ
ers

ity
 of

 M
ala

ya

182

Therefore, the cache access time in static partitioned hypervisor is less than dynamic

partitioned (HBP-DCP) hypervisor.

Table 5.29: Average Access Rate, Cache Hit, and Miss Rate of LLC Memory in

Modified (Dynamic Partitioned/HBP-DCP) Hypervisor

Similarly, in Table 5.29, the LLC references, LLC misses, and Miss Rate are calculated

for our modified HBP-DCP based (dynamic partitioned/ secure) hypervisor by using

cache grind benchmark. Then LLC references and misses are used to calculate LLC hit

values by using the LLC Hit = LLC References – LLC Miss. The LLC Hit rate over a

period of time is calculated by dividing the cache hits by the combined number of hits

and misses and then multiply by 100. The T-value and P-value prove the significant

difference between the average LLC memory access time for each VM including 1VM,

 Average Cache Access Rate of VM1 to VM10

Varying

Number of

VMs

Matrix Size LL Cache

References

LL Cache

Hit

LL Cache

Miss

Hit Rate

(Read +

Write)

Miss Rate

(Read +

Write)

Cache

Access

Time

(ns)

1VM-10VM 300 x 300 60970.7 50748.7 10222 83.23% 16.77% 25.09

1VM-10VM 400 x 400 114077.9 96973.9 17104 85.01% 14.99% 23.49

1VM-10VM 500 x 500 2316422.4 2176433.4 139989 93.96% 6.04% 15.44

1VM-10VM 600 x 600 4054251.4 3713356.4 340895 91.59% 8.41% 17.57

1VM-10VM 700 x 700 5065086.7 4716055.7 349031 93.11% 6.89% 16.20

1VM-10VM 800 x 800 7212460.8 6609186.8 603274 91.64% 8.36% 17.53

1VM-10VM 900 x 900 9121651 8462507 659144 92.77% 7.23% 16.50

1VM-10VM 1000 x 1000 11264684 10705629 559055 95.04% 4.96% 14.47

Mean 4901200.61 4566361.36 334839.25 0.91 0.03 18.29

Median 4559669.05 4214706.05 344963.00 0.92 0.01 17.02

Std.

Deviation

 4095601.74 3852117.36 259681.19 0.04 0.06 3.87

Confidence

Int.

 2838055.06 2669332.09 179946.58 0.03 0.04 2.68

Univ
ers

ity
 of

 M
ala

ya

183

2VMs, 3VMs, 4VMs, 5VMs, 6VMs, 7VMs, 8VMs, 9VMs, and 10VMs of modified

(dynamic partitioned) and unmodified hypervisors.

Table 5.30 presents the data related to the memory access rate by a matrix program

which is collected in the unmodified (insecure/default) and modified (secure/dynamic

partitioned) hypervisors execution modes for eight granularity levels of matrices,

respectively. This Table summarizes the memory access rate with 95% confidence

interval for 30 number of iteration for each VM e.g., 1VM to 10VMs in eight intensity

levels. Since the cache access time is dependent on the cache miss rate, therefore, the

cache access time is decreasing with increasing number of cache miss rate. The cache

miss rate is increasing with increase in the matric multiplication workload. Therefore, the

cache access time is decreasing with increasing matrix multiplication workload.

Table 5.30: Average Cache Access Rate of Varying VMs in Unmodified and

Modified Hypervisors

Average Cache Access Rate of varying VMs (1VM to 10VMs)

 Unmodified

(Insecure/Default)

Hypervisor

Modified (Dynamic

Partitioned/Secure)

Hypervisor

Varying

Number of

VMs

Matrix Size Cache Access Time (ns) Cache Access Time (ns)

1VM-10VM 300 x 300 23.58 25.09

1VM-10VM 400 x 400 20.82 23.49

1VM-10VM 500 x 500 15.30 15.44

1VM-10VM 600 x 600 13.40 17.57

1VM-10VM 700 x 700 13.73 16.20

1VM-10VM 800 x 800 13.86 17.53

1VM-10VM 900 x 900 12.76 16.50

1VM-10VM 1000 x 1000 11.83 14.47

Mean 15.66 18.29

Median 13.80 17.02

Std. Deviation 4.22 3.87

Confidence Int. 2.92 2.68

T-Value 1.959

P-Value 0.0354

Univ
ers

ity
 of

 M
ala

ya

184

As shown in Table 5.30, the average LLC memory access time for unmodified

(default/insecure) hypervisor is 15.66 and for modified (dynamic partitioned /secure) is

18.29. The almost difference in both is 15.32%, however, this is acceptable because the

modified hypervisor has the ability to prevent cross-VM cache-based SC attacks.

Moreover, the T-value and P-values prove the significance of the result as the T-value is

less than 2.2 and P-value is less than 0.05.

Table 5.31 shows the comparison of average access time of varying number of VMs

and partitions in both static partitioned and dynamic partitioned hypervisors. The LL

cache access time is calculated based on the total LL cache references. As shown in Table

5.28 and 5.29, the LLC cache references is increasing according to the increasing

corresponding matrix multiplication workload. Therefore, cache access time is decreasing

with increasing matrix multiplication workload. The effective access time is 17ns. For the

static partition, the overhead will be low if the number of VMs is equal to the number of

partitions. However, unlike dynamic cache partitioned hypervisor, the number of VMs

and partitions cannot be equal in all cases. Since the partitions are configured during boot

time. The average access time for static partitioned is 21.71 and for dynamic partitioned

is 18.29. The cache access time of our HBP-DCP based hypervisor is improved by 17.1%

as the cache access time will be high for the high miss rate. The cache access time is

calculated based on the total access rate and miss rate. Since the total cache access rate in

static partitioned hypervisor is less than and the miss rate is greater than our dynamic

partitioned (HBP-DCP) hypervisor. If the miss rate is high the cache access time will be

high. Therefore, the average cache access time of our dynamic partitioned hypervisor

(HBP-DCP) is less than static partitioned hypervisor. The T-value and P-value prove the

significant difference between both results as the T-value is less than 2.2 and P-value is

less than .05.

Univ
ers

ity
 of

 M
ala

ya

185

Table 5.31: Comparison of Average Cache Access Rate of Varying VMs in Static

and Dynamic-Partitioned Hypervisors

Average Cache Access Rate of varying VMs (VM1 to VM10)

 Static-Partitioned

Hypervisor

Dynamic Partitioned

Hypervisor (HBP-DCP)

Varying

Number of

VMs

Matrix Size Cache Access Time (ns) Cache Access Time (ns)

1VM-10VM 300 x 300 28.42 25.09

1VM-10VM 400 x 400 26.28 23.49

1VM-10VM 500 x 500 19.66 15.44

1VM-10VM 600 x 600 20.46 17.57

1VM-10VM 700 x 700 19.30 16.20

1VM-10VM 800 x 800 20.64 17.53

1VM-10VM 900 x 900 19.52 16.50

1VM-10VM 1000 x 1000 19.43 14.47

Mean 21.71 18.29

Median 20.06 17.02

Std. Deviation 3.56 3.87

Confidence Int. 2.47 2.68

T-Value 1.884

P-Value 0.0431

We have designed the cache access time model to test the cache access time of a

matrix program for each VM e.g., 1VM, 2VMs, 3VMs, 4VMs, 5VMs, 6VMs, 7VMs, 8VMs,

9VMs, and 10VMs based on the four variables namely cache hit rate, cache access

time, cache miss rate, and memory access time in nanoseconds. In order to build the

statistical model, we have taken 80% data for the training and 20% for the

validation. We have taken these two values to train our model as much as possible

to avoid biased results. Similar to a statistical model for load testing and cache

utilization, in order to present a reliable and accurate estimation model of cache access

time, we perform linear regression using measured real data in cache grind benchmark in

both unmodified and modified hypervisor. We use data set of cache references in term of

cache hit rate and cache miss rate and also cache access time and memory access time

and use them for training the regression model to produce the cache access time model.

Univ
ers

ity
 of

 M
ala

ya

186

For validation of our proposed model, we use the split sample approach. Hence the cache

access time model can be presented is as follow:

R lm (Memory Access Time∼ Hit Time + (Miss Rate × Miss Penalty))

Where Hit time is the time to access the cache and Miss penalty is the time to

access the RAM (main memory).

AMAT𝑚(𝑊𝑖) = ∑ (𝐻𝑖𝑡 𝑅𝑎𝑡𝑒𝑉𝑀𝑖 × 𝑇𝐶𝑉𝑀𝑖 + 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒𝑉𝑀𝑖 × 𝑀𝑉𝑀𝑖)10
𝑖=1 (5.9)

Where AMATm (Wi) is the total memory access rate in Nanoseconds calculated by the

total amount of hit rate multiplied by the time to access data from the cache. Miss Rate is

the memory accesses percentage that does not find the desired information and is

determined by the cache grind benchmark. M is the time to access information or data

from the main memory. The data generated from a statistical model is given in Table 5.32.

Table 5.32: Regression Statistics Summary of Memory Access Rate for varying

VMs

The detail statistics of the statistical model of our linear regression are summarized in

Table 5.32. The R value shows significance correlation between the cache miss rate and

average memory access time. The average R-squared value in the table testifies that

Number of VM P-Value R-Squared Adjusted R-Squared F-Statistic

1VM 3.138e-05 0.9910 0.9815 1.302e+02

2VM 0.0018928 0.9911 0.9817 3.7e+03

3VM 3.238e-04 0.9981 0.9919 3.349

4VM 1.233e-03 0.9915 0.9989 1.351e+04

5VM 2.2345e-03 0.9819 0.9918 3.7e+04

6VM 2.11185-04 0.9818 0.9917 3.6e+04

7VM 3.223e-04 0.9916 0.9831 1.35e+03

8VM 2.512e-03 0.9917 0.9914 40189e+02

9VM 2.623e-03 0.9913 0.9915 5.824e+04

10VM 4.316e-12 0.9915 0.9918 3.502e+03

Univ
ers

ity
 of

 M
ala

ya

187

98.95% of the memory access time value can be explained using cache miss and cache

hit rate. The F-statistics in the Table ensure that available data is appropriate to be used

for linear regression and p-value shows the significance of the result.

5.5 Conclusion

In this chapter, we describe the methodology used to evaluate and validate the result

collected from analyzing the performance in two modes of unmodified (default/insecure)

and modified (dynamic partitioned /secure) hypervisors. Benchmarking experimentation

is the method to evaluate and validate our HBP-DCP prevention mechanism based on

three performance parameters: Load testing, cache utilization, and memory access rate

for both modes. Moreover, statistical modeling is also performed in order to evaluate and

validate the experimental results obtained by benchmarking for both unmodified and

modified modes. Furthermore, the observation-based analysis namely regression analysis

is used to devise our statistical modeling. The statistical model is validated through the

split-sample approach and the results are reported. The result of performance evaluation

of our HBP-DCP mechanism is described in the next chapter that will be used to signify

the weakness and strength of our proposed prevention mechanism.

Univ
ers

ity
 of

 M
ala

ya

188

CHAPTER 6: RESULTS AND DISCUSSION

In this chapter, we discuss and report the evaluation results of our proposed prevention

mechanism through benchmarking experiments and statistical analysis and compare it

with the other prevention mechanisms. The data about load testing, cache utilization, and

memory access time are presented, analyzed and synthesized for modified and

unmodified hypervisors. Finally, the conducted results are validated through statistical

modeling using independent replication approach.

The rest of the chapter is organized as follows: The results of benchmarking

experiments that analyze the load testing, cache utilization, and memory access time of

modified and unmodified hypervisor are described and evaluated in Section 6.1. In

Section 6.2, the results are described. In Section 6.3 the performance evaluations are

carried out and further discuss is also provided. Finally, Section 6.4 conclude the chapter.

6.1 Performance Evaluation Results

In this section, we present the performance evaluation generated through

benchmarking experimental analysis. Our performance evaluation analysis focuses on

two features: the successful mitigation or inhibition of cache based SC attacks, and

emerging the performance difference between unmodified (default/insecure) and

modified (dynamic partitioned/secure/HBP-DCP) hypervisors. The results are revealing

the usefulness of our solution in the cloud environment. First of all, we verify that our

prevention mechanism is able to prevent cross-VM SC attacks by conducting the attack

experiments in both unmodified and modified (HBP-DCP based) hypervisors. We have

sent a 20-bit string from one VM to another VM on the separate core and separate physical

machine and create a successful communication in the unmodified/insecure hypervisor.

We observed the result and describe the vulnerability of the unmodified hypervisor. By

contrast, in our secure hypervisor, we tried to implement the same attacks by sending 20-

Univ
ers

ity
 of

 M
ala

ya

189

bit strings but yielded 0 bits of a successful communication across VMs over all twenty

attempts in case of our modified hypervisor based on the dynamic cache partition.

Moreover, we present and compare the benchmarking results. It contains the four main

subsections. In the first, subsection the data related to the bearable load of both

hypervisors (modified and unmodified) are presented. While in the second, and third

subsection the collected data about cache utilization and memory access time are

described respectively. The experimental analysis is conducted to evaluate the

performance of the proposed prevention mechanism.

6.1.1 Load Testing

This Section describes the results obtained from the benchmarking tools and statistical

modeling. The results are presented in Section 5.5.1 in the previous Chapter 5. In these

experiments, we have compared the bearable load of both unmodified and modified

hypervisors by sending a various number of concurrent requests and have checked the

response time and number of requests per second for each VM.

Figure 6.1 and 6.2 show the bearable load in term of a maximum number of requests

per seconds in both unmodified (default/insecure) and static partitioned hypervisor

without any VMs and partition. In the Figure 6.1, the y-axis shows the response time and

the x-axis shows the number of requests per second. If the number of users are 100 and if

we send 10 concurrent requests then the unmodified hypervisor is able to handle 100 to

900 requests in 35ms and 1000 in 40ms. The response time per request is increasing with

the increase in the number of concurrent requests in both hypervisors. Figure 6.2 shows

the load testing in term of a number of request per second in the static hypervisor without

the creation of any VM. Similar to the unmodified hypervisor, if the total request or users

in the static partitioned hypervisor is 100 and number of concurrent requests are 10. Then

in this hypervisor, 100 requests will be handled in 35ms while the remaining 200 to 800

will be handled in 50ms.

Univ
ers

ity
 of

 M
ala

ya

190

Figure 6.1: Load Testing of Unmodified (Default/Insecure) Hypervisor

Figure 6.2: Load Testing of Static Partitioned Hypervisor

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800 900 1000

R
es

p
o

n
se

 T
im

e
(m

s)

Number of Requests

Load Testing of Static Partitioned hypervisor

Univ
ers

ity
 of

 M
ala

ya

191

Figure 6.3 show the load testing in term of number of requests per second and the

response time in modified (dynamic partitioned) hypervisor. In the figure, the response

time for 600 requests is 35 while 43ms for 900 requests. The maximum number of

requests per second is 1000 and is greater than static partitioned hypervisor.

Figure 6.3: Load Testing of Modified (Dynamic Partitioned/Secure/HBP-

DCP) Hypervisor

Figure 6.4 shows the comparison of average response time in unmodified, static

partitioned, and dynamic partitioned (HBP-DCP) hypervisors. We have compared the

response time between all hypervisors without the creation of any VM. In the figure, the

x-axis shows the average response time while the y-axis shows the number of concurrent

request for 15 data traces including 10 to 150. The average response time in both

hypervisors is increasing with the increase in the number of concurrent users. As shown

in the graph, the average response time of static partitioned hypervisor is more as

compared to our HBP-DCP hypervisor. The response time per request for 150 concurrent

requests or users in unmodified hypervisor is 159.041ms, 225.743ms in static partitioned,

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

R
es

p
o

n
se

 T
im

e
(m

s)

Number of Requests

Load Testing of Modified (dynamic partitioned/ HBP-DCP/Secure)

Hypervisor

Univ
ers

ity
 of

 M
ala

ya

192

and 201.03ms in dynamic partitioned hypervisor. Although the response time in the

dynamic partitioned (HBP-DCP) hypervisor is a little bit high as compared to the response

time of unmodified hypervisor, however, our HBP-DCP based hypervisor has the ability

to prevent cross-VM cache-based SC attacks. Since we know that security always comes

with some overhead, therefore, the minor changes in the average response time is

acceptable. Moreover, we have shown in Table 5.5 in the previous Chapter 5 by using P-

value and T-value that the difference in the response time and the number of requests per

second between both hypervisors are significant.

Figure 6.4: Average Response Time for Concurrent Request without VMs for Modified

(Default) and Unmodified (Dynamic Partitioned) Hypervisor

Similarly, Figure 6.5 shows the comparison of load testing in term of how many

numbers of request per second will be handled by each hypervisors namely: unmodified,

static partitioned, and dynamic partitioned (HBP-DCP) without the creation of any VM

when the number of concurrent requests or users are increased. In the figure, the x-axis

shows the number of concurrent requests while the y-axis shows the number of request

per seconds. As shown in Figure 6.4, the average response time is increasing with the

increase in the number of concurrent requests. However, the number of requests per

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100

R
es

p
o

n
se

 T
im

e
in

 m
s

Number of Concurrent Users

Un-Modified (Default Hypervisor) Modified (Partitioned) Hypervisor Static Partitioned

Univ
ers

ity
 of

 M
ala

ya

193

second is not increasing with the increase in the number of concurrent requests neither

difference in the number of requests for both hypervisors. In contrast to response time,

the requests per second is decreasing by increasing number of concurrent requests. The

number of request per second in static partitioned hypervisor is less is compared to the

unmodified and dynamic partitioned hypervisor. The result obtained for all 10 to 150

concurrent requests in the modified hypervisor is closer to the unmodified hypervisor.

However, the modified hypervisor has the ability to prevent cross-VM cache-based SC

attacks.

Figure 6.5: Number of Requests per Second Time for (10-150) Concurrent Request

without VMs for both Unmodified and Modified (Partitioned) Hypervisor

Figure 6.6 shows the load testing in term of a number of requests per second for

concurrent requests with the varying number of VMs for the unmodified hypervisor. In

the figure, the y-axis shows the number of requests per second and the x-axis shows the

number of virtual machines. We have found and compared the number of request for each

VM. As shown in the figure that the number of requests is decreasing as the number of

concurrent requests is increasing for each VM including 1VM to 10VMs.

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
R

eq
u

es
t

p
er

 s
ec

o
n

d

Number of Concurrent Users

Comparison of Load Testing in Unmodified, Static, and

dynamic partitioned

Unmodified (Default/Insecure) Modified (Dynamic partitioned/HBP-DCP) Static partitioned

Univ
ers

ity
 of

 M
ala

ya

194

Figure 6.6: Number of Requests per Second in Unmodified (Default) Hypervisor with

Varying Number of VMs, Partitions, and Number of Concurrent Requests

Figure 6.7: Number of Requests per Second in Static Partitioned Hypervisor with

Varying Number of VMs, Partitions, and Number of Concurrent Requests

2800

2900

3000

3100

3200

3300

3400

1 2 3 4 5 6 7 8 9 10

N
u
m

b
er

 o
f

R
eq

u
es

ts
 p

er
 s

ec
o

n
d

Number of Virtual Machines

Load Testing with Varying Number of VMs and Concurrent Requests

for Un-Modified Hypervisor

10 Concurrent Request 20 Concurrent Request 30 Concurrent Request 40 Concurrent Request

50 Concurrent Request 60 Concurrent Request 70 Concurrent Request 80 Concurrent Request

90 Concurrent Request 100 Concurrent Request

2800

2850

2900

2950

3000

3050

3100

3150

3200

3250

3300

1 2 3 4 5 6 7 8 9 10

N
u
m

b
er

 o
f

R
eq

u
es

ts
 p

er
 s

ec
o

n
d

Number of Virtual Machines

Laod Testing with varying number of VMs and partitions and concurrent

requests in static partitioned hypervisor

10 Concurrent Request 20 Concurrent Request 30 Concurrent Request 40 Concurrent Request

50 Concurrent Request 60 Concurrent Request 70 Concurrent Request 80 Concurrent Request

90 Concurrent Request 100 Concurrent Request

Univ
ers

ity
 of

 M
ala

ya

195

Figure 6.7 shows the load testing in term of a number of requests per second for

varying VMs and partitions in the static partitioned hypervisor. Similar to unmodified

hypervisor the number of requests per second is decreasing as the number of concurrent

users or requests is increasing from 10 to 100 concurrent requests. However, the number

of request per second is 3250 which is less as compared to number of requests in the

dynamic partitioned hypervisor which is 3303. We have compared the result of static

partitioned hypervisor with the dynamic partitioned hypervisor. The difference is almost

50 to 55 number of request per second for each VM. This small amount of difference

validates the results collected from the unmodified (insecure) hypervisor when compared

with the static partitioned and modified (dynamic partitioned/ secure) hypervisor.

Figure 6.8: Number of Requests per Second in Modified (Dynamic Partitioned/HBP-

DCP) Hypervisor with Varying Number of VMs, and Number of Concurrent Requests

Similarly, Figure 6.8 shows the load testing in term of a number of requests per second

for varying VMs in the modified (dynamic partitioned/secure) hypervisor. Similar to

unmodified hypervisor the number of requests per second is decreasing as the number of

concurrent users or requests is increasing from 10 to 100 concurrent requests. We have

2800

2850

2900

2950

3000

3050

3100

3150

3200

3250

3300

3350

1 2 3 4 5 6 7 8 9 10

N
u
m

b
er

 o
f

R
eq

u
es

ts
 p

er
 s

ec
o

n
d

Number of Virtual Machines

Load Testing with Varying Number of VMs and Concurrent

Requests for Modified (Dynamic partitioned/)Hypervisor

10 Concurrent Request 20 Concurrent Request 30 Concurrent Request 40 Concurrent Request

50 Concurrent Request 60 Concurrent Request 70 Concurrent Request 80 Concurrent Request

90 Concurrent Request 100 Concurrent RequestUniv
ers

ity
 of

 M
ala

ya

196

compared the result of both modified and unmodified hypervisor. The difference is almost

15 to 20 number of request per second for each VM. This small amount of difference

validates the results collected from the unmodified (default/insecure) hypervisor when

compared with the modified (dynamic partitioned/secure) hypervisor.

Figure 6.9 shows the comparison of average bearable load in term of a number of

requests per second for varying VMs and partitions in each hypervisors namely

unmodified, static partitioned, and modified (dynamic partitioned) hypervisors. In the

figure, the x-axis shows the number of request and the y-axis shows the number of VMs

from 1VM to 10VMs. The figure shows that the request per second in the dynamic

partitioned hypervisor is greater than static partitioned while less than unmodified

hypervisor. However, the P-value and T-value in Chapter 5 prove the significance of the

 results. Moreover, this result is acceptable as the dynamic partitioned hypervisor prevent

the cross VM cache-based SC attacks and improve the security in CC environment.

Figure 6.9: Average Number of Request per Second with Varying Number of VMs

in Unmodified, Static Partitioned, and Modified (Dynamic Partitioned/HBP-DCP)

Hypervisors

3000

3050

3100

3150

3200

3250

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
R

eq
u

es
ts

 p
er

 s
ec

o
n

d

Number of Virtual Machine

Comparison of Load Testing in term of Requests per second

Un-Modified (Default) Hypervisor Modified (Partitioned) Hypervisor Static partitioned

Univ
ers

ity
 of

 M
ala

ya

197

The ranges of an average number of requests per second are from 3110.5 to 3225.8 in

unmodified and the ranges in the static partition hypervisor are from 3079.5 to 3180.5,

and in the modified hypervisor are from 3095.5 to 3210.7. The average difference for all

VMs including 1VM to 10VMs is almost 15 in the unmodified and modified (dynamic

partitioned). However, the average difference between the static partitioned and dynamic

partitioned hypervisor is 30 number of requests per second. This small amount of

difference validates the results collected from the modified (secure) hypervisor when

compared to the results of the unmodified (dynamic partitioned/ insecure) hypervisor.

Figure 6.10: Average Response Time for Concurrent Request with Varying Number

of VMs in Unmodified (Default) and Modified (Dynamic Partitioned) Hypervisor

Figure 6.10 shows the average response time for varying number of VMs, partitions,

and concurrent requests. In the figure, the y-axis shows the response time per request and

the x-axis shows the number of VMs from 1VM to 10VMs. In contrast to number of

request per second in Figure 6.9, here the response time is increasing as the number of

concurrent requests and VMs is increasing. The response time for 5VMs and 8VMs is

almost same. However, in the other VMs, the small amount of difference validates the

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

R
ep

o
n
se

 T
im

e
(m

s)

Number of Virtual Machines

Comparison of Load Testing in term of Average Response Time per Request

Modified (Dynamic Partitioned) Un-Modified (Default/secure) Static Partitioned

Univ
ers

ity
 of

 M
ala

ya

198

dynamic partitioned hypervisor results with the ones collected from the unmodified and

static partitioned hypervisors.

6.1.2 Cache Utilization

In this section, we analyze the cache utilization in term of the Read/Write/Modify

bandwidth, read, and write bandwidth calculated by cache Read/Write/Modify, cache

read, and cache write benchmarks in both unmodified and modified hypervisors. Figure

6.11 and 6.12 present the data related to the comparison of cache utilization in term of

Read/Write/Modify bandwidth in each hypervisor namely unmodified, static partitioned,

and dynamic partitioned. We have executed the experiment for 30 execution traces for

each VM and with varying number of VMs. The aim of this analysis is to compare the

status of cache in the unmodified (default/insecure), static partitioned, and modified

(dynamic partitioned/secure) hypervisors. Dynamic partitioned hypervisor or HBP-DCP

based on dynamic cache partitioning is our solution. The figures clearly represent that

there is a very small amount of difference in the cache utilization of both hypervisors even

the modified hypervisor has the ability to prevent cross-VM cache-based SC attacks. In

Figure 6.11, the y-axis shows the average bandwidth of cache read/modify/write and the

x-axis shows the number of varying VMs. Here in this figure we did not mention the

partitions since the partitions in the dynamic partitioned (HBP-DCP) is decided during

runtime. While in Figure 6.12, the y-axis shows the average bandwidth in MB/Sec for

read/write/modify and the x-axis shows the number of varying VMs and partitions. Here

in this figure, we mentioned the partitions since the partitions are decided during boot

time and cannot be changed during execution or runtime. The average bandwidth ranges

of cache read/write/modify for the unmodified hypervisor is from 25542 to 25683 while

for unmodified hypervisor the range is from 25522 to 25645. The highest value of the

unmodified hypervisor is 25683 MB/Sec that is bigger than modified (HBP-DCP) by 38

MB/Sec. Moreover, Read/Write/Modify bandwidth is almost same in both unmodified

Univ
ers

ity
 of

 M
ala

ya

199

(secure) and modified (dynamic partitioned/HBP-DCP/secure) hypervisor. However, the

bandwidth in both hypervisors including HBP-DCP and in unmodified is decreasing as

the number of VMs is increasing. However, the significant difference as shown in the

previous chapter validate the results and enable the cloud providers to use the modified

hypervisor based on HBP-DCP to improve the security of virtualized environment.

Figure 6.11: Cache Read/Modify/Write Bandwidth in Unmodified and Modified

(Dynamic Partitioned) Hypervisors

Similarly Figure 6.12 shows the comparison of cache Read/Modify/Write bandwidth

in the static partitioned and dynamic partitioned hypervisors. In contrast to the dynamic

partitioned hypervisor, the number of partitioned is predefined in the static partitioned

hypervisor. Therefore, we have taken 1,2,4,8, and 16 partitions for both static partitioned

and dynamic partitioned hypervisors. There is a big difference in both hypervisors even

for the same VM and partitions as shown in the figure. Since the partitions in the static

partitioned based hypervisor cannot be changed, therefore, the performance is degraded

in the static partitioned hypervisor as compared to our HBP-DCP solution. For instance,

in static partitioned hypervisor, if we make 16 partitions and is only one VM is executing

25400

25450

25500

25550

25600

25650

25700

1 2 3 4 5 6 7 8 9 10

A
v
er

ag
e

B
an

d
w

id
th

 (
M

B
/S

ec
)

Number of Virtual Machines

Comparison of cache Read/Modify/Write in Unmodified and

Modified (Dynamic Partitioned/HBP-DCP) Hypervisor

Un-Modified Modified

Univ
ers

ity
 of

 M
ala

ya

200

the only single partition will be assigned to that VM and the remaining 15 partitions will

be idle. While in case of our dynamic partitioned (HBP-DCP), the partitions is defined

during runtime according to running VMs, therefore, if one VM is running the whole

cache would be assign to that single VM. Consequently improve the performance in term

of cache utilization. The average bandwidth of cache read/modify/write in the static

partitioned hypervisor is 13012.8 and 18234.7 in our dynamic partitioned (HBP-DCP)

hypervisor. Thus the average bandwidth of cache write is improved by 43.32% in our

HBP-DCP based hypervisor. Consequently improves the cache utilization. Because in the

static partitioned hypervisor, the number of partitions is static and predefined during boot

time. We have shown the significance of the results in the previous Chapter 5 by using P-

value and T-values.

Figure 6.12: Cache Read/Modify/Write Bandwidth in Static Partitioned and Modified

(Dynamic Partitioned/HBP-DCP) Hypervisors

Similarly, Figure 6.13 shows the bandwidth of cache read in both unmodified and

modified (HBP-DCP based) hypervisors. The y-axis shows the bandwidth for cache read

and the x-axis shows the number of VMs. The read bandwidth in both hypervisors is

0

5000

10000

15000

20000

25000

1 2 4 8 16

A
v
er

ag
e

B
an

d
w

id
th

 (
M

B
/S

ec
)

Number of varying Virtual Machines and Partitions

Comparison of cache Read/Modify/Write in Static and

Dynamic Partitioned Hypervisors

Static partitioned Dynamic Partitioned

Univ
ers

ity
 of

 M
ala

ya

201

decreasing with the increasing number varying VMs. We have executed the experiment

for 30 execution traces for each VM and with varying number of VMs. The aim of this

analysis is to compare the status of cache read bandwidth in the unmodified

(default/insecure) and modified (dynamic partitioned/secure) hypervisors after HBP-DCP

based on cache partitioning as our solution. The figures clearly represent that there is a

very small amount of difference in the cache utilization in term of cache read of both

hypervisors and also in the previous chapter we have shown that the difference is

significant even the modified hypervisor has the ability to prevent cross-VM cache-based

SC attacks.

Figure 6.13: Cache Read Bandwidth in Unmodified and Modified (Dynamic

Partitioned/HBP-DCP) Hypervisor

The ranges of average bandwidth for cache read is from 1482 to 1610 in the

unmodified (insecure/default) hypervisor and from 1455 to 1585 in the modified

(secure/partitioned) hypervisor based on HBP-DCP. The difference is almost same and

we have shown in the previous chapter that the difference between both hypervisors is

1350

1400

1450

1500

1550

1600

1650

1 2 3 4 5 6 7 8 9 10

A
v
er

ag
e

B
an

d
w

id
th

 (
M

B
/S

ec
)

Number of Virtual Machines

Comparison of Cache Read Bandwidth in Unmodified and

Modified (Dynamic Partitioned/HBP-DCP) Hypervisor

Un-Modified Hypervisor Modified (Dynamic Partitioned) HypervisorUniv
ers

ity
 of

 M
ala

ya

202

significant. There is a little difference between both, however, modified hypervisor based

on HPB-DCP has the ability to prevent cross-VM cache-based SC attacks.

Similarly, the comparison of cache read bandwidth in both static partitioned and

dynamic partitioned hypervisors is shown in the Figure 6.14. Similar to Figure 6.13, the

average bandwidth of cache read in static partitioned hypervisor is low as compared to

our HBP-DCP based hypervisor due to the predefined static partitions during boot time.

Figure 6.14: Cache Read Bandwidth in Static Partitioned and Modified (Dynamic-

Partitioned/HBP-DCP) Hypervisor

The ranges of average bandwidth for cache read are from 946.3 to 1345.5 in the static

partitioned hypervisor and the ranges in the modified (secure/dynamic partitioned)

hypervisor based on HBP-DCP are from 1225.375 to 1585.212. The p-value and t-value

in Chapter 5 validate the significance of the result. We have improve the cache utilization

by using dynamic partitioned hypervisor up to 45%.

Figure 6.15 shows the bandwidth for cache write in both unmodified and modified

hypervisors. The y-axis shows the bandwidth for cache write and the x-axis shows the

number of VMs. The cache write bandwidth in both hypervisors are decreasing with the

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 4 8 16

A
v
er

ag
e

B
n
d

w
id

th
 (

M
B

/S
ec

)

Number of varying Virtual Machines and Partitions

Comparison of Cache Read Bandwidth in Static partitioned and

Dynamic partitioned Hypervisors

Static partitioned Dynamic Partitioned

Univ
ers

ity
 of

 M
ala

ya

203

increasing number varying VMs. We have executed the experiment for 30 execution

traces for each VM and with varying number of VMs. The aim of this analysis is to

compare the status of cache read bandwidth in the unmodified (default/insecure) and

modified (partitioned/secure) hypervisors after HBP-DCP based on cache partitioning as

our solution. The difference in both hypervisors is significant, even the modified

hypervisor (HBP-DCP) has the ability to prevent cross-VM cache-based SC attacks.

Figure 6.15: Cache Write of Unmodified and Modified Hypervisor

Figure 6.16 shows the comparison of the cache write bandwidth in both static

partitioned and modified (dynamic partitioned/HBP-DCP) hypervisors. The cache write

bandwidth ranges for static partitioned hypervisor are from 998.541 to 1710.201 and are

from 1621.232 to 2024.191 in the dynamic partitioned hypervisor. As shown in the figure

the average bandwidth for cache write in the static partitioned hypervisor is less than from

HBP-DCP (dynamic partitioned) hypervisor. Since for 16VMs if there are single partition

in the static partitioned hypervisor, then it will be difficult to maintain the writing in the

small part of cache for the 16 VM as compared to write in 16 partitions for 16VMs in

dynamic partitioned (HBP-DCP) hypervisor. Because in static partitioned hypervisor, the

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

1 2 3 4 5 6 7 8 9 10

A
v
er

ag
e

B
an

d
w

id
th

 (
M

B
/S

ec
)

Number of Virtual Machines

Comparison of Cache Write Bandwidth in Unmodified and

Modified (Dynamic Partitioned/HBP-DCP) Hypervisor

Un-Modified Hypervisor Modified Hypervisor

Univ
ers

ity
 of

 M
ala

ya

204

partition is predefined during boot time while in dynamic partitioned, the partitioned will

be created during runtime according to the number of VMs.

Figure 6.16: Cache Write of Static Partitioned and Dynamic Partitioned (HBP-DCP)

Hypervisor

6.1.3 Memory Access Rate

In this section, we compare the performance of modified hypervisor based on the HBP-

DCP mechanism with the unmodified hypervisor and with the static partitioned

hypervisor. The parameters used for the comparison is the memory access time calculated

from the cache hit and miss rate. The average memory access time is a valuable parameter

to evaluate the performance of a memory hierarchy configuration. Figure 6.12 and 6.13

present the graph related to the LLC memory references by a matrix program which are

collected in the unmodified (insecure/default) and modified (secure/partitioned) based on

HBP-DCP hypervisors execution modes for eight granularity levels of matrices,

respectively. The aim of finding the total LLC memory references is to analyze the total

cache access time for varying granularity level. In the previous chapter, we have given

the detail for cache access time. For cache access time, we have to find the total cache

references, cache hit, and cache miss rate. We have found these values by using

cachegrind benchmark and the using these values in our designed program to calculate

0

500

1000

1500

2000

2500

1 2 4 8 16

A
v
er

ag
e

B
an

d
w

id
th

 (
M

b
/S

ec
)

Number of varying Virtual Machines and Partitions

Comparison of Cache Write in Static partitioned and

Dynamic Partitioned Hypervisors

Static Partitioned Dynamic partitioned (HBP-DCP)

Univ
ers

ity
 of

 M
ala

ya

205

the average memory access time. Each Figure summarizes the memory access rate in term

of total LLC memory access with 95% confidence interval for 30 number of iteration for

each VM e.g., VM1 to VM10 in eight intensity levels.

Figure 6.17 shows the LLC memory references or cache access for matrix

multiplication program with 8 granularity level. In the Figure, the y-axis shows the total

memory accesses and the x-axis shows the number of VMs from VM1 to Vm10. Each

diagonal bar in the figure represents the mean value of LLC memory reference or accesses

measured in the unmodified hypervisor mode of 30 iterations for each corresponding

matrix multiplication workload (300x300 to 1000x1000). The LLC memory references

are increasing with increasing number of workload for each VM in the unmodified

hypervisor.

Figure 6.17: Average LLC Memory References in Unmodified Hypervisor for

Varying VMs (1VM-10VMs)

Figure 6.18 shows the LLC memory references or cache access for matrix

multiplication program with 8 granularity level in the static partitioned hypervisor. As

compared to the unmodified and dynamic partitioned hypervisor, the average memory

accesses is low. Since the partitions cannot be changed and for the configuration of 1VM

and 16 partitions the VM will access just single partition and the remaining 15 partitions

0

2000000

4000000

6000000

8000000

10000000

12000000

1 2 3 4 5 6 7 8 9 10

L
L

C
 M

em
o

ry
 R

ef
er

en
ce

s/
A

cc
es

se
s

Number of Virtual Machines

Unmodfied (Default/Insecure) Hypervisor

300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000Univ
ers

ity
 of

 M
ala

ya

206

will be idle during VM execution. Therefore, the memory reference will be low in the

static partitioned hypervisor. In the Figure 6.18, the y-axis shows the total memory

accesses and the x-axis shows the number of VMs from VM1 to Vm10. Each diagonal

bar in the figure represents the mean value of LLC memory reference or accesses

measured in modified hypervisor mode of 30 iterations for each corresponding matrix

multiplication workload (300x300 to 1000x1000). The LLC memory references are

increasing with increasing number of workload for each VM in the modified hypervisor.

For instance, the memory references for 1000×1000 are greater than 300×300 workload

references.

Figure 6.18: Average LLC Memory References in Static Partitioned Hypervisor for

Varying VMs (1VM-10VMs)

Figure 6.19 shows the LLC memory references or cache access for matrix

multiplication program with 8 granularity level in modified (HBP-DCP) hypervisor. In

the Figure, the y-axis shows the total memory accesses and the x-axis shows the number

of VMs from VM1 to Vm10. Each diagonal bar in the figure represents the mean value

of LLC memory reference or accesses measured in modified hypervisor mode of 30

0

2000000

4000000

6000000

8000000

10000000

12000000

1 2 3 4 5 6 7 8 9 10

L
L

C
 M

em
o

ry
 R

ef
er

en
ce

s/
A

cc
es

se
s

Number of Virtual Machines

Static Partitioned Hypervisor

300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000Univ
ers

ity
 of

 M
ala

ya

207

iterations for each corresponding matrix multiplication workload (300x300 to

1000x1000). The LLC memory references are increasing with increasing number of

workload for each VM in the modified hypervisor. In the previous chapter, we have

shown that the difference between both hypervisors is significant even though the

modified (HBP-DCP) hypervisor has the ability to prevent cross-VM cache-based SC

attacks.

Figure 6.19: Average LLC Memory References in HBP-DCP based Hypervisor for

Varying VMs (1VM-10VMs)

Figure 6.20 shows the comparison of average LLC memory access time in unmodified,

static partitioned, and dynamic partitioned (HBP-DCP) hypervisors with varying number

of VMs and eight different granularity level. In the Figure, the y-axis represents the total

cache references and the x-axis represents the various granularity level of matrix

multiplication for both unmodified and HBP-DCP based hypervisor. The diagonal bar

represents the average LLC cache references for the varying workload and varying VMs

from 1VM-10VMs. The graph in Figure clearly depicts the increasing complexity as the

0

2000000

4000000

6000000

8000000

10000000

12000000

1 2 3 4 5 6 7 8 9 10

L
L

C
 M

em
o

ry
 R

ef
er

en
ce

s/
A

cc
es

se
s

Number of Virtual Machines

Modified (dynamic Partitioned/Secure) Hypervisor based on HBP-DCP

300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000

Univ
ers

ity
 of

 M
ala

ya

208

matrix multiplication intensity from left to right be increases in both hypervisors.

However, the growth of workload has a significant impact on the total cache references

when the workloads are executed in both modified and HBP-DCP hypervisor. In Chapter

5, we have also shown that the differences between the total cache references in both

modes are significant. Moreover, the modified HBP-DCP based hypervisor has the ability

to prevent cross-VM cache-based SC attacks.

Figure 6.20: Comparison of LLC Memory References in Unmodified, Static and

HBP-DCP based (Dynamic partitioned) Hypervisors

Figure 6.21 show the LLC memory hit rate in three hypervisors namely: unmodified

static partitioned, and dynamic partitioned or HBP-DCP based hypervisors. In the figure,

the y-axis represents the hit rate and the x-axis shows the workload in term of varying

granularity level. The hit rate for the unmodified hypervisor is greater than as compared

to the modified (HBP-DCP based) hypervisor. Moreover, the hit rate is increasing with

increasing matrix granularity. The ranges of LLC hit rate for unmodified hypervisor are

from 87.97% to 98.56% and for modified (HBP-DCP based) hypervisor are from 84.84%

to 96.14%. There is almost 2% difference in both hypervisors. Similarly, the ranges of

0

2000000

4000000

6000000

8000000

10000000

12000000

300×300 400×400 500×500 600×600 700×700 800×800 900×900 1000×1000

A
v
er

ag
e

L
L

C
 R

ee
fe

re
n
ce

s/
A

cc
es

se
s

Workload

Average cache reference with varying VM from 1VM to

10VMs

Unmodified Static Partitioned Dynamic Partitioned

Univ
ers

ity
 of

 M
ala

ya

209

LLC hit rate for static partitioned hypervisor are from 77.22% to 91.34%. There is almost

5% difference in the dynamic partitioned and static partitioned hypervisors which validate

the result based on 95% confidence interval. However, in Chapter 5, we have shown that

this difference is significant. Moreover, the HBP-DCP based hypervisor has the ability to

prevent cross-VM cache-based SC attacks.

Figure 6.21: Average LLC Memory Hit Rate with Varying VMs

Figure 6.22 shows the LLC memory miss rate in both unmodified and HBP-DCP based

hypervisors. In the figure, the y-axis shows the miss rate and the x-axis shows the

workload in term of varying granularity level. Unlike to the hit rate, the miss rate for the

unmodified hypervisor is less than as compared to the modified (HBP-DCP based)

hypervisor. Moreover, the miss rate is decreasing with increasing matrix granularity.

Because the miss rate is calculated in Chapter 5 by (1-hit rate) formula. Therefore, miss

rate depends on the hit rate. Since the hit rate for the unmodified hypervisor is greater

than HBP-DCP, therefore, miss rate will be lower than HBP-DCP. The ranges of LLC

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

300 x 300 400 x 400 500 x 500 600 x 600 700 x 700 800 x 800 900 x 900 1000 x 1000

L
L

C
 H

it
 R

at
e

Workload

LLC Hit Rate with Varying Virtual Machines

Un-Modified Static Partitioned Modified (HBP-DCP/Secure)

Univ
ers

ity
 of

 M
ala

ya

210

miss rate for unmodified hypervisor are from 1.44% to 12.03% and for modified (HBP-

DCP based) hypervisor are from 3.86% to 15.16%. There is almost 3% difference in both

unmodified and modified hypervisors. However, in the previous Chapter 5, we have

shown by T-value and P-value that this difference is significant. Moreover, the HBP-DCP

based hypervisor has the ability to prevent cross-VM cache-based SC attacks.

Figure 6.22: Average LLC Memory Miss Rate with Varying VMs

Figure 6.23 shows the comparison of average LLC memory access time in both

unmodified and modified (HBP-DCP) hypervisors with varying VMs and eight different

granularity level. The timing benchmark is our own design program to observe the

memory access rate in term of the cache hit and miss rate. For cache access time, we have

first calculated the LLC references, LLC miss and hit rate by using cachegrind

benchmark. Then we have calculated the LLC memory access time by using our own

designed program. Since the LLC access time is calculated from the cache miss and cache

hit rate as shown in Eq. 5.7 and 5.8 and the hit rate is increasing with increasing workload,

however, the miss rate is decreasing with increasing workload. Therefore the LLC access

time is decreasing with increasing workload in term of matrix granularity. The Figure

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

300 x 300 400 x 400 500 x 500 600 x 600 700 x 700 800 x 800 900 x 900 1000 x 1000

LL
C

 C
ac

h
e

M
is

s
R

at
e

Workload

LLC Miss Rate with varying Virtual Machines

Un-Modified (Insecure) Static Partitioned Modified (HBP-DCP/Secure)

Univ
ers

ity
 of

 M
ala

ya

211

shows that the LLC access time is decreasing by increasing workload in term of matrix

multiplication granularity. The ranges of LLC access time for unmodified hypervisor are

from 11.3 to 20.82 and for modified (HBP-DCP based) hypervisor are from 13.47 to

23.64. The average difference in both hypervisors is almost 2. Previously in Chapter 5,

we have proved the significance in the difference by P-value and T-value. Moreover

modified (HBP-DCP based) hypervisor has the ability to prevent cross-VM cache-based

SC attacks.

Figure 6.23: Comparison of Average LLC Memory Access Time in both Unmodified

and HBP-DCP (Dynamic Partitioned) Hypervisors

Figure 6.24 shows the comparison of average LLC memory access time in both static

partitioned and our HBP-DCP (Dynamic Partitioned) hypervisors with varying VMs and

eight different granularity level. As shown in the figure the memory access time for our

dynamic partitioned hypervisor as low as compared to the static partitioned hypervisor.

Since the cache references is low and cache miss is high in the static partitioned

hypervisor, therefore, the LLC memory access time will be high. The average access time

0

5

10

15

20

25

30

300 x 300 400 x 400 500 x 500 600 x 600 700 x 700 800 x 800 900 x 900 1000 x

1000

A
v
er

ag
e

C
ac

h
e

A
cc

es
s

ti
m

e
(n

s)

Workload

Average LLC Memory Access Rate of varying VMs (1VM to

10VMs)

Un-Modified (Insecure) Modified (Dynamic Partitioned)

Univ
ers

ity
 of

 M
ala

ya

212

for static partitioned is 21.71 and for dynamic partitioned is 18.29. The cache access time

of our HBP-DCP based hypervisor is improved by 17.1% as the cache access time will

be high for the high miss rate. The cache access time is calculated based on the total

access rate and miss rate. Since the total cache access rate in static partitioned hypervisor

is less than and the miss rate is greater than our dynamic partitioned (HBP-DCP)

hypervisor. If the miss rate is high the cache access time will be high. Therefore, the

average cache access time of our dynamic partitioned hypervisor (HBP-DCP) is less than

static partitioned hypervisor. The T-value and P-value prove the significant difference

between both results as the T-value is less than 2.2 and P-value is less than .05.

Figure 6.24: Comparison of Average LLC Memory Access Time in Static Partitioned

and HBP-DCP (Dynamic Partitioned) Hypervisors

6.2 Conclusion

In this chapter, the experimental results of modified hypervisor based on HBP-DCP

prevention mechanism is discussed to prove the efficiency of the proposed prevention

mechanism on the basis of load testing, cache utilization, and cache access time and

prevention of attacks. The experiments for load testing were investigated based on a

0

5

10

15

20

25

30

300 x 300 400 x 400 500 x 500 600 x 600 700 x 700 800 x 800 900 x 900 1000 x 1000

A
v
er

ag
e

C
ac

h
e

A
cc

es
s

ti
m

e
(n

s)

Workload

Average LLC Memory Access Rate of varying VMs (1VM to 10VMs)

Static Partitioned Modified (Dynamic Partitioned)

Univ
ers

ity
 of

 M
ala

ya

213

number of requests per second and the average response time per request. Since our HBP-

DCP prevention is based on the cache partition, therefore, the experiments were

investigate based on the cache utilization and cache access time. The cache utilization is

based on that how much bandwidth of cache would be utilized during writing and reading.

In addition, the experiments are carried out in both unmodified (default/insecure) and

modified (HBP-DCP based/secure) hypervisor.

In addition, we validate the system against cross-VM attacks while demonstrating that

they can be prevented without client-side or hardware modifications. First, we validated

our results by conducting the cross-VM cache-based SC attacks in unmodified and

modified hypervisors. For this, we created two VMs: Victim and Attacker VMs. Then

analyzing the performance by sending the 16-bit stream from attacker VM to Victim VM

and check whether both hypervisors can prevent the attacks or not. Using the code base

of an open source hypervisor, Xen (Project 2016), we have conducted our solution based

on dynamic cache partition demonstrate how to inhibit cache-based side-channels from

occurring within a cloud server. Our HBP-DCP prevention mechanism prevents

communication along a shared cache by partitioning the cache dynamically into multiple

segments using a technique known as cache coloring.

Then we analyzed the load testing, cache utilization, and cache access time in both

unmodified (insecure), static partitioned, and modified (dynamic partitioned/HBP-DCP-

based/secure) hypervisors. We observed that load testing showed an average 3189 in term

of average number of request per request per second and 18.42 in response time in the

unmodified hypervisor. While in modified (dynamic partitioned), the average number of

request per second is 3157.88 and average response time is 18.28. As compared to the

unmodified hypervisor the computing load in term of request per second in the modified

hypervisor is increased by 1.008% and the response time is decreased by .07%. This is

acceptable difference since we know security always comes with some overhead and the

Univ
ers

ity
 of

 M
ala

ya

214

modified hypervisor has the ability to prevent cross-VM cache based SC attacks. In

contrast to this, the computing load in static partitioned hypervisor in term of number of

request per second is 1977.28 and average response time per request is 19.33. On the

other hand, in modified (dynamic partitioned) hypervisor, the number of request per

second is 3157.88 and average response time is 18.28. The computing load is improved

in the dynamic partitioned hypervisor as compared to the static partitioned hypervisor.

Because the average number of request per second in the dynamic partitioned hypervisor

is increased by 45.98% and the average response time per request is decreased by 5.58%.

Similarly, as compared to the static partitioned hypervisor the average bandwidth of cache

read/modify/write is improved by 43.32% in our HBP-DCP based hypervisor.

Consequently improves the cache utilization that each VM has access to by increasing

cache read/modify/write, cache read, and cache write bandwidth in combine by 53.5%.

Moreover, the cache access time is improved by 15.53%, as a result substantially decrease

the overhead as significant by 20%. However, the modified hypervisor based on our

proposed HBP-DCP prevention mechanism has the ability to prevent cross-VM cache

based SC attacks. We then compare this solution to the current state of the art. In our

comparison, we find that the dynamic partitioned hypervisor is more secure against side-

channels regardless of the number of partitions we assign.

Univ
ers

ity
 of

 M
ala

ya

215

CHAPTER 7: CONCLUSION

This chapter presents the overall conclusions of this thesis and emphasizes the

qualitative feature of the HBP-DCP mechanism. The conclusive analysis is carried out by

considering on the aim and objectives set of research in the first chapter of the thesis. We

identified the future research work and research contribution is also highlighted.

The rest of this chapter is also organized is as follows. In Section 7.1, the aim and

research objectives of this study listed in Chapter 1 are reexamined. Section 7.2 describes

the contribution of this research work. The significance of this work among existing

prevention mechanism in CC is described in Section 7.3. Section 7.4 elaborates the scope

and limitation of this research work and the future research direction are highlighted for

further enhancement.

7.1 Research Objectives

This research work aimed to prevent the cross-VM cache-based SC attacks while

maintaining the performance to solve the problem of static cache partitioning as a

prevention mechanism. We described four research objectives in section 1.4. We

investigate that how we could attain the research aim by completing the following

research objectives.

Objective 1: To study the cache-based SC attacks in the non-virtualized and

virtualized environment from the perspective of conducting and preventing these

attacks to gain insights into performance limitations of current state-of-the-art

prevention solutions.

The first objective was to investigate critically analyze the current state-of-the-art cross

VM cache-based SC attacks and their prevention mechanisms such that insight is gained

leading to their prevention and performance limitations. This research objective was

conducted by a thorough review of the most credible work published in articles collected

Univ
ers

ity
 of

 M
ala

ya

216

from online scholarly digital libraries, such as IEEE, ACM, Elsevier, and Web of Science

using the University Malaya access portal. In order to ensure thorough browsing of the

recent literature in the journals and conferences about cross VM cache-based SC attacks

in CC, techniques for conducting SC attacks in OS, single VM and across VM, and

prevention mechanisms for these attacks are visited. We organized the recent work,

devised proposed taxonomy, and provided a qualitative comparison for cross-VM cache-

based SC attacks, and prevention mechanisms for these attacks.

The main purpose of this thorough study was to analyze and synthesize the recent work

in order to identify the research problems and challenges in the prevention mechanism

for cross-VM cache-based SC attacks. We found that current prevention mechanism

based on static cache partition is unable to handle attacks prevention efficiently.

Therefore, a dynamic cache partition is required to prevent the cross-VM cache-based SC

attacks in the CC.

Objective 2: To investigate the identified problem by conducting the cache-based SC

attacks in the real environment and applying the existing prevention mechanism based

on the static cache partition and unveiling the impact of existing prevention mechanism

on the cache utilization as well as on the cloud model.

The second objective of this research study was to investigate and analyze the

overhead in the existing prevention mechanisms in CC. Prevention of SC attacks can be

applied by using hardware and software. We investigated the aforementioned SC

prevention mechanism with the perspective of hypervisor-based (software) prevention

mechanism for the cross-VM cache-based SC attacks. The investigation revealed that

hardware based solution is costly, as they need to change the underlying hardware and is

unable to provide the pro-active prevention. Furthermore, it does not comply with the

cloud model as they need to change the client software and the underlying hardware. On

the other hand, the software-based mechanisms provide security to the encryption

Univ
ers

ity
 of

 M
ala

ya

217

algorithms rather than the overall information leakage across VMs and is comply with

the cloud model. We further examined the cross-VM execution of cache-based SC

attacks. We found that static cache partition, an existing software solution for prevention

of cross-VM cache-based attacks degrade the performance in term of bearable load, cache

utilization, and cache access time and consequently generated overhead.

Objective 3: To propose a prevention mechanism based on the dynamic cache

partition for the prevention of cache-based SC attacks across VMs that leads to an

efficient cache utilization among various VMs.

The third objective of this research study was to design a hypervisor-based prevention

mechanism using dynamic cache partition (HBP-DCP) for the prevention of cross-VM

cache-based SC attacks. The HBP-DCP is a hypervisor-based (e.g., software-based)

mechanism complies with the cloud model which indicates that it does not need the

changing in client software or the underlying hardware. For the cache monitoring, we

devised a cache monitoring algorithm based upon the VM creation in the Xen Scheduler.

This algorithm analyzes and reports the current state of the cache to the cache partitioner

algorithm. The cache partitioner algorithm then re-partition the cache according to the

number and requirement of VM based on the cache coloring approach.

Objective 4: To evaluate and validate the performance of our dynamic cache based

prevention mechanism considering three metrics namely: computing load, cache

utilization, and memory access rate and compare it with the state-of-the-art prevention

mechanisms.

The fourth objective of this study was attained by evaluating the proposed mechanism

via benchmarking experiment by creating 10 VMs on a desktop computer having all level

cache (e.g., L1, L2, L3). We performed the performance experiments for all parameters

and observe the results for 30 workload execution under the identical condition and every

workload is repeated for 30 times for the sake of reliability for each of 10 VMs in both

Univ
ers

ity
 of

 M
ala

ya

218

modified and unmodified hypervisor to experiments. Our performance results unveil that

utilizing our proposed prevention mechanism prevent the cross-VM cache-based SC and

also improve the cache utilization to 53.5% , load by 45% and cache access time by

15.53% while generating less than 5% overhead as compared to the static partitioned

prevention mechanism.

We develop a statistical model in order to validate the performance results of our

proposed HBP-DCP prevention mechanism. Regression analysis is used for the purpose

to derive the accurate statistical model of our four performance evaluation parameters

namely: load testing, cache utilization, and memory access rate. We validate our

performance results of the HBP-DCP mechanism by using split-sample validation

approach. We compared the findings of benchmarking to the statistical modeling to

validate our proposed prevention mechanism. Validation results confirm that leveraging

our proposed prevention mechanism can prevent cross-VM cache-based SC attacks

without affecting the performance of the system and improve the load, cache utilization,

and cache access time.

7.2 Contribution

In this Section, we have highlighted the contribution of this research work. We

presented the contribution in term of the scholarly articles in list of publications and

presented papers at the end of thesis. This research work produced several contributions

to the body of knowledge in following aspects.

 Taxonomy of Cross-VM Cache-based Side Channel Attacks: We produced

taxonomies from the existing literature for the cache-based SC attacks and

prevention mechanisms. We comprehensive reviewed the Cache-based SC

attacks from the cross-VM point of view and prevention mechanism by critical

analyzing of the selected state-of-the-art research work extracted from scholarly

Univ
ers

ity
 of

 M
ala

ya

219

articles such as ACM, IEEE, and Elsevier. Our comprehensive studied literature

is presented in Chapter 2 and published in (Anwar, Inayat et al. 2017) led to the

identification of our research problem.

 Cache Monitoring Algorithm: We devised a cache monitoring algorithm for

the page allocator system of hypervisor. The cache monitoring algorithm

examines the cache status upon the new request from the admission control for

new VM creation. In addition, this algorithm is efficient in assigning the

different partition of the cache to each VMs according to the VMs requirement.

 Hypervisor-based Prevention Mechanism (HBP-DCP): We devised a

hypervisor-based prevention mechanism (HBP-DCP) for the prevention of

cross-VM cache-based SC attacks. HBP-DCP mechanism is based on the

dynamic cache partition for each VMs. The cache monitoring was integrated

with the cache partitioning (page allocating) algorithms in the existing page

allocator of hypervisor to enable the hypervisor to partition the cache

dynamically according to the new VM requirement when new VM is created.

 Performance Evaluation and Validation: The analytical evaluation results of

the system are generated through benchmarking and statistical modeling.

Performance evaluation using benchmark analysis is performed on the modified

(Dynamic partitioned/secure) and unmodified (Default/insecure) hypervisor. We

developed a statistical model of the benchmarking parameters of HBP-DCP

mechanism for the prevention of cross-VM cache-based SC attacks. The

statistical model is generated via observation-based modeling approach in which

dataset of independently replicated data is generated to train the regression

model. The model is validated using split-sample approach is used to validate

the performance of our proposed prevention mechanism. The process and result

of performance evaluation and validation are presented in Chapters 5 and 6

Univ
ers

ity
 of

 M
ala

ya

220

respectively. Statistical and schematic analysis of the results unveiled the

feasibility, functionality, lightweight nature of our proposed prevention

mechanism and advocate that the objectives and aim of this study are fulfilled

and is realized.

7.3 Significance of the work

Several significant features that are considered during design and development of

HBP-DCP prevention mechanism could distinguish it from the existing prevention

mechanism for cache-based SC attacks are briefly presented as follows:

First, HBP-DCP prevention mechanism complies with the cloud model. In particular,

unlike hardware mechanism, HBP-DCP is hypervisor based (e.g., software based)

prevention mechanism which does not need changes in any client software or the

underlying hardware. Therefore, it can be embedded into the hypervisor and in the cloud

model, because, it obey the cloud rules.

Second, this attack is based on the cache (the most interactive device). Since our

prevention mechanism is based on the dynamic cache partition, therefore, it is

generalizable in the sense that it can prevent all types of SC attacks which is based on the

cache and in all type of hypervisor (e.g., XEN and VMWare) in which VMs can be

created.

Third, our HBP-DCP prevention mechanism can be ported to any type of the supported

software (hypervisor) and computing infrastructure. Since our HBP-CP prevention

mechanism is hypervisor-based means we have implemented by using the source code of

an open source hypervisor. Therefore, HBP-DCP can be installed almost on every type

of computing infrastructure and it is applicable to the commodity OS.

Fourth, HBP-DCP is based on the dynamic partition of the cache. Therefore the overall

performance has improved by increasing the cache utilization for each VMs because each

VM is only giving as much more cache memory as they are requested at runtime. For

Univ
ers

ity
 of

 M
ala

ya

221

instance, if there is 2MB L3 cache, and 1 VM is running the whole 2MB would be

assigned to 1VM, consequently improve the overall performance in term of load, cache

utilization, and memory access rate.

Fifth, HBP-DCP is a preventive mechanism rather than reactive. Since we cannot

examine when SC attacks might occur, we simply ensure that the two VMs would not be

able to access the same cache lines for the purpose to create SC attacks. Preventive means

early prevention before occurring of the attacks while reactive means prevents attacks

after occurring. Because once the attack occurs, it will harm the system even in a minute,

therefore, early prevention of attack is more beneficial than post prevention.

7.4 Limitation and Future Work

The HBP-DCP prevention mechanism prevent cross-VM cache-based SC attacks with

a minimum cache access rate and by improving computing load, cache utilization, and

memory access rate. Our HBP-DCP (dynamic partitioned) mechanism can be entirely

implemented within the hypervisor and do not interfere to the cloud model (does not need

to change the client side’s software or the underlying hardware). The HBP-DCP

prevention mechanism can prevent any type of attacks in which cache is involved and

therefore it is generalizable to all types of the hypervisor which is used for VM creation.

However, HBP-DCP is always activated upon the VM creation, and assign the specific

color page of the cache memory that matches the color of the requested VM, the limitation

of this prevention mechanism is it is unable to detect the cache memory requirement of

each VMs upon the creation time. For instance, if two VMs are requested for cache then

it is unable to detect that how much amount of cache is required to VM1 and how much

to VM2. On the other hand, the decision that how many pages should be migrated and

which one page among all pages should be migrated first is very difficult.

In our future work, we will consider cache management policy. We will focus on that

when VM is created then we should be able to predict all the cache requirements of that

Univ
ers

ity
 of

 M
ala

ya

222

specific VM. Furthermore, the cloud computing environment is also vulnerable to other

SC attacks likewise the cache-based SC attacks. It arises difficulty for the cloud provider

because SC attacks based on a specific medium often require their own unique solutions.

Therefore, each channel will required further work to develop a solution customized to

its specific vulnerabilities.

Univ
ers

ity
 of

 M
ala

ya

223

REFERENCES

Aciiçmez, O. (2007). Yet another microarchitectural attack:: exploiting I-cache.

Proceedings of the 2007 ACM workshop on Computer security architecture, ACM.

Acıiçmez, O., B. B. Brumley and P. Grabher (2010). New results on instruction cache

attacks. Cryptographic Hardware and Embedded Systems, CHES 2010, Springer: 110-

124.

Aciiçmez, O., Ç. K. Koç and J.-P. Seifert (2007). On the power of simple branch

prediction analysis. Proceedings of the 2nd ACM symposium on Information, computer

and communications security, ACM.

Acıiçmez, O., W. Schindler and Ç. K. Koç (2007). Cache based remote timing attack on

the AES. Topics in Cryptology–CT-RSA 2007, Springer: 271-286.

Aciicmez, O. and J.-P. Seifert (2007). Cheap hardware parallelism implies cheap security.

Fault Diagnosis and Tolerance in Cryptography, 2007. FDTC 2007. Workshop on, IEEE.

Anderson, R., M. Bond, J. Clulow and S. Skorobogatov (2006). "Cryptographic

processors-a survey." Proceedings of the IEEE 94(2): 357-369.

Anwar, S., Z. Inayat, M. F. Zolkipli, J. M. Zain, A. Gani, N. B. Anuar, M. K. Khan and

V. Chang (2017). "Cross-VM Cache-based Side Channel Attacks and Proposed

Prevention Mechanisms: A survey." Journal of Network and Computer Applications.

ARM, A. (2012). "Architecture Reference Manual. ARMv7-A and ARMv7-R edition."

ARM DDI C 406.

Aumüller, C., P. Bier, W. Fischer, P. Hofreiter and J.-P. Seifert (2002). Fault attacks on

RSA with CRT: Concrete results and practical countermeasures. International Workshop

on Cryptographic Hardware and Embedded Systems, Springer.

Aviram, A., S. Hu, B. Ford and R. Gummadi (2010). Determinating timing channels in

compute clouds. Proceedings of the 2010 ACM workshop on Cloud computing security

workshop, ACM.

Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt

and A. Warfield (2003). Xen and the art of virtualization. ACM SIGOPS operating

systems review, ACM.

Bernstein, D. J. (2004). "Cache-timing attacks on AES, URL:

http://cr.yp.to/papers.html#cachetiming.".

Bernstein, D. J. (2005). palms.ee.princeton.edu, Cache-timing attacks on AES, Technical

report.

Bertoni, G., V. Zaccaria, L. Breveglieri, M. Monchiero and G. Palermo (2005). AES

power attack based on induced cache miss and countermeasure. Information Technology:

Coding and Computing, 2005. ITCC 2005. International Conference on, IEEE.

Univ
ers

ity
 of

 M
ala

ya

http://cr.yp.to/papers.html#cachetiming."

224

Biham, E. and A. Shamir (1997). Differential fault analysis of secret key cryptosystems.

Annual International Cryptology Conference, Springer.

Bonneau, J. and I. Mironov (2006). Cache-collision timing attacks against AES.

Cryptographic Hardware and Embedded Systems-CHES 2006, Springer: 201-215.

Brickell, E., G. Graunke, M. Neve and J.-P. Seifert (2006). "Software mitigations to hedge

AES against cache-based software side channel vulnerabilities." IACR Cryptology ePrint

Archive 2006: 52.

Brumley, B. B. and R. M. Hakala (2009). Cache-timing template attacks. International

Conference on the Theory and Application of Cryptology and Information Security,

Asiacript, Springer 2009.

Brumley, D. and D. Boneh (2005). "Remote timing attacks are practical." Computer

Networks 48(5): 701-716.

Cert. (2017.).

"http://www.cert.org/news/article.cfm?assetid=493750&article=039&year=2017, Cert

Statistics. 2017."

Chang, V. and M. Ramachandran (2016). "Towards achieving data security with the cloud

computing adoption framework." IEEE Transactions on Services Computing 9(1): 138-

151.

Coppens, B., I. Verbauwhede, K. De Bosschere and B. De Sutter (2009). Practical

mitigations for timing-based side-channel attacks on modern x86 processors. 2009 30th

IEEE Symposium on Security and Privacy, IEEE.

DPA Countermeasures, D. "https://www.rambus.com/inventions-dpa-countermeasures/,

Inventions Security, Oct, 22, 2016."

Crane, S., A. Homescu, S. Brunthaler, P. Larsen and M. Franz (2015). Thwarting Cache

Side-Channel Attacks Through Dynamic Software Diversity. NDSS.'15, 8-11 February

2015, San Diego, CA, USA. Copyright 2015 ...

DFA (2016).

"http://www.businessinsurance.com/article/99999999/NEWS070101/110909913/digital

-forensics-association-data-breach-report."

Domnitser, L., A. Jaleel, J. Loew, N. Abu-Ghazaleh and D. Ponomarev (2012). "Non-

monopolizable caches: Low-complexity mitigation of cache side channel attacks." ACM

Transactions on Architecture and Code Optimization (TACO) 8(4): 35.

Fisk, G., M. Fisk, C. Papadopoulos and J. Neil (2002). Eliminating steganography in

Internet traffic with active wardens. Information Hiding, Springer.

Foundation., A. S. (2013). "Apache http server benchmarking tool,."

Gandolfi, K., C. Mourtel and F. Olivier (2001). Electromagnetic analysis: Concrete

results. Cryptographic Hardware and Embedded Systems—CHES 2001, Springer.

Univ
ers

ity
 of

 M
ala

ya

http://www.cert.org/news/article.cfm?assetid=493750&article=039&year=2017
http://www.rambus.com/inventions-dpa-countermeasures/
http://www.businessinsurance.com/article/99999999/NEWS070101/110909913/digital-forensics-association-data-breach-report.
http://www.businessinsurance.com/article/99999999/NEWS070101/110909913/digital-forensics-association-data-breach-report.

225

Godfrey, M. and M. Zulkernine (2014). "Preventing cache-based side-channel attacks in

a cloud environment." Cloud Computing, IEEE Transactions on 2(4): 395-408.

Godfrey, M. M. and M. Zulkernine (2014). "Preventing cache-based side-channel attacks

in a cloud environment." IEEE Transactions on Cloud Computing 2(4): 395-408.

Gullasch, D., E. Bangerter and S. Krenn (2011). Cache games--bringing access-based

cache attacks on AES to practice. Security and Privacy (SP), 2011 IEEE Symposium on,

IEEE.

Handy, J. (1998). The cache memory book, Morgan Kaufmann.

Harnik, D., B. Pinkas and A. Shulman-Peleg (2010). "Side channels in cloud services:

Deduplication in cloud storage." IEEE Security & Privacy 8(6): 40-47.

IBM (2012).

"https://www.ibm.com/developerworks/topics/master%20the%20mainframe%202012/."

Inci, M. S., B. Gulmezoglu, G. Irazoqui, T. Eisenbarth and B. Sunar (2015). Seriously,

get off my cloud! Cross-VM RSA Key Recovery in a Public Cloud, Cryptology ePrint

Archive, Report 2015/898, 2015. http://eprint. iacr. org.

Intel, R. (2007). "and IA-32 architectures optimization reference manual." Intel

Corporation, May.

Intervals, C. (2004). " Confidence Intervals and Hypothesis Testing,

http://statweb.stanford.edu/~susan/courses/s141/TTestLecture.pdf."

Irazoqui, G., T. Eisenbarth and B. Sunar (2015). S $ A: A Shared Cache Attack That

Works across Cores and Defies VM Sandboxing--and Its Application to AES. 2015 IEEE

Symposium on Security and Privacy, IEEE.

Irazoqui G, I. M., Eisenbarth T, Sunar B. (2014). "Fine grain Cross-VM Attacks on Xen

and VMware are possible! IACR Cryptology ePrint Archive. 2014a;2014:248." IACR

Cryptology ePrint Archive. 2014a;2014:248. 2014: 248.

Irazoqui, G., M. S. Inci, T. Eisenbarth and B. Sunar (2014). "Fine grain Cross-VM

Attacks on Xen and VMware are possible!" IACR Cryptology ePrint Archive 2014: 248.

Irazoqui, G., M. S. Inci, T. Eisenbarth and B. Sunar (2014). Wait a minute! A fast, Cross-

VM attack on AES. Research in Attacks, Intrusions and Defenses, Springer: 299-319.

Jin, X., H. Chen, X. Wang, Z. Wang, X. Wen, Y. Luo and X. Li (2009). A simple cache

partitioning approach in a virtualized environment. Parallel and Distributed Processing

with Applications, 2009 IEEE International Symposium on, IEEE.

Kim, S., D. Chandra and Y. Solihin (2004). Fair cache sharing and partitioning in a chip

multiprocessor architecture. Proceedings of the 13th International Conference on Parallel

Architectures and Compilation Techniques, IEEE Computer Society.

Kocher, P., J. Jaffe and B. Jun (1999). Differential power analysis. Advances in

Cryptology—CRYPTO’99, Springer.

Univ
ers

ity
 of

 M
ala

ya

http://www.ibm.com/developerworks/topics/master%20the%20mainframe%202012/
http://eprint/
http://statweb.stanford.edu/~susan/courses/s141/TTestLecture.pdf.

226

Kong, J., O. Aciicmez, J.-P. Seifert and H. Zhou (2013). "Architecting against software

cache-based side-channel attacks." IEEE Transactions on Computers 62(7): 1276-1288.

Kong, J., O. Aciiçmez, J.-P. Seifert and H. Zhou (2009). Hardware-software integrated

approaches to defend against software cache-based side channel attacks. 2009 IEEE 15th

International Symposium on High Performance Computer Architecture, IEEE.

Lauradoux, C. (2005). "Collision attacks on processors with cache and countermeasures."

WEWoRC 5: 76-85.

Li, Y., K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi and K. Ohta (2010). Fault

sensitivity analysis. International Workshop on Cryptographic Hardware and Embedded

Systems, Springer.

Liu, F., Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser and R. B. Lee (2016). Catalyst:

Defeating last-level cache side channel attacks in cloud computing. 2016 IEEE

International Symposium on High Performance Computer Architecture (HPCA), IEEE.

Liu, F., Y. Yarom, Q. Ge, G. Heiser and R. B. Lee (2015). Last-level cache side-channel

attacks are practical. IEEE Symposium on Security and Privacy.

Mangard, S. (2002). A simple power-analysis (SPA) attack on implementations of the

AES key expansion. International Conference on Information Security and Cryptology,

Springer.

Miłós, G., D. G. Murray, S. Hand and M. A. Fetterman (2009). Satori: Enlightened page

sharing. Proceedings of the 2009 conference on USENIX Annual technical conference.

Mishra, P., E. S. Pilli, V. Varadharajan and U. Tupakula (2017). "Intrusion detection

techniques in cloud environment: A survey." Journal of Network and Computer

Applications 77: 18-47.

Neve, M. and J.-P. Seifert (2006). Advances on access-driven cache attacks on AES.

Selected Areas in Cryptography, Springer.

NEWS, T. (2015). "http://www.thestar.com/business/tech_news/2015/09/21/apple-store-

hack-targets-iphone-ipad-apps.html , Accessed on 3 dec ".

Osvik, D. A., A. Shamir and E. Tromer (2006). Cache attacks and countermeasures: the

case of AES. Topics in Cryptology–CT-RSA 2006, Springer: 1-20.

Oswald, E., S. Mangard, N. Pramstaller and V. Rijmen (2005). A side-channel analysis

resistant description of the AES S-box. International Workshop on Fast Software

Encryption, Springer.

Owens, R. and W. Wang (2011). Non-interactive OS fingerprinting through memory de-

duplication technique in virtual machines. Performance Computing and Communications

Conference (IPCCC), 2011 IEEE 30th International, IEEE.

Page, D. (2003). "Defending against cache-based side-channel attacks." Information

Security Technical Report 8(1): 30-44.

Univ
ers

ity
 of

 M
ala

ya

http://www.thestar.com/business/tech_news/2015/09/21/apple-store-hack-targets-iphone-ipad-apps.html
http://www.thestar.com/business/tech_news/2015/09/21/apple-store-hack-targets-iphone-ipad-apps.html

227

Page, D. (2005). "Partitioned Cache Architecture as a Side-Channel Defence

Mechanism." IACR Cryptology ePrint Archive 2005: 280.

Percival, C. (2005). Cache missing for fun and profit, In BSD Con.

performance, V. L. P. (Feb 2016). "http://www.vmware.com/techpapers/2008/large-

page-performance-1039.html."

Portal, T. S. (2016). "http://www.statista.com/statistics/321215/global-consumer-cloud-

computing-users/, Accessed on July ".

Project, X. D. (2016). "http://wiki.xenproject.org/wiki/Xen_Project_Beginners_Guide."

Quisquater, J.-J. and D. Samyde (2001). Electromagnetic analysis (ema): Measures and

counter-measures for smart cards. Smart Card Programming and Security, Springer: 200-

210.

Qureshi, M. K. and Y. N. Patt (2006). Utility-based cache partitioning: A low-overhead,

high-performance, runtime mechanism to partition shared caches. Microarchitecture,

2006. MICRO-39. 39th Annual IEEE/ACM International Symposium on, IEEE.

Ristenpart, T., E. Tromer, H. Shacham and S. Savage (2009). Hey, you, get off of my

cloud: exploring information leakage in third-party compute clouds. Proceedings of the

16th ACM conference on Computer and communications security, ACM.

Rixner, S., W. J. Dally, U. J. Kapasi, P. Mattson and J. D. Owens (2000). Memory access

scheduling. ACM SIGARCH Computer Architecture News, ACM.

Russell, D. (2010). "Data deduplication will be even bigger in 2010." Gartner, Feb.

Security, C. (2010). " “Top Threats to Cloud Computing”, Cloud Security Alliance,.

http://www.cloudsecurityalliance.org/csaguide.pdf, V. 1.0 ".

Shi, J., X. Song, H. Chen and B. Zang (2011). Limiting cache-based side-channel in

multi-tenant cloud using dynamic page coloring. Dependable Systems and Networks

Workshops (DSN-W), 2011 IEEE/IFIP 41st International Conference on, IEEE.

Singh, A. and K. Chatterjee (2017). "Cloud security issues and challenges: A survey."

Journal of Network and Computer Applications 79: 88-115.

Smith, S. W. (2003). "Fairy dust, secrets, and the real world [computer security]."

Security & Privacy, IEEE 1(1): 89-93.

Soares, L., D. Tam and M. Stumm (2008). Reducing the harmful effects of last-level

cache polluters with an OS-level, software-only pollute buffer. Proceedings of the 41st

annual IEEE/ACM International Symposium on Microarchitecture, IEEE Computer

Society.

Stanek, J., A. Sorniotti, E. Androulaki and L. Kencl (2014). A secure data deduplication

scheme for cloud storage. International Conference on Financial Cryptography and Data

Security, Springer.

Univ
ers

ity
 of

 M
ala

ya

http://www.vmware.com/techpapers/2008/large-page-performance-1039.html.
http://www.vmware.com/techpapers/2008/large-page-performance-1039.html.
http://www.statista.com/statistics/321215/global-consumer-cloud-computing-users/
http://www.statista.com/statistics/321215/global-consumer-cloud-computing-users/
http://wiki.xenproject.org/wiki/Xen_Project_Beginners_Guide.
http://www.cloudsecurityalliance.org/csaguide.pdf

228

Suzaki, K., K. Iijima, T. Yagi and C. Artho (2011). Memory deduplication as a threat to

the guest OS. Proceedings of the Fourth European Workshop on System Security, ACM.

Suzaki, K., K. Iijima, T. Yagi and C. Artho (2011). "Software side channel attack on

memory deduplication." SOSP POSTER.

Tam, D., R. Azimi, L. Soares and M. Stumm (2007). Managing shared L2 caches on

multicore systems in software. Workshop on the Interaction between Operating Systems

and Computer Architecture, Citeseer.

Taylor, G., P. Davies and M. Farmwald (1990). The TLB slice-a low-cost high-speed

address translation mechanism. Computer Architecture, 1990. Proceedings., 17th Annual

International Symposium on, IEEE.

Technology., I. V. (2016). "http://www.intel.com/, Accessed on April 2016."

Tromer, E., D. A. Osvik and A. Shamir (2010). "Efficient cache attacks on AES, and

countermeasures." Journal of Cryptology 23(1): 37-71.

Varadarajan, V., T. Ristenpart and M. M. Swift (2014). Scheduler-based Defenses against

Cross-VM Side-channels. Usenix Security.

Wang, Z., C. Cao, N. Yang and V. Chang (2016). "ABE with improved auxiliary input

for big data security." Journal of Computer and System Sciences.

Wang, Z. and R. B. Lee (2006). Covert and side channels due to processor architecture.

null, IEEE.

Wang, Z. and R. B. Lee (2007). New cache designs for thwarting software cache-based

side channel attacks. ACM SIGARCH Computer Architecture News, ACM.

Wang, Z. and R. B. Lee (2008). A novel cache architecture with enhanced performance

and security. 2008 41st IEEE/ACM International Symposium on Microarchitecture,

IEEE.

Weisberg, P. and Y. Wiseman (2009). Using 4kb page size for virtual memory is obsolete.

Information Reuse & Integration, 2009. IRI'09. IEEE International Conference on, IEEE.

Weiß, M., B. Heinz and F. Stumpf (2012). A cache timing attack on AES in virtualization

environments. Financial Cryptography and Data Security, Springer: 314-328.

Wu, L., S. K. Garg and R. Buyya (2012). "SLA-based admission control for a Software-

as-a-Service provider in Cloud computing environments." Journal of Computer and

System Sciences 78(5): 1280-1299.

Wu, Z., Z. Xu and H. Wang (2012). Whispers in the hyper-space: high-speed covert

channel attacks in the cloud. Presented as part of the 21st USENIX Security Symposium

(USENIX Security 12).

Xiao, J., Z. Xu, H. Huang and H. Wang (2013). Security implications of memory

deduplication in a virtualized environment. 2013 43rd Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), IEEE.

Univ
ers

ity
 of

 M
ala

ya

http://www.intel.com/

229

Yarom, Y. and K. Falkner (2014). Flush+ reload: a high resolution, low noise, L3 cache

side-channel attack. 23rd USENIX Security Symposium (USENIX Security 14).

Yu, S. and S. Guo (2016). Big Data Concepts, Theories, and Applications, Springer. SBN

978-3-319-27763-9

Zander, S., G. Armitage and P. Branch (2007). "A survey of covert channels and

countermeasures in computer network protocols." Communications Surveys & Tutorials,

IEEE 9(3): 44-57.

Zhang, Q., L. Cheng and R. Boutaba (2010). "Cloud computing: state-of-the-art and

research challenges." Journal of internet services and applications 1(1): 7-18.

Zhang, X., S. Dwarkadas and K. Shen (2009). Towards practical page coloring-based

multicore cache management. Proceedings of the 4th ACM European conference on

Computer systems, ACM.

Zhang, Y., A. Juels, A. Oprea and M. K. Reiter (2011). Homealone: Co-residency

detection in the cloud via side-channel analysis. 2011 IEEE Symposium on Security and

Privacy, IEEE.

Zhang, Y., A. Juels, M. K. Reiter and T. Ristenpart (2012). Cross-VM side channels and

their use to extract private keys. Proceedings of the 2012 ACM conference on Computer

and communications security, ACM.

Zhang, Y. and M. K. Reiter (2013). Düppel: retrofitting commodity operating systems to

mitigate cache side channels in the cloud. Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, ACM.

Zhou, Z., M. K. Reiter and Y. Zhang (2016). "A software approach to defeating side

channels in last-level caches." arXiv preprint arXiv:1603.05615.

Univ
ers

ity
 of

 M
ala

ya

230

LIST OF PUBLICATIONS AND PAPERS PRESENTED

Published ISI Journal Articles

1) Zakira Inayat, A Gani, NB Anuar, MK Khan, S Anwar, “Intrusion response

 systems: Foundations, design, and challenges”, “Journal of Network and

 Computer Applications” 62, 53-74.

2) Zakira Inayat, A Gani, NB Anuar, S Anwar, MK Khan, “Cloud-Based Intrusion

 Detection and Response System: Open Research Issues, and Solutions”,

 “Arabian Journal for Science and Engineering”, 1-25.

3) S Anwar, Zakira Inayat, MF Zolkipli, JM Zain, A Gani, NB Anuar, MK

 Khan, “Cross-VM Cache-based Side Channel Attacks and Proposed Prevention

 Mechanisms: A survey” .“Journal of Network and Computer Applications”.

4) N Khan, I Yaqoob, IAT Hashem, Zakira Inayat, WK Mahmoud Ali, M Alam,

“Big data: survey, technologies, opportunities, and challenges”, ”The Scientific

World Journal 2014”.

5) S Anwar, J Mohamad Zain, MF Zolkipli, Zakira Inayat, S Khan, B Anthony,

“From Intrusion Detection to an Intrusion Response System: Fundamentals,

Requirements, and Future Directions”, Algorithms 10 (2), 39.

6) Nawsher Khan, Noraziah Ahmad, Tutut Herawan, Zakira Inayat, “Cloud

Computing: Locally Sub-Clouds instead of Globally One Cloud”, International

Journal of Cloud Applications and Computing, 2(3), 68-85, July-September 2012.

Accepted Conference Articles

1) Nawsher Khan, Ibrar Yaqoob, Ibrahim Abaker, Zakira Inayat, Abdullah Gani,

et al. “Big Data: Survey, Technologies, Opportunities, and Challenges”, June

2013, ABC.

Univ
ers

ity
 of

 M
ala

ya

https://scholar.google.com.my/citations?view_op=view_citation&hl=en&user=xwQwGxYAAAAJ&citation_for_view=xwQwGxYAAAAJ:2osOgNQ5qMEC
https://scholar.google.com.my/citations?view_op=view_citation&hl=en&user=xwQwGxYAAAAJ&citation_for_view=xwQwGxYAAAAJ:2osOgNQ5qMEC
https://scholar.google.com.my/citations?view_op=view_citation&hl=en&user=xwQwGxYAAAAJ&citation_for_view=xwQwGxYAAAAJ:Y0pCki6q_DkC
https://scholar.google.com.my/citations?view_op=view_citation&hl=en&user=xwQwGxYAAAAJ&citation_for_view=xwQwGxYAAAAJ:Y0pCki6q_DkC
https://scholar.google.com.my/citations?view_op=view_citation&hl=en&user=xwQwGxYAAAAJ&citation_for_view=xwQwGxYAAAAJ:YsMSGLbcyi4C
https://scholar.google.com.my/citations?view_op=view_citation&hl=en&user=xwQwGxYAAAAJ&citation_for_view=xwQwGxYAAAAJ:YsMSGLbcyi4C
https://scholar.google.com.my/citations?view_op=view_citation&hl=en&user=xwQwGxYAAAAJ&citation_for_view=xwQwGxYAAAAJ:u5HHmVD_uO8C
https://scholar.google.com.my/citations?view_op=view_citation&hl=en&user=xwQwGxYAAAAJ&citation_for_view=xwQwGxYAAAAJ:W7OEmFMy1HYC
https://scholar.google.com.my/citations?view_op=view_citation&hl=en&user=xwQwGxYAAAAJ&citation_for_view=xwQwGxYAAAAJ:W7OEmFMy1HYC
https://www.researchgate.net/profile/Nawsher_Khan?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A262201862&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/researcher/66176197_Noraziah_Ahmad?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A262201862&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Tutut_Herawan2?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A262201862&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Zakira_Inayat?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A262201862&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/publication/262201862_Cloud_Computing_Locally_Sub-Clouds_instead_of_Globally_One_Cloud?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A262201862&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/262201862_Cloud_Computing_Locally_Sub-Clouds_instead_of_Globally_One_Cloud?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A262201862&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/profile/Nawsher_Khan?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A268226449&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/researcher/2052721727_Ibrar_Yaqoob?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A268226449&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/researcher/2116010066_Ibrahim_Abaker?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A268226449&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Abdullah_Gani?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A268226449&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/publication/268226449_Big_Data_Survey_Technologies_Opportunities_and_Challenges?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A268226449&_iepl%5BinteractionType%5D=publicationTitle

231

2) Shahid Anwar, Jasni Mohamad Zain, Mohamad Fadli Zolkipli, Zakira Inayat.

“A Review Paper on Botnet and Botnet Detection Techniques in Cloud

Computing”, Sep 2014 ISCI 2014 – IEEE Symposium on Computers &

Informatics.

3) Shahid Anwar, Jasni Mohamad Zain, Zakira Inayat, Mohamad Fadli Zolkipli,

Julius Odili, “Response Option for Attacks Detected by Intrusion Detection

System”, Aug 2015 The 4th International Conference on Software Engineering

and Computer System.

4) Shahid Anwar, Jasni Mohamad Zain, Zakira Inayat, et al., “Static Approach

Towards Mobile Botnet Detection”, 3rd International Conference on Electronic

Design (ICED) Aug 2016

5) Nawsher Khan, A. Noraziah, Tutut Herawan, Zakira Inayat, “Cloud Computing:

Architecture for Efficient Provision of Services”, Sep 2012, NBis 2012.

Submitted ISI Journal Articles

1) Zakira Inayat, A Gani, NB Anuar, MK Khan, S Anwar , Prevention of Cross

VM Cache-based Side Channel Attacks using Dynamic cache Partitioning”

Submitted in Tier-1 journal, June 15, 2017.

2) Shahid Anwar, Mohamad Fadli Zokipli, Jasni Mohamad Zain, Zakira Inayat, et

al., “Android Botnets: A Serious Threat to Android Devices”, ISI Index Journal,

Submitted Date: 6 Dec, 2016

Univ
ers

ity
 of

 M
ala

ya

https://www.researchgate.net/profile/Shahid_Anwar3?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A283257776&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Jasni_Mohamad_Zain?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A283257776&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Mohamad_Zolkipli?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A283257776&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Zakira_Inayat?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A283257776&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/publication/283257776_A_Review_Paper_on_Botnet_and_Botnet_Detection_Techniques_in_Cloud_Computing?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A283257776&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/283257776_A_Review_Paper_on_Botnet_and_Botnet_Detection_Techniques_in_Cloud_Computing?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A283257776&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/profile/Shahid_Anwar3?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A280387131&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Jasni_Mohamad_Zain?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A280387131&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Mohamad_Zolkipli?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A280387131&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Julius_Odili?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A280387131&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/publication/280387131_Response_Option_for_Attacks_Detected_by_Intrusion_Detection_System?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A280387131&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/280387131_Response_Option_for_Attacks_Detected_by_Intrusion_Detection_System?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A280387131&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/profile/Shahid_Anwar3?_iepl%5BviewId%5D=d51qbEX4an8iQvorBZlBVoBF&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A305703420&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Jasni_Mohamad_Zain?_iepl%5BviewId%5D=d51qbEX4an8iQvorBZlBVoBF&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A305703420&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Zakira_Inayat?_iepl%5BviewId%5D=d51qbEX4an8iQvorBZlBVoBF&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A305703420&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/publication/305703420_Static_Approach_Towards_Mobile_Botnet_Detection?_iepl%5BviewId%5D=d51qbEX4an8iQvorBZlBVoBF&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A305703420&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/305703420_Static_Approach_Towards_Mobile_Botnet_Detection?_iepl%5BviewId%5D=d51qbEX4an8iQvorBZlBVoBF&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A305703420&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/profile/Nawsher_Khan?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A228067931&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/researcher/69788589_A_Noraziah?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A228067931&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Tutut_Herawan2?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A228067931&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Zakira_Inayat?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A228067931&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/publication/228067931_Cloud_Computing_Architecture_for_Efficient_Provision_of_Services?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A228067931&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/228067931_Cloud_Computing_Architecture_for_Efficient_Provision_of_Services?_iepl%5BviewId%5D=qC0vxMMpfnGTJnxUewBe1wKB&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A228067931&_iepl%5BinteractionType%5D=publicationTitle

	on the prevention of cross-vm cache-based side channel attacks
	pencegahan serangan saluran sisi berasaskan silang-vm cache
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	CHAPTER 1: introduction
	1.1 Background
	1.2 Motivation
	1.3 Statement of the Problem
	1.4 Statement of Objectives
	1.5 Research Methodology
	1.6 Thesis Layout

	CHAPTER 2: literature review
	2.1 Background
	2.1.1 Cloud Computing
	2.1.1.1 Virtualization
	2.1.1.2 Cloud Model

	2.1.2 Side Channel Attacks
	2.1.3 Taxonomy of Side Channel Attacks
	2.1.3.1 Side Channel Attacks based on the Computing Location
	(a) Intra-VM Side Channel Attacks
	(b) Cross Platform Side Channel Attacks
	(c) Cross-VM Side Channel Attacks

	2.1.3.2 Side Channel Attacks based on Implementation
	(a) Sequential Side Channel Attacks
	(b) Parallel Side Channel Attacks

	2.1.3.3 Side Channel Attacks based on the Way of Accessing the Module
	(a) Invasive/ Hardware Side Channel Attacks
	(b) Non-invasive/ Software Side Channel Attacks
	(c) Semi-invasive SC Attacks

	2.2 Cross-VM Cache-based Side Channel Attacks
	2.3 Causes of the Cross-VM Cache-based Side Channel Attacks
	2.3.1 Last Level Cache Memory
	2.3.2 Memory Deduplication
	2.3.3 Big Data Deduplication
	2.3.4 Huge Pages

	2.4 Types of Cross-VM Cache-based Side Channel Attacks
	2.4.1 Time driven Side Channel Attacks
	2.4.2 Trace–Driven Side Channel Attacks
	2.4.3 Access-Driven Side Channel Attacks

	2.5 Prevention of Cross-VM Cache-based Side Channel Attacks
	2.5.1 Existing Countermeasures
	2.5.1.1 Hardware-based Countermeasure
	2.5.1.2 Software-based Solutions

	2.5.2 Proposed Countermeasures
	2.5.2.1 Disable Huge Size Pages
	2.5.2.2 Cache Partition Using Cache Coloring
	2.5.2.3 Private LLC Cache Slices
	2.5.2.4 Controlling Clflush Instruction
	2.5.2.5 Preventing Page Sharing
	2.5.2.6 Prefetching Cache Memory
	2.5.2.7 Flushing Cache Memory
	2.5.2.8 Hardware Masking of Addresses
	2.5.2.9 Address Translation using Shadow Page Table
	2.5.2.10 Dynamic Software Diversity

	2.6 Research Challenges
	2.6.1 Efficient Cache Utilization
	2.6.2 Server Side Solution Transparent to Guest OS and Client Software
	2.6.3 Predicting Cache Contention
	2.6.4 Determining Optimal Cache Partition Policy at run time with low Overhead
	2.6.5 Improving the Xen Credit Scheduler
	2.6.6 Hiding Memory Access Pattern
	2.6.7 Cache-Aware Scheduler for Optimum Cache Partition
	2.6.8 Soft Isolation as a Solution

	2.7 Discussion
	2.8 Conclusion

	CHAPTER 3: problem analysis
	3.1 Experimental Methodology
	3.2 How cache based side channel attack works
	3.2.1 Implementation of Cross-VM Cache-based SC Attack by using Flush + Reload technique
	3.2.1.1 Flush + Reload Attack Scenario
	(a) Flushing step
	(b) Target accessing step
	(c) Reloading step
	(d) Discussion

	3.2.2 Implementation of Cross-VM cache-based SC attack by using Prime + Probe technique
	3.2.3 Experimental Setup
	3.2.3.1 Attack1 Setup: Attack in Native Operating System and in Single VM
	3.2.3.2 Attack2 Setup: Cross-VM Attacks

	3.2.4 Experimental Results
	3.2.4.1 Result in Native Operating System
	3.2.4.2 Result of Attacks in Single VM and in Cross-VM

	3.3 Prevention Mechanism
	3.3.1 Cache Partitioning as a Prevention Mechanism
	3.3.2 Phoronix Test Suite

	3.4 Evaluation Parameters
	3.4.1 Load Testing with varying numbers of VMs and Partitions
	3.4.2 Cache Utilization with varying numbers of VMs and Partitions
	3.4.3 Memory Access Rate with varying numbers of VMs and Partitions

	3.5 Conclusion

	CHAPTER 4: Hypervisor-based prevention mechanism using dynamic cache partitioning: HBP-DCP
	4.1 Hypervisor-based Prevention mechanism using Dynamic Cache Partitioning
	4.1.1 Features of the Proposed HBP-DCP Prevention Mechanism

	4.2 System Architecture
	4.2.1 Virtual Machine Provisioning
	4.2.2 Page Coloring
	4.2.3 Paging Mechanism in Xen Hypervisor

	4.3 Components of the Proposed HBP-PDC Prevention Mechanism
	4.3.1 Server Side Admission Control
	4.3.2 Global Scheduler vs Xen Scheduler
	4.3.3 Cache Usage Monitor
	4.3.4 Color-Aware Page Migrator

	4.4 HBP-DCP Prevention Mechanism Algorithm
	4.5 Data Design
	4.5.1 Performance Evaluation Metrics
	(a) Load Testing
	(b) Cache Usage
	(c) Memory Access Rate

	4.5.2 Data Collection Tool
	4.5.3 Performance Evaluation Method

	4.6 Conclusion

	CHAPTER 5: evaluation
	5.1 Evaluation Process
	5.1.1 Experimental Setup
	5.1.2 Effect of our HBP-DCP based Hypervisor on the Cross-VM SC Attack

	5.2 Benchmark Applications
	5.2.1 Apache Benchmark
	5.2.2 Cachebench Benchmark
	5.2.3 Cachegrind Benchmark

	5.3 Evaluation methods
	5.3.1 Descriptive statistics
	5.3.2 Confidence Interval
	5.3.3 Paired Samples T-Test
	5.3.4 Linear Regression

	5.4 Evaluation Metrics
	5.4.1 Load Testing
	5.4.2 Cache Utilization
	5.4.3 Memory Access Rate

	5.5 Conclusion

	CHAPTER 6: results and discussion
	6.1 Performance Evaluation Results
	6.1.1 Load Testing
	6.1.2 Cache Utilization
	6.1.3 Memory Access Rate

	6.2 Conclusion

	CHAPTER 7: conclusion
	7.1 Research Objectives
	7.2 Contribution
	7.3 Significance of the work
	7.4 Limitation and Future Work

	References
	List of Publications and Papers Presented

