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ABSTRACT 

 

Given the wide energy insecurity crisis in the world, alternative fuels are fast becoming the 

most sought after means of providing energy. This is relevant to the fast growing 

population and fast depletion of conventional energy resources. However the practical 

application of these alternative fuels can only be possible if they are compatible with the 

materials, in particular elastomers, used in service conditions.  

Keeping this in view, the present study focuses on the compatibility of elastomers and 

palm biodiesel. More precisely, the swelling characteristics of elastomers in palm biodiesel 

in the absence and in the presence of static mechanical loading are investigated. For this 

purpose, Nitrile Butadiene Rubber (NBR) with three different carbon black contents is 

considered: 0, 25 and 40 wt%. Moreover, the resulting mechanical responses of swollen 

NBR are probed through a set of mechanical testing. The emphasis is laid on the effect of 

swelling on the viscoelastic response of elastomers.  

Results show that the swelling of NBR is reduced by the introduction of carbon black 

filler, i.e. carbon black provides resistance to deterioration due to exposure to aggressive 

liquid. Furthermore, independently of the carbon content, the presence of static tensile 

strain appears to increase the swelling for shorter durations of immersion. For longer 

immersion durations, the degree of swelling remains generally unaffected by the presence 

of uniaxial strain. Finally, mechanical testing results show that the viscoelastic response of 

elastomers unaffected by the swelling degree. However, by comparing the hysteresis 

curves for elastomers under different swelling levels, viscoelasticity appears to decrease 

with increase in swelling level. 
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ABSTRAC 

Memandangkan tenaga luas krisis tidak selamat dalam dunia ini, bahanapi alternatif yang  

Pantas menjadi yang paling dicari cara untuk menyediakan tenaga. Ini adalah berkaitan 

dengan penduduk berkembang pesat dan pengurangan cepat sumber tenaga konvensional. 

Walau bagaimanapun permohonan praktikal bahan api alternatif hanya boleh dilakukan 

jika mereka yang serasi dengan bahan-bahan, khususnya elastomer, yang digunakan dalam 

syarat-syarat perkhidmatan. Menjaga pandangan ini, kajian ini memberi tumpuan kepada 

keserasian elastomer dan biodiesel sawit. Lebih tepat lagi, ciri-ciri bengkak elastomer 

dalam biodiesel sawit dalam ketiadaan dan kehadiran loading mekanikal static disiasat. 

Bagi tujuan ini, nitril Butadiena getah (NBR) dengan tiga kandungan karbon hitam yang 

berbeza dianggap: 0, 25 dan 40% berat. Selainitu, yang mengakibatkan tindak balas 

mekanikal NBR bengkak akan menyiasat melalui satu set ujian mekanikal. Penekanan 

diletakkan pada kesan bengkak kepada sambutan viscoelastic yang elastomer. Keputusan 

menunjukkan bahawa bengkak NBR dikurangkan dengan pengenalan karbon pengisi 

hitam, iaitu karbon hitam memberikan tentangan kepada kemerosotan disebabkan oleh 

pendedahan kepada cecair yang agresif. Akhirnya, keputusan ujian mekanikal 

menunjukkan bahawa tindak balas viskoelastik daripada elastomer tidak terjejas oleh tahap 

bengkak. Walau bagaimanapun, dengan membandingkan keluk histerisis untuk elastomer 

bawah tahap bengkak yang berlainan, kelikatkenyalan muncul untuk mengurangkan 

dengan peningkatan dalam tahap bengkak.ketara ke atas sifat-sifat viscoelastic daripada 

elastomer. Beberapa cadangan untuk kerja-kerja masa depan dalam bidang ini telah 

dicadangkan pada akhirnya -sifat viscoelastic daripada elastomer. Beberapa cadangan 

untuk kerja-kerja masa depan dalam bidang ini telah dicadangkan pada akhirnya. 
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CHAPTER1:INTRODUCTION 

 

1.1.Research background: 

Fossil fuels such as oil and petroleum products form the major supplier of world’s 

total energy demand and there is a general consensus that the reserves on these fossil fuels 

are finite and depleting fast (Silitonga et al., 2011). 

On the other hand the global energy consumption is only rising.The final energy 

consumption in Malaysia increased at an annual growth rate of 7.2% from 1990 to2008 

and reached 44.9 million tonnes of oil equivalent (Mtoe) in 2008. One of the most vital 

challenges faced by power sector in Malaysia at present is the issue of sustainability(Ong 

2011). 

Also, the world total population growth is still increasing at an enormous rate of 

1.1% per year giving rise to the energy crisis of present times and making it imperative to 

consider different sources of energy other than the conventional sources like petroleum, 

coal and their derivatives. Consequently these alternate fuels are being investigated with 

much fervour. Among these biodiesel is becoming popular as an alternative fuel in 

preference to other conventional fuels and consequently its effects as it comes in contact 

with materials used in industries are being investigated. Although on environmental safety 

front this fuel earns clear points over diesel being renewable and having less sulphur and 

nitrogen but a proper understanding of the compatibility of materials with this alternative 

means of energy is important to determine the technical feasibility of its use commercially 

(Tashtoush 2004). 
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Since the elastomers form one of the largest used material in fuel transport and 

other fuel system, this work will concentrate on that particular field of study. There have 

been some studies relevant to this work and include the ones conducted by Haseeb et al 

(2011), Chai et al (2013), Ch’ng et al (2013)and the references mentioned therein. 

It is well known that elastomers do not possess adequate mechanical properties to 

be used in unfilled state as structural materials (Mostafa 2009). Also the wear resistance of 

pure rubber is poor and limits its use in industrial applications, making it prudent and 

necessary to incorporate the necessary reinforcements to improve these qualities(Wang 

2012).  

The majority of studies that have been conducted in this field have been focused on 

the swelling behaviour of elastomers in solvent (or biodiesel in this particular case). There 

have been many investigations of the swelling behaviour of these elastomers in the 

presence of mechanical loading. An attempt has been made in this study to achieve this 

objective. The comparative study of swelling characteristics of unfilled and reinforced 

elastomers (with varying amount of reinforcement) has been carried out in static uniaxial 

loading. 

Although a variety of fillers are used to strengthen elastomers and impart other 

desirable properties, carbon black has been found to be the most commonly used filler. 

(Kraus 1978). Nevertheless, the addition of any filler material affects the properties of the 

elastomer to which it is added and this factor is taken into account in all practical 

applications of the material. 
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Therefore, the study has been carried out on carbon black-reinforced elastomers. 

The mechanical response of elastomers swollen to varying levels in both pure and 

reinforced states has been investigated. This effectively quantifies the change in 

mechanical characteristics of swollen elastomers by reinforcement and vice versa.  

1.2.Objectives of the study: 

The objectives of this study can be outlined as follows: 

i. To investigate the effect of carbon black (CB) on swelling of elastomers (NBR) in solvent 

(palm biodiesel). 

ii. To investigate the effect of static mechanical loading on swelling of CB filled elastomers 

in solvent 

iii. To characterize the mechanical response of swollen elastomers (NBR) in particular 

viscoelastic response. 

1.3.Scope of the study 

NBR is the most extensively used material in the fabrication of hoses and gaskets 

in fuel transportation system (Linhares 2013). Therefore, this study has been concentrated 

on this particular material. The swelling characteristics of this elastomer with varying 

amounts of CB in stressed conditions have also been investigated. The specimens with 

three different amounts of carbon black were studied i.e.,0 wt %, 25 wt % and 40 wt%. 

Bio-diesel was used as the solvent since the compatibility study between biodiesel and 

elastomers is a relevant and active subject of research currently. 
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1.4.Organization of thesis: 

 The dissertation has been organized in 5 chapters. Chapter 1 starts with the 

introduction on the importance of developing an alternate fuel in view of the fast depleting 

conventional sources of fuel and the significance of investigating the compatibility of this 

fuel with the materials that it can come in contact with during practical use and service life. 

The scope and the objectives of the study are also listed in this chapter.  

Chapter 2 includes the detailed literature review including the research that has 

been done previously related to this area of study. The main topics include the overview of 

NBR i.e. the material that we have used in the experiment, the biodiesel and its 

significance in Malaysia, the effect of biodiesel on different materials particularly 

elastomers as well as the effects of CB on the swelling characteristics as well as 

mechanical characteristics of elastomers. 

Chapter 3 lists the methodology used for this study including the devices and the 

materials that were used. Chapter 4 includes the findings of the study. The results are 

interpreted with the help of graphs. 

Chapter 5 includes the conclusions and recommends future work in this area. 
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CHAPTER 2:LITERATURE REVIEW 

 

2.1. Nitrile Rubber (NR): 

Nitrile rubber (NR) is a highly elastic, random copolymer composed of 

acrylonitrile and butadiene which is produced with different ratios of either polymer. 

However, in commercially used products the Acrylonitrile (ACN) content varies from 18% 

to 50%. The ACN component is responsible for imparting the required hardness, tensile 

strength, and abrasion resistance, as well as fuel and oil resistance, increasing the ACN 

content also improves heat resistance and gas impermeability. A standard, general-purpose 

nitrile compound usually contains 34% ACN with a useful temperature range of - 40 to 

225 degrees Fahrenheit (Internet reference [1], Internet reference [2]). 

NBR is well-known for its exceptional resistance to mineral oils and solvents due 

to its resistance to swelling when immersed in these oils. However, its chemical resistance 

to oils is proportional to the ACN content making it necessary that the manufacturer’s 

designation should identify the percentage of ACN present. With higher ACN content, the 

solvent resistance of an NBR compound is increased but low-temperature flexibility is 

decreased (Internet reference [3]). 

The use of NBR is limited to environs where resistance to mineral oils and 

aromatic hydrocarbons is paramount due to its poor resistance to strong oxidizing 

chemicals such as nitric acid. Nitrile compounds outperform most other elastomers due to 

superior mechanical properties as well as good aging properties under severe conditions. 

http://www.rlhudson.com/O-Ring%20Book/glossary-gloss.html#hardness
http://www.rlhudson.com/O-Ring%20Book/glossary-gloss.html#tensilestrength
http://www.rlhudson.com/O-Ring%20Book/glossary-gloss.html#tensilestrength
http://www.rlhudson.com/O-Ring%20Book/glossary-gloss.html#abrasionresistance
http://www.rlhudson.com/O-Ring%20Book/glossary-gloss.html#oilresistant
http://www.rlhudson.com/O-Ring%20Book/glossary-gloss.html#heatresistance
http://www.rlhudson.com/O-Ring%20Book/glossary-gloss.html#permeability
http://www.rlhudson.com/O-Ring%20Book/glossary-gloss.html#aging
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The double bonds present in the polybutadiene parts of the chemical backbone, make the 

nitrile compounds susceptible to degradation by ozone, sunlight, and weathering. 

The main commercial uses of NBR are as gasoline hoses, fuel pumps diaphragm, 

gaskets, seals and packing (e.g., o-rings) and finally as oil-resistant soles for safety work 

shoes(Callister 2001). 

2.1.1. Effect of reinforcement by carbon black on rubber: 

According to ASTM D3053-04 carbon-black can be defined as an engineered 

material, primarily composed of elemental carbon, obtained from the partial combustion or 

thermal decomposition of hydrocarbons. It is most widely used to alter the mechanical, 

electrical and optical properties of the medium in which it is dispersed (Roy 2012).  

More than 90% of total carbon black consumption is accounted for by application 

as a reinforcing agent in the production of rubber goods. It has been reported that in 2010, 

use of CB as a filler in tires accounted for 73% of world consumption and 19% accounted 

for use as reinforcement in rubber goods while consumption for non-rubber goods 

accounted for only 8% of world consumption (Internet reference [4]). 

Carbon black is used to improve the mechanical properties of NBR rubber 

compounds in contrast with the unfilled compounds. Reinforcement of rubber by rigid 

particulate materials such as carbon black has been found to substantially improve the 

mechanical properties of rubber. Thus, CB is added to rubber to impart characteristics that 

meet the parameters of the application or to enhance the properties to offer better 

performance. Rubber compounds used gasket, seal or cushioning pad are expected to 

perform over an extensive period of time as they present several phenomena like the ability 

http://www.rlhudson.com/O-Ring%20Book/glossary-gloss.html#ozone
http://www.rlhudson.com/O-Ring%20Book/glossary-gloss.html#weathering
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to retain elastic properties during prolonged action of compressive stresses. Any loss of 

resiliency effectively reduces the capability of the elastomer to be used in such service 

conditions and gives rise to a permanent set that may culminate in a leak or may 

compromise the ability to protect an accidentally dropped unit if the elastomer is being 

used as a shock isolation pad. 

Thus, it is desirable from an application point of view that the material have a 

lower the percentage of compression set since it can resist permanent deformation under a 

given deflection and temperature to a better extent. 

Since the uses of rubber in engineering industry mainly predominantly involve 

being used as materials for gasket, seal or lining of containers of oils and organic solvents, 

the main consideration is the corrosion characteristics of the elastomers. The corrosion of 

elastomers which is expressed as the swelling rate of rubber when exposed to a corrosive 

liquid keeping the conditions of temperature and time constant has been found to decrease 

with increasing CB loading for reinforced NBR compounds. 

Furthermore, the compression set value increases with increasing CB loading for 

NBR filled compounds and as such NBR filled with 50 phr CB has been found to have the 

most optimum values of swelling percentage and compression set values for use as seal in 

motor oil medium (Mostafa 2009). 

It is known that elastomers exhibit poor abrasion properties in unreinforced/ pure 

state and the abrasion properties can be improved by addition of suitable filler materials. 

The enhancement in abrasion resistance thus obtained varies directly with the type of 

addition of filler and is based on its adhesion characteristic with the rubber matrix. As 
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such, CB when used as filler in elastomers has been found to offer significant improvement 

in the abrasion resistance. Increase in CB loading increases the strength of the vulcanizates 

of NBR and decreases the elongation at break which can be attributed to the increase in 

cross-linking density thereby decreasing the mobility of the rubber. Also, the compression 

strength of CB filled NBR vulcanizates is higher than the unfilled vulcanizates and 

continues to increases with the increase in CB loading. This is also explained by the 

increase in cross-linking density which increases the rubber-filler interaction. Increase in 

CB content has a similar effect on hardness; the more the CB content, the higher is the 

hardness of the vulcanizate and this relationship follows a linear trend 

As mentioned earlier the abrasion resistance of NBR tends to increase when CB 

content is increased upto 50 phr. However the rate of increase in abrasion resistance 

becomes very small thereafter. This may be ascribed to fact that the cross-linking density 

comes close to maximum limit at that filler content.  

In comparison with SBR vulcanizates, the abrasion resistance of NBR vulcanizates 

has been found to be higher with the same CB loading. Also, NBR vulcanizates have 

relatively higher hardness values(Mostafa 2009) 

It has been suggested that in NBR, the increase in the tensile strength of rubber by 

the CB reinforcement, subsequently also increase the wear resistance(Pal 2010). 

However, it has been verified that when incorporated with graphite, the graphite 

lubricant film is more effective in reducing the COF and Ws than CB. Subsequently, it is 

acknowledged that the superior tribological properties in NBR/CB/EG composites can be 
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achieved only when the graphite nano-particles are well dispersed in the polymer 

matrix.(Wang 2012). 

2.2. Biodiesel: An overview 

Biodiesel is a clean burning mono-alkyl ester based oxygenated fuel made from 

processing oils derived from natural, renewable feedstock such as new/used vegetable oils, 

and animal fats through micro-emulsion, pyrolysis (thermal cracking) and 

transesterification. Among these steps, transesterification is the main and most important 

step for producing the cleaner and environmentally safe fuel from raw vegetable oil. The 

main characteristics of the resulting biodiesel are quite similar to conventional diesel and it 

can be blended with standard petroleum diesel in any proportion to create a stable biodiesel 

blend. 

Due to the pressure of creating new alternate fuels, a lot of investigation has been 

carried out on biodiesel to verify its feasibility for practical use. The economic, 

environmental and practical issues have been considered. Although a lot of studies still 

need to be carried out, it can safely be said that the industry of creating biodiesel as an 

alternate fuel looks promising.  

Although cost of biodiesel is still higher than petroleum-based diesel, there are a lot 

of ways in which this problem can be resolved. One of accepted ways is by minimizing the 

raw material cost. In this area the use of waste cooking oil instead of unused oil to produce 

biodiesel has been found to be an effective. This method has two-fold benefits of 

producing an environmentally benign fuel and solving the problem of waste oil disposal. 

The methods of production of biodiesel from used cooking oil do not differ much from the 
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conventional transesterification process. For a detailed description see the reference 

mentioned. 

By collecting used frying oils and converting them to biodiesel fuel, the cost of 

biodiesel is significantly lowered and the negative impact of disposing used oil to 

environment reduced. It has been verified that the characteristic properties of biodiesel 

made from used cooking oil are same as that produced from unused oils and are in general 

similar to those of petroleum diesel fuel. Furthermore, the properties of biodiesel derived 

from used cooking oil, all met the various national biodiesel standards and hence, can be 

used in diesel engines without any engine modifications (Enweremadu and Mbarawa 

2009). 

Biodiesel is commonly blended with petroleum diesel, the concentration of the 

blend being indicated by the number following the letter B. therefore, B10 refers to a blend 

of 10% biodiesel and 90% petroleum diesel, B100 is pure biodiesel and B0 is pure 

petroleum diesel can also be described as D100(Linhares 2013). 

As far as combustion characteristics are concerned, biodiesel and biodiesel blends 

have shorter ignition delay, higher ignition temperature and pressure as well as peak heat 

release as compared to diesel fuel. In addition, the engine power output and brake power 

efficiency is equivalent to diesel fuel. Biodiesel and diesel blends can also reduce smoke 

opacity, particulate matter (PM), unburnt hydrocarbons, carbon dioxide (CO2) and carbon 

monoxide (CO) emissions. Only nitrous monoxide emissions have slightly increased. 

However, the main drawback of biodiesel fuel remains its high viscosity and low volatility, 

which causes poor combustion in diesel engines including formation of deposits and 

injector cocking which can be attributed to relatively poorer atomization upon injection 
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into the combustion chamber. This may be reduced to a range of 4–5mm
2
/s closer to that of 

diesel by transesterification which can improve combustion. 

Biodiesel has a flashpoint of 423K as compared to 337K for diesel. American 

standard ASTM D6751 identifies some parameters that should be met by the pure biodiesel 

(B100) before being used as a pure fuel or being blended with petroleum-based diesel fuel. 

The quality of biodiesel fuel can be considerably influenced by numerous factors 

including the quality of feedstock, fatty acid composition of the vegetable oil, animal fats 

and waste oil, type of production and refining process employed and post-production 

factors(Ong 2011). 

It has been found that the use of biodiesel will lead to the reduced engine power in 

practical use, the main reason for power loss being the reduced heating value of biodiesel 

as compared to conventional diesel fuel. Additive that are used to enhance ignition and 

combustion performances of biodiesel are also advantageous to power recovery of 

biodiesel engine. 

Also, additives used to improve properties of biodiesel can improve combustion 

performance of biodiesel engine thereby improving engine power. Making use of a 

turbocharged engine or a low heat release engine may improve biodiesel engine economy. 

In case of no alterations of the engine the injection feature of biodiesel influences the 

engine power. However, the relationship between injection pressure and injection timing 

and engine power has not yet been comprehensively studied so as to obtain an optimal 

biodiesel blend for these practical purposes. Preliminary investigations suggest that due to 

its lower soot formation and inherent lubricity, use of biodiesel can improve the durability 
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of the engine as compared with diesel, though a more empirical relation needs to be 

developed for the wear and compatibility of the biodiesel with engines it needs to be used 

for. 

It is widely accepted that the use of biodiesel ensures lower PM emissions. This is 

due presence of fewer aromatic and sulfur compounds and higher cetane number though 

the more important factor is the higher oxygen content which also account for lower 

hydrocarbon emissions and to some extent for the lower CO emissions although that can 

be attributed to the relatively lower carbon to hydrogen content in biodiesel.(Xue 2011).  

The reduction in the concentration of emission of benzene of about 19.5% has been 

obtained on an average under the three conditions of engine torque used in the 

experiments. Being a carcinogen, this reduction is sufficiently significant. Biodiesel blends 

with small content of biodiesel by volume can replace diesel successfully as an 

environmental friendly fuel and simultaneously ease  the pressure on already scarce 

resources without considerably sacrificing engine power(Ferreira 2008). 

The biodiesel stability is influenced by large number of factors which can be 

categorized by oxidation, thermal and storage stability parameters. Oxidants are added to 

bio diesel to increase its stability. Natural antioxidants, being very sensitive to biodiesel 

production techniques and the distillation processes have varying impacts on the fuel 

stability. Among various synthetic antioxidants that have been studied so far, only three 

have been found to increase the fuel stability significantly, the most effective being Tert-

Butyl Hydroquinone(TBHQ) followed by Pyrogallol (PY) and Propylgallate (PG). (Jain 

and Sharma 2010) 
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2.2.1. Biodiesel in Malaysia: 

The Southeast Asian countries possess a vast prospect for biodiesel production 

because of a high yield factor of palm in its tropical climate, less requirement of fertile 

land, fertilizer and pesticides. Also as already has been mentioned, the engine emissions 

are considerably low in palm oil methyl ester (POME). Since keeping a steady supply of 

feedstock of biodiesel and edible oils to ensure food and energy security simultaneously is 

very challenging, non-edible oils have been considered for being used as the raw material 

for making biodiesel.  

Among these, Jatropha curcas which are easily grown in non-cropped marginal 

lands and wastelands with tropical and sub-tropical climates, can be considered as a future 

second generation biodiesel of South East Asia. However, oxidation stability of palm is 

more than that of Jatropha and other biodiesel feedstock and this is the major reason of 

overwhelming demand of palm based biodiesel in international market. Malaysia is the 

largest producer of palm oil in the world followed by Indonesia and jointly they are 

responsible for85% of world’s palm oil production.  

In Southeast Asia palm biodiesel production particularly is drastically rising due to 

its high potentiality and yield factor. Palm oil is derived from the flesh of the fruit of the oil 

palm tree Elais guineensis. Palm tree originated in West Africa and was initiated in 

Malaysia in 1870s as an ornamental plant. The first commercial plantation, however, did 

not start until 1960s. Because of the high production of palm oil, it is economically feasible 

to use palm oil as feedstock for biodiesel. However, its property of being edible puts a 

strain on the long term use of palm oil as an alternate fuel. To address this issue Malaysia’s 
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biodiesel production has taken some initiative to introduce Jatropha production in mass 

level (Jayed 2009). 

Other feedstock like Callophyllum are also being considered but compared to Palm 

oil and Jatropha biodiesel industry, biodiesel from Calophyllum inophyllum is still at a 

very early stage in Malaysia (Ong 2011). 

2.2.2. Interaction of bio-diesel with different materials: 

As Biodiesel significantly differ from conventional diesel in its chemical 

composition, its interaction with material used in the automobile industry can be safely 

expected to be different from diesel. The importance of studying the properties of biodiesel 

and its compatibility with industrial materials cannot be over stressed(Linhares 2013). 

Chemically, biodiesel is more hygroscopic as compared to diesel and has relatively 

higher electrical conductivity. It also shows increased polarity and solvency which can ruin 

the metal protecting paints/coatings causing the metal to come in contact with biodiesel for 

further reaction. This property can also cause degradation of elastomer materials. Also, 

presence of undesirable free water in biodiesel may promote microbial growth and corrode 

fuel system components.  

Due to the presence of high levels of unsaturated fatty acid methyl esters (FAME), 

biodiesel is susceptible to oxidation as compared to petroleum diesel and auto-oxidation of 

biodiesel reconverts esters into different mono-carboxylic acids which can enhance 

corrosion and degradation of fuel properties. Another result of oxidation is the increase in 

acidity and peroxide value which causes the hardening of elastomeric components and 

corrosion of fuel system components.  
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A lot of studies have been carried out on the corrosive action of biodiesel on 

metals. It has been verified that the biodiesel from Jatropha curcas and Salvadora are 

comparatively more corrosive for both ferrous and non-ferrous metals. Also copper alloys 

have been found to be more susceptible to corrosion in biodiesel than ferrous alloys. To 

counter this, Kalam and Majsuki have verified that adding irganor NPA can reduce 

corrosion of metal in palm biodiesel. However studies on the inhibition of corrosion by 

biodiesel are few and less detailed (Fazal 2011). 

2.2.3. Interaction of bio-diesel with elastomers 

The interaction of biodiesel with elastomers is a complex one. The compatibility 

studies of several types of elastomers in diesel and palm biodiesel have also been 

conducted since the rubber components used in sealing application are exposed to organic 

solvent and oils which may lead to physical degradation of rubber. Elastomers are 

essentially complex mixture of polar and nonpolar substances including polymers, fillers, 

oil, plasticizer, stabilizers, curing agents, antioxidants, antizonants and processing aids. 

Swelling is the major form of degradation in rubber when exposed to liquid. It can be 

described in terms of mass or volume change undergone by the rubber compound when in 

contact with the particular solvent/oil for any specific duration of time.  

During the swelling process, liquids infiltrate the polymer network and occupy 

positions among the polymer molecules. Gradually the macromolecules are forced apart 

and the swelling of materials occurs. This increases the chain separation decreasing the 

mechanical stiffness causing the reduction of secondary bonding. As the exposure time and 

temperature increase, the swelling percentage increases due to the ease of diffusion of oil 

into the rubber chains. It has been concluded that the presence of biodiesel and the increase 
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in its content appreciably reduce the mechanical strength of the rubber (Andriyana. A 

2012). 

Upon exposure of elastomers in biodiesel, the extent of fuel absorption as well as 

the extraction of soluble components such as plasticizers varies with the type of elastomer.  

Ethylene propylene diene monomer (EPDM) and silicone rubber (SR) have been shown to 

be more resistant to swelling in biodiesel than in diesel. On the other hand, swelling rates 

for CR and NBR are higher in biodiesel as compared to that in diesel indicating a lower 

compatibility in biodiesel. 

For NBR, the acrylonitrile content is inversely proportional to the amount of 

swelling as it is responsible for increased crosslinks in the polymer backbone. 

Understandably, elastomers degrade in biodiesel through reactions with the polymer 

backbone and crosslinking system or by reactions with the filler system. Different 

constituents of elastomers having different characteristics are affected by diesel and 

biodiesel differently based on their dissolution capabilities as well as their molecular 

polarities. Consequently, NBR being a highly polar elastomer material shows more 

swelling in biodiesel than in diesel fuel.  

Practically, the exposure to different metals causes biodiesel to become oxidized 

thereby increasing its polarity which may cause further degradation of elastomers. 

Decrease of tensile strength and hardness for EPDM and CR are comparatively higher than 

that for SR, NBR higher degradation in CR and EPDM upon immersion in biodiesel 

(Haseeb 2011). 
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Trakarnpruk and Porntangjitlikit evaluated compatibility of several elastomers in 

B10 - a biodiesel blend containing 90% conventional diesel and found that the mechanical 

properties of NBR, NBR/PVC and acrylic rubber were affected more than those of co-

polymer Fluorocarbon (FKM) and terpolymer FKM. 

In practical service conditions a large majority of rubber sealing components are 

subjected to fluctuating mechanical loading in addition to exposure to chemically hostile 

environments. To endure the conditions the rubber components need to be robust since the 

mechanical loading history, environment, rubber formulation and constitutive response are 

known to influence their durability.  

In the particular case of NBR, significant inelastic responses have been recorded 

under cyclic loading conditions namely mechanical hysteresis and stress-softening. The 

hysteresis is related to the amount of energy loss during a cycle and in the case of dry 

rubber can be related to viscoelasticity, viscoplasticity or strain-induced crystallization. 

The stress softening is characterized by the decrease in stress in the uploading during the 

first cycles and is known as the Mullins effect for which there is no unanimous 

microscopic explanation. 

When NBR is in a swollen state, a significant decrease in the above mentioned 

inelastic responses is observed. In other words, smaller hysteresis and stress-softening are 

observed. Moreover, the inelastic responses further decrease in the presence of 

biodiesel(Andriyana. A 2012; Chai. A.B 2013). 

The swelling of elastomers increases with increase of exposure time to 

liquids/solvents in general. In particular case of NBR in biodiesel, the results agree with 
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the general idea. The penetration of palm biodiesel is relatively fast at the initial stage due 

to its great affinity for oil uptake. The rate of swelling appears to be high at short exposure 

time before decreasing at longer exposure time. Accelerated swelling is initiated with 

absorption of liquids when the liquids adsorb on the surface layer of the rubber until 

particular concentration. Subsequently, penetration of the liquid into the rubber becomes 

slow until the rubber specimen achieves an equilibrium swelling level. In general this level 

depends on the elastomer-solvent combination and on the presence of mechanical loading. 

The rates of swelling for NBR and CR in biodiesel have been found to be relatively 

high at short immersion durations and lower at longer immersion duration. For given 

immersion duration, the swelling in CR is steadily higher than the one in NBR. Also the 

hysteresis ratio decreases with increase in swelling in both these elastomers. In the case of 

NBR, the hysteresis ratio decreases by 66%. The decrease of hysteresis can lead to 

decrease in fatigue life. This factor is important considering that during their service, the 

elastomeric components are often subjected to fluctuating mechanical loading which could 

lead to fatigue failure(Chai 2013). 

In the case of uniaxially stressed rubber, it was found that the tensile stress 

increases the liquid uptake while the presence of compressive stress shows the opposite 

effect. According to Treloar this phenomenon is attributed to the hydrostatic part of the 

Cauchy stress in the materials. The swelling characteristics of elastomers can also be 

investigated for variable stress conditions like torsion or combination of tension and 

torsion. The levels of swelling experienced by both NBR and CR have been 

experimentally found by Ch’ng and co-workers to be significantly affected by the presence 

of mechanical loading i.e., the swelling level increases significantly when a tensile strain is 
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introduced Furthermore, the effect of tensile strain appears to be more significant than that 

of torsion. There is some contradiction in this effect as compared to the results found by 

Loke et al. and Treloar who experimentally verified that the torsion decreases swelling. 

This discrepancy has been attributed to different conditions under which the tests were 

conducted and the specimen geometry (Ch’ng 2013) 
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CHAPTER 3: METHODOLOGY 

 

3.1. Materials used 

Commercial grades of NBR with the amounts of CB as 0%, 25% and 40% were 

purchased from MAKA Engineering Sdn.Bhd., Malaysia. The hardness of these materials 

varies with the amount of CB present. The palm biodiesel used was provided by Am 

Biofuels Sdn. Bhd., Malaysia with diesel. The elastomers were immersed in two biodiesel 

blends: B0 (100% diesel) and B100 (100% palm biodiesel). 

Table 1 shows the analysis report of the palm biodiesel investigated. Due to 

confidentiality issues the detailed composition of rubber was not given. 

Table 3.1 Analysis of biodiesel 

Testing Parameter Unit Analysis result 

Specification 

EN 14214:2008 

(E) 

Water content ppm 275 max 500 

Acid value mgKOH/g 0.27 max 0.50 

Free Glycerol % 0.014 max 0.02 

Total Glycerol % 0.23 max 0.25 

Monoglyceride content % 0.75 max 0.80 

Diglyceride content % 0.12 max 0.20 

Triglyceride content % 0.05 max 0.20 

Total contamination ppm 2.71 max 24 

Color & appearance  
Light amber, clear, 

low viscous liquid 
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3.2. Specimen geometry 

To investigate the interaction between diffusion of biodiesel and CB reinforced 

elastomer specifically NBR under uniaxial cyclic loading conditions, dumbbell shaped 

rubber specimens (ASTM D412-C) with small thickness of 2mm were used to facilitate the 

diffusion of biodiesel so that the equilibrium swelling level could be achieved in a practical 

time limit in laboratory conditions. The length and width of the rubber specimen used in 

present study were 120 mm and 6 mm respectively. 

3.3. Devices 

The device used for obtaining the strain level of 2 % was developed in the 

laboratory itself. It consists of four metal plates, each set used to clamp an end of the 

specimen. The two clamped end are then stretched to attain a particular level of strain 

which is maintained by the metallic screwed cylinders inserted between the sets of metal 

plates as shown in figure 3.1.Needless to say no such device is used for the free immersion 

experiment. 

 

Figure 3.1 Device used to induce strain in elastomers prior to immersion 
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3.4. Swelling measurement: 

3.4.1. Free immersion: 

Before the immersion, the weight of the rubber specimen is measured in air after 

which it is immersed in the container of particular biodiesel blend. After the specific time 

gap, the specimen is removed from the container and is cleaned with filter paper to remove 

the surface of oil film.  

The weight of the specimen is measured again to check the swelling level by calculating 

the weight change. This process is repeated till the rate of swelling remains almost constant 

indicating the equilibrium swelling level. 

3.4.2. Immersion of uniaxially strained samples: 

After initial weight measurement, the rubber specimens with varying CB content 

are placed in sequence on the tensile stress device. Grease is applied on the surface of the 

specimens that are in contact with the metal plate to avoid bulging of the specimens. Bolts 

and nuts are used to tighten the tension device until the plates are uniformly in contact with 

the spacers thereby ensuring the specimens to be in a simple uniaxial tensile stress state. In 

the present study the specimen were stressed to 50% strain. 

The same process of calculating the weight change after each immersion period as 

was carried out for free immersion tests is followed till equilibrium swelling level is 

reached. 
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The percentage of mass change for both immersions is calculated by the following 

formula 

∆M = (M2− M1) × 100 

M1 

where M1andM2 are the masses of the specimen in air (g) before and after immersion. 

Figure 3.1 shows the flow chart of the methodology. 

 

 

Figure 3.2 (a) Flow chart of methodology for free immersion 
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Figure 3.2 (b) Flow chart of methodology for immersion of uniaxially 

strained samples 
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3.5. Mechanical testing: 

The mechanical response of the reinforced swollen elastomers was investigated 

under four different stress profiles as shown is figure 3.2 for the swelling rates of 2 % 5% 

and 9% and dry specimen for comparison purposes. The tests are carried out for specimen 

with 25% CB, 40% CB as well as pure NBR using Instron 5500 uniaxial test machine 

equipped with 10 kN load cell at room temperature. All the tests were done under the strain 

rate of 0.025 /s to avoid complications by any thermal effects. 

3.5.1. Different test profiles 

 Loading sequence 1 (Monotonic): specimen undergoes tensile loading till 

fracture 

 Loading sequence 2 (Cyclic loading): cyclic loading with increase in strain 

at each cycle till fracture. The maximum number of cycles taken into 

account is ten. 

 Loading sequence 3 (Relaxation test): applying load till a specific strain and 

then allowing the time for relaxation. This is held true for tensile as well as 

compressive loading. The specimen is treated to four cycles of tensile and 

compressive loading to remove Mullin’s effect prior to testing. 

 Loading sequence 4 (Different strain levels): subjecting the specimen to 

cyclic loading of the variable strain levels i.e. 100%, 200% and 300%. The 

specimen undergoes four cycles of each strain level 
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Figure 3.3Loading sequence 1 
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Figure 3.5 Loading sequence 3 

 

 

 

Figure 3.6Loading sequence4 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1. Free immersion tests: 

Comparative Swelling rates of the NBR samples with 0%, 25%and 40% CB show that the 

increased amount of filler corresponds to a lower swelling rate as shown in the graph 

(Figure 4.1). This can be attributed to the higher level of cross-linking in specimens with 

higher CB content which inhibits the absorption of solvent, CB being the cross-linking 

agent. 

 

Figure 4.1 Swelling rates of elastomers in B0 
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Figure 4.2 Swelling rates of elastomers in B100 
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biodiesel as shown by the comparison of figures 4.1 and 4.2. This is evident by the fact 

that all samples show higher swelling levels in biodiesel as compared to conventional 

diesel. This is observed in 0 CB samples as well as samples with some amount of CB. Also 

the specimens attain equilibrium swelling level at lesser immersion duration.  One more 

observation is that the specimens achieve equilibrium level of swelling in similar duration 

of time provided other physical factors remain constant. 

4.2. Immersion test of uniaxially strained sample: 

The NBR samples containing 0%, 25% and 40 % were uniaxially strained to 150% 

prior to immersion. The comparative swelling rates show that the swelling is maximum for 

unreinforced NBR. The swelling rate of samples with 25 % CB and with 40% CB were 

however comparable although that of 25 % is ultimately higher. Further the pre-strained 

samples show lower swelling rates than unstrained samples at a given duration. This 

change is relatively appreciable in samples containing 0 wt% CB as is evident by 

comparison of figures 4.1 and 4.3whereas there is no change in the value for 40 CB 

samples. The duration for attaining the equilibrium swelling level is comparatively less in 

case of specimens under static uniaxial stress. 
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Figure 4.3 Swelling rates of elastomers under uniaxial static stress in B100 
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It can be concluded that although the tensile strength increases with the increase in the 

amount of CB in the elastomer, the elongation at break decreases which is in agreement 

with the previous findings. 

 

Figure 4.4 Mechanical response of NBR under loading sequence 1 
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Figure 4.5Mechanical response of NBR under loading sequence 1 

 

Figure 4.6Mechanical response of NBR under loading sequence 1 
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Figure 4.7Mechanical response of NBR under loading sequence 1 
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the graphs 4.5 to 4.16 depicting show only the first two cycles of each strain level have 

been plotted. For the actual graph refer to the Appendix 1. 

 

 
 

Figure 4.8Mechanical response of NBR under loading sequence 2 
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Figure 4.9Mechanical response of NBR under loading sequence 2 

 

Figure 4.10Mechanical response of NBR under loading sequence 2 
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Figure 4.11Mechanical response of NBR under loading sequence 2 

 

Figure 4.12 Mechanical response of NBR under loading sequence 2 
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Figure 4.13 Mechanical response of NBR under loading sequence 2 

 

Figure 4.14Mechanical response of NBR under loading sequence 2 
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Figure 4.15Mechanical response of NBR under loading sequence 2 

 

Figure 4.16Mechanical response of NBR under loading sequence 2 
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 Figure 4.17Mechanical response of NBR under loading sequence 2 
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Figure 4.18Mechanical response of NBR under loading sequence 2 

 

Figure 4.19Mechanical response of NBR under loading sequence 2 
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The specimen were subjected to cyclic loading under loading sequence 3 as explained in 

the previous chapter, to observe the viscoelastic response. The nature of the graphs was 

preserved under higher swelling rates although the curves became narrower as is evident in 

the graphs 4.23 to 4.34. It must be noted that the samples were subjected to cyclic loading 

to remove Mullins effect. Since the purpose was to study the viscoelastic response of the 

elastomers, the initial cyclic loading has been excluded from the graphs. By considering 

the constant strain of 100 for each stress-strain curve, it was observed from the data that 

the swollen elastomers show decreased viscoelastic response initially as shown in figures 

4.20 to 4.23. Although a large amount of scatter is observed in the data collected for the 

experiments on 0 CB and 25 CB, it is observed that the viscoelastic response remains 

largely unaffected by the swelling level which is not observed in the 40 CB specimens. In 

this particular case, the viscoelastic response of the elastomer is decreased with the 

increase in swelling level. Since the viscoelastic properties of NBR are largely a property 

of the carbon black content present in them (as is evident in the graphs), this result is 

consistent.  In the same line of observation, it may be noted that the effect on the 25 CB 

specimens with regards to the viscoelasticity is negligible in these experiments but may 

become significant in the larger swelling levels. In case of 40 CB specimens the effect on 

swelling on viscoelastic response is observable in the swelling levels achieved in the 

present experiments. 
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Figure 4.20. Viscoelastic response of NBR for different swelling levels 

 

Figure 4.21 Viscoelastic response of NBR for different swelling levels 
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Figure 4.22 Viscoelastic response of NBR for different swelling levels 
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Figure 4.23Mechanical response of NBR under loading sequence 3 

 

Figure 4.24 Mechanical response of NBR under loading sequence 3 
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Figure 4.25 Mechanical response of NBR under loading sequence 3 

 

Figure 4.26 Mechanical response of NBR under loading sequence 3 
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Figure 4.27Mechanical response of NBR under loading sequence 3 

 

Figure 4.28 Mechanical response of NBR under loading sequence 3 
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Figure 4.29Mechanical response of NBR under loading sequence 3 

 

Figure 4.30 Mechanical response of NBR under loading sequence 3 
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Figure 4.31 Mechanical response of NBR under loading sequence 3 

 

Figure 4.32 Mechanical response of NBR under loading sequence 3 
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Figure 4.33 Mechanical response of NBR under loading sequence 3 

 

 

Figure 4.34 Mechanical response of NBR under loading sequence 3 
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In case of mechanical response under cyclic loading, the 25 CB specimen show better 

mechanical characteristics than 0 CB or 40 CB specimens as shown in figures 4.29 to 4.40. 

The specimens were subjected to an increasing level of cyclic strain, the maximum strain 

being 1000. The 25 CB specimen showed better resistance to fracture under these loading 

conditions in all levels of swelling. The specimen remained unfractured for 2% and 5 % of 

swelling levels undergoing 10 cycles of increasing strain. The fracture for 9% swelling 

level occurred at the 10
th

 cycle. 
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Figure 4.35 Mechanical response of NBR under loading sequence 4 

 

Figure 4.36Mechanical response of NBR under loading sequence 4 
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Figure 4.37Mechanical response of NBR under loading sequence 4 

 

 

Figure 4.38Mechanical response of NBR under loading sequence 4 
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Figure 4.39 Mechanical response of NBR under loading sequence 4 

 

Figure 4.40Mechanical response of NBR under loading sequence 4 
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Figure 4.41Mechanical response of NBR under loading sequence 4 

 

 

Figure 4.42 Mechanical response of NBR under loading sequence 4 
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Figure 4.43 Mechanical response of NBR under loading sequence 4 

 

Figure 4.44 Mechanical response of NBR under loading sequence 4 
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Figure 4.45Mechanical response of NBR under loading sequence 4 

 

 

Figure 4.46 Mechanical response of NBR under loading sequence 4 
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CHAPTER 5: CONCLUSIONS AND 

RECOMMENDATIONS 

 

5.1. Conclusions: 

The increase in the amount of CB in NBR improves the resistance against swelling of the 

elastomer in solvents. As observed from the study, specimen with maximum amount of CB 

underwent minimum swelling for the same immersion duration. This can be attributed to 

presence of higher cross-linking in the specimens with higher amount of carbon black 

which inhibit the adsorption of the solvent in the elastomer matrix. Increase in the amount 

of CB increases the mechanical strength of the elastomer. The specimens with 40% CB can 

withstand a stress of about 25 MPa in comparison with 2 MPa for unreinforced specimen. 

The specimens with 25% CB show the tensile strength of 22 MPa which is comparable to 

the specimen with 40% CB. This is true for dry testing as well as swollen elastomers with 

swelling levels of 2%, 5% and 9%. 

The comparative swelling rates of samples under static uniaxial strain and 

unstrained samples show that the pre-strained samples show lower swelling rates than 

unstrained samples at a given duration. The swelling is maximum for unreinforced NBR in 

the presence of stress and minimum for 40CB specimens. The swelling rates of samples 

with 25 % CB and with 40% CB were, however, comparable at a given time, even though 

that of 25 % is ultimately higher. This change is relatively appreciable in samples 

containing 0 wt% CB as is evident by comparison of figures 4.1 and 4.3whereas there is no 

change in the value for 40 CB samples. The duration for attaining the equilibrium swelling 

level is comparatively less in case of specimens under static uniaxial stress. 
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The elastomers show decreased viscoelastic response initially in dry as well as 

swollen state. Although a large amount of scatter is observed in the data collected for the 

experiments on 0 CB and 25 CB, it is observed that the viscoelastic response remains 

largely unaffected by the swelling level which is not observed in the 40 CB specimens. In 

this particular case, the viscoelastic response of the elastomer is decreased with the 

increase in swelling level. It may also be noted that the effect on the 25 CB specimens with 

regards to the viscoelasticity is negligible in these experiments but may become significant 

in the larger swelling levels. In case of 40 CB specimens the effect on swelling on 

viscoelastic response is observable in the swelling levels achieved in the present 

experiments. 

5.2. Recommendations: 

Since the present study was limited to uniaxial loading, further work can be 

expected considering multi-axial loading for CB loaded elastomers 
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Appendix A 

 

Mechanical response of NBR under loading sequence 2 (4 cycles) 

 

 

Mechanical response of NBR under loading sequence 2 (4 cycles) 
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Mechanical response of NBR under loading sequence 2 (4 cycles) 
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Mechanical response of NBR under loading sequence 2 (4 cycles) 
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Mechanical response of NBR under loading sequence 2 (4 cycles) 
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Mechanical response of NBR under loading sequence 2 (4 cycles) 

 

Mechanical response of NBR under loading sequence 2 (4 cycles) 
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Mechanical response of NBR under loading sequence 2 (4 cycles) 
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