SYNTHESIS AND CHARACTERIZATIONS OF AMORPHOUS CARBON NANOTUBES/ GOLD PARTICLES HYBRID MATERIALS

LIM YU DIAN

DISSERATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING SCIENCE

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA
KUALA LUMPUR

2013

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: LIM YU DIAN

Registration/Matric No: KGA 110053	
Name of Degree: Master of Engineering Science	
Title of Dissertation ("this Work"):	
Synthesis and Characterizations of Amorphous Carbon Nanotu	bes/Gold Particles Hybrid
Materials	
Field of Study: Nanotechnology	
 I do solemnly and sincerely declare that: I am the sole author/writer of this Work; This Work is original; Any use of any work in which copyright exists was done for permitted purposes and any excerpt or extract reproduction of any copyright work has been disclosed and the title of the Work and its authorship have been ack I do not have any actual knowledge nor do I ought remaking of this work constitutes an infringement of any comparison of the decision of the	from, or reference to or expressly and sufficiently nowledged in this Work; asonably to know that the opyright work; s Work to the University of copyright in this Work and as whatsoever is prohibited and obtained; Work I have infringed any
Candidate's Signature:	Date:
Subscribed and solemnly declared before,	
Witness's Signature:	Date:
Name: Designation:	

ABSTRACT

Carbon nanotubes (CNT) have attracted great attentions due to its unique properties. However, most works being carried out focus on crystalline CNT. In this work, amorphous CNT (a-CNT) were synthesized successfully via a simple chemical technique at 220 °C in a short period of time. Surface morphological studies revealed that as prepared nanotubes present in agglomerated tubular structures with open ends, having diameter of 51.6 nm. The diameter of a-CNT reduced to 40 nm upon functionalization with nitric acid and further reduced to 10.2 nm as treated with auric chloride solution due to introduction of defective sites by these treatments. Both structural and elemental studies confirmed that the nanotubes were carbon and amorphous. From zeta potential measurement, it was found that nitric acid served as the most effective oxidation agent in functionalizing a-CNT with carboxyl groups compared to citric, sulphuric, and hydrochloric acids. Oxidation of nanotubes increased dispersion stability and ensured the successful hybridization between the a-CNT and gold (Au) nanoparticles. Thermal stability of a-CNT decreases with decorations of gold particles on its surface as per findings in Thermogravimetry Analysis (TGA). Electrical conduction are proven to be improved by surface modification where functionalized a-CNT has lower electrical resistivity than as-synthesized a-CNT, and the electrical resistivity decreases significantly with increasing gold content. As-synthesized and modified a-CNT/Epoxy composites exhibits lower electrical resistivity when cured in room temperature compared to 15 °C, where exception was found on functionalized a-CNT. Through transference number measurement, gold particles are found to contribute to the overall electrical conduction via electron conduction.

ABSTRAK

Nanotube karbon (CNT) telah menarik perhatian yang besar kerana sifat-sifat yang unikn. Walau bagaimanapun, kebanyakan kerja penyelidikan dijalankan memberi tumpuan kepada CNT kristal. Dalam karya ini, CNT amorfus (a-CNT) telah disintesis melalui teknik kimia pada suhu 220 °C dalam tempoh masa yang singkat. Kajian morfologi permukaan mendedahkan bahawa nanotube berstruktur tiub dengan hujung terbuka, berdiameter 51.6 nm. Diameter CNT dikurangkan kepada 40 nm apabila difungsinalisi dengan asid nitrik dan dikurangkan lagi kepada 10.2 nm apabila dikacau dengan larutan klorida Auric disebabkan penambahkan struktur defek dalam process tersebut. Kedua-dua kajian struktur dan unsur mengesahkan bahawa nanotube karbon dan amorfus. Dari potensi zeta, ia telah mendapati bahawa asid nitrik sebagai agen pengoksidaan yang paling berkesan dalam mengfungsinalisi CNT-dengan kumpulan carboxyl berbanding asid sitrik, sulfurik, dan hidroklorik. Pengoksidaan nanotube meningkatkan kestabilan dalam larutan air dan memastikan hibridisasi berjaya antara a-CNT dan nanopartikel emas (Au). Kestabilan haba CNT berkurangan dengan hiasan zarah emas di permukaannya. Kepekatan yang paling optimum larutan klorida emas dalam rawatan satu-CNT untuk mendapatkan sampel haba stabil adalah 7.5 g/dm³. Konduksi elektrik terbukti dipertingkatkan oleh pengubahsuaian permukaan mana functionalized CNT mempunyai rendah kerintangan elektrik daripada yang disintesis CNT-, dan kerintangan elektrik berkurangan dengan ketara dengan peningkatan kandungan emas. As-disintesis dan komposit a-CNT/Epoxy diubahsuai mempamerkan rendah kerintangan elektrik apabila sembuh pada suhu bilik berbanding 15° C, di mana pengecualian telah dijumpai pada functionalized-CNT. Melalui pengukuran bilangan pemindahan, zarah emas didapati menyebabkan pengaliran elektron.

ACKNOWLEDGEMENT

It is an honour to express my deep sense of gratitude for those whose valuable services, constructive criticism and guidance, generous help that made my research appear in a presentable form.

First and foremost, I wish to express my gratitude and to Associate Professor Dr. Mohd Rafie Johan, my supervisor who have been guiding, supporting me and enlighten me with a lot of innovative ideas to make my research to be accomplished successfully. This work would definitely not have been possible without his encouragement and whole hearted support.

I would also like to express my deepest appreciations to Mr Said, Mr Zaman, Mr Sulaiman who are the lab officers of relevant laboratories. They have provided technical and meaningful assistance for me to conduct my research. I would so appreciate their efforts and professional guidance in technical knowledge, services, and skills.

I would like to thank my colleagues for their contribution of some ideas and always helpful to me for the success of this research. Of course, not to forget my senior/colleague, Tan Kim Han, who really gives me a lot of guidance on things which are totally new. Last but not least, my heartiest thanks and apologies to other whom I may have forgotten to mention.

TABLE OF CONTENTS

Title	Page
TITLE PAGE	i
ORIGINAL LITERARY WORK DECLARATION	Ii
ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi-viii
LIST OF FIGURES	ix-xi
LIST OF TABLES	xii
LIST OF SYMBOLS AND ABBREVIATIONS	xiii
PUBLICATION	xiv
CHAPTER ONE: INTRODUCTION	1
1.1 Background	1-4
1.2 Importance of Study	4-6
1.3 Research Objectives	6
1.4 Scope of Research Work	6-8
CHAPTER TWO: LITERATURE REVIEW	9
2.1 Carbon Nanotubes	9
2.1.1 General Properties of CNT	11-14
2.1.2 Historical Development of CNT	14-17
2.2 Synthesis for Crystalline CNT	17

2.2.1 Arc Discharge	17-19
2.2.2 Laser Ablation	19-21
2.2.3 Chemical Vapor Deposition	21-23
2.2.4 Hydrothermal Synthesis	23-24
2.3 Synthesis methods for Amorphous CNT	24
2.3.1 Chemical Vapor Deposition	25-26
2.3.2 Arc Discharge	26-27
2.3.3 Other Methods	27-30
2.4 Properties of Amorphous CNT	30
2.4.1 Mechanical and Thermal Properties	30-31
2.4.2 Electrical Properties	32-34
2.4.3 Optical Properties	34-40
2.4.4 Suspension Stability	40-42
2.4.5 Hybridization Properties	42-45
2.5 Potential Applications of Amorphous CNT	45-50
CHAPTER THREE: MATERIALS AND METHODS	51
3.1 Raw Materials	51-52
3.2 Preparation of Samples	52-55
3.3 Characterization Method	56
3.3.1 Morphological Studies	56
3.3.2 Microstructural Studies	56
3.3.3 Elemental Analysis	57
3.3.4 Suspension Stability	57

3.3.5 Optical Studies	57-58
3.3.6 Thermal Studies	58
3.3.7 Electrical Studies	58-59
CHAPTER FOUR: RESULTS AND DISCUSSION	60
4.1 Morphological Studies of as-synthesized a-CNT	61-65
4.2 Functionalization of a-CNT	66-67
4.3 Morphological Studies of modified a-CNT	68-76
4.4 Microstructural Studies	77-78
4.5 Elemental Studies	79-81
4.6 FTIR Studies	81-83
4.7 Optical Studies	83-88
4.8 Raman Studies	88-91
4.9 Thermal Studies	91-96
4.10 Electrical Studies	96-102
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS	103-104
REFERENCES	105-115

LIST OF FIGURES

Figure 1.1:	The pathway of the research work	8
Figure 2.1 :	Types of Carbon Nanotubes: (a) SWCNT; (b) MWCNT; (c) a-CNT	
	(Harns et al. 2009)	10
Figure 2.2:	Schematic diagram of an arc discharge system (Anyo et al. 2006)	18
Figure 2.3:	Schematic diagram of a laser ablation method (Scott et al. 2001)	20
Figure 2.4:	Schematic Diagram of CVD method (Kumar et al. 2010)	22
Figure 2.5:	The kataura plot that shows calcualted gap energies with different	
	diameters for different types of materials (Kataura et al. 1999)	36
Figure 2.6:	Energy level diagram of stokes and anti-stokes Raman scattering	38
Figure 2.7:	A typical raman spectrum from a SWCNT sample (Irurzun et al. 2010)	39
Figure 2.8:	(a) Functionalization using -COOH site.(Balasubramanian, 2005).	
	(b) Typical defects in CNT (Hirsch, 2002)	42
Figure 2.9:	Illustration to the Laplace Equation	44
Figure 2.10:	Simulative view of the process for attaching gold nanoparticles to	
	carboxyl functionalized CNT (Jiang et al. 2003)	45
Figure 3.1:	As-synthesized a-CNT in powder form	53
Figure 3.2:	a-CNT/Epoxy composite in coin shape	54
Figure 3.3:	Flow chart of sample preparation	55
Figure 4.1:	FE-SEM images of the as-synthesized a-CNT at different	
	magnification: (a) 5000 X; (b) 10000 X	61
Figure 4.2:	TEM images of the as-synthesized a-CNT at different	
	magnifications: (a) 28000 X; (b) 75000 X	63

Figure 4.3 :	HRTEM image of as-synthesized a-CNT	64
Figure 4.4:	Zeta Potential for a-CNT functionalized with (a) HNO_3 , (b) H_2SO_4 ,	
	(c) HCl, (d) Citric Acids and (e) as-synthesis a-CNT	66
Figure 4.5:	FE-SEM images of the as-synthesized a-CNT at different	
	magnification: (a) 5000 X; (b) 10000 X	68
Figure 4.6:	TEM image of nitric acid functionalized a-CNT	70
Figure 4.7:	HRTEM image of nitric acid functionalized a-CNT	71
Figure 4.8:	FE-SEM images of hybridized a-CNT/Au at different	
	magnification: (a) 10000 X; (b) 70000 X	73
Figure 4.9:	HRTEM images of hybridized a-CNT/Au at different	
	magnification: (a) 4,000,000 X; (b) 400,000 X	
Figure 4.10:	XRD patterns for (a) as-synthesized a-CNT; and (b) hybridized	
	a-CNT/Au	75
Figure 4.11:	EDX spectra of a-CNT for (a) as-synthesized; (b) functionalized	
	; (c) 2.5g/dm ³ ; (d) 5g/dm ³ ; (e) 7.5g/dm ³ ; (f) 10g/dm ³	
	AuCl ₃ solution treated	77
Figure 4.12:	Zeta Potential for a-CNT functionalized with (a) HNO ₃ , (b) H ₂ SO ₄ ,	
	(c) HCl, (d) Citric Acids and (e) as-synthesis a-CNT	79
Figure 4.13 :	FTIR spectra for a-CNT functionalized with (a) HNO ₃ , (b) H ₂ SO ₄ ,	
	(c) Citric Acid, (d) HCl and (e) as-synthesis a-CNT	81
Figure 4.14:	UV-Vis absorbance spectra for (a) as-synthesized; (b) functionalized;	
	(c) 2.5 g/dm ³ (d) 5 g/dm ³ (e) 7.5 g/dm ³ (f) 10 g/dm ³ AuCl ₃ solution	
	treated; a-CNT.	83
Figure 4.15	Tauc/Davis-Mott plots for (a) as-synthesized: (b) functionalized:	

	hybridized with (c) 2.5 g/dm ³ (d) 5 g/dm ³ ; (e) 7.5 g/dm ³ ;	
	(f) 10 g/dm ³ AuCl ₃ solution.	85
Figure 4.16 :	Raman Spectra of (a) as-synthesized; (b) functionalized;	
	(c) 2.5 g/dm ³ ; (d) 5 g/dm ³ ; (e) 7.5 g/dm ³ ; (f) 10 g/dm ³	
	AuCl ₃ solution treated; a-CNT	89
Figure 4.17:	TGA curves and its derivative of (a) as-synthesized;	
	(b) functionalized; hybridized with (c) 2.5 g/dm ³ ;	
	(d) 5 g/dm 3 ; (e) 7.5 g/dm 3 ; (f) 10 g/dm 3 AuCl $_3$ solution a-CNT	93
Figure 4.18:	Nyquist plots of (a) as-synthesized; (b) functionalized; Hybridized	
	(c) 2.5 g/dm ³ ; (d) 5 g/dm ³ ; (e) 7.5 g/dm ³ ; (f) 10 g/dm ³ AuCl ₃	
	solution; a-CNT/Epoxy composites cured in room temperature	97
Figure 4.19:	Nyquist plots of (a) as-synthesized; (b) functionalized; Hybridized	
	(c) 2.5 g/dm ³ ; (d) 5 g/dm ³ ; (e) 7.5 g/dm ³ ; (f) 10 g/dm ³	
	AuCl₃ solution treated; a-CNT/Epoxy composites cured in 15 ℃	98
Figure 4.20:	Current variations of (a) as-synthesized; (b) functionalized;	
	(c) 2.5 g/dm ³ ; (d) 5 g/dm ³ ; (e) 7.5 g/dm ³ ; (f) 10 g/dm ³ AuCl ₃	
	solution treated: a-CNT/Epoxy composites with time	101

LIST OF TABLES

Table 4.1:	Interplanar spacing (d_{hkl}) from HRTEM, XRD and lattice constant	
	(a) with corresponding (hkl) values of gold particles	75
Table 4.2:	EDX Elemental analysis for all samples	78
Table 4.3:	Absorption wavelength and E_g values	87
Table 4.4:	The corresponding peaks' frequency (Raman shift) for all samples	
	in Raman Spectra	90
Table 4.5:	Temperatures and percentage weight lost.	95
Table 4.6:	Resistivity and t_i at 15 °C and 27 °C	101

LIST OF SYMBOLS AND ABBREVIATIONS

CNT Carbon nanotubes

a-CNT Amorphous carbon nanotubes

SWCNT Single-walled carbon nanotubes

DWCNT Double-walled carbon nanotubes

MWCNT Multi-walled carbon nanotubes

UV-Vis Ultraviolet-visible

TEM Transmission electron microscopy

HRTEM High resolution transmission electron microscopy

FE-SEM Field emission scanning electron microscopy

XRD X-ray diffraction

EDX Energy-dispersive X-ray

FTIR Fourier transform infrared

TGA Thermogravimetric analyzer

E_g Band gap

CVD Chemical vapour deposition

AAO Aluminium oxide templates

 $Fe(C_5H_5)_2$ Ferrocene

d_{hkl} Interplanar spacing

hv Photon energy of the incident light

n Type of optical transition

B Constant in Tauc/Davis-Mott model

 I_D/I_G Intensity ration between G and D bands

PUBLICATION

Lim, Y.D. & Johan, M.R. (2013). Electrical Conductivity and Transport Properties of Gold Decorated Amorphous Carbon Nanotubes/Epoxy Composites, *Fullerenes, Nanotubes, and Carbon Nanostructures* (Accepted)