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ABSTRACT 

Renewable Energy is one of the major contributors in fulfilling the world’s 

energy demand. Biomass is one of the renewable energy sources which are currently 

being exploited by the community. Palm oil industries use the waste from processed 

palm fruits, shell and empty fruit bunch as fuel to generate steam in order to cook the 

fresh fruits and generate power for the whole plant. Tropical climate in Malaysia 

provides the best platform for the palm trees to grow and maintain Malaysia’s ranking 

as second largest palm oil producer in the world. Stoker firing water tube boilers are 

used widely in the mills as it is the best method that converts the chemical energy in the 

fuel through combustion into mechanical energy which runs the turbine to generate 

electricity. A comprehensive review have been done through this paper on the existing 

design, fuel, heat transfer, heat losses and CFD studies of biomass boiler. The heat 

transfer and heat losses in the boiler due to biomass combustion have been analysed and 

studied thoroughly in the literatures. The present design of boiler used in the tropical 

countries is based on the empirical data from western countries due to lack of tropics 

data’s. Higher temperature, humidity and wind velocity of tropical climate impact on 

the boiler and its component efficiency were studied. Other than that the effect on fuel 

demand and the heat transfer in the components were also studied. An actual running 

unit in Casanare, Colombia which is in tropical zone were selected and simulated for the 

study. The cost impact and the payback period were determined for the best and worst 

climate condition that happens in the tropics. 
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ABSTRAK 

 

Tenaga boleh ganti merupakan salah satu alternatif yang boleh digunakan untuk 

memenuhi keperluan tenega di sisi masyarakat dunia. Industri sawit merupakan salah 

satu contoh industri yang menggunakan hampas kelapa sawit yang merupakan salah 

satu sumber tenaga bagi tujuan memasak buah sawit dan menjana kuasa untuk 

keseluruhan kilang. Cuaca Khatulistiwa yang sememangnya sesuai untuk penanaman 

sawit menjadikan Malaysia sebagai pengeluar sawit kedua terbesar di dunia selepas 

Indonesia. Dandang merupakan salah satu komponen mekanikal yang digunakan secara 

meluas di industry sawit untuk mengubah tenaga kimia yang terkandung di dalam 

hampas kelapa sawit kepada tenaga mekanikal untuk menjana kuasa. Rumusan 

mendalam telah dibuat bagi tujuan mengenalpasti rekabentuk sedia ada dandang, bahan 

api, kadar kehilangan haba serta analisa sedia ada dinamik bendalir dandang. Kadar 

kehilangan haba dandang merupakan aspek penting yang ditekankan di dalam rumusan. 

Rekabentuk dandang yang sedia ada adalah berdasarkan data kajian yang diperolehi 

daripada negara bermusim dan tiada data yang diperolehi daripada kawasan tropika. 

Impak kawasan tropika yang mempunyai suhu yang panas dan lembap sepanjang tahun 

terhadap tahap efisien dikaji. Selain daripada itu kesannya terhadap pengunaan bahan 

bakar turut dikaji. Sebuah dandang berkapasiti 35 tan/jam bertempat di 

Casanare,Colombia telah diambil sebagai model untuk kajian ini. Impak cuaca terhadap 

tempoh bayaran balik bagi dandang dibuat dengan membandingkan penjimatan kos bagi 

keadaan terburuk dan terbaik. 
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CHAPTER 1: INTRODUCTION 

 

1.0 Background of Studies 

 

 Steam Generator or better known as “Boiler” is part of daily life where it will be 

used for different purposes such as Production, Palm oil mills, Oil and Gas, Power 

Plants, Oleo Chemical Plants and others. Boilers can be categorized into a few types 

which are as follows Fire tube, Water Tube, Combination Boiler, Hot water Boiler, 

Thermal Oil Heater and others. These Boilers are specified according to industries, 

capacity, cost and availability of space. Boilers fire using organic and non-organic 

materials such as coal, biomass, rubbish, oil and gas to generate hot pressurized steam 

above the atmospheric pressure. Boiler converts the chemical energy in the fuel via 

combustion into thermal energy, which will be used to boil water in the steam drum 

continuously until steam produced. A good boiler design should fulfil the 

thermodynamics, heat transfer and environmental requirements in order to save cost and 

prevent pollution.  

The demand for electricity has become higher as the industries blooming 

particularly in tropical country like Malaysia. The growing number of oil palm related 

industries and power plants also affected the demand for electricity but the location of 

these industries has limited the access of electricity supplies. Boilers or Steam 

generators have given an alternative solution in order to tackle this kind of situation but 

fuel has become a restriction since there is a limitation on the availability and the high 

rising cost. Biomass boilers preferred nowadays especially in the power generation 

industries since the availability, cost and environmental effect are better compared to 

the coal, oil and gas fired boilers. The main concern of Biomass boiler is to give the 

same efficiency as the fossil fuel fired boilers because of the heating value is lower. The 
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efficiency of boiler will enable it to convert the chemical energy from combustion into 

heat energy to generate steam. The efficiency of biomass boilers can be maintained or 

improved by minimizing the factors that affect the performance such as heat losses in 

the equipment. 

The impact of tropical climate towards the boiler and its component efficiency 

has yet been studied. Study on tropical climate impact which is known for high ambient 

temperature and humidity towards boiler efficiency will become a novel approach 

which can be used to improve boiler designs in the tropical region.  
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CHAPTER 2: RESEARCH OBJECTIVES 

 
 

The objective of this research is will be mainly focusing on optimizing the design of a 

field erected water tube boiler based on the tropical climate. In order to achieve this 

there is few aspects need to be clarified such as:    

 

 

i) Ambient temperature and relative humidity effect on boiler efficiency. 

 

Tropical climate has high temperature and humidity for the whole year and the 

impact of this factor will be studied. The heat loss due to climate effect will be 

determined by using the Power Test Code (PTC 4.1).   

  

ii) Ambient temperature and relative humidity effect on fuel consumption 

 

Reduction in efficiency causes the fuel consumption to increase and this will 

directly affect the cost. Tropical climate impact on the fuel consumption will be 

studied and analyzed for different ambient temperature and humidity. 

 

iii) Ambient temperature and relative humidity effect on Boiler Heat Transfer 

 

Radiation and convection are the main heat transfer mechanism in the boiler while 

conduction plays a minor role. High temperature and humidity in tropical increases 

the moisture content in the air where higher sensible heat is found. The impact of 

the moisture content in the air and flue gas towards the efficiency of boiler 

components will be studied and discussed. Furthermore the effect of those 

parameters towards the heat transfer surfaces will be discussed. 
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iv)  Cost analysis and payback period 

 

The payback period for the boiler will include the Boiler cost, installation, 

commissioning and labour cost for a period of 15 years. Surplus fibre and shell 

from fuel saving normally sold to other boiler companies, industries that is 

producing mattresses and agriculture farms or used to produce biogas. The 

payback period will be calculated based on the selling value of fuel and the 

number of additional days for production results from the fuel saving. The impact 

of humidity and ambient temperature will be studied for these different conditions. 
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CHAPTER 3: LITERATURE REVIEW  

 

 

3.0 General Design of a Biomass Boiler 

 

 

Figure 3.1: Okutech Bi-Drum boiler 

 

3.1 Systems in Boiler 

Boiler is a complete system that comprises of air, fuel, water and control system which 

enable it to operate at its best efficiency. 

 

 

3.1.1 Air & Draft System 

 

Air system in the boiler comprises of forced draft air, induced air and 

combustion air supply or better known as the secondary air supply. Forced draft air is 

normally preheated in order to eliminate the moisture content in the air and to dry out 

the fuel in the furnace. The forced draft air is supplied through under the grate and 



 6

normally creates positive draft in the furnace [1]. Induced draft fan brings out the 

combustion products or flue gas through the stack and creates negative pressure in the 

furnace in order to prevent back fire [1]. The flue gas will pass through the super heater, 

convection bank, economizer and air preheater before it is taken out through the stack. 

The secondary air provides additional combustion air required in order to make sure 

almost stoichiometric combustion achieved. The secondary air normally supplied on top 

of the flame which will cause turbulence effect to take place and result into better 

combustion[1]. Introduction of secondary air is an important breakthrough in boiler 

combustion engineering [2-4]. 

 

 

3.1.2 Combustion System 

 

Chemical energy in a biomass converted into heat energy by using few methods such as 

direct firing, gasification, co-firing and others. The easiest method is by using direct 

firing where the biomass material will be burned in the combustion chamber or furnace 

[5-7]. The heat from biomass combustion will be exploited to produce steam in a boiler. 

Since direct firing is an inefficient way of converting energy, a more advanced approach 

known as biomass gasification can be used. This method employs a partial combustion 

process where it converts the fuel into a combustible gas. These gases can be used to 

replace natural gas even though it has lower energy content. Biomass gasification 

promises high efficiency and offers the best option for future of biomass-based power 

generation as it is still under development [8-10]. Co-firing of coal and biomass can also 

be considered as another way of increasing the efficiency of biomass fuel.  

Grate firing is a favourite choice used to convert chemical energy in biomass 

into heat through direct firing [11]. A spreader stoker system will throw the fuel 
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uniformly on the grate .Fines will ignite and burn in suspension while the bigger particle 

will drop in the thin fast burning bed [3, 12]. This will cause the fuel to be evenly 

distributed across the active grate area. Grate firing widely used to burn coal or solid 

wastes because the  advantage of this method is simple construction, easy handling and 

flexible but the disadvantage of this firing method is low thermal efficiency compared 

to other methods [13]. 

 

 

3.1.3 Feed Water System. 

 

The feed water system comprises of makeup water for the boiler, chemical 

treatment system, deaerator and economizer. Make up water for the boiler need to 

undergo some treatment before it can be supplied to the boiler which is important to 

prevent erosion and cavitation in the drum and tubes[1]. Deaerator removes oxygen 

which is an important agent for corrosion from the water supply. The water temperature 

will increase during this process before being supplied to the boiler. 

 

 

3.2 Components in a Biomass Grate Fired Boiler. 

 

3.2.1 Furnace. 

 

Furnace is the main component in a biomass boiler because this is where the fuel 

is burned and combustion takes place[14]. The wall of furnace consists of water and 

steam cooling carbon steel or low alloy steel in order to maintain the temperature within 

an acceptable limit. The tubes were connected at the top and bottom by headers or 
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manifolds. Current furnace design has implemented a membrane wall type where it 

helps to reserve the thermal energy needed compared to the spaced tube furnace which 

have been used as the main furnace construction for many years [15]. The membrane 

wall furnace provides a cooler furnace which will protect the cast iron used in the grate 

construction from being damaged and prevent leakage by giving a tight gas enclosure. 

Furnace contributes to the highest exergy destruction rate in a boiler where 19,270.8 

kJ/s of energy have been destroyed while 10,320 kJ/s of exergy destructed. 

Furthermore, energy loss in the heat exchanging equipment was 22.5% but exergy loss 

is about 52% where combustion gases carries away 9.2% of heat [16]. 

 

 

3.2.2 Grate   

 

A biomass boiler requires grate for a uniform combustion where the fuel will be 

thrown evenly on top of it. Other than that the air has to be supplied uniformly through 

the grates to release the energy under optimum condition. A grate design that is highly 

resistant to air flow is desirable to achieve even air distribution across the surface and 

even combustion conditions. Combustion grates existing today are from the continuous 

ash discharge type and classified as Pin Hole or fixed grate, Vibrating grate, Travelling 

Grate and Reciprocating grate. The type of grate will vary based on the type of fuel used 

to provide a better combustion and efficiency other than the cost. Vibrating Grate 

provides a better combustion platform compared to the fixed grate and Travelling grate 

because it provides an intermittent vibration which helps to distribute the fuel evenly for 

complete combustion[17].Reciprocating Grate is divided into four zones which are 

Moist fuel inlet, Fuel drying and ignition, Combustion and finally de-ashing. The 

ignition of the moist fuel starts from the flame and furnace wall radiation which is 
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transported against the airflow [12]. The grate fired biomass boilers have its advantage 

to control emissions due to incomplete combustion or NOx by increasing the fuel 

residence time in the combustion zone [3]. Table 3.1 shows the difference between 

grates used for biomass combustion. 

 

 

 

                       Table 3.1: Different type of grates and their characteristics.[3] 

 

 

3.2.3 Drums 

 

Steam drum is one of the main components in a boiler where the water is boiled 

before supplied to the process. The minimum water inlet temperature is at ambient 

temperature and boiled until it reaches saturated temperature. The feed water will be 

heated to an elevated temperature in order to reduce the temperature gap between the 

saturated temperature and the incoming water temperature from deaerator or 

economizer minimizing the amount of energy consumed by the boiler [18]. The 
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selection of material and thickness of the steam drum is crucial because it has to 

withstand high pressure and temperature. Code such as ASME and BS are crucial and 

widely used in calculating the drum thickness and material selection. Mud drum is used 

as a container for mud and sludge in the feed water which is supplied to the boiler. The 

mud is collected in the drum during natural circulation that happens when the 

convection bank is heated by the combustion gas. The water in the tubes boils and 

turned into saturated steam when the tubes are heated by the combustion gas causing the 

pressure to drop and the steam to rise back to the steam drum [1, 18]. 

 

 

3.2.4 Super heater 

 

Super heater is a bank of tubes located at the exit of flue gas from the furnace 

which is known as the radiation area. The saturated steam will pass these banks and the 

temperature will increase due to convective the heat transfer process[1]. The dry 

superheated steam will be sent to the turbine for power generation and pressure reduced 

before sent to the sterilizer. 

 

 

3.2.5 Convection Bank 

 

Convection bank is where the water is circulated by using natural circulation 

from the steam drum and mud drum. The flue gas that exit the furnace will pass the 

convection bank to heat up the water contained tubes and further reduced the 

temperature of the flue gas. Convection bank can be categorized into two types which is 

one pass and three pass Convection Bank. 
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3.2.6 Economizer 

 

Economizer is used in the boiler to heat up the incoming feed water to a certain 

temperature. The heated water will be further boiled in the steam drum until it reaches 

saturated temperature. The use of economizer is preferred because it helps to save the 

fuel consumed. 

 

 

3.2.7 Air Preheater 

 

Air preheater is used to heat up the incoming combustion air in order to remove 

the moisture in the air. Air preheater consists of tubes where the flue gas flows and 

opening for the combustion air. The air preheater used the theory of cross flow heat 

exchanging equipment where the air as the cold fluid outside the tube is heated by the 

hot combustion gas in the tubes. 

 

 

3.3 Boiler Water Circulation 

 

Water-tube boilers can be further differentiated to the method of water circulation which 

is natural circulation boilers and forced circulation boilers. In natural circulation or 

thermal circulation the water will be heated and expands causing the density of the 

water decreases as it changes phase into steam. The gravity will force water in the drum 

to flow downwards and the steam water mixture to flow upwards[1]. Natural circulation 

can be classified into two type which is free or acceleration type. There are four main 

factors that affect the circulation rate of natural circulation which are the height of the 
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boiler, Operating pressure, Heat Input and free flow areas of the component. Forced 

circulation is created by adding a pump to circulate the water and steam mixture rather 

than depending on the density difference. 

 

 
Figure 3.2: Water Circulation in Water Tube Boiler; (a) Simple Natural Circulation Loop,  

                               (b) Simple Forced or Pumped Circulation Loop.[18] 

 

 

3.4 Biomass as Boiler’s Alternative Fuel  

 

Biomass is one of the oldest renewable resources after the sun, hydro and wind 

power which is obtained from live or dead organisms. Biomass is based on carbon and 

mixtures of organic molecules such as hydrogen, oxygen, nitrogen and also other atoms. 

During growth, biomass recycled carbon dioxide by absorbing it from the environment 

and emits it again during combustion which indirectly helps to avoid the greenhouse 

effect  [19, 20]. Biomass fuels can be converted into various forms such as liquid, solid 

and gas with the help of conversion processes that involves physical, chemical and 

biological factors[20]. There are five groups of biomass material that is used for energy 

generation which is virgin wood from forestry or wood processing industries, energy 

crops, agricultural, food and industrial wastes[19, 21, 22]. 
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3.4.1 Ultimate Analysis of Biomass Fuels. 

 

Ultimate analysis helps to identify the content of Carbon, Hydrogen, Nitrogen 

and sulphur in biomass fuels in terms of percentage. Furthermore the fuel properties will 

be used to determine the Calorific value by calculating the percentage C, H, O and the 

environmental impact of biomass. 

 

 

Fuel C H O N S Cl Ref 
 % % % % % %  

Lignite 65.20 4.50 17.50 1.30 4.10 0.4 [20] 
Spruce Wood 51.40 6.10 41.20 0.30 0.0 0.10 [23] 
Hazelnut shell 50.80 5.60 41.10 1.0 0.0 0.20 [23-25] 

Corn cob 49.00 5.40 44.20 0.40 0.0 0.20 [23] 
Corn stover 49.40 5.60 42.50 0.60 0.10 0.30 [23] 

Tobacco Stalk 49.30 5.60 42.80 0.70 0.0 0.20 [23] 
Tobacco leaf 41.20 4.90 33.90 0.90 0.0 0.30 [23] 
Almond shell 47.90 6.00 41.70 1.10 0.06 0.10 [23] 

Sawdust 46.90 5.20 37.80 0.10 0.04 - [23, 26] 
Rice husk 47.80 5.10 38.90 0.10 - - [23] 
Bagasse 44.80 5.40 39.60 0.40 0.01 - [23, 27] 

Palm Kernels 51.00 6.50 39.50 2.70 0.27 0.21 [23] 
Pistachio Shell 48.79 5.91 43.41 - - - [28] 

Cereals 46.50 6.10 42.00 1.20 0.10 0.20 [29] 
Switch grass 42.04 4.97 35.44 0.77 0.18 - [30, 31] 
Rice Straw 38.45 5.28 - 0.88 - - [32] 

Poplar 48.40 5.90 39.60 0.40 0.01 - [27] 
Alfafa stalk 45.40 5.80 36.50 2.10 0.09 - [31] 

Table 3.2: Ultimate analysis of different types of biomass fuels (wt% dry basis). 

 

 

3.4.2 Proximate Analysis of biomass fuels.  

 

Proximate analysis is one of the methods used to identify the percentage of 

volatile matter, fixed carbon and ash contents to study the combustion phenomenon of 

biomass. High ash contents in biomass fuels causes ignition and combustion problems 
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while high amount of carbon and particulates increases the heating value of biomass 

fuel [33]. Fouling and slagging problem happens due to the low melting point of the 

ash.  

 

Fuel C H O N S Cl Ref 
 % % % % % %  

Palm Stem 47.50 5.90 42.50 0.28 0.13 0.18 [34] 
Palm Branch 45.60 5.60 39.30 0.19 0.16 1.33 [34] 
Palm Fibre 52.20 7.10 28.00 0.70 0.07 0.06 [34] 
Palm Shell 51.50 5.70 37.70 0.36 0.03 0.05 [34] 

Coffee Husks 49.40 6.10 41.20 0.81 0.07 0.03 [34] 
Masasi CNS 56.00 6.90 34.70 0.44 0.05 0.03 [34] 
Olam CNS 56.90 7.00 33.60 0.45 0.04 0.03 [34] 
Rice Husks 35.60 4.50 33.40 0.19 0.02 0.08 [34] 
Rice Bran 37.80 5.00 35.40 0.55 0.05 0.09 [34] 
Bagasse 48.10 5.90 42.40 0.15 0.02 0.07 [34] 

Jatropha Seeds 56.60 7.50 27.40 3.16 0.17 0.12 [34] 
Mango Stem 48.00 5.80 41.50 0.13 <0.012 0.03 [34] 

Table 3.3: Ultimate analysis of different types of Tropical biomass fuels (wt% dry basis) 

 
 

Fuel FC VM ASH Ref 
 % % %  

Spruce Wood 29.30 70.20 1.50 [23] 
Hazelnut shell 28.30 69.30 1.40 [23-25] 

Corn cob 11.50 87.40 1.10 [23] 
Corn stover 10.90 84.00 5.10 [23] 

Almond shell 20.71 76.00 3.29 [23] 
Sawdust 15.00 82.20 2.80 [23, 26] 

Rice husk 16.95 61.81 21.24 [23] 
Bagasse 11.95 85.61 2.44 [23, 27] 

Switch grass 14.34 76.69 8.97 [30, 31] 
Rice Straw 15.86 65.47 18.67 [32] 
Alfafa stalk 15.81 78.92 5.27 [31] 

Table 3.4: Proximate analysis of different types of biomass fuels (wt% dry basis) 

 

3.4.3 Heating Value 

 

Heating Value is the energy content available in the biomass fuel which will be 

converted during combustion for steam production [21, 35]. Higher Heating Value 

(HHV) is known as heat release from combustion of a unit fuel mass whether the 
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product of combustion will be in forms of ash ,gaseous Carbon dioxide (CO2),Nitrogen 

(N),Sulphur Dioxide (SO2) and liquid Vapour. Lower Heating Value (LHV) is 

calculated by using HHV where all the water in the combustion product remains as 

vapour[21]. Table 3.5 shows calorific value for different fiber and shell mixture at 7 

different mills in Malaysia. The fuel and ash properties of wood and agricultural 

residues are shown in table 3.6. 

 

 

Table 3.5: Calorific Value of Biomass waste [35]. 

 

 

Table 3.6 : Fuel and ash properties of wood and agricultural residues[36]. 
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3.4.4 Emission from Biomass Combustion. 

 

Emission from biomass combustion such as Nitrogen Oxide (NOx), Sulphur 

Oxide (SOx) and particulate matter is higher compared to oil and gas fired boilers. Eight 

biomass fuel pellets such as  apple pomace (Malus domestica), reed canary grass 

(Phalaris arundinacea), pectin waste from citrus shells (Citrus reticulata), sunflower 

husk (Helianthus annuus), peat, wood and two types of wheat straw pellets (Triticum 

aestivum) have been tested  under standard laboratory condition while DIN plus wood 

pellet tested in real life condition [37]. A 40 kW multi-fuel domestic pellet boiler under 

standard laboratory conditions another two 35 kW boilers in real life conditions were 

used for this testing purposes. The study shows that in normal condition the NOx 

emission higher compared to laboratory conditions but CO and particle emissions were 

lower.  

A semi industrial boiler was used to compare the emission and combustion 

efficiency of various vegetable oils and petro diesel [38]. The effects of oil energy rate 

and the air-fuel ratio on combustion efficiency and emission were analysed to determine 

the outcome of replacing petro diesel with the product of vegetable oils. Biodiesel fired 

boiler performance is found to be similar with petrodiesel at higher energy consumption 

and lower air-fuel ratio. Increase in the combustion air had caused the biodiesel 

combustion efficiency to drop. There is no difference found in CO emission at the fuel 

complete combustion pressure specified [38]. 

Comparisons have been carried out for different air flow rate effect towards the 

combustion efficiency and combustion gas emission at different energy level of 

biodiesel and mixture of biodiesel-diesel [39]. Furthermore from the studies made it is 

found that Biodiesel is more efficient compared to diesel at lower energy level where 

the emission rate is lower compared to diesel except for NOx emission. 



 17

 

Figure 3.3:Summary of the effects of different fuel properties[40]. 

 

 

3.5 Tropical Climate Characteristics 

 

Tropical climate is a climate where the mean temperature for the whole year is 

maintained above 18 °C (64 °F). Tropical climate remains persistent throughout the year 

and the seasonal variations are mainly dominated by precipitation or relative humidity 

[40]. Tropical climate can be further divided into few types such as Tropical rainforest 

climate, Tropical monsoon climate and Tropical wet and dry climate or known as 

savannah climate. The climate types are only differentiated by the precipitation that 

happens in the climate zones. Relative humidity in tropical zones ranges from 77% to 

88% [40]. Relative Humidity plays a major part in the design of low-temperature 

systems because it controls the dew point temperature[41].  
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3.6. Heat Transfer in Boilers 

 

3.6.1 Mode of Heat transfer in Boiler. 

 

There are three basic modes of heat transfer that took place in a boiler which is 

conduction, convection and radiation. The efficiency of a boiler is how it transferred 

maximum amount of heat from combustion that took place in a furnace to the 

equipment and minimize the heat loss. Conduction normally took place in the wall of 

the boiler equipment’s such as the drums, furnace, super heater, economizer, air 

preheater and others. Conduction process in boiler normally transfers heat from high 

temperature to low temperature. Convection process took place as the heat from flue gas 

is transferred to the equipment’s and when the heat is taken out during heat loss. 

Radiation in a boiler mainly took place in a furnace where fuel is burnt and the heat is 

absorbed by the furnace wall. The heat transfer in the boiler equipment is reduced due to 

deposits which were formed during combustion of biomass.  

 

 

Figure 3.4a : Mean temperature of the combustion gas along the axis of the  

                  furnace, calculated using different radiative transfer models [42].  
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Figure 3.4b: Comparison of Mean gas temperature along the axis of the furnace  

                                 calculated using different radiative transfer models for different wall  

                                    temperature[42].  

 

 

3.7 Boiler Efficiency  

 

Efficiency of a steam generator can be defined as the percentage of heat input 

that is utilised effectively  in order to maximize heat transfer for steam generation by 

reducing the heat losses in the boiler[16]. ASME Power Test Code, PTC 4.1 proposed 

that the boiler efficiency can be calculated by using two methods which are known as 

the direct method and indirect method[43].  

 

3.7.1 Direct Method 

 

The direct method compares the energy gain by the water when it converts into 

steam during combustion with the energy content of the fuel. Direct method makes the 

plant operator job easier to evaluate the efficiency of the boiler because it needs only 

few parameters to help the computation. Direct method has its disadvantages because it 
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didn’t give any clue to the operator on why the efficiency is low. The disadvantage of  

this method is it doesn’t help the operators to determine the other losses that should be 

considered at different efficiency level.  

 

3.7.2 Indirect Method 

 

The heat balance efficiency measurement method or indirect method considers 

the heat losses that occur in the boiler [44-47]. Indirect method efficiency can be 

obtained by subtracting the loss percentage of various losses that happens in a boiler 

from 100%. The major losses which occur in a boiler such as follows [1, 44-47]: 

1. Dry Flue Gas Loss  

2. Moisture in fuel 

3. Hydrogen in fuel 

4. Moisture in Air 

5. Unburnt Gas Loss due to Carbon Monoxide 

6. Specific Heat Loss from Bottom Ash and Fly Ash 

7. Radiation and Unaccounted Loss 

8. Radiation to Furnace Bottom 

9. Heat Credit due to Mill, Primary Air Fan, Forced Draught Fan, Circulating 

Water Pumps 

 

3.7.2.1 Heat loss due to moisture in the fuel  

 

Greater amounts of energy are required to burn fuel with large amount of 

moisture where it leaves as superheated vapour. The moisture will be brought to boiling 

point by the sensible heat which occurs due to the heat loss[45]. Moisture in the biomass 
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fuel exists due to the environment factor and contribution from the process. One of the 

major factors which contribute to the amount of moisture in the palm waste is due to 

sterilization process where the palm fruit is cooked by using saturated steam.  

 

 
Figure 3.5: Boiler Efficiency as a function of fuel moisture content [46]. 

 

3.7.2.2 Heat loss due to Combustion of Hydrogen 

 

Calorific value plays an important role in combustion of fuel where the gases 

and moisture are taken up the stack. Heat loss occurs during combustion of hydrogen 

where water is formed and converted into steam. Heat is carried out due to the  latent 

heat content of the water[45]. 

 

 

3.7.2.3 Heat loss due to moisture in the air 

 

Relative humidity of air can greatly affect the performance of a boiler where 

moisture in incoming air will be superheated as it passes through the boiler[45, 46]. In 

order to remove moisture in the incoming air, it will be pre-heated by using a heat 

exchanger or air pre-heater.  
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3.7.2.4 Heat loss due to dry flue gas 

 

Heat Losses through the chimney affected by few factors such as scale formation 

in the tube, high flue gas velocity in the boiler, excess air, inlet air temperature and final 

gas temperature. Combustion gas acid dew point temperature achieved if the flue gas 

exit temperature is too low where it may lead into acid deposits. The acid dew point is 

the temperature where sulphuric acid deposits begin to form where moisture absorbs the 

sulphur from the gas and starts to degrade the metal. 

 

 

3.7.2.5 Heat loss due to soot-blower  

 

Soot-blower loss happens during cleaning of ashes on the boiler components 

where a certain percentage of steam is supplied to the soot blower. The steam will be 

supplied intermittently to the soot-blower to minimize heat loss that happens in a boiler. 

 

 

3.7.2.6 Heat loss due to blow down  

 

Blow down process normally takes place during high water level where the 

water is taken out to maintain the water level in the drum. Water within the system is 

replaced with treated water once the water level dropped and thus dilutes any chemicals 

in the water.  
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3.7.2.7 Heat loss due to incomplete combustion 

 

Incomplete combustion happens during low loads, especially during night time 

operation or when there is insufficient air supply which causes a high percentage of ash 

in the fuel. Product of combustion from incomplete combustion such as Carbon 

Monoxide (CO),H2 and various other hydrocarbon reacts with oxygen and releases more 

energy[45]. 

 

 

3.7.2.8 Heat loss due to combustible in ash 

 

Combustible in ash occurred when the amount of fuel supplied is too much or 

known as rich combustion which caused unburned fuel to happen. Hot unburned ash 

that mixed up in the fuel carries away the heat during de-ashing process and the loss is 

not more than 2% [46]. 

 

 

3.7.2.9 Miscellaneous factors 

 

There are several other losses that occur in the boiler such as radiation, leaks and 

others. These losses occur due to insufficient cladding or insulation around header 

drums, piping and other components. 
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3.8 Numerical modelling of combustion in boiler 

 

CFD studies have been carried out to study the circulating fluidized bed boiler 

operation and it is usually used to simulate the problems in an operating boiler at site. 

The impact of ash deposits towards the boiler efficiency were studied thoroughly and 

compared with the actual running unit. The ash deposits reduced the heat transfer rate 

by creating a layer on the equipment and affect the efficiency of the boiler[48].  

CFD studies used to study superheater tube failure in the boiler due to increased 

temperature, decreased hardness values and scale build-up on the inner surface of the 

tube. The inner scale creates an insulation layer where it blocks the steam from cooling 

the tube which will cause the tube to overheat and fail. The scale generation effect 

towards the tube surface temperature and hardness of the tube material were studied 

based on service hours. Furthermore, life of the tubes estimated by the cumulative creep 

damage method which is later modelled by using ANSYS[49] 

Different models such as  a three-dimensional geometry, k–e gas turbulence 

model, Eulerian–Lagrangian approach, particles-to-turbulence interaction, diffusion 

model of particle dispersion, six-flux method for radiation modelling and pulverized 

coal combustion model based on the global particle kinetics and experimentally 

obtained kinetic parameters can be studied by using CFD. The models predicted the 

impact of those parameters towards furnace flue gas temperature and the furnace wall 

radiation which is later verified with actual running unit [50].  Zone method was used to 

predict the radiative heat fluxes on the furnace wall. Minimum heat flux obtained in the 

corner of the wall or near the exit while maximum value found in the central region 

where the directed heat flux area is vast. Even though the zone method is accurate in 

determining radiative heat transfer but it can’t be applied to all types of furnace due to 

the complex geometry of real furnaces [51]. 
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A CFD model or numerical model can be used in order to study the biomass 

grate combustion in a specific type of boiler. Analytical equations representing the 

combustion on the travelling grate and freeboard area normally carried out separately 

due to limitations of the CFD software such as ANSYS. The grey box model used to 

study the oxygen concentration while the black box model for steam generation in the 

heat recovery system [9]. Travelling grate modelled by separate zones in order to study 

the combustion process at each stage. The model is linearized and reduced from 46 

states to 17 states to facilitate a real-time implementation [9]. Grate combustion 

normally consists of two ordinary differential equations. The equation represents the 

water content in the grate water evaporation zone and in the dry biomass located at 

thermal decomposition zone [12].  

Poor mixing of bulk air flow and secondary air in the furnace is the main factor 

leading to the incomplete combustion. A CFD model developed to study the air flow in 

the boiler where different condition can be studied and validated with the actual site 

data. The gas phase temperature above the grate is higher because it was influenced by 

the bed model. The heat transfer rate in the superheater is found to be higher than 100% 

due to the boundary condition set lower than actual [52]. 
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CHAPTER 4: METHODOLOGY 

 
 

4.0 Overview 

 

This chapter will provide a brief explanation about the methods that will be used 

throughout this project. A biomass boiler selected and the site data’s such as Boiler 

Size, Steam Flow, Temperature, Pressure, Fuel data, and the heat transfer area will be 

used to model the boiler. Data such as Fuel consumption, Air flow, and Flue gas flow 

will be determined theoretically due to lack of measurement devices in the palm oil mill 

boiler. On the other hand theoretical estimation will be helpful in order to study the 

changes that happen in the boiler due to the climate changes and its effect towards the 

boiler performance. The collected information will be used to model the boiler as close 

as possible as the real running unit before carrying out required studies. It is important 

to model the boiler as close as possible in order to make sure the result will be almost 

accurate with the actual condition. Ambient Temperature and Humidity level will be the 

main factors studied in order to determine the impact of these parameters on boiler and 

its components efficiency and performance. The calculations involved in this study will 

be explained subsequently as follows; 

              a) Combustion Calculation of Fuel 

       b) Theoretical Input Parameters 

       c) Boiler Efficiency Calculation as per ASME PTC 4.1  

       d) Energy Efficiency of Boiler components. 

   e) Effectiveness of boiler components heat transfer surfaces 

  f) Fuel Saving Analysis & Payback Period Analysis 
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4.1 Combustion Calculation of Fuel 

 

i) Fuel Ultimate Analysis 

 

The ultimate analysis method will be used to find the composition of the average fuel 

mixture of Palm fibre and shell in weight percentage of carbon, hydrogen, oxygen, 

sulphur, nitrogen and the calorific value of the received biomass fuel. The analysis is 

done based on dry basis or moisture free basis.  

 

FUEL Palm Fiber Palm Shell 

CONTENT UNIT  75  25 

C Wt.% 47.20 52.40 

H2 Wt.% 6.00 6.30 

O2 Wt.% 36.70 37.30 

S Wt.% 0.30 0.20 

N2 Wt.% 1.40 0.60 

ASH Wt.% 8.40 3.20 

H20 Wt.% 35.00 15.00 

GCV kcal/kg 4,586 5,122 
Table 4.1: Fuel Properties of Palm waste used in the Boiler 

 

Sample Calculation (Dry Basis) 

 

%wt Carbon : Palm Fiber  

=(1-Moist Content in Fuel%)* %wt Carbon   (1) 

= (1 – 35/100)*47.20 % 

= 30.28 % 
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ii) Fuel Mixture Combustion Calculation 

 

Combustion calculation was carried out by calculating the weight of required Oxygen 

for complete combustion. The required weight of Oxygen will be determined by using 

the molecular weight of the substances involved. 

 

C + O2 = CO2 

S + O2 = SO2 

H2 + 0.5O2 = H2O 

 

Weight of Oxygen Required in Reaction with Carbon.C 

 

= 
C

O

M

M
2  x %wt C(Average)  (2) 

= 
12

162x
 x 34.15% 

= 0.91 kg/kg d.a 

 

4.2 Theoritical Input Value 

 

 

 

 

 

  

Table 4.2 Average analysis of fuel used in the boiler 

 
 

Fuel 

Content 

Unit 
Average 

Analysis 

C Wt.% 48.50 

H2 Wt.% 6.08 

O2 Wt.% 36.85 

S Wt.% 0.28 

N2 Wt.% 1.20 

ASH Wt.% 7.10 
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i) Stoichiometric air required 

 

Weight of air required (Stoichiometric) 

= ( )3
%

Re

airinOxygen

CombustioninquiredOxygen
 

= 4.33 kg/kg  
 
 

ii) Total Dry air (Lean Combustion) 
 
 
Total Dry Air  
 

= ( )4)1(
%

Re
EAx

airinOxygen

CombustioninquiredOxygen
+  

 
Where; EA = Excess Air 

 

iii) Total Wet air (With Moisture in air) 
 
 
Total Wet Air; 
 
= ( )5)1()( ω+xLeanairDryTotal  

 
Where; ɷ = weight of moisture in air/ weight of dry air 

 
 
iv) Wet Flue Gas formed 
 
 
= Excess Oxygen in Combustion air + ( % N2 in air + moist in air)     (6) 
   *Combustion Air + Total Product of Combustion 
 
 
v) Dry Flue Gas formed  
 
 
= Total Wet Flue Gas Formed – (H20 in Combustion Product)     (7) 
    -(H2 in Combustion Product)- (Moist in air)^2 
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4.3 Boiler Efficiency Calculation (ASME PTC 4.1) 

 

 

ASME PTC 4.1 suggested two methods to analyze the boiler efficiency known as direct 

method and indirect method. The direct method is the simplest way to estimate the 

boiler efficiency but yet it is not the accurate way. The heat loss method is more 

accurate compared to the direct method and this method will be chosen for the study. 

Indirect method estimates the efficiency by considering various losses in the boiler such 

as Heat loss due to dry flue gas, Heat loss due to moisture in the fuel, Heat loss due to 

combustion of Hydrogen, Heat loss due to moisture in the air, Radiation heat loss, 

Unburned Fuel loss and other unaccounted losses. The losses that take place in the 

boiler are shown in figure 4.2. 

 

Heat Losses; 

L1 = Heat Loss due to dry Flue Gas 

L2 = Heat Loss due to Combustion of Hydrogen 

L3 = Heat loss due to Moisture in Fuel 

L4 = Heat Loss due to moisture in air 

L5 = Heat Loss due to Carbon Monoxide 

L6 = Heat Loss due to Surface radiation, Convection & other unaccounted losses 

L7 = Heat Losses due to fly ash losses 

L8 = Heat Losses due to bottom ash losses 

 

Boiler Efficiency = 100% - (L1 + L2 + L3 + L4 + L5 + L6 + L7+ L8) %                 (8) 
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Figure 4.2: Boiler efficiency by using indirect method[53] 

 

 

4.3.1 Heat Loss due to dry flue gas. 

 

This is the major contributor compared to other losses in the boiler where the N2 enters 

the boiler as part of combustion and leaves at an elevated temperature causing energy 

loss. The heat loss can be calculated by using the following equation; 

 

)9(100
)(

1 x
LHV

TTxCxm
L

agP −
=

•

 

 

4.3.2 Heat loss due to combustion of hydrogen in fuel 

 

Latent heat loss occurs when the water formed during hydrogen combustion carried 

away the heat due to the water latent heat content. 

 

)10(100
))((9

2
2

x
LHV

TTChxHx
L
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−+

=  
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4.3.3 Heat loss due to moisture in fuel  

 

The moisture in the fuel will be boiled as superheated vapour during combustion 

causing energy loss due to sensible heat content in the water vapour. 
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4.3.4 Heat loss due to moisture in air  

 

Moisture content in the air known as humidity will be superheated as it passes the boiler 

and the sensible heat content in the water causes energy loss to occur. The humidity in 

combustion air can be obtained by using Psychometric Chart. 
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4.3.5 Heat loss due to incomplete combustion 
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4.3.6 Surface heat loss 

 

Surface heat loss such as radiation and convection are the main factor reduces boiler 

efficiency. Convection heat loss has been neglected in this study due to the boiler 

location which is in a closed boiler house where only minimal air flow can be found. 
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Radiation heat loss estimated by using ABMA radiation heat loss graph based on the 

boiler heat output.  

 

 

4.4 Heat Transfer in Boiler and Equipments 

 

4.4.1 Heat Transfer in Furnace (Combustion Chamber)[18] 

 

The steps of calculating Heat transfer in the furnace are as follows: 

 

i) Boiler Output = )14()( fwss hhxm −
•

 

 

ii) )15(,Re
EfficiencyBoiler

OutputBoiler
QquiredInputHeat in =  

 

iii) )16()(, ,,, exitAHexitbfluePfluecr TTCxmQCreditHeat −=
•

 

 

iv) )17(, crinnetnet QQxFQInputHeatNet +=  
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vi) Heat Available In Flue Gas, Q available 

= )19()(, ambFEGTfuepflue TTxCxm −
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vii) Heat Absorbed by furnace, Q furnace 

= )20(availablenet QQ −  

 

 4.4.2 Heat Transfer in Screen[18] 

 

i) Heat Available In Flue Gas, Q flue 

= )21()( 1,, ffuepFEGTfuepflue TCTCxm −
•

 

 

ii) Heat Absorbed by screen, Q furnace 

= )22(LMTDxAxU proj
 

 

iii) Heat Balance  

Q flue = Q screen  

)( 1,, ffuepFEGTfuepflue TCTCxm −
•

= )23(LMTDxAxU proj
 

 

iv) Percentage of Heat Transferred  

 

= )24(%100x
OutputBoiler

ScreenindTransferreHeat
 

 

4.4.3 Heat Transfer in Super heater[18] 

 

i) Steam Side 

= )25()( satss hhxm −
•
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ii) Flue Gas Side 

= )26()( 21 fpfpflue TCTCxm −
•

 

 

iii) Heat Absorbed by Super heater, Q SH 

 

= )27(LMTDxAxU proj  

 

iv) Percentage of Heat Transferred  

 

= )28(%100x
OutputBoiler

rSuperheateindTransferreHeat
 

 

 

Figure 4.3: Parallel flow heat exchanging[18] 

 

4.4.4 Heat Transfer in Boiler Bank[18] 

 

i) Flue Gas Side= )29()( 32 fpfpflue TCTCxm −
•
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ii) Heat Absorbed by Banks, Q Bank 

= )30(LMTDxAxU proj  

 

iii)      Percentage of Heat Transferred  

 

= )31(%100x
OutputBoiler

BanksindTransferreHeat
 

 

4.4.5 Heat Transfer in Economizer[18] 

 

i) Flue Gas Side 

= )32()( 43 fpfpflue TCTCxm −
•

 

 

ii) Water Side 

= )33()(
fwhwfw hhxm −

•

 

 

iii) Heat Absorbed by Economizer , Q Eco 

= )34(LMTDxAxU proj
 

 

iv) Percentage of Heat Transferred  

 

= )35(%100x
OutputBoiler

EconomizerindTransferreHeat
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Figure 4.4: Counter flow heat exchanging[18] 

 

4.4.6 Heat Transfer in Air Preheater[18] 

 

i) Flue Gas Side 

= )36()( 54 fpfpflue TCTCxm −
•

 

 

ii) Air Side 

= )37()( ,,. iapoapac TCTCxm −
•

 

 

iii) Heat Absorbed by Air Preheater, Q SH 

 

= )38(LMTDxAxU proj
 

 

iv) Percentage of Heat Transferred  

= )39(%100
Pr

x
OutputBoiler

eheaterAirindTransferreHeat
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Figure 4.5: Cross flow heat exchanging.[18] 

 

 

 4.5 Heat Transfer Efficiency of Boiler Components. 

 

The Heat transfer efficiency of boiler components surfaces obtained by using the 

expression as follow: 

 

)40(%100x
OutputBoiler

ComponentsBoilerontransferHeat
Qefficiency =   

 

Boilers can be analyzed by 1st law analysis in order to determine the efficiency. The 

analysis can be separated into two major components which is the combustor or furnace 

and heat exchanging equipments. The energy efficiency can be determined by the 

following expression: 

 

inputEnergy

outputsproductinEnergy
=η              (41) 
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Figure 4.6: Effectiveness of Heat Transfer Surfaces[1] 

 

 

4.6 Cost and Payback Period Analysis  

 

The palm waste cost is considered as free because it’s coming from the production line 

and not bought from outside plants .The payback period can be estimated by calculating 

the annual fuel saving that can be achieved and the selling price of the fuel. The income 

from the surplus fuel sold can be used to estimate the cost saving and payback period. 

Other than that the additional fuel that mills have can be used to run the production for 

extra hours or after shutdown where dry fuel is needed. The additional production hours 

can be used to produce more oil which is considered gain for the mill. The payback 

period can be calculated as follows: 

 
 

tLabourngCommisionionInstallatitBoilerCost coscos +++=             (42) 

 
 

                                             (43) CostwastePalmConsumedusageFuelAnnual =
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tonneperpricexproducedoilPalmrateoduction =Pr                                        (44) 
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CHAPTER 5: BACKGROUND OF STUDIES 

 
 

5.1 Introduction.  

 

Boiler design is mainly based on the empirical data of seasonal countries which have a 

lower ambient temperature and humidity. The study on the impacts of hot and humid 

tropical climate towards the boiler performance and heat transfer have not been carried 

out before this so there are less data available regarding this topic. A 35,000 kg/hr 3-

pass palm oil mill water tube boiler located in Colombia firing on palm waste was 

chosen for the study. This study will be beneficial for them in order to understand their 

boiler performance and save their operational cost. Microsoft excel will be used to 

model the boiler where related equations used obtained from Babcock & Wilcox Steam 

book and ASME PTC4.1. The result will be verified later with the data collected from 

the site before different conditions are simulated.  

 
Figure 5.1: Manuelita palm oil mill boiler. 
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5.1 Site Condition.  

 

The boiler site is located at the Manuelita Palm oil mill, Orocue Municipality Casanare, 

Colombia (4° 47’ 39.01”N, 71° 20’ 24” W) and has been operating for about 5 years. 

The boiler site experience hot and humid conditions as other tropical countries which 

make it suitable for the study. Environmental impacts on the boiler performance such as 

ambient temperature and Humidity will be studied thoroughly. A detailed study on the 

boiler component heat transfer efficiency and the component efficiency will be studied. 

The site conditions are as shown below: 

 

Ambient Temperature:  77° F ~88° F 

Humidity Range: 50% ~ 95% 

 

 

5.2 Boiler Specification.  

 

The boiler is a 35 ton/hr 3-pass water tube boiler firing on palm fiber and shell with 

high moisture content. The boiler specifications are listed in table 5.1 as follows: 

 

Ambient Temperature : 27°C 
Relative Humidity : 85% 
Wind Speed  : 1.0 m/s 

Boiler Capacity : 35000 kg/hr 

Pressure : 41 Barg 

Temperature : 370°C 

Feedwater Temperature : 105°C 
Table 5.1: Boiler operating and site condition 
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5.3 Fuel Specification 

 

The boiler fuel specification normally given by the mill owners in the early stage of 

designing because the fuel properties may vary slightly from one place to another. The 

fuel specifications normally depend on the analysis done towards the palm waste. The 

fuel used in this boiler is a mixed type fuel which encompasses of 75% Palm Fiber and 

25% Palm Shell combination while the moisture content is 35% and 15% respectively. 

The fuel average fuel properties will be determined through the ultimate analysis. The 

fuel specifications used in Manuelita are as shown in table 5.2: 

 

CONTENT UNIT Palm Fiber Palm Shell 

C Wt.% 47.20 52.40 

H2 Wt.% 6.00 6.30 

O2 Wt.% 36.70 37.30 

S Wt.% 0.30 0.20 

N2 Wt.% 1.40 0.60 

ASH Wt.% 8.40 3.20 

TOTAL Wt.% 100.00 100.00 

GCV kcal/kg 4,586 5,122 
Table 5.2: Boiler fuel Specification as given by Manuelita plant. 

 

 

5.4 Boiler equipments 

 

5.4.1 Grate 

 

The selected boiler is fitted with a 4-zone water-cooled reciprocating grate for the entire 

length of the grate system. The grate consists of 4 zones which is drying, de-

volatilization, char-burning and de-ashing. This type of zone arrangement efficiently 

burns almost all types of fuels with average moisture content. The zones are controlled 
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individually by using a hydraulic pusher which operates according to the burning time. 

The burning time varies depending on the blend ratio of fuel and moisture in the fuel 

mixture.  

 

 
5.4.2 Furnace 

 

Majority of the heat generated by combustion will be absorbed by the furnace wall 

through radiation while convection plays a minor part in the furnace. A bare water 

cooled furnace is used in order to bring down the furnace exit temperature lower than 

the ash fusion temperature. The dimension of the furnace supplied is as follows: 

 

Furnace Depth : 6000 mm 

Furnace Width : 4650 mm 

Furnace Height : 10900 mm 

Furnace Convective Surface : 135.47 m2 

Screen Convective Surface  : 31.18 m2 

Screen Flue gas flow area :   5.18 m2 
Table 5.3: Furnace dimension and heating surface available. 

 

 

5.4.3 Super heater 

 

A non-drainable super heater was used in the boiler in order to generate the required 

amount of steam with high temperature and pressure. A double loop design was used in 

order to maximize the heating surface of the super heater. Heat will be transferred to the 

super heater through convection from the hot flue gas to the saturated steam in the super 

heater tube. Saturated steam from the steam drum will enter the super heater and 

superheated by the hot combustion gas through convection. The super heater basically is 
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a heat exchanging equipment and in this study we are using a parallel flow design. The 

convective area and flow area in the superheater area are as follows: 

 

Convective heating surface 194.9 m2 

Flue gas flow area 7.02 m2 

Steam flow area 0.06 m2 
Table 5.4: Heating Surface available in Super heater. 

 

 

5.4.4 Convection Banks 

 

Convection bank in the site uses 3 pass arrangements in order to maximize the heating 

surface which will enhance the circulation rate in the tubes. The banks were arranged in 

three pass cross flow arrangement which reduces the outlet temperature of the flue gas. 

The details of the banks are as follows: 

 

Convective heating surface 796.29 m2 

Flue gas flow area 4.304 m2 
Table 5.5: Heating Surface available in Convection Bank 

 

 

5.4.5 Heat Recovery System 

 

A bare tube Economizer and Air preheater were installed in the boiler system in order to 

increase the efficiency of the boiler by minimizing the stack temperature. Hot flue gases 

from the boiler exit were used to heat up the feed water from the deaerator into the 

steam drum through convection. The heated water will reduce the temperature 

difference with the saturated temperature and minimize the energy required. 
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Economizer design uses the counter flow concept where the inlet of the hot gas will be 

in the opposite direction with the inlet of the feed water. Heat absorption rate from the 

hot flue gas is better by using a counter flow heat exchanging design and it helps to 

reduce the stack temperature. Air preheater uses a cross flow design where the hot flue 

gas will be flowing into the tube and the hot air will be flowing outside of the tube. 

Cross flow concept was the best of all heat exchanging method because it helps to 

absorb heat from the hot gas efficiently before supplying it into the combustion 

chamber. Hot combustion air will be used to dry out the wet fuel so that the combustion 

will be more efficient. Convective area and flow area in the heat exchanging equipment 

are as follows: 

 

Economizer   

Convective heating surface 138.44 m2 

Flue gas flow area 1.63 m2 

Air Preheater   

Convective heating surface 701.55 m2 

Flue gas flow area 2.35 m2 

Air flow area 2.96 m2 
Table 5.6: Heating Surface available in Economizer and Air preheater. 

 

 

5.5 Test Condition 

 

The test will be carried out for two major climate impacts which are the ambient 

temperature and relative humidity. Wind speed is considered negligible as the boiler is 

located in the boiler house and the wind speed convective heat transfer has minimum 

effect compared to radiation heat loss. The ABMA radiation chart was used to 

determine the heat loss to the surroundings based on boiler thermal output. The 

temperature range of the studies is set between 20°C and 35°C as the tropical climate 
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ambient temperature is higher than 18°C. The relative humidity selected ranges from 

50% to 100% based on the climate data of Malaysia and Colombia which is located in 

Tropical zones.  The simulated conditions are summarized in table 5.7:  

 

Temperature Relative Humidity (%) 

°C 50 60 70 80 90 100 

20 √ √ √ √ √ √ 
25 √ √ √ √ √ √ 
30 √ √ √ √ √ √ 
35 √ √ √ √ √ √ 

Table 5.7: Boiler simulation conditions 

 

 

5.6 Boiler costing  

 

Costing for the boiler considers boiler cost which includes the valves, mountings, 

pumps, fans and controls. Other than that, other factors which have been considered are  

installation, commissioning, maintenance and labor cost . The maintenance and labor 

cost were considered for the maximum design life of a boiler which is about 15 years. 

The electrical cost was not considered as the electrical supply comes from the energy 

generated by boiler superheated steam which is used to run the turbine. 

The investment cost of the boiler is as shown in table 5.8 below: 

 

No. Item RM 

      

1 Boiler 3,850,000.00 

2 Installation + Commissioning 316,800.00 

3 Maintenance cost (15years) 100,000.00 

4 Labor cost (3 person for 15 years) 810,000.00 

5 Fuel Consumption Cost 0.00 

  (24hrs x 6days x 52 week)   

  Total 5,076,800.00 
Table 5.8: Investment cost of Boiler 
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Figure 5.2: Reciprocating grate internal view 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
Figure 5.3: Reciprocating grate during Combustion 
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CHAPTER 6: RESULT AND DISCUSSION 

 

The boiler components heating surface and free flow area information is listed in the 

table 6.1. 

 

Component Convective Flow Area 

  Heating Surface Flue Steam Air 

  m2 m2 m2 m2 

Furnace 135.47       

Screen 31.18 5.18     

Superheater 197.51 7.02 0.06   

Cavity 27.94       

Boiler Bank 835.08 4.30     

Economizer 128.50 1.68     

Air Preheater 701.55 2.35   2.96 
Table 6.1: Boiler Components heating surface and free flow area. 

 

6.1 Effect Relative Humidity towards the Boiler Overall Efficiency 

 

Figure 6.1 shows the impact of moisture in the air at different ambient 

temperature towards the boiler overall efficiency. The lowest boiler efficiency is 

74.74% obtained at 20 °C and 100% humidity while the highest efficiency is 75.62% 

obtained at 35 °C and 50% humidity. The efficiency reduces as the moisture content in 

the air increases from 50% to 100% because the amount of heat carried away is higher. 

The water vapor in the air will be heated up while passing through the boiler from 

ambient temperature to the flue gas temperature while leaving the boiler. The moisture 

carried out in the form of sensible heat where energy will be used to heat up the water 

which leads into a higher loss percentage. The efficiency rises significantly when the 

ambient temperature increases while maintaining the humidity level. The efficiency 

increase ranges from 0.66% to 0.71% when the temperature increased from 20°C to 
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35°C. Higher ambient temperature reduces the energy required to heat up the moisture 

in the air and reduces the heat loss. 

 

Relative Humidity 
T ̊C 

50 60 70 80 90 100 

20 74.91 74.87 74.84 74.79 74.77 74.74 

25 75.16 75.12 75.07 75.03 74.99 74.95 

30 75.41 75.35 75.29 75.24 75.18 75.12 

35 75.62 75.55 75.50 75.48 75.45 75.42 
Table 6.2: Boiler efficiency at different ambient temperature and humidity. 

 

 

 
Figure 6.1: Boiler Overall Efficiency vs Relative Humidity at different ambient temperature 
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6.2 Effect Relative Humidity towards the Boiler Fuel Consumption 

 
 

 Figure 6.2 shows the fuel consumption for the specific boiler increases with 

increasing of moisture content in the air but reduces with increasing ambient 

temperature. The maximum fuel consumption is 9078.16 kg/hr while the minimum fuel 

consumption is 8972.57 kg/hr. The fuel demand increases as the moisture content goes 

higher in order to compensate the sensible heat taken out by the water vapor. The fuel 

demand goes lower with increasing ambient temperature because less energy needed to 

compensate the energy loss due to moisture in the air. The fuel demand increases from 

minimum 81.87kg/hr to 85.47 kg/hr when the ambient temperature decreases from 35°C 

to 20°C. Higher ambient temperature closes the temperature gap between the 

combustion temperature and the surrounding temperature causing less energy required. 

 

 
Relative Humidity 

T ̊C 
50 60 70 80 90 100 

20 9058.04 9062.27 9066.24 9072.59 9074.45 9078.16 

25 9027.29 9032.36 9037.95 9043.04 9048.64 9053.48 

30 8998.22 9004.79 9011.86 9018.45 9025.53 9032.38 

35 8972.57 8981.44 8986.46 8989.62 8993.01 8996.29 
Table 6.3: Boiler fuel consumption at different ambient temperature and humidity. 
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Figure 6.2: Fuel Consumption vs Relative Humidity at different ambient temperature 

 

 

6.3 Effect Relative Humidity towards the Furnace Exit Gas 

      Temperature (FEGT) 

 

 Furnace exit gas temperature (FEGT) increases along with relative humidity 

for a specific ambient temperature. From the data shown in table 6.4 it is noticed that 

the minimum FEGT 943.83°C occurs at the highest ambient temperature which is 35°C 

and 50% humidity while the maximum FEGT is 947.60°C at 20°C and 100% humidity. 

FEGT depends on the heat release rate or heat flux in the furnace and it increases as the 

net heat input required by the furnace increased due to lower efficiency of the boiler. 

Increase of relative humidity causes the heat to be transferred out through the moisture 

sensible heat capacity where the heated moisture is taken out together with the flue gas. 

Heat gain by the moisture in the flue gas increase the temperature and raises the FEGT 

temperature.  
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 Furthermore from the graph it can be noticed that the FEGT is lower when the 

ambient temperature was increased from 20°C to 35°C where an increment of 2.77°C to 

2.94°C is noticed for 50% and 100% relative humidity. Higher ambient temperature 

increases the boiler efficiency and it reduces the net heat input required for the boiler to 

generate the required steam capacity. Reduction in the net heat input may cause the heat 

release rate or heat flux required to be lower and this may cause the FEGT to drop. 

Furnace exit gas temperature need to be lower than the ash fusion temperature to 

prevent clinkering which might happen at the furnace exit zone. Clinkering happens 

when FEGT is higher than the ash fusion temperature or known as ash melting 

temperature. High temperature will cause the ash to evaporate into the flue gas and 

solidified when it cools down on the way out of the boiler along the flue gas path which 

led into clinkering at the super heater and screen areas. 

 

Relative Humidity 
T ̊C 

50 60 70 80 90 100 

20 946.77 946.94 947.11 947.37 947.44 947.60 

25 945.70 945.91 946.14 946.35 946.58 946.78 

30 944.69 944.97 945.26 945.54 945.83 946.12 

35 943.83 944.21 944.42 944.55 944.69 944.83 
Table 6.4: Furnace Exit Gas Temperature (FEGT) at different ambient temperature and humidity  
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Figure 6.3: FEGT vs Relative Humidity at different ambient temperature 

  

 

6.4 Effect Relative Humidity towards the Combustion Temperature 

 

Highest fuel combustion which is 1518.2°C occurs at 25°C and 50% relative 

humidity and it reduces about 7.4°C as the relative humidity increases to 100%. The 

moisture particles in the air will absorb the heat at the combustion zone and reduces 

temperature. From the graph shown in figure 6.4 it is noticed that the combustion 

temperature decreases as the ambient temperature increases. The combustion 

temperature decreases in the range of 7.40°C to 13.50°C when the humidity increases 

from 50% to 100% along with the ambient temperature increment from 20°C to 35°C. 

Higher ambient temperature reduces the energy input required and increased the flue 

gas mass flow which may reduce the enthalpy of combustion which led into lower 

combustion temperature.  
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Relative Humidity 
T ̊C 

50 60 70 80 90 100 

20 1453.48 1451.99 1450.59 1448.36 1447.71 1446.41 

25 1452.35 1450.48 1448.44 1446.59 1444.56 1442.81 

30 1450.47 1447.97 1445.30 1442.82 1440.16 1437.60 

35 1447.09 1443.60 1441.63 1440.40 1439.08 1437.80 
Table 6.5: Combustion Temperature at different ambient temperature and humidity. 

 
 

 

 
   Figure 6.4: Combustion Temperature vs Relative Humidity at different ambient temperature 
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6.5 Effect Relative Humidity towards the Heat Exchanging Equipment   

      Efficiency 

 

 
6.5.1 Superheater 

 

Figure 6.5 shows the efficiency of superheater drops averagely 0.51% to 0.69% 

as the ambient temperature increases from 20°C to 35°C while the relative humidity 

increases from 50% to 100%. The maximum efficiency for the superheater is 92.68% 

while the minimum efficiency calculated is 85.91%. Superheater uses the principle of 

parallel flow where the flue gas flows along with the steam in the superheater tube. The 

steam will be heated from saturated temperature to the required superheated steam 

temperature where the heat duty can be calculated for the required steam flow. 

 Increase in ambient temperature reduces the FEGT of the flue gas and the heat 

will be absorbed by the superheater heating surface in order to heat up the water. The 

Log Mean Temperature Difference of the superheater increases as the ambient 

temperature increases which can be used to calculate the outlet temperature of the 

combustion gas. Flue gas with higher outlet temperature reduces the temperature 

difference between the flue gas inlet temperatures. Reduction in temperature difference 

will reduce the flue gas heat duty that leads into higher efficiency of the equipment. 

Furthermore Flue mass flow reduces as the temperature increases and this will minimize 

the heat losses which happen during heat exchanging. 

Relative Humidity effect on the super heater efficiency can be seen in figure 6.5 

where the efficiency drops as the humidity increases. Rise in humidity will increase the 

mass flow of the flue gas and the heat loss in the equipment. Apart from that increase in 

moisture content raises FEGT and reduces the flue gas outlet temperature which causes 

higher heat duty needed and drops in efficiency. 
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Figure 6.5: Superheater Efficiency vs Relative Humidity at different ambient temperature 

 

  

6.5.2  Economizer 

 

 Economizer size was designed as a counter flow heat exchanging equipment in 

order to give a better efficiency. The flue gas outlet was maintained at 240°C where the 

flue gas inlet varies based on the flue gas temperature from the convection bank 3rd pass 

outlet. The water inlet temperature from the deaerator will be maintained at 105°C and 

the outlet temperature will be varied based on the flue gas heat duty. The maximum 

efficiency of the economizer is about 99.15% while the minimum efficiency is 98.10%. 

The economizer efficiency drops approximately about 0.8% as the relative humidity 

increases from 50% to 100% but there is slightly uncertainty  in the efficiency when the 

ambient temperature was increased. Increase in moisture content in the air will cause 

more heat loss in the equipment during heat exchanging. The LMTD and heat transfer 

coefficient of economizer were maintained almost the same when the ambient 

temperature was increased, which means the heat duty will remain almost the same for 
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the same heat exchanging surface area available. This differs compared to moisture in 

the air where LMTD remains the same but the overall heat transfer coefficient increases 

causing the flue gas heat duty to increase. The efficiency of economizer drops as the 

humidity increases because the ratio between the cold fluid and hot fluid drops due to 

the increase of the hot flue gas heat duty. 

 

 
Figure 6.6: Economizer Efficiency vs Relative Humidity at different ambient temperature 

 

 

6.5.3 Air Preheater 

 

 Air preheater designed as cross flow heat exchanging device and it acts as the 

best heat exchanging method. The efficiency of air preheater increases as the ambient 

temperature increases but the efficiency remains almost the same as the humidity ratio 

increases. From figure 6.7 it is noticed that the highest efficiency is 102.57% and the 

minimum efficiency is 94.97%. It is noticed that the efficiency drops about 7.60% as the 

temperature goes from 35°C to 20°C and it remains same as the relative humidity 
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increase from 50% to 100%. The efficiency went more than 100% when the temperature 

is higher than 30°C because the heat duty of combustion air is higher compared to the 

flue gas heat duty. The flue gas outlet temperature was maintained at 170°C and the 

heat duty was maintained for the hot flue gas. The combustion air heat duty increases as 

the ambient temperature drops. Higher hot fluid heat duty reduces the efficiency of the 

equipment as the flue gas heat duty has remained the same. 

 

 

Figure 6.7: Air Preheater Efficiency vs Relative Humidity at different ambient temperature 
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6.6 Effectiveness of Boiler Heat Transfer surfaces 

 

Table 6.6 shows the effective heating surfaces percentage available in Manuelita 

35Ton boiler and the percentage of relative heat transferred to the surface at 27°C and 

85% humidity. From the table it is shown that the largest heat transfer surface is the 

convection bank area which holds 40.59% of the total area. The minimum area available 

is the cavity where it holds 1.36% of the total area available. The largest heat transferred 

occurs in the convection bank and the minimum heat transferred is in the cavity area. 

Furnace has the second highest amount of heat transferred which is about 33.41% 

because the combustion heat is absorbed by the water cooled walls. The heat transferred 

in the superheater which is about 11.76% plays an important role in order to supply 

steam flow with the desired pressure and temperature. Other than that heat exchanging 

equipments such as the economizer and air preheater have 6.25% and 34.10% of heat 

transfer area respectively in order to exchange 6.31% and 5.73% of the total boiler 

thermal output. 

Figure 6.9 to 6.12 shows the fluctuation of total heat transferred percentage of 

the given heat transfer surface at different ambient temperature and humidity.  The heat 

transfer percentage increases as the humidity increases for all the equipments except for 

the furnace where the heat transfer percentage reduces averagely about 0.5%. The heat 

transfer rate reduction is due to the less heat input and low flue gas exit temperature 

when the moisture content in the air increases. Boiler cavity seems to have the lowest 

heat transfer where the fluctuation is about 0.01% of the total heat transfer for different 

ambient condition and humidity. 
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Effectiveness of Heat Transfer Surface at 27°C and 

85% Relative Humidity
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Figure 6.8: Effectiveness of Boiler Heat Transfer surfaces. 

 

 

Relative Heat Relative Boiler Heat Transfer 
Surface Transfer surface Heat Transferred (%) 

Furnace 6.59 33.41 

Screen 1.52 4.82 

Superheater 9.60 11.76 

Cavity 1.36 1.61 

Conv 1st Pass 13.53 21.50 

Conv 2nd Pass 13.53 9.94 

Conv 3rd Pass 13.53 4.92 

Economizer 6.25 6.31 

AirPreheater 34.10 5.73 
Table 6.6: Effectiveness of Heat Transfer surfaces of Boiler Heat transfer components 

                                    at 27°C and 85% humidity. 
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Heat Transferred(%) in Boiler Components vs 

Relative Humidity (%) at 20 deg Celcius
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Figure 6.9: Effectiveness of Heat Transfer surfaces vs Relative Humidity for boiler Heat transfer 

                         . Components at 20°C 

 

Heat Transferred(%) in Boiler Components vs 
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Figure 6.10: Effectiveness of Heat Transfer surfaces vs Relative Humidity for boiler Heat transfer 

                                Components at 25°C. 
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Heat Transferred(%) in Boiler Components vs 

Relative Humidity (%) at 30 deg Celcius
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Figure 6.11: Effectiveness of Heat Transfer surfaces vs Relative Humidity for boiler Heat transfer  

                            Components at 30°C. 

 

 

Heat Transferred(%) in Boiler Components vs 

Relative Humidity (%) at 35 deg Celcius
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Figure 6.12: Effectiveness of Heat Transfer surfaces vs Relative Humidity for boiler Heat transfer  

                            Components  at 35°C. 
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6.7 Cost Analysis and Payback Period 

 

Cost analyses for the best and worst condition are shown as follows: 

 

CPO production rate = 12.08 ton/hr 

CPO selling price = Rm 2536.30 per tonne 

Fiber market value = Rm 810 per tonne 

Shell market Value = Rm 255 per tonne 

Mixture cost  = Rm 643.50 per tonne 

Highest fuel consumption = 9078.20 kg/hr (20°C and 100% RH) 

 

6.7.1 Cost Analysis and Payback based on Fuel selling price. 

 

a) Lowest fuel consumption  = 8972.60 kg/hr (35°C and 50% RH) 

 

 Fuel Saved     = 105.60kg/hr 

 

Annual Fuel saving   = 105.60kg/hr x 24hr x 6days x 52week 

            = 790.64 ton/annual 

 

Cost saving    = 790.64 ton/annual x Rm 643.50/ton 

     = Rm 508,778.00/annual 

 

Payback period   = Rm 5,076,800 / Rm 508,778.00 

     = 9.98 years 
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b) Site fuel consumption  = 9033.30 kg/hr (27°C and 85% RH) 

 

Fuel Saved    = 44.90 kg/hr 

 

Annual Fuel saving   = 44.90 kg/hr x 24hr x 6days x 52week 

            = 336.22 ton/annual 

 

Cost saving    = 336.22 ton/annual x Rm 643.50/ton 

     = Rm 216,357.60/annual 

 

Payback period   = Rm 5,076,800.00 / Rm 216,357.60 

     = 23.5 years 

    

6.7.2 Cost Analysis and payback based on additional production days 

 

a) Lowest fuel consumption  = 8972.60 kg/hr (35 ̊C and 50% RH) 

 

Annual Fuel saving   = 105.60kg/hr x 24hr x 6days x 52week 

            = 790.64 ton/annual  

 

Total additional hours   = 790.64 / 8.972 hr/annual 

     = 88.12 hrs 

 

Additional CPO production    = 88.12hrs x 12.08 ton/hr 

     = 1064.49 ton 
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Additional savings   = 1064.49 ton x Rm 2536.30/ton 

     = 2,699,865.99 

     = 2,699,866.00 

  

Payback period   = Rm 5,076,800 / Rm 2,699,866 

     = 1.88 years 

    

b) Site fuel consumption  = 9033.30 kg/hr (27°C and 85% RH) 

 

Annual Fuel saving   = 44.90 kg/hr x 24hr x 6days x 52week 

            = 336.22 ton/annual 

 

Total additional hours   = 336.22 / 9.033 hr/annual 

     = 37.22 hrs 

 

Additional CPO production    = 37.22 hrs x 12.08 ton/hr 

     = 449.62 ton 

 

Additional savings   = 449.62 ton x Rm 2536.30/ton 

     = 1,140,371.21 

Payback period   = Rm 5,076,800 / Rm 1,140,371.21 

     = 4.45 years 

 

Cost saving estimated by using fuel re-sell value and additional production days that 

could be gained annually. The comparison between two ways of estimating cost saving 

shows that the additional income from additional production days is relatively higher. 
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Additional income obtained by running extra hours of production can reduce the 

payback period of the boiler. The payback period for site condition shows that it can be 

achieved within the period of 4.45 years if the saved fuel can be used for running extra 

hours of production instead of selling the surplus fuel. Running the plant for extra hours 

shows that it is more feasible compared to selling the fuel since the maximum boiler 

guarantee that normally given is 15years before major maintenance should be carried 

out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 69

CHAPTER 7: CONCLUSION AND RECOMMENDATION 

 

 

7.0 Introduction 

 

The impact of tropical climate towards boiler performance and heat transfer of 

the boiler components is the main focus for this study. The variables that have been 

considered in this study are the relative humidity and the ambient temperature of the air. 

Manuelita 35 ton/hr boiler was simulated by using spreadsheet with a certain margin of 

error to represent the actual boiler condition and the effects of the variables are 

discussed briefly in the previous chapter. Conclusion of the study will be given based on 

the discussion made where it will include recommendations on the design in order to 

improve the efficiency. Other than that suggestion for future studies and methodology 

will also be made to find out how other factors might affect the boiler and its component 

efficiency.  

 

 

7.1 Conclusion 

 

 Boiler efficiency plays an important role in order to minimize the fuel consumed 

and increase the evaporation ratio of the particular boiler. Tropical climate impact 

towards the boiler efficiency was studied in terms of ambient temperature and relative 

humidity. The results show that the efficiency becomes higher as the ambient 

temperature increased which results into lower fuel consumption and increased in the 

evaporation ratio. The heat input required was also reduced as the temperature increased 

due to reduction in heat loss but the required heat input increased as the humidity 

increases.  
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Heat loss due to dry flue gas linked with Nitrogen (N2) that enters the together 

with the combustion air and takes part in the combustion before leaves the combustion 

chamber at a higher temperature together with the product of combustion. Increase in 

ambient temperature will cause the heat loss due to dry flue gas to drop while it the heat 

loss increases as the humidity rises. Sensible heat loss due to moisture in fuel decreasing 

as the ambient temperature becomes higher but the sensible heat loss remains the same 

when the humidity in the air increases. Sensible heat loss due to moisture in the air 

remains the same as the ambient temperature gets higher but it increases as the moisture 

in the air becomes higher. The water vapour entering the boiler will be heated until it 

reaches the boiling point where the sensible heat capacity of the moisture will cause the 

heat to be taken out. Water vapour formed during combustion of hydrogen causes heat 

loss because the water vapour in the product of combustion will be superheated and it 

leaves the boiler as latent heat.  

Heat transfer rate in furnace increases as the ambient temperature gets higher but 

it decreases as the moisture content in the air is higher. The heat transfer rate in other 

components reduces as the ambient temperature increases but reduce with increasing 

humidity. The efficiency of the heat exchanging components shows that better 

efficiency are obtained at higher ambient temperature but at lower humidity.  

 

 

7.3 Recommendations  

 

The ultimate engineering goal is to solve problems that arise which are in this 

case the design of the boiler for tropical climate which is known for high ambient 

temperature and humidity.  From the analysis it is found that the combustion chamber 

exit temperature increases as the humidity increases. We could propose water cooled 
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membrane wall type combustion chamber to increase the absorption rate of furnace wall 

and bring down the furnace gas exit temperature. Other than that, super heater 

efficiency can be increased by using a cross flow type super heater. Higher combustion 

air and feed water temperature can be used to reduce the fuel consumption. Higher 

humidity throughout the year in a tropical country causes the fuel moisture to increase 

and this will reduce the efficiency once fed into the boiler. Supplying hot air extracted 

from the hot flue gas to the fuel storage will help to dry the fuel before being supplied to 

the boiler. Dry fuel will reduce the heat losses in the boiler and increase the efficiency 

and production hours. 

 

 

7.4 Future works 

 

There are other factors that can be considered in order to carry out studies for the 

tropical boiler. Factor such as the fuel moisture effect towards the boiler efficiency 

plays an important role in the boiler design. This study will be important in a tropical 

country that has a hot and humid condition throughout the year because it is not possible 

to provide fuel with designed moisture content. The study on mixture ratio affect 

towards boiler efficiency cannot be neglected as it has a major effect on the boiler sizing 

and not all the time the mill owners can provide the proposed fuel mixture as it depends 

on the factory production.  

Boiler simulation can be studied more efficiently in the future by using 

Computational Fluid Dynamics modelling (CFD). From the literatures it is found that 

ANSYS is one of the simulation packages that can be used for the boiler studies as it 

predicts the heat transfer and flue gas flow more accurately with minimum error 

percentage. ANSYS provides a better result as it helps us to study the dynamics that 
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happen in the boiler. User Defined Function (UDF) need to be developed separately 

while modelling combustion in ANSYS. UDF helps to simulate the actual combustion 

process that happen in the boiler accurately. 
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APPENDIX A- FURNACE EXIT GAS TEMPERATURE (FEGT) FOR  

                                    PALM WASTE FIRING BASED ON HEAT RELEASE  

                                   RATE. (Field Data by Okutech Sdn. Bhd) 

 

 

 

Figure A.1 – Furnace exit gas temperature for palm waste firing by Okutech Sdn.Bhd 
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APPENDIX B- PSYCHOMETRIC CHART 

 

 

Figure B.1 – Psychometric chart 
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APPENDIX C- ABMA RADIATION HEAT LOSS CHART 

 

 

Figure C.1 – ABMA Radiation heat loss chart 
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APPENDIX D – HEAT TRANSFER GRAPHS 

 

 

Figure D.1 – Gas properties factor vs Gas film Temperature[18] 

 

 

 

Figure D.2 – Partial pressure vs Higher Heating Value[18] 
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Figure D.3 – Basic radiation heat transfer coefficient, hr’[18] 
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Figure D.4 – Mean radiating length,L for different tube OD and pitch arrangement[18] 

 

 

 

Figure D.5 – Approximate mean specific heat, Cp, of flue gas[18] 
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Figure D.6 – Mean specific heat, Cp, of air at one atmosphere[18] 

 

 

 

Figure D.7 – Shape factor[18] 
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Figure D.8 – Basic convection velocity and geometry factor for air, gas or steam; Turbulent flow    

                                       inside the tubes or longitudinal flow over the tubes. [18] 

 

 

Figure D.9 – Effect of Film Temperature, Tf and moisture on the physical properties factor, 

                    Fpp for gas: turbulent flow inside tubes and longitudinal flow over the tubes. [18] 
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Figure D.10 – Effect of Film Temperature, Tf and moisture on the physical properties factor, 

                    Fpp for gas: turbulent flow inside tubes and longitudinal flow over the tubes. [18] 

 

 

 

Figure D.11 – Basic cross flow convection velocity and geometry factor h’c for gas and air[18] 
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Figure D.12 – Effect of Film Temperature, Tf and moisture on the physical properties 

              factor Fpp for gas in turbulent cross flow over tubes[18] 

 

 

 

Figure D.13 – Effect of Film Temperature, Tf and moisture on the physical properties 

              factor Fpp for air  in cross flow over tubes. [18] 
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Figure D.14 – Heat transfer depth factor for number of tube rows crossed in convection 

        banks. (Fd = 1.0 if tube bank is immediately preceded by a bend, screen or 

          damper[18] 

 

 

 

 

Figure D.15 – Depth factor, Fd , of cross flow arrangement[18] 
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Figure D.16 – Arrangement factor Fa as affected by Reynolds number for various in-line tube  

         patterns, clean tube conditions for cross flow of air or natural gas combustion  

         products. [18] 
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Figure D.17 – Arrangement factor Fa as affected by Reynolds number for various in-line tube  

         patterns, clean tube conditions for cross flow of  ash-laden gases. [18] 
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