Chapter 3

Methodology

3.1 Introduction

This section explains the mathematical formulations of natural and mixed
convection in square and vertical cylindrical porous annulus. The heat transfer in square
annulus with outside and inside heating, using thermal equilibrium and thermal non-
equilibrium modelling respectively is formulated. Conjugate heat transfer with single and
double wall inserted between the porous materials is considered. A solitary case of heat and
mass transfer in vertical cylinder is included with appropriate boundary conditions followed
by the segmental heating for different size and location of heater is discussed. Mixed
convection in vertical cylinder with thermal non- equilibrium modelling is described. The
corresponding boundary conditions with schematic representation and meshed diagram for

separate cases of the each model are explained.

The governing partial differential equations can be solved either analytically or
numerically in general. The nonlinear partial differential equations are difficult to be solved
analytically, within a specified time, thus, the numerical solution becomes inevitable. The
governing equations involved in the problem, with its non-dimensional derivation and
conversion to algebraic equations by employing Finite Element Method is presented in
subsequent sub sections. The solution methodology and the detail procedure for evaluating

physical parameters are described.
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3.2 Investigation of the heat transfer in square porous annulus.

Heat transfer characteristics in a square porous annulus are analyzed with specific
emphasis on effect of width ratio of cavity, on heat and fluid flow, inside the porous
medium. This particular problem is considered for two separate boundary conditions such

as internal and external heating in square annulus.

The schematic of problem under consideration and coordinate system is shown in
Figure 3.2 where L represents the length or breadth of the annulus with D indicating the

portion unoccupied by porous medium.
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Figure 3.2.1: Schematic of square annulus
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3.2.1 Governing equations for heat transfer with equilibrium modelling

The present study deals with the heat transfer analysis in the square porous annulus
and the governing equations are dealt in the Cartesian co-ordinates. The governing heat
transfer equations can be given as:

Continuity equation

ML (3.2.1.1)
ox oy

Where the velocity in horizontal ‘x’ direction;

u= %Z—s (3.2.1.2)

Velocity in vertical ‘y’ direction;

_ K[ 3.2.1.3
Y 7 (83/+ng ( :

‘Whereas’ K ’ is the permeability of porous medium suggested by Bejan (2004):

D p°
i (3.2.1.4)
180(1- ¢)
Density variation can be incorporated be Boussinesq approximation as:
p=p. - (T-T,) (3.2.1.5)

In order to accomplish the required parametrical solution, the pressure terms in the

equations (3.2.1.2) and (3.2.1.3) are simplified by means of suitable mathematical
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simplifications. Differentiating equation (3.2.1.2) with respect to y and (3.2.1.3) with the

respect to x lead to:

u_-K (3.2.1.6)
oy u oxoy

o —K([d*p oT

—= — 3.2.17
e (ayax P.Prd 5 J ( )

After eliminating the pressure terms from equations (3.2.1.6) and (3.2.1.7) we are left with

momentum equation as:

ov_ou _gKgar

-~_== (3.2.1.8)
oX oy v  OX
The energy equation is given by:
2 2
uﬂ+v£:a 8'2+6'IZ' +— 2 (u2+v2)—iaqr (3.2.1.9)
ox oy ox> oy K(pc), pC, ox

The left hand side of above equation (3.2.1.9) highlights the convection of energy
due to velocity u and v. the first term in bracket on right hand side of (3.2.1.9) indicates the
conduction of heat in porous medium, the second term reflects the viscous dissipation and
last term highlights the radiation effect. The radiation can be approximated by Rosseland
hypothesis as:

] _ _4n’coT?
" 3By &

(3.2.1.10)

Incorporating (3.2.1.10) into (3.2.1.9) results into:
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2 2 2 2T4
TECAIPRVICLINPN (AL R (u? +v?)+ 1 4o 0T (3.2.1.11)
ox oy ox® oy K (pc), pC, 3By X

Velocity can be expressed in terms of stream functions v as:

u=v (3.2.1.12a)

oy
vo_¥ (3.2.1.12b)
OX

The non-dimensionalisation of the governing equations (3.2.1.8) and (3.2.1.11) have been

accomplished by introducing the suitable non-dimensional parameters as.

Non-dimensional width X= T (3.2.1.13a)
Non-dimensional Height 9 = Ll (3.2.1.13b)
Non-dimensional Stream function =" (3.2.1.13¢)
[24
. . T (T _TOO)
Non-dimensional Temperature T= (T T ) (3.2.1.13d)
Rayleigh Number Ra = 9p, ATKL (3.2.1.13e)
va
- 4on?T,°
Radiation parameter Ry = K (3.2.1.13f)
R™s
. T au
Viscous dissipation parameter £= (3.2.1.149)
ATK pc

Expanding the term T* in the equation (3.2.1.10) with the help of Taylor series results into
(Raptis 1998):
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T4 ~41T7, %31 ° (3.2.1.14)

o0

Substitution of equations (3.2.1.12 —3.2.1.14) into equations (3.2.1.8) and (3.2.1.11) gives

rise to following non-dimensional equations:

2 2— T
OV OV _ gy (3.2.1.15)
ox~  oy? OX

N — - o= = —_\2 —\2
8_1{8_'[_8_1{6_‘[ = (1+4Rdj6'l;+8_'l; +& o +[6_:_y] (3.2.1.16)
oy Ox 0Ox oy 3 )X ay y OX

Equations (3.2.1.15) and (3.2.1.16) are two coupled partial differential equations which are

interlinked together thus a change of variable in one equation affects the other equation.
3.2.2 Governing equations for heat transfer with thermal non-equilibrium modelling

There are two basic approaches adopted for the analysis in heat transfer through
porous medium, thermal equilibrium and thermal non-equilibrium. Thermal equilibrium
model assumes that the solid porous matrix and the fluid are in same temperature, thus
thermal equilibrium condition prevails whereby single energy equation is required to
represent the entire porous domain. In most of the real problems the temperature of the
porous matrix is not same with that of the fluid, thus requires separate energy equations,
each for solid and fluid phases. However, the momentum equation remains the same with
thermal energy carried by fluid phase but the energy equation will be split into 2 separate

equations representing fluid and solid phases of porous medium as given below,

Continuity equation

ox oy (3.2.2.1)
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Momentum equation

u_ov__gpK ATy
oy oX v 0OX
Energy equation for fluid
oT oT o°T o°T
U—+V— =g | — +— |+ h T, -7, )+—~
x oy o' oyt ) (eo), K (pc);
Energy equation for solid
0T, O°T,
(1—go)ks( ooy J= h(r, - T,)
The following non-dimensional parameters are utilized:
Non-dimensional width X = Li
Non-dimensional Height y= Ll
Non-dimensional Stream function w = L4
2%
Non-dimensional Temperature T= T-T,)
(Th _Tc)
Where T, = (T +Te)
2
2 3
Radiation parameter Ry = don” T,
Bk,
. ATKL
Rayleigh Number Ra:gﬂT—
pva
2
Inter-phase heat transfer coefficient H= ht

ok

(3.2.2.2)

(3.2.2.33)

(3.2.2.3b)

(3.2.2.4)

(3.2.2.4b)

(3.2.2.4¢)

(3.2.2.4d.i)

(3.2.2.4d.ii)

(3.2.2.4¢)

(3.2.2.4f)

(3.2.2.49)

43



Modified conductivity ratio

Viscous dissipation parameter

_paH
ATK pc

(3.2.2.4h)

(3.2.2.4)

Utilisation of above parameters leads to following non-dimensional equations as:

Momentum equation

Energy equation for solid

o°T, 07T,
+
6?2 672

=HKr(T,-T,)

(3.2.2.5)

(3.2.2.6)

(3.2.2.6)

3.2.3 Boundary conditions for heat transfer when outside walls of square annulus is

heated to isothermal temperature T,

The schematic of the problem under consideration and coordinate system is shown

in Figure 3.2.1. The outer boundaries of the duct are exposed to isothermal temperature T,

and the inner walls are maintained isothermally at cooler temperatureT, L indicates the

length or breadth of the annulus with D highlighting the portion unoccupied by porous

medium.
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The heating of outside walls sets the convection of heat into the porous medium due
to temperature difference between outside and inside walls. The following boundary

conditions are applied

x=0, u=0, V=0, T=T, (3.2.3.1a)
x=L, u=0, v=0, T-T, (3.2.3.1b)
y=0, u=0, V=0, T-T, (3.2.3.1¢)
y=L, u=0, v=0, T=T, (3.2.3.1d)
ﬂSXSLJFD,y:L_D, u=0, v=0, T=T, (3.2.3.2a)
2 2 2
LDy LD LD lo, v=o, T-T (3.2.3.2b)
2 2 2
L;ZDSySLZD,x=L;D, u=0, v=0,T=T, (3.2.3.2¢)

——<y< , X , u=0, v=0, T=T, (3.2.3.2d)

X=0, w =0, T=1 (3.2.3.3a)
X=1, 7 =0, T=1 (3.2.3.3b)
y=0, 7 =0, T=1 (3.2.3.3c)
y=1, w =0, T=1 (3.2.3.30)
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The heat transfer rate at wall surface q,, is given by:

3
N PO e A
38,  ox

The Nusselt number is expressed as

At vertical surfaces

Nu = — (1+ﬂjﬂ
3 JoX X

At horizontal surfaces

Nu = —Kl+ ﬂ]i}
3 ) oy |y=0

=1

0,
1

<

T=0
T=0
T=0
T=0

(3.2.3.4a)

(3.2.3.4b

(3.2.3.4¢)

(3.2.3.4d)

(3.2.3.5)

(3.2.3.63)

(3.2.3.6b)

The term Ry=0 reduces the problem under investigation to pure natural convection without

radiation. As per the convenience, the radiation term can be defined as Ry or the reciprocal

of Ry which is generally denoted as N or Ng.

The average Nusselt number is evaluated as;
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Left wall Nu, == _[Nu
Ll exo (3.2.3.7a)
_ 173
Right wall Uy =+ [Nu
L ona (3.2.3.7b)

Bottom wall  Nu, _1 INu i
Lo @ 3.2.3.7¢)

Top wall Nu, =% I_Nu i
2o @ (3.2.3.7d)

Total Average Nusselt number

Nu,,, =%(NUL + Nug, + Nug + Nu; )
(3.2.3.8)

3.2.4 Boundary conditions for square annulus subjected to internal wall heating to

isothermal temperature T,

The schematic of problem under consideration along with its boundary condition is
depicted in Figure 3.2.4a. The all 4 inner walls are heated to temperature T, and all outside

walls are maintained at cooler temperature Te.
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(3.24.2a)
(3.24.2b)
(3.24.2¢)
(3.2.4.2d)

T=T,
T=T,
T=T,
T=T,

v=0

0
v=0
v=0




o

ATK pc

The non-dimensionalisation of boundary conditions leads to:

— L+D L-D
<x< Y =
2 2
L-D L+D L+D
—<X< Y=
2 2 2
L-D_ _L+D _L-D
2 ~ 77 27 2
L-D_ _L+D _L+D
2 7 27 2

Xx=0

Xx=L

y=0

y=L

L-D L+D L-D

<x< Y=

2 2 2
L-D L+D  L+D
2 2 2
L-D_ _L+D  L-D
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2 7T 27 2
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(3.2.4.3)

(3.2.4.4a)
(3.2.4.4Db)
(3.2.4.4c)
(3.2.4.4d)

(3.2.4.53)
(3.2.4.5b)
(3.2.4.5¢)

(3.2.4.5d)

(3.2.4.6a)
(3.2.4.6h)
(3.2.4.6¢)
(3.2.4.6d)
(3.2.4.7a)

(3.2.4.7h)

(3.2.4.7¢)

(3.2.4.7d)

(3.2.4.8)

49



Non-dimensional form of above equations as:

X=0 v =0 T, T _ 1 (3.2.4.93)
X=1 w =0 T, T _ 1 (3.2.4.9b)
y=0 w =0 T T 1 (3.2.4.9¢)
y=L w =0 T, T :_% (3.2.4.9d)
L-D L+D L-D v =0 - = 1 (3.2.4.10a)
— ~<x< Y= T, =T, ==
2 2 2 2
L-D_ £L+D, _L+D w =0 T =T‘s=1 (3.2.4.10b)
2 2 2 2
L—D_ <L+D' _L-D w =0 T, =1TS=1 (3.2.4.10c)
2 2 2 2
L-D <L+D, _L+D w =0 T =T‘s=1 (3.2.4.10d)
2 2 2 2

The Nusselt number for thermal equilibrium and thermal non-equilibrium cases can be

calculated as follows.

(a) Thermal Equilibrium

horizontal hot walls T
Nu = —(6—T_j (3.2.4.11a)
T=T,
vertical hot walls T
Nu =— (1+ﬂ R, ji (3.2.4.11b)
3 X Jr_p
Average Nu at Left hot %
surface Nu, =% [N (3.2.4.11¢)
Average Nu at Right hot 2]
surface Nu, =+ [ Nu (3.2.4.11d)
L
W 1+W
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Average Nu at bottom hot

1+W
surface T 1%
Nu, == [Nu, (3.2.4.11e)
L
1w @y:ﬂ'
Average Nu at Top hot #
surface Nu, —% [N (3.2.4.11)
= @y-3¢
Total Average N _ _ _ _ _
verage ~U NUq, =%(NuL + Nug + Nu; + NuT) (3.2.4.119)
(b) Thermal Non-Equilibrium
Horizontal hot walls oT, oT,
Nu, =—| — | Nu;=-|—
2 Ti=T, ¥ Jr, (3.2.4.12a)
vertical hot walls oT. (o
Nu, = | [ 1+ 2 RNJiCL | Es (3.2.4.12b)
3 ox J\ oX ). .
Tf :Th s—'h
Average Nu at Left Lw LW
hot surface 17 — 17
Nug == [Nu, Nug == [ Nu, (3.2.4.12¢)
W 1w W 1w
2 @)(:7 2 @)(:T
Average Nu at 1w 1w
Right hot surf N 17
ight hot surface u == J'Nuf Uy == JNUS (3.2.4.12d)
L 1-W ,_1+W L 1-W ,_1+W
2 @x=—- - @
Average Nu at @ #
bottom hot surface Nu, 1 _[Nuf Nu, _1 INUS (3.2.4.126)
L L
1w @Vfﬂ’ % @y—ﬂ'
Average Nu at Top Hw Hw
hot surface Ny =L JZ'Nu , 1 J%Nu 224 191
R L : f R L S ( L4 )
5 ey Y
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Total Average Nu
S, -1 Y - (3.2.4.129)
Nu, = Kr{Nu; )+ Nu ordx

Average Nu of 4 — 1/— _ _ _

walls Nu;, = Z(NuIL + Nug + Nug + NutT) (3.2.4.12f)

3.3 Governing equations for conjugate heat transfer in vertical cylinder

The physical model of conjugate heat transfer in an annular porous annulus along
with the coordinate system is depicted in Figure 3.3.1. The coordinate system is chosen in
such a way that the rand z axis points towards the radial and vertical direction of the
annulus. The model includes a solid wall having a finite thickness at the inner radius of the
annulus which is followed by the porous region until the outer radius of annulus. The solid

wall thickness is defined as a fraction of the total thickness of the annulus between inner

and outer radii. The inner surface of the annulus is heated to constant temperature T, and

the outer surface is maintained at constant temperature T such thatT, >T .
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t- Porous media

— Solid Wall

n

Figure 3.3.1: Schematic of the physical model

The governing equations of heat and fluid flow in the porous solid regions of the domain

are given by:
For porous region

o), o) _
or oz

ow_ou _ gKp oty
o o v o

T, oT, 1o oT,) o7,
Uu—+w——m==-"—|r +—
or 0z ror 0z

For solid wall:

10( 0T, aZTS
——|r +— =0
ror\ or 0z

Subjected to boundary conditions:

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)
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At r=r, T, =T, (3.3.53)

At r=r,, T =T u=0 (3.3.5b)

Since there is no heat storage in the medium, the following condition at solid-porous

interface has to be satisfied, thus at

r r u=0 T T k 6 Is p
=T, — . ) s—— = 0
r r (335C)

The continuity equation (3.3.1) can be satisfied automatically by introducing the stream

function v as:

u=-1% (3.3.6a)
r oz
w=1¥ (3.3.6b)
r or

The following parameters have been used for non-dimensionalisation of the governing

equations.
F=L ,EZE ,z/_/: /4 f:(T—TOO)
L L a; ol (T, -T,)
R - GBATKL
1424

(3.3.7)

Substitution of equations (3.3.6)-(3.3.7) into equations (3.3.2)-(3.3.4) results into:

_ o,
L +T—=| === |=TRa—2 (3.3.8)
01 or\r or or
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aT aT aT | o°T
Howos | 10191, 9 (3.3.9)
rlor oz 0z or ror\ or 0z
_ ,—
100 |, 0T _y (3.3.10)
ror{ or oz
The corresponding boundary conditions take the form as:
At T=r T, =1 (3.3.11q)
At F=r, w =0 T, =0 (3.3.11b)
_ oT.  oT,
At T=r v =0, = Kr— = % 3.3.11c
* v T.=T or  or ( )
~ - oT
At z=0and z=A i 0 (3.3.11d)
The Nusselt number can be calculated using following expression:
_ g
Nu, __1 — dz (3.3.12)
A Lo ),

3.4 Conjugate heat transfer in a vertical annulus with porous medium sandwiched

between two solids

The schematic representation of the physical model of the conjugate heat transfer in
an annular porous annulus with coordinate system is depicted in Figure 3.4.1. The
coordinate system is chosen in such a way that the r and z axis points towards the radial
and vertical direction of the annulus. Since this is a conjugate problem, a solid wall with
finite thickness exists at the inner and outer radii of the annulus. The porous medium is
sandwiched between these two solid walls. The solid wall thickness is defined as a fraction
of the total thickness of the annulus between inner and outer radii. DL and DR refer to the

fraction of solid wall at inner and outer surfaces respectively. The conductivity ratio Kr
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indicates the ratio of thermal conductivity between inner solid to porous medium where as
solid conductivity ratio Krs is the ratio of inner to outer wall thermal conductivity. The

inner surface of the annulus is heated to constant temperature T, whereas the outer surface

IS maintained at constant temperature T_ such thatT, >T .

Figure 3.4.1: Schematic of the physical model

The governing equations for this case are same as equations (3.3.8)-(3.3.10) with different

boundary conditions due to additional solid wall in the geometry, as given below:
At r=r, T, =T, (3.4.1a)

At r=r,, T =T (3.4.1b)

Since there is no heat storage in the medium, the following condition at solid-porous

interface has to be satisfied
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aTsl _ an

At r=r u=0 k. = _P
» o or P or
oT oT,

At r=rg, u=0 K, _8rp =k, 8r2

Corresponding non-dimensional form of boundary conditions are:

At r=r, T, =1
At r=r, T,=0
_ _ oT, ot
At F=ry v =0, Kla_Fl_ -
oT, oT.
At r=r v =0, —P K, =2
2 v or  ?or

Nusselt number is calculated using following expression:

_ : (o,
Nu, :—%J[—_"j dz
Zy or ;

= rispl

3.5 Governing equations for heat and mass transfer in vertical cylinder

(3.4.1c)

(3.4.1d)

(3.4.2a)

(3.4.2b)

(3.4.2¢)

(3.4.2d)

(3.4.3)

The combined heat and mass transfer in porous medium is a phenomenon whereby

thermosolutal transport occurs due to temperature and concentration gradient. It is also

known as double diffusion or thermo-solutal transport.

The governing equations for the double diffusion in a vertical cylinder can be given as:

arw) , aw)

or oz
yo—Kop
i or

W:i(@wgJ
u \oz

(3.5.1)

(3.5.2a)

(3.5.2b)
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Energy equation

aT, oT, 10( 0T, asz
U—+W—=a| ~—|I— |+—
or 0z ror or 0z

(3.5.3)
Concentration equation
oC  aC 1 a[ acj o°C
U—+wW—=D|——|r— |+—
or oz ror_ or) oz? (3.5.6)
The heat transfer in solid wall is described by:
1o( oT,) o7,
—r + 3 = O
ror\_ or oz (3.5.7)
The continuity equation (3.5.1) can be satisfied by introducing the stream function v as:
u=_1% (3.5.8a)
r oz
wo ¥ (3.5.8)
r or
The density variation can be described by Boussinesq approximation
P:Pw[l_ﬂT (T _Too)_lBC (C_Coo)] (3.5.9)
The initial boundary conditions are:
At r=ri T=Ty, u=0, (3.5.10a)
At I =ro, T=T, C=C,, u=0, (3.5.10b)

For a steady state flow, following condition at solid-porous interface must be satisfied

T oT
At r=ry o u=0, TS:TD,C:Ch’ ksag_szkpa_p
' r (3.5.10c)
The following parameters have been used for non-dimensionalisation
L, - f:(T—Tw) EZ(C—COO)
r=— ,I=—, W:lv (TW_Too) , (CW_COO) (3511a)

c,-C
gRATKL,  Le=2 N:%
R o i (3.5.11b)
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After mathematical simplification the final non-dimensional equations are:

2w v T, C
8_1/2/ +Fi(%—av_/):FR — +N£
oz or\r or or or

(3.5.12)
topal oyoT|_[Lof aT,) o,
r|or 6z 0z or ror\ or | 57 (35.13)
o _ =
Loyt opoc) 1110of.0c) oC (35.14)
r|or oz o0z or Lel(rorl or) oz
10 [_OT_S ] 0°T,
- r — |+ - :0
rorl or) oz (3.5.15)
Thus the final boundary conditions are
At r=r T, =1 (3.5.16a)
At F=r, w=0 C=0 T, =0 (3.5.16b)
_ - = = oT. T,
At r=r =0, T =T, C=1Kr— = = 3.5.16¢
sp v s=Tp Pl ( )
The Nusselt number is calculated using following expressions:
_ Z=Ar a'r
Nu, = —% (—_‘)] dz (3.5.17)
Z o\ o) .
_ Z=Ar ac_:
I e (3.5.18)
Z L\ o)

3.6 Governing equations for discrete heating in vertical annular cylinder

Investigation of heat transfer in a vertical annular cylinder subjected to discrete
heating is of considerable importance because in many practical applications, heating takes
place over a portion of one of the vertical walls of the porous enclosure (Sankar et al.,

2011). An annulus with inner radius r, and outer radius r, having porous medium fixed in

between inner and outer radii is considered. The coordinate system is chosen in such a way
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that the r and z axis represents the radial and vertical direction respectively of the annulus.
A section of the inner surface of the annulus is heated to constant temperature T, and the
outer surface is maintained at constant temperature T such thatT, >T_. The heated length
of annulus is referred as HL henceforth to indicate the % of heater length considered. The
schematic of the problem under investigation for different heater length position is shown

in Figures 3.6.1a, 3.6.1b, and 3.6.1c, where the 50% heater length is placed at bottom,

middle and top sections of the hot surface respectively.

As explained in section 3.2.2 the thermal non-equilibrium approach require two
separate energy equarions to be solved. The following equations govern the thermal non

equilibrium heat transfer in a vertical cylinder.

Momentum equation

w _ou_ gKp ot

3.6.1
or oz v or ( )
Energy equation for fluid
oT, oT, 1o oT, o°T,

U—+4+w——|= ——r— |+ +h(T. -T 3.6.2
(pc”)f[ or ézj (”kf{rar( arj 0z° ( f) ( )
Energy equation for solid

10( 0T o°T 10
l-pk. | =— S S| = h|T. =T 1-¢p)—— 3.6.3
ok 22T 2 b )00 2 263
In this case the non-dimensional stream function can be defined as
Stream function =" (3.6.4)

agl,

Substitution of dimensionless parameters, described in section 3.2.1, gives the following

non-dimensional coupled partial differential equations:
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Porous Madium

H; L,
@
eater
L:

Porous Medium

H

(b) '
Porous Medium
(© H

Figure 3.6.1: Schematic of the annulus with 50% HL heater a) bottom b) mid-and c) top
sections of the annulus
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There are two separate sets of boundary conditions are considered for this problem. CASE |
represents the temperature of fluid and solid part of the porous domain are equal to hot wall
at inner surface whereas CASE |1 represents that only solid material of the porous domain

temperature is equal to hot wall and fluid temperature is unknown at inner surface.

3.6.1 Boundary conditions

Case |

At r=randL <z<L, T, =T =T, u=0 (3.6.53)
At r=r,, T, =T, =T, u=0 (3.6.5b)
Case Il

At r=randL <z<L, T =T, u=0 (3.6.6a)
At r=r,, T, =T, =T, u=0 (3.6.6b)

Following dimensionless parameters are used to non-dimensionalise the governing

equations
F:L E:i,?: (T_TO) where To:(TW_TOO)
L, L, (Tw —T. 2
4 2 3 _
d:o-nToo '//=l//, H—hL‘
IBR Ks a¢Lt ¢kf
k
PK; Ra:M (3.6.7)

fr=—
aA— )k, pva,
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Momentum equation

2, 2(_ oy T,
8%+£8—_ ra—l’/_/ =FRa—
oz ror\ or or

Energy equation for fluid

1oy dl oy dli| (10 (1+
flor 6z o0z or F or

Energy equation for solid

=
%3_ (1+ﬂjra_T_s +8—_T; =HKr(T,-T,)
ror 3 or 0z

Corresponding boundary conditions as

Case |
At Fr=randL, >7Z>L,
At r=r,, V=
Case Il

At F=r

The Nusselt number is calculated using following expressions:

For fluid

For solid

[t

—

—

n

N |-

(3.6.8)

(3.6.9)

(3.6.10)

(3.6.11a)

(3.6.11b)

(3.6.12a)

(3.6.12h)

(3.6.13)
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_ 1 b 4 ot _
Nu, =——— 1+—R, [— dz 3.6.14
: j(( +3 djarj (36.14)

The total heat transfer rate for the present problem can be expressed as:

T, 4, Yo,
o = {cﬂkf (?J +(1- qo)ks(1+ 3R j( P ) } (3.6.15)

Using equation (3.6.14) it can be shown that the average total Nusselt number is:

_ -1 1 b T, 4 oT, _
Nu, = ( - +1j(|:2 T HK{a_FJ”U +(1+5 R, j( = j }dz (3.6.16)

3.7 Governing equations for mixed convection in an annular cylinder, thermal non-

equilibrium modelling.

This section describes the heat transfer characteristics of mixed convection in

porous medium for aiding and opposing flow. The aiding and opposed flow is governed by

a

the direction of applied velocity. It must be noted that the aiding flow refers to a condition

when the applied velocity and the buoyancy force act in same direction, assisting each other.

However, for opposed flow, the buoyancy force and applied velocity act in opposite

direction. The annulus is subjected to discrete heating of 20%, 35% and 50% at bottom,

mid and top sections of the annulus. One of the cases, 20% heating at bottom section for

aiding and opposing flow is shown in Figure 3.7.
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Figure 3.7.1: Schematic physical model of a) Aiding Flow b) Opposing flow
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The governing equations for mixed convection in an annular cylinder are given by:

Momentum equation

ow ou _gKgar

o oz v oor

Energy equation for fluid

Energy equation for solid

(1—¢)k5(1§(r aTSjJr aZTSj hT T, )+ - )t

rorl or oz’

Subjected to the boundary conditions

3.7.1 Boundary conditions for aiding flow

At r=randL <z<L, T, =T =T, u=0

At r=r,, T, =T, =T, u=0
At z=0, v=\V_, a—T=O u=0
oz
oz

3.7.2 Boundary conditions for opposing flow

At r=randL <z<L, T, =7,=T, u=0
At I’=r0, Tf :TS :TW U=0

(3.7.1)

(3.7.2)

(3.7.3)

(3.7.4a)

(3.7.4b)

(3.7.4¢)

(3.7.4d)

(3.7.5)

(3.7.5b)
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At z=0, —=0 u=0
o (3.7.5¢)
oT
At z=H, ==V, —=0 u=0
pe (3.7.5d)

Following non-dimensional parameters are utilized

-t z—-Z ,5_(O-T) where ¢ _(T.—"T.)
L, L, (T, —T.) 2 ,
46n3T 2 — 74 hL,
R, = > = ’ H =
AR, wl o,
r—_ P peYel Ra = 9/KATL (3.7.6)
A—-P)k, , po pvor,

Substitution of dimensionless parameters gives the following non-dimensional coupled

partial differential equations:

Momentum equation

2y 10°(-op) rRadT,
G w+16_(r6_w}@_f (317)

oz rorl or) Pe or
Energy equation for fluid
P{ii _iil - [%Q_((u 4R, jr aT?} azj}r H(T, -T,) (3.7.8)
or 0z 0z or ror 3 or oz
Energy equation for solid

— —
%i_ (1+ﬂjr T +—8_-|;5 = HKr(fS -T, ) (3.7.9)
ror 3 or 0z
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With corresponding boundary conditions the non-dimensional boundary conditions for

aiding flow:
At Fr=rand L, >z>L,, w =0,
_ _ - = 1
At r=r, y =0 Ty ZTSZ_E
At z=0, =1, Q:O
0z

(3.7.10a)

(3.7.10b)

(3.7.10c)

With corresponding boundary conditions the non-dimensional boundary conditions for

opposing flow:

At F=randL >7>L,, v =0,
- _ - -1
At r=r, y =0 Tf:TSZ_E
At z=H,  g=-1 T_o
0z
At 7=0, v=0 T _o
oz

3.8 Solution methodology

(3.7.11a)

(3.7.11b)

(3.7.11¢)

(3.7.11d)

As stated in the section 3.1 the governing partial differential equations can be solved

either analytically or numerically. The analytical solution is limited to the problems which

are simple in nature i.e. with simple geometries and boundary conditions. But with complex

geometries and boundary conditions, the exact solution to the nonlinear partial differential

equations is rather difficult, thus numerical methods are preferred for the solution of

nonlinear partial differential equations with acceptable accuracy in recent years. Finite

element method (FEM) is extensively used in the research due to compatibility with the
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solution procedures and accuracy. FEM is useful for solving even the problems with the
irregular or contour boundaries thus has greater recognition in research community, a
powerful tool for solving the linear and non-linear partial differential equations. The
versatility of FEM is well understood due to the fact that, application of the FEM for one
engineering area can be extended to solve the other engineering disciplines. The computer
code written for heat transfer problem can be used to analyze the other field problems such

as solid mechanics, aerodynamics, and hydraulics with minimal changes.
3.8.1 Finite element formulation
Basically the FEM consist of five steps which are:

» Specifying the approximate equation,

» Discretizing the region,

» Developing the algebraic system of equations,

» Solving the system of equations,

» Calculating the quantities of interests.

In this study, three- nodded linear triangular element is used to discretize the region, which
is often recommended due to its reasonable representation of curved boundaries. The
accuracy can increased with the use large number of smaller elements at the region of

higher temperature variation.

The schematic diagram of the three-node triangular element is shown in the Figure 3.8.1.

69



'3

: 4
<

Figure 3.8.1: Typical triangular element

For a triangular element as shown above figure 3.8.1, the temperature variation is

represented with the help of polynomial as:
T=a +a,X+a,y (3.8.1)

T;,T; &T, are the values of “T” at i, j and k nodes with x;,x;,x, and y;,y;,y, representing
the r and z co-ordinates respectively. The values of «;,a, and a, can be evaluated by

substituting the values of x and y at nodes i, j and k in the equation

o :2_]A|:(ijk — XY )Ti +(Xkyi — X Yk )Tj +(Xiyk —X;Yi )Tk:| (3.8.22)
052:2_];0\[()’1'_yk)Ti+(Yk_Yi)Tj+(Yi_yj)Tk] (3.8.2b)
a, :2—1A[(Xk —X; )Ti +(% =% )T, +(Xj =% )TkJ (3:8.2¢)

A Indicates the area of triangle and is given by,

70



Xi Y
A=l X, v, (3.8.2d)

J

1 X Y
On substitution of the values a;,a,,a;into (3.8.1) and mathematical rearrangement, we

derive the following equation,

T=NT +N;T,+N,T, (3.8.3)
Where N;, N;, N, called the shape functions and is given by,

a,+b x+c.y
N =P P°" p=i,jk 3.84
b oA p=i,j (3.8.4)

The constants a,,b,,¢, can be expressed in terms of coordinate system,

a =X Y — XY,
bi =Y, Y (3.8.5a)

C =X —X;

aj =X Yi — XY
b, =y, -V, (3.8.5b)

CJ- =X — X,

aQ =X%Y; =X,
b, =Y, -, (3.8.5¢)

C =X =X

The momentum equation is descritised into algebraic form of equations with the help of
Galerkin’s method by integrating the product of shape function and the momentum

equation over the elemental area as given by
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(3.8.6)

2
222, RaaT]dA

e[S GG

Where R° is the residue left over that has to be minimised. Considering the individual

terms and converting the higher order differential term into its first order simpler form

yields,

O[N] oy
[ N a "”dA O/ INT ¥ v dA- | oIN ow (38.7)
AOX ox? A OX  OX
By applying Green theorem
A
0’ V/ ONT ON | _
NT dA=—| —— dA 3.8.8
I, o |7 (388)
Vs
By substituting (3.8.3) into (3.8.8)
by v
oy 1 _
T _
[N = dA_—WjA b, |[6, b, b] 7, (4A
b Vs
(3.8.9)

3

. b’ bb, bb, |(7
= W blbz bz2 bzbs 7 2
b].bS b2b3 b32 ‘/73

The differential with respect to x axis resulted into above equation. The second term of

momentum equation is similar to first term but with the difference that it is differential in y

direction. Integrating the second terms of momentum results into

2— C12 CC, CGC ||,
NV gL 2 7
,[ P T AL GG G ngs '/:2 (3.8.10)
CC; GG G Vs
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The last term of momentum equation, is (3.8.8) subjected to similar integration

j NTRaidAzRaI NT L da (3.8.11)
A ox AT OR

Consider that the triangular element is divided into three sub triangles as shown below.

)’

Figure 3.8.2: Triangular element divided into three sub triangles (Moaveni 2010)

Where

_ Area pij
Areaijk
_ Area pjk (3.8.12)
Areaijk
P Area _p_ki
Areaijk

It can be shown (Moaveni 2010) that,

£ =

1

(3.8.13)

N

N
n=N
A=N

3

Now by replacing the shape functions in above equation
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oF ¢

o[N]
agdA: RaJ-A n\|\—

oX

dA

jANTR

S A

(3.8.14)

By using a simple relation(Moaveni 2010) the area integration can be evaluated as:

dle!f!

2A
(d+e+f+2)!

[ LLdA=

Substituting (3.8.15) into (3.8.14) we get,

1 T,
J’NR—dA Rgl—[bl b, b] T,
1 T
bT, +b,T, +b,T,
Ra
6 blT +bT +bT
blT1 + b2T2 + b3T3

(3.8.15)

(3.8.16)

Now we are ready with the FE formulation of all terms of momentum equation which can

be written as

— 2

1 bl2 bb, bb, | (v, C, GG, GG
4 A b1b b22 bz?s '/32 +ﬂ C,C, sz 02(2:3
bb, bb, b Y, CC; GG G

Consider the energy equation in cartesian coordinate

oy T oy T | (1+4Rdj
oy 0X OX dy 3

Applying the Galerkin method to equation (3.8.18)

o°T ) o°T
a)—(Z 692

N {81// 6T oy oT

v, . bT, +b,T, +b.T,
7, + =22 pT +bT, +bT, | (3.8.17)
‘/73 blTl + b2T2 + b3T3
(3.8.18)
R [T T
+ dj 6_2 +9 ~ | +dA (3.8.19)
3 )| oX° oy
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On separate term evaluation we get,

_ ¢
oy oT O|N|, _,0IN| =
LINT 22T an- | |20 g7y 2Ny
A 3y OX Nl ox
<] T
SRR e G AR | L 8 (3.8.20)
|4 T,
1 Cll/71 + CZWZ + C3V73 -El
=m CW, +CW, + G, [bl b, bs] -];2
Cll/71 + C21/72 + C3l/73 3
Similraly the term in y direction yields :
gt 1 |MErRR T
[.IN] ggdAzﬁ b7, +b,7, +b7 e ¢, c]|T, (3.8.21)
bll/71 + b2lr/72 + b3!/73 3

The second order differential terms gives similar algebraic equation in matrix form as

discussed with respect to momentum equation

_ 2 pb, bb,|[T,
o, 4 _N\oT 1(, 4 " blj oh T
[ NT[1+2R, | —;dA=——|1+=R, ||bb, b} Db, | T, (3.8.22)
A 3 ¢)ox 4A7 3 | 2
_b1b3 bb, by || T,
¢ cc, cc [T,
4 _\oT 1(. 4 T | =
JANT(1+§Rd]§dA=—ﬂ(1+§Rdj cc, c 02(2:3 T (3.8.23)
_ClC3 C,C; G 3
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Thus the matrix form of energy equation after applying the Galerkin method results into.

Cy + G, +Cos T,
m Cy + G, +CYy (b1 b b, ) 1;
Cy +CW, +Cos IF
by +b,w, + by, T,
T12A by +b,w, + by, Cl 1;2
by, +b,w, + by, 3
1 4 b’ bb, bb, ¢ cC oG ||(T
+—[1+=R, [{|bb, b2 bb, |[+|cc, ¢ ¢ (T, =0
4A 2 2 =
bb, bbb, b GG GG G 3

(3.8.24)

3.8.2 Finite element equation with viscous dissipation

The residue of energy equation taking into account the viscous dissipation is

— T — T 2= 2= —\2 —\2
(R} =-JINT {| LS -2 T || (1422 )0 E0 | (22 4 (2] |
A 0y Ox Ox oy 3 )X oy oy OX
(3.8.25)
Considering the last terms of above equation,
—\2 é/ 2
INTS(O—WJ dA=gj n (@){1/7}} dA
A oX A OX
A (3.8.26)
& _ _ — 12
:m i [bll//1+b2‘//2+b3l//3]

similarly for y-direction,

JNTe

A

()

o] (2

j{lp}jz dA

(3.8.27)
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2
0 _ _ _ 2
J;NTg( agj dA _ﬁ i [, +C, W7, +Cy7s | (3.8.28)

The complete energy equation with viscous dissipation is

C1V71 + Cz‘/72 + C3V73 1 bﬂ/7 1t bz‘)pz + bs‘/7 3
ﬁ Cll/jl + Cz‘/?z + C3‘/?3 [bl bz b3] - m bll/fl + bz‘/fz + b3‘/33 [Cl C, Cs]
Gy, + Gy, + G, by, +bw, +by,

1 4 b12 ble ble C12 ClCZ C1C3
A (1 §Rj bb, b’ bb, [+|cc, ¢’ ¢,
blb3 b2b3 b32 C1("'3 C2C3 C32

| =

(3.8.29)

[

w

1 1
_ _ _ 2 _ _ _
+ﬁ 1 [bll//1+b2‘//2+b3'//3] +(1 [C1‘//1+C2'//2+C3‘//3] =0
1

3.8.3 FE formulation of non-equilibrium model in cartesian coordinates
As stated the non-equlibruim model contains two equations for energy transport for solid

and fluid phase. The momentum equation is

S

OV, 0V _ palt (3.8.30)
2

ox~ oy oX

Applying the Galerkin method to above equation results into:

2y 9% _ aT;
jN 0 L OV Ra ' |dA (3.8.31)
A 2 oX
The matrix form of above equation is:
1 b12 bb, byb, C12 C.C, GG || [y bTy, +b,Tp, +b,Ty,

A bb, b, bb, |+|cc, ¢’ c,c|Hip2 =% bT,, +b,T,,+b T}t (3832

2 —

bb, bb, bs*| |cc, c,c, ¢ | W3 b T, +b,T,,+b,T,,
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Energy equation for fluid

|

Applying Galerkin method

o°T,
aKZ

ox 0y

oy ox

R GRS

(3.8.33)

w 0T, oy oT, | (&, &°T, 7\ 7\ _
(R} =—[NT Oy O v L —L|-¢ o +[6—Q ~H(T,-T,)
oy OXx OX oYy OX oy oy X
(3.8.34)
Considering last term of above equation
¢ Ty 1
[NTH(T,-T,)dA=H[|7||[¢ 7 AT, |-[¢ n 4]|T, (3.8.35)
A A ﬂ. _r —
s3 f3
2 1 1[Tq| 2 1 1Ty
=% 1 2 1RT,e—11 2 1{Tq, (3.8.36)
1 1 2 '|TS3 1 1 2 _f3
The matrix form of above equation (3.8.33) is:
Ciyy +Cop, +Calg 1 by, +b,p, + by -Efl
DA CLiFy + Cyir, + o5 ¢ [by by by ] “DA by, + by, + by ey €, ¢ ][4 Tr,
Ci1 +Col 5 +Caly by + 0,0, +bayy Tis
1 b12 bb, bb, C12 CC, GG HAZ 2 1 1 -rfl
+ —||bb, b,° bh,|+|cc, ¢, c,c, |+ 1 2 1|37,
blb3 b2b3 b32 CICZ CZCS C32 1 1 2 -rf3
1 1 ME 17Ty
& — _ — 12 — — — 12 —
+——||1 [b1‘//1+b2'//2+b3‘//3] +11 [C1‘//1+02‘//2+03W3] -1 13Tz = O
12A 1 2 2|7

(3.8.37)
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Similarly energy equation for solid phase can be transformed to matrix form as:

2 2T 2T
jN FT aT2 4? ‘;TZ HKr(i—ﬂ)}dA (3.8.38)
1 4 b12 ble blb3 Cl2 Clc2 ClcS HAZ K 2 _s‘l
A (1+§Rd) bb, b2 bb, [+|cc, ¢’ cc, |+ 3 "1 T,
b1b2 b2b3 b2’ CC, GG C32 1 1 _53
1 _fl
_HARM, o allE b 2 o (3.8.39)
12
1 2117,
f3
Energy equation of solid
2T 2T 20T
a@_ﬂuf};; ~HKr (T, -, ) - 42 Z_T (3.8.40)
X

The application of Galerkin method yields:

T, , O°T. 4R, T, - -
jN { e ae K (Ts—Tf)}dA (3.8.41)
N \ b®> bb, bb, ¢’ cC, CC " 2 1 1 T,
" (1 3R j bb, b? bb |+/cc, ¢ o, |+ "1 2 1| UT,
b1b2 b2b3 b’ CC, GG 032 1 1 2 _53
2 17| Ta
_HAKr), 107, = o (3.8.42)
12 f2
1 1 2||F

_,‘
w
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3.8.4 FE formulation for cylindrical co-ordinates

Let us consider the linear variation inside the triangular element in r and z direction that can

be described the

T=a+a,r+o,z

%Z%[(r,‘zk _rkzj)Ti +(rz; =6z, )T, +(rizk _rJ'Zi)Tk]

(3.8.43)
1
a, ZA[(Z’ zk) iz —20) j+(zI zj) k} (3840
o =i[(r )T+ (= )T+ (=1 )T, ] (3.8.45)
3 2A k j i i k j j i k
Where A is the area of the triangle and is given by
1 r 2z
2A =1 1, z, (3.8.46)
1 r, z,

Substituting the values of ¢, o, and a; in the equation (3.8.1) and taking in terms of

temperature and the stream functions as

T=N;T1+N2T>+N3T3 (3.8.47)
= [NI{T} (3.8.48)

y = Nay1 + Noyz + Nays (3.8.49)
= [N] {w} (3.8.50)

Where N;, N, and N3 are the shape function for linear triangle, thus given by:
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N, & ez i=123 (3.8.51)
2

Where the variable a, b and c represents:

i’ a, =nz, —hLz,; a =nrz,—rz;;
b =z.-z,; _ . _ .
T T fk b, =z, -z2;; b, =2, -2;;

(3.8.52)

Applying the Galerkin method and integrating the product of shape function with

momentum equation

,— _ _
R} = [NT| 2 r L[ LV Ra Ty (3.8.53)
v | oz or\r or 8r_
- - o o
{Re}=_J'NT aTl/;+r_i %6_1/_/ “ra " |2.mdA (3.8.54)
5 oz or\r or or |

On simplification the equations take the form as

_||b® bb, bb, ¢’ ¢C, CC, 7, bT, +b,T, +b,T,
% bb, b bby|+|ce, ¢’ cc |[i, t+27R RalbT, +b,T, +b,T, =0
bb, bbb, bs®| |cc, c,c, i’ ||¥s b,T, +b,T, +b,T,

(3.8.55)

The energy equation in cylindrical coordinates is

op T o al] (12((y, ) oT), o
F|or 0z oz or F o 3 ) or) a7

The radial distance R to the centroid of an element is given by relation:

(3.8.56)

81



R-L0fh*h (3.8.57)

Similarly applying the Galerkins method to equation (3.8.56) gives:

(3.8.58)
CY1 +Co¥, +C3g - by, +byi, +byig T
DA Cll/il+czl/:2 +C3‘/zs [bl b, bs]_ﬁ b1'/Zl+b2‘/zz +b3‘/23 [Cl C, Cs] 2
Gy t G, + G35 by, +byi, +byig T;
.- . b’ bb, bb, |[T,] |¢’ cc, cc, ||[T,
+Z—A (1+§Rd bb, b’ bb, {T,t+|cc, ¢,° c,c [KT,t=0
bb, bb, b’||Ts| |cc, cc ¢ ||T:
173 2M3 3 3 173 2v3 3 3 (3.8.59)
The conduction in solid wall for the case of conjugate heat transfer is:
_ ,—
10101, 2T g (3.8.60)
ror{ or 0z

Employing Galerkin method:

{Re} = —j NT H%a%[r ‘?:}iiﬂ 27TdA (3.8.61)

—2
A 0z

blz b1b2 b1b3 C12 CC, CgC _51
o= 0 (3.8.62)
blbz bzbs b 32 CC, C)G C32 -rss

247[_’:2 ble b22 b2b3 + CICZ 022 CZC3
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3.8.5 Finite Element equations for double diffusion in vertical cylinder

The momentum equation taking into account the mass diffusion is given by:

— B _
(1) LNq (38:63)
07 or\r or or or
— ~ _
(R} =—[NT a_"z’wi(%a—‘fj-ma TN | |27mdA (3.8.64)
A 07 or\r or or or

— bl2 b1b2 b1b3 012 CC, CgG '171
H b1b2 b22 bzbs +| GG, C22 C,Cs V72 +

bb, bbb, bi®| |cc, cc, ¢ |||
The matrix form, (3.8.65)
bT, +b,T, +b.T, bC, +b,C, +b,C,
2 7R Ra| {bT, +b,T, +b,T, L+ N{bC, +b,C, +b,C, + |=0
bT, +b,T, +b.T, bC, +b,C, +b.C,

The energy equation

- _ _ =
Lowor opor| |10 ( +ﬂj£ Rl (3.8.66)
rior 0z 0z or ror 3 or) oz

The formulation of energy equation is similar to that mentioned in previous case

Concentration equation

- _ -
1wac opoc) 11107, 06 (3.8.67)
Frloroz ozor| Le(Forl or oz
Using the Galerkin method:
A~ — A~ ~ 2~
(R} =—[NT| 2| 2ZEC _awoC| 110 1p0C ), 0C |rmn (3.8.68)
" rior oz ozor| Leror( or) pz

Transform into matrix form,
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C1V71 + C21/72 + C3‘/73 5 bll/71 + b2V7 )t ba‘/7 3 Cl
T _ T _ _ _ -
ﬁ Cy, + Gy, + G, [bl b, bs]_m b, +b,p7, + by, [Cl C, Cs] C,
CW, + G, +Cois b1V71 + bz‘/7 )t b3V7 3 (Ts
_ , _ (3.8.69)
) R b’ bb, bb, ||C]| |c¢® cc cg || |G
+$Le b1bz b22 b2b3 C_z +| GG, C22 C,C, CTz =0
b1b3 bzbs ba2 C_a CC; CG C32 CTa
The conduction equation in solid wall
_ =
10101, 2T g (3.8.70)
ror{ or 0z

Employing Galerkin method:

(R} =[N H%a%(r %T}iﬂ 247dA (38.71)

A 0z

2 ﬁ b12 ble ble C:l2 ClCZ C1C3
oAbk bbb rlee, o o

Wl

) =0 (3.8.72)
b1b2 b2b3 b’ CC, GG 032 53

I w

3.8.6 Energy equation in case of thermal non-equilibrium

Momentum equation

or

_ L
ail? +ri[%a_‘fj:mai (38.73)

{Re}=—[NT [az_‘zwﬁ(%i)—mai}w (3.8.74)
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b12 bb, b,b, C12 ¢C, CC4 v, bl-rl+b2-|72+b3-r3

ZZ—AR bb, b2 bb, |+|cc, ¢, cc, L, +27R RalbT, +b,T, +b,T, =0
bb, bbb, bs*| [cc, c,c ¢ || b,T, +b,T, +b,T,
(3.8.75)

Energy equation for fluid

w 0Ty oy 0T, ar, | o T, - -
Loy owie| |10 (1+ 4Ry jr Ll —L|+H(T-T)) (3.8.76)
Flor 6z oz or ror 3 ) or ) oz
Applying Galerkin method:
w 0T, oy T, T, | o°T, o
Rej=nr|H o ) 110 (1+4Rd Jr S B ESTL A A 2T
A rlor 0z oz or ror 3 or 017
(3.8.77)
C¥1 +Col, +C3Y/5 ) by, + by, + Dby Try
| _ _ |, _ _ —
DA Gy + Gy, +C3yg [bl b, bs] “DA by, + by, + Dby [Cl C, Cs] Tiy
Ciyy; +Co¥, +Ca/s by, + b, + by Ts
_ bl2 b,b, bb, C12 C,C, CiCy X 1 -Ffl
+ 247z§ bb, b,> bb,|+|cc, ¢, c,c |+ HAY L 2 1 T,
blb3 b2b3 b32 ClC2 CZC3 C32 1 1 2 -rf3
_ T2 1]|Ts,
_ 2RHAL 1T, (3.8.78)
12 _
1 1 2T

1
w

85



Energy equation for solid phase of porous medium

=
19 (1+ﬂjrm_s +6_T; =HKr(T,-T,) (3.8.79)
ror 3 or 01

Application of Galerkin method results into:

_ =
{RE}:—jNT %ﬂ_ (1+ﬂjr‘ﬂ_s +a—_T; —HKr (T, =T, ) | 2TdA (3.8.80)
\ ror 3 or ) oz
2 ﬁ 4 b12 b1b2 b1b3 Clz Cch C1C3 HAZK 2 l _Sl
Z—A (1+§Rdj bb, b’ bhb |+[cc, ¢’ cc |+ "1 2 1 T,
b, bb, bs’| |cc, cc, ¢ 11 2|7,
2 23 1~2 2¥3 3
g 2 1(Ta
= %1 14T, (3.8.81)
5|+
f3
3.8.7 Finite Element equations for mixed convection
Momentum equation
'y 10°(-aop) rRadT,
Oy 1o [yoy)_TRacy (3.8.82)
oz rorl or Pe or
Application of Galerkin method yields:
,— 3 _
{Re}z—jNT a%wi[%a_‘/_’j—r& CLN RPN (3.8.83)
A 0z or\r or Pe| or
2 ﬁ bl2 ble b1b3 Clz ClCZ C1C3 ‘/7 1 R bl-rl +b2-|72 +b3-r3
_2 —_ —_— [
S| [bh bbb (tfee, o g ||, 2R P—Z b7, +b,T, +b,T, 1 =0
bb, bb, bs®| |cc, cc, ¢ ||(Ws bT, +b,T, +b,T,

(3.8.84)
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Energy Equation for fluid

w OT, aT, ar, | o,
P 8_1/_/_f_8_!// 12_ (1+4Rd jr Ll _Zf
or 9z 9z or ror 3 or 0z

aT, oy T, aT, | T, _
{Re}: jN Pe a_‘/’__a‘/_’__f _ %Q_ (1+4Rdjr | _Zf +H( . T) 27TdA
A or 0z 0z or ror 3 or 0z
(3.8.86)
CY, +CW, + Gy bl‘/71 + bz‘?z + b3V73 L
27Pe | _ _ _ _ _ _ =
m Cy + Gy, + G, [bl b, ba] _F by, +b,w, + by, [Cl C, Ca] f2
C, + G, + G, by + b, + by Tia
2R b12 bb, bb, Cl2 C,C, CCq HAZ 1 -rfl
2R bb, b,” bb,|+|cc, ¢,° c,c, |+ 1 14T,
ble b2b3 b32 Cch CZCS C32 1 1 2 -rfS
_ |2 1 Te
2”1R2HA 1 117, = o (3.8.87)
1 2|7,
Energy equation for solid pase of porous medium
2
19 (1 ﬁj TIARCAR — HKr (T, -T,) (3.8.88)
T or 3 or ) oz
Applying Galerkin method
_ =
:-jNT ii_ (1+ﬂ]ra_T_s +a—_T; —HKr (T, - T, ) | 22TdA (3.8.89)
° ror 3 or oz
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The matrix form of equation can be given as:

ol A b12 bb, bb, 012 CC, CgG HAZK 2 1 1 _51
RN+ 2R, |lbb, B2 bb [+ce, ¢ o, |+ "1 2 1|UT
4A 3 d 2 2 2™3 12 2 273 s2
b1b2 b2b3 b32 CC, C,GC 032 1 1 2 _s3
_ 2 17(Ta
_ZERHAKN o e L 2 0 (3.8.90)
12 f2
11 2f|T,

3.9 Solution Procedure

Mathematical modeling and simulation of a process can be summarized in two steps.
The mathematical formulation considering the parameters affecting the process and solving
those derived equations to get the values of the unknown solution variables. In this study
the heat transfer phenomenon is defined by the mathematical equation as discussed, the
finite element method is used to determine the heat transfer characteristics of the flow
through porous medium. The discretization of the domain is accomplished by dividing it in
to smaller segments known as elements. In present case, the domain of problem under

investigation is divided into multiple triangular elements as shown in Figure 3.9.1.
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(a)

(b)

==

Figure: 3.9.1: Meshed model of a) Square annulus b) vertical annular cylinder

Figures 3.9.1a and 3.9.1b depict the meshed models of square porous annulus and
vertical annular cylinder respectively. Due to symmetry, only half the geometry of cylinder

is modeled that is sufficient to predict the entire behaviour of cylinder. A computer code is
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written using the advanced computer software MATLAB to solve the problem under
investigation. As there are two or more coupled equations to be solved to get the
temperature distribution within porous domain which require an iterative computing
method. Two solution variables T and 7 at various points inside the porous domain is
determined by an initial guess value of which are fed in to the computer code. By using the

first guess value of i the new value of T is determined and then this new value of T is

fed back to evaluate the new value ofy . The fresh value of y is then fed to get the

improved value of T and again this T is used to get the fresh value of iz . Thus the

computer code performs multiple iterations until the difference between previous and

current values of both the solution variables is reached the specified tolerance limit. The

tolerance for T and 7 is set as 10 & 10” respectively which gives quite accurate results.

With the obtained T and i values for the whole domain, the Nusselt number is evaluated

to determine the heat transfer rate from the wall to the porous medium. The isothermal lines
and streamlines are plotted to analyze the behaviour of heat and fluid flow. It is worth to
mention here that the mesh independent study is carried out prior to the selection of a
particular mesh size. This ensures that the solution is unaffected due to number of elements

selected. Table 3.9.1 shows the mesh independent study carried out for one such case. As

evidenced from Table 3.8.1 that the variation in Nu and Sh is very small when element
size is changed from 1800 to 7200. The computational time required to solve the mesh size
of 7200 elements is very large compared to 1800 elements. It was found that the time
required to solve 7200 elements is approximately 63 times greater than that of 1800
elements. Thus the mesh size of 1800 elements is a better strategy to solve the governing

equations for this particular problem since the variation in solution variables is negligible
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when mesh size is increased from 1800 to 7200. The computations are carried out on a high

end computer with intel Xenon (R) processor having 3.1 GHz frequency and 4 GB RAM.

Table 3.9.1 Nu variation with mesh size

No of Avg Nu % Avg Sh % Time in %
elements Change change
g Change seconds in time
in Nu in Sh
1800 21.599 3.6999 14.23
3200 21.800 0.9 3.6583 1.1 78.55 530.5
5000 21.921 14 3.6271 1.9 303.00 2456.07
7200 22.001 1.8 3.603 2.6 915.24 6331.76

3.10 Assumptions

d)

The following assumptions are made in the present analyses:

The fluid follows Darcy law since the porosity and velocity is low.

There is no phase change of fluid in the medium as it operates within lower limits of

temperature.

The properties of the solid, fluid and those of the porous medium are homogeneous

because the porous medium comprises of one material only,

Fluid properties are constant except the variation of density with temperature as the

operating temperature is very low, variation in other properties are negligible.
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