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Abstract 

Nanofluid as a new engineering medium is proved to be potential in many 

cooling processes in engineering applications. Nanofluid is prepared by dispersing 

nanoparticles or nanotubes in a host fluid. In this research, the “stability of nanofluids” 

is discussed as it has a major role in heat transfer enhancement for further possible 

applications. It also represents general stabilization methods as well as various types of 

instruments for stability inspection. Characterization, analytical models and 

measurement techniques of nanofluids after preparation by two-step method are studied. 

Low concentration TiO2/Water nanofluid was prepared by Two-step method 

with the stability aiding tools of sodium Dodecyl Sulfate (SDS) as anionic surfactant, 

pH control and ultrasonic processes. The stability of prepared nanofluids was verified 

by TEM, UV-vis spectrophotometer, Dynamic Light Scattering (DLS), Zeta potential, 

sedimentation balance method and photo capturing. In addition, characteristic 

measurements including thermal conductivity were carried out to consider the effect of 

stability on enhancement of heat transfer. 

The results showed that SDS addition to the nanosuspension will increasingly 

improve the stability of titania nanosuspension specifically for long term applications. 

The sedimentation rate decreases with the aid of ultrasonic processes. 

Central composite design (CCD) and Box Behnken design (BBD) along with 

response surface method (RSM) were applied to model and optimize the stability of 

operating variables viz. SDS correspondingly. The stability and characteristics 

parameters were optimized by the statistical software of Design Expert (v.8). The 

appropriate measurement time for clear detection of the stability by UV-vis 

spectrophotometer were investigated in the intervals of one day, two days, one week 

and one month after preparation. The obtained results revealed that after one day this 

inspection is not convincing for stability measurement. It was found that homogeneous 
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nanosuspension for long term application located at surfactant loading equal to twice the 

amount of nanoparticle loading (0.09%wt.) for fully covering the particles at low pH 

value (=10).  

Meanwhile, the nanofluid characteristic (thermal conductivity) was evaluated in 

accordance with stability measurement. Quadratic models have been developed for the 

four responses (zeta potential, particle size, UV absorption and thermal conductivity) 

indicated the optimum conditions is SDS dosage of 0.04%wt. at pH value of 11.4. The 

study demonstrated that high thermal conductivity obtained with almost stable nanofluid 

in low SDS concentration and high pH value. Besides, large particle size in the optimum 

point demonstrated that clustering theory could be the main reason to this phenomenon.  

The influence of horn ultrasonic duration and power were studied by volume 

concentration increment. The results revealed that the optimum point which was 

evaluated by extra runs confirmed that the amplitude of 75% for ultrasonic horn, 

duration of 20 minutes and nanoparticle loading of 0.86 %vol. is the best combination 

of factors to reach the stable and high thermally conductive fluid.  

In this thesis, the major factor for thermal conductivity enhancement in 

nanofluids was known as the formations of nano-clusters. Therefore, by optimizing the 

combination of factors with Design of Experiment software in nanofluid preparation, it 

is expected to provide better cooling solution than the conventional cooling fluids. 
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Abstrak 

Nanofluid sebagai medium kejuruteraan baru dibuktikan untuk menjadi potensi 

dalam banyak proses penyejukan dalam aplikasi kejuruteraan. Nanofluid disediakan 

oleh bersurai nanopartikel atau nanotube di dalam bendalir pelbagai. Dalam kajian ini, 

"kestabilan nanofluids" dibincangkan kerana ia mempunyai peranan utama dalam 

peningkatan pemindahan haba bagi permohonan selanjutnya mungkin. Ia juga 

merupakan kaedah penstabilan umum serta pelbagai jenis instrumen untuk pemeriksaan 

kestabilan. Pencirian, model analitikal dan teknik pengukuran nanofluids selepas 

penyediaan dengan kaedah dua langkah dikaji. 

Rendah kepekatan TiO2/Water nanofluid telah disediakan oleh kaedah Dua-

langkah dengan kestabilan membantu alat natrium Dodecyl Sulfat (SDS) sebagai 

surfactant anionik, kawalan pH dan proses ultrasonik. Kestabilan nanofluids disediakan 

telah disahkan oleh TEM, UV-vis spectrophotometer, penyebaran Cahaya Dinamik 

(DLS), potensi Zeta, pemendapan kaedah kunci kira dan menangkap gambar. Di 

samping itu, pengukuran ciri-ciri termasuk kekonduksian terma dan kelikatan telah 

dijalankan untuk mempertimbangkan kesan kestabilan kepada peningkatan pemindahan 

haba. 

Keputusan menunjukkan bahawa samping SDS untuk nanosuspension yang 

akan semakin meningkatkan kestabilan nanosuspension titania khusus untuk aplikasi 

jangka panjang. Kadar pemendapan berkurangan dengan bantuan proses ultrasonik. 

Reka bentuk komposit Pusat (CCD) dan Box Behnken reka bentuk (BBD) 

bersama-sama dengan kaedah permukaan sambutan (RSM) telah digunakan untuk 

model dan mengoptimumkan kestabilan pembolehubah iaitu operasi. SDS sepadan. 

Parameter dan ciri-ciri kestabilan telah dioptimumkan oleh perisian statistik Pakar 

Rekabentuk (v.8). Masa pengukuran yang sesuai untuk pengesanan jelas kestabilan 

dengan spektrofotometer UV-vis telah disiasat di selang satu hari, dua hari, satu minggu 
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dan satu bulan selepas penyediaan. Keputusan yang diperolehi menunjukkan bahawa 

selepas satu hari pemeriksaan ini tidak meyakinkan untuk pengukuran kestabilan. Ia 

telah mendapati bahawa nanosuspension homogen untuk aplikasi jangka panjang 

terletak di loading surfactant bersamaan dengan dua kali ganda jumlah muatan 

nanopartikel (0.09% berat) untuk meliputi sepenuhnya zarah pada nilai pH yang rendah 

(= 10). 

Sementara itu, ciri-ciri nanofluid (keberaliran haba) telah dinilai selaras dengan 

ukuran kestabilan. Kuadratik model telah dibangunkan untuk empat jawapan (zeta 

potensi, saiz zarah, penyerapan UV dan keberaliran haba) menunjukkan keadaan 

optimum adalah SDS dos 0.04% wt. pada nilai pH 11.4. Kajian ini menunjukkan 

bahawa kekonduksian haba yang tinggi diperolehi dengan nanofluid hampir stabil 

dalam kepekatan SDS yang rendah dan nilai pH yang tinggi. Selain itu, saiz zarah yang 

besar di titik optimum menunjukkan bahawa teori kelompok boleh menjadi sebab utama 

kepada fenomena ini. 

Pengaruh tempoh tanduk ultrasonik dan kuasa telah dikaji oleh kepekatan 

jumlah kenaikan. Keputusan menunjukkan bahawa titik optimum yang telah dinilai oleh 

berjalan tambahan mengesahkan bahawa amplitud 75% untuk tanduk ultrasonik, 

tempoh 20 minit dan loading nanopartikel 0.86% vol. adalah kombinasi yang terbaik 

faktor untuk mencapai cecair yang stabil dan tinggi haba konduktif. 

Dalam tesis ini, faktor utama bagi peningkatan kekonduksian terma dalam 

nanofluids dikenali sebagai pembentukan kelompok nano. Oleh itu, dengan 

mengoptimumkan gabungan faktor dengan Rekabentuk Eksperimen perisian dalam 

penyediaan nanofluid, ia dijangka untuk menyediakan penyelesaian yang lebih baik 

penyejukan daripada cecair penyejukan konvensional.  
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Chapter 1: Introduction 

1.1 Background 

According to the historical evidences, the first people who used nanofluids were 

the medieval artisans. Most likely they weren‟t aware of their unique characteristics but 

prepared a suspension of gold nanoparticles to decorate their Cathedrals‟ windows with 

a deep red color. Later in the 15
th

 century, Italian potters dispersed metallic 

nanoparticles in a liquid to make luster pottery. Finally the invention of a nanofluid with 

its unique properties came was officially announced by Choi in Argonne National 

Laboratory in 1995. He claimed that by dispersion of nanoparticles inside a base fluid, 

thermal conductivity of the fluid will surprisingly increase. Since then, many 

researchers worked on this new engineered fluid theory in which some approved Choi‟s 

theory and some rejected it (Hong, T. K. & Yang, H. S., 2005), (Kim, S. H. et al., 

2007), (He, Y. et al., 2007), (Penkavova, V. et al., 2011a).  

If the thermal transport properties of nanofluids can be utilized in industrial 

scales, this new engineered fluid may resolve many engineering dilemmas, which 

numerous manufacturers are facing in microelectronics, transportation and 

manufacturing. Advanced technologies such as microelectronic devices operating at 

high speeds, high power engines, and advanced optical devices require more efficient 

cooling systems as they undergo high thermal loads. The conventional method of 

increasing heat dissipation is to increasing the surface area exposed to conductive fluid. 

However, this method carries the disadvantage of bulky cooling systems; therefore, 

there is an urgent need for new and novel coolants with improved conductivity. The 

innovative concept of „nanofluids‟ (heat transfer fluids comprised of suspended 

nanoparticles) was proposed as a solution to these challenges. There are also various 

potential advantages in nanofluids such as better long-term stability and thermal 

conductivity compared to millimeter or even micrometer sized particle suspensions and 
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less pressure drop and erosion particularly in microchannels. Though, there are major 

application prospects in advanced thermal applications, it still remained in the early 

stages of development. Nanofluid has a major obstacle in reaching the highest potential 

discharge which is nothing but stability of nanoparticles in the basefluid. This is a 

concern shows up mostly when nanofluid is prepared by two-step method (Meibodi, M. 

E. et al., 2010a) ,(Chen, L. & Xie, H., 2010) , (Nasiri, A. et al., 2011). To overcome this 

problem, some methods are recommended, such as physical or chemical treatment such 

as addition of surfactant, surface modification of the suspended particles or applying 

powerful forces on the clustered nanoparticles. Addition of surface-active agents has 

been used to modify hydrophobic characteristics of materials and to facilitate their 

dispersion in an aqueous solution (Jin, H. et al., 2009; Penkavova, V. et al., 2011b).  

Generally nanofluids are called a type of colloidal dispersion, however there 

exist some major differences which show up the altered specifications including, basic 

processing steps, particle size, phase, major physical properties and main diversities in 

applications. Nano particles‟ dimension ranges between 1 and 100 nm, whereas colloids 

particle sizes are in the range of 10–1000 nm. Remarkable thermal phenomena can be 

observed merely with particles in size range smaller than 10 nm. Moreover colloidal 

dispersions can form a suspension, an emulsion, or a foam; while, a nanoparticle in 

nanofluids is a solid, which forms only a suspension. Furthermore, differences in 

preparation methods and applications prove these discrepancies. 

Today‟s most challenging confronts of scientists are environmental issues 

including reduction of environmental pollution, improvement of the quality of life and 

elimination of impurities. Hence, researchers have started to develop the materials that 

can be combined with natural resources such as TiO2, vulcanized cadmium, zinc oxide 

and tungsten oxide. Within the scope of green materials, TiO2 is the most stable and 

least toxic substance which is durable and cheap too, and these characteristics 
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encourage its extensive use in science and industries (Chang, H. et al., 2007). This 

substance in the form of nanoparticles can make new products for solar water heaters, 

micro-reactors, drug delivery and many other applications. Therefore, different tests 

were conducted to study the stability and heat transfer of the nano-suspensions in areas 

of refrigerants (Naphon, P. et al., 2009; Peng, H. et al., 2011), pool boiling (Kim, H. & 

Kim, M., 2009; Truong, B. et al., 2010), conduction (Nield, D. A. & Kuznetsov, A. V., 

2010; Quaresma, J. o. N. N. et al., 2010) and convective heat transfer (Godson, L. et al., 

2010; Ozerinc, S. et al., 2010). Recently, many researchers worked on titania 

nanoparticles for nanofluids preparation. He et al. (2007) stated that addition of TiO2 

into the base liquid enhances the thermal conduction and this effect increases with 

increasing particle concentration and decreasing particle (agglomerate) size. Increasing 

agglomerate size and particle concentration will directly increase the viscosity. In 

addition, results from (Kim, S. H. et al., 2007) showed the linear increment of effective 

thermal conductivity with decreasing the particle size, but no existing empirical or 

theoretical correlation can explain the behavior. It is also demonstrated that high-power 

laser irradiation
 
can lead to substantial enhancement in the effective thermal 

conductivity
 
although only a small fraction of the particles is fragmented. Yoo et al. 

(2007) claimed that titania nanofluid showed a large enhancement of thermal 

conductivity compared with their base fluids, which exceeds the theoretical expectation 

of a two-component mixture system. On the contrary, Zhang et al. (2007) could not 

correctly explain the unexpected enhancement of effective thermal conductivity TiO2 

nanofluid. Chung et al. (2009) worked on the stability of the ZnO/water nanofluid under 

various ultrasonic conditions. They proposed that the sedimentation behavior of 

nanofluids is proportional to the volume fraction and the ultrasonic power. 

1.2 Statement of Research Objectives 

This research is focused on the following objectives:  
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(1) To examine the influence of homogenization methods on stability and thermal 

conductivity of titania nanofluid  

(2) To verify the suitability of UV-vis spectrophotometer for measuring stability in 

short and long term 

(3) To determine the stability of nanofuids by means of zeta potential, UV 

absorbance and particle size  

(4) To evaluate the influence of nanoparticle volume concentration, duration and 

power of ultrasonic on the stability and thermal conductivity of nanofluid using design 

of experiment 

1.3 Structure of thesis 

The dissertation is organized in the following manner. Chapter 2 introduces the 

nanofluid history, a complete review of literature on preparation methods, importance of 

the stability of nanofluid, various stabilization techniques, different stability monitoring 

equipments and titania nanofluid characteristics. Chapter 3 presents the experimental 

techniques for different stability inspection and characteristic measurement and a brief 

theory about the optimization software used to analyze the results. Chapter 4 discusses 

about the results of the experiments and responses of the Design of Experiment (DOE) 

software. Conclusions and recommendations for future works are stated in Chapter 5.  
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Chapter 2: Literature review 

2.1 Introduction 

One of the most significant scientific challenges in the industrial area is cooling, 

which applies to many diverse productions, including microelectronics, transportation 

and manufacturing. Technological developments such as microelectronic devices 

operating at high speeds, high-power engines, and brighter optical devices producing 

high thermal loads, require advanced cooling systems.  

Maxwell was the first presenter of a theoretical basis to predict a suspension‟s 

effective thermal conductivity about 140 years ago (1873) and his theory was applied 

from millimeter to micrometer sized particles suspensions. However, Choi and Eastman 

(1995) introduced the novel concept of nanofluids by presenting the unique properties 

of nanofluids in the annual meeting of American Society of Mechanical Engineering in 

1995. Goldstein et al. added the condition that the particles must be in colloidal 

suspension. Choi and his colleagues carried out experiments on heat transport in 

systems with CuO nanoparticles in water, and Al2O3 particles in ethylene glycol and 

water. They found that the particles improve the heat transport by as much as 20%, and 

they interpreted their result in terms of an improved thermal conductivity (k/k0), which 

they named it effective thermal conductivity (Goldstein, R. J. et al., 2000) . 

A nanofluid is a fluid produced by dispersion of metallic or nonmetallic 

nanoparticles or nanofibers with a typical size of less than 100 nm in a liquid. 

Nanofluids have attracted huge interest lately because of their greatly enhanced thermal 

properties. For instance, experiments showed an increase in thermal conductivity by 

40% and 150%, with dispersion of less than 1% volume fraction of Cu nanoparticles or 

carbon nanotubes in ethylene glycol or oil, respectively (Keblinski, P. et al., 2005). 

During the past decade, some researchers have reported the heat transfer and flow 

characteristics of different nanofluids, namely: Trisaksri and Wongwises (2007), Beck 
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(2008), Wang and Mujumdar (2007), Duangthongsuk and Wongwises (2007), Godson 

et al. ( 2010), Li et al. (2009) and Wen et al. (2009), Leong et al. (2010). However, prior 

to utilizing nanofluids for heat transfer, significant knowledge about their 

thermophysical properties are required especially their thermal conductivity and 

viscosity. Many researchers have measured the thermophysical properties of nanofluids 

while many others used well-known predictive correlations. Their works have been both 

experimental and theoretical.  

This project focuses on the stability of nanofluids and its influence on thermal 

conductivity and heat transfer enhancement, which is critical to eventual utilization of 

nanofluid in practice. This subject was put into consideration recently since different 

investigators reach different results with the same nanoparticles. Therefore, it was 

concluded that stability measurement and investigation for each nanofluid preparation 

may be leading to a standard way of preparation and unified data.  

Theoretical attempts made to explain the associated characteristic mechanisms 

are also outlined. In addition to these, the measurement methods proposed for 

determination of stability are summarized; thermophysical property predictions of the 

models are compared with experimental findings, and significant discrepancies are 

specified (Duangthongsuk, W. & Wongwises, S., 2010a). 

2.2 Nanofluid preparation methods 

Preparing a stable and durable nanofluid is a prerequisite to optimizing its 

thermal properties. Therefore, many combinations of material might be used for 

particular applications, namely: nanoparticles of metals, oxides, nitrides, metal carbides, 

and other nonmetals with or without surfactant molecules which can be dispersed into 

fluids such as water, ethylene glycol, or oils (Keblinski, P. et al., 2005). In the stationary 

state, the sedimentation velocity of small spherical particles in a liquid follows the 

Stokes law (Hiemenz, P. C. & Dekker, M., 1986): 
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         (2-1) 

where V is the particle‟s sedimentation velocity; R is the spherical particle‟s 

radius; µ is the liquid medium viscosity;  and  are the particle and the liquid 

medium density, respectively and g is the acceleration of gravity. This equation reveals 

a balance of the gravity, buoyancy force, and viscous drag that are acting on the 

suspended nanoparticles. According to Eq. (2-1), the following measures can be taken 

to decrease the speed of nanoparticles‟ sedimentation in nanofluids, and therefore to 

produce an improvement in the stability of the nanofluids: (1) reducing R, the 

nanoparticles size; (2) increasing µ, the base fluid viscosity and (3) lessening the 

difference of density between the nanoparticles and the base fluid . Clearly 

reducing the particle size should remarkably decrease the sedimentation speed of the 

nanoparticles and improve the stability of nanofluids, since V is proportional to the 

square of R. According to the theory in colloid chemistry, when the size of particle 

decreases to a critical size, Rc, no sedimentation will take place because of the 

Brownian motion of nanoparticles (diffusion). However, smaller nanoparticles have a 

higher surface energy, increasing the possibility of the nanoparticle aggregation. Thus, 

the stable nanofluids preparation strongly link up with applying smaller nanoparticles to 

prevent aggregation (Wu, D. et al., 2009). 

 Two different techniques can be applied to produce nanofluids namely: single-

step and two-step method.  

2.2.1 Two step technique 

In this method, dry nanoparticles/nanotubes are first produced, and then they are 

dispersed in a suitable liquid host, but as nanoparticles have a high surface energy, 

aggregation and clustering are unavoidable and will appear easily. Afterward, the 

particles will clog and sediment at the bottom of the container. Thus, making a 

homogeneous dispersion by two step method remains a challenge. However, there exist 
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some techniques to minimize this problem, such as high shear and ultrasound. 

Therefore, we will discuss different methods of making a stable nanofluid in the next 

section. Nanofluids containing oxide particles and carbon nanotubes are produced by 

this method. This method works well for oxide nanoparticles and is especially attractive 

for the industry due to its simple preparation method. But its disadvantage due to 

quickly agglomerated particles brings about many challenges. If nanoparticles disperse 

only partially, dispersion is poor and sedimentation happens. Therefore, a high volume 

concentration is needed to increase the heat transfer (10 times of single step) (Das, S. K. 

et al., 2007) and accordingly the cost increase. The two-step method is useful for 

application with particle concentrations greater than 20 %vol. but it is less successful 

with metal nanoparticles. However, some surface treated nanoparticles showed 

excellent dispersion (Swanson, E. J. et al., 2008). The first materials tried for nanofluid 

preparation were oxide particles, mainly because they are easy to make and chemically 

stable in solution (Das, S. K. et al., 2006).  

2.2.2 Single step technique 

In this method nanoparticle manufacturing and nanofluid preparation are done 

concurrently. The single-step method is a process combining the preparation of 

nanoparticles with the synthesis of nanofluids, for which the nanoparticles are directly 

prepared by physical vapor deposition (PVD) technique or a liquid chemical method 

(condensing nanophase powders from the vapor phase directly into a flowing low-

vapor–pressure fluid is called VEROS).  

In this method drying, storage, transportation, and dispersion of nanoparticles 

are avoided, so the agglomeration of nanoparticles is minimized and the stability of the 

nanofluids is increased. A disadvantage of this method is that it is impossible to scale it 

up for great industrial functions and is applicable only for low vapor pressure host 

fluids. This limits the application of the method (Das, S. K. et al., 2007; Goldstein, R. J. 
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et al., 2000; Keblinski, P. et al., 2005; Li, Y. et al., 2009; Wang, X.-Q. & Mujumdar, A. 

S., 2007). Recently, Chang et al. (2007) prepared nanofluids of TiO2 nanoparticles 

dispersed in water by a one-step chemical method using a high pressure homogenizer. 

This method is called modified magnetron sputtering. The schematic of the apparatus 

can be seen in Figure 2-1.  

 

Figure 2- 1 Ultrasonic-aided submerged arc nanoparticle synthesis system to produce 

TiO2 nanofluid (Chang, H. et al., 2007) 

2.3 Importance of the stability of nanofluid 

Preparing a homogeneous suspension is still a technical challenge as strong van 

der Waals interactions between nanoparticles always favors the formation of aggregates. 

To obtain stable nanofluids, some methods are recommended, such as physical or 

chemical treatment. They are listed as the addition of surfactant, surface modification of 

the suspended particles or application of high-power forces on the clustered 

nanoparticles. Spreading surface- active agents have been used to modify hydrophobic 

materials to enable dispersion in an aqueous solution (Hwang, Y. J. et al., 2006). 

Otherwise clogging, aggregation and sedimentation happen and cause deterioration of 

suspension characteristics like thermal conductivity, viscosity and increasing specific 

heat. There exists a theory that clustering and aggregation is one of the main features in 
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stability and extraordinary enhancement in thermal conductivity of nanofluids (Evans, 

W. et al., 2008), although this theory may be highly specific to the high aspect ratio 

nanoparticles, including single wall nanotubes. Philip et al. (2007) and Evans et al. 

(2008) claimed that the high aspect ratio structure of the fractal-like aggregates is a key 

factor allowing rapid heat flow over large distances. They also stated that well dispersed 

composites show low thermal conductivity enhancement but composites with fractal 

aggregates show significant enhancements, even with considerable interfacial 

resistance. Gharagozloo and Goodson (2010) also measured fractal dimensions for the 

1%, 3% and 5% volume concentrations of Al2O3 in H2O and concluded that aggregation 

is a more likely cause for the measured enhancements of nanofluid. On the contrary, 

another theory shows that agglomeration and clustering reduce stability and thermal 

conductivity improvement. Hong et al. (2006) claimed that ultrasonicated Fe nanofluids, 

due to their broken clusters, got enhancement in thermal conductivity although this 

enhancement reduced as a function of elapsed time after production. Therefore, for 

classification of the stability theory more experimental works are needed to clarify the 

role of aggregation in conductivity enhancement. But generally, to obtain a high quality 

suspension, small particles have to meet these two principles: (1) diffusion principle: 

particles are scattered by a liquid medium and dispersed into the liquid medium. (2) 

Zeta potential principle: the zeta potential absolute value among particles must be as 

large as possible, making a common repulsive force between the particles (Chang, H. et 

al., 2006). 

According to the literature, there are three effective tactics used to manage 

stability of suspension against sedimentation of nanoparticles. Some of the researchers 

applied all of these methods to gain better stability (Pantzali, M. N., Kanaris, A. G., et 

al., 2009; Wang, X.-j. et al., 2009; Zhu, D. et al., 2009) but others just applied one 

(Chandrasekar, M. et al., 2010) or two techniques (Assael, M. J. et al., 2005; Meibodi, 
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M. E. et al., 2010a; Wei, X. et al., 2010) with satisfying results. There is no standard to 

recognize the superlative mix up of combining methods. This area requires more 

experiments to be clarified. Homogenization processes are summarized below. 

2.3.1 Surfactant or activator adding 

This is one of the general methods to avoid sedimentation of nanoparticles. 

Addition of surfactant can improve the stability of nanoparticles in aqueous 

suspensions. The reason is that the hydrophobic surfaces of nanoparticles/ nanotubes are 

modified to become hydrophilic and vice versa for non-aqueous liquids. A repulsion 

force between suspended particles is caused by the zeta potential which will rise due to 

the surface charge of the particles suspended in the base fluid (Hwang, Y. et al., 2007; 

Jin, H. et al., 2009). However, care should be taken to apply enough surfactant as 

inadequate surfactant cannot make a sufficient coating that will persuade electrostatic 

repulsion and compensate the van der Waals attractions (Jiang, L. et al., 2003). The 

effect of surfactant on aggregated particle size distribution can be demonstrated as 

shown in Figure 2-3. Popular surfactants that have been used in literature can be listed 

as sodium dodecyl sulfate (SDS) (Hwang, Y. et al., 2008; Hwang, Y. et al., 2007; Jiang, 

L. et al., 2003; Lee, K. et al., 2009; Wang, H. & Sen, M., 2008; Zhu, D. et al., 2009) 

Lee, 2009) , salt and Oleic Acid (Hwang, Y. et al., 2008; Yu, W. et al., 2010), cetyl 

trimethyl ammonium bromide (CTAB) (Assael, M. J. et al., 2005), Dodecyl 

trimethylammonium bromide (DTAB) and sodium octanoate (SOCT) (Madni, I. et al., 

2010), hexadecyltrimethylammoniumbromide (HCTAB), polyvinylpyrrolidone (PVP) 

(Sato, M. et al., 2009; Zhu, H. et al., 2007) and Gum Arabic (Lee, K. et al., 2009). 

Choosing the right surfactant is the most important part of the procedure. Surfactants are 

categorized as anionic, cationic or non-ionic (Li, X. et al., 2007). 
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Figure 2- 2 Schematic diagram of the high-pressure homogenizer for producing 

nanofluids (Chang, H. et al., 2007) 

 

Figure 2- 3 Particle size distributions of nano-suspensions. (a) Al2O3–H2O without 

SDBS, (b) Al2O3–H2O with SDBS, (c) Cu–H2O without SDBS and (d) Cu–H2O with 

SDBS Concentration of nanoparticles and SDBS surfactant are 0.05% weight fraction, 

respectively (Wang, X.-j. et al., 2009) 

The disadvantage of addition of surfactants is the fact that the bonds between 

nanoparticles and surfactant may get damaged/break in temperatures above 60°C 

(Assael, M. J. et al., 2005; Wen, D. et al., 2009; Wu, D. et al., 2009),(Murshed, S.M.S. 
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et al., 2008). Consequently, the nanofluid will lose its stability and the sedimentation of 

nanoparticles will occur (Wang, X.-Q. & Mujumdar, A. S., 2007).  

2.3.2 pH control (surface chemical effect) 

The stability of an aqueous nanofluid directly links to its electrokinetic 

properties. Through a high surface charge density, strong repulsive forces can stabilize a 

well-dispersed suspension (Chang, H. et al., 2006; Chou, J.-C. & Liao, L. P., 2005; 

Fovet, Y. et al., 2001; Hwang, K. S. et al., 2009; Zhu, D. et al., 2009). Xie et al. (2003) 

showed that by simple acid treatment a carbon nanotube suspension in water gained a 

good stability. This was caused by a hydrophobic-to-hydrophilic conversion of the 

surface nature due to the generation of a hydroxyl group. The isoelectric point (IEP) is 

the concentration of potential controlling ions at which the zeta potential is zero. Thus, 

at the IEP, the surface charge density equals the charge density, which is the start point 

of the diffuse layer. Therefore, the charge density in this layer is zero. Critical to 

nanoparticle nucleation and stabilization in solution is that the repulsive energy is 

smaller for small particles, so a larger zeta potential is required for suspension stability 

(Chang, H. et al., 2007). As the pH of the solution departs from the IEP of particles the 

colloidal particles get more stable and ultimately the thermal conductivity of the fluid 

improves. The surface charge state is a basic feature which is mainly responsible for 

increasing thermal conductivity of the nanofluids (Jin, H. et al., 2009; Lee, D. et al., 

2006). But in some experiments it has been shown that the particles‟ shape can be 

changed by varying the pH (Hadjov, K. B., 2009; Wei, X. et al., 2009). In a liquid 

suspension, particles attract or repel each other. This interaction depends on the distance 

between particles and the total interface energy Etot that is the sum of the van der Waals 

attraction EA and the electrostatic repulsion Eel between them. The Eel among two 

charged particles with the surface potentials  and  is approximated by the 

DLVO theory: 
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 (2-2) 

where r is the radius of particles, x is a interparticle surface-to-surface distance, 

and the other symbols have their conventional meanings. 

It is noticeable that higher potentials (Ψd or ζ) lead to a bigger potential barrier 

for agglomeration. At the 0.3 %vol. dose of CuO nanoparticles in distilled water, which 

the pH for the Point of Zero Charge (PZC) is about pH 8.5-9.5, the interparticle distance 

is about 100 nm for mobility-equivalent spherical particles. In this condition, the second 

term in the bracket of above equation is negligible compared to the first. Thus, the 

repulsion energy of the same-sized particles increases approximately in proportion to ζ
2
. 

The attraction energy between the same particles is given by the Hamaker 

equation: EA = -A132r/(12x). The Hamaker constant A132 of metal oxide is typically on 

the order of 10
-20

 J. With the above equation, the Hamaker equation, and the estimated 

Ψd, Etot is calculated as a function of x at different pHs as shown in Figure 2-4. In this 

condition, the repulsion barrier gets larger than the attraction as pH moves from PZC, 

which makes the colloids more stable. At pH 8 or 10 when Ψ is small, the repulsion 

barrier disappears, and particles get subjected only to attraction; Strong particle 

agglomeration is expected in that case. Here, we need to quantify the suspension 

stability in terms of collision efficiency α that is responsible for colloidal particle 

growth. The α, a reciprocal value of stability coefficient, W, is related to constant rate of 

aggregation, k = α kdiff = kdiff / W. 

The kdiff represents the rate constant of the coagulation between uncharged 

particles. Then a general relation of stability coefficient W to total interaction energy Etot 

can be derived (Lee, D. et al., 2006). 

        (2-3) 

For example, as the pH of the nanofluid goes far from the isoelectric point, the 

surface charge increases by applying SDBS surfactant in Cu–H2O nanofluid. Since 
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more frequent attacks occur to the surface hydroxyl and phenyl sulfonic group by 

potential-determining ions (H
+
, OH

-
 and phenyl sulfonic group), zeta potential and the 

colloidal particles increase. Subsequently, the suspension gets more stable and 

eventually changes the thermal conductivity of the fluid (Li, X. F. et al., 2008). 

Lee et al. (2009) also worked on different pH of Al2O3 nanofluids. The 

experiments indicated that when the nanofluid had a pH of 1.7, the agglomerated 

particle size was reduced by 18% and when the nanofluid had a pH of 7.66, the 

agglomeration size was increased by 51%. More particles aggregated in pH of 7.66 

because of reduction in electric repulsion force. When Al2O3 particles are immersed in 

water, hydroxyl groups (–OH) form at the surface of the Al2O3 particle. The relevant 

reactions depend on the solution pH. When the pH of the solution is lower than the 

PZC, the hydroxyl groups react with (H
+
) from water which leads to a positively 

charged surface. Alternatively, when the pH of the solution is higher than the PZC, the 

hydroxyl groups react with (–OH) from water and create a negatively charged surface 

(Peterson, G. P. & Li, C. H., 2006). In addition, as it is demonstrated in Table 2-1, the 

particle sizes differ when the pH of nano-suspensions change (Lee, K. et al., 2009).  

The Optimized pH is different for different nanoparticles. For example, the 

proper pH for alumina is around 8 while for copper and graphite nanoparticles are 9.5 

(Wang, X.-j. et al., 2009) and about 2.0 respectively. The pH for the point of zero 

charge also changes by temperature modification as it is illustrated in Table 2-2 (Chou, 

J.-C. & Liao, L. P., 2005). 
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Figure 2- 4 The interaction potentials at various pHs as a function of interparticle 

distance (Lee, D. et al., 2006) 

Table 2- 1 Particle size change of Al2O3/Distilled water nanofluids with two pH 

values (Lee, K. et al., 2009) 

Nanofluid Al2O3/DI Al2O3/DI/PBS /HCl Al2O3/DI/PBS 

pH  pH = 1.7 pH = 7.66 

Mean particle size(nm) 170 139 1033 

Phosphate Buffered Saline contains sodium chloride, sodium phosphate and potassium phosphate and 

helps to maintain a constant pH 

Table 2- 2 Actual values of pHpzc of the TiO2 between 5 and 55 °C (Chou, J.-C. & 

Liao, L. P., 2005) 

Temperature (°C) PHPZC 

5 6.62 

15 6.39 

25 6.17 

35 5.97 

45 5.78 

55 5.61 

2.3.3 Ultrasonic vibration 

All the mentioned techniques are aimed to change the surface properties of 

suspended nanoparticles and to suppress particle cluster formation, with the purpose of 
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attaining stable suspensions. Ultrasonic bath, processor and homogenizer are powerful 

tools for breaking down the agglomerations in comparison with the others tools like 

magnetic and high shear stirrer as experienced by some researchers (Hwang, Y. et al., 

2008). However, occasionally after passing the optimized duration of the process, it will 

cause more serious problems in agglomeration and clogging resulting in fast 

sedimentation. Furthermore, there is a new method to get stable suspensions proposed 

by Hwang et al. (2008) which consists of two micro-channels, dividing a liquid stream 

into two streams. Both divided liquid streams are then recombined in a reacting 

chamber. Breaking the clusters of nanoparticles was studied using the high energy of 

cavitations (Munson, B. R. et al., 1998). This work was conducted for Carbon Black 

with water and silver with silicon oil nanofluids. When the suspension contacts with the 

interior walls of the interaction chamber, it will flow through the microchannel. 

Therefore, the flow velocity of the suspension through the microchannel should be 

increased according to Bernoulli‟s theorem, and concurrently cavitations extensively 

occur. In this fast flow region, particle clusters must be broken down due to a 

combination of various mechanisms, including (i) strong and irregular shock on the wall 

inside the interaction chamber, (ii) microbubbles formed by cavitations‟-induced 

exploding energy, and (iii) high shear rate of flow. This leads to desired homogeneous 

suspensions with fewer aggregated particles at high-pressure. This procedure can be 

repeated three times to achieve the desired homogeneous nanoparticle distribution in the 

base fluids. An ultrasonic disruptor is a more generally accessible apparatus than the 

one prepared by Hwang et al. (2008). Many researchers used this technique to obtain a 

stable nanosuspension. In some cases, they mixed different methods of stabilization to 

fine-tune the results. A summary of investigators who reached diverse duration of 

stability by using ultrasonic methods is given in Table 2-3. It is noticeable that typically 

it is rare to maintain nanofluids (synthesized by the traditional one-step and two-step 
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methods) in a stable homogeneous state for more than 24 h (Peterson, G. P. & Li, C. H., 

2006) we gathered.  

Table 2- 3 Summary of different ultrasonic processes 

Investigator nanoparticle 
Base 

fluid 
Concentration 

Stability 

process 
Duration Sedimentation 

(Oh, D.-W. et 

al., 2008) 

Al2O3 

(45nm) 

DW 

EG 

1-5.5 % vol. 

1-8 % vol. 

Ultrasonic 

cleaner 
15 Hrs 

Minutes after 

preparation 

(Patel, H. et 

al., 2005) 

Al2O3 

(11nm) 
DW 0.8 % vol. Ultrasonic 6 Hrs N/A 

(Das, K. et al., 

2003) 

Al2O3 

(38.4nm) 

CuO 

(28.6nm) 

DW 

 

1-4 % vol. 

1-4 % vol. 
Ultrasonic 11 Hrs After 12 hours 

(Asirvatham, 

L. G. et al., 

2009) 

CuO 

(10nm) 
DI 0.003% vol. Ultrasonic 2–7 Hrs N/A 

(Hwang, Y. et 

al., 2007) 

MWCNT 

(10-50×10-

30nm) 

DI+SDS 

Oil+SDS 
0-1.6% vol. 

N/A 

 

N/A 

 

N/A 

 

 

 

 

 

 

 

 

 

 

 

 

Fullerene 

(10nm) 

 

DI+SDS 

Oil+SDS 
0-1.6% vol. N/A N/A N/A 

Mixed 

Fullerene 

(10nm) 

C70 and C60 

EG+SDS 

Oil+SDS 

DI+SDS 

0-1.6% vol. N/A N/A N/A 

CuO 

(33nm) 

EG+SDS 

DI+SDS 
0-1.6% vol. N/A N/A N/A 

SiO2 

(12nm) 
DI+SDS 0-1.6% vol. N/A N/A N/A 

(Wang, X.-j. et 

al., 2009) 

Al2O3 

(25nm) 

 

Cu 

(25nm) 

DW+SDBS 

DW 

DW+SDBS 

DW 

0-0.08 

(N.P)%wt. 

0-0.14%wt 

(SDBS) 

Ultrasonic, 

pH control 

and 

Surfactant 

adding 

15 min 

1 Hr 

15 min 

1 Hr 

N/A 

 

(Duangthongsuk

, W. & 

Wongwises, S.) 

TiO2 

(21nm) 
DW 0-1.2% vol Ultrasonic 2Hrs N/A 
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Continued Table 2- 3 Summary of different ultrasonic processes 

(Chen, H. et al., 

2009) 

TNT 

(10×100nm

) 

EG (0.5-8) %wt 
Ultrasonic 

bath 
48 Hrs 

More than 2 

months 

stability 

(Hong, K. S. et 

al., 2006) 

Fe 

(10nm) 
EG 

(0.2-0.55)% 

vol. 

Ultrasonic 

cell 

disrupter 

10 to 

70 min 

Optimized 

30 min 

(Lee, D. et al., 

2006) 

CuO 

(25nm) 
DW 0.3% vol. N/A  N/A 

(Li, X. F. et al., 

2008) 

CuO 

(25nm) 
DW+SDBS 

0.1%wt. 

 

 

Ultrasonic 

vibrator , 

pH control 

and 

Surfactant 

addition 

1Hr N/A 

(Zhu, H. et al., 

2007) 

Graphite 

(nm) 
DW+PVP 0.5% wt. 

Ultrasonic 

vibration 
30 min N/A 

(Yu, W. et al., 

2010) 

Fe3O4 

(15nm) 

Kerosene+ 

oleic acid 
0-1.2% vol. Ultrasonic 

0-80 

min 
stable 

(Chung, S. J. et 

al., 2009) 

ZnO 

(20nm) 

(40-100nm) 

ammonium 

poly 

methacrylate 

+DI 

0.02% vol. 
Horn 

Ultrasonic 

0-60 

min 

Stable over 

10000 h 

(Lee, K. et al., 

2009) 

Al2O3 

(40-50nm) 
DW 1% vol. 

Horn 

Ultrasonic 

Ultrasonic 

Bath 

0-30 

min 

8Hrs 

Particle size 

reduction 

(Hwang, Y. J. et 

al., 2006) 

MWCNT 

(10-

30nm×10-

50µm) 

 

SiO2 

(7nm) 

CuO 

(35.4nm) 

CuO 

(35.4nm) 

DW+SDS 

 

 

DW 

DW 

EG 

0-1% vol. 
Ultrasonic 

disruptor 
2Hrs 

Surfactant 

adding avoid 

entanglement 

 

 

Stable 

 

Stable 

 

Stable 

 

2.4 Stability inspection instruments 

There are some instruments and methods that can rank the relative stability of 

nanosuspension. The list includes UV–vis spectrophotometer, zeta potential, sediment 

photograph capturing, TEM (Transmission Electron Microscopy) and SEM (Scanning 

Electron Microscope), light scattering, three omega and sedimentation balance method. 
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Therefore, the rate or percentage of sedimentation will be determined by analyzing 

gathered data. 

2.4.1 UV–vis spectrophotometer 

Even though the stability of a nanofluid is the key issue for its application, there 

are limited studies on estimating the stability of a suspension. Ultra Violet–visible 

spectrophotometer (UV–vis) measurements have been used to quantitatively 

characterize colloidal stability of the dispersions. One of the most striking features of 

this apparatus is its applicability for all base fluids, whereas zeta potential analysis has 

restrictions for the viscosity of the host fluid. A UV–vis spectrophotometer exploits the 

fact that the intensity of the light changes due to absorption and scattering of the light 

beamed through a fluid. At 200–900 nm wavelengths, the UV–vis spectrophotometer 

measures the absorption by liquid and is used to analyze various dispersions in the fluid 

(Lee, K. et al., 2009). Typically, suspension stability is determined by measuring the 

sediment volume versus the sedimentation time. However, this method is unsuitable for 

nanofluid dispersions with a high concentration and especially for CNT solutions. These 

dispersions are too dark to differentiate the sediment visibly. Jiang et al. (2003) were the 

first investigators who proposed sedimentation estimation using UV–vis 

spectrophotometer for nano suspensions. In this method, first step is to find the peak 

absorbance of the dispersed nanoparticles at very dilute suspension by scanning. As the 

concentration of suspension has a linear relation with absorbance, preparing a standard 

to fit a linear relation to at least three different dilute concentrations (0.01–0.03%wt.) 

will be the next step in this method. Relative stability measurement will be followed by 

preparing the desired concentration of nanofluid and put aside for a couple of days. 

Whenever it is needed to check the relative stability, the supernatant concentration will 

be measured by UV–vis spectrophotometer and the concentration can be plotted against 

time. This method was used by Refs. (Hwang, Y. et al., 2007; Kim, S. H. et al., 2007; 
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Lee, K. et al., 2009; Li, X. F. et al., 2006). Table 2-4 presents a summary of different 

nanofluid peak absorptions by UV–vis spectrophotometer. 

Table 2- 4 Summary of different nanofluids peak absorption measured by UV-vis 

spectrophotometer 

Nanoparticle Base fluid Peak wavelength Investigator 

MWCNT and Fullerene Oil 397 (Hwang, Y. et al., 2007) 

Aligned CNT DW 210 (Liu, Z.-Q. et al., 2008) 

CNT DW 253 (Jiang, L. et al., 2003) 

TiO2 DW 280-400nm (Chang, H. et al., 2007) 

Cu DW 270 (Chang, H. et al., 2006) 

CuO DW 268 (Chang, H. et al., 2006) 

Ag DW 410 (Sato, M. et al., 2009) 

According to Mie‟s theory (Kreibig, U. & Genzel, L., 1985), the surface 

plasmon absorption and the plasmon bandwidth depend on the size of the metallic 

particles in the solution. Consequently, the peak value represents the most populated 

nanoparticle size in the solution. Additionally, by increasing the particle size especially, 

those which are smaller than 20 nm, the bandwidth decreases. Contrariwise, the 

bandwidth of the surface Plasmon for the particles larger than 20 nm, increases with the 

particle size (Kreibig, U. & Vollmer, M., 1995; Link, S. & El-Sayed, M. A., 2003).  

Table 2- 5 Volumes of gold nanofluid in different synthesis conditions (Tsai, C. Y. 

et al., 2004) 

Condition Basefluid 

Na3 

citrate 

(ml) 

Tannic 

acid 

(ml) 

HAuCl4 

(ml) 

Particle 

size 

(nm) 

Peak 

wavelength 

A DW 0.2 2.5 3 21.3 528 

B DW 0.2 5 6 43.7 530.5 

C DW 3 0.1 1 8 568.5 

E DW 3 2.5 6 9.3 647 

G DW 3 0.1 3 15.6 721.5 
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The local peak in the UV-vis spectra shifts towards longer wavelength as the 

particle size increases (Tsai, C. Y. et al., 2004). Tsai et al. (2004) have conducted a 

series of tests on this theory. The sizes of Au nanoparticles from different preparation 

methods measured by TEM and peak wavelength are summarized in Table 2-5. 

2.4.2 Zeta potential test  

Zeta potential measurement is one of the most critical tests to validate the 

quality of nanofluids‟ stability by studying their electrophoretic behavior (Lee, D. et al., 

2006; Vadasz, P., 2006). According to the electrostatic stabilization theory, the 

electrostatic repulsions between the particles increase if there exists a high absolute 

value of zeta potential, which then leads to highly stable suspensions (Zhu, H. et al., 

2007). 

Table 2- 6 Zeta potential and associated suspension stability (Vandsburger, L., 

2009) 

Ζeta potential 

(absolute value [mV]) 
Stability 

0 Little or no stability 

15 Some stability but settling lightly 

30 Moderate stability 

45 Good stability, possible settling 

60 Very good stability, little settling likely 

The experiments are conducted by using a 0.05% weight fraction of 

nanosuspension to measure zeta potential and particle size (Wang, X.-j. et al., 2009). 

The relationship between suspension stability and zeta-potential arises from the mutual 

repulsion that occurs between similarly charged particles. For this reason, particles with 

a high surface charge tend not to agglomerate, since contact is opposed. Typically 

accepted zeta-potential values are summarized in Table 2-6. Generally, a suspension 

with a measured zeta-potential above 30 mV (absolute value) is considered to have 
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good stability (Lee, J.-H. et al., 2008a; Vandsburger, L., 2009), this is one of the most 

common methods among the researchers to determine the stability as mentioned above.  

2.4.3 Sediment photograph capturing 

A primary method to examine sedimentation of nanofluids is photo capturing. 

After preparation, a portion of the suspension is put aside to capture photos in certain 

time intervals. By comparing these photos of nano suspensions, sedimentation of 

suspension will be determined. Different sets of nanofluid preparation for the photo 

capturing are illustrated in Figs.2-5 to Fig. 2-7. Clearly variable pH, viscosity and 

weight fractions for Al2O3 and Cu and Cu2O were investigated after seven days and 24h 

by photo capturing. 

 

Figure 2- 5 Variation of the nanofluids viscosity with pH and nanoparticles weight 

fraction at temperature 303 K: (a) the variation of the viscosity with pH, (b) the 

variation of the viscosity with nanoparticles concentration, (c) the sediment photograph 

of Al2O3-H2O suspensions after depositing for seven days, (d) the sediment photograph 

of Cu-H2O suspensions after depositing for seven days (Wang, H. & Sen, M., 2008) 
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Figure 2- 6 Octahedral-Cu2O nanofluids 24 h after their preparation (CuSO4 molar 

concentration from 0.0025 mol/L to 0.002 mol/L)(Wei, X. et al., 2009) 

 

Figure 2- 7 Spherical-Cu2O nanofluids 24 h after their preparation (CuSO4 molar 

concentration from 0.01 mol/L to 0.05 mol/L)(Wei, X. et al., 2009) 

2.4.4 TEM (Transmission Electron Microscope) and SEM (Scanning 

Electron Microscope) 

TEM and SEM are very useful tools to distinguish the shape, size and 

distribution of nanoparticles. Nevertheless, it cannot present the real situation of 

nanoparticles in nanofluids when dried samples are needed. Cryogenic electron 

microscopy (Cryo-TEM, Cryo-SEM) might provide a method to resolve this problem if 

the microstructure of nanofluids is not changed during cryoation. Nanoparticles 

aggregation structure in nanofluids could be directly monitored by this instrument as 

well (Wu, D. et al., 2009). 
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The following procedure is attributed to the standard SEM/TEM micrographs of 

nanoparticles (Liu, M. S. et al., 2006): 

(1) Obtain stable nanofluid in solution form. 

(2) Place one drop of the solution on sticky tape of top surface of the SEM 

specimen holder (carbon grid in the case of TEM). 

(3) Heat in the vacuum oven to dry the liquid drop or leave to dry naturally. 

(4) Obtain solid particle. 

(5) Place the sample in the vacuum chamber of SEM/TEM for electron 

microscopy. 

The stable nanofluids have different shapes after preparation as are shown in TEM and 

SEM images in Figs. 2-8 until 2–13. 

 

Figure 2- 8 TEM pictures of (left) Cu nanofluids , (middle) CuO nanoparticles and 

(right) alkanethiol terminated AuPd colloidal particles (Keblinski, P. et al., 2005) 

 

Figure 2- 9 SEM of carbon nanotube a) single-walled carbon nanotubes obtained by 

arc discharge and (b) multiwalled carbon nanotubes obtained by chemical vapor 

deposition growth (Keblinski, P. et al., 2005) 
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Figure 2- 10 TEM micrograph of nanoparticles (a) nano-alumina (b) nano-copper 

(Wang, X.-j. et al., 2009) 

 

Figure 2- 11 TEM micrographs of ZnO aggregates prepared by two different methods 

as mixed suspensions (a, c) and the same suspensions ultrasonically agitated for 60 min 

(b,d) (Chung, S. J. et al., 2009) 
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Figure 2- 12 TEM image of dispersed TiO2 nanoparticles in water 

 

 

Figure 2- 13 TEM photographs of Au, Al2O3, TiO2 and CuO particles and carbon 

nanofibers (Zhang, X. et al., 2007) 
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2.4.5 Light scattering method 

The single-particle analysis from which the light scattering theory can be 

approached has been used to visualize polymer molecule structure in solutions or 

colloidal particles in suspension. The intensity of scattered light for a single particle is 

related to the particle volume. While the interaction of electromagnetic radiation with a 

small particle is weak in light scattering, most of the incident light is transmitted and 

only a little amount of light is distributed. In one study, the average size of the clusters 

was obtained every five minutes after the sonication stopped (Hong, K. S. et al., 2006).  

2.4.6 Sedimentation balance method 

The stability of the nano-suspension can be also measured by another method 

named a sedimentation balance. The tray of a sedimentation balance is immersed in the 

fresh nano-suspension. The weight of sediment nanoparticles during a certain period of 

time is measured. The suspension fraction (Fs) of nanoparticles at an accepted time is 

calculated by the formula Fs = (W0-W)/W0 in which W0 is the total weight of all 

nanoparticles in the measured space, and W is the weight of the sediment nanoparticles 

at a certain time (Zhu, H. et al., 2007). 

2.4.7 Three omega method 

The colloidal stability of nanofluid can also be determined by the three omega 

method. It can be evaluated by detecting the thermal conductivity growth caused by the 

nanoparticle sedimentation in a wide nanoparticle volume fraction range. There are a 

few stability measurements attributed to this method in the literature (Oh, D.-W. et al., 

2006, 2008). 

2.5 Characteristic measurements 

There are four major thermophysical properties that their values change due to 

nanoparticle addition to a host fluid which are thermal conductivity, viscosity, density 
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and specific heat; however, in this study I focused on thermal conductivity and viscosity 

of nanofluid. Different investigators have dissimilar ideas about the effect of 

nanoparticle dispersion. Typically, these nanofluid parameters will increase except for 

the specific heat which decreases. The percentage of increment will vary as the function 

of dispersion, volume concentration, temperature, base fluid. There is not a standard 

protocol for preparation of nanofluid since then it would be obvious if the data will vary 

from time to time. 

2.5.1 Thermal conductivity 

Thermal conductivity is the most important factor that can be investigated to 

prove the heat transfer enhancement of a prepared nanofluid. Reviewing available 

literature explains that the rise in thermal conductivity of the nanofluids is considerable. 

Addition of only a small volume percent of solids produces a dramatic enhancement in 

thermal conductivity (Murshed, S.M.S. et al., 2008; Paul, G. et al., 2010; Trisaksri, V. 

& Wongwises, S., 2007; Wang, X.-Q. & Mujumdar, A. S., 2007). 

Four mechanisms have been identified in the literature as being responsible for 

heat transfer enhancement in nanofluids under stationary conditions, namely, (i) 

molecular-level layering of the liquid at the liquid/particle interface, (ii) the nature of 

heat transport inside the nanoparticles, (iii) aggregation and clustering, and (iv) the 

Brownian motion of nanoparticles within the base fluid. Henderson and Swol 

(Henderson, J. R. & van Swol, F., 1984) were the first who proposed that liquid 

molecules close to a solid surface form a layered structure. Keblinski and co-workers 

(2002) showed that the atomic structure of this liquid layer is more ordered than that of 

the base liquid. Yu and Choi (2003) proposed that the main reason of improved thermal 

conductivity of nanofluid is that liquid nanolayer act as a thermal bridge between a 

nanoparticle and base fluid. 
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Following the pioneering work of Yu and Choi many other studies 

(Chandrasekar, M. & Suresh, S., 2009; Wang, B.-X. et al., 2003; Xue, Q. & Xu, W.-M., 

2005; Yu, W. & Choi, S. U. S., 2003) were conducted on various aspects of 

nanolayering and its effects on thermal conductivity enhancement of the nanofluids. 

Leong‟s model in particular highly agreed with experimental data. This led many to 

believe that the nanolayering phenomenon alone is responsible for extraordinary 

enhancements in thermal conductivity of nanofluids. Another important mechanism that 

comes into play when the particles get smaller is the nature of heat transport inside the 

nanoparticle. While for large particles the heat conduction expressed by the Fourier Law 

adequately explains the nature of heat transfer, the ballistic heat transport becomes 

important when the temperature gradient becomes large or sample size is smaller than 

the mean free path of the phonons. In the case of conductive heat transport phonons go 

through the material in random directions while in the case of the ballistic heat transport 

all phonons jump directly from lower surface to the upper surface. According to the 

Debye theory, the mean free path of the phonon is given by structure of this liquid layer 

is more ordered than that of the base.  

Brownian motion, interfacial layer and aggregation of particles have been 

discussed about comprehensively (Amrollahi, A. & et al., 2008; Keblinski, P. et al., 

2002; Li, L. et al., 2008; Tillman, P. & Hill, J. M., 2007; Wang, B.-X. et al., 2003; 

Wang, X. et al., 1999; Xie, H. et al., 2005; Xuan, Y. et al., 2003; Xue, Q. & Xu, W.-M., 

2005; Yajie, R. & et al., 2005). Some researchers described a nanofluid as a two-phase 

flow mixture and utilized theories of a two-phase mixture or properties of nanofluid, 

such as Maxwell‟s theory (Maxwell, C. & Thompson, J. R., 1904) and the Hamilton and 

Crosser approach (1962). These models are based on an effective medium theory that 

presumes well dispersed particles in a fluid medium. If aggregated particles in the fluid 

form particle chains or clusters, the predicted thermal conductivity would be 
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significantly higher as was observed by many researchers (Sommers, A. & Yerkes, K., 

2009; Wen, D. et al., 2009) ,which might highly be related to the aggregates dimension 

and the radius of gyration of the aggregates. This result is based on the three-level 

homogenization theory, validated by MC (Monte Carlo) simulation of heat conduction 

on model fractal aggregates (Evans, W. et al., 2008; Gharagozloo, P. E. et al., 2008; 

Gharagozloo, P. E. & Goodson, K. E., 2010). As it can be seen in Fig. 2-14, they related 

the enhancement of thermal conductivity to nanoparticle aggregation. It is seen that 

there should be an optimized aggregation structure for achieving maximum thermal 

conductivity, which is far beyond the prediction from homogeneous dispersions. Such 

an argument eliminates thermal conductivity as an intrinsic physical characteristic. 

Possible influence of particle aggregation on conduction highlights the colloid 

chemistry‟s significant role in optimizing this property of nanofluids. Meanwhile, there 

exists another theory of lowering thermal conductivity of aggregation formation as 

found by Hong et al. (2006) from experiments by light scattering of Fe nanoparticles 

aggregate. The effective thermal conductivity increment may also depend on the shape 

of nanoparticles as discussed by Zhou and Gao (Gao, L. & Zhou, X. F., 2006; Zhou, X. 

F. & Gao, L., 2006). They proposed a differential effective medium theory based on 

Bruggeman‟s model to approximate the effective thermal conductivity of nano-

dispersion with nonspherical solid nanoparticles with consideration of the interfacial 

thermal resistance across the solid particles and the host fluids. They found that a high 

enhancement of effective thermal conductivity can be gained if the shape of 

nanoparticles deviates greatly from spherical. Many of the researchers suggested 

altogether new mechanisms for the transport of thermal energy. There is another idea 

proposed by Keblinski et al. (2002) of an ordered liquid layer at particle interfaces and 

„tunneling‟ of heat-carrying phonons from one particle to another. The subsequent 

simulation work from the same group of investigators concludes that these mechanisms 
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do not contribute considerably to heat transfer. Koo and Kleinstreuer (2005) found that 

the role of Brownian motion is much more significant than the thermophoretic and 

osmo-phoretic motions. In conclusion, some investigators believe that nanoparticle 

aggregation plays an important role in thermal transport due to their chain shape (Evans, 

W. et al., 2008; Karthikeyan, N. R. et al., 2008; Zhu, H. et al., 2006) but some others 

believe that the time-dependent thermal conductivity in the nanofluids proves the 

reduction of thermal conductivity by passing time due to clustering of nanoparticles 

with time (Karthikeyan, N. R. et al., 2008). 

Vadasz (2006) showed that heat transfer enhancement may be caused by a 

transient heat conduction process in nanofluids. Experiments demonstrate that a 

nanofluids thermal conductivity depends on a great number of parameters, such as the 

chemical composition of the solid particle and the base fluid, surfactants, particle shape, 

size, concentration, polydispersity, etc., though the exact variation trend of the 

conductivity with these factors has not yet been found. Additionally, the temperature 

influences the thermal conductivity of a nanofluid as shown in several studies that have 

been carried out to see that effect on CuO, Al2O3, TiO2, ZnO dispersed nanofluids by 

Mintsa et al. (2009), Duangthongsuk and Wongwises (2009), Vajjha and Das (2009), 

Murshed et al. (2008), Yu et al. (2009) and Karthikeyan et al. (2008). A temperature 

increase improves the thermal conductivity of the nanofluids. However, the actual 

mechanism of this increment has not been revealed yet. A deficiency of reliable data for 

the conductivity of nanofluid is the major problem of non-commercialization for this 

product. The other influencing factor for the thermal conductivity increase of 

nanosuspension is the volume fraction which has been directly proportional with this 

characteristic (Chandrasekar, M. et al., 2010), although this relationship is generally 

nonlinear for nanoparticles with a high aspect ratio (Zhu, H. et al., 2006). Thermal 

conductivity increment data for DI (De- Ionized) water based suspensions were 
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investigated by Wang et al. (1999), which showed a high rise in comparison with the 

results of Lee et al. (1999) and Das et al. (2003). Moreover, experiments conducted by 

Oh et al. (2008) for EG based nanofluids data showed relatively low thermal 

conductivity values compared to those of Lee et al. (1999) and Wang et al. (1999). 

 

Figure 2- 14 Aggregation effect on the effective thermal conductivity (Wen, D. et al., 

2009) 

It has been found that the thermal conductivity of a base fluid is nearly constant 

at different doses of surfactant or base. Hence it seems that this property improvement is 

related only to the particles when dispersing the nanoparticles into water. The general 

behavior of the particle-water interaction depends on the properties of the particle 

surface. Addition of surfactant may cause high or low pH value, which result in a lower 

surface charge and a weaker repulsion between particles. Therefore, this action leads to 

a stronger coagulation (Wang, X.-j. et al., 2009). 

Xuan et al. (2003) developed a classic theory of Brownian motion and the 

Diffusion Limited Aggregation (DLA) model for random movement of suspended 

nanoparticles. This theory does not describe the experimentally determined thermal 

conductivity satisfactorily; however, the dependence of this characteristic on 

temperature is also mentioned in their work. The effect of particle surface charge and 



36 

IEP is also exposed in varying thermal conductivity experiment sets conducted by Lee 

et al. (2006). They proved that the colloidal particles get more stable and enhance 

thermal conductivity of nanofluid when the pH of the solution goes far from the IEP of 

particles. Moreover, research, demonstrated that there is a priority factor in controlling 

nanofluid aggregation by surface charge. They proposed a new interpretation of the 

charged sites and ion densities in the diffuse layer as the number and efficiency of 

channels for phonon transport, respectively. The same theory was accepted by Wang et 

al. (Li, X. F. et al., 2008; Wang, X.-J. & Li, X.-F., 2009; Wang, X.-j. et al., 2009). 

In conclusion, understanding the mechanism and magnitude of effective thermal 

conductivity (keff) of nano-scale colloidal suspensions still continues to be an active 

research area. A summary of experiments and proposed theories is given in Table 2-7. 

Table 2- 7 Summary of different tests that conduct to a theory 

Investigator Nanofluid type 
Concentration 

(%) 

Thermal 

conductivity 

enhancement 

Theory 

(Karthikeyan, 

N. R. et al., 

2008) 

CuO (8 

nm)+DW 

+EG 

1%vol. 
31.6% 

54% 

nanoparticle size, 

polydispersity, particle 

clustering and the volume 

fraction of particles 

(Kwak, K. & 

Kim, C., 

2005) 

CuO (10-

30nm)+EG 
<0.002%vol. N/A 

Thermal conductivity 

enhancement due to viscosity 

increase 

(Lee, D. et al., 

2006) 

CuO 

(25nm)+DW 

 

0.3%vol. 
3 times increasing 

pH from 3 to 8 

Setting pH far from 

isoelectric point getting 3 

times effective thermal 

conductivity and better 

dispersion 

(Wang, X.-J. 

& Li, X.-F., 

2009) 

Al2O3 (15-

50nm)+DW 

Cu(25-

60nm)+DW 

0.4%wt. 
13% 

15% 

pH control and adding 

surfactant far from isoelectric 

point 

(Li, X. F. et 

al., 2008) 
Cu+DW 0.1%wt. 10.7% 

pH control and adding 

surfactant far from isoelectric 

point 

(Zhu, H. et 

al., 2007) 

Graphite 

(106nm)+DW 
2.0%vol. 34% 

pH control and adding 

surfactant far from isoelectric 

point 

(Wei, X. et 

al., 2009) 

Cu2O 

(200.5nm)+DW 
0.01-0.05 %vol. 24% 

thermal conductivity can be 

controlled by either the 

synthesis parameters or its 

temperature 
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Analytical model 

Even though many models have been developed to predict the nanofluid thermal 

conductivity, all presented models can be classified into two general groups, as follows: 

Static models such as those of Maxwell and Hamilton–Crosser, which presume 

immobile nanoparticles in the host fluid in which conduction-based models predict the 

thermal transport properties, and Dynamic models, which are based on the idea that 

nanoparticles have sideways, arbitrary movement in the fluid. The particle motion is 

believed to be responsible for energy transport directly through collision between 

nanoparticles or indirectly through micro liquid convection that enhances the thermal 

energy transfer.  

A simple relationship suggested by Weber (1880) shows the thermal 

conductivity of liquids with accuracy usually within 15% and the equation is: 

        (2-4) 

This formula has been developed previously to calculate the thermal 

conductivity of nanofluids, as: 

       (2-5) 

By supposing well dispersed nanoparticles, the thermo-physical properties of the 

particle fluid mixture can be evaluated using Eqs. (2-6)–(2-8). Properties with subscript 

„„s‟‟ are for nanoparticles while without subscripts are for base fluid  

         (2-6) 

        (2-7) 

         (2-8) 

The effective thermal conductivity is defined as the ratio of the thermal 

conductivity of nanofluid to that of the base fluid. Therefore, from Equations (2-4) and 

(2-5), the generalized form of relative thermal conductivity can be given as: 
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         (2-9) 

In which a, b and c should be defined from experiments and are equal to -0.023, 

1.358 and 0.126, respectively for Al2O3/water nanofluids. Xuan et al. (2003) proposed a 

formula for the effective thermal conductivity in conjugate with Brownian motion and 

DLA theory as follows:  

              (2-10) 

where kf, kp, ρ, Cp, T, µ,  and rc are the actual thermal conductivity of the base 

liquid and the nanoparticle, density, specific heat, temperature (K), viscosity, volume 

concentration and the radius of the cluster, respectively.  

Meibodi et al. (2010b) described the model of thermal barrier resistance and 

claimed that the most important factor for thermal conductivity enhancement of 

nanofluids might be MFP (Mean Free Path), the distance between particles that can be 

calculated by Brownian approach for very low nanoparticle volume fractions and by 

effective diameter for micro-particles and/or high particle volume fractions (Meibodi, 

M. E. et al., 2010b). The schematic of this model is presented in Fig. 2-15. Likewise, 

Hadjov (2009) assumed a flux jump and a discontinuity between the inclusion and the 

matrix as well which is called the thermal conductive interface. This assumption 

conflicts with the previous model. They stated that the thermal conductivity depends 

strongly on the morphology via the kind of particle packing. 

The thermal conductivity of nanofluids increases linearly as a function of the 

particle volume concentration. For the simple representation of the thermal conductivity 

increase, Joo Hyun Lee (2009) developed the augmentation factor, which is defined 

as: 

                  (2-11) 
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The application of this formula for the same nanoparticles with various 

measurements method stated different as described in the next section. 

 

Figure 2- 15 Schematic modeling of a homogeneous suspension containing spherical 

mono-sized particle with resistance model (Meibodi, M. E. et al., 2010b) 

Measurement apparatus 

The measurement of thermal conductivity of liquids is a challenging task. In 

general, Fourier‟s law of heat conduction is exploited for the measurement of thermal 

conductivity. The thermal conductivity of nanofluids can be measured by different 

methods, including transient hot-wire (THW, also called transient line heat source 

method) which is further categorized into a basic transient hot-wire method, insulated 

wire method and liquid metal wire method (Beck, M. P., 2008; Das, S. K. et al., 2007; 

Eastman, J. A. et al., 2004; Peterson, G. P. & Li, C. H., 2006; Tavman, S. & Tavman, I. 

H., 1998; Vadasz, P., 2006; Vadász, P., 2008). A detailed explanation of the transient 

hot wire method in measuring the thermal conductivity of nanofluids is given by Lee et 

al. (1999). Also, a summary of the apparatus utilized for thermophysical properties by 

different investigators is given in Table 2-8.  

Among the stated techniques, the steady state parallel plate method used by 

Wang et al. (1999) seems to be least affected by the particle sedimentation as their 
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thickness of the loaded sample fluid is less than one mm. The sedimentation of 

nanofluids can affect the THW method used by Lee et al. (1999).  

Table 2- 8 Equipment used for characteristic measurements 

Investigator nanofluid 
Thermal 

conductivity 
Viscosity 

(Pantzali, M. N., 

Mouza, A. A., et 

al., 2009) 

CuO+CTAB 

Al2O3 

CNT 

TiO2 

THW(Assael 

et al., 2004) 

Rheometer with coaxial 

cylinders(HaakeRheostress 

RS600) 

(Chandrasekar, M. 

et al., 2010) 
Al2O3+DW 

KD2 Pro 

(Decagon 

Devices, 

Inc., USA) 

Brookfield 

cone and plate viscometer 

(LVDV-I PRIME C/P) 

(Duangthongsuk, 

W. & Wongwises, 

S., 2010b) 

TiO2+DW THW 
Bohlin rotational 

rheometer 

(Wang, X.-J. & Li, 

X.-F., 2009) 

Al2O3+DW 

Cu+DW 
TPS capillary viscometer 

(Wei, X. et al., 

2009) 
Cu2O+DW KD2 system N/A 

(Duangthongsuk, 

Weerapun & 

Wongwises, 

Somchai, 2009) 

N/A KD2 system Bohlin CVO rheometer 

(Timofeeva, E. V. 

et al., 2007) 
N/A KD2 Pro 

Ubbeholder capillary 

viscometer 

(Fisher Scientific) 

An increment of the temperature gradient within the vertical hot wire may be 

caused by non-homogeneous nanoparticle concentration which might be a source of 

measurement errors. This is also true for the temperature oscillation technique by Das et 

al. (2003) where the thermocouple that measures the fluid temperature oscillation lies in 

the upper half of the nanofluid chamber (Oh, D.-W. et al., 2008). The 3 omega method 
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is exploited by a small number of investigators; a thin film heater is powered by an AC 

power source so there is an oscillating heat transfer rate through the material, whose 

thermal conductivity is to be measured. The three omega wire method may be suitable 

to measure temperature-dependent thermal conductivity (Murshed, S.M.S. et al., 2008). 

Table 2- 9 The  of metal oxide nanofluids (Lee, J. H., 2009) 

Particle 

Material 

Particle 

Size(nm) 

Base fluid 

Material 
 

Measurement 

Techniques 
References 

CuO 36 Water 12 THW (Eastman, J. A. et al., 1996) 

CuO 33 Water 3 THW (Zhang, X. et al., 2006) 

CuO 28.6 Water 3.8 
3-Omega 

Method 
(Das, K. et al., 2003) 

CuO 23 Water 3.8 SSM (Wang, X. et al., 1999) 

CuO 18.6 Water 4 THW (Lee, S. et al., 1999) 

TiO2 15 Water 6 THW 
(Murshed, S. M. S. et al., 

2005) 

TiO2 40 Water 2.4 THW (Zhang, X. et al., 2006) 

Al2O3 47 Water 5 SSM 
(Li, C. H. & Peterson, G. 

P., 2007) 

Al2O3 47 Water 6 THW (Chon, C. H. et al., 2005) 

Al2O3 38.4 Water 2.5 
3-Omega 

Method 
(Das, K. et al., 2003) 

Al2O3 36 Water 6 SSM 
(Li, C. H. & Peterson, G. 

P., 2007) 

Al2O3 28 Water 4 SSM (Wang, X. et al., 1999) 

Al2O3 20 Water 1.3 THW (Zhang, X. et al., 2007) 

Regard to the thermal conductivity of nanofluid,  was calculated by 

formula (2-11). Table 2.9 was achieved by Lee (2009). In this Table, controlling 

parameters affecting  are not detected significantly when the available information 

such as the particle size and preparation method are compared. Therefore, the main 

reason of these discrepancies among identical nanoparticles is not defined yet and it 

may be accredited to the diverse preparation methods and the lack of a proper standard 

in step by step homogenization methods.  
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2.6 Statistical software for optimization 

Statistically designed experiments are a powerful tool for improving the 

efficiency of experimentation. Through an iterative process, they allow us to gain 

knowledge about the system being studied with a minimum number of experiments. 

Inclusion of replicate test conditions allows the estimation of random, experimental 

variation. Statistical analysis of data generated from the experiment clearly establishes 

the relationship between the measured parameter of interest (response) and the process 

parameters (input factors or factors) being studied. The factors may have individual, 

simple effects on the response (referred to as main effects) or may have effects that are 

interdependent (referred to as interaction effects). Since the designed experiments are 

generated on the basis of statistical theory, confidence in the results obtained and 

conclusions drawn are clearly defined. 

Different types of designs are available; their choice is determined by the 

objectives of the experiment and the current state of knowledge about the experimental 

environment. They can be categorized as follows: 

 Screening 

 Fractional & full factorial 

 Response surface 

2.6.1 Screening 

If there would be little data about the target, screening designs can be applied for 

exploring the experimental space. In this design, information of each factor can be 

derived, but interactions cannot be interpreted. The factors are run at two levels with 

only high and low levels as defined by the range of each factor. The number of factors 

can be as high as 15. 
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2.6.2 Factorial 

Factional designs are used when there is former information about which factors 

are significant. If a complicated design would be selected, the main effects and their 

interactions could be distinguished more precise. Two to six factors can be selected in 

this design in which two-level designs with variation of low and high level appears. 

Replicate experiments in the center (where all factors are simultaneously held at their 

midlevel) can detect the behavior of nonlinear factor.  

Meanwhile, another design of this series, fractional factorial, exist which can 

detect the interactions and significant factors by less number of experiments without 

losing a lot of information (see Figure 2-16).  

 

Figure 2- 16 Three-factor full factorial design with center point 

2.6.3 Response surface methodology (RSM) 

Response surface designs are applied to gain accurate information about factor 

effects including magnitude and direction. Like factorial design, normally two to six 

factors with three levels design can be selected to estimate linear, two-factor interaction 

and nonlinear effects of all factors under study. If there would be a prior indication of 

nonlinear behavior or when a set of preliminary (factorial) experiments shows nonlinear 

behavior, selection of this method would be thoughtful. They provide precise prediction 

of responses within the experimental region and are useful in identifying optimum 

x1 

x3 

x2 
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conditions. Assay optimization in particular produces responses that are nonlinear. 

Fig.2-17 shows various response surface designs using three factors for illustration.  

2.6.3.1 Central composite design (CCD) 

The first approach in RSM is central composite design (CCD) where 

experiments are added to the factorial design after nonlinear behavior is detected (see 

Fig.2-17). The next method is a modified CCD, called a face-centered cube design, 

where the added experiments lie on the faces of the space formed by the factorial 

design. 

Recently, Low et al. (2011) applied RSM in the optimization of the 

thermophysical properties of composite materials. Furthermore, Ghafari et al. (2009) 

employed RSM with CCD to optimize the operating variables versus coagulant dosage 

and pH value. Zabeti et al.(2009) applied the same method to optimize the activity of 

CaO/Al2O3 solid catalysts for the production of biodiesel. Nosrati et al. (2011b) applied 

this technique to find out the effect of parameters such as pH, stirring speed and the 

concentration of stripping agent on phenol removal. 

2.6.3.2 Box-Behnken Design (BBD) 

BBD is used to further study the quadratic effect of factors after identifying the 

significant factors using screening factorial experiments. The Box-Behnken design is an 

independent quadratic design in that it does not contain an embedded factorial or 

fractional factorial design. In this design the treatment combinations are at the 

midpoints of edges of the process space and at the center. These designs are rotatable 

(or near rotatable) and require 3 levels of each factor. The designs have limited 

capability for orthogonal blocking compared to the central composite designs.  

Box-Behnken designs do not contain any points at the vertices of the 

experimental region. This could be advantageous when the points on the corners of the 
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cube represent factor-level combinations that are prohibitively expensive or impossible 

to test because of physical process constraints. 

A Box–Behnken design is run when there is prior information about the 

existence of nonlinear effects. The experiments are located on the edges of the 

experimental space. Box–Behnken and CCDs involving up to 10 numerical and 1–3 

categorical factors are fast becoming popular because of nonlinear responses common 

in assay development (Altekar , M. et al., 2006).  

 

Figure 2- 17 Graphic representations of central composite, face-centered cube 

and Box–Behnken designs 

The effect of different parameters such as concentration of the surfactant, the 

ratio of organic phase to internal phase in the membrane and membrane to external 

phase ratio on process parameters were studied using Box-Behnken design and response 

surface method by Nosrati et al. (2011a). Analysis of variance (ANOVA) provides the 

statistical results and diagnostic checking tests which enables researchers to evaluate 

adequacy of the models (Ghafari, S. et al., 2009; Nosrati, S. et al., 2011a). 
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2.7 Summary 

Nanofluid preparation with a single and two-step method would definitely affect 

the stability as the two-step method needs a higher nanoparticle concentration to 

equalize the heat transfer enhancement reached by single step. A higher concentration 

causes more sedimentation. However, unfortunately, the single step method is not 

industrialized in a wide range so experiments are mostly conducted by two-step method. 

Therefore, higher costs and lower stability are inevitable. 

Major factors influencing the extraordinary enhancement of heat transfer are 

listed as chemical composition of the solid particle and the base fluid, particle source 

and concentration, particle shape and size, surfactants, temperature, pH value (surface 

charge), mono-dispersity, IEP and elapsed time. 

Comparing several studies in the literature, some discrepancies appear among 

the results. At this moment, it cannot be clearly explained why incongruities take place 

among the measurements of the nanofluid characteristics such as thermal conductivity 

and viscosity. However, at least we are able to mention that different sources of 

measurement uncertainties such as sedimentation and aggregation of nanoparticle, lack 

of a standard for nanofluid preparation, different source of nanoparticle manufacturing, 

various stabilization methods, and time duration between the nanofluids preparation and 

measurement in which cause the aggregate to grow with time, could be the most 

important reasons for the dispersed data. Furthermore, the timing for the ultrasonic 

processes such as horn processor or ultrasonic bath is not optimized properly with 

respect to different nanoparticles and base fluids. 

There is also another important result regarding stability and thermal 

conductivity that more stable nanofluid does not necessarily have more enhanced 

characteristics. 
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Three methods of homogenization are used by researchers and bring about 

various results. It can be mentioned that different nanoparticles need their own stability 

method. Sometimes, these methods have to be combined together while in other cases 

just one method would be adequate to obtain the preferred stability. 

Surfactant selection in nanofluid preparation has an important role in improving 

heat transfer. Temperature is considered as a restricted factor in case of nanofluid 

application for exploiting at the high temperatures. Likewise, the optimum percentage 

of surfactant should be considered as a factor in stable nanofluid preparation as well. 

Ultrasonication method, particularly the more effective one named horn 

ultrasonic, attracts much attention for its short timing preparation among the other 

homogenization techniques. It has to be considered that if a critical time is exceeded, it 

may have an inverse effect and cause agglomeration and speedy sedimentation of 

nanoparticles. 

The pH control, which has an important role in stability control, places the IEP 

of the suspension, far from the PZC in order to avoid coagulation and instability. It 

should be taking into account that acidic or alkaline pH is corrosive to metals. 

Therefore, it can lead to damage to the piping and instrumentation in long term 

applications. 

In support of stability measurement, it is better to examine at least three different 

tests with the different stability measurement apparatus to come out with a reasonable 

result regarding stability. Furthermore, reproducibility is important in experiments so 

the samples have to be run at least three times to meet the requirements of uncertainties. 

Among the characteristics discussed in the literature, thermal conductivity and 

viscosity have a major role in nanofluid characterization. To reach the best hypothesis 

for thermal conductivity enhancement, different theories were discussed such as 
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Brownian motion, interfacial layer and aggregation of particles. Additionally, some 

researchers discussed nanofluid as a two-phase flow mixture and utilized certain 

formulas of two-phase mixtures for properties of nanofluid. However, still none of the 

proposed theories can exactly predict the improvement of thermal conductivity of 

nanofluid. Although there are some results regarding the viscosity of nanofluids, none is 

usable across a wide range of volume fractions of nano particles so further experiments 

are required. 

Systematic experiments are needed that will show the effect of the stability on 

heat transfer mechanism and characteristics enhancement in stationary condition. Refer 

to other thermophysical properties, including, specific heat and density, a few 

researchers conducted tests as the correlations satisfied the result of experiments. 
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Chapter 3: Methodology 

3.1 Introduction 

This section explains about the chemicals used, the sample preparation methods 

for different tests and apparatus employed for the experimental investigation of the 

stability, thermal conductivity and viscosity of nanofluids. 

Recently, many researchers worked on the preparation of titania nanofluids. He 

et al. (2007) stated that, addition of TiO2 into the base liquid enhances the thermal 

conduction and the enhancement increases with increasing particle concentration and 

decreasing particle (agglomerate) size. Increasing agglomerate size and particle 

concentration will directly increase viscosity. In addition, results from Kim et al. (2007) 

showed the linear increment of effective thermal conductivity with decreasing the 

particle
 
size but no existing empirical or theoretical correlation can explain

 
the behavior. 

Yoo et al. (2007) claimed that, titania nanofluid showed a large enhancement of thermal 

conductivity compared with their base fluids, which exceeds the theoretical expectation 

of a two-component mixture system. Additionally, Zhang et al. (2007) could not 

correctly explain the unexpected enhancement of effective thermal conductivity TiO2 

nanofluid.  

Jiang et al. (2003) studied the effect of SDS on stability of CNT. They 

concluded that the zeta potential for the SDS-CNTs nanofluids was higher than that of 

the bare CNTs. They suggested that the electrostatic repulsion between the negatively 

charged cluster surfaces played an essential role in the stabilization of the CNT. In 

addition, Wang et al. (2008) observed that SDS significantly influences the absolute 

value of zeta potential in titania and alumina nanofluids by the mass fraction of 0.01 and 

0.05% correspondingly.  
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Chung et al. (2009) worked on the stability of ZnO/water nanofluid under 

various ultrasonic conditions. They proposed that, the sedimentation behavior of 

nanofluids is proportional to the volume fraction and the ultrasonic power.  

Moreover, the theory of thermal conductivity enhancement is not quite clear 

after about two decades of experimental and analytical works on nanofluids. Keblinski 

et al. (2002) elaborated on four potential mechanisms of heat transfer enhancement in 

nanofluids including Brownian motion, molecular-liquid layering, diffusive propagation 

of heat in both particles and liquid, and clustering of nanoparticles. At that time they 

found out that clustering may have a negative effect on heat transfer enhancement. In 

addition, Xuan et al. (2003) revealed that nanoparticle aggregation reduces the 

efficiency of the energy transport enhancement of the suspended nanoparticles. 

However, in 2006, Prasher et al. (2006) boosted up the probability of two of the theories 

and showed that (1) micro-convection caused by the BM (Brownian motion) of the 

nanoparticles and (2) clustering aggregation of the nanoparticles leading to local 

percolation behavior are the most appropriate theories among all due to the 

experimental and simulation works done in the period of 1993-2005. They finally 

proved that optimized aggregation size in low volume concentration nanofluids (less 

than 1%) explains the surprising improvements in thermal conductivity of nanofluids 

(see Fig. 3-1). Therefore, the reason of scattered data among the investigators may be 

resulted from not reaching the optimized size for the agglomerates. 

In the current research we study the influence of SDS dispersant and ultrasonication on 

stability of TiO2-Water nanofluid. Furthermore, the theory of thermal conductivity 

enhancement in stationary condition will be discussed regard to the clustering and 

agglomeration theory proposed by Prasher et al. (2006). Stability of prepared nanofluids 

was verified by TEM, UV-vis spectrophotometer, Dynamic Light Scattering (DLS), 
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Zeta potential and photo capturing methods. Stability of nanofluid has recently been 

comprehensively revised by Ghadimi et al. ( 2011) 

Figure 3- 1 Schematic of well-dispersed aggregates (Prasher, Ravi et al., 2006) 

3.2 Materials 

Titania (TiO2) has excellent chemical and physical stability and is a cheap and 

commercially available mineral product which yet has not been used widely in 

nanofluid area. Therefore, the experiments were conducted using low concentration 

titania nanoparticles (Anatase crystallography) up to 1 %vol. with an average diameter 

of 25 nm and a specific surface area of 45-55 m
2
/g dispersed in distilled water. Titania 

(IV) nanopowder with 99.7% metal basis from Sigma Aldrich Company (USA) was 

used in this study. The XRD of titanium dioxide that inspects the structure of powder is 

shown in Figure 3-2 which is exactly the same as the one prepared by the supplier. An 

anionic surfactant, SDS in chemical grade, from Sigma Aldrich (USA), was used to 

stabilize the suspension. In this research, the value of pH was controlled by adding 

NaOH and HCl. 

Aggregated 

nanoparticles 

High-Conductivity 

Percolation Path 
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Figure 3- 2 XRD of titanium (IV) oxide 

The reason we focused on these two variables is that the reported optimum value 

in the previous studies is very much variant and controversial. The pH value of aqueous 

TiO2 nanofluid for the particle volume fraction of 0.001-0.02 is between 6.2 and 6.8 

which show that the nanofluid was nearly neutral. The pH value decreases with 

increasing particle volume fraction. In fact, this pH range is the Isoelectric point (IEP) 

of TiO2 from which the prepared Titania nanosuspension should be far away to be 

stable. Therefore, adjusting pH for the prepared nanosuspension would be a necessity in 

order to have a stable nanofluid as can be seen in Figure 3-3 by Penkavova (2011b).  

As demonstrated in Table 3-1, the surfactant-nanoparticle concentration ratio is 

different among various researchers. Moreover, we can see a different pH value for the 

stability of titanium dioxide nanofluid in the literature as shown in Table 3-2. Therefore, 

neither any specific pH value nor an optimum ratio of surfactant to nanoparticle 

concentration has been found in the literature. 
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Figure 3- 3 Adjusting of ξ –potential with pH for titania nanofluid (Penkavova, V. et 

al., 2011b) 

Table 3- 1 Surfactant concentration for different nanofluid 

Reference 
Nanofluid 

composition 

Surfactant to nanoparticle 

concentration ratio 

(Duangthongsuk, W. & 

Wongwises, S., 2008) 

(Murshed, S. M. S. et al., 2005) 

TiO2+CTAB 

TiO2+CTAB 

0.1 

(Kumar, R. & Milanova, D., 

2009) 

CNT+ NaDBS 0.25 

(Wang, X.-j. et al., 2009) 

Al2O3+SDBS 

Cu+SDBS 

1 

(Hwang, Y. et al., 2008) 

CB+SDS 

Ag+Oleic Acid 

2 
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Table 3- 2 Stability process and duration for different methods 

TiO2 Nanofluid Stability process 

Surfactant 

concentration 

%vol. 

Stability 

duration 

(Wen, D. & Ding, 

Y., 2005) 

pH=3.0 

ultrasonication and high 

shear mixing 

0.19-0.57 Several weeks 

(Pak, B. C. & Cho, 

Y. I., 1998) 

pH=10.0 

mixing(10000 rpm) 

2 hours 

1-10 More than 6 days 

(Murshed, S. M. S. 

et al., 2005) 

CTAB 

ultrasonication 8-10 

hours 

0.5-5 Some clusters 

(Chen, H. et al., 

2008) 

pH =11.0 

high shear homogenizer  

N/A 
stable for at least 

two weeks 

 

3.3 Applied apparatus  

A Zeta size analyzer Malvern in nano series was applied for measuring the 

particle size distribution and Zeta potential value of nanofluid. The X-ray diffraction 

(XRD) was employed for inspecting the structure of powder and the UV-visible 

absorption spectrum Varian Cary 50 probe for inspecting the light absorption strength 

and absorbance of the nanoparticles in the nanosuspension. An ultrasonic bath (Branson 

3210) and a horn processor (Sonic Vibra cell) were utilized for preparing a 

homogeneous dispersion. PH value was adjusted by a pH meter (Eutech). Thermal 

conductivity and viscosity of nanofluids were determined by a KD2 Pro (Decago) and 

an A&D viscometer correspondingly.  
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3.4 General Samples preparation  

A two-step method, which is the most practical method based on the literature 

survey, was employed to prepare the nanosuspension. Following steps were pursued in 

preparing samples by the preliminary experiments. Weighing the desired amount of 

nanoparticles and the container were followed by pouring the distilled water via 

volumetric flux into the container. In the case of dispersant addition, initially, SDS 

should be added to the water, stirred completely via a magnetic stirrer for almost 1.5 

hours to have a suitable dispersion. Secondly, the weights of nanoparticles were 

measured and added to the solution. In order to apply an ultrasonic process, there exist 

two methods of ultrasonication regard to the objectives. The aim of the first objective is 

to differentiate the outcomes of these two methods including ultrasonic processing by 

the aid of horn (15 minutes) and bath (3 hours) with and without surfactant addition 

with the same concentration of 0.1%wt. Second and third objectives were achieved by 

three hour ultrasonic bath, SDS addition which was nominated as the best result of the 

first objective. In addition, pH control was added as a factor to monitor the stability and 

its influence on thermal conductivity. Therefore, the suspension pH value was adjusted 

before and after nanoparticle addition. The last objective was achieved by sonication 

with a horn processor for different duration at different percentage of its amplitude. 

Various tests were conducted to investigate the effects of homogenization 

methods on minimizing the agglomeration and improving the stability of nanofluid, 

including UV-vis spectrophotometer, zeta potential and particle size measurement, 

TEM, sedimentation balance method and photo capturing. The specification of applied 

apparatus is presented in appendix Table A-1. 

3.4.1 Absorbance measurement by UV-vis spectrophotometer 

UV-vis spectrophotometer absorption measurement which was tested by Varian, 

Cary 50 probe, initially conducted with a scan of the nanofluid to extract the peak. The 
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peak of titania samples was almost 320nm as shown in Figure 3-4. Afterward, the 

calibration graph was obtained versus absorbance for three different concentrations 

which was supposed to be between 0.01 and 0.02 wt.% (Jiang, L. et al., 2003). 

The standard graph is demonstrated in Fig. 3-5 in which the concentration of the 

nanofluid is linearly related to the absorbance. In order to measure the concentration and 

absorbance of the nanofluid, different samples were examined by this standard graph. 

The experiments were repeated three times and in order to prevent incidental errors, the 

results were averaged. 

 

Figure 3- 4 UV-vis spectrophotometer for TiO2 nanofluid with 25 nm average 

diameter 
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Figure 3- 5 Calibration curve at wavelength of 320 nm for titanium dioxide 

nanofluid (A.Ghadimi & Metselaar, H. S. C., 2011) 

3.4.2 Zeta potential and particle size measurement 

In order to measure the zeta potential and particle size result, the suspension was 

stirred and sonicated for about 15 minutes. Concentrated suspensions are not suitable 

for particle size and zeta potential measurements. Consequently, transparent 

suspensions are needed. If our prepared nanofluid was not clear enough for this purpose, 

the samples were diluted by the ratio of 1:7 with distilled water. Each experiment was 

repeated minimum three times to calculate the mean value of the experimental data. 

3.4.3 Sedimentation balance method and photo capturing techniques 

With the purpose of stability analysis by photo capturing method, the fresh 

nanofluid was poured into vials or gradient cylinders of 10 ml, 50 ml or 100 ml. 

Subsequently, a digital camera was applied to take the pictures within certain intervals. 

Meanwhile, Sedimentation rate was calculated in the light of abovementioned formula 

in section 2-4-6. 

3.4.4  TEM sample preparation method 

A drop of the fresh nanofluid was placed on a carbon grid with 250 mesh by a 

pipette. The sample should be rested for 3-5 days to get dry completely. Afterward, the 
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sample was checked by a transmission electron microscope to detect the agglomeration 

size, and shape.  

3.5 Thermophysical properties 

3.5.1  Thermal conductivity relations and calibration 

Transient Hot Wire method (THW) is a well-established, most accurate and 

reliable technique for the thermal conductivity measurement of nanofluids, which was 

applied successfully by different researchers (Abareshi, M. et al., 2010; Mintsa, H. A. et 

al., 2009; Moosavi, M. et al., 2010; Wen, D. & Ding, Y., 2004; Yeganeh, M. et al., 

2010). Therefore, thermal conductivity measurements in this work were done based on 

THW method. This thermal analyzer device has 5% uncertainty over the 5◦C to 40◦C 

temperature range. The device was calibrated by glycerin and distilled water in which 

the measurements were within the above-mentioned accuracy. Hagen correlation 

(Hagen, 1999) for distilled water, which was compared with experimental data, is 

shown in appendix 1 Figure A-1. Thermal conductivity of fresh nanofluid was measured 

right after preparation. 

KD2 pro reaches the thermal conductivity from the temperature response of a 

thermocouple by using THW system. The temperature change and the subsequent 

thermal conductivity can be calculated by following relation: 

      (3-1) 

where T(t) is the temperature at time t, Tref a reference temperature,  the electric 

power applied to the hot-wire, k the thermal conductivity,  the Euler‟s constant, a the 

wire radius, and α is the thermal diffusivity of the test fluid. This shows that ΔT = T - 

Tref and ln(t) are linearly related with a slope m = q/4πk. Linearly regressing ΔT on ln(t) 

yields a slope that, after rearranging, gives the thermal conductivity as: 

          (3-2) 
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where q is known from the supplied power (Wei, X. et al., 2009). 

The uncertainty of measurement was tested by Hong et al (2011). They stated 

that it takes a limited time for the heat flux on the wire surface to reach steady state. In 

addition, the temperature data during the transient phase should not be included in the 

temperature data to estimate the thermal conductivity. Therefore, the start-time of the 

selected temperature data range should be set after the transient phase which for the case 

of the 50 µm diameter platinum wire in THW is about 1 s. 

3.6 Design of Experiment (DOE) 

Design of Experiments is a set of techniques that revolve around the study of the 

influence of different variables on the outcome of a controlled experiment applied in 

this study (Version 8.0). Generally, the first step is to identify the independent variables 

or factors that affect the product or process, and then study their effects on a dependent 

variable or response. The experimental designs employed in this research were 

consisted of two design sets of experiments. The primary design is a five level two 

factor CCD for optimizing the influence of homogenization method by means of 

surfactant addition and pH control. It has 11 runs with three replicates at the center to 

verify reproducibility. 

The subsequent design is a three level three factors BBD to optimize the 

influence of ultrasonication by means of time and power with increasing nanoparticle 

volume fraction. This study includes 17 run with 5 replicates in the center. 

3.6.1  Data analysis 

The quadratic equation model for predicting the optimal conditions can be 

expressed according to Eq. (3-4): 

  (3-4) 
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where i is the linear coefficient, j is the quadratic coefficient, β is the regression 

coefficient, k is the number of factors studied and optimized in the experiment, e, is the 

random error and Y is the predicted response. The response surface plots are obtained 

by a statistical process that is described in the design and the modeled CCD data. The 

relationships between the parameter and the responses are graphically illustrated by 

RSM to get the exact optimum. Meanwhile, we can use the analysis of variance 

(ANOVA) and least squares techniques to evaluate the statistical specification of the 

constructed models. The ANOVA consists of determining which factor significantly 

affects the response, using a Fisher's statistical test (F-test). The significance and the 

magnitude of the estimated coefficients of each variable and all their possible 

interactions on the response variable are determined. Such coefficients for each variable 

represents the improvement in the response, that is, to expect as the variable setting is 

changed from low to high. Effects with a confidence level less than 95% (effects with a 

p-value higher than 0.05) were discarded and pooled into the error term and a new 

analysis of variance was performed for the reduced model. The p-value represents a 

decreasing index of the reliability of a result. The fitness of the model can be recognized 

by the regression coefficient (R). However, the adjusted regression coefficient (Radj) and 

the prediction regression coefficient (Rpred) are better criteria than the absolute 

regression coefficient. In statistical modeling the Radj, shows the number of regression 

variables and the Rpred, indicates the predictive power of the model. Hence, R, Radj and 

Radj together are very convenient to get a quick impression of the overall fit and the 

prediction power of a constructed model. 

The “Lack of Fit Tests” table compares residual error with “Pure Error” from 

replicated design points. If there is significant lack of fit, as can be also shown by a low 

probability value (“Prob>F”), then we have to be careful about using the model as a 

response predictor. In this case, the linear model definitely can be ruled out, because it‟s 
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Prob > F falls below 0.05. The quadratic model, identified earlier as the likely model, 

does not show significant lack of fit.  

Adequate precision (AP) compares the range of the predicted values at the 

design points to the average prediction error. Ratios greater than 4 indicate adequate 

model discrimination. 

The coefficient of variance (CV) as the ratio of the standard error of estimate to 

the mean value of the observed response defines reproducibility of the model. A model 

normally can be considered reproducible if its CV is not greater than 10% (Chang, H. et 

al., 2007; Ghafari, S. et al., 2009; Liu, S. et al., 2010; Nosrati, S. et al., 2011a, 2011b). 
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Chapter 4: Results and discussion 

In this chapter, results of the performed experiments are discussed to observe the 

influence of nanofluid dispersion methods on nanofluid characteristics. The 

characteristics assessed were thermal conductivity and viscosity along with the stability 

parameters like zeta potential, particle size, TEM, sediment photo capturing, 

sedimentation balance method and UV absorbance. The homogenization methods 

included ultrasonication (bath and horn processor), surfactant addition and pH control. 

Evaluation of stability inspection by UV-vis spectrophotometer was investigated in 

relation to elapsed time. In addition, duration and power of horn ultrasonication were 

also investigated as independent factors for modeling and optimization of 

homogenization process and their influence on the stability and thermal conductivity of 

prepared nanofluid. 

4.1 Effect of homogenization process on thermal conductivity and stability of 

low concentration titania nanofluid 

4.1.1 Preliminary studies 

Some preliminary experiments were carried out to observe the effect of different 

homogenization methods on the stability of titania nanofluid including surfactant 

addition and ultrasonic bath and horn. The samples were monitored by photo capturing 

and UV-vis spectrophotometer scans. 

4.1.1.1 The influence of surfactant addition on stability of titania nanofluid 

Three low concentration samples of titania nanofluid (0.007-0.012%wt.) were 

prepared to investigate the effect of surfactant in sedimentation rate of nanoparticles. As 

can be seen in Figure 4-1, sample (a) shows fresh nanofluids, whereas samples (b) and 

(c) display the same concentrations after the period of one week with SDS and without 

SDS, respectively. The suspensions demonstrated that after an interval of one week, the 
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nanofluids with surfactant would have an increasing rate of precipitation compared to 

the nanofluids without surfactant. Since nanofluid is prepared by a simple mixture of 

nanoparticles and distilled water, the accelerated sedimentation rate in surfactant treated 

group should not be adopted as a general rule. Therefore, some more experiments are 

required to observe the effect of ultrasonication on surfactant treated nanofluid. 

 

Figure 4- 1 Sedimentation rate of TiO2/water nanofluid after one week without any 

ultrasonication: a) fresh low concentration of TiO2 nanofluid; b) same concentration as 

(a) with SDS; c) same suspension without SDS 

4.1.1.2 The influence of surfactant and horn ultrasonic on the stability of titania 

nanofluid  

Determining the processing time for horn ultrasonic is important because 

durations longer than optimum will cause agglomeration (Garg, P. et al., 2009; Lee, J. 

H. et al., 2008). The effect of different timing of ultrasonic horn in terms of particle size 

can be seen in Figure 4-2. Based on the results presented in this Figure, increasing the 

horn ultrasonic time would change the particle size distribution and breaks down the 

agglomeration into smaller sizes. Moreover, Figure 4-3 shows that increasing the 

ultrasonic time will improve the absorbance of low concentration nanofluid which is 

linearly related to concentration of the samples (see calibration curve, Figure 3-5). In 

addition, Figure 4-4, which shows photo capturing of the samples, reveals that 15 

minutes ultrasonic horn will decrease the sedimentation rate especially if it would is 
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accompanied by surfactant addition. Therefore, SDS addition and horn ultrasonic 

improve the stability of titania nanofluid. 

 

Figure 4- 2 Particle size distribution by different horn ultrasonic processor timing 

(a)- without ultrasonic processing: (b)- after 6 min ultrasonic processing (c)- after 10 

min ultrasonic processing (d)- after 15 min ultrasonic processing 

 

Figure 4- 3 UV-vis spectrophotometer evaluation of ultrasonic process on the 

absorbance of TiO2 nanofluid (a),(b) and (c) 0.007%wt., 0.01%wt. and 0.012%wt. 
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respectively before ultrasonication; (d),(e) and (f) 0.007%wt., 0.01%wt. and 0.012%wt. 

respectively after 15 minutes ultrasonic process 

 

Figure 4- 4 Photo capturing of the effect of surfactant and horn ultrasonic on TiO2 

nanofluid at five days after preparation; a) with surfactant without ultrasonic process, b) 

with surfactant and 15 minutes horn ultrasonic, c) without SDS with 15 minutes horn 

ultrasonic, d) without surfactant and ultrasonic process 

4.1.1.3 The influence of surfactant and ultrasonic bath on stability of titania 

nanofluid  

Figure 4-5 shows the influence of ultrasonic bath on the concentration of 

nanofluid. This parameter, which has a linear relation with absorbance, can be detected 

through the absorbance measurement of UV-vis spectrophotometer. Changing the 

processing time from one to three hours shows an enhancement in the absorbance of UV 

as illustrated in Figure 4-5 and this incident proves better stability achievement. The 

result confirms that longer ultrasonication leads to more homogenized suspension. 

Moreover, in Figure 4-6 we can observe the impact of surfactant on dispersion of titania 

nanoparticles by ultrasonic bath. Samples (a) and (b) were prepared by dispersion of 0.1 

%wt. titania with three hours ultrasonic bath. However, sample (b) contains the same 

weight concentration of SDS in its recipe. It revealed that the precipitation rate is faster 

in the surfactant-free sample (a) and supernatant part clears more promptly (L1>L2 in 

Figure 4-6 (1), (2) and (3)). However, after one year sample (b) is surprisingly clear but 

sample (a) is still opaque and contains nanoparticles. Consequently, surfactant addition 
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coupled with three hours ultrasonic bath improves the stability merely for short term 

application but in the case of long term, it is not effective and requires more 

experiments.  

 

Figure 4- 5 UV-vis spectrophotometer evaluation of titania nanofluid after one, two 

and three hours of ultrasonic bath 

 

Figure 4- 6 The effect of three hours ultrasonic bath and surfactant addition on 

0.1%wt. titania nanofluid; sample (a): without SDS, sample (b): with SDS; 1) three days 

after preparation; 2) four days after preparation; 3) one week after preparation; 4) one 

year after preparation 
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4.1.2 Monitoring results 

By preliminary studies, it was found that agglomerations of nanoparticles with 

0.1 %wt. concentration are broken down when sonicated for fifteen minutes by 

ultrasonic horn or three hours by ultrasonic bath. But in order to compare the results and 

choose an optimal timing of ultrasonication, six different samples of 0.1% wt. were 

prepared by simple mixture, ultrasonic bath and ultrasonic horn, with and without 

addition of SDS. The homogenization methods for the six samples are presented at 

Table 4-1. Subsequently, four different methods including TEM, zeta potential, particle 

size and UV-vis absorbance were appointed to monitor the homogeneity of nano-

suspensions. In addition, thermal conductivity and viscosity of the samples were 

measured to characterize the nanofluids. Measurements were carried out immediately 

after preparation. 

Table 4- 1 Different homogenization method for preparing samples  

Sample Homogenization technique 

T1 0.1%wt.TiO2,  a simple mixture 

T2 0.1%wt. SDS and TiO2, a simple mixture 

T3 0.1% wt.TiO2 prepared by 15 minutes ultrasonic horn 

T4 0.1% wt.TiO2 and SDS prepared by 15 minutes ultrasonic horn 

T5 0.1% wt.TiO2 prepared by 3 hours ultrasonic bath 

T6 0.1% wt.TiO2 and SDS prepared by 3 hours ultrasonic bath 

4.1.2.1 TEM images 

After preparation of nanofluids, a drop of each suspension was placed on top of 

a carbon grid (250 mesh) to be scanned with TEM. Subsequently, the samples were 

dried for three to five days. Figs 4-7 show TEM images of six samples prepared to 

monitor their aggregation and level of dispersion. In essence, the particles are near-

spherical. Figs. 4-7 (a and b) represent simple mixtures of titania nanofluid with and 

without SDS, correspondingly. We noticed black agglomerations in Figs. 4-7.a and 4-

7.b in which surfactant treated nanofluid contains quite large agglomeration. This means 
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that surfactant addition should be accompanied by a sort of processing in order to 

function properly within suspension. It is noticeable in Fig. 4-7.c that ultrasonic horn 

processor can affect the nanofluid by clustering around the small agglomerations. In this 

case, based on Evans et al.(2008) and Wang et al. (2003), I could expect an 

enhancement on thermal conductivity of this sample which will be discussed further in 

section 4-2-3.  

 

Figures 4- 7 TEM images (Scale 100 nm) of 0.1%wt. titania nanofluid with different 

preparation method; a) T1; b) T2; c) T3; d) T4; e) T5; f) T6 
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By adding surfactant and applying ultrasonic horn, clustering will be more 

evident (Figure 4-7.d).  

Figs. 4-7.e and 4-7.f depict the results of three-hour ultrasonic bath on 

nanofluids with and without surfactant; this process was found to be more effective on 

SDS added suspension. Clustering and less agglomeration can be seen in Fig. 4-7.f. This 

suggests three hours ultrasonic bath with SDS added surfactant as an optimum condition 

to have a good stability. Although, this kind of preparation condition should be checked 

with other means of inspections in parallel, concerning the clustering theory proposed 

by Keblinski et al. (2002).  

4.1.2.2 Sedimentation rate by UV-vis spectrophotometer 

Figure 3-4 shows that two different peaks appeared by scanning the diluted 

suspension of nanofluids around 280 nm and 320 nm. It was found that the first peak is 

related to size scattering of the nanoparticles, but the second peak remained even after 

imposing different processes. Therefore, the focus of this research is based on the 

second peak of 320 nm wavelength. Stability measurement of nanofluids with UV-vis 

spectrophotometer was first proposed by Jiang et al. (2003) as an extension of the 

sediment time method. Peak scanning and standard preparation of nanofluid are the 

most important issues that need to be taken into account as reported by (Hwang, Y. et 

al., 2007; Hwang, Y. et al., 2006; Jiang, L. et al., 2003). 

Literature review showed that a standard preparation method should be a diluted 

suspension of around (0.01-0.02 %wt.) so that UV-vis spectrophotometer can detect the 

wavelengths (Habibzadeh, S. et al., 2010). Finally, our research came out with diluted 

concentrations of titanium dioxide between 0.007% and 0.012%.wt. The concentration 

(standard) graph is presented in Figure 3-5.  
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The six prepared samples were monitored by UV-vis sediment method in Figure 

4-8. This graph demonstrates the relative concentrations of the six samples (see Table 4-

1) in the elapsed time of seven days.  

Nanofluid sample without ultrasonic processing and surfactant would sediment 

the fastest (T1 and T2). As can be seen in Figure 4-8, the measurement after two days 

shows very little concentration which confirms the unstable condition of this simple 

mixture. Although this method has the lowest rate of precipitation, its low concentration 

makes it unappealing. Comparing T1, T3 and T5, reveals that (Figure 4-8)  15 minutes 

ultrasonic horn would not have a proper influence on absorbance as it has the lowest 

concentration rate due to the UV-vis spectrophotometer results. Conversely, 

suspensions with surfactant had better concentration and relative stability. But it is 

evident that the impact of 15 minutes ultrasonic horn is more than an unprocessed 

nanofluid. 

The best relative concentration of nanofluid comparing with the fresh one is for 

T6, although the slope of the sedimentation rate is steep and it is possible to have a clear 

nanofluid after one month. As a result, surfactant addition to the nanofluid shows a very 

effective influence on the stability of nanofluid.  

The rate of sedimentation is different among these 6 samples as different 

techniques are imposed. This rate is changing as lowest precipitation rate appears from 

17% by first sample (T1) to the highest of 56% by the third one (T3). These results 

show that different homogenization methods affect the rate of sedimentation as well as 

properties which agrees well with the results of the previous studies (Hwang, Y. et al., 

2008).  
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Figure 4- 8 Sedimentation rate for six prepared samples within seven days after 

preparation 

4.1.2.3 Particle size, zeta potential, thermal conductivity results 

The six prepared nano-suspensions were tested for stability and characterized by 

means of zeta potential, particle size, thermal conductivity and viscosity. Each 

experiment was repeated at least three times to calculate the mean value of the 

experimental data. The results are presented in Table 4-2. 

Table 4- 2  Zeta potential, particle size and thermal conductivity results for 

0.1%wt. titania nanofluid 

SAMPL

E 

Zeta potential 

(mV) 

Particle size 

(nm) 

Relative thermal 

conductivity 

K
nf

/K
bf

 

T1 -33.1 250.4 1 

T2 -44 276.75 1.008 

T3 -31.1 188.2 1.009 

T4 -47.9 176.9 1.01 

T5 -33.3 212 1.008 

T6 -55 237.65 1.01 
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It is confirmed that, firstly, all the samples are moderately stable according to 

the criteria presented by Vandsburger (2009) on his thesis presented at Table 2- 6. 

Secondly, T6 is the most stable suspension; however, the particle size is not the smallest 

among all. Potentially large enhancements of thermal conductivity can occur in 

stabilized solutions if aggregates are less dense and small enough to stay in solution 

(Gharagozloo , P. & Goodson, K. E., 2010). Therefore, it is suspected that this size will 

lead to an agglomeration in time evolution and cause sedimentation due to the 

homogenization theory. On the other hand, the optimized agglomeration theory 

proposed by Prasher et al. (2006), may prove that this size is not the smallest but it can 

be the optimized agglomeration size and lead to the enhanced thermal conductivity with 

chain like aggregates. The second most stable suspension is T4. Proper results appeared 

for the suspension by adding the surfactant (over 40 mV) in comparison with surfactant 

free nano suspensions. From the particle size point of view, 15 min ultrasonic process 

got the best homogeneity among all and smallest coagulation will be reached by this 

method. However, an overall conclusion cannot be made since it has to be confirmed by 

other characterization instruments due to the errors and uncertainty of equipment and 

human.  

Thermal conductivity of nanofluid got the most enhancements in surfactant-

added nanofluid by imposing either 15 minutes ultrasonic horn or three hours ultrasonic 

bath. As a result, adding proper surfactant to the nanofluid increases stability and 

thermal conductivity if it is accompanied by ultrasonication. Otherwise, this would not 

help the dispersion and enhancement of thermal conductivity. The thermal conductivity 

has been shown to increase with aggregation, but decrease if the aggregates become 

dense and large causing settling (Gharagozloo , P. & Goodson, K. E., 2010). However, 

this finding may corroborate the evaluation of the work has done by Meibodi et al. 
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(2010a) that the more stable nanofluid doesn‟t have higher value of thermal 

conductivity. 

4.2 Effect of elapsed timing in stability measurement by UV-vis 

spectrophotometer 

Since there is limited attention to nanofluid stability and optimizing preparation 

method by UV-vis spectrophotometer, I consider it as a critical necessity to conduct 

some experiments in order to evaluate this method. In this section, based on the 

preliminary studies and reviewing literature we focused on the effect of pH values 

(between 10 and 12) and SDS surfactant concentration from one-tenth to twice the 

amount of nanoparticle concentration (ranging 0.01-0.2%wt.) on the stability of 0.1 

%wt. titania nanofluid. The absorbance measurements using UV-vis spectrophotometer 

were taken as the stability responses in the periods of one day, two days, one week 

(168hrs) and one month (720 hrs) after preparation. The results obtained from the 

nanofluid, were imported to DOE for optimizing these two factors separately and 

simultaneously. 

In this study, the appropriate measurement time for a clear detection of the 

stability of nanofluid by the UV-vis spectrophotometer is discussed. Furthermore, the 

optimum stable combination of SDS %wt. and pH value is determined.  

4.2.1  Central Composite Design (CCD) 

The experimental conditions were optimized using Central Composite Design 

(CCD). SDS concentration and pH value, as the two independent factors, were studied 

at five levels with three repeats at the central point.  

Table 4- 3 Variables and values used for CCD 

Variable Name −1 -0.5 0 +0.5 +1 

A SDS (wt. %) 0.01 0.0575 0.105 0.1525 0.2 

B pH 10 10.5 11 11.5 12 
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Table 4- 4 The obtained experimental results based on the CCD method 

Run SDS wt.% pH 
coded value 

A 
coded value 

B 

UV 
 after 
1 M 

UV 

after 
1 W 

UV  
after 
2 D 

UV  
after 
1 D 

1 0.105 10.5 (0) (-0.5) 0.23 0.231 0.422 0.436 

2 0.2 10 (+1) (-1) 0.193 0.198 0.243 0.325 

3a 0.105 11 (0) (0) 0.209 0.215 0.415 0.345 

4 0.2 12 (+1) (+1) 0.015 0.055 0.25 0.513 

5 0.01 10 (-1) (-1) 0.038 0.216 0.348 0.338 

6 0.1525 11 (+0.5) (0) 0.111 0.133 0.334 0.417 

7a 0.105 11 (0) (0) 0.122 0.154 0.436 0.42 

8 0.0575 11 (-0.5) (0) 0.116 0.175 0.419 0.411 

9 0.01 12 (-1) (+1) 0.165 0.214 0.513 0.513 

10 0.105 11.5 (0) (+0.5) 0.106 0.14 0.412 0.431 

11a 0.105 11 (0) (0) 0.084 0.127 0.426 0.408 

a: indicates 3 repeats at center point, M:month, W:week, D:day 

 

For each of the studied variables, high (coded value: +1) and low (coded value: 

−1) set points were selected as shown in Table 4-3. In addition, Table 4-4 shows the 

coded and real values of the designed experiments based on the CCD methodology in 

DOE software. 

4.2.2  Statistical Analysis 

The design of experiment aimed to achieve the optimum range of SDS dosage 

and pH value to have the best stability based on the UV-vis spectrophotometer 

measurement for short term and long term application of 0.1%wt. titania nanofluid.  

Table 4- 5 The ANOVA results 

Model P R
2
 Adj. R

2
 Pred. R

2
 AP C.V Std.Dev 

1 0.0085 0.866 0.777 0.664 9.37 7.10 0.029 

2 0.001 0.987 0.967 0.702 22.68 3.87 0.015 

3 0.001 0.88 0.84 0.603 13.99 7.28 0.17 

4 0.0002 0.964 0.94 0.751 20.12 12.77 0.44 

The relationship between the two variables and the four stability responses of the 

UV-vis spectrophotometer absorbance measurement (after one day, two days, one week, 

http://www.rsc.org/delivery/_ArticleLinking/DisplayHTMLArticleforfree.cfm?JournalCode=AY&Year=2010&ManuscriptID=c0ay00123f&Iss=7#tab1
http://www.rsc.org/delivery/_ArticleLinking/DisplayHTMLArticleforfree.cfm?JournalCode=AY&Year=2010&ManuscriptID=c0ay00123f&Iss=7#tab2
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and one month) was analyzed using RSM. A total number of eleven experiments 

including three replicates at the centre were carried out. The tested variable 

combinations and experimental results are tabulated in Table 4-4. The responses were 

gathered from the UV- absorbance measurement of mixed distilled water and SDS as 

base fluid. The sedimentations were investigated by comparing the measured 

absorbance. 

The effect of SDS concentration and pH value on UV absorbance was evaluated 

using a regression model based on the equations shown in Table 4-6. The statistical 

analysis indicated that the whole regression model is significant (p-value less than 

0.05); however, as can be seen in Table 4-6, some of the terms are missing in the 

predicted model, such as term AB in the first equation. The reason is that, the p-values 

for those terms are well above 0.05 (See Table 4-5). Removing these terms and 

performing regression again resulted in the equations of Table 4-6. 

Table 4- 6 The developed models of UV responses 

UV response after 

preparation 
Final equation in terms of coded factors 

1 day 0.41 - 0.0022 - 0.037B + 0.018B
2
 + 0.13B

3
 

2 days 0.42 - 0.091A - 0.010B - 0.039AB - 0.12 A
2
 + 0.042B

2
 + 0.053 A

2
B 

1 week 2.32 + 0.36A + 0.35B + 0.33 AB 

1 month 2.68 + 0.64A + 0.83B + 2.14AB + 1.81A
2 

Besides, terms with a higher degree or a combination of coded values in the models like 

A
2
B (in the 2

nd 
model) or B

3 
(in the 1

st
 model) were added to the model for better 

regression. In this table (Table 4-6), the influence of coded factors of A and B are very 

little in the first model. Besides, regression coefficient and predicted R
2
 of the model 

have the lowest amount. The absorbance could not be reliably measured due to the 

strongly fluctuating readings. Therefore, the calculated parameters and measured UV 

were chaotic after one day. The highest R
2
 and lowest standard deviation were achieved 
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by model 2 (after two days). The equation denotes the short term stability of nanofluid 

after 48 hours. Likewise, UV absorbance after one month which is considered as long 

term stability characteristic of nanofluid has a fairly high regression coefficient. In this 

model both of the factors and their interactions have a considerable influence on the 

long term stability.  

Figure 4- 9 Predicted vs. actual values plot for the UV-vis spectrophotometer 

absorbance measurement: (a) after one day, (b) after two days, (c) after one week, and 

(d) after one month 

Analytic plots such as the predicted versus actual values help us judge the model 

satisfactoriness. The plots of predicted versus actual value responses, with respect to the 

factors, are presented in Figure 4-9. These plots indicate an adequate agreement 

between the real data and those obtained from the models. Moreover, the AP values 

higher than four (See Table 4-5) for all the responses confirmed that all models could be 
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used to navigate the design space defined by the CCD. Based on the data given in Table 

4-5, the only model which fails in terms of reproducibility is the model for the response 

after one month (CV = 12.77). 

4.2.3  Graph Analysis 

Referring to Figs 4-10 and 4-11 as two-dimensional (contour) and three-

dimensional (surface) models of the responses, the blue areas indicate the minimum 

absorbance while the red strips show the maximum amounts of the responses. The four 

sub-diagrams in these figures demonstrate the absorbance measurements at one day, two 

days, one week and one month after nanofluid preparation. 

 

Figure 4- 10 Two-dimensional contour plots for the UV-vis spectrophotometer 

absorbance measurement; (a) after one day (b) after two days, (c) after one week, and 

(d) after one month 
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It can be seen in these figures that the absorbance after one day had not changed 

by altering pH value. Consequently in comparison with the rest of the graphs, it doesn‟t 

show a proper variation. High absorbance after two days came out with high pH values 

in the low surfactant concentration region. Another noticeable finding is the small area 

of medium concentration samples which is about to grow for the pH value of 10. 

Results after one week show that wider range of pH control and SDS concentration 

could make the nanofluid stable after one week. 

 

Figure 4- 11 Response surface plot for the UV-vis spectrophotometer absorbance 

measurement; (a) after one day (b) after two days, (c) after one week, and (d) after one 

month 

This response conveys that high pH values should be accompanied with low 

concentrations of SDS to reach high stability after one week. Similarly, in order to have 

low pH values, high SDS concentration should be maintained. These graphs also show 

that probably a more stable nanofluid could be reached without surfactant at a pH value 
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of around 9.30. However, this value has not been reported in the literature. Finally, after 

one month the long term stable nanofluid appeared at pH values of between 10-10.5 and 

surfactant weight concentration of equal to twice the amount of nanoparticle loading. 

Due to the sedimentation after long time, the stable region looks smaller. 

4.2.4  Optimization 

“The goal of optimization is to find a proper set of conditions that will meet all 

the goals, not to get to a desirability value of 1.0. Desirability is simply a mathematical 

method to find the optimum“(Stat-Ease, I., 2009). 

If all the responses showed high relative stability at the same weight 

simultaneously, the optimum condition could be achieved. In this case, the maximum 

desirability of 0.891 in pH value of 12 with minimum surfactant concentration of 0.01 

wt. % can be observed in Figure 4-12. However, as discussed in Section 4.2.2, the first 

sample measurement after one day had insufficient discriminating power. Therefore, the 

desirability was calculated by removing this response or lowering its weight in the 

numerical optimization. The point of 0.908 located at pH of 10 with SDS weight 

percentage of 0.09% (shown in Figure 4-13) can be claimed to have the same loading of 

nanoparticles. 

At one-day interval after preparation, the responses could be observed at all SDS 

%wt. but only at high pH values. After two days, the measured absorbance showed low 

SDS concentration as acceptable stability at an area with a high pH controlled 

nanofluid. In addition, we observed a measurable area of absorbance at a wider range of 

surfactant weight percentage of about 0.01-0.2. Though, for lower concentrations, the 

pH value would be confined to a range of 10 to12. In the case of higher SDS addition, 

we detected that the stable area occurred only at a pH value of 10. The stability 

measurement after one month showed that for a long-term application of this 

suspension, SDS weight percentages of 0.08-0.2 were associated with low pH values. 
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This result showed that other than this area, our prepared nanofluid would not be 

applicable after one month. 

 

 

Figure 4- 12 a) 3D surface, b) Contour of desirability with consideration of all four 

responses for optimum stability area of titania nanofluid 
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Figure 4- 13 a) 3D surface, b) Contour of desirability of responses for optimum 

stability area of titania nanofluid without the first response 

4.2.4.1 Point Prediction Evaluation 

To assess the accuracy of the second order equations, three-additional UV 

absorption experiments were performed using the SDS concentration and pH value that 

were prepared under the RSM-predicted optimum conditions. The maximum values of 
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the repeated experiments and predicted results are presented in Table 4-7. As it is 

observed in this table, the deviations errors between the experimental and predicted 

values of UV measurement at experimental intervals of two days, one week and one 

month after the preparation were 1.2%, 1.1% and 0.7%, respectively. The good 

agreement between the experimental values and those predicted from the CCD model 

suggests that the developed model is suitable to simulate variables within 5% of 

accuracy. The optimization results presented in this section provide background 

information for detailed process improvement in future researches. 

Table 4- 7 Evaluation of experimental and predicted values at optimum condition 

Responses of 

absorbance 

Predicted 

values 

Experimental 

values* 

Erro

r (%) 

After two 

days 
0.471 0.465 1.2 

After one 

week 
0.229 0.232 -1.1 

After one 

month 
0.207 0.206 0.7 

*represents the maximum value of the experiments 

4.3 Experimental design and optimization for the effect of pH value and 

surfactant concentration on the stability and thermal conductivity of titania 

nanofluid 

Since the optimized values of pH and surfactant concentration in stabilization 

process of nanofluid are not investigated systematically, and also due to the great 

influence of these parameters on nanofluid stability and heat transfer, it is taken as a 

necessity to conduct some systematic experiments on these two parameters. This study 

aims to optimize the influence of two stabilizing parameters (pH value and surfactant 

weight percentage) on the stability responses for zeta potential, particle size, and UV 

absorption accompany with thermal conductivity response of nanofluid. The 
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optimization process using RSM with CCD method was performed and the obtained 

results are presented. 

The response parameters which determine the samples‟ properties were zeta 

potential (in mV), particle size (in nm), thermal conductivity (in W/m.K), and UV 

absorbance (in g/l). Three repeated runs were carried out at the center of experiment in 

order to measure the reproducibility at different combinations of the process parameters. 

The obtained experimental results were exported to Design Expert (v.8) and the 

effect of the process parameters including surfactant dosage and the value of pH in the 

stability of TiO2 nanofluid and the optimum condition for the stability properties were 

studied using RSM and CCD. 

4.3.1  Data analysis of the effect of pH control and surfactant addition on 

the stability and thermal conductivity 

Table 4-8 shows the coded and real values for designed experiments based on 

the CCD methodology. The coded values for SDS %wt. (A) and pH value (B) were set 

at five levels (−1 (minimum), −0.5, 0 (central), +0.5, and +1 (maximum)). It is worth to 

mention that the thermal conductivity response is the most important parameter to 

measure the heat transfer of nanofluid. 

ANOVA was used to estimate the effects of main variables and their potential 

interaction on the stability of considered nanofluid. The experimental results obtained 

from various homogenization methods of titania nanofluid were analyzed using multiple 

regression analysis. The statistical results of the four responses including zeta potential 

(mV), particle size (nm), thermal conductivity (W/m.K), and UV absorbance (g/L) of 

nanofluid are shown in Table 4-9. 

By observing Table 4-9, adequate precision (AP) and coefficient variance (CV) 

are within the acceptable region which is more than 4 and below 10, respectively, 

except the zeta potential response which is 15.22 for CV. Lack of fit (LOF) measures 
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the error due to deficiency of the model. LOF indicates how well the model fits the data. 

Strong LOF (P < 0.05) is an undesirable property, because it indicates that the model 

does not fit the data well.  

It is enviable to have an insignificant LOF (P > 0.1). The important outputs of 

the model are the F-value and associated probability (P > F). The higher the F-value, the 

more likely the model does not adequately fit the data. Similarly, P should be less than 

0.05 to demonstrate that the model terms are significant. The F-value and P for all 

responses are in the acceptable range and therefore, the predicted model is significant 

(Nosrati, S. et al., 2011a, 2011b). 

Table 4- 8 Factors and responses used for CCD in model optimization (coded 

values) 

Exp. 

Factor A Factor B 
Response 

1 

Response 

2 

Response 

3 

Response 

4 

Code 
SDS 

(%wt.) 
Code pH 

Zeta 

Potential 

(ZP) 

Particle 

size 

(PS) 

Keff UV absorbance 

mV nm  g/l 

1 0 0.11 -0.5 10.5 -48 370 0.994 0.223 

2 +1 0.20 -1 10.0 -51.6 232.3 1.006 0.193 

3 0 0.11 0 11.0 -45 498 1.016 0.229 

4 +1 0.20 +1 12.0 -37.2 327 1.006 0.015 

5 -1 0.01 -1 10.0 -40 295 0.955 0.039 

6 +0.5 0.15 0 11.0 -42.4 409.1 1 0.113 

7 0 0.11 0 11.0 -42.9 432.4 1.003 0.154 

8 -0.5 0.06 0 11.0 -48 397 1.013 0.125 

9 -1 0.01 +1 12.0 -49 350 1.013 0.118 

10 0 0.11 +0.5 11.5 -48 450 1.008 0.17 

11 0 0.11 0 11.0 -44.8 514.2 1.013 0.108 

From Table 4-9, the difference between the adjusted R and predicted R is within 

the accepted range of 0-0.2. In order to get a quick impression of the overall fit and the 

prediction power of a constructed model, R, adjusted R and predicted R are very 
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convenient. Table 4-10 represents the statistical results of ANOVA in terms of coded 

factors for p-values. 

Table 4- 9 Statistical characteristics of optimum models and ANOVA results 

Responses F P 
LOF 

F 

LOF  

P 
R

2 
Adj. 

R
2 

Pred. 

R
2 

AP CV 

ZP 60.2 0.0002 2.53 0.2959 0.984 0.967 0.8814 26.02 15.22 

PS 15.46 0.0018 1.16 0.5241 0.869 0.812 0.673 10.4 8.44 

Keff 18.78 0.003 0.36 0.7911 0.949 0.8989 0.687 14.971 0.54 

UV  19.6 0.0014 2.8 0.2804 0.93 0.8815 0.7724 14.613 4.35 

The ANOVA results in terms of stability parameters indicate that among the 

coded parameters, terms A, AB, and A
2
 have considerable effects on the stability of 

nanofluid in terms of zeta potential as shown in Table 4-10. It means that the zeta 

potential response is more dependent on the %wt. of surfactant rather than the value of 

pH. Likewise, the results obtained by ANOVA signify that the terms B and B
2
 have a 

large influence on the stability of TiO2 nanofluid in terms of particle size as depicted in 

Table 4-10. It is concluded that the particle size response completely relies on the %wt. 

of surfactant instead of the value of pH. 

Table 4- 10 P-Value of four responses 

 

P-Value  

 
Zeta 

potential 
Particle size UV absorbtion 

Effective  

thermal conductivity 

 Response 1 Response 2 Response 3 Response 4 

Model  0.0002 0.0018 0.0014 0.0030 

A-SDS %wt.  0.0015 0.2249 0.0003 0.1443 

B- pH  1.0000 0.0270 0.0318 0.0025 

AB  < 0.0001 -------- -------- 0.0031 

A
2

  0.0007 -------- 0.0153 -------- 

B
2  -------- 0.0005 0.0268 0.0141 

A
2

B  0.0830 -------- -------- -------- 

AB
2  -------- -------- -------- 0.0299 

Lack of Fit  0.2959 0.5241 0.2804 0.7911 
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Furthermore, the results in Table 4-10 show that among the coded parameters, 

terms B, AB, B
2
, and AB

2
 have significant effect on the thermophysical properties in 

terms of the effective thermal conductivity of TiO2 nanofluid. In other words, any 

changes in the value of these coded parameters will lead to significant changes in the 

thermal conductivity of nanofluid. It means that the K response is more dependent on 

the value of pH than on the %wt. of surfactant; however, the interaction between these 

two factors is a matter of concern in verifying the changes of thermal conductivity even 

in higher degrees. Compared to the value of pH, the %wt. of surfactant plays a more 

important role in UV absorbance value; however, no interaction between factors shows 

up in this last response (UV absorption). After eliminating the insignificant parameters, 

polynomial equations and response surfaces for a particular response in terms of coded 

factor were produced using RSM.  

For the stability characteristics, an inverse model with constant value set to 35, 

square root transformation with k set to -150 were required to improve the models for 

zeta potential, particle size, and UV absorption respectively. For an experimental design 

with two factors, the model including linear, quadratic, and cross-terms can be 

expressed in terms of coded factors as given in Table 4-11. 

Table 4- 11 The developed models of characteristic and stability responses 

Response Model 

ZP BAAABA
ZP

22 066.01.013.0061.0093.0
)35(

1
 

PS 
215.568.18.029.17)150( BBAPS  

Keff 
22 025.0013.0015.0014.0013.001.1 ABBABBAK  

UV 
22 63.072.014.038.039.2

1
BABA

UV
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Figure 4- 14 A parity plot between actual experiment and predicted values using RSM 

for TiO2 nanofluid: (a) zeta potential, (b) particle size, (c) thermal conductivity, (d) UV 

absorbance. (The vertical and horizontal axes are predicted output and corresponding 

targets, respectively) 

Therefore, the gained quadratic models represent the actual process of 

stabilizing nanosuspension. Figure 4-14 represents the linear regression between the 

predicted and actual experiment results for all considered responses using RSM.  

The best linear fit is indicated by a solid line. If there were a perfect fit (outputs 

exactly equal to targets), the slope would be 1 and the y-intercept would be 0. The 

correlation coefficient (R-value) between the outputs and targets for all responses are 

given in Table 4-9. Figure 4-14 indicates that the models were successful in describing 

the correlation between the factors and the responses (zeta potential, particle size, 

thermal conductivity, and UV absorption). 
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4.3.2  Influence of the parameters on responses 

In general, the ideal situation may be considered as the maximum value of zeta 

potential (absolute value), thermal conductivity, and UV absorbance. In contrast, for 

particle size response, the best condition may be judged as the minimum value for 

particle dimension. Figures 4-15 and 4-16 illustrate the 2D and 3D plots for predicted 

response, respectively.  

The minimum particle size can be observed at the lowest value of pH (pH=10). 

In other words, at low surfactant concentration, the particle size increases by pH value 

increment. This phenomenon can be explained by the significant quadratic term B 

having a negative influence (see Figure 4-15b and Table 4-11). 

As can be seen from Figure 4-15c, the best recipe for high thermal conductivity 

achievement was obtained at low surfactant concentration along with high value of pH. 

This can be clarified more by reviewing thermal conductivity model in Table 4-11 in 

which parameters A and B have significant positive and negative terms for thermal 

conductivity, respectively. The optimum nanofluid can be resulted at pH value and 

%wt. of surfactant set to 12 and 0.01, respectively. 

Similarly, the high values of UV absorbance were located at two areas of high 

and low pH value with a wide range of SDS concentration as shown in Figure 4-15d. 

For further clarification, 3D views of response surface plots are given in Figures 4-16. 

Regarding the stability measures of zeta potential and UV absorbance, there are mainly 

two regions which have the most stable nanofluids. Meanwhile, the high thermal 

conductivity is located at one of these areas. 
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Figure 4- 15 2D representation of the responses for TiO2 nanofluid: (a) zeta potential, 

(b) particle size, (c) thermal conductivity, (d) UV absorbance. (Vertical and horizontal 

axes are the value of pH and the %wt. of surfactant, respectively) 

As can be concluded from Figures 4-15b and 4-15c, higher thermal conductivity 

may not be reached exactly by having higher stability parameters. The most stable 

nanofluids in terms of having the maximum UV absorption and zeta potential are 

situated within two different areas (see Figs. 4-15a and 4-15d). These regions exhibit 

high pH value with low SDS loading and vice versa. However, the particle size does not 

follow this trend as one of the stability inspectors for a stable nanosuspension. Besides, 

enhanced thermal conductivity could be reached at high pH value and low surfactant 

weight percentage. It is worth to mention that almost half of the stable nanofluids show 

the expected improved thermal conductivity.  
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Figure 4- 16 3D response surface plot for TiO2 nanofluid: (a) zeta potential, (b) 

particle size, (c) thermal conductivity, (d) UV absorbance. 

Since the K response depends on more variables (A, B, AB, B
2
, AB

2
) than the 

agglomerate size, determining the enhancement theory is more complex than the 

particle size. 

Therefore, the agglomerate size can only be a partial parameter for the K effect. 

Then, since the terms that are shared between the responses (A, B and B
2
) have the 

same sign we can conclude that they are related. Consequently, large particle size may 

construct a chain shape cluster which increases the heat transfer due to the clustering 

theory by Evans (2008). Therefore, optimization is necessary to achieve a stable 

nanofluid with high thermally conductivity. 
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4.3.3  Nanofluid optimization for thermal conductivity, UV 

absorbance, zeta potential and particle size responses 

The main objective of this study is to determine the optimum TiO2 nanofluid in 

terms of pH value and SDS weight concentration. Based on the literature review, the 

optimization is carried out by setting the absolute zeta potential more than 45 to have 

good stability (Vandsburger, L., 2009). Therefore, maximum relative UV absorbance 

and thermal conductivity are assumed to reach the most stable and efficient cooling tool 

for titania nanofluid. It is a challenging task to define the optimum agglomeration size 

according to the existing theory of Prasher at al. (2006). As a result, we set all the other 

parameters to their desired values of maximum thermal conductivity and UV 

absorbance with minimum particle size and the desirability function will result in the 

optimum agglomeration size. Figure 4-17 demonstrates the desirability plot for obtained 

model in 2D and 3D views. 

The desirability is a multiple response method with numerical optimization. This 

response finds a point that maximizes the desirability function. The goal of optimization 

is to find a good set of conditions that will meet all the goals, not to get to a desirability 

value of 1.0 (Stat-Ease, I., 2009).  

For optimizing these four responses, there are 18 desirability values from 0.388 

to 0.972 out of 1. For the maximum amount the values of K, zeta potential, particle size, 

and UV absorbance are -60.7, 353.048, 1.01 and 0.615, respectively. However, thermal 

conductivity is not as high as we expected. Subsequently, we selected a desirability 

value of 0.727 at which all parameters simultaneously meet the desirable amount of -48, 

463.562, 1.023 and 0.43 as aforementioned order. The obtained prediction point is 

located at a pH value of 11.4 and SDS concentration of 0.04 %wt. as shown in Figure 4-

17. 
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Figure 4- 17 Desirability plot for TiO2 nanofluid: (a) 2D plot with contours, 

(b) 3D surface mesh 

On the other hand, if we consider thermal conductivity and particle size as an 

issue of optimization, the obtained prediction points will include 36 points with 

desirability equal to 1.0. As shown in Figure 4-18, the selected point is placed at pH 

value of 11.4 and SDS concentration of 0.02%wt. The single limiting condition for this 

point is maximizing the thermal conductivity. In this case, we have a preparation 

method in which the enhancement of thermal conductivity will be 2.6%. The 
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coagulation size in this condition is 471.36 nm. Therefore, larger agglomerate sizes lead 

to higher thermal conductivity. Due to the experiment limitations, this set of 

experiments cannot evaluate the clustering and agglomeration theory by Prasher et al. 

 

Figure 4- 18 Desirability plot for TiO2 nanofluid: (a) 3D surface mesh, (b) 2D plot 

with contours 

b) 

a) 
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4.3.3.1 Point Prediction Evaluation 

Four additional evaluation runs were carried out to validate the optimization 

results for the influence of pH value and surfactant concentration on thermal 

conductivity and stability of TiO2 nanofluid. The maximum values of the repeated 

experiments and predicted results are presented in Table 4-12. As it is observed in this 

table, the deviations errors between the experimental and predicted values of zeta 

potential, particle size, thermal conductivity and UV absorbance measurement were in a 

good agreement from the CCD model and these outcomes suggest that the developed 

model is suitable to simulate variables within 5% of accuracy. The optimization results 

presented in this thesis provide background information for detailed process 

improvement in future researches. 

Table 4- 12 Evaluation of experimental and predicted values at optimum condition 

Responses  
Predicted 

values 

Experimental 

values* 

Error 

(%) 

ZP -48 -46 4.1 

PS 463.5 441 5.1 

Keff 1.023 1.02 -0.3 

UV 0.43 0.444 3.2 

       *represents the maximum value of the experiments 

4.4 Effect of nanoparticle volume concentration, duration and power of 

ultrasonic on the stability and thermal conductivity of nanofluid by Box Behnken 

method 

The main goal of this study is to investigate the influence of sonication (power 

and time) on the stability of nanofluids by means of UV-vis spectrophotometer and 

sediment balance method at different concentrations in short term (after one week) and 

long term (after one month) intervals. In addition, the magnitude of zeta potential was 

measured to evaluate the quantity of UV-vis absorbance and sedimentation balance 

method. Meanwhile, we measured the thermal conductivity of nanofluids right after 
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preparation to optimize the influence of sonication and TiO2 volume concentration on 

the characteristics of nanofluids at 25°C. Moreover, we implemented statistical analysis, 

RSM method and Box-Behnken to find out the optimum condition for maximum 

thermal conductivity and high stability of nanofluids (LotfizadehDehkordi, B. et al., 

2013).  

4.4.1 Experimental design and statistical analysis 

The experiment was designed by means of RSM modeling combined with three-

level BBD. BBD is an independent quadratic design which needs fewer combinations of 

the variables to estimate a potentially complex response function than a full factorial 

design (Yetilmezsoy, K. et al., 2009). In this study, BBD with three independent 

variables (x1: ultrasonic power, x2: ultrasonic time, x3: TiO2 volume concentration as 

shown in Table 4-13) at three-levels was performed. The coded values of the variable 

for statistical calculation were determined by the following equation:  

Xi =           (4-1) 

Where, Xi is a coded value of the variable, xi is the actual value of the variable 

and x0 is the actual value of the i
th

 test variable at the center point. The whole 

experiment design consisting of 17 experimental runs is shown in Table 4-14. The five 

replicates at the center point were added to provide a measure of process stability and 

inherent variability.  

Table 4- 13 Independent variables and their levels used in the response surface 

design 

Independent variables 
Factor level 

References 
-1 0 1 

X1: Ultrasonic power (%) 20 50 80 (Lin, C.-Y. et al., 2011) 

X2: Ultrasonic time (min) 2 11 20 (Amrollahi, A. & et al., 2008) 

X3: TiO2 Volume concentration (%) 0.1 0.55 1 
(Chung, S. J. et al., 2009; Hong, K. S. et 

al., 2006) 
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In the first step of RSM, a proper approximation is implemented to find the 

relationship between the dependent variable and the set of independent variables. 

4.4.1.1 Thermal conductivity enhancement and stability evaluation by means of 

UV-vis spectrophotometer at short term and long term application  

By applying multiple regression analysis (MRA) on the experimental data, the 

response and the test variables are given in Table 4-14. 

Table 4- 14 Box-Behnken design matrix and experimental record responses 

Run 

Ultrasonication 

power 

(%) 

Ultrasonication 

time 

(min) 

TiO2 Vol. 

concentration 

(%) 

UV 

after 

one 

week 

UV 

after 

one 

month 

Thermal 

conductivity 

(W/m.K) 

1 80 11 0.1 0.339 0.201 0.607 

2 50 20 1 0.329 0.227 0.613 

3 50 20 0.1 0.211 0.208 0.608 

4 50 2 1 0.419 0.204 0.611 

5 50 11 0.55 0.42 0.333 0.606 

6 80 11 1 0.411 0.313 0.616 

7 20 11 0.1 0.334 0.318 0.601 

8 50 11 0.55 0.424 0.31 0.605 

9 20 20 0.55 0.232 0.223 0.604 

10 20 2 0.55 0.513 0.328 0.599 

11 80 20 0.55 0.331 0.323 0.612 

12 20 11 1 0.428 0.196 0.605 

13 80 2 0.55 0.418 0.209 0.604 

14 50 11 0.55 0.415 0.328 0.603 

15 50 2 0.1 0.381 0.219 0.604 

16 50 11 0.55 0.339 0.329 0.608 

17 50 11 0.55 0.428 0.303 0.607 

The following second-order polynomial equations were derived to explain the 

UV measurements (stability after one week and one month) and thermal conductivity of 

nanofluids. The developed models for the above-mentioned responses are gathered at 

Table 4-15. 
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Table 4- 15 The developed models for stability and characteristic responses 

Response Model 

UV after one week 
(Y1)

-1
 = 2.47 - 0.099 X1 + 0.72 X2 - 0.39 X3 - 0.43 X12 - 0.37 X23 + 

0.47 + 0.23  

UV after one month 
(Y2)

-1
 = 3.12 + 0.034 X1 - 0.064 X2 + 0.014 X3 - 0.78 X12 - 0.93 X13 – 

0.18 X23 + 0.082  + 0.65 + 0.9  

Thermal conductivity 
Y3 = 0.61 + 3.75E-03 X1 – 2.375E-03 X2 + 3.125E-03 X3 + 7.5E-04 X12 

+ 1.25E-03 X13 – 1.382E-03  + 02.868E-03  

Where, X1 is the coded power of sonication, X2 is the time of sonication, X3 is 

the TiO2 volume concentration, X12 (X1X2) is the interaction between power and time of 

sonication, X13 (X1X3) is the interaction between power and volume concentration and 

X23 (X2X3) is the interaction between time and volume concentration. 

The analysis of variance (ANOVA) is requisite to check the significance of the 

model (Sen, R. & Swaminathan, T., 2004). Hence, the analysis of variance was 

implemented to explore the significance and goodness of fit of the models. Table 4-16 

shows the ANOVA of the response surface model. According to the ANOVA results, 

the large F value and the small P-value (<0.05) indicate the validity of the model. In 

addition, the lack of fit measures the failure of the model to represent data in the 

experimental domain at points which are not included in the regression (Khajeh, M., 

2011). The non-significant value of lack of fit (>0.05) indicates that the quadratic model 

is statistically significant for the response. The goodness of fit of the model was tested 

by determination coefficient (R
2
). In this case, all the three responses show a very high 

value of determination coefficient. Furthermore, the values of the adjusted 

determination coefficient were also very high, which confirms that the models are 

highly significant (Adinarayana, K. & Ellaiah, P., 2002; Liu, H. L. et al., 2004). At the 

same time, a high degree of precision and a good deal of reliability of the experimental 

values were indicated by a low value of the coefficient of variation (CV). 
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Table 4- 16 ANOVA for response surface quadratic model 

Source 
Mean of 

square 
F value P-value LOF Std. Dev. C.V R

2 Adj.R
2 Pred.R

2 

Y1 1.14 22.03 <0.0001 0.724 0.23 8.1 0.944 0.902 0.803 

Y2 1.3 91.88 <0.0001 0.659 0.12 3.05 0.991 0.980 0.950 

Y3 4.08E-05 14.93 0.0003 0.750 1.65E-03 0.27 0.920 0.859 0.714 

Figure 4-19 show that the models were successful in capturing the correlation 

between the factors and the responses. The points around the diagonal line indicate a 

satisfactory fit of the model. As it is seen in Figure 4-19, in all the three responses, 

replications at the center of the design show a very good agreement with each other, 

which confirms the reliability of the experiments. 

 

Figure 4- 19 Actual versus predicted values for (a) UV absorbance after one week, (b) 

UV after one month and (c) thermal conductivity  

a b 

c 
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Figure 4- 20 Contour plots showing the effect of time and power of sonication on UV 

measurements after one week; (a) 0.1, (b) 0.55, (c) 1 %vol., and after one month; (d) 

0.1, (e) 0.55 and (f) 1 %vol.  

Figure 4-20 show the contour plots for UV measurement after one week and one 

month, which represent the short term and long term stability of nanofluids at 0.1, 0.55 

and 1% TiO2 volume concentrations. Figure 4-20 illustrate that at low concentration 

  0.1 Vol.% 

  0.55 Vol.% 

b 

 

e 

 

   1.0 Vol.% 

c 

 

f 

 

a 

 

d 
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(0.1 %vol.), after one week and one month, low power and short time of sonication 

results in the maximum UV values which represent the best stability.  

This incident can also be explained by the significant quadratic term of X12 in 

thermal conductivity model of Table 4-15. This effect on stability will continue after 

one week even by increasing nanoparticle loading. This indicates that at low volume 

concentration, the nanofluids with short term stability were also stable in long term. It is 

also clear that increasing the power and time of sonication reduces the UV values. This 

supports the previous studies, where long time and high power sonication decreased the 

stability of nanofluids (Lee, J.-H. et al., 2008b; Li, X. et al., 2007). 

However, by increasing the particle loading the stability would follow the 

diagonal direction, which ends up at high power and long time of sonication for 1 %vol. 

As is shown in Figure 4-20e, the high stability is more significant for UV measurement 

after one month (long term stability). In fact, at higher concentrations, longer and 

stronger sonication is needed to breakdown the agglomerated particles and produce a 

stable nanofluid. 

Moreover, the comparison between the UV results after one week and after one 

month shows that the optimum UV area changes and nanofluids with short term 

stability may not be stable in long term. 

In addition, by comparing the UV trend after one week and one month it can be 

seen that the short term stability of TiO2 nanofluids is more dependent on time of 

sonication, while the long term stability relies more on power of sonication.  

Figure 4-21 portray the contour plots for thermal conductivity of TiO2-water 

nanofluids. They demonstrate the effect of time and power of ultrasonication on the 

thermal conductivity of nanofluids by increasing the volume fraction from 0.1 to 1%. 

As it can be seen from Figure 4-21, all three parameters have a considerable influence 
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on the thermal conductivity of titania nanofluid. Increasing the power and time will 

gradually enhance the thermal conductivity of titania nanofluid. 

It is possible that stronger and longer ultrasonication of nanofluids increases the 

Brownian motion which results in the thermal conductivity enhancement. By increasing 

the time and power of sonication, nanoparticles are agitated and their collisions inside 

the water increase. This improves the heat transport from one particle to another and the 

thermal conductivity of nanofluid. Moreover, from the comparison of the three contour 

plots, it can be observed that a higher loading of TiO2 nanoparticles augments the 

thermal conductivity of nanofluids, which is in agreement with the previous studies on 

thermal conductivity of nanofluids (Duangthongsuk, W. & Wongwises, S., 2009; 

Murshed, S. et al., 2005; Turgut, A. et al., 2009). 

Although stability is essential in preparation and application of nanofluids, 

comparison between the UV and thermal conductivity data (Figs. 4-20 and 4-21) shows 

that the nanofluids with higher stability does not necessarily have higher thermal 

conductivity. Especially, at low volume concentrations, optimizing stability and thermal 

conductivity follow an opposite trend (Figs. 4-20a, d and 4-21a).  

Increased thermal conductivity along with long term stability can be observed by 

comparing Figs. 4-20e and 4-21b. Furthermore, stability of nanofluid after one month 

can coexist with enhanced thermal conductivity of TiO2 nanofluid at 1 %vol. (Figs. 4-

21c and 4-20f). 

Therefore, it is possible that nanoparticles agglomeration and formation of 

nanocluster would be responsible for thermal conductivity enhancement at low volume 

concentrations. In this case, the stability of this nanofluid cannot be guaranteed after one 

month. Recent studies on the thermal conductivity of nanofluids have also confirmed 

that the enhancement of thermal conductivity is caused by the growth of nanoparticle 

size and formation of nanocluster (Evans, W. et al., 2008).  
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Figure 4- 21 Contour plots showing the effect of time and power of sonication on 

thermal conductivity of TiO2-water nanofluids at (a) 0.1 (b) 0.55 and (c) 1 %vol. 

concentration 

4.4.1.2 The influence of dispersion method on viscosity, thermal conductivity and 

stability by mean of zeta potential 

Experimental data base on the MRA were achieved and the test variables are 

given in Table 4-17. 

From Table 4-18, the difference between the adjusted R and predicted R is 

within the accepted range of 0-0.2. In addition, AP and CV meet their standards as 

described in previous sections, which is more than 4 and below 10, respectively. In 

order to get a quick impression of the overall fit and the prediction power of a 

constructed model, R, adjusted R
2
 and Predicted R

2
 are very convenient.  

c 

a 
b) a) 

c) 
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Table 4- 17 Experimental results based on the BBD method 

Run 

Ultrasonic 

power 

(%) 

Ultrasonic 

time 

(min) 

TiO2 

concentration 

(%) vol. 

Relative 

Thermal 

conductivity 

Viscosity 

m.Pa 

Zeta 

potential 

mV 

Keff µ ZP 

1 80 11 0.1 1.013 0.9 -15 

2 50 20 1 1.023 0.98 -42.8 

3 50 20 0.1 1.015 0.9 -15.2 

4 50 2 1 1.02 0.98 -22.5 

5 50 11 0.55 1.011 0.93 -43.6 

6 80 11 1 1.028 1.028 -27.3 

7 20 11 0.1 1.003 0.89 -404 

8 50 11 0.55 1.010 0.92 -44.4 

9 20 20 0.55 1.008 0.9 -42 

10 20 2 0.55 1 0.92 -45.2 

11 80 20 0.55 1.021 0.97 -41.8 

12 20 11 1 1.010 1.02 -21.7 

13 80 2 0.55 1.008 0.92 -44.3 

14 50 11 0.55 1.006 0.94 -38.9 

15 50 2 0.1 1.008 0.89 -48.4 

16 50 11 0.55 1.015 0.92 -43.7 

17 50 11 0.55 1.013 0.94 -40 

Table 4- 18 ANOVA for response surface quadratic models 

Responses R
2 Adj.R

2 Pred.R
2 AP CV% Std. Dev. 

Keff 0.9207 0.8591 0.7146 13.107 8.1 0.23 

µ 0.9334 0.8816 0.6035 0.12 3.05 0.016 

ZP 0.9453 0.9028 0.6930 1.65E-03 0.27 3.48 

Table 4-19 represents the statistical results of ANOVA in terms of coded factors 

for P-values. The second-order polynomial equations were derived to explain the 

characteristics by the means of relative thermal conductivity (Y3) and viscosity (Y4) as 

well as magnitude of zeta potential (Y5) to evaluate the stability of nanofluids (see Table 

4-19). After eliminating the insignificant parameters, polynomial equations and 



106 

response surfaces for a particular response in terms of coded factor were produced using 

RSM. For the viscosity an inverse model were required to improve the models. 

Table 4- 19 ANOVA for response surface method 

 

P-Value 

Thermal 

conductivity 
Viscosity Zeta potential 

Y3 Y4 Y5 

Model 0.001 0.0001 < 0.0001 

X1-power 0.0003 0.0549 0.0624 

X2-time 0.0045 0.3636 0.0911 

X3-volume conc 0.0009 <0.0001 0.6440 

X12 0.4076 0.0370 - 

X13 0.1833 0.9299 0.0016 

X23 0.5762 - < 0.0001 

X1
2 0.1367 - - 

X2
2 - 0.1512 0.0662 

X3
2 0.0089 0.0335 <0.0001 

Lack of Fit 0.6878 0.1688 0.1773 

Table 4- 20 The developed models of characteristic and stability responses 

Response Final equation in terms of coded factors 

Keff 
Y3 = 0.61 + 3.75 E-03 X1 – 2.375 E-03 X2 + 3.125 E-03 X3 + 7.5 E-04 X12 + 

1.25 E-03 X13 – 1.382 E-03 X1
2
 + 02.868E-03X3

2
 

µ 
1/(Y4)= +1.07-0.013 X1-5.545 E-03 X2-0.060 X3-0.020 X12+7.415 E-04 

X13+0.013X2
2
-0.02 X3

2
 

ZP Y5 = -41.08+2.61 X1+2.32 X2+0.59 X3-7.75 X13-13.38 X23-3.54X2
2
+13.69 X3

2 

The ANOVA results in terms of stability parameter represent that among the 

coded parameters, terms X13, X23, and X3
2
 have considerable effects on the stability of 

nanofluid in terms of zeta potential as shown in Table 4-19. It means that zeta potential 

response is more dependent on the interactions of nanoparticle loading than the timing 

and power of ultrasonication.  

The results obtained by ANOVA claim that the terms X3, X12 and X3
2
 have great 

influence on viscosity of TiO2 nanofluid. It is concluded that this characteristic response 
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relies more on the volume concentration, although the interaction between power and 

time of ultrasonic horn cannot be ignored. 

Furthermore, given results in Table 4-19 show that between the coded 

parameters, terms X1, X2, X3 and X3
2
 have major effect on thermal conductivity of TiO2 

nanofluid. As a result, any changes in the value of these coded parameters will bring 

momentous change to the thermal conductivity of nanofluid. However, the quadratic 

form of volume concentration is a matter of concern in verifying the changes of thermal 

conductivity. 

Figures 4-22 show that the models were successful in capturing the correlation 

between the factors and the responses. The points around the diagonal line indicate a 

satisfactory fit of the model. As it is seen in Figures 4-22, in all the three responses, 

replications at the center of the design show a very good agreement with each other, 

which confirms the reliability of the experiments. 

Figures 4-23 (a, c and e) show that viscosity follows a similar trend for all the 

timing of ultrasonication although altering the power, increases the dispersion and more 

viscous suspension appears. Growing volume concentration results in higher viscosity 

as could be expected by the Einstein law. 

Meanwhile, at short ultrasonication (t=1 min), the most viscous nanofluid 

accredited to the weakest power (Amplitude= 20%) whereas for the other timings, 

titania nanosuspension reach to its highest viscosity by the strongest power. 

These graphs show that at all ranges of power, short ultrasonication prepares 

very stable nanofluids (<-40 mV) from 0.1 to 0.72 percent of volume concentration 

(Figs. 4-23). Increasing volume concentration decreases the stability by the means of 

zeta potential. This incident can also be proved by the data from Table 4-20 that volume 

concentration and its interaction by other two factors of time and power does have 

significant impact on the model but by a negative order. Power has a small effect on 
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zeta potential increment, which can be found from the small coefficient of term X2 in 

zeta potential. Moreover, short ultrasonication at higher volume concentration would 

not prepare a stable suspension. 

 

Figure 4- 22 Actual versus predicted values for (a) thermal conductivity, (b) viscosity 

and (c) zeta potential 

Growing ultrasonication time results in fewer stable samples of nanofluids and 

power increment declines the zeta potential and correspondingly the stability of titania 

nanosuspension (Figs. 4-23). Longer ultrasonication (t=20 min) gives good stability 

with higher concentration of nanoparticles (above 0.4%) as the duration of 

ultrasonication has the most significant influence on zeta potential model by positive 

b 

c 

a 
a b 

c 
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order of magnitude. As it can be seen from Figure 4-23, growing power decreases the 

stability.  

 

 

Figure 4- 23 Surface response plots presenting viscosity and zeta potential variation 

by altering power and volume concentration at different timing (t); (a and b) at t=2; (c 

and d) at t=11; and (e and f) at t=20 minutes 

e (Viscosity) 

 

f (Zeta potential) 

 

d (Zeta potential) 

 

c (Viscosity) 

 

b (Zeta potential) 

At 11minutes 

At 2 minutes 

At 20 minutes 

a (Viscosity) 
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4.4.1.3 Stability evaluation by sedimentation balance method at intervals of two 

days, one week and one month 

Sedimentation balance method (sedimentation rate measurement by gradient 

cylinder) which was described briefly in chapter two was nominated as a response for 

stability measurement in this section. 

Multiple regression method by Box-Behnken approach was applied to set the 

runs in order to get the experimental results (see Table 4-21). 

Table 4- 21 Box-Behnken design matrix and experimental record responses 

Run 

Ultrasonic 

power 

(%) 

Ultrasonic 

time 

(min) 

TiO2 

vol. 

Concentration 

(%) 

Ws 

(after two 

days) 

Ws 

(after one 

week) 

Ws 

(after one 

month) 

1 80 11 0.1 10 22 68 

2 50 20 1 6 16 54 

3 50 20 0.1 8 18 76 

4 50 2 1 6 13 40 

5 50 11 0.55 5 16 45 

6 80 11 1 8 14 36 

7 20 11 0.1 8 24 48 

8 50 11 0.55 5 16 51 

9 20 20 0.55 7 19 73 

10 20 2 0.55 5 27 68 

11 80 20 0.55 6 18 70 

12 20 11 1 7 21 58 

13 80 2 0.55 5.5 12 60 

14 50 11 0.55 5 14 50 

15 50 2 0.1 6 22 82 

16 50 11 0.55 5.5 17 58 

17 50 11 0.55 6 15 60 

 

The developed model for measurements by sedimentation balance method after 

two days, one week and one month which are presented by Y6, Y7 and Y8 

correspondingly, are shown at Table 4-22. These models explain the magnitude of each 

factor and their interactions on responses. 
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After eliminating the insignificant parameters, polynomial equations and 

response surfaces for a particular response in terms of coded factor were produced using 

RSM.  

For the stability characteristics, Y8, an inverse model with square root 

transformation with constant value set to -26, were required to improve the models for 

sedimentation after one week and one month, respectively. 

Table 4- 22 The developed models of Ws responses 

Response Final equation in terms of coded factors 

Ws(after 2 days) 
Y6= 5.30+0.31 X1+0.56 X2-0.63 X3-0.50 X23+1.16 X1

2
-0.59 

X2
2
+1.79 X3

2 

Ws(after one week) 

Y7  = 15.68-3.13 X1-0.38 X2-2.75 X3+3.50 X12-1.25 X13+1.75 

X23+3.21X1
2
+1.46 X3

2
 

Ws(after one month) 
1/Sqrt(Y8 -26) = 0.19+0.013 X1-0.012 X2+0.038 X3-3.076 E-

03 X12+0.050 X13-0.022 X23-0.037 X2
2
+0.023 X3

2 

As it is shown in Table 4-23 and discussed earlier in this chapter, coefficient of 

quadratic R is near to 1 and adjusted R and predicted R are within the accepted range of 

0-0.2 which illustrates the models fit the experimental data for all of the responses. In 

addition, CV and AP meet their requirements of being in the range of more than 10 and 

below 4, respectively.  

Table 4- 23 ANOVA for response surface quadratic models 

Responses R
2 Adj.R

2 Pred.R
2 AP C.V% Std. Dev. 

Y6 0.8956 0.8144 0.6145 10.081 9.44 0.61 

Y7 0.9576 0.9151 0.7392 15.111 9.35 1.21 

Y8 0.9112 0.8224 0.6203 12.567 10.76 0.020 

Table 4-24 represents the statistical results of ANOVA in terms of coded factors 

for P-values. The ANOVA results in terms of stability parameters represent that among 

the coded factors, terms X2, X3, X3
2
 and X1

2
 have considerable effects on the stability of 
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nanofluid in terms of sedimentation rate after two days (Y6) as shown in Table 4-24. It 

means that the most effective parameter on this response is the volume concentration of 

nanoparticle which has the lowest p value. In addition, the p-value of power and timing 

of ultrasonication are below 0.05 and demonstrate the significance of these terms on 

stability detection after two days.  

Table 4- 24 ANOVA for response surface method for sedimentation balance method 

after intervals of two days, one week and one month 

 

P-Value 

Ws(after two days) Ws(after one week) Ws(after one month) 

Y6 Y7 Y8 

Model 0.0009 0.0001 0.0017 

X1-power 0.1784 < 0.0001 0.1105 

X2-time 0.0275 0.4045 0.1196 

X3-volume conc 0.0170 0.0002 0.0007 

X12 - 0.0004 0.7687 

X13 - 0.0717 0.0012 

X23 0.1330 0.0198 0.0660 

X1
2 0.0034 0.0006 - 

X2
2 0.0777 - 0.0057 

X3
2 0.0002 0.0375 0.0494 

Lack of Fit 0.1977 0.4216 0.7354 

Similarly, the results obtained by ANOVA shows that the terms X1, X3, X1
2
 and 

X12 have great influence on the stability of TiO2 nanofluid for Y7 response 

(sedimentation after one week), although the impact of X3
2
 which represents the 

quadratic coefficient of volume concentration cannot be neglected. It is concluded that 

sedimentation after one week relies on the power of ultrasonication, volume 

concentration and the interaction between power and timing of ultrasonication. 

Furthermore, given results in Table 4-24 show that among the coded parameters, 

terms X3, X13, X2
2
 and X3

2
 have significant effect on the stability in terms of 

sedimentation recording after one month. In other words, any changes in the value of 

these coded parameters will bring significant changes to the long term stability (after 



113 

one month) of nanofluid. It means that Y8 response is more dependent on the amount of 

nanoparticle loading and its interaction with the power of sonication compared to the 

time of sonication, however, the quadratic term of timing of ultrasonication is a matter 

of concern in verifying the precipitation rate.  

 

Figure 4- 24 Actual versus predicted plots for TiO2 nanofluid for the measurement of 

sedimentation rate: (a) after two days, (b) after one week, (c) after one month 

Figs. 4-24 show that the models were successful in capturing the correlation 

between the factors and the responses. The points around the diagonal line indicate a 

satisfactory fit of the model. As it is seen in Figs. 4-24, in all the three responses, 

replications at the center of the design show a very good agreement with each other, 

which confirms the reliability of the experiments. 

The graphs of 4-25 show that by keeping power and time of ultrasonication at its 

lowest amount, less sedimentation appears in almost all ranges of titania. Surprisingly, 

c 

b a 



114 

this trend would be repeated by higher powers of 50% and 80% (see Figs. 4-26 and 4-

27). This matter demonstrates that weaker or stronger ultrasonication do not have much 

impact on stability at measurement after two days by sedimentation balance method. 

 

Figure 4- 25 Two dimensional contour plots for sedimentation rate measurement of 

titania nanofluid at ultrasonic amplitude of 20%; a) after two days; b) after one week; c) 

after one month 

The figure of Ws after one week demonstrates that all the measurements for 

different concentration follow a routine that longer and weaker ultrasonication produces 

the most stable nanofluid. Less sedimentation shows up by imposing power more than 

50% and sedimentation grows if the time increases. 

As is depicted, the area of lowest sedimentation detects by sedimentation rate 

after one week and still shows up after 30 days (see Figs.4-25). But measurement after 

a 

 

b 

 

c 
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one week demonstrate the highest sedimentation at low sonication time and power at 

concentrations below 0.6%vol. ,whereas this area shifted to the samples with high 

power ultrasonication at the measurements after one month. This will prove that shorter 

and weaker ultrasonication cause sedimentation of the particles after one week but high 

power and low duration, due to the agglomeration and great Van der Waals force among 

nanoparticles, persuade the coagulation of nanoparticles to sediment after this period of 

time. 

The most precipitated samples grow between the aforementioned 

homogenization methods with ultrasonic horn timing of 20 minutes. This plot displays 

that long ultrasonication is not suitable for most of the samples in order to prepare stable 

nanofluid. Then they would sediment easily after one month. 

Results from Figures 4-25 illustrate that by keeping the amplitude of 

ultrasonication at 20% of its capacity, short ultrasonication show better result with less 

sedimentation after two days. But, we identify a change of trend by recording 

precipitation rate after one week and one month. This shows that low power and time of 

ultrasonication has short time advantage on stability of nanofluid whereas for having a 

long time improvement of homogenization, the samples need to be kept at longer 

ultrasonication with respect to low power. Figure 4-26 shows that increment of volume 

concentration reduces sedimentation rate whereas longer ultrasonication has better 

impact on stability of nanofluid after one week. 
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Figure 4- 26 Two dimensional contour plots for sedimentation rate measurement of 

titania nanofluid at ultrasonic amplitude of 50%; a) after two days; b) after one week; c) 

after one month 

Meanwhile, outcomes from Figures 4-26 reveals that medium amplitude of 50% 

of ultrasonic horn keeps the samples in a better stability situation even after one month.  

Rising volume concentration decreases the sedimentation rate for titania nano-

suspensions and this trend is followed by precipitation recording even after one week 

and one month (see Figs. 4-26). This proves our analytical results (Table 4-24) that 

coded factor of C (volume concentration) have a significant role on stability of 

nanofluid for all the above-mentioned intervals. Interestingly, the most stable samples 

b 

 

a 

 

c 
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after two days keep their stability even after one month by imposing the amplitude of 

50%.  

The most stable nanofluids can be found at high power ultrasonication (see Figs. 

4-27). Growing nanoparticle loading leads to better stability which is confirmed by less 

sedimentation at the intervals of one week and one month. As it is depicted in Figure (4-

27c) 11 minutes ultrasonication succeeded for stability evaluation of all the 

concentration by sedimentation balance method after one month and precipitation rate 

reduces by rising volume concentration. 

 

Figure 4- 27 Two dimensional contour plots for sedimentation rate measurement of 

TiO2 nanosuspension at ultrasonic amplitude of 80%; a) after two days; b) after one 

week; c) after one month 

a 

 

b 

c 
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4.4.2 Optimization  

Numerical optimization displays the feasible values in which any combination of 

one or more goals will meet in the form of factor or responses. The criteria in 

classifying limits of optimization were set by the values shown in Table 4-25 which 

shows the acquired maximum thermal conductivity and stability responses. The 

desirable point was obtained at the ultrasonication amplitude of 75%, duration of 20 

minutes and nanoparticle loading of 0.86 %vol.  

The results showed that the estimated stability of titania nanofluid considered 

high regard to the UV absorbance, sedimentation rate and zeta potential of -46.8. 

Furthermore, within the obtained range of enhanced thermal conductivity, the predicted 

nanofluid has nearly the maximum value of improvement associated with low viscosity. 

The predicted desirable particle size of nanofluid was 411 nm which proves that 

this optimum point confirms the results from previous sections that clustering and 

agglomeration would be the reason of heat transfer enhancement for titania nanofluid. 

The result in Table 4-25 shows that this modeling and optimization software is 

able to predict the aforementioned condition of nanofluid preparation successfully up to 

6% of accuracy. The precipitation rate measurement by means of sedimentation balance 

method reaches over 5% of error which may occur due to human reading error. 

Therefore, there would be no concern for stability monitoring as there are many 

responses covered by this optimization such as UV absorbance and zeta potential. 

However, thermal conductivity measurement which is the main concern of nanofluid 

preparation has the lowest error of 0.29% and shows an excellent uncertainty.  
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Figure 4- 28 Desirability plot for TiO2 nanofluid: (a) 2D surface mesh, (b) 3D plot 

with contours 
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Table 4- 25 The goals and predicted point for nanofluid characteristics and stability 

evaluation 

Name Goal Limit Limit 
Desirable point 

predicted 
Measured 

Error 

(%) 

A:power is in range 20 80 75 75 - 

B:time is in range 2 20 20 20 - 

C: volume 

concentration 
is in range 0.1 1 0.86 0.86 - 

Keff maximize 1 1.028 1.027 1.03 0.29 

µ minimize 0.89 1.03 0.998 0.97 -2.8 

PS - 273.8 1515 411.94 390 -5.3 

ZP minimize -48.4 -30 -46.83 -49 -4.63 

Ws after two 

days 
minimize 5 10 6.38 6 -5.9 

Ws after one 

week 
minimize 12 27 17.067 16 -6.0 

Ws after thirty 

days 
minimize 36 82 50.096 N/A N/A 

UV absorbance 

after one month 
maximize 0.196 0.333 0.327356 0.333 1.83 

UV absorbance 

after one week 
maximize 0.211 0.513 0.355093 N/A N/A 

4.5 Comparison of thermal conductivity results  

As it was mentioned earlier in the literature review, none of the classical models 

succeeded in determination of thermal conductivity enhancement of nanofluid. Table 4-

26 shows the experimental results in low concentration titania nanofluid compared with 

some analytical models. The results revealed that although classical models are not able 

to estimate the experimental results, the models presented by Yu and Choi (2003) and 

Timofeeva (2007) are capable to predict the experimental results within 1% of error. 

These two models which are the most applicable models in nanofluid thermal 

conductivity prediction have different approaches. 
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Timofeeva et al. (2007) reported that no anomalous enhancements which were 

reported by some other investigators can be seen by their experiments and evaluations. 

They declared that agglomeration and clustering by transporting heat rapidly over 

significant distances and a specific orientation can be the reason of the nanofluid heat 

transfer enhancement. However, Yu and Choi (2003), predicted the enhancement by 

exploiting the nanolayer structure to produce nanofluids that are highly thermally 

conductive. This outcome reveals that thermal conductivity of nanofluid which is stable 

for over one month can be predicted by the abovementioned models at volume 

concentrations higher than 0.55 %vol.  

Comparing these models with the experimental results, low concentration 

nanofluids (0.026 and 0.1% vol.) show better enhancement in comparison with higher 

volume concentrations (0.55 and 1.0% vol.). 

Table 4- 26 Models for the evaluation of thermal conductivity of titania nanofluid 

%vol. 

(Maxwell, 

C. & 

Thompson, 

J. R., 1904) 

(Hamilton, 

R. L. & 

Crosser, O. 

K., 1962) 

(Jeffrey, 

D. J., 

1973) 

(Yu, W. 

& Choi, 

S. U. S., 

2003) 

(Timofeev

a, E. V. et 

al., 2007) 

Experimental 

results 

0.026 1.0006 1.0006 1.0006 1.0009 1.0008 1.015 

0.1 1.0025 1.0025 1.0025 1.0034 1.003 1.016 

0.55 1.0142 1.0142 1.0142 1.0190 1.0165 1.015 

1.0 1.0260 1.0260 1.0260 1.0347 1.03 1.028 
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Chapter five: Conclusion  

This thesis work focused on understanding the fundamental basis for the effect 

of preparative condition on the stability and thermal conductivity of titania nanofluid. 

5-1 The influence of homogenization methods on stability and thermal 

conductivity of titania nanofluid  

Based on the experimental investigation, to examine the influence of 

homogenization methods on stability and thermal conductivity of low concentration 

nanofluid, addition of SDS as an anionic surfactant increases stability of nano-

suspension but the suspension is not durable for more than one month. Ultrasonic 

processes increase the absorbance of nanofluid which means having more stable 

suspension. However, the timing should be proportional to the volume concentration if a 

stable dispersion is needed. Surfactant addition without ultrasonic processing doesn‟t 

contribute to stability and in this case titania nanofluid without processing and 

surfactant addition would have better responses following by increased thermal 

conductivity. It can be concluded that enhancement of thermal conductivity in low 

concentration nanofluid (stationary condition), within the same volume fraction of 

titania in six different samples, ascribes to three-hour ultrasonic bath processing with 

surfactant, which also proves the notes claimed by Prasher et al. (2006). This theory was 

concluded from the assumptions of Russel et al. (1989) and Hunter (2001) in which 

claimed that “the probability of aggregation increases with decreasing particle size, at 

the constant volume concentration, because the average interparticle distance decrease, 

making the attractive van der Waals force more important. Aggregation process lessens 

the Brownian motion effect due to the increase in the mass of the aggregates, whereas it 

can increase k due to percolation effects in the aggregates, as highly conducting 

particles touch each other in the aggregate”. The UV-vis absorbance, zeta potential and 

particle size measurements prove this conclusion. For this reason, short term application 
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of this sample would be a superior idea but in the case of long term, it needs further 

investigations. 

5.2 Suitability of UV-vis spectrophotometer for measuring stability in short and 

long term 

Another objective of this study is to find out whether the UV-vis 

spectrophotometer is a suitable monitoring tool to quantitatively determine the stability 

of colloidal suspensions like nanofluid or otherwise. The results revealed that except the 

UV measurements after one day which were not stable the stability responses for the 

other three intervals are reliable.  

In order to be applied in industry, nanofluid should be stable in long term, for 

instance one month while for having short term applications in laboratories, this kind of 

stability simulation for intervals of two days or one week appears essential. Since there 

is no preferred and suitable standard to accomplish nanofluid preparation with the 

optimized stability so far, supplementary simulating software like Design of Experiment 

would be very valuable. The results in this study demonstrated that higher desirability 

would be achieved if we aspire to include long term stability of nanofluid by excluding 

the first day measurement of UV-vis spectrophotometer. This validation shows that pH 

value of 10 with almost the same ratio of surfactant to nanoparticle loading would be a 

proper combination to homogenize nanofluid in order to keep its stability even after one 

month with the accuracy of 5%. 

5.3 The importance of nanofluid stability by means of zeta potential, UV 

absorbance and particle size on thermal conductivity enhancement of nanofluid  

In order to evaluate the effect of nanoparticle volume concentration, duration 

and power of ultrasonic on the stability and thermal conductivity of nanofluid, results 

using RSM showed that the %wt. of surfactant had a significant influence on the zeta 
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potential and UV absorbance responses of nanofluid. In contrast, the value of pH had a 

significant effect on the particle size and also thermal conductivity which is the most 

important parameter to measure the heat transfer of nanofluid. The maximum values 

(optimum condition) for zeta potential, thermal conductivity and UV absorbance 

responses achieved at maximum value of pH and almost at minimum quantity of %wt. 

of surfactant. However, for thermal conductivity, almost half of the stable nanofluids 

could exhibit the expected improved thermal conductivity. It can be considered that 

derived from the clustering theory, large particle size may construct a chain shape 

cluster which increases the heat transfer. 

On the other hand, the optimum situation for particle size response occurred at 

minimum value of pH for the entire values of %wt. of surfactant. The desirability of the 

constructed model including all responses is 0.727 which is indicated as an acceptable 

value. The optimum condition considering all responses is pH value of 11.4 and %wt. of 

the surfactant set to 0.04. 

Though we observe a correlation between aggregate size and thermal 

conductivity, the behavior of the latter is more complex. The model proposed by 

Prasher et al. (2006) should therefore be improved by adding other factors which it is 

not clear at the present time. The outcomes reveal that the bigger the radius of gyration 

the better the enhancement of heat transfer. As the initial average diameter of titanium 

dioxide was 25 nm and the aggregated nanoparticle size with enhanced thermal 

conductivity of 2.6% was 463 nm (at 0.1% wt.), it seems that clustering theory can be 

one of the reasons to describe the increasing thermal conductivity.  

5.4 The influence of nanoparticle volume concentration, duration and power of 

ultrasonic on the stability and thermal conductivity of nanofluid 

Another part of this study focused on the influence of duration and power of 

sonication on stability and thermal conductivity of TiO2 - water nanofluids in different 
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nanoparticle loadings. UV-vis spectrophotometer, zeta potential and sedimentation 

balance method were employed to determine the relative stability of nanofluids after 

one week and one month. Implementing the contour plots in response surface 

methodology (RSM) based on the Box-Behnken design (BBD) was helpful to study the 

effect of time of sonication, power of sonication, and TiO2 volume concentration as 

three independent variables. The UV-vis spectrophotometer measurements revealed that 

nanofluids with short term stability may not be stable in long term. Results explain that 

the stability of nanofluids after one week relies more on the time of sonication, while 

the power of sonication was found more significant for stability after one month. In 

addition, at low volume concentration, short time and low power sonication established 

the highest stability without any increase in the thermal conductivity. However, 

increasing the power and time of sonication at low volume concentration deteriorated 

the stability. On the other hand, by increasing the volume concentration, higher stability 

was more likely to be obtained at longer and stronger sonication. 

Thermal conductivity enhancement was monitored with increasing the time and 

power of sonication as well as increasing TiO2 volume concentration. It is possible that, 

increasing the sonication time and power enhances the Brownian motion of TiO2 

nanoparticles, which improves the thermal conductivity of nanofluids. 

We have also observed that, higher thermal conductivity of TiO2-water 

nanofluids was not necessarily obtained at higher stability. Hence, authors suggest that, 

other factors such as clustering effect due to aggregation and growth of nanoparticle 

size are responsible for thermal conductivity enhancement.  

Finally, we suggest that, stability and thermal conductivity enhancement of 

nanofluid should be pursued together in optimization of heat transfer characteristic. The 

discrepancies among the reported results in this area may be stemmed from the lack of 
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attention to the interaction between the maximum thermal conductivity and stability in 

the optimization of nanofluid preparation.  

5-5 Future works and recommendations 

This work focused on understanding the effect of stability on thermal 

conductivity of low concentration titania nanofluid. It is determined that aggregation 

and clustering are the cause of the enhanced thermal conductivity reported by many 

researchers.  

Thermal conductivity and stability researches in stationary condition in this 

study showed that not all the stable nanofluids lead to high thermal conductivity and 

vice versa. Therefore, the exact situation and option in this thesis should be moved to 

the flowing condition in order to get the span of vision for heat transfer coefficient and 

enhanced thermal conductivity in flowing condition. A circular, rectangular with 

straight or opaque set up should be prepared consisted of thermometer and pressure 

gauges to check the thermal conductivity and pressure loss by data logger. Finalizing 

these results combined with stationary condition would comprehensively demonstrate 

the correct situation in which industry would follow in the near future. 
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Appendix A 

Table A- 1 Specification of equipment in this research 

ID Brand Specifications Accuracy 

Horn ultrasonic Sonic Vibra 

Cell 

Ti-horn, 20 kHz, and 130 

W/cm
2 
(6 mm) probe 

- 

Ultrasonic bath Branson 

3210 

47 khz, System 000092, 

bath size approx. 12 x 6 x 

6 with cover 

- 

Zeta potential   ±0.1mV 

DLS Malvern 

3000HSA 

100-260 v 50-60Hz ±0.1nm 

UV-vis 

spectrophotometer 

Varian Cary-50 probe ± 0.5 at 541.94 

XRD Philips 

X‟pert MPD 

PW3040 

Cu-Kα  with a wavelength 

of 0.1542 nm 

± 0.5 

Thermal conductivity 

meter 

KD2 pro Transient hot needle ± 5% from 0.2-

2W/(m.K) 

Viscometer A&D Vibration method 1% of Reading 

(Full Range 

pH meter Eutech Auto-Buffer Recognition ±0.01 pH 

Water Distiller Favorit WCS4L - 
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Figure A- 1 Comparison between distilled water data from KD2 pro and correlation 
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