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Chapter 3 

Methodology 

3.1 Introduction  

This section explains the mathematical formulations of natural and mixed 

convection in square and vertical cylindrical porous annulus. The heat transfer in square 

annulus with outside and inside heating, using thermal equilibrium and thermal non-

equilibrium modelling respectively is formulated. Conjugate heat transfer with single and 

double wall inserted between the porous materials is considered. A solitary case of heat and 

mass transfer in vertical cylinder is included with appropriate boundary conditions followed 

by the segmental heating for different size and location of heater is discussed. Mixed 

convection in vertical cylinder with thermal non- equilibrium modelling is described. The 

corresponding boundary conditions with schematic representation and meshed diagram for 

separate cases of the each model are explained. 

The governing partial differential equations can be solved either analytically or 

numerically in general. The nonlinear partial differential equations are difficult to be solved 

analytically, within a specified time, thus, the numerical solution becomes inevitable. The 

governing equations involved in the problem, with its non-dimensional derivation and 

conversion to algebraic equations by employing Finite Element Method is presented in 

subsequent sub sections. The solution methodology and the detail procedure for evaluating 

physical parameters are described.   
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3.2 Investigation of the heat transfer in square porous annulus. 

Heat transfer characteristics in a square porous annulus are analyzed with specific 

emphasis on effect of width ratio of cavity, on heat and fluid flow, inside the porous 

medium. This particular problem is considered for two separate boundary conditions such 

as internal and external heating in square annulus.  

The schematic of problem under consideration and coordinate system is shown in 

Figure 3.2 where L represents the length or breadth of the annulus with D indicating the 

portion unoccupied by porous medium. 

 

 

Figure 3.2.1: Schematic of square annulus 
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3.2.1 Governing equations for heat transfer with equilibrium modelling 

The present study deals with the heat transfer analysis in the square porous annulus 

and the governing equations are dealt in the Cartesian co-ordinates. The governing heat 

transfer equations can be given as: 

Continuity equation  

0
vu











yx
          (3.2.1.1) 

Where the velocity in horizontal ‘x’ direction; 

x

pK







u                                                           (3.2.1.2) 

Velocity in vertical ‘y’ direction; 
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v              (3.2.1.3) 

‘Whereas’ K ’ is the permeability of porous medium suggested by Bejan (2004): 
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pD
K          (3.2.1.4) 

Density variation can be incorporated be Boussinesq approximation as: 

    TTT 1                     (3.2.1.5) 

 In order to accomplish the required parametrical solution, the pressure terms in the 

equations (3.2.1.2) and (3.2.1.3) are simplified by means of suitable mathematical 
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simplifications.  Differentiating equation (3.2.1.2) with respect to y and (3.2.1.3) with the 

respect to x lead to: 
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After eliminating the pressure terms from equations (3.2.1.6) and (3.2.1.7) we are left with 

momentum equation as: 
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          (3.2.1.8) 

The energy equation is given by: 
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     (3.2.1.9) 

The left hand side of above equation (3.2.1.9) highlights the convection of energy 

due to velocity u and v. the first term in bracket on right hand side of (3.2.1.9) indicates the 

conduction of heat in porous medium, the second term reflects the viscous dissipation and 

last term highlights the radiation effect. The radiation can be approximated by Rosseland 

hypothesis as:   
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Incorporating (3.2.1.10) into (3.2.1.9) results into: 
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Velocity can be expressed in terms of stream functions ψ as: 

y





u                                    (3.2.1.12a) 
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v               (3.2.1.12b) 

The non-dimensionalisation of the governing equations (3.2.1.8) and (3.2.1.11) have been 

accomplished by introducing the suitable non-dimensional parameters as.  

Non-dimensional width   
L

x
x     (3.2.1.13a) 

Non-dimensional Height   
L

y
y     (3.2.1.13b) 

Non-dimensional Stream function  



      (3.2.1.13c) 

Non-dimensional Temperature  
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Rayleigh Number    


 TKLg
Ra T    (3.2.1.13e) 
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 (3.2.1.13f) 

Viscous dissipation parameter   
TK c

 






   (3.2.1.14g) 

Expanding the term 4T
 
in the equation (3.2.1.10) with the help of Taylor series results into 

(Raptis 1998): 
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434 34   TTTT       (3.2.1.14) 

Substitution of equations (3.2.1.12 –3.2.1.14) into equations (3.2.1.8) and (3.2.1.11) gives 

rise to following non-dimensional equations: 
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(3.2.1.16) 

Equations (3.2.1.15) and (3.2.1.16) are two coupled partial differential equations which are 

interlinked together thus a change of variable in one equation affects the other equation. 

3.2.2 Governing equations for heat transfer with thermal non-equilibrium modelling 

There are two basic approaches adopted for the analysis in heat transfer through 

porous medium, thermal equilibrium and thermal non-equilibrium. Thermal equilibrium 

model assumes that the solid porous matrix and the fluid are in same temperature, thus 

thermal equilibrium condition prevails whereby single energy equation is required to 

represent the entire porous domain. In most of the real problems the temperature of the 

porous matrix is not same with that of the fluid, thus requires separate energy equations, 

each for solid and fluid phases. However, the momentum equation remains the same with 

thermal energy carried by fluid phase but the energy equation will be split into 2 separate 

equations representing fluid and solid phases of porous medium as given below, 

Continuity equation 

0
v











yx

u

         (3.2.2.1) 

 



43 

 

Momentum equation
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Energy equation for fluid 
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Energy equation for solid 
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The following non-dimensional parameters are utilized:  

Non-dimensional width   
L

x
x     (3.2.2.4a) 

Non-dimensional Height   
L

y
y     (3.2.2.4b) 

Non-dimensional Stream function  
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Non-dimensional Temperature  
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    (3.2.2.4e) 
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Inter-phase heat transfer coefficient  
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    (3.2.2.4g) 
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Modified conductivity ratio   
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  (3.2.2.4h) 

Viscous dissipation parameter   
f
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Utilisation of above parameters leads to following non-dimensional equations as: 

Momentum equation 
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Energy equation for fluid
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Energy equation for solid 
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3.2.3 Boundary conditions for heat transfer when outside walls of square annulus is 

heated to isothermal temperature hT  

The schematic of the problem under consideration and coordinate system is shown 

in Figure 3.2.1. The outer boundaries of the duct are exposed to isothermal temperature hT  

and the inner walls are maintained isothermally at cooler temperature cT
. 

L indicates the 

length or breadth of the annulus with D highlighting the portion unoccupied by porous 

medium. 
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The heating of outside walls sets the convection of heat into the porous medium due 

to temperature difference between outside and inside walls. The following boundary 

conditions are applied  

0x ,  0u ,   0v  ,  hTT        (3.2.3.1a)

  Lx  ,  ,   ,  hTT       (3.2.3.1b)

  0y ,  ,   0v  ,         (3.2.3.1c)
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The final non-dimensional boundary conditions are: 

0x ,  0 ,   1T           (3.2.3.3a) 

1x ,  0 ,   1T        (3.2.3.3b) 

0y ,        0 ,  1T      (3.2.3.3c) 

1y ,        0 ,  1T        (3.2.3.3d) 

0u 0v 

0u hTT 

0u 0v  hTT 
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0u 0v  cTT 

0u 0v  cTT 
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The heat transfer rate at wall surface wq  is given by: 
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The Nusselt number is expressed as 

At vertical surfaces  
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At horizontal surfaces   

1
03

4
1


























y
yy

TRd
Nu          (3.2.3.6b) 

The term Rd=0 reduces the problem under investigation to pure natural convection without 

radiation. As per the convenience, the radiation term can be defined as Rd or the reciprocal 

of Rd which is generally denoted as N or NR. 

The average Nusselt number is evaluated as; 

0 0T

0 0T



47 

 

Left wall 
0@

1

0

1








x

y

y

L Nu
L

uN

       (3.2.3.7a) 

Right wall 
1@

1

0

1








x

y

y

R Nu
L

uN

         (3.2.3.7b) 

Bottom wall 
0@

1

0

1








y

x

x

B Nu
L

uN

         3.2.3.7c) 

Top wall 
1@

1

0

1








y

x

x

T Nu
L

uN

       (3.2.3.7d) 

Total Average Nusselt number  

 TBRLTot uNuNuNuNuN 
4

1

       (3.2.3.8) 

3.2.4 Boundary conditions for square annulus subjected to internal wall heating to 

isothermal temperature hT
 

The schematic of problem under consideration along with its boundary condition is 

depicted in Figure 3.2.4a. The all 4 inner walls are heated to temperature Th and all outside 

walls are maintained at cooler temperature Tc. 
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Figure 3.2.4a: Schematic of square annulus with inner heating 

(a) Thermal Equilibrium 
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The non-dimensionalisation of boundary conditions leads to: 
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(b) Thermal Non Equilibrium 
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Non-dimensional form of above equations as: 
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The Nusselt number for thermal equilibrium and thermal non-equilibrium cases can be 

calculated as follows. 
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Average Nu at bottom hot 
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(b) Thermal Non-Equilibrium 
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3.3 Governing equations for conjugate heat transfer in vertical cylinder 

The physical model of conjugate heat transfer in an annular porous annulus along 

with the coordinate system is depicted in Figure 3.3.1. The coordinate system is chosen in 

such a way that the zandr  axis points towards the radial and vertical direction of the 

annulus. The model includes a solid wall having a finite thickness at the inner radius of the 

annulus which is followed by the porous region until the outer radius of annulus. The solid 

wall thickness is defined as a fraction of the total thickness of the annulus between inner 

and outer radii. The inner surface of the annulus is heated to constant temperature 
hT  and 

the outer surface is maintained at constant temperature T  such that  TTh .   

 



53 

 

 

Figure 3.3.1: Schematic of the physical model 

The governing equations of heat and fluid flow in the porous solid regions of the domain 

are given by: 
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For solid wall: 
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Subjected to boundary conditions: 
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At  irr    hs TT         (3.3.5a) 

 At orr  ,   
 TTp   0u                 (3.3.5b) 

Since there is no heat storage in the medium, the following condition at solid-porous 

interface has to be satisfied, thus at 
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The continuity equation (3.3.1) can be satisfied automatically by introducing the stream 

function ψ as: 
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The following parameters have been used for non-dimensionalisation of the governing 

equations. 
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Substitution of equations (3.3.6)-(3.3.7) into equations (3.3.2)-(3.3.4) results into:  
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The corresponding boundary conditions take the form as: 

At irr    1sT         (3.3.11a)

  

At orr    0   0pT      (3.3.11b) 
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The Nusselt number can be calculated using following expression: 
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3.4 Conjugate heat transfer in a vertical annulus with porous medium sandwiched 

between two solids 

The schematic representation of the physical model of the conjugate heat transfer in 

an annular porous annulus with coordinate system is depicted in Figure 3.4.1. The 

coordinate system is chosen in such a way that the zandr  axis points towards the radial 

and vertical direction of the annulus. Since this is a conjugate problem, a solid wall with 

finite thickness exists at the inner and outer radii of the annulus. The porous medium is 

sandwiched between these two solid walls. The solid wall thickness is defined as a fraction 

of the total thickness of the annulus between inner and outer radii. DL and DR refer to the 

fraction of solid wall at inner and outer surfaces respectively. The conductivity ratio Kr 
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indicates the ratio of thermal conductivity between inner solid to porous medium where as 

solid conductivity ratio Krs is the ratio of inner to outer wall thermal conductivity. The 

inner surface of the annulus is heated to constant temperature 
hT  whereas the outer surface 

is maintained at constant temperature T  such that  TTh .   

 

Figure 3.4.1: Schematic of the physical model 

 

The governing equations for this case are same as equations (3.3.8)-(3.3.10) with different 

boundary conditions due to additional solid wall in the geometry, as given below: 

At  irr    hs TT         (3.4.1a) 

 At orr  ,   
 TTs        (3.4.1b) 

Since there is no heat storage in the medium, the following condition at solid-porous 

interface has to be satisfied 
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Corresponding non-dimensional form of boundary conditions are:
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Nusselt number is calculated using following expression: 
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3.5 Governing equations for heat and mass transfer in vertical cylinder  

The combined heat and mass transfer in porous medium is a phenomenon whereby 

thermosolutal transport occurs due to temperature and concentration gradient. It is also 

known as double diffusion or thermo-solutal transport. 

The governing equations for the double diffusion in a vertical cylinder can be given as: 
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Energy equation 
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Concentration equation 
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The heat transfer in solid wall is described by: 
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The continuity equation (3.5.1) can be satisfied by introducing the stream function ψ as: 
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The density variation can be described by Boussinesq approximation 

      CCTT CT  1
                                              (3.5.9) 

The initial boundary conditions are: 

At   r = ri   , T = Tw,  u = 0,      (3.5.10a) 

At  r = ro,  T = T∞,  C = C∞, u = 0,     (3.5.10b) 

For a steady state flow, following condition at solid-porous interface must be satisfied 
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The following parameters have been used for non-dimensionalisation  
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After mathematical simplification the final non-dimensional equations are: 
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Thus the final boundary conditions are 

 

At      irr    1sT                     (3.5.16a)
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The Nusselt number is calculated using following expressions: 
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3.6 Governing equations for discrete heating in vertical annular cylinder 

Investigation of heat transfer in a vertical annular cylinder subjected to discrete 

heating is of considerable importance because in many practical applications, heating takes 

place over a portion of one of the vertical walls of the porous enclosure (Sankar et al., 

2011). An annulus with inner radius ir  and outer radius or  having porous medium fixed in 

between inner and outer radii is considered. The coordinate system is chosen in such a way 
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that the zandr  axis represents the radial and vertical direction respectively of the annulus. 

A section of the inner surface of the annulus is heated to constant temperature wT  and the 

outer surface is maintained at constant temperature T  such that TTw .  The heated length 

of annulus is referred as HL henceforth to indicate the % of heater length considered. The 

schematic of the problem under investigation for different heater length position is shown 

in Figures 3.6.1a, 3.6.1b, and 3.6.1c, where the 50% heater length is placed at bottom, 

middle and top sections of the hot surface respectively.  

As explained in section 3.2.2 the thermal non-equilibrium approach require two 

separate energy equarions to be solved. The following equations govern the thermal non 

equilibrium heat transfer in a vertical cylinder.  

Momentum  equation 
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Energy equation for fluid 
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Energy equation for solid 
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In this case the non-dimensional stream function can be defined as 

Stream function  
tL





       (3.6.4)  

Substitution of dimensionless parameters, described in section 3.2.1, gives the following 

non-dimensional coupled partial differential equations: 
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Figure 3.6.1: Schematic of the annulus with 50% HL heater a) bottom b) mid-and c) top 

sections of the annulus  

(c) 

(b) 

(a) 
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There are two separate sets of boundary conditions are considered for this problem. CASE I 

represents the temperature of fluid and solid part of the porous domain are equal to hot wall 

at inner surface whereas CASE II represents that only solid material of the porous domain 

temperature is equal to hot wall and fluid temperature is unknown at inner surface.   

3.6.1 Boundary conditions  

Case I 

At  21 LzLandrr i  , wsf TTT   0u                 (3.6.5a) 

 At orr  ,   
wsf TTT    0u                  (3.6.5b) 

Case II 

At  21 LzLandrr i  , ws TT   0u                   (3.6.6a) 

 At orr  ,   
wsf TTT    0u                   (3.6.6b) 

Following dimensionless parameters are used to non-dimensionalise the governing 

equations 
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Momentum equation 
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Energy equation for fluid 
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Energy equation for solid 
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Corresponding boundary conditions as 

Case I 

At      21 LzLandrr i  , 0 ,  
2

1
 sf TT         (3.6.11a)

     

At      orr  ,  0   
2

1
 sf TT       (3.6.11b) 

Case II 

At     21, LzLandrr i  ,  0 ,  
2

1
sT          (3.6.12a)        

At      orr  ,  0   
2

1
 sf TT         (3.6.12b) 

The Nusselt number is calculated using following expressions: 

For fluid  
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For solid 
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The total heat transfer rate for the present problem can be expressed as: 
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Using equation (3.6.14) it can be shown that the average total Nusselt number is: 
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 3.7 Governing equations for mixed convection in an annular cylinder, thermal non-

equilibrium modelling. 

This section describes the heat transfer characteristics of mixed convection in a 

porous medium for aiding and opposing flow. The aiding and opposed flow is governed by 

the direction of applied velocity. It must be noted that the aiding flow refers to a condition 

when the applied velocity and the buoyancy force act in same direction, assisting each other. 

However, for opposed flow, the buoyancy force and applied velocity act in opposite 

direction. The annulus is subjected to discrete heating of 20%, 35% and 50% at bottom, 

mid and top sections of the annulus. One of the cases, 20% heating at bottom section for 

aiding and opposing flow is shown in Figure 3.7. 
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Figure 3.7.1: Schematic physical model of a) Aiding Flow b) Opposing flow 
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The governing equations for mixed convection in an annular cylinder are given by: 

Momentum equation 
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Energy equation for fluid 
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Energy equation for solid 
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Subjected to the boundary conditions 

3.7.1 Boundary conditions for aiding flow 

At  21 LzLandrr i  , wsf TTT   0u      (3.7.4a) 

At orr  ,   
wsf TTT    0u      (3.7.4b) 

At 0z ,  0, 



 

z

T
Vv  0u      (3.7.4c) 

At Hz  , 0




z

T
  0u      (3.7.4d) 

3.7.2 Boundary conditions for opposing flow 

At  21 LzLandrr i  , wsf TTT   0u      (3.7.5a) 

At orr  ,   
wsf TTT    0u      (3.7.5b) 
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At 0z ,  0
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At Hz  , 0, 
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Following  non-dimensional parameters are utilized  
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Substitution of dimensionless parameters gives the following non-dimensional coupled 

partial differential equations: 

Momentum equation 
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Energy equation for fluid 
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Energy equation for solid 
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With corresponding boundary conditions the non-dimensional boundary conditions for 

aiding flow: 

At      21 LzLandrr i  , 0 ,  
2

1
 sf TT        (3.7.10a) 

At      orr  ,  0   
2

1
 sf TT      (3.7.10b)

 

At 0z ,  0,1 
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With corresponding boundary conditions the non-dimensional boundary conditions for 

opposing flow: 

At      21 LzLandrr i  , 0 ,  
2

1
 sf TT        (3.7.11a) 

At      orr  ,  0   
2

1
 sf TT

     (3.7.11b) 

At Hz  , 0,1 





z

T
       (3.7.11c) 

At 0z ,  0,0 





z

T
       (3.7.11d) 

3.8 Solution methodology 

As stated in the section 3.1 the governing partial differential equations can be solved 

either analytically or numerically. The analytical solution is limited to the problems which 

are simple in nature i.e. with simple geometries and boundary conditions. But with complex 

geometries and boundary conditions, the exact solution to the nonlinear partial differential 

equations is rather difficult, thus numerical methods are preferred for the solution of 

nonlinear partial differential equations with acceptable accuracy in recent years. Finite 

element method (FEM) is extensively used in the research due to compatibility with the 
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solution procedures and accuracy. FEM is useful for solving even the problems with the 

irregular or contour boundaries thus has greater recognition in research community, a 

powerful tool for solving the linear and non-linear partial differential equations. The 

versatility of FEM is well understood due to the fact that, application of the FEM for one 

engineering area can be extended to solve the other engineering disciplines. The computer 

code written for heat transfer problem can be used to analyze the other field problems such 

as solid mechanics, aerodynamics, and hydraulics with minimal changes. 

3.8.1 Finite element formulation 

Basically the FEM consist of five steps which are: 

 Specifying the approximate equation, 

 Discretizing the region, 

 Developing the algebraic system of equations, 

 Solving the system of equations, 

 Calculating the quantities of interests. 

In this study, three- nodded linear triangular element is used to discretize the region, which 

is often recommended due to its reasonable representation of curved boundaries. The 

accuracy can increased with the use large number of smaller elements at the region of 

higher temperature variation.  

The schematic diagram of the three-node triangular element is shown in the Figure 3.8.1.  
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Figure 3.8.1: Typical triangular element 

 For a triangular element as shown above figure 3.8.1, the temperature variation is 

represented with the help of polynomial as: 

1 2 3T x y                                                                                                      (3.8.1) 

kji TTT &,  are the values of ‘T’ at i, j and k nodes with , ,i j kx x x  and , ,i j ky y y  representing 

the r and z co-ordinates respectively. The values of  1 2 3,  and     can be evaluated by 

substituting the values of x and y at nodes i, j and k in the equation       

      1

1

2
j k k j i k i i k j i k j i kx y x y T x y x y T x y x y T

A
       

 
  (3.8.2a)

      2

1

2
j k i k i j i j ky y T y y T y y T

A
       

 
    (3.8.2b)

      3
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2
k j i i k j j i kx x T x x T x x T

A
       

 
    (3.8.2c) 

 A  Indicates the area of triangle and is given by, 

y 

x 



71 

 

 

1

1

1

i i

j j

k k

x y

A x y

x y

         (3.8.2d) 

On substitution of the values 1 2 3, ,   into (3.8.1) and mathematical rearrangement, we 

derive the following equation,  

i i j j k kT N T N T N T          (3.8.3) 

Where , ,i j kN N N called the shape functions and is given by, 
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The constants , ,p p pa b c can be expressed in terms of coordinate system, 

i j k k j

i j k

i k j

a x y x y

b y y

c x x

 

 

 

        (3.8.5a) 

j k i i k

j k i

j i k

a x y x y

b y y

c x x

 

 

 

        (3.8.5b) 
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        (3.8.5c) 

The momentum equation is descritised into algebraic form of equations with the help of 

Galerkin’s method by integrating the product of shape function and the momentum 

equation over the elemental area as given by  
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Where eR  is the residue left over that has to be minimised.  Considering the individual 

terms and converting the higher order differential term into its first order simpler form 

yields, 
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By applying Green theorem 
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By substituting  (3.8.3)  into (3.8.8) 
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The differential with respect to x axis resulted into above equation. The second term of 

momentum equation is similar to first term but with the difference that it is differential in y 

direction.  Integrating the second terms of momentum results into 
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The last term of momentum equation, is (3.8.8) subjected to similar integration  
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Consider that the triangular element is divided into three sub triangles as shown below.  

 

Figure 3.8.2: Triangular element divided into three sub triangles (Moaveni 2010) 
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It can be shown   (Moaveni 2010) that, 
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 Now by replacing the shape functions in above equation 
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By using a simple relation(Moaveni 2010)  the area integration can be evaluated as: 
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Substituting  (3.8.15) into (3.8.14) we get, 
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Now we are ready with the FE formulation of all terms of momentum equation which can 

be written as  
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Consider the energy equation in cartesian coordinate  
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Applying the Galerkin method to  equation (3.8.18)  
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On separate term evaluation we get, 
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Similraly the term in y direction yields : 
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The second order differential terms gives similar algebraic equation in matrix form as 

discussed with respect to momentum equation 
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Thus the matrix form of energy equation after applying the Galerkin method results into.
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3.8.2 Finite element equation with viscous dissipation  

The residue of energy equation taking into account the viscous dissipation is 
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Considering the last terms of above equation,
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similarly for y-direction,  
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The complete energy equation with viscous dissipation is 
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 (3.8.29) 

 

3.8.3 FE formulation of non-equilibrium model in cartesian coordinates 

As stated the non-equlibruim model contains two equations for energy transport for solid 

and fluid phase. The momentum equation is 
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Applying the Galerkin method to above equation results into: 
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The matrix form of above equation is: 
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Energy equation for fluid 
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Applying Galerkin method
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           (3.8.34) 

Considering last term of above equation 
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The matrix form of above equation (3.8.33) is: 
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79 

 

Similarly energy equation for solid phase can be transformed to matrix form as: 
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 (3.8.39) 

Energy equation of solid 
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The application of Galerkin method yields:  
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3.8.4 FE formulation for cylindrical co-ordinates 

Let us consider the linear variation inside the triangular element in r and z direction that can 

be described the  

1 2 3T r z      

     1

1

2
j k k j i k i i k j i k j i kr z r z T r z r z T r z r z T

A
       

 
             (3.8.43) 
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                          (3.8.44) 

     3
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2
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               (3.8.45) 

Where A is the area of the triangle and is given by 

1

2 1

1

i i

j j

k k

r z

A r z

r z



                                                                         

(3.8.46) 

Substituting the values of 1 2 3,  and    in the equation (3.8.1) and taking in terms of 

temperature and the stream functions as  

T=N1T1+N2T2+N3T3                                 (3.8.47) 

  = [N] {T}                                                                                                          (3.8.48)     

ψ = N1ψ1 + N2ψ2 + N3ψ3                               (3.8.49)          

   = [N] {ψ}                                                                                                                (3.8.50)               

Where N1, N2 and N3 are the shape function for linear triangle, thus given by: 
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A

 
  ,               i = 1, 2, 3               (3.8.51) 

Where the variable a, b and c represents:  

 

 

                                                                                                                           (3.8.52) 

Applying the Galerkin method and integrating the product of shape function with 

momentum equation 
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On simplification the equations take the form as
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          (3.8.55) 

The energy equation in cylindrical coordinates is  
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                        (3.8.56) 

The radial distance R  to the centroid of an element is given by relation: 
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(3.8.57) 

Similarly applying the Galerkins method to equation (3.8.56) gives: 
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              (3.8.59) 

The conduction in solid wall for the case of conjugate heat transfer is: 
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        (3.8.60) 

Employing Galerkin method: 
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    (3.8.62) 
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3.8.5 Finite Element equations for double diffusion in vertical cylinder 

The momentum equation taking into account the mass diffusion is given by: 
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The matrix form, 
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 (3.8.65) 

 

The energy equation 
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The formulation of energy equation is similar to that mentioned in previous case  
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2

2111

z

C

r

C
r

rrLer

C

zz

C

rr


       (3.8.67)  

Using the Galerkin method: 
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   (3.8.68) 

Transform into matrix form, 
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The conduction equation in solid wall 
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Employing Galerkin method: 
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3.8.6 Energy equation in case of thermal non-equilibrium  

Momentum equation 
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                                      (3.8.73) 

Application of Galerkin method 
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Energy equation for fluid 
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Applying Galerkin method: 
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Energy equation for solid phase of porous medium 
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Application of Galerkin method results into: 

   
2

2

41
1 2

3

e T d s s
s f

A

R T T
R N r HKr T T rdA

r r r z


      
                
   (3.8.80)                                                                                                           

2 2

1 1 2 1 3 1 1 2 1 3 1
2

2 2

1 2 2 2 3 1 2 2 2 3 2

2 2
3 31 2 2 3 1 2 2 3 3

2 1 1
2 4

1 1 2 1
4 3 3

1 1 2

s

d s

s

b b b b b c c c c c T
R HA Kr

R b b b b b c c c c c T
A

Tb b b b b c c c c c


       
          

                         

 

1

2

3

2 1 1
2

1 2 1
12

1 1 2

f

f

f

T
RHAKr

T

T


  
   

   
      

                                                          (3.8.81) 

3.8.7 Finite Element equations for mixed convection 

Momentum equation 
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       (3.8.82)                                                                                                           

Application of Galerkin method yields:  
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Energy Equation for fluid 
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Energy equation for solid pase of porous medium 
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Applying Galerkin method 
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The matrix form of equation can be given as: 
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3.9 Solution Procedure 

Mathematical modeling and simulation of a process can be summarized in two steps. 

The mathematical formulation considering the parameters affecting the process and solving 

those derived equations to get the values of the unknown solution variables. In this study 

the heat transfer phenomenon is defined by the mathematical equation as discussed, the 

finite element method is used to determine the heat transfer characteristics of the flow 

through porous medium. The discretization of the domain is accomplished by dividing it in 

to smaller segments known as elements. In present case, the domain of problem under 

investigation is divided into multiple triangular elements as shown in Figure 3.9.1.  
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Figure: 3.9.1: Meshed model of a) Square annulus b) vertical annular cylinder 

 Figures 3.9.1a and 3.9.1b depict the meshed models of square porous annulus and 

vertical annular cylinder respectively. Due to symmetry, only half the geometry of cylinder 

is modeled that is sufficient to predict the entire behaviour of cylinder.  A computer code is 

(a) 

(b) 
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written using the advanced computer software MATLAB to solve the problem under 

investigation. As there are two or more coupled equations to be solved to get the 

temperature distribution within porous domain which require an iterative computing 

method.  Two solution variables andT   at various points inside the porous domain is 

determined by an initial guess value of which are fed in to the computer code.  By using the 

first guess value of   the new value of T  is determined and then this new value of T  is 

fed back to evaluate the new value of .  The fresh value of   is then fed to get the 

improved value of T  and again this T  is used to get the fresh value of . Thus the 

computer code performs multiple iterations until the difference between previous and 

current values of both the solution variables is reached the specified tolerance limit. The 

tolerance for andT   is set as 10
-5

 & 10
-7

 respectively which gives quite accurate results. 

With the obtained andT   values for the whole domain, the Nusselt number is evaluated 

to determine the heat transfer rate from the wall to the porous medium. The isothermal lines 

and streamlines are plotted to analyze the behaviour of heat and fluid flow. It is worth to 

mention here that the mesh independent study is carried out prior to the selection of a 

particular mesh size. This ensures that the solution is unaffected due to number of elements 

selected. Table 3.9.1 shows the mesh independent study carried out for one such case.  As 

evidenced from Table 3.8.1 that the variation in uN  and Sh  is very small when element 

size is changed from 1800 to 7200. The computational time required to solve the mesh size 

of 7200 elements is very large compared to 1800 elements. It was found that the time 

required to solve 7200 elements is approximately 63 times greater than that of 1800 

elements. Thus the mesh size of 1800 elements is a better strategy to solve the governing 

equations for this particular problem since the variation in solution variables is negligible 
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when mesh size is increased from 1800 to 7200. The computations are carried out on a high 

end computer with intel Xenon (R) processor having 3.1 GHz frequency and 4 GB RAM.  

Table 3.9.1 uN  variation with mesh size 

No of 

elements 

Avg Nu % 

Change 

in  Nu 

Avg Sh %  

Change 

in Sh 

Time in 

seconds 

% 

change 

in time 

1800 21.599 --- 3.6999 --- 14.23 --- 

3200 21.800 0.9 3.6583 1.1 78.55 530.5 

5000 21.921 1.4 3.6271 1.9 303.00 2456.07 

7200 22.001 1.8 3.603 2.6 915.24 6331.76 

 

3.10 Assumptions 

The following assumptions are made in the present analyses: 

a) The fluid follows Darcy law since the porosity and velocity is low. 

b) There is no phase change of fluid in the medium as it operates within lower limits of 

temperature. 

c) The properties of the solid, fluid and those of the porous medium are homogeneous 

because the porous medium comprises of one material only,  

d) Fluid properties are constant except the variation of density with temperature as the 

operating temperature is very low, variation in other properties are negligible. 

 

 

 

 


