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ABSTRACT 

 A fluid formed by suspending Nano-scaled metallic or non-metallic particles in base 

fluids is called a nanofluid. Laminar forced convection heat transfer of the CUO-water 

nanofluid in a pipe with a return bend is analysed by using a finite volume method. The 

effects of nanoparticles concentrations and Reynolds number are investigated on the flow 

and the convective heat transfer behaviour. The results show that the average Nusselt number 

increases with increasing Reynolds number, and the increment of specific heat in the 

nanofluid contributes to the heat transfer enhancement. The average Nusselt number in the 

return bend appears higher than that in the inlet and outlet pipes due to the secondary flows. 

However, the pressure drop in the pipe largely increases with the increment of nanoparticle 

volume concentration.  
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ABSTRAK 

Kaedah elemen terbatas digunakan untuk menganalisa pemindahan haba perolakan 

nanobendalir kuprum oksida secara laminar paksaan di dalam paip yang mempunyai selekoh 

berbalik. Keputusan menunjukkan bahawa purata nombor Nusselt meningkat dengan 

bertambahnya nombor-nombor Reynolds dan Prandtl, dan peningkatan haba tentu di dalam 

nanobendalir menyumbang kepada peningkatan pemindahan haba. Purata nombor Nusselt di 

dalam selekoh berbalik adalah lebih tinggi berbanding di kedua-dua hujung paip disebabkan 

aliran sekunder. Namun begitu, perbezaan tekanan di dalam paip bertambah secara langsung 

dengan pertambahan jumlah isipadu nanopartikel. 
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Chapter 1 

 

1 INTRODUCTION 

Recently almost all advances and developments in industrial technology are being 

focused on the reduction of system processes leading to higher power concentrations for a 

wide range of applications. Consequently the need to increase in cooling capacities has been 

vital for these compact thermal systems. The conventional methods for example using 

extension surfaces like fins or utilizing micro channels with high heat transfer surface 

availability to obtain this prompted cooling efficiency have been extensively employed and 

are restricted in effectiveness. On the other hand, the cooling fluid characteristics, have been 

investigated recently. 

Due to low conductivity characteristic of fluids, they do not have the enough 

capability to be used in high heat transfer efficiency equipment. In other words, fluids with 

characteristically poor heat transfer in one hand and increasing needs to micro-scale thermal 

systems in today’s world on the other, have forced the researchers to find the new techniques 

of heat transfer enhancement. Inevitably one possible solution to overcome this restriction 

can be obtained by the high heat transfer ability of solid metal particles which are suspended 

inside flowing fluid. Previously there have been some efforts to add micro-scale metal 

particles into conventional fluids. Although this way could cause some remarkable outcomes 

it led to significant shortcomings. These micro-particles, could enhance the heat transfer 
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characteristic of fluid while impose some negative effect such as increase of viscosity 

resulting in the need to a more pumping power. 

Nanofluid is defined as a new kind of fluid with metallic nanoparticles suspension 

among liquid molecules. Heat transport of nanofluid is a function of dimension, properties 

and solid volume concentration of nano-particles. According to experimental investigations 

nanofluids have shown a significant potential for augmentation of energy transfer and also 

enormously higher thermal conductivities in comparison to base fluids. Owing to the 

nanofluids characteristics, many kinds of industries including automotive radiator systems, 

computer processing cooling equipment, home heating and cooling appliances, power plant 

cooling systems can utilize from this technique. 

The application of high conductivity heat transfer fluids will bring about entirely 

using the accessible energy of a system which will associate the reduction of negative 

environmental impacts of companies as well as their operating costs. 

One of advantages for nanoparticles is that these nano-particles have great surface 

area for thermal conductivity than pure fluids [1, 2]. 

1.1 Thermal conductivity augment of nanofluid 

The  fast progress trend in manufacturing methods and nanotechnology, the 

production of nanoparticles (particle size less than 100 nm) has been possible [3]. The first 

and most important property of nanofluid is the enhanced effective thermal conductivity with 

addition a small fraction of  nanoparticle to base fluid [3, 4]. Since then, roughly all 

investigation results have shown numerous improvements by use of nanoparticles as 

additives to enhance heat transfer of fluids and their thermal performance [5-7]. 
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1.2 Nanofluid viscosity 

Since the nanofluid convective heat transfer performance is a function of both thermal 

conductivity and viscosity, it is important to study nanofluid viscosity employing by a 

system[8]. The viscosity of a fluid is expected to increase as particles are added, no matter if 

the particles are rotating or non-rotating in the flow field [9]. In this case study, the laminar 

regime, the pressure drop along a tube is tied to viscosity. This raise of  viscosity will result 

in an unwanted increase in pumping power [10]. 

1.3 Nanofluids convective heat transfer 

Since nanofluid technique has shown the high potential especially in micro and mini-

scale devices, a wide range of attentions has been paid to convective heat transfer 

improvement by this method during recent decades.  

However, There are inconsistent results in case of convective heat transfer coefficient 

or Nusselt number for  nanofluids [11]. Similar to conventional base fluid, Nusselt number 

increases as Reynolds number due to strengthen turbulent mechanism. Identically the particle 

volume fraction increase leads to raise of heat transfer. In particular, the ratio of Nusselt 

number is varied from 1.06 to 1.39 for copper-water nanofluid, while the volume fraction of 

copper particles increased from 0.5% to 2% at the same constant Reynolds number [11, 12]. 

Moreover, the results depict that prediction of Nusselt number can be failed for nanoparticle 

volume concentration much more than 0.5% [13]. Accordingly, the energy exchange 

enhancement rate may be caused by the random movement of nanoparticles. The particle 

random movements not increases only slip velocity between the fluid and the particles but it 

is also caused to increase the temperature gradient between the fluid and the tube wall. In 
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pressure drop point of view experimental findings pronounced that the nanofluids friction 

factors behaviour is like their base fluids. There are also several studies based on nanofluids 

in the turbulent flow regime under various kinds of nanoparticle materials, base fluid 

materials, different fluid mixtures and flow rate combinations. Totally owing to the research 

outcomes, it is concluded that, the rate of heat transfer enhancement of nanofluids increases 

while the Reynolds number and volume concentration of particles raise. However, it should 

be considered that the augmentation magnitudes were not consistent [12, 14-18] 

This research is aim to assess thermal and hydrodynamic nanofluid behaviour of 

laminar forced convection in horizontal pipe with return bend by Computational Fluid 

Dynamic (CFD) Simulation. 

1.4 Objective 

 To carry out background/literature study in thermal and hydrodynamic 

nanofluid behaviour of laminar forced convection in horizontal pipe with return 

bend by Computational Fluid Dynamic (CFD) Simulation. 

 To investigate the heat transfer in the return bend, inlet and outlet pipes due 

to the secondary flows because of the centrifugal force. 

 To analyse the effects of particle volume fractions and Reynolds number in 

range of laminar flow on heat transfer. 

 Using CFD to predict the pressure drop in the return bend, inlet and outlet 

pipes. 
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Chapter 2 

 

2 REVIEW OF INTERNAL FLOW AND NANOFLUID CONVECTION 

LITERATURE  

2.1 Using Nanofluids for Forced Convection Heat Transfer improvement 

There are an extensive range of studies pronouncing the conductivity improvement 

of fluid by addition of nanoparticles to fluids.  In these studies the nanofluid conductivity 

improvements have been justified based on several hypothesis such as: surface roughness 

effect, chaotic movement known as Brownian motion and particle-particle interactions of 

suspended nanoparticles, high specific area which increases heat transfer surface between 

fluids and particles, and particle clustering which creates high-conductivity heat transfer 

paths.  

 In an effort to reduce the experimental artefact caused by the traditional “hot-wire” 

approach to measure nanofluid thermal conductivity, some groups selected optical 

measurement methods, and did not obtain great augmentations in the effective thermal 

conductivity [19-21]. Putnam et al. [19] concluded the independency of effective static 

thermal conductivities of gold nanofluids from measure of particle. The thermal conductivity 

of Au and alumina oxide (Al2O3) nanofluids  was calculated by Venerus et al. [20] during 

forced Rayleigh scattering measurement technique. The thermal conductivity has been 

obtained by their measurements shows temperature independency while the augmentations 
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were reliable according to the predictions of the classical effective conductivity theorem.   

Also, measurements on monodisperse polymer suspensions by Rusconi et al. [21] did not 

represent a numerous increase in thermal conductivity, but rather followed the classical 

models for the effective properties of composite media. 

Maiga, Palm, Nguyen et. al. [22] simulated laminar forced convection in a pipe with 

uniformly heated-wall. They adopted alumina particles suspending in water as well as 

ethylene glycol. They proposed that both heat transfer coefficient and wall shear stress 

increase as nanoparticle volume concentration and Reynolds number increases. They also 

achieved that although heat transfer enhancement  was more significant in the ethylene glycol 

mixture than in the water mixture, the ethylene glycol made more unsuitable influences on 

the wall shear stress. All of the results presented are for a water/alumina mixture with a 

Reynolds number of 500 and a wall heat flux of 10,000 W/m2, but the same behaviours were 

found in the ethylene glycol mixture.  

Figure 2-1 illustrates the effect of particle volume concentration on the radial 

temperature distribution. 
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Figure 2-1 : Effect of parameter concentration (ϕ) on fluid temperature profiles [22]. 

 

Figure 2-1, the fluid temperatures decrease with an increase of ϕ, especially near the 

wall where R/R0=0, pronounces higher heat transfer rate in presence of nanoparticles. 

Accordingly Maiga et. al. found that the wall temperature of the pipe depends on nanoparticle 

volume fraction more severely than the base fluid temperature, in itself, leads to more heat 

elimination near the wall of the pipe. 
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Figure 2-2 : Influence of ϕ on axial growth of fluid mean temperature and wall 

temperature [22]. 

 

Moreover, it can be seen that the decrease in fluid temperature does not take place 

along the entire length of the tube, and the largest decrease occurs at the tube exit. Due to  

Figure 2-1 and Figure 2-2, adding nanoparticles to the fluid causes an apparent heat 

transfer augmentation. Figure 2-3 depicts the heat transfer coefficient versus the position 

within pipe length. 
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Figure 2-3 : Effect of ϕ on heat transfer coefficient ratio hT [22]. 

 

At the first glance, Figure 2-3 shows that the heat transfer coefficient increases 

significantly, while it reaches as much as 63% higher than the heat transfer coefficient of the 

base fluid at least. Apparently, the heat transfer ratio raises with increasing in nanoparticle 

volume fraction. As closing to the end of the pipe, the heat transfer ratio goes up, except for 

the lower nanoparticle volume concentrations which increases with less slope. On the other 

hand, Figure 2-4 shows the effect of the nanoparticle volume fraction on the wall shear stress. 
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Figure 2-4 : Effect of ϕ on wall shear stress rations τr [22] 

 

It is observed that the wall shear stress ratio leftovers constant along the pipe length 

while it increases with nanoparticle volume fraction. 

Maiga, et. al. [22] simulated laminar forced convection inside a pipe. The increase in 

both heat transfer coefficient and wall shear stress reported as nanoparticle volume 

concentration increases. Ethylene glycol showed ability to eliminate more heat, although it 

caused increase in wall shear stress. However, their study was not involved calculation of 

optimum nanoparticle volume concentration for heat transfer. Most likely, at a specific point 

adding more nanoparticles leads to adverse effects on heat transfer. 

 

 

 

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

τ r

Z/D

ϕ (%)

10

7.5

5

2.5

1



11 

 

2.2 Experimental Investigation of Convective Heat Transfer of water-Nanofluid in a 

Circular Tube 

Heris, Esfahany, and Etemad [23]completed a similar study to Maiga, Palm, Nguyen, 

et. al except that it includes experimental results as opposed to numerical results. They 

analyzed laminar forced convection of alumina-water nanofluid inside a pipe with a constant 

wall temperature. They also reported that the heat transfer coefficient increases as the 

concentration of nanoparticles increases. Heris, Esfahany, and Etemad showed all of their 

results versus Peclet number to relate advection and diffusion rate given in Eq. [23] 

Pe = RePr =
U D


         (2.1) 

where Pe is the Peclet number, Re is the Reynolds number, Pr is the Prandtel number, U is 

the free stream velocity, D is the Diameter of the tube, and α is the thermal diffusivity.  

 

The theoretical results compared to the experimental results according Seider-Tate 

correlation, only takes into account an increase in thermal conductivity as a mechanism of 

heat transfer enhancement.  Almost all the experimental results show the heat transfer 

coefficient of nanofluids higher than that of theoretical. Additionally, the experimental 

results all have reported higher the heat transfer coefficient than that of base fluid. Since the 

Seider-Tate equation only considers thermal conductivity increase, which is of a heat transfer 

coefficient lower than the experimental one, it can be concluded existing more mechanisms 

for heat transfer enhancement, such as nanoparticle clustering, nano convection, and other 

dynamic conditions. 
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2.3 Using a Two Phase Approach to Predict Turbulent Forced Convection of a 

Nanofluid in a Tube with Uniform Heat Flux  

The turbulent forced convection heat transfer in a pipe with 1% volume concentration 

of Cu-water nanofluid Behzadmehr, was studied by Saffar-Avval, and Galanis [24] 

numerically. They employed the numerical two-phase approach, meaning that the 

nanoparticles are supposed to have the different velocity from the fluid. In this study, Z is the 

tube length, D is the pipe diameter, kc is the turbulent kinetic energy, and Nu is the Nusselt 

number. Figure 2-5 illustrates the turbulent kinetic energy at the centreline of pipe versus the 

dimensionless position along the pipe length. 

 

Figure 2-5 : Axial values of the turbulent kinetic energy at centreline for water and 

Cu-water nanofluid [24]. 

 

 

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0 20 40 60 80 100

k
c

Z/D

ϕ=0

ϕ=0.01



13 

 

Due to Figure 2-5 the turbulence flow meet fully developed requirement at Z/D=50. 

On the other hand, the kinetic energy increases rapidly to reach the maximum point where 

the diffusing turbulence touches hits centreline. Figure 2-5, also shows that the nanofluid is 

of lower values of turbulent kinetic energy than the water. This means that some of the energy 

of the velocity and fluctuations are absorbed by nanoparticles. This pattern is followed for 

higher particle concentrations. Additionally as particle concentrations increase, the turbulent 

kinetic energy decreases. Behzadmehr, Saffar-Avval, and Galanis also draw comparison 

among different Nusselt numbers corresponding to different Reynolds numbers versus the 

position along the pipe length, which is shown in Figure 2-6. 

 

Figure 2-6 : Nusselt number along the tube axis [24]. 

 

Due to Figure 2-6, it can be concluded that the increasing Reynolds number leads to 

the Nusselt number and consequently the heat transfer coefficient increases. 
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 As a result, Behzadmehr, Saffar-Avval, and Galanis [24] reported that adding 

nanoparticles in turbulent forced convection is effective in augmenting the heat transfer 

abilities of the base fluid because nanoparticles can reduce the turbulent kinetic energy by 

absorption of  the velocity fluctuation energy . 

 

2.4 Heat Transfer and Hydrodynamic Study of Dispersed Fluids with Submicron 

Metallic Oxide Particles 

Pak and Cho [25] studied friction and heat transfer of turbulent nanofluid flows in a  

pipe experimentally. They did the experiment based on alumina and titanium oxide 

nanoparticles with mean diameters of 13 and 27 nm, respectively, in water. They reported 

that putting a 10% volume concentration of alumina in water raised the fluid viscosity 200 

times while putting the same volume concentration of titanium oxide added a viscosity 3 

times greater than water. They also concluded that the nanofluids friction was adapted closely 

with the Kays correlation for turbulent flow. They draw comparison the heat transfer 

coefficient versus Reynolds number as be illustrated in Figure 2-7. 
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Figure 2-7 : Heat transfer coefficient versus Reynolds number for titanium oxide-

water and alumina-water nanofluids [25]. 

 

According Figure 2-7, the heat transfer coefficient increases from 45% to75%, while 

volume concentration of alumina raises from 1.34% to 2.78%. The alumina nanofluid is 

consistently higher than the titanium oxide nanofluid. Pak and Cho considered this results 

due to “enhanced mixing are brought about by submicron particles near the walls”. They 

plotted the Nusselt number versus the Reynolds number, and observed the Nusselt numbers 

follow the trend similar to heat transfer coefficient in Figure 2-7. 
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2.5 Investigation on Convective Heat Transfer and Flow Features of Nanofluids 

Xuan and Li [11, 26] carried out an experimental investigation on turbulent 

convective heat transfer of nanofluids in a tube. They assessed the effect of volume fraction 

and Reynolds number. Copper powders in scale of below 100 nm in diameter were added to 

water, while the nanoparticle concentration was changed from 0.3% to 2.0%. The heat 

transfer coefficient calculated from their experiment is shown in Figure 2-8. 

 

Figure 2-8 :  Heat transfer coefficient versus velocity in turbulent flow [26]. 

 

As can be seen in Figure 2-8, the convective heat transfer coefficient increases 

whereas the fluid velocity as well as the nanoparticle concentration increase. All of the 

nanofluids shown have an increase in the heat transfer coefficient over that of water. Li and 
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is important that the proper nanoparticle volume concentration is adopted carefully to achieve 

heat transfer improvement. 

 

2.6 Convective Transport in Nanofluids 

Buongiorno [27] introduced seven slip mechanisms that can cause a relative velocity 

between the nanoparticles and the base fluid: inertia, Brownian diffusion, thermophoresis, 

diffusiophoresis, Magnus effect, fluid drainage, and gravity.  Among these mechanisms, only 

Brownian diffusion and thermophoresis were found to be important. Buongiorno’s analysis 

consisted of a two-component equilibrium model for mass, momentum, and heat transport in 

nanofluids. He found that a non-dimensional analysis of the equations implied that energy 

transfer by nanoparticle dispersion is insignificant, and cannot justify the unusual heat 

transfer coefficient increases. The boundary layer suggested by Buongiorno has different 

properties because of the temperature and thermophoresis influences.  Consequently the 

viscosity may decline within  boundary layer, in itself, leads to heat transfer augmentation. 

Taking Brownian motion and thermophoresis into account, Buongiorno developed Eq (2.2) 

[27] in his paper, for the Nusselt number, 

 2/3

(Re 1000) Pr
8

1 Pr 1
8

bf

bf bf

v v

f

Nu
f

 



 

 
       

(2.2) 

where Nu is the Nusselt number, f is the friction factor, Pr is the Prandtel number, Re is the 

Reynolds number, v


 is the dimensionless thickness of the laminar sublayer, the subscript 

v represents the laminar sublayer, and the subscript bf represents the base fluid. Buongiorno 

divides the boundary layer into two layers, the laminar sublayer is closest to the wall, and a 
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turbulent sublayer is on top of the laminar sublayer.  Equation was compared to data from 

Pak and Cho, and Xuan and Li, works which were previously discussed in this paper. The 

results are shown in Figure 2-10. 

 

Figure 2-9, Continued 
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Figure 2-10 : Heat transfer in alumina-water nanofluids: a) φ= 0 b) φ= 0.01 c) φ= 0.03 [27]. 

 

Due to the figures, the Nusselt number increases as Reynolds number increases.  

Equation correlates best with Pak and Cho’s experimental data. As the nanoparticle volume 

fraction is increased, the data from all of the researchers starts to gradually diverge. 

Correlations for the Nusselt number do not essentially correspond to the correlations for the 

heat transfer coefficient. 

 

2.7 Using water-Nanofluid to improve Heat Transfer for an Electronic Liquid 

Cooling System 

Nguyen et. al. [14] experimentally studied turbulent alumina-water nanofluid as a 

coolant in microprocessors and other electric systems. They put a liquid cooling block system 

over a heated block and measured the heat transfer coefficient of the cooling block. 

Accordingly a noticeable augmentation in the heat transfer coefficient was found by utilizing. 
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Adding only 6.8% volume concentration of alumina to water leads to the increase of heat 

transfer coefficient by 40%. They also found that increasing the nanoparticle concentration 

decreased the heated component temperature. Nguyen, Roy, Gauthier, et. al. employed 

nanoparticles of 36 nm particle diameter and 47 nm diameter, and concluded that the 36 nm 

particles produced higher heat transfer coefficients in the water block. Equation (2.3) [14] 

shows how the heat transfer coefficient of the water block was calculated. 

electric w-block m,base m, fq  = h A(T  - T  )
      

(2.3) 

where electricq  is the total electric input power, w-blockh  is the heat transfer coefficient of the 

cooling block, A is the total increased surface area of the base plate, m,baseT  is the mean 

temperature of the base plate, and m,baseT is the average temperature of the fluid going 

through the block. Figure 2-11 depicts how w-blockh  varies with mass flow rate and 

nanoparticle volume concentration. 
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Figure 2-11 : Mass flow rate and particle concentration impacts on the heat transfer 

coefficient of the water block [14]. 

 

As can be seen from Figure 2-11, the addition of nanoparticles has greatly increased 

the heat transfer coefficient of the water bock. At a mass flow rate of 0.07 kg/s, the heat 

transfer coefficient has been improved by 12%, 18%, and 38% for nanofluids with 1%, 3.1%, 

and 6.8% nanoparticle concentrations, respectively, compared to the heat transfer coefficient 

of water. The heat transfer coefficient augmentation is similar for lower mass flow rates as 

well. As the turbulent flow is strengthened, the heat transfer coefficient increases. Figure 2-12 

shows the influence of nanoparticle size on the heat transfer coefficient of the water block. 
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Figure 2-12 : Effect of particle size on hw-block  for 6.8% nanoparticle volume 

concentration [14]. 

 

As one can see from Figure 2-12, the smaller diameter nanoparticles (36 nm) produce 

a higher water block heat transfer coefficient than the large nanoparticle (47 nm) nanofluid. 

 

2.8 Summary of Literature 

Most of the research investigated in this chapter was for laminar or turbulent forced 

convection in a tube. The research summaries presented will not predict the outcomes of this 

research in terms of numerical results, but they may supply some indication as to what trends 

to expect. 
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All of the research studied in this chapter reported increases in heat transfer by using 

nanoparticles in the base fluid. By what mechanism and to what degree is still arguable. 

However, all researchers in general have agreed with the following trends:  

 The heat transfer coefficient increases by increasing Reynolds number 

 The increment of heat transfer coefficient improve by decreasing size of 

nanoparticles 

 The increment of heat transfer coefficient improve by increasing fluid 

temperature 

 The increment of heat transfer coefficient improve by increasing nanoparticle 

concentration 
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Chapter 3 

 

3 METHODOLOGY 

The nanofluid consists of CUO and water, and the nanoparticles CUO are assumed to 

be well dispersed within the base fluid (Water). Furthermore, the nanofluid can be regarded 

and analyzed as a single-phase fluid because the nanoparticles are ultrafine and they can be 

fluidized easily. Also, the motions of the nanoparticles can be neglected and the thermal 

equilibrium state can be assumed to be predominant. Therefore, the following general 

conservation equations can be used to compute the flow and thermal fields with the effective 

physical properties of the nanofluid. 

3.1 Governing Equations of Fluid Dynamics 

The fundamental equations of fluid dynamics are based on the following universal 

laws of conservation: 

• Conservation of Mass 

• Conservation of Momentum 

• Conservation of Energy 

The equation that results from applying the conservation of mass law to a fluid flow 

is called the continuity equation. The conservation of momentum law is nothing more than 

Newton’ Second Law. When this law is applied to a fluid flow, it yields a vector equation 
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known as the momentum equation. The conservation of Energy law is identical to the first 

law of Thermodynamics, and the resulting fluid dynamic equation 

 is named the energy equation [28]. 

3.1.1 Continuity Equation  

The conservation of mass law applied to a fluid passing through an infinitesimal fixed 

control volume v, (see Figure 3.1) yields the following equation of continuity: 

.( ) 0V
t





 


         (3.1) 

 

  

Figure 3-1 Control volume for Eulerian approach [28]. 

 

Where   is the fluid density and V is the fluid velocity. The first term in this 

equation represents the rate of increase of the density in the control volume, and the second 

term represents the rate of mass flux passing out of the control surface (which surrounds the 

control volume) per unit volume. It is convenient to use the substantial derivative 
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( ) ( )
. ( )

D
V

Dt t

  
   


        (3.2)  

to change Equation (3.1) in to the form 

( ) 0
D

V
Dt


            (3.3) 

Equation (3.1) was derived using the Eulerian Approach. 

For a Cartesian coordinate system, where u, v, w represent the x, y, z components of 

the velocity vector, Equation (3.1) becomes  

( ) ( ) ( ) 0u w
t X y z


  

   
   

   
      (3.4) 

A flow in which the density of each fluid element remains constant is called 

incompressible.  

0
D

Dt


           (3.5) 

which reduces Equation (3.3) to 

0V            (3.6) 

or 

0
u w

x y z

  
  

  
         (3.7) 

 

3.1.2 Momentum Equation 

Newton’s second law applied to a fluid passing through an infinitesimal, fixed control 

volume yields the following momentum equation: 

( ) . .V VV f T
t
  


  


       (3.8) 
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The first term in this equation represents the rate of increase of momentum per unit 

volume in the control volume. The second term represents the rate of momentum lost by 

convection (per unit volume) through the control surface. Note that  VV is a tensor, so 

that .  VV is not a simple divergence. This term can be expanded, however, as  

 . . ( . )VV V V V V              (3.9) 

 

When this expression for .  VV is substituted into Equation(3.8), and the 

resulting equation is simplified using the continuity equation, the momentum equation 

reduces to  

 
ij

DV
f T

Dt
     

(3.10) 

The first term on the right-hand side of Equation (3.10) is the body force per unit 

volume. In this case, the force per unit mass (f) equals the acceleration of gravity vector g: 

f g            (3.11) 

the second term on the right hand side of Equation (3.10) represents the surface forces per 

unit volume. 

the momentum equation given above is quite general and is applicable to both continuum 

and non-continuum flows. 

 ( ) ' , , ,  1,2,3
ji k

ij ij

j i k

uu u
T p i j k

x x x
   

 
     

  
     (3.12) 
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where 
ij is the Kronecker delta function (

ij  
= 1 if I = j and 

ij  
= 0 if i≠j); u1, u2, u3 represent 

the three components of the velocity vector V; x1 , x2 and x3 represent the three components 

of the position vector;  is the coefficient of viscosity (dynamic viscosity ), and '  is the 

second coefficient of viscosity. The two coefficient of viscosity are related to the coefficient 

of bulk viscosity k by the expression 

2
'

3
k   

          (3.13) 

In general, it is believed that k is negligible except in the study of the structure of 

shock wave and in the absorption and attenuation of acoustic waves. For this reason, we will 

ignore bulk viscosity for the remainder of the text. with k+0, the second coefficient of 

viscosity becomes 

2
'

3
  

          (3.14) 

and the stress tensor may be written as 

2
 [( ) ]

3

i i k
ij ij

j j k

u u u
T p

x x x
  

  
    

  
    , ,  1,2,3i j k      (3.15) 

the stress tensor is frequently separated in the following manner: 

ij ijT p   
         (3.16) 

where 
ij  represents the viscous stress tensor given by 

2
 [( ) ]

3

i i k
ij ij

j j k

u u u

x x x
  

  
  

  
       , ,  1,2,3i j k       (3.17) 

upon substituting Equation (3.15) into (3.10) , the famous Navier-stokes equation is obtained: 

2
 [ ( ) ]

3

ji k
ij

j j i k

uu uDV
f p

Dt x x x x
    

 
    

   
     (3.18) 
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For a Cartesian coordinate system, Equation (3.18) can be separated into the 

following three scalar Navier-Stokes equations: 

2
 ƒ [ (2 )] [ ( )] [ ( )]

3
x

Du p u v w u w u

Dt x x x y z y y x z x z


    

          
        

            

           (3.19) 

2
 ƒ [ ( )] [ (2 )] [ ( )]

3
x

Dv p u v u w v w

Dt y x x y y y x z z z y


    

          
        

            

           (3.20) 

 

2
 ƒ [ ( )] [ ( )] [ (2 )]

3
x

Dw p w u v w w u v

Dt z x x z y z y z z x y
    

          
        

            

           (3.21) 

If the flow is incompressible and the coefficient of viscosity   is assumed constant, 

Eq. (3.18) will reduce to much simpler form  

2DV
f p V

Dt
              (3.22) 

 

3.1.3 Equation of Energy  

The first law of thermodynamic applied to a fluid passing through an infinitesimal; 

fixed control volume yields the follow energy equation[28]: 

. ( )t
ij

E Q
EV q f v T V

t t


 
     

       (3.23) 

Where Et is the total energy per unit volume given by 
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2

 ...
2

t

V
E e potentional energy

 
   

 
      (3.24) 

and e is the internal energy per unit mass. The first term on the left-hand side of Equation 

(3.23) represents the rate of increase of Et in the control volume, while the second term 

represents the rate of total energy lost by convection (per unit volume) through the control 

surface. The first term on the right hand side of Equation (3.23) is the rate of heat produced 

per unit volume by external agencies, while the second term ( )q  is the rate of heat lost by 

conduction (per unit volume) through the control surface. Fourier’s law for heat transfer by 

conduction will be assumed, so that the heat transfer q can be expressed as  

Q k T             (3.25) 

where k is the coefficient of thermal conductivity and T is the temperature. The third term on 

the right hand side of Equation (3.23) represents the work done on the control volume (per 

unit volume) by the body forces, while the fourth term represents the work done on the 

control volume (per unit volume) by the surface forces. It should be obvious that Equation 

(3.23)is simply the first law of thermodynamics applied to the control volume. That is, the 

increase of energy in the system is equal to heat added to the system plus the work done on 

the system. 

For Cartesian coordinate system, Equation (3.23) becomes 

   

 

  0

t
x y z t xx xy xz x

t xy yy yz y

t xz yz zz

E Q
f u f f w E u pu u w q

t t x

E p u w q
y

E w pw u w qz
z

    

    

  

  
         

  


     



      


  (3.26) 
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which is in conservation law form. Using the continuity equation, the left hand side of 

Equation (3.23) can be replaced by the follow expression: 

 /t t
t

D E E
E V

Dt t





 


        (3.27)  

which is equivalent to 

   2 / 2/t
D VD E De

Dt Dt Dt


           (3.28) 

if only internal energy and kinetic energy are considered significant in Eq. (3.24). Forming 

the scalar dot product of Eq. (3.10) with the velocity vector V allows one to obtain 

 ij

DV
V f V p V V

Dt
                (3.29) 

Now if Eq. (3.27), (3.28) and (3.29) are combined and substituted into Eq. (3.23), a 

useful variation of the original energy equation is obtained: 

     ij ij

De Q
p V q V V

Dt t
  


        


   (3.30) 

the last two terms in this equation can be combined into a single term, since  

   i
ij ij ij

i

u
V V

x
  


      


      (3.31) 

and it becomes  

 
De Q

p V q
Dt t




   


       (3.32) 

if the flow is incompressible, and if the coefficient of thermal conductivity assumed constant, 

Eq. (3.32) reduces to 

2De Q
k T

Dt t



  


        (3.33)
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3.2 Finite Volume Method (FVM) 

The FVM to solve the governing equations can be classified into the mixed 

interpolation methods, the penalty methods, and the segregated velocity pressure solution 

methods. The segregated scheme adopted in the present study requires much less execution 

time and storage than the other two methods, particularly for the three-dimensional 

configurations. Also, the pressure is computed only once in the stage of the pressure 

correction without iterative calculations [29]. 

The numerical algorithm by FVM is shown in Figure 3-2. The velocity and the 

pressure are obtained from the continuity and momentum equations through the four stages 

of the solution procedures. The segregated approaches consist of convective approximation, 

viscous prediction, pressure correction, and velocity correction. The temperature is acquired 

from the energy equation through the two stages: the convective approximation and the 

diffusive prediction. When the temperature is calculated, the velocity is also required in the 

energy equation [30-32]. 

 

 

 

 

 

 

 

 



34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 : The numerical algorithm by FVM is shown [33] 

 

3.3 Geometric shape and Boundary conditions 

The geometrical configuration of the pipes with the return bend is shown in 

Figure 3-3. The diameter (d) of the pipe is given 10 (mm) and the lengths (Ɩ) of inlet and 

outlet pipes are set up to 10 times the length of the diameter. Also, the curvature radius (R) 

of the return bend is 1.5 times of the diameter. 

Velocity Correction 
(Using pressure term in momentum eq.) 

Diffusive Prediction 
(Using diffusive term in energy eq.) 

Viscous Prediction 
(Using viscous term in momentum eq.) 

Pressure Correction 
(Using continuity eq. and pressure term in 

momentum eq.) 

Convective Approximation 
(Using convective term in momentum eq.) 

Initial Values 
(Velocity, Pressure and Temperature) 

Convective Approximation 
(Using convective term in energy eq.) 

Final Values 
(Velocity, Pressure and Temperature) 
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Figure 3-3 : Schematic representation for cross section of pipes with return bend. 

 

The inlet boundary conditions are the velocities in the axial direction for different 

Reynolds Numbers and the temperature, T=300°K, as illustrated in Figure 3-5. 

Meanwhile, the geometric coordinate values of the pipes with the return bend are 

obtained from a straight pipe by using coordinate transformations. The numerical solutions 

are calculated until the iteration is conducted up to 500 times, which is the calculation 

condition that reaches to the steady state. 

 

Figure 3-4 : Grid sample used in this study 
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The relatively fine grids are used in the regions of the inlet and the return bend. The 

grid points of 25551and the elements of 25000 are used in the pipes. 

 

Figure 3-5 : Boundary conditions for pipes with return bend. 

 

The physical properties of water and CUO are shown in Table 3-1, and the effective 

physical properties of the nanofluids are obtained from the physical properties of the base 

fluid (water) and the nanoparticles (CUO), respectively. The CUO-water nanofluid is 

expected to have the enhanced heat transfer characteristics since the thermal conductivity of 

CUO is much higher than that of water. 

Table 3-1 : Physical properties of water and CUO. 

 Density 

(Kg/m3) 

Viscosity 

(Ns/m2) 

Specific 

heat 

(J/Kg ̊K) 

Conductivity 

(W/m ̊K) 

Shape 

factor 

(n) 

Water 998.0 1.002×10-3 4182.0 0.5984 - 

CUO 6500 - 535.6 20 3 

 

Outlet:  P=0 

Inlet: v=w=0, 

 T=300̊ K  

Wall: 

u=v=w=0, qw=10,000(w/m2)
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The effective physical properties of the nanofluid are obtained as functions of 

nanoparticle volume concentration ( ) [34]: 

  ƒ1eff s               (3.34) 

 2123 7.3 1eff f              (3.35) 

 

  ƒ

1 ( ) ( )
( )

1

p p s

p eff

s

C C
C

   

  

  
  

   

       (3.36) 

     
   

ƒ ƒ

ƒ

ƒ ƒ

1 1

1

s s

eff

s s

k n k n k k
k k

k n k k k





     
 
    
 

     (3.37) 

The Equation (3.35) of the effective viscosity was obtained by performing a least-

square curve fitting of experimental data available for the mixtures [35]. Also, the Equation 

(3.37) of the effective thermal conductivity was introduced by Hamilton and Crosser [36, 

37]. Here, the concentration of 0% means the pure water in which the nanoparticles are not 

included within. The values of effective properties used in this work are tabulated in 

Table 3-2 [37]. 

Table 3-2 : Variations of effective physical properties with concentration. 

Concentration Density 

(kg/m3) 

Viscosity 

(Ns/m2) 

Specific heat 

(J/kgK) 

Conductivity 

(W/mK) 

0% 998 0.001002000 4182 0.5984 

2% 1108.236 0.001237756 3754.264391 0.681617479 

4% 1218.272 0.001637003 3403.796118 0.719140264 

6% 1328.308 0.002434775 3111.392882 0.757301975 

8% 1438.344 0.004795963 2863.728432 0.796600211 
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3.4 Validation results 

The straight pipe with the diameter of 10 millimetres and the length of 2000 

millimetres are used for the numerical analysis. The meshing of the straight pipe consists of 

the nodal points of 62031 and the number of elements is 60000 for the Fluent.  

 

Figure 3-6 : Use straight pipe and water to comparison numerical with analytic 

results. 

Table 3-3 : Boundary conditions in straight pipe. 

 Boundary conditions 

Inlet V=W=0 , T=300 k 

Outlet P=0 

Wall * 2

wu v w 0,  q k( / ) 0.5(W/m )T r         

 

For the straight pipe, the boundary conditions are shown in Table 3-3. At The inlet 

the, temperature is set up to 300 ̊ K and at the wall boundary the velocities u, v and w are 0  

and the uniform heat flux (qw) is 0.5 (W/m2). The numerical analysis is performed at the 

various Reynolds numbers. The calculation is conducted until the iteration is performed up 

to 1000, which is the calculation condition that reaches to the steady state. 
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The temperature profiles calculated by the Ansys fluent and the analytic equation are 

shown in Figure 3-7. The temperature is calculated by the formula almost coincide with the 

results from the Fluent with time. The analytic solution for the straight pipe is gained by 

 

( ) ( )i

p

q p
Tm x Tm x

m C


 


       (3.38) 

 

Figure 3-7 : Temperature profiles through straight pipe. 

The Nusselt numbers calculated by the Fluent and by the analytic solutions are 

presented in Figure 3-8 and Table 3-4. The Nusselt numbers in the region of the fully 

developed flow is 4.38 and 4.36 are gained by the Fluent and the analytic solutions, 

respectively. There is an error of 0.45% in the numerical solution and this difference is 

believed to the mesh size effect. As a result, the numerical solutions by the ANSYS Fluent 

are acceptable and can be used in the numerical analysis for the nanofluid flow through the 

180̊ curve. 
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Figure 3-8 : Nusselt profiles for various Reynolds numbers through pipe. 

 

Table 3-4 : Nusselt numbers for various Reynolds numbers through pipe. 

X (mm) Re=10 Re=25 Re=50 Re=75 Re=100 Analytical Nu 

0 44.5459 89.0919 267.276 267.276 267.276 4.36 

400 4.4546 4.3109 4.38157 4.4546 4.5301 4.36 

800 4.38157 4.4546 4.4546 4.4546 4.4546 4.36 

1200 4.38157 4.38157 4.4546 4.4546 4.4546 4.36 

1600 4.38157 4.3109 4.38157 4.4546 4.4546 4.36 

2000 4.3821 4.38157 4.55238 4.4765 4.4765 4.36 
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Chapter 4 

 

4 RESULTS AND ANALYSIS 

The numerical analysis for the hydrodynamic and thermal flows of nanofluid in the 

pipes with the return bend has been performed with different concentrations and Reynolds 

numbers. In total, the 25 cases have been simulated in the conditions of the concentrations of 

0%, 2%, 4%, 6%, and 8% and the Reynolds numbers of 100, 250, 500, 750, and 1000, 

respectively. For better understanding the thermal and fluid flows in the return bend, the 

dimensionless velocity and temperature distributions at the concentration of 0% are shown 

in Figure 4-1 and Figure 4-2 when the Reynolds numbers are 10 and 1000, respectively.  
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Figure 4-1 : Distributions of velocity (A) and temperature (B) of water at Re=10. 
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The velocity profiles at the Reynolds number of 10 keep nearly parabolic shapes in 

the entire pipes.  

 

Figure 4-2 :  Distributions of velocity (A) and temperature (B) of water at Re=1000. 
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However, at the Reynolds number of 1000, at first the velocity in the inner region of 

the return bend appears higher than that in the outer region and then flow is changed. 

Figure 4-3 shows the path of maximum velocity before 90  is at the near the inner region 

and after about 90  maximum velocity is near outer region. This flow can affect the heat 

transfer characteristics in the return bend and in the outlet pipe. Also, the heat transfer is 

expected to be improved between the inside and the outside of the pipe because the cold flow 

in the core of the inlet pipe shifts to the outer region of the return bend as shown in Figure 4-2 

and Figure 4-3. 

 

Figure 4-3 :  shows the path of maximum velocity through the curve. 
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The velocity and temperature profiles for at the cross sections A, B and C are 

represented in Figure 4-4, Figure 4-5 and Figure 4-6.  

 

 

Figure 4-4 : Dimensionless velocity and Temperature profiles at various Reynolds 

numbers at section (A). 
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The position of the maximum velocity is moved towards the outer region of the return 

bend as the Reynolds number increases. The temperature at the wall of the return bend is 

higher than that at the centre as shown in Figure 4-5(B) and Figure 4-6(B) because the heat 

flux is uniformly supplied at the wall boundary. However, as the Reynolds number increases, 

the temperature declines gradually in the outer region of the return bend due to the cold flow 

from the inlet pipe. 
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Figure 4-5. Temperature and Dimensionless velocity profiles at various Reynolds 

numbers at section (B). 
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Figure 4-6 : Temperature and Dimensionless velocity profiles at various Reynolds 

numbers at section (C). 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12

u
/u

i

L (mm)

Re 10

Re 250

Re 500

Re 750

Re 1000

298

300

302

304

306

308

310

312

314

316

318

0 2 4 6 8 10 12

T

L (mm)

Re 250

Re 500

Re 750

Re 1000



48 

 

The centrifugal force causes the secondary flow occurs through the curve. In other 

words, because of the changed centrifugal forces between in the inner and outer regions, there 

are two rotating flows at the top and bottom of the curve [2]. 

In detail, it can be seen by increase of the Reynolds number the cold flow moves to 

the outer region. The temperature distribution at the top of curve is lower than that at the 

bottom because the amount of the secondary flow increased slowly.  

 

To look into the role of 180 degree curve, the whole pipes are divided into three parts: 

the inlet pipe, outlet pipe and the return bend. The average Nusselt numbers at the 

concentration of 0% are obtained with the Reynolds number increasing as revealed in 

Figure 4-7. Although the slopes appear different, the average Nusselt numbers rise in all parts 

because the inlet velocity increases with increasing Reynolds number. At the Reynolds 

numbers of 100, 250, 500, 750, and 1000, the average Nusselt numbers of the return bend 

are larger than those of the inlet and outlet pipes because the cold flow in the inlet pipe moves 

to the outer region of the return bend as shown in Figure 4-1 Figure 4-2. In other words, the 

heat transfer in the return bend improves with the increase of the Reynolds number due to 

the secondary flow.  
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Figure 4-7 : Comparisons of average Nusselt numbers in various parts. 

 

 Figure 4-8 shows the average Nusselt numbers at different Reynolds numbers of 100, 

250, 500, 750, and 1000 and concentrations of 0%, 2%, 4%, 6%, and 8%, respectively. The 

average Nusselt numbers increase with the rise of the Reynolds number and the 

concentration. In general, the heat transfer of the nanofluid is improved with the 

augmentation of the concentration because the thermal conductivity of the nanofluid grows 

with the concentration as shown in Table 3-2. In addition, the increment of the concentration 

is accompanied by the rise of the inlet velocity at the same Reynolds number as expressed in 

Table 4-1. Therefore, these conditions cause the increase of the average Nusselt number. It 

is noted that the results at the concentration of 8% might not be correct in reality because the 

stable nanofluid could not be found for such high volume concentrations. 
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Figure 4-8 : Average Nusselt number ratios in entire pipes. 

Table 4-1 : Variations of inlet velocities (m/s) with Reynolds number and concentration. 

 0% 2% 4% 6% 8% 

10 0.001004008 0.001116870 0.001343709 0.001832989 0.003334364 

100 0.010040080 0.011168700 0.013437091 0.018329894 0.033343644 

250 0.025100200 0.027921750 0.033592726 0.045824736 0.083359109 

500 0.050200401 0.055843501 0.067185453 0.091649472 0.166718219 

750 0.075300601 0.083765251 0.100778179 0.137474208 0.250077328 

1000 0.100400802 0.111687001 0.134370905 0.183298944 0.333436438 

 

The pressure drop through the curve is depicted in Figure 4-9. The pressure drop 

increases dramatically with the increment of the Reynolds number. The increasing rate of the 

pressure drop at the concentration of 8% with respect to the concentration of 0 % appears 

nearly 15 times higher at all the Reynolds numbers. This value is considerably high in 

comparison with the increasing rate of the heat transfer. Consequently, the high pressure drop 

for the nanofluid should be given careful consideration in designing heat exchangers although 
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the nanofluid does not have the characteristics such as poor suspension stability, channel 

clogging and system abrasion and so on. 

 

 

Figure 4-9 : Dependence of pressure drop on concentration at various Reynolds 

numbers. 

 

The pressure drop with respect to the inlet velocity is illustrated in Figure 4-9. The 

pressure drop at the concentration of 8% is larger than that at the concentration of 0% because 

of the kinematic viscosity of the nanofluid. 
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Chapter 5 

 

5 CONCLUSION 

 

The hydrodynamic and thermal analyses have been performed on the CUO-water 

nanofluid in the pipes with return bend. The results show that the suspended nanoparticles 

remarkably increase the heat transfer performance of the base fluid. From the results it was 

shown that as the volume fraction increases thermal conductivity ratio of the nanofluid will 

increase. This research also proved that with increase in volume fraction, the Nusselt number 

of the nanofluid will increase. This means that increased concentration of nanoparticles in 

the base fluid will increase the heat transfer performance of the nanofluid. For the same 

volume fraction, as the Reynolds number increases, the Nusselt number of the nanofluid 

increases. This shows that increase in flow rate of the nanofluid will increase the heat transfer 

performance of the nanofluid. Especially, the heat transfer enhancement in the return bend 

appears larger than that in the inlet and outlet pipes due to the effect of the secondary flow. 

However, the concentration increment of the nanofluid is accompanied by the high pressure 

drop in the pipe. Also, the increasing rate of the average Nusselt number is less than that of 

the thermal conductivity of the nanofluid with the augmentation of the concentration. 

The increasing rate of the pressure drop in the nanofluid appears larger than the rate 

in the pure water. Meanwhile, the heat transfer characteristics of the nanofluid are improved 

with the increase of the specific heat. 
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