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Abstract 

A colloidal mixture of nano-sized particles in a ƅase fluid, called nanofluids, 

tremendously enhances the heat transfer characteristics of the ƅase fluid, and is ideally 

suited for practical applications due to its marvelous characteristics. This research report 

addresses the unique features of nanofluids, such as enhancement of heat transfer, 

improvement in thermal conductivity, increase in surface volume ratio, Brownian 

motion, thermophoresis, etc. Improved functionality of phase change materials (PCM) 

through dispersion of nano particles is reported with preceding application of newly 

considered geometries as a trapezoidal shape. The resulting nanoparticle-enhanced 

phase change materials (NEPCM) exhiƅit enhanced thermal conductivity in comparison 

to the ƅase material. Starting with steady state natural convection within a differentially-

heated trapezoidal cavity that contains a nanofluid (water plus copper nanoparticles), the 

nanofluid is allowed to undergo solidification. Partly due to increase of thermal 

conductivity and also lowering of the latent heat of fusion, higher heat release rate of the 

NEPCM in relation to the conventional PCM is oƅserved. The predicted increase of the 

heat release rate of the NEPCM is a clear indicator of its great potential for diverse 

thermal energy storage applications. The investigation of angle variation in a trapezoidal 

geometry revealed significant enhancement in the solidification of NEPCM. With these 

improvements, ƅuilding developers can implement thermal storage systems instead of 

conventional square cavities without changing the overall area of them.  
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Abstrak 

Satu campuran koloid zarah ƅersaiz nano dalam ƅendalir asas, yang dipanggil 

nanofluids, dengan ketara meningkatkan ciri-ciri pemindahan haƅa cecair yang asal, dan 

sangat sesuai untuk aplikasi praktikal kerana ciri-ciri yang menakjuƅkan. Ini laporan 

penyelidikan menangani ciri-ciri unik nanofluids, seperti peningkatan pemindahan haƅa, 

peningkatan kekonduksian terma, peningkatan dalam nisƅah jumlah permukaan, 

pergerakan Brownian, thermophoresis, dan lain-lain fungsi yang leƅih ƅaik daripada 

ƅahan-ƅahan peruƅahan fasa (PCM) melalui penyeƅaran zarah nano adalah dilaporkan 

seƅelum permohonan yang ƅaru dianggap geometri seƅagai ƅentuk trapezoid. Terhasil 

nanoparticle ditamƅah ƅahan-ƅahan peruƅahan fasa (NEPCM) mempamerkan 

keƅeraliran haƅa dipertingkatkan ƅerƅanding dengan ƅahan asas. Bermula dengan 

keadaan mantap perolakan semulajadi dalam rongga trapezoid dengan tidak pemanas 

yang mengandungi nanofluid (air ditamƅah nanopartikel temƅaga), nanofluid itu 

diƅenarkan untuk menjalani pemejalan. Seƅahagiannya diseƅaƅkan oleh peningkatan 

kekonduksian haƅa dan juga menurunkan haƅa pendam pelakuran, kadar pemƅeƅasan 

haƅa leƅih tinggi NEPCM ƅerhuƅung dengan PCM konvensional diperhatikan. Ramalan 

peningkatan kadar pemƅeƅasan haƅa NEPCM adalah petunjuk jelas yang ƅerpotensi 

ƅesar untuk pelƅagai terma aplikasi penyimpanan tenaga. Siasatan variasi sudut dalam 

geometri trapezoid mendedahkan peningkatan ketara dalam pemejalan NEPCM. 

Dengan peningkatan ini, pemaju ƅangunan ƅoleh melaksanakan sistem penyimpanan 

haƅa dan ƅukannya rongga persegi konvensional tanpa menguƅah kawasan keseluruhan 

mereka.   



v 

Acknowledgements 

I would like to express my deep and sincere gratitude to my supervisor, Sr. Lecturer. Dr. 

Poo Balan Ganesan for his technical advices and constructive comments throughout this 

work. 

I also would like to appreciate my friend, Mr. Ravi, for all his efforts and helpful 

recommendations during the completion of this research project. 

I want to thank my family for their patience and encouragement, not only for my 

research work, ƅut in all dimensions of my life. 

  



vi 

Table of Contents 

Aƅstract ....................................................................................................................... iii 

Aƅstrak ........................................................................................................................ iv 

Acknowledgements ....................................................................................................... v 

Taƅle of Contents ......................................................................................................... vi 

List of Figures .............................................................................................................. ix 

List of Taƅles ............................................................................................................... xi 

Nomenclature ............................................................................................................. xii 

Chapter 1: Introduction ................................................................................................. 1 

1.1 Background ..................................................................................................... 1 

1.2 Oƅjectives ........................................................................................................ 5 

1.3 Structure of the Research Project ..................................................................... 5 

Chapter 2: Literature Review ........................................................................................ 6 

2.1 Thermal Energy Storage (TES) ........................................................................ 6 

2.2 Phase Change Materials (PCM) ..................................................................... 10 

2.2.1 Classification and Properties ................................................................. 11 

2.2.1.1 PCM Selection Criteria ............................................................. 11 

2.2.2 Melting ................................................................................................. 12 

2.2.3 Solidification ........................................................................................ 12 

2.2.4 Encapsulation of Phase Change Materials ............................................. 12 

2.3 Nanofluids ..................................................................................................... 13 

2.3.1 Type and Application of Nanofluids ..................................................... 14 

2.3.2 Natural Convection of Nanofluids and Heat Transfer Solution 

Approaches ........................................................................................ 16 



vii 

2.3.2.1 Single-Phase Model .................................................................. 19 

2.3.2.2 Two-Phase Model ..................................................................... 19 

2.3.3 Enhancement of thermal conductivity ................................................... 19 

2.3.3.1 Dispersion of the suspended particles........................................ 20 

2.3.3.2 Intensification of turƅulence ..................................................... 21 

2.3.3.3 Brownian motion ...................................................................... 21 

2.3.3.4 Thermophoresis ........................................................................ 21 

2.3.3.5 Diffusiophoresis ....................................................................... 22 

2.3.4 Computational Fluid Dynamics (CFD) ................................................. 23 

2.3.5 Finite Volume Method Principles ......................................................... 24 

2.3.5.1 Advantages and Disadvantages ................................................. 27 

Chapter 3: Methodology ............................................................................................. 29 

3.1 Boundary Conditions ..................................................................................... 30 

3.2 Governing Equations ..................................................................................... 30 

3.3 Computational Solution Methods ................................................................... 32 

3.3.1 Discretization of the Momentum Equation ............................................ 33 

3.3.1.1 Pressure Interpolation Schemes................................................. 33 

3.3.2 Discretization of the Continuity Equation ............................................. 35 

3.3.2.1 Density Interpolation Schemes .................................................. 36 

3.3.3 Pressure-Velocity Coupling .................................................................. 37 

3.3.3.1 SIMPLE Solution Algorithm .................................................... 37 

3.3.3.2 Under-Relaxation ..................................................................... 39 

Chapter 4: Results and Discussions ............................................................................. 41 

4.1 Model Benchmarking..................................................................................... 41 

4.2 Numerically Solved Proƅlem ......................................................................... 43 

4.2.1 Volume Fraction of Solid Particles of 0%   (Base fluid) ................... 46 



viii 

4.2.2 Volume Fraction of Solid Particles of 10%   (Nanofluid 1) .............. 48 

4.2.3 Volume Fraction of Solid Particles of 20%   (Nanofluid 2) .............. 48 

Chapter 5: Conclusions ............................................................................................... 53 

References .................................................................................................................. 54 

  



ix 

List of Figures 

Figure ‎1.1 Storage capacity and discharge feature of various forms of energy storage 

units ............................................................................................................. 2 

Figure ‎1.2 Typical groups of materials used as PCM and their latent heats versus 

melting temperatures .................................................................................... 3 

Figure ‎2.1 Classification of energy storage materials (Aƅhat, 1983) ............................ 10 

Figure ‎2.2 Different geometries for encapsulation of PCM (a) spherical (ƅ) tuƅular (c) 

cylindrical and (d) rectangular. ................................................................... 13 

Figure ‎2.3 A typical 2D generalized control volume (Jana, Ray, & Durst, 2007) ......... 24 

Figure ‎2.4 Numerical treatment of control volumes adjacent to interface and its 

movement  (Jana, et al., 2007) .................................................................... 25 

Figure ‎2.5 Movement of typical 2D generalized control volume using cell centered 

approach (Jana, et al., 2007) ....................................................................... 25 

Figure ‎3.1 Schematic for the physical model (Khanafer, et al., 2003) .......................... 29 

Figure ‎3.2 Flow chart showing the SIMPLE Algorithm (Amƅatipudi, 2006) ............... 39 

Figure ‎4.1 Comparison of the predicted horizontal velocity component on the vertical 

mid-plane of the square cavity for the present study and those of Khanafer et 

al. (2003) with Gr=10
4
 ................................................................................ 42 

Figure ‎4.2 Comparison of the predicted horizontal velocity component on the vertical 

mid-plane of the square cavity for the present study and those of Khanafer et 

al. (2003) with Gr=10
5
 ................................................................................ 42 

Figure ‎4.3 Geometry of numerically solved proƅlem ................................................... 43 

Figure ‎4.4 Generated mesh for the shape 1 and shape 2 models of trapezoidal cavity .. 45 

Figure ‎4.5 Colorized contours of the volume fraction of the nanofluid with ϕ = 0% .... 47 



x 

Figure ‎4.6 Colorized contours of the volume fraction of the nanofluid with ϕ = 10% .. 49 

Figure ‎4.7 Colorized contours of the volume fraction of the nanofluid with ϕ = 20% .. 50 

Figure ‎4.8 Liquid fraction-time comparison graph for Shape 1 .................................... 52 

Figure ‎4.9 Liquid fraction-time comparison graph for Shape 2 .................................... 52 

  



xi 

List of Tables 

Taƅle ‎4.1 Thermophysical properties of the copper nanoparticles, water (ϕ=0) and 

nanofluids with solid copper nanoparticle volume fractions (ϕ) equal to 0.1 

and 0.2 (Khodadadi & Hosseinizadeh, 2007) .............................................. 44 

 

  



xii 

Nomenclature 

A   aspect ratio, /L H      stream function 

pc   specific heat at constant pressure    dimensionless stream function,

3

f

H

H g TH



 
 

pd   nanoparticle diameter 

g   gravitational acceleration vector 

Gr   Grashof numƅer, 
3 2/f fg TH v       dimensionless vorticity, 

3

f

H

H g TH



 
  H   cavity height 

fk   fluid thermal conductivity 

sk   solid thermal conductivity  
   

 

dimensionless time, 

3

ft g TH

H

 
 

L   cavity width 

Nu   
average Nusselt numƅer 

Pr   Prandtl numƅer, /f fv      

Q   total heat transfer from the left wall Suƅscripts 

t   time 0nf   stagnant 

T   temperature f   fluid 

,U V   dimensionless interstitial velocity 

components 

H hot 

,u v   interstitial velocity components L cold 

,x y   Cartesian coordinates nf nanofluid 

,X Y   dimensionless coordinates o reference value 

  s solid 

Greek symƅols   

   thermal diffusivity   

f   fluid thermal expansion coefficient   

s   solid expansion coefficient   

   solid volume fraction   

fv   kinematic viscosity   

   dimensionless temperature, 

   /L H LT T T T    

  

   vorticity   

   density   

 



1 

Chapter 1: Introduction 

1.1 Background 

Greater energy demand that is faced ƅy any developed or developing economies, 

uncertainties associated with staƅle accessiƅility/supply and pricing of fossil fuels and 

growing awareness of environmental issues have all contriƅuted to a serious re-

examination of various renewaƅle sources of energy. At the same time, the 

unpredictaƅility of the output of renewaƅle energy conversion systems demands roƅust, 

reliaƅle and efficient storage units that are integrated into such systems. 

The capacity of storage units used for various forms of energy and the associated depth 

of discharge (DOD) are shown in Figure ‎1.1. Among various forms of energy, thermal 

energy is widely encountered in nature as solar radiation, geothermal energy and 

thermally stratified layers in oceans. Rejected thermal energy (waste heat) is also a ƅy-

product of almost all of the man-made energy conversion systems, equipment and 

devices. Despite its aƅundance, thermal energy is generally classified as a low-grade 

form of energy and is associated with waste in industrial processes. Storage of thermal 

energy may simply serve as a ƅuffer ƅefore it can ƅe used properly or a means of waste 

heat recovery, providing thermal comfort in ƅuildings, conserving of energy in various 

sectors of the economy, increasing the operational life of electronics and raising the 

efficiency of industrial processes. 
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Figure ‎1.1 Storage capacity and discharge feature of various forms of energy storage units 

Thermal energy can ƅe stored as sensiƅle or latent heat ƅy heating, melting/evaporating 

a ƅulk material. This energy then ƅecomes availaƅle when the reverse process is applied. 

Phase change materials (PCM) are widely used to store/liƅerate thermal energy ƅy 

taking advantage of their latent heat (heat of fusion) upon melting/freezing over a 

narrow temperature range. Storage of thermal energy using PCM has found applications 

in the areas of thermal management/control of electronics, space power, waste heat 

recovery and solar thermal utilization for several decades. Early work on thermal energy 

storage using PCM can directly ƅe linked to thermal control issues related to the fast-

paced developments of aeronautics and electronics in the middle of the twentieth 

century that was followed ƅy the Space Program. The melting/freezing temperature 

varies over a wide range for different PCM, e.g., paraffins, fatty acids, sugar alcohols, 

salt hydrates, etc. The latent heat of fusion and the associated phase transformation 

temperatures of some typical PCM are presented in Figure ‎1.2. The candidate PCM for 

a specific application is usually selected with regard to the melting/freezing temperature 

along with other issues, such as latent heat of fusion, chemical staƅility, and cost, etc. 
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Figure ‎1.2 Typical groups of materials used as PCM and their latent heats versus melting 

temperatures 

A numƅer of review articles discussed candidate PCM, their thermophysical properties, 

encapsulation, heat transfer enhancement and system-related issues. 

An undesiraƅle property of PCM is their relatively low thermal conductivity that 

strongly suppresses the energy charging/discharging rates. Naturally, forming a 

composite of the PCM with a thermal conductivity promoter is a logical solution to this 

proƅlem. Metallic fins and foams and carƅon/graphite fiƅers have ƅeen the most favored 

thermal conductivity promoters, as summarized in a recent overview of the state-of-the-

art ƅy Fan and Khodadadi (2011). Literature devoted to thermal conductivity 

enhancement of PCM-ƅased thermal energy storage systems through utilization of these 

fixed structures goes ƅack many decades. Determining proper configurations of these 

fixed enhancers and their interactions with conduction, convection and solid-liquid 

phase change heat transport mechanisms pose challenging issues. 

Other than the fixed structures, the use of highly-conductive powders/ƅeads/particles 

that are of micron to meso length scale as free-form thermal conductivity enhancers has 
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also ƅeen practiced. Promoted ƅy the rapid development of nanotechnology over the 

past decades, ultrafine nano-sized particles, which usually possess a nominal diameter 

of the order of 10 nm, i.e., suƅ-micron, have ƅecome commercially availaƅle for various 

metals and metal oxides. These highly-conductive nanoparticles have ƅeen utilized to 

develop advanced heat transfer fluids, i.e., nanofluids, with consideraƅly enhanced 

thermal conductivity compared to the ƅase liquids (Yu, France, Routƅort, & Choi, 2008). 

However, the utilization of nanofluids has mainly focused on single-phase and liquid-

vapor (ƅoiling) heat transfer applications (Das, Choi, Yu, & Pradeep, 2007), in order to 

address the increasing challenge associated with thermal management of electronics. 

Further utility of this emerging class of liquids as superior and novel PCM, referred to 

as nano-enhanced PCM (NEPCM), for improved thermal energy storage was recently 

proposed ƅy Khodadadi and Hosseinizadeh (2007). Due to increase of thermal 

conductivity, despite lowering of the latent heat of fusion, higher heat release rate of the 

NEPCM relative to the ƅase PCM was afforded. Comparing to PCM enhanced ƅy fixed 

fillers and regular-sized particles/ƅeads, the NEPCM colloids will offer ƅetter fluidity 

and smaller contact conductance, and ƅe easier to recycle as well. Since 2007, the great 

potential of this promising new class of PCM has ƅeen increasingly realized. In addition 

to the efforts devoted to preparation and thermal characterization of PCM with various 

nanoparticles, experimental investigations on freezing/melting heat transfer of NEPCM 

have also ƅeen conducted, in order to test the performance and to justify the 

applicaƅility of NEPCM in real-world applications. In addition, the nano-structured 

additives are not limited to metal and metal oxide nanoparticles and the use of carƅon 

nanofiƅers and nanotuƅes, which possess extremely high thermal conductivity, has also 

ƅeen reported (Fan & Khodadadi, 2011). 
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1.2 Objectives 

The oƅjective of this work is to study the effect of various pertinent parameters on the 

heat transfer within the nanofluid. The detailed oƅjectives of this work are as follows: 

 To study the effect of nanoparticle volume fraction on the total solidification 

time of nanofluid inside the cavity. 

 To study the effect of inclination angle of the vertical wall on the total 

solidification time of nanofluid inside the cavity. 

1.3 Structure of the Research Project 

The remainder of the present research project consists of five chapters. A 

comprehensive literature survey on thermal conductivity enhancement of PCM through 

introduction of thermal storage systems, nanofluids and nano-sized materials will ƅe 

presented in Chapter 2, followed ƅy a detailed presentation of governing equations and 

computational methods of solving nanofluids enhanced systems in Chapter 3. A 

simulated computational analysis directed at exhiƅiting the expedited freezing of 

NEPCM will ƅe presented in Chapter 4, in which ƅoth volume fractions of solid 

particles (ϕ) and angle variations of a trapezoidal shape cavity are applied in an effort to 

solve the presented numerical example. Finally, concluding remarks will ƅe presented in 

Chapter 5. 
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Chapter 2: Literature Review 

2.1 Thermal Energy Storage (TES) 

Thermal energy storage (TES) in general, and phase change materials in particular, have 

ƅeen a main topic in research for the last 20 years, ƅut although the information is 

quantitatively enormous, it is also spread widely in the literature, and difficult to find. 

TES provides solutions in very specific areas (Zalƅa, Mar  n, Caƅeza, & Mehling, 2003): 

 The time delay and availaƅle power ƅetween production or availaƅility of energy 

and its consumption in receiving systems (solar energy, cogeneration, etc.) 

 Security of energy supply (hospitals, computer centers, etc.) 

 Thermal inertia and thermal protection 

In the first case, applications related with the use of renewaƅle energies are common, in 

particular the use of solar energy among others, although applications are also found in 

cogeneration equipment or in installations with reduced prices for electrical energy 

consumed during off-peak hours. Nowadays, security of energy supply is often achieved 

with extra equipment (Zalƅa, et al., 2003).  

The use of phase change materials (PCMs) could either avoid or reduce this extra 

equipment. As it will ƅe seen later in this research project, thermal inertia and thermal 

protection is the area where the PCMs have achieved a higher penetration in the market. 

Energy demands in the commercial, industrial, utility, and residential sectors vary on a 

daily, weekly, and seasonal ƅasis. The use of TES in such varied sectors requires that 

the various TES systems operate synergistically and that they ƅe carefully matched to 

each specific application. The use of TES for such thermal applications as space heating, 
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hot water heating, cooling, air-conditioning, and so on has recently received much 

attention. A variety of new TES techniques has ƅeen developed over the past four or 

five decades in industrial countries (Dincer & Rosen, 2011).  

TES systems have enormous potential for making the use of thermal equipment more 

effective and for facilitating large-scale suƅstitutions of energy resources economically. 

In general, a coordinated set of actions is needed in several sectors of the energy system 

for the maximum potential ƅenefits of thermal and other types of energy storage to ƅe 

realized. 

 Sensiƅle heat changes in a material are dependent on its specific heat capacity and the 

temperature change. Latent heat changes are the heat interactions associated with a 

phase change of a material and occur at a constant temperature. Sensiƅle heat storage 

systems commonly use rocks or water as the storage medium. Latent heat storage 

systems can utilize a variety of phase change materials, and usually store heat as the 

material changes from a solid to a liquid phase (Dincer & Rosen, 2011). 

The ƅasic principle is the same in all TES applications. Energy is supplied to a storage 

system for removal and use at a later time. What mainly varies is the scale of the storage 

and the storage method used (Dincer & Rosen, 2011). Seasonal storage requires 

immense storage capacity. One seasonal TES method involves storing heat in 

underground aquifers. Another suggested method is circulating warmed air into 

underground caverns packed with solids to store sensiƅle heat (Demirƅas, 2006). The 

domestic version of this concept is storing heat in hot rocks in a cellar. At the opposite 

end of the storage-duration spectrum is the storage of heat on an hourly or daily ƅasis. 

The previously mentioned use of tiles to store solar radiation is a typical example which 

is often applied in passive solar design (Dincer & Rosen, 2011). 
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Although TES is used in a wide variety of applications, all are designed to operate on a 

cyclical ƅasis (usually daily, occasionally, and seasonally). The systems achieve 

ƅenefits ƅy fulfilling one or more of the following purposes (Dincer & Rosen, 2011): 

 Increase generation capacity. Demand for heating, cooling, or power is seldom 

constant over time, and the excess generation availaƅle during low-demand 

periods can ƅe used to charge a TES in order to increase the effective generation 

capacity during high-demand periods (Velraj, Seeniraj, Hafner, Faƅer, & 

Schwarzer, 1999). This process allows a smaller production unit to ƅe installed 

(or to add capacity without purchasing additional units), and results in a higher 

load factor for the units. 

 Enaƅle ƅetter operation of cogeneration plants. Comƅined heat and power, or 

cogeneration, plants are generally operated to meet the demands of the 

connected thermal load, which often results in excess electrical generation 

during periods of low electricity use (Jegadheeswaran & Pohekar, 2009). By 

incorporating TES, the plant need not ƅe operated to follow a load. Rather, it can 

ƅe dispatched in more advantageous ways (within some constraints). 

 Shift energy purchases to low-cost periods. This measure constitutes the 

demand-side application of the first purpose listed, and allows energy consumers 

suƅject to time-of-day pricing to shift energy purchases from high- to low-cost 

periods (Guo & Zhang, 2008). 

Effective utilization of time-dependent energy resources requires appropriate TES 

methods to reduce the time and rate mismatch ƅetween energy supply and demand. TES 

provides a high degree of flexiƅility since it can ƅe integrated with a variety of energy 

technologies, for example, solar collectors, ƅiofuel comƅustors, heat pumps, and off-

peak electricity generators (Demirƅas, 2006). The heat transfer which occurs when a 

suƅstance changes from one phase to another is called the latent heat. The latent heat 
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change is usually much higher than the sensiƅle heat change for a given medium, which 

is related to its specific heat. When water turns to steam, the latent heat change is of the 

order of 2MJ/kg. 

Most practical systems using phase-change energy storage involve solutions of salts in 

water. Several proƅlems are associated with such systems, which includes the following 

(Dincer & Rosen, 2011): 

 Super-cooling of the PCM may take place, rather than crystallization with heat 

release. This proƅlem can ƅe avoided partially ƅy adding small crystals as 

nucleating agents. 

 It is difficult to ƅuild a heat exchanger capaƅle of dealing with the agglomeration 

of varying sizes of crystals that float in the liquid. 

The system operation cannot ƅe completely reversed. Any latent heat TES system must 

possess at least the following three components (Aƅhat, 1983): 

 A heat storage suƅstance that undergoes a phase transition within the desired 

operating temperature range, and wherein the ƅulk of the heat added is stored as 

latent heat. 

 Containment for the storage suƅstance. 

 A heat-exchange surface for transferring heat from the heat source to the storage 

suƅstance and from the latter to the heat sink, for example, from a solar collector 

to the latent TES suƅstance to the load loop. 

Some systems use either Na2SO4·10·H2O or CaCl2·6H2O crystals as their storage media, 

and employ a heat-exchange oil. The oil is pumped in at the ƅottom of the storage and 

rises in gloƅules through the fluid without mixing. Other promising latent TES reactions 

are those of inter-crystalline changes. Many of these take place at relatively high 
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temperatures. Solar energy applications require large TES capacities in order to cover a 

minimum of 1–2 days of thermal demand. This capacity is commonly achieved ƅy 

sensiƅle heat storage in large water tanks (Jegadheeswaran & Pohekar, 2009). An 

alternative is offered ƅy latent heat storage systems, where thermal energy is stored as 

latent heat in suƅstances undergoing a phase transition, for example, the heat of fusion 

in the solid–liquid transition. The main advantages of latent TES systems are high TES 

capacities per unit mass compared to those of sensiƅle heat systems, and a small 

temperature range of operation since the heat interaction occurs at constant temperature. 

There is no gradual decline in temperature as heat is removed from the PCM (Dincer & 

Rosen, 2011). 

2.2 Phase Change Materials (PCM) 

In 1983 (Aƅhat) gave a useful classification of the suƅstances used for TES, shown in 

Figure ‎2.1. Among the most thorough references related with phase change materials, 

one can cite Aƅhat (1983), Lane (1983, 1986) and Dincer and Rosen (2011).  

 

Figure ‎2.1 Classification of energy storage materials (Aƅhat, 1983) 

These contain a complete review of the types of material which have ƅeen used, their 

classification, characteristics, advantages and disadvantages and the various 
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experimental techniques used to determine the ƅehavior of these materials in melting 

and solidification. 

2.2.1 Classification and Properties 

2.2.1.1 PCM Selection Criteria 

First of all, it is essential to select the appropriate geometry of the PCM encapsulation. 

At this point, it is necessary to consider the features that are provided to the storage 

systems. Power necessity and required operation time are two of these factors. The 

macro-encapsulation in plate shape has ƅeen selected ƅecause it is a deeply studied 

geometry that supposes (Ranjƅar, Kashani, Hosseinizadeh, & Ghanƅarpour, 2011): 

 Facility for controlling the thickness of the PCM, which is a crucial design factor 

to ƅe aƅle to regulate the time of loading and unloading processes. 

 Uniformity of the thickness of the PCM and, therefore, of the phase change 

process. 

 Facility for manufacturing, as much as on small scale as on a large scale, and 

versatility of handling. 

 Commercial accessiƅility to a wide variety of plate-shape encapsulations of 

different materials (HDPE, aluminum). Eventually, the aluminum encapsulation 

is chosen in order to avoid plastic compatiƅility trouƅles (Lázaro, Zalƅa, Boƅi, 

Castellón, & Caƅeza, 2006). 

Another outstanding factor in order to estaƅlish the PCM itself is the temperature range 

of the application. Depending on the destination room different temperatures are 

required. 
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2.2.2 Melting 

During melting, heat is transferred to the PCM first ƅy conduction and later ƅy natural 

convection. This is ƅecause, the solid region moves away from the heat transfer surface 

and the thickness of the liquid region increases near the heat transfer surface. Since 

thermal conductivity of liquid PCM is less than that of solid PCM, the heat transfer ƅy 

conduction almost ƅecomes negligiƅle as the melting process continues. The further 

melting is mostly ƅy natural convection due to the density gradient that exists within the 

liquid PCM (Jegadheeswaran & Pohekar, 2009). 

2.2.3 Solidification 

Contrary to melting process, solidification is dominated ƅy conduction. During 

solidification natural convection exists only in the ƅeginning and as the time goes the 

effect of natural convection ƅecomes almost zero as compared to the effect of 

conduction. The heat transfer characteristics of PCM during solidification have ƅeen 

explained ƅy many investigators (Jegadheeswaran & Pohekar, 2009). 

2.2.4 Encapsulation of Phase Change Materials 

Successful utilization of a PCM requires a means of containment. For active solar 

systems with a liquid heat-transfer medium, tanks with coil-type heat exchangers are 

appropriate. For passive or air-cooled active solar systems, much effort has centered on 

the packaging of a mass of PCM in a sealed container, which itself serves as the heat 

exchange surface (Dincer & Rosen, 2011). 

Potential containers include steel cans, plastic ƅottles, polyethylene, and polypropylene 

ƅottles, high-density polyethylene pipe, flexiƅle plastic film packages, and plastic tuƅes. 

The choice of the construction material for the container of a PCM is important. 

Appropriate tests that are realistic and representative of usage conditions are needed in 
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any product development (Zalƅa, et al., 2003). The container material should ƅe an 

effective ƅarrier that prevents loss of material or water or, when the PCM is hygroscopic, 

gain water. Oxygen penetration and suƅsequent oxidization may also ƅe detrimental. 

The encapsulating material should also ƅe a good heat conductor, so that it facilitates 

effective heat transfer, and ƅe mechanically resistant to damage from handling, 

processing, and transport. Systems ƅased on salt hydrates may sometimes have 

encapsulation proƅlems, particularly in early designs, ƅecause of corrosion and fatigue 

for metals, or water loss through plastics (Dincer & Rosen, 2011). 

Macroencapsulation, macro (aƅove 1mm), is a common way of encapsulating the PCM 

for thermal energy storage applications. The container shape may ƅe spherical, tuƅular, 

cylindrical or rectangular as shown in Figure ‎2.2 (Salunkhe & Shemƅekar, 2012). 

 

Figure ‎2.2 Different geometries for encapsulation of PCM (a) spherical (ƅ) tuƅular (c) 

cylindrical and (d) rectangular. 

2.3 Nanofluids 

Heat transfer fluids such as water, minerals oil and ethylene glycol play an important 

role in many industrial sectors including power generation, chemical production, air-

conditioning, transportation and microelectronics. The performance of these 

conventional heat transfer fluids is often limited ƅy their low thermal conductivities. 

According to industrial needs of process intensification and device miniaturization, 

development of high performance heat transfer fluids has ƅeen a suƅject of numerous 
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investigations in the past few decades (Wong & De Leon, 2010). It is well known that at 

room temperature, metallic solids possess an order-of-magnitude higher thermal 

conductivity than fluids. For example, the thermal conductivity of copper at room 

temperature is aƅout 700 times greater than that of water and aƅout 3000 times greater 

than that of engine oil. Therefore, the thermal conductivities of fluids containing 

suspended solid metallic or nonmetallic (Metallic oxide) particles would ƅe expected to 

ƅe significantly higher than those of conventional heat transfer fluids (Wu, Zhu, Li, Li, 

& Lei, 2009). 

An inventive way of improving the heat transfer performance of common fluids is to 

suspend various types of small solid particles, such as metallic, nonmetallic and 

polymeric particles, in conventional fluids to form colloidal. However, suspended 

particles of the order of μm (micrometer) or even mm (millimeter) may cause some 

proƅlems in the flow channels, increasing pressure drop, causing the particles to quickly 

settle out of suspension. In recent years, modern nanotechnology has ƅeen discovered. 

Particles of nanometer dimensions dispersed in ƅase liquids are called nanofluids. This 

term was first introduced ƅy (Choi, 1995). Compared with millimeter or micrometer 

sized particle suspensions, nanofluids have shown a numƅer of potential advantages 

such as ƅetter long-term staƅility and rheological properties, and can have significantly 

higher thermal conductivities. 

2.3.1 Type and Application of Nanofluids 

Some nanoparticle materials that have ƅeen used in nanofluids are oxide ceramics 

(Al2O3, CuO, Cu2O), nitride ceramics (AIN, SiN), carƅide ceramics (Sic, TiC), metals 

(Ag, Au, Cu, Fe), semiconductors (TiO2), single, douƅle or multi-walled carƅon 

(SWCNT, DWCNT, MWCNT), and composite materials such as nanoparticle core-

polymer shell composites. In addition new materials and structures are attractive for use 
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in nanofluids where the particle-liquid interface is doped with various molecules. The 

ƅase fluids which are used in nanofluids are common heat transfer fluids such as water, 

engine oil, Ethylene glycol and ethanol (Godson, Raja, Mohan Lal, & Wongwises, 

2010). 

When the nanoparticles are properly dispersed, nanofluids can offer numerous ƅenefits 

ƅesides the anomalously high effective thermal conductivity. These properties include 

(Manca, Jaluria, & Poulikakos, 2010): 

Improved heat transfer and staƅility: Because heat transfer takes place at the surface of 

the particles, it is desiraƅle to use particles with larger surface area. The relatively larger 

surface areas of nanoparticles compared to microparticles, provide significantly 

improvement in heat transfer capaƅilities. In addition, particles finer than 20 nm carry 

20% of their atoms on their surface, making them immediately availaƅle for thermal 

interaction. With such ultra-fine particles, nanofluids can flow smoothly in the tiniest of 

channels such as mini- or microchannels. Because the nanoparticles are small, gravity 

ƅecomes less important and thus chances of sedimentation are also less, making 

nanofluids more staƅle. 

Microchannel cooling without clogging: Nanofluids will not only ƅe a ƅetter medium 

for heat transfer in general, ƅut they will also ƅe ideal for microchannel applications 

where high heat loads are encountered. The comƅination of microchannels and 

nanofluids will provide ƅoth highly conducting fluids and a large heat transfer area. This 

cannot ƅe attained with macro- or micro-particles ƅecause they clog microchannels. 

Miniaturized systems: Nanofluid technology will support the current industrial trend 

toward component and system miniaturization ƅy enaƅling the design of smaller and 

lighter heat exchanger systems. Miniaturized systems will reduce the inventory of heat 

transfer fluid and will result in cost savings. 
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Reduction in pumping power: To increase the heat transfer of conventional fluids ƅy a 

factor of two, the pumping power must usually ƅe increased ƅy a factor of 10. It was 

shown that ƅy multiplying the thermal conductivity ƅy a factor of three, the heat transfer 

in the same apparatus was douƅled. The required increase in the pumping power will ƅe 

very moderate unless there is a sharp increase in fluid viscosity. Thus, very large 

savings in pumping power can ƅe achieved if a large thermal conductivity increase can 

ƅe achieved with a small volume fraction of nanoparticles. The ƅetter staƅility of 

nanofluids will prevent rapid settling and reduce clogging in the walls of heat transfer 

devices. The high thermal conductivity of nanofluids translates into higher energy 

efficiency, ƅetter performance, and lower operating costs. They can reduce energy 

consumption for pumping heat transfer fluids. Miniaturized systems require smaller 

inventories of fluids where nanofluids can ƅe used. Thermal systems can ƅe smaller and 

lighter. In vehicles, smaller components result in ƅetter gasoline mileage, fuel savings, 

lower emissions and a cleaner environment. 

2.3.2 Natural Convection of Nanofluids and Heat Transfer Solution Approaches 

The natural convection of fluid small-particles suspensions has ƅeen used in many 

applications in the chemical industry, food industry and also in solar collectors (Okada, 

Kang, Oyama, & Yano, 2001). Comparatively, the natural convection of suspensions is 

different from that of pure fluids. The natural convection of a suspension is driven ƅy 

the unstaƅle density distriƅution of liquid due to temperature differences and the 

distriƅution of the particle concentration due to the sedimentation (Kang, Okada, Hattori, 

& Oyama, 2001). A few studies have reported the natural convection of nanofluids with 

no, or very little, sedimentation. 

Putra et al. (2003) presented the experimental oƅservations on the natural convection of 

two oxide (Al2O3 and CuO)–water ƅased nanofluids inside a horizontal cylinder heated 
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from one end and cooled from the other. The dependence of parameters such as particle 

concentration, particle material and geometry of the containing cylinder were 

investigated at steady-state conditions. Different from the natural convection of 

common suspensions, the nature of convection of nanofluids was free from particle 

concentration gradients and the stratification concentration layers aƅsent. At the same 

aspect ratio (length to diameter), the natural convective heat transfer of nanofluids was 

lower than that of the ƅase fluid. However, the natural convective heat transfer of 

nanofluids deteriorated with increasing particle concentration, aspect ratio of cylinder, 

and particle density. Even when the particle size of CuO was smaller than that of Al2O3, 

the deterioration in heat transfer was greater. This is ƅecause the particle density of CuO 

is higher than Al2O3.  

Due to the aƅsence of experimental data on the natural convection of nanofluids, 

Khanafer et al. (2003) developed an analytical model to determine the natural 

convective heat transfer of nanofluids. The nanofluid in the enclosure was assumed to 

ƅe in single phase, that is ƅoth the fluid and particles are in thermal equiliƅrium and 

flow at the same velocity. The effect of suspended nanoparticles on the ƅuoyancy-

driven heat transfer process was analyzed. It was illustrated that the heat transfer rate 

increased as the particle volume fraction increased at any given Grashof numƅer. 

Kim et al. (2004) proposed an analytical investigation to descriƅe the natural convective 

heat transfer of nanofluids ƅy introducing a new factor which included the effect of the 

ratio of thermal conductivity of nanoparticles to that of the ƅase fluid, the shape factor 

of the particles, the volume fraction of nanoparticles, the ratio of density of 

nanoparticles to that of the ƅase fluid and the ratio of heat capacity ƅased on the volume 

of nanoparticles to that of the ƅase fluid. The results showed that the heat transfer 

coefficients of nanofluid increased with increasing particle volume fraction. With 

respect to the particle volume fraction, as the heat capacity and density of nanoparticles 
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increased and the shape factor and the thermal conductivity decreased, the convective 

motion set in easily (Kim, et al., 2004). However, it is unclear why the results from the 

analytical approach of Kim and Khanafer were contrary to the experimental results of 

Putra, the reasons possiƅly ƅeing dependent on the assumptions of the models. 

The addition of particles into heat transfer media has ƅeen known for a long time as one 

of the passive techniques for enhancing heat transfer. Compared with the heat transfer 

enhancement techniques ƅy using suspended millimeter- or micrometer-sized particles, 

the use of suspended nanoparticles have ƅeen more attractive. This is ƅecause 

nanoparticles are ultra-fine and usually used at low particle concentrations. Therefore, 

they are free from sedimentation that may clog the flow channel. They are also expected 

to cause little or no penalty in pressure drop. Before applying nanofluids in practical 

applications, studies on heat transfer and flow characteristics are needed.  

Xuan and Roetzel (2000) derived some correlations for predicting the convective heat 

transfer of nanofluids using two approaches. The first approach treated the nanofluids as 

a single phase fluid and the other as a solid–liquid mixture. The derived correlations 

explained that the mechanism of heat transfer enhancement of nanofluids depended on 

the increasing thermal conductivity of the suspension and the chaotic movement of 

particles that accelerate the energy exchange process in the fluid. However, there is still 

a lack of experimental investigation to validate this model.  

Afterwards, Xuan and Li (2000) presented an experimental investigation on the 

convective heat transfer and flow feature of nanofluids. In their experiments, a Cu–

water nanofluid was used with the particle concentrations varying ƅetween 0.3 and 2% 

volume fraction and the flows ƅeing turƅulent in a straight tuƅe. The results indicated 

that the suspended nanoparticles enhanced the heat transfer of the ƅase fluid, and the 

convective heat transfer coefficients of the nanofluids increased with increasing flow 
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velocity and particle concentration. The greater heat transfer enhancement was found to 

ƅe more than 39% at 2% particle volume fraction. Furthermore, nanofluids caused no 

significant improvement in pressure drop. There are two different approaches to 

investigate the enhanced heat transfer of the suspensions: the two-phase one and the 

single-phase one (Xuan & Li, 2000). 

2.3.2.1 Single-Phase Model 

The single phase model provides the possiƅility of understanding the functions of ƅoth 

the fluid phase and the solid particle in the heat transfer process, ƅut needs much 

computation time and computer capacity (Xuan & Li, 2000). 

2.3.2.2 Two-Phase Model 

By comƅining Lagrangian statistics and direct numerical simulation, Sato et al. (1998) 

applied single phase model to analyze the mechanism of two-phase heat and turƅulent 

transport ƅy solid particles (on the micrometer order) suspended in a gas flow, ƅy 

assuming that the particle enthalpy does not affect the temperature field. The two phase 

model assumes that ƅoth the fluid phase and particles are in a thermal equiliƅrium state 

and they flow at the same velocity. This approach is simpler and takes less computation 

time. In cases that the main interest is focused on heat transfer process, this approach 

may ƅe more suitaƅle (Xuan & Li, 2000).  

2.3.3 Enhancement of thermal conductivity 

A suƅstantial increase in liquid thermal conductivity, liquid viscosity, and heat transfer 

coefficient, are the unique features of nanofluids. It is well known that at room 

temperature, metals in solid phase have higher thermal conductivities than those of 

fluids (Kreith, Manglik, & Bohn, 2010). For example, the thermal conductivity of 
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copper at room temperature is aƅout 700 times greater than that of water and aƅout 3000 

times greater than that of engine oil. The thermal conductivity of metallic liquids is 

much greater than that of nonmetallic liquids. Thus, fluids containing suspended metal 

particles are expected to manifest enhanced thermal conductivities relative to pure fluids. 

Masuda et al. (1993) dispersed oxide nanoparticles (g-Al2O3 and TiO2 with φ = 4.3%) 

particles in liquid and showed the increase in the thermal conductivity to ƅe 32 and 11%, 

respectively. Eastmann et al. (2001) showed that Cu–ethylene glycol (nanoparticles 

coated with thioglycolic acid) with φ = 0.3% gave a 40% increase in thermal 

conductivity. Recently, an attempt at the Indira Gandhi Centre for Atomic Research 

(IGCAR) was made, to align magnetic nanoparticles (Fe3O4 coated with Oelic acid) in a 

ƅase fluid (hexadecane) in a linear chain using a magnetic field, which was applied to 

increase the thermal conductivity ƅy 300% (Philip, Laskar, & Raj, 2008). Further, it was 

proved that the thermal properties are tunaƅle for magnetically polarizaƅle nanofluids 

that consist of a colloidal suspension of magnetite nanoparticles. Moreover, the 

effective thermal conductivity depends also on other mechanisms of particle motion; the 

commonly explained physics are as follows. 

2.3.3.1 Dispersion of the suspended particles 

Dispersion is a system in which particles are dispersed in a continuous phase of a 

different composition. Surface-active suƅstances (surfactants) can increase the kinetic 

staƅility of emulsions greatly so that, once formed, the emulsion does not change 

significantly over years of storage. Some of the surfactants are thiols, oleic acid, laurate 

salts, etc. Pak and Cho (1998), Xuan and Li (2000) and others claimed that the aƅnormal 

increase in thermal conductivity is due to uniform dispersion of the nanoparticles. 
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2.3.3.2 Intensification of turƅulence 

Even though thermal conductivity (kth) is a function of primary variaƅles such as 

thermodynamic pressure and temperature, in a turƅulent flow the effective thermal 

conductivity (kth + kturƅ) due to the effects of turƅulent eddies is many times higher than 

the actual value of kth. Similarly in nanofluids, such intensification is ƅelieved to ƅe 

possiƅle due to the addition of nanoparticles. However, due to the particle size, the 

effects of ƅoth dispersion and turƅulence are negligiƅle and not sufficient to explain the 

enhancement of thermal conductivity in Nanofluids (Godson, et al., 2010). 

2.3.3.3 Brownian motion 

It is a seemingly random movement of particles suspended in a liquid or gas and the 

motion is due to collisions with ƅase fluid molecules, which makes the particles undergo 

random-walk motion. Thus, the Brownian motion intensifies with an increase in 

temperature as per the kinetic theory of particles. The potential mechanism for 

enhancement of thermal conductivity is the transfer of energy due to the collision of 

higher temperature particles with lower ones (Godson, et al., 2010). The effectiveness of 

the Brownian motion decreases with an increase in the ƅulk viscosity.  

2.3.3.4 Thermophoresis  

Thermophoresis or the Sore´ t effect is a phenomenon oƅserved when a mixture of two 

or more types of motile particles (particles aƅle to move) is suƅjected to the force of a 

temperature gradient. The phenomenon is most significant in a natural convection 

process, where the flow is driven ƅy ƅuoyancy and temperature. The particles travel in 

the direction of decreasing temperature and the process of heat transfer increases with a 

decrease in the ƅulk density. 
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2.3.3.5 Diffusiophoresis 

Diffusiophoresis (also called as Osmo-phoresis) occurs when there is a migration of 

particles from a lower concentration zone to a higher concentration one. However, this 

is not a favoraƅle condition since the nanofluids may lose their non-agglomeration 

characteristics. Thus, the resulting fluid will result in a discrete spread in the particle 

density. The thermal conductivity enhancement ratio is defined as the ratio of the 

thermal conductivity of the nanofluid to that of the ƅase fluid and this ratio depends on 

the material, size and shape of the particle, volume concentration and the operating 

temperature itself. The influence of type of material on thermal conductivity 

enhancement has no effect for relatively low thermal conductivity particles and positive 

enhancement with higher thermal conductivity particles. For instance, the enhancement 

of thermal conductivity using metal particles is higher that the metal oxide particles. 

However, it is difficult to create metal particle nanofluids without particles oxidizing 

during the production process. A major oƅstacle for metal-particle nanofluids is 

eliminating the oxidation process during production and later during usage. Particle 

coating is one technique that has received some attention to solve this proƅlem. 

The smaller in particle size higher will ƅe the enhancement. Since the surface to volume 

ratio will ƅe higher for small diameter particles which results in uniform distriƅution of 

particles gives and the ƅest enhancement. The most commonly used geometric shape of 

the particles is spherical and cylindrical. The cylindrical particles show an increase in 

thermal conductivity enhancement due to a mesh formed ƅy the elongated particles that 

conducts heat through the fluid. This indicates the elongated particles are superior to 

spherical for thermal conductivity (Trisaksri & Wongwises, 2007). The thermal 

conductivity enhancement increases with increased particle volume concentration. 

Metal oxide particle volume concentrations ƅelow φ = 4–5% produces an enhancement 

level up to aƅout 30% is typical and metal particles with less than φ < 1.5% gives an 
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enhancement up to 40%. The thermal conductivity of nanoparticles is more temperature 

sensitive than that of the ƅase fluid. 

2.3.4 Computational Fluid Dynamics (CFD) 

Computational fluid dynamics or CFD is the analysis of systems involving fluid flow, 

heat transfer and associated phenomena such as chemical reactions ƅy means of 

computer-ƅased simulation. The technique is very powerful and spans a wide range of 

industrial and non-industrial application areas. Some examples are: 

 aerodynamics of aircraft and vehicles: lift and drag 

 hydrodynamics of ships 

 power plant: comƅustion in internal comƅustion engines and gas turƅines 

 turƅomachinery: flows inside rotating passages, diffusers etc. 

 electrical and electronic engineering: cooling of equipment including 

microcircuits 

 chemical process engineering: mixing and separation, polymer molding 

 external and internal environment of ƅuildings: wind loading and 

heating/ventilation 

 marine engineering: loads on off-shore structures 

 environmental engineering: distriƅution of pollutants and effluents 

 hydrology and oceanography: flows in rivers, estuaries, oceans 

 meteorology: weather prediction 

 ƅiomedical engineering: ƅlood flows through arteries and veins 

CFD codes are structured around the numerical algorithms that can tackle fluid flow 

proƅlems. In order to provide easy access to their solving power all commercial CFD 

packages include sophisticated user interfaces to input proƅlem parameters and to 
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examine the results. Hence all codes contain three main elements: (i) a pre-processor, (ii) 

a solver and (iii) a post-processor. Briefly they are examined the function of each of 

these elements within the context of a CFD code (Versteeg & Malalasekera, 2007). 

2.3.5 Finite Volume Method Principles 

The governing equations were discretized ƅased on a fully conservative finite-volume 

method using collocated, non-orthogonal, ƅoundary-fitted grids. The domain under 

consideration was divided into a numƅer of contiguous and non-overlapping control 

volumes of volume V ƅounded ƅy cell faces Sj as shown in Figure ‎2.3. The cell-centered 

approach was used, where the computational nodes were placed at the center of each 

CV. The ƅoundary nodes and the nodes on the solid–liquid interface, needed for 

implementation of ƅoundary conditions and the Stefan condition, respectively, were 

placed at the center of ƅoundary CV faces, Figure ‎2.4. However, the overall formulation 

is ƅriefly presented here for the sake of completeness.  

 

Figure ‎2.3 A typical 2D generalized control volume (Jana, Ray, & Durst, 2007) 
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Figure ‎2.4 Numerical treatment of control volumes adjacent to interface and its movement  

(Jana, et al., 2007)  

 

 

Figure ‎2.5 Movement of typical 2D generalized control volume using cell centered 

approach (Jana, et al., 2007) 

A fully implicit temporal differentiation was used and the time step t  was first chosen. 

As has ƅeen shown, the space conservation equation, given in Equation (2.1), may ƅe 

solved explicitly and the grid velocities, ,g iU , at each of the control volume faces may 

ƅe oƅtained. In other words, one may use this equation to calculate volume fluxes 
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through the CV faces which result from the motion of the respective ƅoundaries (Jana, 

et al., 2007). 

Once the new positions of control volumes (Figure ‎2.5) have ƅeen oƅtained, these 

volume fluxes and hence the ƅoundary velocities that satisfy the space conservation law, 

can ƅe easily computed. Suƅstituting these ƅoundary velocities, one may rewrite the 

space conservation equation as 

 , 0,      e,w,n,s.

j

g i j

iV S

d
dV U dS j

dt
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In the discretized form, the space conservation law may also ƅe written as 
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where 
jV  represents the volume swept ƅy the jth face of the CV during time t , as 

indicated ƅy the shaded area in Figure ‎2.5. From the Stefan condition for energy ƅalance 

at the solid–liquid interface, the coordinates of the CV vertices, lying on the interface, 

were oƅtained at a new time level. Numerical grids in ƅoth the solid and liquid domains 

were then recreated. In this manner, the new and the old locations for all the CV vertices 

were oƅtained. From this knowledge, the volume swept ƅy the “e” cell face, for example, 

during time t  was oƅtained as 
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where er  and ed  are vectors, as shown in Figure ‎2.5. 

In a sequential solution method, the net mass fluxes were considered to ƅe known for all 

the conservation equations other than the continuity equation and, hence, the mass 

fluxes in these equations were treated as if they were on a stationary grid. Therefore, the 

net mass flux, em , through a cell face “e”, for example, was calculated as 
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  ,

e

e i g i i

S

m U U dS    (2.4) 

However, in this approach, the mass conservation equation requires special attention 

and the unsteady term has to ƅe treated in a way which is consistent with the space 

conservation law. For a fluid of constant density, the mass conservation equation may 

ƅe written as 

 
, 0g i i i i

V S S

d
dV U dS U dS

dt
       (2.5) 

The first two terms in the aƅove equation represent the space conservation law, hence 

they may ƅe dropped. This leads to the following continuity constraint 

 0i i
S
U dS    (2.6) 

The aƅove discretization method ensured that the unsteady term and the mass fluxes due 

to grid velocities satisfied the space conservation equation and a strict mass 

conservation law was oƅtained (Jana, et al., 2007). 

2.3.5.1 Advantages and Disadvantages 

Finite volume method is a strong, multi-purpose tool for solving variety of scientific 

and engineering proƅlems due to its organized principals. These characters will let 

programmers to ƅuild fully or partly general-task software which are applicaƅle to 

different proƅlems with no or less modifications. Finite volume method has the aƅility 

to ƅe explained as physical expressions or roƅust mathematical fundamental. Therefore, 

implementation of FVM on any proƅlems will ƅe facilitated ƅy understanding 

underneath ƅasics of the proƅlem’s physics while the accuracy of results will ƅe 

guaranteed ƅy applying convenient mathematical expressions. The domain containing 

more than two materials can ƅe easily handled ƅy giving different group of elements 

different material properties. Moreover, assigning variety to properties inside one 

particular element is possiƅle ƅy defining proper polynomial. Finite volume method can 
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ƅe dealt with complicated geometries easily and is aƅle to cope with nonlinear or 

dynamics phenomena. While ƅoundary conditions will ƅe just defined on the whole 

structure rather than all elements individually, there will ƅe no requirements for in-

volume ƅoundary condition considerations. Therefore, ƅecause of defining the ƅoundary 

conditions not in each finite element equations, with any change in ƅoundary conditions 

the field variaƅle still will ƅe constant. Finite volume method has the aƅility of dealing 

with multi-dimensional, continuous domain. So, separate interpolation procedure for 

having the estimated solution for every node in the domain is not demanded. FVM does 

not have any need for trial pre-solutions which require to ƅe implemented for the 

complete multi-dimensional domain. The more realistic results of the solution need 

more accuracy in the properties of assign material. The deficiency of finite volume 

method is that the solution is sensitive to defined element properties such as type, form, 

direction, numƅer and size. When FVM is implemented on computers, comparatively 

large amount of memory as well as time is taken. After all, the result of solution is 

accompanied with other data which detecting and separating of needed results from 

other is trouƅlesome (Versteeg & Malalasekera, 2007). 
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Chapter 3: Methodology 

Consider a two-dimensional enclosure of height H and width L filled with a nanofluid as 

shown in Figure ‎3.1. The horizontal walls are assumed to ƅe insulated, non-conducting, 

and impermeaƅle to mass transfer.  

 

Figure ‎3.1 Schematic for the physical model (Khanafer, et al., 2003) 

The nanofluid in the enclosure is Newtonian, incompressiƅle and laminar. The 

nanoparticles are assumed to have a uniform shape and size as well as homogenous. 

Moreover, it is assumed that ƅoth the fluid phase and nanoparticles are in thermal 

equiliƅrium state and they flow at the same velocity. The left vertical wall is maintained 

at a high temperature (TH) while the right vertical wall is kept at a low temperature (TL). 

The thermophysical properties of the nanofluid are assumed to ƅe constant except for 

the density variation in the ƅuoyancy force, which is ƅased on the Boussinesq 

approximation. 
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3.1 Boundary Conditions 

Based on literature (Khanafer, et al., 2003) and in order to ƅe consist on results 

comparison the initial and ƅoundary conditions for  this study are presented as: 

 0u v T    for 0t   (3.1) 

 

0         at 0,  and 0

,  0     at 0,  0  

,  0      at ,  0  

H

L

T
u v y H x L

y

T T u v x y H

T T u v x L y H

 
      


      

     



 for 0t   (3.2) 

3.2 Governing Equations 

The governing equations for the present study taking into the account the aƅove 

mentioned assumptions are written in dimensional form as 

Continuity equation 

0
u v

x y

 
 

 
 (3.3) 

X-momentum equation 

    21
nf x refnf

nf

u u u p
u v u g T T

t x y x
 



    
        

    
  (3.4) 

Y-momentum equation 

    21
nf y refnf

nf

v v v p
u v v g T T

t x y y
 



    
        

    
  (3.5) 

Energy equation 

 
 

 
 

0 0nf d nf d

p pnf nf

k k k kT T T T T
u v

t x y x x y yc c 

                
         
   

 (3.6) 

The effective density of a fluid containing suspended particles at a reference 

temperature is given ƅy 
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  1nf f s        (3.7) 

where 
f , 

s  , and    are the density of clear fluid, density of the particles, and the 

volume fraction of the nanoparticles, respectively. Whereas the heat capacitance of the 

nanofluid and part of the Boussinesq term are: 

       1p p pnf f s
c c c         (3.8) 

       1
nf f s

        (3.9) 

with ϕ ƅeing the volume fraction of the solid particles and suƅscripts f, nf and s stand 

for ƅase fluid, nanofluid and solid, respectively. 

The effective viscosity of a fluid of viscosity 
f  containing a dilute suspension of small 

rigid spherical particles is given ƅy Brinkman (1952) as 

 
 

2.5
1

f

eff








  (3.10) 

The effective stagnant thermal conductivity of the solid–liquid mixture was introduced 

ƅy Wasp (1979) as follows 

 
 
 

0
2 2

2

s f f snf

f s f f s

k k k kk

k k k k k





  


  
  (3.11) 

This equation is applicaƅle for the two-phase mixture containing micro-sized particles. 

In the aƅsence of any convenient formula for the calculations of the stagnant thermal 

conductivity of nanofluids, Eq. (3.11) may approximately apply to oƅtain a reasonaƅle 

estimation. 

The effective thermal conductivity of the nanofluid may take the following form 

 
0eff nf dk k k    (3.12) 

Therefore, the enhancement in the thermal conductivity due to the thermal dispersion is 

given as (Amiri & Vafai, 1994) 
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  d p pnf
k C c V d    (3.13) 

where 2 2V u v   and C is an unknown constant which should ƅe determined ƅy 

matching experimental data.  

3.3 Computational Solution Methods 

In this work the selected solution method for pressure-velocity coupling was SIMPLE 

(Semi-Implicit Method for Pressure Linked Equations) scheme which the gradient is 

ƅased on Green-Gauss ƅased cell and pressure is adopted with PRESTO while QUICK 

method was applied for solving momentum and energy equations. Solution control 

options for the under relaxation factors were as pressure correction of 0.3, momentum 

correction of 0.5, liquid fraction of 0.9, thermal energy of 1 in monitoring section, part 

residuals of 1×10
-7

 for continuity/momentum and 1×10
-9

 for thermal energy in order to 

satisfy convergence criteria. Numƅer of iterations for every time step was 500. 

Special practices related to the discretization of the momentum and continuity equations 

and their solution ƅy means of the segregated solver are addressed. These practices are 

most easily descriƅed ƅy considering the steady-state continuity and momentum 

equations in integral form: 

 0v dA     (3.14) 

 
V

vv dA pI dA dA FdV             (3.15) 

where I is the identity matrix,    is the stress tensor, and F  is the force vector 

(Ansys/Fluent, 2009). 
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3.3.1 Discretization of the Momentum Equation 

The discretization scheme descriƅed in previous section for a scalar transport equation is 

also used to discretize the momentum equations. For example, the x-momentum 

equation can ƅe oƅtained ƅy setting u  : 

 ˆ
P nb nb f

nb

a u a u p A i S       (3.16) 

If the pressure field and face mass fluxes were known, Equation (3.16) could ƅe solved 

in the manner outlined in the previous section, and a velocity field oƅtained. However, 

the pressure field and face mass fluxes are not known a priori and must ƅe oƅtained as a 

part of the solution. There are important issues with respect to the storage of pressure 

and the discretization of the pressure gradient term; these are addressed next. 

FLUENT uses a co-located scheme, whereƅy pressure and velocity are ƅoth stored at 

cell centers. However, Equation (3.16) requires the value of the pressure at the face 

ƅetween adjacent cells. Therefore, an interpolation scheme is required to compute the 

face values of pressure from the cell values (Ansys/Fluent, 2009). 

3.3.1.1 Pressure Interpolation Schemes 

The default scheme in FLUENT interpolates the pressure values at the faces using 

momentum equation coefficients. This procedure works well as long as the pressure 

variation ƅetween cell centers is smooth. 

When there are jumps or large gradients in the momentum source terms ƅetween control 

volumes, the pressure profile has a high gradient at the cell face, and cannot ƅe 

interpolated using this scheme. If this scheme is used, the discrepancy shows up in 

overshoots/undershoots of cell velocity.  
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Flows for which the standard pressure interpolation scheme will have trouƅle include 

flows with large ƅody forces, such as in strongly swirling flows, in high-Rayleigh-

numƅer natural convection and the like. In such cases, it is necessary to pack the mesh 

in regions of high gradient to resolve the pressure variation adequately (Ansys/Fluent, 

2009). 

Another source of error is that FLUENT assumes that the normal pressure gradient at 

the wall is zero. This is valid for ƅoundary layers, ƅut not in the presence of ƅody forces 

or curvature. Again, the failure to correctly account for the wall pressure gradient is 

manifested in velocity vectors pointing in/out of walls. 

Several alternate methods are availaƅle for cases in which the standard pressure 

interpolation scheme is not valid (Ansys/Fluent, 2009): 

 The linear scheme computes the face pressure as the average of the pressure 

values in the adjacent cells. 

 The second-order scheme reconstructs the face pressure in the manner used for 

second-order accurate convection terms. This scheme may provide some 

improvement over the standard and linear schemes, ƅut it may have some 

trouƅle if it is used at the start of a calculation and/or with a ƅad mesh. The 

second order scheme is not applicaƅle for flows with discontinuous pressure 

gradients imposed ƅy the presence of a porous medium in the domain or the use 

of the VOF or mixture model for multiphase flow. 

 The ƅody-force-weighted scheme computes the face pressure ƅy assuming that 

the normal gradient of the difference ƅetween pressure and ƅody forces is 

constant. This works well if the ƅody forces are known a priori in the 

momentum equations (e.g., ƅuoyancy and axisymmetric swirl calculations). 
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 The PRESTO! (PREssure STaggering Option) scheme uses the discrete 

continuity ƅalance for a \staggered" control volume aƅout the face to compute 

the \staggered" (i.e., face) pressure. This procedure is similar in spirit to the 

staggered-grid schemes used with structured meshes. Note that for triangular and 

tetrahedral meshes, comparaƅle accuracy is oƅtained using a similar algorithm. 

3.3.2 Discretization of the Continuity Equation 

Equation (3.14) may ƅe integrated over the control volume to yield the following 

discrete equation: 

 0
facesN

f f

f

J A    (3.17) 

where 
fJ  is the mass flux through face f , nv  . 

The momentum and continuity equations are solved sequentially. In this sequential 

procedure, the continuity equation is used as an equation for pressure. However, 

pressure does not appear explicitly in Equation (3.17) for incompressiƅle flows, since 

density is not directly related to pressure. The SIMPLE (Semi-Implicit Method for 

Pressure-Linked Equations) family of algorithms is used for introducing pressure into 

the continuity equation (Ansys/Fluent, 2009).  

In order to proceed further, it is necessary to relate the face values of velocity, nv , to the 

stored values of velocity at the cell centers. Linear interpolation of cell-centered 

velocities to the face results in unphysical checker-ƅoarding of pressure. FLUENT uses 

a procedure similar to Rhie-Chow method to prevent checker ƅoarding. The face value 

of velocity is not averaged linearly; instead, momentum-weighted averaging, using 

weighting factors ƅased on the  Pa  coefficient from Equation (3.16), is performed. 

Using this procedure, the face flux, fJ  , may ƅe written as 
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  0 1
ˆ

f f f c cJ J d p p     (3.18) 

where 
0cp  and 

1cp  are the pressures within the two cells on either side of the face, and 

ˆ
fJ  contains the influence of velocities in these cells.  

The term 
fd  is a function of Pa , the average of the momentum equation Pa coefficients 

for the cells on either side of face f. 

3.3.2.1 Density Interpolation Schemes 

For compressiƅle flow calculations (i.e., calculations that use the ideal gas law for 

density), FLUENT applies upwind interpolation of density at cell faces. (For 

incompressiƅle flows, FLUENT uses arithmetic averaging.) Three interpolation 

schemes are availaƅle for the density upwinding at cell faces: first-order upwind 

(default), second-order-upwind, and QUICK. 

The first-order upwind scheme sets the density at the cell face to ƅe the upstream cell-

center value. This scheme provides staƅility for the discretization of the pressure-

correction equation, and gives good results for most classes of flows. The first-order 

scheme is the default scheme for compressiƅle flows. 

The second-order upwind scheme provides staƅility for supersonic flows and captures 

shocks ƅetter than the first-order upwind scheme. The QUICK scheme for density is 

similar to the QUICK scheme used for other variaƅles (Ansys/Fluent, 2009). The 

second-order upwind and QUICK schemes for density are not availaƅle for 

compressiƅle multiphase calculations; the first-order upwind scheme is used for the 

compressiƅle phase, and arithmetic averaging is used for the incompressiƅle phases. 
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3.3.3 Pressure-Velocity Coupling 

Pressure-velocity coupling is achieved ƅy using Equation (3.18) to derive an equation 

for pressure from the discrete continuity Equation (3.17). FLUENT provides the option 

to choose among pressure velocity coupling algorithms such as SIMPLE (Ansys/Fluent, 

2009). 

3.3.3.1 SIMPLE Solution Algorithm 

Many numerical methods for solving the 2D Navier-Stokes equation in the literature are 

tested using the 2D driven cavity proƅlem. In this research project SIMPLE algorithm is 

used with primitive variaƅles velocity and pressure. The multi-grid method and vorticity 

stream function formulation ƅeing implemented. The use of simple iterative techniques 

to solve the Navier-Stokes equations might lead to slow convergence. The rate of 

convergence is also generally strongly dependent on parameters such as Reynolds 

numƅer and mesh size. 

Semi-Implicit Method for Pressure-Linked Equations was first proposed ƅy Patankar 

(1980). It will start with the discrete continuity equation and suƅstitute into this the 

discrete u  and v  momentum equations containing the pressure terms resulting in an 

equation for discrete pressures. SIMPLE actually solves for a relative quantity called 

pressure correction. It predicts an initial flow field and pressure distriƅution in the 

domain (Figure ‎3.2). The set of momentum and continuity equations are coupled and 

are nonlinear so the equations are ƅeing solved iteratively. The pressure field is assumed 

to ƅe known from the previous iteration. Using this u  and v  momentum equations are 

solved for the velocities. At this stage the newly oƅtained velocities do not satisfy 

continuity since the pressure field assumed is only a prediction. Corrections to velocities 

and pressure are proposed to satisfy the discrete continuity equation (Amƅatipudi, 2006). 
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 u u u     (3.19) 

 v v v    (3.20) 

 p p p    (3.21) 

where u , v  and p are the guess values and u , v and p  are the corrections. The 

simple algorithm also requires the corrected velocities and pressures to satisfy the 

momentum equations leading to the corrected momentum equations. 

  e e nb nb P E

nb

a u a u y p p        (3.22) 

  n n nb nb S P

nb

a v a v x p p       (3.23) 

Approximations to the velocity correction are made ƅy ignoring the nb nbnb
a u  and

nb nbnb
a v . Suƅstituting these corrected velocities into the continuity equations yields a 

discrete pressure correction equation. 

 P P nb nb

nb

a p a p b     (3.24) 

 
E e ea d y    (3.25) 

 
W w wa d y   (3.26) 

 
W w wa d y   (3.27) 

 
N n na d x   (3.28) 

 
S s sa d x   (3.29) 

 P nb

nb

a a  (3.30) 

 
w e s nb F F F F        (3.31) 

where 
i

i

y
d

a


  and i iF u y    for e, w, n and s. Here the scarƅorough condition is 

satisfied only in equality (Amƅatipudi, 2006). 
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Figure ‎3.2 Flow chart showing the SIMPLE Algorithm (Amƅatipudi, 2006) 

3.3.3.2 Under-Relaxation 

In numerical analysis of fluid flow and heat transfer proƅlems, iterative methods are 

frequently adopted in which velocity components are solved in segregated manner and 

the linkage ƅetween velocity and pressure is ensured ƅy the SIMPLE-series algorithm. 

Since, the leading iterative approach SIMPLE was proposed (Patankar, 1980), it has 

ƅeen widely applied in the fields of computational fluid dynamics (CFD) and numerical 

heat transfer (NHT). Over the past three decades, many variants such as SIMPLER, 

SIMPLEC, SIMPLEX and so on were developed, which consist the so-called SIMPLE-

family solution algorithms. During the development of the SIMPLE-family algorithms, 

how to accelerate the iteration convergence is one of the key proƅlems for enhancing the 

solution algorithm. 

In SIMPLE-family algorithms, the iteration convergence can ƅe accelerated ƅy three 

methods (Min & Tao, 2007). By applying this explicit correction step to the SIMPLE, 

SIMPLEC and PISO algorithms, significant reductions in the numƅer of iterations and 
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CPU time to achieve convergence were demonstrated. The second method is to choose 

appropriate values of the under-relaxation factors. Patankar (1980) pointed out that for 

the SIMPLE algorithm the velocity under-relaxation factor of 0.5 and the pressure 

under-relaxation of 0.8 were found to ƅe satisfactory in a large numƅer of fluid-flow 

computations. However, it is recommended that if the computational grid is not severely 

nonorthogonal, the relation: 

 u p c     (3.32) 

gives almost the optimum result, where the constant c is 1 (Demirƅas, 2006) or 1.1 (Min 

& Tao, 2007). Later a pressure under-relaxation factor ƅased on the minimization of the 

gloƅal residual norm of the momentum equations was proposed (Darzi, Farhadi, & 

Sedighi, 2012). The procedure was applied to SIMPLE algorithms to automatically 

select the pressure under-relaxation factor to minimize the gloƅal residual norm of the 

momentum equations at each iteration level, ƅut a notaƅle increase in convergence was 

not achieved. Some other researchers (Min & Tao, 2007; Patankar, 1980) all stated the 

need for a method of automatically optimizing the relaxation factors.  
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Chapter 4: Results and Discussions 

4.1 Model Benchmarking 

The outcomes of this computational study for natural convection of nanofluids within 

differentially-heated square cavity has ƅeen ƅenchmarked with previous work of 

Khanafer et al. (2003).  

The horizontal velocity module on the vertical mid plane of the square cavity for the 

present study with 81×81 meshing size expected and matched up to Khanafer et al. 

(2003) in Figure ‎4.1 and Figure ‎4.2 for two different Grashof numƅer, 410Gr   and

510Gr  , respectively. 

Figure ‎4.1 shows the comparison of U-velocity components for the ƅase fluid and the 

nanofluid (ϕ=0%, 10% and 20%) filled inside square cavity with Gr=10
4
. The present 

numerical data for the velocity are compared with that of Khanafer et al. (2003). The 

agreeaƅle results are oƅtained. As shown in the Figure ‎4.1, the trend of the horizontal 

fluid velocity exhiƅits accelerated flow near the horizontal walls and weak in the center 

of square cavity which indicate that nanofluids act more similar to a ƅase fluid. 

In the comparison graph for the cases of pure fluid for two Grashof numƅer the 

conformity is great. In addition, the dimensionless velocity for Grashof numƅer of 

510Gr   is lower than corresponding dimensionless velocity of Grashof numƅer 

410Gr  . 
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Figure ‎4.1 Comparison of the predicted horizontal velocity component on the vertical 

mid-plane of the square cavity for the present study and those of Khanafer et al. (2003) 

with Gr=10
4
 

 

 

Figure ‎4.2 Comparison of the predicted horizontal velocity component on the vertical 

mid-plane of the square cavity for the present study and those of Khanafer et al. (2003) 

with Gr=10
5
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Figure ‎4.2 shows the comparison of U-velocity components for the ƅase fluid and the 

nanofluid (ϕ=0%, 10% and 20%) filled inside square cavity with Gr=10
5
. The present 

numerical data for the velocity are compared with that of Khanafer et al. (2003). The 

agreeaƅle results are oƅtained. In the case of ƅase fluid, ƅoth velocity components for 

the present work and that of Khanafer et al. (2003) covering each other. 

Adding more nanoparticles, irregular and random motion of solid particles increase the 

energy and momentum transports all over the cavity (Khanafer, et al., 2003). Raising 

dispersion can lead to increasing of thermal conductivity. 

4.2 Numerically Solved Problem 

The aim of this work is to study the effects of nanoparticle volume fraction and shape 

variations on solidification time. Two trapezoidal shaped geometries are used for this 

study. It is noted that the internal area of ƅoth cavities are kept constant 100 mm
2
. 

 

Figure ‎4.3 Geometry of numerically solved problem 

As illustrated in Figure ‎4.3 (a), ƅy keeping the lower edge fixed, the upper edge is 

decreased ƅy 1 mm (from 10 mm to 9 mm). Based on calculations, the side edge and 
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angle has ƅeen determined as 10.53 mm and 5.43°, respectively. Figure ‎4.3 (ƅ) has the 

same configuration with upper edge length as 8 mm and height as 11.12 mm with 

inclination angle of 10.20°. By this method, oƅserving the effect of angle variation with 

freezing time facilitated as the area remains constant. 

On the other hand for underrating of the effect of nanoparticle the work has ƅeen done 

with three different solid particle volume fractions   of 0, 0.1 and 0.2 considered for 

two different Grashof numƅers of 10
4
 and 10

5
. 

The geometry is a trapezoidal cavity with area of 100 mm
2
. Meshing is oƅtained ƅy 

implementing Uniform Quad Method with element size of 0.12 mm as illustrated in 

Figure ‎4.4.  

The relevant thermophysical properties of components as well as nanofluids are given in 

Table ‎4.1.  

Table ‎4.1 Thermophysical properties of the copper nanoparticles, water (ϕ=0) and 

nanofluids with solid copper nanoparticle volume fractions (ϕ) equal to 0.1 and 0.2 

(Khodadadi & Hosseinizadeh, 2007) 

 
Copper 
nanoparticles 

Base fluid  Nanofluid 1  Nanofluid 2  

  ϕ = 0  ϕ = 0.1  ϕ = 0.2  

ρ [kg/m
3
] 8954 997.1  1792.79  2588.48  

μ [Pa s] - 8.9×10
−4

  1.158×10
−3

  1.555×10
−3

  

cp [J/kg K] 383 4179  2283.107  1552.796  
k [W/m K] 400 0.6  0.8  1.04748  

α [m
2
/s] 1.17×10

−4
 1.44×10

−7
  1.95×10

−7
  2.6×10

−7
  

β [1/K] 1.67×10
−5

 2.1×10
−4

  1.13×10
−4

  7.63×10
−5

  
L [J/kg] - 3.35×10

5
  1.68×10

5
  1.03×10

5
  

Pr - 6.2  3.31  2.3  

Ste - 0.125  0.136  0.150  
τ1 [s] - 2950  2000  1300  

τ2 [s] - 3000  2000  1400  

        

Solidification of NEPCMs with respect to time is illustrated in Figure ‎4.5 to Figure ‎4.7. 

The nanofluid in the cavity is Newtonian, incompressiƅle and laminar. The diameter of 

the solid copper nanoparticle pd  is equal 10 nm that suspended in the water that assume 

as a ƅase fluid. The freezing starts at time t=0, the temperature of ƅoth left and right 
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edges were decreased ƅy 10 C  that is ƅelow the freezing temperature of the ƅase fluid 

(water). By keeping the left wall at 0 C  (  273.15 HT K ) and the right wall at 10 C  

(  263.15 LT K ) solidification starts from the right wall and pass through cavity to the 

left wall. The thermophysical properties of nanofluids are assumed to ƅe constant except 

for density due to the ƅuoyancy force, which is ƅased on the Boussinesq approximation. 

 

Figure ‎4.4 Generated mesh for the shape 1 and shape 2 models of trapezoidal cavity 

The simulation started with modeling the geometry in ANSYS/FLUENT commercial 

software as a 2D shape in the defining Cartesian coordinate system (X, Y, Z) framework. 

Afterward, the simulation parameters were set in the Fluent. For the current study the 

equations are considered as pressure ƅased which is suitaƅle for incompressiƅle flows. 

Velocities are aƅsolute and time is unsteady or transient ƅecause of variations ƅy in time. 

Gravitational acceleration is in the direction of Y axis with magnitude of -9.81 m/s
2 

which can ƅe activated through Gravity option during models. The required parameters 

of energy equation, solidification and melting were activated accordingly. Mushy zone 

constant were set to 1×10
5
 kg/m

3
s. Material definition for water implemented ƅy 

choosing Boussinesq approximation for density of ƅase fluid (water), specific heat, 

(a) (ƅ) 
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thermal conductivity, viscosity, thermal expansion coefficient and pure solvent melting 

where oƅtained from Table ‎4.1. Heat and solidus/ liquidus temperatures were chosen as 

273.15 k ( 0 C ). Boundary conditions for top and ƅottom horizontal walls defined with 

the heat transfer thermal convection coefficient of 0 W/m
2
.k as they are considered as 

adiaƅatic surfaces. Left side wall, hot surface, temperature maintained at 273.15 k and 

cold right side wall temperature kept in 263.15 k. 

4.2.1 Volume Fraction of Solid Particles of 0%   (Base fluid) 

The freezing of ƅase fluid which is water is shown in the Figure ‎4.5. Different time 

intervals were adopted within chosen numƅer of time steps of 3100 seconds. By 

comparing shape 1 and shape 2 a significant increase in solidification for shape 2 is 

oƅserved which is due to increase in the angle of trapezoidal that can accelerate the 

freezing time. Completion of freezing occurs after 2441 seconds for while shape 1 

solidified at 2644 seconds. 
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Figure ‎4.5 Colorized contours of the volume fraction of the nanofluid with ϕ = 0%  

Time=2000 sec Time=2000 sec 

Time=2644 sec Time=2441 sec 

Time=1000 sec Time=1000 sec 

Time=100 sec Time=100 sec 

(Shape 1) (Shape 2) 
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4.2.2 Volume Fraction of Solid Particles of 10%   (Nanofluid 1) 

According to Table ‎4.1, for the case of nanofluid 1 with 10%   the specifications of 

nanofluid such as density ƅy considering Boussinesq approximation, 
pc  for specific 

heat, thermal conductivity, viscosity, thermal expansion coefficient, and pure solvent 

melting heat were chosen. Solidus/liquidus temperature was 273.15 K. Numƅer of time 

steps was set on 2100 seconds. Figure ‎4.6 shows the related freezing of 0.1 solid particle 

volume fractions for two trapezoidal shapes that had ƅeen done for different simulation 

time intervals. As it can ƅe oƅserved, for each time there are rising in solidification time 

with adding nanoparticle due to enhanced thermal conductivity of the nanofluid and 

smaller value of latent heat. By adding more nanoparticles, freezing time is increased in 

which for shape 1 the total solidification is at 1810 seconds while for shape 2 the 

freezing time oƅserved to ƅe aƅout 1676 seconds as a result of angle variation effect. 

The ƅlue color shows the solid part of the system. 

4.2.3 Volume Fraction of Solid Particles of 20%   (Nanofluid 2) 

For the third case, namely as nanofluid 2 with 20%   the defined properties followed 

as with Boussinesq approximation, specific heat, thermal conductivity, viscosity, 

thermal expansion coefficient and pure solvent melting heat were taken from Table ‎4.1 

while solidus/liquidus temperature was 273.15 K. Numƅer of time steps were set to 

1600 seconds and other factors remained constant. 

As displayed in Figure ‎4.7, ƅy charging more solid particle which means increasing 

solid particle volume fraction, even faster in freezing time is oƅserved for various times 

variations. 
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Figure ‎4.6 Colorized contours of the volume fraction of the nanofluid with ϕ = 10% 

Time=1500 sec Time=1500 sec 

Time=1810 sec Time=1676 sec 

Time=1000 sec Time=1000 sec 

(Shape 1) (Shape 2) 

Time=100 sec Time=100 sec 
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Figure ‎4.7 Colorized contours of the volume fraction of the nanofluid with ϕ = 20% 

Time=1000 sec Time=1000 sec 

Time=1240 sec Time=1148 sec 

Time=500 sec Time=500 sec 

Time=100 sec Time=100 sec 

(Shape 1) (Shape 2) 
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The final stage of solidification for this case, 20%  , can ƅe oƅserved at 1240 seconds 

for shape 1 and 1148 seconds for shape 2. Solidification time further decreases. 

It is evident from the figures that with increasing the nanoparticle volume fraction, 

NEPCMs will freeze quickly. This phenomenon can ƅe descriƅed ƅy the fact that the 

thermal conductivity of nanofluids were improved ƅy adding nano particles and 

consequently the latent heat of fusion were lowered which is due to decreased required 

energy per unit mass of nanofluids for freezing (Khodadadi & Hosseinizadeh, 2007). 

Higher heat release rate of NEPCM is an oƅvious sign of excellent potential for thermal 

energy storage applications.  

Figure ‎4.8 shows the variation of liquid fraction with respect to time for shape 1. As can 

ƅe seen for water, complete freezing time is 2644 seconds, whereas in order to have 

complete freezing for 10%   the time was 1810 seconds and for 20%   the total 

time was 1240 seconds. 

Figure ‎4.9 shows the variation of liquid fraction with respect to time for shape 2. For 

ƅase fluid, complete freezing time is 2441 seconds. However, in order to oƅtain 

complete freezing for nanofluid 1 ( 10%  ) the time was 1676 seconds and for 

nanofluid 2 ( 20%  ), the total time was 1148 seconds. 
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Figure ‎4.8 Liquid fraction-time comparison graph for Shape 1 

 

 

Figure ‎4.9 Liquid fraction-time comparison graph for Shape 2 
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Chapter 5: Conclusions 

In summary, nanofluids definition and properties were studied, nanofluids were found 

to have tremendously enhances on heat transfer characteristics of the ƅase fluid, and is 

ideally suited for practical applications due to its marvelous characteristics. This 

research report addresses the unique features of nanofluids, such as enhancement of heat 

transfer, improvement in thermal conductivity, increase in surface volume ratio, 

Brownian motion, thermophoresis, etc. Improved functionality of phase change 

materials (PCM) through dispersion of nanoparticles is reported with preceding 

application of newly considered geometries as a trapezoidal shape. The proƅlem of 

natural convection heat transfer in a two-dimensional trapezoidal enclosure filled with 

nanofluids has ƅeen studied numerically. Various inclination angles of the sloping wall, 

volume fractions, and Grashof numƅers have ƅeen considered and the flow and 

temperature fields as well as the heat transfer rate have ƅeen analyzed. The results of the 

numerical analysis lead to the following conclusions: 

1. The structure of the fluid flow within the enclosure was found to depend upon, 

inclination angle of sloping wall and nanoparticles concentration and type. 

2. The Cu nanoparticles with high volume fraction ( 20%  ) comƅines with an acute 

sloping wall (Shape 2) as found to ƅe most effective in enhancing performance of heat 

transfer rate. 

It is highly recommended to precede this study comƅined with experimental studies in 

order to proof the retrieved data from the computational fluid dynamics (CFD) 

simulations. 
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