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CHAPTER 1 

INTRODUCTION 

 

1.1  Overview of Thesis 

Optimal control is an important branch of mathematics, and has been widely applied in 

a number of fields, including engineering, economics, environment and management. 

Historically, after more than three hundred years of evolution, optimal control theory 

has been formulated as an extension of the calculus of variations. The calculus of 

variations is much harder than standard calculus because finding the optimal form of an 

entire function is more difficult than finding the optimal value of a variable. 

As most real-world problems are too complex to allow for an analytical solution, 

computational algorithms are inevitably used to solve optimal control problems. As a 

result, several successful families of algorithms have been developed over the years. 

The formulation of an optimal control problem requires several steps: the class of 

admissible controls, the mathematical description of the system to be controlled, the 

specification of a performance criterion, and the statement of physical constraints that 

should be satisfied. The objective of optimal control is to determine an optimal open-

loop control )(tu  or an optimal feedback control ),( txu that forces the system to 

satisfy physical system constraints and at the same time minimizes or maximizes a 

performance index. 

Physical systems are inherently nonlinear in nature. However, nonlinear systems 

are difficult to analyze mathematically. The typical approach is to linearize the system 

around some operating point and analyze the resulting linear system. If the motion of 

the system does not satisfy the superposition principle, then the linear model of the 
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system becomes invalid. Therefore considering the full nonlinear model of the system is 

desirable. One of two approaches is typically adopted to address the inherent 

mathematical difficulty of nonlinear system. The first approach is to utilize specific 

properties of the system to develop specific control laws that perform well for that 

system. The drawback of this approach is that the results may not be applicable to any 

other system. The second approach is to develop tools for general classes of nonlinear 

systems. The drawback of this approach is that these tools will usually result in 

conservative designs because they do not exploit specific characteristics of the system 

under design. Having a number of design tools from which to draw is necessary to 

address any particular problem. Relatively few design tools for nonlinear systems exist. 

Therefore, one of our objectives is to develop a feedback synthesis method for a general 

class of nonlinear systems. 

Generally, solutions of optimal control problems, except for the simplest cases, are 

carried out numerically. Therefore, numerical methods and algorithms for solving 

optimal control problems have evolved significantly over the past fifty years. Most early 

methods were based on finding a solution that satisfies either Euler-Lagrange equations, 

which are the necessary conditions of optimality, or the Hamilton-Jacobi-Bellman 

(HJB) equation, which is a sufficient condition of optimality. These methods are called 

indirect methods. 

Optimal control of nonlinear systems is one of the most challenging and difficult 

subjects in control theory. The nonlinear optimal control problem can be reduced to the 

Hamilton-Jacobi-Bellman partial differential equation, but due to difficulties in its 

solution, this is not a practical approach. Instead, the search for nonlinear control 

schemes has generally been approached on less ambitious grounds than requiring the 

exact solution to the Hamilton-Jacobi-Bellman partial differential equation. In fact, even 
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the problem of stabilizing a nonlinear system remains a challenging task. Lyapunov 

theory, a successful and widely used tool for stability analysis of nonlinear systems, is a 

century old. Despite having existed for a long time, systematic methods for obtaining 

Lyapunov functions for general nonlinear systems are still nonexistent. Nevertheless, 

the ideas presented by Lyapunov nearly a century ago continue to be used and exploited 

extensively in the modern theory of control for nonlinear systems. One notably 

successful use of the Lyapunov methodology is the concept of a control Lyapunov 

function (CLF), the idea of which is to first choose a function that can be made into a 

Lyapunov function for the closed-loop system by choosing appropriate control actions. 

The HJB equation provides a global control law in the form of a state feedback 

controller. Unfortunately, it involves the solution of a partial differential equation 

(PDE), which is in general computationally intractable. This single fact is largely the 

reason for the existence of the discipline of nonlinear optimal control. Hence, from one 

point of view, nonlinear optimal control can be thought of as the development of 

computationally tractable sub-optimal solutions to the optimal control problem. This 

explanation is attractive from a pedagogical viewpoint because it provides a natural 

justification for the close relationship between many popular approaches and the HJB 

equation. The following important aspects of the HJB solution should be highlighted for 

clarity: (1) Closed loop: The resulting solution is a state feedback control law. (2) 

Global: The solution provides the optimal control trajectory from every initial 

condition. Hence, it solves the optimal control problem for every initial condition all at 

once. (3) Sufficient: The solution of the HJB equation provides a sufficient condition 

for the solution to the corresponding optimal control problem. 

Optimal control problems without constraints can be solved successfully by using 

most direct and indirect techniques. However, inequality constraints often generate 

analytical and computational difficulties. Thus, researchers aim to solve constrained 
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optimal control problems with numerical methods. The direct method is widely used to 

solve nonlinear optimal control problems. It obtains an optimal solution by directly 

minimizing the constrained performance index. Furthermore, this method converts the 

optimal control problem into a mathematical programming problem by using either the 

discretization or the parameterization technique. Parameterization methods are 

classified into three types: state, control, and state control. Direct methods were used to 

obtain an open-loop solution of optimal control problems. 

With regard to the parameterization method, a significant amount of published 

papers are based on either control parameterization or state parameterization. These two 

approaches have some drawbacks, such as the following: In the control parameterization 

case, the system state equations need to be integrated, which is a computationally 

expensive. In the state parameterization case, this approach has not been used 

extensively because applying it to general optimal control problems is difficult. This 

difficulty is due to the fact that it is unclear which state variables to be parameterized in 

case of unequal number of state variables and control variables. Control-state 

parameterization is a third type of parameterization. The use of this approach has been 

limited so far because the optimal control problem is reduced to a large mathematical 

programming problem, i.e., it has a large number of unknown parameters and equality 

constraints. With the development of computers with high speed and efficient algorithm 

over the last few decades, it has become possible to solve complicated problems in a 

reasonable amount of time. Therefore the second goal of this thesis is to apply control-

state parameterization to general constrained optimal control problems with finite time 

horizon by using orthogonal wavelets.  

Most of the time, orthogonal functions are used to solve dynamic systems. Among 

the orthogonal functions, numerical method based on wavelet is a relatively new 

mathematical tools for solving integral and differential equations. Numerical solutions 
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of these equations have been discussed in many papers, which basically fall either in the 

class of spectral Galerkin and collocation methods or finite element and finite difference 

methods. Compared with other mathematical tools, wavelet analysis has captured the 

attention of mathematicians’ because it has obtained positive results in the field of 

signal and image processing. The most interesting features of wavelet is that its basis 

function, which is localized in space or time coexists with localization in frequency. The 

basis functions are usually orthogonal and compactly supported, which allow us to 

better represent functions with sharp spikes or edges, than other bases. These features 

result in sparse transformation in wavelet domain for non-stationary signals that 

contributes to fast algorithms; these are some of the desired properties in numerical 

analysis. Haar wavelet is the simplest orthogonal wavelet with a compact support. In 

our work, we considered the method of Beard et al. (2000) to successively approximate 

the solution of HJB equation. Instead of using the Galerkin method with polynomial 

basis, we used collocation method with Haar wavelet basis to solve the generalized 

Hamilton-Jacobi-Bellman (GHJB) equation. Galerkin’s method requires the 

computation of multidimensional integrals which makes the method impractical for 

higher-order systems. The main advantage of using collocation method in general is that 

the computational burden of solving the GHJB equation is reduced to matrix 

computation only. Our new successive Haar wavelet collocation method is used to solve 

linear and nonlinear optimal control problems. In the process of establishing the method 

we have to define new operational matrices of integration for a chosen stabilizing 

domain and new operational matrix for the product of two dimensional Haar wavelet 

functions. 

Another goal of this thesis is to solve the constrained nonlinear optimal control 

problem by converting it directly, with the use of control-state parameterization via 

Haar wavelets basis into a sequence of quadratic programming problems. This approach 
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has two advantages: first linear and nonlinear optimal control problems can be solved 

uniformly, and second guessing nominal trajectories, which we need to convert the 

nonlinear optimal control problem into a sequence of linear quadratic optimal control 

problems, is easier than guessing the parameters of these trajectories, which we need to 

solve the nonlinear mathematical programming problem. 

Many classical inventory models emphasize the single-item model. However, such 

models are seldom applied in the real world. Hence, multi-item inventory models are 

more realistic than single-item models. In multi-item models, the second item in an 

inventory favours the demand for the first and vice-versa. The final goal of this thesis is 

to optimize the control of the multi-item production-inventory model with stock-

dependent deterioration rates and deterioration due to self-contact and the presence of 

the other stock by using the direct method. 

1.2 Motivation 

1.  Although the necessary and sufficient conditions for optimality have already been 

derived, they are useful only for finding analytical solutions for quite restricted 

cases. If we assume full-state knowledge and if the optimal control problem is a 

linear-quadratic, then the optimal control is a linear feedback of the state, which is 

obtained by solving a matrix Riccati equation. However, if the system is nonlinear, 

then the optimal control is a state feedback function, which depends on the solution 

to the HJB equation. HJB equation is a nonlinear partial differential equation that is 

usually difficult to solve analytically. 

2. Historically orthogonal bases are related with differential equations, including partial 

differential equations. Recently, orthogonal basis with compact support, such as 

Daubechies wavelet, have been used successfully in signal and image processing. 
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In addition, the availability of fast transform makes orthogonal basis attractive as a 

computational tool. Haar wavelet which is a piecewise function, is the simplest 

orthogonal wavelet with a compact support. Thus, studying where this Haar 

wavelet can be used to solve ordinary and partial differential equation is an 

interesting task. Haar wavelet is not continuous. Therefore, the highest derivatives 

that appear in the differential equations are first expanded by using Haar wavelet 

basis. Lower-order derivatives and the solutions can then be obtained easily by 

using Haar operational matrix of integration. The main ideas of using Haar wavelet 

operational matrix is to convert partial differential equations into matrix equations 

that can be solved easily by using MATLAB. 

3. The following questions need to be addressed: If we are given an initial stabilizing 

control, how do we improve the closed-loop performance of this control?. Does a 

simple method of computing the improved control law exist?. A solution to these 

questions bridges the problems of finding a stable control law and finding the 

optimal control. For nonlinear systems, the optimal control problem is reduced to 

the solution of the HJB equation; this equation is difficult to solve. Thus, 

researchers have looked for methods of approximating its solution with a numerical 

method. For example, Beard (1995) used Galerkin method with polynomials basis 

to solve the above problem. We will use collocation method with Haar wavelet to 

solve the problem. Using Haar wavelet method that deals with matrices is much 

simpler than polynomial integration in Galerkin method. 
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1.3 Scope of the Study  

The work throughout this study is concerned with quadratic optimal control (QOC) 

problems that are associated with both finite and infinite time horizon of minimizing a 

performance index. We will address the following related control problems: 

 The infinite-time horizon problem, where the system equations are assumed to 

be linear and nonlinear and the optimization index is over an infinite time 

interval. 

 The finite-time horizon problem, where the system equations are assumed to 

be constrained linear and nonlinear time-varying and the optimal index is over a 

finite time interval. 

The main focus of this study is to establish two methods, which are the indirect and 

the direct methods to solve the nonlinear optimal control problem. In the process of 

establishing the methods, we have derived some new operational matrices of integration 

for a chosen domain and a new operational matrix for the product of two dimensions 

Haar wavelet functions.  

We further our study by utilizing Lyapunov functions for the feedback system. A 

Lyapunov function is a generalized energy function of the state and is usually suggested 

by the physics of the problem. With the use of Lyapunov theory, finding a stabilizing 

control for a particular system is often possible.  

However, the numerical stability and error analysis of both proposed numerical 

methods are not mathematically proven. A comparison with the analytical solution 

given by others is conducted to justify the accuracy of these numerical results.  
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1.4 Research Objectives 

The following are the objectives of this research: 

1. Derive new formulas of two dimensions Haar wavelet operational matrices for 

partial integration for a chosen interval ),[  . 

2. Derive a new formula for Haar wavelet operational matrix for the product of 

two dimensional Haar wavelet functions. 

3. Establish a numerical algorithm for solving GHJB equation by using Haar 

wavelet operational matrices and Haar wavelet collocation method. 

4. Solve HJB equation iteratively by using GHJB equation. 

5. Establish a novel feedback control method of solving optimal control problems 

with quadratic performance index subject to nonlinear affine control system 

with infinite time horizon. 

6. Propose a new numerical method for solving constrained nonlinear optimal 

control problem with finite time horizon by using quasilinearization technique 

and Haar wavelet operational matrix to convert the nonlinear optimal control 

problem into a quadratic programming problem. 

7. Apply the proposed method in (6) to practical problems such as optimization of 

the control of nonlinear optimal control of a multi-item production-inventory 

model with stock-dependent deterioration rates, deterioration due to self-

contact, and the presence of the other stock. 

8. Develop MATLAB programs for solving infinite time nonlinear optimal 

control problems and finite time constrained nonlinear optimal control 

problems. 
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1.5 Organization of the Thesis 

This thesis consists of seven chapters, including this chapter, and is organized as 

follows: 

In Chapter 2, we present an overview of the operational matrix in general. We list a 

few well-known orthogonal functions that have been used to derive the operational 

matrix. Next, we narrow it down to a specific orthogonal function namely Haar basis 

function. The selection of this orthogonal function will be justified by presenting its 

advantages over that of other orthogonal functions. We present a few advantages of this 

orthogonal function to justify our selection of the Haar wavelet function. We further 

discuss our main problem of solving the optimal control problem. At the end of this 

chapter, we examine the multi-item production-inventory model. 

In Chapter 3, we illustrate the mathematical background of Haar wavelets which 

are needed to understand the concepts that are introduced in the remainder of this thesis. 

Most studies define Haar wavelet and its operational matrix within the interval [0, 1). 

We derive Haar wavelet operational matrix which could cater to the Haar series beyond 

the interval )1,0[  . The remainder of the thesis presents the difficulties encountered 

while solving the nonlinear optimal control problems and the solutions to these 

difficulties as well as provide the reader with sufficient contexts to understand certain 

related concepts. In particular, we derive some new formulas for Haar wavelet 

operational matrices in higher dimensions of integration for a chosen interval ),[   

and new formulae for Haar Wavelet operational matrix for the product of two 

dimensional Haar wavelet functions. A general formula of Haar wavelet collocation 

point’s matrix with two variables is derived, which is another motivation behind 

developing a novel feedback control algorithm described in Chapter 4.  
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In Chapter 4, a novel method is introduced to solve the HJB equation, which 

appears in the formulation of the nonlinear control system with quadratic cost functional 

and infinite time horizon. This method is a numerical technique, which is based on the 

combination of Haar wavelets operational matrices and successive GHJB equation, to 

improve the closed-loop performance of stabilizing controls and reduces the problem of 

solving a nonlinear HJB equation to that of solving the corresponding GHJB equation. 

The solution to the GHJB equation converges uniformly to the solution of the HJB 

equation, which is in the form of the gradient of the Lyapunov function )(xV . In 

order to determine the Lyapunov function from the resulting solution of the linear 

system equation. A new method is proposed in this chapter to integrate the gradient of 

the Lyapunov function using variable gradient method. A number of numerical 

examples for optimal control problems are given to justify the proposed method.  

In Chapter 5, an efficient new algorithm is proposed to solve nonlinear optimal 

control problems with a finite time horizon under inequality constraints. In this 

technique we parameterize both the states and the controls by using Haar wavelet 

functions and Haar wavelet operational matrix. The nonlinear optimal control problem 

is converted into a quadratic programming problem through quasilinearization iterative 

technique. The inequality constraints for trajectory variables are transformed into 

quadratic programming constraints by using the Haar wavelet collocation method. The 

quadratic programming problem with linear inequality constraints is then solved by 

using standard QP solver. 

In Chapter 6, the proposed method in Chapter 5 is applied to optimize the control of 

the multi-item production-inventory model with stock-dependent deterioration rates and 

deterioration due to self-contact and the presence of the other stock. Four different types 

of demand rates, namely, constant, linear, logistic, and periodic demand rates. The 
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solution to the model is discussed numerically and displayed graphically. By enhancing 

the resolution of the Haar wavelet, we can improve the accuracy of the states, controls, 

and cost. Simulation results were compared with those obtained by another researcher’s 

work. 

Chapter 7, summarizes the overall works and contributions of the study to the 

indirect method of nonlinear optimal control problems with an infinite time horizon and 

the direct method for constrained nonlinear optimal control problems with a finite time 

horizon. Some recommendations for future work are proposed. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Operational matrix method has received considerable attention from many scholars for 

solving dynamical system analysis (Sinha and Butcher, 1997), system identification 

(Dosthosseini et al., 2010), numerical solution of integral and differential equations 

(Lepik, 2005; Kilicman and Zhour, 2007) and optimal control problem (Mohan and Kar, 

2005; Endow, 1989; Karimi, 2006). The operational matrix method mainly involves 

casting a differential or integral equation into a corresponding matrix equation. The 

approach is based on converting the underlying differential equations into integral 

equations through integration of operators and approximating the functions involved in 

the equation by truncated orthogonal series. An operation of integral operator is 

converted by an operational matrix. To have a better view of the operational matrix 

method, let us consider the integral property of function vector )(x  in the following 

approximation: 

     ),()(
0

xd

x

  P     (2.1) 

where 

T
            )]()()([)( 100 xxxx m     (2.2) 

in which the elements )(        )(    )( 110 xxx m   are the orthogonal basis functions in 

the Hilbert space )(2 L . The operational matrix P  is an mm  constant matrix and 

behaves as an integrator (Cheng et al., 1977; Irfan and Kapoor, 2011) and can be 

uniquely determined on the basis of the particular orthogonal functions, )(xi .  
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At present, large number of literature derive operational matrix from different 

orthogonal functions. Orthogonal basis functions that have been given special attention 

are Walsh function (Chen and Hsiao, 1975), block pulse function (Chi-Hsu, 1983), 

cosine-sine and exponential function (Paraskevopoulos, 1987), normalized Bernstein 

polynomials (Singh et al., 2009), linear Legendre mother wavelets (Khellat and Yousefi, 

2006), Chebyshev wavelet (Babolian and Fattahzadeh, 2007) and Haar wavelet (Gu and 

Jiang, 1996; Chen and Hsiao, 1997). 

Chen and Hsiao (1975) derived Walsh operational matrix for performing 

integration and solving generalized state equations. Paraskevopoulos (1987) showed the 

operational matrix relationship between Fourier sine-cosine series and Fourier 

exponential series expansion. Babolian and Fattahzadeh (2007) obtained Chebyshev 

operational matrix for integration in general, and for finding continuous and 

discontinuous solutions of Volterra type integral equations. All of these numerical 

computations share a number of advantages. One of the advantages is the possibility of 

finding the solution using only matrix manipulation rather than performing integration 

or differentiation in a conventional ways. Another advantage is that the matrices can be 

transformed into a sparse matrix and a small number of significant coefficients 

(Hariharan and Kannan, 2011), which is important factor for reducing computation 

time. Nonetheless, the advantage remains, when a large matrix is involved, whereby 

large computer storage space and a huge number of arithmetic operations are required 

(Lepik and Tamme, 2004). 

In this study, we are going to work with the Haar wavelet basis function and Haar 

wavelet operational matrices to approximation functions and integrating functions 

respectively. Haar wavelet has a few advantages compared with other wavelet 

functions. Haar wavelet is the oldest and the simplest wavelet function and it is one 
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example of an orthogonal function (Burrus et al., 1998). Haar wavelet bases has 

compact support, which means that the Haar wavelet vanishes outside of a finite interval 

and allow us to represent functions with sharp spikes or edges, better than other bases. 

The admired properties of Haar wavelet orthogonal functions in numerical computation 

include the following: the sparse representation for piecewise constant function, fast 

transformation, and the possibility of implementing a fast algorithm in matrix 

(Shahsavaran, 2011). Faster matrix transformation can be achieved through the 

expansion of Haar series than the expansion of Walsh series for the same amount of 

terms required for computation because the resolution order by Haar expansion is less 

than that by Walsh expansion (Khuri, 1994). Haar wavelet operational matrix for the 

integral of Haar wavelets is always positive definite. Hence Haar wavelet operational 

matrix inverses are always available. This property of Haar wavelets makes this method 

computer oriented because no singularities are involved in the computation (Chen and 

Hsiao, 1997). This factor gives an additional advantage to the proposed numerical 

method which is discussed in Chapter 4. 

Recently, Haar wavelets have been applied to signal and image processing in 

communication research and physics research and have been proven to be excellent 

mathematical tools (Nievergelt, 1999). It has been applied to a wide range of application 

such as in system analysis (Chen and Hsiao, 1999), and numerical solutions of nonlinear 

integral equations (Aziz and Islam, 2013; Islam et al., 2014; Aziz et al., 2014), 

numerical solutions of integro-differential equations (Islam et al., 2013), boundary-

value problems (Islam et al., 2010; Islam et al., 2011; Fazal et al., 2011; Aziz et al., 

2013) and optimal control problems (Swaidan and Hussin, 2013). The first attempt at 

using the Haar basis function for solving differential equations was conducted by Chen 

and Hsiao (1997), who were the first to derive the Haar operational matrix for integrals 

and brought the application of Haar analysis into dynamic systems. Chen and Hsiao 
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(1997) applied their proposed method to solve the state equations of lumped and 

distributed-parameter linear systems based on the Haar wavelet. Hsiao (1997) 

constructed the new Haar product matrix and coefficient matrix, which have been 

applied to various problems, such as the state analysis of linear time-delayed systems. 

The main characteristic of this technique is its capability to convert differential 

equations into algebraic equations. Thus, solution identification and optimization 

procedures are either reduced or simplified. Lepik (2005, 2007a, b) used the Haar 

wavelet method to solve ordinary and partial differential equations (PDE). Lepik (2011) 

solved PDE with two-dimensional Haar wavelets. Islam et al. (2013) solved parabolic 

PDE using Haar and Legendre wavelets. In the present study, we derived a new Haar 

wavelet operational matrix of integration for one dimension on the interval   ,  and 

some new Haar wavelet operational matrices for integration with two-dimensional Haar 

wavelet basis in the interval   , . Finally, we constructed a new algorithm for the 

operational matrix for product of two-dimensional Haar wavelet functions by extending 

the work of Hsiao (1997). 

The solution to optimal control problems has been an important research subject for 

hundreds of years. The derivation of necessary and sufficient conditions for optimality 

is useful for obtaining an analytic solution for a restricted case (Kirk, 1970). However, 

computational methods for solving optimal control problems had not been attempted 

until the advent of modern computers. Even with modern computers, the numerical 

solutions of optimal control problems are not easily obtained (Diehl, 2011). 

Computational methods for solving optimal control problems have evolved 

significantly since Pontryagin and his students presented their well-known maximum 

principle (Sussmann and Willems, 1996). Unless the system equations of the problem at 

hand are simple, along with the cost function and the constraints, numerical methods 
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must be used to solve optimal control problems. With the development of economical, 

high-speed computers over the past few decades, solving complicated problems in a 

reasonable amount of time has become possible (Diehl, 2011). 

Presenting a survey of numerical methods in the field of optimal control problems 

is a daunting task. Perhaps the most difficult aspect is restricting the scope of the survey 

to permit a meaningful discussion within a few pages only. With this objective, we shall 

focus on two types of numerical methods. These methods are labelled as direct methods 

and indirect methods. 

Indirect methods transform the problem into another form before proceeding with 

the solution. Indirect methods can be grouped into two categories, namely, Bellman’s 

dynamic programming method and Pontryagin’s maximum principle. Bellman 

pioneered the work in dynamic programming, thus leading to sufficient conditions for 

optimality by using the Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a 

first-order PDE that is used for deriving a nonlinear optimal feedback control law. 

Pontryagin’s maximum principle is used to determine the necessary conditions for the 

existence of an optimum. Pontryagin’s maximum principle converts the original optimal 

control problem into a boundary value problem, which can be solved analytically or 

numerically by using well-known techniques for differential equations (Kirk, 1970; 

Ranta, 2004). 

The determination of the optimal feedback control law has been one of the main 

problems in modern control theory (Ho, 2005). If we assume full-state knowledge, if the 

dynamic system is linear, and if the objective function is quadratic, the optimal control 

problem is a linear feedback of the state that is obtained by solving a matrix Riccati 

equation (Bryson, 2002). However, if the system is nonlinear, then the optimal control 

problem is a state feedback law that depends on the solution to HJB equation. The HJB 
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equation is a nonlinear PDE whose solution is difficult to obtain even in simple cases. 

Therefore, a practical method of approximating the solution to the HJB equation is 

highly preferred. The discretization of state space and time yields finite element 

approximations, but these approaches become intractable as the dimension of the state 

becomes large (Falcone, 1987). Other series approximations have also been applied to 

obtain global approximations, but these approaches have achieved only limited success 

because of the difficulty of solving higher-order terms in the approximation (Garrard et 

al., 1992).  

With regard to deriving approximate solutions to the HJB equation, an interesting 

quote is found in Merriam (1964): “pertinent methods of approximation must satisfy 

two properties. First, the approximation must converge uniformly to the optimum 

control system with increasing complexity of the approximation. Second, when the 

approximation is truncated at any degree of complexity, the resulting control system 

must be stable without unwanted limit cycles.”  

Successive approximation, which is sometimes called “iteration in policy space,” 

was first used in the context of the HJB equation by Bellman (1957) to argue the 

existence of smooth solutions to the HJB equation. The basic idea of successive 

approximation is to solve a differential equation by establishing a reasonable initial 

guess to the solution and then updating this guess on the basis of the error that it 

produces. The method of successive approximation was originally introduced by 

Bellman. This method was first applied to optimal control problems by Rekasius (1964) 

who used the idea of successively computing sub-optimal control problems for linear 

systems with non-quadratic performance criteria. In Leake and Liu (1967), the method 

of successive approximations is used to derive an algorithm for computing the solution 

to the HJB equation by computing the solution to a sequence of linear PDEs given by 



19 

 

the generalized-Hamilton-Jacobi-Bellman (GHJB) equation. Leake and Liu (1967) were 

the first to analyze the successive algorithm. The ideas of successive approximation 

were placed on a sound theoretical foundation by Saridis and Lee (1979). The authors 

used successive approximation to achieve a design algorithm that improves the 

performance of an initial stabilizing control. This method is shown to monotonically 

converge pointwise to the optimal solution, that is, to the solution of the HJB equation. 

Our work is based on this method which will be explained in Chapter 4. 

The successive Galerkin approximation (SGA) technique has recently been 

introduced as a technique for approximating the HJB equation. Beard et al. (1997) 

introduced the Galerkin approximation method for solving the GHJB equation to 

approximate the solution of the HJB equation successively. Given an arbitrary 

stabilizing control law for a nonlinear system, the solution to the GHJB equation 

associated with stabilizing control is a Lyapunov function for the system and is equal to 

the cost function. Their method can be used to improve the performance of the feedback 

control laws by repeating this process until a successive approximation algorithm that 

uniformly approximates the HJB equation is obtained. Beard et al. (1997) showed that 

constructing solutions to the GHJB equation, such that the control derived from its 

solution is in feedback form, is difficult. 

The GHJB is solved by Beard et al. (1997), who used the Galerkin approximation 

method. The problem with this method is that it only yields an average performance 

because it attempts to fit its basis functions to some large regions of the state space. The 

Galerkin method requires the computation of multidimensional integrals. This 

computational burden makes the method impractical for higher-order systems. Notably, 

the nonlinear optimal control function is only a function of the local solution to the HJB 

equation. This realization leads to a unique approach for approximating local solutions 
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to the HJB equation (Curtis and Beard, 2001). However, the computational complexity 

is still high, although it may be decreased by using the structure of the SGA algorithm 

(Beard and Mclain, 1998). Another attempt to reduce the computational load of the 

SGA method has been proposed recently by Curtis and Beard (2001) who devised a 

collocation method for solving the GHJB locally. Their idea is based on the observation 

that the optimal control problem is only a function of the local/current state. Thus, the 

GHJB equation is only solved approximately at a set of discrete points around the 

current state. Mizuno and Fujimoto (2008) proposed a new approximation to the HJB 

equation, which is used in nonlinear optimal control problems and showed that the HJB 

equation is effectively solved by the Galerkin spectral method with Chebyshev 

polynomials on the basis of successive approximation. 

In Chapter 4, we considered the method of Beard et al. (1997) to approximate the 

solution of the HJB equation successively. Instead of using the Galerkin method with 

polynomial basis, we will use the collocation method with the Haar wavelet basis to 

solve the GHJB equation. The Galerkin method requires the computation of 

multidimensional integral, thus making the method impractical for higher-order systems 

(Curtis and Beard, 2001). Generally, the main advantage of using the collocation 

method is that the computational burden of solving the GHJB equation is reduced to 

matrix computation only. 

The significance of the approximation approach of Saridis and Lee (1979) is that 

any initial control is successively improved and that the control law at any iteration has 

a guaranteed (sub-optimal) performance index. Beard et al. (1995) applied Saridis’s 

successive approximation theory to the finite-time optimal control problem. The result 

is an iterative scheme that successively improves any initial control law and ultimately 

converges to the to the optimal state feedback control. Thereafter, the solution of a 
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nonlinear Riccati equation is replaced by the successive solution to a linear Lyapunov 

equation.  

Beeler et al. (2000) conducted a comparison study of five different computational 

methods for solving nonlinear optimal control problems and investigated the 

performance of these methods on several test problems. Beeler et al. (2000) provided 

recommendations as to which feedback control method can be best used under various 

conditions. 

Park and Tsiotras (2003) proposed a successive wavelet collocation algorithm that 

uses interpolating wavelets to iteratively solve the GHJB equation and corresponding 

optimal control law. They however consider problems in one dimension. 

Vadali and Sharma (2006) obtained a closed-form solution of the HJB equation by 

expanding the value function as a power series in terms of the state and constant 

Lagrange multipliers. Although higher-order approximations can be possibly obtained 

by using series expansion solutions, this process is time-consuming and the 

improvement of the performance is not guaranteed (Bando and Yamakawa, 2010). 

Hamilton’s principle is an alternative formulation of the differential equations of a 

dynamic system and states that the trajectory between two specified states at two 

specified times is an extremum of the action integral (Arnold, 1989). Motivated by this 

observation, Bando and Yamakawa (2010) solved Lambert’s problem, namely, the two-

point boundary value problem for Keplerian motion, by minimizing the action integral. 

Lambert’s problem is viewed as an optimal control problem by replacing kinetic energy 

with a quadratic performance index of the control input such that the initial velocity is 

determined as the optimal control problem. Thereafter, the solution is obtained by the 

successive approximation of the HJB equation on the basis of the expansion of the value 

function in the Chebyshev series with unknown coefficients. 
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Kafash et al. (2013) used the variational iteration method for optimal control 

problems. The optimal control problems are transferred to the HJB equation. Thereafter, 

the basic variational iteration method is applied to construct a nonlinear optimal 

feedback control law. By using this method, the control and state variables can be 

approximated as a function of time. 

The direct method is extensively used to solve nonlinear optimal control problems. 

The direct method obtains an optimal solution by directly minimizing the constrained 

performance index. Furthermore, this method converts the optimal control problem into 

a mathematical programming problem by using either the discretization technique or the 

parameterization technique (Huntington and Rao, 2008). Parameterizations methods are 

classified into three types: state parameterizations, control parameterizations, and 

control-state parameterizations. The control-state parameterization is based on the 

approximation of the state and control variables by using a sequence of known functions 

with unknown parameters in the following form:  


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)()(
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j

jkjk tbtu ,  2,,2,1 nk        (2.4) 

where ija  and kjb  are unknown parameters and )(tj  denotes an appropriate set of 

functions forming the basis of a finite dimension (Spangelo, 1994; Jaddu, 1998). 

Many researchers have investigated the theoretical aspects of the inequality 

constraints of trajectory. Mehra and Davis (1972) noted that the complications in 

handling trajectory inequality constraints in gradient or conjugate gradient methods are 



23 

 

caused by the exclusive use of control variables as independent variables in the search 

procedure. In response, they presented the generalized gradient technique. 

Vlassenbroeck (1988) introduced a numerical technique for solving nonlinear 

constrained optimal control problems based on Chebyshev series expansion of state and 

control variables with unknown coefficients. In this method the lengths of the control 

and state vectors are assumed to be equal. The differential and integral expressions from 

the system dynamics, performance index, boundary conditions, and other general 

conditions are converted into algebraic equations. The state inequality constraints are 

transformed into equality constraints through the use of slack variables. This work was 

extended previously to nonlinear unconstrained optimal control problems by 

Vlassenbroeck and Van Dooren (1988). According to Vlassenbroeck (1988), the 

constrained parameter optimization problem can be converted into an unconstrained 

problem by using a penalty function technique, thus avoiding the enhancement of the 

dimensionality of the problem. 

Von Stryk and Bulirsch (1992) used a combination of direct and indirect methods 

for the numerical solution of nonlinear optimal control problems for trajectory 

optimization in the Apollo capsule. This hybrid approach improves the low accuracy of 

the direct methods and increases the convergence areas of the indirect methods. 

Jaddu (1998) established some numerical methods on the basis of a state 

parameterization technique with Chebyshev polynomials to solve unconstrained and 

constrained optimal control problems by using the quasilinearization method. 

Thereafter, extended this concept to nonlinear optimal control problems with terminal 

state and control inequality constraints and to simple bounds on state variables (Jaddu, 

2002). Yen and Nagurka (1992) proposed the addition of mn  new artificial control 

variables to the system if the number of control variables is less than the number of state 
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variables. This technique has the following disadvantages: (1) a large number of 

unknown parameters exist; (2) the original problem is changed. Han et al. (2012) 

presented a numerical method for solving nonlinear optimal control problems, including 

terminal state constraints and state and control inequality constraints. The method is 

based on triangular orthogonal functions. In their method, the state and control 

inequality constraints are adjoined into the optimization problem by replacing the 

restrictions inequality constraints of equality by using the auxiliary function. Thereafter, 

the optimal control problem is converted into algebraic equations by approximating the 

dynamic systems, performance index, and boundary conditions into triangular 

orthogonal series. Thus the problem can be easily solved by iterative methods. 

Behroozifar and Yousefi (2013) proposed a numerical method for solving the 

constrained optimal control problems of time-varying singular systems with quadratic 

performance index. The method is based on Bernstein polynomials. Operational 

matrices of integration, differentiation, and product are also introduced to reduce the 

solution of optimal control problems with time-varying singular systems to the solution 

of algebraic equation sets by using the Lagrange multiplier method. Kafash et al. (2014) 

reported that the direct method has the potential to calculate continuous control and 

state variables as functions of time. Kafash et al. (2014) proposed a computational 

method for solving optimal control problems and the controlled Duffing oscillator on 

the basis of state parametrization. The state variable is approximated by the Boubaker 

polynomials. The motion, performance index, and boundary conditions equations are 

converted into algebraic equations.  

Solving the optimal control problem through orthogonal functions, especially Haar 

wavelets, is an active research area. In fact, Hsiao and Wang, (1999) solved the optimal 

control problem of linear time-varying systems. On the basis of some useful properties 
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of Haar wavelets, a special product matrix and an operational matrix of integration were 

used to solve the adjoint equation of optimization. Dai and Cochran (2009) converted 

optimal control problems into nonlinear programming (NLP) parameters at the 

collocation points by using a Haar wavelet technique. NLP problems can be solved by 

using NLP solvers, such as the sparse nonlinear optimizer (SNOPT). Han and Li (2011) 

presented a numerical method to address nonlinear optimal control problems with 

terminal state, as well as state and control inequality constraints. This method is based 

on the quasilinearization and Haar functions. Moreover, the researchers parameterized 

only the state variables and added artificial controls to equalize the number of state and 

control variables. In the present study, we do not incorporate artificial variables, but 

parameterize the state and control variables. Marzban and Razzaghi (2010) presented a 

numerical method to address constrained and nonlinear optimal control problems. In 

their method the inequality constraints are integrated into the optimization problem by 

replacing the restrictions of inequality constraints of equality constraints by using 

auxiliary function. Although their method is also based on Haar wavelets, it requires a 

set of necessary conditions. Our method is easier to implement than that of Han (2011) 

and Marzban (2010) because our method does not required time transformation to the 

domain time interval ]1,0[  . 

Optimal control problems play an important role in a range of application areas 

including engineering, economics, and inventory (Sethi and Thompson, 2006). The 

literature on multi-item dynamic inventory models is relatively sparse, because most of 

the classical studies focused on single-item inventory models. We cite some of the most 

recent studies to give an idea of the extensive range of optimal control applications in 

the multi-item production-inventory system. Bhattacharya (2005) proposed a new 

approach toward a two-item inventory model for deteriorating items with linear-stock 

dependent demand rate. He derived the necessary criterion for the steady state optimal 
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control problem for optimizing the objective function subjected to the constraints of the 

ordinary differential equations of the inventory. The multi-item production-inventory 

system also considers a particular choice of parameters satisfying the aforementioned 

necessary conditions. Under this choice, the optimal values of control parameters are 

calculated and the optimal amount of inventories is determined. With respect to the 

optimal values of the control parameters and optimal inventories, the optimal value of 

the objective function is obtained. El-Gohary and Elsayed (2008) presented the optimal 

control problem of a multi-item inventory model with deteriorating items for different 

types of demand rates and fixed natural deterioration rates. Graian and Essayed (2010) 

solved the optimal control problem of a multi-item inventory model with deteriorating 

rates as functions of the inventory levels and time by using the Pontrygin prinnciple. 

Alshamrani (2012) considered a multi-item inventory model with unknown demand rate 

coefficients. An adaptive control approach with a nonlinear feedback was applied to 

track the output of the system toward the inventory goal level. The Lyapunov technique 

was used to prove the asymptotic stability of the adaptive controlled system. Howevere, 

we will focus on the problem of El-Gohary and Elsayed (2008) as an application of our 

proposed method which is presented in Chapter 5. 
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CHAPTER 3 

THE HAAR WAVELET METHOD 

 

3.1 Introduction 

The theory of approximation and transformation plays an important role in economics, 

sciences and engineering. In mathematics, approximation theory is concerned with how 

functions can best be approximated with simple functions. Moreover, this theory 

quantitatively characterizes the introduced errors. The objective is to approximate 

functions as closely as possible to the actual function. The advantage of this technique 

highlighted through solving complicated mathematics problem (non-linear equations, 

ordinary differential equation ODE, partial differential equation PDE, among others). In 

this chapter, we focus on a particular type of function approximation and its properties.  

Wavelet theory is a relatively new and emerging area in mathematical research. 

Wavelets have been applied in the different fields of science and engineering and 

facilitate the accurate representation of a variety of functions and operators. Orthogonal 

functions and polynomial series have received considerable attention in terms of 

addressing various problems of dynamic systems. The main characteristic of this 

technique is that it reduces these problems to a system of algebraic equations, thus 

simplifying these problems significantly. The approach is based on the conversion of 

underlying differential equations into integral equations through integration, the 

approximation of the various functions in the equation using the truncated orthogonal 

series, and the use of the operational matrix P  of integration to eliminate integral 

operations.  
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The history of Haar wavelet dates back to July 1909. This concept was presented in 

the inaugural thesis written by Alfred Haar (Haar, 1911). However, the adjective 

wavelet doesn’t appear until around the year 1975. During this period, the concept of 

wavelet was first pioneered and introduced by Jean Morlet, a French geophysicist who 

analyzed the backscattered seismic signals carrying information on geological layers 

(Meyer, 2008). Morlet later collaborated with a Croatian-French physicist named 

Alexander Grossmann to analyze wavelets. At this point, the term “wavelet” was 

introduced into the academia for the first time. The French equivalent of this term is 

“ondellete” which means “small wave”. 

Haar wavelet is a wavelet family or basis that is generated from a sequence of 

rescaled square wave function series. The fundamental square wave function must be 

defined to describe the Haar series. Then, the subsequent Haar wavelet functions are 

generated from this square wave function through translation and dilation processes. 

Haar wavelet is simple and is the oldest wavelet. This wavelet has compact support, 

which indicates that the wavelet vanishes beyond of a finite interval. Unfortunately, 

Haar wavelets are not continuously differentiable, thus limiting its applications 

somewhat. Haar wavelet is also categorized as an orthogonal function. 

In this chapter, the generation of Haar wavelet function, its series expansion, and a 

one-dimensional matrix for a chosen interval  21, is introduced in brief . Many 

studies have defined the operational matrix of Haar wavelet on interval  1,0  . We 

extend the usual defined interval to  ,0 and   , because the actual problem does 

not necessarily involve only one dimension. Next, we must define the matrix of Haar 

wavelet collocation points for two dimensions to establish a method for solving 

Generalized Hamilton-Jacobi-Bellman (GHJB) equation in this chapter. In addition, we 

formulate new Haar wavelet operational matrices to integrate the Haar function vectors 

for two dimensions such as 
1Q , 

2Q , 
1E , and 

2E  given the chosen stabilizing domain
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),[  . At the end of this chapter, we establish a novel operational matrix for the 

product of the Haar wavelet functions of two dimensions. 

3.2 Haar Wavelet Function 

The orthogonal set of the Haar wavelets )(xhi  function is a group of square waves over 

the interval ),[ 21  . These wavelets are defined as follows: 
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where the number of the wavelet is denoted by ki j  2  (the maximum value is 

Mi 2 . Here JM 2 , where  J  is the maximal level of resolution); the dilatation 

parameter Jj ,,2,1,0  ; and the translation parameter 1,,2,1,0  mk   where 

jm 2 . )(0 xh  is constant in the interval  21,  and is called the Haar scaling function. 

)(1 xh  is known as the Haar mother wavelet function or the fundamental square wave 

function. 

All subsequent Haar wavelet functions are generated from the mother wavelet 

function )(1 xh  through translation and dilation process. 
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                         )2()( 1 kxhxh j

i  .         (3.4) 

The orthogonal sets of the first four Haar functions ( 4m ) in the intervals of                    

( 10  x ) and ( 11  x ) are shown in Figures 3.1 and 3.2, respectively. 

 

 

          (a) Haar function of )(0 xh           (b) Haar function of )(1 xh  

 

 

 

         (c) Haar function of )(2 xh    (d) Haar function of )(3 xh  

 

Figure 3.1 First four Haar functions in the interval of ( 10  x ) 
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          (a) Haar function of )(0 xh           (b) Haar function of )(1 xh  

 

     

         (c) Haar function of )(2 xh    (d) Haar function of )(3 xh  

 

Figure 3.2 First four Haar functions in the interval of ( 11  x ) 
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The value of each Haar wavelet is determined through a couple of constant steps 

involving opposite signs during the subinterval. This value is zero elsewhere. Therefore, 

given ,2 kp j  

 they have the following relationship: 
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Eqn. (3.5) can be proven as below 

Proof 

If qp  , then we obtain 
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Since ph  and qh have disjoint supports if 0 qp , and sums cancel out if 0 qp  
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This relationship shows that Haar wavelet functions are orthogonal to each other and 

therefore constitute an orthogonal basis. Hence, this relationship facilitates the 

transformation of any function square interval in the time interval ),[ 21   into a Haar 

wavelet series.  

3.3 Haar Series Expansion 

Any function   21

2 ,Lf   can be expanded into a Haar series of infinite terms: 

                            )()()()( 221100 xhcxhcxhcxf  .      (3.9) 

If the function )(xf  is approximated as a piecewise constant, then the decomposition in 

Eqn. (3.9) can be terminated as follows:  
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where ki j  2 , mj 2log,,2,1,0   and jk 20  . The Haar coefficient ic  can be 

determined by applying the inner product in Eqn. (3.5).  

If  )(xhi  is an orthogonal set of functions on an interval  21, , then a set of 

coefficients ic  can be determined for which  

                            )()()()( 1100 xhcxhcxhcxf nn  .     (3.11) 

Multiplying Eqn. (3.11) by )(xhp  and integrating the result over the interval ),[ 21 

generates  
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In orthogonality, the value of each term on the right-hand side of the previous 

equation is zero except when np  . In this case, we obtain 
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Thus, the required coefficients are 
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or, we can rewrite this equation as 
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As per Eqn. (3.5), the norm 
jn xh

2
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 ; therefore, the Haar wavelet coefficient 

is determined by 

        ,       3,2,1,0,)()(
)(

2 2

1
12




  ndxxhxfc n

j

n






 .    (3.17) 



35 

 

Thus, given any function )(xf  that is square integrable within interval 21   x , the 

Haar wavelet coefficient in Eqn. (3.9) can be determined with as 
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If )(xf  is smooth, then approximating )(xf  using Haar basis function gives a lower 

accuracy for a given m  (Islam et al., 2013). 

If )(xf  and )(xfm  in Eqn. (3.10) are the exact and approximate solutions, respectively, 

then the corresponding errors are defined as follows: 
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Saeedi et al., (2011), shown that the square of the error norm is 
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where   is the Lipschitz constant. Hence for Haar wavelet approximation, the 

convergence is of order one, that is, 
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As per Eqn. (3.21), the error is inversely proportional to the level resolution of the Haar 

wavelet function. This scenario implies that the Haar wavelet approximation method is 

convergent as m approaches to infinity. 
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3.4 Matrix of One-dimensional Haar Wavelets 

As per Eqn. (3.10), the sum can be written in the following compact matrix form: 

)()( xxf mmhc    
T ,     (3.22) 

where Haar coefficient vector T
cm

 and Haar function vector )(xmh  are defined as 
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and 
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              h xhxhxhxhx mm     (3.24) 

The superscript T  denotes the transpose and the subscript m   denotes the dimension of 

vectors and matrices.  

 

Figure 3.3: Collocation point 

The collocation points are defined as follows:  
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In general, for mj         ,,3,2,1  , and Jm 2 .  
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We can simplify Eqn. (3.26) to obtain 
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For instance, we can generate four collocation points from Eqn. (3.27) for 4,3,2,1        j

in the interval  1 ,1  as follows: 
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4

3
4   x . 

Haar function vector )(xmh  can be represented in m  square matrix form mH , the 

elements of which are given by 

)(][ jijim xh H   ,    (3.28) 

for 1,,2,1,0  mi        , mj       ,,2,1   and jx  are the collocation points as defined in 

Eqn. (3.27). 

For instance, the fourth-order Haar wavelet matrix 4H  in the interval of )1,0[   can be 

represented in matrix form with the collocation points from Eqn. (3.28) as follows: 
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When the Haar wavelet matrix is defined as in Eqn. (3.28), then the coefficient T
cm  in 

Eqns. (3.17) and (3.22) can be easily obtained as 

-1T
H   c mmm f  ,     (3.31) 

where 

 

        
                             321 mm xfxfxfxff  .      (3.32) 

In particular, a large Haar wavelet matrix is needed for the solution to the HJB equation 

method in Chapter 4. Fortunately, mH  and 1

mH  contains many zeros. As m  value 

increases, the element of zeros in the matrix also increases as indicated in Eqn. (3.30). 

This factor accelerates computation and is one of the reasons for the rapid convergence 

of the Haar wavelet series. Hsiao (2004) reports that the number of multiplication 

operations involved in Haar transformation is considerably easier and faster than fast 

Fourier and Walsh transform. 
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3.5 Operational Matrix for Integrating One-dimensional Haar 

Wavelets 

The integration of Haar wavelet function )(xmh  into the specific interval of   ,0  can 

be expanded into a Haar series, that is, 

     

x

mmm xdxx
0

)()( hPh ,    (3.33) 

where the mm  matrix 
mP  is called the operational matrix of integration obtain 

recursively by following as prescribed by Aznam and Hussin (2012). 
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The recursive formula above starts with  

                                           .
2

1 







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
P        (3.35)                                                         

The formula in the interval of  1,0  was first presented by Chen and Hsiao (1997). 

For example, in order to determine 
2P  and 

4P  the steps are shown as below. 
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4P  can be determined by following the same steps as shown below: 
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In order to solve the nonlinear optimal control problem of infinite time horizon using 

GHJB equation in the interval    ,  (which is introduced in Chapter 4), it is essential 

to find the modification formula for operational matrix mP  that covers the entire domain 

   , . The integrals of the first four Haar wavelet functions in the interval    ,  are 

discussed in Section 3.2 and can be expressed as follows: 
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In general, the integrals of Eqn. (3.3) for  1,,2,1,0,  mi        in the interval   ,  can 

be described as below           
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                                                                                                                        (3.45) 

The Haar operational matrix generated from the recursive formula can be calculated by 

the following equation: 
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The recursive formula above [Eqn. (3.46)] begins with  

                                            1P .       (3.47) 
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3.6 Operational Matrix of the Product of One-dimensional Haar 

Wavelet Vectors 

The three basic multiplication properties of Haar wavelets are as follows (Hsiao and 

Wu, 2007): 

(i) )()()( 1 xhxhxh nn   for any }0{n .  

(ii)  For any two Haar wavelets )(xhn
 and )(xhl

 with ln  , we obtain 

                                          )()()( xhxhxh lnlln  ,    (4.48) 

where 
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i

nnl

             (3.49) 

where kn j  2 , 0j , jk 20   and ql i  2 , 0i , iq 20  .                                                                                                                                                             

(iii) The square of any Haar wavelet is a block pulse with a magnitude of one 

during both positive and negative half-waves. 

In order to simplify the product of two functions )(hc)(
T xxf mm and )(hd)(

T xxg mm , 

it is essential to know the product of )(h x  and )(h
T x . The product can be expanded 

into a Haar series with a Haar coefficient matrix 
mM as follows: 

  ,)((c)hMd)c(h )(hd)()(
TTT xxxxgxf mmmmmmm     (3.50) 
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where (c)Mm
 is a mm  matrix referred to as the product operational matrix. This 

matrix was first presented by Hsiao and Wu (2007) as 
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cH                 M
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,   (3.51) 

where 
01 cM  and  T   c 12/10 ,,,  ma ccc  ,  Tc 1)2/( ,,  mmb cc  .  

In addition, the following formula can be derived from Eqn. (3.33) and can be used to 

solve problems regarding the nonlinear optimal control problem of finite time horizon. 

This problem is introduced in Chapter 5. Our calculation method may then be 

simplified. 

mmm   hP 22 )(  ,    (3.52) 

where ]0001[              
T m . The proof for Eqn. (3.52) is as follows: 
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3.7 Operational Matrix of the Integral Products of One-dimensional 

Haar Wavelet Vectors 

In this section, the operational matrix of the integral product of two Haar wavelet 

function vectors are determined in one dimension )(xmh  and )(xm
T

h  at collocation 

points jx . These points on the interval  21,  are defined in Eqn. (3.27). This 

operational matrix can assist in solving the problem of the nonlinear optimal control of 

finite time horizon. As mentioned previously. This problem is introduced in Chapter 5.  
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mmm dxxx Ehh
T .     (3.53) 

To calculate the matrix mE , which is of order mm , Eqn. (3.24) is first multiplied with 

its transpose. We obtain 
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By applying the properties of the orthogonal functions of Haar wavelets in Eqn. (3.5) 

to each element in Eqn. (3.54), we generate 
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This equation is generally written as 
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where 1log,,2,1,0 2  mj        . 
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For instance, the eighth-order Haar wavelet matrix 8E  in the interval of  5,0   presented 

in Chapter 6 can be represented using Eqn. (3.57) as follows: 
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3.8  Matrix of Two-dimensional Haar Wavelets 

The bases of two-dimensional Haar wavelets can be formed by determining the tensor 

product of two Haar function vectors )(xnh  and )(xmh . This product is obtained using 

the collocation points described in Eqn. (3.27)  

   )()(),( 2121 xxxx mn hhH  .           (3.59) 

Let the basis be a vector of two-dimensional Haar wavelet functions: 

    )],()([ 21 xhxh ji   1,,2,1,0  ni          ,  1,,2,1,0  mj         .      (3.60) 

 Then, the two-dimensional Haar function vector can be expressed as                                       
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For instance, the fourth-order Haar wavelet matrix for two dimensions 4H  in the 

interval of    1,01,0     can be represented in matrix form as follows: 
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According to (3.59) we obtain  
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Thus,  
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Finally, we obtain 
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                                                                                                                                    (3.65)                                                                                                                           

 

where H  is the matrix of the collocation points of two-dimensional 1616  Haar 

wavelets. 
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3.9 Approximation of Functions for Two-dimensional Functions 

As with one-dimensional functions, any two-dimensional function ),( 21 xxf in the 

interval    2211 ,,    can also be expanded into Haar series through 
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121 )()(),(
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iij xhxhCxxf ,           (3.66) 

where ijC  is the Haar coefficient for two dimensions in the interval of 

   2211 ,,   . This equation was first presented by Wu (2009) as 

   212121
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2

dxdxxhxhxxfmC jiij  
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
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



,          (3.67) 

where ki 


2 , 0 , 120  k  and qj  2 , 0 , 120  q . 

Then, Eqn. (3.67) can be decomposed and written as 

   )((),( 2121 xxxxf mnmn hC )h
T            (3.68) 
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

 is the now mn  matrix of the coefficient. To 

solve the nonlinear optimal control problem of infinite time horizon, which is 

represented in Chapter 4, the main point that should be determined is nmC . 

Let (A)vec denotes the transformation of stacking the column of A  and  represent the 

Kroneker product operation equation. Then, Eqn. (3.68) can be written in compact form 

by applying the properties of operation, such as vec ,  C)(B)(A (ABC) 
TTT  vecvec   

(see Appendix A), according to the method prescribed by Brewer (1978) 
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   ))()()((),( 2121 xxvecxxf mn hhC
T  ,          (3.69) 

where  T                    C 111110111101101000)(  mnmmnn CCCCCCCCCvec   is the

1nm  vector. 

When Eqn. (3.59) is applied, Eqn. (3.69) can be written as 

   ),()(),( 2121 xxvecxxf H C
T .           (3.70) 

Subsequently, we assume that mn   and   21 , so that the operation matrix is 

square. If the function is known, the coefficient in Eqn. (3.68) can be obtained quite 

easily by using the Haar wavelet matrix in Eqn. (3.28). This coefficient is determined at 

the collocation points ),( ji xx , which are in turn described in Eqn. (3.27) as 

   
-1T-1

H  HC mmnm f)(  ,            (3.71) 

where the matrix function of the elements mf  is given by )],([ 21, jiji xxff   at 

collocation points ji xx 21 ,  for mji ,,2,1,  .   

3.10 Operational Matrices for Two-dimensional Haar Wavelets 

To solve GHJB equation, new formulas must be developed for operational matrices. In 

this section, we obtain the operational matrices for integrating the new function vectors 

of two-dimensional Haar wavelets in the interval     ,,  . 

 

 



51 

 

3.10.1 Partial Integration of the Function Vectors of Two-dimensional 

Haar Wavelets with Respect to 1x  

Given Eqn. (3.59), we assume that the following form with regard to the integration of 

two-dimensional Haar wavelets basis on interval     ,,  .        

                                


11

0

121

0

121121 ),(),(),(

xx

dxxxdxxxdxxx HHH
  

.    (3.72) 

Eqn. (3.72) can be rewritten in a new arrangement as follows: 
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.    (3.73) 

By incorporating Eqn. (3.60), we can describe the first term on the right-hand side of 

Eqn. (3.73) as follows: 
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To calculate the Eqn. (3.74), we integrate all of the elements of Haar wavelet 

function vector )( 1xmh with respect to 1x . The terms of the Haar wavelet function, 

including 2x , are considered as constants. Then, we obtain  
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                  (3.75)                                                          

By simplifying Eqn. (3.75), we generate 
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By expressing Eqn. (3.76) in matrix form with a two-dimensional Haar wavelet vector, 

we obtain 
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 Finally, Eqn. (3.77) can be written as  

                         ),((),( 21121

1

xxdxxx mm

x

H )IP    H 


          (3.78)  

            ),( 211 xxQ  H   ,           (3.79) 

where 1Q  is the 22 mm   matrix. 

The second term on the right-hand side of Eqn. (3.73) is written as follows upon its 

description according to Eqn. (3.60):                                                                                                    
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           (3.80)                                                                                                                   

As with Eqn. (3.73). Eqn. (3.80) is integrated into all of the elements of Haar wavelet 

function vector )( 1xmh  with respect to 1x . The terms of the Haar wavelet function, 

including 2x , are considered constants. Then, we obtain 
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By integrating Eqn. (3.81) into all of the elements of Haar wavelet function vector 

)( 1xmh with respect to 1x  on interval  0, , we determine   only for the Haar 

functions )( 10 xh  and )( 11 xh  see Figure 3.2. While integration into the remaining 

functions yields a value of zero, as follows:                                                                                                                           
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By writing Eqn. (3.82) in matrix form, we generate  
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                                                                                                                                    (3.83) 

Then, Eqn. (3.83) can be decomposed as                                                                                                                

                                     )(),( 21

0

121 xxdxxx ,H E    H 1

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

,                                         (3.84) 

where 1E  is the 22 mm   matrix. 

For instance, the operational matrix is as follows when 4m :   
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Therefore, Eqn. (3.73) can be written as follows by combining Eqns. )3.79) and (3.84):   

                           ),()(),( 211

0

121

1

xxQdxxx

x

HE H 1 .              (3.87) 

3.10.2 Partial Integration of the Function Vectors of Two-dimensional 

Haar Wavelets with Respect to 2x   

Given Eqn. (3.59), we assume the following form of two-dimensional Haar wavelets 

basis on the interval     ,,  :         

                               


22

0

221

0

221221 ),(),(),(

xx

dxxxdxxxdxxx HHH
  

.    (3.88) 

Eqn. (3.88) can be rewritten in a new arrangement as follows: 

       2

0

21221

0

221 ),(),(),(
22

dxxxdxxxdxxx

xx





   

HHH .    (3.89) 

We can describe the Eqn. (3.89) for the first term on the right-hand side by using the 

Eqn. (3.60) as follows: 
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           (3.90)                                                                               

To calculate Eqn. (3.90), we simplify the integration of Haar wavelet function vectors 

)( 2xmh  with respect to 2x . While the terms of the Haar wavelet function including 1x , 

are regarded as constants. Then, we obtain   
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By integrating Eqn. (3.91), we obtain  
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Then, Eqn. (3.92) can be written as 





1

121 ),(

x

dxxx


H  

 

                                                                                                                                    (3.93) 

Eqn. (3.93) can generally be written as   

                                     ),((),( 21221

2

xxdxxx

x

H )P I    H mm 


                                (3.94)                                                

                       ),( 212 xxQ  H   ,            (3.95) 

where 2Q  is the 22 mm   matrix. 

The second term on the right-hand side of Eqn. (3.89) is expressed as follows after its 

description as per Eqn. (3.60):                                                                                                    
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           (3.96)                                                                                                                   

By integrating Eqn. (3.96) for all of the elements of Haar wavelet function vector 

)( 2xmh with respect to 2x , we obtain                                                                                                                         
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,                                         (3.99)                                           

For instance, the operational matrix is formulated as follows when 4m : 
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The general form for 2E  is                                                      
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Thus, Eqn. (3.89) can be written as follows by combining Eqns. (3.95) and (3.99):   

                           ),()(),( 212
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xxQdxxx

x

HE H 2  .              (3.102) 

3.11 Operational Matrix of the Product of Two-dimensional Haar 

Wavelet Vectors 

To solve the GHJB equation described in Chapter 4, we must determine the product of 

),( 21 xxH  and ),( 21 xxT
H . The product of two functions can be expanded into series of 

two-dimensional Haar wavelets with Haar coefficient matrix N(D) . 

 Let 
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ij xhxhcxxf  ,                (3.103)                                                                                                         

 and  

                         







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21

1
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21 )()(),(
m

i

ji

m

j

ij xhxhdxxg .                  (3.104) 

 Eqns. (3.103) and (3.104) can be rewritten in matrix form as 

                          )()(),( 2121 xxxxf h C h
T  ,                  (3.105)                                                                                                 

                          )()(),( 2121 xxxxg h D h
T ,                  (3.106)                                                                                                 
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 are known mm  constant matrices. 

Eqns. (3.105) and (3.106) can be rewritten in compact form by applying the vec

operation (Appendix A),   

                           ))()(()(),( 2121 xxvecxxf T
h  h C  ,                   (3.107)  

                     ))()(()(),( 2121 xxvecxxg T
h  h D  ,                (3.108) 

where  

    T                             C 111110111101101000)(  mmmmmm cccccccccvec 
 
is the 

12 m  vector and  

 T                             D 111110111101101000)(  mmmmmm dddddddddvec   is the

12 m  vector. 

By utilizing Eqn. (3.59), we obtain 

                           ),()(),( 2121 xxvecxxf T
HC .                  (3.109)  

                           ),()(),( 2121 xxvecxxg T
H D .                  (3.110)  
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The product of two functions is determined by   

               ),()(),()(),(),( 21212121 xxvecxxvecxxgxxf TT
HDHC             (3.111) 

                    )(),(),()( 2121 DHHC
T vecxxxxvecT                          (3.112) 

                                            ),())( 21 xxvecT
HN(D C                                       (3.113) 

where )(DN  is the 22 mm   square matrix and )(Dvec is the 12 m  vector. 

Subsequently, we prove Eqn. (3.113).  

Proof 

         ))()()(())()()((),(),( 21212121 xxvecxxvecxxgxxf TT
hhDhhC           (3.114) 

This equation can be rewritten as 

         )())()())(()()((),(),( 21212121 DhhhhC
T vecxxxxvecxxgxxf T           (3.115) 

When the transpose properties )()( TTT
BABA   are applied (see Appendix A.3), 

then Eqn. (3.115) can written as 

         )())()())(()()((),(),( 21212121 DhhhhC
TT vecxxxxvecxxgxxf T          (3.116) 

On the basis of Kronecker product properties, we determine that 

)())(( BDACDCBA   (Appendix A.3) as per Zhang and Ding (2013). Eqn. 

(3.116) can be modified using the following formula: 

         )())()(())()()((),(),( 22112121 Dh hhhC
TT vecxxxxvecxxgxxf T              (3.117) 

When the following equation is applied  
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                 ))(())(()( nnmmmmnnmn IABIBIIABA                     (3.118) 

then Eqn. (3.117) can be rewritten as follows: 

       )())()()()()()((),(),( 22112121 Dh hIIhhC
TT vecxxxxvecxxgxxf mm

T   (3.119) 

First, we address the term with variable 
2x  in the right-hand side of Eqn. (3.119) as 

follows:    

               )())()((( 22 Dh hI
T vecxxm 

 

                        (3.120) 

By incorporating Eqn. (3.54), we obtain 
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By multiplying two matrices on Eqn. (3.121), we generate 
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Eqn. (3.122) can then be written as 
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By applying the one-dimensional Haar wavelet product, which is defined in Eqn. (3.51) 

)()()()( xxx hcMchh
T  , for 2x , we arrive                             
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Finally, we have 

   )()()())()((( 222 xvecxxm hDDh hI
T  ,                                   (3.125) 

where )(D  is a block 1m  matrix with each block )( idM  is of size mm . )( idM is 

obtained using Eqn. (3.51) with the 
thi column of D  as the coefficient vector. 

Subsequently, we deal with the term that includes 
1x  together with the result of Eqn. 

(3.125) as follows        

  )()())()(((),( 21121 xxxxx m hDIh hF
T                                      

      )()()( 21 xx hDK  ,                                      (3.126) 

where )( 1xK  is a block mm  matrix that can be written as follows:   
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Each 
thji ),(  block is a diagonal matrix, that is, 

                  mjiij xhxhK I )()( 11 ,                                              (3.128) 

for 1,,2,1,0,  mji  . 
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Then, by performing the multiplication operation on Eqn. (3.126) as block wise, we 

have 
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By using Eqn. (3.128), then Eqn. (3.131) can be rewritten as follows: 
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The current definition of 
)(r  as explained in Eqn. (3.130) is used to simplify Eqn. 

(3.132) as  
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                                                                                                                    (3.133) 

Finally, we have  
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Then, Eqn. (3.134) can be written as  

),())((),( 2121 xxxx H DNF  ,             (3.135) 

where  DN ))(( is a block mm  matrix. Each block has a size of mm , and each 

thji ),(  block of )( ji N  is obtained from Eqn. (3.51) using the )( jivec    column as the 

coefficient vector. 

 Finally, Eqn. (3.119) can be written in the compact form                                                                                                                            

               ),())(()(),(),( 212121 xxvecxxgxxf H DN C
T  .                            (3.136) 

            

3.12 Algorithm to Compute the Operational Matrix of the Product 

of Two-dimensional Haar Wavelet Vectors
 

The algorithm to obtain N(D)  is expressed as follows: 

Step 1: Let D  be a matrix of )(Dvec . 

Step 2: Compute 
idM , mi     ,,2,1   according to Eqn. (3.51) using column id  as the      

coefficient vector. 

Step 3: For mi     ,,2,1  , compute )(
i

vec dM . 

Step 4: Form a large matrix by concatenating all vectors from Step 3; that is,           

)]()()([
21 m

vecvecvec ddd M    M   MS  . 

Step 5: For each row k of matrix S , compute 
ji , N  according to Eqn. (3.51) using row

kS as the coefficient vector. 
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Step 6: Form matrix N(D)  as follows:  
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Step 7: End. 

For instance, ),(),( 2121 xxgxxf  should be computed when 221 ),( xxxf   and 

2121 2),( xxxxg  .  

First, the functions above are approximated for the Haar wavelet function when 2m . 
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These formulas can be rewritten by using vec  as follows: 
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M D        

                             









5.00

05.0
2           

        
M D .                                                                                                                                                          
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Step 3:                





















5.0

0

0

5.0

)(
1

 

  

  
Mdvec , 

























25.0

0

0

25.0

)(
2     

    
Mdvec . 

Step 4:                 





















25.05.0

00

00

25.05.0

 -    

          

          

-    

S .    

Step 5:                 









5.025.0

25.05.0

     -

-      
N11 , 










00

00

        

        
N12  

                            









00

00

          

          
N21 , 










5.025.0

25.05.0

     -

-    
N22 . 

Step 6:                 





















5.025.000

25.05.000

005.025.0

0025.05.0

     -                  

 -                         

                      -

                -      

N . 

Therefore,     

                                                                                                                                        

                                  ),(025.05,05.0),(),( 212121 xxxxgxxf H N            .                                                                                       

In subsequent equations, we drop subscript m  to limit notations if no confusion will be 

induced. 
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3.13 Conclusion 

Throughout the work in this chapter, the Haar wavelet method is used to derive some 

new formulas for the operational matrices of Haar wavelets on intervals  ,0  and 

  , . All of these formulas are important, as highlighted in subsequent chapters. 

First, the new operational matrices are developed for integrating one-dimensional Haar 

wavelets on intervals  ,0 and   , . Second, a general formula is established for the 

matrix of the collocation points of Haar wavelets with two variables. Third,  an 

operational matrix is defined for the integral products of one-dimensional Haar wavelet 

vectors on interval  21, . Fourth, new operational matrices are derived and proved for 

integrating two-dimensional Haar wavelets basis on interval   , . Finally, we derive 

and  prove a new algorithm for the operational matrix of the product of two-dimensional 

Haar wavelet functions. In addition, a general formula is established for approximation 

the function of two dimensions using Haar wavelets of two functions. 
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CHAPTER 4 

INDIRECT METHOD 

NONLINEAR OPTIMAL CONTROL PROBLEMS 

 

4.1 Introduction  

In this chapter, a novel method to solve the Hamilton-Jacobi-Bellman (HJB) equation, 

which appears in the formulation of the nonlinear control system with quadratic cost 

functional and an infinite time horizon is introduced. This method is a numerical 

technique that is based on the combination of the Haar wavelets operational matrices 

and the successive Generalized Hamilton-Jacobi-Bellman (GHJB) equation. This 

chapter begins with the problem statement.We explain the underlying concept that leads 

to GHJB equation usage in this work before establishing the numerical method for the 

nonlinear optimal control problem using the operational matrices of Haar wavelets. The 

GHJB equation is a first-order linear partial differential equation; thus, it is theoretically 

easier to solve than the nonlinear first-order hyperbolic partial differential HJB 

equation. HJB equation is used for constructing a nonlinear optimal feedback control 

law. There is no general closed form solution to this equation. In this chapter, we show 

how to approximate the GHJB equation. We then use the successive GHJB equation to 

improve the closed-loop performance of stabilizing controls and reduce the problem of 

solving HJB equation to one of solving GHJB equation. Interestingly, when the process 

of improving the control and solving GHJB equation is iterated, the solution to the 

GHJB equation converges uniformly to the solution of the HJB equation which in form 

of the gradient of the Lyapunov function V . Thus, to determine the Lyapunov 

function from the resultant solution for the linear system equations, we proposed a new 

method that depends only on the initial and final states using variable gradient method.          
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The proposed approach is simple and stable. Moreover, it has been tested on linear 

and nonlinear optimal control problems of infinite time horizon in two-dimensional 

state space and controls. The numerical results and discussions are provided at the end 

of this chapter. 

  4.2 Problem Statement 

In this chapter, we consider the following optimal control problem:  

The system to be controlled is given by nonlinear differential equations with affine in 

the control of the form 

           ,  x )0(           ),( )(   )(  0 xxuxgxfx
  
                             (4.1) 

where )(tx  is the state vector, 2:
n

u   is the control vector, 1:
n

f  , and 

21:
nn

g


  are continuously differentiable with respect to all its arguments, 0x  

is the initial condition vector, and   is the domain of attraction region. System (4.1) is 

denoted by ),( gf   . 

The problem is determining the optimal control )(* xu  that minimizes the following 

performance index, 

                      ,)))(()(((),(
0

2

0    x 


 dttxutxluJ
R

   (4.2) 

where  1:
n

l  is a positive definite that is called the state penalty function. )(xl  is 

typically a quadratic weighting of the states; xxxl T  Q)(  ; and  uuxu T

R
R 

2
)(  is the 

control penalty function, where 11 nn 
Q  is a positive semi-definite matrix and 

22 nn 
R  is a symmetric positive definite matrix. In the case of infinite time horizon, 
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the system equations ( f , g ) and l , as well as the initial control 
)0(u  are independent of 

time. 

4.3 Generalized Hamilton-Jacobi-Bellman Equation 

In this section, we derive the Generalized Hamilton-Jacobi-Bellman partial differential 

equation solution to the nonlinear optimal control problem with infinite time horizon. 

This problem is subject to time-invariant dynamics; that is, does not depend on t  

explicitly. The solution follows from the technique known as dynamic programming, 

which was popularized by Bellman (1954). We first explain the concept of dynamic 

programming then apply this concept to the optimal control problem to derive the GHJB 

partial differential equation. 

Dynamic programming is the concept of using the principle of optimality to 

formulate an optimization problem as a recurrence relation. That is, the remaining sub-

problem has precisely the same structure as the previous sub-problem. Thus, a particular 

optimization problem is solved by studying a family of problems of which the particular 

problem is a member. The basis for applying the dynamic programming solution to the 

optimal control problem is the so-called principle of optimality. 

4.3.1 Principle of Optimality   

The principle of optimality states that if an optimal control is divided into two pieces, 

then the last piece is itself optimal. The basic assumption underlying this principle is 

that the system can be characterized by its state )(tx  at time t . This assumption 

completely summarizes the effect of all inputs )(tu  prior to time t , thereby facilitating 

the local characterization of optimality as given in the following formal statement of the 

principle of optimality (Primbs, 1999). 
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Definition 4.1: Principle of Optimality 

If )(u  is optimal over the interval ][ ftt  , , beginning from state )(tx , then )(u  is 

necessarily optimal over the subinterval ] , [ fttt  , for any t  such that 

0  ttt f . 

Definition 4.2:  Admissible Controls (Beard et al., 1998). 

Given the system  gf  , , for an infinite-time horizon problem, a control u : 21 nn
RR   

is admissible with respect to the state penalty function l  on  , which is written 

)(  lAu , if 

 u  is continuously differentiable on  , 

   00 u , 

 system gufx   is the Lyapunov stable on  , 

 and cost function ),( uxJ  is finite for all x , where ),( uxJ  is given by Eqn. 

(4.2). 

Lemma 4.1: If   is compact, f and g are Lipschitz continuous on   and 0)0( f , 

l  is a positive definite and monotonically increasing function on  , and R  is a 

symmetric positive definite matrix, u  then:  

 On  , there exists a unique continuously differentiable solution )V(x  to the 

equation 0)(V; GHJB u with boundary conditions 0V(0)  , 

 )(V x  is a Lyapunov function for the system ) , ,( ugf  on  , 

 )()(V0)(V; GHJB xJxu  , where )(xJ is the performance index given in 

Eqn. (4.2). 

Proof  (see Saridis and Lee, 1979). 
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We define )(V 0

* x  as the minimum value of the performance index over all admissible 

trajectories ))( , )(( tutx , where x  starts at 0x : 

                                   ,   )))(()(((min)(V
0

2

(.)
0 



  dttxutxlx
Ru

   (4.3) 

subject to 

          ,0)0(),()()(                  fxuxgxfx                  (4.4) 

Function }{: 1  

 n
 V  determines the rule that associates an optimal value 

with each initial point and is called the value function or the Bellman’s function of the 

optimal control problem. An optimal pair (often simply referred to as an “optimal 

trajectory”) is a pair ))( , )(( tutx  that has a starting point 0x  and achieves the optimal 

cost )(V 0

* x . 

)(V 0

* x  is independent of (.)u  precisely because knowledge of the initial state 

abstractly determines specific control on the basis of the requirement that the control 

minimizes the performance index. Rather than merely determining the control that 

minimizes Eqn. (4.4) and for the value of ))((V* tx  for various 0x , the problem is 

addressed by evaluating ))((V* tx
 
for all )(tx , as well as the associated optimal control. 

We then apply the principle of optimality. Consider )(V* x  given by Eqn. (4.3), and let 

],[ tu  be defined as the control function over the interval  ,t . Applying the additive 

properties of integrals and the principle of optimality yields 

                  .  V V
*









 




 ))(()))(()(((min))((
2

],[
ttxdxuxltx

tt

t

Rtttu
  (4.5) 
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That is, the optimal cost at state )(tx  is given by the minimum of moving to state 

)( ttx   in addition to the optimal cost from )( ttx  . In essence, the problem of 

determining the optimal control over the interval    ,t  is reduced to one of 

determining the optimal control over the reduced interval  ttt   ,  when the principle 

of optimality is applied. 

When t  value is small, the integral in Eqn. (4.5) can be approximated with 

ttxutxl
R
 ]))(()((

2
[ . The application of a multivariable Taylor-series expansion of 

 ))((V* ttx  for )(tx , with  )()( txttx  approximated by ttutxgtxf  )]())(())(([  

generates 
















 )(])()([)

)(
()(])()([min)(

2
tOtuxgxf

x

x
xttuxlx

Ru

T
* V

VV (4.6) 

where 
x

 *V
  denotes the gradient of V with respect to vector  x and )( tO  denotes the 

higher-order terms in t . Cancelling )(V x  on both sides and taking the limit as t

approaching zero yields 

           0)]()(()(()[
)(

(]))(())((
2






















tutxgtxf
x

x
txutxl

R

T

u(t)

V
[min   (4.7) 

The boundary condition for this equation is given by 0)0(V   where )(V x  must be 

positive for all x (given that it corresponds to the optimal cost that must be positive). 

Eqn. (4.7) is one form of the so-called Generalized Hamilton-Jacobi-Bellman (GHJB) 

equation. Assuming that a unique optimal control *u  exists and is an admissible control, 

then the optimal cost is given by the solution to the GHJB equation 

             0)()())()()((
)( 2

** 


 

R
xuxlxuxgxf

x

x
T

V
   (4.8) 
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We obtain a new feedback control law from the solution to the GHJB equation Eqn. 

(4.8) by fixing *V̂ and by minimizing the Hamiltonian, that is,   

                           
x

x
xgu






 )(
)(

2

1
ˆ* V

R
T-1      (4.9) 

Let *V̂  be the solution to the equation GHJB 0)ˆ,V̂( ** u  then ** VV̂  . But *V is the 

optimal cost; therefore, 
** VV̂  . The optimal control is unique; thus, *û  must be the 

optimal control. Substituting *û  into the GHJB equation generates the HJB equation 

                        0)
V

R
2

1
,(V GHJB)HJB(V T1- 









x
g .   (4.10) 

That is,  

                 0
V

R 
V

4

1V
)HJB(V

T
T1-

TT

















 l

x
gg

x
f

x
.  (4.11) 

We can interpret the GHJB equation geometrically. Figure 4.1 (a) illustrates the phase 

of a two-dimensional, infinite time system. The dotted lines represent the trajectories of 

the system. The cost at any point x is computed by integrating Eqn. (4.2) along the 

unique trajectory of the system passing through x . The solid lines in Figure 4.1 (a) are 

the constant contours of the cost function. This geometrical interpretation suggests an 

intuitive concept for improving the cost of the system. If we fix the constant cost 

contours and minimize the action of the system with respect to these contours, then the 

cost of the system is reduced. For instance, the system in Figure 4.1 (b) costs less than 

the system in Figure 4.1 (a), as per Beard (1995). 
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Figure 4.1:  Phase flow plotted against lines of constant cost (Beard, 1995) 

 

4.4 Successive Generalized Hamilton-Jacobi-Bellman Equation 

The standard optimal control problem involves determining a control to minimize the 

cost function given in Eqn. (4.2). To effectively pose the problem mathematically, a 

unique optimal control must exist. This requirement limits the applicability of optimal 

control theory. In addition, the optimal control is difficult to determine, whereas many 

controls that are close to optimal may be significantly easier to compute. In this section, 

we generalize optimal control by considering the problem of improving arbitrary 

stabilizing control performance. We also show that by iterating the improvement 

process, we converge uniformly to the optimal control, if it exists. Given an arbitrary 

control )(xu , the performance of the control at 1n
x   is given by a Lyapunov 

function for the system Beard et al. (1997). 

    ,   ))(())((() , (V
0

2




 dttxutxlux
R

   (4.12) 
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where  11:
n

l  is a positive definite and monotonically increasing function on  , 

22 nn 
R  is a symmetric and positive definite matrix; uuu R   T2

R
 ; and 

xxxl  Q   )( T . 

The optimal controller in the feedback form is presented as follows as per Beard et al. 

(1997). 

                                       
x

x
xgxu






)(V
)(R

2

1
)(

*
T1-* ,         (4.13) 

where )(V* x  is the solution to the following HJB equation: 

                  0
)(

)()(
)(

4

1
)()(

)( *
1

**













 

x

x
xgRxg

x

x
xlxf

x

x T
T

VVV
T

,      (4.14) 

under boundary condition 0)(0V*  ; that is ),(V),V( ** uxux   for all u , )(* tx  is the 

solution of )()()( * tuxgxfx  . Basically, solving the nonlinear partial differential 

equation (4.14) for the purpose of obtaining )(V* x  and consequently )(* xu  from Eqn. 

(4.13) is difficult; instead, the following two linear equations have been iterated using 

the algorithm proposed by Beard et al. (1997): 

                    0)()()()()(
)(V 2

)()(
)(






R

ii
Ti

xuxlxuxgxf
x

x
       (4.15) 

with initial condition 0)0(V(i)   and  

                                       
x

x
xgxu

i
i




 )(V

)(R
2

1
)(

)(
T1-)1(         (4.16) 

In the case of moderate presumptions, Beard et al. (1997) established that the iteration 

between the GHJB (4.15) and the control (4.16) coincide with the original HJB equation 
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solution (4.14). If we can first determine a stabilizing control )((0) xu , then the 

performance of this controller can be iteratively enhanced  using Eqns. (4.14) and 

(4.15). Finally the optimal controller can be approximated optimally. Moreover, the 

controller (i)u  is a stable control at each iteration step.  In the case of infinite time 

horizon, the system equations ( f , g ) and l , as well as the initial control, 
)0(u  are 

independent of time. 

4.4.1 Algorithm of the Successive GHJB Equation  

Initial Step: Given an initial control law )((0) xu  that is admissible on  , the 

performance of (0)u  on   is given by the unique solution )(V (0) x to  

                      0)(,VGHJB )0((0) xu .           

Set 0i . 

Iterative Step: A control law that is admissible on   and that improves the 

performance of )(iu  is provided by 

                                        
x

x
xgxu

i
i




 )(V

)(R
2

1
)(

)(
T1-)1( .       (4.17) 

The performance of )(iu  on   is given by the unique solution )(V )( xi to 

 

                      0)(,VGHJB )((i) xu i .           (4.18) 

Set 1 ii . 
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Figure 4.2: Algorithm of the successive Generalized Hamilton-Jacobi Bellman 

equation 

 

The algorithm is depicted as an image in Figure 4.2. Numerous studies report that the 

algorithm converges uniformly to the optimal control and to the optimal cost 

(Mil’shtein, 1964; Leak and Liu, 1967; Saridis and Lee, 1979; Saridis and Wang, 1994). 

Therefore, we converge uniformly to the solution of the HJB equation by iterating the 

process of improving an admissible control. According to Beard (1995), previous works 

failed to note that definite statements can be made regarding the stability region of each 

successive control law )(iu . In particular, )(iu  stabilize on the same region as )0(u . In 

fact, the stability region of *u  is the largest possible stabilizing set in 1n
 ; that is, an 



86 

 

admissible control that can stabilize an initial unstable condition cannot be obtained 

using *u . 

 4.5 Approximation Functions via Haar Wavelets Approximation 

The main point in solving the first-order partial differential equation GHJB equation is 

to approximate the second-order partial derivative of ), 21 xxV(  by using Haar wavelets 

on the basis of two dimensions in the interval     ,,  . We first expand 
21 xx 

 V
2

 

using Eqn. (3.68) as follows: 

                          )()( 21

21

2

xx
xx

H  H
V T 



,                              (4.19) 

where   



























111110

111110

100100

mmmm

m

m

nm









             

                              

                   

                   









 is the mm  matrix of the unknown 

coefficients . 

When Eqn. (3.70) is utilized, then Eqn. (4.19) can be written as 

                          ),)( 21

21

2

xxvec
xx

H(
V T 



,                              (4.20) 

where  T                     111110111101101000)(  mmmmmmvec    is a 

vector 12 m . 

The first-order partial derivative can be obtained by integrating Eqn. (4.20) with respect 

to 1x   and 2x using (3.87) and (3.102), respectively, we then obtain 

     )0,(),))(( 1

1

212

1

x
x

xxQvec
x 






 V
H(E -

V
2

T                        (4.21) 
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   ),0(),))(( 2

2

211

2

x
x

xxQvec
x 






 V
H(E -

V
1

T  ,                      (4.22) 

where 1Q , 2Q , 1E , and 2E  are the known 22 mm   operational matrices for Haar 

wavelet functions,  )0,( 1

1

x
x

V
, and ),0( 2

2

x
x

V
 are unknown values of the initial 

condition. 

We specify the matrix form for  )0,( 1

1

x
x

V
 and ),0( 2

2

x
x

V
 in solving the GHJB 

equation.  

Let 

       





1

0

11 )()(
m

i

ii xhbxs                          (4.23) 

and 

       





1

0

22 )()(
m

j

jj xhaxg ,                        (4.24) 

where ib  and ja  are the Haar coefficients of )( 1xs  and )( 2xg respectively. Therefore, 

       









1

0

1

0

2121 )()()()(
m

i

m

j

jiji xhxhabxgxs .                     (4.25) 

 Eqn. (4.25) implies that a new form of coefficient matrix can be determined for 

separable functions by multiplying the Haar coefficients ib  and ja  to yield jiij abc  . 

In matrix form, the coefficient matrix, mC  for separable functions can be decomposed 

as  

                                               



























111101

111101
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m

m

ababab

ababab
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
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                                              110

1

1

0























 m

m

aaa

b

b

b

                   

  

     

   

      




    

                       T
a b mm ,              (4.26)                                                                                                      

where  ma  and mb  are column vectors from Eqn. (4.23) and (4.24), respectively. 

Eqn. (4.25) can be written in compact form as  

                           )()(),( 2121 xxxx mm H ab HV
TT .                             (4.27) 

The concept of separable functions can be utilized to determine the coefficient matrix 

mC  for the cases listed below 

a) If the function is independent of 2x , then )(),( 121 xsxx V . Using Eqn. (4.27), 

we can express the function as 1)(),( 121  . V xsxx  . Then )()( 11 xxs mHb
T and  

                                                    )(1)( 202 xhxg   

 





















 )(

)(

)(

0001

21

21

20

xh

xh

xh

m  

     

   

      

                    


  

)( 2xH
T . 

Therefore                                                                                            

     1)(),( 121  . V xsxx                                

                                             )()( 21 xx mm H b H
TT  .                             (4.28) 

Then, 

                                    T
bC mmm                                                                                  
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                                              0000

1

1

0

                     

  

     

   

      
























mb

b

b

    





















 00

00

00

1

1

0

                  

                         

                     

                     

C









m

m

b

b

b

. 

The first column of mC  alone is nonzero. 

b) If the function is independent of 1x , then )(),( 221 xgxx V . Using Eqn. (4.27), 

we can express the function as )(1),( 221 xgxx  .  V  . Then )(1)( 11 xxs H
T  

and )()( 22 xxg mHa
T . From these yield 

                                                 )(1),( 221 xgxx  .  V   

                       )()( 21 xx mm H a  H
TT  .                             (4.29) 

Then, 

                                    T
a C mmm                                                                                  

                                              110

0

0

0

1

























 maaa                 

  

 

  

 

 





    























000

000

110

                     

                       

                     

                

C







 m

m

aaa

. 

The first row of mC  alone is nonzero. 

By utilizing Eqns. (4.28) and (4.29), we can express the terms of the initial conditions in 

Haar wavelet approximation as follows: 
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                           )()()0,( 211

1

xxx
x

mm H  H
V TT 



                             (4.30) 

and  

                           )()(),0( 212

2

xxx
x

mm H  H
V TT 



.                          (4.31) 

When Eqn.  (3.70) is applied, then Eqns. (4.30) and (4.31) can be written in the 

following form: 

                           ),()()0,( 211

1

xxvecx
x

mm H 
V TT 



                          (4.32) 

and  

                           ),()(),0( 212

2

xxvecx
x

mm H 
V TT 



,                       (4.33) 

where                             
TT 00000)( 110   mvec   and 

                              
TT 00000)( 110   mvec   are 

21 m  in size.   

As originally noted by Bellman, (1957), a general fundamental problem with Hamilton-

Jacobi based methods is that they all suffer from the curse of dimensionality. In other 

words, the amount of computation and or memory required to implement the method 

increases exponentially with the size of the state space. An ideal approximation method 

is not subject to any of the disadvantages of the methods discussed in previous 

literatures. In particular, such a method is characterized as follows: 

 Low run-time computation and memory requirements. 

 Effective handling of the dimensionality problem.   

 Guaranteeing that the approximation error approaches zero as the order of 

approximation increases. 
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Dimensionality remains an issue, although its effect on the computational requirements 

can be effectively eliminated. The number of terms in thm  order truncation of a 

complete basis increases exponentially with the size of the state. 

To overcome the aforementioned problem, we suggest the following technique to 

reduce the number of unknown coefficients that are determined for solving the GHJB 

equation in the following section. This technique uses the properties of vec  transform 

(see A.16). Thus, Eqns. (4.32) and (4.33) can be written as follows: 

                           ),())(()0,( 211

1

xxvecx
x

HI 
V TT  



                   (4.34) 

and  

                           ),())((),0( 212

2

xxvecx
x

HI  
V TT 



 ,               (4.35) 

where  110)(  mvec         
T   and           

T

110)(  mvec    are m  unknown 

coefficients. 

Finally, by substituting Eqns. (4.34) and (4.35) into Eqns. (4.21) and (4.22), 

respectively, we obtain  

    ),())((),))(( 21212

1

xxvecxxQvec
x

HI H(E -
V TT

2

T  



               (4.36) 

   ),())((),))(( 21211

2

xxvecxxQvec
x

HI  H(E -
V TT

1

T 



 .             (4.37) 
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 4.6 Successive Haar Wavelet Collocation Method 

The following section describes the successive Haar wavelet collocation method 

(SHWCM) used to obtain the two-dimensional numerical solution to the HJB equation. 

An approximate solution to the GHJB equation has been generated in every step of this 

algorithm.   

Eqn. (4.15) has been completely identified; that is, 
x

xi



 )(V ) (

, )(V ) ( xi , and )() ( xu i can 

all be approximately expressed in term of Haar wavelets. )(V ) ( xi , and )() ( xu i  approach 

the optimal solutions )(V* x  and )(* xu , respectively, as i . 

We consider the following two-dimensional optimal feedback control problem 

                               



0

0 )(),(min dtuuxxu TT
 R  Q  xV                                (4.38) 

subject to the dynamics  

                                  ,)0(),()()( 0x                               xxuxgxfx                      (4.39)                          

where  









2

1

x

x
x ;  










),(

),(
)(

212

211

xxf

xxf
xf ;  










),(

),(
)(

212

211

xxg

xxg
xg ; and : u . 

Without loss of generality,     ,,   is selected as the domain of attraction 

for convenience. The following equations express the pair that consists of the GHJB 

equation and the control law: 

                         0)()()(
)( )()()(

)(




  T T 
T 

R  Q
V iii

i

uuxxxuxgxf
x

x
                   (4.40) 

with initial condition 0)0()(  
V

i  and 
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x

x
xgxu

i
i




 )(

)(
2

1
)(

)(
)1(

 
T-1 V

R .        (4.41) 

If )()0( xu  is initially a stabilizing control in Eqn. (4.39), then the solution to GHJB 

equation affiliated with )()0( xu , which is derived from Eqn. (4.40), becomes a 

Lyapunov function for the system. This function is equalized to the cost associated with 

)()0( xu as follows: 

                             0)()()(
)( )0()0()0(

)0(




  TT 
T

R  Q
V

uuxxxuxgxf
x

x
.  (4.42) 

According to Eqn. (3.70), the function approximation equations for )()()( )0(

11 xuxgxf 

, )()()( )0(

22 xuxgxf  , and )()( )0()0( xuxuxx R  Q
TT   can be written as 

                                        ),()()()()( 21

)0(

11 xxvecxuxgxf H
TT  ,                        (4.43)                                                                

                                        ),()()()()( 21

)0(

22 xxvecxuxgxf H
TT  ,   (4.44) 

                                      ),()()()( 21

)0()0( xxkvecxuxuxx HR  Q
TTT  ,                   (4.45) 

where )(Tvec , )(Tvec , and )(kvecT  are 21 m  the known coefficient vectors for the 

Haar wavelet functions that can be calculated from Eqn. (3.71) and ),( 21 xxH  is  

vector of the known Haar wavelet basis of two dimension functions. Considering that 

Haar functions are impossible to differentiate because they are not continuous on the 

domain, and that Eqn. (4.40) involves only first-order derivatives of V , we assume that, 

the second-order partial derivative of V exists as follows: 

                           ),((
)(

21

21

2

xxvec
xx

x
)H

V T 



,                              (4.46) 

12 m
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for some coefficient vector )(Tvec .   

Under the assumption that 

                                              
12

2

21

2 )()(

xx

x

xx

x








 VV
,         (4.47) 

the first-order partial derivative can be obtained by integrating Eqn. (4.46) on interval 

),[   with respect to 1x  and 2x , respectively, as mentioned in Subsection 4.5, as   

                            
1

1
212

1

21 )0,(
),()(

),(

x

x
xxEQ

x

xx








 V
H 

V
1

T       (4.48) 

                           
1

2
211

2

21 ),0(
),()(

),(

x

x
xxEQ

x

xx








 V
H 

V
2

T  ,                   (4.49)                                                                           

where 1Q , 2Q , 1E , and 2E  are the 22 mm    known operational matrices for the Haar 

wavelet functions, and 
1

1 )0,(

x

x



  V
 and 

2

2 ),0(

x

x



V
 are unknown initial condition values 

that are formulated in Eqns. (4.34) and (4.35), which when substituted into Eqns. (4.48) 

and (4.49), respectively, can be written in Haar wavelet functions as 

    ),())((),))(( 21212

1

xxvecxxQvec
x

HI H(E -
V TT

2

T  



               (4.50) 

   ),())((),))(( 21211

2

xxvecxxQvec
x

HI  H(E -
V TT

1

T 



 .             (4.51) 

Now, substituting Eqns. (4.43), (4.44), (4.45), (4.50), and (4.51) into Eqn. (4.40), where 

the term 
x

xi



 )()( T 
V

 in Eqn. (4.40) can be simplified as 





















21

)( )(

xxx

xi
V

     
VV

T 

, we 

have 
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 

 

. H

HI  H(E -H

HI H(E -H

T

TT

1

TT

TT

2

TT

0),()(

),())((),))((),()(

),())((),))((),()(

21

2121121

2121221







xxkvec

xxvecxxQvecxxvec

xxvecxxQvecxxvec





  (4.52)         

Rearranging the Eqn. (4.52), we yield  

                         

),()(

),())((),()(

),))((),()(

),())((),()(

),))((),()(

21

2121

21121

2121

21221

xxkvec

xxvecxxvec

xxQvecxxvec

xxvecxxvec

xxQvecxxvec

H

HI  H

H(E -H

HI H

H(E -H

T

TTT

1

TT

TTT

2

TT

















                (4.53) 

Applying the operational matrix of the product of two dimensions Haar wavelet vectors 

of the product of two functions in Eqn. (3.113) on (453) we obtain 

.  H

HHI  

HH(E -

HHI 

HH(E -

T

TTT

T

1

T

TTT

T

2

T

),()(

)(),(),())((

)(),(),))((

)(),(),())((

)(),(),))((

21

2121

21211

2121

21212

xxkvec

vecxxxxvec

vecxxxxQvec

vecxxxxvec

vecxxxxQvec

















                (4.54) 

Thus,  
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. H

HNI  H(NE -

HNI H(NE -

T

TT

1

T

TT

2

T

),()(

),()())((),)())((

),()())((),)())((

21

21211

21212

xxkvec

xxvecxxQvec

xxvecxxQvec











       (4.55)          

The vector of two Haar wavelet basis functions ),( 21 xxH size 12 m  in Eqn. (4.55) is 

replaced with the matrix of H Haar wavelet collocation points of size 
22 mm   that is 

described in Section 3.8.  

Then, both sides of Eqn. (4.55) are multiplied with the matrix inverse -1
H  to remove 

the term of H  and simplifying Eqn. (4.55). Thus, we have 

           

 

)())(()(

))(()())( 12

kvecvecvec

vecQQvec

TTTT

TT

12

T

)N(I  

)N(I )N(E -)N(E -









     (4.56)          

Next, Eqn. (4.56) is transformed into a standard system of linear equations as follows  

 
 

 )(

)(

)(

)()

)()()(

12

kvec

QQ

vecvecvec T

T

T

12

TTT

)N(I                        

)N(I                      

   )N(E -)N(E -

          





























         

                                                                                                                                    (4.57)          

Eqn. (4.57) is a system of underdetermined linear equations with 2m equations and 

)2( 2 mm  unknown variables that can solve for the unknown vectors )(Tvec ,    

)(Tvec , and )(Tvec  by using the Moore-Penrose Pseudoinvers solver (Courrieu, 

2005), such as pinv() in MATLAB (Hanselman and Littlefield, 2005). 

An underdetermined equation is expected, because the Lyapunov function is not unique. 

The Moore-Penrose solution is the particular solution whose vector 2-norm is minimal.  
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Using the solution of the GHJB Eqn. (4.40), once we obtain the solution to the unknown 

parameters )(Tvec , )(Tvec  and )(Tvec , we substitute these parameters into Eqns. 

(4.50) and (4.51) to determine 
1x

 (0)
V

 and 
2x

 (0)
V

  as follows: 

    ),())((),))(( 21212

1

)0(

xxvecxxQvec
x

HI H(E -
V TT

2

T  



          (4.58) 

   ),())((),))(( 21211

2

)0(

xxvecxxQvec
x

HI  H(E -
V TT

1

T 



 ,          (4.59) 

which can be used to construct a feedback control law )1(u  using Eqn. (4.41). Thus, we 

have 

                                































2

)0(

1

)0(

212211

)1( ),(),(
2

1
)(

x

x
xxgxxgxu

 

 

-1

V

V

   R        (4.60) 

which improves the efficiency of )0(u . The repetition of this process results in a 

successive approximation algorithm (SHWCM) that uniformly approximates the 

Hamilton-Jacobi-Bellman equation. 

Let ),( 21 xx
V be the solution to the equation GHJB 0),( *  uV , then 


V  is the 

optimal cost. Given that the optimal control is unique, 
u  must be the optimal control. 

Thus, to determine the Lyapunov function ),( 21 xx
V  from the solution of linear system 

equations that satisfy the HJB equation in Eqn. (4.14), we propose a new formula that 

depends only on the initial and final points and not on the path followed. We calculate 

the Lyapunov function by using the variable gradient method (Slotine and Li, 1991) to 

integrate parallel to the axes; this technique can be illustrated as follows: 
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Given that 

                        

x

dxx
0

)( T
VV          (4.61) 

the Lyapunov function of two dimensions, is given by Slotine and Li (1991) 

                       








1 2

0 0

221

2

11

1

21 ),()0,(),(

x x

dxxx
x

dxx
x

xx
**

* VV
V       (4.62) 

where 

      )0,()())(()0,( 121

1

xvecQvecx
x

H E -
V TT

2

T
*

 



            (4.63) 

and   

     ),()())((),( 21121

2

*

xxvecQvecxx
x

H  E -
V TT

1

T  



        (4.64) 

Eqns. (4.63) and (4.64) are known functions that are obtained from the final iteration of 

the successive GHJB equation in algorithm 4.3.1 that satisfies the stopping criteria for 

feedback control law when )(* xu   is optimum. 

Let  

)())(()( 2

TT

2

T
 E -  vecQvecvec   . 

Then  

     )0,()()0,( 11

1

xvecx
x

H 
V T

*





,          (4.65) 
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where  T                   111110111101101000)(  mmmmmmvec    is 12 m

constant values corresponding to )())(( 2

TT

2

T
 E -  vecQvec  . Therefore, Eqn. 

(4.65) can be rewritten as  

      ),()()0,( 211

1

xxvecx
x

H 
V TT

*





             (4.66) 

To prove that statement, we start from Eqn. (4.65), which can be rewritten using Eqn.  

(3.66) as  

   











 1

0

1

0

11

1

)0()()0,(
m

i

j

m

j

iij hxhx
x


*

V
           (4.67) 

)0()()0()()0()(

)0()()0()()0()(

)0()()0()()0()()0,(

1111111110110

111111111101110

1101011001010001

1


















mmmmmmmm

mm

mm

hxhhxhhxh

hxhhxhhxh

hxhhxhhxhx
x















                     

                         

                     

V
*

 

                                                                                                                      (4.68) 

Substituting the values of the collocation point 02 x ,

 )0()0()0()0( 110  mhhh             h   into Eqn. (4.68), we have 
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where 
)1

2
(1)1

2
(1)1

2
(0

,,,


m
m

mm            are the elements of the )1
2

( 
m

 column in the Haar 

wavelets collocation points matrix of one dimension.      

Now, Eqn. (4.69) can be rewritten as 
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Eqn. (4.70) can be rewritten into a compact form as 
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










 1

0

1

0

11

1

)()0,(
m

i

m

j

ijij xhx
x


*

V
           (4.71) 

 



101 

 

To simplify Eqn. (4.71), 

let  









1

0

1

0

m

i

m

j

jiji   be the coefficient values for )( 1xhi  for  1,,2,1,0  mi                                                                                                                                           

Then, Eqn. (4.71) can be rewritten as  

   )()0,( 11

1

xx
x

m H
V T

*





                   (4.72) 

Eqn. (4.72) is independent of 2x . Therefore, by utilizing Eqn. (4.32), it can be rewritten 

as  

                  ),(()0,( 211

1

xxvecx
x

m )H 
V TT

*





.               (4.73) 

Finally, by substituting Eqn. (4.73) and (4.64) into Eqn. (4.62), we obtain 

         

   
1 2

0 0

221112121 ),()())((),((),(

x x

m dxxxvecQvecdxxxvecxx H  E -)H V
TT

1

TT*      

           (4.74)              

Integrate Eqn. (4.74) by using Eqns. (3.87) and (3.102) on interval     ,,  , we 

obtain 

 

)0,0(
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21121
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HE -  E -E -                    

HE - V

2

TT

21

T

1

TT*







xxQvecQQvec

xxQvecxx m
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   (4.75) 

where  0)0,0( V . 
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4.7 Numerical Results  

This section demonstrates the usefulness, efficiency, and accuracy of the Successive 

Haar Wavelet Collocation Method (SHWCM). For this purpose, we applied the 

proposed method to solve linear and nonlinear quadratic optimal control problems with 

infinite time horizon. In particular, five different examples are consider, which are 

presented in this section. A linear optimal control example is considered first, followed 

by four nonlinear optimal control examples with one control variables for the three 

examples and two control variables for one example. All computations were carried out 

using of MATLAB. 

4.7.1 Example 1 

Consider the following linear quadratic regulator (LQR): 

                                              



0

22

1 ))()(( dttutxJ          (4.76) 

subject to 

                                              uxx 


















1

0

00

10

     

     
         (4.77) 

To solve this problem, we take the initial stabilizing control 21

)0( )( xxxu  . Tables 

(4.1) and (4.2) show the numerical results for 
)(iu  and 

)(i
V , respectively, when 8m  

and 
8

1
1 x . The iteration is terminated when the difference between two successive 

controls is less than 001.0 , that is,  )()1( ii uu . Subsequently, to display the 

two dimensional plots, we fix the value for 1x  at 
m

m
x












2
1  and )1,1[2  x . 
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Figure (4.3) shows that for this particular LQR problem, the usage of 16m  can 

adequately approximate the exact optimal feedback control 21

* 2)( xxxu   ; 

however, to approximate the cost function we require a higher value of m  as shown in 

Figure (4.4). 

Table 4.1: Numerical results 
)(iu   for Example 1 when 8m  and 

8

1
1 x  

2x  )0(u  
)1(u  

)2(u  
)3(u  

)4(u  exact u  

8/7  1.0000 1.4463 1.3772 1.3786 1.3793 1.3624 

8/5  0.7500 1.0636 1.0114 1.0130 1.0136 1.0089 

8/3  0.5000 0.68889 0.6548 0.6548 0.6550 0.6553 

8/1  0.2500 0.3135 0.3027 0.3017 0.3015 0.3018 

8/1  0 -0.0615 -0.0515 -0.0519 -0.0520 -0.0518 

8/3  -0.2500 -0.4397 -0.4080 -0.4053 -0.4049 -0.4053 

8/5  -0.5000 -0.8137 -0.7584 -0.7571 -0.7572 -0.7589 

8/7  -0.7500 -1.1880 -1.1123 -1.1130 -1.1135 -1.1124 

 

Table 4.2: Numerical results 
)(V i
  for Example 1 when 8m  and 

8

1
1 x  

2x  )0(V  
)1(V  

)2(V  
)3(V  exactV  

8/7  0.7051 0.6709 0.6712 0.6714 0.6618 

8/5  0.3914 0.3723 0.3722 0.3723 0.3654 

8/3  0.1723 0.1640 0.1637 0.1637 0.1574 

8/1  0.0470 0.0444 0.0442 0.0441 0.0377 

8/1  0.0155 0.0130 0.0130 0.0130 0.0065 

8/3  0.0781 0.0704 0.0701 0.0701 0.0636 

8/5  0.2348 0.2162 0.2154 0.2153 0.2091 

8/7  0.4850 0.4500 0.4492 0.4492 0.4431 
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Figure 4.3: Optimal feedback control for Example 1 via the SHWCM with 

16,8  m   and 
16
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1
1    ,x , respectively 
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Figure 4.4: Value for cost function for Example 1 via the SHWCM with 

32,16,8   m  and 
32
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4.7.2 Example 2 

Consider the following nonlinear one dimension example, as presented by Park and 

Tsiotras (2003): 
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0




   
TT

           (4.78) 
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
2

V

 

 

V
8

V
16

V
32



106 

 

with the following data:  1Q , 1R
xxexf )(  and 

xexg )( . 

For this example, the solution to the HJB equation can be found analytically to be 

)1)(21(2)(   xx exex*
V  with the corresponding optimal control is 

xxu )21()(*  . The SHWCM is applied with an initial stabilizing control of 

xxu 2)()0(  , and the iteration is terminated when the difference between two 

successive controls is less than 0001.0 . The results are shown in Figures 4.5 and 

4.6, which show the monotonic convergence of the value cost functions and the 

corresponding control to the optimal one when Haar wavelets resolution levels of 

16,8  m  are used.  

 

Figure 4.5: Value for cost function for Example 2 via the SHWCM with 16,8  m  
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Figure 4.6: Optimal feedback control for Example 2 via the SHWCM with 

16,8  m  

4.7.3 Example 3 

Consider the following nonlinear optimal control problem (Curtis and Beard, 2001): 

                                              



0

22

2 )( dtuxJ           (4.80) 

subject to 

                         u
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x

u

 

 

u
exact

u
8

u
16



108 

 

The optimum solution for this problem is 2

* 3)( xxu   and 

2

21

12

1

* )5(tan
2

)( xxxx 







 

V  . To solve this nonlinear optimal control problem, 

we started with an initial stabilizing control of 2

)0( 8.1)( xxu  . Figure (4.7) shows the 

approximate optimal feedback control law )(xu
 for 8m , 16, and 32. The graph for 

32m  overlaps with the exact optimal feedback control, and Figure (4.8) shows that 

the approximate cost function converges with the exact cost function as the resolution is 

increased. 

 

Figure 4.7: Optimal feedback control for Example 3 via the SHWCM with 

32,16,8   m  and 
32
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Figure 4.8: Value for cost function for Example 3 via the SHWCM with 

32,16,8   m  and 
32
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In three dimensions plane, Figures (4.9) and (4.10) illustrate the results obtained by 

proposed numerical method and analytical solutions for the cost function of the 

nonlinear optimal control problem with 32m . Meanwhile, Figures (4.11) and (4.12) 

illustrate the results for the approximate and exact solutions for the obtained optimal 

feedback control, respectively. In this example, the numerical results are obtained 

within 14 successive controls iterations and a criteria error of 001.0 . 
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Figure 4.9: Approximate solution for cost function with 32m  and 001.0  for 

Example 3 

 

Figure 4.10: Exact solution for cost function with 32m  for Example 3 
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Figure 4.11: Approximate solution for optimal feedback control via the SHWCM 

with 32m , 001.0  and 14 iterations for Example 3 

Figure 4.12: Exact solution for optimal feedback control with 32m for  

Example 3 
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4.7.4 Example 4 

Consider the following nonlinear optimal control problem (Beard et al., 1997): 

                                              



0

22

2

2

1 )( dtuxxJ          (4.82) 

subject to   

                                              u
xx

xx
x 























1

0

21

2

3

1

  
         (4.83) 

The initial stabilizing control 21

)0( 3522.14142.0)( xxxu   can be obtained using 

feedback linearization method as discussed by Isidori (1989). The optimal feedback 

control and cost function obtained using SHWCM for various Haar wavelet resolutions 

of 8m , 16, and 32 are illustrated in Figures (4.13) and (4.14), respectively. We 

believe the SHWCM will yield more accurate results when the Haar wavelet resolution 

is increased. Figure (4.15) shows the simulation of the system trajectories. Figures 

(4.13) and (4.14) clearly show that compared with the approximate solutions for the cost 

function, the approximate solutions for optimal feedback control require lower 

resolution, than the approximate solutions for the cost function. Nonetheless, more 

accurate results can be obtained in both cases by increasing the resolution of the Haar 

wavelet.  
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Figure 4.13: Optimal feedback control for Example 4 via the SHWCM with 

32,16,8   m  and 
32

1

16

1

8

1
1   ,  ,x , respectively 

 

 

 

 

 

 

 

 

 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x
2

u

 

 

u
8

u
16

u
32



114 

 

 

 

 

Figure 4.14: Value for cost function for Example 4 via the SHWCM with 

32,16,8   m  and 
32
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Figure 4.15: Some state trajectories for Example 4 

4.7.5 Example 5 

Consider the following nonlinear optimal control problem described by Cloutier et al. 

(1996), which contains two state variables and two control variables. The system, which 

has cubic nonlinearities in each equation 
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The cost function to be minimized is 
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The initial stabilizing control for this example was chosen to be

21

)0(

1 5811.2)( xxxu  , 21

)0(

2 5811.0)( xxxu    and the region

   1,11,1    . The optimal feedback control and cost function obtained using 

SHWCM for various Haar wavelet resolutions of 4m ,16, 32, and 64 are illustrated in 

Figures (4.16), (4.17), and (4.18). These figures clearly demonstrate that the SHWCM 

will be capable of yielding more accurate results when the Haar wavelet resolution is 

increased.  

This problem was reduced in Beeler et al. (2000) and was solved by using five different 

methods, and they obtained the values for the cost functional ),( 0 uxJ  that are listed in 

Table 4.3. To compare, our control cost at initial condition 
T

  x )1,1(0   is 4.66185392 

when the Haar wavelet resolution 64m  and within 31i  successive controls 

iteration. 

 

Table 4.3: Numerical comparison of feedback control methodologies in Example 5 

at initial condition )1,1(0  x , Beeler et al. (2000)   

Numerical methods Cost 

HJB with Power Series Approximation  4.6985 

State-Dependent Riccati Equation  4.6929 

Interpolation of TPBV Problem Solution 4.6809 

Interpolation of Iterative Solution 4.6768 

Our Method SHWCM 4.66185392 
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Figure 4.16: First optimal feedback control for Example 5 via the SHWCM with 

64,32,16,4    m  and 
63
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Figure 4.17: Second optimal feedback control for Example 5 via the SHWCM with 

64,32,16,4    m  and 
63
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Figure 4.18: Value for cost function for Example 5 via the SHWCM with 

64,32,16,4    m  and 
63
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Figure 4.19 illustrates the results obtained by the proposed SHWCM for cost function, 

whereas Figures 4.20 and 4.21 demonstrate the first and second optimal feedback 

control of the nonlinear optimal control problem with 64m , respectively. The 

numerical results are obtained within 31 successive controls iterations and a criteria 

error of 01.0 . 
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Figure 4.19: Approximate solution for cost function with 64m , 01.0  and 31 

iterations for Example 5 

 

Figure 4.20: Approximate solution for first optimal feedback control with 64m , 

01.0  and 31 iterations for Example 5 
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Figure 4.21: Approximate solution for second optimal feedback control with

64m , 01.0  and 31 iterations for Example 5 

 

4.8 Numerical Discussions 

The results of all examples are depicted in figures. Each figure is plotted with the 

solution obtained from the proposed numerical method (SHWCM) with various Haar 

wavelet resolutions. The results in figure form provide a better visualization regarding 

of the agreement between numerical and exact solutions, if available in some examples.  

By using the SHWCM, which involves Haar wavelet operational matrices to solve 

the GHJB equation, the problem is reduced to a matrix computation that is much 

simpler than a method that requires the computation of multidimensional integrals. The 

proposed method can be easily coded. 
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This advantage suggests that the Haar wavelet has a great potential as a numerical 

tool. Additionally, other benefits of this tool include faster computation and 

attractiveness. 

All of figures clearly indicate that the convergence of approximate solutions for 

optimal feedback control requires lower resolution than that required by the 

convergence of approximate solutions for the cost function. For instance, see Figures 

4.13 and Figure 4.14. However, in both cases, more accurate results can be obtained by 

increasing the resolution of the Haar wavelet.  

The proposed numerical method presents encouraging results even for a small value 

of Haar wavelet resolution of 8m . The accuracy of the solution in the numerical 

results is improved as larger values of m  are used. An example of this phenomenon is 

the nonlinear optimal control problem in Example 3, which is depicted in Figure 4.7 and 

Figure 4.8 with 16m  and 32m . In addition, the proposed numerical method agrees 

well with the exact solution, as shown in Examples 1, 2, and 3. The simulation results 

indicate that the accuracy of the control and cost can be improved by increasing the 

Haar wavelet resolution.  

This work will serve as foundation for finding the solution to the Hamilton-Jacobi-

Bellman equation in view of the sparse matrices that appeared during the calculation, 

which contribute to a faster computational analysis. 
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4.9 Conclusion 

In this chapter, we used the Haar wavelets operational matrices to approximate the 

solution to the GHJB equation in the interval     ,,  . When Haar wavelets 

operational matrix methods are used to approximate the GHJB equation, and the result 

is plugged into the successive GHJB equation, we obtain algorithm 4.4.1 (Figure 4.2), 

which improves the closed-loop performance of )()0( xu . The GHJB equation is the key 

to finding the results in this chapter because it answers three fundamental questions that 

are presented in Section 2 of Chapter 1. First, its solution provides a compact 

representation of the performance of any admissible control. Second, its solution allows 

users to find a control law that improves the performance of the original control. Third, 

by iterating the process, we converge uniformly to the solution of HJB equations. The 

advantages of the proposed method are as follows: 

 All of the computations are performed off-line. 

 The resulting controls are in feedback form, and they stabilize the closed-loop 

system. 

 The algorithm converges uniformly to the optimal control. 

 By increasing the complexity of the approximating control, it can be made 

arbitrarily close to the optimal. 

 More accurate results can be obtained by increasing the resolution of the Haar 

wavelet, and the approximate controls are guaranteed to stabilize on  .  

Finally, the proposed approach is simple and stable, and it has been tested on linear 

and nonlinear infinite time horizon optimal control problems in one or two-

dimensional state space with one or two controllers. 
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CHAPTER 5 

DIRECT METHOD 

CONSTRAINED OPTIMAL CONTROL PROBLEMS 

 

5.1 Introduction 

Optimal control problems without constraints can be successfully solved with the use of 

the majority of direct and indirect techniques. However, analytical and computational 

difficulties often arise because of inequality constraints. Thus, researchers aim to solve 

constrained optimal control problems with numerical methods. Direct methods are 

widely used to solve nonlinear optimal control problems. Direct methods obtain an 

optimal solution by directly minimizing the constrained performance index. 

Furthermore, this type of method utilizes either discretization or parameterization 

technique to convert the optimal control problem into a mathematical programming 

problem, which is typically solved by an optimization code. Therefore, the application 

of direct methods does not require the use of first-order necessary conditions for 

optimality that arise from the use of the minimum principle of Pontryagin on optimal 

control problems. Moreover, integrating the system of the adjoint equations is not 

needed.  

In this chapter, we propose a new numerical method for solving the linear and 

nonlinear constraints of finite time horizon optimal control problems. This approach 

uses quasilinearization technique, and the state and control variables are parameterized 

using Haar wavelet functions and the Haar wavelet operational matrix to convert the 

nonlinear optimal control problem into a quadratic programming problem. The linear 

inequality constraints for trajectory variables are converted to quadratic programming 
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constraints by using Haar wavelet collocation method. The terminal state constraints are 

converted using Haar wavelet functions and adjoined to the system dynamics 

constraints. Then, the quadratic programming problem with linear inequality constraints 

is solved by using the MATLAB command quadprog(). 

The advantages of the proposed method are summarized as follows: 

1. This method facilitates easy approximation. 

2. This method can be applied on constrained optimal control problems with 

unequal number of state variables and control variables. 

3. This method can handle inequality and equality constraints. 

Numerical examples, results, and discussions are shown at the end of this chapter. 

These numerical examples are computed and compared with others existing methods. 

The accuracy of the state and control variables, as well as the cost, can be improved by 

increasing the Haar wavelet resolution.  

5.2 Problem Statement 

In this chapter, we consider the following optimal control problem:  

The system to be controlled is given by nonlinear differential equations of the form 

,0,)0(),),(),(( 0            x          fttxttutxfx     (5.1) 

where 1)(
n

tx   is the state vector, 2)(
n

tu   is the control vector, f  is continuously 

differentiable with respect to all its arguments, 0x  is the initial condition vector, and 0 ,

ft are a known initial and finite time, respectively, 

subject to the following constraints: 
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1. Terminal state constraints: 

. 0)),((  ff ttx       (5.2) 

2. Saturation state and control constraints: 

,)(,)(  x     x minmax  txtx      (5.3) 

minmax u     u  )(,)( tutu .     (5.4) 

The vector inequalities such as maxx)(tx   means ii tx  ,max x)(  for all 1 , 2, 1, ni  . 

The problem is finding the optimal control )(* tu  that minimizes the following 

performance index: 

,)(()(
0

   R  Q)   S   
TTT

 

ft

ff dtuuxxtxtxJ    (5.5) 

where 11 nn 
Q  is a positive semi-definite matrix, 22 nn 

R  is a positive definite 

matrix and the terminal cost given by the scrap function )   S  
T

ff txtx ()( and S is a 

symmetric and positive definite (or semi definite) matrix. 

5.3 Proposed Method   

The proposed method for solving the stated optimal control problem consists mainly of 

three steps: 

1. Using quasilinearization technique to replace the constrained nonlinear 

optimal control problem by a sequence of constrained linear optimal control 

problems. 

2. Using the Haar wavelet operational matrix and approximation functions to 

convert the optimal control problem into a quadratic programming problem. 

The linear inequality constraints for trajectory variables are transformed into 
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quadratic programming constraints by using the Haar wavelet collocation 

method. 

3. Improving the solving of the quadratic programming problem by utilizing the 

obtained trajectories as the new nominal trajectories and control until the 

stopping criteria is satisfied. 

5.4 Numerical Solution to the Nonlinear Optimal Control Problem 

We propose the following numerical solution to a nonlinear optimal control problem 

with inequality constraints and terminal state constraints: At each step of this algorithm, 

we identify an approximate solution to the optimal control problems Eqns. (5.1) to (5.5). 

The orthogonal Haar wavelet is used as a basis to approximate state )(tx  and control

)(tu . 

5.4.1 Quasilinearization Technique 

Applying the quasilinearization method proposed by Bellman and Kalaba, (1965), we 

can replace the optimal control problem in Eqns. (5.1) - (5.5) with the following 

sequence of constrained linear-quadratic optimal control problems: 

Minimizes 

 

ft

kTkkTk

f

k

f

kk dtuuxxtxtxJ
0

][][][][][][][ )()()( R  Q  S  
 T  ,  (5.6) 

with is subject to the linearized time varying state equations: 

,)()(
)( ][]1[][]1[

][
kkkk

k

utxt
dt

tdx   BA 00 x)(
][ kx    ,  1k   (5.7) 
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where 

   ,
),,(

)(
,

][

kk ux

k

x

tuxf
t




A      (5.8) 

   ,
),,(

)(
,

][

kk ux

k

u

tuxf
t




B      (5.9) 

are the 11 nn   and 21 nn   matrix, respectively, and the terminal state and the inequality 

constraints are expressed as follows: 

 0)),((  ff ttx ,      (5.10) 

,)(,)( ][][
 x     x minmax  txtx kk     (5.11) 

. u     u minmax  )(,)( ][][ tutu kk     (5.12) 

The initial matrices )(A t0
 and )(B t0

 are determined using an approximately accurate 

initial assumption of )(tx0
 and )(tu 0

that does not cause the algorithm to diverge. We 

suggest starting from the initial condition vector 0x . 

5.4.2 Optimal Control Problem using Haar Wavelet Method 

Haar wavelet operational matrix and Haar wavelet functions are used to approximate the 

optimal control problem in terms of unknown coefficients of state and control variables.    

5.4.2.1 Parameterization using Haar Wavelet Functions 

To formulate the optimal control problem in Eqns. (5-6)-(5-12) into a quadratic 

programming problem, the proposed method, which is based on parameterizing the state 

and control variables using Haar wavelet functions, is applied. At first, the state vector 

)(tx and control vector )(tu  are expanded in terms of Haar wavelet basis by using Eqn. 

(3.10) as follow: 
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   )()(
1

0

thctx i

m

i

kik 




 ,   ,,,2,1 1nk         (5.13) 

)()(
1

0

thdtu i

m

i

lil 




  ,   ,,,3,2,1 2        nl    (5.14) 

where 1210 ,,,, kmkkk cccc            , 1,,3,2,1 nk           are unknown parameters for the state 

variables and 1210 ,,,, lmlll dddd             for  2,,3,2,1 nl          , are unknown parameters 

for the control variables 

Eqns. (5.13) and (5.14) can be written in matrix form as 
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    (5.16) 

These equations can be rewritten in compact form as follows: 

    )()( ttx hc
T       (5.17) 

    )()( ttu hd
T       (5.18) 

where T
c  and T

d are now an mn 1  and mn 2  unknown coefficient matrices for Haar 

wavelet functions, respectively; and )(th  is the vector of  known Haar wavelet function 

with dimension of 1m , where  T       h )()()()( 110 thththt m   and T  is the transpose.  
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By integrating Eqn. (5.17) with respect to t  and applying Eqn. (3.33), we obtain )(tx , 

which is expressed in terms of Haar wavelet functions and the Haar operational matrix 

as  

    0

0

)()( x    hc
T  

t

dtttx                           (5.19) 

Thus 

    )()()( 0 tttx h  xh Pc  
TT  ,               (5.20) 

where 0x
 
is the 11 n  column vector of the initial conditions that is 

 T      x
100302010 nxxxx  , and  T             0,,0,0,1   is an 1m  vector. 

Eqns. (5.17), (5.18), and (5.20) can then be rewritten in compact form by using the 

properties of the operation vec , where (B)  )C(A(ABC) 
T vecvec    [see A.15            

( Brewer,  1978)], as follows: 

  )())(()(
1

c hI  
T vecttx n        (5.21) 

  )())(()(
2

d hI  
T vecttu n        (5.22) 

  )())(()())(()( 011

TTTT
 x hIc P hI  vectvecttx nn    (5.23) 

where 
1nI and 

2nI denote 11 nn   and 22 nn   identity matrices, respectively. In addition 

 T                           c 112111211102010 111
)(  mnmmnn cccccccccvec   is the vector of 

unknown Haar wavelet coefficients with dimension 11 mn , 

 T                           d 112111211102010 111
)(  mnmmnn dddddddddvec   is an 12 mn  

vector of unknown Haar wavelet coefficients, and )( 0

T
 x vec  is an 11 mn vector of 
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known coefficients that can be framed as

 TT
                               x  000000000)( 0302010 xxxvec  . 

5.4.2.2 Approximation of the Performance Index  

To approximate the performance index of the optimal control problem described in Eqn.  

(5.6), the performance index is formalized by using Haar wavelet functions. We first 

expand the second term of the performance index by substituting Eqns. (5.22) and 

(5.23) into Eqn. (5.6). Thus, we obtain 

    

ft

vectvectJ
0

01 ())((())((
TTTTT

) x hIc) P  hI        

    ) x hIc) P  hI Q
TTTT 0())((())(( vectvect    

                                     +        d)  hI R d)  hI 
TTT dtvectvect ())((())((    (5.24) 

Rearranging and simplifying Eqn. (5.24) yields 

 

ft

vecttvecJ
0

1 ())(())()(( c) P hI Q h P Ic     
TTT  

) x hI Q    h P Ic
TTT 0())(())()(( vecttvec   

c) PhI  Q   h  I x
TTTT ())(())()(( 0 vecttvec    

) x hI  Q   h P I x
TTTT  00 ())(())()(( vecttvec   

    d)  hIR     hI d)
TT dtvecttvec ())(())(((    (5.25) 

According to the Kronecker product properties (Brewer, 1978), if matrices A, B, C, 

D and E are appropriate dimensions matrices, then BDACDCBA  ))((  and 

EAEA  )(I  [see A.4 (Lancaster, 1969)]. Therefore, Eqn. (5.25) can be rewritten 

as 



132 

 

 

ft

vecttvecJ
0

1 ())()()(( c) P hh P Qc     
TTT  

) x h  h P Qc
TTT 0())()()(( vecttvec   

c) Ph  h  Q x
TTTT ())()()(( 0 vecttvec    

) x h  h P Q x
TTTT  00 ())()()(( vecttvec   

      d)  h hR d)
TT dtvecttvec ())()(((     (5.26) 

The integration of the product of two Haar wavelet function vectors has been discussed 

in Section 3.7. By applying Eqn. (3.53) on Eqn. (5.26), we obtain 

)())(()())(( 01

TTTT
 xE PQccP E PQc vecvecvecvecJ   

)())(()())(( 000

TTTTTT
 xEQ xcP EQ x  vecvecvecvec   

  d)ERd
T ())(( vecvec        (5.27) 

where 

         )())(()())(( 00

TTTT
 xE P QccP EQ x  vecvecvecvec   and T

EE  . 

Finally, the performance index in Eqn. (5.27) can be written in quadratic form as 

follows: 

   ,  ZFZ H Z
T

ess eJ T 
2

1
1

    (5.28) 

where 

     , d         cZ
TTT )()( vecvec      (5.29) 

    
ER                    O       

O               P E PQ
H

T

ess 











     (5.30) 
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     O        P EQ x F
TTT ))((2 0  vec    (5.31) 

    )())(( 00

TT
 x EQ x  vecvece T     

 (5.32) 

are 1)( 21  nnm  , )()( 2121 nnmnnm  , 1)( 21  nnm  and 11  matrices, 

respectively. 

Further, we need to expand the first term of performance index in Eqn. (5.6) by 

converting it to a quadratic programming problem with the use of the scrap function, 

which is define as follows: 

    )  S 
T

ff txtxJ ()(2       (5.33) 

where )( ftx is vector of final conditions.    

First, we assume that  

    )()( ff ttx hc
T      (5.34) 

By applying Eqn. (3.52), we obtain 

    
ft

f dttt
0

)()( hh P    

 ft       (5.35) 

where  T             0,,0,0,1   is 1m  vector. 

Integrating Eqn. (5.34) and utilizing Eqns. (3.33) and (3.52), we obtain 

   ,)( 0    xc  
TT   ff ttx

     (5.36)
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The term  T can be evaluated as follows: 

   

 

   

1        

 

              
T




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
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






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
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








0

0

0

1

0,,0,0,1





     (5.37) 

Finally, Eqn. (5.36) can be written as 

    

    0)( xc 
T  ff ttx      (5.38) 

 

Rewriting Eqn. (5.38) in compact form by using the properties of the operation vec (see 

A.16), we have 

                    xc  
T )()())(( 0vecvecttxvec ff     (5.39) 

    = )()()( 01
xc I

T vecvect nf   

where  )( 0x vec  is 11 n  vector.  

When Eqn. (5.39) is substituted into Eqn. (5.33), we obtain 

)]()()([)]()()([ 002 11
xcI SxcI

TTT vecvectvecvectJ nfnf     (5.40)  

Simplifying and rearranging Eqn. (5.40), we obtain 

             )()()()())(( 00

2

2 11
x S xcI S Ic 

TTT vecvecvecvectJ nnf              

                      ),()()()())((
11 00 cI S xx S Ic

TTT vecvectvecvect nfnf       (5.41) 

Utilizing Kronecker product properties (Brewer, 1978), we have 

)()()())(( 00

2

2 x S xc Sc 
TTT vecvecvecvectJ f     

        ).())(()())(( 00 cSxxSc  
TTT vecvectvecvect ff     (5.42) 
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We should take note of the term 

  )())(()())(( 00 c Sxx Sc
TTT vecvectvecvect ff     (5.43) 

Therefore, we have 

 )())((2)())(( 0

2

2 cSx cSc 
TTTT vecvectvecvectJ ff    

  )()( 00 x S x 
T vecvec .       (5.44) 

The performance index for the scrap function can be written in quadratic form as 

follows: 

   
2

T

2ess ZFZ H Z eJ T 
2

1
2

 ,    (5.45) 

where  

    TTT
d         cZ )()( vecvec ,     (5.46) 

   






 


O                       O      

O               )S
 H

T

ess

(2

ft ,     (5.47) 

    TTT

2  O        I x  F ))((2
10  nf vect ,   (5.48) 

    )()( 002 x  S x
T vecvece  ,     (5.49) 

are 1)( 21  nnm  , )()( 2121 nnmnnm  , 1)( 21  nnm , and 11  matrices, 

respectively. 

Finally, the performance index for both parts can be written as 

                                          21 JJJ  .                                                                     (5.50) 
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5.4.2.3 Approximations of System Dynamics 

State equations are approximated in terms of the unknown coefficients of the state and 

control variables by substituting Eqns. (5.21), (5.22) and (5.23) into Eqn. (5.7). Once 

these equations are simplified, the time varying matrices )(tA  and )(tB  should be 

expressed in terms of the Haar wavelets. 

The function of the 
thji ),(   element of )(tA can be approximated using Eqn. (3.22) as 

  )()( ,,
tGt jiji

hA
T      (5.51) 

where ]          [
T ij

m

ijijij

ij ggggG 1210    is the m row vector of the known coefficients of the 

Haar wavelet function for each 121 n,,,i  , and 1,,2,1 nj  , can be calculated using 

Eqn. (3.31) as follows: 

      -1T
H A

jiji tG
,, )(      (5.52) 

where -1
H  is the inverse of the Haar wavelet matrix at collocation points. 

Similarly, the elements of )B(t  can be expanded using the Haar wavelet function: 

    )h()][B(
T tLt jiji ,,       (5.53) 

where ]          [
T

 

ij

m

ijijij

ji LLLLL 1210    is the constant m1 row coefficients of Haar wavelet 

functions for each 1,,2,1 ni   and 
2,,2,1 nj  . 

Then Eqns. (5.51) and (5.53) can be rewritten in compact form by using Kronecker 

product properties [see A.6 (Brewer, 1978)]: 

    ))h((IG)A(
T tt n 

1
     (5.54) 
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    ))h((IL)B(
T tt n 

2
     (5.55) 

where the block matrices 
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are of size mnn 11  and mnn 21  , respectively. 

Given the notation above, the transpose of Eqns. (5.21), (5.22), (5.23) with Eqns. (5.54) 

and (5.55) are substituted into Eqn. (5.7) to obtain 

 ))()(())(())(())(((
1111 0 tvectvecttvec nnnn hIxh PI(c) hIGhI c)

TTTTT    

   ))(())((
21

tvect nn hI (d)  hIL
T      (5.56) 

 Simplifying Eqn. (5.56) by utilizing Kronecker product properties, we have 

 hIPI (c) hIG     hI(c)
TTT ))()(())(())((

1111
tvecttvec nnnn   

     hI  x hIG
TTT ))(()())((

11 0 tvect nn    

    ))(())((
21

tvect nn hI(d) hIL
TT     (5.57) 

Then  

G hIhIPI (c)     hI(c)
TTT ))())(()(())((

1111
ttvectvec nnnn   

    G  hIhI  x
TTT ))())((()(

110 ttvec nn    

     LhIhI(d)
TT ))())(((

12
ttvec nn     (5.58) 
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The product of ))(( thI and ))(( tT
hI  can be expanded into a Haar series with a 

Haar coefficient block matrix M̂ , which is given in Eqn. (3.51) as 

 hIGMPI (c)     hI(c)
TT ))()((ˆ)())((

111
tvectvec nnn   

      hIGM  x
TT ))()((ˆ)(

10 tvec n    

    ))()((ˆ
2

tvec n hILM(d)
T      (5.59) 

where the block matrices 
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are mnmn 11  and mnmn 12   matrices, 

respectively. 

At collocation points, we obtain 

)(ˆ)(ˆ)ˆ
01

G Mx  (L)M(d)(GMP)(I (c)-(c)
TTTTT vecvecvecvec n      (5.60) 

Transforming Eqn. (5.60) into a standard system of linear equations. we obtain 

   )(ˆ
)(

)(
ˆ)ˆ

011

TTTTT
x (G)M  

d

c
 (L)M      )P(I(GMI vec

vec

vec
nmn 








       (5.61) 

In this equation, all the multiplications must be performed blockwise (Lancaster and 

Tismenetsky, 1985). 
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5.4.2.4 Approximations of Equality Constraints 

The equality constraint is of the form 

    
ftftx x    )(      (5.62) 

where )( ftx  is the terminal state variable and 
ftx is an 11 n  of the known finite time 

condition vector. 

This constraint can be treated as the system dynamics. We substitute )( ftx from Eqn. 

(5.39) in the given constraint (5.62), and expand it in the Haar wavelet. The resulting 

constraint in )(cvec  and )(dvec  are then adjoined to the other constraints. 

Substituting Eqn. (5.62) into Eqn. (5.39), we obtain 

)()()()( 01
xc Ix

T vecvectvec nft f
     (5.63) 

Moving )( 0x vec to the other side, we have  

 xxc I
T )()()()( 01

vecvecvect
ftnf     (5.64) 

Eqn. (5.64) is rewriting by adding zero coefficients for the missing variable )(d vec  as 

bellows: 

    xx
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c
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)(
)( 01

vecvec
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t

ftnf 




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
   (5.65) 

The resulting constraints in )(cvec  and )(dvec  are then adjoined to the other constraints 

in Eqn. (5.61) to form 
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    (5.66) 
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5.4.2.5 Approximations of Inequality Constraints 

For inequality constraints the linear inequalities for the state and control variables in this 

study should also be determined. Haar wavelet collocation method is used to convert 

these constraints into quadratic programming constraints. Substituting Eqns. (5.22) and 

(5.23) into Eqns. (5.3) and (5.4) at collocation points, respectively, we form: 

  )( max01
Hx)H((x(c))P )(H(I

TTTT  vectvecvectn   ,  (5.67) 

 )( min01
Hx)H((x(c))P )(H(I

TTTT  vectvecvectn   ,  (5.68) 

  )( max2
Hu(d)) )(H(I

TT vecvectn   ,   (5.69) 

  )( min2
Hu(d)) )(H(I

TT vecvectn  .   (5.70) 

By moving the constant vector of Eqns. (5.67) and (5.68) to the other side and by 

changing the signs of Eqns. (5.68) and (5.70) to match the command of quadprog() at 

MATLAB, we generate: 

  ))( 0max1
H  (xH x(c))P H(I

TTTT  vecvecvecn   ,  (5.71) 

 )() min01
HxH  (x(c))P H(I

TTTT  vecvecvecn   ,  (5.72) 

  )( max2
Hu(d)) H(I

TT vecvecn   ,   (5.73) 

  )( min2
Hu(d)) H(I

TT vecvecn  .   (5.74) 

Combining Eqns. (5.71)-(5.74) after the zeros of the missing variables are added in the 

above equations, we obtain the following form of inequality constraints:  
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           (5.75) 

On the basis of the previous reformulation, the optimal control problems in Eqns. (5.6)–

(5.12) can be approximated by the following quadratic programming problem: 

    e
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min     (5.76) 
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The problems denoted by Eqns. (5.76)–(5.82) represent a standard quadratic 

programming problem that can be solved by using a solver such as quadprog() in 

MATLAB (Xue and Chen, 2011). Once the optimal solution to the unknown parameters

Z  is obtained, we substitute these parameters into Eqns. (5.18) and (5.20) to determine 

the new nominal states )(tx k ][
 and controllers )(tu k ][

 to be used in subsequent 

iterations. These new nominal trajectories should be substituted into Eqn. (5.7) to drive 

the next optimal control problem that is constrained linear quadratic. This procedure 

should be repeated until an acceptable convergence is achieved. 


 || 1 kk JJ     (5.83) 

The iteration is terminated when the difference between the two cost functions 

|| 1 kk JJ 
 is sufficiently small. 

 

5.5 Numerical Results and Discussions 

 

In this section, a few examples of finite time horizon optimal control problems are 

solved using the method illustrated above. The proposed method is applied to linear and 

nonlinear quadratic optimal control problems that may be subject to one or two 

constraints. Examples in the succeeding subsection include linear optimal control 

problems with and without constraints. Examples of nonlinear optimal control problems 

with and without constraints are also illustrated to demonstrate the simplicity, 

effectiveness, and accuracy of the proposed numerical method.  

We use a Haar wavelet algorithm implemented in the MATLAB for all of the 

examples presented in this section. 
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5.5.1 Linear Optimal Control Problem 

In this subsection, the numerical method developed in this chapter is tested on the 

unconstrained linear quadratic optimal control problem and the inequality state 

constraint examples. These two examples will be illustrate and discuss in Example 1 

and Example 2, respectively.   

5.5.1.1 Example 1 

Minimizes, 

   dttutxtxJ  
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1 )]()()([ ,             (5.84) 
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x

x
. (5.85) 

The optimal control problem in Eqns. (5.84)-(5.85) is linear. Thus, it can be solved by 

using the method described in the previous section; that is, directly transforming the 

problem into a quadratic programming problem subject to equality constraints directly 

without the need to apply quasilinearization method.  

With the proposed method, the numerical solution to this problem is obtained by 

approximating both the state and control variables based on the Haar wavelet series of 

unknown parameters. The optimal value is found to be 15391937.2744J for 

,256 m which is very close to the exact value of 154.2744J . 

The minimum value of 
J using Haar wavelet functions approximation with Haar 

wavelets resolutions of 8m ,16 , 32 , 64 ,128 , and 256  are listed in Table 5.1. This 
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example shows that even a coarse Haar wavelet resolution of 8m already yields an 

accurate result. 

 

Table 5.1: Results of the performance index for Example 1 with resolution of Haar 

wavelet 8m ,16 ,32 , 64 ,128 , and 256  

Haar wavelet resolution m  J  

8 2744.15466281 

16 2744.15429557 

32 2744.15403243 

64 2744.15394865 

128 2744.15392642 

256 2744.15392078 

 

 

Figures (5.1) - (5.3) present the graphical representations of the numerical solution with 

the optimal trajectories for different resolutions of Haar wavelets approximations 

functions for 8m ,16 , 64 , and 256  for state variables and 8m ,16 , and 64  for 

control variable. These figures clearly show that the Haar wavelets approximation 

functions converges to the correct optimal trajectories as the resolution of the Haar 

wavelet functions increases. 
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Figure 5.1: State variable )(1 tx  for Haar wavelet resolutions 
8643 ,,, 2 2 2 2m  and 

10ft  obtained from Example 1 
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Figure 5.2: State variable )(2 tx  with for Haar wavelet resolutions and 

8643 ,,, 2 2 2 2m  and 10ft  obtained from Example 1 
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Figure 5.3: Control variable )(tu  with Haar wavelet resolutions 
643 ,, 2 2 2m  and 

10ft  obtained from Example 1 

 

5.5.1.2 Example 2 

Consider the following performance index that minimizes, as presented by Kleinman et 

al. (1968): 
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with the following state variable inequality constraint 

    )()(2 trtx   ,      (5.88) 

where )(tr  is an arbitrary known function  

5.0)5.0(8)( 2  ttr                (5.89) 

Here, we solve the problem with Haar wavelet functions by choosing Haar wavelet 

resolutions of 8m ,16 , 32 , 64 ,128 , and 256 . Expanding )(tr  and )(2 tx  in terms of 

Haar wavelet approximation functions, we obtain 

    H
T)(tr                (5.90) 

  )()()()()( 022

TTTT
 x HIc P HI  vecvectx     (5.91) 

For the inequality constraint in Eqn. (5.88) a treatment similar to that applied in Eqn. 

(5.3) is suggested. First, the inequality constraint from the state variable is converted 

into Haar wavelet collection points by substituting Eqns. (5.90) and (5.91) into Eqn. 

(5.88). Then, we have 

      ))) 02 H (xH(
(d) 

(c) 
 O    P H(I    O  

TTT T

mmmm vecvec
vec

vec
 








   (5.92) 

where the inequality constraint in Eqn. (5.92) represents the standard form of the 

quadratic programming problem in Eqn. (5.78). 

Table 5.2 shows the cost values for different values of Haar wavelet resolutions of

8m , 16, 32, 64, 128, and 256. These values are obtained from applying the proposed 

method on Example 2.  
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Table 5.2: Results of the performance index for Example 2 for Haar wavelet 

resolutions 8m ,16 ,32 , 64 ,128  and 256  

Haar wavelet resolution  m  J  

8 0.17254748 

16 0.17109637 

32 0.17011179 

64 0.16989690 

128 0.16983953 

256 0.16983337 

 

The computational result for )(tr  together with )(1 tx  and )(2 tx and )(tu  using the 

present method for 128m  and 1ft  are given in Figures 5.4 and 5.5, respectively.      

 

 

Figure 5.4: State variables )(1 tx , )(2 tx  and inequality constraint )(tr  obtained in 

Example 2 for 128m  and 1ft  
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Figure 5.5: Control variable )(tu  obtained in Example 2 for 128m and 1ft  

This example has been solved by using generalized gradient method (Jacobson and 

Lele, 1969; Mehra and Davis, 1972); classical Chebyshev polynomial (Neuman and 

Sen,  1973; Vlassenbroeck, 1988);  Chebyshev spectral method (Jaddu, 2002); hybrid 

functions approximations (Marzban and Razzaghi, 2003); rationalized Haar functions 

(Marzban and Razzaghi, 2010); Triangular orthogonal Function (Han et al., 2012); 

Bézier control points  (Ghomanjani et al., 2012). The performance index can be 

compared to the findings of other researchers in Table 5.3, which indicates that 

Jacobson and Lele, (1969) offer the lowest performance index. Our result for optimal 

values is also shown in Table 5.3 for comparison.    

Based on Table 5.3, we can be concluded that the proposed technique exhibits 

competitive performance, as demonstrated in Example 2. 
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Table 5.3:  Simulation results of the performance index for Example 2 

(Vlassenbroeck, 1988)  

 

 

 

 

 

 

 

5.5.2  Nonlinear Optimal Control Problem 

In this subsection, we consider Van der Pol oscillator problem which is adapted from 

Jaddu (1998). We consider two cases: (1) unconstrained problem; and (2) terminal 

states and control constrained problem. These two cases will be discussed in Examples 

3 and 4, respectively.   

5.5.2.1 Example 3 

Consider the following nonlinear system state equations, as presented by Jaddu (1998): 

    )()( 21 txtx        (5.93) 

   )()())(1()()( 2

2

112 tutxtxtxtx       (5.94) 

Source J  

Jacobson and Lele (1969) 0.164 

Mehra and Davis (1972) 0.178 

Neuman and Sen (1973) 

N=9 

 

0.16946 

Vlassenbroeck (1988)  

13m , 28K  

 

0.17185 

Jaddu(2002) 0.17078488 

Marzban and Razzaghi (2003) 

M=4, N=4 

 

0.17013640 

Marzban and Razzaghi (2010) 0.170103 

Han et al. (2012) 0.170835 

Ghomanjani et al. (2012) 0.17289045 

Present result 256m  0.16983337 
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The cost function to be minimized, starting from the initial states  1)0(1 x  and 

0)0(2 x , is  

     

5

0

22

2

2

1 )()()( dttutxtxJ      (5.95) 

To solve this example using the proposed method, the system Eqns. (5.93) and (5.94) as 

well as the performance index (5.95) are expanded up to the first order around nominal 

trajectories of )(][

1 tx k
 and )(][

2 tx k
 by using quasilinearization technique. 

The expanded performance index is 

      

5

0

2][2][

2

2][

1

][ )()()( dtuxxJ kkkk
     (5.96)

    

and the linearized state equations are 
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



  ,  1k  (5.97) 

The state and control variables are approximated by using Haar wavelet approximation 

functions. Then, the linear quadratic optimal control problems in Eqns. (5.96)-(5.97) are 

converted into a quadratic programming problem, which is then solved successively 

until the difference between the two cost functions satisfy  41 10      
kk JJ . This 

difference is achieved in five quasilinearization iterations for a Haar wavelet resolution 

of 64m . The approximate optimal value for the cost function and the difference 

   
kk JJ 1   of these five quasilinearization iterations, starting from initial nominal 

trajectories with 64m , are summarized in Table 5.4.  
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Table 5.4:  Optimal value of the performance index and convergence error for 

Example 3 with Haar wavelet resolution 64m  

Iteration (k) 
*J min  

Convergence error 

   
kk JJ 1  

1 0.95333975 - 

2 1.44082952 0.48748977 

3 1.43778685 0.00304267 

4 1.43744694 0.00033991 

5 1.43747817 0.00003123 

 

The optimal trajectories for five quasilinearization iterations with 64m  are shown in 

Figures 5.6 - 5.8, which clearly demonstrate that the trajectories nearly converge to the 

optimal ones, after the second quasilinearization step.  

 
 

 
Figure 5.6: State variable )(1 tx  of Example 3 for 5 quasilinearization iterations 

with 64m  and 5ft  
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Figure 5.7: State variable )(2 tx  of Example 3 for 5 quasilinearization iterations 

with 64m  and 5ft  
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Figure 5.8: Control variable )(tu  of Example 3 for 5 quasilinearization iterations 

with 64m  and 5ft  

 

 
The optimal values with different values of Haar wavelet resolutions of 

128,64,32,16,8     m , and 256 that are obtained from Example 3 are shown in Table 5.5. 

Figures 5.9-5.11 illustrate the optimal trajectories with Haar wavelet resolutions of  

32,16,8   m , and 64  and 5ft . 
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Table 5.5: Results of the performance index for Example 3 with Haar wavelet 

resolutions 128,64,32,16,8     m  and 256 

Haar wavelet resolution m  J  

8 1.45505319 

16 1.44169372 

32 1.43831978 

64 1.43747817 

128 1.43726793 

256 1.43721538 

 

 

 

Figure 5.9: State variable )(1 tx  obtained in Example 3 for and 
543 ,, 2 2 2m  and 

6
2  with 5ft  
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Figure 5.10: State variable )(2 tx  obtained in Example 3 for and 
543 ,, 2 2 2m  and 

6
2  with 5ft  
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Figure 5.11: Control variable )(tu  obtained in Example 3 for 
543 ,, 2 2 2m  and 6

2  

with 5ft  

This problem has been solved by using second variation method (Bullock and Franklin, 

1967) and quasilinearization and discretization method (Bashein and Enns, 1972). Jaddu 

(1998) used Chebyshev polynomials with parameterize the state variables to study this 

example. In a recent study, Jaddu and Majdalawi (2014) solved this proplem by using 

Legendre polynomials iterative technique. Table 5.6 shows the optimal values obtained 

from these methods for comparison.  
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Table 5.6:  Simulation results of the performance index for Example 3 

(Vlassenbroeck, 1988)  

 

 

 

 

5.5.2.2 Example 4 

Consider the following performance index that minimizes (Jaddu, 1998):  

     

5

0

22

2

2

1 )()()( dttutxtxJ      (5.98) 

subject to  

   )()( 21 txtx         (5.99) 

   )()())(1()()( 2

2

112 tutxtxtxtx                (5.100) 

   75.0)( tu                 (5.101) 

   0)0(1)0( 21  xx   ,                 (5.102) 

   0)(1)( 21  ff txtx   ,                (5.103) 

To find the solution numerically using the proposed method, we need to express the 

equality and inequality constraints on the state and control variables from Eqns. (5.101) 

and (5.103) in a Haar wavelet series and apply the Haar wavelet collection points. These 

Source J  

Bullock and Franklin (1967) 1.433508 

Bashein and Enns (1972) 1.438097 

Jaddu (1998) 1.433487 

Jaddu and Majdalawi (2014) 1.449396 

Present result, 256m  1.43721538 
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equations can be treated like Eqns. (5.2) and (5.4) after simplifying Eqn. (5.101). We 

substitute )( ftx and )(tu  from Eqns. (5.64) and (5.22) into the following equations. 

    75.0)( tu                (5.104) 

    75.0)(  tu                (5.105) 

                                                 
ftftx x)(                 (5.106) 

where 
ftx is the finite time vector and 5ft  is the finite time. 

Finally, the resulting constraints in )(cvec  and )(dvec  are then adjoined to the other 

constraints, which are then explanted in Sections 5.6.4 and 5.6.5, respectively. Then, the 

problem is solved with the use of for using Haar wavelet resolutions of 

64,12832,16,8,=    m  and 256.  For each ,m  convergence is achieved in six 

quasilinearization iterations except for 8m and 16, which are achieved in eight and 

seven quasilinearization iterations, respectively. The iteration is terminated when the 

difference between two cost functions || 1 kk JJ 
 is less than 0.0001= . 

Table 5.7 shows the optimal cost function for different values of Haar wavelet 

resolutions that are obtained from Example 4.  
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Table 5.7: Results of the performance index for Example 4 with Haar wavelet 

resolution for 8m ,16 ,32 , 64 ,128 , 256  

Haar wavelet resolution  m  J  

8 2.1448152143 

16 2.1397055318 

32 2.1423550823 

64 2.1429211308 

128 2.1430566067 

256 2.1430830369 

 

Table 5.8 shows that the optimal value after six quasilinearization iterations is  

14305660672min .J   for a Haar wavelet resolution of 128m . The optimal values of 

each iteration with the convergence errors are also shown in this table. 

 

Table 5.8: Optimal value of the performance index and convergence error for 

Example 4 with resolution of Haar wavelet 128m  

Iteration (k) minJ  
Convergence error 

   
kk JJ 1  

1 1.8540226638 - 

2 2.1812152841 0.32719262 

3 2.1390510574 0.04216423 

4 2.1433925447 0.00434149 

5 2.1430318903 0.00036065 

6 2.1430566067 0.00002472 

 

The computational result for )(1 tx , )(2 tx  and )(tu using the proposed method for 

128m  are given in Figures 5.12 and 5.13, respectively. 
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Figure 5.12: States variables )(1 tx  and )(2 tx obtained in Example 4 for 128m  

and 5ft  
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Figure 5.13: Control variable )(tu  obtained in Example 4 for 128m  and 5ft  

As shown in Table 5.9, example 4 has been investigated using Chebyshev polynomials 

with parameterize the state variables (Jaddu, 2002); rationalized Haar functions (Han 

and Li, 2011) and Triangular orthogonal Function (Han et al., 2012). 

 

Table 5.9:  Simulation results of the performance index for Example 4 
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Source J  

Jaddu (2002) 

N=12 
2.14141 

Han and Li (2011) 

k=16 
2.14959 

Han et al. (2012) 

M=64 
2.14056 

Present result, 256m  2.1430830369 
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5.6  Conclusion 

In this chapter, we proposed a new numerical method for solving finite time horizon 

nonlinear optimal control problems with state and control inequality constraints. The 

proposed approach employs quasilinearization method and parameterization of state and 

control variables using Haar wavelet functions and the Haar wavelet operational matrix 

to convert the nonlinear optimal control problem into a sequence of constrained time-

varying linear quadratic programming problem. The linear inequality constraints for 

trajectory variables are converted to quadratic programming constraints by using Haar 

wavelet collocation. Further, the terminal state constraints are converted using Haar 

wavelet functions and are adjoined to the system dynamics constraints. The proposed 

method is simple and it has been tested for a constrained nonlinear quadratic optimal 

control problem in two-dimensional state space with one controller. The accuracy of the 

state and control variables, as well as the cost, can be improved by increasing the Haar 

wavelet resolution. 

In contrast to the HJB equation solution to infinite time horizon optimal control 

problem presented in Chapter 4, the direct solution is characterized as follows: 

Open-loop: The resulting optimal trajectory is explicitly solved as a function of time 

)(tu and not as a feedback control law. 

Local: The resulting solution is only valid for the specified initial condition )0(x . When 

a new initial condition is specified, the problem must be solved again.  

However, this method provides an alternative way of finding the solution for 

constrained optimal control problems in a fastest time. Furthermore, the sparse matrices 

that appeared during the calculation contribute to a faster computational analysis. 

Numerical results demonstrate the good performance of the proposed method used in 
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term of accuracy and competitiveness compared with existing approaches. The 

proposed method is very convenient, as it requires only simple computing systems and 

low computer memory with small m . 
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CHAPTER 6 

APPLICATION OF HAAR WAVELET METHOD TO 

PRDOUCTION-INVENTORY MODEL 

 

6.1 Introduction  

Application of optimization methods to production and inventory problems date back to 

the classical economic order quantity (EOQ) model or the lot size formula by Harris 

(1913). The EOQ is a static model wherein the demand is constant and only a stationary 

solution is sought. An important dynamic production-planning model was developed by 

Holt et al. (1960), where both production costs and inventory holding costs over time 

were considered. They used various calculus techniques to solve the continuous-time 

version of their model. Furthermore, Dobos (1999) studied the effect of constraints on 

the production and inventory model. Dobos (1999) modified the Holt et al. (1960) 

model and used optimal control theory to derive the optimal production rate. 

Most inventory models deal with a single-item (Balkhi and Benkherouf, 2004). 

However, such models are seldom applied in the real world. Hence, multi-item 

inventory models are more realistic than single-item models are. In multi-item models, 

the second item in an inventory favors the demand for the first item, and vice-versa 

(Sethi and Thompson, 2006). This is why retailers deal with several items and stock 

them in their show rooms (Bhattacharya, 2005).  

In this chapter, the direct method proposed in the previous chapter is applied to 

optimize the control of the two-item production-inventory model with stock-dependent 

deterioration rates and deterioration due to self-contact and the presence of the other 
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stock. Four different types of demand rates are used, namely, constant, linear, logistic 

and periodic demand rates. The solution to the model is discussed numerically and 

presented graphically. By enhancing the resolution of the Haar wavelet, we can improve 

the accuracy of the states, controls, and cost. Simulation results are also compared with 

the work of other researchers. 

6.2 Optimal Control of Two-Item Production-Inventory Model 

This section is devoted to the mathematical formulations and model assumptions for the 

optimal control of the two-item inventory model with deteriorating items of different 

deterioration types. In two-item models, the second item in an inventory favors the 

demand for the first item, and vice-versa. We consider a factory that produces two items 

and has a finished goods warehouse. The objective function includes the sum of 

inventory holding costs, the holding costs of one item as a result of the presence of other 

items, and production costs. The problem is considered an optimal control problem with 

two state and two control variables, which are inventory levels iy  and production rates 

iv , respectively. The following variables and parameters are used: 

 tyi  :  the inventory levels at time t  

 tui  : the production rates at time t  

ft  : the length of the planning horizon 

iŷ  : the inventory goal levels 

iv̂  : the production goal rates 

ioy  : the initial inventory levels 

iic  : the production cost coefficients 

iih  : the inventory holding cost coefficients 

12h  : the inventory holding cost coefficient of 1y  due to the presence of 

unit of 2y , or vice- versa 
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 tyyDi ,, 21

 

: the demand rates at the instantaneous levels of the inventory 

    tyty 21 ,  and time t  

iia  : the deterioration coefficient due to self-contact of iy  

ija  : the demand coefficient of iy  due to presence of unit of  jy , ji   

i  : the natural deterioration rate of iy  

The optimal control problem is defined to determine the production rate, which 

minimizes the total cost,  

       











ft

i

iiiiiiii dtyyyyhvvcyyhJ
0

2

1

111112

22 )ˆ)(ˆ(2))ˆ()ˆ((min              (6.1) 

where ],0[ ftt , 2

122211 hhh   , 0iih , 0iic               
 

subject to  

)(),,())()()(( 1211111212111 tvtyyDtyatyatyy   ,     (6.2)                                                                     

)(),,())()()(( 2212222121222 tvtyyDtyatyatyy   ,     (6.3)                                                                           

with constraints, 

    0)( tyi   ,        (6.4) 

0)( tvi .        (6.5) 

This system is nonlinear and is difficult to solve analytically. Therefore, we address the 

system numerically and display the results graphically. The objective function Eqn. 

(6.1) can be economically interpreted as an effort to keep the inventory levels 

))(),(( 21 tyty  and production rates ( ))(),(( 21 tvtv  as close as possible to the target levels (

21
ˆ,ˆ yy ) and rates ( 21

ˆ,ˆ vv ), respectively. The system dynamics in Eqns. (6.2) and (6.3) can 

be used to describe the time evolution of inventory levels and production rates (El-

Gohary and Elsayed, 2008).  
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6.3 Reformulation of the Optimal Control of the Two-Item 

Production-Inventory Model 

In this section, we reformulate the two-item production-inventory model as a nonlinear 

quadratic problem with the following substitution: 

    iii ytytx ˆ)()(  ,     (6.6) 

    iii vtvtu ˆ)()(  .     (6.7) 

In particular, we have  ˆ
00 iii yyx 

 
and  )()( tytx ii

  . 

The problem in Eqns. (6.1) and (5.5) can be reformulated as:  

dttututxtxJ

ft

 )R   Q (  
TT

 
0

)()()()(min ,   (6.8) 

subject to  

11211111122121111
ˆ)(),,()ˆ)(()ˆ)(()(ˆ)(()( vtutxxDytxaytxaytxtx      

(6.9) 

22212222211212222
ˆ)(),,()ˆ)(()ˆ)(()(ˆ)(()( vtutxxDytxaytxaytxtx      

(6.10) 

with constraints  

      0ˆ)(  ii ytx      (6.11) 

0ˆ)(  ii vtu       (6.12) 

where  
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The numerical solution to this problem as obtained using the proposed method is 

discussed for the following four different types of demand rates: 

1. Constants: ii tyyD ),,( 21   

2. Linear functions of inventory levels: iiii ydtyyD ),,( 21   

3. Logistic functions of  inventory levels: )(),,( 21 iiii ygytyyD   

4. Periodic function of time: )sin(1),,( 21 tktyyD ii   

where i , id , ig , and ik  are positive constants for 2,1   i .  

6.4 Numerical Solution  

In this section, we solve the optimal control problem of the two-item production-

inventory model by using four different types of demand rates, namely, constant, linear, 

logistic and periodic demand rates. The solution to the model is discussed numerically 

and presented graphically. 

6.4.1 Constant Demand Rates 

In this subsection, we present the numerical solution in the case of constant demand 

rates. We substitute the controlled system Eqns. (6.9) to (6.10) for iiD = , where 

0.6=1  and 0.8=2 , using the parameter values and initial states presented in Table 

6.1. 

Table 6.1: Values of system parameters and initial states (El-Gohary and Elsayed, 

2008) 

Parameter 11h  11c  1  11a  12a  1v̂  01y  
1ŷ  12h  

Value 4 6 0.02 0.04 0.7 9 2 4 -4 

Parameter 22h  22c  2  22a  21a  2v̂  20y  2ŷ  ft  

Value 5 5 0.03 0.05 0.6 8 1 3 5 
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The numerical solution in this application is obtained by using the algorithm presented 

in Chapter 5, Section 6. Each state and control variable is first approximated using Haar 

wavelet functions at thm  resolution and the Haar wavelet operational matrix. Then, the 

objective function Eqn. (6.8) subject to nonlinear dynamic system Eqns. (6.9) and (6.10) 

is converted into a sequence quadratic programming problem through the 

quasilinearization iterative technique. The inequality constraints for state and control 

variables Eqns. (6.11) and (6.12) are transformed into quadratic programming 

constraints by using the Haar wavelet collocation method. The quadratic programming 

problem with linear inequality constraints is then solved using a standard QP solver. 

The optimal control problem, which is subject to constraints Eqns. (6.11) and (6.12), is 

solved beginning with nominal trajectories 2=0

1 x and 2=0

2 x for 

,64,12832,16,8,=    m and 256.  For each ,m  convergence is achieved in three 

quasilinearization iterations. The iteration is terminated when the difference between 

two cost functions || 1 kk JJ   is less than 0.0001.=  

Table 6.2 summarizes the results obtained from these six cases of Haar wavelet 

resolution, including the simulated optimal values of inventory levels and production 

rates, as well as the total cost at the end of the planning horizon period. Figures 6.1 to 

6.4 show the optimal values of the inventory levels and the production rates for 

256=m  and its successive quasilinearization iteration. Table 6.2 indicates that the 

approximated cost function converges with the true cost function as we increase the 

resolution of the Haar wavelet. Figures 6.1 and 6.2 also suggest that the optimal 

inventory levels increase over time. Figures 6.3 and 6.4 show how production rates 

were optimized and tended to their goal rates at the end of the planning horizon period.  
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Table 6.2: Simulation results of the application of the direct method using constant 

demand rates for m  = 8, 16, 32, 64, 128, and 256 

m  )(*

1 fty  )(*

2 fty  )(*

1 ftv  )(*

2 ftv  J  

8 3.83137254 2.89765654 9.01076105 7.98865953 0.38994675 

16 3.82833273 2.90028336 9.00648218 7.99359316 0.40195069 

32 3.82633976 2.90198127 9.00363305 7.99661281 0.40686114 

64 3.82518677 2.90295078 9.00193897 7.99826898 0.40828178 

128 3.82453701 2.90345359 9.00100455 7.99912747 0.40872216 

256 3.82421337 2.90372111 9.00051167 7.99956248 0.40881472 

 

 

 

 

Figure 6.1: First inventory level against time 5ft  and m  = 256 using constant 

demand rates for k = 1, 2, 3 quasilinearization iterations 
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Figure 6.2: Second inventory level against time 5ft  and m  = 256 using constant 

demand rates for k = 1, 2, 3 quasilinearization iterations 
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Figure 6.3: First production rate against time 5ft  and m  = 256 using constant 

demand rates for k = 1, 2, 3 quasilinearization iterations 
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Figure 6.4: Second production rate against time 5ft  and m  = 256 using constant 

demand rates for k = 1, 2, 3 quasilinearization iterations 

 

6.4.2 Linear Demand Rates 

Similar to the numerical solution using constant demand rates, we solve the optimal 

control problem Eqns. (6.6) to (6.12) by using linear demand rates 

iiii tydtyyD  )(),,( 21  and the system parameter values and initial states presented 

in Table 6.1, with parameters 31 d , 42 d , 6.01  , and 8.02  . The results from 

the application of the proposed method for achieving various Haar wavelet resolution 

m  with convergence error less than 410

 are achieved in six quasilinearization 

iterations for each ,m  Table 6.3. Meanwhile, Figures 6.5 to 6.8 show the trajectories for 

successive quasilinearization iterations for m  = 256. These illustrations show that in the 

case of linear demand rates, the iteration converges after six iterations. 
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Table 6.3: Simulation results of the application of the direct method using linear 

demand rates for m  = 8, 16, 32, 64, 128, and 256 

m  )(*

1 fty  )(*

2 fty  )(*

1 ftv  )(*

2 ftv  J  

8 2.08216880 1.34837495 9.02006694 8.00835368 7.59681086 

16 2.08158114 1.34834475 9.01471793 8.00698875 7.59683572 

32 2.08104995 1.34829464 9.00961866 8.00512824 7.59684504 

64 2.08064757 1.34822252 9.00568933 8.00329800 7.59684797 

128 2.08038920 1.34815920 9.00313320 8.00191325 7.59684876 

256 2.08024061 1.34811638 9.00165070 8.00103800 7.59684896 

 

 

Additionally, Table 6.4 presents the optimal value J  for six quasilinearization 

iterations. The iterations are terminated when the convergence criteria between two cost 

functions 41 10     
kk JJ . 

 

Table 6.4: Optimal value of the performance index and convergence error for the 

application of the direct method using linear demand rates for resolution of Haar 

wavelet m = 256 

 

Iteration (k) 

 

minJ  

Convergence error 

   
kk JJ 1  

1 7.761526989943635 - 

2 7.619255927112216 0.14227106 

3 7.599708901525899 0.01954703 

4 7.597146554317612 0.00256235 

5     7.596864283699386 0.00028227 

6 7.596848957719115 0.00001533 

 

 

 

 



177 

 

 

 

 

Figure 6.5: First inventory level against time 5ft  and m  = 256 of the application 

of the direct method using linear demand rates for k = 1, 2, 3, 4, 5, 6 

quasilinearization iterations 
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Figure 6.6: Second production rate against time 5ft  and m  = 256 of the 

application of the direct method using linear demand rates for k = 1, 2, 3, 4, 5, 6 

quasilinearization iterations 
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Figure 6.7: First production rate against time 5ft  and m  = 256 of the 

application of the direct method using linear demand rates for k = 1, 2, 3, 4, 5, 6 

quasilinearization iterations 
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Figure 6.8: Second production rate against time 5ft  and m  = 256 of the 

application of the direct method using linear demand rates for k = 1, 2, 3, 4, 5, 6 

quasilinearization iterations 

 

6.4.3 Logistic Demand Rates 

We present the numerical solution when the demand rates are logistic functions, that is, 

))()((),,( 111211 tygtytyyD   and ))()((),,( 222212 tygtytyyD  , with system 

parameters 101 g  and 202 g . Table 6.5 presents the simulation results obtained 

from the application of the direct method using logistic demand rates after seven 

quasilinearization iterations for 8m , 16, 32, 64, 128, and 256. In these six cases, 

including the simulation results for the optimal values of the inventory levels and the 

production rates, as well as the total cost at the end of the planning horizon period, the 

convergence error is less than 410 . 
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Table 6.5: Simulation results of the application of the direct method using logistic 

demand rates for m  = 8, 16, 32, 64, 128, and 256 

m  )(*

1 fty  )(*

2 fty  )(*

1 ftv  )(*

2 ftv  J  

8 0.96224750 0.38688870 9.02668582 8.00719864 18.66023271 

16 0.96341244 0.39575166 9.02086529 8.00617452 18.65963566 

32 0.96299653 0.39573929 9.01426343 8.00509685 18.66071869  

64 0.96264861 0.39571141 9.00873804 8.00373496 18.66105686 

128 0.96240891 0.39568253 9.00492469 8.00241837 18.66115008 

256 0.96226488 0.39565973 9.00262992 8.00141464 18.66117449 

 

The approximate optimal controllers and states trajectories for Haar wavelet resolution 

256m  are shown in Figures (6.9) to (6.12), whereas the optimal value J  of each 

iteration with the difference    
kk JJ 1  for seven quasilinearization iterations is 

shown in Table 6.6. 

 

Table 6.6: Optimal value of the performance index and convergence error for the 

application of the direct method using logistic demand rates for resolution of Haar 

wavelet 256m  

 

 Iteration (k) 

 

minJ  

Convergence error 

   
kk JJ 1  

1 20.345714643103790 - 

2 18.472739505940940 1.87297514 

3 18.688472742265326 0.21573324 

4 18.657330877462005 0.03114187 

5    18.661705329728910 0.00437445 

6 18.661087306230478 0.00061802 

7 18.661174489168410 0.00008718 

 

 

 

 



182 

 

 

 

 

Figure 6.9: First inventory level against time 5ft  and m  = 256 of the application 

of the direct method using logistic demand rates for k = 1, 2, 3, 4, 5, 6, 7 

quasilinearization iterations 
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Figure 6.10: Second inventory level against time 5ft  and m  = 256 of the 

application of the direct method using logistic demand rates for k=1, 2, 3, 4, 5, 6, 7 

quasilinearization iterations 
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Figure 6.11: First production rate against time 5ft  and m  = 256 of the 

application of the direct method using logistic demand rates for k = 1, 2, 3, 4, 5, 6, 7 

quasilinearization iterations 
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Figure 6.12: Second production rate against time 5ft  and m  = 256 of the 

application of the direct method using logistic demand rates for k = 1, 2, 3, 4, 5, 6, 7 

quasilinearization iterations 
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Figures (6.13) to (6.16) show the approximate state trajectories and optimal controllers 

for the various Haar wavelet resolutions 64,32,16,8    m , and 128.  

 

 

Figure 6.13: First inventory level against time with 5ft  and 
6543 ,,, 2 2 2 2m  

and 7
2  for logistic demand rates 
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Figure 6.14: Second inventory level against time with 5ft  and 
6543 ,,, 2 2 2 2m  

and 7
2  for logistic demand rates 
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Figure 6.15: First production rate against time with 5ft  and 
6543 ,,, 2 2 2 2m  

and 7
2  for logistic demand rates 
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Figure 6.16: Second production rate against time with 5ft  and 
6543 ,,, 2 2 2 2m  

and 7
2  for logistic demand rates 

 

6.4.4 Periodic Demand Rates 

Finally, we present the numerical solution in the case of periodic demand rates as  

)sin(1),,( 21 tktyyD ii   with the system parameter values and initial states given in 

Table 6.1, with parameters 21 k  and  12 k . Table 6.7 gives the simulation results for 

64,32,8     m , 128 and 256 using periodic demand rates obtained after seven 

quasilinearization iterations for each m , where the convergence error is less than 410 .  
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The optimal trajectories are shown in Figures (6.17) to (6.20), for the various Haar 

wavelet resolution 64,32,16,8      m  and 128. These illustrations show that the 

trajectories converge with the optimal trajectory at 64 m . 

Table 6.7: Simulation results of the application of the direct method using periodic 

demand rates for m  = 8, 16, 32, 64, 128, and 256 

m  )(*

1 fty  )(*

2 fty  )(*

1 ftv  )(*

2 ftv  J  

8 4.17795557 3.03422206 8.97400136 8.03361326 2.27825152 

16 4.21915814 3.01596432 8.98042200 8.02505240 2.30950536 

32 4.23718141 3.00357090 8.98834351 8.01465935 2.31888456 

64 4.24569862 2.99648260 8.99365695 8.00786091 2.32139612 

128 4.24985899 2.99270423 8.99669128 8.00406075 2.32203596 

256 4.25191840 2.99075502 8.99831004 8.00206237 2.32219669 

 

 

Figure 6.17: First inventory level against time with 5ft  and 
6543 ,,, 2 2 2 2m  

and 7
2  using periodic demand rates 
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Figure 6.18: Second inventory level against time with 5ft  and 
6543 ,,, 2 2 2 2m  

and 7
2  using periodic demand rates 
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Figure 6.19: First production rate against time with 5ft  and 
6543 ,,, 2 2 2 2m  

and 7
2  using periodic demand rates 
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Figure 6.20: Second production rate against time with 5ft  and 
6543 ,,, 2 2 2 2m  

and 7
2  using periodic demand rates 

 

6.5 Numerical Discussions and Conclusions 

The present numerical method introduce in Chapter 5 solves the application of the direct 

method for the constrained nonlinear quadratic optimal control problem in two-

dimensional state space with two controllers. In particular, we solved the two-item 

production-inventory model with stock-dependent deterioration rates and deterioration 

due to self-contact and the presence of the other stock. Four different types of demand 

rates are used, namely, constant, linear, logistic and periodic demand rates.  

The numerical solution for the two-item production-inventory model was obtained 

by using the new algorithm proposed in Chapter 5, Section 6. We parameterize both the 

states and the controls by using Haar wavelet functions and operational matrix. The 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
7.6

7.7

7.8

7.9

8

8.1

8.2

t

S
e
c
o
n
d
 p

ro
d
u
c
ti
o
n
 r

a
te

 

 

m=23

m=24

m=25

m=26

m=27



194 

 

nonlinear optimal control problem is converted into a sequence quadratic programming 

problem through the quasilinearization iterative technique. Moreover, the inequality 

constraints for trajectory variables are transformed into quadratic programming 

constraints by using the Haar wavelet collocation method. The quadratic programming 

problem with linear inequality constraints is then solved using a standard QP solver. 

Additionally, the numerical results of all cases are illustrated in figures and tables. 

Each figure is plotted according to the solution obtained from the present numerical 

technique. We conclude that both inventory levels and production rates tend to their real 

values. Thus both inventory levels and production rates asymptotically tend to their 

values at the steady state (Alshamrani, 2012). The step functions in Figures 6.3 , 6.4 

,6.7, 6.8, 6.11, 6.12, 6.15, and 6.16 are not visible because the collocation points are too 

close to each other.  

El-Gohary and Elsayed (2008) reduced the same application problem into a system 

of differential equations according to the Pontryagin principle. To obtain the values in 

Table 6.8, El-Gohary and Elsayed, (2008) solved this system numerically using the 

Runge-Kutta method. However, this indirect method has a drawback because the system 

contains co-state variables, which are not physical entities. Moreover, if the final state is 

fixed, the indirect method needs to solve a two-point boundary value problem. 

Although we consider 256m  in our computation for four types of demand rates, 

Tables 6.2, 6.3, 6.5, and 6.7 show that the usage of  32m , 16m , 64m and, 

128m , respectively, are enough to approximate with the same accuracy the optimal 

cost function and trajectory variables obtained as presented in Table 6.8.   
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Table 6.8: Summary of results obtained from the El-Gohary and Elsayed (2008) 

method for application with four types of demand rates 

Demand rates )(*

1 fty  )(*

2 fty  )(*

1 ftv  )(*

2 ftv  J  

Constant 3.82 2.9 9 8 0.41 

Linear 2.08 1.35 9 8 7.6 

Logistic 0.96 0.4 9 8 18.66 

Periodic 4.26 2.98 9 8 2.27 

 

In this chapter, present results are compared with the numerical solutions in existing 

literature. Our method is simple and require fewer collocation points to achieve the 

same accuracy as the existing numerical solutions. By increasing the Haar wavelet 

resolution, we can improve the accuracy of the states, controls, and cost. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

7.1 Conclusions 

Broadly speaking, solutions to nonlinear optimal control problems with or without 

constraints often generate both analytical and computational difficulties. Thus, 

researchers aim to solve these problems by using numerical methods. In general, 

numerical methods for solving nonlinear optimal control problems fall under two 

categories: direct and indirect methods. By parameterizing or discretizing the infinite 

dimensional optimal control problem, into a finite dimensional optimization problem, 

direct methods reduce the optimal control problem to a nonlinear programming 

problem. On the other hand, indirect methods solve the Hamilton-Jacobi-Bellman 

equation or the first-order necessary condition for optimality, which are obtained from 

the Pontryagin minimum principle. Both the direct and indirect methods are important 

for solving optimal control problems. The difference between the two methods is that 

indirect methods are believed to yield more accurate results, whereas direct methods 

tend to result in better convergence properties. 

In this thesis, we proposed direct and indirect numerical methods to solve 

constrained nonlinear optimal control problems and nonlinear optimal control problems 

with finite time horizon and infinite time horizon, respectively, by using Haar wavelets 

operational matrices and Haar wavelets collocation method.  

The main contributions of the thesis were presented in Chapters 3, 4, 5 and 6.  
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Chapter 3 started with an understanding of the mathematical background of Haar 

wavelet. Many scholars who proposed a numerical method using Haar wavelet basis 

usually define a Haar wavelet operational matrix within the interval of zero to one. This 

technique limits the achievement of our ultimate goal because the integration involved 

in nonlinear optimal control problems does not necessarily cover only the interval 

between zero to one especially when we have more than one state variables. Therefore, 

it is more appropriate to derive a Haar wavelet operational matrix in a much more 

general setting. In Chapter 3, we derived the operational matrix of integration for 

intervals   ,0  and   , . The new operational matrices for the integration of two-

dimension Haar wavelet basis within the interval   ,  were derived using the Haar 

wavelet basis of two dimensions, the operational matrix for the integration of one 

dimension within the interval   ,0 , and Kroneker product properties. Moreover, to 

simplify the product of two-dimensional functions expressed as Haar series, we derive 

and prove a new algorithm for the operational matrix of the product of two-dimensional 

Haar wavelet functions. A general formula in the form of a Haar wavelet matrix with 

two variables was derived. 

In Chapter 4, the solution of the Hamilton-Jacobi-Bellman equation, which appears 

in the formulation of the nonlinear control system with quadratic cost functional and 

infinite time horizon, is introduced. The solution was based on the combination of Haar 

wavelets operational matrices and successive generalized Hamilton-Jacobi-Bellman 

(GHJB) equation. Although there is no general closed-form solution to this equation, we 

showed how to approximate the solution of Hamilton-Jacobi-Bellman equation 

successively. We used the successive GHJB equation to improve the feedback 

performance of stabilizing controls and reduced the problem of solving the Hamilton-

Jacobi-Bellman equation to solving the GHJB equation. When the process of improving 

the control and solving the GHJB equation is iterated, the solution to the GHJB equation 
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converges uniformly to the solution of the Hamilton-Jacobi-Bellman equation. This 

result takes the form of the gradient of the Lyapunov function. To determine the 

Lyapunov function from the resulting solution of the linear system equation, the new 

method, which depends only on the initial and final states by using variable gradient 

method, is proposed. In the proposed method, we considered the method of Beard et al. 

(1997) to successively approximate the solution of the Hamilton-Jacobi-Bellman 

equation. Instead of using the Galerkin method with polynomial basis, we used 

collocation method with Haar wavelet basis to solve the GHJB equation. Galerkin 

method requires the computation of multidimensional integrals which makes the 

method impractical for higher order systems (Curtis and Beard, 2001). In general, the 

main advantage of using collocation method, is that the computational burden of solving 

the GHJB equation is reduced to matrix computation only. A number of numerical 

examples for linear and nonlinear optimal control problems with one or two state and 

control variables are given to demonstrate the usefulness, efficiency, and accuracy of 

the successive Haar wavelet collocation method. To justify our proposed method, the 

results in the present study are compared with existing or exact results. 

In Chapter 5, an efficient new algorithm is proposed to solve constrained nonlinear 

optimal control problems with finite time horizon under inequality constraints. With this 

technique, we parameterized both the state and control variables by using Haar wavelet 

functions and Haar wavelet operational matrix. The nonlinear optimal control problem 

is converted into a quadratic programming problem through the quasilinearization 

iterative technique. Moreover, the inequality constraints for trajectory variables were 

transformed into quadratic programming constraints by using the Haar wavelet 

collocation method. The quadratic programming problem with linear inequality 

constraints was then solved using a standard QP solver. The numerical method was tried 

on several examples, and we found that the proposed method gives results that are better 
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or comparable to results obtained through other established methods. In addition, the 

proposed  method is attractive, stable, convergent, and can be easily coded. 

In Chapter 6, the direct method proposed in Chapter 5 was applied to solve a 

practical optimal control problem: the multi-item production-inventory model with 

stock-dependent deterioration rates and deterioration due to self-contact and the 

presence of the other stock. Four different types of demand rates, namely, constant, 

linear, logistic, and periodic demand rates were used in the method. The solution to the 

model was discussed numerically and presented graphically. By enhancing the 

resolution of the Haar wavelet, we improved the accuracy of the states, controls, and 

cost. Simulation results were also compared with the work of other researchers. 

 In summary, the study succeeded in achieving all the eight objectives stated in 

Section 1.4. 

 

7.2 Future Work 

Suggestions for future research are summarized below: 

1. In the feedback control method for solving nonlinear optimal control problems with 

infinite time horizon which was reduced to solving a Hamilton-Jacobi-Bellman 

partial differential equation, we could not handle explicit constraints on the state and 

control variables. Our method can be extended to a case where explicit constraints 

are placed on the control, for example, 1u .  

 

2. The Haar wavelet operational matrices with two dimensions defined in the interval 

  ,  were derived throughout this thesis. For future work, we are also interested in 

calculating Haar wavelet operational matrices in higher dimensions. 
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3.  The constrained nonlinear optimal control problems with finite time horizon was 

solved using direct method and open-loop solutions. However, we prefer to use the 

closed-loop solution because of the advantages it can offer. Therefore, we suggest 

extending this work to formulate an optimal feedback control solution using this 

method. 

4. In this thesis, we did not conduct an in-depth study to mathematically prove the 

numerical stability and error analysis of the proposed direct and indirect methods. 

We suggest to do this in future studies.        

5. For our future work, given that Haar wavelet method is relatively easy to implement 

and computationally inexpensive, we would like to extend the use of this method to 

partial optimal control problems. 
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APPENDIX A 

KRONECKER PRODUCT 

 

The Kronecker product operation ( ) is a convenient tool for dealing with a large set of 

matrices. The Kronecker product operation is usually used to formulate the estimation 

of the parameter vectors for several equations simultaneously. We list some properties 

of Kronecker the product operation and the vec  transforms in the Appendix. 

A.1 The Kronecker Product of Two Matrices  

Let ][ jia  A   be an ( nm ) matrix and B  is the ( qp ) matrix. The Kronecker product 

of A , B , and ( BA ) is defined as an ( nqmp ) matrix, which can be partitioned as 

follows: 

     B BA  jia ,     (A.1) 
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A.2 The Kronecker Product of Two Kronecker Products  

The matrix product of two Kronecker products of BA  and DC  can be written as a 

single Kronecker product: 
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In general, 

         N21N21NN2211 B  BB A AABA  BABA   )())(( ,           (A.5)                              

follows directly for Eqn. (A.4). 

Let A  be an ( mm ) matrix and B  is the ( nn ) matrix. Then obtain the following:  

 ))())( nmmn I A( BIBII A( BA  .  (A.6) 

Which indicates that )( BI m  and )( nIA   are commutative for square matrices A

and B .  

An immediate result is that when A  and B  are square and non-singular, the inverse of 

their Kronecker product is expressed as follows: 

   
-1-1-1

B  AB)(A  ,     (A.7) 
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Other results are expressed as follows: 

      
-1-1-1-1

B B A  A)BB)(A(A  ,   

                   II ,    

            I .     (A.8) 

A.3 Other Properties of the Kronecker Product 

The transpose, associative, and distributive laws of the Kronecker product are expressed 

as follows: 

  
TTT

B  AB)(A  ,     (A.9) 

                  CAB AC)(BA  ,              (A.10) 

             ACAB AC)(B  ,              (A.11) 

           CB)(A C)(BA  .               (A.12)  

Additionally, another property is expressed as follows: 

                 } B ,   B,  B,  B)(I {diag .                     (A.13) 

A.4 The vec  Transform   

Let ][ jia  A   be an ( nn ) matrix. The operation A)(vec  denotes the vector obtained 

by transformation of the stacking column of matrix T
A  by putting into one column. 
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  1)2(:1()( 
2nT

C  :     A(n,     :) ,   A): ,  A    A vec ,             (A.14) 

  (A)  )C(B    C) (BA 
T vecvec  ,                (A.15) 

  (A)  )B(I    B)  A( 
T vecvec  ,                (A.16) 

        (B)  I)(A vec ,                            (A.17) 

                      (I)  )B(A
T vec .                (A.18) 

A.5  Block Matrix Multiplication 

A block partitioned matrix product can sometimes be used on equations that involve 

only algebra on the submatrices of the factors. However, the partitioning of the factors 

is not arbitrary and requires “conformable partitions” between matrices A  and B , such 

that all submatrix products that will be used are defined. An )( pm  matrix A  with q - 

row partitions and s  column partitions is expressed as follows: 
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A )( np  matrix B  with s - row partitions and r - column partitions that are 

compatible with the partitions of A  is expressed as follows: 
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The matrix product  

     B AC  ,              (A.21) 
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can be formed blockwise, yielding C  as an )( nm  matrix with q - row partitions and 

r - column partitions. The submatrices of matrix C  are calculated by multiplying the 

following expression (Lancaster, 1969): 

                                 
p

rssqrq    B AC .               (A.22)  

A.6 Transpose Block Matrix 

The transpose block matrix can be defined as follows: 

Let  A  be a block matrix with q - row partitions and s - column partitions:  
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Thereafter, the transpose block matrix T
A  can be formed as           
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where T
A  is a block matrix with s - row partitions and q - column partitions. 
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APPENDIX B 

MATLAB CODE FOR INDIRECT AND DIRECT 

METHODS 

function [P D H] = findp(tau,m) 

theta=zeros(m,1); 

      theta(1)=1; 

% Generate block pulse operational matrix 

Q=2*triu(ones(m,m)); 

for i=1:m 

    Q(i,i)=Q(i,i)-1; 

end 

QB=Q/(2*m); 

% Generate Haar matrix 

H=ones(m); 

nlamb=ones(1,m); 

J=log2(m); 

%t=1:2:(2*m-1); t=tau*(-1+(t/m)) 

t=1:2:(2*m-1); t=t/(2*m); 

h2=@(t)  (0<=t & t<0.5) - (0.5<=t & t<1); 

%h2=@(t)  (-l<=t & t<0.5*l) - (0.5*l<=t & t<l); 

for alpha=0:(J-1) 

    kk=pow2(alpha)-1; 

    for k=0:kk 

        i=pow2(alpha)+k+1; 

        nlamb(i)=pow2(alpha); 

        for j=1:m 

            H(i,j)=h2(pow2(alpha)*t(j)-k); 

        end 

    end 

end 

lambda=nlamb/m; 

D=diag(lambda) 

P=2*tau*H*QB*H'*D 

end 
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function [ A ] = haarbigN(mat,m) 

J=log2(m); 

R=zeros(m*m,m); 

for i=1:m 

    b=(mat(:,i))'; 

    ck=b; 

    M=[ck(1) ck(2); ck(2) ck(1)]; NH=[1 1;1 -1]; 

    for alpha=1:(J-1) 

        n=pow2(alpha); 

        ca=ck(1:n)'; cb=ck(n+1:2*n)'; 

        M11=M; M12=NH*diag(cb); 

        M21=diag(cb)/NH; M22=diag(ca'*NH); 

        M=[M11 M12; M21 M22]; 

        NH=[kron(NH,[1 1]); kron(eye(n),[1 -1])]; 

    end 

    Mt=M'; 

    vecMb=Mt(:); 

    R(:,i)=vecMb; 

end 

    R; 

for i=1:m*m 

    NN=R(i,:); 

    ck=NN; 

    M=[ck(1) ck(2); ck(2) ck(1)]; NH=[1 1;1 -1]; 

    for alpha=1:(J-1) 

        n=pow2(alpha); 

        ca=ck(1:n)'; cb=ck(n+1:2*n)'; 

        M11=M; M12=NH*diag(cb); 

        M21=diag(cb)/NH; M22=diag(ca'*NH); 

        M=[M11 M12; M21 M22]; 

        NH=[kron(NH,[1 1]); kron(eye(n),[1 -1])]; 

    end 

       Mt=M'; 

       vecM=Mt(:); 

       matR(:,:,i)=vec2mat(vecM,m); 

end 

for i=1:m 

    matR(:,:,i); 

end 
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A=zeros(m*m,m*m); 

 e=1; 

for i=1:m 

    tt=floor(e/m)+1; 

    for j=1:m 

        e=m*(i-1)+j; 

        A(m*(i-1)+1:tt*m,1+(j-1)*m:((j-1)+1)*m)=matR(:,:,e); 

    end 

  end 

end 

 

function [E]= E1(m) 

tha=[1;zeros(m-1,1)]; 

A=[tha';tha';zeros(m-2,m)]; 

E=sparse(kron(A,eye(m,m))); 

end 

 

function [E]= E2(m) 

tha=[1;zeros(m-1,1)]; 

B=[tha';tha';zeros(m-2,m)]; 

N=eye(m,m); 

E=sparse(kron(N,B)); 

end 

 

% Example 1  for indirect method 

% dx/dt=Ax + Bu  by Curtis and Beard 

% J=int(x1^2 +u^2) dt 

tau=1 

%A=[0 1; 0 0]; 

%B=[0 1]'; 

%K=[-1  -sqrt(2)]; 

m=8 

[P D H]=findp(tau,m); 

t=1:2:(2*m-1); t=tau*(-1+(t/m)) 

xx=t; 

yy=t; 

%***********************************% 

[Y X]=meshgrid(xx,yy);   % coordinate (x1,x2) 

f1=Y;   thata=D*H*f1*H'*D; 
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f2=-X-Y;  mu=D*H*f2*H'*D; 

%***********intial conditon**********************************% 

f5=-0.5*X.^2-0.5*(-X-Y).^2; k=D*H*f5*H'*D; 

%******************* uexact=-x1-1.4142*x2 *************** 

uexact=-X-1.4142*Y; 

%***call haarbigN for thata and mu to find Nthata & Nmu******% 

mat=thata; 

A=haarbigN(mat,m); 

Nthata=A; 

mat=mu; 

A1=haarbigN(mat,m); 

Nmu=A1; 

that=[1  zeros(m-1,1)]; 

kl=k'; 

veck=kl(:); 

%*******************  new inteval **************************% 

Q1=kron(P,eye(m,m)); 

Q2=kron(eye(m,m),P); 

Ea1=E1(m); 

Ea2=E2(m); 

%**********thata bata and find u1***************************% 

M1=((Q2-tau*Ea2)*Nthata+(Q1-tau*Ea1)*Nmu)'; 

M2=Nthata'*kron(eye(m,m),that); 

M3=Nmu'*kron(that,eye(m,m)); 

     bigW=[M1 M2 M3]; 

     calfbat=pinv(bigW)*veck; 

             C=(calfbat(1:m*m)); 

             ccdp=vec2mat(C,m); 

                  alfa1=(calfbat(m*m+1:m*m+m)); 

                  alfadp1=[alfa1 zeros(m,m-1)]; 

                  alfamat=alfadp1'; 

                  vecalfa=alfamat(:)'; 

                        bata=(calfbat(m*m+m+1:m*m+2*m)); 

                       bata1=[bata';zeros(m-1,m)]; 

                        batamat=bata1'; 

                        vecbata=batamat(:)';  

us1=-0.5*2*(C'*(Q1-tau*Ea1)+vecbata); 

u1=us1*kron(H,H); 

uaporx1=vec2mat(u1,m) 
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%************************loop for Ui************* 

    us2=us1; 

    f6=-0.5*X.^2; knew=D*H*f6*H'*D; 

    knew1=knew'; 

    vecknew=knew1(:); 

    ep=0.0001; 

    Uerr=abs(uaporx1); 

    u1aporx=vec2mat(us2,m); 

    i=1; 

while norm(Uerr)>ep 

    mat=u1aporx; 

    A=haarbigN(mat,m); 

    bigu1=A; 

    kfinal=vecknew'-0.5*us2*bigu1; 

    newf2=u1aporx; 

    mat=newf2; 

    A1=haarbigN(mat,m); 

    Nmu1=A1; 

    M1=((Q2-tau*Ea2)*Nthata+(Q1-tau*Ea1)*Nmu1)'; 

    M2=Nthata'*kron(eye(m,m),that); 

    M3=Nmu1'*kron(that,eye(m,m)); 

     bigW=[M1 M2 M3]; 

     calfbat=pinv(bigW)*kfinal'; 

             C=(calfbat(1:m*m)); 

             ccdp=vec2mat(C,m); 

                  alfa1=(calfbat(m*m+1:m*m+m)); 

                  alfadp1=[alfa1 zeros(m,m-1)]; 

                  alfamat=alfadp1'; 

                  vecalfa=alfamat(:)'; 

                        bata=(calfbat(m*m+m+1:m*m+2*m)); 

                        bata1=[bata';zeros(m-1,m)]; 

                        batamat=bata1'; 

                        vecbata=batamat(:)';  

    us1=-0.5*2*(C'*(Q1-tau*Ea1)+vecbata); 

    u2=us1*kron(H,H); 

    uaporx=vec2mat(u2,m); 

        uerr=abs(uaporx-uaporx1); 

         us2=us1; 

   u1aporx=vec2mat(us1,m); 



223 

 

   uaporx1=uaporx 

   Uerr=uerr; 

   i=i+1; 

end 

%********************find H(x1,0) ***************************** 

 cofd=C'*(Q2-tau*Ea2)+vecalfa; 

    for i=1:m 

       cov(i)=cofd((i-1)*m+1:i*m)*H(1:m,(m/2)+1);  

   end 

   alfanew=cov'*that'; 

alfanew1=alfanew'; 

vecalfanew=alfanew1(:)'; 

Vfinal=vecalfanew*(Q1-tau*Ea1)*kron(H,H)+C'*(Q1-tau*Ea1)*(Q2-

tau*Ea2)*kron(H,H)+vecbata*(Q2-tau*Ea2)*kron(H,H); 

Vfinalmat=vec2mat(Vfinal,m) 

uaporx 

plot(Y(4,:),Vfinalmat(4,:),'-*')  

 

% Example 1 For direct method 

% dx/dt=Ax + Bu  by Curtis and Beard 

% J=int(x1^2+x2^2+u^2)dt 

tau=10 

Q=[1 0;0 1]; 

R=1; 

a=[0 1;-1 2]; 

B=[0 1]'; 

x0=[12 20]; 

m=256 

[P D H]=findp(tau,m); 

P=0.5*P; 

t=1:2:(2*m-1); t=tau*t/(2*m); 

%***********intial conditon**********************************% 

x01=12; 

x02=20; 

%************************************************************% 

that=[1 zeros(m-1,1)]; 

A=[eye(2*m,2*m)-kron(a,P')  -kron(B,eye(m,m))]; 

left=(a*x0'*that'); 

bleft=left'; 
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vecb=bleft(:); 

for i=1:1:m-1 

   J=[floor(log2(i))]; 

   mm(i)=[1/(2^J)]; 

end 

T=[1 mm]; 

Equad=10*diag(T); 

c1=kron(Q,P*Equad); 

c2=zeros(2*m,m); 

b1=zeros(m,m); 

b2= Equad; 

Hquad=2*[kron(Q,P*Equad*P')  zeros(2*m,m);zeros(m,2*m) 

kron(R,Equad)]; 

f1left=x0'*that';f1bleft=f1left'; 

vecbf1=f1bleft(:)'; 

fquad=[2*vecbf1*kron(Q,Equad*P') zeros(1,m)]; 

conquad=(vecbf1*kron(Q,Equad)*vecbf1'); 

opts = optimset('Algorithm','interior-point-

convex','Display','off'); 

[x,fval,exitflag,output]=quadprog(Hquad,fquad',[],[],A,vecb,[],[

],[],opts); 

min=fval+conquad 

xa=x(1:m,1)'*P*H+(x01)*that'*H; 

xd=x(m+1:2*m,1)'*P*H+(x02)*that'*H; 

xk=x(2*m+1:3*m,1)'*H; 

xx=t; 

yy=t; 

[Y X]=meshgrid(xx,yy);   % coordinate (x1,x2) 

uexact=-0.4142*X-4.4142*Y; 

plot(t,xa,'-.b',t,xd,'-k','LineWidth',1.5); 

xlabel('t'),ylabel('x_1(t) , x_2(t)'),grid off 

legend('x_1(t)','x_2(t)') 

 


