CHAPTER 1

INTRODUCTION

1.1  Overview of Thesis

Optimal control is an important branch of mathematics, and has been widely applied in
a number of fields, including engineering, economics, environment and management.
Historically, after more than three hundred years of evolution, optimal control theory
has been formulated as an extension of the calculus of variations. The calculus of
variations is much harder than standard calculus because finding the optimal form of an

entire function is more difficult than finding the optimal value of a variable.

As most real-world problems are too complex to allow for an analytical solution,
computational algorithms are inevitably used to solve optimal control problems. As a
result, several successful families of algorithms have been developed over the years.
The formulation of an optimal control problem requires several steps: the class of
admissible controls, the mathematical description of the system to be controlled, the
specification of a performance criterion, and the statement of physical constraints that

should be satisfied. The objective of optimal control is to determine an optimal open-
loop control u*(t) or an optimal feedback control u*(x,t) that forces the system to

satisfy physical system constraints and at the same time minimizes or maximizes a

performance index.

Physical systems are inherently nonlinear in nature. However, nonlinear systems
are difficult to analyze mathematically. The typical approach is to linearize the system
around some operating point and analyze the resulting linear system. If the motion of

the system does not satisfy the superposition principle, then the linear model of the
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system becomes invalid. Therefore considering the full nonlinear model of the system is
desirable. One of two approaches is typically adopted to address the inherent
mathematical difficulty of nonlinear system. The first approach is to utilize specific
properties of the system to develop specific control laws that perform well for that
system. The drawback of this approach is that the results may not be applicable to any
other system. The second approach is to develop tools for general classes of nonlinear
systems. The drawback of this approach is that these tools will usually result in
conservative designs because they do not exploit specific characteristics of the system
under design. Having a number of design tools from which to draw is necessary to
address any particular problem. Relatively few design tools for nonlinear systems exist.
Therefore, one of our objectives is to develop a feedback synthesis method for a general

class of nonlinear systems.

Generally, solutions of optimal control problems, except for the simplest cases, are
carried out numerically. Therefore, numerical methods and algorithms for solving
optimal control problems have evolved significantly over the past fifty years. Most early
methods were based on finding a solution that satisfies either Euler-Lagrange equations,
which are the necessary conditions of optimality, or the Hamilton-Jacobi-Bellman
(HJB) equation, which is a sufficient condition of optimality. These methods are called

indirect methods.

Optimal control of nonlinear systems is one of the most challenging and difficult
subjects in control theory. The nonlinear optimal control problem can be reduced to the
Hamilton-Jacobi-Bellman partial differential equation, but due to difficulties in its
solution, this is not a practical approach. Instead, the search for nonlinear control
schemes has generally been approached on less ambitious grounds than requiring the

exact solution to the Hamilton-Jacobi-Bellman partial differential equation. In fact, even



the problem of stabilizing a nonlinear system remains a challenging task. Lyapunov
theory, a successful and widely used tool for stability analysis of nonlinear systems, is a
century old. Despite having existed for a long time, systematic methods for obtaining
Lyapunov functions for general nonlinear systems are still nonexistent. Nevertheless,
the ideas presented by Lyapunov nearly a century ago continue to be used and exploited
extensively in the modern theory of control for nonlinear systems. One notably
successful use of the Lyapunov methodology is the concept of a control Lyapunov
function (CLF), the idea of which is to first choose a function that can be made into a
Lyapunov function for the closed-loop system by choosing appropriate control actions.
The HJB equation provides a global control law in the form of a state feedback
controller. Unfortunately, it involves the solution of a partial differential equation
(PDE), which is in general computationally intractable. This single fact is largely the
reason for the existence of the discipline of nonlinear optimal control. Hence, from one
point of view, nonlinear optimal control can be thought of as the development of
computationally tractable sub-optimal solutions to the optimal control problem. This
explanation is attractive from a pedagogical viewpoint because it provides a natural
justification for the close relationship between many popular approaches and the HIB
equation. The following important aspects of the HIB solution should be highlighted for
clarity: (1) Closed loop: The resulting solution is a state feedback control law. (2)
Global: The solution provides the optimal control trajectory from every initial
condition. Hence, it solves the optimal control problem for every initial condition all at
once. (3) Sufficient: The solution of the HIB equation provides a sufficient condition

for the solution to the corresponding optimal control problem.

Optimal control problems without constraints can be solved successfully by using
most direct and indirect techniques. However, inequality constraints often generate

analytical and computational difficulties. Thus, researchers aim to solve constrained
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optimal control problems with numerical methods. The direct method is widely used to
solve nonlinear optimal control problems. It obtains an optimal solution by directly
minimizing the constrained performance index. Furthermore, this method converts the
optimal control problem into a mathematical programming problem by using either the
discretization or the parameterization technique. Parameterization methods are
classified into three types: state, control, and state control. Direct methods were used to
obtain an open-loop solution of optimal control problems.

With regard to the parameterization method, a significant amount of published
papers are based on either control parameterization or state parameterization. These two
approaches have some drawbacks, such as the following: In the control parameterization
case, the system state equations need to be integrated, which is a computationally
expensive. In the state parameterization case, this approach has not been used
extensively because applying it to general optimal control problems is difficult. This
difficulty is due to the fact that it is unclear which state variables to be parameterized in
case of unequal number of state variables and control variables. Control-state
parameterization is a third type of parameterization. The use of this approach has been
limited so far because the optimal control problem is reduced to a large mathematical
programming problem, i.e., it has a large number of unknown parameters and equality
constraints. With the development of computers with high speed and efficient algorithm
over the last few decades, it has become possible to solve complicated problems in a
reasonable amount of time. Therefore the second goal of this thesis is to apply control-
state parameterization to general constrained optimal control problems with finite time

horizon by using orthogonal wavelets.

Most of the time, orthogonal functions are used to solve dynamic systems. Among
the orthogonal functions, numerical method based on wavelet is a relatively new

mathematical tools for solving integral and differential equations. Numerical solutions
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of these equations have been discussed in many papers, which basically fall either in the
class of spectral Galerkin and collocation methods or finite element and finite difference
methods. Compared with other mathematical tools, wavelet analysis has captured the
attention of mathematicians’ because it has obtained positive results in the field of
signal and image processing. The most interesting features of wavelet is that its basis
function, which is localized in space or time coexists with localization in frequency. The
basis functions are usually orthogonal and compactly supported, which allow us to
better represent functions with sharp spikes or edges, than other bases. These features
result in sparse transformation in wavelet domain for non-stationary signals that
contributes to fast algorithms; these are some of the desired properties in numerical
analysis. Haar wavelet is the simplest orthogonal wavelet with a compact support. In
our work, we considered the method of Beard et al. (2000) to successively approximate
the solution of HJB equation. Instead of using the Galerkin method with polynomial
basis, we used collocation method with Haar wavelet basis to solve the generalized
Hamilton-Jacobi-Bellman (GHJB) equation. Galerkin’s method requires the
computation of multidimensional integrals which makes the method impractical for
higher-order systems. The main advantage of using collocation method in general is that
the computational burden of solving the GHJB equation is reduced to matrix
computation only. Our new successive Haar wavelet collocation method is used to solve
linear and nonlinear optimal control problems. In the process of establishing the method
we have to define new operational matrices of integration for a chosen stabilizing
domain and new operational matrix for the product of two dimensional Haar wavelet

functions.

Another goal of this thesis is to solve the constrained nonlinear optimal control
problem by converting it directly, with the use of control-state parameterization via

Haar wavelets basis into a sequence of quadratic programming problems. This approach
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has two advantages: first linear and nonlinear optimal control problems can be solved
uniformly, and second guessing nominal trajectories, which we need to convert the
nonlinear optimal control problem into a sequence of linear quadratic optimal control
problems, is easier than guessing the parameters of these trajectories, which we need to

solve the nonlinear mathematical programming problem.

Many classical inventory models emphasize the single-item model. However, such
models are seldom applied in the real world. Hence, multi-item inventory models are
more realistic than single-item models. In multi-item models, the second item in an
inventory favours the demand for the first and vice-versa. The final goal of this thesis is
to optimize the control of the multi-item production-inventory model with stock-
dependent deterioration rates and deterioration due to self-contact and the presence of

the other stock by using the direct method.

1.2 Motivation

1. Although the necessary and sufficient conditions for optimality have already been
derived, they are useful only for finding analytical solutions for quite restricted
cases. If we assume full-state knowledge and if the optimal control problem is a
linear-quadratic, then the optimal control is a linear feedback of the state, which is
obtained by solving a matrix Riccati equation. However, if the system is nonlinear,
then the optimal control is a state feedback function, which depends on the solution
to the HIB equation. HIJB equation is a nonlinear partial differential equation that is

usually difficult to solve analytically.

2. Historically orthogonal bases are related with differential equations, including partial
differential equations. Recently, orthogonal basis with compact support, such as

Daubechies wavelet, have been used successfully in signal and image processing.



In addition, the availability of fast transform makes orthogonal basis attractive as a
computational tool. Haar wavelet which is a piecewise function, is the simplest
orthogonal wavelet with a compact support. Thus, studying where this Haar
wavelet can be used to solve ordinary and partial differential equation is an
interesting task. Haar wavelet is not continuous. Therefore, the highest derivatives
that appear in the differential equations are first expanded by using Haar wavelet
basis. Lower-order derivatives and the solutions can then be obtained easily by
using Haar operational matrix of integration. The main ideas of using Haar wavelet
operational matrix is to convert partial differential equations into matrix equations

that can be solved easily by using MATLAB.

3. The following questions need to be addressed: If we are given an initial stabilizing
control, how do we improve the closed-loop performance of this control?. Does a
simple method of computing the improved control law exist?. A solution to these
questions bridges the problems of finding a stable control law and finding the
optimal control. For nonlinear systems, the optimal control problem is reduced to
the solution of the HJB equation; this equation is difficult to solve. Thus,
researchers have looked for methods of approximating its solution with a numerical
method. For example, Beard (1995) used Galerkin method with polynomials basis
to solve the above problem. We will use collocation method with Haar wavelet to
solve the problem. Using Haar wavelet method that deals with matrices is much

simpler than polynomial integration in Galerkin method.



1.3 Scope of the Study

The work throughout this study is concerned with quadratic optimal control (QOC)
problems that are associated with both finite and infinite time horizon of minimizing a

performance index. We will address the following related control problems:

e The infinite-time horizon problem, where the system equations are assumed to
be linear and nonlinear and the optimization index is over an infinite time
interval.

e The finite-time horizon problem, where the system equations are assumed to
be constrained linear and nonlinear time-varying and the optimal index is over a

finite time interval.

The main focus of this study is to establish two methods, which are the indirect and
the direct methods to solve the nonlinear optimal control problem. In the process of
establishing the methods, we have derived some new operational matrices of integration
for a chosen domain and a new operational matrix for the product of two dimensions

Haar wavelet functions.

We further our study by utilizing Lyapunov functions for the feedback system. A
Lyapunov function is a generalized energy function of the state and is usually suggested
by the physics of the problem. With the use of Lyapunov theory, finding a stabilizing

control for a particular system is often possible.

However, the numerical stability and error analysis of both proposed numerical
methods are not mathematically proven. A comparison with the analytical solution

given by others is conducted to justify the accuracy of these numerical results.



1.4  Research Objectives

The following are the objectives of this research:

1. Derive new formulas of two dimensions Haar wavelet operational matrices for
partial integration for a chosen interval [-z,7).

2. Derive a new formula for Haar wavelet operational matrix for the product of
two dimensional Haar wavelet functions.

3. Establish a numerical algorithm for solving GHJB equation by using Haar
wavelet operational matrices and Haar wavelet collocation method.

4. Solve HIB equation iteratively by using GHJB equation.

5. Establish a novel feedback control method of solving optimal control problems
with quadratic performance index subject to nonlinear affine control system
with infinite time horizon.

6. Propose a new numerical method for solving constrained nonlinear optimal
control problem with finite time horizon by using quasilinearization technique
and Haar wavelet operational matrix to convert the nonlinear optimal control
problem into a quadratic programming problem.

7. Apply the proposed method in (6) to practical problems such as optimization of
the control of nonlinear optimal control of a multi-item production-inventory
model with stock-dependent deterioration rates, deterioration due to self-
contact, and the presence of the other stock.

8. Develop MATLAB programs for solving infinite time nonlinear optimal
control problems and finite time constrained nonlinear optimal control

problems.



1.5 Organization of the Thesis

This thesis consists of seven chapters, including this chapter, and is organized as

follows:

In Chapter 2, we present an overview of the operational matrix in general. We list a
few well-known orthogonal functions that have been used to derive the operational
matrix. Next, we narrow it down to a specific orthogonal function namely Haar basis
function. The selection of this orthogonal function will be justified by presenting its
advantages over that of other orthogonal functions. We present a few advantages of this
orthogonal function to justify our selection of the Haar wavelet function. We further
discuss our main problem of solving the optimal control problem. At the end of this

chapter, we examine the multi-item production-inventory model.

In Chapter 3, we illustrate the mathematical background of Haar wavelets which
are needed to understand the concepts that are introduced in the remainder of this thesis.
Most studies define Haar wavelet and its operational matrix within the interval [0, 1).
We derive Haar wavelet operational matrix which could cater to the Haar series beyond

the interval [0,1) . The remainder of the thesis presents the difficulties encountered

while solving the nonlinear optimal control problems and the solutions to these
difficulties as well as provide the reader with sufficient contexts to understand certain
related concepts. In particular, we derive some new formulas for Haar wavelet
operational matrices in higher dimensions of integration for a chosen interval [-z,7)
and new formulae for Haar Wavelet operational matrix for the product of two
dimensional Haar wavelet functions. A general formula of Haar wavelet collocation
point’s matrix with two variables is derived, which is another motivation behind

developing a novel feedback control algorithm described in Chapter 4.
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In Chapter 4, a novel method is introduced to solve the HJB equation, which
appears in the formulation of the nonlinear control system with quadratic cost functional
and infinite time horizon. This method is a numerical technique, which is based on the
combination of Haar wavelets operational matrices and successive GHJB equation, to
improve the closed-loop performance of stabilizing controls and reduces the problem of
solving a nonlinear HIJB equation to that of solving the corresponding GHJB equation.
The solution to the GHJB equation converges uniformly to the solution of the HIB

equation, which is in the form of the gradient of the Lyapunov function VV(x). In

order to determine the Lyapunov function from the resulting solution of the linear
system equation. A new method is proposed in this chapter to integrate the gradient of
the Lyapunov function using variable gradient method. A number of numerical

examples for optimal control problems are given to justify the proposed method.

In Chapter 5, an efficient new algorithm is proposed to solve nonlinear optimal
control problems with a finite time horizon under inequality constraints. In this
technique we parameterize both the states and the controls by using Haar wavelet
functions and Haar wavelet operational matrix. The nonlinear optimal control problem
is converted into a quadratic programming problem through quasilinearization iterative
technique. The inequality constraints for trajectory variables are transformed into
quadratic programming constraints by using the Haar wavelet collocation method. The
quadratic programming problem with linear inequality constraints is then solved by

using standard QP solver.

In Chapter 6, the proposed method in Chapter 5 is applied to optimize the control of
the multi-item production-inventory model with stock-dependent deterioration rates and
deterioration due to self-contact and the presence of the other stock. Four different types

of demand rates, namely, constant, linear, logistic, and periodic demand rates. The
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solution to the model is discussed numerically and displayed graphically. By enhancing
the resolution of the Haar wavelet, we can improve the accuracy of the states, controls,
and cost. Simulation results were compared with those obtained by another researcher’s

work.

Chapter 7, summarizes the overall works and contributions of the study to the
indirect method of nonlinear optimal control problems with an infinite time horizon and
the direct method for constrained nonlinear optimal control problems with a finite time

horizon. Some recommendations for future work are proposed.
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CHAPTER 2

LITERATURE REVIEW

Operational matrix method has received considerable attention from many scholars for
solving dynamical system analysis (Sinha and Butcher, 1997), system identification
(Dosthosseini et al., 2010), numerical solution of integral and differential equations
(Lepik, 2005; Kilicman and Zhour, 2007) and optimal control problem (Mohan and Kar,
2005; Endow, 1989; Karimi, 2006). The operational matrix method mainly involves
casting a differential or integral equation into a corresponding matrix equation. The
approach is based on converting the underlying differential equations into integral
equations through integration of operators and approximating the functions involved in
the equation by truncated orthogonal series. An operation of integral operator is
converted by an operational matrix. To have a better view of the operational matrix

method, let us consider the integral property of function vector ®(x) in the following

approximation:

JX‘QJ(r)dr =P ®d(x), (2.2)
where
D) =[g(¥X) 40 - B2 (] (2.2)
in which the elements @,(x) #(x) --- @.,(x) are the orthogonal basis functions in

the Hilbert space L*(%R). The operational matrix P is an mxm constant matrix and
behaves as an integrator (Cheng et al., 1977; Irfan and Kapoor, 2011) and can be

uniquely determined on the basis of the particular orthogonal functions, ¢, (X).
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At present, large number of literature derive operational matrix from different
orthogonal functions. Orthogonal basis functions that have been given special attention
are Walsh function (Chen and Hsiao, 1975), block pulse function (Chi-Hsu, 1983),
cosine-sine and exponential function (Paraskevopoulos, 1987), normalized Bernstein
polynomials (Singh et al., 2009), linear Legendre mother wavelets (Khellat and Yousefi,
2006), Chebyshev wavelet (Babolian and Fattahzadeh, 2007) and Haar wavelet (Gu and

Jiang, 1996; Chen and Hsiao, 1997).

Chen and Hsiao (1975) derived Walsh operational matrix for performing
integration and solving generalized state equations. Paraskevopoulos (1987) showed the
operational matrix relationship between Fourier sine-cosine series and Fourier
exponential series expansion. Babolian and Fattahzadeh (2007) obtained Chebyshev
operational matrix for integration in general, and for finding continuous and
discontinuous solutions of Volterra type integral equations. All of these numerical
computations share a number of advantages. One of the advantages is the possibility of
finding the solution using only matrix manipulation rather than performing integration
or differentiation in a conventional ways. Another advantage is that the matrices can be
transformed into a sparse matrix and a small number of significant coefficients
(Hariharan and Kannan, 2011), which is important factor for reducing computation
time. Nonetheless, the advantage remains, when a large matrix is involved, whereby
large computer storage space and a huge number of arithmetic operations are required

(Lepik and Tamme, 2004).

In this study, we are going to work with the Haar wavelet basis function and Haar
wavelet operational matrices to approximation functions and integrating functions
respectively. Haar wavelet has a few advantages compared with other wavelet

functions. Haar wavelet is the oldest and the simplest wavelet function and it is one
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example of an orthogonal function (Burrus et al., 1998). Haar wavelet bases has
compact support, which means that the Haar wavelet vanishes outside of a finite interval
and allow us to represent functions with sharp spikes or edges, better than other bases.
The admired properties of Haar wavelet orthogonal functions in numerical computation
include the following: the sparse representation for piecewise constant function, fast
transformation, and the possibility of implementing a fast algorithm in matrix
(Shahsavaran, 2011). Faster matrix transformation can be achieved through the
expansion of Haar series than the expansion of Walsh series for the same amount of
terms required for computation because the resolution order by Haar expansion is less
than that by Walsh expansion (Khuri, 1994). Haar wavelet operational matrix for the
integral of Haar wavelets is always positive definite. Hence Haar wavelet operational
matrix inverses are always available. This property of Haar wavelets makes this method
computer oriented because no singularities are involved in the computation (Chen and
Hsiao, 1997). This factor gives an additional advantage to the proposed numerical
method which is discussed in Chapter 4.

Recently, Haar wavelets have been applied to signal and image processing in
communication research and physics research and have been proven to be excellent
mathematical tools (Nievergelt, 1999). It has been applied to a wide range of application
such as in system analysis (Chen and Hsiao, 1999), and numerical solutions of nonlinear
integral equations (Aziz and Islam, 2013; Islam et al., 2014; Aziz et al., 2014),
numerical solutions of integro-differential equations (Islam et al., 2013), boundary-
value problems (Islam et al., 2010; Islam et al., 2011; Fazal et al., 2011; Aziz et al.,
2013) and optimal control problems (Swaidan and Hussin, 2013). The first attempt at
using the Haar basis function for solving differential equations was conducted by Chen
and Hsiao (1997), who were the first to derive the Haar operational matrix for integrals

and brought the application of Haar analysis into dynamic systems. Chen and Hsiao
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(1997) applied their proposed method to solve the state equations of lumped and
distributed-parameter linear systems based on the Haar wavelet. Hsiao (1997)
constructed the new Haar product matrix and coefficient matrix, which have been
applied to various problems, such as the state analysis of linear time-delayed systems.
The main characteristic of this technique is its capability to convert differential
equations into algebraic equations. Thus, solution identification and optimization
procedures are either reduced or simplified. Lepik (2005, 2007a, b) used the Haar
wavelet method to solve ordinary and partial differential equations (PDE). Lepik (2011)
solved PDE with two-dimensional Haar wavelets. Islam et al. (2013) solved parabolic
PDE using Haar and Legendre wavelets. In the present study, we derived a new Haar

wavelet operational matrix of integration for one dimension on the interval [-7,7) and
some new Haar wavelet operational matrices for integration with two-dimensional Haar
wavelet basis in the interval [-7,z). Finally, we constructed a new algorithm for the

operational matrix for product of two-dimensional Haar wavelet functions by extending

the work of Hsiao (1997).

The solution to optimal control problems has been an important research subject for
hundreds of years. The derivation of necessary and sufficient conditions for optimality
is useful for obtaining an analytic solution for a restricted case (Kirk, 1970). However,
computational methods for solving optimal control problems had not been attempted
until the advent of modern computers. Even with modern computers, the numerical

solutions of optimal control problems are not easily obtained (Diehl, 2011).

Computational methods for solving optimal control problems have evolved
significantly since Pontryagin and his students presented their well-known maximum
principle (Sussmann and Willems, 1996). Unless the system equations of the problem at

hand are simple, along with the cost function and the constraints, numerical methods
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must be used to solve optimal control problems. With the development of economical,
high-speed computers over the past few decades, solving complicated problems in a

reasonable amount of time has become possible (Diehl, 2011).

Presenting a survey of numerical methods in the field of optimal control problems
Is a daunting task. Perhaps the most difficult aspect is restricting the scope of the survey
to permit a meaningful discussion within a few pages only. With this objective, we shall
focus on two types of numerical methods. These methods are labelled as direct methods

and indirect methods.

Indirect methods transform the problem into another form before proceeding with
the solution. Indirect methods can be grouped into two categories, namely, Bellman’s
dynamic programming method and Pontryagin’s maximum principle. Bellman
pioneered the work in dynamic programming, thus leading to sufficient conditions for
optimality by using the Hamilton-Jacobi-Bellman (HJB) equation. HIJB equation is a
first-order PDE that is used for deriving a nonlinear optimal feedback control law.
Pontryagin’s maximum principle is used to determine the necessary conditions for the
existence of an optimum. Pontryagin’s maximum principle converts the original optimal
control problem into a boundary value problem, which can be solved analytically or
numerically by using well-known techniques for differential equations (Kirk, 1970;

Ranta, 2004).

The determination of the optimal feedback control law has been one of the main
problems in modern control theory (Ho, 2005). If we assume full-state knowledge, if the
dynamic system is linear, and if the objective function is quadratic, the optimal control
problem is a linear feedback of the state that is obtained by solving a matrix Riccati
equation (Bryson, 2002). However, if the system is nonlinear, then the optimal control

problem is a state feedback law that depends on the solution to HIB equation. The HIB
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equation is a nonlinear PDE whose solution is difficult to obtain even in simple cases.
Therefore, a practical method of approximating the solution to the HIJB equation is
highly preferred. The discretization of state space and time yields finite element
approximations, but these approaches become intractable as the dimension of the state
becomes large (Falcone, 1987). Other series approximations have also been applied to
obtain global approximations, but these approaches have achieved only limited success
because of the difficulty of solving higher-order terms in the approximation (Garrard et

al., 1992).

With regard to deriving approximate solutions to the HIB equation, an interesting
quote is found in Merriam (1964): “pertinent methods of approximation must satisfy
two properties. First, the approximation must converge uniformly to the optimum
control system with increasing complexity of the approximation. Second, when the
approximation is truncated at any degree of complexity, the resulting control system

must be stable without unwanted limit cycles.”

Successive approximation, which is sometimes called “iteration in policy space,”
was first used in the context of the HIJB equation by Bellman (1957) to argue the
existence of smooth solutions to the HJB equation. The basic idea of successive
approximation is to solve a differential equation by establishing a reasonable initial
guess to the solution and then updating this guess on the basis of the error that it
produces. The method of successive approximation was originally introduced by
Bellman. This method was first applied to optimal control problems by Rekasius (1964)
who used the idea of successively computing sub-optimal control problems for linear
systems with non-quadratic performance criteria. In Leake and Liu (1967), the method
of successive approximations is used to derive an algorithm for computing the solution

to the HIB equation by computing the solution to a sequence of linear PDEs given by
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the generalized-Hamilton-Jacobi-Bellman (GHJB) equation. Leake and Liu (1967) were
the first to analyze the successive algorithm. The ideas of successive approximation
were placed on a sound theoretical foundation by Saridis and Lee (1979). The authors
used successive approximation to achieve a design algorithm that improves the
performance of an initial stabilizing control. This method is shown to monotonically
converge pointwise to the optimal solution, that is, to the solution of the HIB equation.

Our work is based on this method which will be explained in Chapter 4.

The successive Galerkin approximation (SGA) technique has recently been
introduced as a technique for approximating the HJB equation. Beard et al. (1997)
introduced the Galerkin approximation method for solving the GHJB equation to
approximate the solution of the HJB equation successively. Given an arbitrary
stabilizing control law for a nonlinear system, the solution to the GHJB equation
associated with stabilizing control is a Lyapunov function for the system and is equal to
the cost function. Their method can be used to improve the performance of the feedback
control laws by repeating this process until a successive approximation algorithm that
uniformly approximates the HJB equation is obtained. Beard et al. (1997) showed that
constructing solutions to the GHJB equation, such that the control derived from its

solution is in feedback form, is difficult.

The GHJB is solved by Beard et al. (1997), who used the Galerkin approximation
method. The problem with this method is that it only yields an average performance
because it attempts to fit its basis functions to some large regions of the state space. The
Galerkin method requires the computation of multidimensional integrals. This
computational burden makes the method impractical for higher-order systems. Notably,
the nonlinear optimal control function is only a function of the local solution to the HIB

equation. This realization leads to a unique approach for approximating local solutions
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to the HJIB equation (Curtis and Beard, 2001). However, the computational complexity
is still high, although it may be decreased by using the structure of the SGA algorithm
(Beard and Mclain, 1998). Another attempt to reduce the computational load of the
SGA method has been proposed recently by Curtis and Beard (2001) who devised a
collocation method for solving the GHJB locally. Their idea is based on the observation
that the optimal control problem is only a function of the local/current state. Thus, the
GHJB equation is only solved approximately at a set of discrete points around the
current state. Mizuno and Fujimoto (2008) proposed a new approximation to the HIB
equation, which is used in nonlinear optimal control problems and showed that the HIB
equation is effectively solved by the Galerkin spectral method with Chebyshev

polynomials on the basis of successive approximation.

In Chapter 4, we considered the method of Beard et al. (1997) to approximate the
solution of the HIB equation successively. Instead of using the Galerkin method with
polynomial basis, we will use the collocation method with the Haar wavelet basis to
solve the GHJB equation. The Galerkin method requires the computation of
multidimensional integral, thus making the method impractical for higher-order systems
(Curtis and Beard, 2001). Generally, the main advantage of using the collocation
method is that the computational burden of solving the GHJB equation is reduced to

matrix computation only.

The significance of the approximation approach of Saridis and Lee (1979) is that
any initial control is successively improved and that the control law at any iteration has
a guaranteed (sub-optimal) performance index. Beard et al. (1995) applied Saridis’s
successive approximation theory to the finite-time optimal control problem. The result
Is an iterative scheme that successively improves any initial control law and ultimately

converges to the to the optimal state feedback control. Thereafter, the solution of a
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nonlinear Riccati equation is replaced by the successive solution to a linear Lyapunov

equation.

Beeler et al. (2000) conducted a comparison study of five different computational
methods for solving nonlinear optimal control problems and investigated the
performance of these methods on several test problems. Beeler et al. (2000) provided
recommendations as to which feedback control method can be best used under various

conditions.

Park and Tsiotras (2003) proposed a successive wavelet collocation algorithm that
uses interpolating wavelets to iteratively solve the GHJB equation and corresponding

optimal control law. They however consider problems in one dimension.

Vadali and Sharma (2006) obtained a closed-form solution of the HIB equation by
expanding the value function as a power series in terms of the state and constant
Lagrange multipliers. Although higher-order approximations can be possibly obtained
by using series expansion solutions, this process is time-consuming and the

improvement of the performance is not guaranteed (Bando and Yamakawa, 2010).

Hamilton’s principle is an alternative formulation of the differential equations of a
dynamic system and states that the trajectory between two specified states at two
specified times is an extremum of the action integral (Arnold, 1989). Motivated by this
observation, Bando and Yamakawa (2010) solved Lambert’s problem, namely, the two-
point boundary value problem for Keplerian motion, by minimizing the action integral.
Lambert’s problem is viewed as an optimal control problem by replacing kinetic energy
with a quadratic performance index of the control input such that the initial velocity is
determined as the optimal control problem. Thereafter, the solution is obtained by the
successive approximation of the HIB equation on the basis of the expansion of the value

function in the Chebyshev series with unknown coefficients.
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Kafash et al. (2013) used the variational iteration method for optimal control
problems. The optimal control problems are transferred to the HIB equation. Thereafter,
the basic variational iteration method is applied to construct a nonlinear optimal
feedback control law. By using this method, the control and state variables can be

approximated as a function of time.

The direct method is extensively used to solve nonlinear optimal control problems.
The direct method obtains an optimal solution by directly minimizing the constrained
performance index. Furthermore, this method converts the optimal control problem into
a mathematical programming problem by using either the discretization technique or the
parameterization technique (Huntington and Rao, 2008). Parameterizations methods are
classified into three types: state parameterizations, control parameterizations, and
control-state parameterizations. The control-state parameterization is based on the
approximation of the state and control variables by using a sequence of known functions

with unknown parameters in the following form:

X0 =3 2,00, =120, 3
0,0 = b, (1), K=12,-n, .4

where a; and b, are unknown parameters and @ (t) denotes an appropriate set of

functions forming the basis of a finite dimension (Spangelo, 1994; Jaddu, 1998).

Many researchers have investigated the theoretical aspects of the inequality
constraints of trajectory. Mehra and Davis (1972) noted that the complications in

handling trajectory inequality constraints in gradient or conjugate gradient methods are
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caused by the exclusive use of control variables as independent variables in the search

procedure. In response, they presented the generalized gradient technique.

Vlassenbroeck (1988) introduced a numerical technique for solving nonlinear
constrained optimal control problems based on Chebyshev series expansion of state and
control variables with unknown coefficients. In this method the lengths of the control
and state vectors are assumed to be equal. The differential and integral expressions from
the system dynamics, performance index, boundary conditions, and other general
conditions are converted into algebraic equations. The state inequality constraints are
transformed into equality constraints through the use of slack variables. This work was
extended previously to nonlinear unconstrained optimal control problems by
Vlassenbroeck and Van Dooren (1988). According to Vlassenbroeck (1988), the
constrained parameter optimization problem can be converted into an unconstrained
problem by using a penalty function technique, thus avoiding the enhancement of the

dimensionality of the problem.

Von Stryk and Bulirsch (1992) used a combination of direct and indirect methods
for the numerical solution of nonlinear optimal control problems for trajectory
optimization in the Apollo capsule. This hybrid approach improves the low accuracy of

the direct methods and increases the convergence areas of the indirect methods.

Jaddu (1998) established some numerical methods on the basis of a state
parameterization technique with Chebyshev polynomials to solve unconstrained and
constrained optimal control problems by using the quasilinearization method.
Thereafter, extended this concept to nonlinear optimal control problems with terminal
state and control inequality constraints and to simple bounds on state variables (Jaddu,
2002). Yen and Nagurka (1992) proposed the addition of n—m new artificial control

variables to the system if the number of control variables is less than the number of state
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variables. This technique has the following disadvantages: (1) a large number of
unknown parameters exist; (2) the original problem is changed. Han et al. (2012)
presented a numerical method for solving nonlinear optimal control problems, including
terminal state constraints and state and control inequality constraints. The method is
based on triangular orthogonal functions. In their method, the state and control
inequality constraints are adjoined into the optimization problem by replacing the
restrictions inequality constraints of equality by using the auxiliary function. Thereafter,
the optimal control problem is converted into algebraic equations by approximating the
dynamic systems, performance index, and boundary conditions into triangular

orthogonal series. Thus the problem can be easily solved by iterative methods.

Behroozifar and Yousefi (2013) proposed a numerical method for solving the
constrained optimal control problems of time-varying singular systems with quadratic
performance index. The method is based on Bernstein polynomials. Operational
matrices of integration, differentiation, and product are also introduced to reduce the
solution of optimal control problems with time-varying singular systems to the solution
of algebraic equation sets by using the Lagrange multiplier method. Kafash et al. (2014)
reported that the direct method has the potential to calculate continuous control and
state variables as functions of time. Kafash et al. (2014) proposed a computational
method for solving optimal control problems and the controlled Duffing oscillator on
the basis of state parametrization. The state variable is approximated by the Boubaker
polynomials. The motion, performance index, and boundary conditions equations are

converted into algebraic equations.

Solving the optimal control problem through orthogonal functions, especially Haar
wavelets, is an active research area. In fact, Hsiao and Wang, (1999) solved the optimal

control problem of linear time-varying systems. On the basis of some useful properties
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of Haar wavelets, a special product matrix and an operational matrix of integration were
used to solve the adjoint equation of optimization. Dai and Cochran (2009) converted
optimal control problems into nonlinear programming (NLP) parameters at the
collocation points by using a Haar wavelet technique. NLP problems can be solved by
using NLP solvers, such as the sparse nonlinear optimizer (SNOPT). Han and Li (2011)
presented a numerical method to address nonlinear optimal control problems with
terminal state, as well as state and control inequality constraints. This method is based
on the quasilinearization and Haar functions. Moreover, the researchers parameterized
only the state variables and added artificial controls to equalize the number of state and
control variables. In the present study, we do not incorporate artificial variables, but
parameterize the state and control variables. Marzban and Razzaghi (2010) presented a
numerical method to address constrained and nonlinear optimal control problems. In
their method the inequality constraints are integrated into the optimization problem by
replacing the restrictions of inequality constraints of equality constraints by using
auxiliary function. Although their method is also based on Haar wavelets, it requires a
set of necessary conditions. Our method is easier to implement than that of Han (2011)
and Marzban (2010) because our method does not required time transformation to the

domain time interval [0,1].

Optimal control problems play an important role in a range of application areas
including engineering, economics, and inventory (Sethi and Thompson, 2006). The
literature on multi-item dynamic inventory models is relatively sparse, because most of
the classical studies focused on single-item inventory models. We cite some of the most
recent studies to give an idea of the extensive range of optimal control applications in
the multi-item production-inventory system. Bhattacharya (2005) proposed a new
approach toward a two-item inventory model for deteriorating items with linear-stock

dependent demand rate. He derived the necessary criterion for the steady state optimal
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control problem for optimizing the objective function subjected to the constraints of the
ordinary differential equations of the inventory. The multi-item production-inventory
system also considers a particular choice of parameters satisfying the aforementioned
necessary conditions. Under this choice, the optimal values of control parameters are
calculated and the optimal amount of inventories is determined. With respect to the
optimal values of the control parameters and optimal inventories, the optimal value of
the objective function is obtained. EI-Gohary and Elsayed (2008) presented the optimal
control problem of a multi-item inventory model with deteriorating items for different
types of demand rates and fixed natural deterioration rates. Graian and Essayed (2010)
solved the optimal control problem of a multi-item inventory model with deteriorating
rates as functions of the inventory levels and time by using the Pontrygin prinnciple.
Alshamrani (2012) considered a multi-item inventory model with unknown demand rate
coefficients. An adaptive control approach with a nonlinear feedback was applied to
track the output of the system toward the inventory goal level. The Lyapunov technique
was used to prove the asymptotic stability of the adaptive controlled system. Howevere,
we will focus on the problem of EI-Gohary and Elsayed (2008) as an application of our

proposed method which is presented in Chapter 5.
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CHAPTER 3

THE HAAR WAVELET METHOD

3.1 Introduction

The theory of approximation and transformation plays an important role in economics,
sciences and engineering. In mathematics, approximation theory is concerned with how
functions can best be approximated with simple functions. Moreover, this theory
quantitatively characterizes the introduced errors. The objective is to approximate
functions as closely as possible to the actual function. The advantage of this technique
highlighted through solving complicated mathematics problem (non-linear equations,
ordinary differential equation ODE, partial differential equation PDE, among others). In

this chapter, we focus on a particular type of function approximation and its properties.

Wavelet theory is a relatively new and emerging area in mathematical research.
Wavelets have been applied in the different fields of science and engineering and
facilitate the accurate representation of a variety of functions and operators. Orthogonal
functions and polynomial series have received considerable attention in terms of
addressing various problems of dynamic systems. The main characteristic of this
technique is that it reduces these problems to a system of algebraic equations, thus
simplifying these problems significantly. The approach is based on the conversion of
underlying differential equations into integral equations through integration, the
approximation of the various functions in the equation using the truncated orthogonal
series, and the use of the operational matrix P of integration to eliminate integral

operations.
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The history of Haar wavelet dates back to July 1909. This concept was presented in
the inaugural thesis written by Alfred Haar (Haar, 1911). However, the adjective
wavelet doesn’t appear until around the year 1975. During this period, the concept of
wavelet was first pioneered and introduced by Jean Morlet, a French geophysicist who
analyzed the backscattered seismic signals carrying information on geological layers
(Meyer, 2008). Morlet later collaborated with a Croatian-French physicist named
Alexander Grossmann to analyze wavelets. At this point, the term “wavelet” was
introduced into the academia for the first time. The French equivalent of this term is
“ondellete” which means “small wave”.

Haar wavelet is a wavelet family or basis that is generated from a sequence of
rescaled square wave function series. The fundamental square wave function must be
defined to describe the Haar series. Then, the subsequent Haar wavelet functions are
generated from this square wave function through translation and dilation processes.
Haar wavelet is simple and is the oldest wavelet. This wavelet has compact support,
which indicates that the wavelet vanishes beyond of a finite interval. Unfortunately,
Haar wavelets are not continuously differentiable, thus limiting its applications
somewhat. Haar wavelet is also categorized as an orthogonal function.

In this chapter, the generation of Haar wavelet function, its series expansion, and a
one-dimensional matrix for a chosen interval [z,,z,)is introduced in brief . Many
studies have defined the operational matrix of Haar wavelet on interval [0,1). We
extend the usual defined interval to [0,7)and [-7,z)because the actual problem does
not necessarily involve only one dimension. Next, we must define the matrix of Haar
wavelet collocation points for two dimensions to establish a method for solving
Generalized Hamilton-Jacobi-Bellman (GHJB) equation in this chapter. In addition, we
formulate new Haar wavelet operational matrices to integrate the Haar function vectors

for two dimensions such as Q,, Q,, E,, and E, given the chosen stabilizing domain
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[-7,7). At the end of this chapter, we establish a novel operational matrix for the

product of the Haar wavelet functions of two dimensions.

3.2 Haar Wavelet Function

The orthogonal set of the Haar wavelets h. (x) function is a group of square waves over
the interval [zr,,7,). These wavelets are defined as follows:

T, SX<7,,

h (x)=1{""' 3.1
(%) {0, elsewhere, (3.1)
1
1, r1£x<5(rl+r2),
1
h (x) =4 -1, E(z'l+rz)SX<z'2, (3.2)
0, elsewhere,
1, o+ 2K 2Ty oy 2K T mny
2! 2 2! 2
3 2k+1) 7, -1, 2k+2) ,7,-1,
h(x)=4-14 7+ Y ( > )SX<7 + Y ( > ), (3.3)
0, elsewhere,

where the number of the wavelet is denoted by i=2' +k (the maximum value is

i=2M . Here M =2’ where J is the maximal level of resolution); the dilatation

parameter j=012,...,J ; and the translation parameter k =012,...,m—1 where
m=21. h,(x) is constant in the interval [z,,z,) and is called the Haar scaling function.

h,(x) is known as the Haar mother wavelet function or the fundamental square wave

function.

All subsequent Haar wavelet functions are generated from the mother wavelet

function h,(x) through translation and dilation process.
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h (x)=h (2 x-k). (3.4)
The orthogonal sets of the first four Haar functions (m=4) in the intervals of

(0<x<1l1)and ( —1<x<1)are shown in Figures 3.1 and 3.2, respectively.

hu h1
1 1
x 1 x
T L] T T O | L] 1 ]
0 02 04 06 08 1 02 04 | 06 08
1+ -1
(a) Haar function of h,(x) (b) Haar function of h,(x)
h) h3
1 1
3 i x
0 02| o4 [ 06 os i 0 02 04 06 [fos
-1= 1+
(c) Haar function of h,(x) (d) Haar function of h,(x)

Figure 3.1 First four Haar functions in the interval of (0 <x<1)
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ho h1
] 1
|| 1 X || 1 ] X
1 0.5 0.5 1 1 -0.3 0.5
-1+ 1
(a) Haar function of h,(x) (b) Haar function of h,(x)
h3
1 h2 1
X X
1 0.5 05 1 1 05 0.5 1
_1 -19
(c) Haar function of h,(x) (d) Haar function of h,(x)

Figure 3.2 First four Haar functions in the interval of (-1<x<1)
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The value of each Haar wavelet is determined through a couple of constant steps

involving opposite signs during the subinterval. This value is zero elsewhere. Therefore,

given p=2"' +k, they have the following relationship:

Ihp(x) h, (x) dx :{(Tz _Ofl) 2" ” Ezz (3.5)
Eqgn. (3.5) can be proven as below
Proof
If p=q, then we obtain
]th(x)hq(x)dx =0, (3.6)

Since h, and h, have disjoint supports if p=q =0, and sums cancel outif p=q=0

If p=q, then we obtain

lhe I = (h,(x) .h, (X))

T2
2
= [ h2(x) dx (3.7)
o
o+ (2k+1)(rz 71) lJr(2k+2)(2'2 1'1)
= I dx + j dx
(2k)(r2 11) 2k+1 Ty— 11)

{ B + (—")(12”1»}

7{71 (2k+2)( +rl) (z, + (2k+1)(T2+T1)):|

=(r,—1,) 270, O (3.8
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This relationship shows that Haar wavelet functions are orthogonal to each other and
therefore constitute an orthogonal basis. Hence, this relationship facilitates the

transformation of any function square interval in the time interval [z, 7,) into a Haar

wavelet series.
3.3 Haar Series Expansion
Any function f e L*([z,,7,)) can be expanded into a Haar series of infinite terms:
f(X) =c,hy (X) +c,h (X) +c,h, (X) +--- . (3.9)

If the function f(x) is approximated as a piecewise constant, then the decomposition in

Eqn. (3.9) can be terminated as follows:
m-1
f(x)= f,(x) :Zcihi (x) . (3.10)
i=0

where i=2" +k, j=012,...,log,m and 0<k <2'. The Haar coefficient c, can be

determined by applying the inner product in Eqn. (3.5).

If {h,(x)} is an orthogonal set of functions on an interval [z,,7,), then a set of

coefficients c, can be determined for which
f (x) =cohy(x) +ch (X)+---+c,h, (X) +--- . (3.11)

Multiplying Eqn. (3.11) by h,(x) and integrating the result over the interval [z, 7,)

generates
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T fO)h, ()dx = co]gho(x)hp (x)dx + clifhl(x)hp (x)dx +

2 5]

. (3.12)
o+, [ 1, (Oh, () + -

3

=C, <hy,h, >+c, <h,h, >+---+c, <h h >+ (3.13)

In orthogonality, the value of each term on the right-hand side of the previous

equation is zero except when p =n. In this case, we obtain

]Z f (x)h, (X)dx =c, T h? (x)dx . (3.14)

3 o

Thus, the required coefficients are

j f ()h, (x)dx
C,=2———, n=0123.., (3.15)
j h2(x)dx

or, we can rewrite this equation as

T f (x)h, (x)dx

=" . n=0123.... 3.16
IO 10

As per Eqn. (3.5), the norm [|h, ()| = % ; therefore, the Haar wavelet coefficient

is determined by

i !
c, = 2 j f()h (x)dx, n=0123,.... (3.17)

(z, -7, 11
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Thus, given any function f(x) that is square integrable within interval 7, <X <r,, the

Haar wavelet coefficient in Eqgn. (3.9) can be determined with as

C = 2 Tf(x)hi(x)dx, i=01,23,... . (3.18)

(z, -7, 11

If f(x) is smooth, then approximating f(x) using Haar basis function gives a lower

accuracy for a given m (Islam et al., 2013).

If f(x) and f_(x) in Eqn. (3.10) are the exact and approximate solutions, respectively,

then the corresponding errors are defined as follows:

e,(x)=f(x)-f,(x), (3.19)
€m (x) = i ijlczukhzuk () . (3.20)
j=3+1k=0

Saeedi et al., (2011), shown that the square of the error norm is

KZ
3m?’

e (0] <

where ¢ is the Lipschitz constant. Hence for Haar wavelet approximation, the

convergence is of order one, that is,

Jen ()] = OG} - (3.21)
m

As per Eqgn. (3.21), the error is inversely proportional to the level resolution of the Haar
wavelet function. This scenario implies that the Haar wavelet approximation method is

convergent as m approaches to infinity.
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34 Matrix of One-dimensional Haar Wavelets

As per Egn. (3.10), the sum can be written in the following compact matrix form:

f(x) ~ cTh, (), (3.22)

where Haar coefficient vector ¢! and Haar function vector h  (x) are defined as

ch=1[c ¢ ¢ - cpyl, (3.23)

m

and

h, () =[hy(x) h(x) hy(x) - h(x)]". (3.24)

The superscript T denotes the transpose and the subscript m denotes the dimension of

vectors and matrices.

T —T

L
™
=i
/n'
b1 =

2 1
T,4+2
) 2=}

Figure 3.3: Collocation point

The collocation points are defined as follows:

As depicted in Figure (3.3), let x be the middle point between two points in the

subinterval {rl + (2 ; iy r+2(52= Tl)} . This point is expressed as
1 T,- 1, T,—1T,
X=—|7,+ +7,+2 . 3.25
2{ p+( - )+7+2( - ) (3.25)
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In general, for j =1,2,3,...,m,and m=2".

7,

m m

X =%[r1+(j—1)( )+ (1) () } . (3.26)

We can simplify Eqn. (3.26) to obtain

27Ny 05 -1) . (3.27)

X; =7, +( -

For instance, we can generate four collocation points from Eqn. (3.27) for j =1,2,3,4

in the interval [-1,1) as follows:

Haar function vector h_(x) can be represented in m square matrix form H_ , the

elements of which are given by

[H.1; =h(x;), (3.28)

fori=0,12 ....,m-1, j=12,...,mand x; are the collocation points as defined in

Eqgn. (3.27).

For instance, the fourth-order Haar wavelet matrix H, in the interval of [0,1) can be

represented in matrix form with the collocation points from Eqgn. (3.28) as follows:
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(1 3, 5 . 7]
() () () he(2)
1, 3 5 7
hG) hE) ) hE)
R, = 18 83 85 87 (329
hz(g) hz(g) hz(g) hz(g)
1 3, 5 7
_hs @ Q) h() h(3) |
11 1 1
Moottt .30
1 -1 0 0
0 0 -1

When the Haar wavelet matrix is defined as in Eqn. (3.28), then the coefficient ¢ in

Egns. (3.17) and (3.22) can be easily obtained as

cr=f. HI, (3.31)
where
fo =[f(x) flx) flx) f(x.)] - (3.32)

In particular, a large Haar wavelet matrix is needed for the solution to the HJB equation

method in Chapter 4. Fortunately, H, and H_' contains many zeros. As m value

m

increases, the element of zeros in the matrix also increases as indicated in Eqn. (3.30).
This factor accelerates computation and is one of the reasons for the rapid convergence
of the Haar wavelet series. Hsiao (2004) reports that the number of multiplication
operations involved in Haar transformation is considerably easier and faster than fast

Fourier and Walsh transform.
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3.5 Operational Matrix for Integrating One-dimensional Haar

Wavelets

The integration of Haar wavelet function h_(x) into the specific interval of [0, 7) can

be expanded into a Haar series, that is,
[hn(9dx =P, h,, (%), (3.33)
0

where the mxm matrix P, is called the operational matrix of integration obtain

recursively by following as prescribed by Aznam and Hussin (2012).

2mP -tH
= i|: -lm/2 m/2:| (334)
2m T H m/2 C)m/2
The recursive formula above starts with
T
= 3.35
-[] e
The formula in the interval of [0, 1)was first presented by Chen and Hsiao (1997).
For example, in order to determine P, and P, the steps are shown as below.
4P, -7H
P, = 1% . ' (3.36)
4|7 H; 0
P, '% 1
= (3.37)
% H 0
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r _r

|2 4
£ o
4

P, can be determined by following the same steps as shown below:

b 1/8P, -7H,
‘7 8|rHE O,

r _r =z _
2 4 8 8 4 -2 -1
T LT 20 -l
14 8 8 | 7|1 1
B T T _g_ 2 0
r 0 0 2 2
16 16 1 1 0
Tt o o L2 72
116 16 i

(3.38)

(3.39)

(3.40)

In order to solve the nonlinear optimal control problem of infinite time horizon using

GHJB equation in the interval [z, z) (which is introduced in Chapter 4), it is essential

to find the modification formula for operational matrix P, that covers the entire domain

[ 7, 7). The integrals of the first four Haar wavelet functions in the interval [z, z) are

discussed in Section 3.2 and can be expressed as follows:

Po(¥) = [y (D)t = x+7 x e[-7,7)
_(x)—JX.h(t)dt— X+7, -7<x<0,
s _41 - —X+7, 0<x<r,
X X+7, -rSX<-%,
P, (x) = [hy(t)dt =
T
- - X -ESX<O,

(3.41)

(3.42)

(3.43)
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X X, O£x<%,
Ps(x) = [hy(t)dt = ] (3.44)
- —X+7, —<X<7
2
In general, the integrals of Eqgn. (3.3) for i,= 01,2,...,m—1in the interval [-7,7) can

be described as below
p,() = [hy(t)dt

2k 2k 2k +1
X-T(-l-ﬁ-;), T(—1+;)SX<T(—1+(2—J.)),

-Xx-7(-1+ (2k2—4jr2)) +27(-1+ %),

r(-1+ %) <x< r(—l+%),

elsewhere

(3.45)
The Haar operational matrix generated from the recursive formula can be calculated by

the following equation:

B 1 |:2m5m/2 'THm/z}

= (3.46)
2m| ¢ H_nlvz O
The recursive formula above [Eqn. (3.46)] begins with
P, =[z]. (3.47)
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3.6 Operational Matrix of the Product of One-dimensional Haar

Wavelet Vectors

The three basic multiplication properties of Haar wavelets are as follows (Hsiao and

Wu, 2007):

(1) h, (x)h(x)=h,(x) forany ne N U{0}.
(if) For any two Haar wavelets h (x) and h, (x) with n <1, we obtain

h, (X)h, (x) = p,/h (%), (4.48)

where

P =, (27 (q+ %»

1, 2”k£q<2”(k+%),
L (3.49)
-1 2“j(k+§)£q<2“j(k+1),
0 elsewhere,

where n=27 +k, j>0,0<k<2'and I=2"+q,i>0,0<qg<?2".

(iii) The square of any Haar wavelet is a block pulse with a magnitude of one

during both positive and negative half-waves.

In order to simplify the product of two functions f(x) =c h_(x)andg(x)=d h_(X),
it is essential to know the product of h(x) and h™(x). The product can be expanded

into a Haar series with a Haar coefficient matrix M as follows:

f(x)9(x) =dph, (x) hy (X)c,, =d;M,, (©h,,(X), (3.50)
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where M _(c) is a mxm matrix referred to as the product operational matrix. This

matrix was first presented by Hsiao and Wu (2007) as

Mm(C) _ |:Mm/2 . Hm/zdiag (Cb) } , (351)

diag(c,)H,;, diag(ciH,,,)
where M, =c, and ¢, =[Co, Cy, -, Cooa '+ Co = [Cmrzysvos Crna -

' ¥m-1

In addition, the following formula can be derived from Eqn. (3.33) and can be used to
solve problems regarding the nonlinear optimal control problem of finite time horizon.
This problem is introduced in Chapter 5. Our calculation method may then be

simplified.
P.hn(z,)=7,6,, (3.52)
where 87 =[1 0 0 --- 0]. The proof for Eqgn. (3.52) is as follows:

Proof:
Pm hm(TZ) = Thm(x) dX
00 B0 B (017 oK

T

= Tzldx 0 0O0--0
J
0

43



3.7 Operational Matrix of the Integral Products of One-dimensional

Haar Wavelet Vectors

In this section, the operational matrix of the integral product of two Haar wavelet

function vectors are determined in one dimension h_(x) and h'n(x) at collocation
points x; . These points on the interval [z,,z,) are defined in Eqn. (3.27). This

operational matrix can assist in solving the problem of the nonlinear optimal control of

finite time horizon. As mentioned previously. This problem is introduced in Chapter 5.

Thm(x)h;(x)dx -E, . (3.53)

3

To calculate the matrix E_, which is of order mxm, Eqn. (3.24) is first multiplied with

its transpose. We obtain

i ho(x)ho(x) hO(X)hl(X) ho(x)hz(x) hO(X)hm,l(X) ]
hl(X)ho(X) hl(X)hl(x) hl(x)hZ(x) hl(X)hm—l(X)

h, (OhL ()= | h0Oh(x)  h(Oh () h,(0h,() - h,(Oh,,(x) |- (354)

_hml();)ho(x) hm—l.(x)hl(x) hm—l.(x)hz(x) hml.(X)hml(X)_

By applying the properties of the orthogonal functions of Haar wavelets in Eqgn. (3.5)

to each element in Eqgn. (3.54), we generate
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i, 0onT (=

5]

(R (adx [y 00, (0dk  [hy0OR,00dx - [y (0h, ,(x)dx
[hoon0odx  [R0on ek [0, 00dx - [R00h, (06X
= Thz(x)ho(x)dx Thz(x)hl(x)dx Thz(x)hz(x)dx Thz(x)hm—1(x)dx

[h2 00,008 [y 000K [y, (OB (08X [y, (O, (0K

(3.55)
(z, —17,) 0 0 0 ]
0 (r, —7,)27° 0 0
= 0 0 (r,—7,)27" - 0 (3.56)
0 0 0 e (1, —1,)27
This equation is generally written as
E, =(r,—7,)diag|1 2°° 2727 2727272272 ... 27727 ... 270 |, (3.57)
2%time  2'times 22times 21 times

where j=0,1,2,---,log, m—1.

45



For instance, the eighth-order Haar wavelet matrix E, in the interval of [0,5) presented

in Chapter 6 can be represented using Eqn. (3.57) as follows:

0 0 0 0 O
0 0 0 0 O
0o 0 X 0 0 0 0 o
2
1
0O 0 0 - 0 O 0 O
2
E8=50000%ooo (3.58)
1
0O 0 0 0 0O = o0 O
4
1
0O 0 0 0O 0 O = 0
4
1
oooooooZ

3.8 Matrix of Two-dimensional Haar Wavelets

The bases of two-dimensional Haar wavelets can be formed by determining the tensor
product of two Haar function vectors h (x) and h_(x). This product is obtained using

the collocation points described in Eqgn. (3.27)

H(Xl’XZ):hn(X1)®hm(X2)' (3-59)

Let the basis be a vector of two-dimensional Haar wavelet functions:

[h; (x,) h; (x,)1, i=012 ..,n-1, j=012, ...,m-1. (3.60)

Then, the two-dimensional Haar function vector can be expressed as
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| o (%) 1y (x,)
ho (%) hy (X,)

hy (%) Nyya (X,)
h (X,) hy (X;)
H (%, X,) = : (3.61)

hy (Xl). his (%)

hy (X1) P (%;)

| N () By (%2)

For instance, the fourth-order Haar wavelet matrix for two dimensions H, in the

interval of [0,1)x[0,1) can be represented in matrix form as follows:

1 3 5 7
h0 (g)H4 ho (g)H4 ho (g)H4 ho (g)H4
1 3 5 7
hl(_)H4 hl(_)H4 h1 (_)H4 hl(_)H4
H,®H, = f 2 2 3 :
h2 (g) H4 hz (g)H4 hz (g)H4 hz (g)H4
1 3 5 7
_h3 (g)H4 hs(g)HA hS(g)HA hs (g)HA |
(3.62)
According to (3.59) we obtain
DH, DH, DH, OH,
H4 ® H4 _ (1)H4 (1)H4 (_1)H4 (_l)H4 . (3.63)
@OH,  (-DH, (OH, (OH,
(OH, (OH, @OH,  (-DH,
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(3.64)

Thus,

Finally, we obtain

1

1
-1

1
-1

111 111

1 1-1

-1

-1-1 1 1 -1

1

1

-1 1 1

-1 00

0 1 -1 0 01
-1 0 1
-1

1
-1

-1 0
-1 0 0 1

1-10 01

0 0 1

-1
-1

-1 0 0 1

-1

0
-1

-1 -1 -1
-1

-1

1 11111 1
1 1-1 -1
-1 0

1

-11 1

-1 11

-1

-1 11

-1 0 0 1

-1 1 00

-1 1 0 0

0

1

-1 0 0-11 0 0 -1

-1 0 0

-1 0 0 1

0 01

0 00 0 0O
0 0 0 0 0O
0 0 0 0 0O

-1 -1
-1 1
-1 1 0

-1
-1

11 11

1 1

0 0
0

1

0
-1 1 0 O

-1

-1

0

1-1 00

0 0 0 0 0O

0 0 1-1 0 O

1 11 -1-1-1-1
-1 -1

1
-1

0O 0 0O 00 0 0 01
0O 0 000 0 0 01
0O 0 000 0 0 01
0O 0 0o 00 0 0 0 0O

-1 11

-1

-11 00
-1 0 0

0 O

-11

1

Il
|T

(3.65)
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where H is the matrix of the collocation points of two-dimensional 16x16 Haar

wavelets.



3.9 Approximation of Functions for Two-dimensional Functions

As with one-dimensional functions, any two-dimensional function f(x;,X,) in the

interval [-z,,7,)x[~7,,7,) can also be expanded into Haar series through

1 m-1

D Cihi(x)h; (x,), (3.66)

f(%,%,) =
i=0 j=0

where C; is the Haar coefficient for two dimensions in the interval of

[-7,,7,)x[~,,7,). This equation was first presented by Wu (2009) as

C;= mZT Tf(xl,xz)hi (x)h; (x,)dx,dx, , (3.67)

where i=2" +k, >0, 0<k<2“-1and j=27+q, f>0,0<qg<2” 1.

Then, Egn. (3.67) can be decomposed and written as

f (X11 Xz) = hI(Xl) Cnmhm (Xz) (3.68)
Coo C01 COm—l
where C = C%O (?11 C.Zm—l is the now nxm matrix of the coefficient. To

Cn—1o Cn—ll Cn—lm—l
solve the nonlinear optimal control problem of infinite time horizon, which is

represented in Chapter 4, the main point that should be determined is C_ .

Let vec(A) denotes the transformation of stacking the column of A and ® represent the
Kroneker product operation equation. Then, Eqgn. (3.68) can be written in compact form
by applying the properties of operation, such as vec, vec' (ABC) =vec' (B)(AT ®C)

(see Appendix A), according to the method prescribed by Brewer (1978)
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(X, %) = vec' O, (%) ®h,,(x,)), (3.69)
where vec(C) =[C00 Cio - CraoCor Gy - Cryy - Gy Gy "'Cn—lm—1]T is the
nmx1 vector.

When Eqn. (3.59) is applied, Eqgn. (3.69) can be written as
f (X, X,) =vec (C) H(x,X,) . (3.70)

Subsequently, we assume that n=m and 7, =7, =7, so that the operation matrix is

square. If the function is known, the coefficient in Eqn. (3.68) can be obtained quite

easily by using the Haar wavelet matrix in Eqn. (3.28). This coefficient is determined at

the collocation points (x;,x;), which are in turn described in Eqn. (3.27) as

Cn=(H))" f, Hy, (3.71)

where the matrix function of the elements f_ is given by f;; =[f(x;,X;;)] at

collocation points Xy, X,; for i, j=12,---,m.

3.10 Operational Matrices for Two-dimensional Haar Wavelets

To solve GHJB equation, new formulas must be developed for operational matrices. In

this section, we obtain the operational matrices for integrating the new function vectors

of two-dimensional Haar wavelets in the interval [-7,7)x[-7,7).
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3.10.1 Partial Integration of the Function Vectors of Two-dimensional

Haar Wavelets with Respect to X;

Given Egn. (3.59), we assume that the following form with regard to the integration of

two-dimensional Haar wavelets basis on interval [-z,7)x[-7,7).
X1 0 X1
IH(xl,xz)dxl = J‘H(xl,xz)dxl +IH(xl,x2)dx1. (3.72)
° r 0

Egn. (3.72) can be rewritten in a new arrangement as follows:
X1 X 0
IH(xl,xz)dxl = IH(xl,xz)dxl - .[H(xl,xz)dxl : (3.73)
0 —r g

By incorporating Eqgn. (3.60), we can describe the first term on the right-hand side of

Eqn. (3.73) as follows:

(%) 1y (¢,

[ 1o (x0) Dy (%, ),

[,y (x, ),

J.H(Xll Xz)dxl =

[0 06) 4 ()%,

[ Ba (1) g (x, )b,

[ () s ()0, (374)
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To calculate the Eqn. (3.74), we integrate all of the elements of Haar wavelet

function vector h_ (x,) with respect to x,. The terms of the Haar wavelet function,

including X, , are considered as constants. Then, we obtain

Ry (04)( P, ()
206) (O P (6)
Ry () (X Py (%)
_f H(x;, x;)dx, =
_, a0 (3 B ()
My 06) (3 P %)
(%) (X Py (%)

By simplifying Egn. (3.75), we generate

i hy (X)) (Pooho (%) + Poshy (%) +
s (X2) (Pooho (%) + Poshy (%) +
hy (X;) (Pioho (X)) + Pyshy (%) +

H(x,, X, )dx, = ' L -
'[ v hy (X5) (Pyohy (%) + Prahy (%) +

hy (X,) ( Prsoho (X)) + Prgahy (X)) + -+

L hm_1(xz) ( ﬁm—thO (Xl) + ﬁm—llhl(xl) T

(3.75)

+ PomaNns (X)) 1

+ Pom-aNma (X))
+ Prnahna (X))

+ Elm—lhm—l(xl))
+ Pram 1N (X1))

+ Em—lm—lhm—l (Xl ))

(3.76)
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By expressing Eqn. (3.76) in matrix form with a two-dimensional Haar wavelet vector,

we obtain

J.H(xl,xz)dxl =

ﬁoo 0 0 | ﬁm 0 0 | i |ﬁ0m—1 0 0 |
S | R oL ~
~ _ _ ho (X)hg (X;)
0 0Py | O 0 - Py | - | O 0 - Pona 0 1: 0372
N AL NES
P O 0 | P, O - 0 | -« | Py O -+ O (;] 1 h1 2
| : o | - O (X)), (X,)
0 0 0 0 - 0 0 .- 1 :
Rl | X CALINCS
: | | '
o hm—l(xl)ho(xz)
.1 O 0 |Pow O + O | | P O - O :
B | :11 Do ] ] S L P (%) (X2) |
L 0 0 r)m—lol 0 o - ﬁm—lll | 0 0 ﬁmm ]
(3.77)
Finally, Egn. (3.77) can be written as
[H 04 %) dx = (P, ®1,) H(x, X,) (3.78)
= Ql H (X1' Xz)’ (3-79)

where Q, is the m? xm? matrix.

The second term on the right-hand side of Eqgn. (3.73) is written as follows upon its

description according to Eqn. (3.60):
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Th (%) by (¢,

fho (%) Ny 3 ()b,
fm(xl) hy (x, )%,
le(xl, X,)dx, =

TRy () )

Th a0 by ()0,

j’hm_1(X1) h. ., (x,)dx, (3.80)

As with Eqn. (3.73). Egn. (3.80) is integrated into all of the elements of Haar wavelet

function vector h (x,) with respect to Xx,. The terms of the Haar wavelet function,

including X, , are considered constants. Then, we obtain

hO (XZ) j. h0 (Xl) Xm

2 (%) Tho(xl) dx,
hy (X,) _Thl(xl) dx,
j).H(xl, X, )dx, =

s (6) [y (x)

u06s) [y 04

hmfl (XZ) ihml(xl) dxl (3-81)
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By integrating Eqn. (3.81) into all of the elements of Haar wavelet function vector

h (x,) with respect to x, on interval [—r,O), we determine 7 only for the Haar
functions h,(x,) and h,(x,) see Figure 3.2. While integration into the remaining

functions yields a value of zero, as follows:

hy (%) (7) ]

h, 4 (X;) (7)
hy (X,) (7)

T H(x, %, )dx = | hy (%) (7) |- (3.82)
: 0

By writing Eqn. (3.82) in matrix form, we generate
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10 0--0]/00 - 0] |0 0 -0
0]:: -« 0 | 0
00 0--1]/00 - 0] |0 0 -0
_____________________ - hy(x,) hy(X,) |
10 0--0[00 - 0] |0 0 0(})0(2)
0]::i-0 0 '
| e NCSUMNES
00 0100 - 0] |0 0.0
______________________ h, (%,)hy (%)
—7z/0 0 0---0[00 - 0] |0 0 -0 :
0: i 0] | 0 h, (X,)h, 4 (X;)
00 0--0[00 - 0 10 0 -0 :
______________________ hioa (X))o (X,)
| | '
______________________ L M ()DL (%)
00 0-0[00 - 0] |0 0 -0
0]: - 0 | 0
00 0--0]00 - 0] |0 0 -0
(3.83)
Then, Eqn. (3.83) can be decomposed as
0
J.H(xl,xz)dx1 = 7E, H(X.,X,), (3.84)
where E, isthe m?* xm? matrix.
For instance, the operational matrix is as follows when m =4:
1, O, 0, O,
E I4 C)4 C)4 O4
1= 0,0, 0, O, (3.85)
10,0, O, O,
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0000O0

0000

where O, = and 1, is the identity matrix.
0000
0000

In general,

m Om m m

Im Om Om Om
E,=|0, O, O, - O, | (3.86)

0, O, O, - O, |

Therefore, Eqgn. (3.73) can be written as follows by combining Eqgns. (3.79) and (3.84):
[HOG ;)% = (Q =7 EDH(X, X,) . (3.87)
0

3.10.2 Partial Integration of the Function Vectors of Two-dimensional

Haar Wavelets with Respect to X,

Given Egn. (3.59), we assume the following form of two-dimensional Haar wavelets

basis on the interval [-7,7)x[-7,7):
X 0 Xo
IH(xl, X,)dX, = jH(xl, X, )dX, + jH(xl, X,)dX, . (3.88)
g Zz 0

Eqn. (3.88) can be rewritten in a new arrangement as follows:
X X, 0
JHOG, %,)d%, = [H %)X, — [HEG X, )dX, . (3.89)
0 — g

We can describe the Eqn. (3.89) for the first term on the right-hand side by using the

Eqn. (3.60) as follows:
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[y (6 1y ),

o () 1y 0 )i,
%) by ()i,

J.H(Xl’xz)dxz ] K
- [1.06) s (%, )elx,

[ hs 00 By (x, )elx,

(3.90)

[ D 06) iy (%) dlx,

To calculate Eqgn. (3.90), we simplify the integration of Haar wavelet function vectors

h, (x,) with respect to X,. While the terms of the Haar wavelet function including Xx,,

are regarded as constants. Then, we obtain
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(%) [ho(x,) dx,

hy (X,) ]2 h,(X;) dx,
%) [ By () o,

jH(xl, X,)dx, = .
N hy (x,) [y (x,) dx,

h, 1 (%) [y (%) dx,

Ny (%) [y s (x,) dx,

By integrating Eqgn. (3.91), we obtain

J.H(Xl’ Xz)dX1 =

i hy (%) (Poohe (X5) + Poshy (%) + -+ + Popshins (X5))

ho (X1) ( Prn_1oho (X2) + Prygal (%) + o+ Py s N s (X2))
h (X)) (Poohy (X5) + Poa (X)) + o+ + Popshina (X,))

hy (X2) (Proaoho (X5) + Pryaahi (X)) +-+ PranaNia (X))

ho (%) (Poohe (X2) + Poih (%) + =+ + Pons N (X2))

L N (X)) (Prssoho (X5) + Py (%) + -+ Py (Xz))_

(3.91)

(3.92)
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Then, Eqgn. (3.92) can be written as

[HO ;) dx,

i f’m 15.01
Pwi1o Prnr
_ ; _0_

| oo
_ ; _0_
0 o

[ by () 1y ()

hy ()1 ()
By (26 )Ry ()

()R (x;)

1 (26 )0, ()

Poma | 0 0O 0 o= [0 0 - 0
A = e = : :
ﬁm—lm—ll 0 0 0 | | 0 0 0
0 | ﬁoo ﬁol"' ﬁOm—l | | 0 0 -~ 0
| = g =5 |2 :
= 1 |- Duio Puiii "™ Pastmik == |0 0 - 0
| : | |
0 | 0 0 -« 0 | | Pw Pa " Pom
ST % E o B R b G w
0 | 00 0 == 0 | o= IPage Punt Pua |

Eqn. (3.93) can generally be written as

TH (lexz)dxz = ( Im ®5m) H(Xl’XZ)

-7

:Qz H (Xl’XZ)!

where Q, is the m* xm? matrix.

| Py (26 ), () |

(3.93)

(3.94)

(3.95)

The second term on the right-hand side of Eqn. (3.89) is expressed as follows after its

description as per Eqgn. (3.60):
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0
IH(xl,xz)dxz =

Thy ) 1y (6, ),

o) ()i,

(%) o 0,

j.hl(xl) h, (X, )dx,
fhl(xl) 2 (X, )%,

[ 1)y (x,)ix,

0
[ 02 0) By (% )dlx,

(3.96)

By integrating Eqn. (3.96) for all of the elements of Haar wavelet function vector

h,, (x,)with respect to X,, we obtain

0
_[H(xl,xz)dxl =

hy (x,) (7) |
hy (x,) (7)
0

hy (x,) (7)
hy (x,) (7)
0

hs (%)(7)
h,- (X)(7)
0

(3.97)
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1 0--0/0 O 0] |0 0 0
1 0 - 0f | |
0 0--0/0 O 0] |0 O 0
IR
00 0oj]0 0 --- 0 0 0 0 |-
R AN A N
0 0. 0/1 0 0] - [0 0 - 0 :
: ho (X,)Py, 5 (X2)
0 0 - 01 :| | h (0h, ()
0 0--0/0 O 0] |0 0 0 e
B A O, 4 (%)
00 0/]0 0 -+ O | 0 O 0 o
| I . I hm—l(xl)hO(XZ)
__________________ h h
0O 0 -- 0| 0O 0 0| |1 0 L m—1(X1) m-1(X2)_
0 0--0]0 : |1 0
0O 0--0/0 O 0] |0 0
e O E e ]|
1 00 0/0 0 -+ O | 0 O 0 |
(3.98)
0
IH(xl,xz)dxzz T E, H(X.,X,), (3.99)
For instance, the operational matrix is formulated as follows when m = 4:
5, 0, O, O,]
e o, ¢, 0, O,
2 = 0,0, 5 O, (3.100)
_04 04 O4 é‘4 J
1000
1000
where J, = .
0000O0
0000O0
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The general form for E, is

_5m C)m Om e Om ]
O, 6, O, -+ O,

E,=|O0, O, o6, - O, [ (3.101)
_Om Om Om 6‘m N

Thus, Eqgn. (3.89) can be written as follows by combining Eqns. (3.95) and (3.99):
J.H(Xuxz)dxz =(Q, —7E,)H(x.,%,) . (3.102)
0

3.11 Operational Matrix of the Product of Two-dimensional Haar

Wavelet VVectors

To solve the GHJB equation described in Chapter 4, we must determine the product of
H(x,,X,) and H" (x,,X,). The product of two functions can be expanded into series of

two-dimensional Haar wavelets with Haar coefficient matrix N(D).

Let

(%) = 3 36, (), () (3103
and

90,6, = 3 3y G, ). (3.104)

Eqns. (3.103) and (3.104) can be rewritten in matrix form as

f(x,%,) =h"(x)Ch(x,) , (3.105)

g(xl’ Xz) = hT(Xl) Dh(xz) ) (3-106)
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where

Coo Cor " Comu

c c oo Gy
C= %0 11 er-11 and

m-1m-1

doo d01 dOm—l

d d., -+ dy._ )
D= © 1 o1 1 are known mxm constant matrices.

dm—lO dm2 dm—lm—l

Egns. (3.105) and (3.106) can be rewritten in compact form by applying the vec

operation (Appendix A),
f (%, %,) = vec' (C) (h(x,) ®h(x,)), (3.107)
g(x,,%,) =vec' (D) (h(x,) ®h(X,)), (3.108)
where

T .
VeC(C):[Coo Co " Crnao Cor Ci1-" Cran " Coma Cimg - Cm—lm—l] IS the

m? x1 vector and

VeC(D):[doo le dm—lO d01 d11"' dm—ll dOm—l dlm—l dm—lm—l]T is the

m? x1 vector.
By utilizing Egn. (3.59), we obtain
f(x,,%,) =vec' (C)H(x,,X,) . (3.109)

g(x., X,) =vec” (D) H(x,, X,) . (3.110)
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The product of two functions is determined by

(%, X) (%, X,) = vec' (OH(x;, X, )VeCT (D)H(x,, x,) (3.111)
=vec' (C)H(x,, X, )HT (X, X, )vec(D) (3.112)
=vec' (C) N(D)H(x,,X,) (3.113)

where N(D) is the m? xm? square matrix and vec(D) is the m? x1 vector.

Subsequently, we prove Eqn. (3.113).
Proof

f (%, %,)9(%;, %, ) = vec” (C)(h(x,) ®h(x,))vec’ (D)(h(x,) ®h(x,)) (3.114)
This equation can be rewritten as

f (%, %,)9(%,, X,) = vec" (C)(h(x,) ® h(x,))(h(x,) ®h(x,))" vec(D) (3.115)

When the transpose properties (A®B)" = (A" ® B") are applied (see Appendix A.3),

then Egn. (3.115) can written as

f (%, %,)8 (% %,) = vee (C)(h(x,) ®h(x,))(h () ®hT(x,))vec(D)  (3.116)

On the basis of Kronecker product properties, we determine that

(A®B)(C®D)=(AC®BD) (Appendix A.3) as per Zhang and Ding (2013). Eqn.

(3.116) can be modified using the following formula:

F (%, %2)9(x,, %) = vec" (C)(h(x)h" (x,)) ® (h(x,) h" (x,))vec(D) (3.117)

When the following equation is applied
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(An ®Bm) = (An ® In)(lm ®Bm) = (Im ®Bm)(An ® In) (3'118)

then Eqgn. (3.117) can be rewritten as follows:

f (%, %;)9(x,, X;) =vec" (C)(h(x)h™ () @1,,)(1, ®h(x,) h' (x,))vec(D) (3.119)

First, we address the term with variable x, in the right-hand side of Eqgn. (3.119) as

follows:

(1, ® ((x,) h" (x,))vec(D) (3.120)

By incorporating Eqgn. (3.54), we obtain

(I, ®(h(x,) h' (x,))vec(D) =

[ hy (%,)hy (X,) -+ hy (X)), 4 (X,) 0---0 e 00 dge ]
hmfl(xz)ho(xz) "'hm—l(xz)hm—l(xz) 0---0 0--0 dm—lO
0--0 ho (X2)o (X2) -+ by (X, )y 5 (X,) dy;

: : : e 0---0 :

0---0 hot ()N (%) - hy () 1 (%) - 0---0 dos
0--0 ho(xz)ho(xz) "'ho(Xz)hm—l(Xz) dOm—l

L 0---0 hm—l(xz)ho (Xz) '”hm—l(xz)hm—l(xz) __dm—lm—l_
(3.121)
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By multiplying two matrices on Eqgn. (3.121), we generate
(1, ®(h(x,) h (x,))vec(D) =

i dooho (X, )N (X5) +---+d 40y (X,)N,, 1 (X)) +0+---4+0+---4+0+---+0

Aooh (%) (X5) ++-+d ohy () 1 (X,) +0++--+0+---+0+---+0
0+ 4+ 0+doyhy (X, )Ng (%) +--- +dpyshy (X )hg i (%) #0424+ 0+

0+---+0+dg;hy; (%)hg (X)) + -+ +dpyhy ()N, (%) + 0+ 4+ 0+ +

O+--4+0+40+--4+0+---+dy,,hy (X,)N (X,) + ---+d 1. hy (X,)N, (X))

O+"'+0++0+'“+0+'”+d0m—lhm—1(X2)h0(X2)+"'+dm—lm—lhm—l(xz)hm—l(xz)_

(3.122)

Eqn. (3.122) can then be written as

m-1
Aol (%) (%;)

k=0

m-1

diohm-1 (X2)Ny (X)
k=0

m-'

1
diho (6 )Ny (%,)

k=0

(I, ® (h(x,) h' (x,))vec(D) =

m-='

1
P 0P (%,)

k=0

m-1

2 i 1Py ()0 (%)

k=0

m-1

2 A 1hs (%D (%) (3.123)

k=0

By applying the one-dimensional Haar wavelet product, which is defined in Eqn. (3.51)

h(x)hT (x)c = M(c)h(x), for x,, we arrive
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M(dg) | ho(x,) ]
M(d,) | h(x,)
(I m ®(h(X2) hT(Xz))VeC(D) = M(dz) hz (Xz)

_M (d m—l)_ _hm—l (XZ )_
Finally, we have

(I, ® ((x,) h" (x,))vec(D) = B(D)h(x,),

3.124)

(3.125)

where A(D) is a block mx1 matrix with each block M(d,) is of size mxm. M(d,) is

obtained using Eqn. (3.51) with the i" column of D as the coefficient vector.

Subsequently, we deal with the term that includes x, together with the result of Eqn.

(3.125) as follows

F(Xv Xz) = ((h(xl) hT(Xl) ®I m)IB(D)h(Xz)

=K(x)BD)h(x,),

where K(x,) isablock mxm matrix that can be written as follows:

Koo K01 Koz KOm—l
K(Xl) _ K:10 K:11 K:12 o K:lml
Km—lO K m-11 K m-12 K m-1m-1

Each (i, j)™ block is a diagonal matrix, that is,

Kij = hi (Xl)hj (Xl) Im )

fori,j=012,....m-1.

(3.126)

(3.127)

(3.128)
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Let

where g =

(r)
00

(r)
10

(r)
_ﬁmr—lo

(r)
01

(r)
11

(r)
m-11

B(D) =

(r)
02

(r)
12

()
ﬂmr—lZ

ﬂ(O)
ﬂ(l)

ﬂ (m-1)

(r)
om-1

(r)
Im-1

(r)

m-1m-1_]

forr=0,1,2,...,m-1.

(3.129)

(3.130)

Then, by performing the multiplication operation on Eqn. (3.126) as block wise, we

have

F(X1vxz) =

B 0 1 2 -1
Kooﬂ() + Kmﬂ() + Kozlg() + ot KOm—l:B(m )
0 1 2 -1
Kloﬁ() + K11IB() + Klzﬂ() + oot Klm—lﬂ(m )

| hy (x,)
h,(X;)

0 1 2 -1
_Km—loﬂ( '+ Km—llﬁ( '+ Km—lZﬂ( R Km—lm—lﬁ(m )__hmfl(XZ)

By using Eqn. (3.128), then Eqn. (3.131) can be rewritten as follows:

F(Xl’XZ) =

[ hy (X)hy (X)) B +h, (x)h, (x) Y+ -
h, (X)), (%) 8® + h (x ) ()Y + -

Ny (3P (%) B9 + 1y () () BY +++-

+ 1y (%), (x) B

+hy (X )N, (%) B ]

+ 1y (), ()7 |

(3.131)

hy (X,)
h, (x,)

hm—l (XZ)

(3.132)
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The current definition of 5

as explained in Eqn. (3.130) is used to simplify Eqgn.

(3.132) as
F(X,%;) =
I TNCSUNCHNIND o SUNCHLNCH NN of A NCALNCS
I RNCS N CORD WA NCALCA NS 3 SINCALNCS
PIANCONCA D W LNCH N A I I SN COUREN
' ' ' o (%,
m-1 m-1 m-1 h
PIIENCAUNCARD S AR ACALNCS I 3 SNXCS N CORN I
________________________________________ hm—l(XZ)
> Ao s G0N () 3 Al COMX) 3 Bl s G0, ()
IFUMNCALNCR) S ARCRIXCR D of A SN CRUNC
(3.133)
Finally, we have
N(,Boo) N(ﬂm) N(ﬂoz) ’ N(ﬁOm—l)
F(Xl,XZ)Z N(,B1:o) N(:ﬁll) N(:ﬂlz) " N(ﬂl;n—l) [h(Xl)®h(X2)].
N (:Bm—lo) N (ﬂm—ll) N (ﬂm—lZ) - N (:Bm—lm—l)
(3.134)
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Then, Egn. (3.134) can be written as
F(x,,%,) = N(B(D)) H(X,, X,) , (3.135)

where N(A(D)) is a block mxm matrix. Each block has a size of mxm, and each
(i, )™ block of N(/, ;) is obtained from Eqn. (3.51) using the vec(f;;) column as the

coefficient vector.
Finally, Egn. (3.119) can be written in the compact form
(X, %,)9 (%, X,) = vecT (C) N(A(D)) H(x,.X,) (3.136)

]

3.12 Algorithm to Compute the Operational Matrix of the Product

of Two-dimensional Haar Wavelet Vectors
The algorithm to obtain N(D) is expressed as follows:
Step 1: Let D be a matrix of vec(D).
Step 2: Compute M, , i=1,2,...,m according to Eqn. (3.51) using column d; as the
coefficient vector.
Step 3: For i=1,2,...,m, computevec(M, ) .

Step 4: Form a large matrix by concatenating all vectors from Step 3; that is,
S=[vec(M, ) vec(M, ) ...vec(M, )].
Step 5: For each row k of matrix S, compute N; ; according to Eqgn. (3.51) using row

S, as the coefficient vector.
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Step 6: Form matrix N(D) as follows:

N, N, ... N,
N N,, ... N,,

ND)=| .= % S (3.131)
_le Nm2 Nmm_

Step 7: End.

For instance, f(x;,,X,)d(X;,X,) should be computed when f(x;,%,)=x, and

(X, X, ) ==X, +2X,.

First, the functions above are approximated for the Haar wavelet function when m=2.

05 -0.25]|h
f 06 50) = [h(x) h, <xl>{o ) L((XX)J .

05 -05]h,(x,
ORSRNORYS) folid howet |

These formulas can be rewritten by using vec as follows:
f(x,%,)=[05 -025 0 OJH(x,X,).

9(x,%,)=[05 -05 0.25 OJH(x,,X,).

05 -0.25

Step 1: D= .
0 0

Step 2: M, = 05 0

P& %10 05

05 0
M, = .
=10 05
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Step 3:

Step 4:

Step 5:

Step 6:

Therefore,

0
vec(M, )=
My)=|
0.5_
05 -0.25]
0 0
S =
0 0
0.5 -0.25_

1 —

, vee(M, ) =

05 -0.25 0
= ) N12 =
-0.25 0.5 0

05 -025 0 0

|-025 05
|10 0
0 0

f (%, %,)9(x,%,)=[05 —05 0.25 O]NH(x,X,).

-0.25

-0.25

4

-0.25
-0.25 05|

0 0 0.5
N21= 0 0 ’N22=

0 0
05 -025|
-0.25 05

In subsequent equations, we drop subscript m to limit notations if no confusion will be

induced.
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3.13 Conclusion

Throughout the work in this chapter, the Haar wavelet method is used to derive some
new formulas for the operational matrices of Haar wavelets on intervals [0,7) and
[—z‘,r). All of these formulas are important, as highlighted in subsequent chapters.
First, the new operational matrices are developed for integrating one-dimensional Haar
wavelets on intervals [0,7)and [-z,7). Second, a general formula is established for the

matrix of the collocation points of Haar wavelets with two variables. Third, an

operational matrix is defined for the integral products of one-dimensional Haar wavelet
vectors on interval [z,,z,). Fourth, new operational matrices are derived and proved for
integrating two-dimensional Haar wavelets basis on interval [— z‘,r). Finally, we derive

and prove a new algorithm for the operational matrix of the product of two-dimensional
Haar wavelet functions. In addition, a general formula is established for approximation

the function of two dimensions using Haar wavelets of two functions.
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CHAPTER 4

INDIRECT METHOD

NONLINEAR OPTIMAL CONTROL PROBLEMS

4.1 Introduction

In this chapter, a novel method to solve the Hamilton-Jacobi-Bellman (HJB) equation,
which appears in the formulation of the nonlinear control system with quadratic cost
functional and an infinite time horizon is introduced. This method is a numerical
technique that is based on the combination of the Haar wavelets operational matrices
and the successive Generalized Hamilton-Jacobi-Bellman (GHJB) equation. This
chapter begins with the problem statement.We explain the underlying concept that leads
to GHJB equation usage in this work before establishing the numerical method for the
nonlinear optimal control problem using the operational matrices of Haar wavelets. The
GHJB equation is a first-order linear partial differential equation; thus, it is theoretically
easier to solve than the nonlinear first-order hyperbolic partial differential HJB
equation. HIB equation is used for constructing a nonlinear optimal feedback control
law. There is no general closed form solution to this equation. In this chapter, we show
how to approximate the GHJB equation. We then use the successive GHJIB equation to
improve the closed-loop performance of stabilizing controls and reduce the problem of
solving HIB equation to one of solving GHJB equation. Interestingly, when the process
of improving the control and solving GHJB equation is iterated, the solution to the
GHJB equation converges uniformly to the solution of the HIB equation which in form
of the gradient of the Lyapunov function VV . Thus, to determine the Lyapunov
function from the resultant solution for the linear system equations, we proposed a new

method that depends only on the initial and final states using variable gradient method.
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The proposed approach is simple and stable. Moreover, it has been tested on linear
and nonlinear optimal control problems of infinite time horizon in two-dimensional
state space and controls. The numerical results and discussions are provided at the end

of this chapter.
4.2 Problem Statement

In this chapter, we consider the following optimal control problem:

The system to be controlled is given by nonlinear differential equations with affine in

the control of the form

x=f(x) +g(x)u(x), X(0) = X,, 4.1)

where x(t) € Q is the state vector, u:Q — R™ is the control vector, f :QQ — R™, and
g:Q —>R™"™ are continuously differentiable with respect to all its arguments, x, € Q

is the initial condition vector, and Q is the domain of attraction region. System (4.1) is

denoted by ( f, g).

The problem is determining the optimal control u”(x) that minimizes the following

performance index,

J(X,,u) = T(I (x(t) + ||u(x(t))||i) dt , (4.2)

where | : R™ — R is a positive definite that is called the state penalty function. 1(X) is
typically a quadratic weighting of the states; 1(x) = x" Q x; and ||u(x)||‘:; =u'RuU is the

control penalty function, where Q e R™™ is a positive semi-definite matrix and

R e R™™ is a symmetric positive definite matrix. In the case of infinite time horizon,
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the system equations ( f, g) and |, as well as the initial control u‘® are independent of

time.

4.3  Generalized Hamilton-Jacobi-Bellman Equation

In this section, we derive the Generalized Hamilton-Jacobi-Bellman partial differential
equation solution to the nonlinear optimal control problem with infinite time horizon.
This problem is subject to time-invariant dynamics; that is, does not depend on t
explicitly. The solution follows from the technique known as dynamic programming,
which was popularized by Bellman (1954). We first explain the concept of dynamic
programming then apply this concept to the optimal control problem to derive the GHIB

partial differential equation.

Dynamic programming is the concept of using the principle of optimality to
formulate an optimization problem as a recurrence relation. That is, the remaining sub-
problem has precisely the same structure as the previous sub-problem. Thus, a particular
optimization problem is solved by studying a family of problems of which the particular
problem is a member. The basis for applying the dynamic programming solution to the

optimal control problem is the so-called principle of optimality.

4.3.1 Principle of Optimality

The principle of optimality states that if an optimal control is divided into two pieces,
then the last piece is itself optimal. The basic assumption underlying this principle is

that the system can be characterized by its state x(t) at time t. This assumption
completely summarizes the effect of all inputs u(t) prior to time t, thereby facilitating

the local characterization of optimality as given in the following formal statement of the

principle of optimality (Primbs, 1999).
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Definition 4.1: Principle of Optimality

If u™(z) is optimal over the interval [t,t,], beginning from state x(t), then u”(z) is
necessarily optimal over the subinterval [t+At,t,] , for any At such that

t; —t>At>0.

Definition 4.2: Admissible Controls (Beard et al., 1998).

Given the system (f, g), for an infinite-time horizon problem, a control u: R™ — R™

is admissible with respect to the state penalty function | on Q, which is written

ueA (Q), if

u is continuously differentiable on Q,

u(0)=0,

system X = f + gu is the Lyapunov stable on Q,

and cost function J(x,u) is finite for all x e Q, where J(x,u) is given by Eqn.

(4.2).

Lemma 4.1: If Q is compact, f and g are Lipschitz continuous on Q and f(0) =0,
| is a positive definite and monotonically increasing function on Q, and R is a
symmetric positive definite matrix, u € Q then:
e On Q, there exists a unique continuously differentiable solution V(X) to the
equation GHJB(V;u) = 0with boundary conditions V(0) =0,
e V(X) is a Lyapunov function for the system (f, g,u) on Q,
e GHIB(V;u) =0< V(x) =J(x), where J(x)is the performance index given in
Eqgn. (4.2).

Proof (see Saridis and Lee, 1979).
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We define V™ (x,) as the minimum value of the performance index over all admissible

trajectories (x(t),u(t)), where x starts at x, :

V() = min [100) +JuCe)]?) dt (4.3)

subject to
x=f(x) +g(x)u(x), f(0)=0, 4.4

Function V™ :R™ — R, U{«} determines the rule that associates an optimal value
with each initial point and is called the value function or the Bellman’s function of the
optimal control problem. An optimal pair (often simply referred to as an “optimal
trajectory”) is a pair (x(t),u(t)) that has a starting point x, and achieves the optimal
cost V7 (X,) -

V'(x,) is independent of u(.) precisely because knowledge of the initial state

abstractly determines specific control on the basis of the requirement that the control

minimizes the performance index. Rather than merely determining the control that

minimizes Eqn. (4.4) and for the value of V" (x(t)) for various x,, the problem is

addressed by evaluating V" (x(t)) for all x(t), as well as the associated optimal control.

We then apply the principle of optimality. Consider V" (x) given by Eqn. (4.3), and let
u[t,o] be defined as the control function over the interval [t,o0). Applying the additive

properties of integrals and the principle of optimality yields

V*(x(t)) = min {Hft(l(x(r) + ||u(x(r))||i) dr+ V" (x(t+ At))} . (4.5)

uft,t+At]
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That is, the optimal cost at state x(t) is given by the minimum of moving to state
x(t + At) in addition to the optimal cost from x(t+ At). In essence, the problem of
determining the optimal control over the interval [t,c) is reduced to one of
determining the optimal control over the reduced interval [t,t+ At] when the principle

of optimality is applied.

When At value is small, the integral in Eqgn. (4.5) can be approximated with
[I(x(t)+||u(x(t))||i]At. The application of a multivariable Taylor-series expansion of

V7 (x(t + At)) for x(t), with x(t + At) — x(t) approximated by [f (x(t)) + g(x(t))u(t)]At

generates

ov'T

V*(x)=muin{[l(x)+||u(t)||i]m+V*<x) A, [f(x)+g(x)u]At+O(At)}(46)

*

where % denotes the gradient of V" with respect to vector x and O(At) denotes the
X

higher-order terms in At. Cancelling V*(x) on both sides and taking the limit as At

approaching zero yields

8V (x)

mln{[l(x(t)) + Ju )1+ (= (x() + g(X(t)U(t)]} =0 (4.7)

The boundary condition for this equation is given by V*(0) =0 where V*(x) must be

positive for all x (given that it corresponds to the optimal cost that must be positive).
Eqgn. (4.7) is one form of the so-called Generalized Hamilton-Jacobi-Bellman (GHJB)
equation. Assuming that a unique optimal control u” exists and is an admissible control,

then the optimal cost is given by the solution to the GHJB equation

(4.8)
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We obtain a new feedback control law from the solution to the GHJB equation Egn.

(4.8) by fixing V" and by minimizing the Hamiltonian, that is,

u\* :—ER-lgT(X) aV (X)

vY A 4.9
2 OX 49
Let V" be the solution to the equation GHJB (V*,0") =0 then V" <V". But V" is the

optimal cost; therefore, V" =V". The optimal control is unique; thus, G must be the

optimal control. Substituting G~ into the GHJB equation generates the HJB equation

HJB(V*):GHJB(V*,—ER'lgTﬂ):O. (4.10)
2 OX
That is,
VAl 1oV ov*T
HIB(V") = f-—= Rig"——+1=0. 411
V) OX 4 ©ox g g OX ( )

We can interpret the GHJB equation geometrically. Figure 4.1 (a) illustrates the phase
of a two-dimensional, infinite time system. The dotted lines represent the trajectories of
the system. The cost at any point x is computed by integrating Eqn. (4.2) along the
unique trajectory of the system passing through x. The solid lines in Figure 4.1 (a) are
the constant contours of the cost function. This geometrical interpretation suggests an
intuitive concept for improving the cost of the system. If we fix the constant cost
contours and minimize the action of the system with respect to these contours, then the
cost of the system is reduced. For instance, the system in Figure 4.1 (b) costs less than

the system in Figure 4.1 (a), as per Beard (1995).
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Figure 4.1: Phase flow plotted against lines of constant cost (Beard, 1995)

4.4 Successive Generalized Hamilton-Jacobi-Bellman Equation

The standard optimal control problem involves determining a control to minimize the
cost function given in Eqn. (4.2). To effectively pose the problem mathematically, a
unique optimal control must exist. This requirement limits the applicability of optimal
control theory. In addition, the optimal control is difficult to determine, whereas many
controls that are close to optimal may be significantly easier to compute. In this section,
we generalize optimal control by considering the problem of improving arbitrary
stabilizing control performance. We also show that by iterating the improvement

process, we converge uniformly to the optimal control, if it exists. Given an arbitrary
controlu(x), the performance of the control at x e Q < R™ is given by a Lyapunov

function for the system Beard et al. (1997).

V(x,u) = T(I (x(t)) + ||u(x(t)||i) dt , (4.12)
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where | :R™ — R is a positive definite and monotonically increasing function on Q,

Re®R™™ is a symmetric and positive definite matrix; ||u||i:uTRu ; and

I(X)= x"Qx.

The optimal controller in the feedback form is presented as follows as per Beard et al.

(1997).

oV’ (x)

u'(x)=-ZRgT ()~ (4.13)
where V" (x) is the solution to the following HJB equation:
Y09 1100~ 2 ggmogyr MW g (414

under boundary condition V" (0) =0; that is V(x",u”) <V(x,u) for all u, x"(t) is the
solution of x = f(x)+ g(x)u’(t). Basically, solving the nonlinear partial differential

equation (4.14) for the purpose of obtaining V" (x) and consequently u”(x) from Eqn.

(4.13) is difficult; instead, the following two linear equations have been iterated using

the algorithm proposed by Beard et al. (1997):

W(f (9 +90u® (x))+1(x) +u® (v =0 (4.15)
with initial condition V® (0) =0 and

VD (x)
OX

ut(x) = R 9T (4.16)

In the case of moderate presumptions, Beard et al. (1997) established that the iteration

between the GHJB (4.15) and the control (4.16) coincide with the original HIB equation
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solution (4.14). If we can first determine a stabilizing control u®(x), then the

performance of this controller can be iteratively enhanced using Eqns. (4.14) and

(4.15). Finally the optimal controller can be approximated optimally. Moreover, the
controller u® is a stable control at each iteration step. In the case of infinite time
horizon, the system equations ( f, g) and I, as well as the initial control, u® are

independent of time.

4.4.1 Algorithm of the Successive GHJB Equation

Initial Step: Given an initial control law u®(x) that is admissible on Q , the

performance of u® on Q is given by the unique solution V@ (x) to

GHIBV®,u® fx) =0.

Seti=0

Iterative Step: A control law that is admissible on © and that improves the

performance of u®™ is provided by

_ 0}
u(|+1) (X) _ ( ) 6V (X) (417)
The performance of u® on Q is given by the unique solution V@ (x) to
GHIB(V®,u® (x)=0. (4.18)

Seti=i+1.

84



Solve
1)+ gu® () +10) + @, =
A

An Improved Control Law is

avn (f)(

r (1)
u(i—l}(x) :_l lgT( ) ﬁ\ (Y)
2 ox

¥

Stop

Figure 4.2: Algorithm of the successive Generalized Hamilton-Jacobi Bellman

equation

The algorithm is depicted as an image in Figure 4.2. Numerous studies report that the
algorithm converges uniformly to the optimal control and to the optimal cost
(Mil’shtein, 1964; Leak and Liu, 1967; Saridis and Lee, 1979; Saridis and Wang, 1994).
Therefore, we converge uniformly to the solution of the HIB equation by iterating the
process of improving an admissible control. According to Beard (1995), previous works

failed to note that definite statements can be made regarding the stability region of each
successive control law u® . In particular, u® stabilize on the same region as u‘®. In

fact, the stability region of u” is the largest possible stabilizing set in R™; that is, an
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admissible control that can stabilize an initial unstable condition cannot be obtained

using u”.

4.5 Approximation Functions via Haar Wavelets Approximation

The main point in solving the first-order partial differential equation GHJB equation is

to approximate the second-order partial derivative of V(x;,X,) by using Haar wavelets

2

on the basis of two dimensions in the interval [-z,7)x[-7,7). We first expand

0%, 0X,
using Eqn. (3.68) as follows:
o*°V N
=H"(x)) oH(X,), 4.19
XX, (%) @ H(x,) (4.19)
Wy Wy Wy
where @ =| @0 7T @i s the mxm matrix of the unknown
On10 Opas Om_ima
coefficients .
When Eqgn. (3.70) is utilized, then Eqn. (4.19) can be written as
2
oV =vec' (w)H(x., X,), (4.20)
0%, 0X,

T -
where  vec(w) :[a)oo Wyy = WOyq0 Wgy Oy "0 Opygq " Doy Oy g "'a)m—lm—l] IS a

vector m® x1.
The first-order partial derivative can be obtained by integrating Eqn. (4.20) with respect

to X, and x, using (3.87) and (3.102), respectively, we then obtain

N _ vec" (@)(Q, - 7 E,)H(X,, X,) + ﬂ(xl,O) (4.21)
OX 0%,

1
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v — =vec' (0)(Q, - 7 E;)H(x,, X, )+8 (0,x,), (4.22)

2

where Q,, Q,, E,, and E, are the known m?xm? operational matrices for Haar

wavelet functions, Z—V(xl,O), and S—V(O, X,) are unknown values of the initial
1 2

condition.

We specify the matrix form for Z—V(xl,O) and 2_\/(0’ X,) in solving the GHJIB
X

equation.
Let

s(x,) = r_nz;bi h (x,) (4.23)
and

g9(x;) = Za i (%2) (4.24)

where b; and a; are the Haar coefficients of s(x;) and g(x, ) respectively. Therefore,

S()9(%) = > 3 ba,h (x)h, (x,). (4.25)

i=0 j=
Eqgn. (4.25) implies that a new form of coefficient matrix can be determined for

separable functions by multiplying the Haar coefficients b, and a; to yield ¢; =ba;.

In matrix form, the coefficient matrix, C  for separable functions can be decomposed

as
by2, boay by
b,a b,a - ba__
Cm _| ™ .o 1. 1 1 .m 1
bm—laO bm—lal bm 480
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= [ao a am—l]

=b_al, (4.26)
where a, and b, are column vectors from Eqn. (4.23) and (4.24), respectively.
Eqgn. (4.25) can be written in compact form as
V(x,%,)=H"(x)b, al H(x,). (4.27)
The concept of separable functions can be utilized to determine the coefficient matrix

C,, for the cases listed below

a) If the function is independent of x,, then V(x,,X,) =s(X,). Using Eqgn. (4.27),

we can express the function as V(x,, X,) =s(x,).1. Then s(x,) =b] H(x,)and

g(Xz) =1= ho(xz)

h (X;)
=[1 00 .. 0] r:]1()(2)
hm—l(XZ)
=0TH(X,).
Therefore
V(Xl’ Xz) = S(Xl) 1
=H"(x)b, 07 H(x,). (4.28)
Then,

CI'Tl = bmel'-Tll-

88



b, 0
c | b 0
b,, O 0

The first column of C_, alone is nonzero.

b) If the function is independent of x,, then V(x,,X,) = g(x,). Using Eqn. (4.27),

we can express the function as V(x;,X,) =1.9(x,) . Then s(x,) =1=60"H(x,)

and g(x,) =a, H(x,). From these yield

V(Xl’ Xz) =1. g(xz)

= HT(Xl) 0, a-rr: H(Xz)- (4.29)
Then,
Cm :em a;\:
0
=0 [ a a - am—l]
- O -
a, a Ay
0 0 0
Cm = :
0 0 0

The first row of C_ alone is nonzero.
By utilizing Eqns. (4.28) and (4.29), we can express the terms of the initial conditions in

Haar wavelet approximation as follows:
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2X_V(X1'O) = HT(Xl) amenTm H(x,) (4.30)

1

and

SX_V(O’ X,) = HT (%) 0,80 H(X,). (4.31)

2

When Egn. (3.70) is applied, then Eqgns. (4.30) and (4.31) can be written in the

following form:

ﬁ(xl,O) =vec' (o, 0 YH(X,X,) (4.32)
0%y

and
N (0,%,) =vecT (6, ATH(x,. %,) (4.33)
aXZ

where vec" (@0 ) =[et, @, -, 0 0---0---0---0] and

vec"(@8")=[p, 0---0 B 0 ---0 --- B, --- 0] are 1xm? insize.

As originally noted by Bellman, (1957), a general fundamental problem with Hamilton-
Jacobi based methods is that they all suffer from the curse of dimensionality. In other
words, the amount of computation and or memory required to implement the method
increases exponentially with the size of the state space. An ideal approximation method
is not subject to any of the disadvantages of the methods discussed in previous

literatures. In particular, such a method is characterized as follows:

e Low run-time computation and memory requirements.
e Effective handling of the dimensionality problem.
e Guaranteeing that the approximation error approaches zero as the order of

approximation increases.
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Dimensionality remains an issue, although its effect on the computational requirements

can be effectively eliminated. The number of terms in m™ order truncation of a

complete basis increases exponentially with the size of the state.

To overcome the aforementioned problem, we suggest the following technique to
reduce the number of unknown coefficients that are determined for solving the GHJB
equation in the following section. This technique uses the properties of vec transform

(see A.16). Thus, Egns. (4.32) and (4.33) can be written as follows:

oV

o (0= vec" (a)(1® OT)H(x, X,) (4.34)
and
SX—V(O, X,) =vecT (B)(67 ® NH(x,, %,) (4.35)

2

where vec" (@) =[a, @, --- @, ,] and vec"(B)=[B, B, -~ B, ] are m unknown

coefficients.

Finally, by substituting Eqns. (4.34) and (4.35) into Eqgns. (4.21) and (4.22),

respectively, we obtain

27\/ =vec' (0)(Q, -7 E,)H(x,,X,) +vec" ()1 ® 8T )H (X, X,) (4.36)
oV T T T
87=vec (0)(Q, -7 E)H(X,, X,) +vec (SO ®NH(x,X,). (4.37)

2
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4.6 Successive Haar Wavelet Collocation Method

The following section describes the successive Haar wavelet collocation method
(SHWCM) used to obtain the two-dimensional numerical solution to the HIB equation.
An approximate solution to the GHJB equation has been generated in every step of this

algorithm.

, VO(x), and u® (x)can

(i)
Eqn. (4.15) has been completely identified; that is, ava—(X)
X

all be approximately expressed in term of Haar wavelets. V' (x), and u® (x) approach

the optimal solutions V™ (x) and u”(X), respectively, as i — oo.

We consider the following two-dimensional optimal feedback control problem

min V (X, ,U) = T(XTQ X+Uu'Ru)dt (4.38)

subject to the dynamics

x=f(x) +g(x)u(x), X(0) = X,, (4.39)

where x:Kl}; f(x):{fl(xl’xz)} g(x):{gl(xl'xz)}and u:Q—>R.

2 fo (%1, %;) 9, (X, X;)

Without loss of generality, Q=[-7,7)x[-7,7) is selected as the domain of attraction

for convenience. The following equations express the pair that consists of the GHIB

equation and the control law:

VT (x)

> (f (X) + g(x)u(”(x))+ X' Qx+uPTRuU® =0 (4.40)

with initial condition V@ (0) =0 and
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. (i)
Ul (x) = —% Rg"(x) 8Vax(x) . (4.41)

If u@(x) is initially a stabilizing control in Eqn. (4.39), then the solution to GHJB

equation affiliated with u®(x) , which is derived from Eqn. (4.40), becomes a
Lyapunov function for the system. This function is equalized to the cost associated with
u©@ (x) as follows:

VOT(x)

o (f (X)+g(x)u® (x))+ X' Qx+u®@TRu® =0. (4.42)

According to Eqgn. (3.70), the function approximation equations for f,(x)+ g, (x)u®(x)

, F,00+9,00u@(x), and x"Qx+u@T(X)Ru@(x) can be written as

f,() + gl(X)U(O)T (x) =vecT (A)H(x,, X,), (4.43)
f,(X) + 9, (U@ (x) = vec ()H(x,, X,) , (4.44)
X"Qx+uPT(x)RU@ (x) =vec" (K)H(x,,X,), (4.45)

where vec' (1), vec' (u), and vec' (k) are 1xm? the known coefficient vectors for the
Haar wavelet functions that can be calculated from Eqn. (3.71) and H(x,,X,) is m? x1
vector of the known Haar wavelet basis of two dimension functions. Considering that
Haar functions are impossible to differentiate because they are not continuous on the
domain, and that Egn. (4.40) involves only first-order derivatives of V , we assume that,
the second-order partial derivative of V exists as follows:

82V (x)

=vec' (w)H(x,,X,), 4.46
XX, () (1 2) ( )

93



for some coefficient vector vec' (w).
Under the assumption that

0°V(X) _ 0*V(X)
OX,OX,  OX,0%

(4.47)

the first-order partial derivative can be obtained by integrating Eqn. (4.46) on interval

[-z,7) with respect to x, and X, , respectively, as mentioned in Subsection 4.5, as

N %) V(%,.0)

oo =@ QT EHOG )+ =] (4.48)
OV(X, %) 1 B oV(0,x,)
T_w (Q, rEZ)H(xl,xz)Jr—aX1 , (4.49)

where Q,, Q,, E,, and E, are the m* xm? known operational matrices for the Haar

oV(x;,0) and oV(0,x,)
OX, OX,

wavelet functions, and are unknown initial condition values

that are formulated in Eqns. (4.34) and (4.35), which when substituted into Egns. (4.48)

and (4.49), respectively, can be written in Haar wavelet functions as

ZTV =vecT (@)(Q, - 7 E,)H(X;, X,) +vecT (a)(1 ® 0T )H(x,, X,) (4.50)
v T T T
87:\/60 (0)(Q, -7 E)H(X,,x,)+vec (SO ®NH(x,,X,). (4.51)

2

Now, substituting Eqns. (4.43), (4.44), (4.45), (4.50), and (4.51) into Eqn. (4.40), where

the term

)T
—6\/8 (x) in Eqgn. (4.40) can be simplified as
X

VW _(V v
X, X, )

have
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vecT (H(x,, X, )(vecT (0)(Q, - 7 E,)H(x,, X,) +vecT (a)(1 ® 0T)H(x,, X,))
+vecT (L)H(x, x,)(veeT (@)(Q, - 7 E,)H(x,, X,) +vecT ( £)(67T ® H(x,,x,)) (4.52)
+vec’ (K)H(x,,x,) =0.

Rearranging the Eqgn. (4.52), we yield

vec (AH(x,, X, )vecT (@)(Q, -7 E,)H(X;, X,)
+vecT (AYH(x,, x,)vecT (a)(1 ® 0T)H(x,, X,)
+vec' (u)H(x,, X, )vec (0)(Q, - 7 E;)H(X,, X,) (4.53)
+vecT (L)H(x,, x,)vecT (B)(0T ® NH(x,,X,)

= —VGCT (k)H(X1' X2)

Applying the operational matrix of the product of two dimensions Haar wavelet vectors

of the product of two functions in Eqgn. (3.113) on (453) we obtain
vec' (0)(Q, - 7 E,)H(x, X, )HT (X, X, )vec(A)
+vec (a)(1®OTYH(x,, X, ) HT (X, X, )vec(A)
+vec (@)(Q, - 7 B )H(X,, X, )HT (%, X, )vec(u) (4.54)
+vec (B)(OT ® NH(X,, X, )HT (X, X, )vec(u)
= —vec" (K)H(x,, X,) -

Thus,
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vec" (@)(Q, - 7 E,)N(A)H(x,, X,) +vec' (a)(I ® 8T)N(L)H(X,, X,)
+vec” (@)(Q, - 7 E;)N(u)H(x,, X,) +vec (B)(0T @ DN(u)H(x,,%,)  (4.55)

= —vecT (k)H(X1’ X2) :

The vector of two Haar wavelet basis functions H(x,,x,)size m*x1 in Eqn. (4.55) is

replaced with the matrix of H Haar wavelet collocation points of size m* xm? that is

described in Section 3.8.

Then, both sides of Eqn. (4.55) are multiplied with the matrix inverse H* to remove
the term of H and simplifying Eqgn. (4.55). Thus, we have
vecT (@)(Q, - 7 E;)N(2) +(Q, -7 E,)N(w)) + vecT (o) (1 ® T)N(A)

(4.56)
+vec' (w)+vec" (B)(OT ® )N(u) = —vec' (k)

Next, Eqn. (4.56) is transformed into a standard system of linear equations as follows

(Q, - 7E,)N(A) +(Q, - T E;)N(u))
[vec™ (@) vecT (@) vec ()] (1®0T)N(A) = [ vec (k)]
(67 ®1)N(u)
(4.57)

Eqn. (4.57) is a system of underdetermined linear equations with m?equations and

(m? +2m) unknown variables that can solve for the unknown vectors vec' (o) ,

vec' (a), and vec' (B) by using the Moore-Penrose Pseudoinvers solver (Courrieu,

2005), such as pinv() in MATLAB (Hanselman and Littlefield, 2005).
An underdetermined equation is expected, because the Lyapunov function is not unique.

The Moore-Penrose solution is the particular solution whose vector 2-norm is minimal.

96



Using the solution of the GHJB Eqn. (4.40), once we obtain the solution to the unknown

parameters vec' (), vec' () and vec' (), we substitute these parameters into Eqns.

_ v © ©
(4.50) and (4.51) to determine 0 and N as follows:
0%, oX,
ov®
=vec (0)(Q, - 7 E,)H(x,, X,) +vec’ (a)(I ® 8T )H(x,,X,) (4.58)
1
ov©@

=vec’ (@)(Q, -7 E))H(X, %,) +vec' (B 0" ® DH(X;, %,) (4.59)

2

which can be used to construct a feedback control law u® using Eqn. (4.41). Thus, we

have

v

1. OX
U(l)(X)Z_ERl(gl(Xlixz) 9, (X, %;) 8V(10) (4.60)

0X,

which improves the efficiency of u® . The repetition of this process results in a
successive approximation algorithm (SHWCM) that uniformly approximates the

Hamilton-Jacobi-Bellman equation.

Let V" (x,,X,) be the solution to the equation GHJB (V*,u”)=0, then V" is the

optimal cost. Given that the optimal control is unique, u” must be the optimal control.
Thus, to determine the Lyapunov function V™ (x;,X,) from the solution of linear system

equations that satisfy the HIB equation in Eqn. (4.14), we propose a new formula that
depends only on the initial and final points and not on the path followed. We calculate
the Lyapunov function by using the variable gradient method (Slotine and Li, 1991) to

integrate parallel to the axes; this technique can be illustrated as follows:
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Given that
V(X) = j vV dx
0

the Lyapunov function of two dimensions, is given by Slotine and Li (1991)

*

V7 (%, %,) = I %\):1 (x,,0)ax, + Iaax_z(xl’ X2 )X,
where
av: (%.0) = (vec™ (@)(Q, - 7 E,) +vec (") H(x,,0)
and
T o) = e (@)@, - ) +ve” (07 JH, 1)

(4.61)

(4.62)

(4.63)

(4.64)

Eqgns. (4.63) and (4.64) are known functions that are obtained from the final iteration of

the successive GHJB equation in algorithm 4.3.1 that satisfies the stopping criteria for

feedback control law when u”(x) is optimum.

Let
vec(s) =vec' (w)(Q, -7E,) +vec' (af") .
Then
N (4,0) = vecT (5) H(x, 0),
0%,

(4.65)
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where  vec(S) =[5g 6+ Spn10 Gor Sy St Coms Gums  Fpama] 15 Mx1
constant values corresponding to vec' (w)(Q, -7 E,)+vec' (a@") . Therefore, Eqn.

(4.65) can be rewritten as

*

EL (%,0) = vec (707) H(x,, x,) (4.66)

To prove that statement, we start from Eqn. (4.65), which can be rewritten using Eqn.

(3.66) as
10 =3 3,00, O @67)
oV~
ax (leo) = 500ho (Xl)ho (O) + 501h0 (Xl)hl (O) teeet 5Om—lh0 (Xl)hm—l (O)

+ 0,00, (X)hy (0) + 83,0y (% )1, (0) + -+ + 6y, 0y (%), (0)

+ 5m—10hm (Xl)hO (0) + 5m:11hm (Xl)hl (O) +e-t 5m—1m—1hm—1 (Xl)hm—l (0)

(4.68)

Substituting the values of  the collocation point X,=0 |

h(0) =[h,(0) h,(0) --- h_,(0)] into Eqn. (4.68), we have
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oV~
ox, (%1,0) = 50y (X1)70(g+l) +0y;hy (X1)71(%+1) + 4 Oy (X1)7m_1(g+1)

+ 510h1(X1)70(g+1) + 511h1(X1)71(g+1) Tt 51m—1h1(x1)7m_1(g+1)

+ 5m—10hm—1 (Xl)yo(mﬂ) + 5m—1lhm—1 (X1)7 m Tt 5m—1m—1hm—1 (Xl)y
2

U3+ m—l(ngl)
(4.69)
where y =~ ¥ .. , ...,y , aretheelements of the (m+1) column in the Haar
0+ 16+ m-1(,+1) 2
wavelets collocation points matrix of one dimension.
Now, Eqn. (4.69) can be rewritten as
y 0(%4) 7/0(9+1)
ov” rm, Y, m,
x (Xlio) = [500 501 50m—l] 1(_2 Y ho (X1)+[510 é‘11 51m—l ] 1(.2 Y hl(xl)
1 . .
m—1(%+1) m—l(g+1)
7/0(%1)
Y m
1(—+1)
o F [6m—10 5m—11 5m—1m—1] .2 hm—l(xl)
i m—l(gﬂ)_
(4.70)

Eqn. (4.70) can be rewritten into a compact form as

av* m-1 m-1
E(Xl’o) = Zzéijyjhi (X)) (4.71)
1 i=0 j=

100



To simplify Egn. (4.71),

m-1m-1

let 7, =YD 5;7; be the coefficient values for h;(x,) for i=012,---,m-1

i=0 j=0

Then, Eqn. (4.71) can be rewritten as

*

oV

(x,,0) = n;H(X1) (4.72)

1

Eqn. (4.72) is independent of X, . Therefore, by utilizing Eqn. (4.32), it can be rewritten

as

*

Z (14.0) =vee” (7 6 )H(X, %,). (4.73)
Xl

Finally, by substituting Eqn. (4.73) and (4.64) into Eqgn. (4.62), we obtain

V7 (X, X,) = Tvec(n O YH(X,, X,)dx, + T(vecT (@)(Q,-7E,)+vec" (687 ))H(xl, X, )dX,
(4.74)

Integrate Eqn. (4.74) by using Eqns. (3.87) and (3.102) on interval [-7,7)x[-7,7), we

obtain
V*(X1’ X;) = VecT(77 Hr:]—)(Ql -t E)H(X, X,)

+(vecT (@)(Q, - TE,)(Q, -7 E,) +vecT (887 )(Q, - 7 E;) H(x,, X,)  (4.75)

~V(0,0)

where V(0,0)=0.
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4.7 Numerical Results

This section demonstrates the usefulness, efficiency, and accuracy of the Successive
Haar Wavelet Collocation Method (SHWCM). For this purpose, we applied the
proposed method to solve linear and nonlinear quadratic optimal control problems with
infinite time horizon. In particular, five different examples are consider, which are
presented in this section. A linear optimal control example is considered first, followed
by four nonlinear optimal control examples with one control variables for the three
examples and two control variables for one example. All computations were carried out

using of MATLAB.
4.7.1 Example 1

Consider the following linear quadratic regulator (LQR):
3 =[x +u? @) dt (4.76)
0

subject to

X—01X+Ou 4.77
1o of |1 (4.77)

To solve this problem, we take the initial stabilizing control u®© (X) =—X, —X,. Tables

(4.1) and (4.2) show the numerical results for u® and V", respectively, when m=8

1 . . . :
and X, = g The iteration is terminated when the difference between two successive

controls is less than ¢ = 0.001, that is, H u® —u(‘)H < & . Subsequently, to display the

m
two dimensional plots, we fix the value for X, at xl(Ejz—% and X, €[-11).
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Figure (4.3) shows that for this particular LQR problem, the usage of m=16 can

adequately approximate the exact optimal feedback control u*(x):—xl—\/E X, ;

however, to approximate the cost function we require a higher value of m as shown in

Figure (4.4).

- 1
Table 4.1: Numerical results u® for Example 1 when m=8 and X, = 8

X, u®© u® u® u® u® Uy oot
—-71/8 1.0000 1.4463 1.3772 1.3786 1.3793 1.3624
-5/8 0.7500 1.0636 1.0114 1.0130 1.0136 1.0089
-3/8 0.5000 0.68889 0.6548 0.6548 0.6550 0.6553
-1/8 0.2500 0.3135 0.3027 0.3017 0.3015 0.3018

1/8 0 -0.0615 -0.0515 -0.0519 -0.0520  -0.0518
3/8 -0.2500 -0.4397 -0.4080 -0.4053 -0.4049  -0.4053
5/8 -0.5000 -0.8137 -0.7584 -0.7571 -0.7572  -0.7589
718 -0.7500 -1.1880 -1.1123 -1.1130 -1.1135 -1.1124

- 1
Table 4.2: Numerical results V® for Example 1 when m=8 and X, = 3

X, V(O) V(l) V(2) V(3) et
—-7/8 0.7051 0.6709 0.6712 0.6714 0.6618
-5/8 0.3914 0.3723 0.3722 0.3723 0.3654
—-3/8 0.1723 0.1640 0.1637 0.1637 0.1574
-1/8 0.0470 0.0444 0.0442 0.0441 0.0377

1/8 0.0155 0.0130 0.0130 0.0130 0.0065
3/8 0.0781 0.0704 0.0701 0.0701 0.0636
5/8 0.2348 0.2162 0.2154 0.2153 0.2091
7/8 0.4850 0.4500 0.4492 0.4492 0.4431
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Figure 4.3: Optimal feedback control for Example 1 via the SHWCM with

1 1
m=38,16 and X, =——, ——, respectivel
1 8 16 p y
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Figure 4.4: Value for cost function for Example 1 via the SHWCM with

1 1 1
m=38,16,32 and X, =——, ——,——, respectively
8 16 32

4.7.2 Example 2

Consider the following nonlinear one dimension example, as presented by Park and

Tsiotras (2003):
J= I(XTQ X+u'Ru)dt (4.78)
0

subject to

x=f(X)+g(xX)u (4.79)
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with the following data: Q=1, R=1 f(X)=xe ™ and g(x)=¢e™".

For this example, the solution to the HIB equation can be found analytically to be

V' (x)=201+ \/5)(xe‘X —e*+1) with the corresponding optimal control is
u*(x):—(l+x/§)x. The SHWCM is applied with an initial stabilizing control of

u@(x)=-2x, and the iteration is terminated when the difference between two

successive controls is less than & =0.0001. The results are shown in Figures 4.5 and
4.6, which show the monotonic convergence of the value cost functions and the
corresponding control to the optimal one when Haar wavelets resolution levels of

m =28,16 are used.

4.5¢

4 J
Vexact /
3.5 \%

15 7

g
X
5
,
0.5 ‘
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I
.
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.
.
. .

Figure 4.5: Value for cost function for Example 2 via the SHWCM with m=8,16
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Figure 4.6: Optimal feedback control for Example 2 via the SHWCM with

m=8,16

4.7.3 Example 3

Consider the following nonlinear optimal control problem (Curtis and Beard, 2001):

J= j(xzz +u?)dt (4.80)
0
subject to
X
X = 2 5%/ + ° u 4.81
- —x1(£+tanl(5x1)j—#2+4x2 3 (4.81)
2 2(1+ 25x2)
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The optimum  solution for this problem is u'(x)=-3x, and
* 72- i - -
V (x) = xf(5+tan l(5X1)j+ X2 . To solve this nonlinear optimal control problem,

we started with an initial stabilizing control of u‘” (x) = —1.8x, . Figure (4.7) shows the

approximate optimal feedback control law u”(x) for m=8, 16, and 32. The graph for

m =32 overlaps with the exact optimal feedback control, and Figure (4.8) shows that
the approximate cost function converges with the exact cost function as the resolution is

increased.

™

.
e

N

Figure 4.7: Optimal feedback control for Example 3 via the SHWCM with

1 1 1
m=38,16,32 and X, =——, ——,——, respectively
8 16 32
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Figure 4.8: Value for cost function for Example 3 via the SHWCM with

1 1 1
m=38,16,32 and X, =——, ——,——, respectively
8 16 32

In three dimensions plane, Figures (4.9) and (4.10) illustrate the results obtained by
proposed numerical method and analytical solutions for the cost function of the
nonlinear optimal control problem with m =32 . Meanwhile, Figures (4.11) and (4.12)
illustrate the results for the approximate and exact solutions for the obtained optimal
feedback control, respectively. In this example, the numerical results are obtained

within 14 successive controls iterations and a criteria error of £ =0.001.
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Figure 4.9: Approximate solution for cost function with m=32 and ¢ =0.001 for

Example 3

Vexact

Figure 4.10: Exact solution for cost function with m =32 for Example 3
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approx

Figure 4.11: Approximate solution for optimal feedback control via the SHWCM
with m=32, £ =0.001 and 14 iterations for Example 3

uEX act

Figure 4.12: Exact solution for optimal feedback control with m =32 for

Example 3
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4.7.4 Example 4

Consider the following nonlinear optimal control problem (Beard et al., 1997):
J :J.(xf+x22+u2)dt (4.82)
0

subject to

=% =x,| |0
X = |, (4.83)
X, + X, 1
The initial stabilizing control u'® (x) =0.4142x, —1.3522x, can be obtained using

feedback linearization method as discussed by Isidori (1989). The optimal feedback
control and cost function obtained using SHWCM for various Haar wavelet resolutions
of m=8, 16, and 32 are illustrated in Figures (4.13) and (4.14), respectively. We
believe the SHWCM will yield more accurate results when the Haar wavelet resolution
Is increased. Figure (4.15) shows the simulation of the system trajectories. Figures
(4.13) and (4.14) clearly show that compared with the approximate solutions for the cost
function, the approximate solutions for optimal feedback control require lower
resolution, than the approximate solutions for the cost function. Nonetheless, more
accurate results can be obtained in both cases by increasing the resolution of the Haar

wavelet.
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Figure 4.13: Optimal feedback control for Example 4 via the SHWCM with

1 1 1
m=38,16,32 and X, =——, ——,——, respectively
8 16 32
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Figure 4.14: Value for cost function for Example 4 via the SHWCM with
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Figure 4.15: Some state trajectories for Example 4
4.75 Example5

Consider the following nonlinear optimal control problem described by Cloutier et al.
(1996), which contains two state variables and two control variables. The system, which
has cubic nonlinearities in each equation

= + (4.84)

The cost function to be minimized is

1 0
X+u' o 1 u |dt (4.85)

o N

J(xo,u)zo_f X"

N |-
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The initial stabilizing control for this example was chosen to be
u?(x) =-2.5811x, - x, , UuP(x)=-x,—-05811x, and the  region
Qz[—l, 1]><[—1, 1]. The optimal feedback control and cost function obtained using

SHWCM for various Haar wavelet resolutions of m=4,16, 32, and 64 are illustrated in
Figures (4.16), (4.17), and (4.18). These figures clearly demonstrate that the SHWCM
will be capable of yielding more accurate results when the Haar wavelet resolution is

increased.

This problem was reduced in Beeler et al. (2000) and was solved by using five different
methods, and they obtained the values for the cost functional J(X,,u) that are listed in
Table 4.3. To compare, our control cost at initial condition X, = (1, 1) is 4.66185392

when the Haar wavelet resolution m=64 and within i =31 successive controls

iteration.

Table 4.3: Numerical comparison of feedback control methodologies in Example 5

at initial condition X, (1, 1) , Beeler et al. (2000)

Numerical methods Cost
HJB with Power Series Approximation 4.6985
State-Dependent Riccati Equation 4.6929
Interpolation of TPBV Problem Solution 4.6809
Interpolation of Iterative Solution 4.6768
Our Method SHWCM 4.66185392
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Figure 4.18: Value for cost function for Example 5 via the SHWCM with

1 1 1 1
m=4,16,32,64 and X, =——, ——,——,———, respectively
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Figure 4.19 illustrates the results obtained by the proposed SHWCM for cost function,
whereas Figures 4.20 and 4.21 demonstrate the first and second optimal feedback
control of the nonlinear optimal control problem with m =64 , respectively. The

numerical results are obtained within 31 successive controls iterations and a criteria

error of £ =0.01.
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Figure 4.19: Approximate solution for cost function with m=64, £ =0.01 and 31

iterations for Example 5

Figure 4.20: Approximate solution for first optimal feedback control with m =64,

£ =0.01 and 31 iterations for Example 5
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Figure 4.21: Approximate solution for second optimal feedback control with

m=064, £=0.01 and 31 iterations for Example 5

4.8 Numerical Discussions

The results of all examples are depicted in figures. Each figure is plotted with the
solution obtained from the proposed numerical method (SHWCM) with various Haar
wavelet resolutions. The results in figure form provide a better visualization regarding

of the agreement between numerical and exact solutions, if available in some examples.

By using the SHWCM, which involves Haar wavelet operational matrices to solve
the GHJB equation, the problem is reduced to a matrix computation that is much
simpler than a method that requires the computation of multidimensional integrals. The

proposed method can be easily coded.
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This advantage suggests that the Haar wavelet has a great potential as a numerical
tool. Additionally, other benefits of this tool include faster computation and

attractiveness.

All of figures clearly indicate that the convergence of approximate solutions for
optimal feedback control requires lower resolution than that required by the
convergence of approximate solutions for the cost function. For instance, see Figures
4.13 and Figure 4.14. However, in both cases, more accurate results can be obtained by

increasing the resolution of the Haar wavelet.

The proposed numerical method presents encouraging results even for a small value
of Haar wavelet resolution of m=8. The accuracy of the solution in the numerical
results is improved as larger values of m are used. An example of this phenomenon is
the nonlinear optimal control problem in Example 3, which is depicted in Figure 4.7 and
Figure 4.8 with m =16 and m =32. In addition, the proposed numerical method agrees
well with the exact solution, as shown in Examples 1, 2, and 3. The simulation results
indicate that the accuracy of the control and cost can be improved by increasing the

Haar wavelet resolution.

This work will serve as foundation for finding the solution to the Hamilton-Jacobi-
Bellman equation in view of the sparse matrices that appeared during the calculation,

which contribute to a faster computational analysis.

122



4.9 Conclusion

In this chapter, we used the Haar wavelets operational matrices to approximate the
solution to the GHJB equation in the interval [-z,7)x[-7,7). When Haar wavelets
operational matrix methods are used to approximate the GHJB equation, and the result
is plugged into the successive GHJB equation, we obtain algorithm 4.4.1 (Figure 4.2),
which improves the closed-loop performance of u®(x). The GHIB equation is the key
to finding the results in this chapter because it answers three fundamental questions that
are presented in Section 2 of Chapter 1. First, its solution provides a compact
representation of the performance of any admissible control. Second, its solution allows
users to find a control law that improves the performance of the original control. Third,
by iterating the process, we converge uniformly to the solution of HIB equations. The

advantages of the proposed method are as follows:

e All of the computations are performed off-line.

e The resulting controls are in feedback form, and they stabilize the closed-loop
system.

e The algorithm converges uniformly to the optimal control.

e By increasing the complexity of the approximating control, it can be made
arbitrarily close to the optimal.

e More accurate results can be obtained by increasing the resolution of the Haar

wavelet, and the approximate controls are guaranteed to stabilize on Q.

Finally, the proposed approach is simple and stable, and it has been tested on linear
and nonlinear infinite time horizon optimal control problems in one or two-

dimensional state space with one or two controllers.
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CHAPTER 5

DIRECT METHOD

CONSTRAINED OPTIMAL CONTROL PROBLEMS

5.1 Introduction

Optimal control problems without constraints can be successfully solved with the use of
the majority of direct and indirect techniques. However, analytical and computational
difficulties often arise because of inequality constraints. Thus, researchers aim to solve
constrained optimal control problems with numerical methods. Direct methods are
widely used to solve nonlinear optimal control problems. Direct methods obtain an
optimal solution by directly minimizing the constrained performance index.
Furthermore, this type of method utilizes either discretization or parameterization
technique to convert the optimal control problem into a mathematical programming
problem, which is typically solved by an optimization code. Therefore, the application
of direct methods does not require the use of first-order necessary conditions for
optimality that arise from the use of the minimum principle of Pontryagin on optimal
control problems. Moreover, integrating the system of the adjoint equations is not

needed.

In this chapter, we propose a new numerical method for solving the linear and
nonlinear constraints of finite time horizon optimal control problems. This approach
uses quasilinearization technique, and the state and control variables are parameterized
using Haar wavelet functions and the Haar wavelet operational matrix to convert the
nonlinear optimal control problem into a quadratic programming problem. The linear

inequality constraints for trajectory variables are converted to quadratic programming
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constraints by using Haar wavelet collocation method. The terminal state constraints are
converted using Haar wavelet functions and adjoined to the system dynamics
constraints. Then, the quadratic programming problem with linear inequality constraints

is solved by using the MATLAB command quadprog().

The advantages of the proposed method are summarized as follows:

1. This method facilitates easy approximation.
2. This method can be applied on constrained optimal control problems with
unequal number of state variables and control variables.

3. This method can handle inequality and equality constraints.

Numerical examples, results, and discussions are shown at the end of this chapter.
These numerical examples are computed and compared with others existing methods.
The accuracy of the state and control variables, as well as the cost, can be improved by

increasing the Haar wavelet resolution.

5.2 Problem Statement

In this chapter, we consider the following optimal control problem:

The system to be controlled is given by nonlinear differential equations of the form

x = f(x(t),u(t),t), x(0) = X,, o<t<t,, (5.1)

where x(t) e R™ is the state vector, u(t) e R™ is the control vector, f is continuously

differentiable with respect to all its arguments, X, is the initial condition vector, and 0,

t, are a known initial and finite time, respectively,

subject to the following constraints:
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1. Terminal state constraints:
W(x(t;)t;)=0. (5.2)
2. Saturation state and control constraints:

x(t) <x X(t) > X, s (5.3)

max !

u(t) <u u(t) >u (5.4)

max ! min *

The vector inequalities such as x(t) < x means X, (t) <x foralli=1,2,...,n,.

max max, i

The problem is finding the optimal control u’(t) that minimizes the following

performance index:

J=x"(t;) S x(tf)+j(xTQx+uTRu)dt , (5.5)

where Q e R™™ is a positive semi-definite matrix, R € R™™ is a positive definite
matrix and the terminal cost given by the scrap function x'(t;) S x(t;)and Sis a

symmetric and positive definite (or semi definite) matrix.
5.3 Proposed Method

The proposed method for solving the stated optimal control problem consists mainly of

three steps:

1. Using quasilinearization technique to replace the constrained nonlinear
optimal control problem by a sequence of constrained linear optimal control
problems.

2. Using the Haar wavelet operational matrix and approximation functions to
convert the optimal control problem into a quadratic programming problem.

The linear inequality constraints for trajectory variables are transformed into
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quadratic programming constraints by using the Haar wavelet collocation
method.

3. Improving the solving of the quadratic programming problem by utilizing the
obtained trajectories as the new nominal trajectories and control until the

stopping criteria is satisfied.
5.4  Numerical Solution to the Nonlinear Optimal Control Problem

We propose the following numerical solution to a nonlinear optimal control problem
with inequality constraints and terminal state constraints: At each step of this algorithm,
we identify an approximate solution to the optimal control problems Eqns. (5.1) to (5.5).

The orthogonal Haar wavelet is used as a basis to approximate state x(t) and control

u(t).
5.4.1 Quasilinearization Technique

Applying the quasilinearization method proposed by Bellman and Kalaba, (1965), we
can replace the optimal control problem in Eqns. (5.1) - (5.5) with the following

sequence of constrained linear-quadratic optimal control problems:
Minimizes

t

I =X () S % () + [(TQXM +uTRUM)dE,  (5.6)
0

with is subject to the linearized time varying state equations:

dx™M (1)

. AT xM L BE Y )u™, x0)=x, , k>1 (5.7)
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where

Al () = % , (5.8)
B (t) = of (glju’t) , (5.9)

are the n, xn, and n, x n, matrix, respectively, and the terminal state and the inequality

constraints are expressed as follows:

W(x(t,)t,) =0, (5.10)
X[k] (t) < Xmax ' X[k] (t) 2 Xmin ' (511)
() S U UM @ 2 U, (5.12)

The initial matrices A°(t) and B°(t) are determined using an approximately accurate
initial assumption of x°(t) and u®(t)that does not cause the algorithm to diverge. We

suggest starting from the initial condition vector X, .

5.4.2 Optimal Control Problem using Haar Wavelet Method

Haar wavelet operational matrix and Haar wavelet functions are used to approximate the

optimal control problem in terms of unknown coefficients of state and control variables.
54.2.1 Parameterization using Haar Wavelet Functions

To formulate the optimal control problem in Egns. (5-6)-(5-12) into a quadratic
programming problem, the proposed method, which is based on parameterizing the state
and control variables using Haar wavelet functions, is applied. At first, the state vector

X(t) and control vector u(t) are expanded in terms of Haar wavelet basis by using Eqgn.

(3.10) as follow:
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xk(t):fckihi(t), k=12 -, n, (5.13)

m-1
up (t) = d;hi(t) 1=1,2,3 -, n,, (5.14)

i=0
where Cy,,Cys Cops =y Cuny » K=1,2,3, ---, n, are unknown parameters for the state
variables and d,,,d,;, d,,, ---, d,,, for 1=123, ---, n,, are unknown parameters

for the control variables

Egns. (5.13) and (5.14) can be written in matrix form as

Xl Co Cpn v Cppygy ho (t)

);(2 _ C.zo C.Zl o C2.m—1 hl'(t) (5.15)

an Cn10 Cnll o Cnlm—l hm—l (t)

u; le d11 dlm—l ho (t)

Lf 2 | _ d:ZO d :21 ces d:2ml hl;(t) (5.16)

un2 anO dnzl dnzm—l hm71 (t)

These equations can be rewritten in compact form as follows:

X(t) =ch(t) (5.17)
u(t) =d"h(t) (5.18)

where ¢ and d"are now ann, xm and n, xm unknown coefficient matrices for Haar

wavelet functions, respectively; and h(t) is the vector of known Haar wavelet function

with dimension of mx1, where h(t) =[h,(t) h(t) --- h,_,(t)]" and T is the transpose.
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By integrating Eqgn. (5.17) with respect tot and applying Eqgn. (3.33), we obtain x(t),
which is expressed in terms of Haar wavelet functions and the Haar operational matrix

as
X(t) = jchh(t) dt +x, (5.19)

Thus
x(t) = c"Ph(t) +x, 6" h(t), (5.20)

where X, is the n,x1 column vector of the initial conditions that is

Xo = [Xo1 X5z xog...x(,nl]T,and 6=[10,0, ---, 0] isan mx1 vector.

Egns. (5.17), (5.18), and (5.20) can then be rewritten in compact form by using the
properties of the operation vec , where vec(ABC)=(A®CT)vec(B) [see A.15

( Brewer, 1978)], as follows:

x(t) = (1, ®h" () vec(c) (5.21)
u@) = (1, ®hT (1)) vec(d) (5.22)
x(t)= (1, ®hT(t) PT)vec(c)+ (I, ®hT(t)) vec(x, ") (5.23)

where 1 and I, denote n, xn, and n, xn, identity matrices, respectively. In addition

VeC(C):[Clo Copo = Cro Cyg G- C Cima Coma Cnlm—l]T is the vector of

n1

unknown Haar  wavelet coefficients with dimension nmx1

Vec(d)z[dlo dy ”'dnlo dy, dy, - d dyryg dzm—l”'dn1m—1]T is an n,mx1

n1

vector of unknown Haar wavelet coefficients, and vec(x, ") is an nmx21vector of
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known coefficients that can be framed as

vec(X, 9T)=[x010 00 X,000 ---x,,000 ]T
54.2.2 Approximation of the Performance Index

To approximate the performance index of the optimal control problem described in Eqgn.
(5.6), the performance index is formalized by using Haar wavelet functions. We first
expand the second term of the performance index by substituting Egns. (5.22) and

(5.23) into Eqn. (5.6). Thus, we obtain

J, = j{[(l@hT(t) PT)vec(c) + (1 @ hT (1)) vec(x, 07)]"

0

Qlu®nhT(t) PT)vec(c)+ (1 ®hT(t)) vec(x, 67)]

+[a@nT 1)) vee@ [ R [1©h" () vec(d)] |t (5.24)

Rearranging and simplifying Eqn. (5.24) yields

J, = j{vecT ©U®Ph()QU®h'(t)P")vec(c)

+vecT @ ®Ph(t)) QI ®hT(t)vec(x, 87)
+vecT (X, 07)1® h(t))Q (1®hT(X)PT)vec(c)
+vecT (x, 01 ®Ph (1)) Q (1®hT (1)) vec(x, 67)

+vec' (d) (1®h(t)) R (1®h7(t)) vec(d) }dt (5.25)

According to the Kronecker product properties (Brewer, 1978), if matrices A, B, C,

D and E are appropriate dimensions matrices, then (A® B)(C ® D) = AC ® BD and
A(I®E)=A®E [see A.4 (Lancaster, 1969)]. Therefore, Eqn. (5.25) can be rewritten

as
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J, = j {vecT (©)(Q®Ph(t)h"(t) P) vec(c)

+vec' (C)( Q®Ph(t)h'(t))vec(x, 6")
+vec' (X, ) Q® h(t)h™ (t)PT) vec(c)
+vec’ (X, 0T)(Q®Ph(t)h™ (1)) vec(x, 87)

+vec' (d) (R®h(t)h'(t)) vec(d) }dt (5.26)
The integration of the product of two Haar wavelet function vectors has been discussed

in Section 3.7. By applying Eqn. (3.53) on Eqn. (5.26), we obtain
J, =vec' (c)(Q®P EP")vec(c) +vec' ()(Q®P E)vec(x, 8")
+vec’ (X, 0T Q®EPT)vec(c) +vec' (x, 07)(Q®E)vec(x, ")
+vec' (d)(R ® E)vec(d) (5.27)

where
vec' (X, ") Q®E PT)vec(c) = vec(c)(Q®P E)vec(x, #7) and E=E".

Finally, the performance index in Eqn. (5.27) can be written in quadratic form as

follows:
J1=%ZT H, Z+F'Z+e, (5.28)
where
Z= [vecT (©) vec' (d)]T : (5.29)
H. :[Q®PEPT 0 } 5,30
@) R®E
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F [2vecT(x0 6"(QR®EPT) O]

e = vec (x, 0" )Q @ E)vec x, 6]

(5.32)

(5.31)

are mx(n,+n,)x1 , m(n +n,)xm(n, +n,) , mx(n +n,)x1 and 1x1 matrices,

respectively.

Further, we need to expand the first term of performance index in Eqgn. (5.6) by

converting it to a quadratic programming problem with the use of the scrap function,

which is define as follows:
Jz = XT(tf)SX(tf)
where x(t, ) is vector of final conditions.

First, we assume that

X(te) = CTh(tf )

By applying Egn. (3.52), we obtain
t
Ph(t,) = jh(t)dt
0

~t, 0

where #=[1, 0, 0, ---, 0] is mx1 vector.
Integrating Egn. (5.34) and utilizing Egns. (3.33) and (3.52), we obtain

X(t;)=t, c'0+x,070 ,

(5.33)

(5.34)

(5.35)

(5.36)
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The term 070 can be evaluated as follows:

Finally, Eqgn. (5.36) can be written as

x(t,)=t, c'O+Xx,

(5.37)

(5.38)

Rewriting Eqgn. (5.38) in compact form by using the properties of the operation vec (see

A.16), we have

vec (X(t;)) =t, vec(c'8) +vec(X,)

=t, (I, ®0")vec(c) +vec(x,)
where vec(X,) is n, x1 vector.
When Eqn. (5.39) is substituted into Eqn. (5.33), we obtain
J, =[t; (1, ®O")vec(c) +vec(x,)]"S[t, (I, ® O )vec(c)+vec(x,)]
Simplifying and rearranging Eqn. (5.40), we obtain
J, =t{ vec" (c)(I,, ®O)S (I, ®O")vec(c)+vecT (X,) S vec(X,)
+t,vec’ (€)(1, ®0)Svec(x,)+t,vec (x,)S (I, ®O)vec(c),

Utilizing Kronecker product properties (Brewer, 1978), we have

J, =t vecT (c)(S® 60" )vec(c) +vec' (x,) Svec(X,)

+ t,vec' (c)(S® G)vec(x,) +t;vec (X,)(S ® 0" )vec(c).

(5.39)

(5.40)

(5.41)

(5.42)
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We should take note of the term
t,vec' (C)(S® O) vec(x,) =t,vec' (X,)(S® ") vec(c) (5.43)
Therefore, we have
J, =t? vec' (C)(S® OO )vec(c) + 2t vec' (X,)(S® O )vec(c)
+vec' (X,) Svec(x,). (5.44)

The performance index for the scrap function can be written in quadratic form as

follows:
J, =%zT H.Z+F, ' Z+e,, (5.45)
where
z=[vec"©)  vec"@)], (5.46)
H, =t (S©007) O] (5.47)
0 0
F, =t, [2vec(x, )1, ®6T) O], (5.48)
e, = [vecT (X,) Svec (xo)], (5.49)

are mx(n, +n,)x1 , m(n, +n,)xm(n +n,) , mx(n, +n,)x1, and 1x1 matrices,
respectively.
Finally, the performance index for both parts can be written as

J=3,+J,. (5.50)
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5423 Approximations of System Dynamics

State equations are approximated in terms of the unknown coefficients of the state and
control variables by substituting Eqgns. (5.21), (5.22) and (5.23) into Eqgn. (5.7). Once

these equations are simplified, the time varying matrices A(t) and B(t) should be

expressed in terms of the Haar wavelets.

The function of the (i, j)™ element of A(t) can be approximated using Eqn. (3.22) as
[A®)]; =Gh(t) (5.51)

where GJ =[g¢ ¢/ 97 ... gp,]isthe mrow vector of the known coefficients of the

Haar wavelet function for each i =12,...,n;,and j=12,...,n,, can be calculated using
Egn. (3.31) as follows:
G =[A®],; H* (5.52)
where H™ is the inverse of the Haar wavelet matrix at collocation points.
Similarly, the elements of B(t) can be expanded using the Haar wavelet function:
[B(H)];,; = L;h(t) (5.53)
where L{; =[L§ L L3... L} 1 isthe constant 1x mrow coefficients of Haar wavelet

functions foreach i =12,...,n, and j=12,...,n,.

Then Egns. (5.51) and (5.53) can be rewritten in compact form by using Kronecker

product properties [see A.6 (Brewer, 1978)]:

A(t)=G'(I, ®h(t)) (5.54)
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B(t)=L"(I, ®h(t)) (5.55)

Gll G12 "' Gln1 L11 L12 o |-1n2

. G, G, -G L, L, - L
where the block matrices GT=| > % mland LT=| TP o
Gnll Gnlz o Gnln1 I-nll I-n12 o I-nlnz

are of size n, xnymand n, xn,m, respectively.

Given the notation above, the transpose of Eqns. (5.21), (5.22), (5.23) with Egns. (5.54)
and (5.55) are substituted into Eqgn. (5.7) to obtain

vec' (©) (1, ®h(t)) =G (I, ®h(t)) {vecT ©(1, ®Ph(t)+vec' (x,07)(1, ® h(t))}

+L"(1, ®h(t)) vec(d) (1, ®h(t)) (5.56)
Simplifying Eqgn. (5.56) by utilizing Kronecker product properties, we have

vee' (©)(I,, ®h(t) = G'(I, ®h) vec (©) (I, ®P)(I, ®h(t))
+GT(I, ®hE)vecT(x, 87) (1, ®h(t))

+L"(1, ®h(t)) vec" (d)(1,, ®h(1)) (5.57)
Then
vec' (©)(I,, ®h(t)) = vec'(c) (I, ®P)(I,, ®h®)(I,, ®h"(1))G

+vec' (x, 07) (1, ®h®)(1, ®hT(1))G

+vec (d)(I,, ®h®)(I, ®hT(H)L (5.58)
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The product of (1®h(t))and (1®h'(t)) can be expanded into a Haar series with a

Haar coefficient block matrix M, which is given in Eqn. (3.51) as
vec' (c)(I,, ®h(t)) =vec'(©) (I, ® P)I\A/I(G)(In1 ®h(t))

+vec' (x, 07) M(G)(I,, ®h(t))

+vec" (d)M(L)(1,, ®h(t)) (5.59)
' M(G,) M@G,) - M(G,,)
where the block matrices NI(G) = M(G.lz) Mngz) M('Gnﬂ) and
L M(Glnl) M(Gan) M(Gnlnl)_

_M(Lll) M(L21) M(Lnll) |

M(L) = M(_le) '\_A(L”) N_l(l‘”lz) are nmxnm and n,mxnm matrices,

 M(L,,) ML) - M(L,,)

mny

respectively.

At collocation points, we obtain

vec' () -vec” (0) (1, ® PYM(G) —vecT (A)M(L) =vec' (x,0")M(G)  (5.60)
Transforming Eqn. (5.60) into a standard system of linear equations. we obtain

vec(c)

[ I, —M"(@G)1, ®PT) - MT(L)]{vec(d)

}: [MT(G)vec (XOHT)] (5.61)

In this equation, all the multiplications must be performed blockwise (Lancaster and

Tismenetsky, 1985).
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54.2.4 Approximations of Equality Constraints
The equality constraint is of the form

x(t;) = X, (5.62)

where x(t;) is the terminal state variable and X, is an n, x1 of the known finite time

condition vector.

This constraint can be treated as the system dynamics. We substitute x(t, ) from Eqn.

(5.39) in the given constraint (5.62), and expand it in the Haar wavelet. The resulting

constraint invec(c) and vec(d) are then adjoined to the other constraints.

Substituting Eqn. (5.62) into Eqn. (5.39), we obtain

vec(x, ) =t (I, ®6")vec(c) +vec(x,) (5.63)
Moving vec (X, ) to the other side, we have
t; (1, ®67)vec(c) = vec(x, ) —vec(x,) (5.64)

Eqgn. (5.64) is rewriting by adding zero coefficients for the missing variable vec (d) as

bellows:

t [, @607 O]REEEZ)J ~ vec(x, ) - vec(x,)] (5.65)

The resulting constraints invec(c) andvec(d) are then adjoined to the other constraints

in Eqgn. (5.61) to form

MT(G)vec(x,0")
vec(X,, ) —vec(X,)

} (5.66)

ln—MT(G)(1, ®PT) -M"(L) {vec(c)}
t(l, ®0") O || vec(d)
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5425 Approximations of Inequality Constraints

For inequality constraints the linear inequalities for the state and control variables in this
study should also be determined. Haar wavelet collocation method is used to convert
these constraints into quadratic programming constraints. Substituting Eqns. (5.22) and

(5.23) into Egns. (5.3) and (5.4) at collocation points, respectively, we form:

(1, ® HT(t) PT)vec(c) +vec(x,0TH(t) < Vec(X ., 0 TH) | (5.67)
(1, ® HT(t) PT)vec(c) +vec(x,0TH(t) > vec(X;, 60 TH) | (5.68)
(I, ® H(t) )vec(d) < vec(U,, 0TH) |, (5.69)
(I,, ® HT(t) )vec(d) > vec(u,,,0TH) . (5.70)

By moving the constant vector of Eqgns. (5.67) and (5.68) to the other side and by
changing the signs of Eqgns. (5.68) and (5.70) to match the command of quadprog() at

MATLAB, we generate:

(I, ® H™ PT)vec(c) < vec(X,, 07H) —vec(x, 07 H) , (5.71)
—(I,, ®H" PT)vec(c) < vec(x, 0" H) —vec(x,;, 0 "H) , (5.72)
(1,, ®H" )vec(d) <vec(U,,, 0 H) , (5.73)

—(1,, ® H" )vec(d) < -vec(u,;,0"H). (5.74)

Combining Eqns. (5.71)-(5.74) after the zeros of the missing variables are added in the

above equations, we obtain the following form of inequality constraints:
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i (1, ®HTPT)
-1, ®H PT)
0

nymxn;m

O

n,mxn;m

— vec(x,,, OTH)—vec(x,

O mcnym {vec (c)} _ | vec(x, 0" H) —vec(x .
(1,, ®HT) |[vec(d) vec(u,, 0"H)
-(1,, ®H") —vec(X,;, 0"H)

O"H) |
6"H)

(§.75)

On the basis of the previous reformulation, the optimal control problems in Egns. (5.6)—

(5.12) can be approximated by the following quadratic programming problem:

subject to

where

F =1, —-MT@)(1, ®PT)

1

min %ZTHess Z+F'Z+e

M (G)vec(x, 87)
vec(x, )—Vvex(x,)
(1, ®HTPT)
~(1,, ®H PT)

n,mxn;m

n,mxn;m

vec(x, O H) - vec(x

—vec(x

min

[vec(x,, 6TH)—vec(x, 6"H) ]|

vec(U,,, 0" H)
0" H)

-MT)|

mmMxn,m

Onlmxnzm

(I, ®HT)
_(Inz ®HT)_

0" H) -

min

(5.76)

(5.77)

(5.78)

(5.79)

(5.80)

(5.81)

(5.82)
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The problems denoted by Eqgns. (5.76)—(5.82) represent a standard quadratic
programming problem that can be solved by using a solver such as quadprog() in
MATLAB (Xue and Chen, 2011). Once the optimal solution to the unknown parameters

Z is obtained, we substitute these parameters into Eqgns. (5.18) and (5.20) to determine
the new nominal states x™(t) and controllers u™(t) to be used in subsequent

iterations. These new nominal trajectories should be substituted into Eqgn. (5.7) to drive
the next optimal control problem that is constrained linear quadratic. This procedure

should be repeated until an acceptable convergence is achieved.

|3 —J¥ |<¢ (5.83)

The iteration is terminated when the difference between the two cost functions

| ¥ = 3% | is sufficiently small.

5.5 Numerical Results and Discussions

In this section, a few examples of finite time horizon optimal control problems are
solved using the method illustrated above. The proposed method is applied to linear and
nonlinear quadratic optimal control problems that may be subject to one or two
constraints. Examples in the succeeding subsection include linear optimal control
problems with and without constraints. Examples of nonlinear optimal control problems
with and without constraints are also illustrated to demonstrate the simplicity,

effectiveness, and accuracy of the proposed numerical method.

We use a Haar wavelet algorithm implemented in the MATLAB for all of the

examples presented in this section.
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5.5.1 Linear Optimal Control Problem

In this subsection, the numerical method developed in this chapter is tested on the
unconstrained linear quadratic optimal control problem and the inequality state
constraint examples. These two examples will be illustrate and discuss in Example 1

and Example 2, respectively.
55.11 Example 1

Minimizes,
J= 1f[xl2 (t) + X2 (t) +u*(t)[dt, (5.84)

subject to

ol fkoller Kol lal e

The optimal control problem in Egns. (5.84)-(5.85) is linear. Thus, it can be solved by

using the method described in the previous section; that is, directly transforming the

problem into a quadratic programming problem subject to equality constraints directly
without the need to apply quasilinearization method.

With the proposed method, the numerical solution to this problem is obtained by

approximating both the state and control variables based on the Haar wavelet series of

unknown parameters. The optimal value is found to be J =2744.15391937 for

m = 256, which is very close to the exact value of J =2744.154.

The minimum value of J*using Haar wavelet functions approximation with Haar

wavelets resolutions of m=8,16,32,64 ,128, and 256 are listed in Table 5.1. This
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example shows that even a coarse Haar wavelet resolution of m =8already yields an

accurate result.

Table 5.1: Results of the performance index for Example 1 with resolution of Haar

wavelet m=8,16,32, 64,128, and 256

Haar wavelet resolution m J*
8 2744.15466281
16 2744.15429557
32 2744.15403243
64 2744.15394865
128 2744.15392642
256 2744.15392078

Figures (5.1) - (5.3) present the graphical representations of the numerical solution with
the optimal trajectories for different resolutions of Haar wavelets approximations
functions for m=8,16, 64, and 256 for state variables and m=8,16, and 64 for
control variable. These figures clearly show that the Haar wavelets approximation
functions converges to the correct optimal trajectories as the resolution of the Haar

wavelet functions increases.
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18¢

X, (0

Figure 5.1: State variable x,(t) for Haar wavelet resolutions m =2°,2%,2°,2° and

t, =10 obtained from Example 1
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Figure5.2: State variable X, (t) with for Haar wavelet resolutions and

m=2°2%2°% 2% and t, =10 obtained from Example 1
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Figure 5.3: Control variable u(t) with Haar wavelet resolutions m = 2°,2*,2° and

t, =10 obtained from Example 1

55.1.2 Example 2

Consider the following performance index that minimizes, as presented by Kleinman et

al. (1968):
J= j[xl2 (t) + xZ (t) +0.005u> (t)Jdt (5.86)

subject to

X, (t) 10 1|f x,(t) 0 x, (0) o
Lz (t)} - {0 —J LZ (t)} + H u®m], [xz (0)} = L J (5.87)
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with the following state variable inequality constraint

X, (t) <r(t) , (5.88)
where r(t) is an arbitrary known function

r(t) =8(t—0.5)*-0.5 (5.89)

Here, we solve the problem with Haar wavelet functions by choosing Haar wavelet
resolutions of m=8,16,32,64,128, and 256 . Expanding r(t) and X, (t) in terms of

Haar wavelet approximation functions, we obtain
rit)=4"H (5.90)
X,t)= 1®H" PT)vec(c) + 1 ®H")vec(x,, 87) (5.91)

For the inequality constraint in Eqn. (5.88) a treatment similar to that applied in Eqgn.
(5.3) is suggested. First, the inequality constraint from the state variable is converted
into Haar wavelet collection points by substituting Eqgns. (5.90) and (5.91) into Eqgn.

(5.88). Then, we have

vec (C)

[0
vec (d)

 (I®HTPT) omxm]{ }S[vec(ﬂTH)—vec(xozaTH)] (5.92)

where the inequality constraint in Eqn. (5.92) represents the standard form of the
quadratic programming problem in Egn. (5.78).

Table 5.2 shows the cost values for different values of Haar wavelet resolutions of
m=28, 16, 32, 64, 128, and 256. These values are obtained from applying the proposed

method on Example 2.
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Table 5.2: Results of the performance index for Example 2 for Haar wavelet

resolutions m=8,16,32,64 ,128 and 256

Haar wavelet resolution m

J*

0.17254748
0.17109637
0.17011179
0.16989690
0.16983953
0.16983337

The computational result for r(t) together with x (t) and x,(t) and u(t) using the

present method for m=128 and t, =1 are given in Figures 5.4 and 5.5, respectively.

15

Figure 5.4: State variables x,(t), X, (t) and inequality constraint r(t) obtained in

Example 2 for m=128 and t, =1
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Figure 5.5: Control variable u(t) obtained in Example 2 for m=128and t, =1

This example has been solved by using generalized gradient method (Jacobson and
Lele, 1969; Mehra and Davis, 1972); classical Chebyshev polynomial (Neuman and
Sen, 1973; Vlassenbroeck, 1988); Chebyshev spectral method (Jaddu, 2002); hybrid
functions approximations (Marzban and Razzaghi, 2003); rationalized Haar functions
(Marzban and Razzaghi, 2010); Triangular orthogonal Function (Han et al., 2012);
Bézier control points (Ghomanjani et al., 2012). The performance index can be
compared to the findings of other researchers in Table 5.3, which indicates that
Jacobson and Lele, (1969) offer the lowest performance index. Our result for optimal

values is also shown in Table 5.3 for comparison.

Based on Table 5.3, we can be concluded that the proposed technique exhibits

competitive performance, as demonstrated in Example 2.
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Table 5.3: Simulation results of the performance index for Example 2

(Vlassenbroeck, 1988)

Source J’
Jacobson and Lele (1969) 0.164
Mehra and Davis (1972) 0.178
Neuman and Sen (1973)

N=9 0.16946
Vlassenbroeck (1988)

m=13, K =28 0.17185
Jaddu(2002) 0.17078488
Marzban and Razzaghi (2003)

M=4, N=4 0.17013640
Marzban and Razzaghi (2010) 0.170103
Han et al. (2012) 0.170835
Ghomanjani et al. (2012) 0.17289045
Present result m = 256 0.16983337

5.5.2 Nonlinear Optimal Control Problem

In this subsection, we consider Van der Pol oscillator problem which is adapted from
Jaddu (1998). We consider two cases: (1) unconstrained problem; and (2) terminal
states and control constrained problem. These two cases will be discussed in Examples

3 and 4, respectively.

55.2.1 Example 3

Consider the following nonlinear system state equations, as presented by Jaddu (1998):

%, (8) = %, () (5.93)

X, (1) ==X, (1) + (- x{ (1)) X, (t) +u(t) (5.94)
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The cost function to be minimized, starting from the initial states x,(0)=1 and

X,(0)=0,is

3 = [(2 () +x2 @) +u?(t))dt (5.95)

O ey 01

To solve this example using the proposed method, the system Eqgns. (5.93) and (5.94) as

well as the performance index (5.95) are expanded up to the first order around nominal
trajectories of x"(t) and x[(t) by using quasilinearization technique.

The expanded performance index is

JW = j((x{kl)z +(x19)? 4+ ()2 )t (5.96)

0
and the linearized state equations are

dxt! (t)

dt 0 1 xM] To
o {_ ] ey e 2}[ N . u™, k>1(5.97)
dx;™ (t) 1=2x77(0x (1) 1= 007 0) | x;

dt

The state and control variables are approximated by using Haar wavelet approximation
functions. Then, the linear quadratic optimal control problems in Egns. (5.96)-(5.97) are

converted into a quadratic programming problem, which is then solved successively

until the difference between the two cost functions satisfy | J**—J* |<10™. This

difference is achieved in five quasilinearization iterations for a Haar wavelet resolution

of m=64. The approximate optimal value for the cost function and the difference

J¥t —J%| of these five quasilinearization iterations, starting from initial nominal

trajectories with m =64, are summarized in Table 5.4.
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Table 5.4: Optimal value of the performance index and convergence error for

Example 3 with Haar wavelet resolution m =64

Convergence error

*

Iteration (k) J i gkt _ gk
1 0.95333975 -
2 1.44082952 0.48748977
3 1.43778685 0.00304267
4 1.43744694 0.00033991
5 1.43747817 0.00003123

The optimal trajectories for five quasilinearization iterations with m =64 are shown in
Figures 5.6 - 5.8, which clearly demonstrate that the trajectories nearly converge to the

optimal ones, after the second quasilinearization step.

1.2. L L L L L L L L L

x4 (1)

Figure 5.6: State variable x,(t) of Example 3 for 5 quasilinearization iterations

with m=64 and t; =5
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X,(0)

Figure5.7: State variable x,(t) of Example 3 for 5 quasilinearization iterations

with m=64 and t;, =5
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1.2. L L L

u(t)

_06 L r r r r r r r

=

Figure 5.8: Control variable u(t) of Example 3 for 5 quasilinearization iterations

with m=64 and t; =5

The optimal values with different values of Haar wavelet resolutions of

m = 8,16, 32,64,128, and 256 that are obtained from Example 3 are shown in Table 5.5.

Figures 5.9-5.11 illustrate the optimal trajectories with Haar wavelet resolutions of

m=8,16,32,and 64 and t, =5.
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Table 5.5: Results of the performance index for Example 3 with Haar wavelet

resolutions m=8,16, 32, 64,128 and 256

Haar wavelet resolution m J*
8 1.45505319
16 1.44169372
32 1.43831978
64 1.43747817
128 1.43726793
256 1.43721538

1.2. L L L L L L L L L

)

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

Figure 5.9: State variable x,(t) obtained in Example 3 for and m =2°,2%,2° and

2° with t, =5
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X,(0)

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

Figure 5.10: State variable x, (t) obtained in Example 3 for and m =2°,2*,2° and

2° with t, =5
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1.2. L L L L L L L L L

u(t)

_06 L r r r r r r r r r

Figure 5.11: Control variable u(t) obtained in Example 3 for m=2°,2* 2° and 2°

with t, =5

This problem has been solved by using second variation method (Bullock and Franklin,
1967) and quasilinearization and discretization method (Bashein and Enns, 1972). Jaddu
(1998) used Chebyshev polynomials with parameterize the state variables to study this
example. In a recent study, Jaddu and Majdalawi (2014) solved this proplem by using
Legendre polynomials iterative technique. Table 5.6 shows the optimal values obtained

from these methods for comparison.

158



Table 5.6: Simulation results of the performance index for Example 3

(Vlassenbroeck, 1988)

Source J’
Bullock and Franklin (1967) 1.433508
Bashein and Enns (1972) 1.438097
Jaddu (1998) 1.433487
Jaddu and Majdalawi (2014) 1.449396
Present result, m = 256 1.43721538

55.2.2 Example 4

Consider the following performance index that minimizes (Jaddu, 1998):

3 = [( () + x2 @) +u?(t))dt

O ey 01

subject to
X, (t) = %, (t)
X, (1) = =%, (1) + (1= X7 (1) X, (1) +u(t)
u(t)[<0.75
X,(0) =1, X,(0)=0

X ({t;)=-1, x,(t;)=0

(5.98)

(5.99)

(5.100)

(5.101)

(5.102)

(5.103)

To find the solution numerically using the proposed method, we need to express the

equality and inequality constraints on the state and control variables from Eqgns. (5.101)

and (5.103) in a Haar wavelet series and apply the Haar wavelet collection points. These
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equations can be treated like Eqns. (5.2) and (5.4) after simplifying Eqgn. (5.101). We

substitute x(t,)and u(t) from Eqgns. (5.64) and (5.22) into the following equations.

u(t) <0.75 (5.104)
—u(t) <0.75 (5.105)
x(t) =X, (5.106)

where X, is the finite time vector and t; =5 is the finite time.

Finally, the resulting constraints in vec(c) and vec(d) are then adjoined to the other

constraints, which are then explanted in Sections 5.6.4 and 5.6.5, respectively. Then, the
problem is solved with the use of for using Haar wavelet resolutions of

m=8,16,32,64,128 and 256. For each m, convergence is achieved in six

quasilinearization iterations except for m=8and 16, which are achieved in eight and

seven quasilinearization iterations, respectively. The iteration is terminated when the

difference between two cost functions | J** —J* | is less than & = 0.0001.

Table 5.7 shows the optimal cost function for different values of Haar wavelet

resolutions that are obtained from Example 4.
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Table 5.7: Results of the performance index for Example 4 with Haar wavelet

resolution for m=8,16,32,64,128, 256

Haar wavelet resolution m J*
8 2.1448152143
16 2.1397055318
32 2.1423550823
64 2.1429211308
128 2.1430566067
256 2.1430830369

Table 5.8 shows that the optimal value after six quasilinearization iterations is
J.i, =21430566067 for a Haar wavelet resolution of m=128. The optimal values of

each iteration with the convergence errors are also shown in this table.

Table 5.8: Optimal value of the performance index and convergence error for

Example 4 with resolution of Haar wavelet m =128

Convergence error

Iteration (k) J in gkt _ gk
1 1.8540226638 -
2 2.1812152841 0.32719262
3 2.1390510574 0.04216423
4 2.1433925447 0.00434149
5 2.1430318903 0.00036065
6 2.1430566067 0.00002472

The computational result for x,(t), X,(t) and u(t) using the proposed method for

m =128 are given in Figures 5.12 and 5.13, respectively.
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0.6~ h

X,(0) . ()

—— Xl(t)
X,(0)

Figure 5.12: States variables x, (t) and x, (t) obtained in Example 4 for m =128

and t, =5
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u(t)

-0.6 —
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Figure 5.13: Control variable u(t) obtained in Example 4 for m=128 and t, =5

As shown in Table 5.9, example 4 has been investigated using Chebyshev polynomials
with parameterize the state variables (Jaddu, 2002); rationalized Haar functions (Han

and Li, 2011) and Triangular orthogonal Function (Han et al., 2012).

Table 5.9: Simulation results of the performance index for Example 4

Source J*
Jaddu (2002)
N=12 2.14141
Han and Li (2011)
k=16 2.14959
Han et al. (2012)
M=64 2.14056
Present result, m = 256 2.1430830369
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5.6 Conclusion

In this chapter, we proposed a new numerical method for solving finite time horizon
nonlinear optimal control problems with state and control inequality constraints. The
proposed approach employs quasilinearization method and parameterization of state and
control variables using Haar wavelet functions and the Haar wavelet operational matrix
to convert the nonlinear optimal control problem into a sequence of constrained time-
varying linear quadratic programming problem. The linear inequality constraints for
trajectory variables are converted to quadratic programming constraints by using Haar
wavelet collocation. Further, the terminal state constraints are converted using Haar
wavelet functions and are adjoined to the system dynamics constraints. The proposed
method is simple and it has been tested for a constrained nonlinear quadratic optimal
control problem in two-dimensional state space with one controller. The accuracy of the
state and control variables, as well as the cost, can be improved by increasing the Haar

wavelet resolution.

In contrast to the HIB equation solution to infinite time horizon optimal control

problem presented in Chapter 4, the direct solution is characterized as follows:

Open-loop: The resulting optimal trajectory is explicitly solved as a function of time

u(t) and not as a feedback control law.

Local: The resulting solution is only valid for the specified initial condition x(0). When

a new initial condition is specified, the problem must be solved again.

However, this method provides an alternative way of finding the solution for
constrained optimal control problems in a fastest time. Furthermore, the sparse matrices
that appeared during the calculation contribute to a faster computational analysis.

Numerical results demonstrate the good performance of the proposed method used in
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term of accuracy and competitiveness compared with existing approaches. The
proposed method is very convenient, as it requires only simple computing systems and

low computer memory with small m.
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CHAPTER 6

APPLICATION OF HAAR WAVELET METHOD TO

PRDOUCTION-INVENTORY MODEL

6.1 Introduction

Application of optimization methods to production and inventory problems date back to
the classical economic order quantity (EOQ) model or the lot size formula by Harris
(1913). The EOQ is a static model wherein the demand is constant and only a stationary
solution is sought. An important dynamic production-planning model was developed by
Holt et al. (1960), where both production costs and inventory holding costs over time
were considered. They used various calculus techniques to solve the continuous-time
version of their model. Furthermore, Dobos (1999) studied the effect of constraints on
the production and inventory model. Dobos (1999) modified the Holt et al. (1960)

model and used optimal control theory to derive the optimal production rate.

Most inventory models deal with a single-item (Balkhi and Benkherouf, 2004).
However, such models are seldom applied in the real world. Hence, multi-item
inventory models are more realistic than single-item models are. In multi-item models,
the second item in an inventory favors the demand for the first item, and vice-versa
(Sethi and Thompson, 2006). This is why retailers deal with several items and stock

them in their show rooms (Bhattacharya, 2005).

In this chapter, the direct method proposed in the previous chapter is applied to
optimize the control of the two-item production-inventory model with stock-dependent
deterioration rates and deterioration due to self-contact and the presence of the other
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stock. Four different types of demand rates are used, namely, constant, linear, logistic
and periodic demand rates. The solution to the model is discussed numerically and
presented graphically. By enhancing the resolution of the Haar wavelet, we can improve
the accuracy of the states, controls, and cost. Simulation results are also compared with

the work of other researchers.

6.2 Optimal Control of Two-Item Production-Inventory Model

This section is devoted to the mathematical formulations and model assumptions for the
optimal control of the two-item inventory model with deteriorating items of different
deterioration types. In two-item models, the second item in an inventory favors the
demand for the first item, and vice-versa. We consider a factory that produces two items
and has a finished goods warehouse. The objective function includes the sum of
inventory holding costs, the holding costs of one item as a result of the presence of other

items, and production costs. The problem is considered an optimal control problem with

two state and two control variables, which are inventory levels y; and production rates

v, , respectively. The following variables and parameters are used:

y, (t) . the inventory levels at time t

u; (t) . the production rates at time t

t, . the length of the planning horizon

v, . the inventory goal levels

v, . the production goal rates

Yio . the initial inventory levels

C; . the production cost coefficients

h,, . the inventory holding cost coefficients

h,, . the inventory holding cost coefficient of y, due to the presence of

unit of y,, or vice- versa
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D,(y,,y,,t) : the demand rates at the instantaneous levels of the inventory

(y,(t), y,(t)) and time t

a; the deterioration coefficient due to self-contact of y,
a; - the demand coefficient of y; due to presence of unitof y, , i+ ]
0, the natural deterioration rate of vy,

The optimal control problem is defined to determine the production rate, which

minimizes the total cost,

i=1

J =min I{i (hi (Yi = 90)% +C (v =9)) + 2h, (Y, — 9,)(y, — )71)}dt (6.1)

where te[0,t,], h;h,, >h%, h, >0, ¢, >0

subject to
Vi =—Y: (t)(gl +a,Y; ®+ a;,y, ) - Dl(yl7 Y, 1) +V1(t) ) (6.2)
Y2 ==Yo (00, + a5y, () +a5,Y, (1) = D (y1, Yo, 1) +V, (1), (6.3)

with constraints,

y(®)20 (6.4)

v.(t) =0, (6.5)

This system is nonlinear and is difficult to solve analytically. Therefore, we address the
system numerically and display the results graphically. The objective function Eqn.

(6.1) can be economically interpreted as an effort to keep the inventory levels
(y,(t),y,(t)) and production rates ( (v, (t), v, (t)) as close as possible to the target levels (
9., ¥,) and rates (V,,V,), respectively. The system dynamics in Egns. (6.2) and (6.3) can

be used to describe the time evolution of inventory levels and production rates (El-

Gohary and Elsayed, 2008).
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6.3 Reformulation of the Optimal Control of the Two-ltem

Production-Inventory Model

In this section, we reformulate the two-item production-inventory model as a nonlinear

quadratic problem with the following substitution:
O =y, 0=, (6.6)
u, (t) =v,(t)-v,. (6.7)
In particular, we have X, =Y, — ¥, and X;(t) =y, (t) .

The problem in Eqns. (6.1) and (5.5) can be reformulated as:
t
J =min j (x" () Q x(t) +u' (t) Ru(t)) dt, (6.8)
0

subject to

X, (€)= =%, () + ¥,)(6, + 8y, (X, (1) + ¥2) + 83, (% () + §1) = Dy (%0, %5, 6) + 0, () +V,

(6.9)

%o (€) = (%, (1) + ¥,)(0, + 85, (%, () + Y1) + 85 (%, () + ¥,) = D, (%, %, 1) + U, (1) + ¥,

(6.10)
with constraints
X t)+9y, =0 (6.11)
u,(t)+v, >0 (6.12)
h. h c,, 0
WhereQ={11 12}and Rz{“ }
h12 h22 O C22
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The numerical solution to this problem as obtained using the proposed method is
discussed for the following four different types of demand rates:
1. Constants: D, (y,,Y,.t) =¢,
2. Linear functions of inventory levels: D, (y,,y,,t)=d,y; +¢;
3. Logistic functions of inventory levels: D, (y,,Y,,t)=V,(9;, - V)
4. Periodic function of time: D, (y,,Y,,t) =1+k; sin(t)

where «;, d;, g,, and k, are positive constants for i =1,2.

6.4 Numerical Solution

In this section, we solve the optimal control problem of the two-item production-
inventory model by using four different types of demand rates, namely, constant, linear,
logistic and periodic demand rates. The solution to the model is discussed numerically

and presented graphically.

6.4.1 Constant Demand Rates

In this subsection, we present the numerical solution in the case of constant demand

rates. We substitute the controlled system Eqns. (6.9) to (6.10) for D, = ¢;, where
o, =0.6 and «, =0.8, using the parameter values and initial states presented in Table

6.1.

Table 6.1: Values of system parameters and initial states (ElI-Gohary and Elsayed,

2008)
Parameter | h;; Cyy 0, a,, a,, v, Yor A h,,
Value 4 6 0.02 | 0.04 0.7 9 2 4 -4

Parameter | h,, | C, | 6, | @y | @y | Y, | Yo | ¥, | U

Value 5 5 0.03 | 0.05 | 06 8 1 3 5
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The numerical solution in this application is obtained by using the algorithm presented

in Chapter 5, Section 6. Each state and control variable is first approximated using Haar

wavelet functions at m" resolution and the Haar wavelet operational matrix. Then, the
objective function Eqgn. (6.8) subject to nonlinear dynamic system Eqgns. (6.9) and (6.10)
is converted into a sequence quadratic programming problem through the
quasilinearization iterative technique. The inequality constraints for state and control
variables Egns. (6.11) and (6.12) are transformed into quadratic programming
constraints by using the Haar wavelet collocation method. The quadratic programming
problem with linear inequality constraints is then solved using a standard QP solver.

The optimal control problem, which is subject to constraints Eqgns. (6.11) and (6.12), is

solved beginning with nominal trajectories x)=-2 and xj;=-2 for

m =8,16,32,64,128, and 256. For each m, convergence is achieved in three
quasilinearization iterations. The iteration is terminated when the difference between

two cost functions | J** —J*| is less than & =0.0001.

Table 6.2 summarizes the results obtained from these six cases of Haar wavelet
resolution, including the simulated optimal values of inventory levels and production
rates, as well as the total cost at the end of the planning horizon period. Figures 6.1 to
6.4 show the optimal values of the inventory levels and the production rates for
m =256 and its successive quasilinearization iteration. Table 6.2 indicates that the
approximated cost function converges with the true cost function as we increase the
resolution of the Haar wavelet. Figures 6.1 and 6.2 also suggest that the optimal
inventory levels increase over time. Figures 6.3 and 6.4 show how production rates

were optimized and tended to their goal rates at the end of the planning horizon period.
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Table 6.2: Simulation results of the application of the direct method using constant

demand rates for m =8, 16, 32, 64, 128, and 256

m Y, () Y (t;) v; () v, (t;) Jr

8 3.83137254 2.89765654 9.01076105 7.98865953  0.38994675
16 3.82833273 2.90028336 9.00648218 7.99359316  0.40195069
32 3.82633976 2.90198127 9.00363305 7.99661281 0.40686114
64 3.82518677 2.90295078 9.00193897 7.99826898  0.40828178
128 3.82453701 2.90345359 9.00100455 7.99912747  0.40872216
256 3.82421337 2.90372111 9.00051167 7.99956248 0.40881472

First inventory level

Figure6.1: First inventory level against time t, =5 and m = 256 using constant

demand rates for k =1, 2, 3 quasilinearization iterations
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Second inventory level

Figure 6.2: Second inventory level against time t, =5 and m = 256 using constant

demand rates for k =1, 2, 3 quasilinearization iterations
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Figure 6.3: First production rate against time t, =5 and m = 256 using constant

demand rates for k =1, 2, 3 quasilinearization iterations
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Figure 6.4: Second production rate against time t, =5 and m = 256 using constant

demand rates for k =1, 2, 3 quasilinearization iterations

6.4.2 Linear Demand Rates

Similar to the numerical solution using constant demand rates, we solve the optimal
control problem Eqns. (6.6) to (6.12) by wusing linear demand rates
D, (y;,Y,,t) =d,y, (t) + ¢, and the system parameter values and initial states presented
in Table 6.1, with parameters d, =3, d, =4, a, =0.6, and a, =0.8. The results from
the application of the proposed method for achieving various Haar wavelet resolution
m with convergence error less than 10~ are achieved in six quasilinearization
iterations for each m, Table 6.3. Meanwhile, Figures 6.5 to 6.8 show the trajectories for

successive quasilinearization iterations for m = 256. These illustrations show that in the

case of linear demand rates, the iteration converges after six iterations.
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Table 6.3: Simulation results of the application of the direct method using linear

demand rates for m =8, 16, 32, 64, 128, and 256

m Y, () Y () v; () v, (t;) Jr

8 2.08216880 1.34837495 9.02006694 8.00835368 7.59681086
16 2.08158114 1.34834475 9.01471793 8.00698875 7.59683572
32 2.08104995 1.34829464 9.00961866 8.00512824 7.59684504
64 2.08064757 1.34822252 9.00568933 8.00329800 7.59684797
128 2.08038920 1.34815920 9.00313320 8.00191325 7.59684876
256 2.08024061 1.34811638 9.00165070 8.00103800 7.59684896

Additionally, Table 6.4 presents the optimal value J* for six quasilinearization

iterations. The iterations are terminated when the convergence criteria between two cost

functions | J*?* —J% | <107,

Table 6.4: Optimal value of the performance index and convergence error for the
application of the direct method using linear demand rates for resolution of Haar

wavelet m= 256

Convergence error

Iteration (k) J . Jhk _ gk
1 7.761526989943635 -
2 7.619255927112216 0.14227106
3 7.599708901525899 0.01954703
4 7.597146554317612 0.00256235
5 7.596864283699386 0.00028227
6 7.596848957719115 0.00001533
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of the direct method using linear demand rates fork =1, 2, 3,4, 5, 6
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application of the direct method using linear demand rates for k=1, 2, 3,4, 5, 6

quasilinearization iterations

6.4.3 Logistic Demand Rates

We present the numerical solution when the demand rates are logistic functions, that is,
D, (Y1, Y2, 1) =y, (0(9; -1 (1)) and D, (y;,y,,t) = y,()(9, — Y, (1)) ., with system
parameters g, =10 and g, =20. Table 6.5 presents the simulation results obtained
from the application of the direct method using logistic demand rates after seven
quasilinearization iterations for m=8, 16, 32, 64, 128, and 256. In these six cases,
including the simulation results for the optimal values of the inventory levels and the
production rates, as well as the total cost at the end of the planning horizon period, the

convergence error is less than 107,
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Table 6.5: Simulation results of the application of the direct method using logistic

demand rates for m =8, 16, 32, 64, 128, and 256

m y;(tf) y;(tf) V:(tf) V;(tf) J*

8 0.96224750 0.38688870 9.02668582 8.00719864  18.66023271
16 0.96341244 0.39575166 9.02086529 8.00617452 18.65963566
32 0.96299653 0.39573929 9.01426343 8.00509685  18.66071869
64 0.96264861 0.39571141 9.00873804 8.00373496 18.66105686
128 0.96240891 0.39568253 9.00492469 8.00241837 18.66115008

256 0.96226488 0.39565973 9.00262992 8.00141464  18.66117449

The approximate optimal controllers and states trajectories for Haar wavelet resolution

m =256 are shown in Figures (6.9) to (6.12), whereas the optimal value J* of each

iteration with the difference ‘J"+1—J"‘ for seven quasilinearization iterations is

shown in Table 6.6.

Table 6.6: Optimal value of the performance index and convergence error for the

application of the direct method using logistic demand rates for resolution of Haar

wavelet m = 256

Convergence error

Iteration (k) J i gkt _ gk

1 20.345714643103790 -

2 18.472739505940940 1.87297514
3 18.688472742265326 0.21573324
4 18.657330877462005 0.03114187
5 18.661705329728910 0.00437445
6 18.661087306230478 0.00061802
7 18.661174489168410 0.00008718
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First inventory level

Figure 6.9: First inventory level against time t, =5 and m = 256 of the application

of the direct method using logistic demand rates fork =1, 2,3,4,5,6,7

quasilinearization iterations
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Figure 6.10: Second inventory level against time t, =5 and m = 256 of the

application of the direct method using logistic demand rates for k=1, 2, 3,4, 5,6, 7

quasilinearization iterations
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application of the direct method using logistic demand rates fork =1, 2, 3, 4,5, 6,7

quasilinearization iterations
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Figures (6.13) to (6.16) show the approximate state trajectories and optimal controllers

for the various Haar wavelet resolutions m = 8,16, 32,64, and 128.
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Figure 6.13: First inventory level against time with t, =5 and m=2°,2%,2° 2°

and 2’ for logistic demand rates
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6.4.4 Periodic Demand Rates

and 2’ for logistic demand rates

: Second production rate against time with t, =5 and m=2°%,2*,2° 2°

Finally, we present the numerical solution in the case of periodic demand rates as

D, (y;, Y,,t) =1+Kk; sin(t) with the system parameter values and initial states given in

Table 6.1, with parameters k;, =2 and k, =1. Table 6.7 gives the simulation results for

m=8,32,64 , 128 and 256 using periodic demand rates obtained after seven

quasilinearization iterations for each m, where the convergence error is less than 10™.
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The optimal trajectories are shown in Figures (6.17) to (6.20), for the various Haar

wavelet resolution m=8,16,32,64 and 128. These illustrations show that the

trajectories converge with the optimal trajectory at m=64.

Table 6.7: Simulation results of the application of the direct method using periodic

demand rates for m =8, 16, 32, 64, 128, and 256

m Y, () Y () v; () v, (t;) Jr

8 4.17795557 3.03422206 8.97400136 8.03361326  2.27825152
16 4.21915814 3.01596432 8.98042200 8.02505240  2.30950536
32 4.23718141 3.00357090 8.98834351 8.01465935  2.31888456
64 4.24569862 2.99648260 8.99365695 8.00786091  2.32139612
128 4.24985899 2.99270423 8.99669128 8.00406075  2.32203596
256 4.25191840 2.99075502 8.99831004 8.00206237  2.32219669

First inventory level

Figure 6.17: First inventory level against time with t, =5 and m=2%,2%,2° 2°

and 2’ using periodic demand rates
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Figure 6.18: Second inventory level against time with t, =5 and m = 23,2%,2°,2°

and 2’ using periodic demand rates
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Figure 6.20: Second production rate against time with t, =5 and m=2°,2*,2° 2°

and 2" using periodic demand rates

6.5 Numerical Discussions and Conclusions

The present numerical method introduce in Chapter 5 solves the application of the direct
method for the constrained nonlinear quadratic optimal control problem in two-
dimensional state space with two controllers. In particular, we solved the two-item
production-inventory model with stock-dependent deterioration rates and deterioration
due to self-contact and the presence of the other stock. Four different types of demand

rates are used, namely, constant, linear, logistic and periodic demand rates.

The numerical solution for the two-item production-inventory model was obtained
by using the new algorithm proposed in Chapter 5, Section 6. We parameterize both the
states and the controls by using Haar wavelet functions and operational matrix. The
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nonlinear optimal control problem is converted into a sequence quadratic programming
problem through the quasilinearization iterative technique. Moreover, the inequality
constraints for trajectory variables are transformed into quadratic programming
constraints by using the Haar wavelet collocation method. The quadratic programming

problem with linear inequality constraints is then solved using a standard QP solver.

Additionally, the numerical results of all cases are illustrated in figures and tables.
Each figure is plotted according to the solution obtained from the present numerical
technique. We conclude that both inventory levels and production rates tend to their real
values. Thus both inventory levels and production rates asymptotically tend to their
values at the steady state (Alshamrani, 2012). The step functions in Figures 6.3 , 6.4
6.7, 6.8, 6.11, 6.12, 6.15, and 6.16 are not visible because the collocation points are too

close to each other.

El-Gohary and Elsayed (2008) reduced the same application problem into a system
of differential equations according to the Pontryagin principle. To obtain the values in
Table 6.8, EI-Gohary and Elsayed, (2008) solved this system numerically using the
Runge-Kutta method. However, this indirect method has a drawback because the system
contains co-state variables, which are not physical entities. Moreover, if the final state is

fixed, the indirect method needs to solve a two-point boundary value problem.

Although we consider m =256 in our computation for four types of demand rates,
Tables 6.2, 6.3, 6.5, and 6.7 show that the usage of m=32, m=16, m=64and,
m =128, respectively, are enough to approximate with the same accuracy the optimal

cost function and trajectory variables obtained as presented in Table 6.8.
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Table 6.8: Summary of results obtained from the EI-Gohary and Elsayed (2008)
method for application with four types of demand rates

Demand rates Y, (t;) Y, () vi(t)  va(ty) J
Constant 3.82 2.9 9 8 0.41
Linear 2.08 1.35 9 8 7.6
Logistic 0.96 0.4 9 8 18.66
Periodic 4.26 2.98 9 8 2.27

In this chapter, present results are compared with the numerical solutions in existing
literature. Our method is simple and require fewer collocation points to achieve the
same accuracy as the existing numerical solutions. By increasing the Haar wavelet

resolution, we can improve the accuracy of the states, controls, and cost.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusions

Broadly speaking, solutions to nonlinear optimal control problems with or without
constraints often generate both analytical and computational difficulties. Thus,
researchers aim to solve these problems by using numerical methods. In general,
numerical methods for solving nonlinear optimal control problems fall under two
categories: direct and indirect methods. By parameterizing or discretizing the infinite
dimensional optimal control problem, into a finite dimensional optimization problem,
direct methods reduce the optimal control problem to a nonlinear programming
problem. On the other hand, indirect methods solve the Hamilton-Jacobi-Bellman
equation or the first-order necessary condition for optimality, which are obtained from
the Pontryagin minimum principle. Both the direct and indirect methods are important
for solving optimal control problems. The difference between the two methods is that
indirect methods are believed to yield more accurate results, whereas direct methods

tend to result in better convergence properties.

In this thesis, we proposed direct and indirect numerical methods to solve
constrained nonlinear optimal control problems and nonlinear optimal control problems
with finite time horizon and infinite time horizon, respectively, by using Haar wavelets

operational matrices and Haar wavelets collocation method.

The main contributions of the thesis were presented in Chapters 3, 4, 5 and 6.
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Chapter 3 started with an understanding of the mathematical background of Haar
wavelet. Many scholars who proposed a numerical method using Haar wavelet basis
usually define a Haar wavelet operational matrix within the interval of zero to one. This
technique limits the achievement of our ultimate goal because the integration involved
in nonlinear optimal control problems does not necessarily cover only the interval
between zero to one especially when we have more than one state variables. Therefore,
it is more appropriate to derive a Haar wavelet operational matrix in a much more
general setting. In Chapter 3, we derived the operational matrix of integration for

intervals [0,7z) and [-7,7). The new operational matrices for the integration of two-
dimension Haar wavelet basis within the interval [-z,z) were derived using the Haar

wavelet basis of two dimensions, the operational matrix for the integration of one

dimension within the interval [0, z), and Kroneker product properties. Moreover, to

simplify the product of two-dimensional functions expressed as Haar series, we derive
and prove a new algorithm for the operational matrix of the product of two-dimensional
Haar wavelet functions. A general formula in the form of a Haar wavelet matrix with

two variables was derived.

In Chapter 4, the solution of the Hamilton-Jacobi-Bellman equation, which appears
in the formulation of the nonlinear control system with quadratic cost functional and
infinite time horizon, is introduced. The solution was based on the combination of Haar
wavelets operational matrices and successive generalized Hamilton-Jacobi-Bellman
(GHJB) equation. Although there is no general closed-form solution to this equation, we
showed how to approximate the solution of Hamilton-Jacobi-Bellman equation
successively. We used the successive GHJB equation to improve the feedback
performance of stabilizing controls and reduced the problem of solving the Hamilton-
Jacobi-Bellman equation to solving the GHJB equation. When the process of improving

the control and solving the GHJB equation is iterated, the solution to the GHJB equation
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converges uniformly to the solution of the Hamilton-Jacobi-Bellman equation. This
result takes the form of the gradient of the Lyapunov function. To determine the
Lyapunov function from the resulting solution of the linear system equation, the new
method, which depends only on the initial and final states by using variable gradient
method, is proposed. In the proposed method, we considered the method of Beard et al.
(1997) to successively approximate the solution of the Hamilton-Jacobi-Bellman
equation. Instead of using the Galerkin method with polynomial basis, we used
collocation method with Haar wavelet basis to solve the GHJB equation. Galerkin
method requires the computation of multidimensional integrals which makes the
method impractical for higher order systems (Curtis and Beard, 2001). In general, the
main advantage of using collocation method, is that the computational burden of solving
the GHJB equation is reduced to matrix computation only. A number of numerical
examples for linear and nonlinear optimal control problems with one or two state and
control variables are given to demonstrate the usefulness, efficiency, and accuracy of
the successive Haar wavelet collocation method. To justify our proposed method, the

results in the present study are compared with existing or exact results.

In Chapter 5, an efficient new algorithm is proposed to solve constrained nonlinear
optimal control problems with finite time horizon under inequality constraints. With this
technique, we parameterized both the state and control variables by using Haar wavelet
functions and Haar wavelet operational matrix. The nonlinear optimal control problem
is converted into a quadratic programming problem through the quasilinearization
iterative technique. Moreover, the inequality constraints for trajectory variables were
transformed into quadratic programming constraints by using the Haar wavelet
collocation method. The quadratic programming problem with linear inequality
constraints was then solved using a standard QP solver. The numerical method was tried

on several examples, and we found that the proposed method gives results that are better
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or comparable to results obtained through other established methods. In addition, the
proposed method is attractive, stable, convergent, and can be easily coded.

In Chapter 6, the direct method proposed in Chapter 5 was applied to solve a
practical optimal control problem: the multi-item production-inventory model with
stock-dependent deterioration rates and deterioration due to self-contact and the
presence of the other stock. Four different types of demand rates, namely, constant,
linear, logistic, and periodic demand rates were used in the method. The solution to the
model was discussed numerically and presented graphically. By enhancing the
resolution of the Haar wavelet, we improved the accuracy of the states, controls, and

cost. Simulation results were also compared with the work of other researchers.

In summary, the study succeeded in achieving all the eight objectives stated in

Section 1.4.

7.2 Future Work

Suggestions for future research are summarized below:

1. In the feedback control method for solving nonlinear optimal control problems with
infinite time horizon which was reduced to solving a Hamilton-Jacobi-Bellman
partial differential equation, we could not handle explicit constraints on the state and

control variables. Our method can be extended to a case where explicit constraints

are placed on the control, for example, |uf <1.

2. The Haar wavelet operational matrices with two dimensions defined in the interval

[ z,7) were derived throughout this thesis. For future work, we are also interested in

calculating Haar wavelet operational matrices in higher dimensions.
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3. The constrained nonlinear optimal control problems with finite time horizon was
solved using direct method and open-loop solutions. However, we prefer to use the
closed-loop solution because of the advantages it can offer. Therefore, we suggest
extending this work to formulate an optimal feedback control solution using this

method.

4. In this thesis, we did not conduct an in-depth study to mathematically prove the
numerical stability and error analysis of the proposed direct and indirect methods.

We suggest to do this in future studies.

5. For our future work, given that Haar wavelet method is relatively easy to implement
and computationally inexpensive, we would like to extend the use of this method to

partial optimal control problems.
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APPENDIX A

KRONECKER PRODUCT

The Kronecker product operation (®) is a convenient tool for dealing with a large set of
matrices. The Kronecker product operation is usually used to formulate the estimation
of the parameter vectors for several equations simultaneously. We list some properties

of Kronecker the product operation and the vec transforms in the Appendix.

A.1 The Kronecker Product of Two Matrices

Let A=[a;;] bean (mxn) matrix and B is the ( pxq) matrix. The Kronecker product

of A, B, and (A®B) is defined as an (mpxngq) matrix, which can be partitioned as

follows:

A®B=|a,B|, (A1)
a,B - a,B

A®B=| : . . (A.2)
a‘mlB amnB

If a=[a,,a,,...,a_ | and b=[b,,b,,....b |", then the following is obtained:
al 2 m 112 n

ab" =a®b’ =b" ®a (A.3)
albl ale U albn
a, bl a, bz "' azbn
a'mbl ambz ambn
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A.2 The Kronecker Product of Two Kronecker Products

The matrix product of two Kronecker products of A® B and C® D can be written as a

single Kronecker product:

allB alnB C11D ClsD

(A®B)C®D)=| & . S
a,, B a,,B || ¢c,D c,,D
_(Zj:a”cjl)BD (Zj:aljcjs)BD |
) (Zj:am:cjl) BD (Zj:a,:”cjs)BDJ |
=(AC)®(BD). (A4)
In general,
(A, ®B,)(A,®B,)...(A,®B,)=AA,...A,®BB,...B,, (A5)

follows directly for Eqgn. (A.4).
Let A bean (mxm) matrix and B is the (nxn) matrix. Then obtain the following:

A®B=(A®I ). ®B)=(1_®B)(A®I). (A.6)

Which indicates that (I, ®B) and (A®1,) are commutative for square matrices A

andB.

An immediate result is that when A and B are square and non-singular, the inverse of

their Kronecker product is expressed as follows:

(A®B)' = A*®B?, (A7)
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a;B™* ... a,B™

aml.lBl .. B
Other results are expressed as follows:
(A®B)A'®B')= AA*®BB",
=1®I1,
=1. (A.8)
A.3 Other Properties of the Kronecker Product

The transpose, associative, and distributive laws of the Kronecker product are expressed

as follows:

(A®B)' = AT®BT, (A.9)
A®(B+C)=A®B+A®C, (A.10)
(B+C)QA=BRA+CQA, (A.11)
A®B®C)=(A®B)®C. (A.12)

Additionally, another property is expressed as follows:

(1®B)=diag{B, B, ...,B}. (A.13)

A.4 The VEC Transform

Let A=[a;;] be an (nxn) matrix. The operation vec(A) denotes the vector obtained
by transformation of the stacking column of matrix AT by putting into one column.
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vec(A) = [ AL AR ... A JTecm™, (A.14)

vec(BAC) = (B®C")vec(A), (A.15)
vec(AB) = (I®B")vec(A), (A.16)
=(A®]I)vec(B), (A.17)
=(A®B")vec(l). (A.18)

A.5 Block Matrix Multiplication

A block partitioned matrix product can sometimes be used on equations that involve
only algebra on the submatrices of the factors. However, the partitioning of the factors
is not arbitrary and requires “conformable partitions” between matrices A and B, such
that all submatrix products that will be used are defined. An (mx p) matrix A with q-
row partitions and s column partitions is expressed as follows:

A11 A12 Als

A21 A.22 AZS (A.19)

i i as

A (pxn) matrix B with s -row partitions and r -column partitions that are

compatible with the partitions of A is expressed as follows:

Bll BlZ Blr
B B ... B
B=| * »* 7 (A.20)
le BSZ t Bsr
The matrix product
C=AB, (A.21)
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can be formed blockwise, yielding C as an (mxn) matrix with q- row partitions and

r - column partitions. The submatrices of matrix C are calculated by multiplying the

following expression (Lancaster, 1969):
Cor =D Ay B, . (A.22)

A.6 Transpose Block Matrix
The transpose block matrix can be defined as follows:

Let A be ablock matrix with ¢ - row partitions and s - column partitions:

A11 A12 Als
A21 A22 AZS

A= . . : (A.23)
Aq1 qu Aqs
Thereafter, the transpose block matrix A" can be formed as
AL A-2rl AIq
T T T
AT = A Ay A2q (A.24)

T T T
L Asl Asz Asq |

where AT is a block matrix with s - row partitions and - column partitions.
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APPENDIX B

MATLAB CODE FOR INDIRECT AND DIRECT
METHODS

function [P D H] = findp(tau,m)
theta=zeros(m, 1) ;
theta (1)=1;
% Generate block pulse operational matrix
Q=2*triu(ones (m,m)) ;
for i=1:m
Q(i,1)=0Q(1,1)-1;
end
OB=Q/ (2*m) ;
% Generate Haar matrix
H=ones (m) ;
nlamb=ones (1,m);
J=10g2 (m) ;
$t=1:2:(2*m-1); t=tau*(-1+(t/m))
t=1:2:(2*m-1); t=t/(2*m);
h2=Q (t) (0<=t & t<0.5) - (0.5<=t & t<1);
h2=0(t) (-1<=t & t<0.5*1) - (0.5*1<=t & t<1);
for alpha=0:(J-1)
kk=pow2 (alpha) -1;
for k=0:kk
i=pow2 (alpha) +k+1;
nlamb (i) =pow2 (alpha) ;
for j=1:m
H(i,3)=h2 (pow2 (alpha)*t (j)-k);
end
end
end
lambda=nlamb/m;
D=diag (lambda)
P=2*tau*H*QB*H'*D

end
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function [ A ] = haarbigN(mat,m)

J=1lo0g2 (m) ;

R=zeros (m*m,m) ;

for

end

for

end

i=1l:m
b=(mat (:,1))"';
ck=b;

M=[ck (1) ck(2); ck(2) ck(1l)]; NH=[1 1;1 -1];
for alpha=1:(J-1)
n=pow?2 (alpha) ;
ca=ck(l:n)"'; cb=ck(n+l:2*n)"';
M11=M; M1l2=NH*diag (cb) ;
M21=diag (cb) /NH; M22=diag(ca'*NH) ;
M=[M11l M12; M21 M22];
NH=[kron(NH, [1 1]); kron(eye(n),[1 -1])1;
end
Mt=M"';
vecMb=Mt (:) ;
R(:,1)=vecMb;

R;

i=1:m*m

NN=R (i, :);

ck=NN;

M=[ck(1l) ck(2); ck(2) ck(1l)]; NH=[1 1;1 -17;

for alpha=1:(J-1)

n=pow2 (alpha) ;

ca=ck(l:n)"'; cb=ck(n+l:2*n)"';

M11=M; M1l2=NH*diag (cb) ;

M21=diag (cb) /NH; M22=diag(ca'*NH) ;

M=[M11l M12; M21 M22];

NH=[kron(NH, [1 1]); kron(eye(n),[1 -11)1;
end

Mt=M"';

vecM=Mt (:) ;

matR(:, :,1)=vec2mat (vecM, m) ;

for i=1:m

end

matR(:, :,1);
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A=zeros (m*m, m*m) ;
e=1;
for i=1:m
tt=floor (e/m)+1;
for j=1:m

e=m* (i-1)+7;

A(m*(1-1)+1l:tt*m,1+(j-1) *m:

end
end

end
function [E]= E1 (m)
tha=[1l;zeros(m-1,1)];
A=[tha';tha';zeros(m-2,m)];
E=sparse (kron (A,eye (m,m))) ;
end
function [E]= E2 (m)
tha=[1l;zeros(m-1,1)];
B=[tha';tha';zeros(m-2,m)];
N=eye (m,m) ;
E=sparse (kron (N,B)) ;
end

o)

% Example 1 for indirect method

\\e]

3 dx/dt=Ax + Bu
% J=int (x1"2 +u”2) dt
tau=1
SA=[0 1; 0 0];
$B=[0 1]';

$K=[-1 -sqgrt(2)1;

[e¢]

m:
[P D H]=findp(tau,m);
t=1:2:(2*m-1); t=tau*(-1+(t/m))

xx=t;

yy=t;

((J-1)+1) *m)=matR(:, :,e);

by Curtis and Beard

Frxrhhkhkhkkkkkhkhkdrrhhhhhkhkkhkhkhrxxrrhhkkhkky

[o)

[Y X]=meshgrid(xx,vyy); %

fl=vy; thata=D*H*f1*H'*D;

coordinate

(x1,x2)
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f2=-X-Y; mu=D*H*f2*H'*D;
%***********intial Conditon**********************************%
f5=-0.5*X.72-0.5* (-X-Y) ."2; k=D*H*f5*H'*D;
%******************* UeXaCt:_X1_1.4142*X2 *hkhkhkhkhkhkhkhkhkkkkk
uexact=-X-1.4142*Y;
%$***call haarbigN for thata and mu to find Nthata & Nmu******%
mat=thata;
A=haarbigN (mat,m) ;
Nthata=A;
mat=mu;
Al=haarbigN (mat,m) ;
Nmu=Al;
that=[1 zeros(m-1,1)1;
kl=k';
veck=kl (:);
%******************* new inteval **************************%
Ql=kron (P,eye (m,m)) ;
Q2=kron (eye (m,m) , P) ;
Eal=E1l (m) ;
Ea2=E2 (m) ;
%**********thata bata and flnd ul***************************%
Ml=((Q2-tau*Ea2) *Nthata+ (Ql-tau*Eal) *Nmu) ';
M2=Nthata'*kron (eye (m,m), that);
M3=Nmu'*kron (that,eye (m,m));
bigw=[M1 M2 M3];
calfbat=pinv (bigW) *veck;
C=(calfbat (l:m*m));
ccdp=vec2mat (C,m) ;
alfal=(calfbat (m*m+1:m*m+m) ) ;
alfadpl=[alfal zeros(m,m-1)];
alfamat=alfadpl';
vecalfa=alfamat(:)"';
bata=(calfbat (m*m+m+1:m*m+2*m)) ;
batal=[bata';zeros (m-1,m)];
batamat=batal';
vecbata=batamat(:)';
usl=-0.5*2*(C'* (Ql-tau*Eal) +vecbata) ;
ul=usl*kron (H, H) ;

uaporxl=vec2mat (ul,m)
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%************************loop for Ui*************

us2=usl;
£6=-0.5*X."2; knew=D*H*fo*H'*D;
knewl=knew';
vecknew=knewl (:);
ep=0.0001;
Uerr=abs (uaporxl) ;
ulaporx=vec2mat (us2,m) ;
i=1;
while norm(Uerr) >ep
mat=ulaporx;
A=haarbigN (mat,m) ;
bigul=A;
kfinal=vecknew'-0.5*us2*bigul;
newf2=ulaporx;
mat=newf?2;
Al=haarbigN (mat,m) ;
Nmul=Al;
Ml=((Q2-tau*Ea2) *Nthata+ (Ql-tau*Eal) *Nmul) ';
M2=Nthata'*kron (eye (m,m), that);
M3=Nmul'*kron (that,eye (m,m)) ;
bigW=[M1 M2 M3];
calfbat=pinv (bigW)*kfinal';
C=(calfbat (l:m*m)) ;
ccdp=vecZmat (C,m) ;
alfal=(calfbat (m*m+1:m*m+m)) ;
alfadpl=[alfal zeros(m,m-1)];
alfamat=alfadpl';
vecalfa=alfamat (:)';
bata=(calfbat (m*m+m+1:m*m+2*m) ) ;
batal=[bata';zeros(m-1,m)];
batamat=batal';
vecbata=batamat (:)';
usl=-0.5*2* (C'* (Ql-tau*Eal) +vecbata) ;
uZ2=usl*kron (H, H) ;
uaporx=vec2Zmat (u2,m);
uerr=abs (uaporx-uaporxl) ;
us2=usl;

ulaporx=vec2mat (usl, m) ;
222



uaporxl=uaporx

Uerr=uerr;

i=i+1;
end
%********************find H(X]_’O) R I b b b I I I I I I I I I I I b b b I b I b b b 4

cofd=C'* (Q2-tau*Ea2) +vecalfa;
for i=1l:m
cov(i)=cofd((i-1)*m+1l:i*m)*H(l:m, (m/2)+1);

end

alfanew=cov'*that';
alfanewl=alfanew';
vecalfanew=alfanewl (:)"';
Vfinal=vecalfanew* (Ql-tau*Eal) *kron (H,H)+C"'* (Ql-tau*Eal) * (Q2-
tau*Ea2) *kron (H, H) +vecbata* (02-tau*Ea2) *kron (H, H) ;
Vfinalmat=vec2mat (Vfinal, m)
uaporx

plot (Y (4,:),Vfinalmat (4,:),'-*")

o°

Example 1 For direct method

o°

dx/dt=Ax + Bu by Curtis and Beard
% J=int (x1"2+x2"2+u”2)dt

tau=10

0=[1 0;0 11;

R=1;

a=[0 1;,-1 27;
B=[0 1]1"';
x0=[12 2071;
m=256

[P D H]=findp(tau,m);

P=0.5*P;

t=1:2:(2*m-1); t=tau*t/(2*m);

%***********intial conditon**********************************%
x01=12;

x02=20;
%****************k**k**k**k**k**k**k**k**k**k**************************k%
that=[1 zeros(m-1,1)1];

A=[eye (2*m,2*m) -kron(a,P") -kron (B,eye (m,m))];
left=(a*x0'*that');

bleft=left"';
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vecb=bleft (:);
for i=1:1:m-1

J=[floor (log2(i))];

mm (1) =[1/(2"~J)1;
end
T=[1 mm];
Equad=10*diag (T) ;
cl=kron (Q, P*Equad) ;
c2=zeros (2*m,m) ;
bl=zeros (m,m) ;
b2= Equad;
Hquad=2* [kron (Q, P*Equad*P") zeros (2*m,m) ; zeros (m, 2*m)
kron (R, Equad) ];
flleft=x0"*that';flbleft=flleft';
vecbfl=flbleft (:)"';
fquad=[2*vecbfl*kron (Q,Equad*P') zeros(l,m)];
conquad= (vecbfl*kron (Q, Equad) *vecbfl"') ;
opts = optimset ('Algorithm', 'interior-point-
convex', 'Display', 'off');
[x,fval,exitflag,output]=quadprog (Hquad, fquad', []1,[]1,A,vecb, [], I
1,[1,0pts);
min=fval+conquad
xa=x(1l:m, 1) "*P*H+ (x01) *that'*H;
xd=x (m+1:2*m, 1) '*P*H+ (x02) *that'*H;
xk=x (2*m+1:3*m, 1) '*H;
xxX=t;
yy=t;
[Y X]=meshgrid (xx,vyy): % coordinate (x1,x2)
uexact=-0.4142*X-4.4142*Y;
plot(t,xa,'-.b',t,xd, '-k', 'LineWidth',1.5);
xlabel ('t'),ylabel ('x 1(t) , x 2(t)"'),grid off
legend('x 1(t)','x 2(t)")
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