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ON THE PREVENTION OF CROSS-VM CACHE-BASED SIDE CHANNEL 

ATTACKS 

ABSTRACT 

The state-of-the-art Cloud Computing (CC) has been commercially popular for shared 

resources of third party applications. A cloud platform enables to share resources among 

mutually distrusting CC clients and offers cost-effective, on-demand scaling. With the 

exponential growth of CC environment, vulnerabilities and their corresponding 

exploitation of the prevailing cloud resources may potentially increase. While it provides 

numerous benefits to the CC tenant, however, resource sharing and Virtual Machine 

(VM) physical co-residency raising the potential for sensitive information leakages such 

as side channel (SC) attacks. In particular, physical co-residency features allow attackers 

to communicate with another VM on the same physical machine and leak the confidential 

information due to inadequate logical isolation. We investigate SC attacks involving the 

CPU cache and identify that traditional prevention mechanisms for SC attacks are not 

appropriate for prevention of cross-VM cache-based SC attacks. We go on to demonstrate 

the prevention mechanisms, however, the existing prevention techniques either require 

the client to change the software or the underlying hardware and suffer from performance 

degradation leading to reduce cache usage and increase overhead. To address this problem 

and improve performance, we investigate that new technique such as dynamic cache 

partition is necessary to mitigate these sorts of attacks in a cloud environment which is 

hypervisor-based and does not need the client to change their software and the underlying 

hardware. Finally, we propose new hypervisor-based mitigation technique, implementing 

them in a state-of-the-art cloud system which guarantees the security and performance 

feature of the system. The proposed prevention mechanism is evaluated using various 

benchmarking experiments. The evaluation results show that merging our proposed 
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method into hypervisor can prevent cross-VM cache-based SC attacks without affecting 

the performance of hypervisor. Our dynamic partitioned (HBP-DCP based) hypervisor 

improves the bearable load by increasing the number of request per second by 45% and 

by decreasing the average response time by 5.58%. Moreover, improve cache utilization 

that each VM has access to by increasing cache read/modify/write, cache read, and cache 

write bandwidth in combine by 53.5% and increasing the cache access time by 15.53%, 

as a result substantially increase the efficiency as significant. 

Keywords: Cloud Computing, Cache-based SC Attacks, Cross-VM SC Cache-based SC 

Attacks, Countermeasure, Dynamic Cache Partition 
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PENCEGAHAN SERANGAN SALURAN SISI BERASASKAN SILANG-VM 

CACHE  

ABSTRAK 

Kajian semasa dalam bidang Pengkomputeran Awan (CC) secara komersialnya telah 

popular dalam perkongsian sumber aplikasi pihak ketiga. Platform awan membenarkan 

perkongsian sumber di antara pelanggan CC yang saling tidak mempercayai dan 

menawarkan penskalaan yang kos efektif dan berdasarkan permintaan. Dengan 

pertumbuhan persekitaran CC yang pesat, kelemahan dan eksplotasi yang berkaitan 

antara sumber awan semasa, berpotensi boleh meningkat. Walaupun ia menyediakan 

pelbagai faedah kepada penyewa pengkomputeran awan, perkongsian sumber dan fizikal 

mesin maya (VM), ia boleh meningkatkan potensi untuk kebocoran maklumat sensitif 

seperti serangan saluran sisi. Secara khususnya, ciri-ciri fizikal residensi bersama 

membolehkan penyerang untuk berkomunikasi dengan VM lain pada mesin fizikal yang 

sama dan membocorkan maklumat sulit yang disebabkan oleh kekurangan pengasingan 

logik. Kami menyiasat tentang serangan saluran sisi yang melibatkan cache CPU dan 

mengenalpasti bahawa mekanisma pencegahan tradisional bagi serangan saluran sisi 

tidak sesuai untuk pencegahan serangan saluran sisi berasaskan silang-VM cache. Kami 

memilih untuk menunjukkan mekanisma pencegahan, walau bagaimanapun, teknik-

teknik pencegahan sedia ada sama ada memerlukan pelanggan untuk menukar perisian 

atau perkakasan asas akan menyebabkan kemerosotan prestasi yang boleh mengurangkan 

penggunaan cache dan meningkatkan overhed. Bagi menangani masalah ini dan 

meningkatkan prestasi, kami menyiasat teknik baru iaitu pemetakan cache secara 

dinamik. Ia adalah perlu untuk mengatasi serangan di dalam persekitaran awan yang 

berasaskan hypervisor tanpa perlu menukar perisian dan perkakasan pelanggan. Akhir 

sekali, kami mencadangkan mitigasi baru berasaskan hypervisor, melaksanakannya 
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dalam sistem awan yang mengikut aliran semasa bagi menjamin keselamatan dan ciri-ciri 

prestasi sistem. Mekanisma pencegahan yang dicadangkan dinilai dengan menggunakan 

pelbagai eksperimen penandaarasan. Keputusan penilaian menunjukkan bahawa 

penggabungan kaedah cadangan kami ke hypervisor boleh mencegah serangan SC 

berasaskan silang-VM cache tanpa menjejaskan prestasi hypervisor. Pemetakan secara 

dinamik (berasaskan HBP-DCP) hypervisor telah meningkatkan tanggungan beban 

dengan pertambahan jumlah permintaan setiap saat sebanyak 45% dan pengurangan 

purata masa respon sebanyak 5.58%. Selain itu, ia juga meningkatkan penggunaan cache 

di mana setiap VM mempunyai akses dan peningkatan jalur lebar bagi operasi 

baca/kemaskini/tulis cache sebanyak 53.5%, peningkatan masa capaian cache sebanyak 

15.53% dan keputusan ini menunjukkan kecekapan meningkat secara purata. 

Keywords: Pengkomputeran Awan, Serangan SC, Serangan saluran sisi berasaskan 

silang-VM cache, tindak balas, Pemetakan cache dinamik 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

vii 

ACKNOWLEDGEMENTS 

ALLAH Almighty provides the courage, knowledge, and resources to every human 

being in this world. I am thankful to ALLAH Almighty for blessing me in every form of 

human quality such that I have reached this point of life and completed my PhD thesis. 

My hearty thanks must go to my advisors, family (Especially in Laws), and friends who 

have supported and encouraged me through difficult times of life. I am highly thankful to 

my supervisor Prof. Dr. Abdullah Gani who has patiently provided the vision, 

encouragement and advice necessary for me to proceed through this doctoral program 

and complete my PhD. I‘d like also to extend my gratitude to my co-supervisor, Dr. Nor 

Badrul Anuar for his deep commitments and continued help and support. Their 

continuous support and guidance helped me producing a valuable piece of research 

reported in this thesis. 

I would like to sincerely thank my dearest and loveliest parents for their faith in me 

and allowing me to be as ambitious as I wanted. I owe them everything and I hope that 

this work makes them proud. I would also like to gratefully express my special 

appreciation and thanks to my beloved husband, Rahat Ali, for his great support, 

encouragement and unwavering and unconditional love. Words cannot express how 

grateful I am to my dearest brother Shahid Anwar for his great support. He had always 

been a tremendous mentor for me.  

Finally, I would like to thank the Malaysian Ministry of Higher Education, Malaysia for 

the financial support and assistance of the entire period of my PhD. I am also thankful to 

FSKTM support staff at WISMA RND and University for lending their support and 

resources. I dedicate this thesis to my beloved parents and husband for their constant 

support and unconditional love, who believes in me under any circumstances, cheers on 

my trivial achievements, and always stands beside me in the face of difficulties.  

Univ
ers

ity
 of

 M
ala

ya



 

viii 

TABLE OF CONTENTS 

On The Prevention Of Cross-Vm Cache-Based Side Channel Attacks .......................... III 

Pencegahan Serangan Saluran Sisi Berasaskan Silang-Vm Cache .................................. V 

Acknowledgements ....................................................................................................... VII 

Table Of Contents ........................................................................................................ VIII 

List Of Figures ............................................................................................................. XIII 

List Of Tables ............................................................................................................... XVI 

List Of Symbols And Abbreviations ............................................................................ XIX 

CHAPTER 1: INTRODUCTION .................................................................................. 1 

1.1 Background .............................................................................................................. 1 

1.2 Motivation................................................................................................................ 5 

1.3 Statement of the Problem......................................................................................... 8 

1.4 Statement of Objectives ......................................................................................... 10 

1.5 Research Methodology .......................................................................................... 11 

1.6 Thesis Layout......................................................................................................... 14 

CHAPTER 2: LITERATURE REVIEW .................................................................... 17 

2.1 Background ............................................................................................................ 18 

2.1.1 Cloud Computing .................................................................................. 19 

2.1.1.1 Virtualization ............................................................. 20 

2.1.1.2 Cloud Model .............................................................. 21 

2.1.2 Side Channel Attacks ............................................................................ 22 

2.1.3 Taxonomy of Side Channel Attacks ..................................................... 24 

2.1.3.1 Side Channel Attacks based on the Computing 

Location ..................................................................... 24 

(a) Intra-VM Side Channel Attacks ............................................ 24 

(b) Cross Platform Side Channel Attacks .................................. 25 

(c) Cross-VM Side Channel Attacks ........................................... 25 

2.1.3.2 Side Channel Attacks based on Implementation ....... 26 

(a) Sequential Side Channel Attacks .......................................... 27 

Univ
ers

ity
 of

 M
ala

ya



 

ix 

(b) Parallel Side Channel Attacks .............................................. 27 

2.1.3.3 Side Channel Attacks based on the Way of 

Accessing the Module ............................................... 28 

(a) Invasive/ Hardware Side Channel Attacks ........................... 29 

(b) Non-invasive/ Software Side Channel Attacks ...................... 29 

(c) Semi-invasive SC Attacks ...................................................... 30 

2.2 Cross-VM Cache-based Side Channel Attacks ..................................................... 32 

2.3 Causes of the Cross-VM Cache-based Side Channel Attacks ............................... 34 

2.3.1 Last Level Cache Memory .................................................................... 35 

2.3.2 Memory Deduplication ......................................................................... 40 

2.3.3 Big Data Deduplication ......................................................................... 41 

2.3.4 Huge Pages ............................................................................................ 43 

2.4 Types of Cross-VM Cache-based Side Channel Attacks ...................................... 44 

2.4.1 Time driven Side Channel Attacks ....................................................... 44 

2.4.2 Trace–Driven Side Channel Attacks ..................................................... 46 

2.4.3 Access-Driven Side Channel Attacks ................................................... 47 

2.5 Prevention of Cross-VM Cache-based Side Channel Attacks ............................... 55 

2.5.1 Existing Countermeasures ..................................................................... 57 

2.5.1.1 Hardware-based Countermeasure ............................. 57 

2.5.1.2 Software-based Solutions .......................................... 58 

2.5.2 Proposed Countermeasures ................................................................... 63 

2.5.2.1 Disable Huge Size Pages ........................................... 63 

2.5.2.2 Cache Partition Using Cache Coloring ..................... 63 

2.5.2.3 Private LLC Cache Slices ......................................... 64 

2.5.2.4 Controlling Clflush Instruction ................................. 64 

2.5.2.5 Preventing Page Sharing ........................................... 65 

2.5.2.6 Prefetching Cache Memory ....................................... 65 

2.5.2.7 Flushing Cache Memory ........................................... 65 

2.5.2.8 Hardware Masking of Addresses .............................. 66 

2.5.2.9 Address Translation using Shadow Page Table ........ 67 

2.5.2.10 Dynamic Software Diversity ..................................... 68 

2.6 Research Challenges .............................................................................................. 68 

2.6.1 Efficient Cache Utilization .................................................................... 68 

Univ
ers

ity
 of

 M
ala

ya



 

x 

2.6.2 Server Side Solution Transparent to Guest OS and Client Software .... 69 

2.6.3 Predicting Cache Contention ................................................................ 69 

2.6.4 Determining Optimal Cache Partition Policy at run time with low 

Overhead ........................................................................................... 70 

2.6.5 Improving the Xen Credit Scheduler .................................................... 70 

2.6.6 Hiding Memory Access Pattern ............................................................ 70 

2.6.7 Cache-Aware Scheduler for Optimum Cache Partition ........................ 71 

2.6.8 Soft Isolation as a Solution ................................................................... 71 

2.7 Discussion .............................................................................................................. 72 

2.8 Conclusion ............................................................................................................. 76 

CHAPTER 3: PROBLEM ANALYSIS ...................................................................... 78 

3.1 Experimental Methodology ................................................................................... 79 

3.2 How cache based side channel attack works ......................................................... 80 

3.2.1 Implementation of Cross-VM Cache-based SC Attack by using Flush 

+ Reload technique ........................................................................... 82 

3.2.1.1 Flush + Reload Attack Scenario ................................ 83 

(a) Flushing step......................................................................... 83 

(b) Target accessing step............................................................ 84 

(c) Reloading step ...................................................................... 84 

(d) Discussion ............................................................................. 84 

3.2.2 Implementation of Cross-VM cache-based SC attack by using Prime 

+ Probe technique ............................................................................. 86 

3.2.3 Experimental Setup ............................................................................... 87 

3.2.3.1 Attack1 Setup: Attack in Native Operating System 

and in Single VM ...................................................... 87 

3.2.3.2 Attack2 Setup: Cross-VM Attacks ............................ 89 

3.2.4 Experimental Results ............................................................................ 90 

3.2.4.1 Result in Native Operating System ........................... 91 

3.2.4.2 Result of Attacks in Single VM and in Cross-VM ... 91 

3.3 Prevention Mechanism .......................................................................................... 94 

3.3.1 Cache Partitioning as a Prevention Mechanism .................................... 97 

3.3.2 Phoronix Test Suite ............................................................................. 100 

3.4 Evaluation Parameters ......................................................................................... 100 

Univ
ers

ity
 of

 M
ala

ya



 

xi 

3.4.1 Load Testing with varying numbers of VMs and Partitions ............... 101 

3.4.2 Cache Utilization with varying numbers of VMs and Partitions ........ 103 

3.4.3 Memory Access Rate with varying numbers of VMs and Partitions .. 104 

3.5 Conclusion ........................................................................................................... 105 

CHAPTER 4: HYPERVISOR-BASED PREVENTION MECHANISM USING 

DYNAMIC CACHE PARTITIONING: HBP-DCP ................................................ 108 

4.1 Hypervisor-based Prevention mechanism using Dynamic Cache Partitioning ... 109 

4.1.1 Features of the Proposed HBP-DCP Prevention Mechanism ............. 109 

4.2 System Architecture............................................................................................. 111 

4.2.1 Virtual Machine Provisioning ............................................................. 113 

4.2.2 Page Coloring ...................................................................................... 115 

4.2.3 Paging Mechanism in Xen Hypervisor ............................................... 116 

4.3 Components of the Proposed HBP-PDC Prevention Mechanism ....................... 119 

4.3.1 Server Side Admission Control ........................................................... 120 

4.3.2 Global Scheduler vs Xen Scheduler .................................................... 121 

4.3.3 Cache Usage Monitor .......................................................................... 122 

4.3.4 Color-Aware Page Migrator ................................................................ 125 

4.4 HBP-DCP Prevention Mechanism Algorithm ..................................................... 126 

4.5 Data Design ......................................................................................................... 128 

4.5.1 Performance Evaluation Metrics ......................................................... 129 

(a) Load Testing ....................................................................... 129 

(b) Cache Usage ....................................................................... 130 

(c) Memory Access Rate ........................................................... 130 

4.5.2 Data Collection Tool ........................................................................... 130 

4.5.3 Performance Evaluation Method......................................................... 131 

4.6 Conclusion ........................................................................................................... 131 

CHAPTER 5: EVALUATION ................................................................................... 133 

5.1 Evaluation Process ............................................................................................... 134 

5.1.1 Experimental Setup ............................................................................. 135 

Univ
ers

ity
 of

 M
ala

ya



 

xii 

5.1.2 Effect of our HBP-DCP based Hypervisor on the Cross-VM SC 

Attack .............................................................................................. 137 

5.2 Benchmark Applications ..................................................................................... 142 

5.2.1 Apache Benchmark ............................................................................. 143 

5.2.2 Cachebench Benchmark ...................................................................... 143 

5.2.3 Cachegrind Benchmark ....................................................................... 144 

5.3 Evaluation methods ............................................................................................. 145 

5.3.1 Descriptive statistics............................................................................ 145 

5.3.2 Confidence Interval ............................................................................. 145 

5.3.3 Paired Samples T-Test ........................................................................ 146 

5.3.4 Linear Regression................................................................................ 147 

5.4 Evaluation Metrics ............................................................................................... 148 

5.4.1 Load Testing........................................................................................ 148 

5.4.2 Cache Utilization ................................................................................. 158 

5.4.3 Memory Access Rate .......................................................................... 175 

5.5 Conclusion ........................................................................................................... 186 

CHAPTER 6: RESULTS AND DISCUSSION ........................................................ 188 

6.1 Performance Evaluation Results .......................................................................... 188 

6.1.1 Load Testing........................................................................................ 189 

6.1.2 Cache Utilization ................................................................................. 198 

6.1.3 Memory Access Rate .......................................................................... 204 

6.2 Conclusion ........................................................................................................... 212 

CHAPTER 7: CONCLUSION ................................................................................... 215 

7.1 Research Objectives............................................................................................. 215 

7.2 Contribution ......................................................................................................... 218 

7.3 Significance of the work ...................................................................................... 220 

7.4 Limitation and Future Work ................................................................................ 221 

REFERENCES ............................................................................................................ 223 

LIST OF PUBLICATIONS AND PAPERS PRESENTED .................................... 230 

Univ
ers

ity
 of

 M
ala

ya



 

xiii 

LIST OF FIGURES 

Figure 1.1: Year wise Progression of Cloud Computing Usage (Irazoqui, Inci et al. 2014)

 ........................................................................................................................................... 5 

Figure 1.2: Research Methodology ................................................................................. 12 

Figure 1.3: Summary of Chapters Presented in this Thesis ............................................ 16 

Figure 2.1: Layered Model of Cloud Computing............................................................ 19 

Figure 2.2: Virtualization ................................................................................................ 21 

Figure 2.3: Types of Side Channel Attack in Hypervisors (XEN) ................................. 26 

Figure 2.4: Taxonomy of Side Channel Attacks ............................................................. 31 

Figure 2.5: Sources of Information Leakage on Shared Hardware ................................. 35 

Figure 2.6: Virtual Machine CORE 2 Duo Memory Allocation Hierarchy .................... 39 

Figure 2.7: Virtual Machine CORE i7 Memory Allocation Hierarchy .......................... 39 

Figure 2.8: Overview of Countermeasure for Side Channel Attacks ............................. 67 

Figure 3.1: Number of the Key Bytes of AES Key Correctly Guessed vs Number of 

Needed Encryption .......................................................................................................... 86 

Figure 3.2: Number of Recovered Key Bytes Correctly Guessed vs Number of Requested 

Encryption for Native OS, Single-VM, and Cross-VM in XEN .................................... 92 

Figure 3.3: Problem Visualization .................................................................................. 96 

Figure 3.4: Static Cache Partition Using Page Coloring ................................................. 98 

Figure 3.5: Load Testing in Static Partitioned Hypervisor with Varying Number of VMs 

and Partitions ................................................................................................................. 102 

Figure 3.6: Cache Utilization with Varying Number of VMs and Partitions ............... 104 

Figure 3.7: Cache Access Rate in Static partitioned based Hypervisor ........................ 105 

Figure 4.1: Proposed Hypervisor-based Prevention Mechanism Using Dynamic Cache 

Partitioning .................................................................................................................... 113 

Figure 4.2: Process of VM Provisioning ....................................................................... 114 

Univ
ers

ity
 of

 M
ala

ya

file:///G:/Final%20Thesis%20(Sent%20for%20Exam).docx%23_Toc494533073


 

xiv 

Figure 4.3: Mapping between the Physical Address and Cache Lines (Overlapped Bits 

are Used for Page Coloring) .......................................................................................... 116 

Figure 4.4: Paging Mechanism in Hypervisor .............................................................. 119 

Figure 4.5: Flow of the Prevention Mechanism Using Dynamic Cache Partitioning ... 128 

Figure 5.1: Effect of Dynamic Cache Partition on the PTP technique ......................... 139 

Figure 5.2: Result of Apache Benchmark with Varying Number of Concurrent Requests

 ....................................................................................................................................... 157 

Figure 6.1: Load Testing of Unmodified (Default/Insecure) Hypervisor ..................... 190 

Figure 6.2: Load Testing of Static Partitioned Hypervisor ........................................... 190 

Figure 6.3: Load Testing of Modified (Dynamic Partitioned/Secure/HBP-DCP) 

Hypervisor ..................................................................................................................... 191 

Figure 6.4: Average Response Time for Concurrent Request without VMs for Modified 

(Default) and Unmodified (Dynamic Partitioned) Hypervisor ..................................... 192 

Figure 6.5: Number of Requests per Second Time for (10-150) Concurrent Request 

without VMs for both Unmodified and Modified (Partitioned) Hypervisor................. 193 

Figure 6.6: Number of Requests per Second in Unmodified (Default) Hypervisor with 

Varying Number of VMs, Partitions, and Number of Concurrent Requests ................ 194 

Figure 6.7: Number of Requests per Second in Static Partitioned Hypervisor with Varying 

Number of VMs, Partitions, and Number of Concurrent Requests .............................. 194 

Figure 6.8: Number of Requests per Second in Modified (Dynamic Partitioned/HBP-

DCP) Hypervisor with Varying Number of VMs, and Number of Concurrent Requests

 ....................................................................................................................................... 195 

Figure 6.9: Average Number of Request per Second with Varying Number of VMs in 

Unmodified, Static Partitioned, and Modified (Dynamic Partitioned/HBP-DCP) 

Hypervisors ................................................................................................................... 196 

Figure 6.10: Average Response Time for Concurrent Request with Varying Number of 

VMs in Unmodified (Default) and Modified (Dynamic Partitioned) Hypervisor ........ 197 

Figure 6.11: Cache Read/Modify/Write Bandwidth in Unmodified and Modified 

(Dynamic Partitioned) Hypervisors .............................................................................. 199 

Figure 6.12: Cache Read/Modify/Write Bandwidth in Static Partitioned and Modified 

(Dynamic Partitioned/HBP-DCP) Hypervisors ............................................................ 200 

Univ
ers

ity
 of

 M
ala

ya



 

xv 

Figure 6.13: Cache Read Bandwidth in Unmodified and Modified (Dynamic 

Partitioned/HBP-DCP) Hypervisor ............................................................................... 201 

Figure 6.14: Cache Read Bandwidth in Static Partitioned and Modified (Dynamic-

Partitioned/HBP-DCP) Hypervisor ............................................................................... 202 

Figure 6.15: Cache Write of Unmodified and Modified Hypervisor ............................ 203 

Figure 6.16: Cache Write of Static Partitioned and Dynamic Partitioned (HBP-DCP) 

Hypervisor ..................................................................................................................... 204 

Figure 6.17: Average LLC Memory References in Unmodified Hypervisor for Varying 

VMs (1VM-10VMs) ..................................................................................................... 205 

Figure 6.18: Average LLC Memory References in Static Partitioned Hypervisor for 

Varying VMs (1VM-10VMs) ....................................................................................... 206 

Figure 6.19: Average LLC Memory References in HBP-DCP based Hypervisor for 

Varying VMs (1VM-10VMs) ....................................................................................... 207 

Figure 6.20: Comparison of LLC Memory References in Unmodified, Static and HBP-

DCP based (Dynamic partitioned) Hypervisors ............................................................ 208 

Figure 6.21: Average LLC Memory Hit Rate with Varying VMs ................................ 209 

Figure 6.22: Average LLC Memory Miss Rate with Varying VMs ............................. 210 

Figure 6.23: Comparison of Average LLC Memory Access Time in both Unmodified and 

HBP-DCP (Dynamic Partitioned) Hypervisors ............................................................ 211 

Figure 6.24: Comparison of Average LLC Memory Access Time in Static Partitioned and 

HBP-DCP (Dynamic Partitioned) Hypervisors ............................................................ 212 

  

Univ
ers

ity
 of

 M
ala

ya



 

xvi 

LIST OF TABLES 

Table 2.1: Characteristic of CC ....................................................................................... 20 

Table 2.2: Side channel Attack in Virtualized and Non-Virtualized Environment ........ 51 

Table 2.3: Required Modification in the Existing Solutions of Cache-based Side Channel 

Attacks............................................................................................................................. 57 

Table 2.4: Countermeasures for Cross VM Cache-based Side Channel Attacks ........... 60 

Table 3.1: Experimental Environment in Problem Analysis .......................................... 80 

Table 3.2: Algorithm for Implementing Cache based Side Channel Attacks ................. 81 

Table 3.3: Comparison of Correctly Recovered Key in Single and Cross-VM .............. 93 

Table 3.4: Comparison of Cache-based Side Channel Attacks in XEN and VMware ... 94 

Table 3.5 : Load Testing with Varying Number of VMs and Partitions ...................... 101 

Table 3.6: Cache Utilization with Varying Number of VMs and Partitions ................. 103 

Table 5.1: Comparison of Correctly Recovered Key in Single and Cross-VM in 

Unmodified Hypervisor (Insecure/Default) .................................................................. 140 

Table 5.2: Comparison of Correctly Recovered Key in Single and Cross-VM in Modified 

Hypervisor (Secure/Dynamic Partitioned/HBP-DCP) .................................................. 141 

Table 5.3: Parametric Evaluation with Benchmarking ................................................. 144 

Table 5.4: Experimental Environment in benchmarking Analysis ............................... 148 

Table 5.5: Load Testing of Unmodified, Static Partitioned, and Dynamic Partitioned 

Hypervisors without any VM and with Varying Number of Concurrent Requests ...... 150 

Table 5.6: Number of Requests per Second in Unmodified (Default/insecure) Hypervisor 

with Varying Number of VMs and Concurrent Users/Requests ................................... 151 

Table 5.7: Number of Request per Second in Modified (Dynamic Partitioned) Hypervisor 

with Varying Number of Virtual Machines and Concurrent Requests ......................... 152 

Table 5.8: Load Testing in Modified and Unmodified Hypervisor with Varying Number 

of VMs (Average for 10 to 100 Concurrent Request/users for each VM) .................... 153 

Table 5.9: Load Testing with Varying Number of VMs and Partitions in Static Partitioned 

Hypervisor ..................................................................................................................... 154 

Univ
ers

ity
 of

 M
ala

ya



 

xvii 

Table 5.10: Load Testing with Varying Number of VMs in Dynamic Partitioned 

Hypervisor ..................................................................................................................... 155 

Table 5.11: Comparison of Load Testing in Static-Partitioned and Dynamic-Partitioned-

based Hypervisors with Varying Number of VMs and Partitions (Average for 10 to 100 

Concurrent Request for each VM) ................................................................................ 156 

Table 5.12: Regression Statistics Summary for Load Testing of Varying VMs .......... 158 

Table 5.13: Cache Utilization of Unmodified Hypervisor ............................................ 161 

Table 5.14: Cache Utilization of Modified Hypervisor ................................................ 163 

Table 5.15 Average Bandwidth (MB/Sec) of Cache Read and Cache Write of Varying 

VMs (1VM-10VM) in Un-Modified and Modified Hypervisor ................................... 165 

Table 5.16: Bandwidth of Cache Read/Write/Modify in Static Partitioned Hypervisor

 ....................................................................................................................................... 166 

Table 5.17: Average Bandwidth of cache Read/Modify/Write in Static and Dynamic 

Partitioned Hypervisors ................................................................................................. 167 

Table 5.18: Average Bandwidth of Cache Read in Static and Dynamic Partitioned 

Hypervisors ................................................................................................................... 169 

Table 5.19: Average Bandwidth of Cache Write in Static and Dynamic Partitioned 

Hypervisors ................................................................................................................... 170 

Table 5.20: Comparison of cache Read/Modify/Write in Unmodified and Modified 

(HBP-DCP) Hypervisors ............................................................................................... 171 

Table 5.21: Comparison of Cache Read in Unmodified and Modified (HBP-DCP) 

Hypervisor ..................................................................................................................... 172 

Table 5.22: Comparison of Cache Write in Unmodified and Modified (HBP-DCP) 

Hypervisor ..................................................................................................................... 172 

Table 5.23: Regression Statistics Summary for Cache Utilization of Virtual Machines

 ....................................................................................................................................... 174 

Table 5.24: Last Level Cache (LLC) Memory Accesses in Unmodified Hypervisor .. 177 

Table 5.25: Last Level Cache (LLC) Memory Accesses in Modified Hypervisor ....... 177 

Table 5.26: Descriptive statistics of LLC Memory Accesses Data Generated by Standard 

Experimentation ............................................................................................................ 179 

Univ
ers

ity
 of

 M
ala

ya



 

xviii 

Table 5.27: Average Cache Access Rate, Cache Hit, and Miss Rate of LLC in Unmodified 

(Default/Insecure) Hypervisor ...................................................................................... 180 

Table 5.28: Average Cache Access Rate, Cache Hit and Miss Rate of LLC in Static 

Partitioned Hypervisor (1, 2, 4, 8, and 16 partitions) .................................................... 181 

Table 5.29: Average Access Rate, Cache Hit, and Miss Rate of LLC Memory in Modified 

(Dynamic Partitioned/HBP-DCP) Hypervisor .............................................................. 182 

Table 5.30: Average Cache Access Rate of Varying VMs in Unmodified and Modified 

Hypervisors ................................................................................................................... 183 

Table 5.31: Comparison of Average Cache Access Rate of Varying VMs in Static and 

Dynamic-Partitioned Hypervisors ................................................................................. 185 

Table 5.32: Regression Statistics Summary of Memory Access Rate for varying VMs

 ....................................................................................................................................... 186 

  

Univ
ers

ity
 of

 M
ala

ya



 

xix 

LIST OF SYMBOLS AND ABBREVIATIONS 

Symbols Description 

AES Advance Encryption Standard 

CC Cloud Computing 

CMOS Complementary metal–Oxide–Semiconductor 

CMP Chip Multi-Processing  

Cross-VM Cross-Virtual Machine 

DES Data Encryption Standard 

DPA Differential Power Analysis 

FA Fault Analysis 

HBP-DCP Hypervisor-based Prevention Mechanism using Dynamic 

Cache Partitioning 

IaaS Infrastructure as a Service 

IPS Intrusion Prevention System  

IRS Intrusion Response System  

ISA Instruction Set Architecture 

IT Information Technology 

KSM Kernel Same-page Merging 

LLC Last Level Cache 

MFN Machine Frame Number 

OS Operating System 

PaaS Platform as a Service 

PFN Physical Frame number 

PLcache Partition Locked Cache 

RPCache Random Permutation Cache 

PTP Prime + Trigger + Probe 

SaaS Software as a Service 

SC Side Channel 

SMP Symmetric Multi-Processing  

SMT 

SPA 

SPT 

Simultaneous Multi-Threading 

Simple Power Analysis 

Shadow Page Table 

SSL Secure Sockets Layer 

TLB Translation Lookaside Buffer 

VM Virtual Machine 

VMM Virtual Machine Manager 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

1 

CHAPTER 1: INTRODUCTION 

This chapter introduces the basis of the research work carried out in this thesis. The 

background of our initial research domain, Cloud Computing (CC) and Side Channel 

(SC) is provided. It explains the key motivations in the establishment of a research 

problem of the thesis leading to highlight our research problem and objectives. The 

research problem is highlighted from a broad perspective in the form of statements of the 

problem. The research aim and objectives are highlighted in the domain of side channel 

attacks in CC. Furthermore, the research methodology employed to address the research 

problem is presented. 

The structure of the remainder of the chapter is as follows: Section 1.1 presents the 

background knowledge of the field of research namely CC, cache-based SC attack, and 

cross-VM SC attacks. Section 1.2 presents the motivation of inspiring the research 

provided in this thesis. In Section 1.3, the established research problem is presented. 

Section 1.4 provides the research aim and objectives. In Section 1.5, the research 

methodology employed to address the research problem is defined. Finally, Section 1.6 

presents the layout of the rest of the thesis. 

1.1 Background 

Cloud Computing (CC) can be defined as a new paradigm that delivers computing 

and IT as services. The cloud resources on-demand concept has attracted end users to 

utilize various CC services, such as “Software, Platform, and Infrastructure” as-a-service 

(“SaaS, PaaS, and IaaS”) at low cost (Zhang, Cheng et al. 2010). As a new paradigm, CC 

acquires more importance and brings unique features and vulnerabilities in today 

Information Technology (IT) industry. Specifically, it introduces multi-tenancy to 

facilitate the users to share computing physical resources provisioned over the Internet 

and offers cost-effective, on-demand scaling to the CC tenants. Moreover, it establishes 
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the new concept in computing namely mutually distrusting co-resident clients as a valid 

execution state. Although mutually distrusting co-resident and multi-tenancy provide 

numerous benefits to the CC tenants, this paradigm introduces a new concept known as 

client’s co-residence and VM’s physical co-residency. However, the security 

vulnerabilities arise from these well-known concepts because it enables a new form of 

sensitive information leakage. One of the security vulnerability to CC is the SC attacks 

which exploit the information leakage channel at the micro-architectural level. The CC 

infrastructure relies on the virtualized servers that provide the required logical isolation 

between guest VMs through sandboxing. However, this isolation was described to be 

imperfect in the past research work which exploited the information leakage channel to 

extract the sensitive information across co-located VMs. Co-residence clients and 

physical co-residency of VMs allow the attacker’s VM to communicate with the victim’s 

VM running on the same physical device that by design they are unable to have access 

(Ristenpart, Tromer et al. 2009).  

Since CC is not equivalent to physically separated systems and due to an inadequate 

logical isolation, it facilitates the co-located malicious VM to use the SC attacks to leak 

sensitive information about the victim VM functionality and exploit the correlation 

between the software and hardware. SC attacks use the unconventional methods including 

cache access and timings to extract and transfer confidential data in a way that violate 

security policies have been identified as a major issue in implementing cryptographic 

algorithms. Although cryptographic algorithms provide security to the sensitive 

information from attackers by encrypting and decrypting sensitive data. However, CC is 

a big concern for cryptographers because they are putting their data and program out there 

away from their trusted computers (Ristenpart, Tromer et al. 2009). The encryption keys 

of the cryptographic algorithms e.g., Advance Encryption Standard (AES) are extracted 

by the attackers using simple spying processes by the attacker to analyze information 

Univ
ers

ity
 of

 M
ala

ya



 

3 

about cache lines, which have been accessed. In addition, AES in various well known 

cryptographic libraries namely OpenSSL, polarssl, and libcrypto are vulnerable to 

information leakage attacks, when running in different hypervisors’ including XEN and 

VMware used by cloud service providers. The current VM in the processor analyzes this 

cache information. Although the cache data is protected, the metadata about cache is not 

fully protected (Tromer, Osvik et al. 2010). 

Since SC attacks are physical attacks, they require the fundamental characteristics of 

computation including power consumption, timings it takes to run a program and 

exploitation of hardware to extract the secret information of the cryptographic algorithms 

(e.g., encryption key). This attack typically works by creating the correlation between the 

functionality of the underlying hardware in the physical device and the software. 

Moreover, this correlation can be used to exploit the co-located VMs by interpreting the 

internal execution of the software program from the observed phenomena of hardware at 

a specified time. This allows SC attack to be conducted in an environment where the 

attacker and the victim have access to the same hardware in the absence of any prevention 

mechanism. In order to exploit the physical properties of the machine, the attacker and 

victim have to access the same hardware by using hardware and software SC attacks. 

Although in a traditional system, gaining access to the same physical device as a target 

was a difficult task in establishing SC attacks. However, CC environment makes it easy 

to accomplish SC attacks. In a non-virtualized environment, it is difficult to launch the 

SC attack as compared to in a virtualized environment. This is because, in a virtualized 

environment, the attacker and the victim are co-located on the same physical machine. 

Since SC attacks are used to extract the cryptographic information, thereby, can be 

implemented on all those devices which used cryptography concepts for securing their 

data such as smart cards, mobile phones, tablets, personal computers, and servers (Fisk, 

Fisk et al. 2002).  
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SC attacks are categorized into various types according to the specific piece of 

hardware medium they target and exploit and have been discussed in Chapter 2 in detail. 

Since CPU caches are the high interacting and sharing devices between processes and are 

always been targeted by the adversaries. Therefore, it enables us to categorize the SC 

attacks in this thesis, specifically cache-based SC attacks and the prevention mechanism 

based on the exploited hardware medium and physical characteristics of computation.  

The state-of-the-art literature shows that a large number of cache-based SC attacks 

have been studied in the past in non-virtualized multilevel systems including database, 

Operating System (OS) and networking (Zander, Armitage et al. 2007). For instance, 

Bernstein’s proposed SC attack based on the cache access time variation (Bernstein 

2004). The author used the access time information (whether the data is being accessed 

from the cache or from main memory) to extract AES key. Moreover, the co-residency 

feature of CC makes cache-based SC attacks more effective in the virtualized 

environment. In 2009, the first cache-based SC attack became visible in the community 

when Ristenpart et al. (Ristenpart, Tromer et al. 2009) successfully implemented this 

attack in the virtualized environment by using the co-residency feature. Because of these 

information leakage channels, information security in a public or shared cloud 

environment is a general concern that must be considered.  

Since these attacks are always implemented by using the hardware or software 

channels, therefore, the defensive mechanisms for such attacks are also implemented on 

the hardware channel as well as through software (Zhang, Juels et al. 2012). Although 

hardware-based prevention mechanisms provide security from SC attacks, these 

mechanisms require changing the underlying hardware. The changing of hardware would 

take longer time as well as expensive and the SC attacks would be succeeded before the 

changing of hardware. Therefore, the software-based prevention mechanism is required 

which prevents the SC attacks before occurring and which is hypervisor-based that 
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comply with the cloud model and does not need to change the software and the underlying 

hardware. 

1.2 Motivation 

CC is a rapidly growing technology in terms of both research work and commercial 

applications. Over the last five years, CC has grown exponentially from its origin to the 

existing vast research and application development industry. It is predicted that CC 

market will grow approximately to over $45.90 billion by 2018. Despite the 

characteristics such as dynamic provisioning, multi-tenancy, scalability, and ease of 

integration as shown in Table 2.1 in detail, CC is vulnerable to SC attacks because of its 

easy accessibility and distributed infrastructure. In spite of this threat to CC, the users of 

the cloud are increasing day by day as shown in Figure 1.1.  

 

Figure 1.1: Year wise Progression of Cloud Computing Usage (Irazoqui, Inci et al. 

2014) 

Figure 1.1 shows the gradual increase from standard technology to virtualized 

environment. Moreover, it shows an increase in the number of cloud users compared to 

physical machine users. The statistic shows that from 2013 to 2017, there is 

approximately one billion increase in the number of online users of cloud-based service 

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Applications on Virtualized Infrastructure

Physical Hosts Virtual MachinesUniv
ers

ity
 of

 M
ala

ya



 

6 

through all over the world. The increase in cloud-based service users is estimated from 

the fact that in 2013 the cloud users was 2.4 billion and it is predicted that it would be 

approximately exceeded to 3.5 billion in 2018 (Portal 2016).  

According to a recent Tech News report (NEWS 2015), Apple announced a major 

vulnerability to the security of iPhones that some Canadians attacked the iPhones and 

iPads with malware that could extract their iCloud passwords and other personal 

confidential data. Similarly, according to Digital Forensics Association (DFA), from 

2009 to April 2016, the lost records’ quantity in data breaches ranged from 1 to 

140,000,000 with an average of 407,926 (DFA 2016). Even if a packets contains only 

single bit can be covertly transmitted , 26 GB of data could be leak on a large Internet 

Site through SC attacks (Zander, Armitage et al. 2007). Moreover, the CERT statistics in 

2017 indicated a 50% increase in the information leakage from insider attackers and 

reported more than 40 % of SC attacks (Cert. 2017.). These reports prove that the effect 

of SC attacks are unavoidable. This is the reason that motivated researchers to explore 

information leakage channel namely SC attacks in cloud environment. 

CC is a distributed computing paradigm that enables on-demand access to a shared 

pool of scalable computing resources. As a new design paradigm in computing, the goal 

of CC is computing consolidation and multi-tenancy. Multitenancy employs 

virtualization to share computing physical resources among CC customers. Since CC 

provide the logical isolation to cloud resources through sandboxing mechanism across 

guest VMs and does not provide the physical isolation. Therefore, data is vulnerable to 

information leakage due to the concept of co-residence clients and physically co-

residence VMs provided by CC (Irazoqui, Eisenbarth et al. 2015). Unlike other multilevel 

systems (i.e., OSs, databases, networking etc.,), CC allows attackers to access the same 

hardware and perform malicious activities among their own users. Specifically, attackers 

exploit the physical characteristics of computation and hardware side-channels to access 
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the place such as cache that by design is restricted to them and gain the information. To 

limit this leakage channel, the cache must be divided across the VMs through software 

mechanism. 

Unlike encryption, which protects confidential information from being decoded by 

unauthorized persons, SC attacks aim to attack the encryption systems and to hide the 

occurrence of communication. Since the evidence of the existence of communication is 

sufficient to detect the physical properties of computation. So encryption is unable to 

prevent attackers from detecting the pattern of communication (Zander, Armitage et al. 

2007). Therefore, cloud provider, criminals, terrorist company, or government 

organization have the interest to hide their confidential communication. 

The Cloud features affected by cross-VM SC attacks are data outsourcing, multi-

tenancy, and co-residency. Presently, more than 79% of organizations attempt to utilize 

data outsourcing, because approximately 75% of the total ownership cost is assigned to 

manage of in-house huge storage. Since any co-resident VM can perpetrate cross-VM 

attacks through a covert channel. Therefore, end-users trust will be declined on cloud-

based application. 

Although there are several defensive mechanisms such as firewall, cryptography, and 

access control, however, these are unable to protect cloud environment from SC attacks. 

Moreover, some prevention mechanisms need to change the client software and the 

underlying hardware. Therefore, there is a need for a prevention mechanism for cross-

VM cache-based SC attacks which is software-based and does not need to change the 

client software and the underlying hardware. In this thesis, the software-based prevention 

mechanism is proposed. Our proposed prevention mechanism for cross-VM cache-based 

SC attacks, need to be followed by the two key points of the cloud model. First, it does 

not need to modify the software on the client-end of interfaces it intends to run and second 

it does not require the modification of underlying hardware. 

Univ
ers

ity
 of

 M
ala

ya



 

8 

1.3 Statement of the Problem 

Although side-channel attacks have existed in the multilevel system including 

databases and OSs in the past (Osvik, Shamir et al. 2006), the novel co-residency feature 

of CC makes them more effective in virtualized environment. Due to shared technology, 

the attacker is no longer required to gain unlawful or restricted access to the victim’s 

hardware, which bypasses the first line of defense against such attacks. Because a side-

channel requires the exploitation of the underlying hardware and software, each defensive 

mechanism must also be specifically adapted for the underlying hardware and software 

channel. Therefore, it enables us to categorize side-channel attacks and the defensive 

mechanism based on the hardware and software channel they exploit. Since each channel 

provides unique vulnerabilities. The CPU cache is one of the most frequently used pieces 

of shared hardware and often deals with sensitive data. Thus it become one of the most 

common targets for use in a SC attack as it can more easily be used to extract useful data 

at a high rate. An attack made over this channel is referred to as a cache-based SC attack. 

Multiple prevention mechanisms are available to prevent cache-based SC attacks in 

multiprocessing systems including OS, databases, and networking. However, these 

existing mechanisms are unable to prevent the cross-VM cache-based SC attacks, as the 

cloud facilitates the users with the shared resources (Kim, Chandra et al. 2004, Percival 

2005). Determined adversaries have the ability to place malicious hosts in the cloud 

environment on the same machine as a target host (Ristenpart, Tromer et al. 2009). The 

malicious hosts are then able to monitor and manipulate the shared cloud resources, 

including caches and other hardware resources in order to leak critical information from 

the target hosts. In a cloud environment, the prevention mechanisms are divided into 

hardware-based and software-based prevention mechanisms, and hardware-based are 

implemented on the hardware level (Kim, Chandra et al. 2004, Percival 2005). However, 

hardware based countermeasures are unable to provide an immediate solution to the 
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problem. They will take the time to develop and are failed to protect the existing 

hardware. In addition, hardware-based prevention mechanisms are expensive and need 

special design hardware to support cache control, or need individual cache, need to 

disable the cache, or need to change the replacement policy of cache (Osvik, Shamir et 

al. 2006). Consequently, for immediate mitigation of SC attack, software-based 

prevention solutions are required. Because software-based solution can be implemented 

in the already existed architecture. Therefore, there is a need for a software-based 

mechanism for the prevention of cross-VM cache-based SC attacks.  

One of the software-based prevention mechanism for cross-VM cache-based SC 

attacks is static partition which use the page coloring technique to partition the entire 

cache into static parts for various VMs during boot time. Page coloring allows the 

hypervisor to limit the cache usage of any application and VMs. However, this method 

can only configure the cache usage of each virtual machines at boot time and once the 

VM is created we cannot change its configuration. For instance, if we partition the entire 

cache into 16 parts during boot time and currently one VM is executing, then only one 

part would be assign to that VM and the remaining 15 parts will be idle. We cannot change 

the entire cache partition according to running VMs during execution. Moreover, static 

cache partition degrades the performance in term of bearable load, cache utilization, and 

cache access time. The VMs are only allowed to allocate the memory at boot time from 

the same partition that belonging to the same VM. 

Since a single VM running in a 4-way partitioned system, therefore, one-quarter of 

the total memory is assigned to that VM may lead to wasted resources. Consequently, the 

memory resources are maximized even balancing of loads. Therefore, there is a need for 

a preventive mechanism for SC attacks which dynamically partition the entire cache for 

each VM upon the creation of new VM. Once the VM is created then we would be able 

to configure the entire cache for various VMs. For instance, if one VM is created then the 
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whole cache memory is assigned to that VM on a dynamic basis. If two or three VMs are 

created then the cache memory is divided into 2 or 3 partitions accordingly and would be 

assigned to those VMs. Moreover, prevention mechanism of SC attacks, need to be 

followed by the two key points of the cloud model. First, it does not need to modify the 

software on the client-end of interfaces it intends to run and second it does not need the 

modification of underlying hardware.  

Our goal is to provide a defense capable of preventing cache-based side-channels in 

the Cloud while not interfering with the Cloud model and without degrading the system 

performance. Using the code base of an open source hypervisor, Xen (Project 2016), we 

have conducted our solution based on dynamic cache partition demonstrate to inhibit 

cache-based side-channels from occurring within a Cloud server. In our solution, all cache 

monitoring and cache partitioning operations are done transparently within the hypervisor 

or VMM. Therefore it is applicable to commodity operating systems such as Windows, 

of which the source code is unavailable. Second, because guest OSes are black boxes to 

the VMM, this single mechanism is portable across all the OSes supported by the VMM. 

Our solution is implemented in the hypervisor, therefore it provides cache partitioning 

both within and across OSes and also provides more flexibility and opportunities for the 

whole-system optimization. 

1.4  Statement of Objectives 

This research is undertaken with the aim to prevent cache-based SC attacks across 

VMs and in CC with minimum overhead in terms of bearable load, cache utilization, and 

cache access time. The research aim is accomplished by addressing the following 

objectives:  

 To study the existing SC attacks in virtualized and non-virtualized environment 

involving CPU-cache to gain an insightful understanding to the performance 

limitations of current state-of-the-art prevention mechanisms for these attacks. 
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 To investigate the identified problem by conducting the cross VM cache-based 

SC attacks in the real environment and applied the existing prevention mechanism 

based on the static cache partition and unveiling the impact of existing prevention 

mechanism on the load, cache utilization, and cache access time as well as on the 

cloud model. 

 To propose a prevention mechanism based on the dynamic cache partition for the 

prevention of cache based SC attacks across VMs that leads to an efficient cache 

utilization among various VMs. 

 To evaluate and validate the performance of our dynamic cache based prevention 

mechanism considering three metrics namely: computing load, cache utilization, 

and memory access rate and compare it with the state-of-the-art prevention 

mechanisms. 

1.5 Research Methodology 

The research carried out in this thesis used the following four main steps in order to 

achieve the four objectives defined in Section 1.4. The proposed research methodology 

along with the detail description of research objectives corresponding to each research 

phase is given in Figure 1.2. 

 The state of the art SC attacks in CC with emphasize on cache-based SC attacks across 

VMs are reviewed in the first phase. The SC attacks are generally categorized based 

on the computing location, on the way of implementation, and on the way of accessing 

the modules. Moreover, the SC attacks based on the computing location are classified 

into: intra-VM, cross-platform, and cross-VM SC attacks. Similarly, the SC attacks-

based on the implementation are divided into sequential and parallel SC attacks. In 

addition, the SC attacks based on the way of accessing the module is further divided 

into invasive, non-invasive, and semi-invasive attacks. Since all the aforementioned 

attacks have been discussed in the non-virtualized environment including database, 
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networking and OS for many years. Therefore, in this research work our focus is on 

the cache-based SC attacks in the virtualized environment (e.g., Cross-VM cache-

based SC attacks). The aim of this thesis is to explore the SC attacks involving CPU-

cache and their mitigation techniques in a state-of-the-art cloud system to improve 

security in CC. We also categorized the cross-VM cache-based SC attacks according 

to the hardware medium they target and exploit, the ways they access the module and 

the method they use to extract the confidential information. Through a comprehensive 

literature review, we identify the most significant research problem to cross-VM 

cache-based SC attacks to address in this research. 

 Identifying the advantages 

and disadvantages of the 

existing work

 Conducting a comparison 

based on the qualitative data

 Classifying the literature 

review in the form of 

taxonomy

 Identifying the open 

research problems

Identified 

Research Gap

Problem 
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Verified and 
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Figure 1.2: Research Methodology 

 The second phase of this research involves the investigation of the identified problem 

and verification of its significance through experimental analysis between two VMs 

using Xen hypervisor in a real CC environment. By real implementation of cache-

based SC attacks between two VMs in Xen and VMWare hypervisor, we analyzed 
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that these attacks are extracting the secret cryptographic key via cache information 

and are very dangerous in the virtualized environment. The static cache partition at 

boot time as a solution to these attacks is exercised to reveal degradation in the 

performance in terms of load, cache utilization, and cache access time. 

 In the third phase of this research work, we implement and design HBP-DCP 

(Hypervisor-based Prevention Mechanism using Dynamic Cache Partitioning) 

prevention mechanism that prevent cross-VM cache-based SC attacks to alleviate the 

identified problem. HBP-DCP consists of two algorithms: one for cache monitoring 

and one for page allocation to each requested VMs. These algorithms are embedded 

into the source code of page allocator of existing hypervisor. The basic objective of 

cache-based SC attacks is that target VM1 traces the cache access and access time 

variation of the victim VM2 to extract the secret information of secret cryptographic 

key of the encryption algorithms (e.g., AES, DES). To prevent the cache access 

between VMs e.g., victim VM1 from attacker VM2, our proposed HBP-DCP 

prevention mechanism divide the cache into partitions on dynamic basis that no VM 

would access the partition assigned to another VM. In addition, it divide the cache 

into different color on dynamic basis and assign the specific color to each VM. 

 We implemented and evaluated the performance of our proposed HBP-DCP 

prevention mechanism through benchmarking experiments in the last phase of our 

research. A set of standard computation benchmarking along with matrix 

multiplication and customized benchmark are used to evaluate the performance of our 

proposed HBP-DCP prevention mechanism. A real testbed environment is created by 

using Xen hypervisor. Load testing, cache utilization, and memory access rate are the 

performance evaluation metrics in this experiment. We synthesize the result of these 

three parameters using modified (dynamic partitioned /HBP-DCP/secure): the case of 

our solution) with the result of the unmodified (default/insecure) and the static 
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partitioned hypervisor. Moreover, we devised a statistical model to analyze and 

validate the result of performance evaluation metrics. The statistical model is devised 

using regression model which is a predominant observation-based modeling and 

analysis method. The statistical model is validated using split-sample validation 

approach. The empirical results of our performance evaluation are validated through 

the statistical regression model.  

1.6 Thesis Layout 

The research entitled “On the prevention of cross-VM cache-based SC attacks” is 

comprising of an extensive study. Therefore, the thesis has been divided into chapters for 

a clear reader understandability. The thesis is comprised of 7 chapters and the layout of 

the thesis is presented in Figure 1.3. 

Chapter 2 aims to review the research undertaken in the field of cross VM cache-

based SC attacks. The chapter describes knowledge about the CC and the vulnerability of 

SC attacks to identify and classify the SC attacks across VMs and in CC. Moreover, in 

this chapter, cross-VM cache-based SC attacks are focused and the detail about the 

prevention mechanism for these attacks are provided which discover the deficiency of the 

existing solution. We provide qualitative critical analysis in the aforementioned research 

direction based on the metrics derived from the proposed taxonomy. The research 

problems are identified by the literature review expose the need for the prevention 

mechanism based on the dynamic cache partition for the cross-VM cache-based SC 

attacks. Furthermore, several research issues are identified for the future research 

direction. 

In Chapter 3, we conducted the cache-based SC attacks in the cloud environment in 

single VM and across VMs. Using series of experiments for conducting these attacks by 

using the Prime + Probe and Flush + Reload techniques in Linux and across VM, we 

analyzed that CC is vulnerable to the dangerous information leakage attacks.  
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Chapter 4 describes HBP-DCP mechanism for the prevention of cache-based SC 

attacks across VM in the CC environment. The objectives and assumption undertaken by 

the technique are presented. Moreover, the schematic presentation of the proposed 

prevention mechanism is presented and each component of the technique is described in 

detail. The significance of the proposed technique is highlighted and the performance 

evaluation parameter is derived. 

Chapter 5 reports on the performance evaluation methodology for the HBP-DCP 

technique. The experimental setup is explained with accompanying benchmarks and the 

devices. The data collection method regarding the experimental and evaluation methods 

namely statistical modeling and benchmarking is described that have been utilized to 

evaluate and validate the proposed technique performance. The benchmarking application 

is described and the technique to evaluate the statistical modeling is also demonstrated. 

In Chapter 6, we present the result of the experimental performance evaluation of the 

HBP-DCP technique to prove its efficiency and significance. The experimental 

evaluation is based on three parameters, namely load, cache utilization, and memory 

access rate. We compare and contrast the result of benchmarking with the statistical 

model result to validate the performance of the proposed method. 

Finally, Chapter 7 concludes this work by revisiting the aim and objective of this 

research that how it is fulfilled. The main contribution of the research is summarized and 

the significance and the method proposed in this thesis are highlighted. The future 

research directions and limitations conclude the chapter. Univ
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Figure 1.3: Summary of Chapters Presented in this Thesis 
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CHAPTER 2: LITERATURE REVIEW 

This chapter presents a literature review on the cache-based cross-VM SC attacks and 

countermeasure for these attacks. The purpose of this chapter is to detail the literature 

work related to our problem domain in order to identify the potential research issues in 

the field of SC attacks and their countermeasures in virtualized environment. The primary 

research issues identified through the literature review is that with the exponential growth 

of CC environment, vulnerabilities and their corresponding exploitation of the prevailing 

cloud resources may potentially increase. CC supports multi-tenancy, physical co-

residency features which enable resource sharing among mutually distrusting CC clients 

and offers cost-effective, on-demand scaling. Although, these features provides numerous 

benefits to the CC tenant, however, resource sharing and VMs physical co-residency 

enable a new form of sensitive information leakage such as SC attacks. Unlike encryption, 

which protects information from being decoded by unauthorized persons, SC attacks aim 

to attack the encryption systems and to hide the existence of communication. Initially, SC 

attacks were identified as the main threat on multi-level secure systems i.e. OS, database, 

and networks. More recently the focus of researchers has shifted toward SC attacks in 

CC. The target of this article is to explore SC attacks, especially cache-based cross-VM 

SC attacks and countermeasure in CC and how they compare to traditional SC attacks 

and countermeasure. The taxonomies are devised with reference to cache-based cross VM 

SC attacks and countermeasures for these attacks. Qualitative comparison of the state-of-

the-art research works is detailed in each section. The chapter also provides the basic 

knowledge of the technical elements found in the thesis such as cache-based SC attacks, 

Cross-VM cache-based SC attack, and countermeasures for these attacks.  

The rest of this chapter is organized is as follows: Section 2 discusses the background 

detail of cache-based SC attacks and to classify the cache-based SC attacks into different 
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types. Section 3 describes the SC attacks in the cloud environment. Section 4 provides 

the prevention mechanism for cross-VM SC attacks followed by the discussion on the 

existing cross-VM SC attacks and proposed countermeasure. Finally, Sections 6 conclude 

this chapter by comparing existing approaches and providing a general design approach 

for prevention of SC attacks. 

2.1 Background 

This section describes the background detail about the CC, cache-based SC attacks, 

and previous work related to SC attacks in the cloud. It also describes techniques to 

implement cache-based SC attacks. Since the cloud users use the same hardware and the 

computational properties of hardware channel namely power consumption and time are 

mostly used for these types of attack. Since a cache is the most accessed hardware, most 

targeted hardware channel for SC attacks, therefore, this study includes a detail 

description of cache-based SC attacks and their typical prevention techniques. 

Although there are existing surveys which explored SC attacks in detail (Osvik, 

Shamir et al. 2006). However, they investigated the cache-based SC attacks in the non-

virtualized environment including database, networking, and OS. To the best of our 

knowledge, this is the first survey which explores the cross-VM cache-based SC attacks 

as well as cache-based SC attacks in CC and proposed some countermeasures in the 

virtualized environment. The aim of this thesis is to explore the SC attacks involving 

CPU-cache and their mitigation techniques in a state-of-the-art cloud system to improve 

security in CC. We categorized the SC attacks according to the hardware medium they 

target and exploit, based on the ways of accessing the module and the method used to 

extract the confidential information. We also investigate countermeasures for their 

prevention, required to improve the security in CC. 
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2.1.1 Cloud Computing 

CC can be defined as a new paradigm that delivers computing and IT as a service as 

shown in Figure 2.1. The cloud resources on-demand concept has attracted end users to 

utilize various CC services, such as “Software, Platform, and Infrastructure” as-a-service 

(“SaaS, PaaS, and IaaS”) at low cost (Zhang, Cheng et al. 2010). However, CC is a big 

concern for cryptographers because they are putting their data and program out there away 

from their trusted computers (Ristenpart, Tromer et al. 2009). Therefore, security in CC 

is a critical issue given the distributed infrastructure and user-friendly nature of this 

technology. Cyber threats to the cloud environment are different from the threats to 

traditional systems (Security 2010). 

Examples
End Users

Platform as a 

Service (PaaS)

Infrastructure as a 

Service (IaaS)

Application

Platform

Infrastructure

Hardware

Business Application,Web Services, 

Multimedia 

Software Framework (Java/Python/

.Net) Storage (DB/ File)

Computation (VM) Storage (block)

CPU, Memory, Disk, Bandwidth

Resource Managed at Each Layer

Google Apps, 

Facebook, YouTube, 

Salesforce.com 

Microsoft Azure, Google 

AppEngine, Amazon DB/

S3

Amazon EC2, GoGrid, 

Flexiscale

Data Centers

Software as a 

Service (SaaS)

 

Figure 2.1: Layered Model of Cloud Computing 

As cloud service providers offer their customer unlimited use of shared cloud 

resources, this makes the cloud environment vulnerable to attacks. Furthermore, CC 

facilitates end users with a set of API and software interfaces, opening a window for 

intruders. As company delivers services (SaaS, PaaS, IaaS) from cloud provider in a 

scalable way, they provide an opportunity for intruders to gain an inappropriate level of 

control over the cloud resources and this shared technology of CC enables intruders to 

extract information in the form of SC attacks. Table 2.1 describes the characteristics of 
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CC. CC introduces a multitenancy feature, however, this new concept of co-residence 

client and physical co-residency enables hardware and software covert and SC attacks.  

Table 2.1: Characteristic of CC 

Characteristics Description 

Dynamic provisioning Mobile users execute their application in a flexible way without 

any advance reservation for cloud resources  

Scalability The deployment of mobile applications meet the unpredictable 

demand  

Multi-tenancy Multi-tenancy provides sharing technology of cloud resources 

Ease of integration Multiple cloud services from different cloud service providers 

can be integrated to meet user demands 

 

Despite these characteristics, CC is vulnerable to SC attacks because of its easy 

accessibility and distributed infrastructure. Although there are several defensive 

techniques such as firewall, cryptography, and access control, however, are unable to 

protect cloud environment from SC attacks. Therefore, there is a need for a preventive 

mechanism for SC attacks. 

2.1.1.1 Virtualization 

Besides the benefits of multi-tenancy and physical co-residency, CC has another 

characteristic called virtualization. Virtualization involves the abstraction of the physical 

machine to OSs in multiple VM on the same physical device isolated by the Virtual 

Machine Manager (VMM) or hypervisor. In virtualization, the hypervisor namely the 

XEN and VMware are responsible for the communication between VM as shown in 

Figure 2.2. Although the hypervisor uses sandboxing techniques to provide logical 

isolation across guest VMs for modern virtualization, this logical VM isolation is not 

equal to physical isolation. It is also not sufficient if the attacker uses the SC attacks to 

circumvent them because VM uses the same hardware, which is a serious threat to VM 

logical isolation (Ristenpart, Tromer et al. 2009). The literature shows that attackers can 

use the SC attacks to acquire detail about the memory access pattern of another program 

such as the cryptographic algorithm that performs the encryption with an unknown private 
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key. These SC attacks affect and observe the cache state and then analyze the effect on 

the encryption’s execution time, during, or after the execution of encryption. Since the 

VM resides on the same physical hardware, it is at risk to SC attacks in virtualized 

environment and this has been a known problem for the last 10 years (Ristenpart, Tromer 

et al. 2009). For instance, Ristenpart et al. (Ristenpart, Tromer et al. 2009) successfully 

implemented the cache-based SC attack in the virtualized environment for the first time 

and violate and break through the logical isolation supplied by a sandboxing mechanism. 

In fact, he is not only able to co-locate two VM on the identical physical device but also 

able to extract the key stroke by a victim VM. As described in the following section, the 

prevention mechanism of SC attacks need to be followed by the two key points of the 

cloud model.

 

CPU

Memory

Shared Resources

Virtual Machine Monitor (Hypervisor)

VM1

MEMMEMMEM

OPS2OPS1 OPS3

App3App2App1

VM3VM2
Side Channel 

Attacks

 

Figure 2.2: Virtualization 

2.1.1.2 Cloud Model 

We refer the cloud model in this thesis as a specific relationship that the CC has 

established with its users and the underlying hardware. The two key points that have been 

highlighted by the cloud model has become commonplace in the CC environment (IBM 

2012). According to the first key point, the users have no knowledge or permission to 

change the cloud software they intend to run and is always able to run canonical software 
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on the cloud. The second point is that the users always run the software that does not need 

to change the underlying hardware of cloud because the cloud is built on the canonical 

hardware. According to these two key points of the cloud model, any modification to the 

CC must comply with the listed two points. Therefore all the solution comply with the 

cloud model if: 

 If it does need any modification in the underlying hardware 

 If it does not need the clients to change their software which they intend to run 

on the cloud 

If a solution is developed according to these two points then it complies with the cloud 

model and can be easily applied to the CC environment without altering the already 

established functionality of CC. We design our solution server based to keep in mind the 

above mentioned two point and therefore transparent to the clients and the underlying 

hardware. The client does not need to change their software as well as does not required 

to change the underlying hardware. 

2.1.2 Side Channel Attacks 

Traditionally, in cryptography, cryptographic devices are thought of as black boxes. 

It means that the only way attackers can gain access to these devices. Since the data and 

computation are by giving them input and receiving the output of the computation, what 

is going on within the devices is completely hidden from the attackers. Attackers use 

physical attacks e.g., SC attacks to gain more information about the data used in the 

devices. Over the last decade, side channels that transfer confidential data in a way that 

violate security rules have been identified as a major issue in implementing cryptographic 

algorithms. Although overt channels utilize the system's secure data object to transmit 

confidential information in a way that does not violate the security rules. These channels 

use the data object to hold the information including buffers, files, shared memories, and 

thread signals. These data objects are normally viewed as a data container. On the other 
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hand, covert or side channels use system resources or entities to transfer information 

between subjects that are not normally viewed as a data container. In this chapter, a survey 

is conducted on the cross-VM cache-based SC attacks. 

SC attacks are the physical attacks that use the physical process to extract the secret 

information of the cryptographic algorithms such as encryption key. The computation is 

a physical process that involves the use of all kinds of physical characteristics of 

computation such as the timings it takes to run a program, the characteristic of the power 

consumed during a program execution, electromagnetic radiation, acoustics, and 

temperature to leak the confidential information. This attack typically works by creating 

the correlation between the functionality of the underlying hardware in the physical 

device and the software and this correlation can be used to infer the internal execution of 

the software program at a specified time. Although the state-of-the-art literature studied 

these attacks for numerous years in the context of a multi-level embedded system and 

smart cards, the literature showed that the microprocessor is also vulnerable to these 

attacks (Bernstein 2005, Percival 2005, Osvik, Shamir et al. 2006). Traditionally, to 

accomplish a physical attack in multilevel embedded systems (e.g., database and OS) is 

a difficult task because it requires gaining physical access to the system. However, in a 

virtualized environment, because of resources sharing, gaining access to a system is very 

easy.  

Smart cards are the most targeted device for SC attacks and because of the noisy nature 

of these attacks, it is very difficult to collect sensitive information and gain physical 

access or proximity. However, a virtualized environment makes it possible to gain 

physical access to the system. The more traditional attacks are used to attack and extract 

the information from a general-purpose computer e.g., Attacks that authorize an attacker 

to acquire physical access to the secret data of the entire system by exploiting flaws in 

OS. SC attacks can be implemented on all devices including mobile phone, PC, tablet, 
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and server, which use a cryptographic algorithm for securing information. For instance, 

the web browser has an embedded cryptographic algorithm called RSA, which is widely 

used by the Secure Sockets Layer (SSL) today for secure communication and electronic 

data transfer over the Internet. Moreover, these attacks are generally categorized into 

hardware-based channel including power analysis, bus probing and a software-based 

channel including timing attacks, cache attacks, and memory attacks.  

2.1.3 Taxonomy of Side Channel Attacks 

SC attacks can be categorized into different types based on the computing location 

(virtualized and non-virtualized), the implementation, and the ways of accessing the 

module. The detail of each category is given in the following sections as well as in Figure 

2.3. 

2.1.3.1 Side Channel Attacks based on the Computing Location 

These attacks are categorized based on virtualized and non-virtualized environments 

as shown in Figure 2.3. In addition, the attacks are also classified on the basis of whether 

the victim and the attacker have existed in the same cores or in different cores as shown 

in Figure 2.4. The SC attacks have been studied in a multiprocessing system including 

the database, OS, and in networking for many years. In these systems, the SC attacks are 

implemented on the same OS and on same cores and also on the different cores in the 

same OS. However, in virtualized environment, the attacks are implemented on the 

different guest OS either on the same or on different cores. 

(a) Intra-VM Side Channel Attacks 

These are also called process level SC Attacks. Malicious processes P1 and P2 

are positioned in the same OS in the domain unit (Dom U) and in the same hardware with 

different security levels. In the single VM, one higher level secure process P1 (attacker) 

leaks the confidential information from the process P2 having a low-security level 
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(victim) using the SC attack. These attacks can be implemented in the guest VM where 

the attacker and the victim have existed in the same or on different cores in the single 

guest VM. However, process level SC attacks for the traditional personal computer have 

been surveyed for many years, and several mature defensive mechanisms and analysis 

techniques have been mentioned in the literature (Brickell, Graunke et al. 2006). The state 

of the art literature shows several defensive mechanisms for intra-VM or process level 

attacks (Bernstein 2005, Aciiçmez 2007, Acıiçmez, Brumley et al. 2010). The detail of 

each one is given in Table 2.2. 

(b) Cross Platform Side Channel Attacks 

These attacks are also called network level SC attacks. Malicious processes P1 

(attacker) and P2 (victim) are placed in different OSs and on different hardware platforms. 

The network is the main source of communication between these two processes P1 and 

P2, therefore, these processes use network storage and timing channels to transfer the 

confidential data in such a way that violates the policy of the system security. SC attacks 

are mainly based on the entire network, the literature showed the study on these attacks 

in the non-virtualized environment since 1987 (Zander, Armitage et al. 2007, Irazoqui, 

Eisenbarth et al. 2015). These attacks can also be implemented in the cloud environment 

but its prevention solution is already available in the literature (Brickell, Graunke et al. 

2006, Osvik, Shamir et al. 2006). 

(c) Cross-VM Side Channel Attacks 

These are the OS level SC attacks. Malicious processes P1 (attacker) and P2 

(victim) are situated in distinct domains but the underlying hardware platform is same. 

Cross-VM SC attacks are introduced by the hypervisor managed multi-tenancy and VM 

Co-residency features (Ristenpart, Tromer et al. 2009, Suzaki, Iijima et al. 2011, Wu, Xu 

et al. 2012, Zhang, Juels et al. 2012). Confidential information (e.g., extraction of a 
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cryptographic key ) may be leaked by the SC attacks among VMs and competitive 

companies that are physically co-located, which will bring huge economic losses to the 

CC. Cross-VM cache-based SC attacks are further categorized into shared memory-, 

CPU-load-, and cache-based attacks. In SC attacks based on the shared memory SC 

attacks, different memory access intervals are used to extract the secret key of any 

cryptographic algorithm and sensitive information about the memory. In CPU-load based 

SC attacks, the physical characteristics of computation (e.g., physical resources) such as 

CPU execution time is used to extract the confidential information and the secret key of 

any cryptographic algorithm. While in cache-based SC attacks the different cache access 

latencies (e.g., cache miss and cache hit) are used to transmit and extract data covertly. 

Details of the cache-based SC attacks are given in the following section. In this thesis, 

our focus is on the cross-VM cache-based SC attacks which we will elaborate in detail in 

the upcoming section. 

Shared Resources

Operating System

Virtual Machine Monitor (Hypervisor)(Vmem, VCPU, Shared memory)

Virtual Machine 1 Virtual Machine 2

Cross-VM Side Channel 

Attacks

SysCalls SysCalls

HyperCallsHyperCalls

Process Level Side 

Channel Attacks

Network Level Side 

Channel Attacks

Process I Process J Process K Process L

 

Figure 2.3: Types of Side Channel Attack in Hypervisors (XEN) 

2.1.3.2 Side Channel Attacks based on Implementation 

SC attacks can also be classified into parallel and sequential attacks, based on the 

implementation as given in Figure 2.4. These attacks are differentiated as to whether they 
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are conducted on parallel or sequential access to the cache memory of CPU. These types 

of attacks are the most known cache-based SC attacks in CC. The following section 

describes these two types of attacks in detail. 

(a) Sequential Side Channel Attacks 

In order to establish cache-based SC attacks, the victim and the attacker need to 

share some portion of cache memory. In present-day hardware, two different approaches 

are used to share caches between multiple cores. One approach is that cache is assigned 

to one CPU core or the cache is accessed by two processes sequentially while the other is 

for them to have parallel access or the CPU cache is shared between different CPU cores. 

Sequential access requires a process context switch to be on the same CPU core, whereas 

concurrent access can be achieved by having a shared cache between CPU distinct cores 

based on hardware restriction. The literature shows that there is a lot of research for both 

types of the channel (Wu, Xu et al. 2012). In both types the sequential access is typically 

seen as more portable, as the concurrent access is to a cache is only allowed by some 

systems. Sequential SC attacks work in a way that the receiver (attacker) will wait for a 

message to be read until the sender (victim) writes a message. Due to the ordering, there 

is a clear window in which the cache can be flushed for prevention purposes that are when 

the context switch occurs between the attacker and the victim. All other cache-based 

sequential SC attacks rely on this mechanism, making it a well-known example of a 

canonical SC attack. Moreover, all cache-based cross-VM SC attacks have been based on 

this fundamental method; an effective restriction of its principles could, therefore, prevent 

all current SC attacks in the cloud (Zhang, Juels et al. 2012). 

(b) Parallel Side Channel Attacks 

Parallel SC can be achieved by adapting sequential SC on a shared-cache system 

having Last Level Cache (LLC). In this approach, the probing (attacker) and target 
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(victim) processes are located on distinct cores but have concurrent access to the shared 

LLC. Although the access to a cache memory in both sequential and parallel attacks are 

the same, the parallel access method does not require to trigger between two VMs. This 

is because there is no clear gap in the Trigger and the Probe steps and both have occurred 

at the same time. Although similar to the sequential method, the process originates with 

the probing executing the “Probe” step, however, unlike sequential this method has no 

context switch so the target process is started after probe step. Once the cache is primed, 

like the sequential, the target VM can execute the “Trigger” step rather than the “Trigger" 

and “Probe" steps are executing concurrently. However, in comparison to a sequential SC 

attack, the parallel technique is not so reliable as an attack medium because the more 

noise in the system makes them unreliable, and also because while one VM reads a cache 

line, the other VM modifies another cache line.  

To date, the literature described that only a sequential SC attack can do a very serious 

destruction in the cloud (Zhang, Juels et al. 2012). Although a parallel channel attack is 

difficult to conduct, as it still holds the ability to be applied in such an attack and gain 

unauthorized access to the information about a VM. In addition, it is difficult to flush the 

cache in parallel access, because the VM might change the cache, rendering it useless and 

generating too much overhead. Parallel cache-based SC attack can be avoided by 

restricting the ability of co-resident VMs on the physical machine from evicting one 

another’s data from the cache memory. 

2.1.3.3 Side Channel Attacks based on the Way of Accessing the Module 

Anderson et al. (Anderson, Bond et al. 2006), categorized SC attacks into invasive, 

non-invasive and semi-invasive attacks based on whether these attacks have direct or 

indirect access to the device as shown in Figure 2.4. 
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(a) Invasive/ Hardware Side Channel Attacks 

In this section we discuss the physical attacks involving the interaction of 

attackers with the chip package and direct physical access to the components by 

depackaging the chip. The well-known example of this is the direct connection between 

a wire and a data bus to observe the transfer of data. In addition, these attacks involve the 

probing or modification of the chip once it is opened. Invasive attacks can be achieved 

by getting direct access through electrical to the internal parts of the main crypto 

processor. For instance, to capture signal of a bus line, the attackers place a micro probing 

needle that can open a hole to get direct access to the passivation layer of a microcontroller 

chip. These attacks are not limited to a smart card but can also be performed on 

Complementary metal–Oxide–Semiconductor (CMOS) components. However, these 

attacks are expensive, since they require the individual or physical access of the 

compromised devices. 

(b) Non-invasive/ Software Side Channel Attacks 

SC attacks, also known as passive non-invasive attacks, exploit the directly 

accessible interface of the cryptographic devices. However, these attacks do not leave 

behind any evidence because the cryptographic device is not permanently modified. 

These attacks involve playing with the clock signal and voltage, which exploit the 

physical characteristics of computation (e.g., the unintentional leakage) such as execution 

time and the power consumed to run a process. The device’s computation process can be 

observed or manipulated by local non-invasive attacks. For instance, the fluctuation in 

the current in a power analysis attack, consumed by the devices can be measured with the 

high accuracy, and by correlating the measurements obtained with the computations of 

the underline hardware the value of cryptographic keys can be extracted. These attacks 

are dangerous as the owner of the compromised device is often unaware that the secret 

key has been stolen. 
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Non-invasive attacks are further divided into power analysis and fault analysis SC 

attacks. Power analysis is further categorized into Simple Power Analysis (SPA), 

Differential Power Analysis (DPA), and Fault Analysis (FA) attacks. In SPA attacks, the 

attackers try to leak information and the encryption key by observing the power 

consumption of the device (Mangard 2002). While in a DPA (Kocher, Jaffe et al. 1999), 

instead of looking for a direct relation between the secret data and the power consumption, 

the attackers try to check the variance in power consumption over many iterations of the 

algorithm. The power consumption of a unit is generally used to observe the internal 

execution while an encryption operation is being performed. SPA and DPA are the non-

invasive SC attacks that allow the attackers to attack and harm the tamper-resistance 

device by analyzing their power consumption (Countermeasures). DPA is a most 

dangerous security threat for all the electronic devices which use cryptography for 

performing encryption. The countermeasure for SPA and DPA attacks include hardware, 

software, and protocol prevention solution that secure tamper-resistance electronic 

devices from SC attacks. However, FA attacks generate fault in a system and investigate 

the encryption algorithm to extract secret keys by using this faults (Aumüller, Bier et al. 

2002). Fault analysis attacks can be further categorized into conventional and differential 

fault analysis. A conventional FA attack (Li, Sakiyama et al. 2010) aims to retrieve secret 

data by analyzing the result of faulty encryptions. While in differential FA attacks (Biham 

and Shamir 1997), the attacker encrypts the same plaintext twice, once with and once 

without an induced error. The attacker then tries to identify the round in which the fault 

occurred by looking at the difference between the two obtained ciphertexts. 

(c)  Semi-invasive SC Attacks 

Compared with the non-invasive attacks, semi-invasive attacks are very difficult 

to implement as they involve the opening or depackaging of the chip. However, these 

attacks have implemented without the requirement of an expensive equipment in 
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comparison to invasive attacks. Furthermore, the implementation of these attacks requires 

only a short time. They can be achieved by depackaging the chip to get direct access to 

the chip surface but without harming the chip passivation layer or making any illegal 

electrical entry other than with the authorized interface. These attacks could be 

accomplished using UV light, X-rays, electromagnetic fields, laser, and another source of 

ionizing radiation. For example, the attacker can ionize a transistor by using a laser beam 

and thus changing the flip-flop’s state that holds the device’s protection state (Aciiçmez, 

Koç et al. 2007).  

 

Figure 2.4: Taxonomy of Side Channel Attacks 

Existing literature shows that these three attacks are local and can be easily prevented, 

however, remote attacks are more challenging to prevent since they are not dependent on 

the quality of the crypto processor hardware (Smith 2003). Having discussed the 
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vulnerability issues concerning CC, this current research focuses mainly on the defensive 

mechanism of cache-based SC attacks (cross-VM attacks) in CC. Our proposed HBP-

DCP solution is based on the cache-based time-driven SC attacks. The detailed 

classification of these attacks is given in Figure 2.4.  

2.2 Cross-VM Cache-based Side Channel Attacks 

SC attacks existed in the past in multilevel systems including database, OS, and 

networking (Zander, Armitage et al. 2007), however, the co-residency feature of the CC 

makes cross-VM cache-based SC attacks more effective in this paradigm (Ristenpart, 

Tromer et al. 2009). It was very difficult to gain physical access to the system in the past, 

but with shared resources, in the cloud, physical access can be easily accomplished 

(Chang and Ramachandran 2016). Cross-VM Cache attacks are purely software based, 

and they extract the full encryption key of the well-known cryptographic algorithms 

including RSA, AES without any direct or physical interaction with the cryptographic 

devices (Zhang, Juels et al. 2012). These attacks are deployed very easily and are efficient 

as they require a short time to break the well-secured systems. Moreover, these attacks 

use the spying process to collect information about the accessed cache line for extracting 

the cryptographic key from Linux encrypted partition. Irazoqui et al. (Irazoqui G 2014) 

conducted the Bernstein’s correlation attack in a virtual environment for the first time to 

show the implementation of cross-VM SC attacks on KVM, VMware, and Xen.  

Similarly, Irazoqui et al. (Irazoqui, Inci et al. 2014) established the Flush + Reload 

cache-based SC attack across VM executing on a VMware hypervisor. They used a 

memory deduplication technique known as transparent page sharing for launching the SC 

attack and recovered the AES key in a very short time from the AES implemented in 

OpenSSL 1.0.1. One of the main features of cache-based SC attacks is the memory 

deduplication, which has been explained in the earlier section of this thesis. To this extent, 

CPU Cache is seen as the attackers’ most targeted device in the cloud due to the device’s 
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high shared interaction between processes, cores, and VM. This interaction leads to 

crosstalk between processes and VM, thus leaking the most fine-grain information of 

computation (power, time) to attackers. Although the virtual memory mechanism secures 

the stored data in the cache memory from SC attacks by, the “metadata” have the most 

fine-grain information about the cache information and pattern of the memory access (i.e. 

the addresses of which are being accessed) is not fully protected. Several approaches for 

measurement that exploit crosstalk between processes have been identified. One approach 

is to measure the effect of the cache on the encryption algorithm (requiring accurate 

timings). Another approach analyzes the effect of the encryption algorithm on the cache 

status. Despite using the partitioning method, which includes sandboxing and memory 

protection, these attacks allow an unauthorized program (attacker) to attack the victim 

processes on the same physical device running in parallel. These methods provide the 

logical isolation but are unable to secure communication between processes that are 

physically located on the same domain. 

In comparison to hardware (physical) SC attacks, software cross-VM cache-based SC 

attacks have a more serious impact on the systems and clients or cloud users. Since almost 

all modern microprocessors contain cache, physical access to a system very easy in the 

cloud, making the software attacks much easier to accomplish, and are also effective on 

disparate platforms (Bernstein 2005, Percival 2005, Osvik, Shamir et al. 2006). 

Consequently, this makes cross-VM cache-based SC attacks as a new weapon for the 

adversaries and a much-discussed topic in the literature. These attacks can be achieved 

without exploiting bus and memory probing since it is not must for software cache-based 

SC attacks to gain physical access. The attacker can exploit the system by acting like a 

legitimate user performing a normal operation without the requirement to find the system 

flaws to perform unauthorized operations. The attacker and the victim are two processes 
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that do not have the same address space, therefore this always makes the attacker able to 

leak confidential information about the victim’s activity. 

 The cross-VM cache-based SC attacks are also called remote attacks involving 

faraway observation of the normal input and output data of the device. Timing 

observation, cryptanalysis, analysis of the protocol, and SC attacks on the programming 

interfaces of applications are examples of remote timing attacks. The cross-VM cache 

based SC attacks are further categorized into time-, access-, and trace-driven attacks, 

which are explained in detail in the following section. Timing analysis attacks conducted 

on shared caches memory have been widely studied in the cryptanalysis of cryptographic 

algorithm, e.g. (Bonneau and Mironov 2006, Acıiçmez, Schindler et al. 2007, Intel 2007, 

Brumley and Hakala 2009, Tromer, Osvik et al. 2010, ARM 2012) in a non-virtualized 

environment. In this research work, we elaborate the cross-VM cache-based SC attacks 

in detail. To the best of our knowledge, no prior works have conducted a survey on cross-

VM cache-based SC attacks and countermeasure. Therefore, the main contribution of this 

chapter is to thoroughly study the literature on cross-VM cache-based SC attacks and 

proposed countermeasure to these attacks. 

2.3 Causes of the Cross-VM Cache-based Side Channel Attacks 

Cross-VM attacks are conducted between the two VMs (victim and Attacker) in a 

virtualized environment. In this section, the main causes in the memory management 

system are described that allow the information leakage in virtualized environment. 

Although sandboxing provides logical isolation across guest VMs, this isolation is 

considered to be imperfect and the attacks exploit the memory deduplication and huge 

pages to leak the secret information across VM boundaries. Since the cache is the most 

interactive device between VM, it often becomes the targeted device for SC attacks in the 

modern computers. Therefore, the source of information leakage by using cache in X86 

computer is shown in the Figure 2.5. 
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Figure 2.5: Sources of Information Leakage on Shared Hardware 

2.3.1 Last Level Cache Memory 

The cache memory is located between RAM and CPU cores to remove the delay added 

by the accessing of the data. The main objective of the cache memory is to decrease the 

required time for accessing data from the main memory. Modern CPU have more than 

one cache memory to improve the computation performance by improving the efficiency 

of cache access. A unit of a cache memory is called line, which consists of a fixed number 

of bytes. There are a fixed number of cache lines in each multiple cache sets and these 

cache lines in a cache set is called an associative. The cache is divided into L1, L2, and 

L3 level. The associative of L1 and L2 cache memory are 8-way associative while the L3 

cache memory is a 12-way associative (Handy 1998).  

Cache is classified into inclusive and exclusive on the basis of the design approach. In 

the inclusive design approach, the data is stored in the L1 cache and is also duplicated in 

the L2 and L3 cache at the same time. While in the exclusive design, the data is never 

shared between all the cache levels. In modern Intel processors including Core I5 and 

Core I7, the L3 or LLC is shared between all CPU cores. The salient characteristic of the 

LLC is that it is by design an inclusive cache memory. Therefore, the data stored in the 

L1 and L2 caches is also copied in the LLC. Consequently, in the case of a cache miss in 
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the L1 cache, the data will be checked in L2 in order to decrease the cache miss rate. 

Furthermore, if the data is flushed or evicted from the LLC, it will automatically be erased 

from all the other levels of the processor’s cache.  

Although shared cache has some advantages such as increased utilization of cache 

space, decreased cache miss rate, faster inter-core communication through shared LLC 

(L3 and L2), and the elimination of undesired replication of cache lines to reduce 

aggregate cache footprint. However, the major disadvantage of shared LLC is the 

uncontrolled contention can occur by allowing CPU-cores to access the shared LLC on a 

freely basis. Consequently, a scenario can occur where one core can easily access and 

evict the useful content of LLC (L3and L2) belonging to another core result a high LLC 

miss rate. This cache miss rate degrades the overall performance of the application and 

system. Similarly, one core can easily extract the useful data of another core can cause 

SC attacks.  

The cache is divided into cache lines having fixed size of l bytes. A cache line contains 

the information that can be fetched or written at the time of cache access. When the CPU 

accessed the data stored in the memory for the first time, it first queries the cache memory 

for data, if it is in the cache then the required time for fetching the data will be low. This 

is because the memory line that contains the regained data is loaded into the cache 

memory. If the same data is retrieved again from the identical memory line, then for the 

same data access the access time will be minimized and this is called a cache hit. 

However, if the needed data is not available in the cache then the CPU will fetch the data 

from the main memory and the required time for fetching the data will be high and this is 

called cache miss. The CPU fetches the data from the main memory when the cache miss 

occurs and stores a copy in the cache. Therefore, encryption time for a cryptographic 

algorithm directly depends on the position of the accessed table, which in turn depends 

on the internal confidential state of the cipher. The secret key of the encryption algorithm 
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can be extracted by exploiting this timing information. In the case of unavailability of 

cache lines, the data that is not recently being accessed are removed to create a space for 

the input lines to cache. Therefore, the eviction of cache lines from the cache memory is 

based on the not recently accessed cache line policy. 

TLB (Translation-Lookaside Buffer) is the fastest hardware cache of virtual to 

physical address translation is also called address translation cache. Upon each virtual to 

physical translation, the hardware first checks the TLB cache whether the virtual memory 

reference is already present in the TLB or not. If present in the TLB then the translation 

is performed very quickly without consulting with the page table. TLB improve the 

performance of the system by making virtual to physical translation possible. The 

hardware can handle the TLB misses entirely by using page table base register that exactly 

tell the location of the page table in memory. On the TLB miss the hardware check the 

exact page table and extract the translation and update the translation in the TLB. 

Cache hit rate= number of hits/ total number of access 

When the TLB cache accesses the memory for the first time this misses always occur, 

however, spatial locality improve the TLB performance. The elements of the array are 

tightly couple so always TLB miss occurs only for accessing the first element of the array. 

The idea behind hardware is to take advantage of locality. The functionality and 

performance of TLB cache are always dependent on the spatial and temporal locality 

features of cache. According to temporal locality the data or instruction that are recently 

been accessed will likely be accessed again in the future (e.g., loop variables). In contrast, 

with spatial locality, the data and the information in the nearby location of the already 

accessed will be likely accessed in the future. Consequently, when the data is retrieved 

from main memory by the processor, the copy of that data with nearby memory data will 

be put in the cache memory to minimize the future access delay of data. The spatial 
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locality facilitates the CPU by storing the entire bigger block of data along with the data 

in nearby locations. The execution performance can be improved by storing the entire 

block of data because the data that is located nearby the originally retrieved values are 

likely to be retrieved again. With address space identifier (ASID), the TLB is able to hold 

and differentiate translation from the different process without any confusion during 

context switching.  

How do the attackers work? To exploit the timing information, the attacker chooses a 

cache sized memory buffer and set the cache to a known state before the victim processes 

an execution. The Attacker accesses all the lines in the buffer, loading the cache with its 

data. When the victim executes, the victim replaces some memory in the cache. The 

attacker then measures the time to access the buffer cache (Liu, Yarom et al. 2015). 

Access to the cache line is faster than to evict lines. CPU caches are the most targeted 

hardware devices by adversaries due to the high-rate interactions between processes, 

shared among VMs or Cores, and have the most fine-grain information about the 

computing processes. In the past, SC attacks are applied on L1 and L2 caches, and in 

virtualized environment L2 cache in Core 2 duo system is the most targeted device for 

cache-based SC attacks (Figure 2.6). Most of the attacker are still using L2 cache for 

launching cache-based SC attacks (Godfrey and Zulkernine 2014).  

However, in modern PC including Core i5 and Core i7, the LLC or L3 is the most 

targeted device for SC attacks. This is because every core has their own L1 and L2 cache 

but the L3 cache is shared between every core in modern architecture as shown in Figure 

2.7. Consequently, the attackers always target LLC (L3) for SC attacks. Flush and Reload 

attacks exploit the cache behavior and can be mostly implemented by using LLC. Figure 

2.6 shows the architecture of Core i5 processor in which the L2 cache is always shared 

between cores and VMs. Every cores have their own L1 data cache and instruction cache. 
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Figure 2.6: Virtual Machine CORE 2 Duo Memory Allocation Hierarchy 

In contrast to Core i5, Core i7 process have their L1 and L2 cache but L3 cache is 

always shared between cores and VMs as shown in Figure 2.7. The access time for 

accessing information from main memory or from L1 or L2 cache closer to main memory 

is more than from accessing it from L3 cache closer to the core. Cache-based SC attacks 
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Figure 2.7: Virtual Machine CORE i7 Memory Allocation Hierarchy 
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exploit this cache access timing difference. There is a need for a prevention mechanism 

that hides this timing difference from the attacker and which does not need any changes 

in the software or hardware by the client (Mishra, Pilli et al. 2017). 

2.3.2 Memory Deduplication 

One of the major causes of SC attacks is content aware sharing or memory 

deduplication. By using content aware sharing, the same pages are recognized and loaded 

by the disk location (Miłós, Murray et al. 2009). By merging the identical pages and 

making a single copy of the redundant data, many VMs are able to run on the host system 

(e.g., Hypervisor) (Xiao, Xu et al. 2013). This technique improves the memory efficiency 

by reducing the space and bandwidth requirements for data storage of multiple clients. 

However, deduplication has a great impact on the security of the system and it opens the 

door for cache-based SC attacks. The memory deduplication leaks sensitive information 

due to the deficiency in the Intel x86 processor and the Flush + Reload attack exploits 

this deficiency to monitor memory lines. The recent statistics (Russell 2010) showed that 

deduplication is the most impactful storage technology and in the near future, 75% of all 

backups will apply this. The memory deduplication mechanism, which first appeared in 

the Linux kernel version 2.6.32, is KSM (Kernel Same-page Merging) (Suzaki, Iijima et 

al. 2011). KSM is a memory saving feature and has also been suggested for virtualization 

such as Satori (Miłós, Murray et al. 2009). However, this approach is a big security threat 

for cryptographic algorithms in virtualized environment (Gullasch, Bangerter et al. 2011). 

The memory deduplication feature is enabled by default in some hypervisor namely 

VMware ESXI and Virtual Box. However, recognizing it as a major threat to security, 

Amazon never enabled this memory deduplication feature on their compute cloud server 

EC2. 

The memory deduplication can be exploited by one of the low noise cache-based SC 

attacks called flush reload attack. All the current LLC attacks (e.g., flush + reload attack 
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on L3) require deduplication. In these attacks, the target of the two processes is to access 

the same physical memory location. This means no identical contents are stored in the 

physical memory since the memory deduplication feature has eliminated the redundant 

data from the memory allowing the cross-sharing of data between processes. However, 

this mechanism creates a security vulnerability in CC. The system must protect data 

shared between two non-cooperating processes. Due to the additional copy operation, the 

access time to the normal page and de-duplicated page is different. Therefore, in 

virtualized environment, the attackers can easily get the memory access information from 

victim VM because the victim and attacker VM are collocated on the same physical 

machine (Suzaki, Iijima et al. 2011, Suzaki, Iijima et al. 2011). For instance, the attacker 

can easily detect whether the de-duplicated page exists in the collocated VM or not by 

requesting the same page from the memory. Although the adversary cannot modify or 

corrupt the data in the cache, parallel access rights and cross sharing can be exploited to 

extract secrets from the process executed in VM. 

2.3.3 Big Data Deduplication 

In this era, as the volume of the data is increasing on daily basis, everyone is thinking 

about for online storage to move and store data on the cloud side. Since this data is stored 

in a huge amount, it is therefore needed to remove the redundant data for improving the 

performance. In order to eliminate the repeated data, data deduplication mechanism is 

used. Data deduplication is one of the data compression mechanism use for big data which 

eliminate redundant copies of the data stored in multiple places in the storage of big data. 

Although this mechanism is used to improve the utilization of big data storage and also 

minimize the number of packets or bytes to be sent (Yu and Guo 2016). However, this is 

because of data deduplication that big data storage is vulnerable to SC attacks. Big data 

deduplication is one of the major cause of SC attacks. The overall cost can be reduced by 

providing the same services to multiple clients and this can be achieved by deduplication 
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mechanism. Since data is generated from different resources in a big data environment, 

everyone needs to think about the security of big data in CC. Similarly, the data is shared 

between different VM in the virtualized environment. If you think about to store a huge 

amount of data (big data) on the cloud side and to share your data with another VM then 

you have to care about the security and cost as well. The security of the big data storage 

is a major issue in CC which demotivates the cloud user and they are not further trusting 

to move their data to cloud side. The big data has different characteristics and is not 

equivalent to normal data, thereby security requirement for big data is different.  

Data duplication can be categorized into various types including granularity, location, 

and ownership on the basis of distinct criteria. Based on data granularity, the 

deduplication is further divided into a file- and bloc-level deduplication. In file-level 

deduplication, the big data is reduced by removing the redundant file. While in the block-

level, the redundant block of data is removed in the non-similar file (Stanek, Sorniotti et 

al. 2014). According to location, the deduplication is divided into the client- and server-

side deduplication. The deduplication of redundant data performed on the client side is 

called client-side deduplication otherwise target-based (server) deduplication. In the 

target or server-based mechanism, the server does all the deduplication while the source 

or client is completely unaware of the deduplication. The server-side deduplication 

mechanism improves the overall storage but does not have improvement in the 

bandwidth. While the deduplication on the client side improves both data storage and 

bandwidth making the system more vulnerable to SC attacks. By using deduplication the 

SC attackers can easily determine the big data storage. To store big data on the server side 

is more secure as compared the big data storage on the client side. Based on the data 

ownership, the deduplication mechanism is further classified into single-user and cross-

user deduplication. In a cross-user deduplication mechanism, the data interchange 

between two users. The storage and bandwidth can be improved by using cross-user 
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deduplication. Although cross-user deduplication is more effective in CC, however, it 

gives a chance to the attacker to leak the confidential information (Harnik, Pinkas et al. 

2010). In (Wang, Cao et al. 2016), the author proposed the attribute-based encryption 

which secures the big data storage from the SC attacks and is able to provide security to 

the big data. 

2.3.4 Huge Pages 

Although cloud service providers and the virtualization company have disabled the 

memory deduplication feature for the mitigation of cache-based SC attacks, another 

security risk for the virtualized and non-virtualized environment in the form of huge pages 

has come into existence. Huge pages are another root cause that attackers use for 

launching SC attacks. The attackers gain the knowledge about the physical addresses of 

the memory by using large size pages. The attacker takes the opportunity of the translation 

of the virtual to physical addresses. All the processes have no direct accessed to the 

physical address instead they are using the virtual addresses. The memory is divided into 

continuous fix block called memory pages. The virtual memory is used to load these 

memories when they are not present in the main memory. When some pages needed by a 

process is not retrieved from the main memory then page fault occur and the required 

pages are loaded from other storage. Therefore, before access to memory, a translation 

stage between virtual to physical address is needed. Modern computer architectures 

consist of Translation Lookaside Buffer (TLB) for the purpose to avoid the latency of 

virtual to physical address translation.  

The TLB behaves like a small cache is first observed before memory management 

unit. If the memory is divided by increasing the size of the page into fewer pages then 

this can be used to avoid TLB misses (Weisberg and Wiseman 2009, performance Feb 

2016). The TLB misses will be reduced than 4KB pages because the translation between 

virtual and physical addresses have significantly been reduced. Due to this reason, state-
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of-the-art processors use the huge size pages of 1MB. The usage of huge pages is very 

effective in virtualized environment where different VM use the same hardware resources 

on the same physical machine. The huge pages by default are enabled in all VMM or 

hypervisor including KVM, VMware, and XEN. Therefore, unlike Yarom’s Flush + 

Reload (Yarom and Falkner 2014) that only works when the deduplication is enabled, 

many other attacks can be launched by exploiting huge pages to extract the secret 

information in virtualized and non-virtualized environment (Irazoqui, Eisenbarth et al. 

2015). Liu et al. (Liu, Yarom et al. 2015) conducted SC attacks on the L3 cache by 

exploiting huge memory pages. They extracted the cryptographic key from the ElGamal 

encryption algorithm. Picking up from Liu et al (2015), Inci et al.(Inci, Gulmezoglu et al. 

2015) conducted prime + probe attacks in the cloud environment. They used the huge 

pages to extract the information about co-location and also the cryptographic key of 

ElGamal algorithm.  

2.4 Types of Cross-VM Cache-based Side Channel Attacks 

Cross-VM cache-based attacks are categorized into time-, trace-, and access-driven. 

The detail of each category is given in the following section. 

2.4.1 Time driven Side Channel Attacks 

In cryptography, an attack in which the attacker observes the execution time of the 

cryptographic algorithm and use this information to compromise a cryptosystem is called 

time-driven attacks. In addition, the attackers try to extract the cryptographic key by 

learning the system’s sensitive information and by analyzing the computation’s time of 

processes. It is an extremely powerful in CC because of the memory deduplication and 

logical isolation. In CC, the sandboxing provides only the logical isolation, which is not 

equal to the physical isolation. Therefore, the attacker in one VM can easily measure the 

computation time of any encryption algorithm by accessing the cache to determine the 

encryption key in use on the victim VM on the underlying hardware. The two co-resident 
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VM can easily access each other’s execution process and cache if the Transparent Page 

Sharing between the two VMs is enabled. The victim and the attacker VM could be on 

the same physical machine and could be remote. The attacks associated with the class of 

time-driven attacks are explained in (Osvik, Shamir et al. 2006, Tromer, Osvik et al. 2010) 

and the detailed example is given in Table 2.2.  

In these attacks, the timing difference can be exploited by associating the cache to a 

prior state known to a victim cryptographic operation. In addition, the following two 

methods are used to extract information from the victim’s operation. The first method is 

based on the time measurement which it takes for the victim to execute the cryptographic 

operation. As this time is related to the cache’s state, when the victim executes the 

operation, the attacker can evaluate the accessed cache lines by the victim and extract the 

secret information (Bernstein 2005, Acıiçmez, Schindler et al. 2007). In the second 

method, the attacker’s time for accessing the data after the victim’s operation is measured 

(Aciiçmez 2007, Brumley and Hakala 2009, Acıiçmez, Brumley et al. 2010). The changes 

in this time are dependent on the changes in the cache state before and after the victim 

operation. In the literature, this problem has gained a lot of attention. Time-driven attacks 

are further categorized into active and passive attacks. In a passive time-driven attack, the 

total computation time of the victim’s process is measured by the attacker, in contrast, the 

attacker observes the state of the cache in active time-driven attacks. 

The main challenges in the measurements of timings in the time-driven attacks are the 

increased level of noise (such as network latency and increased access time) and 

unpredictability of correlation of timings. Many cryptographic algorithms lack a proper 

defensive mechanism for cache based timing attacks. Therefore, the timing attacks can 

easily be implemented on any cryptosystem. For instance, libgcrypt (used in GNUTLS 

and GPG) and Cryptlib are not secure from the timing attacks. A defensive mechanism 

against the timing attacks is present in the OpenSSL 0.9.7 as an option. However, this 
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option is not enabled in common applications such as the Apache SSL module and mod 

SSL and therefore they are vulnerable to time-driven attacks. The following examples 

show that cryptosystems are vulnerable to time-driven SC attacks. 

Tsunoo et al. (Liu, Ge et al. 2016) implemented the initial practical results for cache-

based time-driven attacks and the authors were able to break the Data Encryption 

Standard (DES) in 90% of their attempts. They found that the internal table lookup 

collision in the cryptographic algorithms is the main cause for time-driven attacks. 

Various attacks associated with the class of timing attacks on AES were explained in the 

subsequent papers (Bernstein 2005, Osvik, Shamir et al. 2006, Acıiçmez, Schindler et al. 

2007, Tromer, Osvik et al. 2010). In some of them, the first or the last round of AES 

algorithm is required. These attacks execute the overall execution time of encryption 

algorithms. The detail of these attacks is given in Table 2. Osvik et al. (Osvik, Shamir et 

al. 2006) introduced the time-driven attack on the second round of AES algorithm for 

analyzing the timings information. Similarly, Weiß et al. (Weiß, Heinz et al. 2012) 

described the most relevant class of time-driven SC attack. In this work, they 

implemented a time-driven SC attack against an embedded uniprocessor in virtualized 

environment. In cache collision attack against AES (Bonneau and Mironov 2006), the 

authors conducted cache-based timing attacks in which they extracted the secret key by 

exploiting the cache collision due to the internal state of the table lookup operation in 

AES. 

2.4.2 Trace–Driven Side Channel Attacks 

In these attacks, the attacker’s process has the ability to capture a profile of the cache 

activity during the execution of the cryptographic algorithms. To launch this attack, the 

attackers need to access the profile in which they observe and extract the profile of the 

cache activity from other profile content. These attacks (Bertoni, Zaccaria et al. 2005, 

Lauradoux 2005) are related to the class of trace-driven attacks. The result of this attack 
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produces a cache hit if the victim accesses the cache and cache miss for every access to 

memory. Therefore, it is very easy to trace the S-box accesses for encryption algorithm 

including AES and DES during the execution time. As opposed to a time-driven attack, 

Osvik et al. (Osvik, Shamir et al. 2006) in his research conducted the two trace-driven 

attacks including Prime + Probe and Evict + Time and their impact on AES algorithm. 

They further investigated that both techniques can be applied during the attack 

implementation to recover the encryption key of any cryptosystem. 

In an Evict + Time attack, the cache is evicted before the encryption and then the cache 

access is investigated in term of a cache hit and cache miss. While in the Prime + Probe 

procedure, the cache is filled prior to encryption and after it has checked which cache line 

has or has not been accessed. The information can be further used to extract the encryption 

key. By using these attacks some features of the device are continuously monitored 

throughout the cryptographic operation, for example, a processor leaks information by 

analyzing electromagnetic radiation (e.g., (Gandolfi, Mourtel et al. 2001, Quisquater and 

Samyde 2001) and by the power consumption of the device (e.g., (Kocher, Jaffe et al. 

1999)). These attacks became powerful by the ability to continuously monitor the 

processor computation but the limitation is in physical proximity of the device to the 

timing and power measurements, an idea which was first introduced by Kocher in the 

year of 1999 (Kocher, Jaffe et al. 1999). Here we described the continuation of these 

attacks by measuring the cache access latency. 

2.4.3 Access-Driven Side Channel Attacks 

The most powerful attack is called an access-driven, in which the attacker tries to 

investigate which cache line has been observed during the execution of cryptographic 

algorithms. These different memory accesses are the main threat to cryptographic 

software since the variations in the computation time provide information about the secret 

key. These attacks evaluate the cache memory working with a fine-grain information, 
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rather than analyzing the overall computation time of the executable program. In these 

attacks, the attacker and the victim’s programs are executed side by side on the same host 

machine. The attacker executes a program on the same physical system that is executing 

the cryptosystem and observes the operation of the shared architectural component to 

extract confidential information about instruction and data cache.  

The usage of a shared architectural components such as the instruction cache 

(Aciiçmez 2007, Acıiçmez, Brumley et al. 2010), data cache (Percival 2005, Tromer, 

Osvik et al. 2010) floating-point multiplier (Aciicmez and Seifert 2007), or branch 

prediction cache (Aciiçmez, Koç et al. 2007) is monitored by the attacker’s program to 

extract secret information about the cryptographic key. To implement this attack, the 

researchers (Ristenpart, Tromer et al. 2009, Gullasch, Bangerter et al. 2011, Zhang, Juels 

et al. 2012, Yarom and Falkner 2014) exploit a shared hardware cache between both VMs 

and filled the cache with their own data. The target victim VM changed the cache by 

overwriting some of its data, including information about the secret key. When they 

rewrite their information in the cache, the attacker is able to detect the private encryption 

key. The most effective and common method for implementing an access-driven SC 

attack as conducted by Osvik et al. (Osvik, Shamir et al. 2006) is to Prime the cache and 

then Probe, hence it is called the prime + probe protocol. Similarly, Neve et al, (Neve and 

Seifert 2006) introduced access-driven SC attacks in which they target the last round of 

AES. They showed in their research that the whole key can be extracted with a limited 

set of encryption in a very short time. In addition, in (Neve and Seifert 2006, Gullasch, 

Bangerter et al. 2011), the authors illustrated that these attacks are successful in a single 

core, non-virtualized environment by attackers involved in game OS process scheduling. 

Traditionally, unlawful access into a non-virtualized environment is very difficult, 

however in virtualized environment, the co-residency of guest VMs make it possible to 

gain access quite easily.  
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In a virtualized environment, Ris-tenpart et al (Ristenpart, Tromer et al. 2009) 

implemented the first access-driven attack on modern Symmetric Multi-Processing 

(SMP) and multi-core architectures. Their attack is able to provide information about the 

cache utilization of guest VM, however, is unable to extract the cryptographic secrets. In 

line with that, Percival, et al (Percival 2005) conducted an access-driven attack on the 

data cache. In their attack, the shared architectural component is monitored to extract data 

from the data cache during the execution of the RSA cryptosystem. Similarly, in (Owens 

and Wang 2011), the authors implemented an access-driven attack to exploit the memory 

deduplication in the victim VMware ESXI hypervisor for fingerprinting the OS. Zhang 

et al. (Zhang, Juels et al. 2012) described the cross-VM SC attacks in a virtualized SMP 

by extracting a cryptographic key from the VM. They perform the successful sequential 

SC attacks by using the CPU cache and do serious damage to virtualized environment by 

extracting the cryptographic secret from unwary hosts.  

In the existing study, Gullasch et al. (Gullasch, Bangerter et al. 2011) implemented a 

Flush + Reload SC attack that accessed specific memory lines in the AES memory by 

utilizing cache behavior. The authors used the processor’s clflush instruction to expel the 

observed memory lines and using this information, they extract the secret key in less than 

100 encryptions. While this attack accesses specific memory lines, it generates a false 

alarm by frequently interrupting the victim process. These authors (Acıiçmez, Brumley 

et al. 2010, Gullasch, Bangerter et al. 2011) introduced the access-driven attacks called 

asynchronous, meaning that in the trigger step, the attackers do not require the precise 

time information of victim operations. The CPU with Simultaneous Multi-Threading 

(SMT) feature or the OS process schedulers is more vulnerable to these attacks; SMP 

settings are not vulnerable to these attacks. The class of asynchronous access-driven 

attack is further extended by Zhang et al. (Zhang, Juels et al. 2012) to VMs running on 

virtualized SMP systems. Furthermore, by using this attack they have extracted the most 
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fine-grain data from a victim VM across VMs in a virtualized environment. More 

specifically, by using cache-based timing attacks an ElGamal decryption is recovered 

from the victim VM. The authors used a hidden Markov model to reduce the errors and 

cope with noise (e.g., network latency). The significance of this work is that the authors 

have extracted the fine grain data across VMs for the first time, unlike Ristenpart et al. 

(Ristenpart, Tromer et al. 2009) who managed to achieve the usage of CPU and recovered 

keystroke patterns by co-location of VM. Table 2.2 describes the attack based on 

execution environment and architecture. The execution environment categorizes the 

attacks whether they are conducted in the virtualized or non-virtualized environment. 

According to the architecture, Table 2.2 shows whether the attacks have conducted on a 

single core or multi-core. In addition, it also describes the target of attacks (e.g., Attacks 

on AES, RSA, and ElGamal or any other encryption algorithm).
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Table 2.2: Side channel Attack in Virtualized and Non-Virtualized Environment 

 

Type of Attacks Ref Title Description Name of 

Attacks 

Method Target Of 

Attacks  

Execution 

Environment 

Architecture 

Acces-Driven (Neve and 

Seifert 2006) 

Advances on access-driven 

cache attacks on AES 

To scrutinize the cache behavior with 

a finer granularity, rather than 

evaluating the overall execution time. 

Side Channel  Prime + Probe AES Non-Virtualized Single-Core 

(Ristenpart, 

Tromer et al. 

2009) 

Hey, you, get off of my 

cloud: exploring 

information leakage in 

third-party compute clouds 

To detect the co-residency of virtual 

machine and then leak the 

information (such as aggregate cache-

usage) 

Side Channel  Prime + Probe Leak 

information 

about cache 

pattern 

Virtualized Multi-Core 

(Acıiçmez, 

Brumley et al. 

2010) 

New result on intrusion 

cache attacks 

To monitor the instruction cache for 

leaking the timing information of 

cache 

Side Channel Prime + Probe DSA, 

Information 

leakage 

Non-Virtualized Multi-Core 

(Gullasch, 

Bangerter et 

al. 2011) 

Cache games–bringing 

access-based cache attacks 

on AES to practice 

To extract the confidential key with a 

less than 100 encryption by using 

timing difference of cache access 

Side Channel  Flush+Reload AES Non-Virtualized Single-Core 

(Owens and 

Wang 2011) 

Non-interactive OS Finger 

printing through memory 

de-duplication technique in 

virtual machines. 

To conduct access-driven attack to 

exploit the memory deduplication in 

the victim VMware ESXI hypervisor 

for fingerprinting the OS 

Side Channel Prime + Probe Information 

leakage 

Virtualized Multi-Core 

 

(Zhang, Juels 

et al. 2012) 

Cross-VM Side Channels 

and Their Use to Extract 

Private Keys 

To extract ElGamal decryption key 

by using cache timing attack 

Side Channel  Prime + Probe ElGamal Virtualized Multi-Core 
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Table 2.2: Continue….. 

 

 

 (Suzaki, 

Iijima et al. 

2011) 

Wait a minute! A fast, 

Cross-VM attack on AES 

To extract the AES key by exploiting 

page deduplication feature in 

VMware ESXI  

Side Channel  Flush+ Reload AES Virtualized Multi-Core 

Trace-Driven (Gandolfi, 

Mourtel et al. 

2001) 

Electromagnetic Analysis: 

Concrete Results 

To conduct attack on three different 

CMOS chips to extract cryptographic 

key 

Side Channel N/A RSA, DES Non-Virtualized 

(Smart Cards) 

Single-core 

 (Quisquater 

and Samyde 

2001) 

Electromagnetic analysis 

(ema): Measures and 

counter-measures for smart 

cards 

To establish simple and differential 

electromagnetic attack on the 

implementation of RSA, DES, 

cryptographic token and SSL 

accelerator 

Side Channel N/A DES, RSA Non-Virtualized 

(Smart Cards) 

Single-Core 

 (Bertoni, 

Zaccaria et al. 

2005) 

AES power attack based 

on induced cache miss and 

countermeasure 

To leak information by using a power 

side channel of MIPS microprocessor 

Side Channel Flush+Reload AES Non-Virtualized Multi-Core 

 (Aciiçmez 

2007) 

Yet another micro 

architectural attack: 

Exploiting I-cache 

To discover that during execution of 

RSA encryption the main cause for 

leakage information is instruction 

cache likewise the data cache 

Side Channel Prime + Probe RSA Non-Virtualized Single-Core 

 (Aciiçmez, 

Koç et al. 

2007) 

On the Power of simple 

branch prediction analysis. 

To extract information by analyzing 

the branch prediction cache 

Side Channel Prime + Probe Extract key Non-Virtualized Single-Core 
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Table 2.2: Continue….. 

 

 (Yarom and 

Falkner 2014) 

Flush+ reload: a high 

resolution, low noise, L3 

cache side-channel attack 

To extract the private encryption keys 

of RSA from a victim program across 

cores and across VM hosted by 

VMware and KVM 

Side Channel Flush+Reload RSA Virtualized Multi-Core 

Time-Driven 

 

(Bernstein 

2005) 

Cache-timing attacks on 

AES 

To attack the AES algorithm and 

extract the cryptographic key  

Side Channel Prime + Probe AES Non-Virtualized Single-Core 

(Percival 

2005) 

Cache missing for fun and 

profit 

To describe a cache-based SC attack 

on RSA on processors having 

simultaneous multithreading. 

Side Channel  Prime + Probe RSA Non-Virtualized Multi-Core 

(Brumley and 

Boneh 2005) 

Remote timing attacks are 

practical 

To launch a cache-based timing 

attack to extract confidential keys 

from a library used in web server and 

SSL applications such as OpenSSL-

based  

Side Channel Prime + Probe RSA Non-Virtualized Single-Core 

(Wang and 

Lee 2006) 

Covert and Side Channels 

due to Processor 

Architecture 

To identify two new attacks namely 

Simultaneous Multithreading and 

speculation 

Covert and 

Side Channel 

Prime + Probe RSA Non-Virtualized Single-Core  

(Osvik, 

Shamir et al. 

2006) 

Cache attacks and 

countermeasures: the case 

of AES 

To describe time-drive side channel 

attacks which neither require the 

plaintext or cipher text  

Side Channel Evict + Time AES Non-Virtualized Multi-Core 

(Bonneau and 

Mironov 

2006) 

Cache-collision timing 

attacks against AES,  

To extract cryptographic key by 

using cache-based timing attack 

Side Channel Evict + Time AES Non-Virtualized Multi-Core 
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Table 2.2: Continue….. 

 (Acıiçmez, 

Schindler et 

al. 2007) 

Cache based remote timing 

attack on the AES 

To establish cache-based timing 

attack to measure the cache timing 

for extracting secret key by using 

statistically infer information 

Side Channel Prime + Probe AES Non-Virtualized Single-Core 

 (Weiß, Heinz 

et al. 2012) 

A cache timing attack on 

AES in virtualization 

environments 

To launch a cache-based time-driven 

attack against an embedded ARM 

processor inside L4Re virtual 

machine 

Side Channel Prime + Probe AES Virtualized Single-Core 

 (Irazoqui G 

2014) 

Fine grain Cross-VM 

Attacks on Xen and 

VMware are possible! 

To conduct the Bernstein’s 

correlation attack in a virtual 

environment for the first time to show 

the implementation of cross-VM SC 

attacks on KVM, VMware, and Xen. 

Side Channel Prime + Probe AES Virtualized Multi-Core 

 (Irazoqui, 

Eisenbarth et 

al. 2015) 

S $ A: A Shared Cache 

Attack That Works across 

Cores and Defies VM 

Sandboxing--and Its 

Application to AES 

To conduct time-driven cache-based 

attacks targeting L3 cache by using 

huge pages 

Side channel Prime + Probe 

 

AES Virtualized Multi-Core 

Univ
ers

ity
 of

 M
ala

ya



 

55 

 

2.5 Prevention of Cross-VM Cache-based Side Channel Attacks 

Although hypervisor enforces logical isolation to the cloud resources through a 

mechanism called sandboxing, however as compared to physical isolation this logical 

isolation has some security implications. For instance, we know that co-locating VMs on 

the same platform are not physically isolated and can easily leak sensitive information of 

each other’s which give a great opportunity to the attackers to do security interference. 

Many researchers have shown the applicability of SC attacks to extract this confidential 

information and have also demonstrated the mitigation of these security interferences in 

this section. SC attacks use the fundamental characteristics of sensitive computation (e.g., 

power consumption, execution time, and the electromagnetic field sharing of a processor 

core with an attacker) to leak this confidential information. Computations unintentionally 

leak confidential data through either hyper threading or time division.  

The main idea of SC attacks is that most cryptographic algorithms have memory access 

pattern that are data dependent, which can be easily observed by cache miss and hit rate. 

Most of the existing prevention mechanisms are adhoc and are unable to prevent SC 

attacks because they are designed to prevent only specific attacks. No general prevention 

mechanism has been proposed in the past which could prevent all types of attacks as well 

as cache-based SC attacks (Singh and Chatterjee 2017). The proposed approaches for the 

prevention mechanisms for the mitigation of cache-based SC are categorized into three 

types. The first approach is to come up with new cache designs (e.g. (Wang and Lee 2006, 

Wang and Lee 2007, Zhang, Juels et al. 2011, Irazoqui, Inci et al. 2014, Zhou, Reiter et 

al. 2016)). In the second approach, Aviram et al. (Kong, Aciiçmez et al. 2009) described 

that cache-based SC attacks in CC can be mitigated by forcing VM execution to be 

deterministic, however, further research is still needed for this approach. The third 

approach is to construct cryptographic algorithm in such a way that it can block the cache-

based access timing attacks (e.g., (Domnitser, Jaleel et al. 2012), (Intel 2007)). The 
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existing countermeasure for SC attacks has several limitations including high overhead, 

the requirement to change the hardware and software, application-specific, or 

inappropriate to mitigate the SC attacks (Page 2003). 

Similarly, the operation and implementation of Flush + Reload is associated with the 

combination of four factors (Yarom and Falkner 2014) including the flow of data between 

sensitive information and memory access patterns, memory deduplication between victim 

and attacker VM, the analysis and the measurement of high-resolution interval, and the 

unrestricted use of clflush instruction. Preventing any of these can mitigate SC attack. 

Techniques such as new cache designs, disallow cache sharing between VM, partitioning 

the cache among tenants, and forced determinism could potentially mitigate the SC 

attacks. However, these techniques will not be widely adapted in the future because they 

require hardware changes (Coppens, Verbauwhede et al. 2009). One technique proposed 

by Zhang et al. (Zhang, Juels et al. 2011) that enable its guest VMs to detect the exclusive 

usage of the physical machine. In addition, it verifies the success or failure of the cache 

isolation policies implemented by the service provider. In addition to the data cache, other 

architectural SC includes the instruction cache (Acıiçmez, Brumley et al. 2010), the 

shared functional units (Wang and Lee 2006, Aciicmez and Seifert 2007), and the branch 

target cache (Aciiçmez, Koç et al. 2007, Zhang and Reiter 2013), all of which have been 

exploited in the cryptosystem. The countermeasures for these attacks are divided into 

hardware-based and software-based. Table 2.3 shows that existing solution for SC attacks 

requires to changing either hardware or software consequently affect the overall 

performance in term of load testing and cache utilization. 
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Table 2.3: Required Modification in the Existing Solutions of Cache-based Side 

Channel Attacks  

Implemented Solution Types Source Hardware Performance degradation 

Obscure Cache-Data Correlation Y N N 

Delay Timing Information Y N N 

Normalize Cache State N N Y 

Custom Hardware N Y N 

Disable Cache N N Y 

Cache Warming N N Y 

Cache Partitioning N N Y 

Cache Flushing N N Y 

     Y for need to change, N mean does not need to change 

2.5.1 Existing Countermeasures 

The existing countermeasures for cache-based SC attacks are divided into hardware-

based and software-based countermeasure which are explained in the following section 

in detail. 

2.5.1.1 Hardware-based Countermeasure 

The literature shows that cache-based SC attacks are mostly prevented by a hardware-

based solution that mainly focuses on altering the replacement policies of cache (Kim, 

Chandra et al. 2004, Percival 2005). Although some of these solutions are effective, the 

existing processors are unable to employ this because they need a special support of 

hardware. For instance, Osvik et al. (Osvik, Shamir et al. 2006) proposed hardware-based 

solutions to disable the cache or to utilize an individual cache for concurrent threads. Few 

of the new proposed solutions include eviction strategies which minimize the eviction of 

data of one thread used by another one (Percival 2005). In (Page 2003), the partitioned 

cache initially designed for multimedia applications is exploited to block cache-based SC 

attacks. The Instruction Set Architecture (ISA) is altered by adding new instructions to 

make the cache a prominent part of the existing architecture that can define a partition, 
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cache line size, as well as other parameters. However, the authors also claimed that the 

costs of the cache design and its computation can be high. As compared to software-based 

solution, a hardware based solution cannot provide an efficient countermeasure and takes 

more time to develop to block these attacks. As a result, this problem can be solved by 

using an efficient countermeasure such as software-based solution.  

Over the last decade, when the attention in the literature was given to SC attacks (Inci, 

Gulmezoglu et al. 2015) many proposals for the mitigation of SC attacks (Page 2003, 

Osvik, Shamir et al. 2006) were put forward. These proposed prevention mechanisms 

were typically categorized into eight types as shown in Table 3. Various methods to 

implement these prevention mechanisms, such as changing the usage of the cache to 

cryptosystem and altering the hardware channel. In addition, the hardware-based solution 

proposed (Kong, Aciiçmez et al. 2009, Domnitser, Jaleel et al. 2012), included coming 

up with new designs for a shared cache. However, these existing prevention mechanisms 

would require either modifying the source code, altering the cryptographic algorithm, 

changing the hardware (e.g., changing cache design), or creating high computation cost 

in term of high overhead. Designing new caches will take longer time and during this 

time the SC attacks do a lot of damage. Therefore, there is a need for software-based 

prevention mechanisms for the quick mitigation of SC attacks. 

2.5.1.2 Software-based Solutions 

Most of the existing prevention mechanisms for cache-based SC attacks are software-

based and are associated to a specific cryptosystem. The basic phenomenon of this 

prevention mechanism is to edit the software in a new method that the SC attacks cannot 

be established. Such as, to prevent SC attacks on AES, many types of mechanisms have 

been proposed, such as 1) The AES tables must be loaded into the cache prior to executing 

an encryption so that all accesses to AES create cache hit and hence have constant 

encryption time, 2) During the AES execution, only mathematical operations should be 
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used instead of table lookups. For instance, Brickell et al. (Brickell, Graunke et al. 2006) 

proposed a software solution, which mitigates the SC attacks by changing the 

implementation of cryptographic algorithms including RSA and AES. Similarly, the 

researchers in (Coppens, Verbauwhede et al. 2009, Aviram, Hu et al. 2010, Shi, Song et 

al. 2011, Zhang and Reiter 2013, Godfrey and Zulkernine 2014) proposed software-based 

countermeasure for the quick mitigation of SC attacks. Over the last decade, hardware-

based solutions have been used for the mitigation of SC attacks, however, recent security 

activities motivate the implementation of software-based prevention mechanisms by 

improving the software isolation properties.
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Table 2.4: Countermeasures for Cross VM Cache-based Side Channel Attacks 

 

Ref Title Description Attack Types Implementation 

Type 

Used Method Limitation 

(Aumüller, 

Bier et al. 

2002) 

STEALTHMEM: System-

Level Protection Against 

Cache-Based Side 

Channel Attacks in the 

Cloud 

To propose system level design in which 

hypervisor or OS give an individual 

access to a particular sectioned portion of 

the cache to each VM. 

Trace-driven 

Time-driven 

Software-based - Locking page 

- Page partitioning 

Require user interaction 

for client side 

modification which does 

not comply to the cloud 

model 

(Page 2005) Partitioned Cache 

Architecture as a Side-

Channel Defense 

Mechanism 

To propose a cache partitioning method 

against SC attacks that use data cache 

and access to SBOX through this cache  

Access-driven 

 

Hardware-based - Partitioning Cache - High overhead 

- Require hardware 

modification 

(Brickell, 

Graunke et al. 

2006) 

Software mitigations to 

hedge AES against cache-

based software side channel 

vulnerabilities 

To secure encryption algorithms (RSA 

and AES), they proposed new 

implementation of AES and RSA 

Access-driven Software-based - Compact S-Box table 

- Frequently 

randomized Table 

- Pre-loading of 

relevant cache line 

 

- Performance 

degradation 

- Require software 

modification 

(Osvik, 

Shamir et al. 

2006) 

Cache attacks and 

countermeasures: The case 

of AES 

To describe an active timing SC attack 

and then prevent this attack by disabling 

the cache or use separate cache for 

simultaneous thread 

Access-driven  Hardware-based - Disabling cache - Need hardware change 

(Wang and 

Lee 2006) 

Covert and Side Channel 

due to processor architecture 

To propose new cache design for 

mitigation of attacks 

 NA Hardware-based - Selective cache 

partitioning 

- Random permutation 

cache 

- Require hardware 

change 

- High Overhead 

- Application specific 

(Wang and 

Lee 2007) 

New cache designs for 

thwarting software cache-

based side channel attacks. 

To propose hardware based mitigation 

technique by designing new cache or by 

dividing the existing cache to hide cache 

access pattern 

Time-driven  Hardware-based - Locking cache line 

- Cache partitioning 

- Require hardware 

modification 

- Performance Degradation Univ
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Table 2.4: Continue…. 

 

(Intel 2007) Faster and timing-attack 

resistant AES-GCM 

To construct a constant time 

cryptographic AES implementation that 

mitigates cache-based timing attacks 

Time-driven Software-based - AES implementation - Require software changes 

- Runtime time overhead 

(Kong, 

Aciiçmez et 

al. 2009) 

Determinating timing 

channels in compute clouds 

To mitigate timing side channels in 

virtualized environment by forcing the 

execution of VM to be deterministic 

Time-driven Software-based - deterministic 

execution 

Need fine grain timing 

information 

(Zhang, Juels 

et al. 2011) 

Non deterministic caches: a 

simple and effective defense 

against side channel attacks 

To introduce the cache decay approach 

which controls cache and randomly 

select the interval of the cache to create 

non-deterministic behavior of the cache. 

Access-driven Hardware-based - Cache decay 

approach 

- Require hardware 

modification 

- High overhead 

(Shi, Song et 

al. 2011) 

Limiting cache-based side-

channel in multi-tenant 

cloud using dynamic page 

coloring. 

To partitioned the cache and reserved a 

small portion of the cache for each VM 

and core by using page coloring 

technique 

Access-driven Hardware-based - Partitioning of cache 

- Page coloring 

Require the software 

changes 

 

(Domnitser, 

Jaleel et al. 

2012) 

A fast and cache-timing 

resistant implementation of 

the AES 

To construct a new implementation of 

cryptographic algorithm that resists side-

channel attacks 

Access-driven Software-based - Lookup-based 

Implementation 

- Runtime overhead 

- Less data memory 

- Application and Attacks 

specific  

 

(Kong, 

Aciicmez et 

al. 2013) 

 

Architecting against 

software cache-based side-

channel attacks  

To propose a prevention mechanism that 

hides the cache access by different cores 

Access-driven Hardware-

Software 

integrated 

- Preloading 

- Informing Load 

- Software 

Permutation scheme 

Require Code changes 

Performance degradation 

(Irazoqui, Inci 

et al. 2014) 

Deconstructing New Cache 

Designs for Thwarting 

Software Cache 

Based Side Channel Attacks 

To propose new cache design namely 

Random permutation cache and Partition 

lock cache 

Time-driven Hardware-based - Cache partitioning - Unable to prevent the 

attack which built either 

on cache collision or 

cache sharing 

- Need hardware 

modification 
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(Godfrey and 

Zulkernine 

2014) 

Preventing Cache-Based 

Side-Channel Attacks in a 

Cloud Environment 

To implement a server side solution 

which complies Cloud model and does 

not need any changes in the software or 

underlying hardware 

Access-driven Hypervisor-

based 

- Cache flushing 

- Static Cache 

partitioning 

- High Overhead 

- Misuse Cache Utilization 

(Crane, 

Homescu et al. 

2015) 

Thwarting Cache Side-

Channel Attacks Through 

Dynamic Software Diversity 

To propose a solution which use 

dynamic software diversification to 

change the observable execution features 

while preserving semantic of program 

and just changing the replica at the 

machine level instruction 

Access-driven 

Time-driven 

Software-based - Diversifying 

Transformation 

- Inserting random 

memory load 

Require the changes in 

cryptographic algorithms 

(Zhou, Reiter 

et al. 2016) 

A Software Approach to 

Defeating Side Channels in 

Last-Level Cache 

To proposed CacheBar approach which 

automatically detects the concurrent 

access to shared pages and prevents them 

from evicting memory contents 

Access-driven Software-based - Copy on access for 

physical pages 

- Cache ability 

management 

Running Overhead 

(Liu, Ge et al. 

2016) 

CATalyst: Defeating Last-

Level Cache Side Channel 

Attacks in Cloud Computing 

To propose a solution that protects the 

square-and-multiply algorithm in GnuPG 

1.4.13 by dividing the cache into secure 

and non-secure partition 

Access-driven Hardware-based Cache partitioning Dependent on intel cache 

specific design 
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2.5.2 Proposed Countermeasures 

In the following sections, we discuss several prevention mechanisms that prevent the 

exploitability of the shared level cache and SC attacks. 

2.5.2.1 Disable Huge Size Pages 

The main cause of SC attacks is the utilization of huge pages due to which attacks take 

benefit of the additional memory address. Thus the attack by using huge pages can be 

conducted in both virtualized and non-virtualized environment since in Linux and in the 

CC, huge pages are enabled in advance in the hypervisor. In particular, Irazoqui et al. 

(Irazoqui, Eisenbarth et al. 2015) established SC attacks by using huge pages. These 

attacks can be prevented by not allowing the guest VM to use huge size pages. The VMM 

or hypervisor is responsible for making decisions about huge size pages, based on precise 

parameters such as the size or memory space resources that are needed by the 

programming code. 

2.5.2.2 Cache Partition Using Cache Coloring 

Cache coloring is a software-based approach which is used for mapping memory pages 

to cache lines and for the purpose of a cache hit optimization. The author in (Taylor, 

Davies et al. 1990) introduced this as an OS performance optimization technique to 

improve the performance between the physical and virtual memory. This technique is 

designed to ensure that accesses to contiguous pages in virtual memory make the best use 

of the processor cache. For instance, two instructions or two VMs that are consecutive in 

the memory can evict one another data in the cache. Cache coloring solves this problem 

by mapping the two consecutive memory addresses into non-consecutive locations of the 

cache. Furthermore, the author used the cache coloring approach for the prevention of 

cache-based SC attacks (Shi, Song et al. 2011) by dividing the cache into the various 

portion. The partition of cache for each individual VMs is always implemented using 
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cache coloring approach which is used in the earlier research for the cache performance 

improvement (Jin, Chen et al. 2009). There is two type of cache partition mechanism 

namely static and dynamic cache partition. Static partition degrades the overall 

performance of the system by decreasing the usable portion of the cache for each 

individual VMs. In contrast dynamic partition improve the usable part of cache for each 

VMs by diving the cache on the fly according to VMs requirement. Moreover, this thesis 

conducted the dynamic cache partition approach for the prevention of cache-based SC 

attacks as well as improve the cache usage for the various VMs. 

2.5.2.3 Private LLC Cache Slices 

The SC attacks can be prevented by making the cache slices per private VM, same as 

to the prevention mechanism presented in (Wang and Lee 2007). Author’s means that two 

co-located VMs are unable to use the identical cache slice at the same period of time or a 

guest VM is not allowed to use it when it is being used by another co-located VM. 

Therefore, the attacker cannot reach the victim‘s cache slice and may not able to decide 

on the usage of memory lines by the attacker. However, this prevention mechanism 

requires a change in the cache structure and a reduction in the length of the cache slices 

for a VM. The creation of multiple Guest VMs on the multiple cache slices can also be 

restricted. 

2.5.2.4 Controlling Clflush Instruction 

In X86 architecture the deficiency of authorization check for the clflush instruction is 

the major cause for the SC attacks (Yarom and Falkner 2014). These attacks can be 

mitigated by controlling or limiting the power of the clflush instruction. Clflush 

instruction is used to enforce the memory coherence in the devices that do not support 

memory coherence (Intel 2007). In addition, it also improves the efficiency of the 
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program by controlling the usage of cache memory and flushing the lines from the cache 

that is not in use during the program execution. 

2.5.2.5 Preventing Page Sharing 

The Flush + Reload SC attacks can be mitigated by preventing the sharing of memory 

between the victim and the attacker programs. However, this prevention mechanism will 

degrade the overall performance as well as affect the functionality of the system by 

opposing the increased page sharing trend in the OS and the hypervisor. The complete 

prevention of memory sharing would increase the demand of memory for the OS and the 

hypervisor and therefore it is not a good solution. However, this solution can be adapted 

to prevent the sharing of the personal credential by changing the program loader code. 

Furthermore, there is another possible solution for preventing a Flush + Reload attack is 

to disable deduplication, which is disabled by default in the XEN hypervisor only (Suzaki, 

Iijima et al. 2011, Suzaki, Iijima et al. 2011). 

2.5.2.6 Prefetching Cache Memory 

The prefetching of lookup tables or T tables of any encryption algorithm into the cache 

before execution of the attacker program blocks the SC attacks. The attacker will never 

analyze the difference in the memory access time because all the data will be loaded into 

the cache prior to execution of attacker program. However, the prefetching of 4kb size T 

tables requires more memory and more time. Consequently, it would increase the AES 

encryption time and overall performance of the system. The assembly version of AES in 

OpenSSL used the prefetching technique to stop cache memory information leakage 

because of T table’s access. 

2.5.2.7 Flushing Cache Memory 

Flushing a cache increases the execution time on a modern processor, therefore, a 

cache must be flushed only when it is needed. It has been disregarded as a prevention 
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mechanism for traditional cache-based SC due to the generation of large amounts of 

overhead (Osvik, Shamir et al. 2006). Flushing the T tables after the execution of the 

encryption algorithm (e.g., AES) from the cache memory produces the same result as 

cache prefetching. The attackers check the access time difference by locating the T tables 

in the memory. The generated overhead from cache flushing is based on two main 

elements: the proportion of flushes to context switches and the context switching ratio in 

the system. These two factors in combination generate the major source of overhead that 

reduces the system performance. Additional context switches are needed for the increased 

flushes and more overhead is generated when more flushes are needed. Cache flushing 

for mitigating the cache-based SC attack in a non-virtualized environment is more 

expensive (Osvik, Shamir et al. 2006) because in the non-virtualized environment, the 

high rate cache flushing and overhead are required on the process-level. However, in 

virtualized environment, the prevention of SC attacks on process-level is not required, 

but the prevention of SC attacks across VM-level is required. By comparison, in the cloud 

system, the context switch rate between VMs is comparatively much lesser than the rate 

between programs in a regular OS because very few VMs are created when compared to 

processes or programs.  

2.5.2.8 Hardware Masking of Addresses 

This prevention mechanism is conducted on the hardware level, which applies a mask 

to the offset field. During the usage of huge pages, this mask to the offset field is applied 

on the basis of some of the non-set addressing bits in the physical address. Since the offset 

field is completely hidden from the users and they have no longer control over the offset 

field. Thereby, the user is unable to lead the particular set, which he desires to target in 

the LLC memory and is unable to decide whether the victim has used that particular set 

or not (Irazoqui, Eisenbarth et al. 2015). The detail description of countermeasures is 

given in Figure 2.8. 
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Figure 2.8: Overview of Countermeasure for Side Channel Attacks 

2.5.2.9 Address Translation using Shadow Page Table  

In many architectures including X86, the CPU uses the shadow page table for address 

translation. In the case of virtualized environment, the VMMs use the shadow page tables 

for a virtual to virtual memory translation. For example, the shadow page tables are not 

only responsible for the translation from VM’s virtual memory to the hypervisor (e.g., 

XEN and VMware) virtual memory but are also responsible for applying a mask based 

on the non-cache-addressing bits. Therefore, the guest user is unaware of the masking 
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value applied by the guest VM, and he is unable to control the set that the LLC (L3) that 

contain his data. 

2.5.2.10 Dynamic Software Diversity 

Dynamic software diversity approach is a protection mechanism against both online 

and offline cache based SC attacks. The countermeasure for the attacks which rely on the 

static properties of computation includes diversification of the program representation. 

On the other hand, SC attacks rely on the dynamic properties of computation including 

memory access timings, time of execution, and the power consumption. Consequently, 

for the prevention of SC attacks the diversification will randomize the program’s 

execution instead of representation. 

2.6 Research Challenges 

Through the detailed study of literature, we analyzed and found that there are some 

research challenges related to prevention mechanisms. These research challenges are 

listed in the following subsection. 

2.6.1 Efficient Cache Utilization 

Since the cache-based SC attacks are implemented using the shared L3 cache. The two 

VMs using the same cache can evict and also extract each other confidential data. There 

are prevention mechanisms which divide the shared L3 cache into a partition to restrict 

the individual VMs to a specific part of the cache. However, this degrades the cache usage 

for each VMs which affect the overall performance of the system. There must be a 

mechanism which could divide the cache into a partitions in such a way which does not 

reduce the cache utilization of individual VM and without affecting the performance of 

the system. 
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2.6.2 Server Side Solution Transparent to Guest OS and Client Software 

The literature showed that the attention has been given to SC attacks in the non-

virtualized environment since the 70s. Many prevention mechanisms including software-

based and hardware-based have been proposed to mitigate such attacks (Page 2003, 

Osvik, Shamir et al. 2006, Tromer, Osvik et al. 2010). These include modification of the 

hardware functionality (e.g., cache), to disable the hardware channel, modifying the 

encryption algorithms (e.g., AES and RSA), or breaking the correlation between 

hardware and program’s execution by altering the victim. Unfortunately, implementing 

any of these defensive mechanisms would either require the cloud users to change their 

software intended to be executed in the cloud (Aumüller, Bier et al. 2002, Shi, Song et al. 

2011), or to customize all the underlying hardware needed to be used in the cloud (e.g., 

cache) (Page 2003). Both of these solutions contradict the relationship between the cloud 

model and their users, as they would either restrict the client to change their software or 

needed the hardware changes, consequently restrict the client to use the cloud. In the 

virtualized environment, the hardware and software based solution are inappropriate 

where VM is dynamically added and removed, so the security requirement is also 

changing. Thereby a server-based prevention solution is required in virtualized 

environment which is transparent to the clients and the underlying hardware and does not 

need the changing of client software or hardware and always comply to the user relation 

with the cloud. 

2.6.3 Predicting Cache Contention 

If several applications or VMs are accessing an identical part of the cache in parallel 

as it is in the case of SMT or Chip Multi-Processing (CMP) and if there is not enough 

cache associativity. Then the two executing applications or VMs displace each other data 

in order to fill with their own data as well as to extract confidential information. In this 

cache, the cache contention occurs when the VMs request for the displaced data has to be 
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re-fetched. There must be a cache contention co-aware scheduling where various VMs 

running in parallel on the shared cache is to be aware of co-aware scheduling. Cache 

contention co-aware scheduling can reduce the drawback initiated by cache contention 

by an appropriate mapping of VMs to various CPU Cores and a proper scheduling of 

VMs. 

2.6.4 Determining Optimal Cache Partition Policy at run time with low Overhead 

When two or more VMs running on the same physical system, they shared the LLC 

(L2 or L3) even both are on the different cores. There are existing mechanisms including 

cache partition, assign per VM cache, assign part of cache to secure algorithm, which 

divides the cache for individual VM and restrict each VMs cache utilization. However, 

these cache partitions degrade the cache usage for an individual user and consequently 

degrade the overall performance of the system. Therefore there must be a mechanism 

which monitors and determine the required cache of each VM and optimally partitions 

the cache accordingly.  

2.6.5 Improving the Xen Credit Scheduler 

Some attackers perform the attacks based on the core-private-cache (e.g., L1 and L2) 

by exploiting the Xen credit scheduler to extract the fine-grained information of the same 

cores for two different VMs. There must be a mechanism to improve the functionality of 

Xen scheduler to restrict the L1 (data & instruction cache), L2, and L3 cache usage in 

order to not interfere with each other data. 

2.6.6 Hiding Memory Access Pattern 

The cryptographic algorithms have data-dependent memory access pattern, which can 

be easily extracted by the attackers by observing the associated hit and miss rate of cache 

memory. During encryption and decryption cache attacks depend on certain statistics to 

leak the confidential information in the form of cryptographic key. The information 
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leakage is due to the low-level detail provided by the CPU namely the structure of the 

cache memory, specifically forms a shared LLC which all the VMs compete for and thus 

is affected by each VM. For instance, the attacker VM takes benefit from this shared 

resources. Although virtual memory mechanism protects each VM data is cache, 

however, the metadata about cache content and the memory access pattern is not fully 

protected and is available to all running VMs. Therefore, there must be a mechanism in 

the OS kernel which hides the memory access pattern of that physical system on which 

different VM is running. 

2.6.7 Cache-Aware Scheduler for Optimum Cache Partition 

The scheduler must be cache-aware, that scheduler has the ability to monitor the cache 

utilization of individual VM and decides the partition accordingly. Since various VMs 

shared the local cache section, there is a change for cache interference to happen between 

VMs. In this case, there must be a global coordination amongst schedulers on each core 

for using cache in a proper manner. The likelihood of cache contention as a result of static 

and dynamic cache partition can be reduced by proper scheduling of VMs and by sharing 

the information on page color usage. 

2.6.8 Soft Isolation as a Solution 

In hard isolation, the hardware is dedicated to every VM, however it degrades the 

performance and efficiency in term of reducing cache usage. In contrast, soft isolation 

such as scheduler based prevention mechanism (Varadarajan, Ristenpart et al. 2014) 

improve the performance and reduce the risk of sharing through better scheduling. 

Although hard solution is more effective, however it cannot be applied in the existing real 

processor because it is based on cache replacement policies (Kim, Chandra et al. 2004, 

Qureshi and Patt 2006). In contrast, soft solution is not based on the hardware replacement 

policies and it used the page coloring technique to change the source code of the Xen 
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scheduler or OS scheduler and can be very deployed without any additional hardware cost 

(Tam, Azimi et al. 2007, Shi, Song et al. 2011). 

2.7 Discussion 

In the virtualized environment, the hardware and software based solution are 

inappropriate where VM is dynamically added and removed, so the security requirement 

is also changing. Thereby a hypervisor-based prevention solution is required in 

virtualized environment which does not need the changing of client software or 

underlying hardware and always comply to the user relation with the cloud. Our research 

work in this thesis addresses the software attacks and does not consider the physical 

attacks such as bus probing and the analysis of power. In addition, our focus is on software 

solutions instead of the hardware solutions. In (Godfrey and Zulkernine 2014) the author 

referred to the cloud relation with the user and underlying hardware as the cloud model. 

According to the cloud model the prevention mechanism, which does not need hardware 

or software changes is implemented for the prevention of SC attacks. In order to 

implement any defensive mechanism, the two key points are highlighted that have 

become commonplace in CC. Since the users’ is completely unaware of the cloud 

environment, they may not have the permission to change their canonical software they 

intend to run on the cloud. Secondly, a CC can be easily maintained and expanded, 

because it is built from canonical hardware. In order to maintain the practicality of the 

CC, these two key factors must be maintained.  

One solution to SC attacks is the modification of the encryption algorithms (AES, 

RSA, and ElGamal). The solution is based on writing constant time AES algorithm 

because the variable timing AES has created an opportunity for attackers to launch an 

attack. However, to write constant time AES encryption algorithm is very difficult 

because constant time AES is unacceptable for many application. Kim et al. (Aumüller, 

Bier et al. 2002) have implemented a prevention mechanism for active time-driven and 
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trace-driven cache-based SC attacks in the cloud environment. Hyperthreading, 

preemptive scheduling, and multi-core OSs are the leakage channel which forms the basis 

for these time-driven and trace-driven attacks. In preemptive scheduling, the attackers 

VM and victim VM may use a single CPU core and its cache. In hyperthreading, multiple 

hardware threads execute on a single CPU core. While in multi-core the attackers and 

victim may be executing in parallel on a separate CPU core with a shared L3 cache. This 

framework is compatible with the existing server hardware and tenant software and it will 

not affect the system performance. In their prevention solution, they have given an 

individual access to some part of the cache known as stealth page to prevent cache-based 

SC attacks. However, in order to access these stealth pages by using software application, 

their prevention mechanism requires to changing the software being run in the guest VM. 

Since the modification of client software violates the cloud model and describes the 

requirement for a transparent prevention mechanism to the client. The state of the art 

literature showed very little work describing the severity of other side channels including 

power consumption, electromagnetic radiation in the cloud as compared to cache-based 

SC attacks. To this extent, the most interactive device is the CPU cache, thereby, is the 

commonly targeted channel to exploit for the successful SC attacks in the cloud. This is 

because it generates one of the highest and reliable communication speeds. Thereby, this 

chapter describes the prevention mechanisms for cache-based SC attacks as opposed to 

any other channel (Zhang, Juels et al. 2012).  

Misiu et al., proposed a preventive mechanism for SC attacks without changing or 

affecting cloud model. In addition, if a prevention mechanism can be compiled without 

change or effect the existing hardware and software then it can be easily adapted to the 

existing cloud system without any interference to the cloud functionality. For this, the 

author used the Xen source code for the prevention of SC attacks without change the 

client side or hardware. Wang et al., (Wang and Lee 2006) proposed the hardware-based 
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mitigation methods which reduce the cache accesses by designing new caches, or by 

caches partitioning with dynamic or other efficient methods. However, this prevention 

mechanism requires changing the underlying hardware and software. Mitigation of SC 

attacks is very necessary at a hardware level since these channels of hardware level are 

not affected by the strong mechanism of software isolation. The attackers steal the 

information from the victim through shared functional unit that is dynamically allocated 

to each of processes in every cycle. In this sharing process, one process can interfere with 

another leading process through a side channel. In their paper, two methods are proposed 

one is Selective Partitioning and the other is novel Random Permutation Cache 

(RPCache). Selective partitioning by hardware (or software) can prevent the simultaneous 

multithreading/functional unit covert channel problem. The RP cache solution is 

implemented by using distinct memory location to cache mappings between a process 

that need isolation from each other and is used to mitigate software cache-based SC 

attacks. It can also find which cache location is used by another process. The main 

advantage is low-performance degradation. While the disadvantage is extra overhead 

when two cache sets are swapped. 

Weiß et al. (Weiß, Heinz et al. 2012) conducted a cache timing attack on AES for the 

first time in an L4Re VM running on an ARM processor inside a Fiasco.OC microkernel. 

The attack is implemented using Bernstein’s correlation attack and the target of this attack 

is many popular AES encryption algorithms including the one in OpenSSL. The 

extraction of the most fine-grain information from inside a VM is the significance of this 

work (AES vs. ElGamal keys in (Zhang, Juels et al. 2012) ). The cipher text determines 

the entry of the loaded table by a byte of the cipher state. Hence, information about the 

confidential key of AES can be extracted by accessing the cache directly that during 

execution which table data have been inserted into cache like trace-driven attacks. The 
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corresponding information can also be extracted by monitoring the behavior of timing 

during various AES executions over time, like time-driven cache-based SC attacks. 

 Yarom et al. (Yarom and Falkner 2014) demonstrate a trace-driven flush + reload 

attack which accesses specific memory lines to evicts the data from the LLC and extract 

the encryption key of the RSA algorithm. Furthermore, he noted that this attack could be 

applied in CC. Similarly, Tiri et al. (Liu, Yarom et al. 2015) proposed an analytical model 

which forecasts the symmetric key of ciphertext against timing attacks based on the 

lookup table and length of cache lines. The access-driven cache attacks need the attacker 

to monitor that which lines of cache have been monitored (like trace-driven attacks), but 

similar to timing-driven SC attacks it does not need detailed information about the cache 

that how and in what order the cache was accessed for data. Therefore, these classes of 

attacks can be varied with each other based on the attacker's access capabilities. The 

software-based countermeasure is needed for the mitigation of these types of attacks. 

Because hardware based solution takes time and degrades the overall performance. The 

hypervisor-based software solution for these type of attacks is cache flushing and cache 

warming, however, it degrades the overall performance of the system in term of CPU 

speed and load (Godfrey and Zulkernine 2014). 

In (Godfrey and Zulkernine 2014), the author proposed a purely software-based server-

side defense for cache-based SC attacks in the cloud. To make it fully deployable on the 

cloud model, the author implemented the solution in such a way that it does not require 

the software used to run CC or hardware changes for the prevention of SC cache-based 

attacks between co-resident VM. The prevention mechanism for SC attacks should be 

invisible and secure from cloud provider as well as from client and only visible to the 

cloud developer. Wang (Wang and Lee 2007) mitigate SC attacks by redesigning or 

partitioning the cache. The author in (Wang and Lee 2007) identified two main solutions 

namely Selective Partitioning such as Partition-Locked cache (PLcache) to hide the 
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access pattern of the cache by locking cache lines and the other is novel Random 

Permutation cache (RPcache) to complicate patterns of the cache by randomizing cache 

mappings. One of the solutions is to minimize the interference between cache lines by 

partitioning the cache. The other class of solution is to allow sharing by randomizing the 

interference between cache lines so that no useful confidential information can be 

extracted. The RPcache solution is implemented by using distinct memory location to 

cache mappings between the processes that need isolation from each other and is used to 

mitigate software cache-based SC attacks. It can also find which cache location is used 

by another process. These hardware-based solutions, however, is unable to provide 

practical defensive mechanism until CPU designer and cloud provider purchase and 

integrate them into CPUs and cloud providers purchase them. The main advantage is low-

performance degradation. While the disadvantage is extra overhead when two cache sets 

are swapped. 

2.8 Conclusion 

CC is a shared open environment, which has its own characteristics and features such 

as on-demand services and multi-tenancy. Specifically, it introduces multi-tenancy to 

facilitate the users to share computing physical resources provisioned over the Internet 

on-demand scaling. While multi-tenancy has many benefits, this paradigm introduces a 

new concept known as clients’ co-residence and VM’s physical co-residency. This co-

residency arise security vulnerabilities to CC and enables a new form of sensitive 

information leakage including SC attacks. Although there are many benefits to adopting 

CC, however, security is the most significant barrier to adoption. In order to gain the trust 

of clients, cloud provider must consider the security in CC. VM managers (VMMs) 

namely XEN and VMware for modern virtualization systems enforce logical isolation 

between VM by using sandboxing mechanism. Since this logical isolation is not 
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equivalent to physical isolation, the attackers can easily circumvent this logical isolation 

by using SC attacks. 

In this thesis, different hardware and software, specifically CPU cache-based SC 

attacks and their countermeasure have been discussed. CPU cache is one of the most 

prone hardware devices targeted by adversaries due to its high rate of interactions and 

sharing between processes. In addition, several methods have been described by which 

the attacker can observe the memory pattern of the victim process. e.g., one that executes 

encryption algorithm with an unknown private key. These methods are categorized into 

various type based on cache state. In one method, the affect the cache state is observed 

and then measure and analyses the consequence on the encryption algorithm running time, 

and in second methods the state of the cache is investigated after or during encryption. 

The second method is found to be noise-resistant and particularly effective. For 10 years 

it is a known problem in a virtualization environment. The most past attacks applied on 

the L1 cache which exploits the hyper threading or scheduler weaknesses. However, the 

existing LLC attacks (L2 or L3) such as the prime probe, flush reload, and LLC attacks 

require memory deduplication and usage of huge pages. Some attacks do not have 

restrictions such as hyper-threading and memory sharing. There is a need for prevention 

mechanisms which is hypervisor-based and does not need any software by the client or 

the changing of the underlying hardware. The hypervisor-based software solution for 

these type of SC attacks is cache flushing and cache warming, however, it degrades the 

overall performance of the system in term of CPU speed and load.Univ
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CHAPTER 3: PROBLEM ANALYSIS 

In this chapter, we aim to analyze the existence of the cross-VM cache-based SC 

attacks and the performance of the existing prevention mechanism to mitigate these 

attacks in the cloud environment. Although cache-based SC attacks and the prevention 

mechanism for these attacks in multiprocessing systems namely in networks, in OS, and 

in database systems have already been studied by the researcher for many years. However, 

in CC this is a new topic for research. As we already discussed in detail in Chapter 2 when 

two or more VMs run on a multiple cores system. One VM would be able to disturb the 

cache access of another VM and can extract secret information, even if every VM is 

running on a dedicated core. This situation has created a security risk in the form of cache-

based SC attacks in the cloud environment. Therefore, in this thesis, cache-based SC 

attacks and the preventive countermeasures for these attacks in CC have been discussed. 

The main objective of this chapter is to analyze the aforementioned research problems 

discussed in Section 2.6 to establish the problem. The measurement parameter to analyze 

and establish the problem is the implementation of the cache based SC attacks in the cloud 

environment and to analyze the overhead of the existing prevention mechanism for cross-

VM cache-based SC attacks in term of CPU’s load and speed and cache usage. The 

problem analysis for this thesis consists two parts. 

The first part of the problem analysis is to implement the cache-based SC attacks in 

the cloud and a non-cloud environment. This analysis is accomplished on the basis of 

Prime + Probe and Flush + Reload method to check the existence of information leakage 

through shared devices. We carried out the software based SC attacks, in which victim 

program play the role of sender and the attacker program as a receiver. The attacker places 

some code in the cache during the execution of victim program. The attackers observe 

the difference in the cache access time and execution time of encryption algorithms 
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through software side channel to leak some confidential information to extract the full 

encryption key or part of the encryption key. 

The second part of the problem analysis is to formulate the overhead of the existing 

prevention mechanism for cross-VM cache-based SC attacks. The initial findings are 

verified through apache, cachebench, and cachegrind benchmarking experiments on a real 

cloud environment. The results from two hypervisors including unmodified 

(default/unsecure) and static partitioned unveil the performance degradation in terms of 

bearable load, cache utilization and memory access time due to static cache partition as a 

prevention mechanism. The remainder of this chapter is organized as follows. In Section 

3.1, we present the experimental methodology for launching the SC attacks and for the 

performance analysis of the prevention mechanism. In Section 3.2, we provide the 

detailed investigation of the SC attacks and implement SC attacks by using flush + reload 

and prime + probe techniques. In Section 3.3, static cache partition as a solution to SC 

attacks is presented. Section 3.4 describe the performance evaluation of the static 

partitioned based prevention mechanism by using various benchmarking experiment and 

the chapter is concluded in Section 3.5. 

3.1 Experimental Methodology 

In this section, we report the details of the experimental setup for this study. In order 

to evaluate the prevention mechanism for SC attack, we implemented the cache-based SC 

attack in native OS, XEN, and VMware hypervisor. Because for the analysis of 

prevention mechanism, it is needed to implement the attack first. For this, we utilize the 

customized version of XEN hypervisor on Ubuntu and creates two VMs. We changed the 

XEN source code according to our requirement and used different benchmarks. The main 

focus of our work is to prevent the cache-based cross-VM SC attacks and to evaluate the 

computational overhead of prevention mechanism in term of CPU load and CPU speed. 
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Table 3.1: Experimental Environment in Problem Analysis 

Items Detail 

CPU Processor Intel Core i5-3450 CPU @ 3.10GHz, 4 cores, Hyper Threading disabled 

L1 Data-cache 32KB, 8 way associative, line size 64  

L1 Instruction-cache 32KB, 8 way associative, line size 64 

L2 Cache 256KB, 8 way associative, line size 64 

L3 Cache 6144KB, 12 way associative, line size 64 

Memory 11915MB DDR3 @1333MHz 

VMM Xen Hypervisor with static cache partition 

Virtual Machines HVM guest, 1GB memory, 1 dedicated core for individual VM 

Guest OS Ubuntu 12.04.5 

3.2 How cache based side channel attack works 

As described in Section 2.4, the root causes of the cache-based cross-VM SC attacks 

are the memory sharing and cache interference and specifically multitenancy and co-

residency in virtualized environment. PTP (Prime + Trigger + Probe) and Flush + Reload 

are the two methods widely used for conducting SC attacks and the main causes for these 

attacks are cache interference e.g., memory deduplication and usage of the huge pages. 

Flush + Reload attacks are conducted by sharing some physical memory pages between 

the attacker and victim (Zhang, Juels et al. 2012, Yarom and Falkner 2014). The PTP 

technique does not require the sharing of memory pages between the attacker and the 

victim. Instead, the PTP attacks are conducted by sharing the same CPU cache set 

between the attacker and the victim (Irazoqui, Eisenbarth et al. 2015). PTP is mostly used 

to launch time-driven attacks by using the whole cache set while access-driven attacks 

are mostly conducted by using the Flush + Reload method (Tromer, Osvik et al. 2010), 

which uses a specific single cache line. In the access-driven channel, the value sent by 

the sender is written, and then the receiver reads and stores that value. While in timing 

channels signaling information of the sender is observed and decoded by the receiver by 

modulating the use of resources over time.  

These two methods are proven to be conducted on the systems when the memory 

deduplication feature is enabled by the VMM to share some pages between the attacker 
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and the victim processes (Yarom and Falkner 2014). Due to the sharing pages capability, 

the attacker can know about the eviction of a particular memory line from all levels of the 

cache. The spy observes the memory access timings to leak the secret information. The 

Flush + Reload technique is a variation of Gullasch’s attack (Gullasch, Bangerter et al. 

2011) which can be adapted for use in the multi-core and in virtualized environments. 

Gullasch et al. (Gullasch, Bangerter et al. 2011) also conducted attacks on specific 

memory lines. However, the victim process is frequently interrupted by the attacker and 

as a result, it generates much false-positive. Similarly, Yarom et al. (Yarom and Falkner 

2014) conducted the Flush + Reload attack to extract the secret key of RSA across 

different cores in virtualized environment. Later on, Irazoqui et al. (Suzaki, Iijima et al. 

2011) conducted the Yarom’s attack on cross-VM hosted by VMware in virtualized 

environment to extract the cryptographic key of AES algorithm. In our thesis, we used 

the Prime + Probe method to implement the Gorka’s attack. The basic algorithm which is 

used for both prime + probe and flush + reload techniques in order to implement cache-

based SC attack is as follows: 

Table 3.2: Algorithm for Implementing Cache based Side Channel Attacks  

Sender queries Receiver queries 

(Wait for receiver to perform some 

queries) 

for i := 0 to N −1 do 

{Put Cache (i) into the cached state} 

Access memory maps to Cache (i); 

end for 

for i := 0 to N −1 do 

if DSend (i) = 1 then 

{Put Cache (i) into the flushed state} 

Access memory maps to Cache (i); 

end if 

end for 

(Wait for sender to prepare the cache) 

(Wait for receiver to read the cache) for i := 0 to N −1 do 

Timed access memory maps to Cache (i); 

{Detect the state of Cache (i) by latency} 

if AccessTime > Threshold then 

DRecv (i) := 1; {Cache (i) is flushed} 

else 

DRecv (i) := 0; {Cache(i) is cached} 

end if 

end for 
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3.2.1 Implementation of Cross-VM Cache-based SC Attack by using Flush + 

Reload technique 

In order to conduct cache-based SC attacks, Flush + Reload technique is used. This 

technique consists the three phases.  

Step 0: attacker will flush the cache (Flush) 

Step1: Target victim access cache line and do some operation  

Step 3: attacker measures the delay by reloading memory lines 

During the first phase, the observed memory line is flushed from all the levels of cache 

including L1, L2, and L3. In the second phase, the attacker will wait until the target victim 

access to the memory line and do some operation before the third phase. During the third 

phase, the spy measures the delay in the memory access timings by reloading the memory 

lines. If the victim accesses the memory line during the wait phase, the cache hit occurs 

and the reload time will be short because the monitored line will be available in the cache 

memory. While a cache miss occurs when the victim is unable to access the cache 

memory lines, the reload time will be high because the lines will be required to access 

from the main memory. The flush reloads attack is always conducted on the LLC.  

These attacks have become more powerful and dangerous due to two properties: First, 

unlike the prior attacks which access some specific cache set, the attackers try to access 

specific memory lines. Consequently, the Flush + Reload does not require any further 

processing for detection and does not generate a false alarm. Flush reload attacks are only 

conducted on the X86 architecture and are unable to be conducted on the ARM 

architecture, although the ARM architecture has instruction for the eviction of cache lines. 

However, it does not allow an unprivileged user process to use the eviction intrusion to 

selectively evict the information from the cache memory (ARM 2012).  
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3.2.1.1 Flush + Reload Attack Scenario 

We have implemented Gorka flush + reload attack in the VMware ESXI 5.5.0. We 

used two VMs one for an attacker and the other for a victim, both are communicating 

through local IP connection. Where we have executed the attacker in one VM and victim 

program on another VM and on different cores. For the purpose of this attack, the authors 

in (Ristenpart, Tromer et al. 2009) have been solved the co-location problem which 

ensures that two VMs (attacker and victim) are running on the same physical machine. 

The VMM such as XEN and VMware provide memory overcommitment feature, 

however, Irazoqui et al. (Irazoqui G 2014) exploited this feature especially focusing on 

memory deduplication in their attack which Suzaki et al. (Suzaki, Iijima et al. 2011) have 

implemented in their research. The hypervisor (VMM) has the ability to search regularly 

for the same pages and merge the identical pages and make a single copy of the redundant 

data. Once the VMM execute this, this scenario enables the cache-based SC attack 

because both the attacker and victim will access the same physical memory. The 

implementation of this attack is such that target program is executed in VMware ESXI 

5.5.0 running Ubuntu 12.04.5 64 bits, kernel version 3.11 for encryption using C 

implementation of the AES OpenSSL 1.0.1f. We have conducted all experiments on a 

machine having features an Intel i5-3450M four core clocked at 3.10GHz. Core i5 has 

three level caches including L1, L2, and L3 but in this attack, the L3 cache is used because 

this LLC is always shared between programs. The attacker and victim share this L3 cache 

for launching SC attack. The attack steps are as follow:  

(a) Flushing step 

In this step, the attacker flush the desired memory from the L3 cache by using 

the clflush command hence make sure that if needed next time they have to be accessed 

and retrieved from the main memory. It is important to note that clflush command not 

flush the desired memory lines from the L3 cache of the corresponding cores but it also 
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flushes from L1 and L2 of the of all the different cores in the same physical machine. 

Because if it only flushed the cache of the corresponding, the attack would only work if 

the victim and attacker’s program were co-locating on the same core.  

(b) Target accessing step 

 In this step, the attacker waits for the victim to run a fragment of code, which 

might use the cache memory lines that have been flushed by the attacker in the first step. 

(c) Reloading step 

 The attacker reloads the previously flushed memory lines in this step and takes 

all the measurements such as measure the reload time it takes for these flushed lines. On 

the basis of these reloading time, the attacker knows whether the memory lines accessed 

by the victim or not in case if accessed by victim the corresponding memory line would 

be present in the cache (cache hit) otherwise will not be present in the cache if not 

accessed by the victim (cache miss). The attacker takes the advantage of this timing 

difference between a cache hit and a cache miss and can easily detect the encryption key 

by analyzing the victim activity. 

(d) Discussion 

The victim is an encryption server receive encryption quires through socket 

connection and in response sends back the ciphertext. The attacker sends the encryption 

queries to the victim. In this attack, a package of 16 bytes (the plaintext) sends to the 

encryption server unlike Bernstein's attack (Bernstein 2004), where the server receives 

packages of 40 bytes (the plaintext). The attacker does not know about the confidential 

encryption key used by the encryption server. The victim program receives the encryption 

queries sent by the attacker program. All the measurement such as the required time for 

the reload step is performed on the attacker side. In this attack, only a single line is 

required to monitor. The flushing step is always occurs before encryption and reloading 

can be done after encryption, i.e. the attacker will not interfere with the attack process.  
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In this attack, the attacker first discovers the offset of the T tables’ addresses with respect 

to the beginning of the library. After gaining this information, the attacker is able to refer 

to any memory line that the value of T table holds, even the ASLR (Address Space Layout 

Randomization) is activated. Then, it sends encryption queries to the encryption server 

and receives the interrelated ciphertext. After each encryption, the attacker checks the 

value of the chosen T table by Flush + Reload technique whether its value have been 

accessed or not. 

We assume that the attacker monitors the memory line corresponding to the T table 

first position, where T is the lookup table is applied to the i-th byte of the targeted AES 

state before the last round. It is further assumed that n T table can adjust in the memory 

lines, for instance, for this attack the memory lines will hold the first n T table position. 

If any value of the T table entries is equal to si in the memory lines (i.e. Si Ɛ {0,…., n} if 

the first n T table entries in the memory line) then the accesses memory line will be 

present in the cache with a high probability shows that these memory lines been accessed 

by the encryption server. However, si with a change value means that accessed memory 

lines are not loaded in this step. The probability that encryption process did not access the 

specific T table memory lines is given as: 

Pr [no access to T ((i))] = (1 −
𝑡

256
)

𝑙

 (3.1) 

 

Here l represents the number of accesses to the particular T table. Since each 

encryption uses 40 access to each of the T table, therefore l=40 for OpenSSL 1.0.1 AES-

128. The probability that the cache line is not accessed is Pr (no access to T(i)) = 28%. 

Therefore, we can easily distinguish about the accessing of memory lines whether it is 

accessed or not. In order to distinguish whether the line is accessed or not is to measure 

the reload time for the targeted memory lines. If the reload time is high it shows that the 
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memory lines are accessed and the low reload time shows that the memory line is not 

accessed.  

The key recovery step is then executed after all the measurement performed which 

takes less than half a minute. The result is shown in Figure 3.1. The vertical access refers 

to the correct bytes of key and the horizontal access refers to the number of encryption 

needed to recover the key. Due to the noise ratio in the virtualized environment we need 

different number of encryption for the attack in the Linux and for the cross-VM attacks. 

We need 100 thousand encryption for the correct bytes of key in Linux and 400 thousand 

encryption for recovering the correct bytes of key in cross-VM attack scenario. 

 

Figure 3.1: Number of the Key Bytes of AES Key Correctly Guessed vs Number of 

Needed Encryption 

3.2.2 Implementation of Cross-VM cache-based SC attack by using Prime + Probe 

technique  

Similarly, the prime + probe method is used in order to conduct cache-based SC 

attacks. The document form of SC attack was conducted by Ristenpart et al. (Ristenpart, 

Tromer et al. 2009), by using PTP which consists of the following three steps: 

 Step 0: attack fills the cache (prime) 

Step1: Victim evicts cache lines while performing encryption  
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Step 3: attacker probes data to determine if the set was accessed or not  

In the PRIME step, the attacker filled the CPU cache with his own data; in the IDLE 

step the attacker waits for some random interval for the victim to perform some operation; 

then finally in the PROBE step, the execution is resumed and the cache is refilled to 

measure the delay between the cache access and memory access time. In addition, during 

the first phase, the cache memory is divided into accessed and un-accessed categories. In 

the prime phase, it generates cache hit and cache miss based on the accessed and not 

accessed. Then finally, the probing instance has more values, which indicates how much 

time is needed to access the cache line with a primed cache. Then the delay in the memory 

access timings are observed to extract the secret information. This memory access timings 

are considered to be an easier way to exploit the cryptosystem and functionality of the 

system and is more difficult to control. The purpose of Ristenpart’s PTP attack was to 

check if a cache-based SC attack could be established between the two co-located VM on 

the same physical machine. This attack requires that the attacker VM and target VM must 

be placed on the same physical machine. This SC was conducted such that the probing 

instance or first VM could collect a message that the target instance or second VM 

encodes in its usage of the cache. 

3.2.3 Experimental Setup 

We have implemented the cache-based SC attack by using prime + probe method. In 

native setup we have installed the attacker and the victim programs on the same core 

within same OS. For the cross-VM attack setup, the attacker and the victim programs 

have been installed on different guest VM which has different cores and different OS but 

both are sharing the same hardware. 

3.2.3.1 Attack1 Setup: Attack in Native Operating System and in Single VM 

In the native OS, the PTP technique is implemented in such a way that the attacker and 

the victim programs are executing on the same core. Since VM is a guest operating 
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system, the execution of cache-based SC attack using PTP technique would be same as 

SC attack in native OS. In both environment the attacker and victim programs will be 

executed on the same core. In the PTP technique, the probing instance (attacker) first 

divides the cache lines into the touched and the untouched category. Cache lines in the 

touch category have been accessed by the target and in the untouched category have not 

been accessed by the target. After categorization step, the probing instance primes the 

monitored cache by filling his own data. Now in the victim accessing stage, the attacker 

waits for the victim to perform some operation causing the eviction of some cache lines 

that were primed by the attacker in the first stage. Now in the probing stage, the attacker 

access the prime data again. When the attacker reloads the data from the set that has been 

used by the victim causing a higher probe time because some of the primed cache lines 

have been evicted. However, if the victim program did not use any set of the cache lines 

in the primed set, causing a low probe time because all the primed cache lines will still 

reside in the cache. The probing instance has a series of values which represent the access 

latency for cache lines.  

The latency difference for cache lines in the touched category compared to the 

untouched category shows that the victim instance was trying to communicate. Later on 

Wu et al. (Wu, Xu et al. 2012) refined the PTP technique, where they conducted a high-

speed channel by communicating a “1” or a “0” . The generation of these “1” and “0” 

depends on the variation of timing category whether it is positive or negative (assuming 

the variation is above a specific threshold value). In addition, their attack has the ability 

to transfer bit-streams of over 190kb/s. So far, this SC attack is the most reliable and 

robust cache-based SC attack in a virtualized environment. This technique is mostly used 

for sequential cache-based SC attacks, making it a good example of a canonical attack. 

Since all the cache-based SC attacks in the cloud rely on this basic PTP technique, a 

successful prevention of its principle could prevent all the present cache-based SC attacks. 
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Therefore, in our research, we have implemented and analyzed Wu et al. attack for our 

problem analysis (Wu, Xu et al. 2012). 

3.2.3.2 Attack2 Setup: Cross-VM Attacks 

We have also implemented Gorka et al. attack in which they used the PTP technique 

for the extraction of cryptographic key targeting the AES algorithm running in victim 

VM. Unlike Gorka flush + reload attack this attack is not rely on the deduplication, 

instead, it uses the huge pages for conducting the SC attack by using PTP method. This 

method can be used to extract information from any encryption algorithm (i.e. ELGamal, 

RSA) but Gorka’s target is the AES algorithm. AES is also stored in a cache and the 

attacker can leak the detail of AES to extract the cryptographic key. Unlike normal 

information leakage, the leakage from AES algorithm is very dangerous. Because the 

attackers can detect the complete key and by using that key they can easily detect the 

confidential information. AES in most famous cryptographic libraries including 

OpenSSL, PolarSSL, and Libgcrypt are vulnerable to Gorka attack when runing in the 

most popular hypervisor such as Xen and VMware used by popular cloud service 

providers (CSP) namely Amazon and Rackspace. The attack on AES has existed in the 

literature for many years, however, in virtualized environment, this attack has been 

introduced in 2009.  

The implementation of this attack is executed in Ubuntu 12.04.5 64 bits, kernel version 

3.11. We have executed target process using the C-implementation of AES in OpenSSL 

1.0.1f for encryption. This is used when OpenSSL is configured with no-asm and no-hw 

option. We want to remark that this is not the default option in the installation of OpenSSL 

in most of the products. We have conducted all experiments on a machine having features 

an Intel i5-3450M four core clocked at 3.10GHz. The cache hierarchy of Core i5 has 

three-level: It is important to note that L1 and L2 cache are private to each core while L3 

(LLC) is divided into slices and shared among all cores. When attacker and victim are in 
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the same core they use the L1 cache. When both attacker and victim are in the different 

core they use the shared L3 cache. The L1 cache line size is 64 bytes and is 8-way 

associative, with 215 bytes of size. The size of the L2 cache line is 64 bytes and a total 

size of 218 bytes cache and is 8-way associative. The L3 cache is 12-way associative with 

a 64 bytes cache line size and a total size of 222 bytes. The L2 cache in combined with 

the memory deduplication feature performed by the VMM allows the attacker to learn 

about cache accesses by the victim program. The attack scenario is such that one VM 

receiving the encryption queries with a secret key. The attacker VM is co-located with 

the victim encryption server but on different cores.  

The communication between the attacker and victim is carried out through local IP and 

by using this connection the attacker start the spy process and sends the plaintext to the 

encryption server. The attacker start measuring the usage of L3 cache on the reception of 

cipher text. There are four main steps in the Gorka attack on AES in Xen Hypervisor: in 

the first step the attacker gain the knowledge about the LLC (L2 or L3), cache slice 

number, and the cache lines that fills one of the sets in L3 cache. In the second step, 

attacker tries to know about the set which T table occupies, because these T table needs 

to be accessed again for recovering the secret key. In the third step the attacker perform 

the prime, reprimes, and request encryption steps on the desired set to check whether the 

cache lines have been accessed or not. Finally in the last step, the attacker recover the 

cryptographic key used by the server by utilizing the measurements taken in step 3. 

3.2.4 Experimental Results 

In this section, we show the proof of the existence of SC attacks in virtualized 

environment by conducting the experiment and analyzing the results. We perform the SC 

attack and analyze the results in native OS, and in XEN hypervisor.  
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3.2.4.1 Result in Native Operating System 

This is the basic setup in which we have executed the attack. We have executed two 

program in the native OS in the same core. This experiment is based on the number of 

encryption needed to recover the correct bytes of key. The Figure shows that due to low 

noise in a native operating the number of encryption for recovering the correct key is very 

low as compared to the virtualized environment. To distinguish L3 cache access from 

main memory is more susceptible to noise as compared to differentiate between L1 cache 

access and main memory access. Therefore, while L3 cache is mostly used for SC attacks, 

its make the SC attack more challenging. Figure 3.2 shows the result. 

3.2.4.2 Result of Attacks in Single VM and in Cross-VM 

In this scenario we executed the attack in virtualized environment in which two VMs: 

one is the attacker and the other is a victim are communicating through local IP. Due to 

the noise ratio in virtualized environment more encryptions are needed to recover the 

correct bytes of the key as shown in Figure 3-2. We have implemented Gorka attack and 

analyze the different results in our thesis. It is important to note that attacker has the 

administrator privileges in the cross-VM attacks due to the sharing resources in 

virtualized environment. In the first stage, the spy process recognizes the L3 cache access 

pattern in our Intel i5-3450M system and by using this method we can detect the division 

of L3 cache into a slice. The spy process makes us able to know about the cache division 

into two slices and that the selection method of the slice is based on the parity of the first 

non-set addressing bit (i.e., a 17th bit). Thereby, for filling set in the odd slice we need 16 

odd lines and to fill a set in the even slice we need 16 even lines. In the second stage, the 

spy process recognizes the set in the LLC (L2 or L3) that each T table cache lines of the 

hold.  

In order to recognize the set, each possible set is monitored according to the obtained 

offset from the shared library of the Linux feature. The set reserving of T table cache line 
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is used in the encryption process around 90% of times while the set will remain unused 

around 10% of the time where 500 random encryptions in a cross-VM scenario in Xen 

hypervisor were observed. It is to be noted that monitoring time for an unused set is more 

stable which is in the range of 200-300 cycles as compared to the monitoring time of a 

set used by T-tables which is 90% around of the time. The last step is to execute Gorka 

attack to recover the AES key used by encryption server. Valid ciphertexts are to be 

considered for the step of key recovery that are below the average time. The 

measurements are taken in the customized Xen hypervisor-based when the corresponding 

last line of T table is monitored and the key is 0xe1 in this case.  

The attack was analyzed in native, single-VM, and in cross VM-scenario requiring 

275.000 and 650.000 encryption respectively to recover 16 bytes key. It is shown in the 

Figure 3.2 that in the single-VM and cross-VM environment more number of encryption 

is needed as compared to the non-noisier environment such as native OS scenario.  

 

Figure 3.2: Number of Recovered Key Bytes Correctly Guessed vs Number of 

Requested Encryption for Native OS, Single-VM, and Cross-VM in XEN 
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For example, the encryption key consists of 16 bytes. In the native setup, it is clear 

from the Figure that 150.000 encryption is needed to recover the 16 bytes key. While in 

the single-VM scenario 250.000 encryption is needed to recover the 16 bytes key. This is 

because of noise that in the cross-VM scenario 650.000 encryption is needed to recover 

the whole key as compared to another scenario in which low encryption is needed to 

recover the whole bytes of the key.  

Table 3.4 describes the correctly recovered key in number of bytes in both single VM 

and cross-VM. Single VM means that attack is conducted in single in which the attacker 

and victim programs are in the same VM. In cross-VM scenario, both the attacker and the 

victim programs are in different VM and in different cores. Table 3.2 shows that the 

required number of requested encryption for correctly recovered the whole bytes of key 

in single VM is less than as compared to cross-VM. Because in cross VM the external 

noise effect the results. We believe that due to noise SC attacks require a high number of 

encryption in the cloud environment as compared to non-cloud environment. Table 3.2 

shows the result of cache-based SC attacks in native, single VM, and in a cross-VM 

scenario in XEN and VMware. 

Table 3.3: Comparison of Correctly Recovered Key in Single and Cross-VM 

In Single Virtual Machine (Single-Core) In Cross-Virtual Machine(Multi-Core)  

Number of requested 

encryption 

Number of correctly 

recovered key bytes 

Number of requested 

encryption 

Number of correctly 

recovered key bytes 

10,000 1 30,000 2 

90,000 6 60,000 2 

130,000 10 100,000 4 

150,000 10 200,000 8 

200,000 13 260,000 9 

250,000 13 300,000 11 

260,000 14 350,000 12 

265,000 14 450,000 13 

270,000 15 500,000 15 

275,000 16 650,000 16 
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 Similarly, Table 3.5 describes the comparison of cache-based SC attacks in both Xen 

and VMware. This table shows the result of the SC attacks in both Xen and VMware 

implemented by flush + reload and prime + probe methods. The need number of requested 

encryption for correctly recovering the number of key bytes are different in each scenario.  

Table 3.4: Comparison of Cache-based Side Channel Attacks in XEN and VMware 

Name of Attack Scenario Platform Technique No of 

Encryption 

Flush + Reload Native OS i5-3450 L3 Cache Flush + Reload 250 

 Cross-VM i5-3450 L3 Cache Flush + Reload 450 

Prime + Probe Native OS i5-3450 L3 Cache  150 

 Single-VM i5-3450 L3 Cache (Gorka attack) 275 

 Cross-VM i5-3450 L3 Cache prime + probing 650 

 

3.3 Prevention Mechanism 

As we discussed in Chapter 2 in detail, the prevention mechanism is divided into two 

types: Software-based and hardware-based. The hardware based prevention mechanism 

need to change the underline hardware while for the software-based the client need to 

change their software which violates the CC concepts. There are several existing 

prevention mechanisms for cache-based SC attacks. These mechanisms may also prevent 

cross-VM cache-based SC attacks. For instance, one prevention method is to rewrite the 

software (AES) in a way that does not allow the known attacks to occur (Brickell, 

Graunke et al. 2006). Similarly, there is another prevention mechanism that needs the 

non-standard hardware to refine the processor architecture for the prevention of cache-

based SC attacks (Wang and Lee 2008). Some research work proposed the disability of 

cache sharing for mitigating cache-based SC attacks (Oswald, Mangard et al. 2005). The 

author in (Shi, Song et al. 2011) used the cache partition by using dynamic page coloring 

technique. However, this approach requires the client to change their software which is 
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against the cloud rule. To use the cloud resources we need to follow the cloud rules and 

according to cloud rule, we are unable to change the canonical software and hardware. In 

addition, if a prevention mechanism can be compiled without change or effect the existing 

hardware and software then it can be easily adapted to the existing cloud system without 

any interference to the cloud functionality.  

For instance, Misiu et al. (Godfrey and Zulkernine 2014), proposed a hypervisor 

preventive mechanism for SC attacks without changing or affecting cloud model. We 

evaluated this hypervisor-based solution using the Gorka’s cross-VM cache-based SC 

attack. In order to evaluate the performance of hypervisor-based solution, the Gorka’s 

attack was given an ideal condition to execute in. Specifically, for attack, the attacker VM 

(probing instance) and the victim VM (target instance) and dom 0 VMs are running on a 

hypervisor and all the three VM were pinned to different CPU cores. This is the ideal 

configuration for launching cross-VM attacks and any variation in this configuration 

would make difficult the success of the SC attack. The author in (Godfrey and Zulkernine 

2014) used static cache partitioning approach for the prevention of SC attacks without 

changing the client side or hardware. However, this hypervisor-based solution degraded 

the overall performance of XEN hypervisor by reducing cache usage, because if the cache 

size is 4MB and we divide it into 4 parts and make static partition of 1MB. For example, 

if there are 4 active VMs. Two of them are using the cache and the other 2 are not using 

the cache, however, each time hypervisor boot they will make the static partition 

according to the active VM. The cache will be wasted and the performance will be 

degraded. Because if one VM needed the more cache memory than the assigned one and 

the other needed less memory than the assigned one. Then the assigned memory to each 

VMs cannot be assigned other VM on the needed basis.  

The authors in (Shi, Song et al. 2011) have tried to partition the cache dynamically. In 

their proposed approach, they are given a small portion of the cache to the secure 
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encryption algorithms (AES, DES) to maintain the efficiency. However, their solution is 

unable to secure the VMs from the leakage attacks. Secondly, their solution needs the 

client’s software to change and to be informed about their partition approach to take 

advantage of the partition. Our hypervisor-based solution by contrast partition the cache 

dynamically and it does not need to change the client’s software, mean the software and 

hardware do not need to change. The reason for hypervisor-based solution using dynamic 

cache partition comes from the fact that we are dynamically partitioning the cache on the 

hypervisor side to make the clients unaware of the solution. In addition, client’s software 

does not need any changes for using this solution. Our solution will be compatible with 

the existing software and hardware and will not degrade the system performance, which 

will fulfill the CC criteria. Our solution applies preventive mechanism rather than a 

reactive mechanism. Since according to our solution, two VMs cannot access the same 

cache lines, therefore there is no chance to create side channel between two VMs. We 

utilized a set of benchmark and Phoronix test suite for the evaluation.  

 

 

   Leak Information of each other 

 

                Cache Hierarchy 

             Shared Cache by all VMs 
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Figure 3.3: Problem Visualization 

Univ
ers

ity
 of

 M
ala

ya



 

97 

3.3.1 Cache Partitioning as a Prevention Mechanism 

When multiple VMs run on multi-cores system, because of shared L3 cache one VM 

can extract the information of another VM by disturbing the cache access, even every VM 

is running on a dedicated core. Therefore fair partition of cache and cache-sharing is not 

only considered in a multi-programming system but also is a hot topic for virtualized 

environment. Cache partitioning mechanism is based on page coloring technique. Page 

coloring is a software-based approach for memory mapping to leads that how memory 

pages mapped to the specific cache set or cache lines (Soares, Tam et al. 2008, Zhang, 

Dwarkadas et al. 2009). Furthermore, the memory management module is controlled by 

page coloring approaches to ensure that a group of memory pages having the same color 

will be mapped to particular cache lines. The figure shows the mapping of memory pages 

to cache lines during memory management process. Page coloring technique is divided 

into static and dynamic types (Tam, Azimi et al. 2007, Jin, Chen et al. 2009). Static page 

coloring is the intuitive approach for the prevention of cache-based SC attacks (Jin, Chen 

et al. 2009) which provides a strong degree of isolation between VMs. However, this 

approach limits the number of VMs and degrade the overall performance in term of 

reducing cache usage for individual VM. Although static partition of the cache can reduce 

the eviction rate of cache data, consequently prevent the cache-based SC attacks. 

However, it reduces the memory usage or the size of the usable part of cache for 

individual VM. As a cache is divided into a static portion, it became smaller and many 

VMs compete for the same portion usage of cache making that portion the more efficient. 

These conflicting factors degrade the overall performance of this static partition based 

prevention mechanism. The static partition using page coloring technique is shown in the 

following Figure 3.4. 
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Figure 3.4: Static Cache Partition Using Page Coloring 

Since the performance of many applications depends on the cache size and utilization, 

however, in virtualized environment, this approach proportionally limited the access to a 

cache set that a VM can use to effect the overall performance. In addition, depending on 

the cache total size and set associativity, the page coloring system is able to provide a 

very limited number of colors that impose a restriction on the number of running VM on 

a cache during VM provisioning. Since the cache color for a system is calculated as: 

Number of Colors =  (
𝐶𝑎𝑐ℎ𝑒 𝑆𝑖𝑧𝑒 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑣𝑖𝑡𝑦 × Page Size 
)  (3.2) 

 Moreover, since the partition is static it cannot be changed at runtime. It means that 

the partition cannot be scaled up or down after booting the hypervisor correspond with 

the number of running VMs. Therefore, the efficiency of static partition solution depends 

on correctly balancing the number of VMs correspond to a number of partitions. If the 

number of VMs are not correctly balancing correspond to the number of partition then 

this little mismatch can lead to a significant overhead and can degrade the overall 

performance very badly. For instance, if the shared cache (L3) is divided into four 

partitions statically during boot time and the number of created VMs are eight then this 
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mismatch can lead to significance overhead in term of cache usage. Similarly, if the 

number of partition is four and the number of created VM is one then other parts of cache 

will be wasted and also has a bad impact on the speed because the cache size will be 

reduced. Since the size of cache partition is static and it cannot be just changed unless the 

system is rebooted.  

To address this limitation, the author in (Shi, Song et al. 2011) proposed dynamic 

cache partition approach. To maintain the efficiency, they have assigned a small portion 

of the cache to the encryption algorithms. In their solution, they partitioned the cache 

based on the page coloring technique and assigned a secure color to the encryption 

algorithms e.g., AES and DES. It means that when two or more VMs would be using 

cache, the hypervisor will not partition the cache. However, the hypervisor would be 

partitioned the cache based on the execution of any encryption algorithm. Although this 

prevention mechanism maintains the cache efficiency, it requires the client to change their 

software e.g., encryption Algorithms, which does not comply with the cloud model. 

Moreover, it gives a small portion of the to the encryption algorithm cache by using a 

page coloring technique, mean it just secure the clients and programs which use the 

encryption algorithm. For instance, if one VM wants to leak information from another 

VM, then their solution is unable to prevent the information leakage across VMs. 

Therefore, there is a need for server-based prevention mechanism which is transparent to 

guest VM and the underlying hardware.  

Moreover, this prevention mechanism prevents the extraction of the cryptographic key 

as well as the normal information leakage. This prevention mechanism follows the cloud 

rule as we discussed in Chapter 2 as a cloud model that does not need to change the client 

software or the underlying hardware. Our solution does not need to reboot the system 

every time for partitioning the cache on the provisioning of new VM. Additionally, if the 

cache is divided dynamically according to the requirement of each VMs, and the 

Cross-VM 
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individual VM does not have to worry about that other VM will evict its data. 

Consequently, this improves the overall performance by increasing the cache hit and 

cache miss rate and also the cache usage for each VM. This solution is more preventive 

rather than reactive. There are two types of prevention mechanism: Intrusion response 

system (IRS) and Intrusion prevention system (IPS). Since we cannot wait for a cache 

channel might be forming we completely prevent the channel to form or occur, therefore 

our solution is IPS e.g., Proactive response rather than IRS e.g., Reactive response.We 

utilized the standard workload such as apache benchmark and Cache bench benchmark 

from the open sourced Phoronix test suite for the evaluation of the amount of overhead 

generated by the static-based partitioned hypervisor. These benchmarks are used because 

these are open source. 

3.3.2 Phoronix Test Suite 

We utilized the apache and cachebench benchmark from the Phoronix test suite to 

evaluate our proposed dynamic cache partitioned solution. The Phoronix test is 

commonly used for the evaluation for the performance measurement of various system 

attributes and subsystems. These attributes include cache usage, CPU load testing, cache 

access rate and how the Xen hypervisor is able to handle the high load distributed among 

different VMs. However, among the available tests, we focused on standard workload 

namely Apache benchmark and the Cachebench benchmark to evaluate the various 

performance attributes most significant in the virtualized environment. Apache was 

chosen because it is the most widely used software for load testing and typically find in 

the Cloud. Our solution is also related to virtualizing environment therefore, we chose 

this benchmark and Cachebench was chosen because it shows the cache usage in more 

detailed form. 

3.4 Evaluation Parameters 

The following test we performed by using the above mentioned benchmark. 
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 Load testing with varying numbers of VMS and partitions 

 Cache Utilization with varying numbers of VMs and partitions 

 Memory access rate with varying numbers of VM and partitions 

3.4.1 Load Testing with varying numbers of VMs and Partitions 

The Apache benchmark is a standard benchmarking tool based on HTTP webserver 

(Foundation. 2013). We utilized apache benchmark from the open sourced Phoronix Test 

Suite for the evaluation of the partitioned hypervisor. This benchmark is chosen because 

this typical software is found very easy to use and frequently available in the cloud. Table 

3.4 shows the performance of the static partition in term of load testing that the modified 

hypervisor based on the static partition can tolerate how much load in term of request per 

second. As shown in the table that with increasing number of VMs and partitions the 

bearable load in term of number of request per second is decreasing. 

Table 3.5 : Load Testing with Varying Number of VMs and Partitions 

 Number of Requests per Second  

Number of 

Partitions 

With 1 VM With 2VM With 4VM With 8 VM With 16 VM 

Default (1) 3200 3500 3200 1500 700 

Partition (2) 3200 3200 3100 1500 700 

Partition (4) 2800 3100 3100 1500 600 

Partition (8) 2600 2900 2800 1400 600 

Partition (16) 2200 2100 2000 1100 400 

We’re assuming that if there are four cores in the system then we will have 4 VM. 

Dom 0 will divide the cache partition according to cache associative. If the cache is 24way 

and VM is 4. Then 24/4=6. Each VM will get 6 partitions. We concluded from the various 

experiments that if we will partition the cache into 16 at boot time then the overall 

performance of the system will be degraded even one VM is executing on the partitioned 

(16 parts) cache. 
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Figure 3.5: Load Testing in Static Partitioned Hypervisor with Varying Number of 

VMs and Partitions 

In Figure 3.5, the result of the conducting experiment in static partitioned hypervisor 

is shown. We analyzed from this load experiments that as the number of partitions 

increases the request per second is decreased which show the bearable load of a system 

or load that a system can tolerate. The problem with the static partition during boot time 

is: once we create the static partitions at boot time we cannot change the partitions until 

we boot the system. For instance, once we divide the cache into 16 partitions and during 

this time one VM is running then one VM will be executing on one part of the cache and 

the remaining 15 partitions will be idle during execution of VM. Because we cannot 

change the 16 partitions into single partition according to the executing single VM. 

Moreover, we cannot change the partition into one partition with respect to the creation 

or execution of one VM. We have concluded from the experiments that the ideal 

distribution with minimum overhead would be an equal amount of VMs and amount of 

partitions for each set of partitions. Although static partition prevents overhead from 

cross-VM cache evictions, however, it would be very difficult to detect the number of 

VMs and number of partitions at boot time. 
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3.4.2 Cache Utilization with varying numbers of VMs and Partitions 

We conducted this experiments by using cachebench benchmark. Cache utilization is 

investigated for static portioned hypervisor to check the amount of data accessed in bytes 

by each one. Cachebench includes various benchmark, however, we used the Cache 

Read/Modify/Write to evaluate the different level of cache in term of accessed data. We 

analyzed by conducting this experiment that in the static cache partition the amount of 

cache bandwidth would be decreases with increasing number of VMs and number of 

partitions. Consequently, static cache partition generates much more overhead as the 

number of VMs and partitions increases. Table 3.7 shows the result of a statistically 

partitioned hypervisor. 

Table 3.6: Cache Utilization with Varying Number of VMs and Partitions 

 Cache Bandwidth of Read/Modify/Write (MB per Second) 

Number of Partition 1VM 2VMs 4 VMs 8 VMs 16 VMs 

Default (1) 17923 17128 15289 13567 13889 

Partition (2) 15628 14035 13878 11228 12556 

Partition (4) 14289 13582 12728 10988 10454 

Partition (8) 10989 9366 8800 8487 8000 

Partition (16) 4896 4098 3789 3567 3089 

 

Figure 3.6 shows a gradual decrease in the cache utilization for each VM as the number 

of VMs and partitions increases. For 1 VM the cache bandwidth is more as compared to 

the 16 VMs and partitions. It means when the number of VMs and partition is increases 

the performance will be degraded because the cache bandwidth in term of cache 

read/write/modify bandwidth will be decreased. Similarly, if the number of partition is 

increased then the cache bandwidth for each VM will decrease even if one VM is running. 
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Figure 3.6: Cache Utilization with Varying Number of VMs and Partitions 

3.4.3 Memory Access Rate with varying numbers of VMs and Partitions 

The average memory access time is a valuable parameter to evaluate the performance 

of a memory hierarchy configuration. When a processor demand to execute an item from 

the main memory, it sends a load request to the cache memory. If the item resides in the 

cache it will generate a cache hit and in the case of absence, it will generate a cache miss. 

These cache miss and hit rate are used to calculate the memory access rate. We have 

calculated the total cache references, cache miss, and cache hit rate by using a cachegrind 

benchmark for the purpose to determine cache access rate. Then by using these values, 

we have calculated the memory access rate by our own designed program in the static 

cache partitioned-based hypervisor. Figure 3.7 shows the access latency for varying 

number of partitions with increasing number of VMs. We have observed from the analysis 

that the performance for 2-way and 4-way partitions are same as the default hypervisor. 
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Figure 3.7: Cache Access Rate in Static partitioned based Hypervisor 

However, when we increase the number of partition and number of VMs, there is a 

gradual decrease in the cache access time. When there is many numbers of VMs and 

partitions then there are chances for eviction of each other data that’s why the memory 

access rate would be increased as the data will not be present in the cache memory and 

will be coming from the main memory. Since the program is running on the partitioned 

hypervisor, therefore, the performance will be degraded. If our design program for the 

calculation of cache access rate is run in the default/unmodified hypervisor then it will 

generate more cache hit as compared to the program which is running in the static 

partitioned based hypervisor. Because in the partitioned hypervisor case, our design 

program gets a portion of the entire cache. This proves that the overall performance will 

be degraded with the static cache partition. 

3.5 Conclusion 

In this chapter, the implementation of SC attacks by using two methods in the different 

hypervisors is presented. Then the prevention mechanism for SC attacks has been 
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discussed in detail. According to the studied literature, one intuitive defense to mitigate 

cache-based SC attacks is the static partition of the cache is to divide the cache into 

statistical partition according to the different scheme of color assignment and strictly 

assign distinct page color to different VMs, so they access different parts of cache. We 

conducted the real-time experiment for the prevention of SC attacks based on the static 

partition solution and analyzed the load, cache utilization, and memory access time of this 

existing solution. Consequently, we analyzed that there are some bearable differences in 

the load, and memory access time between unmodified and modified (based on static 

cache partition) hypervisor as we know security is always comes with some overhead. 

However, there is a very large difference in the cache utilization of modified and 

unmodified hypervisor.  

Although the static cache partition is simple and provides isolation, it potentially 

decreases the cache set for utilization. Consequently, the number of cache sets in typical 

processor cores is very limited which could reduce the number of executable VMs in a 

shared cache when using a static partition of cache. Consider, for instance, a system 

having 4 cores with 64-page color and 16 MB of memory for individual color. Therefore, 

this system support 64 VMs with one color each and every VM limited to footprint not 

more than 16MB. Moreover, cache utilization is low when all cores and all VMs are 

active. It was observed that once the static partition is created during the boot time, it 

cannot be changed after creation of more VMs until we boot the system and change some 

changes. In addition, existing page coloring mechanisms either is unable to adaptively 

adjust cache partitions efficiently or they unable to identify phase transition of 

application. To mitigate this problem, we extend page coloring with dynamic cache 

partitioning capability by adding recoloring mechanism. In this dynamic partition 

mechanisms, every VMs get their partition upon the creation without booting the system. 

There are some other approaches to prevent cache-based SC attacks, however, they all 
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require the changes in the client software and in the underlying hardware. The prevention 

mechanism for SC attacks can be improved in term of cache utilization and performance 

improvement.  
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CHAPTER 4: HYPERVISOR-BASED PREVENTION MECHANISM USING 

DYNAMIC CACHE PARTITIONING: HBP-DCP 

This chapter aims to present the details of our Hypervisor-based Prevention 

Mechanism using Dynamic Cache Partitioning (HBP-DCP) for the prevention of cross-

VM cache-based SC attacks. We describe the building blocks and components of the 

proposed prevention mechanism and describe their functionality. The HBP-DCP is 

comprised of three main components, namely, admission control, cache usage monitor, 

and cache partitioner (Color-Aware Page Migrator). The admission control interprets and 

analyzes the user requests and takes a decision based on the availability, capability, and 

price of VM. The cache usage monitor analyzes and measures the number and utilized 

cache of executing VMs. The cache partitioner then divides/partition the cache according 

to executing VMs. The required amount of cache varies from VM to VM and the number 

of VMs also varies, therefore, it is difficult to fulfill the demand of the each VM for the 

different requested amount of cache in a static partition. Our approach divides the cache 

according to the executing number of VMs and facilitates the VMs requested amount of 

cache on the fly and also can prevent the cache-based SC attacks across VMs. 

In the following sections, details of the HBP-DCP are provided. In Section 4.1, the 

overview of the system requirements for HBP-DCP. Section 4.2 presents the VM 

creation/provisioning in detail. Section 4.3 describes the various component of the 

proposed prevention mechanism, such as admission control, cache usage monitor, and 

cache partitioner in detail. In section 4.4 the significance of the proposed prevention 

mechanism is provided. Section 4.5 describes the data designing followed by concluding 

remarks in 4.6 for this section. 
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4.1 Hypervisor-based Prevention mechanism using Dynamic Cache 

Partitioning 

In this subsection, we present the overview of our HBP-DCP mechanism that is 

capable of preventing cross-VM cache-based SC attacks. As already discussed in section 

2.1.2, the basic idea behind cache-based SC attacks is the shared resources in CC as VMs 

resides on the same physical devices and can easily extract each other data by using shared 

L3 cache. Since it is clear from the name that hypervisor-based prevention has three main 

phases. The first phase is that Xen hypervisor will check the VM request. This usually 

includes whether the request is generated from the new VM or from existing VM. The 

second phase is to check the cache usage that how many VMs already exist in the cache 

and how much cache is assigned to those VM. The third phase is to reconfigure the cache 

and re-divide the cache according to the requirement of the current running VMs. This 

approach is to rewrite the software (Source code of Xen Hypervisor) in a way that no 

known and unknown cache-based SC attacks between VMs can succeed. This solution is 

more preventive than reactive. There are two types of prevention mechanism: Intrusion 

response system (IRS) and Intrusion prevention system (IPS). Since we cannot wait for a 

cache channel might be forming we completely prevent the channel from being forming 

or occurring, therefore our solution is IPS (e.g., Proactive response) rather than IRS (e.g., 

Reactive response). 

4.1.1 Features of the Proposed HBP-DCP Prevention Mechanism 

The aim of the HBP-DCP is to mitigate cross-VM cache-based SC attacks. The 

proposed prevention mechanism has the following features that distinguish it from the 

existing prevention mechanism: 

 Generalizable: The fundamental cause of any type (e.g., Trace-driven, Time-

driven, and access-driven) of cache-based SC attacks in the virtualized 

environment is the cache memory. Since the cache is the most interactive devices 
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between VMs and it is always been targeted for SC attacks. As our proposed 

prevention mechanism is based on the cache memory partition, therefore, it can 

mitigate any type of cross-VM SC attacks which is based on the cache memory. 

 Comply with Cloud Model: The existing solution does not comply with the cloud 

model as they need the client to change their software or the underlying 

hardware. As discussed in Section 2.1.1.2, our prevention mechanism 

confirming to the cloud model because it can be directly implemented into the 

hypervisor. Furthermore, it is transparent to the cloud model because it does not 

need any modification in the underlying hardware and in the client software. 

 Portability: Hypervisor can be installed almost on every type of computing 

infrastructure. Since our prevention mechanism is hypervisor based means we 

have implemented by using the source code of an open source hypervisor. 

Therefore our prevention mechanism can be ported to any type of the supported 

software (hypervisor) and computing infrastructure. 

 Applicable to Commodity Operating System: To implement the cache partition 

at the VMM (hypervisor) level is very beneficial. Since all the monitoring and 

partitioning activity will be done on the hypervisor level. Therefore it is 

applicable to Commodity OS the source code of which is unavailable such as a 

window OS. Most of the previous work is done for the multi-programming 

workload. However, our work enables the cache partitioning across and within 

the OSs, as it is implemented in the hypervisor and therefore improve the whole 

system optimization by providing more flexibility.  

 Saving Cache Utilization: Hypervisor-based prevention mechanism is based on 

the dynamic partition of the cache. Therefore the overall performance can be 

improved by increasing the cache utilization for individual VM because VM is 

only giving as much more cache memory as they are requested. Unlike static 
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partition, the dynamic system avoids having to reboot the system every time on 

the VM provisioning so increase the overall performance of the system. 

 Preventive rather than Reactive: Our solution is more preventive rather than 

reactive. Since we cannot examine when SC attacks might occur, we simply 

ensure that the two VMs would not be able to access the same cache lines for the 

purpose to create SC attack. Preventive mean early prevention before occurring 

of the attacks while reactive mean prevents attacks after occurring. Because once 

the attack occurs, it will harm the system even in a minute, therefore, early 

prevention of attack is more beneficial than post prevention. 

4.2 System Architecture 

We devise HBP-DCP mechanism for the mitigation of cross-VM cache-based SC 

attacks. This prevention mechanism is based on the open source code of Xen hypervisor. 

Since the source code of the Xen hypervisor is open source and freely available. 

Therefore, we chose Xen hypervisor for the creation of VM and for the implementation 

of our solution. Furthermore, our solution is also hypervisor-based and will be added to 

the existing source code of Xen. However, this prevention mechanism can be applied in 

other hypervisors namely VMware ESXI because it is general approach and is based on 

the cache partitioning. This prevention mechanism is enabled by admission control and 

VM provisioning rather than SC channel attacks. Therefore, we need to explain these 

terms in our thesis according to the requirement of our HBP-DCP prevention mechanism. 

Furthermore, for this thesis, first of all, we have implemented the attack on the shared 

LLC (L3) cache, the detail of which is given in Chapter 3 in detail. Since we need to 

check the cross-VM cache-based attack. Therefore, VM provisioning is must to create 

two VMs on the Xen hypervisor. Since both the implementation of attack and solution 

are based on the shared LL cache, therefore, LLC (L3) must be in the system. The salient 

characteristic of the LLC is that it is by design an inclusive cache memory. Therefore, the 
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data stored in the L1 and L2 caches is also copied in the LLC. Consequently, in the case 

of a cache miss in an L1 cache, the data will be checked in L2 in order to decrease the 

cache miss rate. Furthermore, if the data is flushed or evicted from the LLC, it will 

automatically be erased from all the other levels of the processor’s cache.  

Although shared cache has some advantages such as increased utilization of cache 

space, decreased cache miss rate, faster inter-core communication through shared LLC 

(L3 and L2), and the elimination of undesired replication of cache lines to reduce 

aggregate cache footprint. However, the major disadvantage of shared LLC is the 

uncontrolled contention can occur by allowing CPU-cores to access the shared LLC on a 

free basis. Moreover, HBP-DCP is always activated when the user sends a request to 

admission control for VM creation and when the VM provisioning phase will be activated 

by assigning VM to the specified client. The system requirements for the implementation 

of our prevention mechanism includes Xen hypervisor and Intel Core i7 with shared LLC 

(L3). We choose Core i7 having 4 cores because in this modern architecture each core 

has a dedicated L1 (instruction and data cache) and L2 cache but the L3 cache is shared 

amongst all cores. Therefore, the state of the art cache-based SC attacks target L3 cache.  

Our proposed HBP-DCP prevention mechanism consists the following four 

components, namely; (a) Admission Control module has been used as a general 

mechanism to enforce the fair usage policy of resources on server, (b) After verification 

and availability of resources, once the admission control grants the request, then after this 

stage the global scheduler will assign the physical id of the underlying hardware to VM 

on which new VM will be created, (c) Cache Usage Monitor has the ability to check the 

status and utilization of cache of the underlying physical device and the executing VMS 

on the fly, (d) and Cache Partitioner (Color-aware Page Migrator) repartitions the cache 

dynamically according to the requested VM. The high level components of the proposed 

prevention mechanism is depicted in Figure 4.1. 
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Figure 4.1: Proposed Hypervisor-based Prevention Mechanism Using Dynamic 

Cache Partitioning 

Since our proposed prevention mechanism is based on the VM provisioning (When 

VMs create and demand cache) and page coloring (assign the separate part of cache to 

VM) technique. Admission control and global scheduler are based on the VM 

provisioning, because these components are always activated with VM provisioning. 

Therefore, we need to describe VM provisioning and page coloring terms according to 

the requirement of our proposed prevention mechanism in the following section. 

Moreover, we describe the Xen paging mechanism. 

4.2.1 Virtual Machine Provisioning 

VM provisioning is a management process for a system that creates new VMs on the 

physical host server and computing resources are allocated to support these VMs. These 

computing resources consist the entire cores or CPU cycles, Input/output cycles, storage 

and memory spaces. Xen enables users to instantiate the guest operating systems (VM) 
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on the fly to execute whatever they desire and require. Furthermore, admission control is 

performed/activated based on the provisioning or creation of new VM as shown in Figure 

4.2. Each VM have to pay in some fashion for the resources it requires. We use this same 

basic approach to building Xen, which multiplexes physical resources at the granularity 

of an entire OS and is able to provide performance isolation between them. The task of 

building the initial guest OS structures for a new domain is mostly delegated to Domain0 

which uses its privileged control interfaces to access the new domain’s memory and 

inform Xen of initial register state. VMs sees the allocated space whether the thick or thin 

allocation is provided by Xen hypervisor. In thick allocation, the whole virtual disc is 

provided to VMs while in thin approach only the required part of the virtual disk is 

provided to VMs. VMs sees all the time the allocated virtual disk space but only used the 

amount of capacity required to hold the current files. These virtual disks are allocated to 

each VMs on the fly on the physical disk according to the requested user need. 

Admission Control

Users Request For 

VM creation

Load Operating 

System + Appliances

Assi
gn Physic

al 
Id to

 

VM

Send Request

Approve

Check capacity

Create VM using Xen

Server Pool

Resources Repository

Running Provision 

VM

Start Server

Success

Provisioning failed

Verify and Register

Request 

Failed

Verified

Cache Partitioning 

System
Invoke hypercall

 

Figure 4.2: Process of VM Provisioning 
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4.2.2 Page Coloring 

Our proposed prevention mechanism using dynamic cache partition is based on the 

page coloring technique. Page coloring is a classical software based page allocation 

technique that directs how pages are mapped to the cache memory lines. It is the basis for 

the fine grain division of LLC namely L2 and L3 for the purpose of a cache hit 

optimization. Despite, the primary use of the cache coloring as an optimization approach, 

the particular mapping of the memory addresses to cache lines can be exploited for the 

security of the system by mimicking VMs isolation across LLC (L2 or L3). In addition, 

the memory management module is controlled by the page coloring systems to ensure 

that the group of pages having the same color is assigned to the same cache lines to 

enforce the security of the system.  

In modern OS, the OS access physical memory and L3 cache by physical address. In 

limited cache associative, there should be overlapped on bit field between physical page 

number and L3 cache set number. Furthermore, there are some overlapped bit between 

the set number of cache associative and the page number of machines which are directly 

controlled by the cache coloring. These bits can be used to group the memory pages into 

distinct color. For instance, the size of the physical page is 4KB and to represent page 

offset there must be 12 bit. The remaining bits are assigned to the physical page number. 

The size of the L2 cache is 512KB, 61-way associative, and the size of a cache line is 

64B. So the physical page number has 3 lower bits that are overlapped with the higher 3 

bits of cache set number. This overlapped part is called page color. 

Similarly, in Figure 4.3, the physical page number has 4 bits that are overlapped with 

the higher 4 bits of the cache. These 4 overlapped bits show the cache partition into 16 

colors. Furthermore, 5 overlapped bit partition the cache into 32 part and for 3 overlapped 

bits the cache will be divided into 8 partitions. This number can be varied according to 

cache’s associativity, the size of the cache and cache line. In addition, the OS has full 
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control on these overlapped bits. OS decide how and which virtual page to be mapped 

into which physical page. The hardware by itself fixes the mapping of the physical page 

into a cache, which is the most important requirement for page coloring technique. OS 

can use its control of virtual to physical mapping to control indirectly the mapping of 

physical pages to cache lines. Distinct color could be mapped into distinct cache sets. The 

steps for the color assignment are as follow:  

 Each set has own color 

 The same color has to be assigned the pages mapped on the same set 

 A VM own one or more color 

 Hypervisor assigns to VMs only pages of their own color 

Last Level Cache 

(Shared)

Cache Line Offset

Associative Set Number

63 15 11 6 0

Main Memory Page OffsetPhysical Page Number

Page Color

4 bits under control of OS 

 

Figure 4.3: Mapping between the Physical Address and Cache Lines (Overlapped 

Bits are Used for Page Coloring) 

4.2.3 Paging Mechanism in Xen Hypervisor 

As we discussed in the previous section that our proposed prevention mechanism uses 

page coloring for the allocation of pages in Xen hypervisor. Therefore, in our thesis, we 

need to discuss the Xen paging mechanism. In a traditional non-virtualized environment, 

the OS is responsible for the assignment of physical memory to the running process inside 

its own virtual address space. During the memory access, the virtual address of process 

must be translated by the memory management unit to traverse the corresponding process 

Univ
ers

ity
 of

 M
ala

ya



 

117 

page table set up by the OS. However, in the hypervisor (e.g., virtualized environment) 

one more indirection of memory translation from guest to host is performed. Xen 

hypervisor supports para–virtualization and full-virtualization. The performance of para-

virtualization is better as compared to full virtualization, but it need change in the guest 

OS source code. Therefore, for our prevention mechanism using dynamic cache partition, 

we focused on full virtualization. Under full virtualization mode, Xen is responsible for 

the translation of three address space namely machines-, guests-, and linear address-

space. The machine address-space is called the real machine address-space; while the 

guest’s view of the real machine address space is the guest address space is also known 

as pseudo-physical address space, and linear address space is provided by processor’s 

MMU is a flat contiguous address space. 

 As shown in Figure 4.4, there are three memory namely virtual memory, physical 

memory, and machine memory. Virtual memory is mapped by application inside the guest 

OS. While in physical memory the host presents physical pages to VMS and actual pages 

allocated by the host in machine memory. Furthermore, when executing on the 

hypervisor, the guest OS translates the guest virtual address to the physical address of 

guest OS, and the hypervisor (VMM) maintain a mapping from the guest physical address 

to machine physical address. Furthermore, this real memory address is used for accessing 

the memory. The machine, the guest, and the linear address spaces are manipulated in a 

unit knows as page frames. Particularly, the frame number of the machine physical 

address space is called Machine Frame Number (MFN) while guest’s pseudo Physical 

Frame number is known as PFN.  

Furthermore, hypervisor detects the same pages in the memory of each guest VM and 

maps these identical pages to the same physical memory. Hypervisor allocates frame 

numbers and mapped a unique PFN of guest OS (VM) to a specific MFN (Barham, 

Dragovic et al. 2003). The Xen hypervisor used the two hardware page table namely guest 
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physical to machine physical translation (P2M) in order to translate the guest physical 

address to machine physical address and machine physical to guest physical translation 

(M2P) in order to translate the machine to guest physical address. In addition, Xen 

hypervisor used the shadow page table for the guest virtual address to host physical 

address. P2M and M2P are the arrays of frames numbers indexed by either by machine 

or physical frames, particularly P2M table for the mapping of PFN to MFN while the 

M2P table is for the MFN to PFN mapping.  

In full virtualization mode, the guest OS considers itself as a real machine. Therefore, 

in page tables the frame numbers that they used to be MFN, which are in fact PFN. The 

PFN entries filled in the page table cannot be accessed directly without translation to 

corresponding MFN before the page table be committed to MMU. Xen handles this 

problem by using a mechanism called Shadow Page Table. OS creates and maintains 

shadow page table for the original page table in each VM for its virtual address spaces 

without modification. But MMU hardware does not use these shadow page tables, these 

tables just for the direct virtual to physical mapping. It uses the TLB for the translation of 

virtual pages of a guest to machine page of a physical system. These tables are loaded 

into the hypervisor (VMM) on context switching. VMM keeps its tables consistency with 

the OS in such a way that it’s VM consistent with the OS VP. VMM maps page table 

of OS as read-only. When OS tries to write to the page table then traps to VMM. VMM 

applies write to shadow page table and OS page table and returns. This process is called 

memory tracing. Original page table used by MMU will be locked on the creation of 

shadow page table for further changes, the effect of every write to original page will be 

captured and propagated to shadow page. A shadow page pool will be created by Xen for 

every guest OS, then Xen is responsible for allocating a free page from the shadow page 

pool to every guest OS which tries to access these pages as page table, or recycles a 

shadow page to make it a target page shadow based on less frequently used and on no 
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availability of free page. Since it is common for page tables to reference each other, 

Thereby Xen is responsible to organizes all shadow pages with both page level as keys 

and PFN into a hash table. 

Modern computer architecture has the hardware support for the memory virtualization 

techniques. For instance, Extended Page Table (ETP) feature is enabled in Intel CPU by 

Intel VT (Virtualization Technology) (Technology. 2016), the hardware MMU first walk 

through the shadow page table used by the guest OS for each memory access by each VM 

to translate from guest virtual address to guest physical address. Then access a separate 

page table namely ETP setup by the hypervisor for the translation of guest physical 

address to machine physical address. Thus, the conceptual P2M and M2P tables we have 

mentioned above just map to the EPT table in the case of Intel architecture. 

Virtual Machine Monitor (XEN)

Guest Page Table

Host Page Table

VMM

Guest OS

Guest Virtual Address

Host Virtual Address

Host Physical Address

GFN

MFN

Hypervisor

P2M

Guest Physical Address

Application Running on 

Guest VM

Shadow Page Table

 
Figure 4.4: Paging Mechanism in Hypervisor 

4.3 Components of the Proposed HBP-PDC Prevention Mechanism 

The following section describes the components of the proposed prevention 

mechanism which is admission control, Xen scheduler, cache usage monitor, and cache 
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partitioner. Although our prevention mechanism is mainly based on two components 

namely cache usage monitor and color-aware page migrator. Cache usage monitor is 

responsible for assigning initial page colors to the new creating VM and for monitoring 

VM cache usage metrics. While the responsibility of color-aware page migrator is to 

allocate page frames of a specific color. However, if the admission control accepts the 

request for the new VM creation then the global scheduler will be activated and the main 

components of our HBP-DCP will be activated based on the admission control and global 

scheduler approval for new VM. Therefore, there is a need to explain these components. 

4.3.1 Server Side Admission Control 

The responsibility of admission control module is to enforce the fair utilization of 

server resources. It uses various strategies to decide which user requests to be accepted in 

order to minimize the performance impact, avoiding the overloading of resources and 

penalties of service level agreement that decrease cloud provider’s profit (Wu, Garg et al. 

2012). Admission control regulates the number of active cloud users based on the 

utilization of the system or the policy manually defined by the system administrator. In 

order to share the resources among various devices, a request from clients will be 

processed and queued according to any scheduling policy namely round robin and FIFO 

defined by the system administrator or selected on the fly based on the system load and 

other metrics.  

Furthermore, whenever the clients send a request for VM, the admission control will 

communicate with the VMM (hypervisor) whether the VM can be created or not. 

Thereafter, the admission control phase verifies the software platform availability and 

analyses if the new request can be accepted then it will decide whether to queue it up in 

an already initiated VM or by initiating a new VM. Hence, if both conditions are satisfied 

then the request is transferred and the id of the physical CPU will be assigned to the 

requested VM. Hence, firstly, the admission control checks if the new request can be 
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queued up by waiting for all accepted requests on any initiated VM. If this request cannot 

wait in any initiated VM, then the admission control checks if it can be accepted by 

initiating a new VM provided by the cloud provider. Once the request is granted by the 

admission control then the global scheduler is responsible for the creation and scheduling 

of VMs on the specific hypervisor of the underlying physical device from which user 

request is generated for the VMs creation.  

4.3.2 Global Scheduler vs Xen Scheduler  

The scheduling and admission control are interlinked for VMs creation and resources 

allocation to users. The global scheduler is responsible for delivering or rejecting services 

to every user according to their request based on the admission control decision (Wu, 

Garg et al. 2012). Once the admission control grants the request, then after this stage, the 

global scheduler will assign the physical id of the underlying hardware to different VMs 

on which the user send a request to the admission control for the creation of new VM. 

The whole process of our proposed prevention mechanism is inter-related with the 

creation of VMs. The Xen scheduler will check the cache memory after the creation of 

new VM. 

Xen scheduler is the local scheduler on the individual physical machine. Xen being a 

virtualization hypervisor closely models the OS on which it is run. Therefore, the 

scheduling of VM in the hypervisor is same as the process or thread scheduling in OS. 

Just like the process in OS has multiple threads that can be processed on different cores, 

the VMs have multiple virtual CPUs (VCPUs) that can be run on different physical CPUs 

(PCPUs). Xen scheduler balances the load of one or more virtual CPU across physical 

CPU. The basic difference between the OS and hypervisor is that the number of VCPUs 

is static as compared to the process in OS because VMs and VCPUs are created and 

deleted on a rare basis. In contrast, the process or thread are created and deleted on a 

continuous basis. Since Xen scheduler controls the cache memory according to the new 
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requested VMs. Therefore, we change the existing code of Xen scheduler by adding code 

for monitoring the cache utilization and cache partition module. 

4.3.3 Cache Usage Monitor 

During the physical system booting all cache memory is allocated to the Dom0 by 

default. When the other guest VMs e.g., Dom U are executed, then they share the same 

memory which is allocated to Dom0. The responsibility of cache usage monitor (CUM) 

is to measure the cache for running VMs upon the creation of new VM and to make a 

decision about the partition adjustment. Moreover, the responsibility of CUM upon the 

new VM creation is to monitor the cache utilization, to assign the initial page colors to 

VM, and to readjust the color assignment according to the requirement of VMs. The 

CUM, reserve a memory pool for the page coloring during runtime, and partition this 

memory according to the underlying cache infrastructure into different colors. The 

memory pool is used in order to serve all page request. The free pages having the same 

color inside the memory pool are linked together to form multiple list. The CUM divide 

the cache into N portion of contiguous pages on a physical system having M processing 

cores. Each cache section is then assigned to a particular CPU core, this specific core will 

be considered a local core for a color if the color belongs to this core. All the core other 

than local core will be considered as remote cores. When new VM is created then the 

CPM will search the core having light weight and allocate the whole cache portion of the 

core to this VM. Consequently, in a system, if the total number of page color is C then 

the color assigned to every VM will be C/M. This means that the cache will be fully 

utilized by N co-running VMs. 

One intuitive defense to mitigate cache-based SC attacks is the static partition scheme 

is to divide the cache into statistical partition according to the different schemes of color 

assignment and strictly assign distinct page color to different VMs, so they access 

different parts of cache. Although the static cache partition is simple and provides 
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isolation, it potentially decreases the cache utilization and consequently limits the number 

of VMs. To mitigate this problem, we extend page coloring with dynamic cache 

repartitioning capability by adding recoloring mechanism. In this scheme, we first assign 

a default-sized partition and then gradually increase the size thorough re-partition (e.g., 

re-coloring). We devised an algorithm for cache usage monitor which is presented as 

follows. 

Algorithm 1 Cache Usage Monitor 

1: Input: Current VM, Cache Miss Rate 

2: if New VM creation = True then 

3: Cache Usage Monitor: Pass the cache miss rate of the current VM to cache 

usage monitor function 

4: Function Cache_Usage_Monitor (Cache miss rate) 

5: Assignment = Assignment of (current VM) 

6: if cache miss rate > High-Threshold then 

7:      if IsNotShared (Number of VMs do not sharing the same color) = False 

then 

8:        IsShared True 

9:        Return 

10:      End if 

11:       New = Assign_Color (c) 

12:      Assignment += new 

13:      IsNotShared  False 

14: End if 

15: End if 

16: End Function 

17: Function Assign_Color (number) 

18:     New  ϕ 

19:     While number > 0 do 

20:        If need-cache() then 

21:         new += pick_remote () 

22:       else  

23:         new + = pick_local() 

24:         end if 

25:         number  number -1 

26:       end While 

27:       return new 

28:   End Function 

Thus the different parts of the cache will be assigned to different VMs to improve the 

security of the system without impacting the overall performance of the system. Because 
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every VM can access different cache on a dynamic basis according to their requirements. 

The system will be secure from the SC attacks because no VM can access the partition 

assigned to another VM. The purpose of differentiating the VMs sharing the same color 

to the VMs not sharing the same color is useful for restricting two VMs to not interfere 

with each other data by assigning the new color which is not already shared to the new 

created VM. There are two approaches coloring and recoloring. In the cache usage 

monitor algorithm, the function Assign-Color is triggered to assign a specific color to a 

new created VM, whenever it run outs of memory with its pre-existing color. Here c is 

the configurable number of color. Moreover, in cache usage monitor algorithm, the 

number of VMs using the same color as the definition of IsShared and refer the other one 

IsNotShared when the VMs do not share the same cache. While the recoloring function 

in color-page allocator has explained in the following section is invoked when a cache 

demand exceeds its current assignment. This is determined by observing the ratio of the 

cache miss rate to the total number of cache accesses by hardware performance counter 

in modern processor over a period of time. Cache usage monitoring is responsible for 

assigning an initial color to VM. We set up high-threshold and low-threshold as a global 

variable for the cache miss rate when the system starts. VMs with the cache miss rate 

greater than the high-threshold are the one required more space on the cache. While VM 

with cache miss rate lower than the low-threshold is the ones willing to provide empty 

space on cache for re-partitioning.  

Function cache_usage_monitor in algorithm 1 is used to activate recoloring. It takes 

the cache miss rate of the existing VMs upon the time of new VM creation. The 

need_cache() function returns true if current VM has already been using the entire section 

of the local cache. The number of VMs sharing the same color (IsShared) act as a signal 

to indicate that a VM needs more page colors. Conversely, the number of VMs do not 

share the same color (IsNotShared) is used to indicate when more page colors are 
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available. Functions pick_remote select a color in a section of remote cache belonging to 

the existing VM. Similarly, pick_local choose a color in a local cache section, owned by 

the current VM. Cache usage monitor considers both the number of cache references and 

cache miss rate. If the cache reference for a VM is small then the cache miss rate for that 

specific VM will be considered as zero. 

4.3.4 Color-Aware Page Migrator 

Color-aware page migrator is responsible for allocating page frame of specific color. 

Upon receiving an allocation request from VM, the color-aware page migrator 

communicate with the CUM to determine the colors already assigned to the requesting 

VM. The color-aware page migrator then gets one of these colors in a round robin manner 

and returns a page from the memory pool with that specific color. For instance, when a 

new VM request for a page, the Xen hypervisor (VMM) allocate pages according to P2M 

table created by CUM in term of page coloring. Therefore, the requested data for 

individual VM will be placed in separate cache lines, this improves the security because 

one VM cannot access or evict the data of another VM. In our prevention mechanism, a 

memory pool is used to handle all the request from various VMs. Inside the memory pool, 

free pages having the same colors are linked together to make multiple lists. The per-VM 

color assignment is done in the cache usage monitor in order to reduce the complexity of 

our prevention mechanism.  

Once the admission control approves the request for new VM creation then upon the 

receiving request of allocation for new VM, the color-aware page migrator (CPM) 

communicate with the CUM to find the color already assigned to the created VMs. The 

CPM then select one of these colors in a round robin manner and return a page of that 

specific color to the requesting VM from the memory pool. If the memory pool does not 

consist that requesting color then the page migrator assigned another color to the VM. If 

the requesting color is not available then the page allocator of Xen hypervisor populate 
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the memory pool and organize the free pages in a machine using a buddy system, similar 

to the Linux memory management mechanism. To implement our prevention mechanism 

we have added our color-aware page migrator in addition to buddy system for memory 

management. Using these color bits, the Xen hypervisor can make the color-aware page 

migrator to control the mapping between physical pages and cache memory and can 

assign a specific color page to the requesting VM. 

4.4 HBP-DCP Prevention Mechanism Algorithm 

Section 4.3 explains the basic building blocks of the proposed prevention mechanism. 

In this section, we will present our proposed algorithm which starts from the interaction 

between the components of the proposed prevention mechanism. The existing prevention 

algorithm change the cache configuration at boot time based on the new VM creation. 

Our proposed prevention mechanism is different from the static page coloring method in 

that it allows cache usage of adjusting VMs on the fly. We achieve the dynamic cache 

partition between VMs by changing the physical location of a VM’s logical page through 

a set of hypercalls in the Xen source code. The dynamic cache partition algorithm is based 

on the cache coloring approach which has already implemented in the OS for page 

allocation (Tam, Azimi et al. 2007). However, the basic steps in generic dynamic cache 

allocation can be summarized in the following steps: 

1. Wait for new VM request. 

2. Admission control approves the request for new VM creation and send 

hypercalls to hypervisor. 

3. The cache usage monitor component in hypervisor is responsible to get the 

current partition of cache and the number of currently executing VMs. 

4. Reconfigure existing VMs by shrinking its cache size through page recoloring. 

5. Register a new cache partition for new VM with Xen hypervisor. 
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6. Create the requested VM with the new cache partition on dynamic basis and 

assign a color page to the VM which represent a unique cache line. 

7. Consequently, it prevents the cache-based SC attacks to occur because every 

VMs get individual unique partition in the cache and is unable to access and evict 

each other data. 

Based on these generic steps and the components of our proposed solution, we present 

our proposed cache usage monitor and dynamic cache partitioning algorithms to serve the 

end users as algorithm 1 and algorithm 2 for the prevention of cross-VM cache-based SC 

attacks. 

Figure 4.5 shows the flow of our HBP-DCP prevention mechanism. As shown in the 

figure when the user request for VM creation then the responsibility of the admission 

control in combining with the global scheduler is to assign the physical id on a physical  

Algorithm 2 Dynamic Cache Partitioning Algorithm 

1: Input: L3 cache detail, VM-ID 

2: Include Xen memory header file 

3: While(1) 

4: Input (src_mfn, dst_color) 

5: Allocate a free machine page from the cache usage monitor 

6: New free machine page  dst_mfn 

7: Store (src_mfn in SPT) 

8: Remove all write permission in SPT where each entry pointing to src_mfn 

9: Enable  dirty page 

10: If guest tries to access and modify src_mfn  

11: then mark page as  dirty page 

12: Before starting the above steps lock the SPT or activate shadow lock  

13: if (Copy src_mfn to dst_mfn) 

14: for each copy 

15: check whether the content is changed during the copying process 

16: if (unchanged) then 

17: Update P2M and M2P mapping 

18: End While 
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machine to that created VM. Once the admission control assign the physical id then the 

global scheduler send the hypercall to the Xen scheduler. Now VM is created, the 

responsibility of cache usage monitor in our HBP-DCP mechanism is to monitor the 

existing running VMs and their cache utilization. Now the responsibility of color-aware 

page migrator to repartition the entire cache according to the new created VM. For 

instance, if currently one VM is running then the entire cache is assigned to that VM. 

Now if 2 more VMs are created and the demand of each VM for cache is different. Then 

HBP-DCP mechanism monitor the entire cache and repartition the entire cache according 

to the demand of 3 created VMs.  

Admission Control
User Request For 

VM creation

Physical 

Machine

Assign Physical Id to 

VM
Cloud Controller

Send Request

Response Request

Xen Scheduler

Cache Usage 

Monitor

Color-Aware Page 

Migrator
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Cache Memory 
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Hypercall

Accept/Reject

VM 6

Assign individual part of cache to each 

VM according to their need

Global Schedular

Each VM can not extract 

each other data
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Figure 4.5: Flow of the Prevention Mechanism Using Dynamic Cache Partitioning 

4.5 Data Design 

In this section, we present the features of our performance evaluation system namely 

performance evaluation parameters and methods. We introduce and describe our 
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performance evaluation parameters. These parameters are selected to evaluate and 

efficiently analyzes the lightweight characteristics of our proposed prevention 

mechanism. In addition, we describe the methods to evaluate and validate the 

performance of the proposed prevention mechanism. 

4.5.1 Performance Evaluation Metrics 

In this section, we describe the evaluating process of our proposed prevention 

mechanism. It describes the criteria by which we evaluate the effectiveness of our solution 

and the environment for conducting our experiment. We also describe the parameters or 

metrics by which we evaluate our proposed prevention mechanism and compare to the 

existing state-of-the-art prevention mechanism. These parameters are used to determine 

under what conditions our proposed HBP-DCP prevention mechanism for cross-VM 

cache-based SC attacks can be practically implemented into a commercial cloud 

environment. Table 4.1 shows the evaluation parameters with the measurement unit. 

Table 4.1: Metric for Performance Evaluation of the proposed Prevention 

Mechanism 

Evaluation 

Metrics 

Description Unit 

Load Testing To evaluate the performance of a system in term 

of generated overhead from normal (low) to 

peak (high) load to find peak for the system 

Seconds 

Cache Usage To calculate cache usage by measuring 

performance of the memory hierarchy more 

specifically the level (L1, L2, and L3) of cache 

MB/Sec 

Memory Access 

Rate 

To calculate the time required to access data 

from memory 

Nanoseconds 

(a) Load Testing 

We measure the performance of our proposed prevention mechanism under the 

normal and peak condition and consider the load testing which is mostly used method for 

performance testing. The load testing of any system can be better expressed by the 
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maximum amount of work a system can handle without performance degradation. These 

load testing can be done by many methods, however, we used Apache benchmark 

explained in next chapter which is open source and easily benchmarks for the cloud. 

(b) Cache Usage 

We measure the performance of the memory hierarchy (e.g., cache usage) of the 

system after deploying our prevention mechanism, specifically our focus is to 

parameterize and evaluate the performance of cache level (e.g., L1, L2, and L3) present 

on and off the processor. The performance of the system means that how much raw 

bandwidth in megabyte per second after the dynamic partition of cache. 

(c) Memory Access Rate 

Memory access time is calculated during translation of guest virtual pages to 

machine physical page. This is the total time, the computer takes to read data from a 

storage device such as computer memory, physical memory, and cache or another 

mechanism. The unit of measurement for memory access rate is commonly nanoseconds 

or milliseconds. If the memory access time for any instruction is low then it is considered 

to be a better access time as compared to high access time. For instance, if the memory 

access time is 10ns for reading 100MB then it is considered faster than the 50ns for 

accessing the same data. 

4.5.2 Data Collection Tool 

Although there are different methods and tool for generating and analyzing a load of a 

system and also the data can be gathered by using different approaches. However, in order 

to analyze the load of a system, we used Apache benchmark. In which we check that a 

system can handle how many numbers of requests per second in a modified and 

unmodified hypervisor. Similarly, there are a number of programs and benchmark for 

extracting the cache usage, however, cachebench was expected to give more detailed 
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cache usage. Auto-generating of load testing and cache usage is beneficial in order to 

avoid man-made mistakes and improving data integrity, accuracy and data reliability at 

the stages of analyses and synthesis. The memory access rate and boot time are collected 

by using our customized designed program. The program calculates and analyzes data 

gathered by measuring the number of cycles required to access a set of memory addresses. 

4.5.3 Performance Evaluation Method 

The performance of this prevention mechanism is evaluated using benchmarking 

experiments on the modified (static and dynamic partitioned) and unmodified Xen 

hypervisor and on different numbers of VMs. The data are collected for analysis by using 

many synthetic workloads. The statistical model is used to validate the results of our 

benchmarking experiments. We developed the statistical model using the independent 

replication model to train the regression model. The split-sample approach is used to 

validate the identified statistical model. The validated model are used to generate the load 

testing, cache usage, and memory access rate. Data analysis and synthesis testify the 

proposed prevention mechanism performance. 

4.6 Conclusion 

In this chapter, we presented our proposed HBP-DCP prevention mechanism. The 

basic objective of the HBP-DCP mechanism to prevent the cross-VM cache-based SC 

attacks. HBP-DCP consists of cache usage monitor and color aware page migrator that 

monitor the cache after VM creation and assign a specific part of cache to each VM. These 

VMs will not interfere with each other data nor evict each other data. Moreover, HBP-

DCP mechanism partitions the entire cache dynamically according to VM creation. If we 

partition the entire cache statically during boot time, then this will degrade the cache 

usage and consequently the overall performance of the system. For instance, if there is 

one VM in the running state but the cache is already partitioned into 4 equal parts during 
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boot time. Then this running VM will get the one small part of the entire cache while the 

other three parts will be idle or wasted. As a result, the cache utilization will be degraded 

and will affect the overall performance of the system. To solve this problem prevention 

mechanism based on dynamic cache partition is proposed in our solution (HBP-DCP) 

which will decide to partition and assign the cache to different VMs according to their 

requirement on a dynamic basis.
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CHAPTER 5: EVALUATION 

In this chapter, we describe the performance evaluation approaches to evaluate the 

proposed our modified dynamic partitioned hypervisor based on HBP-DCP mechanism 

for cross-VM cache-based SC attacks based on dynamic cache partitioning. For this 

purpose, we analyze the performance difference between unmodified (default/insecure), 

static partitioned and our modified (dynamic partitioned/secure) hypervisors by 

considering three performance metrics, namely load testing, cache utilization, and cache 

access rate. The main motive of this chapter is to discuss and analyzes the data collection 

methods, experimental setup, evaluation parameters, and to analyze the performance of 

the proposed algorithms. To evaluate the proposed prevention mechanism and its 

lightweight features, we utilized standardized synthetic benchmarking experiments 

namely Apache benchmark and cachebench benchmark from the Phoronix test suite and 

also cachegrind benchmark. In addition, we also used customized program to measure the 

average number of cycles needed to access a set of memory addresses or the average 

memory access time. The evaluation process also describes that how the results were 

conducted and how many observation is performed in order to evaluate the proposed 

prevention mechanism. Moreover, the data collection method for the proposed HBP-DCP 

prevention mechanism is also described. 

The evaluation results are validated through statistical modeling. We have used 

independent replication method in order to build our statistical model and validate the 

proposed prevention mechanism using split-sample approach. In another set of 

experiments, we build a separate test-bed for the comparison of our proposed prevention 

mechanism using dynamic cache partition to the static cache partition to describe the 

lightweight features of our mechanism. Finally, we demonstrate the statistical data 

analysis methods used to analyze and synthesis the results. The rest of this chapter is 

organized as follow: Section 5.1 presented the process of evaluation at a high level. 
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Section 5.1.1 described the experimental method along with the data collection and data 

generation method. The benchmarks and their input data are listed in Section 5.2. In 

Section 5.3, the evaluation method is presented to explain how the statistical models are 

validated. Section 5.4 described our parametric analysis in terms of bearable load, cache 

usage, and memory access time by each hypervisors and demonstrated the statistical data 

analysis observation used in this thesis to evaluate and synthesis the result. Finally, 

Section 5.5 conclude the chapter. 

5.1 Evaluation Process  

The proposed prevention mechanism (HBP-DCP) is designed to prevent the cross-VM 

cache-based SC attacks using dynamic cache partition. In this prevention mechanism, the 

page coloring technique is implemented to divide the cache dynamically according to the 

new VM request and demand. An efficient algorithm is developed to measure the cache 

for new created VM and assign the specific color to the new requesting page of VM. Then 

the color-aware page migrator component in the (HBP-DCP) receive these input and 

allocate a separate partition in the cache to the new requesting VM on the fly. Multiple 

compute intensive benchmarks application are selected from the Phoronix test suit to 

analyze and evaluate the performance of the system. Since our solution is based on the 

hypervisor source code, thereby, the data is collected is to run the application benchmark 

in the unmodified, static partitioned, and modified (dynamic partitioned) hypervisors. For 

load testing of the three hypervisors, we used Apache benchmark. For evaluating the 

cache utilization of unmodified, static partitioned and dynamic partitioned hypervisors, 

the data is collected through the cachebench benchmark. Similarly, the memory access 

rate of unmodified, static partitioned, and our modified (dynamic partitioned) hypervisors 

are evaluated through collecting data through our designed customized benchmarks. The 

evaluation of our secure HBP-DCP hypervisor is based on acquiring the answers to the 

two research questions: Does our secure hypervisor prevent the cross-VM cache based 
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SC attacks and what is the performance difference between our secure (modified/dynamic 

partitioned) and insecure (unmodified/default) and static partitioned hypervisors. In order 

to answer these questions, we have simulated a single server cloud environment. We have 

conducted a cross-VM cache-based SC attack by using PTP technique in this 

environment. Moreover, we have subject both static partitioned and our dynamic 

partitioned hypervisor to a series of workload under different configuration for the 

purpose of checking system behavior. The resulting completion indicates system 

overhead. 

5.1.1 Experimental Setup 

In this section, we explain the needed hardware and software for conducting our 

experiment and describe the methodology used to benchmark the unmodified, static 

partitioned and our modified (dynamic cache partitioned) hypervisors when collecting the 

data about load testing, cache usage, memory access pattern. We conducted real-time 

experimental analysis for the evaluation of our proposed prevention mechanism. There 

are various reason behind the utilization of real-time experiments. Firstly, in the field of 

CC environment, simulation tools are not much mature and is unable to provide the 

technical capabilities to conduct the research work of this nature. Secondly, simulation 

tools simulate the real time metrics and consequently generates probabilistic estimation 

and more overhead. Therefore, simulation tools are more vulnerable to result in 

estimation that can lead to low accuracy. Moreover, the real-time analysis provides the 

detailed knowledge of the system evaluation parameters that affect the performance of 

the prevention mechanism.  

Our performance evaluation for the proposed prevention was conducted on a machine 

with Intel processor i7 having the quad-core processor and one hardware thread per core 

and 4GBytes memory. We created two VMs namely the victim VM1 and attacker VM2. 

These two co-located VMs can evict each other data to form a cross VM cache-based SC 
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attack by sharing the same hardware. We have solved this problem by using HBP-DCP 

mechanism to prevent the two co-located VM from being able to evict each other data 

from the cache by using dynamic cache partition. By using HBP-DCP we have assign 

separate part of cache to each VM, so these two VMs are unable to access each other 

cache. By assigning such partition, each VM would be able to use a part of the shared 

cache without interfering with each other to ensure that no VM outside of its partition can 

access the cache lines. To comply with the cloud model our dynamic partition would need 

to be implemented entirely through software means.  

The studied literature showed that some authors have done static cache partition, 

however, this static partition degrades the cache usage that further degrades the overall 

performance. Some authors have done dynamic cache partition, but that solution would 

need to be required the clients to change their software’s or the underlying hardware 

which does not obey the cloud model. Therefore, we need a prevention mechanism based 

on dynamic cache partition that obey or comply with the cloud model. Since our 

prevention mechanism is hypervisor-based, we changed the source code of Xen 

hypervisor by implementing our solution in the page allocation algorithm of Xen memory 

management. Now we need to evaluate our proposed prevention mechanism performance 

in term of load testing, cache utilization, and memory access rate by analyzing the 

benchmark results in the unmodified, static partitioned, and our HBP-DCP (dynamic 

partitioned) hypervisors. To evaluate the performance of the proposed prevention 

mechanism, we selected two standard and different synthetic benchmark. The selected 

synthetic benchmarks are Apache and cachebench from the Phoronoix test suit for 

evaluation of load testing and utilization of cache. These benchmarks have been discussed 

in Chapter 3 in detail for the purpose of problem analysis. 

The primary data for evaluating the performance of our proposed prevention 

mechanism is gathered by conducting the experiments in three scenarios. In the first 
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scenario, the attacks and the benchmarks are executed in the unmodified or default 

hypervisor. In the second scenario, the attacks and the benchmarks application are 

executed in the modified hypervisor is known as a statically partitioned hypervisor. 

Finally, in the third scenario, the attacks and the benchmarks are executed in our modified 

hypervisor is referred to as dynamic partitioned hypervisor. In our solution, we changed 

the source code of the open source customized hypervisor. The outcome of our solution 

is a new hypervisor which dynamically assigned the cache to individual VM based on 

their cache requirement. Consequently, no two VMs are able to evict or extract each other 

data nor disrupt each other communication. The limitations of the static partition can be 

solved here by assigning the cache partition during runtime based on the need and number 

of executing VMs. 

5.1.2 Effect of our HBP-DCP based Hypervisor on the Cross-VM SC Attack 

The hypervisors (Unmodified, Static partitioned, and our modified based on the 

dynamic cache partition (HBP-DCP)) are evaluated under the same cache-based SC 

attack. The cache-based attacks were conducted by using prime + probe and flush & 

reload methods as we explained in detail in Section 3.2.3 in Chapter 3. We have 

implemented cache-based SC attack in three scenario namely in native OS, in single VM, 

and across-VMs in virtualized environment. In the PTP technique, the side channel 

receiver and sender programs are installed on two separate guests VMs. The receiver 

program is called the probing instance while the receiver program performs the function 

of the target instance. Both sender and receiver programs were executed simultaneously 

by co-located VMs on the test-bed machine and pinned to separate CPU cores such that 

L3 cache could not be used as an SC attacks. The attack was conducted between the target 

(victim) and the probing instance (attacker) by sending an identifiable string of 160 bits 

from the target to probing. In order to verify the consistency, the attack was executed on 

each hypervisor ten times. Similarly, in order to conduct the cross-VM cache-based SC 
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attack by using the flush & reload technique, the flush & reload process (attacker) is 

installed in one VM and the AES process (victim) is installed in another VM. Both 

attacker and victim processes were executed simultaneously by co-located VMs on the 

same physical machine and pinned to separate CPU cores. Consequently, the attacker 

extract the encryption key of AES algorithm which we have explained in the chapter 3 in 

detail. 

The SC attacks were given an ideal condition for working to verify the secure (HBP-

DCP) and insecure hypervisor ability. Specifically, the Dom0, target instance, and the 

probing instance were pinned to separate CPU cores and were the only VMs running on 

the hypervisor. This configuration depicts the best possible condition for cache-based SC 

attacks. Any variation in this setup would prevent the attack success. Our experimental 

analysis concludes that if an attack can be prevented under these favorable conditions 

then the same prevention mechanism would work for the environment more unfriendly 

to the success of attacks. The viability of the implemented prevention mechanism should 

not be affected by these configurations. The experimental results of our proposed 

prevention mechanism on the PTP and F&R techniques are presented in Figure 5.1. 

Dynamic cache partition as a solution would be able to assign different partition of shared 

cache to the individual VM so each VM would be unable to access each other data as 

shown in the Figure 5.1. 

As we see in Figure 5.1, there are two VMs accessing the shared cache, so our 

prevention mechanism divides the cache into two partitions according to the requirement 

of each individual VM. The red dotted line part is reserved for VM1 and green dotted line 

shows the VM2 partition. For instance, VM1 is the probing instance and the partition of 

VM1 maps to the first two cache lines and the partition for VM2 (Target instance) maps 

to the last six cache lines out of the eight shown. When the probing instance tries to access 

and prime the cache lines it would be able to access the partition of the first two cache 
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lines which has already been assigned to it and cannot access the other six lines. Now 

when the target instance tries to access and modify the cache lines it can just access their 

own assigned six partitions and therefore unable to evicting VM1’s data from the cache 

lines. 

Cache Hit

Cache Hit

Cache Hit

Cache Hit

Cache Hit

Cache Hit

Cache Hit

Touch Category Cache Line Un-touch Category Cache Line

VM1 Data

No Data

VM1 Data

VM2 Data

No Data

VM2 Data

No Data

Cache Hit

No Data

Cache Hit

VM2 Data

No Data

VM2 Data

No Data

Trigger ProbePrime 

The probing instance VM1 insert 

data into every cache line. The 

timed cache line reads yield cache 

hit for every line

The target instance inserts data 

into every second cache line 

(touch category)

The probing instance repeats the 

timed cache line reads, since VM2 

could not access VM1 data so it 

generates all the cache hit

Virtual machine 1 (Partition 1)Virtual machine 1 (Partition 1) Virtual Machine 2 (Partition 2)Virtual Machine 2 (Partition 2)

Every VM get their own partition in the shared cache 

according to their demand

VM2 Can not access 

VM1 partition

VM2 modifies
VM1 Read

No Context 

Switch

 

Figure 5.1: Effect of Dynamic Cache Partition on the PTP technique 

When the probing instance once again tries to access cache lines it would see no 

difference from when it is left and therefore no communication would occur. Our 

prevention mechanism is more than preventive as compared to reactive, it prevents the 

cache-based SC attacks from occurring rather than reactive response after occurring the 

attacks. Since there are two types of response for attacks namely preventive and reactive 

response. In prevention response, the attacks would be able to prevent at the start before 

occurring and it would not be occur. While, in reactive response, once the attacks occur 

then the attacks would be cured or blocked after occurring. Therefore, the preventive 
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response is better than reactive response because once the attack occur it can damage the 

system or extract the confidential information in a very short time.  

If a VM is given a cache of half the size but does not have to worry about data being 

evicted from it by other VMs then it may end up yielding a greater cache hit/miss ratio. 

We are partitioning the entire memory pool to guarantee the complete security of the 

system as compared to the work done by Shi et al. (Shi, Song et al. 2011) which have 

attempted to partition a small memory of the cache and given a portion of memory by 

using secure color to the encryption algorithm. By default, the hypervisor’s memory is 

not bound to a specific partition as we are not aware of any side-channel attack that targets 

the hypervisor. However, this could be easily implemented using the same technique.  

Table 5.1 describes the correctly recovered whole key in number of bytes in both single 

VM and cross-VM. Single VM means that attack is conducted in single in which the 

attacker and victim programs are in the same VM. In cross-VM scenario, both the attacker 

and the victim programs are in different VM and in different cores.  

Table 5.1: Comparison of Correctly Recovered Key in Single and Cross-VM in 

Unmodified Hypervisor (Insecure/Default) 

In Single Virtual Machine (Single-Core) In Cross-Virtual Machine(Multi-Core)  

Number of requested 

encryption 

Number of 

correctly recovered 

key bytes 

Number of requested 

encryption 

Number of 

correctly 

recovered key 

bytes 

10,000 1 30,000 2 

90,000 6 60,000 2 

130,000 10 100,000 4 

150,000 10 200,000 8 

200,000 13 260,000 9 

250,000 13 300,000 11 

260,000 14 350,000 12 

265,000 14 450,000 13 

270,000 15 500,000 15 

275,000 16 650,000 16 
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Table 5.1 shows that the required number of requested encryption for correctly 

recovered the 16 bytes of key in single VM is 275,000 and in cross-VM is 650,000. Since 

in cross VM the external noise effect the results, therefore, the number of requested 

encryption in single VM is less than as compared to cross-VM. We believe that due to 

noise SC attacks require a high number of encryption in the cloud environment as 

compared to non-cloud environment. 

The cross-VM cache-based attack is conducted in the modified (Secure/HBP-DCP 

based) hypervisor. The evaluation result of cross-VM cache-based attacks is shown in 

Table 5.2. The result in Table 5.2 describes the correctly recovered key in number of 

bytes in both single VM and cross-VM in the presence of our HBP-DCP prevention 

mechanism. Single VM means that attack is conducted in single VM in which the attacker 

and victim programs are in the same guest VM/operating system.  

Table 5.2: Comparison of Correctly Recovered Key in Single and Cross-VM in 

Modified Hypervisor (Secure/Dynamic Partitioned/HBP-DCP) 

In Single VM (Single-Core) In Cross-VM (Multi-Core)  

Number of requested 

encryption 

Number of 

correctly recovered 

key bytes 

Number of requested 

encryption 

Number of 

correctly 

recovered key 

bytes 

20,000 0 20,000 0 

60,000 0 70,000 0 

100,000 0 100,000 0 

130,000 0 200,000 0 

180,000 0 280,000 0 

200,000 0 300,000 0 

250,000 0 350,000 0 

265,000 0 475,000 0 

270,000 0 520,000 0 

275,000 0 650,000 0 

 

As shown in the Table 5.2, in cross-VM scenario, both the attacker (Flush & Reload) 

and the victim (AES) programs are in different VMs and in different cores. The correctly 

recovered key in both cases is zero. This zero byte result shows that our HBP-DCP 
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prevention mechanism is capable to prevent cross-VM cache-based SC attacks. Because 

by implementing our HBP-DCP mechanism, no VM has the ability to communicate with 

each other for the purpose to leak confidential information.  

5.2 Benchmark Applications 

This section describes the evaluation process of our HBP-DCP solution. It presents the 

criteria by which we evaluate the effectiveness of our proposed solution and the 

environment in which we conducted the experiments. We also describe the evaluation 

metrics by which we compare our proposed solution to the existing state-of-the-art 

prevention mechanisms. To evaluate the performance behavior of our proposed 

prevention mechanism, we have considered two synthetic benchmarks namely Apache 

and cachebench. We also ustilized two customized benchmarks namely: one is a program 

for checking the memory access time and the other is a synthetic compute intensive 

program with the different granularity of execution input. 

We have discussed these benchmarks in Chapter 3 also because the same benchmarks 

were utilized for the evaluation of performance of the static cache partitioning 

mechanism. Selected benchmark applications investigate the load that modified (dynamic 

partitioned) hypervisor can tolerate, the cache utilization, and the memory access rate 

after partitioning the cache dynamically. These evaluation metrics are used to determine 

under what condition our solution can be practically implemented into a commercial 

cloud environment. There are different reasons behind choosing these benchmark 

application. Firstly, selecting the benchmark applications, it is ensured that the chosen 

benchmark is an open source. Secondly, our solution is based the on Xen hypervisor 

source code (coded in C/C++). Therefore, it is considered during the selection process 

that the selected benchmark is coded in C/C++ language. According to the above 
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constraints, we have selected Apache benchmark1, cachebench2, cachegrind3 and 

customized benchmark namely memory access time. 

5.2.1 Apache Benchmark 

The Apache benchmark is a standard command line program used as HTTP web server 

benchmarking tool. Apache benchmark was chosen because it is open source, commonly 

available, frequently used a benchmarking service, and mostly used for web services one 

would see as cloud-based applications. In addition, this benchmark was selected for 

performance experiments because we believe that being a robust benchmark it constitutes 

a credible Cloud workload. Apache benchmark is used to fire requests to a server in order 

to find that in how much time and how fast the server could process these requests. We 

used the apache benchmark to analyze the performance difference between our modified 

based on dynamic cache partitioning, static partitioned, and unmodified hypervisors in 

term of load testing. 

5.2.2 Cachebench Benchmark 

Since our HBP-DCP prevention mechanism is based on the dynamic cache partition 

that is directly related to the cache. Thereby, in order to check the impact of our solution 

on the cache usage, we must choose a benchmark which gives a more detailed information 

about the cache usage. In our case, cachebench is a more suitable benchmark because it 

is designed for the cache usage description. Cachebench is a synthetic benchmark 

designed to evaluate the performance of the memory architecture and also to empirically 

parameterize the performance of cache levels namely L1, L2, and L3 present on and off 

the CPU processor. The performance is calculated in term of raw bandwidth in megabytes 

                                                 
1 https://en.wikipedia.org/wiki/ApacheBench 

2 https://openbenchmarking.org/test/pts/cachebench 

3 http://valgrind.org/info/tools.html 
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per second such as cache read/modify/write, cache read and cache write bandwidth. The 

objective of this benchmark is to establish high computation rate which gives the optimal 

cache usage and to verify the effectiveness of compiler optimization. Moreover, the 

purpose of using this benchmark is to verify the memory footprint of our proposed 

prevention mechanism because the requirement for many application depends on the 

resources in term of memory footprint. We check the memory footprint in term of the 

cache hit and cache miss. Thus this benchmark gives us a good basis for our proposed 

prevention mechanism performance.  

5.2.3 Cachegrind Benchmark 

We have used the cachegrind benchmark from the valgrind test suit for conducting the 

data about cache miss and cache hit rate of all level cache including L1, L2, and L3. These 

cache miss and cache hit is then used by our designed program to calculate the average 

memory access rate and the effective memory access rate in case of our modified 

(dynamic partitioned), static partitioned, and unmodified hypervisor. The parameters 

along their measurement unit calculated as a result of these benchmarks are shown in the 

following Table 5.3 in detail. Since our prevention mechanism is based on the partition 

of cache memory, therefore by using this benchmark we analyzed the result of cache 

access rate and memory access rate by executing matrix program in the modified, static 

partitioned, and unmodified hypervisor. 

Table 5.3: Parametric Evaluation with Benchmarking 

Factor Parameters Calculated by Unit 

Load 

Testing 

To calculate the load of modified 

(partitioned) and unmodified 

hypervisor in request per seconds 

Apachebench Seconds 

Cache 

Utilization 

To calculate bandwidth of a memory by 

changing array sizes in MB/s 

Cachebench MB/Sec 

Memory 

Access 

Time 

To calculate the time in nanoseconds 

required to access data from memory 

Customized 

Benchmark + 

Cachegrind 

Nanoseconds 
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5.3 Evaluation methods 

In order to analyze the reliability and validity of our research, several statistical 

analyses are performed on the collected data through benchmark tools and executing 

experiments in a different scenario. A statistical model is used to represent and analyze 

generated data by an average and a standard deviation. The statistical model always 

implies dependent and explanatory variable. Computation behind the statistical modeling 

allows us to show the significance of our research. We present each of the statistical 

methods that are used in this research in the following section. 

5.3.1 Descriptive statistics 

The descriptive statistics is used in this research in order to analyze data and to 

highlight the significance of achievement of our modified HBP-DCP based hypervisor in 

terms of cache utilization and prevention capability as compared to the static partitioned 

and unmodified (insecure) hypervisors. In descriptive statistic, minimum, maximum, 

mean and the standard deviation are determined. The desire descriptive data is acquired 

based on the collected data are summarized in the graphical and tabular form to 

accomplish the desired objectives. 

5.3.2 Confidence Interval 

According to the sample central limit theorem, approximately 95 % of the sample 

means fall within 1.96 standard deviations of the population mean, showed that the 

sample is greater than or equal to 30 (n ≥ 30). Therefore, all the experiments in this 

research are executed 30 times for the performance evaluation of individual variable to 

verify that the obtained value is under one of the representative samples. In the data 

sample, the measurement of the central tendency of each experiment is calculated based 

on the sample mean (-X), for the reason to discover that sample mean is a better point 

estimate of the population mean as compared to median or mode. Data sampling includes 
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a range of intervals determined from the specified confidence level, a statistics, and the 

factor of sampling error; hence the sample mean can differ from the population mean. 

The level of confidence is the probability that the parameter is truly captured by the 

confidence range. The most common Confidence Levels (CL) are 90%, 95%, and 99%. 

Therefore, the interval estimate of each sample is determined in order to signify the 

goodness of the calculated point estimate. The interval estimate for each sample mean of 

the primary data is calculated with approximately 95% confidence interval of the sample 

means within 1.96 standard deviations by using the following equation. Therefore, for 

reporting the parametric results we raise the readability and confidence of the results up 

to 95%. Equation 5.1 is used to calculate the margin of error in the sample (Intervals 

2004).  

 M=  Z ∗  (
𝜎

√𝑛
)  (5.1) 

Whereas, M is the margin of error and Z indicates the value based on the confidence 

interval percentage and σ is the standard deviation and n is the number of samples. 

Equation 5.2 is used to calculate the confidence interval estimates for each sample mean 

(X) of the primary data with a 95% confidence interval (Intervals 2004). 

 µ = X ± 1.96 (
𝜎

√𝑛
) (5.2) 

Whereas, σ is used to indicate the standard deviation in the sample values and n shows 

the size of sample space.  

5.3.3 Paired Samples T-Test 

In this research, we performed the Paired Samples T-Test to ensure that there is a 

significant difference between the mean values of the identical measurement performed 

in three different hypervisors namely unmodified (insecure), static partitioned, and 

modified (dynamic partitioned–based, the case of our solution) execution modes. In our 
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study, the unmodified, static partitioned and the modified (dynamic partitioned) 

hypervisors parametric values are paired data of the same workload into three different 

execution modes. We use this test to ensure that the execution modes of the unmodified, 

static partitioned, and modified (dynamic partitioned) hypervisors have a significant 

impact on the load, cache utilization, and memory access time or not. In other words, we 

can conclude with the help of the generated results from the Paired Sample T-Test that 

the bearable load, cache utilization, and memory access time in the unmodified (insecure) 

static partitioned, and modified (secure as a case of our solution) hypervisors modes have 

a significant difference. Furthermore, our modified HBP-DCP based hypervisor has the 

ability to prevent cross-VM cache based SC attacks in the cloud environment. 

5.3.4 Linear Regression 

In this section, we explain our statistical analysis modeling. Using the statistical model 

results, we can verify and validate the results of the conducted experiments in this 

research work. We produce the statistical modeling of our performance parameters 

including load testing, cache utilization, and memory access rate by employing the 

independent replication method to generate independent datasets. These datasets consist 

of load testing, cache utilization, and memory access rate for the new independent 

workload in the unmodified (default/insecure), static partitioned and modified (dynamic 

partitioned/HBP-DCP) hypervisors.  

Moreover, we train the linear regression model to identify the correlation between the 

load and the transferred number of request per seconds as well as between the cache size 

and memory bandwidth in term of memory access rate. These regression models are used 

to generate the load, cache utilization, memory access rate to validate the findings of the 

performance evaluation parameters generated via experimental analysis. We leverage 

split-sample approach and perform calibration-validation exercise to validate our 

regression model. Therefore, partial datasets are used to build and train the model and the 
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remaining for validation of the model. We randomly split the sample into two different 

size samples to perform validation and identification of the correlation between 

dependent and independent variable. The model is valid in the case if the result values 

support each other. The following section describe the parametric evaluation 

5.4 Evaluation Metrics 

In this section, we present the data collected in a number of experiments by using the 

aforementioned benchmarks for the evaluation of the modified hypervisor based on the 

proposed prevention mechanism (HBP-DCP) for the cache-based attacks across VMs. 

The data are presented from the perspective of performance metrics (i) load testing, (ii) 

cache utilization, and (iii) memory access time in three different scenario, namely (i) 

conducting of attack in the static partitioned hypervisor, (ii) conducting of attack in the 

unmodified (default/insecure) (iii) conducting of attack in the modified (dynamic 

partitioned/ HBP-DCP) hypervisors. The experimental setup used in benchmarking 

analysis is shown in the following Table 5.4. 

Table 5.4: Experimental Environment in benchmarking Analysis 

Items Detail 

CPU Processor Intel Core i5-3450 CPU @ 3.10GHz, 4 cores, Hyper Threading disabled 

L1 Data-cache 32KB, 8 way associative, line size 64  

L1 Instruction-cache 32KB, 8 way associative, line size 64 

L2 Cache 256KB, 8 way associative, line size 64 

L3 Cache 6144KB, 12 way associative, line size 64 

Memory 11915MB DDR3 @1333MHz 

VMM Xen Hypervisor with dynamic cache partition 

Virtual Machines HVM guest, 1GB memory, 1 dedicated core for individual VM 

Guest OS Ubuntu 12.04.5 

5.4.1 Load Testing 

The load testing is investigated in order to support the load that a modified hypervisor 

based on our proposed method HBP-DCP can tolerate. We have tested a load of 

hypervisors in three modes, namely unmodified (default/insecure), static partitioned, and 
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modified (dynamic partitioned/secure) hypervisor by sending multiple requests through 

Apache benchmark. We have created 10 VMs on each hypervisor namely unmodified, 

static, and our modified hypervisors and have checked a load of each hypervisor by 

sending many concurrent requests. For this, first, we have checked a load of unmodified 

(insecure), static partitioned, and modified (secure is our solution) hypervisors without 

creation of any VMs. Then after this, we have created 1VM, 2VM, 3VM, 4VM, 5VM, 

6VM, 7VM, 8VM, 9VM, and 10 VMs on each hypervisor respectively and have checked 

the bearable load of each hypervisors in each case. In each hypervisor, for load testing, 

we have analyzed the average response time and the maximum number of requests per 

second that hypervisors can tolerate under a large number of connections or simultaneous 

users.  

Table 5.5 shows the load testing of the unmodified, static partitioned, and dynamic 

partitioned (HBP-DCP) hypervisors in term of sending the concurrent requests and 

checking the average response time per request. We generate the different types of loads 

for the system in form of sending the concurrent requests to the server and run the 

experiment 30 times for 1 to 30 concurrent users. The Min and Maximum in the Table 

5.5 representing the minimum and maximum ranges of generated number of requests per 

second and average response time per request for varying number of concurrent 

requests/users. In order to analyze that for what scenario the system will fail to work, we 

executed the system for the different workload. In this case, we do not have created any 

VM. The number of concurrent requests varies from 10 to 150. The number of concurrent 

requests means that our modified hypervisor can handle how many numbers of concurrent 

users. Table 5.5 shows that the difference in the average number of requests per second 

and the response time per request in the unmodified, static partitioned ,and in our 

modified (dynamic partitioned) hypervisors is significant as the T-test and P-test prove it. 

As shown in the table, the p-values for number of request per seconds and response time 
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in the static and dynamic partitioned hypervisors are .037 and .421 and T-values are 2.323 

and 1.923 respectively. These values prove the significance of the results.  

Table 5.5: Load Testing of Unmodified, Static Partitioned, and Dynamic Partitioned 

Hypervisors without any VM and with Varying Number of Concurrent Requests 

 Unmodified 

(Default/insecure) 

Static Partitioned Hypervisor Modified (Dynamic 

Partitioned/secure) 

Concurrent 

Requests 

Number of 

Requests per 

Second 

Average 

Response Time 

per request 

Number of 

Requests per 

Second 

Average 

Response Time 

per request 

Number of 

Requests per 

Second 

Average 

Response 

Time per 

request 

10 5502 1.749 5070 12.222 5105 5.851 

20 5530 3.480 5007 25.324 5115 15.806 

30 5047 5.882 4834 36.234 4949 20.65 

40 4943 7.827 4237 38.765 4462 22.988 

50 4904 9.788 4317 52.342 4535 25.629 

60 4999 12.218 4295 54.232 4910 38.979 

70 4980 13.995 4805 68.454 4827 39.954 

80 4903 16.517 4628 79.345 4843 45.271 

90 5150 18.162 4400 85.332 4924 49.13 

100 5199 19.894 4349 98.393 4964 55.837 

110 5280 22.823 4255 106.347 4970 58.846 

120 5301 24.766 4195 120.776 4618 59.481 

130 5377 30.858 4322 158.711 4751 65.154 

140 4998 50.101 4275 185.872 4695 98.152 

150 3640 159.041 3408 245.743 3430 201.03 

Mean 5050.2 26.47 4426.47 91.21 4739.86 53.52 

Median 5047 16.517 4322 79.345 4843 45.271 

Min 3640 1.749 3408 12.222 3430 5.851 

Maximum 5530 159.041 5070 245.743 5115 201.03 

Std. 

Deviation 

442.592 38.664 407.70 64.63 410.050 47.00 

Confidence. 

Int. 

223.978 19.566 206.32 32.71 207.510 23.78 

P-Value .037 .0421 0.022 0.039 .0283/0.022 0.039 

T-Value 1.992 1.721 2.099 1.826 1.992/2.099 1.826 

The relationship between the number of requests and response time is that the average 

response time per request is increasing as the number of the concurrent users are 

increasing. Although there is a small increase in load in the case of modified (HBP-DCP) 

hypervisor as compared to unmodified as shown in a table. However, the modified (HBP-

DCP/secure) hypervisor has the ability to secure the CC environment from cache-based 

SC attacks as compared to the unmodified (insecure) hypervisor. Since we know that 

security always comes with some overhead, therefore this is not a big difference in both 

hypervisors. 

Univ
ers

ity
 of

 M
ala

ya



 

151 

Table 5.6 shows the load testing of unmodified (default/insecure) hypervisor in term 

of sending the concurrent requests. In this case, we have created multiple VMs namely 

1VM to 10VMs and have checked the bearable load in case of each VM. For instance, 

first, we have created 1VM and have checked the load for 10 to 100 concurrent users. 

Similarly, we repeated the same experiment for 2VM, 3VM, 4VM, 5VM, 6VM, 7VM, 

8VM, 9VM, and 10VM respectively. The bearable load in term of number of requests per 

second is shown in the following table. 

Table 5.6: Number of Requests per Second in Unmodified (Default/insecure) 

Hypervisor with Varying Number of VMs and Concurrent Users/Requests 

Execution 

Traces 

Number of Requests per Second 

Number of 

concurrent users 
1VM 2VM 3VM 4VM 5VM 6VM 7VM 8VM 9VM 10VM 

10 3311 3246 3302 3198 3186 3203 3222 3240 3207 3150 

20 3256 3225 3124 3154 3106 3162 3208 3204 3099 3132 

30 3180 3207 3223 3134 3223 3144 3198 3229 3213 3128 

40 3298 3185 3258 3118 3218 3132 3182 3284 3282 3112 

50 3238 3162 3285 3110 3284 3127 3166 3289 3285 3173 

60 3258 3146 3244 3107 3229 3120 3150 3248 3247 3168 

70 3189 3121 3240 3112 3192 3112 3142 3259 3238 3072 

80 3156 3102 3162 3102 3185 3114 3123 3172 3211 3039 

90 3138 3088 3203 3105 3216 3112 3105 3198 3202 3023 

100 3094 3066 3265 3069 3215 3110 3090 3208 3195 2988 

Mean 3211.8 3154.8 3230.6 3120.9 3205.4 3133.6 3158.6 3233.1 3217.9 3098.5 

Median 3213.5 3154 3242 3111 3215.5 3123.5 3158 3234.5 3212 3120 

Std. Deviation 71.502 60.818 54.922 34.824 45.043 29.507 44.485 38.173 52.669 64.429 

Confidence .Int. 44.317 37.694 34.040 21.584 27.918 18.289 27.572 23.659 32.644 39.933 

Table 5.7 shows the load testing of our modified (secure/dynamic partitioned) 

hypervisor in term of sending the concurrent request. In this case, we have repeated the 

same procedure as we done for the unmodified hypervisor. We have created multiple 

VMs namely 1VM to 10VMs and have checked the bearable load in case of each VM. 

For instance, first, we have created 1VM and have checked the load for 10 to 100 

concurrent users. Similarly, we repeated the same experiment for 2VM, 3VM, 4VM, 

5VM, 6VM, 7VM, 8VM, 9VM, and 10VM respectively. We have calculated the average 
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for each VMs. The approximate difference in average for each VM is 10 number of 

request in both unmodified and modified hypervisors. 

Table 5.7: Number of Request per Second in Modified (Dynamic Partitioned) 

Hypervisor with Varying Number of Virtual Machines and Concurrent Requests 

Execution 

Traces 

Number of Requests per Second 

Number of 

concurrent 

users 

1VM 2VM 3VM 4VM 5VM 6VM 7VM 8VM 9VM 10VM 

10 3301 3209 3301 3226 3164 3202 3228 3201 3238 3250 

20 3243 3195 3114 3176 3085 3141 3192 3082 3076 3092 

30 3171 3166 3219 3142 3138 3119 3214 3201 3204 3218 

40 3286 3145 3247 3130 3119 3093 3274 3242 3200 3212 

50 3225 3130 3236 3115 3112 3075 3273 3255 3253 3233 

60 3249 3120 3224 3103 3105 3068 3232 3237 3149 3168 

70 3178 3102 3210 3081 3093 3122 3241 3221 3159 3072 

80 3141 3080 3192 3065 3071 3090 3162 3155 3122 3039 

90 3120 3038 3187 3043 3055 3033 3181 3192 3113 3023 

100 3043 3006 3175 3022 3021 3017 3201 3182 2992 2988 

Mean 3195.7 3119.1 3210.5 3110.3 3096.3 3096 3219.8 3196.8 3150.6 3129.5 

Median 3201.5 3125 3214.5 3109 3099 3091.5 3221 3201 3154 3130 

Std. Deviation 80.38 65.00 49.32 61.83 41.25 53.69 37.18 50.37 79.19 97.54 

Confidence 

.Int. 

49.82 40.29 30.57 38.32 25.57 33.28 23.04 31.22 49.08 60.45 

 

Table 5.8 shows the number of requests and the average response time per request for 

both unmodified (insecure) and modified (dynamic partitioned/secure) hypervisor. The 

average number of requests per second is for the unmodified hypervisor is 3189.42 and 

for modified is 3150.1. Similarly, the average response time per request for the 

unmodified hypervisor is 18.42 and for modified is 19.52. There is only 1.24% difference 

in bearable load in term of number of requests per second in both hypervisor and only 

5.8% difference in the average response time per request. However, this is acceptable 

because our modified (dynamic partitioned) hypervisor has the ability to prevent cross-
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VM cache-based SC attacks. The T-test in the following Table 5.8 proves the significant 

difference in the load of both unmodified and modified hypervisor.  

Table 5.8: Load Testing in Modified and Unmodified Hypervisor with Varying 

Number of VMs (Average for 10 to 100 Concurrent Request/users for each VM) 

 Unmodified (Default Hypervisor) Modified (Dynamic Partitioned/secure) 

Hypervisor 

Number of VMs Average Number 

of Requests per 

Second 

Average Response 

Time per request 

Average Number 

of Requests per 

Second 

Average Response 

Time per request 

1 3231.8 16.024 3210.7 18.132 

2 3228.8 17.108 3189.1 18.203 

3 3216.6 17.901 3172.5 19.209 

4 3210.9 18.479 3160.3 19.111 

5 3198.4 18.551 3146.3 19.351 

6 3187.6 18.732 3142.4 19.232 

7 3172.6 18.98 3134.8 19.34 

8 3161.1 19.201 3123.8 20.001 

9 3149.9 19.57 3115.6 21.37 

10 3136.5 19.611 3105.5 21.211 

Min 3136.5 16.024 3105.5 18.132 

Mean 3189.42 18.42 3150.1 19.52 

Median 3193.0 18.6 3144.4 19.3 

Maximum 3231.8 19.6 3210.7 21.4 

Std. Deviation 33.46 1.13 33.30 1.08 

Confidence Int. 20.74 0.70 20.64 0.67 

P-Value 0.008 0.019 0.008 0.019 

T-Value 2.53 2.220 2.53 2.220 

Table 5.9 shows the bearable load in a statically partitioned hypervisor with varying 

number of VMs and number of partitions. Since the partition is created during boot time, 

therefore, we are unable to change the partitions during execution of VMs. As shown in 

the table the bearable load in term of the number of request per second is decreasing as 

the number of VMs and partitions are increasing. For instance, if we created 16 number 

of partitions in the cache or we divided the cache into 16 parts and during runtime, we 

need only one VM. Then this configuration cannot be changed during runtime and 

therefore, one part of the cache would be assigned to single created VM and the remaining 
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15 parts of cache will be wasted. Consequently, degrade the performance in term of 

bearable load because this single VM having limited part of cache accept the low number 

of requests per second. For instance, if the number of created VM is one and the number 

of partitions is 16, then the number of request per second will be very low regardless the 

number of VMs. As shown in Table 5.9, if the number of VMs is greater than the number 

of partition then the performance will be degraded. For instance, if there are 16 VMs and 

the number of partitions is 2 then during runtime it will be difficult to manage the 

partitions accordingly.  

Table 5.9: Load Testing with Varying Number of VMs and Partitions in Static 

Partitioned Hypervisor 

  Number of Requests per Second  

Number of 

concurrent users 

Number of 

Partitions 

With 1 VM With 2VM With 4VM With 8 VM With 16 VM 

10 1 3200 3500 3200 1500 700 

10 2 3200 3200 3100 1500 700 

10 4 2800 2900 3100 1500 600 

10 8 2300 1900 1700 1400 600 

10 16 1900 1800 1600 1100 400 

Conversely to the static partitioned mechanism, in the dynamic partitioned based 

hypervisor, the number of cache partitions is not decided during boot time as shown in 

Table 5.10. When VM is created then the cache is divided into partition accordingly. For 

instance, if one VM is created then the whole cache is assigned to single VM during 

runtime. While in the case of 8 or 16 VMs the whole cache is divided into 8 or 16 parts 

respectively. As compared to static partition, the dynamic partition improves the 

performance in term of the bearable load. For example, in the static partition, once we 

create 16 partitions at boot time then in the case of one VM creation the cache is divided 

into 16 parts. Consequently, degrade the performance because the other 15 parts of cache 

will be idle during execution. While in dynamic partition the case is different because the 
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whole cache is assigned to that single VM. In the case of 8 or 16 VMs creation, the cache 

will be divided into 8 or 16 parts respectively.  

Table 5.10: Load Testing with Varying Number of VMs in Dynamic Partitioned 

Hypervisor 

 Number of Requests per Second   

Number of 

concurrent 

users 

1VM/Partition 2VM/Partition 4VM/Partition 8 VM/Partition 16VM/Partition 

10 3301/1 3209/2 3197/4 3176/8 2764/16 

20 3243/1 3195/2 3186/4 3162/8 2726/16 

30 3221/1 3166/2 3169/4 3140/8 2698/16 

40 3196/1 3145/2 3147/4 3125/8 2645/16 

50 3175/1 3132/2 3116/4 3104/8 2622/16 

Table 5.11 shows the comparison of load testing in static and dynamic partitioned 

hypervisors. In both hypervisors, the bearable load is compared in term of the average 

number of requests per second and response time per request for the 1,2,4,8, and 16 cache 

partitions. As shown in the table, in the static partitioned hypervisor, the number of 

requests per second is decreasing with the increasing number of VMs and partitions. For 

instance, the average number of request per second 1977.28 in the static partitioned 

hypervisor and 3157.88 in our dynamic partitioned (HBP-DCP) hypervisor. Similarly, 

the average response time in the static partitioned hypervisor is 19.33 and 18.28 in our 

dynamic partitioned (HBP-DCP). The number of request per second is increased by 

45.33% and the average response time per request is decreased by 5.58%. Therefore, the 

bearable load in term of request per second and average response time is improved in our 

dynamic partitioned (HBP-DCP based) hypervisor. Since the number of partitions is 

predefined during boot time, we cannot change during runtime. For instance, if we 

partitioned the entire cache into 16 parts and we are executing one VM then only single 

part of the entire cache will be assigned to that executing VM and the remaining 15 parts 

will be idle. Consequently, degrade the performance in term of the load. While in our 
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dynamic partitioned hypervisor, the cache partition is not predefined but decided during 

runtime according to the number of executingVMs. For instance, if we create one VM 

then the entire cache will be assigned to that single VM while if we create 16 VMs then 

the cache the cache will be divided into 16 parts. Therefore, the overall performance will 

be improved.  

Table 5.11: Comparison of Load Testing in Static-Partitioned and Dynamic-

Partitioned-based Hypervisors with Varying Number of VMs and Partitions 

(Average for 10 to 100 Concurrent Request for each VM) 

 Static Partitioned-based Hypervisor  

(1,2,4,8,16 Static Partitions) 

Dynamic Partitioned-based Hypervisor 

(Dynamic Partition) 

Number of VMs Average Number 

of Requests per 

Second 

Average Response 

Time per request 

Average Number 

of Requests per 

Second 

Average Response 

Time per request 

1 2684.5 18.132 3210.7 17.024 

2 2660.8 18.203 3189.1 17.108 

4 2540.2 19.111 3160.3 17.479 

8 1400.6 20.001 3123.8 18.201 

16 600.3 21.211 3105.5 19.611 

Min 600.3 18.132 3105.5 17.024 

Mean 1977.28 19.33 3157.88 18.28 

Median 2540.2 19.111 3160.3 18.479 

Maximum 2684.5 21.211 3210.7 19.611 

Std. Deviation 937.13 1.30 43.81 1.18 

Confidence Int. 821.42 1.14 38.40 1.04 

T-Value 2.813 1.927 2.813 1.927 

P-Value 0.11 .045 0.11 .045 

Figure 5.2 shows the result of sending 170 concurrent request during execution. It 

shows that with increasing number of concurrent request in each hypervisor namely 

unmodified (default/insecure), static partitioned, and our modified HBP-DCP (dynamic 

partitioned) hypervisors the number of request per second is decreasing. While the 

average response time per request in increasing. The response time per request is 126ms. 

The 126ms response time is showing the fastest request. If the response time per request 

is or less than 175ms then it will be considered the fastest requests while the slowest 

requests have the response time is or greater than 224ms. 
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Figure 5.2: Result of Apache Benchmark with Varying Number of Concurrent 

Requests 

Statistical model is designed in order to validate the results of performance 

evaluation produced via experimental analysis. The result of statistical model for 

load testing are presented here. We have designed the load estimation model to test 

the load value for each VM based on the two variables namely request per seconds 

and the average time per request. In order to build the statistical model, we have 

taken 80 % data for the training and 20% for the validation. We have taken these 

two values to train our model as much as possible to avoid biased results. The output 

of the statistical model is shown in the following Table 5.12. The statistical model 

for load is shown in the following Eq.5.3. 

R       lm (Load ∼ Number of Request + Time per Request) 

𝑊 = ∑ (𝐿𝑉𝑀𝑖 + 𝑁𝑅𝑉𝑀𝑖 +  𝑇𝑃𝑅𝑉𝑀𝑖)
10
𝑖=1       (5.3) 

Where i is = 1 to 10 (Number of Virtual Machines from 1 to 10) 

Univ
ers

ity
 of

 M
ala

ya



 

158 

The detail statistics of the statistical model of our linear regression are summarized in 

Table 5.12. The R value shows significance correlation between the number of request 

per second and the response time per request. The average R-squared value in the table 

testifies that 99.20% of the load value can be explained using number of request per 

second and response time per request. The F-statistics in the table ensure that available 

data is appropriate to be used for linear regression and P-value shows the significance of 

the result. 

Table 5.12: Regression Statistics Summary for Load Testing of Varying VMs 

Number of VM P-Value R-Squared Adjusted R-Squared F-Statistic 

1VM 4.968e-05 0.993 0.9894 281.8 

2VM 0.0008928 0.9907 0.9845 160.3 

3VM 7.348e-07 0.991 0.988 329.5 

4VM 3.633e-12 0.9998 0.9998 1.951e+04 

5VM 2.77e-09 0.9999 0.9999 3.8e+04 

6VM 1.09185-03 0.5488 0.9884 3.649 

7VM 4.819e-06 0.9978 0.0067 909 

8VM 1.529e-07 0.9996 0.9994 5112 

9VM 5.636e-14 1 0.9999 7.824e+04 

10VM 8.348e-11 0.9996 0.9994 6861 

5.4.2 Cache Utilization 

Since our HBP-DCP prevention mechanism for cross-VM cache-based SC attacks is 

based on the dynamic partition of cache for each VM and the performance impact of our 

prevention system depends on the cache functionality. Therefore, we used cache 

utilization as our evaluation parameter that how much our solution effect the cache 

bandwidth in term of cache read/write/modify, cache read, and cache write. Cache 

utilization is investigated for unmodified, static partitioned, and modified (HBP-

DCP/Dynamic partitioned) hypervisors to check the amount of data accessed in bytes by 

each one. We used the cache write, cache read and cache Read/Modify/Write from the 

cachebench benchmark to evaluate the different level of cache in term of accessed data. 

Each one executes repeated access to data items on varying vector lengths. For each 
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vector length, timings are taken based on the number of iterations. The total amount of 

accessed data in bytes is calculated by computing the product of vector length and number 

of iteration. A bandwidth figure (e.g., Megabytes as being 10242 or 1048576) in 

megabytes per second is then computed by dividing this total data accessed by the total 

time. Moreover, the average access time in nanoseconds per each data item is computed 

and reported. For cache usage metric, the cache writes, cache read, cache 

read/modify/write are conducted to evaluate both unmodified (insecure) and modified 

(secure: our solution) hypervisor. Cachebench is used to run these three benchmarks in 

order to measure the time in nanoseconds and bandwidth in MB/sec. Cache read 

calculates the read bandwidth by varying vector length. The resulting bandwidth will be 

high for the cases, where the vector length is less than cache size because the data will be 

coming from the cache. 

 Cache size and vector size are both independent variables. Cache size is how much 

data is stored "locally" in some sense. Vector length is the amount of data to transmit and 

can thus be any number. The measures of interest come when the vector is larger than the 

cache as shown in the Table. As shown in Table 5.15, there is no significant difference 

between the modified (dynamic partitioned) and unmodified (default) hypervisor with 

increasing number of VMs despite the expectation to the contrary. To investigate why we 

analyzed the source code of cachebench. It is clear from the code that cachebench obtain 

its reading by measuring the response time for cache small sections at any specific time. 

The dynamic cache partition will not affect the cache performance because these sections 

are very small and have enough cache to work.  

This benchmark shows that a program with both low and high memory footprint 

should not be negatively affected by the dynamic partitioning of the cache. In contrast, 

static partition does not affect the program with low partition, however, it has a negative 

impact on the program with high memory footprint. Because, in the static partition, the 
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small program can entirely fit in the assigned smaller partition of cache to each VM while 

the large memory footprint program can not fit entirely in the small partition assigned to 

each VM at boot time. Conversely, in a dynamic partition, the program with both small 

and large memory footprint can fit entirely in the assigned cache to each VM. Because in 

the dynamic partition, if for example, 2 VMs are running then the whole cache would be 

assigned to these 2 VMs and therefore large memory footprint program will not degrade 

the overall performance. For instance, if a program just needs 8KB or 200KB of the cache 

at any specific time then it will have no negative impact on the cache performance if there 

are more than 10 partitions because, during dynamic partition, 512kb is assigned to each 

VMs. However, if one or two VMs are running then the whole cache memory will be 

assigned to one or two VM, in Core i5 the 2MB cache will be assigned to both VM. 

Therefore, a program with the low memory footprint has no negative impact on the cache 

performance during cache partitioning.  

Table 5.13 and 5.14 present the data related to the cache utilized by varying vector 

lengths in each VM e.g., 1VM, 2VMs, 3VMs, 4VMs, 5VMs, 6VMs, 7VMs, 8VMs, 

9VMs, and 10VMs, which are collected in unmodified (insecure/default) and modified 

(Secure/HBP-DCP/dynamic partitioned) hypervisors. Each Table summarizes the 

bandwidth for varying vector lengths with 95% confidence interval for 30 number of 

iteration for each VM e.g., 1VM to 10VMs. Similar to load testing for each VM, we 

present bandwidth in MB/Sec for Cache Read/Modify/Write e.g., the total amount of data 

accessed in bytes with 95% confidence interval to enable reliability of our data. The 

benchmark Read/Modify/Write in cachebench is used to determine the bandwidth (how 

much data is accessed) by varying vector lengths. The data in both tables show that there 

is an acceptable difference between the cache utilization in term of bandwidth MB/Sec in 

both hypervisors even the modified hypervisor has the ability to prevent cross-VM cache-

based SC attacks.  
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Table 5.13: Cache Utilization of Unmodified Hypervisor 

  Bandwidth (MB/Sec) for Read/Modify/Write of Varying Virtual Machines 

Execution 

Traces 

C-Size 1VM 2VM 3VM 4VM 5VM 6VM 7VM 8VM 9VM 10VM 

1 256 18010.78 16320.03 18256.65 18374.66 18141.36 17673.91 18284.43 18238.125 17875.55 17407.48 

2 336 17444.21 17436.02 17457.82 17422.24 17386.05 16942.28 17339.97 17350.963 16928.82 16410.65 

3 424 18974.97 18986.7 18945.75 18856.22 18751.78 18322.14 18853.09 18800.384 18362.71 17874.6 

4 512 20105.25 20115.28 20052.72 20023.84 19463.41 19475.4 19977.81 19914.018 19428.63 19272.44 

5 680 21626.97 21622.58 21562.56 21515.29 20.941.81 20967.44 21505.72 21399.052 20785.12 20229.52 

6 848 22669.82 22657.75 22573.36 22589.29 21877.59 21968.81 22543.28 22422.787 21678.64 21255.02 

7 1024 23445.77 23420.64 23232.63 23360.52 22723.52 22716.04 23204.62 23123.022 22385.02 22119.99 

8 1360 24449.76 24442.52 24338.14 24404.33 23706.65 23698.67 24335.17 24064.946 23251.82 23678.41 

9 1704 25102.69 25120.47 25057.39 25002.8 24339.59 24354.7 24983.84 24711.307 23901.93 24322.07 

10 2048 25571.66 25580.1 25541.13 25480.36 24769.92 24809.76 25470.57 25241.943 24329.22 24760.35 

11 2728 26168.16 26145.53 26085.84 26030.6 25354.95 25398.21 26060.53 25892.23 24811.41 25340.84 

12 3408 26540.02 26520.56 26457.35 26437.22 25731.23 25719.91 26410.5 26235.549 25208.98 25704.39 

13 4096 26774.5 26779.57 26650.52 26695.41 25913.12 25894.68 26667.05 26499.885 25381.6 25930.89 

14 5456 27044.14 27061.88 27038.92 27045.49 26313.17 26277.96 27000.67 26839.088 24930.03 26262.08 

15 6824 27276.03 27300.06 27240.12 27254.47 26466.41 26475.72 27199.62 27048.748 25161.71 26457.36 

16 8192 27422.45 27445.8 27344.61 27355.97 26526.88 26599.68 27340.21 27156.973 8192 27422.45 

17 10920 27607.14 27608.08 27522.84 27519.55 26758.4 26771.99 27468.5 27318 10920 27607.14 

18 13648 27597.66 27707.58 27633.22 27610.15 26864.49 26867.85 27561.91 27459.636 13648 27597.66 

19 16384 27778.46 27771.29 27690.99 27708.51 26943.71 26925.28 27612.92 27512.886 16384 27778.46 

20 21840 27863.58 27862.95 27784 27788.43 27021.39 27012.86 27697.67 27589.881 21840 27863.58 

21 27304 27913.91 27913.22 27875.83 27821.62 27069.35 27063.09 27791.73 27607.307 27304 27913.91 

22 32768 27944.52 27931.52 27885.8 27704 27090.11 26997.19 27809.4 27699.925 32768 27944.52 
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23 43688 27977.26 27982.49 27909.43 27895.51 27065.76 27126.44 27870.49 27536.417 43688 27977.26 

24 54608 28017.56 27994.23 27949.03 27890.55 27161.52 27160.8 27893.35 27589.301 54608 28017.56 

25 65536 28033.89 28025.99 27944.67 27910.99 27173.82 27156.75 27887.54 27764.86 65536 28033.89 

26 87376 28046.01 28042.92 27983.92 27945.97 27184.51 27214.36 27853.62 27674.065 87376 28046.01 

27 109224 28051.91 28063.72 27998.85 27960.02 27204.26 27211.66 27787.4 27803.388 109224 28051.91 

28 131072 28063.83 28073.39 27993.38 27947.32 27204.54 27221.6 27975.84 27696.146 131072 28063.83 

29 714760 28079.79 28082.25 27978.91 27927.25 27232.66 27242.34 27951.38 27783.632 714760 28079.79 

30 218448 28132.23 28120.33 27989.24 27950.55 27240.56 27250.34 27982.32 27790.339 218448 28132.23 

 Min 17444.21 16320.03 17457.82 17422.24 17386.05 16942.28 17339.97 17350.96 16928.82 16410.65 

 Median 27349.24 27372.93 27292.37 27305.22 26526.88 26537.70 27269.92 27102.86 25314.25 26331.57 

 Maximum 28132.23 28120.33 27998.85 27960.02 27240.56 27250.34 27982.32 27803.39 27848.38 27002.85 

 Std. Deviation 3302.39 3451.20 3271.43 3258.45 3051.04 3190.86 3269.59 3227.04 2936.11 3254.17 

 Confidence Int. 1181.72 1234.97 1170.65 1166.00 1091.78 1141.81 1169.99 1154.76 1050.65 1164.47 
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Table 5.14: Cache Utilization of Modified Hypervisor 

 

  Bandwidth (MB/Sec) for Read/Modify/Write of Varying Virtual Machines 

Execution 

Traces 

C-Size 1VM 2VM 3VM 4VM 5VM 6VM 7VM 8VM 9VM 10VM 

1 256 17490.78 16300.03 18236.65 18354.66 18121.36 17653.91 18264.43 18218.125 17855.55 17387.48 

2 336 17419.21 17411.02 17432.82 17397.24 17361.05 16917.28 17314.97 17325.963 16903.82 16385.65 

3 424 18555.97 18967.7 18926.75 18837.22 18732.78 18303.14 18834.09 18781.384 18343.71 17855.6 

4 512 20073.25 20093.28 20030.72 20001.84 19441.41 19453.4 19955.81 19892.018 19406.63 19250.44 

5 680 21577.97 21599.58 21539.56 21492.29 20100.11 20944.44 21482.72 21376.052 20762.12 20206.52 

6 848 22630.82 22636.75 22552.36 22568.29 21856.59 21947.81 22522.28 22401.787 21657.64 21234.02 

7 1024 23393.77 23393.64 23205.63 23333.52 22696.52 22689.04 23177.62 23096.022 22358.02 22092.99 

8 1360 24414.76 24417.52 24313.14 24379.33 23681.65 23673.67 24310.17 24039.946 23226.82 23653.41 

9 1704 25065.69 25103.47 25040.39 24985.81 24322.59 24337.7 24966.84 24694.307 23884.93 24305.07 

10 2048 25535.66 25564.11 25525.13 25464.36 24753.92 24793.76 25454.57 25225.943 24313.22 24744.35 

11 2728 26121.16 26125.53 26065.84 26010.6 25334.95 25378.21 26040.53 25872.23 24791.41 25320.84 

12 3408 26502.02 26497.56 26434.35 26414.22 25708.23 25696.91 26387.5 26212.549 25185.98 25681.39 

13 4096 26735.35 26753.57 26624.52 26669.41 25887.12 25868.68 26641.05 26473.885 25355.6 25904.89 

14 5456 27023.14 27040.88 27017.92 27024.49 26292.17 26256.96 26979.67 26818.088 24909.03 26241.08 

15 6824 27214.03 27273.06 27213.12 27227.47 26439.41 26448.72 27172.62 27021.748 25134.71 26430.36 

16 8192 27375.15 27419.8 27318.61 27329.97 26500.88 26573.68 27314.21 27130.973 25220.89 26492.44 

17 10920 27473.24 27580.08 27494.84 27491.55 26730.4 26743.99 27440.5 27290.12 25561.34 26701.01 

18 13648 27532.36 27688.58 27614.22 27591.15 26845.49 26848.85 27542.91 27440.636 25960.02 26818.27 Univ
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Table 5.14: Continue… 

19 16384 27741.4 27751.29 27670.99 27688.51 26923.71 26905.28 27592.92 27492.886 26024.53 26832.16 

20 21840 27831.28 27833.95 27755.21 27759.43 26992.39 26983.86 27668.67 27560.881 25670.56 26879.6 

21 27304 27790.91 27890.22 27852.83 27798.62 27046.35 27040.09 27768.73 27584.307 26147.74 26943.03 

22 32768 27793.32 27901.52 27855.81 27674.21 27060.11 26967.19 27779.4 27669.925 25913.64 26967.68 

23 43688 27884.12 27959.49 27886.43 27872.51 27042.76 27103.44 27847.49 27513.417 26315.71 26979.85 

24 54608 27975.22 27969.23 27924.03 27865.55 27136.52 27135.8 27868.35 27564.301 26828.74 26878.88 

25 65536 27970.82 28002.99 27921.67 27887.99 27150.82 27133.75 27864.54 27741.86 26082.77 26711.79 

26 87376 27995.41 28021.92 27962.92 27924.97 27163.51 27193.36 27832.62 27653.065 26283.22 26591.34 

27 109224 28016.86 28038.72 27973.85 27935.02 27179.26 27186.66 27762.4 27778.388 26367.67 26504.82 

28 131072 28028.22 28047.39 27967.38 27921.32 27178.54 27195.6 27949.84 27670.146 27108.16 26445.88 

29 714760 27997.21 28060.25 27956.91 27905.25 27210.66 27220.34 27929.38 27761.632 27163.41 26379.05 

30 218448 28107.33 28100.33 27969.24 27930.55 27220.56 27230.34 27962.32 27770.339 27828.38 26135.57 

 Min 17419.21 16300.03 17432.82 17397.24 17361.05 16917.28 17314.97 17325.96 16903.82 16385.65 

 Median 27294.59 27346.43 27265.87 27278.72 26470.15 26511.20 27243.42 27076.36 25288.25 26310.07 

 Maximum 28107.33 28100.33 27973.85 27935.02 27220.56 27230.34 27962.32 27778.39 27828.38 26979.85 

 Std. Deviation 3357.68 3450.40 3270.67 3257.68 3129.66 3190.09 3268.82 3226.26 2935.50 3253.39 

 Confidence Int. 1201.51 1234.69 1170.37 1165.72 1119.92 1141.54 1169.71 1154.48 1050.43 1164.19 
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Similarly, Table 5.15 shows the bandwidth of cache read and cache writes by varying 

vector length i.e., c-size for both unmodified and modified hypervisor generated via 

experiment.  

Table 5.15 Average Bandwidth (MB/Sec) of Cache Read and Cache Write of Varying 

VMs (1VM-10VM) in Un-Modified and Modified Hypervisor 

Average Bandwidth (MB/Sec) of Varying VMs (VM1-VM10) 

  Unmodified (default/insecure) 

Hypervisor (1VM-10VMs) 

Modified (Dynamic-Partitioned) 

Hypervisor (1VM-10VMs) 

Execution 

Traces 

C-Size Bandwidth of 

Cache Read 

(MB/Sec) 

Bandwidth of 

Cache Write 

(MB/Sec) 

Bandwidth of 

Cache Read 

(MB/Sec) 

Bandwidth of 

Cache Write 

(MB/Sec) 

1 256 1935.88 2139.74 1903.88 2127.74 

2 336 1938.39 2173.34 1908.39 2161.34 

3 424 1949.24 2178.98 1917.24 2166.98 

4 512 1948.09 2042.00 1923.09 2030.00 

5 680 1323.09 1933.28 1288.09 1921.28 

6 848 1931.31 2068.73 1916.31 2056.73 

7 1024 1939.8 2163.17 1924.8 2151.17 

8 1360 1921.37 2156.73 1896.37 2144.73 

9 1704 1952.07 2225.12 1927.07 2213.12 

10 2048 1957.94 2224.35 1942.94 2212.35 

11 2728 1969.46 2236.61 1954.46 2224.61 

12 3408 1963.77 2273.94 1948.77 2261.94 

13 4096 1975.43 2293.04 1960.43 2281.04 

14 5456 1963.89 2214.23 1948.89 2199.23 

15 6824 1968.47 2096.07 1947.47 2081.07 

16 8192 1976.26 2182.09 1941.26 2167.09 

17 10920 1397.06 2157.74 1342.06 2142.74 

18 13648 1331.05 2019.30 1306.56 2004.30 

19 16384 1330.59 2142.71 1235.59 2127.71 

20 21840 1317.53 2296.77 1302.53 2281.77 

21 27304 1313.01 2528.70 1268.01 2513.70 

22 32768 1300.64 2310.62 1275.64 2295.62 

23 43688 1009.88 2005.95 1044.88 1990.95 

24 54608 1085.77 2329.79 1070.77 2314.79 

25 65536 1310.22 1935.00 1295.22 1920.00 

26 87376 1297.13 1930.16 1272.13 1915.16 

27 109224 1353.34 2019.69 1328.34 2004.69 

28 131072 1330.98 2233.06 1335.98 2218.06 

29 174760 1191.13 2385.88 1276.13 2370.88 

30 218448 1086.98 2133.25 1271.98 2118.25 

Mean  1608.99 2167.67 1595.82 2153.97 

Std. 

Deviation 

 358.86 138.41 346.29 138.36 

Confidence 

Int. 

 128.41 49.53 123.92 49.51 

T-Value  1.981 2.012 1.981 2.012 

P-Value  .0437 .0411 .0437 .0411 
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Cache read and cache write perform repeated access to the data item on varying vector 

lengths such as varying c-size in Table 5.14. The average of cache read for unmodified is 

1595.82 and for modified is 1608.99 and the average for cache write is 2153.97 for 

unmodified and 2167.67 for modified are almost 14. The difference between the cache 

read of both unmodified and our modified (dynamic partitioned) is .821% and in the cache 

write is .634%. This is acceptable difference because our modified hypervisor has the 

ability to prevent cross-VM cache-based SC attacks. The T-test proves the significant 

difference of cache read and cache write in both unmodified and modified hypervisor. 

Table 5.16 shows the average bandwidth of cache read/write/modify benchmark in the 

static partitioned hypervisor. As the expected performance of our dynamic partitioned 

hypervisor depends on the utilization of cache. Therefore, we execute the cache 

read/write/modify to evaluate the cache utilization of static partitioned hypervisor. In 

Table 5.16, the Min and Maximum in the first column representing the minimum and 

maximum ranges of cache Read/write/Modify bandwidth in case of varying number of 

VMs and partitions.  

Table 5.16: Bandwidth of Cache Read/Write/Modify in Static Partitioned Hypervisor 

 Average Bandwidth of cache Read/Write/Modify (MB per Second) 

Number of Partition 1VM 2VMs 4 VMs 8 VMs 16 VMs 

1 17923 17128 15289 13567 13889 

2 15628 14035 13878 11228 12556 

4 14289 13582 12728 10988 10454 

8 10989 9366 8800 8487 8000 

16 4896 4098 3789 3567 3089 

Min 4896 4098 3789 3567 3089 

Maximum 17923 17128 15289 13567 13889 

Mean 12363.4 11347.9 10508.9 9281.6 9280.9 

Std. Deviation 5054.6 5041.8 4648.9 3806.1 4266.6 

Confidence Int. 4430.5 4419.2 4074.9 3336.1 3739.8 

In static partitioned hypervisor, the average bandwidth of cache read/write/modify is 

decreasing with increasing number of VMs and partitions. Even in the case of 1VM or 2 

VMs, if the partitions are 16 then the cache bandwidth will be low because the cache is 
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divided into 16 parts. While in dynamic partitions, the bandwidth will be high in case of 

1 or 2 VMs because the entire cache will be divided into 1 or 2 partitions. For instance, 

in a static partition, if for 1VM the number of partition is 1 the bandwidth will be 17923 

as shown in Table 5.16. While for 1VM, if the number of partitions is 16 then the 

bandwidth will 4896 which is very low as compared to 17923 in the case of 1 partition. 

Table 5.17 shows the comparison of cache read/write/modify in both static and 

dynamic partitioned hypervisors. We have created 1VM, 2VM, 4VM, 8VM, and 16VM 

in both hypervisors for checking the bandwidth of cache read/write/modify with varying 

number of partitions. As compared to the dynamic partitioned hypervisor, the average 

bandwidth of cache read/write/modify in the static partitioned hypervisor is decreasing 

with increasing number of VMs and partitions. For instance, the average bandwidth of 

cache read/modify/write in the static partitioned hypervisor is 13012.8 and 18234.7 in our 

dynamic partitioned (HBP-DCP) hypervisor.  

Table 5.17: Average Bandwidth of cache Read/Modify/Write in Static and Dynamic 

Partitioned Hypervisors 

Average Bandwidth (MB/Sec) of Cache Read/Modify/Write with varying VMs and partitions 

Number of 

Partitions 

Static Partitioned  

(Average of 1VM, 2VM, 4VM, 8VM 

and 16VMs) 

Dynamic partitioned (HBP-DCP) 

(Average of 1VM, 2VM, 4VM, 8VM 

and 16VMs) 

1 14745.5 19645.848 

2 13641.8 18629.448 

4 13896.8 18110.181 

8 11567.4 17012.904 

16 11246.3 17585.894 

Min 11246.3 17012.9 

Maximum 14745.5 19645.85 

Mean 13012.8 18234.7 

Std. 

Deviation 

1532.059 1008.6 

Confidence 

Int. 

1342.884 884.1 

P-Value 0.00012 

T-Value 6.311 
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Thus the average bandwidth of cache Read/Modify/Write is improved by 33.32% in 

our HBP-DCP based hypervisor as compared to static partitioned hypervisor. 

Consequently improves the cache utilization. Moreover, the T-test values namely P-value 

and T-value in the Table 5.17 shows the validity of the results. Because in the static 

partitioned hypervisor, the number of partitions is static and predefined during boot time. 

Therefore, 16 partitions cannot change for 1 VM while in the case of the dynamic 

partitioned hypervisor, the number of partitions will be changed according to created 

VMs.  

Similarly, Table 5.18 shows the comparison of cache read in both static and dynamic 

partitioned hypervisors. We have analyzed the cache read bandwidth by varying number 

of VMs and partitions in both static partitioned and dynamic partitioned hypervisors. The 

average bandwidth of the cache read in static partitioned hypervisor is decreasing with 

increasing number of VMs and partitions as shown in Table 5.18. For instance, the 

average cache read bandwidth for 2 VMs in the case of 16 partitions is 946.3 in the static 

partitioned hypervisor while in the dynamic partitioned hypervisor is 1225.375. The 

cache read bandwidth of dynamic partitioned (HBP-DCP) is more as compared to static 

partitioned. Since the 16 partitions are defined during boot time so the partition cannot 

change even 2 VMs are running. 

 Consequently, degrade the cache read bandwidth. While in dynamic if 2 VMs are 

executing then the partitions will be changed into 2 according to the executing VMs. Thus 

improve the average cache read bandwidth. For instance, the average bandwidth of cache 

read in the static partitioned hypervisor is 1164.16 and 1474.07 in our dynamic partitioned 

(HBP-DCP) hypervisor. Thus the average bandwidth of cache write is improved by 

23.493% in our HBP-DCP based hypervisor. Furthermore, the P-value and T-value shows 

the validity of the result as the P-value is less than 0.05. This improvement in the cache 
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read bandwidth improves the cache performance in term of cache utilization as compared 

to static partitioned hypervisor.  

Table 5.18: Average Bandwidth of Cache Read in Static and Dynamic Partitioned 

Hypervisors  

Average Bandwidth (MB/Sec) of Cache Read with varying VMs and partitions 

Number of 

Partitions 

Static Partitioned  

(Average of 1VM, 2VM, 4VM, 8VM 

and 16VMs) 

Dynamic partitioned (HBP-DCP) 

(Average of 1VM, 2VM, 4VM, 8VM 

and 16VMs) 

1 1345.5 1585.212 

2 1264.8 1552.323 

4 1196.8 1532.333 

8 1067.4 1475.134 

16 946.3 1225.375 

Min 946.3 1225.375 

Maximum 1345.5 1585.212 

Mean 1164.16 1474.07 

Std. 

Deviation 

158.827 144.673 

Confidence 

Int. 

139.215 126.809 

P-Value 0.006 

T-Value 3.225 

Similarly, in Table 5.19, the bandwidth of cache write for both static partitioned and 

modified (dynamic partitioned) hypervisors is shown. Similarly to the other two 

bandwidth cache read bandwidth for the static partitioned hypervisor is less than the 

dynamic partitioned hypervisor. The average bandwidth of cache write in the static 

partitioned hypervisor is 1383.374 and 1908.416 in our dynamic partitioned (HBP-DCP) 

hypervsior. Thus the average bandwidth of cache write is improved by 32% in our HBP-

DCP based hypervisor. Furthermore, the P-value and T-value shows the validity of the 

result. Consequently, improves the cache performance in term of cache utilization as 

compared to static partitioned hypervisor. 
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Table 5.19: Average Bandwidth of Cache Write in Static and Dynamic Partitioned 

Hypervisors  

Average Bandwidth (MB/Sec) of Cache Write with varying VMs and partitions 

Number of 

Partitions 

Static Partitioned  

(Average of 1VM, 2VM, 4VM, 8VM 

and 16VMs) 

Dynamic partitioned (HBP-DCP) 

(Average of 1VM, 2VM, 4VM, 8VM 

and 16VMs) 

1 1710.201 2024.191 

2 1630.451 2010.763 

4 1445.134 1975.354 

8 1202.543 1910.541 

16 928.541 1621.232 

Min 928.541 1621.232 

Maximum 1710.201 2024.191 

Mean 1383.374 1908.416 

Std. 

Deviation 

320.644 166.462 

Confidence 

Int. 

281.052 145.908 

P-Value 0.005 

T-Value 3.249 

Table 5.20, 5.21, and 5.22 shows the average bandwidth in MB/Sec calculated from 

the cache Read/Modify/Write, cache read, and cache write benchmarks for each VM 

including VM 1 to 10VMs in the unmodified and modified hypervisor. The cache 

read/write/modify generate much more memory traffic as compared to the cache read and 

cache write because in the cache read/write/modify the data items must be first read from 

the cache to register and then back to memory/cache. Therefore, the bandwidth for cache 

read and cache write is less than the bandwidth of read/write/modify as shown in Table 

5-20. The average for unmodified is 25625.64 and 25572.21 for modified hypervisor. The 

difference is almost .208% between both unmodified and modified hypervisor. This 

difference is acceptable because the modified hypervisor has the ability to prevent cross-

Univ
ers

ity
 of

 M
ala

ya



 

171 

VM cache-based SC attacks. The T-test result proves the significant difference between 

both values.  

Table 5.20: Comparison of cache Read/Modify/Write in Unmodified and Modified 

(HBP-DCP) Hypervisors  

 Average Bandwidth (MB/Sec) of Cache Read/Modify/Write 

Number of VMs Unmodified (Insecure) Modified (dynamic-partitioned) 

1 25683.831 25645.848 

2 25680.515 25629.448 

3 25634.193 25610.181 

4 25644.917 25612.904 

5 25667.956 25585.894 

6 25670.929 25613.862 

7 25594.038 25570.093 

8 25572.166 25543.093 

9 25558.599 25538.542 

10 25542.249 25522.272 

Min 25542.25 25522.27 

Maximum 25683.93 25645.85 

Mean 25622.96 25586.69 

Std. Deviation 53.77 42.11 

Confidence Int. 33.32 26.10 

T-Value 1.746 

P-Value 0.0417 

Table 5.21 shows the result of bandwidth in MB/Sec calculated by cache read 

benchmark in the unmodified and modified (dynamic partitioned/HBP-DCP) hypervisor. 

The average bandwidth of Cache Read for unmodified is 1546.433 and for our modified 

(dynamic partitioned) hypervisor is 1514.567. The difference in cache Read bandwidth 

of both is 2.08% which is acceptable because our modified hypervisor has the ability to 

prevent cross-VM cache-based SC attacks. Since the cache Read/Modify/Write 

benchmark first read the values from the cache and then will write in the cache. Therefore, 

the resulting bandwidth for cache Read/Modify/Write benchmark will be high as 

compared to cache read and cache write benchmarks for both modified and unmodified 
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hypervisor as shown in Table 5.20, 5.21, and 5.22. Furthermore, the T-test (P-value and 

T-value) shows the validity of the result.   

Table 5.21: Comparison of Cache Read in Unmodified and Modified (HBP-DCP) 

Hypervisor 

 Average Bandwidth (MB/Sec) of Cache Read 

Number of VMs Unmodified (Insecure) Modified (dynamic-partitioned) 

1 1610.157 1585.22 

2 1585.222 1552.323 

3 1572.211 1549.333 

4 1566.777 1532.134 

5 1553.221 1525.888 

6 1540.554 1518.122 

7 1529.212 1484.111 

8 1519.454 1475.223 

9 1505.291 1467.989 

10 1482.234 1455.323 

Mean 1546.433 1514.567 

Std. Deviation 38.820 42.466 

Confidence Int. 24.060 26.320 

T-Value 1.751 

P-Value 0.0421 

Table 5.22 show the resulting bandwidth of the cache write benchmark in both 

unmodified and modified (dynamic partitioned/HBP-DCP) hypervisor. The average 

bandwidth for cache write in the unmodified hypervisor is 2184 and in the modified 

hypervisor is 2126. The resulting difference in percentage in both hypervisor is almost 

2.69%. Which is acceptable because our modified (partitioned hypervisor) has the ability 

to prevent cache-based SC attacks between VMS. Furthermore, the T-value and P-value 

show that the result is significant as the T-value is less than 2.2 and P-value is less than 

0.05. 
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Table 5.22: Comparison of Cache Write in Unmodified and Modified (HBP-

DCP) Hypervisor 

 Average Bandwidth (MB/Sec) of Cache Write 

Number of VMs Unmodified (insecure) Modified (dynamic-partitioned) 

1 2273.121 2224.191 

2 2252.256 2210.763 

3 2245.177 2195.354 

4 2225.878 2162.823 

5 2197.891 2134.871 

6 2183.199 2117.783 

7 2162.872 2101.234 

8 2135.752 2067.553 

9 2113.882 2047.812 

10 2059.432 2006.232 

Mean 2184.946 2126.862 

Std. Deviation 67.897 72.739 

Confidence Int. 42.082 45.083 

T-Value 1.854 

P-Value 0.0307 

We have designed the cache bandwidth model to test the cache utilization for each VM 

e.g., 1VM, 2VMs, 3VMs, 4VMs, 5VMs, 6VMs, 7VMs, 8VMs, 9VMs, and 10VMs based 

on the two variables namely total time in nanoseconds and the total amount of data 

accessed in bytes. In order to build the statistical model, we have taken 80 % data for the 

training and 20% for the validation. We have taken these two values to train our model 

as much as possible to avoid biased results. Similar to a statistical model for load testing, 

in order to present a reliable and accurate estimation model of cache utilization in term of 

cache read/modify/write, cache read, and cache write, we perform linear regression using 

measured real data in cachebench benchmark in both unmodified and modified 

hypervisor. We use data set of cache utilization including cache read/modify/write, cache 

read, and cache write and use them for training the regression model to produce the 

bandwidth model. For validation of our proposed model, we use the split sample 

approach. Hence the cache utilization model can be presented as follow:  

R       lm (Data Accessed ∼ Total Iteration × (C-size) 
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R       lm (C-utilization∼ Total Time × (Total Amount of Data Accessed in Bytes) 

𝐵𝑚(𝑊𝑖) = ∑ (𝑇𝑉𝑀𝑖  ×  𝐷𝑎𝑡𝑎𝑉𝑀𝑖)10
𝑖=1       (5.4) 

Where Bm (Wi) is the total bandwidth in MB/Sec calculated by the total amount of data 

accessed in bytes divided by the total time. The bandwidth is totally depends on the vector 

length. Because if the vector length is less than cache size then, in this case, the whole 

data will come from the cache and the resulting bandwidth will be high otherwise the 

resulting bandwidth will be low. Timings are taken for every vector length based on a 

number of iteration. The number of iteration is then multiplied by the vector length to 

compute the total amount of accessed data in bytes. Finally, the total amount of accessed 

data in bytes is divided by the total time to compute the bandwidth. The output of the 

statistical model is shown in the following Table 5.23. 

Table 5.23: Regression Statistics Summary for Cache Utilization of Virtual 

Machines 

The R value shows the significant correlation between the vector length and the 

bandwidth. The P-value and R-squared values in Table 5.23 for each VM testify the 

significance of the result using the statistical model for cache utilization. The detail 

statistics of the statistical model are summarized in Table 5.23. The R value shows 

significance correlation between the number of cache size and the bandwidth of 

Number of VM P-Value R-Squared Adjusted R-Squared F-Statistic 

1VM 3.238e-05 0.9910 0.9899 1.502e+04 

2VM 0.0008928 0.9907 0.9889 3.8e+04 

3VM 4.338e-04 0.9991 0.9899 3.649 

4VM 2.633e-03 0.9997 0.9999 1.951e+04 

5VM 1.2345e-09 0.9998 0.9998 3.8e+04 

6VM 1.09185-04 0.9898 0.9887 3.649+04 

7VM 4.323e-05 0.9989 0.9941 2.345e+03 

8VM 2.512e-04 0.9996 0.9994 40189e+02 

9VM 3.623e-08 0.9930 0.9989 7.824e+04  

10VM 5.316e-11 0.9986 0.9999 2.502e+03 Univ
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cache/read/write. The average R-squared value in the table testifies that 99.61% of the 

load value can be explained using cache-size and cache read/modify/write. The F statistics 

in the table ensure that available data is appropriate to be used for linear regression and 

p-value shows the significance of the result. 

5.4.3 Memory Access Rate 

CPU cache is used to increase the speed of the memory access for the data which is 

most commonly accessed. However, our proposed HBP-DCP prevention mechanism 

divides the cache on the fly according to VMs requirement. Therefore, it is needed to 

check memory access rate as a performance parameter in order to check the evaluation of 

our prevention mechanism whether it will effect on the memory access rate or not. 

Although profiling cache memory operation requires collaboration from the hardware, 

however, it is also possible to collect information through software. The average memory 

access time is a valuable parameter to evaluate the performance of a memory hierarchy 

configuration. When a processor demand to execute an item from the main memory, it 

sends a load request to the cache memory. If the item resides in the cache it will generate 

the cache hit and in the case of absence, it will generate the cache miss. These cache miss 

and hit rate are used to calculate the memory access rate. We have checked the memory 

access rate in each hypervisor namely unmodified (Default), static partitioned, and 

modified (dynamic partitioned) to check the performance difference between each one.  

As compared to the RAM storage, the access to the cache memory is faster due to the 

high latency of RAM storage. The total memory access time is calculated by the Eq. 5.8 

while considering the cache and memory of the system as a target location. In Eq. 5.5, 

HitRate represents the amount of data accessed from the cache memory. Alternatively, 

MissRate describes the fraction of data accessed from the main memory. Moreover, 

CacheAccessTime and RAMAccessTime represent the total time to access the data from the cache 

and main memory respectively (Rixner, Dally et al. 2000). For instance, time to access 
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main memory is 100 ns in the majority of the system. The cache access time is proven to 

be 10 times faster than the main memory. Consider a program that yields a hit ratio with 

.92 for a reading request then the effective memory access time will be calculated by the 

following Eq. 5.5 and Eq. 5.6. 

EffectiveAccessTime = HITRate × CacheAccessTime + MissRate × RAMAccessTime   (5.5) 

EffectiveAccessTime =.092 × 10 + (1-0.92) × 100 ≈ 17ns    (5.6) 

The browsing experience can be improved by a high cache hit ratio while reducing 

costs in terms of energy, bandwidth, and computation power. Therefore the effectiveness 

of the caching system by monitoring the cache hit and cache miss ratio. We have written 

a customized program for checking the total memory access rate of a matrix program in 

the unmodified, static partitioned and HBP-DCP based hypervisors. For the program, we 

calculated the cache miss and cache hit for the matrix program by using cachegrind which 

is under the valgrind tool suit. We have collected the results for the average memory 

access time by executing our programs in the unmodified (default), static partitioned, and 

modified (dynamic partitioned) hypervisors. 

Table 5.24 and 5.25 present the data related to the memory access rate by a matrix 

program which is collected in the unmodified (insecure/default) and modified 

(secure/dynamic partitioned) hypervisors execution modes for eight granularity levels of 

matrices, respectively. Each Table summarizes the memory access rate in term of total 

LLC memory access with 95% confidence interval for 30 number of iteration for each 

VM e.g., 1VM, 2VM, 3VM, 4VM, 5VM, 6VM, 7VM, 8VM, 9VM,10VM in eight 

intensity levels. Similar to cache utilization, we present the LLC references e.g., memory 

access with 95% confidence interval to enable reliability of our data. The small value of 

error estimate based on 95% confidence interval at the end of Table 5.24 and 5.25 testify 

the result of collected LLC references data.  
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Table 5.24: Last Level Cache (LLC) Memory Accesses in Unmodified Hypervisor 

 Total LLC Memory References in the Unmodified (Insecure) Hypervisor 

 Matrix Multiplication Granularity 

Number of VMs/ 

Partitions 

 300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000 

1/1 60973 114071 2315516 4054171 5065081 7212454 9121649 11264682 

2/2 60974 114070 2315544 4054171 5065083 7212455 9121651 11264683 

3/3 60975 114072 2316643 4054294 5065084 7212457 9121653 11264685 

4/4 60978 114082 2316651 4054297 5065088 7212461 9121655 11264687 

5/5 60979 114084 2316652 4054299 5065089 7212463 9121657 11264688 

6/6 60980 114084 2316654 4054200 5065088 7212465 9121658 11264689 

7/7 60982 114085 2316658 4054201 5065090 7212466 9121660 11264691 

8/8 60984 114086 2316659 4054301 5065091 7212469 9121661 11264693 

9/9 60980 114088 2316663 4054302 5065094 7212470 9121664 11264693 

10/10 60981 114089 2316664 4054308 5065095 7212471 9121667 11264698 

Min 60973 114070 2315516 4054171 5065081 7212454 9121649 11264682 

Mean 60978.6 114081.1 2316430.4 5054248.44 5065087.55 7212462.22 9121657.5 11264688.9 

Median 60979.5 114084 2316653 4054294 5065088 7212463 9121657.5 11264688.5 

Maximum 60984 114089 2316664 4054302 5065094 7212470 9121667 11264698 

Std. Deviation 3.60 7.26 474.64 60.43 4.16 5.89 5.70 4.98 

Confidence Int. 2.23 4.50 294.18 37.45 2.58 3.65 3.53 3.08 

 

Table 5.25: Last Level Cache (LLC) Memory Accesses in Modified Hypervisor 

 Total LLC Memory References in the dynamic partitioned Hypervisor 

 Matrix Multiplication Granularity 

Number of 

VMs/Partitions 

300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000 

1/1 60970 114069 2315503 4054168 5065080 7212452 9121644 11264678 

2/2 60969 114068 2315501 4054168 5065079 7212450 9121645 11264677 

3/3 60966 114058 2316640 4054291 5065080 7212455 9121644 11264677 

4/4 60976 114080 2316648 4054294 5065087 7212459 9121650 11264683 

5/5 60972 114082 2316649 4054296 5065088 7212461 9121652 11264684 

6/6 60973 114082 2316651 4054197 5065087 7212463 9121653 11264685 

7/7 60963 114083 2316655 4054198 5065089 7212464 9121655 11264687 

8/8 60965 114084 2316656 4054298 5065090 7212467 9121656 11264689 

9/9 60976 114086 2316660 4054299 5065093 7212468 9121659 11264689 

10/10 60977 114087 2316661 4054305 5065094 7212469 9121662 11264694 

Min 60963 114058 2315501 4054168 5065079 7212450 9121644 11264677 

Mean 60970.7 114077.9 2316422.4 4054251.4 5065086.7 7212460.8 9121651 11264684.3 

Median 60971 114082 2316650 4054292.5 5065087.5 7212462 9121652 11264684.5 

Maximum 60977 114087 2316661 4054305 5065094 7212469 9121662 11264694 

Std. Deviation 4.95 9.56 485.13 60.00 5.38 6.70 6.29 5.72 

Confidence Int. 3.07 5.93 300.68 37.19 3.33 4.15 3.90 3.54 
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Table 5.25 shows the average memory access for the varying matrix granularity level. 

The average memory access of modified (HBP-DCP base) hypervisor is less as compared 

to the unmodified (default/insecure) hypervisor. Since in modified hypervisor, the cache 

is divided into partitions, therefore, it effect the average cache access and it will be 

reduced. The average memory refernces rate is increasing with increasing number of 

matrix size. For instance the average memory access for 300×300 is less than as compared 

to 1000×1000. The average standard deviation for unmodified (insecure) hypervisor is 

70.83 and for modified (HBP-DCP) is 72.96. This small difference validate the result. 

Table 5.26 shows the descriptive statistics of experimental results in unmodified 

(default/insecure) and HBP-DCP (dynamic partitioned /secure) hypervisors including 

minimum, maximum, and mean of the total cache references are summarized in eight 

intensity levels. This statistics shows that there is minor difference between the standard 

deviation of both hypervisors e.g., .05% difference in both modes is acceptable. As 

descriptive statistics in the Table 5.26 shows that the difference between both hypervisors 

is significant even the HBP-DCP based hypervisor has the ability to prevent cross-VM 

cache-based SC attacks. 

The total memory references are calculated by using cachegrind benchmark as shown 

in Table 5.24 and 5.25. Then these cache references are used to calculate the cache hit 

rate and average memory access rate. The equations for LLC hit rate and for memory 

access time are as follows:  

Cache Hit Rate = (Cache Hits / (Cache Hits + Cache Misses)) × 100%   (5.7) 

Avg. Memory Access Time = Hit Rate × TC + Miss Rate × M   (5.8) 

Where cache hit rate is calculated by the above Eq.5.7 and miss rate=1-hit rate. TC is 

the time to access data from the cache which is mostly 10ns. LL cache miss is the memory 

accesses percentage that does not find the desired information in the main memory and is 
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determined by the cachegrind benchmark and miss rate is calculated from the formula (1-

hit rate). 

Table 5.26: Descriptive statistics of LLC Memory Accesses Data Generated by 

Standard Experimentation 

 Mode Min Mean Median Maximum Std.Dev Conf.Int 

Mat. Mult. 

(300×300) 

Unmodified 

(HBP-DCP) 

60967 

60963 

60967 

60970.7 

60975 

60971 

60983 

60977 

5.51 

4.95 

1.97 

1.77 

Mat. Mult. 

(400×400) 

Unmodified 

(HBP-DCP) 

114060 

114058 

114080.1 

114077.9 

114084 

114082 

114091 

114087 

9.79 

9.56 

3.50 

3.42 

Mat. Mult. 

(500×500) 

Unmodified 

(HBP-DCP)  

1315504 

2315501 

2316425.7 

2316422.4 

2316653 

2316650 

2316667 

2316661 

485.30 

485.13 

173.66 

173.60 

Mat. Mult. 

(600×600) 

Unmodified 

(HBP-DCP) 

4054171 

4054168 

4054254.8 

4054251.4 

5054296 

4054293 

4054312 

4054305 

60.41 

60.00 

21.62 

21.47 

Mat. Mult. 

(700×700) 

Unmodified 

(HBP-DCP)  

5065081 

5065079 

5065088.7 

5065086.7 

5065088.5 

5065088 

5065099 

5065094 

5.70 

5.38 

2.04 

1.92 

Mat. Mult. 

(800×800) 

Unmodified 

(HBP-DCP) 

7212452 

7212450 

7212463.3 

7212460.8 

7212264 

7212462 

7212476 

7212469 

7.51 

6.70 

2.69 

2.40 

Mat. Mult. 

(900×900) 

Unmodified 

(HBP-DCP) 

9121649 

9121644 

9121657.4 

9121652 

9121658 

9121653 

9121671 

9121662 

7.07 

6.29 

2.53 

2.25 

 Mat. Mult. 

(1000×1000) 

Unmodified 

(HBP-DCP) 

11264681 

11264677 

11264681 

11264684.3 

11264689 

11264685 

11264703 

11264694 

6.78 

5.72 

2.43 

2.05 

M is the time to access information or data from the main memory. Then by using 

these values, we can calculate the average access time by using our own written 

customized program. Each level of memory including L1, L2, and L3 (LLC) cache will 

have different values for these parameters.  

Table 5.27 shows the cache hit, miss rate, and cache access time of LLC memory in 

the unmodified hypervisor. In Table 5.27, the LLC references, LLC misses, and Miss 

Rate are calculated for unmodified (insecure) by using cache grind benchmark. Then we 

have written a customized program in order to determine the average cache access time 

that can be determined by Eq. 5.8. In the customized program, the LLC references and 

misses are used to calculate LLC hit values by using the LLC hit = LLC references – LLC 

miss. The LLC hit rate over a period of time is calculated by dividing the cache hits by 
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the combined number of hits and misses and then multiply by 100. Moreover, the LLC 

hit rate is determined over time by using Eq. 5.7.  

Table 5.27: Average Cache Access Rate, Cache Hit, and Miss Rate of LLC in 

Unmodified (Default/Insecure) Hypervisor 

Table 5.28 shows the average access rate for 1VM, 2VMs, 3VMs, 4VMs, 5VMs, 

6VMs, 7VMs, 8VMs, 9VMs, and 10VMs in the static partitioned hypervisor. Similarly 

to unmodified and modified (dynamic partitioned) hypervisors, the LL cache references 

and LL cache miss are calculated by using cache grind benchmark. The cache hit rate and 

memory access rate is calculated by using Eq. 5.7 and 5.8 respectively. We calculated LL 

cache references for 300×300 in single VM then in the case of 2 VMs and up to 10 VMs. 

Similarly, for each corresponding matrix multiplication workload, we calculated the LL 

  Average Cache Access Rate of 1VM to 10VMs 

Varying 

Number of 

VMs 

Matrix Size LL Cache 

References 

LL Cache 

Hit 

LL Cache 

Miss 

Hit Rate 

(Read + 

Write) 

Miss Rate 

(Read + 

Write) 

Cache 

Access 

Time 

(ns) 

1VM-10VM 300 x 300 60978.6 51777.6 9201 84.91% 15.09% 23.58 

1VM-10VM 400 x 400 114081.1 100372.1 13709 87.98% 12.02% 20.82 

1VM-10VM 500 x 500 2316430.4 2179943.4 136487 94.11% 5.89% 15.30 

1VM-10VM 600 x 600 5054248.4 4863139.4 191109 96.22% 3.78% 13.40 

1VM-10VM 700 x 700 5065087.6 4855126.6 209961 95.85% 4.15% 13.73 

1VM-10VM 800 x 800 7212462.22 6902988.22 309474 95.71% 4.29% 13.86 

1VM-10VM 900 x 900 9121657.22 8841722.22 279935 96.93% 3.07% 12.76 

1VM-10VM 1000 x 1000 11264689 11035641 229048 97.97% 2.03% 11.83 

Mean  5026204.32 4853838.82 172365.50 0.94 0.06 15.66 

Median  5059668.00 4859133.00 200535.00 0.96 0.04 13.80 

Std. 

Deviation 

 4081294.32 3984289.65 112395.60 0.05 0.05 4.22 

Confidence 

Int. 

 2828140.70 2760921.13 77884.74 0.03 0.03 2.92 
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cache reference in the case of 1VM, 2VM, 3VM, 4VM, 5VM, 6VM, 7VM, 8Vm, 9VM, 

and 10 VM.  

Table 5.28: Average Cache Access Rate, Cache Hit and Miss Rate of LLC in Static 

Partitioned Hypervisor (1, 2, 4, 8, and 16 partitions) 

The total cache references for varying granularity level in the static partitioned 

hypervisor is less than the dynamic partitioned hypervisor. In the static partitioned 

hypervisor, if the of VMs is equal to the number of partitions then the cache access rate 

will be high. However, we have analyzed the average cache access rate in all cases where 

for one VM there may be 8 partitions or conversely for 8 VMs there may be single 

partition. This configuration degrade the performance in term of cache access rate. 

  Average Cache Access Rate of VM1 to VM10 

Varying 

Number of 

VMs 

Matrix Size LL Cache 

References 

LL Cache 

Hit 

LL Cache 

Miss 

Hit Rate 

(Read + 

Write) 

Miss Rate 

(Read + 

Write) 

Cache 

Access 

Time 

(ns) 

1VM-10VM 300 x 300 50920.7 40498.7 10422 79.53% 20.47% 28.42 

1VM-10VM 400 x 400 94027.9 77023.9 17004 81.92% 18.08% 26.28 

1VM-10VM 500 x 500 1716372.4 1532183.4 184189 89.27% 10.73% 19.66 

1VM-10VM 600 x 600 3554201.4 3141106.4 413095 88.38% 11.62% 20.46 

1VM-10VM 700 x 700 4465036.7 4003805.7 461231 89.67% 10.33% 19.30 

1VM-10VM 800 x 800 6812410.8 6006936.8 805474 88.18% 11.82% 20.64 

1VM-10VM 900 x 900 8421601 7530557 891044 89.42% 10.58% 19.52 

1VM-10VM 1000 x 1000 9464634 8473379 991255 89.53% 10.47% 19.43 

Mean  4322400.61 3850686.36 471714.25 0.87 0.13 21.71 

Median  4009619.05 3572456.05 437163.00 0.89 0.11 20.06 

Std. 

Deviation 

 3644422.22 3256216.36 389674.67 0.04 0.04 3.56 

Confidence 

Int. 

 2525409.35 2256401.35 270025.81 0.03 0.03 2.47 
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Therefore, the cache access time in static partitioned hypervisor is less than dynamic 

partitioned (HBP-DCP) hypervisor. 

Table 5.29: Average Access Rate, Cache Hit, and Miss Rate of LLC Memory in 

Modified (Dynamic Partitioned/HBP-DCP) Hypervisor 

Similarly, in Table 5.29, the LLC references, LLC misses, and Miss Rate are calculated 

for our modified HBP-DCP based (dynamic partitioned/ secure) hypervisor by using 

cache grind benchmark. Then LLC references and misses are used to calculate LLC hit 

values by using the LLC Hit = LLC References – LLC Miss. The LLC Hit rate over a 

period of time is calculated by dividing the cache hits by the combined number of hits 

and misses and then multiply by 100. The T-value and P-value prove the significant 

difference between the average LLC memory access time for each VM including 1VM, 

  Average Cache Access Rate of VM1 to VM10 

Varying 

Number of 

VMs 

Matrix Size LL Cache 

References 

LL Cache 

Hit 

LL Cache 

Miss 

Hit Rate 

(Read + 

Write) 

Miss Rate 

(Read + 

Write) 

Cache 

Access 

Time 

(ns) 

1VM-10VM 300 x 300 60970.7 50748.7 10222 83.23% 16.77% 25.09 

1VM-10VM 400 x 400 114077.9 96973.9 17104 85.01% 14.99% 23.49 

1VM-10VM 500 x 500 2316422.4 2176433.4 139989 93.96% 6.04% 15.44 

1VM-10VM 600 x 600 4054251.4 3713356.4 340895 91.59% 8.41% 17.57 

1VM-10VM 700 x 700 5065086.7 4716055.7 349031 93.11% 6.89% 16.20 

1VM-10VM 800 x 800 7212460.8 6609186.8 603274 91.64% 8.36% 17.53 

1VM-10VM 900 x 900 9121651 8462507 659144 92.77% 7.23% 16.50 

1VM-10VM 1000 x 1000 11264684 10705629 559055 95.04% 4.96% 14.47 

Mean  4901200.61 4566361.36 334839.25 0.91 0.03 18.29 

Median  4559669.05 4214706.05 344963.00 0.92 0.01 17.02 

Std. 

Deviation 

 4095601.74 3852117.36 259681.19 0.04 0.06 3.87 

Confidence 

Int. 

 2838055.06 2669332.09 179946.58 0.03 0.04 2.68 
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2VMs, 3VMs, 4VMs, 5VMs, 6VMs, 7VMs, 8VMs, 9VMs, and 10VMs of modified 

(dynamic partitioned) and unmodified hypervisors.  

Table 5.30 presents the data related to the memory access rate by a matrix program 

which is collected in the unmodified (insecure/default) and modified (secure/dynamic 

partitioned) hypervisors execution modes for eight granularity levels of matrices, 

respectively. This Table summarizes the memory access rate with 95% confidence 

interval for 30 number of iteration for each VM e.g., 1VM to 10VMs in eight intensity 

levels. Since the cache access time is dependent on the cache miss rate, therefore, the 

cache access time is decreasing with increasing number of cache miss rate. The cache 

miss rate is increasing with increase in the matric multiplication workload. Therefore, the 

cache access time is decreasing with increasing matrix multiplication workload.  

Table 5.30: Average Cache Access Rate of Varying VMs in Unmodified and 

Modified Hypervisors 

Average Cache Access Rate of varying VMs (1VM to 10VMs) 

  Unmodified 

(Insecure/Default) 

Hypervisor 

Modified (Dynamic 

Partitioned/Secure) 

Hypervisor 

Varying 

Number of 

VMs 

Matrix Size Cache Access Time (ns) Cache Access Time (ns) 

1VM-10VM 300 x 300 23.58 25.09 

1VM-10VM 400 x 400 20.82 23.49 

1VM-10VM 500 x 500 15.30 15.44 

1VM-10VM 600 x 600 13.40 17.57 

1VM-10VM 700 x 700 13.73 16.20 

1VM-10VM 800 x 800 13.86 17.53 

1VM-10VM 900 x 900 12.76 16.50 

1VM-10VM 1000 x 1000 11.83 14.47 

Mean  15.66 18.29 

Median  13.80 17.02 

Std. Deviation  4.22 3.87 

Confidence Int.  2.92 2.68 

T-Value  1.959 

P-Value  0.0354 
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As shown in Table 5.30, the average LLC memory access time for unmodified 

(default/insecure) hypervisor is 15.66 and for modified (dynamic partitioned /secure) is 

18.29. The almost difference in both is 15.32%, however, this is acceptable because the 

modified hypervisor has the ability to prevent cross-VM cache-based SC attacks. 

Moreover, the T-value and P-values prove the significance of the result as the T-value is 

less than 2.2 and P-value is less than 0.05. 

Table 5.31 shows the comparison of average access time of varying number of VMs 

and partitions in both static partitioned and dynamic partitioned hypervisors. The LL 

cache access time is calculated based on the total LL cache references. As shown in Table 

5.28 and 5.29, the LLC cache references is increasing according to the increasing 

corresponding matrix multiplication workload. Therefore, cache access time is decreasing 

with increasing matrix multiplication workload. The effective access time is 17ns. For the 

static partition, the overhead will be low if the number of VMs is equal to the number of 

partitions. However, unlike dynamic cache partitioned hypervisor, the number of VMs 

and partitions cannot be equal in all cases. Since the partitions are configured during boot 

time. The average access time for static partitioned is 21.71 and for dynamic partitioned 

is 18.29. The cache access time of our HBP-DCP based hypervisor is improved by 17.1% 

as the cache access time will be high for the high miss rate. The cache access time is 

calculated based on the total access rate and miss rate. Since the total cache access rate in 

static partitioned hypervisor is less than and the miss rate is greater than our dynamic 

partitioned (HBP-DCP) hypervisor. If the miss rate is high the cache access time will be 

high. Therefore, the average cache access time of our dynamic partitioned hypervisor 

(HBP-DCP) is less than static partitioned hypervisor. The T-value and P-value prove the 

significant difference between both results as the T-value is less than 2.2 and P-value is 

less than .05.  
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Table 5.31: Comparison of Average Cache Access Rate of Varying VMs in Static 

and Dynamic-Partitioned Hypervisors 

Average Cache Access Rate of varying VMs (VM1 to VM10) 

  Static-Partitioned 

Hypervisor 

Dynamic Partitioned 

Hypervisor (HBP-DCP) 

Varying 

Number of 

VMs 

Matrix Size Cache Access Time (ns) Cache Access Time (ns) 

1VM-10VM 300 x 300 28.42 25.09 

1VM-10VM 400 x 400 26.28 23.49 

1VM-10VM 500 x 500 19.66 15.44 

1VM-10VM 600 x 600 20.46 17.57 

1VM-10VM 700 x 700 19.30 16.20 

1VM-10VM 800 x 800 20.64 17.53 

1VM-10VM 900 x 900 19.52 16.50 

1VM-10VM 1000 x 1000 19.43 14.47 

Mean  21.71 18.29 

Median  20.06 17.02 

Std. Deviation  3.56 3.87 

Confidence Int.  2.47 2.68 

T-Value  1.884 

P-Value  0.0431 

We have designed the cache access time model to test the cache access time of a 

matrix program for each VM e.g., 1VM, 2VMs, 3VMs, 4VMs, 5VMs, 6VMs, 7VMs, 8VMs, 

9VMs, and 10VMs based on the four variables namely cache hit rate, cache access 

time, cache miss rate, and memory access time in nanoseconds. In order to build the 

statistical model, we have taken 80% data for the training and 20% for the 

validation. We have taken these two values to train our model as much as possible 

to avoid biased results. Similar to a statistical model for load testing and cache 

utilization, in order to present a reliable and accurate estimation model of cache access 

time, we perform linear regression using measured real data in cache grind benchmark in 

both unmodified and modified hypervisor. We use data set of cache references in term of 

cache hit rate and cache miss rate and also cache access time and memory access time 

and use them for training the regression model to produce the cache access time model. 
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For validation of our proposed model, we use the split sample approach. Hence the cache 

access time model can be presented is as follow:  

R       lm (Memory Access Time∼ Hit Time + (Miss Rate × Miss Penalty)) 

Where Hit time is the time to access the cache and Miss penalty is the time to 

access the RAM (main memory). 

AMAT𝑚(𝑊𝑖) = ∑ (𝐻𝑖𝑡 𝑅𝑎𝑡𝑒𝑉𝑀𝑖  ×  𝑇𝐶𝑉𝑀𝑖 +  𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒𝑉𝑀𝑖  × 𝑀𝑉𝑀𝑖)10
𝑖=1        (5.9) 

Where AMATm (Wi) is the total memory access rate in Nanoseconds calculated by the 

total amount of hit rate multiplied by the time to access data from the cache. Miss Rate is 

the memory accesses percentage that does not find the desired information and is 

determined by the cache grind benchmark. M is the time to access information or data 

from the main memory. The data generated from a statistical model is given in Table 5.32. 

Table 5.32: Regression Statistics Summary of Memory Access Rate for varying 

VMs 

 

The detail statistics of the statistical model of our linear regression are summarized in 

Table 5.32. The R value shows significance correlation between the cache miss rate and 

average memory access time. The average R-squared value in the table testifies that 

Number of VM P-Value R-Squared Adjusted R-Squared F-Statistic 

1VM 3.138e-05 0.9910 0.9815 1.302e+02 

2VM 0.0018928 0.9911 0.9817 3.7e+03 

3VM 3.238e-04 0.9981 0.9919 3.349 

4VM 1.233e-03 0.9915 0.9989 1.351e+04 

5VM 2.2345e-03 0.9819 0.9918 3.7e+04 

6VM 2.11185-04 0.9818 0.9917 3.6e+04 

7VM 3.223e-04 0.9916 0.9831 1.35e+03 

8VM 2.512e-03 0.9917 0.9914 40189e+02 

9VM 2.623e-03 0.9913 0.9915 5.824e+04 

10VM 4.316e-12 0.9915 0.9918 3.502e+03 
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98.95% of the memory access time value can be explained using cache miss and cache 

hit rate. The F-statistics in the Table ensure that available data is appropriate to be used 

for linear regression and p-value shows the significance of the result. 

5.5 Conclusion 

In this chapter, we describe the methodology used to evaluate and validate the result 

collected from analyzing the performance in two modes of unmodified (default/insecure) 

and modified (dynamic partitioned /secure) hypervisors. Benchmarking experimentation 

is the method to evaluate and validate our HBP-DCP prevention mechanism based on 

three performance parameters: Load testing, cache utilization, and memory access rate 

for both modes. Moreover, statistical modeling is also performed in order to evaluate and 

validate the experimental results obtained by benchmarking for both unmodified and 

modified modes. Furthermore, the observation-based analysis namely regression analysis 

is used to devise our statistical modeling. The statistical model is validated through the 

split-sample approach and the results are reported. The result of performance evaluation 

of our HBP-DCP mechanism is described in the next chapter that will be used to signify 

the weakness and strength of our proposed prevention mechanism. 
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CHAPTER 6: RESULTS AND DISCUSSION 

In this chapter, we discuss and report the evaluation results of our proposed prevention 

mechanism through benchmarking experiments and statistical analysis and compare it 

with the other prevention mechanisms. The data about load testing, cache utilization, and 

memory access time are presented, analyzed and synthesized for modified and 

unmodified hypervisors. Finally, the conducted results are validated through statistical 

modeling using independent replication approach. 

The rest of the chapter is organized as follows: The results of benchmarking 

experiments that analyze the load testing, cache utilization, and memory access time of 

modified and unmodified hypervisor are described and evaluated in Section 6.1. In 

Section 6.2, the results are described. In Section 6.3 the performance evaluations are 

carried out and further discuss is also provided. Finally, Section 6.4 conclude the chapter. 

6.1 Performance Evaluation Results 

In this section, we present the performance evaluation generated through 

benchmarking experimental analysis. Our performance evaluation analysis focuses on 

two features: the successful mitigation or inhibition of cache based SC attacks, and 

emerging the performance difference between unmodified (default/insecure) and 

modified (dynamic partitioned/secure/HBP-DCP) hypervisors. The results are revealing 

the usefulness of our solution in the cloud environment. First of all, we verify that our 

prevention mechanism is able to prevent cross-VM SC attacks by conducting the attack 

experiments in both unmodified and modified (HBP-DCP based) hypervisors. We have 

sent a 20-bit string from one VM to another VM on the separate core and separate physical 

machine and create a successful communication in the unmodified/insecure hypervisor. 

We observed the result and describe the vulnerability of the unmodified hypervisor. By 

contrast, in our secure hypervisor, we tried to implement the same attacks by sending 20-
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bit strings but yielded 0 bits of a successful communication across VMs over all twenty 

attempts in case of our modified hypervisor based on the dynamic cache partition. 

Moreover, we present and compare the benchmarking results. It contains the four main 

subsections. In the first, subsection the data related to the bearable load of both 

hypervisors (modified and unmodified) are presented. While in the second, and third 

subsection the collected data about cache utilization and memory access time are 

described respectively. The experimental analysis is conducted to evaluate the 

performance of the proposed prevention mechanism.  

6.1.1 Load Testing 

This Section describes the results obtained from the benchmarking tools and statistical 

modeling. The results are presented in Section 5.5.1 in the previous Chapter 5. In these 

experiments, we have compared the bearable load of both unmodified and modified 

hypervisors by sending a various number of concurrent requests and have checked the 

response time and number of requests per second for each VM. 

Figure 6.1 and 6.2 show the bearable load in term of a maximum number of requests 

per seconds in both unmodified (default/insecure) and static partitioned hypervisor 

without any VMs and partition. In the Figure 6.1, the y-axis shows the response time and 

the x-axis shows the number of requests per second. If the number of users are 100 and if 

we send 10 concurrent requests then the unmodified hypervisor is able to handle 100 to 

900 requests in 35ms and 1000 in 40ms. The response time per request is increasing with 

the increase in the number of concurrent requests in both hypervisors. Figure 6.2 shows 

the load testing in term of a number of request per second in the static hypervisor without 

the creation of any VM. Similar to the unmodified hypervisor, if the total request or users 

in the static partitioned hypervisor is 100 and number of concurrent requests are 10. Then 

in this hypervisor, 100 requests will be handled in 35ms while the remaining 200 to 800 

will be handled in 50ms. 
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Figure 6.1: Load Testing of Unmodified (Default/Insecure) Hypervisor 

 

 

Figure 6.2: Load Testing of Static Partitioned Hypervisor 
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Figure 6.3 show the load testing in term of number of requests per second and the 

response time in modified (dynamic partitioned) hypervisor. In the figure, the response 

time for 600 requests is 35 while 43ms for 900 requests. The maximum number of 

requests per second is 1000 and is greater than static partitioned hypervisor. 

 
Figure 6.3: Load Testing of Modified (Dynamic Partitioned/Secure/HBP-

DCP) Hypervisor 

Figure 6.4 shows the comparison of average response time in unmodified, static 

partitioned, and dynamic partitioned (HBP-DCP) hypervisors. We have compared the 

response time between all hypervisors without the creation of any VM. In the figure, the 

x-axis shows the average response time while the y-axis shows the number of concurrent 

request for 15 data traces including 10 to 150. The average response time in both 

hypervisors is increasing with the increase in the number of concurrent users. As shown 

in the graph, the average response time of static partitioned hypervisor is more as 
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and 201.03ms in dynamic partitioned hypervisor. Although the response time in the 

dynamic partitioned (HBP-DCP) hypervisor is a little bit high as compared to the response 

time of unmodified hypervisor, however, our HBP-DCP based hypervisor has the ability 

to prevent cross-VM cache-based SC attacks. Since we know that security always comes 

with some overhead, therefore, the minor changes in the average response time is 

acceptable. Moreover, we have shown in Table 5.5 in the previous Chapter 5 by using P-

value and T-value that the difference in the response time and the number of requests per 

second between both hypervisors are significant.  

 

Figure 6.4: Average Response Time for Concurrent Request without VMs for Modified 

(Default) and Unmodified (Dynamic Partitioned) Hypervisor 

Similarly, Figure 6.5 shows the comparison of load testing in term of how many 
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second is not increasing with the increase in the number of concurrent requests neither 

difference in the number of requests for both hypervisors. In contrast to response time, 

the requests per second is decreasing by increasing number of concurrent requests. The 

number of request per second in static partitioned hypervisor is less is compared to the 

unmodified and dynamic partitioned hypervisor. The result obtained for all 10 to 150 

concurrent requests in the modified hypervisor is closer to the unmodified hypervisor. 

However, the modified hypervisor has the ability to prevent cross-VM cache-based SC 

attacks. 

 

Figure 6.5: Number of Requests per Second Time for (10-150) Concurrent Request 

without VMs for both Unmodified and Modified (Partitioned) Hypervisor 

Figure 6.6 shows the load testing in term of a number of requests per second for 

concurrent requests with the varying number of VMs for the unmodified hypervisor. In 

the figure, the y-axis shows the number of requests per second and the x-axis shows the 
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Figure 6.6: Number of Requests per Second in Unmodified (Default) Hypervisor with 

Varying Number of VMs, Partitions, and Number of Concurrent Requests 

 
Figure 6.7: Number of Requests per Second in Static Partitioned Hypervisor with 
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Figure 6.7 shows the load testing in term of a number of requests per second for 

varying VMs and partitions in the static partitioned hypervisor. Similar to unmodified 

hypervisor the number of requests per second is decreasing as the number of concurrent 

users or requests is increasing from 10 to 100 concurrent requests. However, the number 

of request per second is 3250 which is less as compared to number of requests in the 

dynamic partitioned hypervisor which is 3303. We have compared the result of static 

partitioned hypervisor with the dynamic partitioned hypervisor. The difference is almost 

50 to 55 number of request per second for each VM. This small amount of difference 

validates the results collected from the unmodified (insecure) hypervisor when compared 

with the static partitioned and modified (dynamic partitioned/ secure) hypervisor. 

 

Figure 6.8: Number of Requests per Second in Modified (Dynamic Partitioned/HBP-

DCP) Hypervisor with Varying Number of VMs, and Number of Concurrent Requests 
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compared the result of both modified and unmodified hypervisor. The difference is almost 

15 to 20 number of request per second for each VM. This small amount of difference 

validates the results collected from the unmodified (default/insecure) hypervisor when 

compared with the modified (dynamic partitioned/secure) hypervisor. 

Figure 6.9 shows the comparison of average bearable load in term of a number of 

requests per second for varying VMs and partitions in each hypervisors namely 

unmodified, static partitioned, and modified (dynamic partitioned) hypervisors. In the 

figure, the x-axis shows the number of request and the y-axis shows the number of VMs 

from 1VM to 10VMs. The figure shows that the request per second in the dynamic 

partitioned hypervisor is greater than static partitioned while less than unmodified 

hypervisor. However, the P-value and T-value in Chapter 5 prove the significance of the 

 results. Moreover, this result is acceptable as the dynamic partitioned hypervisor prevent 

the cross VM cache-based SC attacks and improve the security in CC environment.  

 

Figure 6.9: Average Number of Request per Second with Varying Number of VMs 

in Unmodified, Static Partitioned, and Modified (Dynamic Partitioned/HBP-DCP) 

Hypervisors 
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The ranges of an average number of requests per second are from 3110.5 to 3225.8 in 

unmodified and the ranges in the static partition hypervisor are from 3079.5 to 3180.5, 

and in the modified hypervisor are from 3095.5 to 3210.7. The average difference for all 

VMs including 1VM to 10VMs is almost 15 in the unmodified and modified (dynamic 

partitioned). However, the average difference between the static partitioned and dynamic 

partitioned hypervisor is 30 number of requests per second. This small amount of 

difference validates the results collected from the modified (secure) hypervisor when 

compared to the results of the unmodified (dynamic partitioned/ insecure) hypervisor.  

 

Figure 6.10: Average Response Time for Concurrent Request with Varying Number 

of VMs in Unmodified (Default) and Modified (Dynamic Partitioned) Hypervisor 

 

Figure 6.10 shows the average response time for varying number of VMs, partitions, 
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dynamic partitioned hypervisor results with the ones collected from the unmodified and 

static partitioned hypervisors.  

6.1.2 Cache Utilization 

In this section, we analyze the cache utilization in term of the Read/Write/Modify 

bandwidth, read, and write bandwidth calculated by cache Read/Write/Modify, cache 

read, and cache write benchmarks in both unmodified and modified hypervisors. Figure 

6.11 and 6.12 present the data related to the comparison of cache utilization in term of 

Read/Write/Modify bandwidth in each hypervisor namely unmodified, static partitioned, 

and dynamic partitioned. We have executed the experiment for 30 execution traces for 

each VM and with varying number of VMs. The aim of this analysis is to compare the 

status of cache in the unmodified (default/insecure), static partitioned, and modified 

(dynamic partitioned/secure) hypervisors. Dynamic partitioned hypervisor or HBP-DCP 

based on dynamic cache partitioning is our solution. The figures clearly represent that 

there is a very small amount of difference in the cache utilization of both hypervisors even 

the modified hypervisor has the ability to prevent cross-VM cache-based SC attacks. In 

Figure 6.11, the y-axis shows the average bandwidth of cache read/modify/write and the 

x-axis shows the number of varying VMs. Here in this figure we did not mention the 

partitions since the partitions in the dynamic partitioned (HBP-DCP) is decided during 

runtime. While in Figure 6.12, the y-axis shows the average bandwidth in MB/Sec for 

read/write/modify and the x-axis shows the number of varying VMs and partitions. Here 

in this figure, we mentioned the partitions since the partitions are decided during boot 

time and cannot be changed during execution or runtime. The average bandwidth ranges 

of cache read/write/modify for the unmodified hypervisor is from 25542 to 25683 while 

for unmodified hypervisor the range is from 25522 to 25645. The highest value of the 

unmodified hypervisor is 25683 MB/Sec that is bigger than modified (HBP-DCP) by 38 

MB/Sec. Moreover, Read/Write/Modify bandwidth is almost same in both unmodified 
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(secure) and modified (dynamic partitioned/HBP-DCP/secure) hypervisor. However, the 

bandwidth in both hypervisors including HBP-DCP and in unmodified is decreasing as 

the number of VMs is increasing. However, the significant difference as shown in the 

previous chapter validate the results and enable the cloud providers to use the modified 

hypervisor based on HBP-DCP to improve the security of virtualized environment.  

 

Figure 6.11: Cache Read/Modify/Write Bandwidth in Unmodified and Modified 

(Dynamic Partitioned) Hypervisors 

Similarly Figure 6.12 shows the comparison of cache Read/Modify/Write bandwidth 
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the only single partition will be assigned to that VM and the remaining 15 partitions will 

be idle. While in case of our dynamic partitioned (HBP-DCP), the partitions is defined 

during runtime according to running VMs, therefore, if one VM is running the whole 

cache would be assign to that single VM. Consequently improve the performance in term 

of cache utilization. The average bandwidth of cache read/modify/write in the static 

partitioned hypervisor is 13012.8 and 18234.7 in our dynamic partitioned (HBP-DCP) 

hypervisor. Thus the average bandwidth of cache write is improved by 43.32% in our 

HBP-DCP based hypervisor. Consequently improves the cache utilization. Because in the 

static partitioned hypervisor, the number of partitions is static and predefined during boot 

time. We have shown the significance of the results in the previous Chapter 5 by using P-

value and T-values. 

 

Figure 6.12: Cache Read/Modify/Write Bandwidth in Static Partitioned and Modified 

(Dynamic Partitioned/HBP-DCP) Hypervisors 
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decreasing with the increasing number varying VMs. We have executed the experiment 

for 30 execution traces for each VM and with varying number of VMs. The aim of this 

analysis is to compare the status of cache read bandwidth in the unmodified 

(default/insecure) and modified (dynamic partitioned/secure) hypervisors after HBP-DCP 

based on cache partitioning as our solution. The figures clearly represent that there is a 

very small amount of difference in the cache utilization in term of cache read of both 

hypervisors and also in the previous chapter we have shown that the difference is 

significant even the modified hypervisor has the ability to prevent cross-VM cache-based 

SC attacks.  

 

Figure 6.13: Cache Read Bandwidth in Unmodified and Modified (Dynamic 

Partitioned/HBP-DCP) Hypervisor 

The ranges of average bandwidth for cache read is from 1482 to 1610 in the 
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significant. There is a little difference between both, however, modified hypervisor based 

on HPB-DCP has the ability to prevent cross-VM cache-based SC attacks. 

Similarly, the comparison of cache read bandwidth in both static partitioned and 

dynamic partitioned hypervisors is shown in the Figure 6.14. Similar to Figure 6.13, the 

average bandwidth of cache read in static partitioned hypervisor is low as compared to 

our HBP-DCP based hypervisor due to the predefined static partitions during boot time.  

 

Figure 6.14: Cache Read Bandwidth in Static Partitioned and Modified (Dynamic-

Partitioned/HBP-DCP) Hypervisor 

The ranges of average bandwidth for cache read are from 946.3 to 1345.5 in the static 

partitioned hypervisor and the ranges in the modified (secure/dynamic partitioned) 
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in Chapter 5 validate the significance of the result. We have improve the cache utilization 

by using dynamic partitioned hypervisor up to 45%. 
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increasing number varying VMs. We have executed the experiment for 30 execution 

traces for each VM and with varying number of VMs. The aim of this analysis is to 

compare the status of cache read bandwidth in the unmodified (default/insecure) and 

modified (partitioned/secure) hypervisors after HBP-DCP based on cache partitioning as 

our solution. The difference in both hypervisors is significant, even the modified 

hypervisor (HBP-DCP) has the ability to prevent cross-VM cache-based SC attacks. 

 

Figure 6.15: Cache Write of Unmodified and Modified Hypervisor 

Figure 6.16 shows the comparison of the cache write bandwidth in both static 
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partition is predefined during boot time while in dynamic partitioned, the partitioned will 

be created during runtime according to the number of VMs. 

 

Figure 6.16: Cache Write of Static Partitioned and Dynamic Partitioned (HBP-DCP) 

Hypervisor 
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the average memory access time. Each Figure summarizes the memory access rate in term 

of total LLC memory access with 95% confidence interval for 30 number of iteration for 

each VM e.g., VM1 to VM10 in eight intensity levels. 

Figure 6.17 shows the LLC memory references or cache access for matrix 

multiplication program with 8 granularity level. In the Figure, the y-axis shows the total 

memory accesses and the x-axis shows the number of VMs from VM1 to Vm10. Each 

diagonal bar in the figure represents the mean value of LLC memory reference or accesses 

measured in the unmodified hypervisor mode of 30 iterations for each corresponding 

matrix multiplication workload (300x300 to 1000x1000). The LLC memory references 

are increasing with increasing number of workload for each VM in the unmodified 

hypervisor. 

 

Figure 6.17: Average LLC Memory References in Unmodified Hypervisor for 

Varying VMs (1VM-10VMs) 

Figure 6.18 shows the LLC memory references or cache access for matrix 

multiplication program with 8 granularity level in the static partitioned hypervisor. As 

compared to the unmodified and dynamic partitioned hypervisor, the average memory 

accesses is low. Since the partitions cannot be changed and for the configuration of 1VM 

and 16 partitions the VM will access just single partition and the remaining 15 partitions 
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will be idle during VM execution. Therefore, the memory reference will be low in the 

static partitioned hypervisor. In the Figure 6.18, the y-axis shows the total memory 

accesses and the x-axis shows the number of VMs from VM1 to Vm10. Each diagonal 

bar in the figure represents the mean value of LLC memory reference or accesses 

measured in modified hypervisor mode of 30 iterations for each corresponding matrix 

multiplication workload (300x300 to 1000x1000). The LLC memory references are 

increasing with increasing number of workload for each VM in the modified hypervisor. 

For instance, the memory references for 1000×1000 are greater than 300×300 workload 

references. 

 

Figure 6.18: Average LLC Memory References in Static Partitioned Hypervisor for 

Varying VMs (1VM-10VMs) 

Figure 6.19 shows the LLC memory references or cache access for matrix 

multiplication program with 8 granularity level in modified (HBP-DCP) hypervisor. In 

the Figure, the y-axis shows the total memory accesses and the x-axis shows the number 

of VMs from VM1 to Vm10. Each diagonal bar in the figure represents the mean value 

of LLC memory reference or accesses measured in modified hypervisor mode of 30 
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iterations for each corresponding matrix multiplication workload (300x300 to 

1000x1000). The LLC memory references are increasing with increasing number of 

workload for each VM in the modified hypervisor. In the previous chapter, we have 

shown that the difference between both hypervisors is significant even though the 

modified (HBP-DCP) hypervisor has the ability to prevent cross-VM cache-based SC 

attacks. 

 

Figure 6.19: Average LLC Memory References in HBP-DCP based Hypervisor for 

Varying VMs (1VM-10VMs) 

Figure 6.20 shows the comparison of average LLC memory access time in unmodified, 

static partitioned, and dynamic partitioned (HBP-DCP) hypervisors with varying number 

of VMs and eight different granularity level. In the Figure, the y-axis represents the total 

cache references and the x-axis represents the various granularity level of matrix 

multiplication for both unmodified and HBP-DCP based hypervisor. The diagonal bar 

represents the average LLC cache references for the varying workload and varying VMs 

from 1VM-10VMs. The graph in Figure clearly depicts the increasing complexity as the 
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matrix multiplication intensity from left to right be increases in both hypervisors. 

However, the growth of workload has a significant impact on the total cache references 

when the workloads are executed in both modified and HBP-DCP hypervisor. In Chapter 

5, we have also shown that the differences between the total cache references in both 

modes are significant. Moreover, the modified HBP-DCP based hypervisor has the ability 

to prevent cross-VM cache-based SC attacks.  

 

Figure 6.20: Comparison of LLC Memory References in Unmodified, Static and 

HBP-DCP based (Dynamic partitioned) Hypervisors 

Figure 6.21 show the LLC memory hit rate in three hypervisors namely: unmodified 

static partitioned, and dynamic partitioned or HBP-DCP based hypervisors. In the figure, 

the y-axis represents the hit rate and the x-axis shows the workload in term of varying 

granularity level. The hit rate for the unmodified hypervisor is greater than as compared 

to the modified (HBP-DCP based) hypervisor. Moreover, the hit rate is increasing with 

increasing matrix granularity. The ranges of LLC hit rate for unmodified hypervisor are 

from 87.97% to 98.56% and for modified (HBP-DCP based) hypervisor are from 84.84% 

to 96.14%. There is almost 2% difference in both hypervisors. Similarly, the ranges of 
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LLC hit rate for static partitioned hypervisor are from 77.22% to 91.34%. There is almost 

5% difference in the dynamic partitioned and static partitioned hypervisors which validate 

the result based on 95% confidence interval. However, in Chapter 5, we have shown that 

this difference is significant. Moreover, the HBP-DCP based hypervisor has the ability to 

prevent cross-VM cache-based SC attacks.  

 

Figure 6.21: Average LLC Memory Hit Rate with Varying VMs 

Figure 6.22 shows the LLC memory miss rate in both unmodified and HBP-DCP based 

hypervisors. In the figure, the y-axis shows the miss rate and the x-axis shows the 

workload in term of varying granularity level. Unlike to the hit rate, the miss rate for the 

unmodified hypervisor is less than as compared to the modified (HBP-DCP based) 

hypervisor. Moreover, the miss rate is decreasing with increasing matrix granularity. 

Because the miss rate is calculated in Chapter 5 by (1-hit rate) formula. Therefore, miss 

rate depends on the hit rate. Since the hit rate for the unmodified hypervisor is greater 

than HBP-DCP, therefore, miss rate will be lower than HBP-DCP. The ranges of LLC 
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miss rate for unmodified hypervisor are from 1.44% to 12.03% and for modified (HBP-

DCP based) hypervisor are from 3.86% to 15.16%. There is almost 3% difference in both 

unmodified and modified hypervisors. However, in the previous Chapter 5, we have 

shown by T-value and P-value that this difference is significant. Moreover, the HBP-DCP 

based hypervisor has the ability to prevent cross-VM cache-based SC attacks. 

 

Figure 6.22: Average LLC Memory Miss Rate with Varying VMs 

Figure 6.23 shows the comparison of average LLC memory access time in both 

unmodified and modified (HBP-DCP) hypervisors with varying VMs and eight different 

granularity level. The timing benchmark is our own design program to observe the 

memory access rate in term of the cache hit and miss rate. For cache access time, we have 

first calculated the LLC references, LLC miss and hit rate by using cachegrind 

benchmark. Then we have calculated the LLC memory access time by using our own 

designed program. Since the LLC access time is calculated from the cache miss and cache 

hit rate as shown in Eq. 5.7 and 5.8 and the hit rate is increasing with increasing workload, 

however, the miss rate is decreasing with increasing workload. Therefore the LLC access 

time is decreasing with increasing workload in term of matrix granularity. The Figure 
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shows that the LLC access time is decreasing by increasing workload in term of matrix 

multiplication granularity. The ranges of LLC access time for unmodified hypervisor are 

from 11.3 to 20.82 and for modified (HBP-DCP based) hypervisor are from 13.47 to 

23.64. The average difference in both hypervisors is almost 2. Previously in Chapter 5, 

we have proved the significance in the difference by P-value and T-value. Moreover 

modified (HBP-DCP based) hypervisor has the ability to prevent cross-VM cache-based 

SC attacks. 

 

Figure 6.23: Comparison of Average LLC Memory Access Time in both Unmodified 

and HBP-DCP (Dynamic Partitioned) Hypervisors 

Figure 6.24 shows the comparison of average LLC memory access time in both static 

partitioned and our HBP-DCP (Dynamic Partitioned) hypervisors with varying VMs and 

eight different granularity level. As shown in the figure the memory access time for our 

dynamic partitioned hypervisor as low as compared to the static partitioned hypervisor. 

Since the cache references is low and cache miss is high in the static partitioned 

hypervisor, therefore, the LLC memory access time will be high. The average access time 
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for static partitioned is 21.71 and for dynamic partitioned is 18.29. The cache access time 

of our HBP-DCP based hypervisor is improved by 17.1% as the cache access time will 

be high for the high miss rate. The cache access time is calculated based on the total 

access rate and miss rate. Since the total cache access rate in static partitioned hypervisor 

is less than and the miss rate is greater than our dynamic partitioned (HBP-DCP) 

hypervisor. If the miss rate is high the cache access time will be high. Therefore, the 

average cache access time of our dynamic partitioned hypervisor (HBP-DCP) is less than 

static partitioned hypervisor. The T-value and P-value prove the significant difference 

between both results as the T-value is less than 2.2 and P-value is less than .05.

 

Figure 6.24: Comparison of Average LLC Memory Access Time in Static Partitioned 

and HBP-DCP (Dynamic Partitioned) Hypervisors 

6.2 Conclusion 

In this chapter, the experimental results of modified hypervisor based on HBP-DCP 

prevention mechanism is discussed to prove the efficiency of the proposed prevention 

mechanism on the basis of load testing, cache utilization, and cache access time and 

prevention of attacks. The experiments for load testing were investigated based on a 
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number of requests per second and the average response time per request. Since our HBP-

DCP prevention is based on the cache partition, therefore, the experiments were 

investigate based on the cache utilization and cache access time. The cache utilization is 

based on that how much bandwidth of cache would be utilized during writing and reading. 

In addition, the experiments are carried out in both unmodified (default/insecure) and 

modified (HBP-DCP based/secure) hypervisor. 

In addition, we validate the system against cross-VM attacks while demonstrating that 

they can be prevented without client-side or hardware modifications. First, we validated 

our results by conducting the cross-VM cache-based SC attacks in unmodified and 

modified hypervisors. For this, we created two VMs: Victim and Attacker VMs. Then 

analyzing the performance by sending the 16-bit stream from attacker VM to Victim VM 

and check whether both hypervisors can prevent the attacks or not. Using the code base 

of an open source hypervisor, Xen (Project 2016), we have conducted our solution based 

on dynamic cache partition demonstrate how to inhibit cache-based side-channels from 

occurring within a cloud server. Our HBP-DCP prevention mechanism prevents 

communication along a shared cache by partitioning the cache dynamically into multiple 

segments using a technique known as cache coloring.  

Then we analyzed the load testing, cache utilization, and cache access time in both 

unmodified (insecure), static partitioned, and modified (dynamic partitioned/HBP-DCP-

based/secure) hypervisors. We observed that load testing showed an average 3189 in term 

of average number of request per request per second and 18.42 in response time in the 

unmodified hypervisor. While in modified (dynamic partitioned), the average number of 

request per second is 3157.88 and average response time is 18.28. As compared to the 

unmodified hypervisor the computing load in term of request per second in the modified 

hypervisor is increased by 1.008% and the response time is decreased by .07%. This is 

acceptable difference since we know security always comes with some overhead and the 
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modified hypervisor has the ability to prevent cross-VM cache based SC attacks. In 

contrast to this, the computing load in static partitioned hypervisor in term of number of 

request per second is 1977.28 and average response time per request is 19.33. On the 

other hand, in modified (dynamic partitioned) hypervisor, the number of request per 

second is 3157.88 and average response time is 18.28. The computing load is improved 

in the dynamic partitioned hypervisor as compared to the static partitioned hypervisor. 

Because the average number of request per second in the dynamic partitioned hypervisor 

is increased by 45.98% and the average response time per request is decreased by 5.58%. 

Similarly, as compared to the static partitioned hypervisor the average bandwidth of cache 

read/modify/write is improved by 43.32% in our HBP-DCP based hypervisor. 

Consequently improves the cache utilization that each VM has access to by increasing 

cache read/modify/write, cache read, and cache write bandwidth in combine by 53.5%. 

Moreover, the cache access time is improved by 15.53%, as a result substantially decrease 

the overhead as significant by 20%. However, the modified hypervisor based on our 

proposed HBP-DCP prevention mechanism has the ability to prevent cross-VM cache 

based SC attacks. We then compare this solution to the current state of the art. In our 

comparison, we find that the dynamic partitioned hypervisor is more secure against side-

channels regardless of the number of partitions we assign. 
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CHAPTER 7: CONCLUSION 

This chapter presents the overall conclusions of this thesis and emphasizes the 

qualitative feature of the HBP-DCP mechanism. The conclusive analysis is carried out by 

considering on the aim and objectives set of research in the first chapter of the thesis. We 

identified the future research work and research contribution is also highlighted. 

The rest of this chapter is also organized is as follows. In Section 7.1, the aim and 

research objectives of this study listed in Chapter 1 are reexamined. Section 7.2 describes 

the contribution of this research work. The significance of this work among existing 

prevention mechanism in CC is described in Section 7.3. Section 7.4 elaborates the scope 

and limitation of this research work and the future research direction are highlighted for 

further enhancement. 

7.1 Research Objectives 

This research work aimed to prevent the cross-VM cache-based SC attacks while 

maintaining the performance to solve the problem of static cache partitioning as a 

prevention mechanism. We described four research objectives in section 1.4. We 

investigate that how we could attain the research aim by completing the following 

research objectives.  

Objective 1: To study the cache-based SC attacks in the non-virtualized and 

virtualized environment from the perspective of conducting and preventing these 

attacks to gain insights into performance limitations of current state-of-the-art 

prevention solutions. 

The first objective was to investigate critically analyze the current state-of-the-art cross 

VM cache-based SC attacks and their prevention mechanisms such that insight is gained 

leading to their prevention and performance limitations. This research objective was 

conducted by a thorough review of the most credible work published in articles collected 
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from online scholarly digital libraries, such as IEEE, ACM, Elsevier, and Web of Science 

using the University Malaya access portal. In order to ensure thorough browsing of the 

recent literature in the journals and conferences about cross VM cache-based SC attacks 

in CC, techniques for conducting SC attacks in OS, single VM and across VM, and 

prevention mechanisms for these attacks are visited. We organized the recent work, 

devised proposed taxonomy, and provided a qualitative comparison for cross-VM cache-

based SC attacks, and prevention mechanisms for these attacks. 

The main purpose of this thorough study was to analyze and synthesize the recent work 

in order to identify the research problems and challenges in the prevention mechanism 

for cross-VM cache-based SC attacks. We found that current prevention mechanism 

based on static cache partition is unable to handle attacks prevention efficiently. 

Therefore, a dynamic cache partition is required to prevent the cross-VM cache-based SC 

attacks in the CC. 

Objective 2: To investigate the identified problem by conducting the cache-based SC 

attacks in the real environment and applying the existing prevention mechanism based 

on the static cache partition and unveiling the impact of existing prevention mechanism 

on the cache utilization as well as on the cloud model. 

The second objective of this research study was to investigate and analyze the 

overhead in the existing prevention mechanisms in CC. Prevention of SC attacks can be 

applied by using hardware and software. We investigated the aforementioned SC 

prevention mechanism with the perspective of hypervisor-based (software) prevention 

mechanism for the cross-VM cache-based SC attacks. The investigation revealed that 

hardware based solution is costly, as they need to change the underlying hardware and is 

unable to provide the pro-active prevention. Furthermore, it does not comply with the 

cloud model as they need to change the client software and the underlying hardware. On 

the other hand, the software-based mechanisms provide security to the encryption 
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algorithms rather than the overall information leakage across VMs and is comply with 

the cloud model. We further examined the cross-VM execution of cache-based SC 

attacks. We found that static cache partition, an existing software solution for prevention 

of cross-VM cache-based attacks degrade the performance in term of bearable load, cache 

utilization, and cache access time and consequently generated overhead. 

Objective 3: To propose a prevention mechanism based on the dynamic cache 

partition for the prevention of cache-based SC attacks across VMs that leads to an 

efficient cache utilization among various VMs. 

The third objective of this research study was to design a hypervisor-based prevention 

mechanism using dynamic cache partition (HBP-DCP) for the prevention of cross-VM 

cache-based SC attacks. The HBP-DCP is a hypervisor-based (e.g., software-based) 

mechanism complies with the cloud model which indicates that it does not need the 

changing in client software or the underlying hardware. For the cache monitoring, we 

devised a cache monitoring algorithm based upon the VM creation in the Xen Scheduler. 

This algorithm analyzes and reports the current state of the cache to the cache partitioner 

algorithm. The cache partitioner algorithm then re-partition the cache according to the 

number and requirement of VM based on the cache coloring approach.  

Objective 4: To evaluate and validate the performance of our dynamic cache based 

prevention mechanism considering three metrics namely: computing load, cache 

utilization, and memory access rate and compare it with the state-of-the-art prevention 

mechanisms. 

The fourth objective of this study was attained by evaluating the proposed mechanism 

via benchmarking experiment by creating 10 VMs on a desktop computer having all level 

cache (e.g., L1, L2, L3). We performed the performance experiments for all parameters 

and observe the results for 30 workload execution under the identical condition and every 

workload is repeated for 30 times for the sake of reliability for each of 10 VMs in both 
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modified and unmodified hypervisor to experiments. Our performance results unveil that 

utilizing our proposed prevention mechanism prevent the cross-VM cache-based SC and 

also improve the cache utilization to 53.5% , load by 45% and cache access time by 

15.53% while generating less than 5% overhead as compared to the static partitioned 

prevention mechanism.  

We develop a statistical model in order to validate the performance results of our 

proposed HBP-DCP prevention mechanism. Regression analysis is used for the purpose 

to derive the accurate statistical model of our four performance evaluation parameters 

namely: load testing, cache utilization, and memory access rate. We validate our 

performance results of the HBP-DCP mechanism by using split-sample validation 

approach. We compared the findings of benchmarking to the statistical modeling to 

validate our proposed prevention mechanism. Validation results confirm that leveraging 

our proposed prevention mechanism can prevent cross-VM cache-based SC attacks 

without affecting the performance of the system and improve the load, cache utilization, 

and cache access time. 

7.2  Contribution 

In this Section, we have highlighted the contribution of this research work. We 

presented the contribution in term of the scholarly articles in list of publications and 

presented papers at the end of thesis. This research work produced several contributions 

to the body of knowledge in following aspects. 

 Taxonomy of Cross-VM Cache-based Side Channel Attacks: We produced 

taxonomies from the existing literature for the cache-based SC attacks and 

prevention mechanisms. We comprehensive reviewed the Cache-based SC 

attacks from the cross-VM point of view and prevention mechanism by critical 

analyzing of the selected state-of-the-art research work extracted from scholarly 
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articles such as ACM, IEEE, and Elsevier. Our comprehensive studied literature 

is presented in Chapter 2 and published in (Anwar, Inayat et al. 2017) led to the 

identification of our research problem. 

 Cache Monitoring Algorithm: We devised a cache monitoring algorithm for 

the page allocator system of hypervisor. The cache monitoring algorithm 

examines the cache status upon the new request from the admission control for 

new VM creation. In addition, this algorithm is efficient in assigning the 

different partition of the cache to each VMs according to the VMs requirement. 

 Hypervisor-based Prevention Mechanism (HBP-DCP): We devised a 

hypervisor-based prevention mechanism (HBP-DCP) for the prevention of 

cross-VM cache-based SC attacks. HBP-DCP mechanism is based on the 

dynamic cache partition for each VMs. The cache monitoring was integrated 

with the cache partitioning (page allocating) algorithms in the existing page 

allocator of hypervisor to enable the hypervisor to partition the cache 

dynamically according to the new VM requirement when new VM is created.  

 Performance Evaluation and Validation: The analytical evaluation results of 

the system are generated through benchmarking and statistical modeling. 

Performance evaluation using benchmark analysis is performed on the modified 

(Dynamic partitioned/secure) and unmodified (Default/insecure) hypervisor. We 

developed a statistical model of the benchmarking parameters of HBP-DCP 

mechanism for the prevention of cross-VM cache-based SC attacks. The 

statistical model is generated via observation-based modeling approach in which 

dataset of independently replicated data is generated to train the regression 

model. The model is validated using split-sample approach is used to validate 

the performance of our proposed prevention mechanism. The process and result 

of performance evaluation and validation are presented in Chapters 5 and 6 
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respectively. Statistical and schematic analysis of the results unveiled the 

feasibility, functionality, lightweight nature of our proposed prevention 

mechanism and advocate that the objectives and aim of this study are fulfilled 

and is realized. 

7.3 Significance of the work 

Several significant features that are considered during design and development of 

HBP-DCP prevention mechanism could distinguish it from the existing prevention 

mechanism for cache-based SC attacks are briefly presented as follows: 

First, HBP-DCP prevention mechanism complies with the cloud model. In particular, 

unlike hardware mechanism, HBP-DCP is hypervisor based (e.g., software based) 

prevention mechanism which does not need changes in any client software or the 

underlying hardware. Therefore, it can be embedded into the hypervisor and in the cloud 

model, because, it obey the cloud rules. 

Second, this attack is based on the cache (the most interactive device). Since our 

prevention mechanism is based on the dynamic cache partition, therefore, it is 

generalizable in the sense that it can prevent all types of SC attacks which is based on the 

cache and in all type of hypervisor (e.g., XEN and VMWare) in which VMs can be 

created.  

Third, our HBP-DCP prevention mechanism can be ported to any type of the supported 

software (hypervisor) and computing infrastructure. Since our HBP-CP prevention 

mechanism is hypervisor-based means we have implemented by using the source code of 

an open source hypervisor. Therefore, HBP-DCP can be installed almost on every type 

of computing infrastructure and it is applicable to the commodity OS. 

Fourth, HBP-DCP is based on the dynamic partition of the cache. Therefore the overall 

performance has improved by increasing the cache utilization for each VMs because each 

VM is only giving as much more cache memory as they are requested at runtime. For 
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instance, if there is 2MB L3 cache, and 1 VM is running the whole 2MB would be 

assigned to 1VM, consequently improve the overall performance in term of load, cache 

utilization, and memory access rate. 

Fifth, HBP-DCP is a preventive mechanism rather than reactive. Since we cannot 

examine when SC attacks might occur, we simply ensure that the two VMs would not be 

able to access the same cache lines for the purpose to create SC attacks. Preventive means 

early prevention before occurring of the attacks while reactive means prevents attacks 

after occurring. Because once the attack occurs, it will harm the system even in a minute, 

therefore, early prevention of attack is more beneficial than post prevention. 

7.4 Limitation and Future Work 

The HBP-DCP prevention mechanism prevent cross-VM cache-based SC attacks with 

a minimum cache access rate and by improving computing load, cache utilization, and 

memory access rate. Our HBP-DCP (dynamic partitioned) mechanism can be entirely 

implemented within the hypervisor and do not interfere to the cloud model (does not need 

to change the client side’s software or the underlying hardware). The HBP-DCP 

prevention mechanism can prevent any type of attacks in which cache is involved and 

therefore it is generalizable to all types of the hypervisor which is used for VM creation. 

However, HBP-DCP is always activated upon the VM creation, and assign the specific 

color page of the cache memory that matches the color of the requested VM, the limitation 

of this prevention mechanism is it is unable to detect the cache memory requirement of 

each VMs upon the creation time. For instance, if two VMs are requested for cache then 

it is unable to detect that how much amount of cache is required to VM1 and how much 

to VM2. On the other hand, the decision that how many pages should be migrated and 

which one page among all pages should be migrated first is very difficult. 

In our future work, we will consider cache management policy. We will focus on that 

when VM is created then we should be able to predict all the cache requirements of that 
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specific VM. Furthermore, the cloud computing environment is also vulnerable to other 

SC attacks likewise the cache-based SC attacks. It arises difficulty for the cloud provider 

because SC attacks based on a specific medium often require their own unique solutions. 

Therefore, each channel will required further work to develop a solution customized to 

its specific vulnerabilities.  
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