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ABSTRACT  

Inventory systems deal with any activities to manage inventory of raw materials, work in 

process, finished products, spares, and equipment. As uncertainty is an inherent part of 

the real world, during these processes, the formulated inventory system should come up 

with uncertain data. Due to the capability of analyzing real situations, fuzzy inventory 

systems assist decision-making processes and provide a better understanding of the 

behavior of production and inventory environments.   

In this research, for the first time, a comprehensive literature review is conducted in the 

state-of-the-art of fuzzy inventory models where more than 120 papers are carefully and 

completely investigated according to the previous works. The fuzzy inventory systems 

that are based on the economic order/production quantity (EOQ/EPQ) settings are 

reviewed, so as to systematically analyze the fuzzy characteristics involved in capturing 

the uncertainty. Thereafter, to fill the identified gaps, two fuzzy EOQ models are 

developed.  

A fully fuzzy forward EOQ model for items with imperfect quality based on two different 

holding costs and learning considerations with triangular fuzzy numbers (TFNs) is 

extended. According to this model, the effect of learning and fuzziness on an inventory 

system are analyzed simultaneously. The lot size is obtained in 𝑛th shipment when 

learning occurs optimizing the total cost function using Karush-Kuhn-Tucker (KKT) 

conditions. It is concluded the optimal lot size directly depends on the amount of 

uncertainty. The inventory system that is completely fuzzified is compared with the 

partially fuzzified one. It is shown that the real inventory situation that is affected by 

uncertainty can be captured if more elements are fuzzified. Application of the model is 

shown and explained through a real case from the automobile industry. This provides the 

opportunity to examine the behavior of optimal lot size and optimal total profit in such a 

situation to make the best strategy.   
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Moreover, a fuzzy reverse (backward) inventory model where the recoverable 

manufacturing process which is  affected by the learning theory is discussed applying two 

popular defuzzification methods, namely the signed distance (SD) technique and the 

graded mean integration representation (GMIR) method. The proposed model is 

optimized with the inclusion of the fuzzy demand rate of the serviceable products and the 

fuzzy collection rate of the recoverable products from customers It is shown that when 

the levels of fuzziness are similar and the optimal number of orders are equal, the 

percentage changes of the optimal recovery lot size in the GMIR method are negative as 

compared to the SD method. The model is used to solve a problem in a supply chain 

network in the milk industry.  

Univ
ers

ity
 of

 M
ala

ya



vi 

 

ABSTRAK 

Sistem-sistem inventori menguruskan aktiviti-aktiviti yang berkaitan dengan inventori 

bahan, kerja dalam proses, produk siap, alat gantian dan perkakasan. Oleh kerana 

ketidakpastian adalah bahagian bawaan dari dunia sebenar, semasa proses ini, sistem 

inventori yang diformulasi selalunya menghasilkan data yang tidak pasti. Oleh kerana 

kebolehannya menganalisa situasi sebenar, sistem inventori kabur dapat membantu 

proses membuat keputusan dan memberi kefahaman yang lebih tentang tingkah laku 

suasana produksi dan inventori.  

Untuk pertama kali, soroton kajian yang menyeluruh dilakukan dalam bidang model-

model inventori kabur di mana lebih daripada 120 kertas ilmiah telah disiasat secara teliti 

dan lengkapnya. Di mana dalam sorotan kajian ini, sistem-sistem inventori kabur yang 

berdasarkan suasana-suasana kuantiti pesanan/pembuatan ekonomi (EOQ/EPQ) adalah 

disorot, untuk menganalisa karakter-karakter kabur yang telah digunakan untuk 

menguruskan ketidakpastian dengan secara sistematik. Oleh itu, untuk menutup jurang-

jurang ilmu yang ditemui, dua model kabur telah dibina.  

Sebuah model penuh EOQ kehadapan untuk barang-barang yang kurang berkualiti 

berdasarkan dua kos pemegangan dan pertimbangan pembelajaran dengan  nombor-

nombor kabur bersegi tiga (TFNs) adalah dibina. Berdasarkan model ini, kesan 

pembelajaran dan kekaburan ke atas sistem inventori di analisa secara selari. Saiz lot di 

dapati pada penghantaran yang ke- n, apabila pembelajaran dioptima fungsi kos total 

mengunakan kaedah Karush-Kuhn-Tucker (KKT). Adalah disimpulkan saiz lot yang 

optimal bergantung kepada kepada jumlah ketidakpastian. Sistem inventori yang kabur 

sepenuhnya adalah dibanding dengan separuh kabur.  Adalah didapati bahawa keadaan 

inventori yang sebenar yang terkesan dengan ketidakpastian dapat dijana jika makin 

banyak elemen-elemen dapat dikaburkan. Aplikasi model ini ditunjuk dan diterangkan 

melalui kes kajian sebenar di industri automotif. Ini menyediakan peluang untuk 
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mengkaji tingkah laku saiz lot optimal dan keuntungan total optimal dalam keadaan 

terbaik untuk membuat keputusan.  

Tambahan pula, model inventori kabur balikan dimana proses pembuatan terkembalikan 

yang terkesan oleh teori pembelajaran adalah dibincangkan- mengaplikasikan dua kaedah 

pengeyahkaburan, iaitu teknik “signed distance” (SD) dan “graded mean integration 

representation” (GMIR). Model yang dicadangkan ini adalah dioptima dengan 

mengambil kira kadar pemintaan kabur bagi produk-produk yang boleh diservis dan 

kadar kutipan kabur dari produk-produk yang boleh-dikembalikan dari pelanggan. 

Ditunjukkan apabila takat-takat kekaburan adalah sama dan bilangan permintaan yang 

optimal adalah sama, kadar perubahan peratusan bagi saiz lot terkembalikan yang optimal  

dengan kaedah GMIR adalah negatif berbanding dengan kaedah SD. Model ini digunakan 

untuk menyelesaikan  masalah rangkai rantaian bekalan di industry tenusu.  
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CHAPTER 1: INTRODUCTION  

 

1.1 Research Background  

Inventory control and management is one of the most important fields in supply chain 

management. In today’s highly competitive business markets, taking the importance of 

the safety stocks into account is one of the key factors for organizations to compete with 

their rivals. On the other hand, designing an appropriate inventory model help to gain 

more benefit, and at the same time, satisfy the customers’ demands. Since the first 

inventory system proposed by Harris (1913), who introduced the basic model of inventory 

systems called economic order quantity model (EOQ), many versions have accordingly 

been suggested. These include economic production quantity model (EPQ) (Taft, 1918), 

inventory control systems (i.e. periodic/continuous review inventory models), joint 

economic lot size model (JEL) (Glock, 2012), just to name a few. To reflect the real world 

conditions, these models have been extended with other characteristics such as imperfect 

quality items (Khan et al., 2011b), inflation and discount (Maity & Maiti, 2008), and 

delay in payment (Chen & Ouyang, 2006).  

One of the most important extensions of these models is studying them in uncertain 

situations. In chapter 2, the related literature that deals with the fuzzy EOQ/EPQ models 

is comprehensively reviewed.  

Fuzzy set theory that was firstly introduced by Zadeh (1965) has vastly been applied 

in almost all area of supply chain management as well as inventory models to depict 

models that can feed back the real condition. Because firms are facing the uncertainty in 

the inventory process, ignoring this theory results the biased and incorrect policies. When 

there is shortcoming of historical data in the inventory system, in contrast to the 

probability theory, fuzzy set theory could be helpful while it uses the previous experiences 
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of the decision makers and managers. Hence, it is becoming increasingly difficult to 

ignore developing inventory models in fuzzy environment.   

In this study, inventory models in fuzzy environment regarding some characteristics 

for the model which are mainly based on the learning theory and the rate of return of used 

products in the inventory systems are tried to be developed. Some policies when these 

characteristics are integrated in an uncertain environment are suggested.  

1.2 Research Gaps  

Although the fuzzy set theory has widely been investigated in inventory models, there 

are still a lot of potential rooms for research. One of the research agenda can be studying 

the depth of fuzziness of an inventory system. It answers to what will occur if an inventory 

system is extended and considered in a forward supply chain (FSC) with a complete 

uncertain situation? Usually the previous researches deal with an inventory system in a 

partially uncertain condition. It means that they fuzzified the whole of the system to some 

special levels. The more the level and the depth of fuzziness, the more complex the system 

is. As optimizing the system is very hard in a fully fuzzy environment, researches to date 

have tended to focus on fuzzification of a part of the inventory system while the other 

part remains as crisp one.  

In this study, the behavior of an EOQ system which is completely fuzzy is attempted 

to be analyzed. Besides, formulated model includes other characteristics such as learning 

process that usually affects inventory systems.  

Literature has emerged that most of the related researches have tended to integrate 

fuzzy set theory on forward inventory management while using this theory in backward 

(reverse) inventory systems is still in its infancy. Moreover, as a reverse cycle occurs in 

such systems, the importance of the combination of this system with fuzziness even could 
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be more. In order to design a more effective reverse inventory system through a reverse 

supply chain (RSC), this theory undoubtedly is one of the best tools.  

In another part of this study, a reverse EOQ inventory system that is studied under 

fuzziness of some important factors regarding the learning process is surveyed. Effects of 

well-known defuzzification methods on the mentioned model that have not been 

discussed on the previous reverse inventory systems are compared.  

1.3 Problem Statement  

Establishing the derived policies in inventory systems generally and usually is based 

on the factors which are assumed being precise and accurate. However, this assumption 

does not work in an uncertain context that the inventory systems are planned to meet the 

goals of organizations in which should be efficient and cost-effective. Especially some 

parameters such as demand naturally are difficult to be predicted because of the lake of 

statistical data. On the other hand, uncertainty is inherent in costs of inventory systems 

such as setup and ordering costs. Therefore, these uncertainties are an integral part of the 

inventory systems (Guiffrida, 2009).  

 

 

 

 

Figure 1.1: Designing of the inventory system  

A serious weakness of the crisp inventory systems is that they lead to improper optimal 

policies such as incorrect economic order quantities which are far from the reality as it is 

depicted in Figure 1.1. A system which is designed as a crisp model while it is surrounded 

 Fuzzy Inventory System  

 Crisp Inventory System  
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by uncertainties logically leads to overestimated or underestimated results that affect the 

decision-making, and consequently the organization.  

An interesting characteristic that affects the inventory system is the learning process 

which causes the improvement of the decision-making by passing the time (Jaber et al., 

2008). However, as it was discussed the behavior of this process is different when it 

occurs in uncertain environment. Because it is a part of the whole system. Other 

characteristics such as imperfect quality items (Salameh & Jaber, 2000) and return rate 

of the used products which is important part of the reverse inventory system (Govindan 

et al., 2015) not only influence the inventory problem in the crisp status but also are of 

interest in fuzzy situation.  

In this study, effects of fuzziness in forward and backward EOQ models that exploit 

the effect of learning process simultaneously are tried to be analyzed. Although the 

learning theory could be extensively applied in operation management, there is a little 

contribution in its application with fuzzy set theory simultaneously.  

1.4 Aim and Objectives  

This study aims to find the optimal policies in fuzzy inventory models regarding some 

important characteristics such as the learning process, imperfect quality items and the 

return rate of used products. The purpose is to achieve to the following research 

objectives:  

• Objective 1: To develop a fully fuzzy EOQ inventory model in a forward supply 

chain to optimize the whole system integrating the concept of fuzziness, learning 

and imperfect quality items;  

• Objective 2: To analyze the effect of learning and fuzziness on an inventory 

system simultaneously;  
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• Objective 3: To develop a partial-fuzzified reverse EOQ inventory model in 

which includes the concept of learning and fuzzy set theory in a reverse inventory 

model;  

• Objective 4: To investigate the effect of different defuzzification methods on the 

fuzzified parameters and the obtained results in a fuzzy reversed EOQ-based 

model.  

1.5 Research Questions  

The following questions which are based on the mentioned objectives are attempted to 

be answered:  

 Question 1: How a fully fuzzy inventory system can be developed with imperfect 

quality items and learning?  

 Question 2: What are the simultaneous effects of fuzziness and learning on the 

inventory system?  

 Question 3: How a partial-fuzzified reverse EOQ inventory model can be 

developed with the concept of learning and fuzzy set theory?  

 Question 4: How is the performance of the different defuzzification methods on 

the fuzzified model in a fuzzy reversed EOQ-based inventory system?  

1.6 Research Framework  

The applied methodology in Figure 1.2 has been explained. Generally, it includes 10 

steps in which each step has some details.  

After a comprehensive review of the related literature, two inventory models are 

selected to develop in the uncertain environment. These models have some special 

characteristics. The first model is a well-known inventory control model which includes 

the imperfect quality items in a forward supply chain management. The second one 
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considers an inventory system that analyses the effect of learning process in a reverse 

inventory system.  

In the next step, elements (i.e. parameters and variables) that are intended to study the 

effect of uncertainty on them are determined and discussed. The first model is developed 

in a fully fuzzy environment which is the first one in the literature. The second one is 

studied in a partial-fuzzy situation considering some fuzzified parameters which is the 

first work in a fuzzy reverse inventory system with learning.  

Steps 3 and 4 are the processes of fuzzification where fuzzified models are derived 

regarding the calculations on the selected fuzzy numbers. In these steps, models are 

extended and entered to the uncertain environment and the behavior of them with 

imprecise conditions is analyzed.  

 

Figure 1.2: Research framework  

Step 
1

•Considering appropriate inventory models in the FSC and the RSC

Step 
2

•Identifying the elements that should be fuzzified 

Step 
3

•Deciding on an appropriate form to fuzzifying the elements 

Step 
4 

•Obtaining a fuzzified inventory model 

Step 
5

•Selecting an appropriate method for defuzzifying 

Step 
6

•Finding the optimal values by optimizing the model 

Step 
7

•Validating the fuzzified model by considering a zero level of fuzziness  

Step 
8

•Comparing the results with the crisp one and the previouse models  

Step 
9

•Testing the fuzzified model by taking some arbitrary values into account 

Step 
10

•Applying the models in real scenarios 
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As correct policies have to be reported to the decision makers precisely, therefore, the 

next step is devoted to transform the imprecise models to the certain ones with an 

appropriate method. The results extracted from the process of defuzzification can be 

applied in the real business environment.  

Derived models from the previous steps are discuss how to be optimized in the next 

stage. Regarding the literature, there are many optimization techniques to obtain the 

optimal policies. However, it depends on the level of the complexity of the model which 

method is appropriate and results the best solution. Optimization of the first model is 

based on the Karush-Kuhn-Tucker theorem (Taha, 1997) while the second one is 

optimized using a suggested algorithm.  

In the next three stages, models with some arbitrary levels of fuzziness and data are 

validated, compared and tested. Finally, the application of the models is shown in the real 

case studies.  

1.7 Thesis Layout  

In this chapter, general framework of the research is overviewed. In the next chapter, 

EPQ and EOQ models in the literature that are developed in fuzzy situation are 

comprehensively overviewed. Chapter three is devoted to explain the methodology and 

techniques that are used to develop and solve the fuzzy inventory models. In chapter 4, 

the first fuzzy EOQ models are discussed and their characteristics are analyzed. The effect 

of fuzziness on the second model which is a reverse inventory system is discussed in 

chapter 5. To show the applicability of the developed models, they are illustrated applying 

real scenarios in chapter 6. Finally, the research is concluded in the last chapter.  
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CHAPTER 2: LITERATURE REVIEW  

 

2.1 Introduction  

To place the contribution of the proposed fuzzy inventory models in the right 

perspective, a systematic literature review is conducted and the previous literature 

categorizing the related papers in some classifications is studied. In fact, a systematic 

literature review is an approach to summarize the body of existing research on a specific 

topic, which aims at analyzing the conceptual content of the field, identifying patterns 

and research streams, and discovering the strengths and weaknesses of selected literature 

(Hochrein & Glock, 2012). Fuzzy inventory models through two main categories are 

divided: (1) economic order quantity (EOQ) models, and (2) economic production 

quantity (EPQ) models. In the next step, some subcategories are considered for the 

mentioned categories.  

Contents of the investigated papers are analyzed in this chapter. Some tables are 

provided to compare the investigated studies from the fuzzified elements and 

characteristics points of view. Other tables in the next chapter are presented while the 

research methodology of our study is explained technically.  

2.2 Inventory Management  

Inventory control and management is one of the most important fields in supply chain 

management. It becomes more and more important for the enterprises in the real-life 

situations. Inventory problems are common in manufacturing, remanufacturing, 

maintenance service and business operations in general. Inventory is one of the costliest 

operating expenses through the other activities of a supply chain for many manufacturing 

industries. A proper control and analyzing of inventory systems can significantly enhance 

a company’s profit (Wang et al., 2007a). In fact, the management of inventory is a vital 

issue in optimizing productivity and profitability in many industries. For this reasons, 
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investigating inventory management is a critical point for many service and 

manufacturing industries and many world-wide scholars are interested to find solutions 

for the inventory management problems using different mathematical point of view.  

In recent years, many inventory models including economic order quantity (EOQ) 

model, economic production quantity (EPQ) model, joint economic lot size (JEL) model, 

newsvendor model, multi-period inventory model and multi-item inventory model have 

been developed. These models have been extended by applying other techniques and 

methods. In the next two sections, studies concerning the EO/PQ models considering the 

fuzzy set theory are reviewed.  

2.3 Fuzzy Set Theory  

In order to cope with the ambiguity of input parameters in the realistic environment, 

the Fuzzy Set Theory (FST) introduced by Zadeh (1965) is recognized as a powerful tool 

which has received considerable attentions from researchers. The FST becomes a proper 

method to handle decision-making and reduces risky decision-making where there are 

vague conditions or no data is available. The property which differentiates the FST from 

other methods is its capability to utilize decision maker’s opinion in an inventory system 

where its characteristics and data are very complicated. There are many situations in 

industry where the attributes of the input parameters are complicated so that they can be 

determined based on the experiences of policy makers and represented by the FST. The 

application of the FST can permit flexibility in defining the vague parameters which 

enables the model to handle uncertainties.  

2.4 Fuzzy Inventory Management  

As the parameters and variables in an inventory model may be derived and estimated 

by uncertain datum, it is very hard to define a real inventory system exactly using precise 

terms. Although, in this case, probability theory can be used to estimate the system, some 
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issues make it difficult to estimate the probability distribution of the elements of an 

inventory system because of (1) absence of historical data, and (2) imprecise nature of 

data. On one hand, estimation of parameters in the cost functions using traditional 

econometric methods which use probability theory is not always possible due to 

insufficient historical data specially, for newly launched products (Guchhait et al., 2014). 

On the other hand, ignoring uncertainty in the inventory management usually leads to 

some results that are not compatible with the real world.  

Uncertainty of inventory models is a well-established phenomenon in recent years. 

Extensive research works have been made on stochastic inventory models (Sox et al., 

1999; Winands et al., 2011). Since 1965 when Zadeh (1965) introduced fuzzy set theory 

to cope quantitatively with uncertain information in making proper decisions, inventory 

models have been extended by applying of this theory. The associated problem becomes 

a fuzzy inventory model. Fuzzy set theory gives an opportunity to handle inventory 

models containing imprecise linguistic terms and vagueness in real life situations. In fact, 

it provides relaxation in fitting of the probability distribution function to deal with these 

types of situations (Kumar & Goswami, 2015b).  

The first fuzzy inventory models that appeared in the literature is believed to be that 

of Sommer (1981) and Kacprzyk and Stanieski (1982) who used a fuzzy dynamic 

programming approach and fuzzy set theory to solve a real world production-inventory 

scheduling problem with capacity constraints, and problem of controlling inventory over 

an infinite planning horizon, respectively. In the first work, linguistic statements such as 

“the stock should be at best zero at the end of the planning horizon” and “diminish 

production capacity as continuously as possible” were utilized to explain management’s 

fuzzy aspirations for inventory and production capacity reduction in a planned withdrawal 

from a market. In the second one, considering a fuzzy inventory level and fuzzy 
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replenishment as the output and input, respectively, where demand and system constraints 

on replenishment are also fuzzy, an inventory system was designed. They presented an 

algorithm to find the optimal time-invariant strategy for determining the replenishment to 

current inventory levels that maximizes the membership function for the decision.  

2.5 Methodology of Literature Review  

The general framework to do the literature review of this research is based on the 

method designed by Mayring (2010). Four steps are considered including gathering the 

related papers, descriptive analysis, classification of the works, and content evaluation of 

the gathered studies as depicted in Figure 2.1. They are explained in the following. In the 

next stage, the content of the investigated studies is analyzed.   

 

Figure 2.1: Research methodology framework (Mayring, 2010)  

2.5.1 Material Collection  

Journals which are indexed in Social Sciences Citation Index and Web of Science 

previously known as Web of Knowledge, the “Web of Science™ tore Collection” 

including Science Citation Index Expanded (SCI-EXPANDED) and Social Sciences 

Citation Index (SSCI) are chosen. Keywords such as “fuzzy”, “EOQ”, “EPQ”, 

“inventory”, “economic order quantity”, “economic production quantity”, and “model” 

were searched through these databases separately or with each other. All papers that have 

been published since 1980 are considered. It should be noted that because of the vast 

number of publications in this area, our review is limited to consider only the papers 

published in ISI journals (indexed in Journal Citation Reports by Thomson Reuters). 

Later, to ensure the coverage of all related papers, other well-known databases including 
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Scopus, Elsevier, Springer, Taylor & Francis, Wiley, IEEE Xplore, Emerald, 

Inderscience, and ABI/INFORM Complete to find relevant studies published in journals 

that are indexed by Institute for Scientific Information (ISI) are searched.  

2.5.2 Descriptive Analysis  

The sample of 130 papers in the previous step was subject to an assessment in terms 

of descriptive analysis. Figure 2.2 illustrates the yearly distribution of the papers over 29 

years’ time frame.  

Overall, the trend line indicates that the topic of fuzzy inventory management with the 

focus of fuzzy EOQ (FEOQ) and fuzzy EPQ (FEPQ) has become increasingly popular 

throughout the years. The years on which the higher number of papers was published 

were 2009, 2011 and 2013, with 13, 12 and 15 papers respectively. Interestingly, even 

though the first paper published in 1987, this area was unnoticed for 7 years until the 

second paper published in 1996. Moreover, roughly 82% of the papers published 

throughout the recent 10 years, highlights the importance of this domain for researchers.  

Figure 2.3 ranks the academic peer-reviewed journals as to the number of papers that 

they published about this topic. Due to the variety of the journals in this realm, only the 

journals with four or more publications are provided in this figure, and other journals are 

grouped in a general category namely “others”. As can be seen, Computers & Industrial 

Engineering (CAIE), European Journal of Operational Research (EJOR), and Applied 

Mathematical Modelling (AMM) are the four primary journals published the models on 

fuzzy inventory management, which account for almost 31% of the entire papers.  

2.5.3 Category Selection  

After finalizing the collected papers, these sample papers were categorized regarding 

two main categories including EOQ and EPQ models.  
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Figure 2.2: Distribution of the published papers per year over the investigated time 

interval  

 

 

Figure 2.3: Distribution of publications based on different journals  
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Table 2.1: Classification of the publications according to the considered models  

Row 
Field of 

research 

No. of 

Papers 
Publications 

1. EOQ 10 

Park (1987); Vujošević et al., (1996); Lee and Yao (1999); 

Yao and Lee (1999)*; Yao et al., (2000); Yao and Chiang (2003); 

Hojati (2004); Syed and Aziz (2007); Lee and Lin (2011); Samal 

and Pratihar (2014)*  

2. EOQB 11 

Chen et al., (1996); Yao and Lee (1996);  Chang et al., (1998); 

Yao and Lee (1999)*; Yao and Su (2000); Wu and Yao (2003); 

Björk (2009);  Kazemi et al., (2010); Samal and Pratihar (2014)*; 

Milenkovic and Bojovic (2014); Kazemi et al., (2015) 

3. EOQEQ 9 

Chang (2003); Chang (2004); Roy et al., (2007); Wang et al., 

(2007b); Rong et al., (2008); Mahata and Goswami (2013); Roy 

et al., (2009a); Hsu (2012); Yadav et al., (2012a)  

4. EOQMI 13 

Yadavalli et al., (2005); Wang et al., (2013); Das et al., (2000); 

Mondal and Maiti (2002); Yao et al., (2003); Das et al., (2004); 

Baykasoğlu and Göçken (2007); Baykasoglu and Gocken (2011); 

Maiti and Maiti (2007); Maiti (2008); Panda et al., (2008); Huang 

(2011); Mousavi et al., (2014) 

5. EOQEQI 8 

Roy et al., (2008); Wee et al., (2009); Guchhait et al., (2010); 

Chakraborty et al., (2013); Roy and Maiti (1998); Xu and Liu 

(2008); Saha et al., (2010); Jana et al., (2014)  

6. EOQED 12 

Chen and Ouyang (2006); De and Goswami (2006); Mahata 

and Goswami (2007); Ouyang et al., (2010); Maiti (2011);  

Mahata and Mahata (2011); Soni and Joshi (2013); Guchhait et 

al., (2014); Yadav et al., (2015); Guchhait et al., (2015); 

Taleizadeh et al., (2013); Taleizadeh et al., (2011) 

7. EOQEO 13 

Liu (2008); Samadi et al., (2013); Sadjadi et al., (2010); 

Ketsarapong et al., (2012); Bera et al., (2012); Panda et al., 

(2014); Yadav et al., (2013a); Vijayan and Kumaran (2009);  Roy 

and Maiti (1997); Chou et al., (2009); De and Sana (2013a); De 

and Sana (2013b); De et al., (2014)  

8. EPQ 4 
Lee and Yao (1998); Chang (1999); Lin and Yao (2000); Hsieh 

(2002)  

9. EPQEQ 7 

Mahapatra and Maiti (2006); Chen and Chang (2008); Bag et 

al., (2009); Das et al., (2011); Pal et al., (2014); Paul et al., (2014); 

Pal et al., (2015) 

10. EPQW  6 

Roy et al., (2009b); Guchhait et al., (2013); Mondal et al., 

(2013); Mondal et al., (2014); Shekarian et al., (2014b); Shekarian 

et al., (2014a)  

11. EPQS 7 

Halim et al., (2009); Zhang et al., (2009); Wang and Tang 

(2009b); Hu et al., (2010); Kumar and Goswami (2015b); Kumar 

and Goswami (2015c); Mahata (2015)  

12. EPQMI 9 

Pappis and Karacapilidis (1995); Mandal et al., (2005);  

Mandal and Roy (2006a); Islam and Roy (2007); Panda and Maiti 

(2009); Mandal et al., (2011); Björk (2012); Mezei and Björk 

(2015); Jana et al., (2013) 

13. EPOEQI 11 

Maity and Maiti (2005); Mandal and Roy (2006b); Maity and 

Maiti (2007); Panda et al., (2008); Xu and Zhao (2008); Xu and 

Zhao (2010); Mandal et al., (2010); Maity (2011a); Das and Maiti 

(2013);  Maity and Maiti (2008); Maity (2011b) 
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Table 2.1: Continue.  

Row 
Field of 

research 

No. of 

Papers 
Publications 

14. EPQEO 12 

Islam and Roy (2006); Mahapatra et al., (2011); Chang and 

Chang (2006); Chang et al., (2006); Maity et al., (2008); Pal et al., 

(2009); Wang and Tang (2009a); Soni and Shah (2011); 

Chakrabortty et al., (2013); Yaghin et al., (2013); De and Sana 

(2014); Kumar and Goswami (2015a)  
 

* This paper includes two kinds of models.  

 

 EOQ models: The type of the models that try to determine the optimal quantity 

from buyer/retailer’s perspective by minimizing the inventory costs or 

maximizing total profit.  

 EPQ models: The models that aim to determine the right quantity of a product that 

should be manufactured through minimizing the inventory costs or maximizing 

total profit.  

As to the subclasses of EOQ and EPQ models, they can be further divided into “basic 

models”, “model with backorders”, and “extended models”. The basic models refer to a 

class of models whose consider only the basic costs such as ordering, holding or set up, 

while extended models cover a set of problem that investigates additional aspects such as 

multiple products, product quality or process deterioration, delay in payment or their 

combination. Table 2.1 shows these categorizations according to the gathered papers.  

2.5.4 Material Evaluation  

Reliability and validity of the gathered papers were evaluated twice where a deductive 

and inductive method was conducted. In order to derive the structural dimensions which 

are led to correct classifications, in deductive approach, the materials (i.e. papers) were 

chosen, and then were analyzed, while in the inductive technique these dimensions are 

developed from the material by means of generalization (Mayring, 2010). The collected 

papers were again crosschecked with Scopus that it is one of the most comprehensive 
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academic databases, which contains articles from all fields such as engineering, 

management, mathematics and operations research and environmental science. These 

mechanisms could guarantee that all the identified data were sufficient and appropriate. 

Moreover, applying this method could ensure avoiding error and increasing reliability 

and validity.  

2.6 Economic Order Quantity Model  

The EOQ model that is an indispensable and fundamental methodology to overcome 

some bottlenecks of the supply chain systems, initially and originally proposed by Harris 

in 1913 (Harris, 1913), deals with finding the optimal order quantity of inventory items 

at each time that minimizes total inventory cost function or maximizes total profit 

function which include ordering, holding, and  backordering (if any) costs. Because of its 

necessity to minimize expanse of the inventory systems, the EOQ models have been the 

subject of extensive extensions, modifications, and investigations by academicians.  

 Later on, Taft (1918) developed the basic model of EOQ relaxing the assumption of 

instantaneous replenishment. The concept of the reorder point in the initial EOQ model 

which showed one of the first attempts to work with probabilistic considerations in 

inventory management was introduced by Wilson (1934). Thereafter, Whitin (1954) 

introduced the concept of stochasticity in EOQ model. Other researchers tried to change 

the assumptions of the basic model with the objective to make it more realistic.  

2.6.1 Fuzzy Economic Order Quantity Model  

The underlying assumptions in the basic EOQ model is that all the input parameters 

and decision variables are constant and known in the inventory system. However, demand 

may vary from time to time, for example. Especially in today’s competitive markets and 

industries, the costs of holding, ordering and backordering are always likely to vary from 

one cycle to another and are fuzzy in nature.  
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Therefore, there is a need to develop fuzzy EOQ models to capture the uncertainties 

accurately. A number of fuzzy inventory models have already been proposed and studied 

in the literature. The first FEOQ model proposed by Park (1987) who examined an EOQ 

model by treating ordering and holding costs as trapezoidal fuzzy numbers, used the 

extension principle for defuzzifying and solved the model with numerical operations. 

Earlier, many researchers developed other FEOQ models.  

2.6.1.1 Fuzzy Economic Order Quantity Model without Backorder (EOQ) 

To determine the effect of different approaches to obtain the optimal order quantity, 

Vujošević et al., (1996) solved an EOQ model with ordering and holding costs and four 

different solution procedures based on the ranking of fuzzy number and the center of 

gravity method in a fuzzy environment. It was shown that they give different solutions at 

which the fuzzy cost function attains its minimum, simply because they handle 

uncertainty in different ways. There are some problems and shortcomings in this study 

which were discussed and highlighted by Hojati (2004) and could be improved. He argued 

that the suggested solution procedures are complicated and time consuming, for example.  

Yao and Lee (1999) and Lee and Yao (1999) fuzzified order quantity to trapezoidal 

and triangular fuzzy number in the total cost of inventory model without backorder, 

respectively. In both studies, the results showed that after defuzzification the total cost is 

slightly higher than in the crisp model. In a follow-up study, Yao et al., (2000) 

investigated an EOQ problem without backorder such that both the order and the total 

demand quantities are triangular fuzzy numbers. They used a computer program to find 

the total cost in the fuzzy sense. In order to compare the results of different defuzzification 

methods (i.e. the centroid and the signed distance) in the total cost of inventory model 

without backorders, where the total demand and the cost of storing one unit per day is 
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supposed to be triangular fuzzy numbers, another study was conducted (Yao & Chiang, 

2003). They proposed some policies to choose the appropriate defuzzification method.  

In contrast to previous studies, Wang et al., (2007a) characterized the order and the 

holding costs as fuzzy variables, and constructed two models using the concepts of 

possibility/necessity and credibility measures: (1) a fuzzy expected value (FEV) model, 

and (2) a fuzzy dependent chance programming (FDCP) model while in order to solve 

these complex models, a particle swarm optimization (PSO) algorithm based on the fuzzy 

simulation was designed. Syed and Aziz (2007) and Lee and Lin (2011) investigated a 

fuzzy inventory model with the signed distance method. Similar to the presented approach 

by Wang et al., (2007a), two variable demand inventory models, with and without 

backorder, building FEV and FDCP models, were constructed for minimizing inventory 

cost, treating the holding, ordering and backordering costs and demand as independent 

fuzzy variables (Samal & Pratihar, 2014). Using genetic and PSO algorithms, they 

minimized the FEV of the total cost, so that the credibility of the total cost not exceeding 

a certain budget level was maximized. Comparison of these algorithms proofed when the 

complexity of the model is increased, PSO has outperform the GA because its particles 

maintain their memory.  

2.6.1.2 Fuzzy Economic Order Quantity Model with Backorder (EOQB) 

One of the first attempt to build a FEOQ model with backorder is that of Chen et al., 

(1996) who considered an inventory model where yearly demand and inventory costs 

including order, holding, and backorder costs were fuzzified. They used the function 

principle and the median rule to find the optimal order quantity and the shortage quantity.  

Yao and Lee (1996) and Chang et al., (1998) fuzzified the order and the shortage 

quantity, respectively, as the normal triangular fuzzy number in an EOQ model with 

backorder. They used two similar approaches to discuss fuzzy sets concepts in the 
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mentioned model. Besides, Yao and Su (2000) used interval-valued fuzzy set to consider 

the total demand quantity in inventory with backorder for whole of the plan period. To 

determine the effects of fuzzification of the order and shortage quantities simultaneously 

in an EOQ model with backorder, Wu and Yao (2003) showed that fuzzification of both 

of them could give better results than fuzzifying any one variable separately.  

Björk (2009) presented the analytical solution to study the effect of uncertainty on 

backorders and the lead times as well as the demand. In this case, according to a numerical 

example, the orders were approximately 6% higher than for the crisp case. In addition, 

comparing the obtained results with those of Chang et al., (1998) showed that they are 

coherent. In this line of research, a fully fuzzy EOQ model with backorder, where all the 

input parameters and the decision variables are simultaneously fuzzified in two different 

cases with both trapezoidal and triangular fuzzy numbers, was conducted by Kazemi et 

al., (2010). Their results, which were more sensitive to changes in the input parameters 

when triangular fuzzy numbers were used, contribute that the changes in the values of the 

decision variables (the maximum inventory level and the batch size) to changes in the 

costs between the crisp (deterministic) and fuzzy cases have a linear relationship. Similar 

to the approach used by Björk (2009), a fuzzy EOQ model to the sizing of empty cars on 

a rail network tested with a real case of the Serbian rail network within a four-day 

planning period to derive freight car inventory level in station i for period n of the 

planning horizon and the ordering quantity for the same station and period n as decision 

variables was proposed (Milenkovic & Bojovic, 2014). They assumed lead time as the 

time of the freight car traveling between two stations. The work of Björk (2009) was 

extended by Kazemi et al., (2015) who relaxed the assumption of constant fuzziness by 

incorporating the concept of learning in fuzziness into the model. They showed that the 

total cost of the fuzzy inventory model under learning is less than the fuzzy case without 

learning.  
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2.6.1.3 Extensions of Fuzzy Economic Order Quantity Model 

In this section, the content of the gathered EOQ papers based on the categorizations 

which are based on the quality of items, the number of items, delay in payment and other 

extensions are explained.  

 Quality Based Studies (EOQEQ) 

Chang (2003) reformulated the model developed by Porteus (1986) drawing on the 

concept of imperfect production process with opportunity cost rate as a statistic-fuzzy 

number. He derived the optimal values of lot size and the process quality level in the 

fuzzy sense utilizing the logarithmic investment cost function. Building upon the work of 

Salameh and Jaber (2000) who constructed an EOQ model with imperfect quality,  Chang 

(2004) incorporated the fuzziness of defective rate and the annual demand into the 

mentioned EOQ model. He employed the signed distance method to find the estimate of 

total profit per unit time in the fuzzy sense, and then derived the corresponding optimal 

lot size. Roy et al., (2007) considered a two storage inventory model under bulk release 

pattern between two warehouses in a stochastic planning horizon with an exponential 

distribution where demand and deterioration are stock dependent and fuzzy, respectively. 

Considering the imperfect quality items in each delivered lot, Wang et al., (2007b) 

developed an EOQ model with the percentage of imperfect quality items in each lot as a 

random fuzzy variable. They assumed the inspection, the holding, and the setup costs as 

fuzzy variables and maximized expected long-run average profit by constructing a 

random fuzzy expected value model which was solved by a PSO algorithm based on the 

random fuzzy simulation. Rong et al., (2008) introduced a two-warehouse problem for 

deteriorating items with fuzzy lead time where ordering cost assumed to be partly lead 

time dependent. Roy et al., (2009a) formulated a fuzzy inventory model of a deteriorating 

item with displayed stock dependent demand over a stochastic time horizon. Considering 

the learning effects on percentage of defective items, Yadav et al., (2012a) formulated a 
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FEOQ model with backorder by taking fuzzified demand rate with dependence upon the 

frequency of advertisement, while in contrast to previous usual methods, optimal values 

were obtained by using algebraic method instead of differential calculus. According to 

some analytically and numerically results, they proved that the number of defective units 

and shipment size decrease, whereas backordering level and net profit increase as learning 

increases and as it becomes faster. Therefore, it was recommended to order in smaller lots 

less frequently. Hsu (2012) explored a fuzzy inventory model with immediate return for 

defective items. By extending the work of Wee et al., (2007) who focused on the quality 

of items and full backordering, Mahata and Goswami (2013) developed two fuzzy 

inventory models in which in the first model the maximum backordering quantity and the 

order size as decision variables are fuzzified, and in the second one, not only decision 

variables but also all the parameters are fuzzified. They concluded that the optimal 

solutions of the second model are same as those under the fuzzy model with the crisp 

decision variables, and moreover, the decision variables and the annual total profit are 

highly sensitive due to the fuzziness in the input parameters. It is such that the percentage 

change due to fuzziness causes approximately double percentage changes in the annual 

total profit and the backordering quantity is nearly equal of the changes in the 

components, whereas the order lot size changes marginally.  

 Multi-Item Models (EOQMI) 

A model similar to Roy and Maiti (1998)’s approach where inventory costs were 

directly proportional to the respective quantities, and unit purchase/production cost was 

inversely related to the demand was investigated (Das et al., 2000). Besides, fuzzy non-

linear programming problem (FNLP) along with genetic algorithm (GA), for the first 

time, were applied to solve multi-item FEOQ models under fuzzy objective of cost 

minimization and imprecise constraints on warehouse space and number of production 

runs with crisp/imprecise inventory costs (Mondal & Maiti, 2002). For two mutually 
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complementary merchandises, Yao et al., (2003) discussed how to determine the optimal 

ordering policy with fuzzy concept. Applying a new solving approach, Das et al., (2004) 

formulated a multi-item fuzzy-stochastic inventory model under total budgetary and 

space constraints. They reduced the model to a corresponding equivalent fuzzy non-linear 

programming problem, and then, it is solved by FNLP following Zimmermann (1975) 

technique. Following the work of Roy and Maiti (1995), FEOQ models were developed 

for multiple items (Yadavalli et al., 2005). The authors showed that among various 

membership functions, linear membership function provides the best values with the 

maximum aspiration level. Baykasoğlu and Göçken (2007) solved a fuzzy multi-item 

EOQ problem with fuzzification of all the parameters as triangular fuzzy numbers except 

the demand per unit time for the ith item which was assumed crisp by employing four 

different fuzzy ranking methods which are the signed distance, integral value, possibility 

programming, and expected intervals method. The results showed that models based on 

different ranking procedures generated different solutions to the problem and, 

furthermore, the solution of the model based on the integral value ranking approach 

generated better results than the other ones. In a similar study, Baykasoglu and Gocken 

(2011) compared the results of the considered model of their previous research 

(Baykasoğlu & Göçken, 2007) with those of obtained by PSO algorithm as a direct 

approach. It was concluded by applying a transformation process (i.e. indirect approach) 

some of the information can be missed; and it highlights the importance of the proper 

selection of a fuzzy ranking procedure in the direct method. They showed that fuzzy 

optimization problems can be easily solved using fuzzy ranking and metaheuristics 

methods without any necessity of transformation into a crisp equivalent.  

Fuzzy-stochastic multi-item inventory models with two storage facility and bulk 

release were solved using a possibility/necessity based optimization technique (Maiti & 

Maiti, 2007). Maiti (2008) developed a fuzzy two-storage inventory model incorporating 
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simultaneous ordering and transferring, following basic period (BP) approach. Panda et 

al., (2008a) formulated an inventory model with hybrid inventory costs and fuzzy/fuzzy-

stochastic resources where unit cost is demand dependent. Huang (2011) compared the 

performance of two well-known defuzzification methods (i.e. signed distance and 

centroid methods) proposing a multi-level lot-sizing problem for multi-item. In an inter-

disciplinary research of a fuzzy inventory model and intelligent optimization algorithms, 

Wang et al., (2013) formulated a FDCP inventory model in a joint replenishment problem 

(JRP). Mousavi et al., (2014) solved a fuzzy multi-product/period inventory problem 

using intelligence algorithms under an incremental quantity. According to their results, 

the performance of the harmony search algorithm to optimize the single and bi-objective 

inventory control is better than the PSO one.  

 Mix Quality Multi-Item Studies (EOQEQI) 

Roy and Maiti (1998) formulated two fuzzy multi-item multi-objective inventory 

models with stock dependent demand which were solved by FNLP and fuzzy additive 

goal programming (FAGP) methods. Later, these models were extended in a fuzzy 

random environments by Xu and Liu (2008) where a method of solving solution sets of 

fuzzy random multi-objective programming problems was designed and applied to 

numerical inventory problems with all inventory costs, purchasing and selling prices in 

the objectives and constraints assumed as fuzzy random variables in nature. They 

extended a method to find the membership function of the fuzzy total inventory while the 

related fuzzy inventory problem is solved via two techniques: (1) fuzzy extension 

principle and duality, and (2) nearest interval approximations for fuzzy numbers.  

Using a similar approach to Liu (2008), a deteriorating multi-item inventory system 

subject to constraints on fuzzy costs and storage space was proposed (Roy et al., 2008). 

Wee et al., (2009) developed a fuzzy multi-objective joint replenishment deteriorating 
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items inventory model with fuzzy demand and shortage cost constraint, and maximized 

the profit and return on inventory investment objectives simultaneously. Regarding the 

breakable items which get damaged because of the accumulated stress of heaped stocks 

during storage, Saha et al., (2010) formulated fuzzy multi-item inventory models with 

stock dependent demand supposing that the number of damaged items depends only on 

the current stock level linearly and non-linearly. They assumed more options: (1) the 

demand depends on the current stock but becomes constant when the stock falls below a 

certain level, and (2) the breakability of the items is up to a certain stock level and 

thereafter, there is no breaking of the items when the stock falls below the level. In 

addition, Guchhait et al., (2010) proposed fuzzy inventory models of breakable items, 

where demand of the items are stock dependent and breakability rates increase linearly 

with stock and nonlinearly with time. Chakraborty et al., (2013) addressed an inventory 

model of deteriorating seasonal products for a wholesaler having showrooms at different 

places under a random planning horizon with different discounting policies. Besides, Jana 

et al., (2014) formulated a multi-item fuzzy inventory models under random planning 

horizon and stock-dependent demand.  

 Studies with Delay in Payment (EOQED)  

With a permissible delay in payment, De and Goswami (2006) extended an EOQ 

model with a fuzzy inflation rate and fuzzy deterioration rate. They discussed three cases 

where shortage time is smaller, equal or greater than the permissible delay period for 

settling accounts and the duration of the permissible delay time effectively changes the 

optimal system cost. These situations were compared with the help of numerical 

examples. Chen and Ouyang (2006) extended the work of Jamal et al., (1997) considering 

the rate of the carrying cost, interest paid/earned simultaneously fuzzified based on the 

interval-valued fuzzy number and triangular fuzzy number. They indicated that there 

exists a unique interior optimal solution to the proposed model. Another work in this area 
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regarding deteriorating items, is that of Mahata and Goswami (2007) who extended the 

delay in payments not only for the retailer but also for the customer. Furthermore, the 

graded mean integration representation (GMIR) method was used for defuzzifying the 

total variable cost which was derived from fuzzified variables comprising the demand 

rate, and the holding, ordering, and purchasing costs.  

Allowing delay in payments, Ouyang et al., (2010) fuzzified the work of Chang et al., 

(2003) who linked the supplier credits to ordering quantity. Maiti (2011) introduced 

customers’ credit-period linked dynamic demand with the imprecise planning horizon 

due to the competitive market.  

Under the assumption of having the full trade credit offered by suppliers for the retailer 

due to their powerful position and just offering a partial trade credit to customers by 

retailer, Mahata and Mahata (2011) investigated a FEOQ model in a two levels of trade 

credit. They derived optimal values and proposed some policies. Besides, they obtained 

some previously published results of other authors as special cases. Their work was 

extended by Soni and Joshi (2013) adding more realistic assumptions such as imprecise 

selling price dependent demand rate.  

Regarding a variable demand which depends on selling price, stock level and retailer’s 

credit period, Guchhait et al., (2014) developed a FEOQ model of a deteriorating item 

where not only supplier to the retailer but also retailer to his customer could provide 

permissible delay in payment and the supplier could consider cash discount to the retailer 

to pay for their purchases quickly. Yadav et al., (2015) considering the trade credit policy 

in a fuzzy environment concluded that the retailer can increase the profit by ordering 

lower quantity. Guchhait et al., (2015) presented an inventory policy for the time-

dependent deteriorated goods with different types of imprecise inventory costs, two-level 

partial trade credit facility and credit period dependent demand. Taleizadeh et al., (2011) 
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and Taleizadeh et al., (2013) extended fuzzy rough joint replenishment multi-product 

multi-constraint inventory models as mixed integer nonlinear programming to purchase 

high price raw materials that are solved by meta heuristic algorithms.  

 Other Extensions of EOQ (EOQEO)  

Roy and Maiti (1997) formulated a FEOQ model with limited storage capacity where 

the demand is related to the unit price and the setup cost varies with the quantity 

produced/purchased and the fuzziness is introduced in both objective function and storage 

area. They applied FNLP to solve their model. Later, their analytical procedure was 

improved by employing formulated solutions based on the max–min operator (Chou et 

al., 2009). Pointing out the questionable results and resolving the deficiencies to obtain 

the minimum solution of previous work by Roy and Maiti (1997), with the same inventory 

model with fuzzy constraints, Chou et al., (2009) proposed a method based on the max–

min operator and solved the deterministic inventory model converted from the fuzzy 

inventory model. Liu (2008) revisited an EOQ model as a profit maximization problem 

when the demand quantity and the unit cost are fuzzy numbers, and are functions of the 

price and lot size, respectively. He developed a solution method based on the extension 

principle where the fuzzy inventory problem is transformed into a pair of two-level 

mathematical programs to derive the upper bound and lower bound of the fuzzy profit at 

possibility level α. Then, it is transformed into a pair of conventional geometric programs 

to solve. The results showed that when the selling price is elastic, the larger the selling 

price, the smaller the order quantity is. Chen (2003)’s model called economic order time 

(EOT) was fuzzified when the time period of sales is the decision variable and the 

components of the model are fuzzified (Vijayan & Kumaran, 2009). It was shown that 

the solutions of the EOT model with all fuzzy components were the same as those under 

the fuzzy model with the crisp time period.  
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Sadjadi et al., (2010) developed a new pricing and marketing planning proposing 

solutions expressed by membership functions. They assumed the demand is a function of 

price and marketing expenditure with fuzzy parameters, and the purchasing cost is as a 

function of the order quantity. Bera et al., (2012) developed an inventory model with an 

infinite rate of replenishment over a finite but imprecise time horizon considering time 

dependent ramp type demand. Ketsarapong et al., (2012) developed an uncapacitated 

single item lot sizing problem in a fuzzy environment that is converted to a crisp model 

with the help of possibility approach.  

Samadi et al., (2013) developed a FEOQ model proposing solutions expressed by 

membership functions where the demand is a power function of price, marketing and 

service expenditures and the unit cost is determined as a function of the order quantity. 

Yadav et al., (2013a) developed a fuzzy version of the model of Lin (2008) who 

considered a controllable backorder price discount and the reduction of lead-time. De and 

Sana (2013a) developed an intuitionistic FEOQ where the demand rate is varying with 

the selling price and the promotional effort (PE). De and Sana (2013b) dealt with a 

backorder EOQ model while a 𝑚-th power promotional index (PI) as a fuzzy decision 

variable was added to the total profit function along with the order and shortage quantities. 

They assumed the demand as a function of the PI, and concluded that the value of PI near 

zero may not give the maximum profit. Following their previous works, with PE 

dependent demand allowing shortages and assuming the decrease in the demand rate in 

stock out situation while it comes back to its initial rate since PE continues, they proposed 

a solution procedure for an intuitionistic fuzzy (IF) backorder inventory model and made 

a comparative study on Pareto optimality and optimality under Lagrange’s interpolating 

polynomial function (De et al., 2014). They concluded that in contrast to the Pareto 

optimality test which is valid only for minimization problem, their modified IF 

programming techniques (IFPT) called interpolation method is valid for any kind of 
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(max/min) problem. Regarding the warehouse inventory systems, Panda et al., (2014) 

developed a two-warehouse fuzzy-stochastic mixture problem.  

2.7 Economic Production Quantity Model  

Since the development of EOQ model by Harris (1913), up to now, numerous 

inventory models have been studied in the literature in order to consider various realistic 

features. On the other hand, economic production quantity (EPQ) model, which is an 

extension of the EOQ model, has also been served for over 80 years to determine the 

optimal lot size in production/inventory systems.  

Needless to say that, similar to EOQ model, the results of EPQ models depend largely 

on a number of basic assumptions such as types of demand, production rates, different 

cost parameters, replenishment policies and so on (Halim et al., 2009). In the next section, 

Studies which consider fuzzy set theory into the EPQ model to build a FEPQ model are 

reviewed.  

2.7.1 Fuzzy Economic Production Quantity Model  

Similar to its counterpart (i.e. EOQ), economic production quantity model has been 

developed through the fuzzy set theory. In recent years, many kinds of fuzzy EPQ model 

were extended. In discussions of production quantity models, it is believed that Sommer 

(1981) applied a fuzzy dynamic programming approach to solve a production-inventory 

scheduling problem with capacity constraints. Another earlier work is that of Kacprzyk 

and Stanieski (1982) who incorporated the fuzzy set theory into production planning and 

control problems.  

2.7.1.1 Fuzzy Basic Economic Production Quantity Model (EPQ)  

By fuzzification of both the demand quantity and the production quantity per day, Lee 

and Yao (1998) investigated a computing schema for the FEPQ deriving the membership 
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function of the fuzzy total cost. The triangular form, extension principle and centroid 

method were used for fuzzy numbers, calculation and defuzzification, respectively. They 

found that, after defuzzification, the total cost was slightly higher than in the crisp model. 

Later, using the procedure used in Lee and Yao (1998), two studies were conducted by 

Chang (1999) and Lin and Yao (2000) who only fuzzified the production quantity in their 

model as triangular and trapezoidal fuzzy number, respectively.  

Hsieh (2002) constructed two FEPQ models while the first one was fully fuzzified on 

all the parameters, and in the second one, not only all parameters but also the decision 

variable (i.e. production quantity) was fuzzified as a trapezoidal fuzzy number. He 

showed that considered models are executable and useful in the real world.  

2.7.1.2 Extensions of Fuzzy Economic Production Quantity Model 

In this section, the content of the EPQ papers according to the categorizations which 

are based on the quality of items, rework, the number of items, and other extensions are 

explained.  

 Quality Based Studies (EPQEQ)  

Mahapatra and Maiti (2006) addressed a production-inventory model with imprecise 

preparation time for production aiming to maximize the profit. Chen and Chang (2008) 

introduced a FEPQ model with defective productions that cannot be repaired. Bag et al., 

(2009) introduced the fuzzy random variable demand concept to an imperfect production 

system considering reliability of production system. A production system producing 

defective items due to the machine failure was addressed by Das et al., (2011). Based on 

a numerical analysis, they illustrated that there is a direct relation between the production 

rate and the mean duration of a breakdown. However, an inverse relation was found 

between the cost of production idle-time and the production rate. Pal et al., (2014) 

investigated the ramp up demand in an EPQ model with fuzzy setting. They assumed that 

Univ
ers

ity
 of

 M
ala

ya



30 

the demand is a function of time and items in stock could be deteriorated following a 

Weibull distribution. They showed that the fuzzy model returns a lower total cost value 

than crisp model for some values of degree of optimism and total replenishment cycles. 

According to their results, the shorter the production cycle is, the lower the total cost will 

be. Moreover, Paul et al., (2014) addressed a FEOQ model with fuzzy holding cost and 

demand in an imperfect production system while reliability of the system was a decision 

variable. They concluded that their model is more realistic and applicable than traditional 

production inventory models. Pal et al., (2015) formulated a model with the ramp type 

demand and the deterioration of the product. They showed the total cost in the fuzzy and 

the crisp case could be equal when the decision maker is semi optimistic.  

 Rework Based Studies (EPQW)  

Roy et al., (2009b) developed an imperfect production system where a portion of the 

imperfect items could be remanufactured to as-good-as perfect quality to satisfy customer 

demand, while the remaining items are irreparable, and consequently are disposed. It was 

illustrated that the relation between the total profit and the fuzzy confidence level of 

defective rate are opposite. Guchhait et al., (2013) addressed a FEPQ model with 

remanufacturing of imperfect quality items using fuzzy differential equation and fuzzy 

Riemann-integration. Following this line of thought, Mondal et al., (2013) developed a 

FEPQ model in a rough environment in which the imperfect quality items could be 

repaired becoming as perfect quality item. They determined that the existence of either 

uncertainty or inflation has a negative impact on the total profit, and also suggested 

repairing process should start up from the second cycle when repairing rate is a dynamic 

control variable. Mondal et al., (2014) formulated a FEPQ problem where units are bulkly 

transformed from production center to a showroom, and the rework process of defective 

items starts after the production cycle. Shekarian et al., (2014b) extended a FEOQ model, 

and showed that formulating the fuzzy model with a trapezoidal membership function 
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leads to a higher total cost comparing to the triangular one. It is due to the fact that 

trapezoidal fuzzy number increases the dimensions of the system. Shekarian et al., 

(2014a) extended the model of Shekarian et al., (2014b) without backorder and different 

fuzzy settings. They illustrated that using the signed distance method leads to a larger lot 

size in comparison with the GMIR method.  

 Shifting in the Production Status (EPQS)  

Applying a probability function with fuzzy parameters, Halim et al., (2009) examined 

two different scenarios in a production system that produces imperfect items due to the 

shifting to out of control state. The authors proposed that although it is difficult to 

recognize which model (fuzzy and crisp) performs better, it is more appropriate to use the 

fuzzy model when the fraction of defective items fluctuates. Zhang et al., (2009) 

formulated a production problem which starts with in control state producing good quality 

items, and then may change to out of control state during production cycle producing a 

fixed fraction of defective items. They used fuzzy and random-fuzzy concepts to build 

their model. In a similar situation, Wang and Tang (2009b) addressed a model with a 

difference that the time until the production shifts to out of control state is a fuzzy variable 

instead of being a fuzzy random variable. In contrary to Zhang et al., (2009) and Wang 

and Tang (2009b), a simpler model was considered by Hu et al., (2010), who assumed 

setup and holding costs as crisp parameters.  

Other works that studied the effect of randomness and fuzziness include Kumar and 

Goswami (2015b), Kumar and Goswami (2015c) and Mahata (2015), who  represented 

the time in which the system shifts from in control to out of control state as a fuzzy random 

variable.  
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 Multi-Item Studies (EPQMI)  

One of the earliest models dealing with multi-item FEPQ models is that of Pappis and 

Karacapilidis (1995), who investigated the problem of determining optimal production 

runs in a batch production system. A fuzzy multi-product multi-objective EPQ system 

was addressed by Mandal et al., (2005) considering the shortage and the constraints on 

storage area, production cost and number of orders. Mandal and Roy (2006a) optimized 

a multi-item inventory model with demand dependent inventory level and shelf-space 

constraint under three different fuzzy numbers.  

Islam and Roy (2007) extended a multi-item version of Islam and Roy (2006)’s model 

considering different solution procedure. A similar but more complex problem as in Islam 

and Roy (2007) was studied by Panda and Maiti (2009), where unit production cost was 

considered to be dependent on stock level as well as demand which was given dependent 

on unit selling price. A fuzzy production inventory model which the time interval between 

the decision to produce and the real time of production is variable was studied in Mandal 

et al., (2011). As the production with preparation time is more costly, they stressed that 

the decision for production should be made as earlier as possible to reduce the production 

cost. Björk (2012) investigated a fuzzy multi-item EPQ model with a finite production 

rate under uncertain cycle time. He recommended cycle time with more flexible interval 

for such a production system. This work was extended by Mezei and Björk (2015) to 

account for backorders. Jana et al., (2013) offered FEPQ models assuming the demand 

and the unit production cost as functions of stock level and the production rate 

respectively. The authors found that there are not much differences between the result of 

the model solving with triangular and parabolic fuzzy numbers, and the generalized 

reduced gradient (GRG) approach gives lower profit than the necessity approach.  
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 Mix Quality Multi-Item Studies (EPQEQI)  

One of the first studies considering the deteriorated items with multi-item in a fuzzy 

production-inventory system is that of Maity and Maiti (2005), who suggested a model 

with demand and production rate, assumed as a function of time, in which was solved 

using weighted sum method and simple differential calculus operations. Mandal and Roy 

(2006b) used hybrid numbers (i.e. numbers that simultaneously contain fuzziness and 

randomness properties) to present a model with imperfect quality under uncertainty. The 

author found that when the weight of the objective function increases the value of 

objective function decreases as a result. Maity and Maiti (2007) suggested fuzzy dynamic 

production-inventory models when the demand, the production rate and the shortage level 

are time dependent. A fuzzy multi-item production-inventory system was addressed by  

Maity and Maiti (2008) with time dependent demand where demand could be decreased 

or increased under the influence of sale degradation and advertising policy, respectively. 

Panda et al., (2008b) studied the case of imperfect production process where the constraint 

is stochastic or fuzzy and concluded that modeling budget and shortage constraints using 

possibility measure gives the greatest total profit among all possible combinations. Xu 

and Zhao (2008) formulated a multi-objective fuzzy rough production-inventory model 

with imperfect quality in which the rate of production is assumed to be the same as the 

rate of rework. Xu and Zhao (2010) applied the fuzzy rough set theory in a multi-objective 

programming problem in a manufacturing company in China. Mandal et al., (2010) 

analyzed an imperfect production system with fuzzy time period under quadratic, linear 

and constant production rate. They recommended using constant production because of 

the lower total production cost. The first research in fuzzy EPQ inventory which applied 

fuzzy inequality as well as fuzzy objective function in modelling the production inventory 

was the study of Maity (2011a), who addressed a fuzzy EPQ model in a system including 

a single machine and multiple products. Firstly, Maity (2011a) investigated a FEPQ 
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model applying fuzzy inequality as well as fuzzy objective function with a single machine 

and multiple products. A multi-item production inventory model with two-warehouse and 

uncertain constraints was developed by Maity (2011b), who assumed that inventory level, 

production and demand rates are function of time. Das and Maiti (2013) formulated a 

FEPQ model with a fuzzy-stochastic constraint on storage space and an optimistic fuzzy 

equality for budget.  

 Other Extensions of EPQ (EPQEO)  

By introducing fuzziness in objective and constraint goals, a FEPQ model considering 

investment for reducing setup cost and quality improvement process was proposed by 

Islam and Roy (2006). Mahapatra et al., (2011) discussed a simpler version of Islam and 

Roy (2006)’s model but without storage space. Taking a variety of costs into 

consideration in EPQ inventory systems, Chang and Chang (2006) analyzed a problem 

by accounting for the relative cost of the inventory system generated from inventory 

holding and production. Chang et al., (2006) investigated the problem of fuzzy demand 

in economic lot-size scheduling problem and compared the fuzzy and crisp cases. A 

production–recycling–inventory system was developed by Maity et al., (2008) where the 

used items are collected for recycling or disposal, and are treated as-good-as-new. By 

incorporating the effect of learning on production and setup cost and fuzzification of 

lifetime of the product, a FEPQ model for a newly launched product was constructed by 

Pal et al., (2009) where demand depends on time and price during the price discount 

period. They used GA for optimization of the fuzzy models which are transferred to 

deterministic ones following possibility/necessity measure on fuzzy goal and necessity 

measure on imprecise constraints. Wang and Tang (2009a) solved a complex structure of 

FEPQ problem with fuzzy variable costs, and derived the equivalent value of the fuzzy 

total cost function. Considering the pre-production time as a fuzzy number in a FEPQ 

model, Soni and Shah (2011) showed when the demand is taken a trapezoidal fuzzy 
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number into account, the optimal expected total cost, the production quantity and the 

cycle length are higher than the case that it is considered as an interval fuzzy number. A 

new solution approach based on intuitionistic fuzzy sets to solve a FEPQ problem was 

suggested by Chakrabortty et al., (2013). The proposed solution approach was proven to 

be a strong Pareto-optimal solution using Pareto-optimality test, since the obtained value 

of the objective function for the test was found to be quite small. Yaghin et al., (2013) 

formulated a non-linear fuzzy mathematical programming for a production-inventory 

model confronting different demands from several market sectors.  

A FEPQ problem with multiple period and manufacturers/machines was analyzed by 

De and Sana (2014). They compared general fuzzy optimization and intuitionistic fuzzy 

optimization methods and showed that the second one performs better than the first one 

in two out of the three investigated models. Moreover, Kumar and Goswami (2015a) 

developed a production-inventory model which works under continuous review inventory 

control policy under the effect of stochastic and fuzzy-stochastic demand.  

According to the investigated studies, it should be mentioned that fuzzy inventory 

management has been used in industries such as services and equipment industry with a 

EPQEQI model (Xu & Zhao, 2008), garment industry with a EOQEQI model (Jana et al., 

2014), arts and crafts industry with a EPQEQI model (Xu & Zhao, 2010) and 

transportation industry with a EOQB model (Milenkovic & Bojovic, 2014).   

2.8 Fuzzified Elements and Characteristics  

In this section, more details to highlight the contribution of the proposed models 

comparing them with the previous literature are provided. These details are gathered in 

Tables 2.2 and 2.3 where studies are categorized regarding the considered characteristics 

and the depth of fuzzification of publications and elements. In Table 2.2, gathered papers 

are classified according to characteristics such as inflation, discounting, screening, 

Univ
ers

ity
 of

 M
ala

ya



36 

rework, learning, and delay in payment. Other characteristics are based on the shortage, 

quality, and structure of the models which are constraint, objective and the number of 

items. Besides, Table 2.3 shows the level of fuzzification of the models based on the 

structural elements of the problem which are parameters, variables, objectives, and 

constraints. In Table 2.3, the letter “F” shows that the element is fully fuzzified while the 

letter “P” stands for a status which an element is partially fuzzified. For example, if all 

the parameters of the model are fuzzified it has been shown with “F”. It is clear that there 

are a few papers that considered a fully fuzzy status for all the element.  

2.9 Chapter Summary  

In this chapter, previous studies through a systematic literature review were reviewed. 

The content of these studies were investigated technically and characteristics of the 

models were categorized in details. Two main classes of inventory management problems 

(i.e. economic order quantity and economic production quantity) which are related to the 

proposed fuzzy models in the next chapters were discussed. Although there is a vast 

number of works in this field, it is found that there are still some shortcomings. Likewise, 

little attention has been paid to the FEOQ or FEPQ that are developed in a fully fuzzy 

environment in the presence of learning. Besides, there are some opportunities to fill the gaps 

with other important characteristics.  
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Table 2.2: Classification of the publications according to the considered models in details  

Publication Inf. Dis. Scr. Rew. Lea. Del. 
Treatment of shortage Quality of items Structure of model 

Type 
Pb. Fb. Los. Def. Det. Cons. Muo. Mui. 

1. Park (1987)               EOQ  

2. Vujošević et al., (1996)                EOQ  

3. Lee and Yao (1999)        √       EOQ 

4.1. Yao and Lee (1999)                EOQ  

5. Yao and Chiang (2003)               EOQ  

6. Hojati (2004)               EOQ  

7. Syed and Aziz (2007)               EOQ 

8. Lee and Lin (2011)                EOQ  

9.1. Samal and Pratihar (2014)               EOQ  

10. Chen et al., (1996)        √       EOQB 

11. Yao and Lee (1996)        √        EOQB  

12. Chang et al., (1998)        √        EOQB  

4.2. Yao and Lee (1999)        √        EOQB  

13. Yao et al., (2000)         √       EOQB   

14. Yao and Su (2000)        √        EOQB  

15. Wu and Yao (2003)        √       EOQB 

16. Björk (2009)        √       EOQB  

17. Kazemi et al., (2010)        √        EOQB  

9.2. Samal and Pratihar (2014)        √        EOQB  

18. Milenkovic and Bojovic (2014)        √        EOQB  

19. Kazemi et al., (2015)     √   √        EOQB  

20. Chang (2003)    √      √     EOQEQ 

21. Chang (2004)   √  √       √      EOQEQ  

22. Roy et al., (2007)           √  √    EOQEQ 

23. Wang et al., (2007b)  √  √        √   √    EOQEQ  

24. Rong et al., (2008)        √ √ √  √      EOQEQ  

25. Roy et al., (2009a) √ √         √     EOQEQ 

26. Hsu (2012)    √        √      EOQEQ  

27. Yadav et al., (2012a)  √  √   √    √   √       EOQEQ 

28. Mahata and Goswami (2013)   √      √   √      EOQEQ  

29. Das et al., (2000)        √     √   √  EOQMI  

30. Mondal and Maiti (2002)            √  √ EOQMI 

31. Yao et al., (2003)              √  EOQMI  

32. Das et al., (2004)         √     √   √ EOQMI  

33. Yadavalli et al., (2005)            √   √  EOQMI 

34. Baykasoğlu and Göçken (2007)            √   √  EOQMI 
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Table 2.2: Continue. 

Publication Inf. Dis. Scr. Rew. Lea. Del. 
Treatment of shortage Quality of items Structure of model 

Type 
Pb. Fb. Los. Def. Det. Cons. Muo. Mui. 

35. Maiti and Maiti (2007)        √     √  √ √  EOQMI  

36. Maiti (2008) √ √           √   √  EOQMI  

37. Panda et al., (2008a)             √   √  EOQMI  

38. Baykasoglu and Gocken (2011)             √  √  EOQMI  

39. Huang (2011)             √   √  EOQMI 

40. Wang et al., (2013)             √   √  EOQMI 

41. Mousavi et al., (2014)  √      √  √    √  √  √  EOQMI  

42. Roy and Maiti (1998)            √  √  √  √  EOQEQI  

43. Roy et al., (2008)            √  √   √  EOQEQI  

44. Xu and Liu (2008)            √  √  √ √  EOQEQI  

45. Wee et al., (2009)        √    √  √  √  √  EOQEQI  

46. Guchhait et al., (2010)           √   √   √  EOQEQI 

47. Saha et al., (2010)          √   √   √  EOQEQI  

48. Chakraborty et al., (2013)   √          √  √   √  EOQEQI  

49. Jana et al., (2014) √ √    √   √     √  √   √  EOQEQI  

50. Chen and Ouyang (2006)      √   √    √     EOQED 

51. De and Goswami (2006) √     √   √   √   √    EOQED  

52. Mahata and Goswami (2007)      √      √     EOQED  

53. Ouyang et al., (2010)       √      √     EOQED  

54. Maiti (2011) √ √    √      √    EOQED  

55. Mahata and Mahata (2011)      √      √     EOQED  

56. Taleizadeh et al., (2011)   √     √       √   √  EOQED  

57. Soni and Joshi (2013)      √     √    EOQED  

58. Taleizadeh et al., (2013)  √     √   √    √  √   √  EOQED  

59. Guchhait et al., (2014) √ √    √   √    √  √    EOQED  

60. Yadav et al., (2015)  √ √     √      √     EOQED  

61. Guchhait et al., (2015)        √      √    EOQED 

62. Roy and Maiti (1997)             √   √  EOQEO   

63. Liu (2008)   √              EOQEO  

64. Vijayan and Kumaran (2009)               EOQEO  

65. Chou et al., (2009)            √    EOQEO  

66. Sadjadi et al., (2010)               EOQEO  

67. Ketsarapong et al., (2012)            √    EOQEO  

68. Bera et al., (2012)       √         EOQEO  

69. Samadi et al., (2013)         √        EOQEO  
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Table 2.2: Continue. 

Publication Inf. Dis. Scr. Rew. Lea. Del. 
Treatment of shortage Quality of items Structure of model 

Type 
Pb. Fb. Los. Def. Det. Cons. Muo. Mui. 

70. Yadav et al., (2013a)  √      √  √       EOQEO  

71. De and Sana (2013b)        √        EOQEO  

72. De and Sana (2013a)        √     √    EOQEO  

73. Panda et al., (2014)        √     √    EOQEO 

74. De et al., (2014)        √     √    EOQEO  

75. Lee and Yao (1998)               EPQ 

76. Chang (1999)               EPQ 

77. Lin and Yao (2000)               EPQ 

78. Hsieh (2002)            √   EPQ 

79. Mahapatra and Maiti (2006)        √    √     EPQEQ 

80. Chen and Chang (2008)          √     EPQEQ 

81. Bag et al., (2009)          √     EPQEQ 

82. Das et al., (2011)         √  √      EPQEQ 

83. Pal et al., (2014) √          √    EPQEQ 

84. Paul et al., (2014)   √       √     EPQEQ 

85. Pal et al., (2015) √       √ √  √    EPQEQ 

86. Roy et al., (2009b)          √     EPQW 

87. Guchhait et al., (2013)   √ √      √  √   EPQW 

88. Mondal et al., (2013) √   √      √     EPQW 

89. Mondal et al., (2014)    √      √     EPQW 

90. Shekarian et al., (2014b)   √ √    √  √     EPQW 

91. Shekarian et al., (2014a)    √      √     EPQW 

92. Halim et al., (2009)           √    EPQS 

93. Zhang et al., (2009)    √      √     EPQS 

94. Wang and Tang (2009b)    √ √      √     EPQS   

95. Hu et al., (2010)    √    √  √  √   EPQS 

96. Kumar and Goswami (2015b)      √ √  √  √ √     EPQS 

97. Mahata (2015)     √ √  √  √ √  √   EPQS  

98. Kumar and Goswami (2015c)    √   √  √ √  √   EPQS 

99. Pappis and Karacapilidis (1995)              √ EPQMI 

100. Mandal et al., (2005)        √    √ √ √ EPQMI 

101. Mandal and Roy (2006a)            √  √ EPQMI 

102. Islam and Roy (2007)              √ EPQMI 

103. Panda and Maiti (2009)             √  √ EPQMI 

104. Mandal et al., (2011)        √    √  √ EPQMI 
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Table 2.2: Continue. 

Publication Inf. Dis. Scr. Rew. Lea. Del. 
Treatment of shortage Quality of items Structure of model 

Type 
Pb. Fb. Los. Def. Det. Cons. Muo. Mui. 

105. Björk (2012)               √  EPQMI 

106. Jana et al., (2013)            √  √ EPQMI 

107. Mezei and Björk (2015)        √      √ EPQMI 

108. Maity and Maiti (2005)            √ √  √ EPQEQI 

109. Mandal and Roy (2006b)    √      √  √  √ EPQEQI 

110. Maity and Maiti (2007)        √  √  √  √ EPQEQI 

111. Maity and Maiti (2008)  √ √         √ √  √ EPQEQI 

112. Xu and Zhao (2008)    √      √  √ √ √ EPQEQI 

113. Panda et al., (2008b)   √     √  √  √  √ EPQEQI 

114. Xu and Zhao (2010)    √      √  √  √ EPQEQI 

115. Mandal et al., (2010)          √  √ √ √ EPQEQI 

116. Maity (2011a) √ √        √  √  √ EPQEQI 

117. Maity (2011b)          √  √  √ EPQEQI 

118. Das and Maiti (2013)        √  √  √  √ EPQEQI 

119. Islam and Roy (2006)            √   EPQEO 

120. Chang and Chang (2006)               EPQEO 

121. Chang et al., (2006)               EPQEO 

122. Maity et al., (2008)            √   EPQEO 

123. Pal et al., (2009)   √   √          EPQEO 

124. Wang and Tang (2009a)         √       EPQEO 

125. Mahapatra et al., (2011)               EPQEO 

126. Soni and Shah (2011)        √  √      EPQEO 

127. Chakrabortty et al., (2013)         √       EPQEO 

128. Yaghin et al., (2013)             √ √  EPQEO 

129. De and Sana (2014)            √   EPQEO 

130. Kumar and Goswami (2015a)        √       EPQEO 

 

** Definition of abbreviation in the Table 1.  

 

Abbreviation  Inf. Dis.  Scr. Rew.  Lea.  Del. Pb. Fb. Los.  Def.  Det. Cons.  Muo. Mui. 

Definition  Inflation Discounting Screening Rework  Learning 
Delay in 

payment 

Partially 

backlogged  

Fully  

backlogged  

Lost 

sales  
Defective Deteriorating Constraint 

Multi 

objective  

Multi 

item 
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Table 2.3: The depth of fuzzification of publications and elements 

 Fuzzified element (Level of fuzzification) Decision variable 

 (1)  Parameter (F, P);         (2)  Variable (F, P);         (3)  Objective (F, P);         (4)  Constraint (F, P)  

1. Park (1987) (1) Ordering cost, Holding cost (P);  (3) Total cost (P) Order quantity 

2. Vujošević et al., (1996) (1) Ordering cost, Holding cost (P);  (3) Total cost (P)  Order quantity  

3. Lee and Yao (1999)  (2) Order quantity (F);  (3) Total cost (P) Order quantity  

4.1. Yao and Lee (1999) (2) Order quantity (F);  (3) Total cost (P) Order quantity  

5. Yao and Chiang (2003)  (1) Demand, Holding cost (P);  (3) Total cost (P)  Order quantity  

6. Hojati (2004) (1) Ordering cost, Holding cost (P);  (3) Total cost (P)  Order quantity  

7. Syed and Aziz (2007)  (1) Ordering cost, Holding cost (P);  (3) Total cost (P)  Order quantity  

8. Lee and Lin (2011) (1) Demand, Ordering cost, Holding cost (P);  (2) Order quantity (F);  (3) Total cost (P)  Order quantity  

9.1. Samal and Pratihar (2014) (1) Demand, Ordering cost, Holding cost (P);  (3) Total cost (P)  Order quantity 

10. Chen et al., (1996)  (1) Demand, Ordering cost, Holding cost, Backorder cost (P);  (3) Total cost (P) Order quantity, Backorder quantity 

11. Yao and Lee (1996) (2) Order quantity (P);  (3) Total cost (P)  Order quantity, Backorder quantity 

12. Chang et al., (1998) (2) Backorder quantity (P);  (3) Total cost (P)  Order quantity, Backorder quantity 

4.2. Yao and Lee (1999) (2) Order quantity (P);  (3) Total cost (P)  Order quantity, Backorder quantity 

13. Yao et al., (2000) (1) Demand (P);  (2) Order quantity (F);  (3) Total cost (P)  Order quantity  

14. Yao and Su (2000)  (1) Demand (P);  (3) Total cost (P)  Order quantity, Backorder quantity 

15. Wu and Yao (2003)  (2) Order quantity, Backorder quantity (F);  (3) Total cost (P) Order quantity, Backorder quantity  

16. Björk (2009)  (1) Demand, Lead times (P);  (2) Maximum inventory level (P);  (3) Total cost (P)  Order quantity, Maximum inventory level  

17. Kazemi et al., (2010) 
(1) Demand, Ordering cost, Holding cost, Penalty cost (P);  (2) Order quantity, Maximum inventory level (F);  (3) Total 
cost (F)  

Order quantity, Maximum inventory level  

9.2. Samal and Pratihar (2014)  (1) Demand, Ordering cost, Holding cost, Backordering cost (F);  (3) Total cost (P)                                Order quantity, Backorder quantity  

18. Milenkovic and Bojovic (2014) (1) Demand, Lead times (P);  (2) Maximum inventory level (P);  (3) Total cost (P)  Order quantity, Maximum inventory level 

19. Kazemi et al., (2015)  (1) Demand, Lead times (P);  (2) Maximum inventory level (P);  (3) Total cost (P)  Order quantity, Maximum inventory level  

20. Chang (2003) (1) Opportunity cost of capital rate (P);  (3) Total cost (P) Lot size, Process quality level 

21.1. Chang (2004) (1) Defective rate (P);  (3) Total profit (P)   Order quantity 

21.2. Chang (2004) (1) Defective rate, Demand (P);  (3) Total profit (P)  Order quantity  

22. Roy et al., (2007) (1) Deterioration rate (P);  (3) Total profit (P)  
Reorder level at the warehouse which is in the 

heart of the market place, Length of each cycle  

23. Wang et al., (2007b) (1) Holding cost 2, Setup cost 2, Inspection cost 2, Percentage of imperfect quality items 1 (P);  (3) Total profit (P)  Lot size per cycle  

24. Rong et al., (2008) (1) Lead time (P);  (3) Total profit (P)  

Time of placing of an order, Time gap between 

two shipments from RW* to OW**, Distance of 

RW from OW, Number of shipments required to 
transfer the item from RW to OW 

25. Roy et al., (2009a) (1) Inflation, Time discounting (P);  (3) Total profit (P)  Duration of a complete cycle  

26. Hsu (2012)  (1) Demand, Purchase cost, Perfective rate (P);  (3) Total profit (P) Order quantity  

27. Yadav et al., (2012a) (1) Demand (P);  (3) Total profit (P)          Order quantity, Backorder level  
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Table 2.3: Continue. 

 Fuzzified element (Level of fuzzification) Decision variable 

 (1)  Parameter (F, P);         (2)  Variable (F, P);         (3)  Objective (F, P);         (4)  Constraint (F, P)  

28.1. Mahata and Goswami (2013) 
(1) Demand, Holding cost, Purchase cost, Selling price, Screening rate, Ordering cost, Backordering cost, Salvage value of 
defective item, Screening cost, Good-quality rate (F);  (3) Total profit (P)  

Order quantity, Maximum backordering quantity  

28.2. Mahata and Goswami (2013)  

(1) Demand, Holding cost, Purchase cost, Selling price, Screening rate, Ordering cost, Backordering cost, Salvage value of 

defective item, Screening cost, Good-quality rate (F);  (2) Order quantity, Maximum backordering quantity (F);  (3) Total 
profit (F) 

Order quantity, Maximum backordering quantity  

29. Das et al., (2000)  
(3) Total cost (P);  (4) Available storage area, Permitted total average shortage cost, Total average inventory investment 

cost (P)  
Order quantity   

30.1. Mondal and Maiti (2002) (3) Total cost (P);  (4) Available storage area, Number of production runs (P) Order quantity  

30.2. Mondal and Maiti (2002)  (1) Setup cost, Holding cost (P);  (3) Total cost (P);  (4) Available storage area, Number of production runs (P) Order quantity  

31. Yao et al., (2003) (1) Price (P);  (2) Demand (P);  (3) Total cost (P)  Order quantity, Demand 

32. Das et al., (2004)  (3) Total cost (P);  (4) Available storage space (P) Order quantity, Demand, Shortage level  

33. Yadavalli et al., (2005)  (1) Holding cost; Setup cost, Average number of stocked out items (P);  (3) Total cost (P)  Order quantity 

34. Baykasoğlu and Göçken (2007)  
(1) Holding cost, Setup cost, Total demand of product i, Space required by each unit of product i (P);  (3) Total cost (P);  

(4) Maximum available warehouse space, Maximum number of orders placed (P)  
Order quantity  

35. Maiti and Maiti (2007) (1) Ordering costs, Shortage cost, Replenishment cost, Purchase cost (P);  (3) Total profit (P)  

Units transferred in each shipment, Number of 

cycles in each time horizon, Reduction rate of 

successive cycle lengths, Fraction of i th cycle 
length   

36. Maiti (2008)  (1) Purchase cost (P);  (3) Total profit (P);  (4) Investment amount, Storehouse capacity (P)  

Number of order (NM) during the planning horizon 

(H), Number of times items (M) transferred from 

second warehouse (W2) to first one (W1) during 
the basic time interval between orders (T=H/NM); 

Fraction of W1 allotted for ith item, Number of 
integer multiple of T, Number of integer multiple 

of LT, where LT= T/M   

37.1. Panda et al., (2008a) (1) Holding cost 6, Setup cost 6 (P);  (3) Total cost (P);  (4) Total available space area, Total available budget (P)  Order quantity, Demand  

37.2. Panda et al., (2008) (1) Holding cost 6, Setup cost 6 (P);  (3) Total cost (P);  (4) Total available space area, Total available budget 1 (P)  Order quantity, Demand  

38. Baykasoglu and Gocken (2011)  
(1) Holding cost, Setup cost, Total demand of product i, Space required by each unit of product i (P);  (3) Total cost (P);  
(4) Maximum available warehouse space, Maximum number of orders placed (P)  

Order quantity  

39.1. Huang (2011) (1) Ordering cost, Holding cost, Lot size (P);  (3) Total cost (P)   

Binary variables on the reception of a lot of an 

item in a period, Ordering a lot of an item in a 
period  

39.2. Huang (2011)  (1) Ordering cost, Holding cost (P);  (3) Total cost (P)   

Binary variables on the reception of a lot of an 

item in a period, Ordering a lot of an item in a 

period  

40. Wang et al., (2013) (1) Minor ordering cost, Holding cost (P);  (3) Total cost *** (P);  (4) Replenishment (P)           

Time-periods between two replenishments, 

Integer number that decides the replenishment 

schedule of ithe item  
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Table 2.3: Continue. 

 Fuzzified element (Level of fuzzification) Decision variable 

 (1)  Parameter (F, P);         (2)  Variable (F, P);         (3)  Objective (F, P);         (4)  Constraint (F, P)  

41. Mousavi et al., (2014)  (1) Discount rate, Storage space (P);  (3) Total cost, Total required storage space (P)  

Number of boxes for ith product ordered in period 
t, Shortage quantity for ith product in period t, 

Ordering quantity of ith product in period t, Initial 

positive inventory of ith product in period t  

42.1. Roy and Maiti (1998) (3) Total profit, Total wastage cost (P);  (4) Storage area  Order quantity   

42.2. Roy and Maiti (1998) 
(1) Holding cost, Setup cost, Purchasing price, Selling price (P);  (3) Total profit, Total wastage cost (P);  (4) Storage area, 

Total budgetary cost (P)  
Order quantity   

43. Roy et al., (2008) (1) Ordering cost, Holding cost (P);  (3) Total cost (P);  (4) Storage space, Budgetary cost (P)  Order quantity  

44. Xu and Liu (2008) 
(1) Holding cost 1, Setup cost 1, Purchasing price 1, Selling price 1 (P);  (3) Total profit, Total wastage cost (P);  (4) Total 
budgetary cost 1 (P)  

Order quantity   

45.1. Wee et al., (2009) 
(1) Maximum allowed total average shortage cost (P);  (3) Total profit, Return on inventory investment (P);  (4) Maximum 

allowed total average shortage cost (P)  

Interval between orders, Period when inventory is 

positive  

45.2. Wee et al., (2009) 
(1) Demand, Maximum allowed total average shortage cost (P);  (3) Total profit, Return on inventory investment (P);  (4) 

Maximum allowed total average shortage cost (P)   
Interval between orders, Period when inventory is 
positive  

46.1. Guchhait et al., (2010) (1) Purchase cost (P);  (3) Total profit (P);  (4) Investment (P) Order quantity    

46.2. Guchhait et al., (2010) (1) Purchase costs, Amount of investment (P);  (3) Total profit (P);  (4) Investment (P)  Order quantity  

46.3. Guchhait et al., (2010) (1) Amount of investment (P);  (4) Investment (P)  Order quantity  

47. Saha et al., (2010)  (4) Total budget, Total available space (P)  Initial stock, i.e. replenishment size  

48. Chakraborty et al., (2013)  (1) Demand, Selling price, Space required (P);  (3) Total profit (P);  (4) Budget (P)  
Percentage of discount, Replenishment cycles, 

Length of cycles  

49. Jana et al., (2014) (1) Deterioration rate, Inflation rate (P);  (3) Total profit (P); (4) Available budget, Space 1 (P)  Order quantity, Duration of a complete cycle 

50. Chen and Ouyang (2006) (1) Holding cost, Interest paid, Interest earned (P);  (3) Total cost (P)   Order quantity  

51. De and Goswami (2006)  (1) Inflation rate, Deterioration rate (P);  (3) Total cost (P)  

Order quantity, Shortage quantity, Time from 

where shortage begins, Length of cycles, 

Permissible delay period for settling accounts  

52. Mahata and Goswami (2007) (1) Demand, Holding cost, Ordering cost, Purchasing cost (P);  (3) Total cost (P)  Cycle time  

53. Ouyang et al., (2010) (1) Deterioration rate, Interest paid, Interest earned (P);  (3) Total cost (P)  Order quantity, Replenishment time interval  

54. Maiti (2011)  (1) Planning horizon, Interest rate, Holding cost, Setup cost (P);  (3) Total profit (P);  (4) Finite time horizon (P)   

Length of one cycle, Time horizon, Credit-period 

offered by retailer to the customer, Number of the 

cycles that credit occurred 

55. Mahata and Mahata (2011) (1) Demand, Holding cost, Ordering cost, Purchasing cost, Selling price (P);  (3) Total cost (P)  Order quantity of the retailer, Cycle time 

56. Taleizadeh et al., (2011) (1) Demand (P);  (3) Total cost (P)   
Order quantity, Number of packets that have been 

ordered for the ith product, Joint cycle length  

57. Soni and Joshi (2013) (1) Demand, Holding cost, Ordering cost, Purchasing cost, Interest earned, Interest paid (P);  (3) Total profit (P)   Retail price, Replenishment cycle time  
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Table 2.3: Continue. 

 Fuzzified element (Level of fuzzification) Decision variable 

 (1)  Parameter (F, P);         (2)  Variable (F, P);         (3)  Objective (F, P);         (4)  Constraint (F, P)  

58. Taleizadeh et al., (2013) (1) Demand 4 (P);  (3) Total cost (P)  

Order quantity, Number of packets should be 
ordered for each product, Percentage of demand of 

each product that will be filled from stock, Period 

length for joint replenishment 

59. Guchhait et al., (2014) (1) Setup cost, Holding cost, Interest paid, Interest earned (P);  (3) Total profit (P)  

Length of each cycle, Length of last cycle, 

Customer’s credit period offered by the retailer, 

Number of the full cycles during the planning 
horizon, “m” in Selling price=m× purchase cost, λ 

in λ× Length of each cycle 

60. Yadav et al., (2015) (1) Opportunity cost, Interest earned, Interest paid, Holding cost (P);  (3) Total profit (P)  Order quantity, Cycle time, Payment delay time  

61.1. Guchhait et al., (2015)  (1) Purchase cost, Selling price, Selling price of deteriorated units, Holding cost, Setup cost (P);  (3) Total profit (P)  
Order quantity, customer’s credit period offered 
by the retailer  

61.2. Guchhait et al., (2015)   (1) Purchase cost 4, Holding cost 4, Setup cost 4 (P);  (3) Total profit (P) 
Order quantity, customer’s credit period offered 

by the retailer  

62. Roy and Maiti (1997) (3) Total cost (P);  (4) storage area (P)  Order quantity, Demand   

63. Liu (2008) (1) Demand, Product cost (P);  (3) Total profit (P)  Order quantity, Selling price  

64.1. Vijayan and Kumaran (2009) (1) Purchasing cost, Setup cost, Holding cost, Arrival rate (F);  (2) Selling period (F);  (3) Total cost (F)    Selling period  

64.2. Vijayan and Kumaran (2009) (1) Purchasing cost, Setup cost, Holding cost, Arrival rate****  (F);  (3) Total cost (P)   Selling period 

64.3. Vijayan and Kumaran (2009) (1) Arrival rate**** (P);  (3) Total cost (P)   Selling period   

65. Chou et al., (2009) (3) Total cost (P);  (4) storage area (P)  Order quantity, Demand   

66. Sadjadi et al., (2010) 
(1) Selling price elasticity to demand, Marketing expenditure elasticity to demand, Lot size elasticity to purchasing cost 
(P);  (3) Total profit (P)  

Order quantity, Selling price, Marketing 
expenditure  

67. Ketsarapong et al., (2012) 
(1) Demand, Ordering or Setup cost, Unit price or Production cost, Holding cost (P);  (3) Total profit (P);  (4) Demand, 

Purchasing or Production quantity (P) 

Ordering or Setup variable, which is 1 when order 

or setup occurs in period t, and 0 otherwise  

68. Bera et al., (2012) (1) Lead time, Time horizon, Inventory level, Duration of the cycle, Shortage level (P);  (3) Total profit (P)        
Length of the last cycle, Time when order is 
placed  

69. Samadi et al., (2013) 

(1) Demand, Unit cost Ordering cost, Holding cost, Shortage cost, Selling price elasticity to demand, Marketing 

expenditure elasticity to demand, Services expenditure elasticity to demand, Order quantity elasticity to unit cost (P);  (3) 
Total profit (P)  

Order quantity, Selling price, Shortage quantity, 

Marketing expenditure, Service expenditure  

70. Yadav et al., (2013a) (1) Demand (P);  (3) Total cost (P)          
Order quantity, Lead time, Backorder price 

discount 

71. De and Sana (2013b) (1) Demand (P);  (2) Order quantity, Shortage quantity, Promotional index (F);  (3) Total profit (F)    
Order quantity, Shortage quantity, Promotional 
index  

72. De and Sana (2013a) 
(1) Demand 5 (P);  (2) Promotional effort 5, Selling price 5 (F);  (3) Total profit (P);  (4) Order quantity, Shortage quantity 

(P)  
Promotional effort, Selling price 

73.1. Panda et al., (2014) (1) Demand, Lead time demand 1 (P);  (3) Total cost (P)        Order quantity, Lead time 

73.2. Panda et al., (2014) (1) Demand, Lead time demand 1 (P);  (3) Total cost (P);  (4) Budget (P)           Order quantity, Lead time 
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Table 2.3: Continue. 

 Fuzzified element (Level of fuzzification) Decision variable 

 (1)  Parameter (F, P);         (2)  Variable (F, P);         (3)  Objective (F, P);         (4)  Constraint (F, P)  

74. De et al., (2014) 
(1) Demand, Holding cost, Shortage cost, Setup cost, Selling price, Advertisement cost, Promotional index, Power of 
promotional index, Maximum promotional index (F);  (3) Total cost (F)  

Order quantity, Shortage quantity 

75. Lee and Yao (1998) (1) Demand (P);  (2) Production quantity (F);  (3) Total cost (P) Production quantity 

76. Chang (1999) (2) Production quantity (F);  (3) Total cost (P) Production quantity 

77. Lin and Yao (2000) (2) Production quantity (F);  (3) Total cost (P) Production quantity 

78.1. Hsieh (2002) (1) Demand, Holding cost, Setup cost, Daily production rate, Daily demand rate (F);  (3) Total cost (P) Production quantity 

78.2. Hsieh (2002) 
(1) Demand, Holding cost, Setup cost, Daily production rate, Daily demand rate (F);  (2) Production quantity (F);  (3) Total 

cost (F) 
Production quantity 

79. Mahapatra and Maiti (2006) (1) Preparation time (P);  (3) Total cost (P) Time horizon 

80.1. Chen and Chang (2008) (1) Storage cost, Setup cost, Production cost of a defective item, Opportunity cost rate (P);  (3) Total cost (P) Production quantity 

80.2. Chen and Chang (2008) 
(1) Storage cost, Setup cost, Production cost of a defective item, Opportunity cost rate (P);  (2) Production quantity (F);  (3) 
Total cost (P)  

Production quantity 

81. Bag et al., (2009) (1) Demand 1, Cycle length 1 (P);  (3) Total profit (P) 
Setup cost, Reliability of the production process, 

Production period 

82. Das et al., (2011) (1) Holding cost, Shortage cost, Coefficients in production cost functions (P);  (3) Total profit (P) Production rate 

83. Pal et al., (2014) (1) Holding costs, Purchasing cost, Inflation rate (P);  (3) Total cost (P) Production time 

84. Paul et al., (2014)  (1) Demand, Holding cost, Cycle length (P);  (3) Total profit (P) 
Setup cost, Reliability of the production process, 

Production cycle length 

85. Pal et al., (2015) (1) Holding costs, Purchasing cost, Inflation rate (P);  (3) Total cost (P) Production time, Production rate 

86. Roy et al., (2009b) (1) Defective rate (P);  (3) Total profit (P) Cycle length 

87. Guchhait et al., (2013) 
(1) Cycles length, Remanufacturing time, Inventory levels in differed planning times, Production rate, Planning period, 

demand (P);  (3) Total profit (P) 
Time horizon 

88. Mondal et al., (2013) (1) Repairing cost 4, Setup cost 4, Disposal cost 4, Holding costs 4, Selling price 4 (P);  (3) Total profit (P) 
Production function’s coefficients, Repairing 
function’s coefficients 

89. Mondal et al., (2014) (1) Repairing rate, Defective rate (P);  (3) Total profit (P) 

Production rate,  Minimum inventory level at 

showroom,  The period which the units are 

transported to showroom, Numbers of shipment to 
showroom 

90. Shekarian et al., (2014b) 
(1) Demand, Production rate, Defective rate, Setup cost, Unit manufacturing cost, Holding cost, Backorder costs (fix and 

linear) (F);  (3) Total costs (P)  
Production quantity, Maximum backordering level 

91. Shekarian et al., (2014a) (1) Demand, Defective rate (P);  (3) Total cost (P)  Production quantity 

92. Halim et al., (2009) (1) Defective rate, Parameters of exponential probability distribution (P);  (3) Total cost (P) Planning period, Production time 

93. Zhang et al., (2009) (1) Setup cost, Average holding cost, Elapsed time until the production shifts to out of control 1 (P);  (3) Total cost (P) Production run length 

94. Wang and Tang (2009b) (1) Elapsed time until the production process shifts to out of control, Setup cost, Holding costs (P);  (3) Total cost Production run length 
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Table 2.3: Continue. 

 Fuzzified element (Level of fuzzification) Decision variable 

 (1)  Parameter (F, P);         (2)  Variable (F, P);         (3)  Objective (F, P);         (4)  Constraint (F, P)  

95. Hu et al., (2010) (1) Elapsed time until the production process shifts to out of control (P);  (3) Total cost (P) 
Production run length, Production period during 
backorder replenishment 

96. Kumar and Goswami (2015b)   (1) Demand, Lead time demand, Scheduling period (P);  (3) Total cost (P) Production quantity, Reorder point 

97. Mahata (2015) 
(1) Holding cost 2, Backorders cost 2, Raw material 2, Labour costs 2, Elapsed time until the production shifts to out of 

control 4 (P);  (3) Total cost (P) 
Production quantity, Backorder quantity  

98. Kumar and Goswami (2015c) 
(1) Holding cost, Backorders cost, Production costs, Elapsed time until the production process shifts to out-of- control 1, 

Percentage of defective items 1 (P);  (3) Total cost (P);  (4) Maximum available budget, Allowable shortages (P)  
Production run length 

99. Pappis and Karacapilidis (1995) (1) Demand for ith product (P);  (3) Total cost (P)  Number of production runs 

100. Mandal et al., (2005) 
(1) Holding cost, Shortage cost, Setup cost (P);  (3) Total cost (P);  (4) Total available storage space, Total number of 
orders, Production cost (P) 

Demand, Production quantity, Shortage level 

101. Mandal and Roy (2006a) 
(1) Purchasing price of each product, Holding cost, Display shelf-space cost per unit product, Setup cost, Selling price of 

each product;  (3) Total profit (P);  (4) Total display-shelf space (P) 

Number of display quantity,  Number of order 

quantity 

102. Islam and Roy (2007) 
(1) Holding cost, Coefficients of the total cost of interest and depreciation, Coefficients of the production cost function (P);  
(3) Total cost (P);  (4) Total available storage space (P) 

Demand, Setup cost, Production quantity,  
Production reliability 

103.1 Panda and Maiti (2009) (3) Total profit (P);  (4) Total available space area (P) 
Selling price, Setup cost, Order quantity, 

Production process reliability 

103.2 Panda and Maiti (2009) (1) Scaling factor of the unit cost (P);  (3) Total profit (P);  (4) Total available storage space (P)  
Selling price, Setup cost, Order quantity, 
Production process reliability 

104. Mandal et al., (2011) (1) Holding cost 1, Shortage cost 1 (P);  (4) Total available storage space 1 (P) Time horizon 

105. Björk (2012)  (2) Cycle time (production batch equivalently) (P);  (3) Total cost (P)  
Production quantity, Maximum inventory, level, 

Cycle time 

106. Jana et al., (2013) 
(1) Selling price, Setup cost, Holding cost, Parameters of the purchase price (P);  (4) Total available storage space, Total 
available budget (P) 

Production rate, Production cycle length 

107. Mezei and Björk (2015) (2) Cycle time (production batch equivalently) (P);  (3) Total cost (P) 
Production quantity, Maximal shortage, Cycle 

time  

108. Maity and Maiti (2005) (1) Holding cost, Production cost (P);  (3) Total cost (P) Time horizon 

109. Mandal and Roy (2006b)  (1) Setup cost, Holding cost, Production cost, Repairing cost (P);  (3) Total cost (P) Cycle time 

110. Maity and Maiti (2007) (1) Storage space per unit (P);  (3) Total cost (P);  (4) Total storage space, Investment capital (P) Time horizon 

111. Maity and Maiti (2008) (1) Inflation, discount rate (P);  (3) Total cost (P) Time horizon 

112. Xu and Zhao (2008) 
(1) Selling price 4, Production cost 4, Repairing cost 4, Holding cost 4, Setup cost 4 (P);  (3) Total cost, Total profit (P);  (4) 
Total available budget 4 (P) 

Time horizon 

113. Panda et al., (2008) 
(1) Maximum budget, Production cost, Maximum shortage cost (P);  (3) Total profit (P);  (4) Screening cost under budget, 

Maximum shortage (P)  
Production quantity 

114. Xu and Zhao (2010) 
(1) Selling price, Production cost, Repairing cost, Holding cost, Setup cost (P);  (3) Total profit, Total cost (P); (4) Total 
available budget (P)  

Time horizon 

115. Mandal et al., (2010) 
(1) Cycle length, Storage capacity, Production cost, Holding cost (P);  (3) Total cost (P);  (4) Total available storage space 

(P) 
Time horizon 

116. Maity (2011a) (1) Inflation rate, Discount rate (P);  (3) Total cost (P);  (4) Total available space area (P) Time horizon 
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Table 2.3: Continue. 

 Fuzzified element (Level of fuzzification) Decision variable 

 (1)  Parameter (F, P);         (2)  Variable (F, P);         (3)  Objective (F, P);         (4)  Constraint (F, P)  

117. Maity (2011b) 
(1) Storage area per unit item, Available storage space, Total budgetary capital (P);  (3) Total profit (P);  (4) Total available 
storage space, Total available budget (P) 

Production rate, Stock levels 

118. Das and Maiti (2013) 
(1) Production cost, Holding cost, Shortage cost, Storage area per unit item (P);  (3) Total cost (P);  (4) Total available 

storage space 3, Total available budget 7 (P) 
Time horizon 

119. Islam and Roy (2006) 
(1) Holding cost, Coefficients of total cost of interest and depreciation, Coefficient of total production cost, Storage area 
per unit item (P);  (4) Total available storage space (P) 

Demand, Setup cost, Production quantity, 
Production reliability 

120. Chang and Chang (2006) 

(1) Unit cost, Demand, Number of production cycles, Demand rate, Production quantity, Production cycle time of ith 

process, Percentage of unit cost from initial production scraps for ith process, Percentage of unit cost from direct labor cost 
for ith process, Percentage of unit cost from facility/equipment depreciation and energy consumption for ith process, Time 

of on-line setup for ith process, Time of off-line setup for ith process, Holding cost (F);  (3) Total cost (P) 

Production quantity 

121. Chang et al., (2006) (1) Demand (P);  (3) Total cost (P) Cycle time 

122. Maity et al., (2008) (1) Holding costs, Serviceable and non-serviceable items (P);  (3) Total profit (P)  Production quantity, Stock levels 

123. Pal et al., (2009) (1) Lifetime of product (P);  (3) Total profit (P) 
Cycle time, Period of discount, Mark ups during 
discount, Normal period 

124. Wang and Tang (2009a) (1) Setup cost, Holding cost, Backorder costs (P);  (3) Total cost (P) Production quantity, Maximum backorder level 

125. Mahapatra et al., (2011) (1) Holding cost, Coefficients of  production, Depreciation cost functions (P);  (3) Total cost (P) 
Demand, Production reliability, Production 

quantity 

126. Soni and Shah (2011) (1) Demand, Production preparation-time (P);  (3) Total cost (P) 
Maximum inventory level, Maximum shortage 

units 

127. Chakrabortty et al., (2013) (1) Demand, Holding cost, Shortage cost, Set up cost (P);  (3) Total cost (P) Production quantity, Shortage level 

128. Yaghin et al., (2013) 

(1) Setup cost, Holding cost, Manufacturer’s production cost, Manufacturer’s purchasing cost, Coefficient of demand rate 
(P);  (3) Total profit, The ratio of the profit over the average investment (P);  (4) Maximum allowed total marketing cost, 

Demand coefficient  

Selling price, Cycle time  

129.1. De and Sana (2014) 
(1) Holding cost, Overtime period, Production level increase and decrease, Regular-time production costs (P);   (3) Total 

cost (P) 

Predicted demand in ith period, Maximum over-
time production that can be scheduled,  Maximum 

regular-time production that can be scheduled 

129.2. De and Sana (2014) (1) Demand, Capacity mode (P);  (3) Total cost (P)  

Predicted demand in ith period, Maximum over-

time production that can be scheduled,  Maximum 
regular-time production that can be scheduled 

129.3. De and Sana (2014) 
(1) Holding cost, Overtime period, Production level increase and decrease, Regular-time production costs Demand, 

Capacity mode (P);  (3) Total cost (P) 

Predicted demand in ith period, Maximum over-

time production that can be scheduled,  Maximum 
regular-time production that can be scheduled 

130. Kumar and Goswami (2015a) (1) Defective rate, Time in which the production status changes (P);  (3) Total cost (P) Production quantity, Backorder quantity  
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* Rented Warehouse, ** Own Warehouse, *** Maximizing the credibility of an event that the total cost in the planning periods does not exceed a predefined budget level, **** The number of 

customers that arrive in the unit time interval which follows a Poisson distribution with mean arrival rate per unit time λ.  

1- Fuzzy-random variable  

2- Fuzzy variable  

3- Fuzzy stochastic 

4- Fuzzy-rough variable  

5- Intuitionistic fuzzy set  

6- Hybrid number  

7- Optimistic fuzzy 

8- Bifuzzy 
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CHAPTER 3: METHODOLOGY  

3.1 Introduction  

In this chapter, the methodology used in this study is explained. The framework of the 

research is detailed and the techniques and the methods that are used to obtain the fuzzy 

models are discussed. Furthermore, the optimization methods and the important 

characteristics of the models are demonstrated. In order to highlight the importance of the 

research and compare the tools and the methods in each step with the similar ones in 

previous studies, some tables are provided according to the comprehensive literature 

review in chapter two.  

3.2 Research Methodology  

At the first stage, a comprehensive literature review among the previous fuzzy 

inventory systems dealing with EOQ and EPQ models was conducted. According to these 

studies, the gap and the shortcoming of the mentioned inventory models are determined. 

The problems were stated, and the objectives and research questions were identified. 

Later, the developed fuzzy models with the help of methods introduced in this chapter are 

tried to be solved.  

The first part of our work addresses a fuzzy EOQ (FEOQ) model which is developed 

in a fully fuzzy environment. This model follows a learning process where it allows the 

percentage of defective items to be decreased when the decision maker orders more and 

more. In addition, it is assumed that the holding costs of defective and non-defective 

(good quality) items are different. The aim is to determine the optimal lot size, and 

subsequently, the estimation of total profit per unit time.  

The second research direction concerns with the developing a fuzzy backward 

inventory system that integrates an EOQ/EPQ model to make a reverse process while it 

is affected by the learning process. The fuzzy version of this model is formulated and the 
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effect of different defuzzification methods on optimal policies is compared. The objective 

is analyzing the behavior of the model under uncertain environment and deriving the 

optimum recovery lot size and the number of orders for the newly purchased products.  

The following diagram in Figure 3.1 shows the general view of the research 

methodology. In each model, after optimization of the models via proposed methods, 

analyses are provided according to the arbitrary data through numerical examples and the 

models are validated comparing their crisp ones with different levels of fuzziness. It is 

shown that how the crisp models can result in the wrong and bias-optimal quantities in 

uncertain business environment.  

Besides, the applicability of the models is depicted through real scenarios. The first 

model is applied for a company that is working in the automobile industry. Optimized 

policies are derived for two important products of this company related to the automobile 

braking system in an uncertain business environment. The inventory model of the 

investigated company could be adopted with the first fuzzy model developed in chapter 

4. As it is described in chapter 6, it has the characteristics of the first fuzzy model. The 

defective products could affect the braking system in an automobile causing dangerous 

accidents. The related information of parameters is gathered for some periods, and then 

is applied in the model with suggested fuzzy numbers.  

As the second model is appropriate to study a reverse logistics inventory models, it is 

used to make appropriate strategies for a company working in milk manufacturing 

industry while it produces a product that could be recycled. In fact, the investigated milk 

company uses this product as a container to pack the produced milk and these containers 

could be recovered again. Different policies are suggested according to the optimized 

quantities and they are compared to make the best decision.  
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Figure 3.1: Research methodology  

3.3 Research Framework in Details  

The details of the research framework are presented in Figure 3.2. It is possible to 

divide them into three phases. In phase one, inventory models are selected according to 

the research gaps. Then, the elements including parameters and variables that constitute 

the objective function of the inventory system should be identified to be fuzzified. These 

factors are discussed when models are explained in more details. Finally, optimization of 

the defuzzified models is the core part of the third phase. This process is followed to 

derive the optimal policies for both models (i.e. forward FEOQ, and backward FEOQ).  
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Figure 3.2: Details of research framework  

3.4 Fuzzification Process  

In this section, methods and techniques that are aimed to develop our proposed 

fuzzified model are explained. Some basic definitions and principles in which are 

necessary in the next chapters are introduced.  

3.4.1 Preliminaries and Fundamental Definitions  

In this section, some basic definitions and principles of fuzzy set theory are provided 

(Kaufman & Gupta, 1991;  Zimmermann, 2001). These are necessary to introduce and 

treat the FEOQ in later sections.  
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Definition. 1: Let 𝑈 be a universe set. A fuzzy set Β̃ of 𝑈 is defined by a membership 

function 𝜇Β̃(𝑢) → [0,1] where 𝜇Β̃(𝑢), ∀𝑢 ∈ 𝑈 denotes the grade of membership.  

Definition. 2: The fuzzy subset Β̃ in the universe of discourse is called as a normal set if 

and only if 𝑠𝑢𝑝𝑢∈𝑈𝜇Β̃(𝑢) = 1. That is, the largest grade that an element can obtain.  

Definition. 3: A fuzzy subset Β̃ of the universe of discourse 𝑈 is convex if and only if for 

all 𝑢1 and 𝑢2 ∈ 𝑈 and for 𝛾 ∈ [0,1] we have: 𝜇Β̃(𝛾𝑢1 + (1 − 𝛾)𝑢2) ≥

min⁡(⁡𝜇Β̃(𝑢1), 𝜇Β̃(𝑢2)).  

Definition. 4: A fuzzy set Β̃ is a fuzzy number if and only if it is normal and convex on 

𝑈.  

Definition. 5: Fuzzy set Β̃𝛼 for 0 ≤ 𝛼 ≤ 1 and a range of 𝑢 ∈ 𝑅 is called an 𝛼-level fuzzy 

point whose membership function has a form   

 𝜇Β̃𝛼(𝑢) = {
𝛼, 𝑢 = 𝑎,
0, 𝑢 ≠ 𝑎. (3.1) 

 

It should be noted that if 𝛼 = 1, the membership function of the 1-level fuzzy point Β̃𝛼 

becomes the characteristic function, i.e.,  

 𝜇Β̃𝛼(𝑢) = {
1, 𝑢 = 𝑎,
0, 𝑢 ≠ 𝑎.

 (3.2) 

 

In this case, the fuzzy point Β̃1 and the real number 𝑎 ∈ 𝑅 are similar except for their 

representation.  

Definition. 6: For 0 ≤ 𝛼 ≤ 1 and 𝑎 < 𝑏, the fuzzy set [𝑎𝛼, 𝑏𝛼] defined on⁡𝑅 is called an 

𝛼-level fuzzy interval if its membership function is given by 

 𝜇[𝑎𝛼,𝑏𝛼](𝑢) = {
𝛼, 𝑎 ≤ 𝑢 ≤ 𝑏,
0, otherwise.

 (3.3) 
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Definition. 7: The 𝛼-cut of a fuzzy set Β̃ which is presented as Β(𝛼) on 𝑅 for 0 ≤ 𝛼 ≤ 1 

includes points 𝑢 such that 𝜇Β̃(𝑢) ≥ 𝛼, that is Β(𝛼) = {𝑢|𝜇Β̃(𝑢) ≥ 𝛼}.  

3.4.2 Generalized Fuzzy Numbers  

Generalized fuzzy number Β̃ is described as any fuzzy subset of the real line 𝑅 with 

the membership function 𝜇Β̃ which is a continuous mapping from 𝑅 to the closed interval 

[0,1] satisfying the below conditions:  

 𝜇Β̃(𝑢) = 0, −∞ < 𝑥 ≤ 𝛽1;  

 𝜇Β̃(𝑢) = 𝑀(𝑢) is a strictly increasing function for 𝛽1 ≤ 𝑥 ≤ 𝛽2;  

 𝜇Β̃(𝑢) = 𝑤Β, 𝛽2 ≤ 𝑥 ≤ 𝛽3;  

 𝜇Β̃(𝑢) = 𝑁(𝑢) is a strictly decreasing function for 𝛽3 ≤ 𝑥 ≤ 𝛽4;  

 𝜇Β̃(𝑢) = 0, 𝛽4 ≤ 𝑥 < ∞.  

where 0 < 𝑤Β ≤ 1, and 𝛽𝑖,⁡𝑖 = 1,2,3,4 are real numbers. This type of generalized 

fuzzy number could be written as Β̃ = (𝛽1, 𝛽2, 𝛽3, 𝛽4; 𝑤Β)𝑀𝑁, and it is called a trapezoidal 

fuzzy number (TPFN). When 𝑤Β = 1, it easily could be shown as Β̃ = (𝛽1, 𝛽2, 𝛽3, 𝛽4)𝑀𝑁 

that is a normalized fuzzy number. If 𝛽2 = 𝛽3 = 𝛽 then it is transformed to a triangular 

fuzzy number (TFN) which could be presented as T̃ = (𝛽1, 𝛽, 𝛽4; 𝑤Β)𝑀𝑁 and its normal 

form is shown as T̃ = (𝛽1, 𝛽, 𝛽4)𝑀𝑁. When 𝛽1 = 𝛽 = 𝛽4 = 𝛽
′, then the TFN 𝑇̃ =

(𝛽′, 𝛽′, 𝛽′) is identical to the 1-level fuzzy point T̃1. 

Definition. 8: For 𝛼 ∈ [0,1], the 𝛼-cut of TFN Β̃ = (𝛽1, 𝛽, 𝛽4) is Β(𝛼) = [Β𝐿(𝛼), Β𝑅(𝛼)], 

where Β𝐿(𝛼) = 𝛽1 + (𝛽 − 𝛽1)𝛼 and Β𝑅(𝛼) = 𝛽4 − (𝛽4 − 𝛽)𝛼.  

3.4.3 Overview of the Previous Fuzzy Numbers  

Many kinds of fuzzy numbers have been used in the literature that include trapezoidal 

and triangular fuzzy numbers, Gaussian fuzzy number, interval fuzzy number, statistic-
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fuzzy number, discrete fuzzy number, parabolic fuzzy number, quadratic fuzzy number, 

exponential fuzzy number, bell-shaped fuzzy number and other kinds of linear and non-

linear fuzzy number. Among them triangular and trapezoidal fuzzy numbers have the 

most frequency and applicability. In fact, triangular fuzzy numbers are the special cases 

of the trapezoidal ones. Moreover, Table 3.1 in Appendix A presents the categorization 

of the literature review based on the publications and related fuzzy numbers.  

3.4.4 Justification of the Triangular Fuzzy Number  

In this research, triangular fuzzy number T̃ defined with trio (𝛽1, 𝛽2, 𝛽3) and 

membership function 𝜇T̃(𝑢) is applied as depicted in Figure 3.3 for the selected fuzzified 

form because they have some advantages over other linear and nonlinear membership 

functions. According to Bansal (2011), trapezoidal fuzzy numbers form the most generic 

class of fuzzy numbers with linear membership function. They span entirely the widely 

discussed class of triangular fuzzy numbers. These fuzzy numbers have more 

applicability in modeling linear uncertainty in scientific problems. They have conceptual 

and computational simplicity in practice.  

 

Figure 3.3: Triangular fuzzy number  

 Besides, triangular fuzzy numbers prevent to obtain a non-convex cost function, 

which facilitate the optimization process. They are more intuitive and have an easier 

linguistic interpretation and are easier to handle when comparing with other linear 
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membership functions. It is guaranteed to achieve computational efficiency and ease-of-

use to the problem (Shekarian et al., 2014b).  

3.4.5 Overview of the Previous Fuzzification Methods  

According to the investigated literature, there are different fuzzification methods that 

are applied to transform the crisp model to the fuzzy environment. Depending on the 

complexity of the model, these methods may vary. The methods of defuzzification of the 

previous studies are categorized in Table 3.2 in Appendix B. Among these methods such 

as possibility/necessity methods, extension principle, interval operations, as it is clear 

function principle has been used in some studies.  

3.4.6 Fuzzy Arithmetic  

In order to do the calculations through the proposed fuzzified inventory models, it is 

preferred to use the function principle method. In the next section, it is explained why this 

method takes the priority to be applied. Here this method is explained via trapezoidal 

fuzzy number. However, as the triangular fuzzy numbers are the special cases of the 

trapezoidal ones, therefore, the derived formula and principle could be easily hold for 

TFNs.  

Chen (1985) suggested arithmetical operations of the function principle method as 

follows. Consider the below relation in which shows the induction of the fuzzy number 

Β̃ from a set of fuzzy numbers belonging to the same family.  

 𝑓𝑔(Β̃1, Β̃2, … , Β̃𝑛) = Β̃ = (Η, Θ, Ι, Κ; 𝑤Β)𝑀𝑁 (3.4) 

where 𝑔 is a mapping from 𝑛 −dimensional real numbers 𝑅𝑛 into the real line 𝑅 and 

equivalently 𝑓𝑔 could be mapped into a fuzzy number from 𝑛 −dimensional fuzzy 

numbers, Β̃𝑖 = (𝜁𝑖 , 𝜆𝑖, 𝜇𝑖 , 𝜗𝑖; 𝑤i); 𝑖 = 1,2, … , 𝑛 and besides we have:  

Univ
ers

ity
 of

 M
ala

ya



57 

 𝑤Β = min⁡{𝑤i, 𝑖 = 1,2, … , 𝑛}, (3.5) 

 Θ𝑖 = min⁡{𝑢|𝑓Β̃𝑖(𝑢) ≥ 𝑤Β}, (3.6) 

   Ι𝑖 = max⁡{𝑢|𝑓Β̃𝑖(𝑢) ≥ 𝑤Β}, (3.7) 

 𝑇 = {𝑔(𝑢1, 𝑢2, … , 𝑢𝑛)|𝑢𝑖 = 𝜁𝑖 ⁡or⁡𝜗𝑖⁡, 𝑖 = 1,2, … , 𝑛⁡} (3.8) 

 𝑇1 = {𝑔(𝑢1, 𝑢2, … , 𝑢𝑛)|𝑢𝑖 = Θ𝑖 ⁡or⁡Ι𝑖 ⁡, 𝑖 = 1,2, … , 𝑛⁡} (3.9) 

 Η = min𝑇  (3.10) 

 Θ = min𝑇1 (3.11) 

 Ι = max𝑇1 (3.12) 

 Κ = max𝑇 (3.13) 

where min𝑇 ≤ min𝑇1 and max𝑇1 ≤ max𝑇. (3.14) 

Let Β̃1 = (𝜁1, 𝜆1, 𝜇1, 𝜗1; 𝑤1) and Β̃2 = (𝜁2, 𝜆2, 𝜇2, 𝜗2; 𝑤2) then we have  

 Β̃1 + Β̃2 = (𝜁1 + 𝜁2, Θ1 + Θ2, Ι1 + Ι2, 𝜗1 + 𝜗2; 𝑤Β) (3.14) 

 

Figure 3.4 shows the addition of two fuzzy numbers, and for triangular fuzzy numbers 

T̃1 = (𝑡1, 𝑡2, 𝑡3) and T̃1 = (𝑡1
′ , 𝑡2

′ , 𝑡3
′ ) the membership of the addition is as below:  

 

𝜇T̃1+T̃2(𝑢) =

{
 
 

 
 

0 𝑡3 + 𝑡3
′ < 𝑢 < 𝑡1 + 𝑡1

′

𝑀(𝑢) =
𝑢 − (𝑡1 + 𝑡1

′)

(𝑡2 + 𝑡2
′ ) − (𝑡1 + 𝑡1

′)
𝑡1 + 𝑡1

′ ≤ 𝑢 < 𝑡2 + 𝑡2
′

𝑁(𝑢) =
(𝑡3 + 𝑡3

′ ) − 𝑢

(𝑡3 + 𝑡3
′ ) − (𝑡2 + 𝑡2

′ )
𝑡2 + 𝑡2

′ ≤ 𝑢 < 𝑡3 + 𝑡3
′

 

 

(3.15) 

 

Figure 3.4: Addition operation of two fuzzy numbers  
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For product of two fuzzy numbers Β̃1 ∗ Β̃2 = (Η, Θ, Ι, Κ; 𝑤Β) we have  

 𝑤Β = min⁡{𝑤1, 𝑤2}, (3.16) 

 Θ1 = min⁡{𝑢|𝑓Β̃1(𝑢) ≥ 𝑤Β}, (3.17) 

   Θ2 = min⁡{𝑢|𝑓Β̃2(𝑢) ≥ 𝑤Β}, (3.18) 

 Ι1 = max⁡{𝑢|𝑓Β̃1(𝑢) ≥ 𝑤Β}, (3.19) 

 Ι2 = max⁡{𝑢|𝑓Β̃2(𝑢) ≥ 𝑤Β}, (3.20) 

 𝑇 = {𝜁1𝜁2, 𝜁1𝜗2, 𝜗1𝜁2, 𝜗1𝜗2},  (3.21) 

 𝑇1 = {Θ1Θ2, Θ1Ι2, Ι1Θ2, Ι1Ι2} (3.22) 

 Η = min𝑇 (3.23) 

 Θ = min𝑇1 (3.24) 

 Ι = max𝑇1 (3.25) 

 Κ = max𝑇 (3.26) 

Figure 3.5 shows the multiplication of two fuzzy numbers, and for triangular fuzzy 

numbers T̃1 = (𝑡1, 𝑡2, 𝑡3) and T̃1 = (𝑡1
′ , 𝑡2

′ , 𝑡3
′ ) the membership of the product is as below:  

 

𝜇T̃1∗T̃2(𝑢) =

{
 
 

 
 

0 𝑡3𝑡3
′ < 𝑢 < 𝑡1𝑡1

′

𝑀(𝑢) =
𝑢 − (𝑡1𝑡1

′)

(𝑡2𝑡2
′ ) − (𝑡1𝑡1

′)
𝑡1𝑡1

′ ≤ 𝑢 < 𝑡2𝑡2
′

𝑁(𝑢) =
(𝑡3𝑡3

′ ) − 𝑢

(𝑡3𝑡3
′ ) − (𝑡2𝑡2

′ )
𝑡2𝑡2

′ ≤ 𝑢 < 𝑡3𝑡3
′

 

 

(3.27) 

   

 

Figure 3.5: Product operation of two fuzzy numbers  
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The membership of subtraction and the division of the T̃1 = (𝑡1, 𝑡2, 𝑡3) and T̃1 =

(𝑡1
′ , 𝑡2

′ , 𝑡3
′ ) can be given as below:  

 

𝜇T̃1−T̃2(𝑢) =

{
 
 

 
 

0 𝑡3 − 𝑡1
′ < 𝑢 < 𝑡1 − 𝑡3

′

𝑀(𝑢) =
𝑢 − (𝑡1 − 𝑡3

′ )

(𝑡2 − 𝑡2
′ ) − (𝑡1 − 𝑡3

′ )
𝑡1 − 𝑡3

′ ≤ 𝑢 < 𝑡2 − 𝑡2
′

𝑁(𝑢) =
(𝑡3 − 𝑡1

′) − 𝑢

(𝑡3 − 𝑡1
′) − (𝑡2 − 𝑡2

′ )
𝑡2 − 𝑡2

′ ≤ 𝑢 < 𝑡3 − 𝑡1
′

 

 

(3.28) 

 

𝜇T̃1/T̃2(𝑢) =

{
 
 

 
 

0 𝑡3/𝑡1
′ < 𝑢 < 𝑡1/𝑡3

′

𝑀(𝑢) =
𝑢 − (𝑡1/𝑡3

′ ⁡)

(𝑡2/𝑡2
′ ) − (𝑡1/𝑡3

′ )
𝑡1/𝑡3

′ ≤ 𝑢 < 𝑡2/𝑡2
′

𝑁(𝑢) =
(𝑡3/𝑡1

′) − 𝑢

(𝑡3/𝑡1
′) − (𝑡2/𝑡2

′ )
𝑡2/𝑡2

′ ≤ 𝑢 < 𝑡3/𝑡1
′

 

 

(3.29) 

where 𝑡1, 𝑡1
′ , 𝑡2, 𝑡2

′ , 𝑡3, and 𝑡3
′  are real numbers.  

3.4.7 Principle of Decomposition Theory  

Suppose that Β̃ is a fuzzy set on 𝑅, 0 ≤ 𝛼 ≤ 1, and its 𝛼-cut is Β(𝛼) = [Β𝐿(𝛼), Β𝑅(𝛼)] 

which is a closed interval, then we have:  

 Β̃ = ⋃ [Β𝐿(𝛼)𝛼, Β𝑅(𝛼)𝛼]

0≤𝛼≤1

= ⋃ 𝛼Β(𝛼)

0≤𝛼≤1

 (3.30) 

 

or 

 𝜇Β̃(𝑢) =⋁ 𝜇[Β𝐿(𝛼)𝛼,Β𝑅(𝛼)𝛼]
(𝑢)

0≤𝛼≤1
=⋁ 𝛼𝐶Β(𝛼)(𝑢)

0≤𝛼≤1
 (3.31) 

 

where 

(𝑖) 𝛼Β(𝛼) is a fuzzy set with the membership function:   

 𝜇𝛼Β(𝛼)(𝑢) = {
𝛼, 𝑢 ∈ Β(𝛼),
0,⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (3.32) 

 

(𝑖𝑖) 𝐶Β(𝛼)(𝑢) is a characteristic function of Β(𝛼); that is  
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 𝐶Β(𝛼)(𝑢) = {
1, 𝑢 ∈ Β(𝛼),
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢 ∉ Β(𝛼).

 (3.33) 

 

For any 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑘 ∈ 𝑅, 𝑎1 < 𝑎2, and 𝑏1 < 𝑏2, the interval operations are as follows:  

 [𝑎1, 𝑎2](+)[𝑏1, 𝑏2] = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2], (3.34) 

 [𝑎1, 𝑎2](−)[𝑏1, 𝑏2] = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1]. (3.35) 

 𝑘(∙)[𝑎1, 𝑎2] = {
[𝑘𝑎1, 𝑘𝑎2],⁡⁡⁡⁡⁡⁡𝑘 > 0,
[𝑘𝑎2, 𝑘𝑎1],⁡⁡⁡⁡⁡⁡𝑘 < 0.

 (3.36) 

Besides, if 0 < 𝑎1, and 0 < 𝑏1, then 

 [𝑎1, 𝑎2](∙)[𝑏1, 𝑏2] = [𝑎1𝑏1, 𝑎2𝑏2] (3.37) 

 [𝑎1, 𝑎2](÷)[𝑏1, 𝑏2] = [
𝑎1
𝑏2
,
𝑎2
𝑏1
]. (3.38) 

3.4.8 Justification of the Function Principle Methods  

As it was explained, function principle method is used to do operation of addition, 

multiplication, subtract, division of triangular fuzzy numbers in present research. 

Comparing with another well-known method (i.e. extension principle) which is not 

simple in most of the cases, it has some advantages as follows (Shekarian et al., 2014b;  

Chen & Chang, 2008):  

 The function principle is easier to calculate 

 The shape of trapezoidal and triangular fuzzy numbers does not change after 

the multiplication. However, extension principle changes the shape of fuzzy 

numbers to be drummed.  

 In contrast to the other similar methods, it can easily find the results of 

multiplying more than four triangular fuzzy numbers by pointwise 

computation.  
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3.5 Defuzzification Process  

Although the inventory system is developed in a fuzzy environment, the results should 

be transformed to the precise information to be applicable in the real situation. Because 

it is not possible for the decision maker to draw ultimate conclusions with the fuzzy 

results. Therefore, in order to interpret the optimal policies, it is necessary to convert the 

uncertain output to the crisp ones. The method of extracting crisp results from the fuzzy 

models is known as defuzzification (Mahata & Goswami, 2013). In the following, 

defuzzification methods used in the literature are reviewed and techniques that are applied 

in our study are explained.  

3.5.1 Overview of the Previous Defuzzification Methods  

In this section, defuzzification methods that are used in the previous literature are 

determined according to the studies in which are gathered in chapter 2. Different direct 

methods apply to the process of defuzzification such as median rule, centroid method. 

Also in other models, the process applies indirectly such as reduction of fuzzy inventory 

problem to a pair of mathematical programs to derive the upper bound and lower bound 

or converting the problem to a chance constrained programming problem. These methods 

are categorized in Table 3.3 in Appendix C. In this study, signed distance method and 

GMIR method are employed to do the mentioned process.  

3.5.1.1 GMIR Method  

In this section, the GMIR method introduced by Chen (1985) and Chen and Hsieh 

(1999) that is based on the integral value of graded mean 𝛼-level of generalized fuzzy 

numbers is explained for defuzzifying them.  

If 𝑀−1 and 𝑁−1 are considered as the inverse functions of 𝑀 and 𝑁 respectively in the 

generalized fuzzy number Β̃ = (𝛽1, 𝛽2, 𝛽3, 𝛽4; 𝑤Β)𝑀𝑁, then the graded mean 𝛼-level value 

Univ
ers

ity
 of

 M
ala

ya



62 

of this number is 𝛼[𝑀−1(𝛼) + 𝑁−1(𝛼)]/2. Figure 3.6 illustrate these relations. The 

GMIR of Β̃ shown as 𝒢(Β̃) with grade 𝑤Β is defined as:  

 
𝒢(Β̃) = ∫ 𝛼 [

𝑀−1(𝛼) + 𝑁−1(𝛼)

2
] 𝑑𝛼

𝑤Β

0

∫ 𝛼𝑑𝛼
𝑤Β

0

⁄  
 

(3.39) 

 

where  0 < 𝛼 ≤ 𝑤Β ≤ 1.  

 

Figure 3.6: The graded mean α-level value of generalized fuzzy number Β̃ 

 

3.5.1.2 Graded Mean Integration Representation of TFN  

For the generalized triangular fuzzy number T̃ = (𝛽1, 𝛽, 𝛽2; 𝑤Β)𝑀𝑁 we have  

 
𝑀(𝑢) = 𝑤Β (

𝑢 − 𝛽1
𝛽 − 𝛽1

)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛽1 ≤ 𝑢 ≤ 𝛽 
 

(3.40) 

 
𝑁(𝑢) = 𝑤Β (

𝑢 − 𝛽2
𝛽 − 𝛽2

) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛽 ≤ 𝑢 ≤ 𝛽2 
(3.41) 

 

 

Therefore,  

 𝑀−1(𝛼) = 𝛽1 +
𝛼

𝑤Β
(𝛽 − 𝛽1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝛼 ≤ 𝑤Β⁡⁡⁡⁡⁡⁡ 

(3.42) 

 𝑁−1(𝛼) = 𝛽2 −
𝛼

𝑤Β
(𝛽2 − 𝛽)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝛼 ≤ 𝑤Β 

(3.43) 

 

and           

 
𝑆 =

𝑀−1(𝛼) + 𝑁−1(𝛼)

2
=
𝑤Β(𝛽1 + 𝛽2) + (2𝛽 − 𝛽1 − 𝛽2)𝛼

2𝑤Β
 

(3.44) 
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Now, employing the calculated formula for the GMIR, the graded mean integration 

representation of T̃ is derived as  

 
𝒢(T̃) = ∫ 𝛼𝑆𝑑𝛼

𝑤Β

0

∫ 𝛼𝑑𝛼
𝑤Β

0

⁄  
 

 
=
(𝛽1 + 4𝛽 + 𝛽2)

6
 

(3.45) 

3.5.1.3 Signed Distance Method  

For any 𝑎 ∈ 𝑅, the signed distance from 𝑎 to 0 is defined as 𝑑0(𝑎, 0) = 𝑎. If 𝑎 is 

positive, then the distance from 𝑎 to 0 is 𝑎 = 𝑑0(𝑎, 0); if 𝑎 is negative, the distance from 

𝑎 to 0 is 𝑎 = −𝑑0(𝑎, 0). This is the reason why 𝑑0(𝑎, 0) is referred as the distance from 

𝑎 to 0.  

Assume that Ψ be the family of all fuzzy sets Β̃ defined on 𝑅 with which the 𝛼-cut 

Β(𝛼) = [Β𝐿(𝛼), Β𝑅(𝛼)] exists for every 𝛼 ∈ [0,1], and both Β𝐿(𝛼), and Β𝑅(𝛼) are 

continuous functions on  0 ≤ 𝛼 ≤ 1. Then, for any Β̃ ∈ Ψ from the principle of 

decomposition theory, we have  

 Β̃ = ⋃ [Β𝐿(𝛼)𝛼, Β𝑅(𝛼)𝛼]0≤𝛼≤1   (3.46) 
 

The signed distance of two end points Β𝐿(𝛼), and Β𝑅(𝛼) of the 𝛼-cut of Β̃ (i.e. Β(𝛼) =

[Β𝐿(𝛼), Β𝑅(𝛼)]) to the origin 0 is 𝑑0(Β𝐿(𝛼), 0) = Β𝐿(𝛼), and 𝑑0(Β𝑅(𝛼), 0) = Β𝑅(𝛼), 

respectively.  

Definition. 7:  

𝑑0([Β𝐿(𝛼), Β𝑅(𝛼)],0) = [𝑑0(Β𝐿(𝛼), 0)+ 𝑑0(Β𝑅(𝛼), 0)] 2⁄ = [Β𝐿(𝛼)+Β𝑅(𝛼)] 2⁄ .  (3.47) 

The following one-to-one mapping relationship between 𝛼-level fuzzy interval 

[Β𝐿(𝛼)𝛼, Β𝑅(𝛼)𝛼], and the real interval [Β𝐿(𝛼), Β𝑅(𝛼)] can be defined, that is 

 [Β𝐿(𝛼)𝛼, Β𝑅(𝛼)𝛼]↔ [Β𝐿(𝛼), Β𝑅(𝛼)]  (3.48) 
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Because the 1-level fuzzy point 0̃1 has a one-to-one correspondence with the real 

number 0, the signed distance of [Β𝐿(𝛼)𝛼, Β𝑅(𝛼)𝛼] to 0̃1can be give as:  

 
𝑑([Β𝐿(𝛼)𝛼, Β𝑅(𝛼)𝛼], 0̃1) = 𝑑0([Β𝐿(𝛼), Β𝑅(𝛼)], 0) =

[Β𝐿(𝛼) + Β𝑅(𝛼)] 2⁄   
(3.49) 

 

Furthermore, for Β̃ ∈ Ψ, since the above function is continuous on 0 ≤ 𝛼 ≤ 1, the 

integration can be applied to obtain the mean value of the signed distance as follows:  

 ∫ 𝑑([Β𝐿(𝛼)𝛼, Β𝑅(𝛼)𝛼], 0̃1)𝑑𝛼 =
1

2
∫ [Β𝐿(𝛼)+Β𝑅(𝛼)]𝑑𝛼
1

0

1

0
  (3.50) 

 

Definition. 8: For Β̃ ∈ Ψ, the signed distance of Β̃ to 0̃ can be defined as:  

 

 𝑑(Β̃, 0̃1) = ∫ 𝑑([Β𝐿(𝛼)𝛼, Β𝑅(𝛼)𝛼], 0̃1)𝑑𝛼 =
1

2
∫ [Β𝐿(𝛼) + Β𝑅(𝛼)]𝑑𝛼
1

0

1

0
  (3.51) 

 

For the TFN Β̃ = (𝑏1, 𝑏2, 𝑏3), the signed distance from Β̃ to 0̃ is given as:   

 𝑑(Β̃, 0̃1) = ∫ 𝑑([Β𝐿(𝛼)𝛼, Β𝑅(𝛼)𝛼], 0̃1)𝑑𝛼 =
1

4
(𝑏1 + 2𝑏2 + 𝑏3)

1

0
  (3.52) 

 

For two fuzzy sets Β̃, Ε̃ ∈ Ψ where Β̃ = ⋃ [Β𝐿(𝛼)𝛼, Β𝑅(𝛼)𝛼]0≤𝛼≤1  and Ε̃ =

⋃ [Ε𝐿(𝛼)𝛼, Ε𝑅(𝛼)𝛼]0≤𝛼≤1 , and 𝑘 ∈ 𝑅, we have  

 Β̃(+)Ε̃ = ⋃ [(Β𝐿(𝛼)+ Ε𝐿(𝛼))𝛼, (Β𝑅(𝛼)+ Ε𝑅(𝛼))𝛼]0≤𝛼≤1 ,  (3.53) 

 Β̃(−)Ε̃ = ⋃ [(Β𝐿(𝛼)− Ε𝑅(𝛼))𝛼, (Β𝑅(𝛼)− Ε𝐿(𝛼))𝛼]0≤𝛼≤1 ,  
(3.54) 

 

 𝑘̃1(∙)Β̃ = {

⋃ [(𝑘Β𝐿(𝛼))𝛼, (𝑘Β𝑅(𝛼))𝛼]0≤𝛼≤1 ,⁡⁡⁡⁡⁡⁡⁡𝑘 > 0,

⋃ [(𝑘Β𝑅(𝛼))𝛼, (𝑘Β𝐿(𝛼))𝛼]0≤𝛼≤1 ,⁡⁡⁡⁡⁡⁡𝑘 < 0,

0̃1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 0.

  (3.55) 

 

For two fuzzy sets Β̃, Ε̃ ∈ Ψ and 𝑘 ∈ 𝑅, 

 𝑑(Β̃(+)Ε̃, 0̃1) = 𝑑(Β̃, 0̃1) + 𝑑(Ε̃, 0̃1),  (3.56) 

 𝑑(Β̃(−)Ε̃, 0̃1) = 𝑑(Β̃, 0̃1) − 𝑑(Ε̃, 0̃1),  
(3.57) 

(3.58) 

 𝑑(𝑘̃1(∙)Β̃, 0̃1) = 𝑘𝑑(Β̃, 0̃1).   
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3.5.2 Justification of the GMIR and SD methods  

In this study, the GMIR and SD methods are used as defuzzification methods in the 

proposed systems. In the second suggested model, the performance of these methods is 

compared.  

The preference for researchers has been shifting towards the signed distance and 

GMIR methods (Shekarian et al., 2014b). As the membership function does not change 

under fuzzy arithmetic operations, it is possible to evaluate the defuzzified value directly 

by graded mean integration method through arithmetic operations. It is more reasonable 

to discuss the grade of each point of support set of fuzzy number for representing the 

fuzzy number. GMIR method is effective in the sense that it grades as the degree of each 

point of support set of fuzzy number and it is possible to measure the degree of similarity 

between fuzzy numbers in terms of graded mean integration values (Mahata & Goswami, 

2013). On the other hand, from the membership grade viewpoint, it will be efficient to 

defuzzify the fuzzy number by GMIR method instead of the centroid method (Mahata & 

Mahata, 2011).  

Moreover, for example, as the centriod method uses the extension principle, it 

concludes more complex calculations, especially, when a fuzzy parameter appears in the 

denominator (e.g., Chang, 2004). Using the SD method and the GMIR method usually do 

not fail to reach in closed-form solutions. However, if the function contains many 

multiplicative and complex sentences, GMIR method performs better than the SD method 

and resolves mathematics cumbersome.  

3.6 Optimization Methods  

In this section, proposed methods are explained to solve the developed fuzzy models. 

However, the solvation of the models is discussed after developing the models.   
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3.6.1 Overview of the Previous Optimization Methods  

In this section, optimization methods that are used in previous studies are categorized. 

These methods include techniques such as simple methods, mathematical theorem and 

techniques, ranking of fuzzy numbers, non-linear programing techniques, heuristic and 

meta-heuristic methods and simulation approaches.  

All the methods and techniques are classified in Table 3.4 in Appendix D. The first 

suggested fuzzy models is solved and optimized using KKT method and Intermediate 

Value Theorem. The second model is optimized applying a suggested algorithm. This 

algorithm is explained later in chapter 5, section 5.6.  

3.6.2 KKT Method 

Kuhn-Tucker conditions or KKT conditions deal with the question of how to recognize 

an optimal solution for a non-linear programming problem (with differentiable functions).  

Kuhn-Tucker conditions are suitable for situations in which the optimum solution of a 

non-linear programming problem have to be solved subject to inequality constraints. Taha 

(1997) and Hillier and Lieberman (2001) have discussed the concept of KKT conditions. 

According to Hillier and Lieberman (2001), the basic result of KKT conditions is 

embodied in the following theorem:  

Assume that 𝑓(𝑋), 𝑔1(𝑋), 𝑔2(𝑋), … , 𝑔𝑚(𝑋) are differentiable functions satisfying 

certain regularity conditions. Then 𝑋∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗) can be an optimal solution for 

the nonlinear programming problem only if there exist 𝑚 numbers 𝜆1, 𝜆2, … , 𝜆𝑚 such 

that all the following KKT conditions are satisfied:  

 𝜕𝑓

𝑥𝑗
−∑𝜆𝑖

𝑚

𝑖=1

𝜕𝑔𝑖
𝜕𝑥𝑗

≤ 0, at 𝑥 = 𝑥∗ for 𝑗 = 1,2, … , 𝑛.  
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𝑥𝑗
∗ (
𝜕𝑓

𝑥𝑗
−∑𝜆𝑖

𝑚

𝑖=1

𝜕𝑔𝑖
𝜕𝑥𝑗

) = 0, at 𝑥 = 𝑥∗ for 𝑗 = 1,2, … , 𝑛.  

 𝑔𝑖(𝑥
∗) − 𝑏𝑖 ≤ 0,  𝑓𝑜𝑟⁡𝑖 = 1,2, … ,𝑚. 

 𝜆𝑖(𝑔𝑖(𝑥
∗) − 𝑏𝑖) = 0, 𝑓𝑜𝑟⁡𝑖 = 1,2, … ,𝑚. 

 𝑥𝑗
∗ ≥ 0, 𝑓𝑜𝑟⁡𝑖 = 1,2, … , 𝑛. 

 𝜆𝑖 ≥ 0, 𝑓𝑜𝑟⁡𝑖 = 1,2, … ,𝑚. 

 

3.6.3 Intermediate Value Theorem  

The intermediate value theorem is applied for solving the second proposed fuzzy 

model through an algorithm. This theory is very useful to optimize the convex functions.  

According to this theory, if 𝑓 be a continuous function on the closed interval [𝑎, 𝑏] and 

if 𝑓(𝑎)𝑓(𝑏) < 0, then there exists a number 𝑐 ∈ (𝑎, 𝑏) such that 𝑓(𝑐) = 0.  

3.7 Characteristics of the Developed Models  

Regarding the application of the model, inventory systems have different 

characteristics such as inflation, discount, screening, rework, delay, defective or 

deteriorating items. To depict and highlight the characteristics of the proposed fuzzy 

models, characteristics of the previous works in previous chapter are classified and 

identified. In the following, the important characteristics of the developed models are 

explained.   

3.7.1 Learning Theory  

The learning curve concept, originally presented by Wright (1936), is defined as a 

natural phenomenon that occurs when a worker performs a task repetitively. Investigating 

the effect of learning through inventory models has been the subject of many studies in 

recent years. Wright (1936) observed that in airplane assembly when the number of units 

produced increases, unit production costs reduce. In real production systems, as time goes 
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by, the knowledge and experience of workers about operations and processes increase 

naturally and lead to improvements in their performance. For example, as a result of 

learning in a production system, the rate of manufacturing of defective items may reduce. 

The learning theory in its most popular form states that as the total quantity of units 

produced doubles, the cost per unit declines by some constant percentage (Jaber et al, 

2008).  

In this research, the well-known learning curve as power function and ‘S’-shaped 

formulation is used. The earliest learning curve representation is a geometric progression 

that expresses the decreasing cost (or time) required to accomplish any repetitive 

operation (Jaber & El Saadany, 2011). It is formulated as below:  

𝑈𝑥 = 𝑈1𝑥
−𝑏 (3.59) 

 

where 𝑈𝑥 is the time to produce the 𝑥th unit, 𝑈1 the time to produce the first unit, 𝑥 the 

production account, and 𝑏 the learning curve exponent. In practice, parameter 𝑏 is often 

replaced by another index which is called “learning rate” (LR). This index that is more 

intuitive occurs each time the production output is doubled. We have: 

𝐿𝑅 =
𝑈2𝑥
𝑈𝑥

=
𝑈1(2𝑥)

−𝑏

𝑈1𝑥−𝑏
= 2−𝑏 

(3.60) 

𝑏 =
−log⁡(𝐿𝑅)

log⁡(2)
 

(3.61) 

 

This type of learning curve that is depicted in Figure 3.7 is the most acceptable among 

practitioners and academicians.  

The S-shaped logistic learning curve which is practical in real world is of the form:  
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𝑝(𝑛) =
𝑎

𝑔 + 𝑒𝑏𝑛
 

(3.62) 

where 𝑎, 𝑏, and 𝑔 are the parameters of the model, 𝑛 is the cumulative number of 

shipments, and 𝑝(𝑛) is the percentage defective per shipment 𝑛.  

Different phases of S shaped learning curve are illustrated in Figure 3.8. Initial phase is 

the stage that the worker is getting acquainted with the set-up, the tooling, instructions, 

blueprints, the workplace arrangement, and the conditions of the process (Jaber et al., 

2008). However, the progress in this step is slow. In the next phase, the learning process 

starts, and reduction in errors and improvement in the environment can be seen. The last 

phase (maturity) shows the levelling of the learning curve.  

 

Figure 3.7: Wright’s learning curve  

 

 

Figure 3.8: The three phases of the learning curve  
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3.7.2 Imperfect Quality Items  

Imperfect items in the raw material and production stages of a supply chain directly 

impact the coordination of the product flow within a supply chain (Khan et al.,, 2011b). 

In response to this concern, inventory models have become an important and growing 

area of research and many kinds of problems have been discussed by researchers.  

Adopting the assumption of perfect quality in the EOQ/EPQ models is unrealistic in 

most industrial applications. It can lead to errors in obtaining the optimal policies such as 

total cost, total profit, and order size. In the developed fuzzy models of this research, the 

concept of imperfect quality items is also used. It arises because of machine failure in 

production process or delivering imperfect items by the supplier.  

3.7.3 Holding Cost  

The holding cost includes rent for the required space, labor cost to operate the space, 

opportunity cost, equipment cost, materials cost, insurance and security, and other direct 

expenses (Wahab & Jaber, 2010). It should be noted that in inventory management, the 

annual interest rate, 𝐼, is computed based on the mentioned costs.  

In the real manufacturing environment, the defective and good items are usually stored 

in the different warehouses. Therefore, the values of the annual interest rate for the good 

items and the defective items are different. Consequently, the holding cost of good and 

defective items are different (Paknejad et al., 2005).  

3.7.4 Return Process  

The process of return occurs in backward supply chain and reverse logistics (RL) when 

an item can be remanufactured or recycled, and then, can be sold to the customer in the 

market. Planning for RL is more difficult than forward logistics because of more 

uncertainty in terms of quantity, time and quality of returned product (Flapper, 1996). As 
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it was cleared from the reviewed literature, there is a shortcoming of developing fuzzified 

model in this field. In the second proposed fuzzy model, uncertainty of return rate is dealt 

to fill the gap.  

3.8 Chapter Summary  

In this chapter, the methodology of this research was explained and illustrated by using 

some flowcharts. The framework of models was demonstrated. Methods and techniques 

that are necessary to develop the fuzzy models were discussed. The framework for two 

proposed fuzzy models was divided in forward and backward conditions.  

Fundamental concepts and related theories were explained. Methods of fuzzification, 

defuzzification, and optimization were reviewed and the used ones were described. The 

use of the selected methods was also justified. In later chapters, the fuzzy models will be 

formulated.  
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CHAPTER 4: FULLY FUZZY FORWARD ECONOMIC ORDER QUANTITY 

MODEL CONSIDERING LEARNING EFFECTS  

4.1 Introduction  

In this chapter, a fully fuzzy economic order quantity model in which the number of 

defective items decreases under the effect of the learning process is formulated. Firstly, 

the formulation of the base model is reviewed, and then, it is extended through the fuzzy 

environment. The model is solved and optimized and the crisp results are compared with 

fuzzy ones. In addition, the results are compared with previous works. At the end of our 

discussions, some managerial insights are proposed.  

4.2 Problem Description  

In the following, the base problem is reviewed according to the previous studies 

(Salameh & Jaber, 2000; Maddah & Jaber, 2008; Wahab & Jaber, 2010). Later, the 

problem is extended from the crisp environment to the fuzzy one.  

Assume a situation where a lot from the supplier is delivered to the manufacturer who 

places an order with a deterministic purchasing price and ordering cost. In addition, it is 

assumed that the demand of the manufacturer is a crisp value. Moreover, it is supposed 

that a part of each lot that is received by the manufacturer includes percentage defectives. 

The defective items are identified by a 100% screening process with a known rate. After 

separation of defective items from non-defective ones, both of them are kept in different 

warehouses with different holding costs. Segregation of these items helps to a better 

tracking cost as it happens in many industries. These items can be kept in different 

situation. It is reasonable that the holding cost of defective items is less than the holding 

cost of good ones. Before shipping a new lot, good and defective items will be sold with 

different selling prices such that selling price of good items is more than the defective 

ones. It is assumed that the percentage of defective items decreases under the influence 
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of learning. It is a logical assumption because learning is an inherent part of the mentioned 

process.  

4.2.1 Assumptions  

The investigated model in fuzzy environment follows the below assumptions:  

i. Demand rate is constant during the planning horizon 

ii. Shortages are not allowed  

iii. Lead time is zero 

iv. Each shipment undergoes 100% inspection process 

v. Defective items are sold at a discounted price 

vi. Percentage of defectives items follows a learning curve 

vii. Time horizon is infinite/finite 

viii. All the parameters and variables of the model are assumed to be triangular fuzzy 

number 

ix. It is assumed that percentage of defective items per shipment, follows the below 

S-shaped logistic learning curve model:  

𝑝(𝑛) =
𝛼

𝛾 + 𝑒𝛽𝑛
 

where 𝛼, 𝛽, and 𝛾 are the parameters of the learning function.  

4.2.2 Notations  

The following notations are used to formulate the model:  

𝐷 Demand (unit/time)   

𝑦 Lot size (unit/order) (Decision variable)  

𝑦𝑛 Lot size in 𝑛th shipment when learning occurs (unit/order) (Decision variable) 

𝑐 Variable cost ($/unit)  
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𝐾 Fixed cost of placing an order ($/order)  

𝑝(𝑛) Percentage of defective items per shipment  

𝑓(𝑝) Probability density function of defective items  

𝑠 Selling price of good quality items ($/unit)   

𝑣 Selling price of defective items ($/unit) (𝑣 < 𝑠) 

𝑥 Screening rate (unit/time)  

𝑑 Screening cost ($/unit)  

𝑡𝑛 Screening time (time/unit)  

𝑇𝑛 Cycle length (time)  

ℎ𝑔 Holding cost for good items ($/unit/time) 

ℎ𝑑 Holding cost for defective items ($/unit/time) (ℎ𝑑 < ℎ𝑔) 

𝛥𝑙 Lower bound of the triangular fuzzy number in parameters or variable 

𝛥ℎ Upper bound of the triangular fuzzy number in parameter or variable  

𝑇𝑃𝑈 Total profit per unit time ($)  

4.3 Model Formulation  

The formulation of the models is as below according to the Figure 4.1.  

 

 

 

 

 

 

Figure 4.1: Inventory-time plot for an EOQ model with imperfect quality  

𝑝(𝑛)𝑦𝑛 

 

𝑡𝑛 

Holding cost of defectives items 

Time 

Inventory 

𝑦𝑛 

𝑇𝑛 

Holding cost of non-defectives items 
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According to the mentioned studies, assume that the number of good items in each lot 

size 𝑦𝑛 can be given as below:  

𝑀(𝑦
𝑛
, 𝑝(𝑛)) = 𝑦

𝑛
(1 − 𝑝(𝑛)) (4.1) 

 

Because shortage is not allowed, the number of good items should be at least equal to the 

demand when the screening process is doing and is given by:  

𝑀(𝑦
𝑛
, 𝑝(𝑛)) ≥ 𝐷𝑡𝑛 (4.2) 

 

If 𝑡𝑛 is replace by 𝑦𝑛/𝑥, the below condition can be reached:  

𝐸[𝑝(𝑛)] ≤ 1 − 𝐷/𝑥 (4.3) 

 

where 𝑝(𝑛) is a random variable and 𝐷 ≤ 𝑥. The total revenue can be defined as follow:  

𝑇𝑅(𝑦
𝑛
) = 𝑠𝑦

𝑛
(1 − 𝑝(𝑛)) + 𝑣𝑦

𝑛
𝑝(𝑛) (4.4) 

 

As defective and non-defective items are kept separately, holding cost of defective and 

non-defective items according to the Figure 4.1 can be calculated as below respectively:  

𝐻𝑑(𝑦𝑛) = ℎ𝑑 (
𝑝(𝑛)𝑦

𝑛
2

2𝑥
) (4.5) 

𝐻𝑔(𝑦𝑛) = ℎ𝑔 (
𝑝(𝑛)𝑦

𝑛
2

2𝑥
+
𝑦
𝑛
(1 − 𝑝(𝑛))𝑇𝑛

2
) 

(4.6) 

 

In fact, these equations are the area of the identified places in Figure 4.1.  

 

Regarding the defined notations, the total cost can be given as below:  

 

𝑇𝐶(𝑦
𝑛
) = ℎ𝑔 (

𝑝(𝑛)𝑦
𝑛
2

2𝑥
+
𝑦
𝑛
(1 − 𝑝(𝑛))𝑇𝑛

2
) + ℎ𝑑 (

𝑝(𝑛)𝑦
𝑛
2

2𝑥
) + 𝐾 + 𝑦(𝑐 + 𝑑) (4.7) 

 

Therefore, the total profit is as:  

 

𝑇𝑃(𝑦
𝑛
) = 𝑠𝑦

𝑛
(1 − 𝑝(𝑛)) + 𝑣𝑦

𝑛
𝑝(𝑛)

− [ℎ𝑔 (
𝑝(𝑛)𝑦

𝑛
2

2𝑥
+
𝑦
𝑛
(1 − 𝑝(𝑛))𝑇𝑛

2
) + ℎ𝑑 (

𝑝(𝑛)𝑦
𝑛
2

2𝑥
) + 𝐾

+ 𝑦(𝑐 + 𝑑)] 

(4.8) 

 

Then, the total profit per unit time, 𝑇𝑃𝑈(𝑦
𝑛
) is determined by: 
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𝑇𝑃𝑈(𝑦
𝑛
) = (

𝐷

1 − 𝑝(𝑛)
)(𝑣 −

𝐾

𝑦
𝑛

− 𝑐 − 𝑑 − 𝑦
𝑛

(ℎ𝑔 + ℎ𝑑)

2𝑥
) −

ℎ𝑔𝑦𝑛(1 − 𝑝(𝑛))

2

+ 𝐷 (𝑠 − 𝑣 + 𝑦
𝑛

(ℎ𝑔 + ℎ𝑑)

2𝑥
) 

(4.9) 

𝑬(𝑇𝑃𝑈(𝑦
𝑛
)) = 𝑬 (

1

1 − 𝑝(𝑛)
)𝐷 (𝑣 −

𝐾

𝑦
𝑛

− 𝑐 − 𝑑 − 𝑦
𝑛

(ℎ𝑔 + ℎ𝑑)

2𝑥
)

−
ℎ𝑔𝑦𝑛 (1 − 𝑬(𝑝(𝑛)))

2
+ 𝐷 (𝑠 − 𝑣 + 𝑦

𝑛

(ℎ𝑔 + ℎ𝑑)

2𝑥
) 

(4.10) 

 

𝑬(𝑇𝑃𝑈(𝑦𝑛)) is concave in 𝑦𝑛 and thus by derivation we have:  

𝑦𝑛
∗ = (

2𝐷𝐾𝑬[1/(1 − 𝑝(𝑛)]

ℎ𝑔(1 − 𝑬[𝑝(𝑛)]) + (
𝐷
𝑥) (ℎ𝑔 + ℎ𝑑)𝑬 [

1
1 − 𝑃(𝑛)

] − (
𝐷
𝑥) (ℎ𝑔 + ℎ𝑑)

)

1
2

 (4.11) 

 

The cycle length 𝑇𝑛 depends on the number of defective items which is a random variable. 

Therefore, the expected cycle length is:  

 

𝑬[𝑇𝑛] =
𝑦
𝑛
(1 − 𝑬[𝑝(𝑛)])

𝐷
 (4.12) 

Now we have  

𝑬[𝑇𝑃(𝑦
𝑛
)] = 𝑠𝑦

𝑛
(1 − 𝑬[𝑝(𝑛)]) + 𝑣𝑦

𝑛
𝑬[𝑝(𝑛)]

− [𝐾 + (𝑐 + 𝑑)𝑦
𝑛
+ ℎ𝒈 (

𝑦
𝑛
2

2
[
𝑬[𝑝(𝑛)]

𝑥
+
𝑬 [(1 − 𝑝(𝑛))

𝟐
]

𝐷
])

+ ℎ𝒅 (
𝑬[𝑝(𝑛)]𝑦

𝑛
2

2𝑥
)] 

 

 

 

 

(4.13) 

Using renewal-reward theorem, we can have: 

𝑬[𝑇𝑃𝑈(𝑦
𝑛
)] =

𝑬[𝑇𝑃(𝑦
𝑛
)]

𝑬[𝑇𝑛]
 (4.14) 
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𝑬[𝑇𝑃𝑈(𝑦
𝑛
)] =

𝐷{𝑠(1 − 𝑬[𝑝(𝑛)]) + 𝑣𝑬[𝑝(𝑛)] − 𝑐 − 𝑑}

(1 − 𝐸[𝑝(𝑛)])
−

𝐾𝐷

𝑦(1 − 𝐸[𝑝(𝑛)]

−
𝑦𝐷

2(1 − 𝑬[𝑝(𝑛)])
[ℎ𝑔 (

𝑬[𝑝(𝑛)]

𝑥
+
𝑬 [(1 − 𝑝(𝑛))

2
⁡]

𝐷
)

+ ℎ𝑑 (
𝑬[𝑝(𝑛)]

𝑥
)] 

 

 

 

 

 

(4.15) 

By derivation, we can have:  

𝑦𝑛
∗∗ = (

2𝐷𝐾

ℎ𝑔𝑬 [(1 − 𝑝(𝑛))
2
] + (

𝐷
𝑥) (ℎ𝑔 + ℎ𝑑)𝑬

[𝑝(𝑛)]
)

1
2

 (4.16) 

 

 

If the S-shaped logistic learning function is replaced:  

𝛼

𝛾 + 𝑒𝛽𝑛
 

in Eq. (4.9), the optimal 𝑦𝑛 in crisp situation can be obtained by derivation as below:  

𝑦𝑛
∗∗∗ = (

2𝐷𝐾 [
1

1 − 𝑝(𝑛)
]

ℎ𝑔[1 − 𝑝(𝑛)] + (
𝐷
𝑥) (ℎ𝑔 + ℎ𝑑) (

1
[1 − 𝑝(𝑛)]

) − (
𝐷
𝑥) (ℎ𝑔 + ℎ𝑑)

)

1
2

 (4.17) 

 

 

4.4 Fully Fuzzy Model  

In this section, the crisp model illustrated in previous section is studied in a fully fuzzy 

environment by fuzzifying all the input parameters and decision variable. It is assumed 

that all the model is uncertain. The uncertainty of the considered parameters and variable 

are represented by the concept of the triangular fuzzy number, as explained in chapter 3.  

The fuzzy parameters of the model are defined as below:  

𝐷̃ = (𝐷 − 𝛥𝑙
𝐷 , 𝐷, 𝐷 + 𝛥ℎ

𝐷)  

𝑠̃ = (𝑠 − 𝛥𝑙
𝑠 , 𝑠, 𝑠 + 𝛥ℎ

𝑠 )  
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𝑣̃ = (𝑣 − 𝛥𝑙
𝑣, 𝑣, 𝑣 + 𝛥ℎ

𝑣 )  

ℎ̃𝑔 = (ℎ𝑔 − 𝛥𝑙
ℎ𝑔 , ℎ𝑔, ℎ𝑔 + 𝛥ℎ

ℎ𝑔)  

ℎ̃𝑑 = (ℎ𝑑 − 𝛥𝑙
ℎ𝑑 , ℎ𝑑 , ℎ𝑑 + 𝛥ℎ

ℎ𝑑)  

𝑝(n) = (𝑝(𝑛) − 𝛥𝑙
𝑝(𝑛)

, 𝑝(𝑛), 𝑝(𝑛) + 𝛥ℎ
𝑝(𝑛)

)  

𝑥̃ = (𝑥 − 𝛥𝑙
𝑥 , 𝑥, 𝑥 + 𝛥ℎ

𝑥)  

𝐾̃ = (𝐾 − 𝛥𝑙
𝐾 , 𝐾, 𝐾 + 𝛥ℎ

𝐾)  

𝑐̃ = (𝑐 − 𝛥𝑙
𝑐 , 𝑐, 𝑐 + 𝛥ℎ

𝑐 )  

𝑑̃ = (𝑑 − 𝛥𝑙
𝑑 , 𝑑, 𝑑 + 𝛥ℎ

𝑑)  

Moreover, the decision variable is supposed to be a triangular fuzzy number and is 

given by:  

𝑦̃𝑛 = (𝑦𝑛 − 𝛥𝑙
𝑦𝑛 , 𝑦𝑛, 𝑦𝑛 + 𝛥ℎ

𝑦𝑛) 

Besides, we have:  

𝛥𝑙
𝑖 > 0 for 𝑖 = 𝐷, 𝑠, 𝑣, ℎ𝑔, ℎ𝑑, 𝑝(𝑛), 𝑥, 𝐾, 𝑐, 𝑑, 𝑦𝑛,  

𝛥ℎ
𝑗
> 0 for 𝑗 = 𝐷, 𝑠, 𝑣, ℎ𝑔, ℎ𝑑, 𝑝(𝑛), 𝑥, 𝐾, 𝑐, 𝑑, 𝑦𝑛,  

𝐷 > 𝛥𝑙
𝐷 𝑠 > 𝛥𝑙

𝑠 𝑣 > 𝛥𝑙
𝑣 ℎ𝑔 > 𝛥𝑙

ℎ𝑔
 ℎ𝑑 > 𝛥𝑙

ℎ𝑑  𝑝(𝑛) > 𝛥𝑙
𝑝(𝑛)

  

𝐾 > 𝛥𝑙
𝐾 𝑐 > 𝛥𝑙

𝑐 𝑑 > 𝛥𝑙
𝑑 𝑦𝑛 > 𝛥𝑙

𝑦𝑛 𝑥 > 𝛥𝑙
𝑥   

Moreover, 𝛥𝑙
𝑖  and 𝛥ℎ

𝑗
 are arbitrary values which can be determined through expert’s 

knowledge and statistical background of the inventory data. For example, the upper bound 

of the demand in its triangular fuzzy number can be considered as the highest value which 

is observed for the demand in previous inventory planning horizons and, therefore, 𝛥ℎ
𝐷 is 

the deviation of the highest value of the demand from the most promising value. After 

replacing the above triangular fuzzy numbers in the total profit per unit time formula, the 

fuzzy total profit per unit time can be obtained as follows:  
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𝑇𝑃𝑈̃(𝑦̃𝑛) = 𝐷̃ (𝑠̃ − 𝑣̃ +
ℎ̃𝑔𝑦̃𝑛

2𝑥̃
+
ℎ̃𝑑𝑦̃𝑛
2𝑥̃

)

+ (
𝐷̃

1 − 𝑝(𝑛̃)
)(𝑣̃ −

𝐾̃

𝑦̃𝑛
− 𝑐̃ − 𝑑̃ −

ℎ̃𝑔𝑦̃𝑛

2𝑥̃
−
ℎ̃𝑑𝑦̃𝑛
2𝑥̃

)

−
ℎ̃𝑔𝑦̃𝑛(1 − 𝑝(𝑛̃))

2
 

 

 

 

(4.18) 

In order to simplify the mathematical computations, the following symbols are defined:  

𝜁 = 𝐷̃ (𝑠̃ − 𝑣̃ +
ℎ̃𝑔𝑦̃𝑛

2𝑥̃
+
ℎ̃𝑑𝑦̃𝑛
2𝑥̃

) 
(4.19) 

𝜉 = (𝑣̃ −
𝐾̃

𝑦̃𝑛
− 𝑐̃ − 𝑑̃ −

ℎ̃𝑔𝑦̃𝑛

2𝑥̃
−
ℎ̃𝑑𝑦̃𝑛
2𝑥̃

) 
(4.20) 

𝜍 = (
𝐷̃

1 − 𝑝(𝑛̃)
) 

(4.21) 

𝜏 =
ℎ̃𝑔𝑦̃𝑛(1 − 𝑝(𝑛̃))

2
 

(4.22)  

Since the whole parameters are triangular fuzzy numbers, each of the defined symbols 

is a triangular fuzzy number. Hence, they can be considered as a triangular fuzzy number 

by the following triplet components:  

𝜁 = (𝜁1, 𝜁2, 𝜁3) (4.23) 

𝜉 = (𝜉1, 𝜉2, 𝜉3) (4.24) 

𝜍 = (𝜍1, 𝜍2, 𝜍3) (4.25) 

𝜏 = (𝜏1, 𝜏2, 𝜏3) (4.26)  

Using the function principle method described in chapter 3, the process of computations 

is as below:  
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𝜁1 = (D − 𝛥𝑙
𝐷). [[(𝑠 − 𝛥𝑙

𝑠) − (𝑣 + 𝛥ℎ
𝑣)]

+
(ℎ𝑔 − 𝛥𝑙

ℎ𝑔) (𝑦𝑛 − 𝛥𝑙
𝑦𝑛) + (ℎ𝑑 − 𝛥𝑙

ℎ𝑑)(𝑦𝑛 − 𝛥𝑙
𝑦𝑛)

2(𝑥 + 𝛥ℎ
𝑥)

] 

 

(4.27) 

 

𝜁2 = 𝐷 [(𝑠 − 𝑣) +
ℎ𝑔𝑦𝑛

2𝑥
+
ℎ𝑑𝑦𝑛
2𝑥

] (4.28) 

𝜁3 = (D + 𝛥ℎ
𝐷) 

. [⁡[(𝑠 + 𝛥ℎ
𝑠 ) − (𝑣 − 𝛥𝑙

𝑣)]

+
(ℎ𝑔 + 𝛥ℎ

ℎ𝑔) (𝑦𝑛 + 𝛥ℎ
𝑦𝑛) + (ℎ𝑑 + 𝛥ℎ

ℎ𝑑)(𝑦𝑛 + 𝛥ℎ
𝑦𝑛)

2(𝑥 − 𝛥𝑙
𝑥)

] 

 

 

(4.29) 

 

𝜉1 = [(𝑣 − 𝛥𝑙
𝑣) −

(𝐾 + 𝛥ℎ
𝐾)

(𝑦𝑛 − 𝛥𝑙
𝑦𝑛)

− (𝑐 + 𝛥ℎ
𝑐 ) − (𝑑 + 𝛥ℎ

𝑑)

−
(ℎ𝑔 + 𝛥ℎ

ℎ𝑔
) (𝑦𝑛 + 𝛥ℎ

𝑦𝑛) + (ℎ𝑑 + 𝛥ℎ
ℎ𝑑)(𝑦𝑛 + 𝛥ℎ

𝑦𝑛)

2(𝑥 − 𝛥𝑙
𝑥)

] 

 

 

(4.30) 

𝜉2 = (𝑣 −
𝐾

𝑦𝑛
− 𝑐 − 𝑑 −

ℎ𝑔𝑦𝑛

2𝑥
−
ℎ𝑑𝑦𝑛
2𝑥

) (4.31) 

𝜉3 = [(𝑣 + 𝛥ℎ
𝑣) −

(𝐾 − 𝛥𝑙
𝐾)

(𝑦𝑛 + 𝛥ℎ
𝑦𝑛)

− (𝑐 − 𝛥𝑙
𝑐) − (𝑑 − 𝛥𝑙

𝑑)

−
(ℎ𝑔 − 𝛥𝑙

ℎ𝑔) (𝑦𝑛 − 𝛥𝑙
𝑦𝑛) + (ℎ𝑑 − 𝛥𝑙

ℎ𝑑)(𝑦𝑛 − 𝛥𝑙
𝑦𝑛)

2(𝑥 + 𝛥ℎ
𝑥)

] 

 

 

(4.32) 

𝜍1 = (𝐷 − 𝛥𝑙
𝐷) [

(𝛾 + 𝛥ℎ
𝛾
) + 𝑒

(𝑛+𝛥ℎ
𝑛)(𝛽+𝛥ℎ

𝛽
)

(𝛾 + 𝛥ℎ
𝛾
) − (𝛼 − 𝛥𝑙

𝛼) + 𝑒
(𝑛+𝛥ℎ

𝑛)(𝛽+𝛥ℎ
𝛽
)⁡
] 

 

(4.33) 

𝜍2 = (
𝛾 + 𝑒𝑛𝛽

𝛾 + 𝑒𝑛𝛽 − 𝛼
)𝐷 (4.34) 
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𝜍3 = (𝐷 + 𝛥ℎ
𝐷) [

(𝛾 − 𝛥𝑙
𝛾
) + 𝑒

(𝑛−𝛥𝑙
𝑛)(𝛽−𝛥𝑙

𝛽
)

(𝛾 − 𝛥𝑙
𝛾
) − (𝛼 + 𝛥ℎ

𝛼) + 𝑒
(𝑛−𝛥𝑙

𝑛)(𝛽−𝛥𝑙
𝛽
)⁡
] 

 

(4.35) 

𝜏1 = [
(ℎ𝑔 − 𝛥𝑙

ℎ𝑔) (𝑦𝑛 − 𝛥𝑙
𝑦𝑛)

2
] [
(𝛾 − 𝛥𝑙

𝛾
) − (𝛼 + 𝛥ℎ

𝛼) + 𝑒
(𝑛−𝛥𝑙

𝑛)(𝛽−𝛥𝑙
𝛽
)

(𝛾 − 𝛥𝑙
𝛾
) + 𝑒

(𝑛−𝛥𝑙
𝑛)(𝛽−𝛥𝑙

𝛽
)

] 

 

(4.36) 

𝜏2 = (
ℎ𝑔𝑦𝑛

2
)(
𝛾 − 𝛼 + 𝑒𝑛𝛽

𝛾 + 𝑒𝑛𝛽
) (4.37) 

𝜏3 = [
(ℎ𝑔 + 𝛥ℎ

ℎ𝑔
) (𝑦𝑛 + 𝛥ℎ

𝑦𝑛)

2
] [
(𝛾 + 𝛥ℎ

𝛾
) − (𝛼 − 𝛥𝑙

𝛼) + 𝑒
(𝑛+𝛥ℎ

𝑛)(𝛽+𝛥ℎ
𝛽
)

(𝛾 + 𝛥ℎ
𝛾
) + 𝑒

(𝑛+𝛥ℎ
𝑛)(𝛽+𝛥ℎ

𝛽
)

] 

 

(4.38) 

Again, because all of the parameters and variable of the inventory system are triangular 

fuzzy numbers, the total profit per unit time is also a triangular fuzzy number and could 

be computed as below:  

𝑇𝑃𝑈̃(𝑦̃𝑛) = (𝐶1, 𝐶2, 𝐶3) (4.39) 

Using the defined triplet components, we have:  

(𝐶1, 𝐶2, 𝐶3) = (𝜁1 + 𝜉1𝜍1 − 𝜏3, 𝜁2 + 𝜉2𝜍2 − 𝜏2, 𝜁3 + 𝜉3𝜍3 − 𝜏1) (4.40) 

 

The GMIV (defuzzified value) of total profit function could be expressed as follow:  

 

𝜑 (𝑇𝑃𝑈̃(𝑦̃𝑛)) =
1

6
𝐶1 +

4

6
𝐶2 +

1

6
𝐶3  

=
1

6
(𝜁1 + 𝜉1𝜍1 − 𝜏3) +

4

6
(𝜁2 + 𝜉2𝜍2 − 𝜏2) +

1

6
(𝜁3 + 𝜉3𝜍3 − 𝜏1) (4.41) 

 

 

By replacing the obtained terms for above symbols, it could be described as below:  
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𝜑 (𝑇𝑃𝑈̃(𝑦̃𝑛))

=
1

6

(

 
 
(D − 𝛥𝑙

𝐷) [[(𝑠 − 𝛥𝑙
𝑠) − (𝑣 + 𝛥ℎ

𝑣)] ⁡

+
(ℎ𝑔 − 𝛥𝑙

ℎ𝑔) (𝑦𝑛 − 𝛥𝑙
𝑦𝑛) + (ℎ𝑑 − 𝛥𝑙

ℎ𝑑)(𝑦𝑛 − 𝛥𝑙
𝑦𝑛)

2(𝑥 + 𝛥ℎ
𝑥)

]

+ (D − 𝛥𝑙
𝐷) [

(𝛾 + 𝛥ℎ
𝛾
) + 𝑒

(𝑛+𝛥ℎ
𝑛)(𝛽+𝛥ℎ

𝛽
)

(𝛾 + 𝛥ℎ
𝛾
) − (𝛼 − 𝛥𝑙

𝛼) + 𝑒
(𝑛+𝛥ℎ

𝑛)(𝛽+𝛥ℎ
𝛽
)
] . [(𝑣 − 𝛥𝑙

𝑣) −
(𝐾 + 𝛥ℎ

𝐾)

(𝑦𝑛 − 𝛥𝑙
𝑦𝑛)

− (𝑐 + 𝛥ℎ
𝑐 ) − (𝑑 + 𝛥ℎ

𝐷) −
(ℎ𝑔 + 𝛥ℎ

ℎ𝑔) (𝑦𝑛 + 𝛥ℎ
𝑦𝑛) + (ℎ𝑑 + 𝛥ℎ

ℎ𝑑)(𝑦𝑛 + 𝛥ℎ
𝑦𝑛)

2(𝑥 − 𝛥𝑙
𝑥)

]

− [
(ℎ𝑔 + 𝛥ℎ

ℎ𝑔) (𝑦𝑛 + 𝛥ℎ
𝑦𝑛)

2
] [
(𝛾 + 𝛥ℎ

𝛾
) − (𝛼 − 𝛥𝑙

𝛼) + 𝑒
(𝑛+𝛥ℎ

𝑛)(𝛽+𝛥ℎ
𝛽
)

(𝛾 + 𝛥ℎ
𝛾
) + 𝑒

(𝑛+𝛥ℎ
𝑛)(𝛽+𝛥ℎ

𝛽
)

]

)

 
 

+
4

6
(𝐷 [(𝑠 − 𝑣) +

ℎ𝑔𝑦𝑛

2𝑥
+
ℎ𝑑𝑦𝑛
2𝑥

]

+ 𝐷 (
𝛾 + 𝑒𝑛𝛽

𝛾 + 𝑒𝑛𝛽 − 𝛼
)(𝑣 −

𝐾

𝑦𝑛
− 𝑐 − 𝑑 −

ℎ𝑔𝑦𝑛

2𝑥
+
ℎ𝑑𝑦𝑛
2𝑥

)

− (
ℎ𝑔𝑦𝑛

2
)(
𝛾 − 𝛼 + 𝑒𝑛𝛽

𝛾 + 𝑒𝑛𝛽
))

+
1

6

(

 
 
(𝐷 + 𝛥ℎ

𝐷) [[(𝑠 + 𝛥ℎ
𝑠 ) − (𝑣 − 𝛥𝑙

𝑣)]

+
(ℎ𝑔 + 𝛥ℎ

ℎ𝑔) (𝑦𝑛 + 𝛥ℎ
𝑦𝑛) + (ℎ𝑑 + 𝛥ℎ

ℎ𝑑)(𝑦𝑛 + 𝛥ℎ
𝑦𝑛)

2(𝑥 − 𝛥𝑙
𝑥)

]

+ (𝐷 + 𝛥ℎ
𝐷) [

(𝛾 − 𝛥𝑙
𝛾
) + 𝑒

(𝑛−𝛥𝑙
𝑛)(𝛽−𝛥𝑙

𝛽
)

(𝛾 − 𝛥𝑙
𝛾
) − (𝛼 + 𝛥ℎ

𝛼) + 𝑒
(𝑛−𝛥𝑙

𝑛)(𝛽−𝛥𝑙
𝛽
)
] [(𝑣 + 𝛥ℎ

𝑣 ) −
(𝐾 − 𝛥𝑙

𝐾)

(𝑦𝑛 + 𝛥ℎ
𝑦𝑛)

− (𝑐 − 𝛥𝑙
𝑐) − (𝑑 − 𝛥𝑙

𝑑) −
(ℎ𝑔 − 𝛥𝑙

ℎ𝑔) (𝑦𝑛 − 𝛥𝑙
𝑦𝑛) + (ℎ𝑑 − 𝛥𝑙

ℎ𝑑)(𝑦𝑛 − 𝛥𝑙
𝑦𝑛)

2(𝑥 + 𝛥ℎ
𝑥)

]

− [
(ℎ𝑔 − 𝛥𝑙

ℎ𝑔) (𝑦𝑛 − 𝛥𝑙
𝑦𝑛)

2
] [
(𝛾 − 𝛥𝑙

𝛾
) − (𝛼 + 𝛥ℎ

𝛼) + 𝑒
(𝑛−𝛥𝑙

𝑛)(𝛽−𝛥𝑙
𝛽
)

(𝛾 − 𝛥𝑙
𝛾
) + 𝑒

(𝑛−𝛥𝑙
𝑛)(𝛽−𝛥𝑙

𝛽
)

]

)

 
 

 

(4.42) 
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4.5 Finding Optimal Values  

In this section, the model is tried to be solved using the KKT theorem described in 

chapter 3. The conditions of this theory are provided and the related constraints are 

constructed.  

Let assume the following equations to initialize the process of finding the optimal 

solution for the defuzzified inventory cost function that was obtained in previous section:  

𝑦𝑛 − 𝛥𝑙
𝑦𝑛 = 𝑦1 (4.43) 

𝑦𝑛 = 𝑦2 (4.44) 

𝑦𝑛 + 𝛥ℎ
𝑦𝑛 = 𝑦3 (4.45) 

 

The defuzzified value of the total profit function is taken as the crisp estimate of fuzzy 

total profit function where it is optimized subject to the following condition:  

0 < 𝑦1 ≤ 𝑦2 ≤ 𝑦3 (4.46) 

 

Thus, the optimum solution of defuzzified total profit function can be found by 

optimizing Eq. (4.42) subject to the following inequality constraints:  

𝑦1 − 𝑦2 ≤ 0 (4.47) 

𝑦2 − 𝑦3 ≤ 0 (4.48) 

−𝑦1 < 0 (4.49) 

 

Now the Kuhn-Tucker conditions can be employed to find the optimal solution of   

defuzzified total profit function subject to the below inequalities as imposed conditions.  

𝑦1 (
𝜕𝑇𝑃𝑈̃(𝑦̃𝑛)

𝜕𝑦1
− 𝜆1 + 𝜆3) = 0 (4.50) 
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𝑦2 (
𝜕𝑇𝑃𝑈̃(𝑦̃𝑛)

𝜕𝑦2
+ 𝜆1 − 𝜆2) = 0 (4.51) 

𝑦3 (
𝜕𝑇𝑃𝑈̃(𝑦̃𝑛)

𝜕𝑦3
+ 𝜆2) = 0 (4.52) 

𝑦1 − 𝑦2 ≤ 0 (4.53) 

𝑦2 − 𝑦3 ≤ 0 (4.54) 

−𝑦1 < 0 (4.55) 

𝜆1(𝑦1 − 𝑦2) = 0 (4.56) 

𝜆2(𝑦2 − 𝑦3) = 0 (4.57) 

𝜆3(−𝑦1) = 0 (4.58) 

𝑦1 ≥ 0, 𝑦2 ≥ 0, 𝑦3 ≥ 0 (4.59) 

𝜆1 ≥ 0, 𝜆2 ≥ 0, 𝜆3 ≥ 0 (4.60) 

where  

𝜕𝑇𝑃𝑈̃(𝑦̃𝑛)

𝜕𝑦1
=
1

6
[(𝐷 − 𝛥𝑙

𝐷) (𝐴 +
(𝐾 + 𝛥ℎ

𝐾)

𝑦12
𝐵) − 𝐴(𝐷 + 𝛥ℎ

𝐷)𝐶

−
(ℎ𝑔 − 𝛥𝑙

ℎ𝑔)

2𝐶
] 

(4.61) 

 

𝜕𝑇𝑃𝑈̃(𝑦̃𝑛)

𝜕𝑦2
=
4

6
[𝐷𝐹 + (

𝐾

𝑦22
− 𝐹)𝐷𝐺 −

ℎ𝑔

2𝐺
] 

(4.62) 

 

𝜕𝑇𝑃𝑈̃(𝑦̃𝑛)

𝜕𝑦3
=
1

6
[
(ℎ𝑔 + 𝛥ℎ

ℎ𝑔)

2𝐵
− (𝐷 − 𝛥𝑙

𝐷)𝐵𝐸

+ (𝐷 + 𝛥ℎ
𝐷) (𝐸 +

(𝐾 − 𝛥𝑙
𝐾)

𝑦32
𝐶)] 

(4.63) 

The notations of the 𝐴, 𝐵, 𝐶, 𝐸, 𝐹, and 𝐺 are given as below:  
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𝐴 =
(ℎ𝑔 − 𝛥𝑙

ℎ𝑔) + (ℎ𝑑 − 𝛥𝑙
ℎ𝑑)

2(𝑥 + 𝛥ℎ
𝑥)

 (4.64) 

𝐵 =
(𝛾 + 𝛥ℎ

𝛾
) + 𝑒

(𝑛+𝛥ℎ
𝑛)(𝛽+𝛥ℎ

𝛽
)

(𝛾 + 𝛥ℎ
𝛾
) − (𝛼 − 𝛥𝑙

𝛼) + 𝑒
(𝑛+𝛥ℎ

𝑛)(𝛽+𝛥ℎ
𝛽
)
 

 

(4.65) 

𝐶 =
(𝛾 − 𝛥𝑙

𝛾
) + 𝑒

(𝑛−𝛥𝑙
𝑛)(𝛽−𝛥𝑙

𝛽
)

(𝛾 − 𝛥𝑙
𝛾
) − (𝛼 + 𝛥ℎ

𝛼) + 𝑒
(𝑛−𝛥𝑙

𝑛)(𝛽−𝛥𝑙
𝛽
)
 

 

(4.66) 

𝐸 =
(ℎ𝑔 + 𝛥ℎ

ℎ𝑔) + (ℎ𝑑 + 𝛥ℎ
ℎ𝑑)

2(𝑥 − 𝛥𝑙
𝑥)

 

 

(4.67) 

𝐹 =
ℎ𝑔 + ℎ𝑑

2𝑥
 

 

𝐺 =
𝛾 + 𝑒𝑛𝛽

𝛾 + 𝑒𝑛𝛽 − 𝛼
 

(4.68) 

(4.69) 

 

From constraints (4.55) and (4.58), it can be deduced that 𝜆3 = 0. If 𝜆1 = 𝜆2 = 0 in 

(4.56) and (4.57), then 𝑦3 < 𝑦2 < 𝑦1 and this constraint is against the constraint 0 < 𝑦1 ≤

𝑦2 ≤ 𝑦3. Therefore, 𝑦1 = 𝑦2 and 𝑦2 = 𝑦3, mean that 𝑦1 = 𝑦2 = 𝑦3 = 𝑦∗. According to 

this explanation, the solution of the model can be obtained by solving Eqs. (4.50)−(4.60), 

as follows:  

𝜕𝑇𝑃𝑈̃(𝑦̃𝑛)

𝜕𝑦1
+
𝜕𝑇𝑃𝑈̃(𝑦̃𝑛)

𝜕𝑦2
+
𝜕𝑇𝑃𝑈̃(𝑦̃𝑛)

𝜕𝑦3
= 0 (4.70) 

 

By taking the derivations and replacing them in Eq. (4.70), the results could be given as 

follow:  
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𝑦2 [𝐴(𝐷 + 𝛥ℎ
𝐷)𝐶 − (𝐷 − 𝛥𝑙

𝐷)𝐴 +
(ℎ𝑔 − 𝛥𝑙

ℎ𝑔)

2𝐶
−
(ℎ𝑔 + 𝛥ℎ

ℎ𝑔)

2𝐵
+ (𝐷 − 𝛥𝑙

𝐷)𝐵𝐸

− (𝐷 + 𝛥ℎ
𝐷)𝐸 − 4𝐷𝐹 + 4𝐹𝐷𝐺 + 2

ℎ𝑔

𝐺
]

= (𝐷 − 𝛥𝑙
𝐷)(𝐾 + 𝛥ℎ

𝐾)𝐵 + (𝐷 + 𝛥ℎ
𝐷)(𝐾 − 𝛥𝑙

𝐾)𝐶 + 4𝐷𝐾𝐺 

 

 

 

(4.71) 

 

The solution of the Eq. (4.65) leads to the solution of the model, as follows:  

𝑦 = √
𝜒1
𝜒2

 (4.72) 

  

where  

𝜒1 = (𝐷 − 𝛥𝑙
𝐷)(𝐾 + 𝛥ℎ

𝐾)𝐵 + (𝐷 + 𝛥ℎ
𝐷)(𝐾 − 𝛥𝑙

𝐾)𝐶 + 4𝐾𝐷𝐺 (4.73) 

  

𝜒2 = (𝐷 + 𝛥ℎ
𝐷)(𝐴𝐶 − 𝐸) + (𝐷 − 𝛥𝑙

𝐷)(𝐵𝐸 − A) + 4𝐹𝐷(𝐺 − 1)

+
(ℎ𝑔 − 𝛥𝑙

ℎ𝑔)

2𝐶
−
(ℎ𝑔 + 𝛥ℎ

ℎ𝑔)

2𝐵
+ 2

ℎ𝑔

𝐺
 

(4.74) 

 

4.6 Numerical Illustrations  

In this section, a numerical example is presented to illustrate the application of the 

suggested fuzzy model. However, the fuzzy model through a real case is discussed later. 

The relevant information for this example is assumed as 𝑥 = 170,000 units per year,  

𝐷 = 50,000 units per year, 𝐾 = $3,000 per order, 𝑐 = $100 per unit, 𝑠 = $200 per unit, 

𝑣 = $50 per unit, 𝑑 = $0.50 per unit, ℎ𝑔 = $20 unit per year, ℎ𝑑 = $5 unit per year, 𝛾 =

819.76, 𝛼 = 70.07, and 𝛽 = 0.79. In Table 4.1, the mentioned input parameters are 

fuzzified with arbitrary values. Columns 𝜑 and 𝑉 show defuzzified values and the level 

of fuzziness (the percentage of difference between crisp and defuzzified values) of the 

related parameters, respectively. The GMIV method is applied for defuzzification of 

arbitrary levels of fuzziness.  
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Table 4.1: Arbitrary fuzzy triangular values for the input parameters  

𝑽  Parameter 𝝋  Parameter 𝝋  
+70  

𝜐 

(46,50,264) 85  

𝐾 

(2800,3000,15800) 5100 

+60  (34,50,246) 80  (2600,3000,14200) 4800 

+50  (27,50,223) 75  (2400,3000,12600) 4500 

+40  (19,50,201) 70  (2000,3000,11200) 4200 

+30  (16,50,174) 65  (1900,3000,9500) 3900 

+20  (10,50,150) 60  (1600,3000,8000) 3600 

+10  (4,50,126) 55  (1300,3000,6500) 3300 

+70  

ℎ𝑔 

(17,20,107) 34  

𝐷 

(40000,50000,270000) 85000 

+60  (13,20,99) 32  (30000,50000,250000) 80000 

+50  (11,20,89) 30  (20000,50000,230000) 75000 

+40  (9,20,79) 28  (19000,50000,201000) 70000 

+30  (7,20,69) 26  (17500,50000,172500) 65000 

+20  (6,20,58) 24  (15000,50000,145000) 60000 

+10  (4,20,48) 22  (10000,50000,120000) 55000 

+70  

ℎ𝑑 

(4.55,5,26.45) 8.5  

𝑐 

(92.78,100,620) 170 

+60  (58.25,5,23.91) 8  (84,100,560) 160 

+50  (41.18,5,21.32) 7.5  (71.65,100,500) 150 

+40  (34.94,5,18.46) 7  (53.25,100,440) 140 

+30  (30.47,5,15.90) 6.5  (40.5,100,380) 130 

+20  (25.99,5,13.32) 6  (36,100,320) 120 

+10  (19.32,5,11.90) 5.5  (16,100,260) 110 

+70  

𝑠 
 

(197,200,1043) 340  

𝑥 
 

(160000,170000,894000) 289000 

+60  (165,200,955) 320  (155000,170000,797000) 272000 

+50  (139,200,861) 300  (150000,170000,700000) 255000 

+40  (119,200,761) 280  (135000,170000,613000) 238000 

+30  (67,200,693) 260  (115000,170000,531000) 221000 

+20  (36,200,604) 240  (100000,170000,444000) 204000 

+10  (20,200,500) 220  (80000,170000,362000) 187000 

+70  

𝑑 
 

(0.46,0.5,2.64) 0.85  

𝛼 
 

(65.25,70.07,369.19) 119.12 

+60  (0.41,0.5,2.39) 0.8  (58.25,70.07,334.13) 112.11 

+50  (0.38,0.5,2.12) 0.75  (41.18,70.07,309.2) 105.11 

+40  (0.29,0.5,1.91) 0.7  (34.94,70.07,273.38) 98.1 

+30  (0.20,0.5,1.70) 0.65  (30.47,70.07,235.79) 91.09 

+20  (0.15,0.5,1.45) 0.6  (25.99,70.07,198.21) 84.08 

+10  (0.06,0.5,1.24) 0.55  (19.32,70.07,162.88) 77.08 

+70  

𝛽 
 

(0.71,0.79,4.17) 1.34  

𝛾 
 

(800.32,819.76,4282.24) 1393.6 

+60  (0.64,0.79,3.76) 1.26  (760,819.76,3830.68) 1311.62 

+50  (0.60,0.79,3.38) 1.19  (710.9,819.76,3387.9) 1229.64 

+40  (0.52,0.79,2.98) 1.11  (650,819.76,2956.92) 1147.66 

+30  (0.45,0.79,2.57) 1.03  (540,819.76,2521.1) 1056.69 

+20  (0.38,0.79,2.16) 0.95  (490,819.76,2133.22) 983.71 

+10  (0.27,0.79,1.79) 0.87  (380,819.76,1751.4) 901.74 

 

Table 4.2 in Appendix E presents the results for different values of 𝑛. As a full fuzzy 

model is considered here, 𝑛 is also fuzzified by the GMIV method. Columns 3 and 4 show 

defuzzified values and the level of fuzziness, respectively. Both the lot size and total profit 

per unit time for different levels of learning 𝑦𝑛 are calculated. Furthermore, sixth and 

seventh columns present the difference in the optimal values of the decision variable 𝑦𝑛 

and related 𝑇𝑃𝑈 between the fuzzy and the crisp cases.  
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In the following, three dimensional Figures 4.2 and 4.3 that are plotted using the 

MATLAB software to investigate the effect of learning and fuzziness simultaneously are 

analyzed.  

Figure 4.2 illustrates the three-dimensional graph of shipment numbers, level of 

fuzziness and optimal order quantity that are plotted for the first 30 shipments. As the 

graph shows, for a constant level of fuzziness, the more the number of shipment (𝑛) 

increases the more the optimal lot size (𝑦𝑛) decreases. This reduction continues until it is 

fixed for a particular number of shipments which is about 21 for a 30-percent level of 

fuzziness. Since the learning increases through the number of shipments. This result 

conforms to the real environment as whatever the number of shipment increases the 

knowledge of supplier about the production system intensifies and, therefore, the number 

of non-conform product (defective items) in a lot decreases.  

 

Figure 4.2: Three dimensional-graph of optimal order quantity, level of fuzziness and 

number of shipments  

Also, as it is clear from Figure 4.2, the optimal lot size directly depends on the amount 

of uncertainty. It increases when the level of uncertainty of a system increases. Therefore, 

Univ
ers

ity
 of

 M
ala

ya



89 

it would merit for practitioners and researchers if they try to decrease the impreciseness 

of the model to avoid costly inventory policies.  

Figure 4.3 depicts the three-dimensional graph of the number of shipments, level of 

fuzziness and total profit per unit time according to the optimal lot size value plotted in 

Figure 4.2. This graph also gives the compatible results compared to the figures observed 

in the graph of optimal lot size (Figure 4.2). The uncertainty has the reverse influence on 

both the optimal lot size and the total profit per unit time. That is, for a fixed level of 

uncertainty, when the number of optimal order quantities decreases, the total profit 

increases. On the other hand, when the level of uncertainty increases, the order quantity 

and the total profit per unit time increases as well as the quantity of shipments. Therefore, 

as a managerial insight, the decision maker should expect an increase in the total profit 

when learning occurs. This strategy justifies some costs that are devoted to the learning 

process in the long-term.  

 

Figure 4.3: Three dimensional-graph of total profit per unit time, level of fuzziness and 

number of shipments  

The values of fuzzy optimal lot size, fuzzy optimal total profit per unit time and their 

crisp values for each level of fuzziness and the percentage of change between the fuzzy 
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and crisp quantities are represented in Table 4.2 in Appendix E. These values are obtained 

based on the range of changes that are arbitrarily set from +10% to +70% level of 

fuzziness for all input parameters, which are depicted in Table 4.2 in Appendix E. Table 

4.2 reveals that both optimal lot size and optimal total profit are significantly sensitive to 

the level of fuzziness. For each shipment, as the uncertainty increases by setting a greater 

percentage for the level of fuzziness, the difference between the crisp and fuzzy values 

increases. The changes are from 0 to a maximum percentage of about 199% for optimal 

total profit and from 0 to a maximum around 424% for optimal lot size. Nevertheless, the 

comparison of data associated with different shipments also gives some additional results. 

The optimal lot size shows a descending manner and decreases constantly as the shipment 

increases; it changes from 1 to 30, as shown in Figure 4.2. In contrast to the optimal lot 

size, the optimal total profit increases by growth in the number of shipments, as seen in 

Figure 4.3. As the number of shipments grows and the knowledge about imperfect quality 

items increases, the order quantity then decreases due to a decrease in the number of 

imperfect quality in a lot, which leads to more profit.  

4.7 Comparing to the Earlier Models  

Yadav et al., (2012b) and Yadav et al., (2013b) presented two inventory models that 

are similar to the EOQ model developed in this research. However, they considered fuzzy 

models where only the demand rate is fuzzified by TFN, and not only percentage of 

defective items follows a learning curve, but also a part of ordering and holding costs 

decreases because of the effect of learning. Besides, Yadav et al., (2013b) considered 

Type 1 and 2 screening errors which may occur when good items mistakenly taken as 

defectives ones and defective items mistakenly taken as good ones, respectively. 

Therefore, in contrast to our fully fuzzy model, their models are developed in a semi-

fuzzified system.  
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Figure 4.4: Comparison of the behavior of three different models for EOQ under 10 

percent of uncertainty for the first 10 shipments  

Figures 4.4 and 4.5 compare the optimal EOQ obtained by these models for the first 

10 shipments under 10 and 70 percent level of fuzziness, respectively. Moreover, the 

similar patterns are presented in Figures 4.6 and 4.7 for TPU. 

 

Figure 4.5: Comparison of the behavior of three different models for EOQ under 70 

percent of uncertainty for the first 10 shipments  

For a better comparison, Table 4.3 shows the average percentage change between the 

crisp and the approximated defuzzified optimal values of the first 10 shipments for 
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different levels of fuzziness in each model separately. To calculate these results, in 

addition to the data in the previous section, the penalty cost is considered as $100/unit 

due to the screening error, and Type 1 and 2 errors 0.02 and 0.03, respectively. The 

constant part of holding and ordering costs are supposed to be $20/unit/year and $2700 

per order while the other part of these costs which is affected by the similar learning rate 

0.2 are considered as $5/unit/year and $300/order, respectively (Khan et al., 2011a).  

 

Figure 4.6: Comparison of the behavior of three different models for TPU under 10 

percent of uncertainty for the first 10 shipments  

 

Figure 4.7: Comparison of the behavior of three different models for TPU under 70 

percent of uncertainty for the first 10 shipments  
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The results in Figures 4.6 and 4.7 show that the optimal EOQ proposed by the fully 

fuzzified model of this paper is the largest of the three models for the mentioned levels 

of fuzziness. It is clear that the sensitivity of the optimal EOQ for this model is larger than 

those obtained by the other models.  

According to the Table 4.3, it is also evidenced that the increase of average percentage 

changes of optimal EOQ from the 10% to 70% level of fuzziness for fully fuzzified model 

is about 8 times more than the other models. Similar results can be extracted regarding 

the TPU. These results indicate that with increasing the level of fuzziness one of the most 

effective strategies to capture real inventory situations is handling the induced uncertainty 

to the inventory system by fuzzifying more parameters. Moreover, the effect of learning 

is more tangible on the optimal EOQ for the fully fuzzified model when the level of 

uncertainty increases.  

Table 4.3: The variation in optimal EOQ and TPU for three different models  

 Average percentage change of optimal (EOQ, TPU) for the first 10 shipments  

Degree of fuzziness  10% uncertainty  30% uncertainty 50% uncertainty 70% uncertainty 

Yadav et al. (2012b) (9.07, 20.10) (24.88, 60.30) (38.47, 100.52) (50.45, 140.75) 

Yadav et al. (2013b) (8.94, 20.10) (24.45, 60.31) (37.68, 100.53) (49.27, 140.76) 

Presented model (65.60, 21.60) (121.69, 71.30) (188.32, 129.18) (402.03, 193.33) 

 

4.8 Managerial Insight   

Consider a buyer who sends some orders to a supplier. Each order contains a different 

lot and the supplier considers separate shipments to meet the buyer’s demand. The 

produced lots are not of perfect quality and contain defective items. They pass the 

screening process by some workers at the buyer. In this situation, the numbers of defective 

items per lot may vary from one shipment to another. Therefore, the percentage of 

defective items per lot conforms to a degree of fuzziness. The buyer screens out the initial 

lots without previous experience, and, consequently, the number of the optimal lot size 

increases. As the number of shipments increases, the knowledge of the buyer and supplier 
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about the product quality preferences and production system intensifies. In the later 

shipments, the buyer could transfer the information about the quality aspects of the 

received product to the supplier and the supplier could modify their process or adopt some 

corrective actions, and, simultaneously, the learning process will occur. Therefore, 

although the number of defective items has an imprecise percentage, it could be reduced 

by a close collaboration between the buyer and the supplier in gathering and processing 

quality data.  

For example, in foundry industries, the buyer may find some cavity problems in the 

casting parts and report this quality problem to the supplier, and, consequently, the 

supplier may add an X-ray operation to its production system in order to detect the cavity 

in the parts before sending the parts to the buyer. Adding this operation definitely 

decreases the number of defective items in future shipments. In this scenario, the decision-

makers could order smaller batches so that the number of defective items in each batch 

decreases, and, consequently, they could acquire more profit.    

The findings of this research give some insights to managers when they should make 

a decision. When they face a great deal of uncertainty, adopting inventory policy should 

be the same as when the available data are exact and accurate. They could raise the gained 

profit by raising the number of the orders when uncertainty is at a high level. Through 

this, they could ensure that the number of items, which does not conform with the quality, 

declines using the learning process, while still meeting the financial target.  

4.9 Chapter Summary  

Most of the decision makers (DMs) are faced with some kind of uncertainty in making 

decision as little data are available for making an appropriate decision. To deal with such 

a situation, the DM has to utilize proper tools to gain reasonable and reliable insights. The 
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FST has been recognized as the most powerful tool to cope with uncertainty in situations 

which the DM has less data for making good decisions. 

In this chapter, an EOQ model with imperfect quality items under varying holding cost 

and learning in inspection is reconsidered in a fully fuzzy situation. By applying fuzzy 

arithmetic operations for obtaining fuzzy total profit function, the GMIV of fuzzy number 

for defuzzifying fuzzy total profit function and Kuhn Tucker conditions, the optimal order 

quantity is determined in a fuzzy situation.  

The given numerical example showed that both optimal lot size and total profit are 

highly sensitive to the amount of fuzziness so that they change up to two and four times, 

respectively. Therefore, managers should notice that removing uncertainties form 

calculations would lead to a wrong decision that may impose a lot of cost on an inventory 

system. Moreover, the results reveal that optimal lot size has a descending order and 

declines continuously as the shipment increases while optimal total profit increases by 

growth in the number of shipment. These occur because of the learning in the system.  
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CHAPTER 5: FUZZY BACKWARD ECONOMIC ORDER/PRODUCTION 

QUANTITY MODEL WITH LEARNING  

5.1 Introduction  

In this chapter, a fuzzy reverse inventory model that some important factors are 

assumed to be imprecise is developed. The performance of two defuzzification methods 

is compared to transform the model to the fuzzy environment. An algorithm is suggested 

to solve the defuzzified models. The results are explained and discussed through a 

comprehensive numerical example.  

The rest of this chapter is organized as follows: after explaining the problem, the crisp 

status of the model is overviewed. In Section 5.4, the fuzzy reverse inventory model is 

developed. The solution and optimization procedures are discussed in Sections 5.5 and 

5.6 respectively. Section 5.7 is related to the numerical example. Finally, the chapter is 

concluded in the last section.  

5.2 Problem Description  

Consider a supplier or manufacturer who is supplying or producing a product that is 

recyclable. In this situation, a part of the product can be returned back by the customers 

to the supplier or manufacturer. In fact, it is assumed that the demand of the market is 

satisfying by recovered products and newly purchased/produced products 

simultaneously. Besides, it is assumed that the process follows a multi-order policy for 

new products and a single setup for recovery process. Moreover, it is supposed that unit 

production time of the recovered products decreases because of the effect of the learning 

process.  

Figure 5.1 depicts the mentioned processes. The aim is to minimize the fuzzy total cost 

and obtain the recovery lot size and the number of orders for new products in an uncertain 

environment.  
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Figure 5.1: Recovery process under the effect of learning  

 

5.2.1 Assumptions  

The fuzzy reverse inventory model has the below assumptions:  

x. Demand rate of serviceable products is constant during the planning horizon.  

xi. Shortages are not allowed.  

xii. The demand rate for the serviceable products and the collection rate of the 

recoverable products from customers are treated as fuzzy numbers and shown by 

TFNs.  

xiii. The time period is infinite.  

xiv. All of the collected items can be recovered and made acceptable to customers.  

xv. The ordering lots are of equal size through the time.  

xvi. The demand rate is greater than the collection rate of the recoverable products.  

5.2.2 Notations  

To develop the proposed model, the following notations are defined:  

𝑦 Recovery lot size for each production run (unit/run) (Decision variable)  

𝑛 

Number of orders for the newly purchased products during a cycle 

(Decision variable) 

𝑄 Ordering lot size for the newly purchased products (unit/order) 
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𝑘 

Demand rate of the serviceable products (unit/time)  

(Fuzzified parameter) 

𝑟 

Collection rate of the recoverable products from customers (unit/time) 

(Fuzzified parameter) 

𝐶𝑠 Setup cost for the recovery process ($/setup) 

𝐶𝑜 Ordering cost for the newly purchased products ($/order)  

𝐻𝑟 Inventory holding cost for the collected products ($/unit/time) 

𝐻𝑠 Inventory holding cost for the serviceable products ($/unit/time)  

𝐿𝑟 Learning rate in recovery production  

𝑏 Learning exponent  

𝐶𝑙 Labor production cost per unit time ($/time)  

𝐶𝑝 Unit purchase cost for the newly purchased products ($/unit)  

𝐶𝑏 Unit buyback cost for the recovered products ($/unit) 

𝑇𝐶𝑈(𝑦, 𝑛) Total cost function per unit time ($) 

𝑉̃(𝑦, 𝑛) Fuzzified total cost function per unit time ($) 

 

5.3 Reverse Model Formulation  

Ordering cost for new items and production setup cost can be calculated as below:  

𝑛𝐶𝑜 + 𝐶𝑠 (5.1) 

The holding cost for the collected products can be computed according to the Figure 

5.2 where 𝑇1, 𝑇2, and 𝑇 are time of the recovery process, production time of the recovery 

process, and cycle length of the model respectively. Besides, 𝑅 is inventory level of the 

collected products to start the recovery process. It is assumed that time required to recover 

the 𝑥th unit of returned item follows the Wright learning curve explained in chapter 3 as 

below:  
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𝑡(𝑥) = 𝑎𝑥𝑏 (5.2) 

where 𝑎 is the time to produce the first unit, and 𝑥 is the production account, 𝑏 can be 

calculated as 𝑏 = log 𝐿𝑟 / log 2 and 𝐿𝑟 is the learning rate. It is assumed that −1 < 𝑏 ≤

0.  

The cumulative time to produce 𝑦 units in recovery production run can be given as 

below:  

 

Figure 5.2: Inventory levels of collected items from customers for 𝑛 = 2 

 

𝑇2 = 𝑡(1) + 𝑡(2) + ⋯+ 𝑡(𝑦) 

     = 𝑎 + 𝑎2𝑏 + 𝑎3𝑏 +⋯+ 𝑎𝑦𝑏 

 

 

⁡⁡⁡⁡⁡⁡= 𝑎∑𝑥𝑏
𝑦

𝑥=1

≈ ∫ 𝑎𝑥𝑏
𝑦

0

𝑑𝑥 =
𝑎𝑦𝑏+1

𝑏 + 1
 (5.3) 

 

with solving Eq. (5.3) for 𝑦, we have: 

𝑦 = [
𝑏 + 1

𝑎
𝑇2]

1
𝑏+1

 (5.4) 

 

𝐼(𝑡) which is the inventory level of the collected items at time 𝑡, can be calculated as 

below:  
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𝐼(𝑡) = 𝑅 + 𝑟𝑡 − [
𝑏 + 1

𝑎
𝑡]

1
𝑏+1

 (5.5) 

 

The average inventory level of the collected items for each cycle can be given as:  

𝑅𝑇1
2
+∫ [𝑅 + 𝑟𝑡 − (

𝑏 + 1

𝑎
𝑡)

1
𝑏+1

] 𝑑𝑡
𝑇2

0

 

=
𝑅𝑇1
2
+ 𝑅𝑇2 +

𝑟𝑇2
2

2
− (

𝑏 + 1

𝑎
)

1
𝑏+1 𝑏 + 1

𝑏 + 2
𝑇2
(
𝑏+2
𝑏+1

)
 

 

 

(5.6) 

It is clear that  

𝑅

𝑟
= 𝑇1 

𝑎𝑦𝑏+1

𝑏 + 1
= 𝑇2 𝑦 − 𝑟𝑇2 = 𝑅 

 

By substituting these terms, and after some manipulations, Eq. (5.6) is reduced to the 

following equation: 

𝑦2

2𝑟
−
𝑎𝑦𝑏+2

𝑏 + 2
 (5.7) 

 

Therefore, the holding cost of the returned items is as below:  

(
𝑦2

2𝑟
−
𝑎𝑦𝑏+2

𝑏 + 2
)𝐻𝑟 (5.8) 

 

Holding cost for serviceable items can be formulated as depicted in Figure 5.3 where 

maximum inventory level of serviceable items is 𝐼𝑚𝑎𝑥 and 𝑇3 is elapsed time.  
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Figure 5.3: Inventory levels of serviceable items for 𝑛 = 2 

 

The following relations can be obtained:  

𝑇 = 𝑇1 + 𝑇2 =
𝑦

𝑟
 𝑇3 =

𝑦 − 𝑘𝑇2
𝑘

 𝑛𝑄 = 𝑘(𝑇1 − 𝑇3) =
𝑦(𝑘 − 𝑟)

𝑟
 

𝑇1 − 𝑇3 =
𝑦(𝑘 − 𝑟)

𝑟𝑘
 𝐼𝑚𝑎𝑥 = 𝑦 − 𝑘𝑇2 𝑄 =

𝑦(𝑘 − 𝑟)

𝑛𝑟
 

 

The average inventory level of the serviceable items can be derived as:  

(𝑦 − 𝑘𝑇2)𝑇3
2

+
𝑄(𝑇1 − 𝑇3)

2
+ ∫ [(

𝑏 + 1

𝑎
𝑡)

1
𝑏+1

− 𝑘𝑡] 𝑑𝑡
𝑇2

0

 

=
𝑦2 − 2𝑦𝑘𝑇2 + 𝑘

2𝑇2
2

2𝑘
+
𝑦2(𝑘 − 𝑟)2

2𝑛𝑘𝑟2
+ (

𝑏 + 1

𝑎
)

1
𝑏+1 𝑏 + 1

𝑏 + 2
(
𝑎

𝑏 + 1
)

𝑏+2
𝑏+1

𝑦𝑏+2

−
𝑘𝑇2

2

2
 

 

 

 

(5.9) 

After some simplifications, the holding cost of serviceable items can be obtained as: 

(
𝑦2(𝑘 − 𝑟)2

2𝑛𝑘𝑟2
+
𝑦2

2𝑘
−

𝑎𝑦𝑏+2

(𝑏 + 1)(𝑏 + 2)
)𝐻𝑠 (5.10) 

 

The labor production cost can be given as: 

𝑇2𝐶𝐿 =
𝑎𝑦𝑏+1

𝑏 + 1
𝐶𝐿 (5.11) 
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Cost of purchasing new items and buyback cost for the collected items in a cycle are given 

by:  

𝑛𝑄𝐶𝑝 + 𝑦𝐶𝑏 =
𝑦(𝑘 − 𝑟)

𝑟
𝐶𝑝 + 𝑦𝐶𝑏 (5.12) 

From the above calculations 𝑇𝐶(𝑦, 𝑛) which is the total inventory cost can be computed 

as follows:  

𝑇𝐶(𝑦, 𝑛) = 𝑛𝐶𝑜 + 𝐶𝑠 + (
𝑦2

2𝑟
−
𝑎𝑦𝑏+2

𝑏 + 2
)𝐻𝑟

+ (
𝑦2(𝑘 − 𝑟)2

2𝑛𝑘𝑟2
+
𝑦2

2𝑘
−

𝑎𝑦𝑏+2

(𝑏 + 1)(𝑏 + 2)
)𝐻𝑠 +

𝑎𝑦𝑏+1

𝑏 + 1
𝐶𝐿

+
𝑦(𝑘 − 𝑟)

𝑟
𝐶𝑝 + 𝑦𝐶𝑏 . 

 

 

(5.13) 

 

Finally, the total cost function per unit time in a proposed reverse inventory system with 

a single setup for recovery process and multi-order policy which is termed as (1, 𝑛) policy 

is as below: 

  

𝑇𝐶𝑈(𝑦, 𝑛) =
𝑟(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
+ 𝐻𝑟 (

𝑦

2
−
𝑎𝑟𝑦𝑏+1

𝑏 + 2
)

+ 𝐻𝑠 [
𝑦(𝑘 − 𝑟)2

2𝑛𝑘𝑟
+
𝑟𝑦

2𝑘
−

𝑎𝑟𝑦𝑏+1

(𝑏 + 1)(𝑏 + 2)
] + (

𝑎𝑟𝑦𝑏

𝑏 + 1
)𝐶𝑙 

 

 

 

+(𝑘 − 𝑟)𝐶𝑝 + 𝑟𝐶𝑏 (5.14) 

5.4 Fuzzy Reverse Inventory Model  

In this section, the reverse inventory model presented in previous section is modified 

by incorporating the fuzziness of the demand rate of the serviceable products 𝑘 and the 

collection rate of the recoverable products 𝑟. As demand and return rate are varying in a 

cycle, the mentioned parameters are very important in the reverse inventory process.  
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To do so, 𝑟 and 𝑘 are fuzzified to be two TFNs 𝑟̃ and 𝑘̃, respectively, where 𝑟̃ = (𝑟 −

𝜃1, 𝑟, 𝑟 + 𝜃2), 0 < 𝜃1 < 𝑟, 𝜃2 > 0, and 𝑘̃ = (𝑘 − 𝜃3, 𝑘, 𝑘 + 𝜃4), 0 < 𝜃3 < 𝑘, 𝜃4 > 0. It 

should be noted that 𝜃1, 𝜃2, 𝜃3, and 𝜃4 could be determined by decision makers. By 

fuzzifying the mentioned parameters, the total cost per unit time which is also a fuzzy 

function can be expressed as  

 

𝑉̃ ≡ 𝑉̃(𝑦, 𝑛) =
𝑟̃(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
+ 𝐻𝑟 (

𝑦

2
−
𝑎𝑟̃𝑦𝑏+1

𝑏 + 2
)

+ 𝐻𝑠 [
𝑦(𝑘̃ − 𝑟̃)

2

2𝑛𝑘̃𝑟̃
+
𝑟̃𝑦

2𝑘̃
−

𝑎𝑟̃𝑦𝑏+1

(𝑏 + 1)(𝑏 + 2)
] 

 

 

 +(
𝑎𝑟̃𝑦𝑏

𝑏 + 1
)𝐶𝑙 + (𝑘̃ − 𝑟̃)𝐶𝑝 + 𝑟̃𝐶𝑏 (5.15) 

 

In the next sections, the 𝑉̃(𝑦, 𝑛) is defuzzified by using the GMIR and the SD method 

to investigate the effect of fuzziness on the studied reverse inventory system.  

5.4.1 Defuzzification by the SD Method  

According to the explanations in chapter 3 related to the signed distance method,  

signed distance of 𝑉̃ to 0̃1 is given by:  

𝑑(𝑉̃, 0̃) =
(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
𝑑(𝑟̃, 0̃1) +

𝑦

2
𝐻𝑟 −

𝐻𝑟𝑎𝑦
𝑏+1

𝑏 + 2
𝑑(𝑟̃, 0̃1) +

𝑦𝐻𝑠
2𝑛

𝑑 (
𝑘̃

𝑟̃
, 0̃1)⁡  

+
𝑦𝐻𝑠
2𝑛

𝑑 (
𝑟̃

𝑘̃
, 0̃1) −

𝑦𝐻𝑠
𝑛
+
𝑦𝐻𝑠
2
𝑑 (
𝑟̃

𝑘̃
, 0̃1) −

𝑎𝑦𝑏+1𝐻𝑠
(𝑏 + 1)(𝑏 + 2)

𝑑(𝑟̃, 0̃1)  

+(
𝑎𝑦𝑏

𝑏 + 1
)𝐶𝑙𝑑(𝑟̃, 0̃1) + 𝐶𝑝𝑑((𝑘̃ − 𝑟̃), 0̃1) + 𝐶𝑏𝑑(𝑟̃, 0̃1) (5.16) 

 

where 𝑑(𝑟̃, 0̃1), 𝑑(𝑘̃/𝑟̃, 0̃1), and 𝑑((𝑘̃ − 𝑟̃), 0̃1) are measured as follows. From properties 

discussed in chapter 3, the signed distance of fuzzy number 𝑟̃ to 0̃1 is:   
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𝑑(𝑟̃, 0̃1) =
1

4
[(𝑟 − 𝜃1) + 2𝑟 + (𝑟 + 𝜃2)] = 𝑟 +

1

4
(𝜃2 − 𝜃1) (5.17) 

The left and right end points of the 𝛼-cut of 𝑟̃, and 𝑘̃ (0 ≤ 𝛼 ≤ 1) are 𝑟𝐿(𝛼) = (𝑟 − 𝜃1) +

𝜃1𝛼, 𝑟𝑅(𝛼) = (𝑟 + 𝜃2) − 𝜃2𝛼, 𝑘𝐿(𝛼) = (𝑘 − 𝜃3) + 𝜃3𝛼, and 𝑘𝑅(𝛼) = (𝑘 + 𝜃4) − 𝜃4𝛼, 

respectively. 

Since 0 < 𝑟𝐿(𝛼) < 𝑟𝑅(𝛼), 0 < 𝑘𝐿(𝛼) < 𝑘𝑅(𝛼), from the interval operations explained in 

chapter 3, the left and right end points of the 𝛼-cut of 𝑘̃/𝑟̃, 𝑘̃ − 𝑟̃, and 𝑟̃/𝑘̃ are  

 (
𝑘

𝑟
)
𝐿

(𝛼) =
𝑘𝐿(𝛼)

𝑟𝑅(𝛼)
=
(𝑘 − 𝜃3) + 𝜃3𝛼

(𝑟 + 𝜃2) − 𝜃2𝛼
 (5.18) 

 (
𝑘

𝑟
)
𝑅

(𝛼) =
𝑘𝑅(𝛼)

𝑟𝐿(𝛼)
=
(𝑘 + 𝜃4) − 𝜃4𝛼

(𝑟 − 𝜃1) + 𝜃1𝛼
 (5.19) 

 

(𝑘 − 𝑟)𝐿(𝛼) = 𝑘𝐿(𝛼) − 𝑟𝑅(𝛼)

= (𝑘 − 𝜃3) − (𝑟 + 𝜃2) + (𝜃2 + 𝜃3)𝛼 

(5.20) 

 

(𝑘 − 𝑟)𝑅(𝛼) = 𝑘𝑅(𝛼) − 𝑟𝐿(𝛼)

= (𝑘 + 𝜃4) − (𝑟 − 𝜃1) − (𝜃1 + 𝜃4)𝛼 

(5.21) 

 (
𝑟

𝑘
)
𝐿
(𝛼) =

𝑟𝐿(𝛼)

𝑘𝑅(𝛼)
=
(𝑟 − 𝜃1) + 𝜃1𝛼

(𝑘 + 𝜃4) − 𝜃4𝛼
 (5.22) 

 (
𝑟

𝑘
)
𝑅
(𝛼) =

𝑟𝑅(𝛼)

𝑘𝐿(𝛼)
=
(𝑟 + 𝜃2) − 𝜃2𝛼

(𝑘 − 𝜃3) + 𝜃3𝛼
 (5.23) 

respectively.  

Thus, from Eqs. (3.51) and (3.52) explained in chapter 3, the signed distance of 𝑘̃/𝑟̃, 𝑘̃ −

𝑟̃, and 𝑟̃/𝑘̃ to 0̃1 are:  

 𝑑 (
𝑘̃

𝑟̃
, 0̃1) =

1

2
∫ [(

𝑘

𝑟
)
𝐿

(𝛼) + (
𝑘

𝑟
)
𝑈

(𝛼)]
1

0

𝑑𝛼  

 =
1

2
[
𝑟𝜃4 + 𝑘𝜃1

𝜃1
2 𝐿𝑛

𝑟

𝑟 − 𝜃1
−
𝜃4
𝜃1
+
𝑟𝜃3 + 𝑘𝜃2

𝜃2
2 𝐿𝑛

𝑟 + 𝜃2
𝑟

−
𝜃3
𝜃2
] 

 

(5.24) 
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 𝑑 (
𝑟̃

𝑘̃
, 0̃1) =

1

2
∫ [(

𝑟

𝑘
)
𝐿
(𝛼) + (

𝑟

𝑘
)
𝑈
(𝛼)]

1

0

𝑑𝛼  

 =
1

2
[
𝑘𝜃2 + 𝑟𝜃3

𝜃3
2 𝐿𝑛

𝑘

𝑘 − 𝜃3
−
𝜃2
𝜃3
+
𝑘𝜃1 + 𝑟𝜃4

𝜃4
2 𝐿𝑛

𝑘 + 𝜃4
𝑘

−
𝜃1
𝜃4
] 

 

(5.25) 

 𝑑 ((𝑘̃ − 𝑟̃), 0̃1) =
1

2
∫ [(𝑘 − 𝑟)𝐿(𝛼) + (𝑘 − 𝑟)𝑈(𝛼)]
1

0

𝑑𝛼  

 

=
1

2
([(𝜃2 + 𝜃3) − (𝜃1 + 𝜃4)]

1

2
+ (𝑘 − 𝜃3) + (𝑘 + 𝜃4)

− (𝑟 + 𝜃2) − (𝑟 − 𝜃1)) 

 

(5.26) 

respectively. Substituting the results obtained by (5.24)-( 5.26) into (5.16), we have 

 𝑉(𝑛, 𝑦) ≡ 𝑑(𝑉̃, 0̃)  

 

= 𝑑(𝑟̃, 0̃1) [
(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
−
𝐻𝑟𝑎𝑦

𝑏+1

𝑏 + 2
−

𝑎𝑦𝑏+1𝐻𝑠
(𝑏 + 1)(𝑏 + 2)

+ (
𝑎𝑦𝑏

𝑏 + 1
)𝐶𝑙

+ 𝐶𝑏] 

 

 

+𝑑 (
𝑘̃

𝑟̃
, 0̃1)

𝑦𝐻𝑠
2𝑛

+ 𝑑 (
𝑟̃

𝑘̃
, 0̃1) [

𝑦𝐻𝑠
2𝑛

+
𝑦𝐻𝑠
2
] + 𝑑((𝑘̃ − 𝑟̃), 0̃1)𝐶𝑝 ⁡

−
𝑦𝐻𝑠
𝑛
+
𝑦

2
𝐻𝑟 

 

(5.27) 

 

By replacing the related terms, we have:  

 𝑉(𝑛, 𝑦) ≡ 𝑑(𝑉̃, 0̃)  

 

= [𝑟 +
1

4
(𝜃2 − 𝜃1)] 

. [
(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
−
𝐻𝑟𝑎𝑦

𝑏+1

𝑏 + 2
−

𝑎𝑦𝑏+1𝐻𝑠
(𝑏 + 1)(𝑏 + 2)

+ (
𝑎𝑦𝑏

𝑏 + 1
)𝐶𝑙 + 𝐶𝑏] 

 

 +
𝑦𝐻𝑠
4𝑛

[
𝑟𝜃4 + 𝑘𝜃1

𝜃1
2 𝐿𝑛

𝑟

𝑟 − 𝜃1
−
𝜃4
𝜃1
+
𝑟𝜃3 + 𝑘𝜃2

𝜃2
2 𝐿𝑛

𝑟 + 𝜃2
𝑟

−
𝜃3
𝜃2
]  

 +
(1 + 𝑛)𝑦𝐻𝑠

4𝑛
[
𝑘𝜃2 + 𝑟𝜃3

𝜃3
2 𝐿𝑛

𝑘

𝑘 − 𝜃3
−
𝜃2
𝜃3
+
𝑘𝜃1 + 𝑟𝜃4

𝜃4
2 𝐿𝑛

𝑘 + 𝜃4
𝑘

−
𝜃1
𝜃4
]  
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 +(𝑘 − 𝑟 −
𝜃2 + 𝜃3 − 𝜃1 − 𝜃4

4
)𝐶𝑝 ⁡−

𝑦𝐻𝑠
𝑛
+
𝑦

2
𝐻𝑟 (5.28) 

𝑉(𝑛, 𝑦) is considered as the estimate of the total cost per unit time in fuzzy situation.  

The next step is to determine the optimal recovery lot size to minimize the total cost 

function 𝑉(𝑛, 𝑦). By setting the first derivative of 𝑑(𝑉̃, 0̃) with respect to 𝑛 equal to zero, 

𝑦 can be obtained as follow:  

 
𝜕𝑑(𝑉̃, 0̃)

𝜕𝑛
= 0 → 𝑦 = 𝑛√

2𝐶𝑜𝑑(𝑟̃, 0̃1)

𝐻𝑠∆
= 𝑛𝜌⁡ (5.29) 

where 

∆= 𝑑 (
𝑘̃

𝑟̃
, 0̃1) + 𝑑 (

𝑟̃

𝑘̃
, 0̃1) − 2 and  𝜌 = √

2𝐶𝑜𝑑(𝑟̃, 0̃1)

𝐻𝑠∆
 

By setting the first derivative of 𝑑(𝑉̃, 0̃) with respect to 𝑦, we have:   

 

𝜕𝑑(𝑉̃, 0̃)

𝜕𝑦
= −

(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦2
𝑑(𝑟̃, 0̃1) +

1

2
𝐻𝑟

−
(𝑏 + 1)𝐻𝑟𝑎𝑦

𝑏

𝑏 + 2
𝑑(𝑟̃, 0̃1) +

𝐻𝑠
2𝑛
𝑑 (
𝑘̃

𝑟̃
, 0̃1)⁡ 

 

 +
𝐻𝑠
2𝑛
𝑑 (
𝑟̃

𝑘̃
, 0̃1) −

𝐻𝑠
𝑛
+
𝐻𝑠
2
𝑑 (
𝑟̃

𝑘̃
, 0̃1) −

𝑎𝑦𝑏𝐻𝑠
(𝑏 + 2)

𝑑(𝑟̃, 0̃1) 

 

 

 +(
𝑎𝑏𝑦𝑏−1

𝑏 + 1
)𝐶𝑙𝑑(𝑟̃, 0̃1) = 0 (5.30) 

 

and after substituting 𝑦 from (5.29) into (5.30), 𝑔̃(𝑛) can be derived as  

 𝑔̃(𝑛) = −
(𝑛𝐶𝑜 + 𝐶𝑠)

𝑛2𝜌2
𝑑(𝑟̃, 0̃1) +

1

2
𝐻𝑟 −

(𝑏 + 1)𝐻𝑟𝑎𝑛
𝑏𝜌𝑏

𝑏 + 2
𝑑(𝑟̃, 0̃1) +

𝐻𝑠
2𝑛
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+
𝐻𝑠
2𝑛
(𝑑 (

𝑘̃

𝑟̃
, 0̃1) + 𝑑 (

𝑟̃

𝑘̃
, 0̃1) − 2) +

𝐻𝑠
2
𝑑 (
𝑟̃

𝑘̃
, 0̃1)

−
𝑎𝑛𝑏𝜌𝑏𝐻𝑠
(𝑏 + 2)

𝑑(𝑟̃, 0̃1) + (
𝑎𝑏𝑛𝑏−1𝜌𝑏−1

𝑏 + 1
)𝐶𝑙𝑑(𝑟̃, 0̃1) 

 

 

(5.31) 

 

5.4.2 Finding the Optimal Values for the SD Method  

Letting (𝑦∗,⁡𝑛∗) shows the solution for the considered problem. To prove that 𝑦∗ and⁡𝑛∗ 

are the optimal recovery lot size and the optimal number of orders, respectively, Theorem 

1 and 2 are necessary.  

Theorem 1: The optimal solution of (𝑦∗,⁡𝑛∗) not only exists, but is also unique. It is clear 

that it should satisfy 𝑔̃(𝑛) = 0, and 𝑦 − 𝑛𝜌 = 0, simultaneously.  

Proof. By taking the first derivative of the 𝑔̃(𝑛) with respect to 𝑛, we have:  

 

 
𝜕𝑔̃(𝑛)⁡

𝜕𝑛
= 𝑏(𝛽′ + 𝛿′)𝑛𝑏−1 −

2𝛼′

𝑛3
+ (𝑏 − 1)𝜁′𝑛𝑏−2 −

𝛾′

𝑛2
> 0 (5.32)  

 

where  

𝛼′ = −
(𝑛𝐶𝑜 + 𝐶𝑠)𝐻𝑠∆

2𝐶𝑜
 

𝛽′ = −
(𝑏 + 1)𝐻𝑟𝑎𝜌

𝑏

𝑏 + 2
𝑑(𝑟̃, 0̃1) 

𝛾′ =
𝐻𝑠
2
∆ 

𝛿′ = −
𝑎𝜌𝑏𝐻𝑠
(𝑏 + 2)

𝑑(𝑟̃, 0̃1) 

𝜁′ = (
𝑎𝑏𝜌𝑏−1

𝑏 + 1
)𝐶𝑙𝑑(𝑟̃, 0̃1) 

𝜀′ =
1

2
𝐻𝑟 +

𝐻𝑠
2
𝑑 (
𝑟̃

𝑘̃
, 0̃1) 
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It is positive for all value of 𝑛 > 0. Hence, 𝑔̃(𝑛) is a strictly increasing function for 

0 < 𝑛 < ∞. Moreover, there are the following limitations:  

 lim
𝑛→+∞

𝑔̃(𝑛) = 𝜀′ > 0  

 lim
𝑛→0+

𝑔̃(𝑛) = −∞  

 

Thus, by the Intermediate Value Theorem introduced in chapter 3, there exists a unique 

0 < 𝑛∗ < ∞ such that 𝑔̃(𝑛∗) = 0.  

Theorem 2: 𝑑(𝑉̃, 0̃) has a global minimum at (𝑦∗,⁡𝑛∗), where this point is the solution 

for 𝑔̃(𝑛) = 0, and 𝑦 − 𝑛𝜌 = 0.  

Proof. From Theorem 1, it is clear that (𝑦∗, 𝑛∗) is the only critical point. Therefore, to 

prove the Theorem 2, the Hessian Matrix of 𝑑(𝑉̃, 0̃) should firstly be calculated as 

follows:   

 

𝜕2𝑑(𝑉̃, 0̃)

𝜕𝑦2
=
𝜕2𝑉(𝑛, 𝑦)

𝜕𝑦2

=
2(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦3
𝑑(𝑟̃, 0̃1) −

𝑏(𝑏 + 1)𝐻𝑟𝑎𝑦
𝑏−1

𝑏 + 2
𝑑(𝑟̃, 0̃1) 

 

 

−
𝑏𝑎𝑦𝑏−1𝐻𝑠
(𝑏 + 2)

𝑑(𝑟̃, 0̃1)

+ (
(𝑏 − 1)𝑎𝑏𝑦𝑏−2

𝑏 + 1
)𝐶𝑙𝑑(𝑟̃, 0̃1) 

 

(5.33) 

 

For all 𝑦 > 0, 𝑛 > 0, 𝜕2𝑑(𝑉̃, 0̃) 𝜕𝑦2⁄ ⁡> 0 

 

 
𝜕2𝑑(𝑉̃, 0̃)

𝜕𝑛2
=
𝑦𝐻𝑠
𝑛3

∆ (5.34) 

 

 

For all 𝑦 > 0, 𝑛 > 0, 𝜕2𝑑(𝑉̃, 0̃) 𝜕𝑛2⁄ > 0.  
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𝜕2𝑉(𝑛, 𝑦)

𝜕𝑦𝜕𝑛
= −

𝐶𝑜𝑑(𝑟̃, 0̃1)

𝑦2
−
𝐻𝑠
2𝑛2

∆ (5.35) 

Substituting 𝑦∗ = 𝜌𝑛∗ into Eqs. (5.33)-(5.35), and after some simplifications, 

determinant of the Hessian Matrix of 𝑑(𝑉̃, 0̃) at (𝑦∗, 𝑛∗) could be given as below:  

 

|
|

𝜕2𝑉(𝑛, 𝑦)

𝜕𝑦2
|(𝑦∗,𝑛∗)

𝜕2𝑉(𝑛, 𝑦)

𝜕𝑦𝜕𝑛
|(𝑦∗,𝑛∗)

𝜕2𝑉(𝑛, 𝑦)

𝜕𝑦𝜕𝑛
|(𝑦∗,𝑛∗)

𝜕2𝑉(𝑛, 𝑦)

𝜕𝑛2
|(𝑦∗,𝑛∗)

|
|

=
𝑦∗𝐻𝑠

𝑛∗3
∆ [−

𝑏(𝑏 + 1)𝐻𝑟𝑎𝑦
𝑏−1

𝑏 + 2
𝑑(𝑟̃, 0̃1)

−
𝑏𝑎𝑦𝑏−1𝐻𝑠
(𝑏 + 2)

𝑑(𝑟̃, 0̃1) + (
(𝑏 − 1)𝑎𝑏𝑦𝑏−2

𝑏 + 1
)𝐶𝑙𝑑(𝑟̃, 0̃1)]

+
𝐻𝑠

2∆2𝐶𝑠

𝑛∗5𝐶𝑜
> 0 

 

 

 

 

(5.36) 

 

Hessian Matrix of 𝑑(𝑉̃, 0̃) is positive. Hence, 𝑑(𝑉̃, 0̃) has a global minimum at point 

(𝑦∗, 𝑛∗).  

Then, the ordering lot size can be estimated for the newly purchased products 𝑄 as:  

𝑑(𝑄̃, 0̃) =
𝑦

𝑛
𝑑 (
𝑘̃

𝑟̃
, 0̃) −

𝑦

𝑛
 

5.4.3 Defuzzification by the GMIR Method  

By applying the fuzzy arithmetic operations of the function principle method described 

in chapter 3, the fuzzy total cost per unit time in Eq. (5.15), can be written as follows:  

 𝑉̃(𝑦, 𝑛) = (𝜒1, 𝜒2, 𝜒3)  (5.37) 
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where 

𝜒1 =
(𝑟 − 𝜃1)(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
+ 𝐻𝑟 [

𝑦

2
−
𝑎(𝑟 + 𝜃2)𝑦

𝑏+1

𝑏 + 2
]+ 𝐶𝑙

𝑎(𝑟 − 𝜃1)𝑦
𝑏

𝑏 + 1
  

+𝐻𝑠 (
𝑦[(𝑘 − 𝜃3) − (𝑟 + 𝜃2)]

2

2𝑛(𝑘 + 𝜃4)(𝑟 + 𝜃2)
+
𝑦(𝑟 − 𝜃1)

2(𝑘 + 𝜃4)
−
𝑎(𝑟 + 𝜃2)𝑦

𝑏+1

(𝑏 + 1)(𝑏 + 2)
)  

+[(𝑘 − 𝜃3) − (𝑟 + 𝜃2)]𝐶𝑝 + (𝑟 − 𝜃1)𝐶𝑏 (5.38) 

  

𝜒2 =
𝑟(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
+𝐻𝑟 [

𝑦

2
−
𝑎𝑟𝑦𝑏+1

𝑏 + 2
]

+𝐻𝑠 (
𝑦[𝑘 − 𝑟]2

2𝑛𝑘𝑟
+
𝑦𝑟

2𝑘
−

𝑎𝑟𝑦𝑏+1

(𝑏 + 1)(𝑏 + 2)
) 

 

 

+𝐶𝑙
𝑎𝑟𝑦𝑏

𝑏 + 1
+ (𝑘 − 𝑟)𝐶𝑝 + 𝑟𝐶𝑏 (5.39) 

  

𝜒3 =
(𝑟 + 𝜃2)(𝑛𝐶𝑜 + 𝐶𝑠)

𝑦
+ 𝐻𝑟 [

𝑦

2
−
𝑎(𝑟 − 𝜃1)𝑦

𝑏+1

𝑏 + 2
]+ 𝐶𝑙

𝑎(𝑟 + 𝜃2)𝑦
𝑏

𝑏 + 1
  

 +𝐻𝑠 (
𝑦[(𝑘 + 𝜃4) − (𝑟 − 𝜃1)]

2

2𝑛(𝑘 − 𝜃3)(𝑟 − 𝜃1)
+
𝑦(𝑟 + 𝜃2)

2(𝑘 − 𝜃3)
−
𝑎(𝑟 − 𝜃1)𝑦

𝑏+1

(𝑏 + 1)(𝑏 + 2)
)  

 +[(𝑘 + 𝜃4) − (𝑟 − 𝜃1)]𝐶𝑝 + (𝑟 + 𝜃2)𝐶𝑏 (5.40) 

 

According to the GMIR method explained in chapter 3, the defuzzified value of 𝑉̃ can 

be given as below: 

 Φ(𝑉̃(𝑦, 𝑛)) =
1

6
(𝜒1 + 4𝜒2 + 𝜒3) (5.41) 

 

The next step is to determine the optimal recovery lot size to minimize the defuzzified 

total cost function Φ(𝑉̃(𝑦, 𝑛)). By setting the first derivative of Φ(𝑉̃(𝑦, 𝑛)) with respect 

to 𝑛 equal to zero, 𝑦 can be obtained as follows:  
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𝜕Φ(𝑉̃(𝑦, 𝑛))

𝜕𝑛
= 0 → 𝑦 = 𝑛𝜋⁡ (5.42) 

 

where 

 𝜋 = √

𝐶𝑜[(𝑟 − 𝜃1) + 4𝑟 + (𝑟 + 𝜃2)]

𝐻𝑠 (
[(𝑘 − 𝜃3) − (𝑟 + 𝜃2)]2

2(𝑘 + 𝜃4)(𝑟 + 𝜃2)
+
2(𝑘 − 𝑟)2

𝑘𝑟
+
[(𝑘 + 𝜃4) − (𝑟 − 𝜃1)]2

2(𝑘 − 𝜃3)(𝑟 − 𝜃1)
)
  

 

By setting the first derivative of Φ(𝑉̃(𝑦, 𝑛)) with respect to 𝑦, and after substituting 

𝑦 = 𝑛𝜋, 𝑓̃(𝑛) can be derived as 

 𝑓̃(𝑛) = −
𝛾𝐶𝑠
6𝑛2𝐶𝑜

+
(𝛽 + 𝛿)𝑛𝑏 + 𝜁𝑛𝑏−1

6
+ 𝜀 (5.43) 

 

where 

𝛼 = −
(𝑛𝐶𝑜 + 𝐶𝑠)𝛾

𝐶𝑜
 

𝛽 = −
𝑎(𝑏 + 1)𝐻𝑟[(𝑟 + 𝜃2) + 4𝑟 + (𝑟 − 𝜃1)]𝜋

𝑏

𝑏 + 2
 

𝛾 = 𝐻𝑠 (
[(𝑘 − 𝜃3) − (𝑟 + 𝜃2)]

2

2(𝑘 + 𝜃4)(𝑟 + 𝜃2)
+
2(𝑘 − 𝑟)2

𝑘𝑟
+
[(𝑘 + 𝜃4) − (𝑟 − 𝜃1)]

2

2(𝑘 − 𝜃3)(𝑟 − 𝜃1)
) 

𝛿 = −
𝑎𝐻𝑠𝜋

𝑏

(𝑏 + 2)
((𝑟 − 𝜃1) + 4𝑟 + (𝑟 + 𝜃2)) 

𝜁 = 𝑎𝑏𝐶𝑙𝜋
𝑏−1 [

(𝑟 − 𝜃1) + 4𝑟 + (𝑟 + 𝜃2)

𝑏 + 1
] 

𝜀 =
1

2
𝐻𝑟 +

1

6
𝐻𝑠 [

(𝑟 − 𝜃1)

2(𝑘 + 𝜃4)
+
2𝑟

𝑘
+
(𝑟 + 𝜃2)

2(𝑘 − 𝜃3)
] 

 

5.4.4 Finding the Optimal Values for the GMIR Method  

Letting (𝑦∗,⁡𝑛∗) shows the solution for the considered problem. To prove that 𝑦∗ and 

𝑛∗ are the optimal recovery lot size and the optimal number of orders, respectively, 

Theorem 3 and 4 are required.  
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Theorem 3: The optimal solution of (𝑦∗,⁡𝑛∗) not only exists, but is also unique. It is clear 

that it should satisfy 𝑓̃(𝑛) = 0, and 𝑦 − 𝑛𝜋 = 0, simultaneously.  

Proof. The first derivative of the 𝑓̃(𝑛) is positive for all value of 𝑛 > 0.  

 
𝜕𝑓̃(𝑛)

𝜕𝑛
=
2𝛾𝐶𝑠
6𝑛3𝐶𝑜

+
𝑏(𝛽 + 𝛿)𝑛𝑏−1 + 𝜁(𝑏 − 1)𝑛𝑏−2

6
> 0 (5.44) 

 

Hence, 𝑓̃(𝑛) is a strictly increasing function for 0 < 𝑛 < ∞. Moreover, there are 

following limitations  

 
lim
𝑛→+∞

𝑓̃(𝑛) = 𝜖 > 0  

 
lim
𝑛→0+

𝑓̃(𝑛) = −∞  

 

Thus, by the Intermediate Value Theorem, there exists a unique 0 < 𝑛∗ < ∞ such that 

𝑓̃(𝑛∗) = 0.  

Theorem 4: Φ(𝑉̃(𝑦, 𝑛)) has a global minimum at (𝑦∗,⁡𝑛∗), where this point is the solution 

for 𝑓̃(𝑛) = 0, and 𝑦 − 𝑛𝜋 = 0.  

From Theorem 3, it is clear that (𝑦∗, 𝑛∗) is the only critical point. Therefore, to prove 

the Theorem 4, the Hessian Matrix of Φ(𝑉̃(𝑦, 𝑛)) should firstly be calculated as follows:   

 

𝜕2Φ(𝑉̃(𝑦, 𝑛))

𝜕𝑦2
=
2(𝑛𝐶𝑜 + 𝐶𝑠)(6𝑟 + 𝜃2 − 𝜃1)

𝑦3

−
𝑏𝑎(𝑏 + 1)𝐻𝑟(6𝑟 + 𝜃2 − 𝜃1)𝑦

𝑏−1

𝑏 + 2

−
𝑏𝑎𝑦𝑏−1𝐻𝑠(6𝑟 + 𝜃2 − 𝜃1)

(𝑏 + 2)

+
𝑎𝑏𝐶𝑙(𝑏 − 1)(6𝑟 + 𝜃2 − 𝜃1)𝑦

𝑏−2

𝑏 + 1
 

 

 

 

(5.45) 
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For all 𝑦 > 0, 𝑛 > 0, 𝜕2Φ(𝑉̃(𝑦, 𝑛)) 𝜕𝑦2⁄ > 0 

 

𝜕2Φ(𝑉̃(𝑦, 𝑛))

𝜕𝑛2
=
𝑦𝐻𝑠
3𝑛3

[
(𝑘 − 𝑟 − 𝜃3 − 𝜃2)

2

2(𝑘 + 𝜃4)(𝑟 + 𝜃2)
+
2(𝑘 − 𝑟)2

𝑘𝑟

+
(𝑘 − 𝑟 + 𝜃4 + 𝜃1)

2

2(𝑘 − 𝜃3)(𝑟 − 𝜃1)
] 

 

 =
𝑦𝐶𝑜[(𝑟 − 𝜃1) + 4𝑟 + (𝑟 + 𝜃2)]

3𝑛3𝜋2
 (5.46) 

 

For all 𝑦 > 0, 𝑛 > 0, 𝜕2Φ(𝑉̃(𝑦, 𝑛)) 𝜕𝑛2⁄ > 0. Moreover, we have:   

 

𝜕2𝑉(𝑛, 𝑦)

𝜕𝑦𝜕𝑛
= −

𝐶𝑜(6𝑟 + 𝜃2 − 𝜃1)

6𝑦2

−
𝐻𝑠
𝑛26

[
(𝑘 − 𝑟 − 𝜃3 − 𝜃2)

2

2(𝑘 + 𝜃4)(𝑟 + 𝜃2)
+
2(𝑘 − 𝑟)2

𝑘𝑟

+
(𝑘 − 𝑟 + 𝜃4 + 𝜃1)

2

2(𝑘 − 𝜃3)(𝑟 − 𝜃1)
] 

 

 = −
𝐶𝑜(6𝑟 + 𝜃2 − 𝜃1)

6𝑦2
−
𝐶𝑜[(𝑟 − 𝜃1) + 4𝑟 + (𝑟 + 𝜃2)]

6𝑛2𝜋2
 (5.47) 

 

Substituting 𝑦∗ = 𝜋𝑛∗ into Eqs. (5.45)-(5.47), and after some manipulations, 

determinant of the Hessian Matrix of Φ(𝑉̃(𝑦, 𝑛)) at (𝑦∗, 𝑛∗) could be given as below:  

 |

|

𝜕2Φ (𝑉̃(𝑦, 𝑛))

𝜕𝑦2
|(𝑦∗,𝑛∗)

𝜕2Φ (𝑉̃(𝑦, 𝑛))

𝜕𝑦𝜕𝑛
|(𝑦∗,𝑛∗)

𝜕2Φ (𝑉̃(𝑦, 𝑛))

𝜕𝑦𝜕𝑛
|(𝑦∗,𝑛∗)

𝜕2Φ (𝑉̃(𝑦, 𝑛))

𝜕𝑛2
|(𝑦∗,𝑛∗)

|

|
 

 

 

 

 

 

 

(5.48) 
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=
𝑦∗𝐶𝑜(6𝑟 + 𝜃2 − 𝜃1)

3𝑛∗3𝜋2
[−
𝑏𝑎(𝑏 + 1)𝐻𝑟(6𝑟 + 𝜃2 − 𝜃1)𝑦

𝑏−1

𝑏 + 2

−
𝑏𝑎𝑦𝑏−1𝐻𝑠(6𝑟 + 𝜃2 − 𝜃1)

(𝑏 + 2)

+
𝑎𝑏𝐶𝑙(𝑏 − 1)(6𝑟 + 𝜃2 − 𝜃1)𝑦

𝑏−2

𝑏 + 1
]

+
𝐶𝑜(6𝑟 + 𝜃2 − 𝜃1)

2(5𝑛𝐶𝑜 + 6𝐶𝑠)

9𝑛∗5𝜋4
> 0 

 

Hessian Matrix of Φ(𝑉̃(𝑦, 𝑛)) is positive. Hence, Φ(𝑉̃(𝑦, 𝑛)) has a global minimum 

at point (𝑦∗, 𝑛∗).  

Therefore, ordering lot size can be estimated for the newly purchased products 𝑄 as 

Φ(𝑄̃) =
1

6
(𝑞1 + 4𝑞2 + 𝑞3)

=
1

6
(
𝑦[(𝑘 − 𝜃3) − (𝑟 + 𝜃2)]

𝑛(𝑟 + 𝜃2)
+
4𝑦(𝑘 − 𝑟)

𝑛𝑟
+
𝑦[(𝑘 + 𝜃4) − (𝑟 − 𝜃1)]

𝑛(𝑟 − 𝜃1)
) 

5.5 Solution Procedure  

Finding a closed-form solution is not possible for 𝑓̃(𝑛) = 0 or 𝑔̃(𝑛) = 0. Instead of a 

direct method, 𝑛∗ can be found by a one-dimensional search procedure. When 𝑛∗ can be 

found, 𝑦∗ can be obtained by 𝜕𝑑(𝑉̃, 0̃)/𝜕𝑦 = 0. As 𝑛∗ is a positive integer, the following 

solution algorithm can also be applied to find the optimal values.  

5.6 One-dimensional Search Procedure for Optimization  

The obtained defuzzified functions can be optimized through a heuristic mathematical 

algorithm explained in this section as depicted in Figure 5.4.  

Consider a pre-determined error value 𝜏 > 0. Set 𝑛𝑙 and 𝑛𝑢 as suggested guesses of 

the root such that 𝑓(𝑛𝑢) > 0 and 𝑓(𝑛𝑙) < 0. The optimal values for both methods (i.e. 

GMIR method and SD method) could be found by the proposed flowchart in Figure 5.4. 

In this flowchart, ⌊𝑛⌋ and ⌈𝑛⌉ show the nearest integers smaller and larger than 𝑛∗.  
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Figure 5.4: Proposed flowchart to find the optimal recovery lot size and the number 

of orders  

5.7 Comprehensive Numerical Example  

In this section, the effects of fuzzification on the developed model are analyzed and 

explained through a comprehensive numerical example. The results of each model are 

expounded separately. Besides, defining some comparative criteria, these results will be 

compared with each other simultaneously.  

In order to compare the results of the investigated model with those of the crisp one, 

let us consider the data such that 𝑘 = 250 units/day, 𝑟 = 100 units/day, 𝐶𝑠 =

$20,000/setup, 𝐶𝑜 = $2,000/order, 𝐶𝑝 = $200/unit, 𝐶𝑏 = $40/unit, 𝐻𝑟 = $4/unit/day, 

𝐻𝑠 = $20/unit/day, 𝐶𝑙 = $1000/day, 𝑎 = 0.003 day/unit, and 𝑏 = −0.089. 

Furthermore, as it is shown in Table 5.1, assuming some arbitrary sets for 𝜃𝑖 , 𝑖 = 1,2,3,4, 
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the behaviour of the fuzzified models is examined. These parameters are selected such 

that 0 < 𝜃1 < 𝑟, 0 < 𝜃3 < 𝑘, and 0 < 𝜃2, 𝜃4.  

Due to the uncertainties inherent in the data and lack of existing knowledge about the 

whole of the inventory system, the mentioned parameters are usually determined 

according to the experiences of experts as decision makers. The mentioned fuzzy 

parameters are combined to build 45 iterations. For the fuzzified parameters 𝑘 and 𝑟, five 

and nine levels of fuzziness are assumed, respectively.  

Table 5.1: Considered fuzzy numbers  

𝜽𝟏 𝜽𝟐 𝒓̃  𝜽𝟑 𝜽𝟒 𝒌̃ 𝜽𝟑 𝜽𝟒 𝒌̃  

5 55 (95,100,155)  20 14 (230,250,264) 40 50 (210,250,300)  

25 50 (75,100,150)  20 20 (230,250,270) 60 40 (190,250,290)  
40 40 (60,100,140)  20 26 (230,250,276) 60  60 (091,250,001)  
50 25 (50,100,125)  40 30 (210,250,280) 60 80 (091,250,001)  
55 5 (45,100,105)  40 40 (210,250,290)     

  
 

Table 5.2 presents the results of the GMIR method. From Table 5.2, it is clear that for 

the fixed values of (𝜃1, 𝜃2), and constant values of the optimal number of orders 𝑛∗, when 

the level of fuzziness increases by varying the values of (𝜃3, 𝜃4), the optimal recovery lot 

size 𝑦∗ decreases, but the optimal ordering lot size and the optimal total cost function per 

unit time increase.   

In Table 5.2, for the fixed values of (𝜃3, 𝜃4), as the estimate of the collection rate of 

the recoverable products Φ(𝑟̃) decreases by varying (𝜃1, 𝜃2), the optimal recovery lot 

size 𝑦∗ decreases for fixed 𝑛∗, but the optimal ordering lot size and the optimal total cost 

function per unit time increase. However, when 𝑛∗ increases, 𝑦∗ and 𝑇𝐶𝑈∗ increase, and 

𝑄∗decreases. Besides, when (𝜃1, 𝜃2, 𝜃3) are fixed, the optimal ordering lot size, and the 

optimal total cost function per unit time increase for fixed 𝑛∗.  
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Table 5.2: The results of effecting the crisp model by the GMIR method  

No. 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝒏∗ 𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ 𝚽(𝒓̃) 𝚽(
𝒌̃

𝒓̃
) 𝚽(

𝒓̃

𝒌̃
) 𝚽(𝒌̃ − 𝒓̃) 

1 5 55 20 14 4 678 233 41469.90 108.333 2.377 0.439 140.667 

2    20 4 677 235 41686.67 108.333 2.388 0.438 141.667 

3    26 4 676 236 41904.77 108.333 2.398 0.436 142.667 

4   40 30 4 668 231 41480.96 108.333 2.384 0.446 140.000 

5    40 5 712 200 41849.07 108.333 2.401 0.444 141.667 

6    50 5 709 201 42216.42 108.333 2.419 0.442 143.333 

7   60 40 5 702 194 41311.76 108.333 2.380 0.457 138.330 

8     60 5 696 197 42059.24 108.333 2.415 0.454 141.667 

9    80 5 689 200 42819.22 108.333 2.450 0.451 145.000 

10 25 50 20 14 5 701 212 42096.73 104.167 2.509 0.423 144.833 

11    20 5 700 213 42319.71 104.167 2.522 0.422 145.833 

12    26 5 698 214 42543.94 104.167 2.536 0.421 146.833 

13   40 30 5 688 209 42137.25 104.167 2.522 0.430 144.167 

14    40 5 684 211 42520.33 104.167 2.544 0.429 145.833 

15    50 5 681 213 42906.78 104.167 2.567 0.427 147.500 

16   60 40 5 674 205 41998.27 104.167 2.522 0.441 142.500 

17    60 5 665 208 42786.72 104.167 2.567 0.439 145.833 

18    80 5 656 211 43588.19 104.167 2.611 0.436 149.167 

19 40 40 20 14 5 675 226 42744.49 100.000 2.674 0.406 149.000 

20    20 5 672 227 42978.14 100.000 2.690 0.405 150.000 

21    26 5 670 229 43213.12 100.000 2.707 0.404 151.000 

22   40 30 5 659 223 42823.76 100.000 2.694 0.413 148.333 

23    40 6 698 200 43225.10 100.000 2.722 0.412 150.000 

24    50 6 693 202 43621.69 100.000 2.750 0.411 151.667 

25   60 40 6 686 194 42712.89 100.000 2.698 0.424 146.667 

26    60 6 676 198 43522.93 100.000 2.754 0.422 150.000 

27    80 6 665 201 44345.71 100.000 2.810 0.420 153.333 

28 50 25 20 14 6 692 214 43384.83 95.833 2.853 0.389 153.167 

29    20 6 689 215 43621.97 95.833 2.873 0.388 154.167  

30    26 6 686 216 43860.42 95.833 2.893 0.387 155.167 

31   40 30 6 675 212 43474.18 95.833 2.880 0.396 152.500 

32    40 6 669 213 43882.84 95.833 2.913 0.395 154.167 

33    50 6 664 215 44294.95 95.833 2.947 0.394 155.833 

34   60 40 6 658 207 43376.64 95.833 2.887 0.405 150.833 

35    60 6 646 210 44220.43 95.833 2.953 0.403 154.167 

36    80 7 674 194 45061.16 95.833 3.020 0.402 157.500 

37 55 5 20 14 6 669 224 43949.34 91.667 3.010 0.371 157.333 

38    20 6 666 226 44190.54 91.667 3.032 0.371 158.333 

39    26 6 663 227 44433.11 91.667 3.054 0.370 159.333 

40   40 30 6 653 222 44040.65 91.667 3.037 0.377 156.667 

41    40 6 647 224 44457.32 91.667 3.074 0.376 158.333 

42    50 7 681 205 44871.33 91.667 3.111 0.375 160.000 

43   60 40 7 676 197 43940.99 91.667 3.042 0.385 155.000 

44    60 7 663 200 44784.16 91.667 3.116 0.383 158.333 

45    80 7 650 203 45640.21 91.667 3.190 0.381 161.667 

 

Table 5.3 shows the results of the signed distance method. Based on the columns 7, 8 

and 9 of the Table 5.3, for the fixed values of (𝜃1, 𝜃2), and the constant values of the 

optimal number of orders 𝑛∗, the behavior of the optimal recovery lot size 𝑦∗, the optimal 
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ordering lot size 𝑄∗, and the optimal total cost function per unit time 𝑇𝐶𝑈∗ is similar to 

that one which is explained in the GMIR method. 

Table 5.3: The results of effecting the crisp model by the SD method  

No. 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝒏∗ 𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ 𝒅(𝒓̃, 𝟎̃𝟏) 𝒅(
𝒌̃

𝒓̃
, 𝟎̃𝟏) 𝒅 (

𝒓̃

𝒌̃
, 𝟎̃𝟏) 𝒅(𝒌̃ − 𝒓̃, 𝟎̃𝟏) 

1 5 55 20 14 4 700 224 40758.79 112.50 2.278 0.456 136.00  

2    20 4 699 226 41067.34 112.50 2.293 0.454 137.50 

3    26 4 698 228 41376.43 112.50 2.309 0.452 139.00 

4   40 30 4 694 222 40631.95 112.50 2.282 0.464 135.00 

5    40 4 693 227 41148.65 112.50 2.308 0.461 137.50 

6    50 4 692 231 41666.59 112.50 2.334 0.458 140.00 

7   60 40 4 688 219 40213.02 112.50 2.271 0.475 132.50 

8    60 4 685 227 41249.79 112.50 2.323 0.469 137.50 

9    80 4 682 234 42290.74 112.50 2.374 0.464 142.50 

10 25 50 20 14 4 668 243 41669.98 106.25 2.456 0.432 142.25 

11    20 5 407 200 41981.99 106.25 2.475 0.430 143.75 

12    26 5 713 213 42291.53 106.25 2.493 0.428 145.25 

13   40 30 4 662 243 41553.24 106.25 2.467 0.440 141.25 

14    40 5 707 212 42072.27 106.25 2.497 0.437 143.75 

15    50 5 705 215 42592.09 106.25 2.527 0.434 146.25 

16   60 40 4 656 239 41136.63 106.25 2.459 0.451 138.75 

17    60 5 698 212 42181.57 106.25 2.520 0.446 143.75 

18    80 5 695 220 43225.26 106.25 2.580 0.441 148.75 

19 40 40 20 14 5 682 226 42545.29 100.00 2.657 0.407 148.50 

20    20 5 681 228 42860.38 100.00 2.677 0.405 150.00 

21    26 5 680 231 43175.82 100.00 2.698 0.404 151.50 

22   40 30 5 676 226 42430.64 100.00 2.672 0.415 147.50 

23    40 5 674 230 42957.30 100.00 2.707 0.412 150.00 

24    50 5 672 234 43484.75 100.00 2.742 0.410 152.50 

25   60 40 5 670 223 42014.63 100.00 2.667 0.426 145.00 

26    60 5 666 231 43069.90 100.00  2.736 0.421 150.00 

27    80 5 661 239 44127.79 100.00 2.806 0.417 155.00 

28 50 25 20 14 5 651 242 43400.39 93.75 2.860 0.381 154.75 

29    20 6 692 217 43716.64 93.75 2.880 0.081 156.25 

30    26 6 691 220 44031.79 93.75 2.906 0.378 157.75 

31   40 30 5 645 242 43281.22 93.75 2.879 0.389 153.75 

32    40 6 685 219 43807.99 93.75 2.917 0.386 156.25 

33    50 6 683 223 44334.75 93.75 2.956 0.384 158.75 

34   60 40 5 639 240 42855.40 93.75 2.874 0.399 151.25 

35    60 6 677 220 43913.43 93.75 2.951 0.395 156.25 

36    80 6 673 228 44969.57 93.75 3.029 0.391 161.25 

37 55 5 20 14 6 664 226 44180.64 87.50 3.044 0.355 161.00 

38    20 6 663 229 44497.05 87.50 3.068 0.354 162.50 

39    26 6 662 231 44813.73 87.50 3.093 0.353 164.00 

40   40 30 6 659 226 44047.28 87.50 3.061 0.361 160.00 

41    40 6 657 230 44575.80 87.50 3.102 0.359 162.50 

42    50 6 655 234 45104.92 87.50 3.143 0.357 165.00 

43   60 40 6 654 224 43608.03 87.50 3.054 0.370 157.50 

44    60 6 650 231 44666.59 87.50 3.136 0.366 162.50 

45    80 6 646 239 45727.15 87.50 3.218 0.363 167.50 
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However, one of the major differences between them is that as 𝜃1 increases, the 

decrease in 𝑦∗ is higher for the GMIR method as compared to the signed distance method. 

Moreover, for the fixed values of (𝜃3, 𝜃4), as the estimate of the collection rate of the 

recoverable products 𝑑(𝑟̃, 0̃1) decreases by varying (𝜃1, 𝜃2), the reduction in the optimal 

recovery lot size 𝑦∗ is lower than that of the GMIR method for fixed 𝑛∗, and therewith, 

the optimal ordering lot size 𝑄∗, and the optimal total cost function per unit time 𝑇𝐶𝑈∗ 

have the similar trends similar to the GMIR method.  

The collection rate of the recoverable products from customers is an important factor 

in the reverse logistics literature. For positive levels of fuzziness, the estimations of this 

factor by the signed distance method are higher than those that are obtained applying the 

GMIR method. Besides, it is observed that, for negative levels of fuzziness, the 

estimations of the mentioned factor using the GMIR method returns higher value than the 

signed distance method. These interesting results should be taken into consideration in 

practical situations. In both methods, the optimal number of orders 𝑛∗ increases by 

decreasing 𝜃2. In other words, the more the estimation of the difference between the 

demand rate of the serviceable products and the collection rate of the recoverable products 

(𝑘 − 𝑟), the higher the optimal number of orders 𝑛∗ will be.  

Regarding a criterion defined in Eq. (5.49), the values of percentage changes for the 

optimal recovery lot size 𝑄∗, and the optimal total cost function per unit time 𝑇𝐶𝑈∗ 

compared to the crisp ones are calculated in Table 5.4. For example, the 3th column of 

Table 5.4 shows the percentage changes of optimal recovery lot size using the signed 

distance method (𝑦𝑆𝐷
∗ %).  

 (
Optimal⁡Fuzzy⁡Value − Optimal⁡Crisp⁡Value

Optimal⁡Crisp⁡Value
) × 100 (5.49) 
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Table 5.4: Comparing the results of the GMIR and SD methods with the crisp ones 

No. 𝒏∗ 𝒚𝑺𝑫
∗ % 𝑸𝑺𝑫

∗ % 𝑻𝑪𝑼𝑺𝑫
∗ % 𝒏∗ 𝒚𝑮𝑴𝑰𝑹

∗ % 𝑸𝑮𝑴𝑰𝑹
∗ % 𝑻𝑪𝑼𝑮𝑴𝑰𝑹

∗ % 

1 4 -0.709 5.660 -4.263 4 -3.830 9.906 -2.593 

2 4 -0.851 6.604 -3.538 4 -3.972 10.849 -2.084 

3 4 -0.993 7.547 -2.812 4 -4.113 11.321 -1.571 

4 4 -1.560 4.717 -4.561 4 -5.248 8.962 -2.567 

5 4 -1.702 7.075 -3.347 5 0.993 -5.660 -1.702 

6 4 -1.844 8.962 -2.131 5 0.567 -5.189 -0.839 

7 4 -2.411 3.302 -5.545 5 -0.426 -8.491 -2.964 

8 4 -2.837 7.075 -3.110 5 -1.277 -7.075 -1.208 

9 4 -3.262 10.377 -0.665 5 -2.270 -5.660 0.577 

10 4 -5.248 14.623 -2.123 5 -0.567 0.000 -1.120 

11 5 1.277 -0.472 -1.392 5 -0.709 0.472 -0.597 

12 5 1.135 0.472 -0.663 5 -0.993 0.943 -0.070 

13 4 -6.099 14.623 -2.397 5 -2.411 -1.415 -1.025 

14 5 0.284 0.000 -1.178 5 -2.979 -0.472 -0.125 

15 5 0.000 1.415 0.043 5 -3.404 0.472 0.782 

16 4 -6.950 12.736 -3.375 5 -4.397 -3.302 -1.352 

17 5 -0.993 0.000 -0.921 5 -5.674 -1.887 0.500 

18 5 -1.418 3.774 1.530 5 -6.950 -0.472 0.401 

19 5 -3.262 6.604 -0.067 5 -4.255 6.604 0.401 

20 5 -3.404 7.547 0.673 5 -4.681 7.075 0.950 

21 5 -3.546 8.962 1.414 5 -4.965 8.019 1.502 

22 5 -4.113 6.604 -0.336 5 -6.525 5.189 0.587 

23 5 -4.397 8.491 0.901 6 -0.993 -5.660 1.530 

24 5 -4.681 10.377 2.140 6 -1.702 -4.717 2.462 

25 5 -4.965 5.189 -1.313 6 -2.695 -8.491 0.327 

26 5 -5.532 8.962 1.166 6 -4.113 -6.604 2.230 

27 5 -6.241 12.736 3.650 6 -5.674 -5.189 4.162 

28 5 -7.660 14.151 1.942 6 -1.844 0.943 1.905 

29 6 -1.844 2.358 2.685 6 -2.270 1.415 2.462 

30 6 -1.986 3.774 3.425 6 -2.695 1.887 3.022 

31 5 -8.511 14.151 1.662 6 -4.255 0.000 2.115 

32 6 -2.837 3.302 2.899 6 -5.106 0.472 3.075 

33 6 -3.121 5.189 4.136 6 -5.816 1.415 4.043 

34 5 -9.362 13.208 0.662 6 -6.667 -2.358 1.886 

35 6 -3.972 3.774 3.147 6 -8.369 -0.943 3.868 

36 6 -4.539 7.547 5.628 7 -4.397 -8.491 5.843 

37 6 -5.816 6.604 3.774 6 -5.106 5.660 3.231 

38 6 -5.957 8.019 4.518 6 -5.532 6.604 3.798 

39 6 -6.099 8.962 5.262 6 -5.957 7.075 4.368 

40 6 -6.525 6.604 3.461 6 -7.376 4.717 3.446 

41 6 -6.809 8.491 4.703 6 -8.227 5.660 4.424 

42 6 -7.092 10.377 5.946 7 -3.404 -3.302 5.397 

43 6 -7.234 5.660 2.430 7 -4.113 -7.075 3.212 

44 6 -7.801 8.962 4.916 7 -5.957 -5.660 5.192 

45 6 -8.369 12.736 7.407 7 -7.801 -4.245 7.203 

Average  -3.997 7.285 0.809  -3.959  0.073 1.446  

 

In order to have a better comparison, based on this criterion, the behavior of the 

fuzzified model by both methods is compared for the mentioned optimal values in Figure 
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5.5 and 5.6, simultaneously. In Figure 5.5, the white stars show the situations that the 

optimal number of orders 𝑛∗ increase one unit in the GMIR method, while the black stars 

show the similar increase in the signed distance method.  

 

Figure 5.5: Comparing the SD and the GMIR method simultaneously considering the 

relative variation between the crisp and fuzzy situation for the optimal recovery lot size  

According to the Figure 5.5, in states that the levels of fuzziness are similar, and also, 

the optimal number of orders 𝑛∗ are equal, the percentage changes of the optimal recovery 

lot size in the GMIR method are negative 𝑦𝐺𝑀𝐼𝑅
∗ % < 0, and moreover, in these 

conditions, the difference between 𝑦𝑆𝐷
∗ % and 𝑦𝐺𝑀𝐼𝑅

∗ % is always positive (𝑦𝑆𝐷
∗ %−

𝑦𝐺𝑀𝐼𝑅
∗ % > 0). The average of percentage changes for the signed distance and the GMIR 

method is −3.997, and −3.959, respectively.  

Figure 5.6 indicates that taking the percentage changes of the optimal total cost 

function per unit time into account, in general, there are similar increasing trends for both 

methods. When 𝜃2 > 𝜃1, except for two cases, the percentage changes of the optimal total 

cost by the signed distance method 𝑇𝐶𝑈𝑆𝐷
∗ % are negative. Moreover, when 𝜃2 < 𝜃1, those 

are positive in all cases. Generally, the GMIR method takes priority than the signed 
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distance method in adopting positive value for the percentage changes of the optimal total 

cost. Besides, the average percentage change of the total cost function for the GMIR 

method (1.446) is greater than the similar one for the signed distance method (0.809).  

 

Figure 5.6: Comparing the SD and the GMIR method simultaneously considering the 

relative variation between the crisp and fuzzy situation for the optimal total cost 

function per unit time  

Table 5.5 presents some descriptive statistics for the optimal values in each level of 

fuzziness for the collection rate of the recoverable products 𝑟, separately. In Table 5.5, 

“level of fuzziness” is a measure defined as the percentage deviation from the crisp value 

in each level of fuzziness. It is clear that the mentioned measure for the GMIR method is 

smaller than the similar one by the signed distance method. Although the overall average 

value of the total cost by the signed distance method is smaller than the calculated one by 

the GMIR method, its standard deviation in the GMIR method (1053) is smaller than the 

similar value (1345) by the signed distance method. It indicates that the GMIR method 

is more stable than the signed distance regarding the total cost. Considering the average 

for all levels, both methods lead to the same optimal value (677) for the recovering lot 
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size. However, in this situation, the standard deviation by the signed distance is higher 

than the one obtained by the GMIR. Therefore, deciding on which method could be used 

depends on the target strategy that could focus on the total cost, the ordering lot size or 

the recovery lot size.  

Besides, Table 5.6 shows the results of the descriptive statistics for the optimal values 

according to the criterion defined in Eq. (5.49) by varying 𝜃1 and 𝜃2, regardless of 

whether the percentage change is positive or negative. Unlike Table 5.5, in Table 5.6, 

these two methods are compared based on the optimal crisp values.  

Table 5.5: Comparing the difference between the results of the GMIR and the SD method  

 

 

(θ1,θ2) 

GMIR method SD method  

Level of 

fuzziness 

𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ Level of 

fuzziness 

𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ 

(µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* 
(5,55) 8.33%  (690,15)  (214,18) (41866.45,437) 12.50% (692,6)  (226,4) (41155.92,571) 

(25,50) 4.17% (683,15)  (211,3) (42544.21,471) 6.25% (691,21)  (223,13) (42078.17,575) 

(40,40) 0% (677,12)  (211,14) (43243.09,496) 0% (674,7)  (230,5) (42962.94,582) 

(50,25) ‒ 4.17% (673,14)  (211,6) (43908.60,517) ‒ 6.25% (671,19)  (228,10) (43812.35,582) 

(55,5) ‒ 8.33%  (663,11)  (214,12) (44478.63,521) ‒ 12.50% (657,6)  (230,4) (44580.13,582) 

FOR ALL 

LEVELS 
(677,16) (212,12) (43208.20,1053)  (677,19) (227,9) (42917.91,1345) 

 

*µ, σ stands for mean, and standard deviation of the optimal values, respectively.   

 

 

Table 5.6: Comparing the difference between the results of the GMIR and SD method 

based on the crisp values  

 

 

(θ1,θ2) 

GMIR method  SD method  
𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ 𝒚∗ 𝑸∗ 𝑻𝑪𝑼∗ 

(µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* (µ,σ)* 
(5,55) (2.52%, 1.70%)  (8.12%, 2.20%) (1.79%, 0.78%)  (1.80%, 0.84%)  (6.81%, 2.00%) (3.33%, 1.34%) 

(25,50) (3.12%, 2.12%)  (1.05%, 0.96%) (0.66%, 0.42%)  (2.60%, 2.54%)  (5.35%, 6.23%) (1.51%, 0.94%) 

(40,40) (3.96%, 1.72%)  (6.39%, 1.24%) (1.57%, 1.17%)  (4.46%, 0.95%)  (8.39%, 2.13%) (1.30%, 1.01%) 

(50,25) (4.60%, 2.03%)  (1.99%, 2.39%) (3.14%, 1.21%)  (4.87%, 2.72%)  (7.49%, 4.69%) (2.91%, 1.37%) 

(55,5) (5.94%, 1.54%)  (5.56%, 1.21%) (4.47%, 1.22%)  (6.86%, 0.81%)  (8.49%, 2.04%) (4.71%, 1.37%) 

Overall (4.03%,2.19%) (4.62%,3.18%) (2.33%,1.67%) (4.12%,2.53%) (7.31%,4.01%) (2.75%,1.75%) 
 

*µ, σ stands for mean, and standard deviation of the optimal values, respectively.  

 

 

There is an interesting statistical relationship between the summations of the first and 

second deviation values of the collection rate of the recoverable products from customers 

and demand rate of the serviceable products in the fuzzy situation, respectively, and the 
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percentage changes of the optimal total cost function by the signed distance and GMIR 

method. They are calculated with a simple regression in Figures 5.7 and 5.8 for the signed 

distance and GMIR method, respectively. As it is depicted, (𝜃1 + 𝜃4) has been considered 

 

 

Figure 5.7: Estimating a simple regression relationship between the values obtained by 

𝑇𝐶𝑈𝑆𝐷
∗ % and summation of 𝜃1 and 𝜃4.  

 

Figure 5.8: Estimating a simple regression relationship between the values obtained by 

𝑇𝐶𝑈𝐺𝑀𝐼𝑅
∗ % and summation of 𝜃1 and 𝜃4. 

as independent variable; and 𝑇𝐶𝑈𝑆𝐷
∗ % and 𝑇𝐶𝑈𝐺𝑀𝐼𝑅

∗ % as dependent variable. The 

estimation of the percentage changes of the optimal total cost in the GMIR regression is 

Univ
ers

ity
 of

 M
ala

ya



125 

about 10 percent better than the one obtained by signed distance regression because the 

value of R-square in the first one is about 10 units greater than the second one.  

5.8 Chapter Summary  

 One of the most important issues in the reverse inventory models is the lack of 

historical data for the demand and return (collection) rate. Accordingly, estimation of the 

probability distributions of such parameters is not possible. Therefore, these parameters 

are not determined, and usually it is not logical to decide based on the crisp values while 

the situation is uncertain. With these perspectives, it is worthwhile to reconsider the 

reverse inventory system with the learning effect (Tsai, 2012) and provide an alternative 

approach.  

In this chapter, two fuzzy models were proposed for a reverse inventory problem with 

the learning effect. In both models, the demand rate of the serviceable products and the 

collection rate of the recoverable products from customers were presented as fuzzy 

numbers. To estimate the total cost function per unit time in the fuzzy sense, and then the 

corresponding optimal recovery lot size and the number of orders for the newly purchased 

products, in the first model, the signed distance method was employed for the 

defuzzification, while the GMIR was used in the second one. These models were 

explained and solved by a comprehensive numerical example. The results of both are 

compared methods. Besides, it is concluded that it is important to decide which method 

should be chosen regarding the considered strategies. 

It is noteworthy that although there are some researches in the forward supply chain 

literature, which considered fuzzy EOQ/EPQ, there is no similar work in the reverse 

supply chain literature that compares the performance of the well-known defuzzification 

methods such as the GMIR and the signed distance method. In this study, the performance 
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of the mentioned methods is compared in the presence of learning in a reverse inventory 

model.  
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CHAPTER 6: APPLICATIONS TO CASE STUDIES  

 

6.1 Introduction  

In this chapter, the application of the previous developed fuzzy inventory models is 

introduced through real case studies. However, usually it is difficult to match the 

theoretical models to the real world scenario completely. Because there are many 

uncontrollable factors in the business environment that influence the whole of the 

inventory system.  

The first fuzzy model introduced in chapter four is tried to be explained via a case from 

an automobile industry, and later, the second one suggested in chapter five is discussed 

through a milk manufacturing company. The most important focus of this chapter is to 

show that these fuzzy models can improve the policies for decision makers and managers 

in organization.  

6.2 First Case Study  

The first case is related to a supply chain network in an automobile industry where 

there is a supplier and manufacturer who produces some parts of a special automobile to 

sell to the other manufacturers. Firstly, the manufacturer and the supplier are introduced 

and the relation of the whole supply chain is depicted.  

6.2.1 A Supply Chain in an Automobile Industry  

The manufacturer that is studied here is a company called Auto Chassis International 

Pars (ACI Pars) belonged to the supply chain network of Groupe Renault International in 

Tehran, Iran. This company is established in 2005 incorporating Robat Machine Co. and 

Renault by a joint venture as 23% and 77% stock respectively. The company produces 

and assembles automobile parts specially chassis systems and components of L-90 

(Tondar 90) and U-90 products. Figure 6.1 shows a sample of produced L-90.  
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Figure 6.1: L-90 (Tondar 90)  

 

The plant works based on the Renault Production System (SPR) and has annual 

production capacity of 200,000 parts for the vehicle. ACI Pars works with other suppliers 

to produce the parts. In this research, the most important one that is MSTOOS Co. is 

considered (http:www.acipars.co.ir).  

Figure 6.2 depicts the supply chain network and the relationship between the plants. 

As it is clear, MSTOOS Co. acts as the supplier of ACI Pars and Renault Pars which is 

another company buying the items and selling them to the two main automobile plants in 

Iran (i.e. Iran Khodro and Pars Khodro).  

 

 

 

             

 

 

Figure 6.2: Supply chain network of considered automobile industry  

M.S.T. Group 

Industrial Complex  

Renault Pars 

Iran Khodro Pars Khodro 
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6.2.2 Gathering the Information  

ACI Pars includes 10 departments which are Production, Supply Chain, Projects, 

Human Resources, Engineering, Renault Production System, Quality, Purchasing, 

Finance, and IT&IS. As the warehouse and supplier quality sections are placed in Supply 

Chain and Quality departments, the required information is gathered from these sections. 

In fact, Supply Chain department has six sections including customer service, internal 

logistics, external logistics, customs, PHF, and warehouses. Besides, quality department 

has two sections which are customer quality and internal quality (http:www.acipars.co.ir), 

Appendix F/F.1.  

The information has been gathered for two main parts that are Brake Disc and Rear 

Hub Drum as depicted in Figures 6.3 and 6.4 respectively. The mechanism of Brake Disc 

is briefly shown in Figure 6.5. When the piston (part number 3) is pushed by a class 2 

lever (part number 2), it squeezes a hydraulic brake fluid (part number 4). This process 

causes the force to another piston located in the wider cylinder (par number 5). The Brake 

Disc is the part number 8 and it causes the wheel stops when the wider piston (part number 

5) pushes the brake pad shown as part number 6 and 7.  

 

Figure 6.3: Brake Disc 259*20,6' painted  
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Figure 6.4: Rear Hub Drum 8' painted  

 

 

 

Figure 6.5: Function of the Brake Disc (www.explainthatstuff.com)  

Woodford (2016)  
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Figure 6.6: Function of the Rear Hub Drum (www.auto.howstuffworks.com)  

Nice (2016) 

 

Rear Hub Drum works on the same principle as Brake Disc. In this system, as shown 

in Figure 6.6, the surface is called a drum. Usually automobiles have Rear Hub Drums 

(drum brakes) on the rear wheels and disc brakes on the front. Although drum brakes have 

more parts than disc brakes, they are less expensive to produce. They are harder to service 

for the manufacturer.  

Table 6.1 shows the demand for automobile which is announced by Renault Pars to 

ACI Pars. Then, according to the available data, eight contracts have been considered 

between ACI Pars and its supplier (MSTOOS). A period between 2012 till 2015 which 

the duration of each contract is divided to 6 months is considered.  

For more clarifications, lets explain the first contract. This contract is started from 

January 2012 till Jun 2012 between ACI Pars and MSTOOS. According to this contract, 

the parts of 7200 automobiles should be satisfied by the ACI Pars that is the supplier of 
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Pars Renault. As our models are investigated for the Brake Disc and Rear Hub Drum, the 

demand of these parts are calculated in Table 6.2 and 6.3 respectively. It is clear that each 

chassis produced by ACI Pars needs two Brake Discs and Rear Hub Drums. The related 

information of the demand in Table 6.1 has been extracted according to the statistics 

revealed by the Iran Vehicle Manufacturers Association (Appendix F/F.2).  

Table 6.1: Value of the demand for chassis announced by Renault Pars  

2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec  

7200 8000 9500 12550 12000 14800 16750 18100 

 

Table 6.2: Value of the demand for Brake Disc announced by ACI Pars to MSTOOS   

2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

14400 16000 19000 25100 24000 29600 33500 36200 

 

Table 6.3: Value of the demand for Rear Hub Drum announced by ACI Pars to 

MSTOOS   

2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

14400 16000 19000 25100 24000 29600 33500 36200 

 

Variable costs include raw materials cost, production wages of workers, sales 

commissions, packaging supplies, and shipping costs. Tables 6.4 and 6.5 show the 

variable costs for Brake Disc and Rear Hub Drum respectively. Although variable costs 

may vary from one month to the other one, it is considered averagely for each contract.  

Table 6.4: Variable costs for Brake Disc (Rial*/Unit)  

2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

99000 100000 112000 113000 120000 122500 128500 136200 
*Iran's currency (1$ ≈ 34400 Rial)  

 

Table 6.5: Variable costs for Rear Hub Drum (Rial/Unit)  

2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

88000 90000 102000 105000 110000 113000 120500 126200 
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Fixed costs are those that do not change with fluctuations in production level or sales 

volume. They usually include such expenses as rent, insurance, equipment leases, 

payments on loans, depreciation, and other costs for running the business such as 

management salaries, and advertising. Tables 6.6 and 6.7 show related data for fixed costs 

of ordering the Brake Disc and Rear Hub Drum for considered contracts.  

Table 6.6: Fixed costs for Brake Disc (Rial/Order)  

2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

1089000  1100000 1120000 1135000 1200000 1220000 1385000 1402000 

 

Table 6.7: Fixed costs for Rear Hub Drum (Rial/Order)  

2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

990000 900000 1020000 1025000 1170000 1180000 1300500 1306200 

 

Selling price of good quality Brake Disc and Rear Hub Drum and selling price of 

defective Brake Disc and Rear Hub Drum are presented in Tables 6.8 and 6.9. These 

prices are based on the derived information from Saipa (Appendix F/F.3). It is assumed 

that selling price of defective items is 25 percent of the selling price of the good quality 

ones.  

Table 6.8: Selling price of good and defective quality Brake Disc (Rial/Item) 

Year  2012 2012 2013 2013 2014 2014 2015 2015 
Month  Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 
G* 199050  200000 222100 232000 250000 275000 300500 320000 
D** 49763 50000 55525  58000  62500 68750  75125  80000  

*Good items, **Defective items 

 

Table 6.9: Selling price of good and defective quality Rear Hub Drum (Rial/Item)  

Year  2012 2012 2013 2013 2014 2014 2015 2015 
Month  Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 
G* 189050  190500 212100 222000 245000 265000 285500 290000 
D** 47262 47625  53025 55500 61250  66250 71375 72500  

*Good items, **Defective items  
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Tables 6.10 and 6.11 present costs of screening of items for all contracts. This process 

is done by the person in charge from the quality department. Each time that a lot is 

received through the steel pallets, the items are checked and defective items are separated 

from non-defective ones manually. Figure 6.7 shows a pallet made of steel.  

 

Figure 6.7: Steel pallet for screening    

 

Table 6.10: Screening costs for Brake Disc (Rial/Unit)  

2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

1000 1000 1200 1300 1500 1650 1700 1800 

 

Table 6.11: Screening costs for Rear Hub Drum (Rial/Unit)  

2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

990 1000 1100 1250 1400 1450 1600 1650 

 

Screening rate of Brake Disc and Rear Hub Drum are shown in Tables 6.12 and 6.13. 

Because Brake Disc has a more complex structure, analyzing the quality of it needs 

generally more time in comparison with the Rear Hub Drum.  

Table 6.12: Screening rate of Brake Disc (Unit/Time)  

2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

28000 32200 30000 50000 45000 60000 70500 75000 
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Table 6.13: Screening rate of Rear Hub Drum (Unit/Time)  

2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

25000 30000 40000 48000 50000 60600 65500 70200 

 

After separation of the defective and non-defective items, they should be held in 

different warehouses. The holding price of good and defective quality items are presented 

in Tables 6.14 and 6.15.  

The main costs that should be taken into account for holding costs include rent of the 

warehouse, cost of the maintenance of warehouse, opportunity cost, equipment cost, 

insurance and security cost, and other direct expenses. Therefore, it is clear that the 

holding costs of the good items and the defective items are different as it is supposed in 

chapter 4. Information related to Tables 6.4-6.7 and Tables 6.10-6.15 were derived 

according to the dealerships of Iran Khodro (Appendix F).  

Table 6.14: Holding costs of Brake Disc items (Rial/Unit/Time)  

Quality 
2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

Good 1000 1000 1200 1300 1450 1500 1650 1700 

Defective 200 200 250 250 300 300 450 500 

 

Table 6.15: Holding costs of Rear Hub Drum (Rial/Unit/Time)  

Quality  
2012 2012 2013 2013 2014 2014 2015 2015 

Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec Jan-Jun Jul-Dec 

Good 900 950 1100 1250 1350 1400 1550 1600 

Defective 150 150 200 200 200 250 350 400 

 

6.2.3 Adapting to the First Fuzzy Model  

To apply the provided information into the developed fuzzy model suggested in 

chapter 4, it should be changed to the fuzzy situation. In order to do this process, the 

following triangular fuzzy number which is a potential way to change the crisp 

information to the fuzzy one is built:  
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(𝑀𝑖𝑛𝑖𝑚𝑢𝑚⁡𝑜𝑓⁡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑜𝑓⁡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟,𝑀𝑎𝑥𝑖𝑚𝑢𝑚⁡𝑜𝑓⁡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) 

Therefore, the following information is provided. The parameters of learning curve 

function are assumed as what supposed in chapter 4.  

For Brake Disc:  

𝐷 = (14400,24725,36200) units per contract, 𝐾 = (1089000⁡,1206375,1402000) $ 

per order, 𝑐 = (99000,116400,136200) Rial per unit, 𝑠 = (199050,249831,320000) 

Rial per unit, 𝑣 = (49763,62458,80000) Rial per unit, 𝑑 = (1000,1393,1800) Rial per 

unit, ℎ𝑔 = (1000,1350,1700) Rial per unit per contract, ℎ𝑑 = (200,306,500) Rial per 

unit per contract, 𝑥 = (28000,48838,75000) units per contract, 𝛾 = 819.76, 𝛼 =

70.07, and 𝛽 = 0.79.  

 

For Rear Hub Drum:  

𝐷 = (14400,24725,36200) units per contract, 𝐾 = (990000,1111462,1306200) $ 

per order, 𝑐 = (88000,106838,126200) Rial per unit, 𝑠 = (189050,237393,290000) 

Rial per unit, 𝑣 = (47262,59348,72500⁡) Rial per unit, 𝑑 = (990,1305,1650) Rial per 

unit, ℎ𝑔 = (900,1263,1600) Rial per unit per contract, ℎ𝑑 = (150,238,400) Rial per 

unit per contract, 𝑥 = (25000,48663,70200) units per contract, 𝛾 = 819.76, 𝛼 =

70.07, and 𝛽 = 0.79.  

6.2.4 Calculations  

According to the first fuzzy model introduced in chapter 4 and gathered information, 

the required calculations were done and the following figures were derived. The aim is 

finding the optimal order quantity and total profit per unit time for Brake Disc and Rear 

Hub Drum when the company is dealing with uncertain business environment.  
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In order to avoid tedious and repetitive calculations, using the introduced optimization 

method, the results for 10 and 70 percent level of fuzziness are obtained. However, 

interpretation of other levels of uncertainty is similar as well. In fact, the mentioned levels 

present low and high level of fuzziness.  

 

Figure 6.8: Optimal order quantity for Brake Disc for 10 and 70 percent level of 

fuzziness  

 

 

Figure 6.9: Total profit per unit time for Brake Disc for 10 and 70 percent level of 

fuzziness  
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Figure 6.10: Optimal order quantity for Rear Hub Drum for 10 and 70 percent level 

of fuzziness  

 

 

Figure 6.11: Total profit per unit time for Rear Hub Drum for 10 and 70 percent 

level of fuzziness  
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6.2.5 Analyzing the Results  

Figures 6.8 and 6.10 show the optimal order quantity of Brake Disc and Rear Hub 

Drum for 10 and 70 percent levels of fuzziness respectively. As it is clear, the trend of 

both items is similar. For both levels of fuzziness, when the number of shipment increases, 

the optimal order quantities decrease. This is the result of learning effect during the 

contracts. The optimal order quantity of Brake Disc and Rear Hub Drum decreases more 

for 70 percent level of fuzziness in comparison with 10 percent level of fuzziness when 

the number of shipment increases. Therefore, the more the level of fuzziness, the more 

the effect of learning. This shows the importance of learning when the uncertainty of 

business environment increases. It can justify investment on knowledge transfer to 

increase the effect of learning.  

Figures 6.9 and 6.11 present the total profit per unit time for Brake Disc and Rear Hub 

Drum for 10 and 70 percent levels of fuzziness respectively. It can be seen that by 

increasing the number of shipment the total profit per unit time increases. It is due to the 

effect of learning. Therefore, although the optimal order quantities decrease, total profit 

per unit time increases for both items (i.e. Brake Disc and Rear Hub Drum). However, 

this improvement is more for 70 percent level of fuzziness in comparison with 10 percent 

level of fuzziness.  

For Brake Disc items, when the level of fuzziness is 10 and 70 percent, this increase 

is 3.87 and 4.06 percent respectively. For Rear Hub Drum, when the level of fuzziness is 

10 and 70 percent, this increase is 3.47 and 3.64 percent respectively. Thus, when a 

flexible business environment is met with a high degree of impreciseness in information, 

investment on some parts of the company that amplify the learning can be an appropriate 

strategy for decision makers. The more the level of uncertainty is increased, the more 

attention to the effect of learning process is necessary.  
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6.3 Second Case Study  

The second case study is related to the application of the second fuzzy model 

introduced in chapter five through the milk industry. At first, let’s introduce the 

companies and explain their activities.  

6.3.1 Milk Manufacturing Company  

In this section, the activity of the factories that are included in our second case study 

is explained and is briefly introduced. However, this case can be applied to other similar 

factories with the same conditions.  

A local milk manufacturing company which is a part of a big holding is considered. 

The main factory that manages this holding is Iran Dairy Industries Co. (IDIC) with more 

than six decades of experience in industrial production and processing of milk and dairy 

products. The first plan of establishing of this factory was raised by signing agreements 

on behalf of Planning Organization and Ministry of Health of Iran and UNICEF Institute 

affiliated to United Nations in the year 1954. Since 2001, this factory has selected Pegah 

brand and introduced it to its customers. In addition to the mentioned local company, Iran 

Dairy Industries Company has 19 affiliated factories that are active in 13 large province 

of Iran. They offer 600 pasteurized and sterilized dairy products such as milk, yoghourt, 

cream, cheese, butter, ice cream, dairy powders, and herbal carbonated drinks to the 

market in diverse packaging. All the products that are produced under management of 

this holding, are named as Pegah Pasteurized Milk Companies. Currently IDIC is the 

biggest dairy factory in Middle East supplying 30% of domestic Iranian market with a 

population of 70 million people. It produces 1.5 million tons of milk per year.  

The local milk manufacturing company investigated in this study is called Pegah 

Hamedan. It is located in Hamedan Province in the west of Iran. It covers an area of 

19,546 km² with more than 1.8 million population. Every day, more than 200 tons of raw 
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milk is gathered by this company from local farms. After doing some processes, other 

dairy products are produced. Moreover, this company acts as the supplier of other food 

factories in the state.   

6.3.2 Polyethylene Terephthalate (PET)  

PET was patented by John Rex Whinfield and James Tennant Dickson in England in 

1941. As a plastic material, Polyethylene Terephthalate (PET) is a simple long-chain 

polymer of ethylene glycol with either terephthalic acid or dimethyl terephthalate 

(C6H4(CO2CH3)2) that it has increasing application in food and drink packaging. Because 

of its unique physical properties, including chemical inertness, it is commonly used as 

packaging material for drinking water, mineral water, cooking oil, edible oils and 

carbonated beverages in the form of stretched blown bottles (Farhoodi et al., 2009; 

Farhoodi et al., 2013).  

Due to some special characteristics such as safety, strongness, transparency and 

versatileness manufacturers prefer PET. Also, customers choose it for its light weight and 

shatter-resistance. The most important factor of PET is that it is made from the recycled 

material, and these material can be recycled again and again to make new bottles, fiber 

for carpets, fabric for t-shirts or fleece jackets, non-food containers, winter coats, 

polyester fiber, strapping, sheet and thermoformed packaging. Moreover, recycled 

material of PET can be used in parts of automotive industry such as headliners, bumpers, 

and door panels.  

6.3.3 Milk Supply Chain Network  

In this section, the milk supply chain network is explained and the relationships and 

the processes are depicted. At the center of the investigated chain, the local milk company 

(i.e. Pegah Hamedan) is located. As it is mentioned before, this company is under the 
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management of the IDIC which is the main factory of the holding. Figure 6.12 shows the 

related network.  

According to our scenario, this local company collects and buys raw milk from local 

farms around the Hamedan province. After doing some particular processes such as 

testing for antibiotic residues, microbial enumeration, pasteurization, and 

homogenization, these milks are packed in containers made of PET and can be ordered 

by other food and dairy factories to provide other products.  

As it is discussed in previous section, these PET-made containers are recyclable and 

highly sustainable. There is another company in Pegah holding that produces PET 

containers and primary materials of dairy products packaging including multi-layer 

special bags and special polymer materials. This company is Pegah Packaging Industry 

shown with yellow color in Figure 6.12. In fact, it is the supplier of PET-containers to the 

Pegah Hamedan.  

However, because of the recyclable characteristics of the PET materials, after doing 

some repairing processes such as cleaning and testing, some defective containers can be 

recycled and renewed in Pegah Hamedan and returned back to the network processes. 

The dairy factories are motivated to take advantage of some discounts if they return the 

defective containers.  

Due to the weather conditions in Hamedan province, production of the milk by local 

farms fluctuates. It varies from one season to another season. The temperature difference 

between the coldest and warmest days of a year usually is approximately 40˚󠄙 C. In cold 

winters the production of the milk by local farms decreases while it increases in spring 

and summer. Therefore, there is an uncertainty in production of the raw milk that 

indirectly will affect the demand for the PET-made containers.  
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Figure 6.12: Milk supply chain network 

6.3.4 Related Information to Adapt the Second Fuzzy Model  

In order to meet the demand of PET-made containers, Pegah Hamedan has adopted a 

policy of one setup for recovery and multi order for new products. This is consistent with 

the fuzzy reverse inventory model proposed in previous chapter. Based upon their 

historical data and the notations defined in chapter 5, the following information were 

considered. As production of containers depends on the production of milk, the official 

reports of production of milk have been used to estimate the provided information 

(Appendix F/F.4).  

𝑘 = 1500units/month, 𝑟 = 300units/month, 𝐶𝑠 = $10,000/setup, 𝐶𝑜 = $1100/order, 

𝐶𝑝 = 80$/unit, 𝐶𝑏 = $20/unit, 𝐻𝑟 = $4/unit/day, 𝐻𝑠 = $10/unit/day, 𝐶𝑙 = $5000/day, 

𝑎 = 0.008day/unit, 𝑏 = −0.152.  
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The suggested fuzzy reverse inventory model applied to this scenario is optimized to find 

the number of orders for the newly purchased PET containers during a cycle, recovery lot 

size of PET containers for each production run, ordering lot size for the newly purchased 

PET containers and total cost function per unit time.  

6.3.5 Calculations   

According to the provided data and the fuzzy reverse inventory model introduced in 

chapter 5, the results have been calculated for some levels of fuzziness in Table 6.16 for 

two defuzzification methods (i.e. GMIR and SD methods). Besides, Tables 6.17 and 6.18 

show the results according to the average of each parameter in each level of fuzziness. 

Furthermore, the effect of these methods can be compared based on the Figures. 6.13-

6.16.  

Table 6.16: The results of affecting the inventory system by two defuzzification methods 

(Parameter/Level of fuzziness%) 
GMIR Method SD Method 

𝒏∗  𝒚∗  𝑸∗ 𝑻𝑪𝑼∗ 𝒏∗  𝒚∗  𝑸∗ 𝑻𝑪𝑼∗ 
(𝒌/10%; 𝒓/10%) 10  244  113 7497.04 7  265  160 7593.89 

(𝒌/10%; 𝒓/30%) 10  293  152 9002.76 6  303  227 9116.66 

(𝒌/30%; 𝒓/10%) 22  234  75 11508.65 10  262  201 10666.23 

(𝒌/30%; 𝒓/30%) 19  252  110 14705.84 8  283  305 12795.70 

 

Table 6.17: The effect of fuzzification of each parameter separately in GMIR method 

                                                 GMIR Method** 

         Percent               10%      30% 

    Fuzzified parameter k  r   k  r 

𝒏∗ 10  16  20.5  14.5 

𝒚∗ 268.5  239  243  272.5 

𝑸∗ 132.5  94  92.5  131 

𝑻𝑪𝑼∗ 8249.90   9502.85  13107.25  11854.30  
 

** The values of the table are calculated averagely in each level according to the results of Table 6.16. 
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Table 6.18: The effect of fuzzification of each parameter separately in SD method 

                                                 SD Method** 

         Percent               10%      30% 

    Fuzzified parameter k  r   k  R 

𝒏∗ 6.5  8.5  9  7 

𝒚∗ 248  263.5  272.5  293 

𝑸∗ 193.5  180.5  253  266 

𝑻𝑪𝑼∗ 8355.28  9130.06   11730.97  10956.18 
 

** The values of the table are calculated averagely in each level according to the results of Table 6.16.  

  

Figure 6.13: Comparison the effect of fuzzification of parameters on the number of 

orders for the newly purchased items during a cycle in both defuzzification methods  

 

Figure 6.14: Comparison the effect of fuzzification of parameters on the recovery lot 

size of items for each production run in both defuzzification methods  
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Figure 6.15: Comparison the effect of fuzzification of parameters on the ordering lot 

size for the newly purchased items in both defuzzification methods  

 

 

Figure 6.16: Comparison the effect of fuzzification of parameters on the total cost 

function per unit time in both defuzzification methods  
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6.3.6 Analyzing the Results  

Table 6.16 shows the results for two different levels of fuzziness. As it is clear, in this 

case when there is the lowest level of fuzziness in the system, the GMIR method gives 

the lower total cost per unit time. On the other hand, for the maximum level of fuzziness, 

the total cost per unit time derived by the SD method is lower.  

Tables 6.17 and 6.18 show the results of each parameters separately for the GMIR and 

SD methods respectively. These results are calculated based on the average of optimal 

values of the system. As it is clear, in the GMIR method when the uncertainty of demand 

increases, the optimal number of orders for the newly purchased PET containers 

increases. However, this increase is less in SD method. The effect of uncertainty of return 

rate on the optimal number of newly purchased items in both methods is lower as 

compared to the demand. As can be seen in Table 6.18, increasing in the uncertainty of 

demand or return rate leads to the increasing in the optimum value of recovery lot size 

and ordering lot size for the newly purchased items. In GMIR method, by increasing in 

the fuzziness of demand, the optimum value of recovery lot size and ordering lot size for 

the newly purchased items, 10 and 30 percent decrease respectively. However, this 

increase in the fuzziness of return rate cause to 12 and 39 percent increase in the optimum 

value of recovery lot size and ordering lot size for the newly purchased items respectively. 

Moreover, an interesting result is that regardless of the value of changes, as the 

uncertainty increases, total cost per unit time in all level of both parameters increases. 

Nonetheless the percent change of total costs that resulted from the SD method are less 

than those that are obtained using the GMIR method.  

In Figures 6.13-6.16, the effect of uncertainty has been mutually compared for both 

defuzzification methods in each level of fuzziness for parameters on considered optimal 

values.  
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Figure 6.13 shows that optimum number of orders for the newly purchased PET 

containers in all levels of uncertainty of both parameters is higher for the GMIR method 

as compared to the SD method. By analysing Figure 6.14, it can be deduced that the 

optimal recovery lot size derived by the GMIR method in all level of fuzziness for the 

fuzzified parameters is more than the ones derived by the SD method. Furthermore, as it 

is clear from the Figure 6.15, higher ordering lot size can be obtained by the SD method 

with respect to the level of uncertainty and the fuzzified parameter. If the focus is on 

uncertainty of one parameter, generally the total cost per unit time obtained by the SD 

method is lower.  

6.4 Chapter Summary 

In this chapter, the fuzzy inventory models introduced in previous chapters are applied 

in real applications. The applicability of the first fuzzy inventory model suggested in 

chapter 4 is shown in automobile industry. Moreover, the practical application of the 

second fuzzy reverse inventory model was represented through a real case from the milk 

industry.  

In both cases, the effect of uncertainty of fuzzified parameters is analyzed on the 

considered optimal values in some level of fuzziness through some figures and tables. 

According to the results obtained, it can be concluded that based on the strategy of the 

company which method is more appropriate. For example, if the strategy is decreasing 

the total cost, using the SD methods is more logical in the second investigated case study.  
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CHAPTER 7: CONCLUSION   

 

 

7.1 Concluding Remarks  

Inventory management is an integral and important part of a supply chain management 

in business activities. It plays a vital role in different parts and processes of a company 

that are related to the finished items and raw materials. Therefore, sufficient attentions 

should be given to choose a proper inventory control system. Otherwise, organizations 

suffer from losing the investment in inventory management. Inventory systems can be 

investigated from many points of view.  

In present research, attempts were made to design and formulate inventory systems 

that are appropriate to deal with the volatile business environment, and at the same time, 

they take some advantages. To do so, fuzzy set theory is combined with the investigated 

inventory systems to obtain more robust results. It is shown that these kinds of fuzzy 

inventory systems are more precious and they work better in real world. Because 

uncertainty is an inherent part of the information systems especially for data in inventory 

systems.  

Another important characteristic that is taken into account is the learning process. As 

usually inventory operations are affected by the learning phenomena and can be improved 

during the time, the influence of uncertainty is studied with the learning theory 

simultaneously. The results revealed that optimized values could be improved by passing 

the time due to the effect of learning.  

Moreover, other characteristics such as different holding costs for perfect and defective 

items and return rate for the recovered items are considered. Two inventory systems 

applying the mentioned theories (i.e. fuzzy set theory and learning theory) were 

developed and optimized with mathematical procedures.  
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In order to highlight the contributions of the developed fuzzy inventory systems 

through the previous researches, a comprehensive literature review was conducted 

gathering more than 130 papers published in peer reviewed prestigious international 

journals. The fuzzy inventory models of these researches were analyzed in details 

analysing their contents. These models are divided in two main categories (i.e. economic 

order quantity (EOQ) and economic production quantity (EPQ)), and studied these 

models from some aspects including membership functions and methods and techniques 

for fuzzification, defuzzification and optimization. It was the first time that such a 

complete review was done in the fuzzy inventory models literature.  

In the first model, a fully fuzzy inventory system was presented with a total cost 

function including variable and fixed costs, selling prices of good and defective quality 

items, holding costs of defective and non-defective items, screening rate and screening 

costs. Besides, it was supposed that percentage of defective items per shipment decreases 

during the cycles and it follows a S-shaped logistic learning curve model. All parameters 

and variables of the model are assumed as triangular fuzzy numbers to show an inventory 

model that is appropriate in an uncertain environment.  

The objective was to obtain the lot size in 𝑛th shipment when learning occurs 

minimizing the total cost function. After obtaining the defuzzified total cost function 

applying the GMIR method, the conditions of KKT theorem were analyzed, and then, the 

problem was optimized by derivation. In order to test the investigated model, a numerical 

example is provided and the effect of learning and fuzziness is analyzed simultaneously 

on the total profit per unit time and order quantity.  

It is concluded that the optimal lot size directly depends on the amount of uncertainty. 

It was shown that it increases when the level of uncertainty of the inventory system 

increases. To avoid costly inventory strategy, it is necessary to reduce the impreciseness 
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of the model. It is proved that the decision maker should expect an increase in the total 

profit when learning occurs and it justifies some costs that are devoted to the learning 

process in the long-term.  

The inventory system that is completely fuzzified is compared with the partially 

fuzzified one. It was shown that the real inventory situation that is affected by uncertainty 

can be captured if more elements are fuzzified. However, sometimes it causes complex 

and complicated models which are difficult to be optimized. Moreover, the effect of 

learning is more tangible on the optimal EOQ for the fully fuzzified model when the level 

of uncertainty increases.  

The third part of this thesis is devoted to study the effect of fuzziness of demand and 

collection rate of the recoverable products from customers through a reverse inventory 

model which was partially fuzzified. The effect of two defuzzification methods (i.e. 

GMIR and SD methods) is compared and analyzed. The defuzzified total cost function of 

the model including setup cost for the recovery process, ordering cost for the newly 

purchased products, inventory holding costs of collected and serviceable products, labour 

production cost, unit purchase cost for the newly purchased products and unit buyback 

cost for the recovered products was optimized by a one-dimensional search procedure. 

Recovery lot size for each production run and number of orders for the newly purchased 

products during a cycle were derived. 

Proposing a comprehensive numerical example, the behaviour of the decision 

variables were analyzed while the upper and lower bound of fuzzified parameters were 

changed. As the results of these defuzzification methods are different in practice, optimal 

fuzzy values in considered iterations are compared with similar crisp ones. It is shown 

that when the levels of fuzziness were similar and the optimal number of orders were 

equal, the percentage changes of the optimal recovery lot size in the GMIR method were 
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negative as compared to the SD method. Moreover, in the case that upper bound of return 

rate was greater than the lower bound in triangular fuzzy numbers, the percentage changes 

of the optimal total cost by the signed distance method were negative. When it was 

smaller than the lower bound, those were positive in all cases. 

In order to show the applicability of the proposed fuzzy inventory models, these 

models are used in two real cases. The first case was related to investigation of an 

inventory system in a supply chain for the automobile industry. Optimal order quantities 

and total profit per unit time of Brake Disc and Rear Hub Drum are found for low and 

high uncertain levels. It is concluded that the more the level of fuzziness, the more the 

effect of learning.  

Furthermore, the second fuzzy model which was a reverse EOQ inventory system was 

explained in the milk industry. In the supply chain of a milk manufacturing company, 

there was a material called PET for packaging in which could be recovered. The number 

of orders for the newly purchased PET during a cycle, the recovery lot size of PET for 

each production run, the ordering lot size for the newly purchased PET and the total cost 

function per unit time for a local milk manufacturing company are found. Regarding the 

total cost per unit time, it is shown that the behavior of the investigated defuzzification 

methods are different.  

7.2 Contributions and Applications  

In this section, the contribution of this research is explained dividing it into two 

sections that are related to the knowledge and application.  

7.2.1 Contribution to the Knowledge  

The first fuzzy inventory model that was developed showed a fully fuzzy system. An 

inventory system that is completely fuzzified generally is very hard to be optimized. 
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However, the proposed fully fuzzy model was solved using a mathematical algorithm. 

Although there are many studies in the previous literature, almost all of them considered 

a partially uncertain system. It means that these models usually target a special parameter 

or variable and study the effect of uncertainty on the considered element. However, there 

are models with more than one element that is fuzzified but not to the explained problem. 

Learning theory can be observed in the previous inventory literature. In present 

research, the effect of fuzziness and learning is studied simultaneously where the 

inventory system is affected by a fully fuzzified learning function. This provides the 

opportunity to examine the behavior of optimal lot size and optimal total profit in such a 

situation to make the best strategy. 

In the second model, the rate of return was targeted in an uncertain environment where 

the recovery production of the system is improved due to the learning by passing the time. 

This was the first time that the effect of fuzzification of two defuzzification methods was 

analyzed and compared in a partially fuzzified reverse inventory system. This provides 

the opportunity to select the best decision according to the situation of the company. 

7.2.2 Contribution to the Practitioners 

As uncertainty is an inherent part of the real world, inventory models that combine 

fuzzy set theory with the inventory system have many applications in the real world. As 

almost nothing is constant in real business environment, the developed fully fuzzified 

model can be very helpful to depict the best strategy. Moreover, learning theory can be 

applied in each inventory system that the related process could be improved during the 

cycles. Besides, other investigated characteristics such as imperfect quality items have 

practical applications in the real inventory systems. The rate of return in a reverse 

inventory system is a very important factor that can influence the whole of a supply chain. 
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In any industry that produced or supplied product can be recovered, it plays an important 

role.  

As it is discussed in previous chapter, the developed fuzzy forward and backward 

models of this thesis can have many applications in real world considering their 

characteristics. In addition to the discussed applications in chapter 6, first model can apply 

in semiconductor industries because they usually separate defective and non-defective 

items. Moreover, second model can have some applications in food and beverage 

industries. Because they usually supply items in containers that should be recovered due 

to the environment concerns. Moreover, both models can be used in any industry that 

deals with defective items.  

7.3 Recommendations for Future Research 

There are several opportunities to extend this research in the future. Regardless of the 

complexity of calculations, alternative defuzzification methods such as centroid method 

could be applied and the results could be compared and analyzed. Besides, other types of 

fuzzy numbers, such as trapezoidal fuzzy number, could be investigated on the behavior 

of the fuzzified parameters.  

Another room for future research that would be of interest is studying the fuzzy 

inventory models if learning in fuzziness is occurred. This is for the situation that 

uncertainty decreases over time because of the effect of learning process. These 

conditions can on the upper and lower bounds of a triangular fuzzy number.  

It may also be of interest to incorporate different types of learning functions to evaluate 

and compare the results. Also the models can be develop combining the learning with 

other parameters that have potentials to be improved during the time. In such a scenario, 

learning curves with different learning ratio could be investigated.  
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Although this is the first attempt to apply fuzzy set theory in the reverse inventory 

literature, future works can apply these methods on the other reverse EOQ/EPQ models 

with other assumptions and conditions.  
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