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Abstract 

In recent years, there has been a substantial increase in energy demand due to 

industrialization. This raises concern on issues such as depletion of fossil based energy 

and emission of green house gasses. It is reported that a high portion of industrial 

energy is wasted as flue gas/hot gas from heating plants, boilers, etc. Hence, 

optimization of energy use through heat recovery device is one of the possible 

approaches to address this problem. However, conventional heat transfer fluids feature 

low thermal conductivity.  

The development in nanotechnology has enabled the introduction of nanofluids 

as a new generation of heat transfer fluid. Nanofluids are suspensions of nanoparticles 

in a base fluid. The inclusion of nanoparticles into a base fluid significantly increases 

the thermal conductivity of the base fluid. This study attempts to investigate the thermal 

and energy performance of a shell and tube heat exchanger and thermosyphon air-

preheater operated with nanofluids. It focuses on recovering waste heat from hot gases/ 

flue gas produced by a heating plant. The analysis was conducted based on the thermo-

physical properties of nanofluids obtained from literatures, mathematical correlations 

and present experimental data.  

The thermo-physical properties measured in this study include thermal 

conductivity, viscosity and density. The study reveales that, the thermal conductivity of 

ethylene glycol/water based Al2O3 (0.5vol.%, partice size: 13nm) increases about 8.9% 

compared to base fluid. About 12.9% augmentation is also observed for water based 

Al2O3 (0.5vol.%, particle size :13nm). Thermal conductivity of nanofluids increases 

with the increase of particle volume percentage or decrease of particle size. Viscosity 

and density also show increasing trend with the addition of nanoparticles. 

The thermal performance of shell and tube heat recovery exchanger improved 

with the addition of nanoparticles. About 7.8% heat transfer augmentation was observed 
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for the ethylene glycol-based nanofluids containing 1 vol.% of copper nanoparticles at 

26.3 kg/s flue gasses’ mass flow rate and 111.6 kg/s coolant’s mass flow rate.  For 

water containing 2 vol.% of copper, 4.5% heat transfer enhancement was recorded. At 

constant coolant mass flow rate, lower pumping power is needed when nanofluids are 

applied. About 10.99% less power was observed at 1vol. % of copper nanoparticle 

compared to ethylene glycol base fluid.The study on the size reduction of heat 

exchanger, implied that nanofluids provide opportunity to reduce the size of heat 

exchanger without decreasing its thermal performance.   

Analysing the total dimensionless entropy generation revealed that, 10.8% 

reduction is observed with an addition of 7 vol.% of Al2O3 into water. About 9.7% 

reduction is observed for water-based TiO2 (4 vol.%) nanofluid. Other factors that 

influence total dimensionless entropy generation are dimensionless temperature 

difference, fluid mass flow rate, tube diameter and length. 

Moreover, the study revealed that the change of nanofluid thermo-physical 

properties only plays a minor role in improving the thermal performance of the 

thermosyphon heat exchanger. Slight increase of overall heat transfer coefficient and 

cold air outlet temperatures are observed with increasing nanoparticle volume fraction. 

However, the thermal performance of thermosyphon heat exchanger increases when the 

hot air velocity elevates from 2.5 to 4.75m/s. 
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Abstrak 

Kebelakangan ini, terdapat peningkatan dalam permintaan tenaga akibat dari 

pembangunan industri. Ini telah meningkatkan perhatian terhadap isu-isu seperti 

kekurangan sumber tenaga berasaskan fosil dan pembebasan gas rumah hijau. Laporan 

telah menunjukkan sebahagian besar tenaga industri dibazirkan dalam bentuk gas 

serombong/gas panas dari loji pemanasan, dandang dan sebagainya. Oleh itu, 

pengoptimunan tenaga melalui alat penukar haba merupakan salah satu cara untuk 

menyelesaikan masalah ini. Walaubagaimanapun, bendalir haba konvensional 

mempunyai ciri terma konduksi yang lemah. 

Pembangunan dalam bidang nanoteknologi memungkinkan kewujudan bendalir 

nano sebagai bendalir haba generasi baru. Bendalir nano terdiri dari campuran 

nanopartikel dan bendalir asas. Penambahan nanopartikel ini ke dalam bendalir asas 

dapat meningkatkan ciri-ciri konduksi terma. Oleh yang demikian, projek ini bertujuan 

untuk mengkaji prestasi terma dan tenaga bagi penukar haba jenis shell dan tube serta 

thermosifon udara pra-pamanas yang beroperasi mengunakan bendalir nano. Alat-alat 

penukar haba ini berfungsi untuk mengembalikan baki haba dari gas serombong/gas 

panas yang dihasilkan dari loji pemanasan. Analisa yang dijalankan adalah berpandu 

kepada ciri-ciri terma dan fisikal bendalir nano yang didapati dalam literatur, korelasi 

matematik dan juga eksperimen data dari projek ini. 

Eksperimen terma fizikal yang dijalankan meliputi konduksi haba, kelikatan dan 

ketumpatan. Projek ini mendapati bahawa konduksi haba bagi campuran ethylene 

gycol/air yang mengandungi Al2O3 (0.5% konsentrasi isipadu, partike saiz: 13nm) 

meningkat sebanyak 8.9% berbanding dengan bendalir asas. Peningkatan sebanyak 

12.9% juga direkodkan pada bendalir nano berasakan air yang mengandungi Al2O3 

(0.5% konsentrasi isipadu, partikel saiz: 13nm). Ia juga dilaporkan bahawa konduksi 

haba bagi bendalir nano meningkat seiring dengan peningkatan konsentrasi isipadu 
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nanopartikel. Ciri-ciri lain seperti kelikatan dan ketumpatan bendalir nano juga 

meningkat apabila konsentrasi isipadu nanopartikel meningkat. 

Kajian juga mendapati prestasi terma penukar haba shell and tube meningkat 

dengan pertambahan nanopartikel ke dalam bendalir asas. Sebanyak 7.8% peningkatan 

haba dicatatkan bagi ethylene glycol yang mengandungi 1% konsentrasi isipadu  

nanopartikel jenis tembaga pada kadar alir jisim 26.3 kg/s (gas serombong) dan 111.6 

kg/s (bendalir nano). Bagi air berasaskan 2% konsentrasi isipadu tembaga pula, 

peningkatan haba sebanyak 4.5% dicatatkan pada pengaliran jenis laminar. Pada kadar 

alir jisim bendalir yang tetap, kuasa pam yang lebih rendah diperlukan apabila bendalir 

nano digunakan. 10.99%  pengurangan kuasa pam didapati apabila ethyelene glycol 

bendalir asas ditambahkan dengan 1% konsentrasi isipadu tembaga. Kajian juga 

mendapati penggunaan bendalir nano menyediakan peluang bagi pengecilan saiz alat 

penukar haba tanpa menjejaskan prestasinya.  

Kajian juga mendapati jumlah entropi tanpa dimensi menurun sebanyak 10.8% 

dicatatkan apabila 7% konsentrasi  isipadu Al2O3 ditambahkan ke dalam bendalir asas 

berasaskan air. Sebanyak 9.7% penurunan dicatatkan pula bagi bendalir nano 

berasaskan 4% konsentrasi isipadu TiO2. Faktor-faktor lain seperti perbezaan suhu 

tanpa dimensi, kadar alir jisim bendalir, paip diameter and panjang juga mempengaruhi 

jumlah entropi tanpa dimensi.  

Kajian juga mendapati bahawa perubahan dalam ciri-ciri termo-fizikal bendalir 

nano hanya memainkan peranan kecil dalam peningkatan prestasi terma termosifon 

penukar haba. Hanya sedikit peningkatan dari segi perolakan haba keseluruhan dan 

suhu keluar gas sejuk dicatatkan. Walaubagaimanapun, prestasi terma termosifon 

penukar haba meningkat apabila kadar alir udara panas meningkat dari 2.5 m/s ke 4.75 

m/s.  
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τ dimensionless wall and fluid temperature different  

[(Tw-Ti)/Tw] 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

Challenges such as climate change, increase of fuel price and fuel security have 

garnered significant attention from the international communities. There are growing 

concerns on these issues as industrial revolution increases the demand for energy 

substantially. Having said this, much attention has been focused towards introducing 

highly efficient devices and heat recovery systems for better utilization of energy. It is 

also reported that, 80% of the total energy consumption in the industry is originated 

from fossil fuel based energy (Abdelaziz et al., 2011). United States Energy Information 

Administration (2012) reported that 2.47×1015 Joule energy was consumed by the 

industrial sector in 2009 while Teke et al., (2010) revealed that about 26% of the 

industrial energy is wasted in the form of hot gas or fluid. Consequently, any small 

improvement in the efficiency of heat recovery systems can result in significant energy 

savings. 

Heat recovery systems utilize heat exchangers to recover the waste heat. This 

provides benefits in terms of energy and cost saving as well as reducing green house gas 

emissions. Adding fins and increasing the heat transfer area are the common methods 

used to enhance the efficiency of the heat recovery systems. However, these approaches 

lead to a larger and bulkier heat exchanger. Furthermore, Kulkarni et al., (2008) have 

concluded that the usage of fins and micro channels have reached the optimum limit of 

its efficiency. 

The efficiency of a thermal system correlates with the thermal conductivity of 

heat transfer fluids (Murshed et al. 2008a). Conventional heat transfer fluids such as 

water, ethylene glycol and engine oil are widely used in heat recovery systems. They 

are cheap but possess low thermal conductivity. For instance, the thermal conductivity 

of water and ethylene glycol are 0.613W/mK and 0.252W/mK, respectively (Incropera 
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et al., 2007). Choi (2009) revealed that the efforts to improve the performance and 

design of compact engineering equipment are hindered by the low thermal conductivity 

of conventional heat transfer fluids. 

 Therefore, there is an urgent need to develop a new generation of heat transfer 

fluid with higher thermal conductivity. The development in nanotechnology has enabled 

the suspension of nano-sized particles into a base fluid which results in a product known 

as nanofluid. The pioneering works of nanofluids were started by Argonne laboratory in 

the early 90’s. Nanofluid is a suspension of nanoparticles (Al2O3 , TiO2 , Cu, CuO, etc) 

in conventional base fluids (water, ethylene glycol, engine oil, etc). Keblinski (2009) 

stated that the typical size of nanoparticles used in nanofluids ranges from 1 – 100nm. 

The base fluid thermal conductivity are substantially improved through the addition of 

nano-sized particles (Eastman et al., 2001; Beck et al., 2008; Evans et al., 2008; Han, 

2008; Murshed et al., 2008b; Nasiri et al., 2012; Paul et al., 2012). It is also known that 

the thermal conductivity of the fluid is proportional to convective heat transfer. 

Extensive studies found that convective heat transfer augmentation does correlate with 

nanoparticles volume fractions (Daungthongsuk and Wongwises, 2007; He et al., 2007; 

Kim et al., 2009). With these characteristics, nanofluids have the potential to replace 

conventional heat transfer fluids in various heat exchanger applications. 

Besides thermal conductivity, viscosity of nanofluids also plays an important 

role in determining its performance. It is known that fluid’s viscosity determines the 

pumping power of the system. Mahbubul et al., (2012) conducted a comprehensive 

review on the nanofluids viscosity characteristics. The effects of particle loading, size 

and shape, temperature on the nanofluids viscosity are discussed thoroughly in this 

review. Most of the researchers indicate that nanofluids viscosity increases with particle 

concentration (Duan et al., 2011; Yang et al., 2012; Fedele et al., 2012; Bobbo et al., 

2012).   
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However, other thermo-physical properties such as density and specific heat 

have received limited attention. Vajjha et al., (2009) investigated three types of ethylene 

glycol/water-based nanofluids: aluminium dioxide, antimony-tin oxide and zinc oxide 

nanofluids. As expected, density of these nanofluids is higher than base fluid. It is also 

found that the density slightly decreases with the increase of temperature. There are also 

few experimental studies which focused on the specific heat of nanofluids. For instance, 

Zhou and Ni (2008) studied water based aluminium oxide nanofluids. Findings implied 

that the specific heat of water decreases when the aluminium oxides nanoparticles 

volume fraction increases from 0 to 21.7%. Similar conclusion is derived by Zhou et al., 

(2010) who investigated the specific heat of copper oxide/ethylene glycol nanofluids. 

Another researcher, Jung et al., (2010) investigated three types of water-based 

nanofluids: silicon dioxide, titanium dioxide and aluminium oxide nanofluids. They 

concluded that the specific heat of nanofluids decreases as the nanoparticles mass 

loading increases from 0.5% to 20%. In addition, it is observed that nanoparticle size 

has limited or minor effect on the nanofluids’ specific heat.  

Because of its improved thermo-physical properties and its myriad of 

applications, nanofluid has received substantial attention among researchers. The 

applications include engine cooling system (Leong et al., 2010; Peyghambarzadeh et al., 

2011a; Peyghambarzadeh, 2011b, Charyulu et al.,1999),  electronic cooling (Roberts 

and Walker, 2010; Ijam and Saidur, 2012; Tsai and Chein, 2007), air conditioning (Park 

and Jung, 2007), water heater (Kulkarni et al.,2009), solar collector (Yousefi et al., 

2012; Otanicar et al., 2010) and etc. Most of the studies indicated that the thermal 

systems operated with nanofluids showed enhanced efficiency. This again shows that 

nanofluids have the potential to emerge as a new generation of heat transfer fluid. 
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1.2 Background of problem 

Hot gases are common by-products in the industrial sector especially through 

operation of boilers or heating plants. During this operation fuel combustion releases its 

chemical energy to produce combustion products with high temperature. Saidur et al., 

(2010) reported that the main source of heat loss (10–30%) in a boiler is through the 

flue gasses. Figure 1.1 describes the typical energy balance of a boiler. It can be seen 

that 10 to 30% of the energy content releases through flue gasses in operation of the 

boiler. 

     

 

 

 

 

 

 

 

 

Figure 1.1 Typical energy balance of a boiler (Jayamaha, 2008) 

The remaining waste heat in the flue gasses can be recovered by using heat 

recovery exchanger. Shell and tube heat exchanger and heat pipe or thermosyphon air-

preheater are commonly used for this purpose. For instance, Pandiyarajan et al., (2011) 

utilized shell and tube exchanger to recover waste heat from the engine diesel exhaust. 

Saneipoor et al., (2011) studied the same type of heat exchanger used in a cement plant. 

Shi et al., (2011) used fin and tube heat exchanger to recover sensible and latent heat 

from the heat recovery steam generator. Thermosyphon or heat pipe heat exchanger has 

 

Boiler 

 

Flue gas 10 to 30% 

65 to 80 % 
Fuel heat 100% 

Radiation losses 0.5 to 

2% 
Blow down 1 to 2% 
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also been used in various heat recovery applications (Yang et al., 2003; Noie and 

Majideian, 2000; Srimuang and Amatachaya, 2012).  

The optimization of energy use in industry through heat recovery exchanger can 

reduce the emission of green house gasses such as CO2 and lead to social and economy 

benefits (Stijepovic and Linke, 2013; Xu et al., 2013). Therefore, this study investigates 

the thermal and energy performance of heat recovery exchanger operated with 

nanofluids. Nanofluids are selected due to its enhanced thermal conductivity compared 

to that of base fluid. Application of this novel fluid will lead to thermal performance 

improvement of the heat recovery exchanger.  

The experimental study on thermal conductivity, viscosity and density of 

nanofluids are included in the present study. It tried to evaluate nanofluid’s thermo-

physical characteristics as a heat transfer fluid. The selected heat recovery devices are 

shell and tube heat exchanger and thermosyphon air preheater. It focuses on recovering 

waste heat from hot flue gas produced by a heating plant.  The recovered waste heat can 

be used to pre-heat air for combustion process, building heating, and etc. Estimation on 

size reduction of the shell and tube heat exchanger without altering its thermal 

performance is also included. Furthermore, the energy required to heat the air for 

combustion process have been estimated.  

The advantages of using nanofluids compared to base fluid cannot be merely 

judged by their thermal performance as viscosity should also be taken into 

consideration. It is known that viscosity of the base fluid increases with the increase of 

particle volume fractions; consequently, it will affect the friction loss characteristic. 

There must be an optimum trade-off between both parameters to justify performance of 

nanofluid as a new generation of heat transfer fluid. Entropy generation analysis 

included in the present study is a powerful approach to study on this aspect. From here, 

both heat transfer enhancement and friction loss are evaluated. 
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  Overall, this study aims to answer the following questions 

(a) What is the effect of adding nanoparticle on the thermo-physical properties of 

base fluid? 

(b) What is the thermal and energy performance of shell and tube heat recovery 

exchanger and thermosyphon air-preheater operated with nanofluid used to 

recover waste heat from flue gas/hot gas? 

(c) What is the performance of nanofluids flowing in a circular tube under constant 

wall temperature in terms of entropy generation? 

To the best of author’s knowledge, there has not been any study which focuses 

on using nanofluids for heat recovery application. Most studies focused on the 

fundamental properties of the nanofluids such as thermal conductivity, viscosity and 

convective heat transfer performance. On the entropy analysis aspect, author found that 

up to now, none of the study focuses on the nanofluids flow through a circular tube 

under constant wall temperature. Literatures revealed that most of the studies emphasize 

on the constant heat flux condition. It is hope that the present study not only fills the gap 

in this area but also provide alternative approach to optimize the energy consumption in 

the industry. 

1.3 Overview of the study 

Schematic diagram as shown in Figure 1.2 depicts the overvall study on thermal 

and energy performance of heat recovery exchanger operated with nanofluids. The first 

section covers the investigation of thermo-physical properties of nanofluids which 

includes thermal conductivity, viscosity and density. Thermo-physcical properties are 

obtained from literatures, mathematical correlations and present experimental data. This 

is because of the pure metallic (such as copper) based nanofluids are not suitable to be 

produced via two-step method due to particles’ oxidation process. Particles’ oxidation 
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will affect its thermal conductivity characteristics. Therefore, data from literatures and 

mathematical correlations are required. In the latter section, nanofluids were used as 

heat transfer fluids in the heat exchanger. Kern and effective-NTU methods are 

combined to conduct the analysis of shell and tube heat exchanger. These approaches 

are rarely used in analysis of nanofluids operated heat exchanger. For the thermosyphon 

heat exchanger, effective-NTU approach is used to investigate its thermal and energy 

performance. The function of heat exchangers is to recover heat from flue gas/ hot gas 

released. Entropy generation analysis to investigate the efficiency of nanofluids as heat 

transfer fluid was also conducted in the present study. 
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Figure 1.2 Overview of the study 
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1.4 Objectives of the study 

There are considerable nanofluid related researches found in the existing 

literatures. It is noted that most of the works focused on the thermal conductivity, 

viscosity and convective heat transfer characteristic of nanofluids. These studies found 

that nanofluids have the potential to replace conventional heat transfer fluids in the 

thermal systems. However, there is limited study focusing on recovering waste heat 

from the flue gas or hot gas using nanofluids. The recovered heat can be used for many 

other applications which eventually leads to energy saving and reduction of green house 

gas emission. Keeping this in mind, the objectives of present study are as follows:-  

(a) To investigate the effect of aluminium oxide and titanium dioxide based 

nanoparticles on thermo-physical properties (thermal conductivity, viscosity and 

density) of water and ethylene glycol/water mixtures-based fluids 

(b) To extend a mathematical model for the heat transfer and energy performance of 

shell and tube heat recovery exchanger operated with ethylene glycol and water-

based copper nanofluid and ethylene glycol/water mixtures based aluminium 

oxide and titanium dioxide nanofluids 

(c) To analyse the entropy generation of water-based aluminium oxide and titanium 

dioxide nanofluids flow using circular tube with constant wall temperature 

(d) To evaluate the performance of air-preheater operated with water-based 

aluminium oxide and titanium dioxide nanofluids as a working fluid. 

 

1.5 Scope of the study 

 The scope of the present study is as follows: 

(a) Water and ethylene glycol/water mixture were used as base fluid in the 

experimental works. 
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(b) Thermal conductivity, viscosity and density were the thermo-physical properties 

measured in the present study. Aluminium oxide, Al2O3 (particle size: 13nm and 

less than 50nm) and titanium dioxide, TiO2 (particle size: 21nm) were the 

nanoparticle used in the experiment.   

(c) Two types of heat recovery exchanger were used to recover the waste heat from 

flue gas/hot gas. They are shell and tube and thermosyphon air-preheater heat 

exchanger. 

(d) Analysis of the nanofluids application in shell and tube and thermosyphon air-

preheater heat exchangers was done using mathematical modelling. Experiments 

are not conducted since there is no experimental facility in University of 

Malaya. Moreover, it is very expensive to establish a flue gas heat recovery 

system. Ethylene glycol and water-based copper nanofluid and ethylene 

glycol/water mixtures-based aluminium oxide and titanium dioxide were used in 

the shell and tube heat exchanger modelling while, water-based titanium dioxide 

and aluminium oxide nanofluids were considered in the thermosyphon air-

preheater and entropy generation modelling.  

(e) In the mathematical modelling, nanofluids properties are assumed to remain 

constant or invariant when applied to the heat recovery exchangers. It is 

presumed that the nanoparticles in the base fluid are well dispersed and the 

nanofluids exhibit optimum thermal properties.   

  

1.6 Outline of the thesis 

 This thesis is divided into 5 chapters. Each of the chapters is briefly explained as 

follows: 

Chapter 1: Background of problem, overview, problem statement, purpose (objective) 

and scope of the study are presented and discussed thoroughly in this chapter. 
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Chapter 2: This chapter covers in-depth literature on the nanofluids as heat transfer 

fluid, its thermo-physical characteristics, convective heat transfer, entropy generation 

and application of nanofluids in heat pipe and shell and tube heat exchanger. Potential 

of energy saving using nanofluids is also discussed in this chapter. 

Chapter 3: This chapter explains in detail the method used in the present study. It 

includes the synthesis of nanofluids, nanofluids thermo-physical properties 

measurement, modelling of thermal and energy performance of shell and tube heat 

exchanger, size prediction of heat exchanger, entropy generation of nanofluids flow and 

thermal performance of thermosyphon air pre-heater heat exchanger. 

Chapter 4: The result and discussion of the project are included in this chapter. They 

are presented in graphical form (graphs) which includes thermo-physical properties of 

nanofluids, thermal and energy performance of heat recovery exchangers, and entropy 

analysis of nanofluids flow. The results are critically analysed and discussed which 

covers the theory and physical mechanism contributing to the results.    

Chapter 5: This is the last chapter of the thesis where the conclusion deduced from this 

project is presented. Apart from that, author also suggests few recommendations for 

future research work. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

 This section reviews the preparation method of nanofluids, its thermo-physical 

properties such as thermal conductivity, viscosity, density and specific heat. The 

nanofluids convective heat transfer performances, entropy generation as well as the 

application of nanofluids in heat pipe and shell and tube heat exchanger are discussed in 

the later sections. In the last section, the potential of energy saving through nanofluids 

researches are presented.  

 

2.2 Heat transfer with nanofluids 

 The addition of small particles into base fluid to improve base fluid’s thermal 

conductivity has been in use since the establishment of Maxwell treatise. However, this 

effort is focused on the mili-micrometer sized particles. Murshed et al., (2008a) and 

Sarit et al., (2008) revealed that the limitations of this method include the rapid settling 

of particles, wear out of the heat transfer device’s surface and increase of pressure drop 

and pumping power.  

 The concept of suspending nanoparticles in the base fluid (known as nanofluids) 

was first presented in 1995 (Choi, 2009). The author revealed that nanofluids offer 

improved thermal properties and are able to overcome the limitations posed by 

suspension with mili- or micro-sized particles. Comparison between suspension with 

nanoparticles and micro-sized particles is shown in Table 2.1. From Table 2.1, it is 

found that nanoparticles offer greater advantages compared to the micro particles.  
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Table 2.1 Comparison between micro and nanoparticles (Sarit et al., 2008) 

 Micro particles Nanoparticles 

Stability Settle Stable 
Surface/volume ratio 1 1000 times higher than 

microparticles 
Conductivity (same volume 
fraction) 

Low High 

Clog in micro channel Yes No 
Erosion Yes No 
Pumping power Large Small 
Nanoscale phenomena No Yes 
  

 

 2.3 Preparation of nanofluids 
 

 Rapid development in nanotechnology has made it possible to produce materials 

in nano dimension (nanoparticles). Nanoparticles are usually available in the form of 

powder and have higher thermal conductivity than fluid.  Being in nano scale, 

nanoparticles exhibit unique and enhanced physical and chemical characteristics 

compared to that of bulk materials (Murshed et al., 2008a; Yu et al., 2007). Nanofluid is 

not just a simple mixture of nanoparticles and base fluids. The nanofluid must be a 

stable and durable suspension, with no chemical reaction and minimum particles 

agglomeration (Wang and Mujumdar, 2007). A stable nanoparticle suspension is 

necessary to produce nanofluids with an optimum or enhanced thermal properties 

(Keblinski et al., 2005; Ghadimi et al., 2011).    

 Nanofluids can be produced through a two-step or single-step method.  In two-

step method, nanoparticle dry powders are produced either by physical or chemical 

synthesis. Then, it will be dispersed into the base fluid using ultrasonic disruptor 

(Murshed et al., 2005; Hwang et al., 2006; Duangthongsuk and Wongwises, 2009) or 

high pressure homogenizer (Hwang et al., 2008). The limitations and disadvantages of 

this method are sedimentation, clustering and aggregation of nanoparticles with respect 

to length of time. Nanoparticles are prone to agglomeration due to the attractive force 

between them known as van der Waals attractive force. Typical transmission electron 
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microscopy (TEM) images of nanoparticles in water base fluid are shown in Figure 2.1. 

From Figure 2.1, it is observed that there is slight particle agglomeration existent in the 

base fluid suspension. 

 

 

 

 

 

 

 

 

 

(a) TiO2/water                                      (b) Carbon black/water 

Figure 2.1 (a) Typical Transmission electron microscopy (TEM) image of titanium 

dioxide/water nanofluids (Duangthongsuk and Wongwises, 2009) (b) carbon black/ 

water nanofluids (Hwang et al., 2008) 

 

A stabilizer agent which is able to provide repulsive force is needed to overcome 

the attractive force. Apart from that, two-step method is preferable for oxide type 

nanoparticles compared to that of metallic type (Mahbubul et al., 2012; Ghadimi et al., 

2011; Wang and Mujumdar, 2007). Sarit et al., (2008) emphasized that two-step method 

is not an effective approach for metal nanoparticles such as copper. Figure 2.2 shows 

the typical nanofluids subjected to ultrasonication process.  



 

Figure 2.2 

 

Single-step method is a technique where fabrication of nanoparticles and 

nanofluids synthesis is 

technique condenses the nanoparticles vapour directly to the lower vapour pressure base 
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Figure 2.2 Ultrasonication process of nanofluids
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Table 2.2 Synthesis method in nanofluids formulation 

Base fluid Nanoparticles Synthesis 

method 

References 

Water Alumina(15-50nm) Two-steps  
 

Zhu et al., (2009) 

Ethylene 
glycol 

titanate nanotube 
(10nm,Length 
=~100nm) 

Two-steps  Chen et al., (2009) 

Water Alumina(<30 ± 5 
nm) 

Two-steps  Do et al., (2010) 

60%Ethylene 
glycol,40% 
Water 

Alumina,silicon 
dioxide, 
Copper(I)oxide 

Two-steps  Vajjha et al., 
(2010) 

Ethylene 
glycol 

Copper Two-steps  Yu et al., (2010) 

Ethylene 
glycol 

Diamond Two-steps  Yu et al., (2011) 

De-ionized 
water 

Alumina (10-30nm) Two-steps  Lin et al., (2011) 

Water Silver Single step Paul et al., (2012) 
De-ionized 
water 

Alumina (43nm); 
copper oxide (30nm) 

Two-steps Suresh et al., 
(2012) 

De-ionized 
water 

Alumina, titanium 
dioxide, zinc oxide 

Two-steps  Putra et al., (2012) 

Ethylene 
glycol 

Copper Single step  De Roberties et al., 
(2012) 

 

2.4 Thermal conductivity of nanofluids 

 Nanofluids’ thermal conductivity represents the ability of the heat to flow. It is 

the most important characteristic used to justify the suitability of nanofluids as a heat 

transfer fluid. Substantial studies have been conducted to investigate the factors 

affecting the thermal conductivity of nanofluids. Summary of nanofluids thermal 

conductivity related studies is depicted in Table 2.3. 
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Table 2.3 Nanofluids thermal conductivity related studies 

Reference Base fluid Particle Study related to 

Temp Shape / 

size 

Vol.% 

/Wt.% 

Surfactant

/ pH 

Particle 

Eastman et al., 
(2011) 

Ethylene 
glycol 

Cu   √ √  

Murshed et al., 
(2005) 

Deionized 
water 

TiO2  √ √   

Liu et al., 
(2006) 

Water Cu  √ √   

Yoo et al., 
(2007) 

Water, 
ethylene 
glycol 

TiO2,Al2O3, 
Fe,WO3 

 √ √  √ 

Zhang et al., 
(2007) 

Toluene,water Au,Al2O3,  
TiO2,CuO, 
CNT 

√ √ √  √ 

Beck et al., 
(2007) 

Ethylene 
glycol 

Al2O3 √  √   

Lee et al., 
(2008) 

Deionized  
water 

Al2O3   √   

Li et al., (2008) Water Cu   √ √  
Duangthongsuk 
and 
Wongwises, 
(2009) 

Water TiO2 √  √   

Mintsa et al., 
(2009) 

Distilled 
Water 

CuO,TiO2 √ √ √  √ 

Zhu et al., 
(2009) 

Water Al2O3   √ √  

Yu et al., (2009) Ethylene 
glycol 

ZnO √  √   

Chandrasekar et 
al., (2010) 

Water Al2O3   √   

Yu et al., (2010) Ethylene 
glycol 

Cu √  √ √  

Teng et al., 
(2010) 

Water Al2O3 √ √ √   

Lee et al., 
(2011) 

Deionized 
water 

SiO   √ √  

Lin et al., 
(2011) 

De-ionized 
water 

Al2O3 √   √  

 

2.4.1 Experimental study of nanofluids’ thermal conductivity  

 There are several factors that affect the thermal conductivity of nanofluids. The 

factors are particle volume fraction, particle size and shape, temperature, surfactant and 

pH. The following sub-sections will describe all these factors in detail. 
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2.4.1.1 Effect of particle volume fractions 

The distinguished research of Eastman et al.,(2001) which draws great interest 

and attention of thermal scientists and engineers reported that thermal conductivity of 

ethylene glycol based copper (<10nm) nanofluids with 0.3 vol.% was enhanced up to 

40% compared to that of base fluid. Study found that the metallic-based nanofluids 

provide higher thermal conductivity than oxide type of nanofluids. This is attributed to 

higher intrinsic thermal conductivity of Cu nanoparticle compared to that of Al2O3 and 

CuO. Another reason is that the Cu particle used in this study was four times smaller 

than oxide particle. Same type of nanofluids was investigated by Yu et al., (2010). In 

contrast to the Eastman’s result, only 11% enhancement was obtained for the same 

particle loading. This discrepancy may be due to different synthesis methods of 

nanofluid preparation and type of dispersant used in both studies. In another research, 

Liu et al. (2006) found that water containing only 0.1 vol % of Cu nanoparticles 

exhibited 23.8% improvement in thermal conductivity. The nanofluids in their study 

were produced through one step chemical reduction method. 

Up to now, most of the studies implied that the thermal conductivity increases 

with respect to particles volume fractions. Some researchers indicated that a linear 

thermal conductivity with respect to particle’s loading relationship was discovered. 

However, there are researchers that observed a non-linear thermal conductivity trend.  

Chandrasekar et al., (2010) studied thermal conductivity of water based Al2O3 

nanofluids and concluded linear dependency on the particle volume fractions. For the 

lower range of Al2O3 volume fractions (0.01 to 0.3 vol.%), Lee et al., (2008) showed 

that thermal conductivity increased linearly with particle volume fractions. However, in 

another studies, non-linear relationship was observed for nanofluids thermal 

conductivity with low concentration. Murshed et al., (2005) found that, thermal 

conductivity of TiO2 nanofluid showed non-linear relationship for volume fractions less 
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than 2%.  This could be due to the addition of cetyltrimethylammonium bromide 

(CTAB) surfactant into the base fluid in their study. Non linear relationship was also 

discovered for nanofluids containing up to 5 vol. % of ZnO particle (Yu et al.,2009). 

The slope of the thermal conductivity enhancement with respect to particle volume 

fraction was higher at lower volume fractions (about 0.2 to 0.7 vol. %) compared to the 

slope at higher volume fractions (1 to 5vol.%). Authors explained that this was due to 

the larger increase of nanofluids viscosity compared to thermal conductivity 

enhancement.  

Two types of nanofluids that are commonly used in researches are Al2O3 and 

TiO2 nanofluids. Murshed et al., (2005) experimentally showed that thermal 

conductivity of water based TiO2 nanofluids correlates with particle volume fractions. 

With only 5 vol.%, of TiO2 nanoparticles, 29.7% and 32.8% thermal conductivity 

enhancement were observed for nanofluids with TiO2 of �15nm and �10nm 3 40nm, 

respectively. Comparison between water based Al2O3 and TiO2 nanofluids were carried 

out by Yoo et al., (2007). Study revealed that by adding 1% nanoparticle volume 

fraction, thermal conductivity enhancement of Al2O3 (4% enhancement) was lower than 

TiO2 (14.4% enhancement) although it is known that Al2O3 has higher bulk thermal 

conductivity than TiO2. This shows that particle’s thermal conductivity is not the major 

factor to improve nanofluids thermal conductivity. The same study also found that 

ceramic type nanofluids have lower thermal conductivity than metallic type nanofluids 

under the same concentration. Beck et al., (2007) demonstrated the dependence of 

Al2O3 nanofluids thermal conductivity on particle volume fractions. Duangthongsuk 

and Wongwises (2009) performed research on TiO2/ water nanofluids with respect to 

volume fraction up to 2%.  

Another study done by Mintsa et al., (2009) covered a larger range of 

nanoparticle volume fraction (up to 18%). Similar to the previous studies, these authors 
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experimentally pointed out that the nanofluids (Al2O3, CuO) thermal conductivity was 

relatively higher than base fluid. The drawback of the addition of higher particle volume 

fractions is the stability issue. Wu et al., (2009) revealed nanoparticles tend to 

agglomerate at higher volume component. There are also studies focused on nanofluids 

containing carbon nanotube.  Hwang et al., (2006) highlighted that 11.3% enhancement 

was achieved with addition of 1% of MWCNT into water. It has the highest thermal 

conductivity improvement compared to that of CuO/water, SiO2/water and CuO/EG 

nanofluids. Thermal conductivity of water containing 3wt.% MWCNT enhanced about 

13% which is higher than predicted value from Maxwell correlation (Lee et al., 2011). 

 

2.4.1.2 Effect of particle size and shape 

Most of the researchers found that thermal conductivity of nanofluids with 

smaller nanoparticle sizes tend to produce higher values compared to larger particles. 

Chon and Kihm (2005) investigated the thermal conductivity of three different sizes of 

Al2O3 nanofluids. Thermal conductivity of nanofluids with 11nm Al2O3 particles was 

the highest compared to 47 and 150 nm alumina nanofluids. Smaller nanoparticle 

increases the surface area and number of particles interactions. Sarit et al., (2008) added 

that the heat transfer process happens on the surface of the particles thus higher thermal 

conductivity of nanofluids is observed.  

Another researcher, Yoo et al., (2007) revealed that particle size is the main 

factor in affecting thermal conductivity compared to particle thermal conductivity. 

Smaller particle sizes provide larger surface to volume ratios which facilitates 

nanofluids heat transfer process. In their study, it was identified that nanofluids with 

smaller TiO2 exhibited higher thermal conductivity than the bigger Al2O3 nanoparticles. 

Vajjha and Das (2009) noted that effective thermal conductivity for ethylene 

glycol/water mixture based ZnO (29nm) was 3% higher than nanofluids with ZnO 
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(77nm) for 2% volume fraction concentration. However, Mintsa et al., (2009) reported 

that particle sizes of nanofluid have substantial effect on thermal conductivity only at 

high operating temperatures. At ambient temperature, particle size has limited influence 

on thermal conductivity. Murshed at al., (2005) found that thermal conductivity of 

nanofluids with cylindrical particles is higher than spherical shape particle.  

 

2.4.1.3 Effect of temperature 

 Beck et al., (2007) measured the thermal conductivity of ethylene glycol based 

Al2O3 nanofluids at 298K to 411K. It was argued that, the thermal conductivity 

characteristics of nanofluids at higher temperatures are almost similar to the base fluid. 

This concludes that effect of Brownian motion only plays a minor role in nanofluids 

thermal conductivity enhancement.  

In contrast to the previous research, Murshed at al., (2008b) highlighted the 

importance of Brownian motion of nanoparticles on nanofluids thermal conductivity. 

Higher operating temperature will intensify the effect of Brownian motion of 

nanoparticles which eventually contributes to formation of micro convection in the base 

fluid. Subsequently, thermal conductivity enhancement is observed. The selected 

nanofluids used in their study were Al2O3 nanoparticles with three different types of 

base fluids (ethylene glycol, water and engine oil).  

Duangthongsuk and Wongwises (2009) tested TiO2/ water-based nanofluids 

thermal conductivity at three different temperatures, 15oC, 25oC, 35oC.  It is 

conclusively found that thermal conductivity is a function of temperature. Yu et al., 

(2009) reiterated that thermal conductivity of ethylene glycol based ZnO nanofluids 

increases with temperature. The enhancement ratio is almost constant when the 

temperature increases.  Similar conclusion is deduced by Lin et al., (2011) who 

investigated the water based Al2O3 nanofluids. However, Colangelo et al., (2011) 
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revealed that temperature has no effect on the diathermic oil nanofluids thermal 

conductivity.  

 

2.4.1.4 Effect of surfactant and pH 

Addition of surfactant is a common method to minimize the particles 

sedimentation and agglomeration. These are the two phenomena which determine the 

nanofluids’ stability. The particles downward movement due to the nature of 

gravitational force is defined as sedimentation while agglomeration is referred to as the 

formation of cluster of particles (Bhattacharya, 2005). Surfactant is a long organic 

molecule which can be classified into few types: anionic (SDBS and SDS), cationic 

surfactant (CTAB) and non-ionic surfactant(PVP).According to Ghadimi et al., (2011), 

surfactant is capable of modifying the particles surface from hydrophobic to hydrophilic 

surface and vice versa. The surfactant molecules will attach to nanoparticle and create 

repulsive force. This force prevents the nanoparticles from getting closer to each 

another. 

 Li et al., (2008) studied the thermal conductivity of Cu/H2O nanofluids under 

various loadings of SDBS surfactant. Authors reiterated that addition of surfactant 

increases the nanofluids thermal conductivity. However, thermal conductivity decreased 

when the loading exceeded the optimum concentration. Minzheng et al., (2012) 

investigated the influence of SDBS, PVP, SDS and CTAB on thermal conductivity of 

nanofluids. Similar to the previous study, it indicated that there is an optimum level of 

concentration for every type of surfactant. Other researchers who used surfactant in 

their experiments are Murshed et al., (2008a) (CTAB); Wang et al., (2009) 

(SDBS),Hwang et al., (2006) (SDS), Chen and Xie (2010) (Gemini) 

 The pH value is associated with the electrostatic charge around the 

nanoparticles. Zeta potential is a parameter usually used to quantify this surface charge. 
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To get a stable suspension, pH must be kept far from the iso-electric point (IEP). Iso-

electric point refers to zero zeta potential. At this stage, the repulsive force is 

minimized; hence, there is a higher tendency for particles to agglomerate. If the pH 

deviates from IEP, the electric double layer (EDL) is strong enough to resist the 

particles from getting closer to each another (Lee et al., 2011). The authors successfully 

identified pH 6 as the IEP value for SiC/water nanofluids. Li et al., (2008b) showed that 

the thermal conductivity of Cu/water nanofluids is higher at pH 8.5-9.5. The authors 

explained that, the surface charge around the nanoparticles is the highest at this 

condition. Zhu et al., (2009) observed that Al2O3/water nanofluids have higher zeta 

potential value at 8-9 pH. This contributes to uniform distribution of nanoparticles in 

the suspension and leads to higher thermal conductivity.     

 

2.4.2 Theoretical model of nanofluids’ thermal conductivity 

 The models used to predict the nanofluids thermal conductivity are classified 

into two (2) categories. They are static and dynamic models. Typical static models are 

Maxwell and Hamilton Crosser models as depicted in Equations (2.1) and (2.2), 

respectively. 

k���k� 5 k� 6 2k� 6 2�8k� + k�9k� 6 2k� + �8k� + k�9                                                                                             (2.1- 
k���k� 5 k� 6 (n + 1-k� + (n + 1-� + 8k� + k�9k� 6 (n + 1-k� 6 �8k� + k�9                                                                (2.2- 
 where k = thermal conductivity; eff = effective, p = particle; Ø = particle volume 

fraction and n = shape factor                                                                                 

Maxwell model is based on the concept of conduction heat transfer through a 

stagnant suspension of the spherical particles (Khanafer and Vafai, 2011). Both models 

are function of particle volume fractions and thermal conductivity of particle and base 
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fluid. However, Maxwell model is only valid for spherical particle. Hamilton Crosser 

model is applicable for both spherical and cylindrical particles due to the introduction of 

shape factor, n in this model.  

Several researchers have further improved these classical models by 

incorporating the effect of interfacial layer (Yu and Choi, 2003; Yu and Choi, 2004; 

Leong et al., 2006). It is presumed that each particle is surrounded by an ordered layer. 

Inclusion of ordered layer increases the volume fraction of nanoparticles. Yu and Choi 

(2004) improved the Hamilton-Crosser model to accommodate the non-spherical 

nanoparticles. In this model, the interface is described as a confocal ellipsoid with a 

solid particle.  

Thermal conductivity model which incorporates particles Brownian motion is 

started by Jang and Choi (2004). Authors proposed that Brownian motion is an 

important factor for heat transport of nanoparticles suspended in a base fluid. This 

contradicts with the classical approach which assumes the discrete particles are stagnant 

and motionless. The proposed model is developed based on several mechanisms such as 

collision between base fluid molecules, thermal diffusion of nanoparticles, collision 

between nanoparticles due to Brownian motion and thermal interaction of dynamic 

nanoparticles with base fluid molecule.  

Another well known model based on Brownian motion is developed by Prasher 

et al., (2006). The proposed model considers the effect of interfacial thermal resistance 

between the nanoparticles and liquid. Authors proposed that the thermal conductivity 

enhancement of nanofluids is due to localized convection caused by nanoparticles’ 

Brownian motion. The proposed model is a combination of Maxwell-Garnett (MG) 

conduction and convection models.  

Although numerous models have been developed, at present there are no model 

available to predict the nanofluids thermal conductivity accurately (Khanafer and Vafai, 
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2011). Thus, Corcione (2011) and Khanafer and Vafai (2011) developed empirical 

models based on the experimental data available in the literatures. For instance, the 

model constructed by Khanafer and Vafai is valid and suitable for water based Al2O3 

and CuO -based nanofluids. 

 

2.5 Viscosity of nanofluids 

 Viscosity of nanofluids is influenced by several factors. The main factors are 

particle volume fraction and operating temperature and rheology behaviour of nanofluid 

which are discussed in sub-section 2.5.1. Sub-section 2.5.2 discusses the theoretical 

model of nanofluids viscosity.  

 

2.5.1 Experimental study of nanofluids’ viscosity 

 Earlier works on nanofluid were mainly focused on its thermal conductivity and 

convective heat transfer performance. However, nanofluids viscosity characteristics also 

deserve the same attention. Addition of nanoparticles increases nanofluids viscosity. 

Viscosity represents the resistance of fluid to flow and it is associated with the amount 

of pressure drop. There are two important issues concerning nanofluids viscosity 

characteristics. Firstly, common factors such as particle volume fractions and size, 

surfactant and operating temperature affecting the nanofluids viscosity. The second 

issue is whether nanofluids are classified as Newtonian or non-Newtonian fluid. The 

Newtonian fluids have a constant viscosity with respect to different values of shear rate.  

The shear stress of a Newtonian fluid is proportional with shear rate. 

 Most of the researchers found that nanofluids viscosity increases with 

augmentation of nanoparticle volume fractions (Nguyen et al., 2008; Duangthongsuk 

and Wongwises, 2009; Kole and Dey, 2010; Corcione, 2011; Mahbubul et al., 2012). 

Addition of nanoparticles creates higher internal force in the base fluid (Kole and Dey, 
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2010). Phuoc and Massoudi (2009) proposed that nanoparticles tend to form a structure 

in base fluid. The motion of the fluids were restricted which resulted in increase of 

viscosity. Murshed et al., (2008b) added, the increase of nanofluids viscosity could be 

attributed to nanoparticles clustering and surface adsorption. It is followed by the 

increase of particles hydrodynamic diameter that leads to augmentation of viscosity. 

Namburu et al., (2007) found that viscosity of water and ethylene glycol mixture based 

CuO nanofluids increases along with particle loading. Lee et al., (2008) revealed that 

non linear relation between Al2O3/water nanofluids viscosity increment and 

nanoparticle concentration ranged from 0.01-0.3vol.% Author pointed out that the non 

linear relation was resulted from longer sonication time (5 hours) which produced 

uniform dispersed nanoparticles. It augmented the particle-particle interaction and 

surface area of the well-dispersed nanoparticles. Consequently, hydrodynamic force 

which acted on the particles in the fluid was also affected.  

 Nanofluids viscosity depends on the fluid operating temperature. Interparticle 

forces tend to be weakened when temperature increases. The fluid can move freely 

when the particles motion is not restricted. Chen et al., (2007) measured the rheological 

behaviours of ethylene glycol based TiO2 nanofluids up to 8wt.% for temperature range 

of 20oC to 60oC. Viscosity of low volume fraction Al2O3 (0.01 to 0.3 vol.%)/ water -

based nanofluids was studied by Lee et al., (2008). In this study, the author considered 

temperature range of 21oC to 39oC. Duangthongsuk and Wongwises (2009) studied the 

TiO2/water-based nanofluids at three different temperatures, 15oC, 25oC and 35oC. All 

these studies concluded that nanofluids viscosity decreases with the increasing of fluid 

temperature. Kulkarni et al., (2009) extended the nanofluids viscosity to very low 

temperature to test the suitability of nanofluids in the cold climate countries. Varying 

the temperature from -35oC to 50oC in the study showed that the viscosity of nanofluids 

is higher at low temperatures. 



27 

 

 There are considerable researches focused on the rheological behaviour of 

nanofluids. Newtonian and non-Newtonian fluids have completely different 

characteristics. Phuoc and Massoudi (2009) discovered that Fe2O3–deionized water 

nanofluids rheological behaviour depends on the particle volume fraction. Addition of 

0.2% (by weight) PVP surfactant, these nanofluids still exhibit shear thinning non-

Newtonian behaviour with 2% particle volume fraction. Similar trend was observed for 

the same nanofluids with addition of 0.2% (by weight) PEO.  Yu et al., (2009) revealed 

that ZnO-ethylene glycol nanofluids demonstrate shear thinning non-Newtonian 

behaviours when particle volume fraction exceeds 3%. Chen et al., (2008) found that 

shear thinning behaviour is more obvious for higher weighted percentages of titanate 

nanotubes/ water nanofluids. Kulkarni et al., (2009) found that water/ethylene glycol 

mixture with 6.12% volume fraction of CuO shows Newtonian behaviour at -35oC.  

 Chen et al., (2007) found that a nanofluid with higher base fluid viscosity 

(ethylene glycol) tends to have Newtonian characteristics. The authors measured the 

rheological behaviours of ethylene glycol based TiO2 nanofluids up to 8% wt. for 

temperature range of 20oC to 60oC. However, Kole and Dey (2010) concluded that 

addition of small amount of Al2O3 nanoparticles into engine coolant base fluid 

transforms its behaviour from Newtonian to non-Newtonian. In the most recent study 

by Bobbo et al.,(2012) it was  concluded that water based SWCNH and TiO2 nanofluids 

exhibit Newtonian behaviour.  

2.5.2 Theoretical model of nanofluids’ viscosity 

 There are a few analytical models available to estimate the viscosity behaviour 

of nanofluids. It is interesting to find that most of the models are originated from 

Einstein’s pioneering work. His model is based on the linearly viscous fluid containing 

dilute spherical particles (�< 2%). The proposed formulation is shown in Equation (2.3) 
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µ��µ� 5 (1 6 2.5�-                                                                                                                      (2.3- 
The limitations of this formula are: it only considers non-interacting particle and 

negligible inertia force in the fluid. Since then, many researchers have introduced new 

models to overcome the mentioned limitations of Einstein’s model. An extended 

Einstein's model for higher particle volume concentrations was developed by Brinkman 

(1952) as shown in Equation (2.4) 

µ�� 5 1(1 + �-?.@ µ�                                                                                                                   (2.4- 
Another researcher, Batchelor (1977) focused on the hydrodynamic and Brownian 

effect of spherical particle as shown in Equation (2.5) 

µ��µ� 5 (1 6 2.5� 6 6.2�?-                                                                                                      (2.5- 
Lundgren (1972) developed a Taylor series formulation as shown in Equation (2.6) 

µ���µ� 5 1(1 + 2.5�- 5 (1 6 2.5� 6 6.25�? 6 … . . -                                                          (2.6- 
Nguyen et al. (2007) presented viscosity correlation for water based copper oxide 

(CuO) and alumina (Al2O3) nanofluid as shown in Equations. (2.7 – 2.9) 

µ��µ� 5 (1.475 + 0.319� 6 0.051�? 6 0.009�F- for CuO                                               (2.7- 
µ��µ� 5 (1 6 0.025� 6 0.015�?- for 36nm (Al?OF-                                                        (2.8-  
µ��µ� 5 0.904eQ.RSTF� for 47nm (Al?OF-                                                                               (2.9- 
  

2.6 Density and specific heat of nanofluids 

To the best of the author’s knowledge, most researchers used single formulation 

to determine the density of nanofluids. The density formulation is shown in Equation 

(2.10). 

ρ�� 5 (1 + �-ρ� 6 �ρ�                                                                                                         (2.10- 
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Similar formulation has also been used by other researchers (Namburu et al., 2009 and 

Kulkarni et al., 2009). From the formulation, it seems that the density of nanofluid tends 

to increase with the increase of particle volume fraction. 

The common formulation for specific heat used by researchers is shown in Equation 

(2.11). Specific heat tends to reduce with particle volume fraction. 

c�,�� 5 (1 + �-ρ�c�,� 6 �ρ�c�,�ρ��                                                                                         (2.11- 
 

2.7 Convective heat transfer coefficient of nanofluids 

Zenaili et al., (2007) studied convective heat transfer performance of water 

based Al2O3 nanofluid in a circular tube under constant wall temperature. Findings 

implied that there is an augmentation of nanofluid convective heat transfer coefficient 

with the increase of nanoparticle volume fraction. The authors concluded that heat 

transfer coefficient is much higher than the predicted value from single phase heat 

transfer correlation. Ding et al., (2007) observed that aqueous-based carbon nanofluid 

offers the highest enhancement of convective heat transfer compared to that of aqueous-

based titanate and aqueous-based titania nanofluids. Bianco et al., (2009) employed 

single and two-phase models in the analysis of nanofluids’ characteristics in a uniformly 

heated circular tube. The authors found that the heat transfer performance of the base 

fluid increases with the increase of particle volume fractions. However, this is 

accompanied by the higher wall shear stress. The selected heat transfer fluid applied in 

this study is water based Al2O3 nanofluids. 

He et al., (2009) concluded that convective heat transfer coefficient has its 

maximum value at the entrance region. The authors added that this property is highly 

affected by nanofluid thermal conductivity. Other factors such as viscosity, Brownian, 

lift and thermophoretic forces have minor effect on convective heat transfer coefficient 

of nanofluids. Jung et al., (2009) studied the convective heat transfer of Al2O3 in 
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rectangular micro channels. It was observed that convective heat transfer coefficient of 

1.8% Al2O3 nanofluid in laminar flow increases to about 32% compared to distilled 

water. Kim et al., (2009) investigated the effect of convective heat transfer coefficients 

derived from thermal conductivity. His study found that thermal conductivity 

enhancement has a key role in nanofluids convection. However, an amorphous carbonic 

nanofluid with similar thermal conductivity value as pure water did not show any 

convection improvement at the turbulent flow. Vajjha et al., (2010) studied convective 

heat transfer and pressure loss characteristics of nanofluids in turbulent flow.  

Ebrahimnia-Bajestan et al., (2011) conducted the numerical investigation on the 

heat transfer and pressure drop performance of several types of nanofluids flowing in a 

circular tube subjected with constant heat flux. Analysis was done by using custom-

made FORTRAN language. For simplication and ease of analysis, single phase thermo-

physical properties models were used. Study revelead that, the heat transfer 

performance of nanofluids are more accurately predicted by using particle dynamic 

based thermal conductivity model compared to that of static based model. This shows 

that particle’s Brownian motion play significant role in nanofluids’ thermal 

performance. 

Duangthongsuk and Wongwises (2012) used Einstein-Strokes’s model to 

investigate the heat transfer coefficient of water based TiO2 nanofluids. Authors stated 

that heat transfer coefficient of nanofluids increases with the increase of fluid’s 

Reynolds number and particle volume fractions. In another hand, this performance 

decreases when the tube length is increasing. Huminic and Huminic (2013) applied 

three dimensional CFD analyses to evaluate the thermal performance of flattened tube 

operated with nanofluids. Ethylene glycol based CuO nanofluids were applied in this 

study. Similar with the previous studies, authors found that heat transfer performance 

improved with particle volume fractions. 
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2.8 Entropy generation  

Optimum design of a thermal system is achieved when the entropy generation is 

minimized (Bejan, 1996; Sahin, 1998). Entropy generation and irreversibility are 

reduced when there is a heat transfer improvement; however, higher pressure drop due 

to fluid friction causes exergy loss in a thermal system (Moghaddami et al., 2011). 

Numerous studies have been conducted to investigate the entropy generation of a 

thermal system. Sahin (1998) analysed the entropy generation of several cross sectional 

duct geometries under a constant wall temperature. The author found that circular duct 

is favourable for high Reynolds numbers. Dagtekin et al., (2005) have applied this 

concept on the circular duct with different shapes of longitudinal fins (longitudinal thin, 

triangular and V-shape) using laminar flow. They revealed that the length, angle and 

number of fins affect the entropy generation of a circular duct under constant wall 

temperature.  Ko (2006) obtained the optimal Reynolds number, using laminar flow in a 

double sine duct with various wall heat fluxes using the same approach.  Ko and Wu 

(2009) conducted numerical study on entropy generation induced by turbulent forced 

convection in a curved rectangular duct exposed to heat flux.  Yilmaz (2009) found that 

the temperature difference between fluid inlet and wall has an optimum value as it 

minimizes entropy generation of a circular duct with constant wall temperature. Overall, 

the above studies utilized conventional working fluids such as water and air.  

 Recently, there have been few studies which focused on the entropy generation 

of nanofluids flow. Singh et al.,(2010) conducted an entropy generation investigation on 

nanofluid (alumina/water) flow in circular tubes with three different diameters under 

constant wall heat flux. The study indicates that nanofluids are suitable to be used in 

conventional channels with laminar flow conditions, microchannels with turbulent flow 

conditions and minichannels for both laminar and turbulent regimes. Moghaddami et 

al., (2011) obtained optimum Reynolds number which minimized entropy generation 



32 

 

for water- alumina and ethylene glycol- alumina nanofluids using a circular tube under 

constant heat flux. On the contrary to other researchers who focused on circular tube, 

Bianco et al., (2011) conducted a study on entropy generation in a square tube. 

Recently, Leong et al., (2012) conducted an entropy analysis on three types of heat 

exchangers. They found that shell and tube with 50o helical baffles experiences the 

lowest entropy generation compared to heat exchanger with segmental baffles and 25o 

helical baffles. Ethylene glycol-based fluid containing up to 2% volume fraction of 

copper nanoparticles were used in this study. Shalchi-Tabrizi and Seyf (2012) 

investigated entropy generation of Al2O3 nanofluids in a tangential micro heat sink. It is 

found that the total entropy generation decreases when the particles volume fraction or 

Reynolds number increases and particle size decreases. The particle volume fractions 

and sizes considered in the study were 0.01-0.04 and 29and 47nm.  

2.9 Nanofluids in heat pipe and shell and tube heat exchangers 

Heat pipe is regarded as one of the most efficient heat recovery exchanger. It is 

capable of transmitting a large amount of heat, although it provides a smaller heat 

transfer area (Liu et al., 2006). Shafahi et al. (2010) revealed that thermal resistance of a 

cylindrical heat pipe decreases as the particle concentration increases or the particle size 

decreases. Do et al., (2010) found that thermal resistance in the evaporator-adiabatic 

section of the circular screen mesh wick heat pipes is reduced to about 40% for a heat 

pipe operated with distilled water based 3.0 vol.% alumina nanofluid. The mechanism 

attributed to this enhancement is due to the formation of a nanoparticles coating layer at 

the evaporator section. It widens the evaporation surface; improves the surface 

wettability and the capillary working performance. Mousa (2011) agreed that 

nanoparticles tend to form a porous layer at the evaporation section which eventually 

increases the surface wettability. Do and Jang (2010) found that the thermal 
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performance of a heat pipe operated with water based alumina (<1 vol. %) nanofluids 

increased up to 100% at an optimum condition. The nanoparticle depositions on the 

evaporator and condenser surface are the main reasons of thermal performance 

enhancement or deterioration for oscillating heat pipe (Qu and Wu, 2011).  

 Shell and tube heat is another common type of heat exchanger. There is limited 

study focusing on the application of nanofluids in shell and tube heat exchanger. 

Farajollahi et al.,(2010) performed an investigation on water-water shell and tube heat 

exchanger. Nanofluids used in their study were α-Al2O3/water and TiO2/water 

nanofluids. Study found existence of optimum concentration for both types of 

nanofluids. At lower concentrations, TiO2/water exhibited better heat transfer 

coefficient than the α-Al2O3/water nanofluids. On the other hand, α-Al2O3/water 

performed better at higher particle loading. Recently, Lotfi et al., (2012) found that 

overall heat transfer coefficient of the shell and tube heat exchanger operating with 

water based MWCNT nanofluids is higher than the base fluid.  From here, it can be 

noted that Kern and effective-NTU methods are rarely used in the nanofluids operated 

shell and tube heat exchanger analysis. Most of the studies emphasize on the 

experimental aspect rather than mathematical modeling. 

 

2.10 Energy saving using nanofluids 

 Over the past few years, energy costs have been increased significantly. This is 

getting even worse by the depletion of fossil energy resources. There are several 

researches which indicate that application of nanofluids can reduce the need for energy 

and pumping power. Kulkarni et al., (2009) revealed that for the same heat transfer 

coefficient, there is the possibility to decrease the size of heating coil by employing 

nanofluids as heat transfer fluid. Smaller heating coil requires lower coolant mass flow 

rate and pump power. For instance, ethylene glycol/water mixture with 6 vol % 
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aluminium oxide nanoparticle needs only 7.1W power compared to 11.5W for heating 

coil operates with base fluid. Strandberg et al., (2010) studied the performance of a 

hydronic finned tube heating units operated with nanofluids. The required pumping 

power for nanofluid was also reduced compared to base fluid in this application. The 

authors stated this is attributed to the lower nanofluids velocity that is required for the 

same heating output. Firouzfar et al., (2011) compared the application of methanol-

silver nanofluids and pure methanol in a thermosyphon heat exchanger of an air 

conditioning system. For cooling of supply air stream, about 8.8 to 31.5% energy saving 

was achieved for nanofluids compared to pure methanol. As for reheating the supply air 

process, 18 to 100% was observed for nanofluids application. 

 Liu et al., (2011) experimentally investigated the performance of chillers 

operated with MWCNT/water nanofluids. It was seen that, the power consumption was 

slighty lower (about 0.8%) for chiller operated with nanofluids compared to water base 

fluid. Recently, Zarifi et al., (2013) conducted a thermal-hydraulic modelling of 

application of nanofluids in a VVER-1000 reactor core. Similar to the previous studies, 

the authors suggested that the cooling process for reactor core with nanofluids requires 

lower coolant flow rate. 

 It is obvious that there are many studies that indicated nanofluids contribute to 

energy saving. But there are arguements that substitution of nanofluids as heat transfer 

fluid may involves large investment. However, the recent market survey on the 

nanoparticles shows that the average cost of the 100g nanoparticles is less than 

RM1,000. Saidur et al., (2010) revealed the cost of nanofluids and the paybacks period 

of nanofluids application are reasonable. The authors added that only small amount of 

nanoparticles is needed to produce large quantities of nanofluids. Moreover the two-step 

method is suitable for bulk production of nanofluids. The market price of the 
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nanoparticles is depicted in Table 2.4. It is found that oxide type nanoparticle is cheaper 

than the pure metallic type. 

 

Table 2.4 Market price of the nanoparticles (Sigma Aldrich, 2013; US Research 

Nanomaterials, 2013) 

 

2.11 Conclusion 

 This chapter summarizes the fundamental thermo-physical characteristics of 

nanofluid coolants, their preparation, convective heat transfer and entropy generation, 

application of nanofluids in heat pipe and shell and tube heat exchangers and energy 

savings using nanofluids. Most of the researchers found that nanofluids exhibit 

enhanced thermal conductivity and convective heat transfer coefficient compared to 

base fluids. From the nanofluids’ applications point of view, it seems that favourable 

results are obtained. Application of nanofluids can enhance the heat recovery 

exchanger’s thermalperformance. An effective heat recovery exchanger will lead to 

optimization of energy consumption in industrial sector. Optimization of energy use is 

the main concern nowadays, due to the depletion of fossil fuel based energy, escalating 

of fuel price and emission of green house gasses. Thus, a comprehensive study on this is 

important to adderess the mentioned issues.  

Num Particle Company Particle 

size 

(nm) 

Purity 

(%) 

RM/gram 

1 Al2O3 Sigma Aldrich 13 99.8 725.01 
2 γ -Al2O3  Sigma Aldrich <50  740.02 
3 TiO2 Sigma Aldrich 21 ≥99.5 650.02 
4 Cu  US Research 

Nanomaterials, 
Inc  

40 99.9 USD$296(RM964.96) 

5 γ-Al2O3  US Research 
Nanomaterials, 
Inc 

20 99+ USD$59 (RM192.34 

6 TiO2 US Research 
Nanomaterials, 
Inc 

20nm 99+ USD$76(RM247.76) 
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CHAPTER 3 METHODOLOGY 

3.1  Introduction 

This chapter describes the methodology used to conduct the study. The 

methodology for thermal conductivity, viscosity and density measurements will be 

described in sub-section 3.2. Sub-section 3.3 explains the mathematical modelling of 

flue gas/hot gas heat recovery through shell and tube heat exchanger. In the last 

subsection 3.4, the mathematical modelling of a thermosyphon air-preheater heat 

exchanger is presented.  

 

3.2 Thermal conductivity, viscosity and density measurements 

 This section covers the methodology used in thermo-physical properties 

measurement. The type of nanoparticle and base fluids used in the experiment, 

nanofluids’ preparation, and instruments used to measure thermal conductivity, 

viscosity and density will be described in the subsequent sub-sections.  

 

3.2.1  Preparation of Nanofluids 

Two types of nanofluids are used in the present experimental. They are 

aluminium oxide, Al2O3 and TiO2 based nanofluids. In order to investigate the particle 

size effect on the base fluid thermo-physical properties, two different sizes of Al2O3 are 

chosen: 13nm and particle size less than (<) 50nm. The selection of these sizes is 

adequate since there is a large gap between these sizes. Bigger size is not selected 

because it will limit the thermal conductivity of nanofluids. In another hand, the 

selected size for TiO2 particle is 21nm. These particles are commonly used in 

nanofluids researches as they are easy and inexpensive to purchase in market. In this 

study, the nanoparticles were purchased from Sigma Aldrich. As for the base fluid, 

author selected water and water/ethylene glycol mixture (50:50). Water/ ethylene glycol 
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mixture is selected due to the limitation of the ultrasonic equipment available in the 

laboratory. High viscosity samples such as ethylene glycol is not suitable to be 

sonicated by this equipment. As stated in the manual, the manufacturer recommended 

that, samples with high viscosity to be diluted before the sonication process. This is to 

avoid damage to titanium horn (see Figure 3.1). 

Two-step method is used for nanofluids preparation. This method is inexpensive 

and does not require high-end equipment as compared to single-step method. It is a 

common method in nanofluid research (Lee et al., 2011; Nasiri et al., 2011 and Suresh 

et al., 2012). Ultrasonic Cell Disruptor KS- 1200R with maximum power of 1200W and 

20 kHz frequency as depicted in Figure 3.1 is used in the present study.  

 

 

Figure 3.1  Ultrasonic cell disruptor KS-1200R 

 

Each of the nanofluids is prepared in two different nanoparticle volume fractions 

(0.1vol. % and 0.5vol. %). Higher value is not preferable in the present study as it 

requires longer ultrasonication time. The preparation process of nanofluids is as 

Sound control 

chamber 

Control panel 

Titanium horn 
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follows: the mass of nanoparticles is weighed using digital weighing balance (Denver 

Instrument SI-234, readability 0.0001g); the weighted nanoparticles are put into 

distilled water or ethylene glycol/water mixture, then the mixture is sonicated for the 

duration of 15 minutes. Ultrasonication process is able to produce stable and uniform 

nanofluids suspensions compared to suspensions without ultrasonication process (Lee et 

al., 2011).  

 

3.2.2 Measurement of thermal conductivity 
 

A hand-held thermal conductivity analyzer (KD2-Pro, Decagon) as shown in 

Figure 3.2 was used to measure nanofluids thermal conductivity. It uses the concept of 

transient line heat source to measure the thermal conductivity of nanofluids. There are 

three (3) types of sensors available with this instrument, however a sensor (Single- 

needle KS-1) with 6 cm length and 1.27 mm diameter is chosen since it is the best for 

fluid’s thermal conductivity measurement. This needle has accuracy of ±5% W/mK for 

thermal conductivity range from 0.2 - 2 W/mK. It is capable of measuring thermal 

conductivity of fluid at -50oC to 150oC.   

In order to obtain accurate results, average value from 5 measurements was 

taken in this study. Several precaution procedures were strictly followed to minimize 

the error during the measurement. They are:- 

(a) The measurement is started only 15 minutes after the sensor is immersed in the 

fluid sample. This is to ensure that the fluid and sensor reach equilibrium 

temperature condition.  

(b) The convection in the fluid is minimized or eliminated. This is done by 

preventing bench shakes during the measurement. Any vibration of the bench 

will create convection since the fluid will be moving. 
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          Figure 3.2 KD2 Pro Decagon 

 

3.2.3 Measurement of viscosity 

 As mentioned in sub-section 3.2.1, two types of nanofluids based coolant were 

considered in this study. They are ethylene glycol/water mixtures and water-based 

nanofluids. Thus, sub-sections 3.2.3.1 and 3.2.3.2 will describe the instruments used to 

measure viscosity of the samples. 

 

3.2.3.1 Ethylene glycol/water mixture-based nanofluids 

The viscosity of the samples was measured using LVDV- III Ultra Brookfield 

Rheometer as illustrated in Figure 3.3. The accuracy of this instrument is ±1.0% and the 

revolution per minute (rpm) of the spindle, which will be immersed in the sample, can 

be set to maximum 250. 
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Figure 3.3 LVDV –III Ultra Brookfield Rheometer with water bath circulator 
 

Spindle is driven by a motor through a calibrated spring as seen in Figure 3.4. 

The viscous drag of the fluid creates resistance against the spindle resulting in 

deflection of the spring. It will be then converted into viscosity value based on 

calibrated scale. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Viscosity measurement concept of LVDV-III Ultra Brookfield 
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UL Adapter with spindle “00” is attached into this instrument since it is meant 

for low viscosity samples down to 1mPa.s. Refrigerated water bath is used to control the 

sample temperature.   

 

3.2.3.2  Water-based nanofluids 

The viscosity of water-based nanofluids was measured using Vibro viscometer 

SV–10 (Figure 3.5) instead of LVDV-III Ultra Brookfield. This is because the lowest 

measurement value for LVDV-III Ultra is only 1mPa.s. Water definitely has lower 

viscosity value. Viscometer (SV – 10) is capable of measuring sample with viscosity 

ranging 0.3 to 10,000 mPa.s. This instrument has high accuracy where it is capable of 

providing 1% of repeatability reading. 

 

Figure 3.5 SV- 10 Viscometer 

 

Figure 3.6 shows the major parts of the instrument.  
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Figure 3.6 Major parts of SV- 10 Viscometer 

 

There are two sensor plates (at the left and right) and a temperature sensor 

(middle) in this instrument. Temperature range that can be measured by the sensor is 

from 0oC to 100oC. The sensor plates that are immersed into a sample will vibrate with 

uniform frequency during the measurement process. The vibration of the sensor plates 

are control by the electromagnetic drive. The driving electric current to maintain the 

constant amplitude will be regarded as the viscidity between the sample and sensor 

plates.  

 

3.2.4 Measurement of Density 

The density of the ethylene glycol/ water mixture and water-based nanofluid is 

measured using density meter DA-130N from Kyoto Electronics. This instrument is 

able to measure sample density ranging from 0 to 2 g/cm3. The accuracy of this 

instrument is ±0.001 g/cm3 at temperatures within 0 to 40oC. Similar to thermal 
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conductivity measurements, average value from 5 readings was taken for each sample. 

Figure 3.7 illustrates the density meter used in this study. 

 

 

Figure 3.7 Density meter 

 

3.3 Modelling of flue gas or hot gas waste heat recovery through shell and tube  

            heat exchanger 

 Sub-section 3.3.1 presents methodology used in modelling of thermal and 

energy performance of a shell and tube heat recovery exchanger operated with 

nanofluids. Sub-section 3.3.2 covers the energy saving associated with size reduction of 

heat exchanger. In the sub-section 3.3.3, the entropy generation analysis of nanofluids 

flows through a circular tube is included.  

 

3.3.1 Shell and tube heat exchanger and operating condition 

This type of heat exchanger is commonly used as a pre-heater in power plant, 

steam generator in nuclear power plant and etc (Kakac and Liu,2002). It consists of two 
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sides namely; shell and tube sides. In the present study, necessary input data such as 

shell and tube heat exchanger specifications and operating characteristics were taken 

from the literatures. The composition of flue gas was obtained from Chen et al.,(2012) 

as shown in Table 3.1.  

 

Table 3.1 Composition of flue gas from biomass heating plant  

Type of gases Percentage 

CO2 12.1 
H2O 24.4 
O2 3.2 
N2 60.3 

 

 The flue gas compositions are from biomass heating plant. The specifications of 

heat exchanger and operating conditions are shown in Table 3.2. Shell and tube heat 

exchanger is used to recover the waste heat available in the flue gas. 

 

Table 3.2. Specifications of shell and tube heat exchanger and operating conditions 

for flue gas and nanofluids 

Description Type/Value 

Type of heat exchanger Single tube pass, type E shell 
and tube heat exchanger 

Tube outside diameter, do(mm) 25.4 
Tube inner diameter, di(mm) 22.9 
Pitch, pt/do 1.75 
Total tube number, N 1024 
Tube layout Rotated square 
Shell inner diameter, Ds(mm) 2090 
Shell thickness, δs (mm) 14 
Baffle type Single-segmental 
Baffle spacing, B(mm) 1776 
Baffle cut 25% 
Fluid mass flow rate (kg/s) 111.6 
Flue gas mass flow rate (kg/s) 26.3 
Fluid inlet temperature (oC) 30 
Flue gas temperature (oC) 150 
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The length of tubing is assumed to be 5 meters. Thermal conductivity of 

ethylene glycol based copper and water -based nanofluid is obtained from Eastman et 

al., (2001) and Jang and Choi (2006) as shown in Fig. 3.8 and 3.9, respectively.  

 

Figure 3.8. Thermal conductivity ratio of ethylene glycol based copper nanofluids 

(Eastman et al., 2001) 

 

Figure 3.9 Thermal conductivity ratio of water based copper nanofluids (Jang and Choi,    

2006) 
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Leong et al. (2010) used Eastman thermal conductivity data in their study on 

automotive radiator. Other thermo-physical properties such as density, specific heat and 

viscosity are calculated from correlations found from the literature. The obtained 

thermo-physical properties and stability of nanofluids are assumed to remain constant in 

the application of heat exchanger. On the other hand, the thermo-physical properties of 

the ethylene glycol/water, ethylene glycol/water based Al2O3 (particle size :13nm and 

<50nm) and TiO2 (particle size:21nm) nanofluids were obtained from the present 

experiment as discussed in section 3.2. These properties were used in the mathematical 

modelling and analysis works. Thermo-physical properties of flue gas, ethylene glycol 

and water are also needed in calculation. These are depicted in Table 3.3. 

 

Table 3.3. Thermo-physical properties of flue gas, ethylene glycol and water 

Flue Gas thermo-physical properties (Increase Performance, 2011) 

Specific heat (kJ/kgK) Thermal conductivity 
(W/mK) 

Viscosity (Ns/m2) 

1.148 2.9×10-5
 1.9×10-5

 

Thermo-physical properties ethylene glycol (Incropera et al., 2007) 

Thermal 
conductivity 

(W/mK) 

Density (kg/m3) Dynamic viscosity 
(Ns/m2) 

Specific heat 
(kJ/kgK) 

0.2613 1071.81 0.263 2.6958 

Thermo-physical properties water (Incropera et al., 2007) 
Thermal 

conductivity 
(W/mK) 

Density (kg/m3) Dynamic viscosity 
(Ns/m2) 

Specific heat 
(kJ/kgK) 

674.9×10-3 968.32 318.6×10-6 4.2048 

 

 

3.3.1.1 Theoretical derivation on heat transfer and energy performance of shell 

and  tube heat recovery exchanger 

This study intregrated Kern and effective-NTU methods to investigate the 

performance of shell and tube exchanger. On the shell side modelling, Kern method was 

selected due to its good estimation on the heat transfer coefficient in shell side (Sarit, 
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2009). Effective-NTU approach was applied in the tube side analysis. Combination of 

these two approaches are required to evaluate the heat transfer from the flue/hot gasses 

to the heat transfer fluid flows through the circular tubes. Single phase models were 

used in the analysis due to its simpler implementation. There has not been any study 

which uses these approaches in nanofluids operated shell and tube heat exchanger. 

Mathematical modelling shown in this sub-section were taken from various 

references (Incropera et al., 2007; Ramesh and Dusan, 2003; Velagapudi et al., 2008; 

Kakac and Liu, 2002). The heat transfer and energy performance of shell and tube heat 

exchangers were analysed. The base fluids considered are ethylene glycol, water and 

ethylene glycol/water mixtures while the nanoparticles are Cu, Al2O3 and TiO2. The 

mathematical modelling used in the analysis is divided into flue gas and base fluid or 

nanofluids calculations. 

The mathematical modelling for flue gas side started with determining cross flow 

area and equivalent diameter of the shell side. These two values were needed to 

calculate the flue gas Reynolds number. Eventually, the flue gas Reynolds's number was 

used in the convective heat transfer coefficient formulation. The mathematical 

modelling used in this study is shown below.  

(a) Crossflow area, Acf can be determined by using Equation (3.1): 

          A�� 5 (DV + N��d�-B                                                                                                   (3.1-                                                                                      
        where 

            N�� 5 DVP�  

(b) Equivalent diameter, De can be determined by using Equation (3.2): 

            D� 5 4YP�? + πd�?4 Z
πd�                                                                                                      (3.2- 
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(c) Flue gas Reynolds, Refg number can be determined by using Equation (3.3): 

           Re�� 5 \m��
A��] D�µ��                                                                                                           (3.3- 
(d) Flue gas convective heat transfer coefficient, hfg can be determined by using 

Equation (3.4): 

             h�� 5 Q.F_`ab Re��Q.@@Pr��cd                                                                                                   (3.4-  
 

Mathematical equations to calculate Prandtl number, specific heat, density and viscosity 

of nanofluids are shown in Equations (3.5) - (3.8).   

(a) Nanofluids density, ρ�� can be determined by using Equation (3.5) 

ρ�� 5 (1 + �-ρ� 6 �ρ�                                                                                                    (3.5- 
(b) Nanofluids specific heat  ef,gh can be determined by using Equation (3.6) 

         c�,�� 5 (1 + �-ρ�c�,� 6 �ρ�c�,�ρ��                                                                                   (3.6-  
(c) Nanofluids viscosity igh can be determined by using Equation (3.7) 

          µ��µ� 5 1(1 + � -?.@                                                                                                             (3.7- 
(d) Nanofluids Prandtl number, Prnf can be determined by using Equation (3.8) 

         Pr�� 5 c�,��µ��k��                                                                                                                  (3.8- 
 

Mathematical equations used to calculate convective and overall heat transfer 

coefficient and heat transfer rate are expressed by Equations (3.9) to (3.22). 

(a) Number of tubes per pass, j�,f can be determined by using Equation (3.9) 

         N�,� 5 N�                                                                                                                          (3.9- 
       since single pass tube is considered 

(b) Tube side flow area per pass, k#,� can be determined by using Equation (3.10) 
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         A�,� 5 π4 d,?N�,�                                                                                                    .          (3.10- 
(c) Nanofluids Reynolds number, Renf can be determined by using Equation (3.11) 

          Re�� 5 m��
 d,A�,�µ��                                                                                                               (3.11- 
(d) Nusselt number, Nunf can be determined by using Equations. (3.12) and (3.13) 

         Nu�� 5 3.66  for laminar olow                                                                                  (3.12- 
         Nu�� 5 0.024Re��Q.TPr��Q.S for turbulent olow                                                           (3.13- 
(e) Nanofluids heat transfer coefficient, hnf can be determined by using Equation (3.14) 

        h�� 5 Nu��k��d,                                                                                                                  (3.14- 
(f) Overall heat transfer coefficient, Uo can be determined by using Equation (3.15) 

       where fouling factors are not considered in this analysis.  

 

       1U� 5 1h�� 6
d�ln Yd�d,Z2k* 6 1h�� d�d,                                                                                    (3.15- 

        

      where kw is thermal conductivity of copper wall. 

(g)  Total tube outside heat transfer area, As can be determined by using Equation 

(3.16) 

         AV 5 πLd�N�                                                                                                                   (3.16- 
(h)   Number of heat transfer units, NTU can be determined by using Equation (3.17) 

       NTU 5 U�AVCu,�                                                                                                                    (3.17-  
      where 

          Cuvw 5 8m
 c�9��                                                                                                           (3.18- 
          Cu,� 5 8m
 c�9��                                                                                                            (3.19- 
(i) Heat exchanger effectiveness, x can be determined by using Equation (3.20) 
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Assuming single pass, both fluids unmixed 

          ε 5 1 + exp zY 1C{Z (NTU-Q.??|exp&+C{(NTU-Q.}T. + 1~ �                                (3.20- 
        where 

         C{ 5 Cu,�Cuvw                                                                                                                       (3.21- 
(j)    Heat transfer rate, q can be determined by using Equation. (3.22) 

          q 5  εCu,�8T��,, + T��,,9                                                                                              (3.22- 
 

Pressure drop and pumping power can be determined by using following 

formulations from Equations (3.23) - (3.27). 

(a) Friction factor, F can be determined by using Equations. (3.23) and (3.24) 

        F 5 64Re��  for laminar                                                                                                    (3.23-         F 5 (0.790 ln Re�� + 1.64-�? for turbulent olow                                                  (3.24- 
(b) Mean velocity of nanofluids, um can be determined by using Equation (3.25) 

uu 5 4m��
ρ��πd,?                                                                                                                  (3.25- 
(c) Pressure drop, ∆� of nanofluids can be determined by using Equation (3.26) 

          ∆p 5 F ρ��uu?2d,  L                                                                                                           (3.26- 
(d) Pump power,P can be determined by using Equation (3.27) 

P 5 V�� 3 ∆p                                                                                                                   (3.27- 
 

The mathematical flow chart is depicted in Figure 3.10 
 

 

 

 



51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 
 

 

Shell side calculation Tube side calculation 

Calculation of cross flow 

area, equivalent 

diameter, flue gas 

Reynolds number 

Thermo-physical 

properties of flue gas 

Convective heat transfer 

coefficient 

Thermo-physical properties 

of heat transfer fluids  

Calculation of number of 

tubes per pass, tube side 

flow area per pass, Reynolds 

number, Nusselt number 

Convective heat transfer 

coefficient 

Overall heat transfer 

coefficient 

Total tube outside 

heat transfer area 

Number of transfer 

unit (NTU) 

Heat transfer rate 

End 

Figure 3.10  Mathematical flow chart (Thermal and energy 

performance of shell and tube heat exchanger) 

Start 



52 

 

3.3.1.2     Test procedures and conditions 

 
The analysis in this study was conducted based on flue gas composition from the 

biomass heating plant, nanofluids and base fluid properties and operating conditions 

discussed in Sections 3.3.1. In this study, nanoparticle volume fraction, flue gas and 

nanofluids mass flow rate were varied to determine thermal and energy performance of 

the heat recovery exchanger. The test procedures and conditions in this study are shown 

below. 

 

(a) Effect of  nanoparticles volume fraction on thermal and energy performance of 

shell and tube heat recovery exchanger 

In this analysis, flue gas and nanofluids mass flow rate were kept constant at 

26.3kg/s and 111.6kg/s, respectively. These values are taken from Chen et al., (2012) 

which are based on actual mass flow rate values applied in the shell and tube exchanger. 

Nanoparticles volume fractions were augmented from 0 to 1% for ethylene glycol based 

copper nanofluids and from 0 to 2% for water based copper nanofluids. Nanofluids 

Reynolds number, convective and overall heat transfer coefficient and heat transfer rate 

were then determined. Other parameters such as pumping power as well as the 

nanofluids pressure drop were determined. Apart from that, analysis was also done on 

the overall heat transfer performance of the shell and tube heat recovery exchanger 

operated with ethylene glycol/water base fluid, ethylene glycol/water mixture-based 

aluminium oxide (particle size:13nm and <50nm) and titanium dioxide (particle size: 

21nm). The nanoparticle volume fraction used for these nanofluids was 0.5%.  

 

(b) Effect of flue gas mass flow rate on thermal performance of shell and tube heat    

          exchanger 

  In this analysis, the flue gas mass flow rate was varied from 26.3kg/s to 42kg/s.  
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Reynolds number for flue gas was included. Nanofluids convective and overall heat  

transfer coefficient and heat transfer rate were also analyzed i. Nanofluid  

subjected to this study was ethylene glycol based copper nanofluids. 

 

(c) Effect of coolant mass flow rate on thermal performance of shell and tube heat  

          Exchanger 

Coolant mass flow rate varied from 200 kg/s to 230 kg/s to create turbulent 

flow. Nanofluids convective and overall heat transfer coefficient and heat transfer rate 

were also analyzed in this section. Nanofluid subjected in this study was ethylene glycol 

based copper nanofluids. 

 

3.3.2  Energy saving associated with size reduction of shell and tube heat  

             exchanger 

This section describes the method used to estimate the size reduction of shell 

and tube heat recovery exchanger operated with nanofluids based coolants and its 

associated energy saving. 

 

3.3.2.1  Size estimation of shell and tube heat recovery exchanger 

 
      The specification of shell and tube heat exchanger (TEMA E type) is also taken 

from Chen et al., (2012) as described in Table 3.2. It is used to recover heat from flue 

gases emitted from biomass heating plant. From the study, it is implied that the flue gas 

inlet temperature of about 150oC reduced to 35oC with 26.3kg/s mass flow rate of flue 

gas. The flue gas thermo-physical properties are obtained from (Increase Performance, 

2011) based on its composition given by Chen et al., (2012).  

      In the present study, the heat transfer fluid inlet temperature and mass flow rate 

are set as 30oC and 60kg/s, respectively. However, the energy balance Equation (3.28) 
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is used to determine the heat transfer fluid outlet temperature since the specific heat 

changes with addition of nanoparticles. Similar to previous section, 5m tube length is 

considered in this study.   

(a) Energy balance is expressed by the Equation (3.28): 

m
 ��C�,��8T��,,� + T��,���9 5  m
 ��C�,��8T��,��� + T��,,�9                                                  (3.28-                      
    

     Initially the convective heat transfer coefficients for flue gas and heat transfer 

fluid (coolant) are assumed in this analysis. The convective coefficient for the heat 

transfer fluid (coolant) is assumed to increase with the particle volume fraction due to 

substantial increase of nanofluids thermal conductivity (Wen and Ding, 2004). 

Nanoparticles movement which creates the thermal boundary disturbance also enhances 

convective heat transfer (Kim et al., 2009). Fouling factors are considered negligible in 

this study. The mathematical modellings used in this study are taken from different 

references (Incropera et al., 2007; Kakac and Liu,2002; Ramesh and Dusan, 2003; 

Velagapudi et al., 2008, Taborek, 1991). 

  

(b) The required heat transfer area to perform the selected condition is expressed by the  

      Equation (3.29)      

A 5 QLMTD 3 U                                                                                                                      (3.29- 
                                                                                                        

(c) LMTD constant is expressed by the Equation (3.30): 

       LMTD 5 8T��,,� + T��,���9 + 8T��,��� + T��,,�9In YT��,,� + T��,���T��,��� + T��,,�Z
                                                         (3.30- 
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      In this study, few similar parameters used by Chen et al. (2012) are taken into 

consideration as shown in Table 3.4  

Table 3.4 Specification of shell and tube heat exchanger for size reduction estimation 

Description Value 

Tube outside diameter (mm) 25.4 

Tube inside diameter (mm) 22.9 

Pitch ratio 1.75 

Baffle length (mm) 1776 

 

CTP constant was assumed to be 0.93 for one tube pass, while tube layout constant CL 

for 90o is assumed to be 1 (Taborek, 1991).  

(d) The overall shell diameter is expressed by the Equation (3.31): 

       DV 5 0.637� CLCTP �(A-(PR-?8d�,�9L �R ?�                                                                      (3.31- 
(e)  The required number of tubes is expressed by the Equation (3.32): 

        N� 5 0.785 YCTPCL Z (DV-?(PR-?(d��-?                                                                                  (3.32- 
      Finally, the convective heat transfer of the heat exchanger with the calculated 

geometric values is compared with the initial assumption of convective heat transfer 

coefficient. This is to ensure that the calculated geometries value is capable to produce 

the same thermal performance. 

 

3.3.2.2 Convective heat transfer coefficient of flue gas and nanofluids 

      Thermal conductivity, specific heat and viscosity of heat transfer fluids are 

required to calculate this convective heat transfer properties for the tube side. Two types 

of nanofluids are considered in this study namely; ethylene glycol and water based 

copper nanofluids. Both are taken from Eastman et al., (2001) (Figure 3.8) and Jang and 

Choi (2006) (Figure 3.9) respectively. It is noted that the thermal conductivity data 
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taken from Eastman et al., (2001) is measured from samples without addition of any 

surfactant. Flue gas and nanofluids convective heat transfer coefficient are calculated 

based on formulations listed in Section 3.3.1.1. 

 

3.3.2.3  Energy savings 

      Mathematical formulations to calculate energy savings associated with the size 

reduction of heat exchanger are presented by Equations (3.33)-(3.36). 

(a) Mass, m can be expressed by the Equation (3.33): 

          m 5  ρ 3 v                                                                                                                  (3.33- 
(b)  Energy consumption used for material processing , E can be expressed by the    

    Equation (3.34): 

 E 5 e
 3m                                                                                                                 (3.34-                     
      Energy consumption for copper material processing is 1.17517kWh/kg copper 

(Yanjia and Chandler, 2010). Guo and Fu (2010) reported that energy consumption for 

steel is 0.45224 kWh/kg steel. Copper and steel are assumed as the materials for tube 

and shell, respectively.   

(c)  Mass reduction, mred can be expressed by the Equation (3.35): 

 m��� 5 m��  + m��                                                                                                (3.35- 
(d)  Total energy savings for material processing, et can be expressed by the   

     Equation (3.36) 

 eVv� 5 e�� + e��                                                                                                      (3.36- 
 

Figure 3.11 shows the mathematical flowchart of the size reduction and energy savings 

of shell and tube heat exchanger. 
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Figure 3.11 Mathematical flowchart of the size reduction and energy savings of shell 

and tube heat exchanger 
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Constant wall temperature, Tw 

3.3.3 Entropy generation of nanofluids flow through a circular tube subjected to    

           constant wall temperature 

 The efficiency of nanofluids as a heat transfer fluid depends not only on the heat 

transfer enhancement but also on the pressure drop. Thus, entropy generation analysis 

was conducted in the present study. Circular tube is selected because this shape of tube 

is widely used in shell and tube heat exchangers. Sub-section 3.3.3.1 describes the 

geometry configuration and thermo-physical properties of nanofluids while the 

modelling used in the analysis is presented in the succeeding sub-section.  

 

3.3.3.1 Geometry configuration of circular tube and thermo- physical properties of  

            nanofluids 

 The schematic diagram of a circular tube subjected to entropy analysis is shown 

in Figure 3.12. In this figure, the circular tube is subjected to constant wall temperature 

due to heating process from flue gas/hot gas. The fluid that flows through the tube 

absorbs the heat from the circular tube’s wall. The heat transfer rate of the fluid within 

the control volume can be determined using Newton’s law of cooling as follows:  
dQ
 5 m
 c�dT 5 hπ(T* + T-dx                                                                                          (3.37- 

 

 

 

 

 

 

 

Figure 3.12 Circular tube under constant wall temperature (Sahin, 2000) 
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The specifications and operating characteristics are shown in Table 3.5.  

Table 3.5 Specification and operating characteristic of circular tube 

 Specification/ working condition Value/ Remark 

1 Diameter of circular tube, d (m) 0.01-0.03 
2 Length of circular tube, l (m) 2-10 
3 Temperature of heat transfer fluid , Ti(K) 300 
4 Base fluid Water 
5 Nanoparticle volume fraction, � Al203 (0-7% volume fractions) and 

TiO2(0-4% volume fractions) 
6 Mass flow rate (kg/s) Laminar (0.01-0.02), turbulent (0.1-

0.2) 
7 Dimensionless wall and fluid 

temperature different, τ 
0.01-0.02 

 

The thermal conductivity of water based Al2O3 nanofluids is obtained from 

Khanafer and Vafai (2011) as shown in Equation (3.38).  

k���k� 5 1.0 6 1.0112�� 6 2.4375�� \ 47d�(nm-] +  0.0248 �� \ k�0.613]                 (3.38- 
As for water based TiO2 nanofluids, the thermal conductivity value is obtained from 

Murshed et al.,(2009) as shown in Figure 3.13.  

 

Figure 3.13 Thermal conductivity of water based TiO2 nanofluids (Murshed et al., 

2009) 
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Apart from the thermo-physical properties from literatures, the thermo-physcial 

properties of water based Al2O3 and TiO2 nanofluids obtained from the present study, as 

described in section 3.2, were also used in the entropy generation analysis. 

Generally, nanofluids thermal conductivity is affected by several factors, 

namely, particle size and shape, addition of surfactant, particle volume fractions and etc. 

Other thermo-physical properties are determined from Equations (3.5-3.7). The density 

formulation (Equation 3.5) is based on mixing rule while the dynamic viscosity 

(Equation 3.7) is originated from Einstein formulation. Thermo-physical properties of 

water, as base fluid, are obtained from Incropera et al., (2007). These are depicted in 

Table 3.6. 

 

Table 3.6. Thermo-physical properties of water (Incropera et al., 2007) 

Num Thermo-physical properties Value 

1 Density, kg/m3 997 
2 Dynamic viscosity (Ns/m2) 855×10-4 
3 Specific heat (J/kgK) 4179 
 

3.3.3.2 Theoretical derivation on entropy generation of nanofluids flow through a  

            circular tube subjected to constant wall temperature 

 The methodology used by Sahin (2000) is adopted in this present study. It is 

defined that the total entropy generation of the fluid flow through a circular tube is 

represented as follows: 

S
��� 5 m
 c� �ln �R��������R�� � + τ81 + e�S���9 6 RT f ���� ln ��������R�� ��                                (3.39-    
The overall heat transfer rate from the wall to the fluid can be obtained by integrating 

Equation (3.37) along the tube length as follows: 

Q
 5 m
 c�(T* + T,-81 + e�S���9                                                                                          (3.40-             
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For simplification of analysis, the entropy entropy generation can be presented in 

dimensionless form as depicted indicated as follows: 

ψ 5 S
���Q
 /(T* + T,-                                                                                                                   (3.41- 
Substitution of Equations (3.39) and (3.40) into Equation (3.41), the total dimensionless 

entropy generation can be written as follows: 

Ψ = 

11 + e�S��� �ln �1 + τe�S���1 + τ � + τ81 + e�SV��9 6 18 f EcSt ln �eSV�� + τ1 + τ �¡                     (3.42- 
                             

where 

πR 5 St λ                                                                                                                                  (3.43- 
π? 5 f EcSt                                                                                                                                   (3.44- 

 

This formulation consists of entropy generation contributed by heat transfer and 

friction loss. Optimum condition for a thermal system or flow is achieved when this 

value is minimized. Equations. (3.45-3.56) are obtained from references (Sahin, 2000; 

Incropera et al.,2007; Ramesh and Dusan, 2003).  

The friction factor, f of the fluid flow can be determined as follows: 

f 5 64Re  for laminar olow                                                                                                       (3.45- 
f 5 (0.79 ln Re + 1.64-�? for turbulent olow                                                                (3.46- 

The pumping power plays a significant role in a thermal system. It is known 

that, higher pumping power is required for fluid flow with higher pressure drop. The 

fluid pressure drop can be determined as follows: 

d� 5 fρ��u?2d£ dx                                                                                                                        (3.47- 
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The Reynolds number can be expressed as:  

Re�� 5 4m
 ��πd£µ��                                                                                                                        (3.48- 
The fluid velocity could be indicated by:  

u�� 5 m
ρ��A�                                                                                                                             (3.49- 
Stanton number, St is needed for total dimensionless entropy generation calculation as 

given in Eq. (3.50). St can be calculated as follows:  

St 5 h��ρ��u��c�,��                                                                                                                      (3.50- 
Convective heat transfer can be determined as follows: 

h�� 5 Nuk��d£                                                                                                                             (3.51- 
 Nusselt number can be determined as follows:  

Nu = 3.66 for laminar flow                                                                                        (3.52) 

Nu 5 0.024 Re��Q.TPr��Q.Sfor turbulent olow                                                                       (3.53- 
The Eckert number can be obtained using the following relation: 

Ec 5 u��?C�,��T*                                                                                                                            (3.54- 
The dimensionless wall and fluid temperature difference is expressed as follows:  

¤ 5 ¥¦ + ¥§¥¦                                                                                                                              (3.55- 
The dimensionless length of a circular tube is defined as:  

λ 5 LD                                                                                                                                       (3.56-  
The methodology used in the present analysis is validated with the results obtained from 

Sahin (2000). The Figure 3.14 shows the mathematical flowchart of the size reduction 

and energy savings of shell and tube heat exchanger. 
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Figure 3.14 Mathematical flowchart of the size reduction and energy savings of shell 

and tube heat exchanger. 
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3.4 Modelling of hot gas waste heat recovery through thermosyphon air 

preheater  

Beside from shell and tube heat exchanger, thermosyphon heat exchanger also 

can be used to recover the waste heat from the flue gass/hot gass. Therefore, this section 

describes the methodology used for performance investigation of thermosyphon air 

preheater. It covers the modelling characteristic, input data, mathematical modeling and 

test characteristics. 

 

3.4.1  Modelling characteristics and input data 

The specification of an air to air thermosyphon heat recovery exchanger is taken 

from Noie (2006). In their study, authors used water as the thermosyphon’s working 

fluid. As mentioned in Chapter 2, nanofluids offer better thermal properties than water. 

Thus, the present study investigated the performance of the same thermosyphon but 

operated with nanofluids. The specification and schematic diagram of thermosyphon are 

shown in Table 3.7 and Figure. 3.15. 

 

Table 3.7 Specifications of an air preheater (Noie, 2006) 

Description Value 

Dimension of heat exchanger (m) 1.3 (H) × 0.43 (L) × 0.27 (W) 
Dimension of each thermosyphon (mm) do = 15, di=14, Ltubes=1300 
Type and dimension of fins (mm) Aluminium plate fin, thickness = 

0.4mm 
Number of fins per meter = 300, 
Spacing,�� =10mm 

Thermosyphon arrangement Staggered, sl = 30mm , st=30mm 
Number of rows nl = 6 , nt= 15 
Total number of the thermosyphons N=90 
Thermosyphon materials/ working fluid Copper/ water 

 

 

 



 

 Figure 3.1
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air is assumed to be 25

taken from Incropera et al., (2007). Nanofluids used in the present study are water based 

Al2O3 and water based TiO

  

3.4.2 Theoretical derivation 

           thermosyphon air

 The formulations used for modelling analysis in this section are divided into: 

thermal resistance of air 

temperatures and energy performance.

 

3.4.2.1 Thermal resistance of air side

Nuntaphan et al. (2002

the convective heat transfer coefficient 

represented by Equation (3.57

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Schematic diagram of an air preheater (Noie, 2006)

The operating temperature for hot air ranges from 100oC to 240

air is assumed to be 25oC. Thermo-physical properties of air at these temperatures are 

from Incropera et al., (2007). Nanofluids used in the present study are water based 

and water based TiO2. These are commonly used in nanofluid researches.

Theoretical derivation of heat transfer and energy performance in 

thermosyphon air preheater 

The formulations used for modelling analysis in this section are divided into: 

thermal resistance of air sides, wall, working fluids, overall effectiveness, outlet 

temperatures and energy performance. 

Thermal resistance of air side  

Nuntaphan et al. (2002) have used a formulation from Webb (1994) to calculate 

the convective heat transfer coefficient of air at the evaporator side, 

represented by Equation (3.57) 
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hv,�,��v 5 j ρv,�uuvw¨�,v,�Prv,�? F�                                                                                                     (3.57- 
where j is Colburn factor which can be represented by the following equation: 

j 5 0.14Re�Q.F?T Ys�sªZ�Q.@Q? Y fVd�Z
Q.QFR                                                                                (3.58- 

It is a formulation to cater for plain finned tubes. The tubes are arranged in the 

staggered array. Incropera et al., (2007) used the following equation to determine the 

maximum velocity, uuvw for the staggered configuration: 

uuvw 5 S�2(S� + d�- u                                                                                                            (3.59- 
Maximum Reynolds number can be represented by the following equation: 

Rea,uvw 5 ρv,�uuvwd�
µv,�                                                                                                           (3.60- 

Mass flow rate,m
  can be represented by the following equation: 

m
 5 ρv,�uA����                                                                                                                       (3.61- 
Air side thermal resistance at the evaporator can be expressed in the following equation: 

Rv,�,��v 5 1hv,�,��v η�                                                                                                              (3.62- 
where «#is the total surface temperature effectiveness. It can be represented by the 

following equation: 

η� 5 1.0 + (1.0 + η�-  3 A�A�                                                                                                (3.63- 
where η� is the fin efficiency. It can be represented by the following equation: 

η� 5 tanhmlml                                                                                                                            (3.64- 
where, 

m 5 � 2hv,�,��vko,� f�£,�`��VV                                                                                                              (3.65- 
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Same formulations (Equations 3.57-3.65) are used to determine thermal resistance of air 

at the condenser side. 

 

3.4.2.2 Thermal resistance of thermosyphon wall 

  

The wall thermal resistances at both sides; evaporator and condenser are 

negligible. This is because wall thickness is only 1 mm. Moreover, in the present study, 

the thermosyphon heat exchanger is made of copper. Copper exhibits 401W/mK 

thermal conductivity at 300K. This material is known as one of the best heat conductors 

available in the market.   

 

 3.4.2.3Thermal resistance of working fluid at evaporator 

  
Nanofluids considered in this study are similar with the previous nanofluids 

used in entropy generation analysis. The heat transfer coefficient of the working fluid in 

an evaporator is determined from Hewitt et al., (1993). Therefore, nanofluids heat 

transfer coefficient at the evaporator side of thermosyphon (h��,��v- can be represented 

by the following equation: 

h��,��vk�� ¬ µ��?
ρ��,ª ρ��,ª + ρ��,�® g°

R/F 5 Y43Z
RF 1Re��R/F                                                    (3.66- 

  

Reynolds number for the nanofluid is assumed to be 30 in this study since the heat 

transfer fluid containing nanoparticles has higher viscosity. Thus, the fluid flow is 

restricted in this condition. Hagens et al., (2007) used Reynolds number ranging from 

30 to100 in their experimental and analytical study of long heat pipes. Thermal 

resistance of nanofluids at an evaporator can be represented by the following equation: 

R��,��v 5 1α��αv,�® h��,��v                                                                                                       (3.67- 
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3.4.2.4 Thermal resistance of working fluid at condenser 

Same formulations from Equations (3.66-3.67) were used to calculate thermal 

resistance of working fluid in the condenser section. However, Equation (3.66) is 

replaced with Equation (3.68) since condensation process is taking place at the 

condenser section. This formulation is obtained from Hewitt et al. (1993): 

h��,����k�� \ µ��?ρ��,ª8ρ��,ª + ρ��,�9g]
R/F 5 43 Y 43Re��Z

RF                                                            (3.68- 
                                                    

3.4.2.5 Overall effectiveness of thermosyphon air preheater  

 
The overall heat transfer coefficient is represented by the following equation: 

U� 5 U��v 6 U����                                                                                                                (3.69- 
Noie (2006) used Equations (3.70-3.79) in his analysis of thermosyphon air preheater 

operated with water as working fluid. The effectiveness for a single row heat pipe is 

represented by the following equations: 

ε��v,V,��ª� 5 1 + exp (+ NTU-��v                                                                                      (3.70- 
ε����,V,��ª� 5 1 + exp (+ NTU-����                                                                                  (3.71- 
Number of transfer unit (NTU) for both evaporator and condenser section are shown as 

follows. 

NTU��v 5 (UA-��vC��v                                                                                                                (3.72- 
where 

C��v 5 8m
 v,�c�,v,�9��v                                                                                                          (3.73- 
NTU���� 5 (UA-����C����                                                                                                             (3.74- 
where  

C���� 5 8m
 v,�c�,v,�9����                                                                                                     (3.75- 
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The effectiveness of thermosyphon with n rows of heat pipes is represented by the 

following equations: 

ε��v,� 5 1 + 81 + ε��v,V,��ª�9�                                                                                            (3.76- 
ε����,� 5 1 + 81 + ε����,V,��ª�9�                                                                                        (3.77- 
Overall effectiveness of the thermosyphon , x� is represented by the following 

equations: 

ε� 5
±
²³ R´µ¶·¸,· 6

�¹º»,µ¶·¸ �¹º»,b¼¹½
´b¼¹,· ¾

¿À
�R

          if   C��v Á C����                                         (3.78-                                    

ε� 5
±
²³ R´b¼¹,· 6

�¹º»,b¼¹ �¹º»,µ¶·¸½
´µ¶·¸,· ¾

¿À
�R

            if   C���� Á C��v                                   (3.79) 

 

3.4.2.6 Outlet temperature at evaporator and condenser  

  

The outlet temperatures at condenser and evaporator sections are represented by 

the following equations (Noie, 2006). 

T��v,��� 5 T��v,,� + ε� 8m
 v,�c�,v,�9u,�8m
 v,�c�,v,�9��v 8T��v,,� + T����,,�9                                          (3.80- 
T����,��� 5 T����,,� 6 ε� 8u
 ¹º»�Â,¹º»9Ãº·8u
 ¹º»�Â,¹º»9µ¶·¸ 8T��v,,� + T����,,�9                                         (3.81-            
3.4.2.7 Energy performance 

  
The absorbed energy at the evaporator and condenser sections of a heat pipe 

heat exchanger are represented by the following equations: 
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ÄÅÆÇ 5 ¨ÅÆÇ 3 8¥ÅÆÇ,§g + ¥ÅÆÇ,#È�9                                                                                 (3.82- 
ÄÉ#gÊ 5 É̈#gÊ 3 8¥É#gÊ,#È� + ¥É#gÊ,§g9                                                                           (3.83- 
Figure 3.16 shows the mathematical flow chart of the thermpsyphon air reheater 

analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Mathematical flowchart of the thermosyphon air-preheater analysis 
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3.4.2.8 Test characteristics  

 The test characteristics considered in this study are presented in this section. It 

includes the operating condition used in the comparative studies and nanofluids 

analysis. 

(a) Comparative studies 

 This sub-section describes the method used to validate the model in this study. 

The influence of hot air inlet temperature on the hot air outlet temperature was analyzed 

in this section. The obtained results were compared with results obtained from Noie 

(2006). The hot air temperature was varied from 100oC to 240oC. However, cold air 

inlet temperature was fixed at 25oC. The analysis was conducted at three difference hot 

air velocities, which are 2.5, 4.0 and 4.75 m/s while, cold air velocity was kept constant 

at 3 m/s. These values are similar with the experimental conditions used by Noie 

(2006). Water was used as heat pipe working fluid in this study.      

 

(b) Influence of particle volume fraction on thermal and energy performance of   

 thermosyphon heat exchanger          

Water based Al2O3 and TiO2 nanofluids were used as the thermosyphon heat 

exchanger working fluid. The parameters that were kept constant in this section are hot 

air inlet temperature (100oC), cold air velocity (3 m/s) and cold air inlet temperature 

(25oC). Similar to the previous section, the analysis were conducted with three different 

hot air velocities. The effects of the particle volume fractions on overall heat transfer 

coefficient and cold air outlet temperature were analyzed in this part. In addition, the 

energy required to heat the combustion air was also estimated. 

 

 

 



72 

 

3.5 Conclusion 

 This chapter discusses the methodology used in the present study. Three types of 

thermo-physical experiments were conducted namely thermal conductivity, viscosity 

and density. For the thermal and energy performance of heat recovery exchanger’s 

analysis, mathematical equations were presented. The relevant formulations are 

obtained from literatures and text book. The methodology discussed covers shell and 

tube heat exchanger and thermosyphon air preheater heat exchangers. Entropy 

generation formulations are also presented in this chapter. The next chapter will discuss 

the findings obtained from the present study.  
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CHAPTER 4 RESULTS AND DISCUSSION 

4.1 Introduction 

 This chapter deals with results and discussions on thermo-physical properties of 

nanofluids. The thermal and energy performance of the heat exchangers used to recover 

the flue gas/ hot gas are included as well. 

 

4.2 Thermal conductivity characteristic of nanofluid based coolants 

Thermal conductivity of heat transfer fluids was measured using a KD2-Pro 

thermal analyzer. The accuracy of the instrument was tested by comparing the reference 

values (Incropera et al., 2007) and (ASHRAE, 2001) with the experimental values. This 

is shown in Figure 4.1. The deviation between the reference and experiment values for 

ethylene glycol/water mixture is 2.0% only. As for water, the recorded deviation is 

6.3%.  These values are acceptable and, it shows that the KD2-Pro thermal analyzer is 

reliable and provides accurate results.  

 

Figure 4.1 Validation of KD2-Pro thermal conductivity analyzer (~ 28oC) 
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Thermal conductivity of various types of ethylene glycol/water and water-based 

nanofluid is shown in Figure 4.2.  

 

Figure 4.2. Comparison of thermal conductivity between various water and ethylene 

glycol/water-based nanofluid and base fluid (~ 28oC) 
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(particle size: 13nm and <50nm). It is found that thermal conductivity of ethylene 
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glycol base fluid. This percentage of thermal conductivity enhancement is calculated 

based on formula show in Appendix G. On the other hand, addition of 0.5 vol. % of 

TiO2 into ethylene glycol/water would increase the thermal conductivity of ethylene 

glycol/water about 5.6%. The increase of thermal conductivity could be due to 

formation of nanolayer around the particle. It is believed that the base fluid molecules 

tend to form an ordered layer around solid particles. This layering is much more ordered 

than the bulk fluid, thus, it would have higher thermal conductivity compared to the 

bulk fluid (Murshed et al., 2008b). Several other mechanisms contributing to the 

thermal conductivity enhancement of nanofluids have been discussed by various 

researchers (Keblinski et al., 2002; Keblinski et al., 2005; Murshed et al., 2008a; Choi, 

2009). These mechanisms include Brownian motion, nature of heat transport in 

nanoparticles, nanoparticles clustering and etc.  

Apart from that, the thermal conductivity of ethylene glycol/water based 

nanofluids increases with the increase of nanoparticle volume fraction except for 

Al2O3(particle size: <50nm). Nanoparticle might agglomerate in ethylene glycol/water 

containing 0.5vol. % of Al2O3 (particle size:<50nm). This hinders its thermal 

conductivity enhancement compared to 0.1vol. %. Shima et al., (2010) reported that 

particle agglomeration is the main reason for the thermal conductivity decrement of 

nanofluids. Another researcher, Hong et al., 2006) explained that nanoparticles are 

closer to each other for higher particle loadings; thus, they can agglomerate easily. They 

added that the decrease of nanofluids thermal conductivity is directly linked to the 

particle agglomeration. 

 The present experiment shows that nanofluids with smaller particle size exhibit 

higher thermal conductivity. For instance, thermal conductivity of ethylene glycol/ 

water based Al2O3 (particle size:13nm) nanofluids is higher than Al2O3 (particle size: 

<50nm) nanofluids irrespective of particle volume fraction. This is agreed by Teng et 
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al., (2010). These authors considered three types of particle size; 20, 50 and 100nm of 

Al2O3 in water base fluid. They concluded that nanofluids with smaller nanoparticles 

exhibit higher thermal conductivity enhancement especially at high temperatures. Chon 

and Kihm (2005) also reported that smaller nanoparticles give higher surface area and 

particles interaction which leads to thermal conductivity augmentation. In another 

research, Mintsa et al., (2009) added nanofluids with smaller nanoparticles for the same 

particle volume fraction create more contact area between the solid and fluid. 

 Thermal conductivity of various water -based nanofluids is also depicted in 

Figure 4.2. From this figure, it is shown that most nanofluids exhibit higher thermal 

conductivity compared to water base fluid. Water containing 0.5 vol.% of Al2O3 

(particle size:13nm) offers 12.9% augmentation compared to water base fluid. This is 

higher than augmentation offered by the ethylene glycol/ water-based nanofluids 

containing the same type and particle concentration. However, nanoparticles might be 

not uniformly dispersed in water base fluid compared to the ethylene glycol/ water base 

fluid. This could be the reason why the thermal conductivity of water base fluid with 

0.5 vol.% of TiO2 and Al2O3 (particle size:13nm) is lower than 0.1 vol.% nanofluids. 

Nanoparticles agglomeration might be high in these samples. It is known that ethylene 

glycol/ water has higher viscosity compared to water base fluid.  

4.3 Density characteristic of nanofluid based coolants 

 

  The comparison between the reference and the measured values of density is 

presented in Figure 4.3. This is done in order to validate the accuracy of the density 

meter. From Figure 4.3, 0.8% deviation is observed for the ethylene glycol/water 

mixtures while water only accumulates 0.04% deviation. This shows that the selected 

density meter is accurate and reliable in performing measurements in this study. 
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Figure 4.3 Validation of density meter (~28oC) 
 

 Comparison of the density of ethylene glycol/ water and water based nanofluids 

with base fluids is presented in Figure 4.4. 

 

Figure 4.4 Density of ethylene glycol/water and water-based nanofluids and base fluid 

(~28oC) 
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  As expected, the density of ethylene glycol-based nanofluids containing TiO2 

nanoparticles is higher than the Al2O3 nanofluids. This is attributed to the higher density 

of TiO2 nanoparticles as compared to Al2O3. Incropera et al., (2007) stated that the 

density of TiO2 and Al2O3 is 4157kg/m3 and 3970 kg/m3 respectively. Similar trend is 

also observed for water based nanofluids. This study shows that the particle type, rather 

than the size, plays a significant role in determining the density of nanofluids. Not much 

difference in density is observed for Al2O3 nanofluids at 13nm and <50nm particle 

sizes. Apart from that, density also increases with particle volume fractions.  

 

4.4 Viscosity characteristic of nanofluid based coolants 

 As explained in Chapter 3, two types of instrument were used to measure 

viscosity of nanofluids. LVDV-III Ultra Brookfield was used to measure the viscosity 

of ethylene glycol/water-based nanofluids while a SV-10 viscometer was used for 

water-based nanofluids. Thus, the results and discussions on viscosity characteristic of 

nanofluids are divided into two sub-sections 4.4.1 and 4.4.2. Sub-section 4.4.1 covers 

the ethylene glycol/water based nanofluids while water-based nanofluids is presented in 

sub-section 4.4.2.  

  

4.4.1 Viscosity of the ethylene glycol/ water -based nanofluids 

 Before adding nanoparticles into base fluid, the LVDV-III Ultra Brookfield 

rheometer was validated by measuring the viscosity of ethylene glycol and ethylene 

glycol/water mixture. The measured value is then compared with the values obtained 

from Incropera et al., (2007) and ASHRAE (2001). This is shown in Figure 4.5.  
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Figure 4.5 Theoretical and experimental viscosity of base fluids at different 

temperature 

 From Figure 4.5, it is deduced that there is a good agreement between the 

measured and standard values from text books. On the aspect of shear rate, it is 

successfully proved that the viscosity of ethylene glycol is independent of shear rate, 

thus, it is a Newtonian fluid. Figure 4.6 shows the effect of shear rate to the viscosity of 

ethylene glycol/water mixture at various temperatures. Ethylene glycol/water exhibits 

Newtonian characteristic from 30oC to 45oC.   

 

Figure 4.6 Dynamic viscosity of ethylene glycol/water mixture with respect to shear 
rate 
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 Figure 4.7 shows the viscosity of ethylene glycol/ water-based nanofluids at 

various nanoparticle volume fractions as a function of temperature.  

 

 

Figure 4.7. Effect of the particle volume fractions and temperature on the ethylene 

glycol/ water -based nanofluids 
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on viscosity for both 0.1% and 0.5% volume fractions. The TiO2 particle size used in 

this study is 21nm. Particles in this suspension might be so well dispersed that 

agglomeration effect is minimized. Higher force is needed to overcome the 

nanoparticles structure due to agglomeration. Regarding the effect of temperature, it is 

obvious that inter-particles forces such as Van der Waals attractive force weaken with 

augmentation of temperature. Thus, the nanofluids viscosity is inversely proportional 

with temperature as shown in Figure 4.7. For instance, nanofluid viscosity irrespective 

of type declines approximately 30-31% when the operating temperature increases from 

30 to 45oC. Aside from that, Figure 4.7 also shows that nanoparticle size have effect on 

viscosity.  For instance 3.3% increase is observed for nanofluid containing 0.1vol. % of 

Al2O3 (particle size:13nm) compared to the Al2O3 sizes less than 50nm at 30oC. This 

increasing trend is also observed in the studies done by various researchers (Corcione, 

2011; Duangthongsuk and Wongwises, 2009; Lu and Fan, 2008). Timofeeva et 

al.,(2010) explained that the total area of solid/liquid interface and the number of 

nanoparticles increases for the same concentration with smaller particle size. Thus it 

increases the electro-viscous effect due to the particle/liquid interfacial as well as the 

electrostatic interaction between the particles. Particles agglomeration and the flexibility 

of nanofluids motion depends on the electrostatic particles interaction. It becomes 

dominant when the particles are at smaller size, therefore, higher viscosity occurres. 

Lastly, Figures 4.8 and 4.9 show that all types of tested nanofluids exhibit Newtonian 

behaviour since they are independent of shear rate. 
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Figure 4.8 Viscosity of the ethylene glycol/water-based nanofluids with respect to shear 

rate at 30oC 

 

Figure 4.9. Viscosity of the ethylene /water-based nanofluids with respect to shear rate  
At 40oC 
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4.4.2 Viscosity of the water-based nanofluids 

 

 Figure 4.10 shows the comparison between measured and text book values of 

viscosity of water with respect to time. The maximum of 8.8% deviation is observed. 

Generally, both values show decreasing trend with function of temperature. 

 

Figure 4.10 Viscosity of water (Experiment and reference values) 
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the water. It can be assumed that TiO2 is well dispersed not only in the ethylene 

glycol/water mixture but also in the water  

 

 

Figure 4.11. Viscosity of water-based nanofluids 

  

4.5 Discussion on flue gas waste heat recovery through shell and tube heat    

             exchanger 

This section presents the results and discussion from modelling of shell and tube 

heat recovery exchanger operated with various types of nanofluids. Application of 

nanofluids in heat exchanger used to recover the waste heat from the flue gas. The 

analysis was done based on modelling as explained in sub-section 3.3.1. 

 

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

24 26 28 30 32 34 36 38 40 42

V
is

co
si

ty
 (

m
P

a.
s)

Temperature oC

Alumina<50nm 0.1vol.% Alumina<50nm 0.5vol.%
Titanium 21nm 0.1vol.% Titanium 21nm 0.5vol.%
Alumina 13nm 0.1vol% Alumina 13nm 0.5vol.%
Water



85 

 

4.5.1 Effect of nanoparticle volume fraction on thermal and energy performance 

of shell and tube heat recovery exchanger 

 Three types of nanofluids were used in the analysis. They are ethylene glycol 

based copper nanofluids, water based copper nanofluids and ethylene glycol/water 

based aluminium oxide and titanium dioxide nanofluids.  

(a) Ethylene glycol based copper nanofluids 

The effect of copper (Cu) nanoparticle volume fraction on thermal and energy 

performance of the heat recovery exchanger was carried out. In this analysis, the flue 

gas and coolant flow rate were kept constant at 26.3 kg/s and 111.6 kg/s, respectively. 

In this condition, the flue gas convective heat transfer coefficient was found to be 

56.4W/m2K. The sample calculation for flue gas convective heat transfer coefficient is 

shown in Appendix G. With the increase of the nanoparticle volume fractions, the 

coolant Reynolds's number decreases as shown in Figure 4.12. 

 

Figure 4.12 Effect of copper volume fraction to coolant Reynolds number at 

constant flue gas and coolant mass flow rate 
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In this analysis, all parameters except dynamic viscosity of coolant were kept 

constant. It is noted that, dynamic viscosity of coolant increases with nanoparticle 

volume fraction. Addition of nanoparticles increases the fluid shear stress associated 

with a higher dynamic viscosity. Substituting a higher value of this property into 

Equation (3.11) definitely decreases the coolant Reynolds number as shown in Figure 

4.12. It is assumed that the flow is of laminar type.  

 Study found that the convective heat transfer coefficient for nanofluids is 

proportional with the nanoparticle volume fractions as depicted in Figure 4.13  

 

Figure 4.13 Effect of copper volume fraction to coolant convective heat transfer 

coefficient  and overall heat transfer coefficient at constant flue gas and coolant mass 

flow rate. 
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coefficient is shown in Appendix G. Heat transfer enhancement was observed with the 

particle volume fractions as shown in Figure 4.14.  

 

Figure 4.14 Effect copper volume fraction to heat transfer rate at constant 

flue gas  (26.3kg/s) and coolant (111.6 kg/s) mass flow rate. 
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Figure 4.15 Effect copper volume fraction to coolant pressure drop and pump power at 

constant flue gas (26.3kg/s) and coolant (111.6 kg/s) mass flow rate. 
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the summary of thermal and energy performance enhancement of heat recovery 

exchanger operated with water based copper nanofluids compared to base fluid. 

 

Table 4.1 Thermal and energy performance of water -based nanofluids containing 2% 

of copper nanoparticles compared to water base fluid at 12kg/s mass flow rate 

Number Description Water based copper 

nanofluids 

1 Coolant convective heat transfer 
enhancement 

33.4% 

2 Overall heat transfer coefficient 
enhancement 

10.11% 

3 Heat transfer enhancement 4.53% 
4 Pump power (lesser) 22.5%  

 

(c) Ethylene glycol/water based aluminium oxide and titanium dioxide nanofluids  

Figure 4.16 depicts the overall heat transfer coefficient of the shell and tube heat 

recovery exchanger operated with ethylene glycol/water based Al2O3 and TiO2 

nanofluids. These nanofluids based coolants exhibit higher overall heat transfer 

coefficient compared to water. From this figure, it is observed that ethylene 

glycol/water based Al2O3 (particle size: 13nm) offers the highest overall heat transfer 

coefficient attributed to its highest thermal conductivity enhancement as described in 

sub-section 4.2.  
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Figure 4.16 Overall heat transfer coefficient of shell and tube heat recovery exchanger 

operated with ethylene glycol/water -based nanofluids 
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This value was substituted into Equation 3.15 to calculate the overall heat transfer 

coefficient which was found to be proportional to flue gas mass flow rate as depicted in 

Figure  4.18.  

 

Figure 4.17 Effect of flue gas mass flow rate to flue gas convective heat transfer   

coefficient

 

Figure 4.18. Effect of flue gas mass flow rate to overall heat transfer coefficient 
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As the flue gas mass flow rate increases, more energy can be transferred from the flue 

gas to the coolants due to the extensive random and bulk motion of flue gas molecules. 

Increase of flue gas mass flow rate will decrease the thermal resistance of flue gas. It 

also shows that overall heat transfer coefficient increases with the augmentation of 

particle volume fraction. Moreover, thermal conductivity of nanofluids increases with 

the particle volume fraction. Higher value of thermal conductivity leads to the higher 

amount of heat that can be transferred by the nanofluid. Figure 4.19 shows that the heat 

transfer rate of 1vol.% copper nanofluids is higher than of base fluid.  

 

Figure 4.19. Effect of flue gas mass flow rate to heat transfer rate 
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4.5.3 Effect of coolant mass flow rate on thermal performance of shell and tube 

heat  recovery exchanger 

 This section presents the effect of coolant Reynolds number on the thermal 

performance of heat recovery exchanger. Based on Equation 3.11, it was found that 

coolant Reynolds number is proportional with mass flow rate at constant volume 

fraction of copper nanoparticle. With the increase of coolant’s Reynolds number, 

Nusselt number was increased as calculated using Equation 3.13. Equation 3.13 was 

used since the calculated Reynolds number indicated that flow is of turbulent type. 

Substituting a higher value of Nusselt and nanofluids thermal conductivity, the 

convective heat transfer of coolants was higher than base fluid, which is obtained from 

Equation 3.14. The same happened for overall heat transfer coefficient which is 

depicted in Figure 4.20.  

 

Figure 4.20. Effect of coolant mass flow rate to overall heat transfer coefficient 
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Figure 4.21. Effect of coolant mass flow rate to heat transfer rate 
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made with the study conducted by Hojjat et al. (2011). In that study, the authors 

investigated the thermal performance of a uniformly heated circular tube. The present 

study compares the Nusselt number of the nanofluid with deionized water in a circular 

tube. The higher value of Nusselt number definitely increases the heat transfer 

coefficient of the base fluid. Moreover, Ijam and Saidur (2012) revealed that convective 

heat transfer increases with fluid’s thermal conductivity. The comparison result is 

shown in Figure 4.22.  

 

Figure 4.22. Comparison of studies 

The Nusselt numbers for ethylene glycol based 0.5vol. % copper nanofluid and water 

has been calculated in the present study. It is found that Nusselt number for nanofluid is 
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coefficient contributed by nanofluids leads to higher efficiency of waste heat recovery. 

It is also found that application of nanofluids in radiator increases the Nusselt number of 

the base fluid (Peyghambarzadeh et al., 2011a; Peyghambarzadeh et al., 2011b). As 

mentioned previously, Nusselt number is proportional to convective heat transfer 

coefficient. Thermal performance of shell and tube gas cooler in refrigeration system 

was improved with the application of nanofluids (Jahar, 2011). From these proven 

experimental results, there should be no doubt on the usefulness of nanofluids in heat 

exchangers, in particular shell and tube heat exchangers. 

 The following sub-section (4.6) will cover the size estimation of shell and tube 

heat recovery exchanger operated with nanofluids. It includes possible size reduction of 

shell diameter, number of tubes and etc.  

 

4.6 Energy saving associated with size reduction of shell and tube heat recovery 

exchanger 

 The thermal performance enhancement of shell and tube heat recovery as 

explained in previous sub-section provides an opportunity to reduce the size of the heat 

exchanger without affecting its thermal performance. Smaller size of heat exchanger 

requires less material and energy for processing. The results obtained from this sub-

section are based on mathematical modelling described in sub-sections 3.3.2.1-3.3.2.3. 

  

4.6.1 Effect of ethylene glycol based copper nanofluids on geometries of shell and 

tube heat recovery exchanger 

 In this section, size reduction analysis of a heat exchanger is carried out. Figure 

4.23 shows that 7.1% reduction of heat transfer area can be achieved with 1vol.% of 

copper nanoparticles.  
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Figure 4.23. Effect of copper volume fraction to heat transfer area and shell diameter of 

shell and tube heat exchanger operated with ethylene glycol-based nanofluids 

 

Inclusion of copper nanoparticles into base fluid increases the convective heat 

transfer coefficient and eventually the overall heat transfer coefficient of the heat 

exchanger due to enhancement of nanofluids thermal conductivity. Formation of solid 

and liquid interfacial nanolayer and Brownian motion contribute to higher thermal 

conductivity of nanofluids (Leong et al., 2010). Jung and Yoo (2009) suggested that, 

electric double layer produces interparticle interaction which contributes most 

significantly to the improvement of nanofluids thermal conductivity. Moreover, 

addition of nanoparticles will delay and create a disturbance of a thermal boundary 

layer which eventually improves the convective heat transfer. Substitution of higher 

value of overall heat transfer coefficient will decrease the required heat transfer area as 

shown in Equation (3.29). In this equation, the heat capacity, Q and log mean 

temperature difference values, LMTD are kept constant. Log mean temperature 
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difference is determined using Equation (3.30). Reduction of overall shell diameter is 

estimated using Equation (3.31) and depicted in Figure 4.23. It is found that volume 

fraction of copper nanoparticles is inversely proportional to the shell diameter. About 

3.6% reduction of shell diameter is achieved using 1% of copper nanoparticles. In this 

equation, all the parameters were kept constant except the heat transfer area. Heat 

transfer area is determined based on Equation (3.29) while other parameters are 

determined based on the heat exchanger geometry as mentioned in sub-section 3.3.2.1. 

Substitution of lower heat transfer area will definitely decrease the overall shell 

diameter.  Figure 4.24 shows that the volume fraction of nanoparticles is inversely 

proportional to the number of tubes.  

 

Figure 4.24 Effect of copper volume fraction to number of tubes in shell and  

tube heat exchanger operated with ethylene glycol-based nanofluids 

 

The number of tube is obtained based on Equation (3.32). Geometry specifications of 

heat exchanger are kept constant except the diameter of the shell. Study found that 

number of tubes is decreased with the increase of copper nanoparticles. Figure 4.25 

depicts the calculated convective heat transfer values for tube side. The calculated 
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convective heat transfer values are determined based on the obtained heat exchanger 

geometric values. The detail calculations are shown in Appendix G. 

 

Figure 4.25 Calculated tube side heat transfer coefficient for shell and tube heat 

exchanger operated with ethylene glycol-based nanofluids 

 

It is revealed that the convective heat transfer coefficient of tube side is 

increased although smaller size of heat exchanger is used. The convective heat transfer 

coefficient for tube side is calculated based on Equations (3.9)-(3.14).  
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      About 4% area reduction is observed at 2.5 vol. % of copper nanoparticles. For 
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was observed. These results are shown in Figures 4.26 and 4.27.  
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Figure 4.26 Effect of copper volume fraction to heat transfer area and shell 

diameter of shell and tube heat exchanger operated with water-based nanofluids 

 

Figure 4.27 Effect of copper volume fraction to number of tubes in shell and tube 

heat exchanger operated with water-based nanofluids 

 

The calculated convective heat transfer for tube side of heat exchanger is shown in 

Figure 4.28. Similar to the previous section, higher convective heat transfer coefficient 

is observed although smaller size of heat exchanger is used.   
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Figure 4.28. Calculated tube side convective heat transfer coefficient of shell and tube 

heat exchanger operated with water-based nanofluids 

 

4.6.3    Energy savings 

From section 4.6.1 and 4.6.2, it is implied that smaller heat exchanger with 

nanofluids is capable to produce similar thermal performance to the normal size heat 

exchanger without nanofluids. Hence, in this section the possibility of energy savings 

associated with size reduction is presented. Reduction of size is inclusive of the 

diameter of shell and number of tubes. In this study, it is presumed that the materials for 

shell and tube are steel and copper, respectively. Reduction of size is associated with 

energy savings for material processing as shown in Figures 4.29 and 4.30.  
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Figure 4.29 Mass reduction of shell and tube heat recovery exchanger operated with 

ethylene glycol-based copper nanofluids 

 

Figure 4.30 Energy saving of material processing of shell and tube heat recovery 

exchanger operated with ethylene glycol-based copper nanofluids 

Observation of 5932.9MWh energy savings can be achieved at 1% copper volume 

fraction. This analysis is done on energy savings for a total of 1,000 shell and tube heat 
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recovery exchangers. Smaller size of heat exchanger requires fewer materials which 

will eventually decrease the energy needed for material processing. This can be 

explained by using Equations (3.33) - (3.34). Smaller size of heat exchanger definitely 

decreased the value of heat exchanger volume. Substitution of lower value of volume 

into Equation (3.33) will lead to fewer amounts (mass) of needed material. Finally, the 

energy required for material processing is determined using Equation (3.34). Equation 

(3.35) - (3.36) show the formulation used to calculate the mass reduction and energy 

savings of heat exchanger. Sample calculation of the energy saving is shown in 

Appendix G. Figure 4.31 and 4.32 show the energy savings associated with mass 

reduction of heat exchanger using water based copper nanofluids.  

 

Figure 4.31 Mass reduction of shell and tube heat recovery exchanger operated with 

water- based copper nanofluids 
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Figure 4.32 Energy saving of material processing of shell and tube heat recovery 

exchanger operated with water-based copper nanofluids 

 

It is observed that 3857.9 MWh of energy can be saved at 2.5 vol. % of copper 

concentration into base fluid. Energy savings increase with increase of weight 

reduction. With this, it can be stated that, energy savings not only can save the cost but 

also reduces the amount of pollutant gasses. In the next sub-section, the findings on the 

entropy generation analysis of nanofluid flow in a circular tube subjected to constant 

wall temperature are elaborated. 
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4.7  Entropy generation analysis of nanofluid flow in a circular tube subjected 

to constant wall temperature 

The comparative studies used to validate the proposed modelling will be 

discussed first in sub-section 4.7.1. The total dimensionless entropy generation of 

water-based nanofluids under different conditions and flows and the comparison 

between Al2O3and TiO2 nanofluids will be described later in sub-sections 4.7.2 and 

4.7.3. 

4.7.1 Comparative studies 

 

 Figure 4.33 illustrates the total dimensionless entropy generation of water with 

respect to modified Stanton number, П1.  

 

Figure 4.33. Comparative studies 

Modified Stanton number, П1 is a product of Stanton number, St and dimensionless 

length, Ë. Operating conditions for this analysis are fluid velocity (0.02 m/s), 

dimensionless wall and fluid temperature difference τ = 0.214, tube diameter (0.1m) and 

fluid temperature (300K). There are slight differences in the results although both 
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studies use the same working fluid (water). One of the reasons for the discrepancies is 

the different thermo-physical properties of water. The present study used thermo-

physical properties obtained from Incropera et al., (2007) which are different from those 

by Sahin (2000). Other contributing factors are the fluid temperature and Nusselt 

number correlation applied for turbulent flow. It is noted that, present study utilized 

Dittus-Boelter correlation but Sahin et al., (2000) used Nusselt number correlation from 

Gnielinski. This study also found that different properties of viscosity will result in 

different values for tube length in order to produce the same value of П1. Sahin (2000) 

used 9.93×10-4 Ns/m2 while the current study used 8.55×10-4 Ns/m2. The viscosity 

affects the Reynolds number of the fluid as shown in Equation 3.48. It is evident that 

the change in the Nusselt number (Equation (3.53)) due to Reynolds number will 

eventually change the convective heat transfer coefficient (Equation (3.51)). 

Substitution of different convective heat transfer coefficients into Equation (3.50) will 

definitely cause adjustment to the value of Stanton number. Therefore, length of tube 

needs to be changed to cater for the modification of Stanton number with production of 

the same value of П1. This is based on Equation (3.43). Overall, Figure 4.33 implies that 

the same trend is observed for both studies. 
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4.7.2 Water based aluminium oxide nanofluids 

 The following sub-section shows the entropy generation results for water based 

Al2O3 nanofluids. Factors such as nanoparticle loading, dimensionless wall and fluid 

temperature difference, type of flow and geometry configurations are presented as well. 

 

4.7.2.1 Total dimensionless entropy generation using different aluminium oxide  

        nanoparticles loading and dimensionless wall and fluid temperature different 

 In this analysis, the volume fractions of nanoparticle are set as variable 

parameter, ranging from 0 to 7%. Other parameters such as tube length, l (5m) and 

diameter, d (0.0229m), dimensionless wall and fluid temperature difference, τ (0.01), 

working fluid mass flow rate, �
  (0.01kg/s) and fluid temperature, T (300K) are fixed as 

constants. According to Figure 4.34, it is found that the total dimensionless entropy 

generation is reduced with nanoparticle volume fractions.  

 

Figure 4.34 Contribution of heat transfer and fluid friction on the total dimensionless 

entropy generation 
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Total dimensionless entropy generation is calculated by Equation (3.38) which is 

comprised of heat transfer (first and second term in the parentheses) and fluid friction 

(third term). The entropy generation through the heat transfer enhancement process will 

be at reducing rate by the addition of nanoparticles. Addition of nanoparticles increases 

the thermal conductivity of nanofluids as depicted in Equation (3.38). At the same time, 

augmentation of convective heat transfer is observed since the thermal conductivity is 

proportional to convective heat transfer coefficient as shown in Equation (3.51). Thus, 

Stanton number as given in Equation (3.50) increases. Finally, the entropy generation 

due to heat transfer enhancement is minimized based on Equation (3.42). 

 The entropy generation is also created by the fluid friction which will eventually 

cause fluid pressure drop. Minimization trend can be explained by referring to pressure 

drop formulation (Equation (3.47)). There are three (3) variables in this equation 

namely friction factor, density and velocity of fluids. At constant mass flow rate, 

friction factor and density increases with particle volume fraction but velocity shows the 

other way. A close examination of this equation, it is noted that the decreasing effect of 

fluid velocity is more pronounced since it is in power of two. Thus, the slight decrease 

in pressure drop of the fluid is observed as given in Equation (3.47). However, this 

decreasing trend is only valid for lower particle volume fractions. At higher particle 

volume fractions, the pressure drop shows the opposing trend although the total 

dimensionless entropy generation due to fluid friction is still on a decreasing trend. This 

could be due to density effect, which is more pronounced for higher loading of 

nanoparticles. Density is determined using Equation (3.5). Sample calculation of the 

water based 1vol. %  Al2O3 nanofluids can be obtained in Appendix G. Figure 4.35 

demonstrates that total dimensionless entropy generation increases with τ.  
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Figure 4.35 Effect of dimensionless temperature different on total dimensionless 

entropy generation of nanofluids flow 

Total dimensionless entropy generation is defined by Equation (3.55). Similar result is 

found from the study conducted by Dagtekin et al. (2005). It is found that as τ increases, 

the total dimensionless entropy generation of the fluid increases (for circular duct with 

thin, triangular and V-shaped fins).  

 

4.7.2.2 Total dimensionless entropy generation using laminar and turbulent flow 

Figures 4.36 and 4.37 depict the effect of fluid mass flow rate on total 

dimensionless entropy generation of nanofluids for laminar and turbulent flows. 
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l (5m), dimensionless wall and fluid temperature different, τ (0.01). Laminar flow is 

produced from mass flow rate, �
  ranging from 0.01kg/s to 0.02 kg/s. Figure 4.36 shows 

that total dimensionless entropy generation increases with mass flow rate.  
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Figure 4.36 Total dimensionless entropy generation of nanofluids using laminar flow 

 

Both entropy generations due to heat transfer and fluid friction are maximized 

when mass flow rate increases. Higher mass flow rate increases the fluid velocity as 

given in Equation (3.49). Stanton number which is determined from Equation (3.50) 

decreases due to the increase of fluid velocity. Inclusion of lower value of Stanton 

number will increase the entropy generation due to heat transfer process. Similar trend 

is observed for entropy generation contributed by fluid friction. Pressure drop tends to 

increase as the fluid velocity increases as depicted in Equation (3.47). Increase of 

pressure drop results in higher entropy generation. Similar trend is found for the 

turbulent flow as shown in Figure 4.37.  
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Figure 4.37 Total dimensionless entropy generation of nanofluids using turbulent flow 

 

Mass flow rates from 0.1kg/s to 0.2kg/s are chosen to produce turbulent flow. 

Although the convective heat transfer increases with mass flow rate, the effect of higher 

fluid velocity is more pronounced, thus, resulting in lower Stanton number. The 

convective heat transfer coefficient is calculated from Equations (3.51) and (3.53) while 

Stanton number from Equation (3.50). The pressure drop of nanofluids also seems to be 

increasing with mass flow rate. All these factors lead to higher total entropy generation 

of nanofluids. 

 

4.7.2.3 Total dimensionless entropy generation using different geometry  

             configurations 

Geometry configurations considered in this study are tube length and diameter. 

Figure 4.38 shows that, the total entropy generation decreases with respect to tube 

length.  
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Figure 4.38 Total dimensionless entropy generation of nanofluids with respect to tube 

length 

 

Parameters used for this study are mass flow rate, �
  (0.01kg/s), tube diameter, d 

(0.0229m), Al2O3 volume fraction (7%), dimensionless temperature difference, τ (0.01) 

and 300K fluid temperature, T. The considered tube length is from two (2) to ten (10) 

meters. Laminar flow is created using 0.01kg/s of mass flow rate. One of the possible 

reasons contributing to this result is the increase of dimensionless length, λ. The 

dimensionless length, λ is affected by the tube length as given by Equation (3.56). 

Substitution of higher value of dimensionless length decreases the total dimensionless 

entropy generation of nanofluids as determined by Equation (3.42). The same operating 

conditions are used to test the effect of different tube diameters. The only difference is 

that the tube length is fixed at 5 meter while the tube diameter ranges from 0.01 to 

0.03m. The result of this analysis is shown in Figure 4.39.  
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         Figure 4.39 Total dimensionless entropy generation of nanofluids with respect to  

         tube diameter 

 

Study implies that there is slight decrease (0.3%) in total dimensionless entropy 

generation when diameter increases from 0.01 to 0.03 meter. Analysis shows that the 

fluid pressure drop is inversely proportional to tube diameter. Bigger tube diameter 

might increase the fluid friction, however, the fluid velocity also decreases at the same 

time. Combination of lower fluid velocity and higher tube diameter will reduce the 

pressure drop as given by Equation (3.47). Calculations using Equation (3.42) show that 

contribution of heat transfers to the entropy generation remain unchanged even though 

different tube diameters are used. This might be due to increase of Stanton number 

being compensated by the decrease of dimensionless length. 
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4.7.2.4 Total dimensionless entropy generation of water based aluminium oxide 

and titanium dioxide nanofluids 

Figure 4.40 compares the total dimensionless entropy generation of Al2O3 and 

TiO2 nanofluids. The thermo-physical properties of Al2O3 and TiO2 are obtained from 

the literatures and mathematical correlations. 

 

Figure 4.40 Comparison of total dimensionless entropy generation between Al2O3 and 

TiO2 nanofluids 

It is found that entropy generation by TiO2 nanofluids is lower than Al2O3  

nanofluids. Addition of 4vol.% of Al2O3 nanoparticles reduces the total dimensionless 

entropy generation by 6.4% compared to 9.7% reductions observed with the use of 

TiO2. It might be due to higher thermal conductivity of TiO2 nanofluids. Thermal 

conductivity of nanofluids is affected by stability of the suspension, size of the particles, 

type of particle and etc. In this case, the particle size of Al2O3 is 30nm while the TiO2 is 

15nm taken from Murshed et al. (2009). Smaller particle size provides higher surface 

area to volume ratio which will enhance the heat transfer process.  
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 Figure 4.41 depicts the total entropy generations modelled from the thermo-

physical experimental data obtained in the present study. Four types of fluids were 

considered; water based Al2O3 (particle size 13nm and <50nm) nanofluids, water based 

TiO2 (particle size: 21nm) nanofluids and water base fluid. The selected particle volume 

fraction is 0.5%. Study implied that the nanofluids (except Al2O3 with particle size: 

<50nm) have lower entropy generation in comparison to that of water base fluid. In sub-

section 4.2, it is found that thermal conductivity of the Al2O3 with particle size less than 

50nm has lower thermal conductivity compared to the base fluid. Thus, it contributes to 

higher total dimensionless entropy generation in this analysis.  

 

Figure 4.41 Total dimensionless entropy generation of various water-based nanofluids  
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4.8     Performance investigation of nanofluids as working fluid in a thermosyphon  

  air preheater 

 This section covers all the major findings on the performance of thermosyphon 

air preheater operated with nanofluid as a working fluid. Thermosyphon air preheater 

heat exchanger serves as an alternative option to recover waste heat beside shell and 

tube heat exchanger.  

 

 4.8.1 Comparative studies 

Figures 4.42-4.44 depict the relationship between hot air inlet and outlet 

temperatures at 3 different hot air velocities. The results obtained from present study are 

compared to the results from Noie (2006).  

 

Figure 4.42. Relationship between hot air inlet and outlet temperature at 2.5 m/s hot air 

velocity 

40

80

120

160

200

240

280

100 120 140 160 180 200 220 240 260 280 300

H
ot

 a
ir

 o
ut

le
t 

te
m

pe
ra

tu
re

 (
o C

)

Hot air inlet temperature (oC)

Experimental [15]

Theoretical [15]

Theoretical (This
paper)
(This study)

Noie (2006) 

 

Noie (2006) 



117 

 

 

Figure 4.43 Relationship between hot air and outlet temperature at 4.0 m/s hot air 

velocity 

 

 

Figure 4.44 Relationship between hot air inlet and outlet temperature at 4.75 m/s hot air 

velocity 
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It is found that the results’ accuracy is higher at lower hot air inlet temperatures. 

It is noted that the hot air inlet temperature is proportional to hot air outlet temperature.   

 Figure 4.45 depicts the relationship between hot air inlet temperature, hot air 

velocity and absorbed energy at evaporator section.  

 

 

Figure 4.45 Effect of hot air inlet temperature and velocity to energy absorbed 

at evaporator section 
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velocity will increase the hot air mass flow rate. Substitution of this value into Equation 

(3.82) increases the absorbed energy. In addition, convective heat transfer coefficient of 

the hot air increases with the increase of hot air velocity as shown in Equation (3.57). 

Higher convective heat transfer decreases the thermal resistance of the air as shown in 

Equation (3.62). The large amount of the collective and aggregate movement of hot air 

molecules contribute to higher heat transfer rates (Incropera et al., 2007). 

 

4.8.2. Influence of nanoparticles volume fraction and hot air velocity on thermal   

           and energy performance of thermosyphon heat exchanger 

  The following sub-sections describe the thermal and energy performance of 

thermosyphon heat exchanger operated with nanofluids. 

 

4.8.2.1 Thermal performance of thermosyphon heat exchanger 

 This section discusses the influence of nanoparticle volume fraction and hot air 

velocity on the thermal performance of a thermosyphon heat exchanger. The thermal 

performance analysis includes investigating overall heat transfer coefficient and cold air 

outlet temperature. From Figure 4.46, it is found that minor differences were created in 

overall heat transfer coefficient for thermosyphon operated with water and nanofluids.  
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Figure 4.46 Effect of nanoparticles’ volume fraction and hot air velocity to 

overall heat transfer coefficient of heat pipe heat exchanger  
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It is found that, settlements of the nanoparticles occurred at both sides. Thus, Figure 

4.46 again proves that the change of working fluid (nanofluids) only provides minor 

contribution to the heat transfer enhancement of the heat pipe. The surface change in the 

heat pipe or thermosyphon itself is the main factor for the thermal performance 

enhancement. 

 It is noticed that the overall heat transfer coefficient of the thermosyphon 

operated with TiO2 nanofluids is slightly higher than Al2O3 nanofluids. It is due to 

higher thermal conductivity of TiO2 nanofluids compared to that of the Al2O3 

nanofluids. For the effect of hot air velocity, present study implied that higher velocity 

enhances the overall heat transfer coefficient. At 7% Al2O3 volume fraction, 23% 

improvement of overall heat transfer coefficient is observed when hot air velocity 

increases from 2.5m/s to 4.75m/s. The same amount of enhancement is observed for 4% 

volume fraction of TiO2. Higher air velocity increases its convective heat transfer which 

reduces the thermal resistance of air. Eventually, it increases the overall heat transfer 

coefficient.  Similar to section 4.8.1, higher air velocity produces large amount of 

collective and aggregate movement of hot air molecules. Sample calculation of the 

water based 1 vol.% Al2O3 nanofluid’s overall convective heat transfer coefficient is 

shown in Appendix G. Figure 4.47 depicts the effect of nanoparticle volume fraction 

and hot air velocity to the cold air outlet temperature.  
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Figure 4.47 Effect of nanoparticles’ volume fraction and hot air velocity to cold 

air outlet temperature of heat pipe heat exchanger  
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Figure 4.48 Effect of Al2O3 nanoparticles’ volume fraction and hot air velocity to 

energy performance of thermosyphon heat exchanger

 

Figure 4.49 Effect of TiO2 nanoparticles, volume fraction and hot air velocity to  

energy performance of thermosyphon heat exchanger 
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This is the total energy required to increase the air to 126.85oC predicted for 100 

boilers. It is found that, the required energy decreases with increase of hot air velocity. 

Similar to section 4.8.2.1, this happened due to decrease of thermal resistance at the 

evaporator side. Increase in the air velocity produces higher convective heat transfer 

coefficient which eventually decreases the air thermal resistance. For instance, the 

required energy reduces 0.67% when hot air velocity increases from 2.0 m/s to 4.75 m/s 

for 7vol. % of Al2O3 nanofluids. Similar reduction percentage is observed for 4vol. % 

titanium dioxide nanoparticles. However, not much energy difference is found with 

increasing the nanoparticle volume fraction for two types of nanofluids. The next 

chapter will describe the conclusions derived from the present study and suggestions for 

further study. 
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CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

 All the objectives in the present study are achieved amd the conclusions that can 

be drawn from this study are: 

(a) Thermal conductivity of base fluids increases with addition of nanoparticles. For 

instance, 8.9% augmentation of thermal conductivity of water based Al2O3 

(0.5vol. %, particle size:13nm) is observed compared to water/ethylene glycol-

based fluid. About 12.9% improvement is observed for the water based Al2O3 

(0.5vol.%, particle size: 13nm) nanofluid. Water and ethylene glycol/water -

based nanofluid containing smaller Al2O3 (particle size: 13nm) nanoparticles 

exhibits higher thermal conductivity compared to Al2O3 with less than 50nm 

particle size. 

(b) Density of water or ethylene glycol/water-based nanofluids containing Al2O3 or 

TiO2 nanoparticles increases with the increase of particle volume fraction. TiO2 

nanofluids exhibit higher density values compared to Al2O3 nanofluids (particle 

size 13 and <50nm). Type of particle has significant effect on nanofluids density 

rather than particle size. Viscosity of water or water/ethylene glycol nanofluids 

containing TiO2 or Al2O3 nanoparticles increases with particle loading but 

decreases with the increase of operating temperature. 

(c) With reference to the thermal performance of shell and tube heat exchanger, 

heat transfer rate is improved with volume fractions for copper nanofluid. About 

7.8% heat transfer augmentation was observed for ethylene glycol-based 

nanofluids containing 1vol.% of copper nanoparticles at 26.3 kg/s and 111.6 

kg/s mass flow rate for flue gas and coolant, respectively. For 2vol.% water-

based copper nanofluids, 4.53% heat transfer enhancement in laminar flow was 

recorded. Nanofluid convective heat transfer coefficient and overall heat transfer 
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coefficient are higher than those of base fluid. About 9.5% and 16.9% 

enhancements were recorded for ethylene glycol with 1% copper nanoparticles 

compared to base fluid. Overall heat transfer coefficient of ethylene glycol/water 

Al2O3 (particle size: 13 and <50nm) and TiO2 are higher than the ethylene 

glycol/water base fluid. Apart from that, thermal performance of the heat 

recovery exchanger is increased with flue gas mass flow rate. However, only 

minor heat transfer enhancement was observed for ethylene glycol based 1 

vol.% of copper nanofluids when coolant mass flow rate was increased from 200 

to 230 kg/s. 

(d) Study also found that application of nanofluids in shell and tube heat exchanger 

provides opportunity to reduce the size of shell and tube heat exchanger without 

affecting its thermal performance. Smaller heat exchangers require less materials 

for fabrication and for processing energy.    

(e) Based on the nanofluids flow in a circular tube subjected to a constant wall 

temperature, total dimensionless entropy generation is reduced with nano 

particle volume fraction. TiO2 nanofluids offer lower total dimensionless 

entropy generation compared to Al2O3 nanofluids. For 4 vol. % , about 9.7% and 

6.4% reduction of entropy generation are observed for TiO2 and Al2O3 

nanofluids, respectively. 

(f) Total dimensionless entropy generation increases with the increase of 

dimensionless temperature difference, τ. Mass flow rate of working fluid 

influences the total dimensionless entropy generation. 19.6% increase is 

achieved when mass flow rate increases from 0.01 to 0.02 kg/s for water based 

7vol.% Al2O3 nanofluids. However only 3.9% increase is found in turbulent 

flow (from 0.1 to 0.2 kg/s) under the same nanoparticle loading.  
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(g) About 32.7% reduction of total dimensionless entropy generation can be 

resulted when tube length is extended from 2 to 10 m for 7vol.% Al2O3  

nanofluid. However, only 0.3% reduction in entropy generation was achieved 

when tube diameter increased from 0.01 to 0.02 m. 

(h) On the application of thermosyphon air pre-heater, the change of nanofluid 

thermo-physical properties plays a minor role in improving its thermal 

performance. Slight increase of overall heat transfer coefficient and cold air 

outlet temperature is observed with augmentation of nanoparticle volume 

fraction. TiO2 nanofluids offer slightly higher overall heat transfer coefficient 

and cold air outlet temperature compared to Al2O3 nanofluids. 23% overall heat 

transfer enhancement is observed for TiO2(4vol.%) and Al2O3 (7vol.%) 

nanofluids when hot air velocity increases from 2.5 m/s to 4.75 m/s. 2.4% 

enhancement of cold air outlet temperature is observed for TiO2 (4vol.%) and 

Al2O3 (7vol.%) nanofluids when hot air velocity increases from 2.5 m/s to 4.75 

m/s. 0.67% reduction is resulted in the energy required to heat the combustion 

air when velocity increases from 2.5 m/s to 4.75 m/s. 

This study found that nanofluid operated shell and tube heat recovery exchanger 

offers better thermal performance compared to that of base fluid. Analysis was 

conducted by using Kern and effective-NTU methods. This is the main contribution or 

novelty of the present work in heat recovery aspect. The application of nanofluids 

provides an alternative approach for better utilization of energy consumption especially 

in the industry. 

 

5.2 Recommendations 

  The recommendations for future or further study are as follows: 



128 

 

(a)   From the literature review, it is found that thermal researchers focused only on 

thermal conductivity and viscosity characteristics of nanofluids. There is lack of 

research investigating the specific heat of nanofluids. Thus, more study should 

be conducted in this area. 

(b) Stability is an important parameter for obtaining nanofluids with optimum 

thermal properties and to make nanofluid a pragmatic solution to industry 

problems. Nanoparticles tend to agglomerate when higher loading is used. More 

studies should focus on minimizing instability particularly by using surfactants. 

However, surfactant increases the viscosity characteristic of nanofluids. 

Research in analyzing the optimum loading of surfactant should be considered. 

(c)  More experimental studies should be done on using nanofluids in heat recovery 

exchanger. From the open literatures it is apparent that most of the researchers 

focused on the fundamental properties of nanofluids. Researchers should switch 

their attention to the applications of nanofluids especially in heat recovery 

exchanger. 

 

 

 

 

 

 

 

 

 

 

 



129 

 

REFERENCES 

Abdelaziz, E. A., Saidur, R., & Mekhilef, S. (2011). A review on energy saving 
strategies in industrial sector. Renewable and Sustainable Energy Reviews, 
15(1), 150-168. 

 
ASHRAE Handbook (2001). Physical properties of secondary coolants (Brines),   

American Society of Heating, Refrigerating and Air Conditioning Engineers,Inc, 
Atlanta. GA. 

 
Batchelor, G. K. (1977). The effect of Brownian motion on the bulk stress in a 

suspensions of spheres. J.Fluid Mech, 83(1). 
 
Beck, M. P., Sun, T.,&Teja, A. S. (2007). The thermal conductivity of alumina 

nanoparticles dispersed in ethylene glycol. Fluid Phase Equilibria, 260(2), 275-
278. 

 
Beck, M. P. (2008). Thermal Conductivity of Metal Oxide Nanofluids. Unpublished 

PhD’s thesis, Georgia Institute of Technology. 
 
Bejan, A. (1996). Entropy generation minimization. Boca Taron: CRC Press. 
 
Bhattacharya, P. (2005). Thermal conductivity and colloidal stability of nanofluids. 

Arizona State University. 
 
Bianco, V., Chiacchio, F., Manca, O., & Nardini, S. (2009). Numerical investigation of  

nanofluids forced convection in circular tubes. Applied Thermal Engineering, 
29(17-18), 3632-3642. 
 

Bianco, V., Nardini, S., & Manca, O. (2011). Enhancement of heat transfer and entropy 
generation analysis of nanofluids turbulent convection flow in square section 
tubes. Nanoscale research letters, 6(252). 

 
Bobbo,S., Fedele, L., Benetti, A., Colla, L., Fabrizio, M., Pagura, C., et al. (2012). 

Viscosity of water based SWCNH and TiO2 nanofluids. Experimental Thermal 
and Fluid Science, 36, 65-71. 

 
Brinkman.H.C. (1952). The viscosity of concentrated suspensions and solution. J.Chem. 

Phys, 20, 571-581. 
 
Charyulu, D. G., Singh, G., & Sharma, J. K. (1999). Performance evaluation of a 

radiator in a diesel engine-a case study. Applied Thermal Engineering, 19(6), 
625-639. 

 
Chandrasekar, M., Suresh, S., & Chandra Bose, A. (2010). Experimental investigations 

and theoretical determination of thermal conductivity and viscosity of 
Al2O3/water nanofluid. Experimental Thermal and Fluid Science, 34(2), 210-
216. 

 
Chen, H., Ding, Y., He, Y., & Tan, C. (2007). Rheological behaviour of ethylene glycol 

based titania nanofluids. Chemical Physics Letters, 444(4-6), 333-337. 
 



130 

 

Chen, H., Yang, W., He, Y., Ding, Y., Zhang, L., Tan, C., Alexei,A.L., et al. (2008). 
Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes 
(nanofluids). Powder Technology, 183(1), 63-72. 

. 
Chen, H., Ding, Y., & Lapkin, A. (2009). Rheological behaviour of nanofluids 

containing tube / rod-like nanoparticles. Powder Technology, 194(1-2), 132-141. 
 
Chen, L., & Xie, H. (2010). Properties of carbon nanotube nanofluids stabilized by 

cationic gemini surfactant. Thermochimica Acta, 506(1-2), 62-66. 
 
Chen, Q., Finney, K., Li, H., Zhang, X., Zhou, J., Sharifi, V., et al. (2012). Condensing 

boiler applications in the process industry. Applied Energy, 89, 30-36. 
 
Choi, S. U. S. (2009). Nanofluids: From vision to reality through research. Journal of 

Heat Transfer, 131, 033106-033109. 
 
Chon, C. H., & Kihm, K. D. (2005). Thermal conductivity enhancement of nanofluids 

by Brownian motion. Journal of Heat Transfer, 127, 810. 
 
Colangelo, G., Favale, E., de Risi, A.,& Laforgia, D. (2011). Results of experimental 

investigations on the heat conductivity of nanofluids based on diathermic oil for 
high temperature applications. Applied Energy, 97, 828-833. 

 
Corcione, M. (2011). Empirical correlating equations for predicting the effective 

thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion 
and Management, 52(1), 789-793. 

 
Dagtekin, I., Oztop, H. F., & Sahin, A. Z. (2005). An analysis of entropy generation 

through a circular duct with different shaped longitudinal fins for laminar flow. 
International Journal of Heat and Mass Transfer, 48(1), 171-181. 

 
De Robertis, E., Cosme, E. H. H., Neves, R. S., Kuznetsov, A. Y., Campos, A. P. C., 

Landi, S. M., et al. (2012) Application of the modulated temperature differential 
scanning calorimetry technique for the determination of the specific heat of 
copper nanofluids. Applied Thermal Engineering, 41,10-17. 

 
Ding, Y., Chen, H., He, Y., Lapkin, A., Yeganeh, M., Siller, L., et al. (2007). Forced 

convective heat transfer of nanofluids. Advanced Powder Technology, 18(6), 
813-824. 

 
Duan, F., Kwek, D., & Crivoi, A. (2011). Viscosity affected by nanoparticle 

aggregation in Al2O3-water nanofluids. Nanoscale Research Letters, 6, 248. 
 
Duangthongsuk, W., &Wongwises, S. (2007). A critical review of convective heat 

transfer of nanofluids. Renewable and Sustainable Energy Reviews, 11(5), 797-
817. 

 
Duangthongsuk, W., & Wongwises, S. (2009). Measurement of temperature-dependent 

thermal conductivity and viscosity of TiO2-water nanofluids. Experimental 
Thermal and Fluid Science,33(4), 706-714. 

 
Duangthongsuk, W., & Wongwises, S. (2012). A dispersion model for predicting the  



131 

 

heat transfer performance of TiO2-water nanofluids under a laminar flow 
regime. International Journal of Heat and Mass Transfer, 55(11-12), 3138-
3146. 

 
Do, K. H., Ha, H. J., & Jang, S. P. (2010). Thermal resistance of screen mesh wick heat 

pipes using the water-based Al2O3 nanofluids. International Journal of Heat and 
Mass Transfer, 53(25-26), 5888-5894. 

 
Do, K. H., & Jang, S. P. (2010) Effect of nanofluids on the thermal performance of a 

flat micro heat pipe with a rectangular grooved wick. International Journal of 
Heat and Mass Transfer, 53(9-10), 2183-2192. 

 
Eastman, J. A., Choi, S., S, L., Yu, W., & Thompson, L. J. (2001). Anomalously 

increased effective thermal conductivities of ethylene glycol-based nanofluids 
containing copper nanoparticles. Applied Physics Letters, 78(6), 718-720. 

 
Ebrahimnia-Bajestan, E., Niazmand, H., Duangthongsuk, W., & Wongwises, S. (2011). 

Numerical investigation of effective parameters in convective heat transfer of 
nanofluids flowing under a laminar flow regime. International Journal of Heat 
and Mass Transfer, 54(19-20), 4376-4388. 

 
Evans, W. J. (2008). Investigation and Identification of Physical Mechanism for 

Enhanced Thermal Conductivity in Nanofluids Using Molecular Level 
Modeling. Unpublished PhD’s thesis, Rensselaer Polytechnic Institute, New 
York. 

 
Farajollahi, B., Etemad, S. G., & Hojjat, M. (2010). Heat transfer of nanofluids in a 

shell and tube heat exchanger. International Journal of Heat and Mass Transfer, 
53(1-3), 12-17. 

 
Fedele, L., Colla, L., & Bobbo, S. (2012). Viscosity and thermal conductivity 

measurements of water-based nanofluids containing titanium oxide 
nanoparticles. International Journal of Refrigeration, 35(5), 1359-1366. 

 
Firouzfar, E., Soltanieh, M., Noie, S.H., & Saidi, S.H. (2011). Energy saving in HVAC 

systems using nanofluid. Applied Thermal Engineering, 31, 1543-1545. 
 
Ghadimi, A., Saidur, R., & Metselaar, H. S. C. (2011). A review of nanofluid stability 

properties and characterization in stationary conditions. International Journal of 
Heat and Mass Transfer, 54(17-18), 4051-4068. 

 
Guo, Z. C., & Fu, Z. X. (2010). Current situation of energy consumption and measures 

taken for energy saving in the iron and steel industry in China. Energy, 35(11), 
4356-4360. 

 
Hagens, H., Ganzevles, F. L. A., Van der Geld, C. W. M., & Grooten, M. H. M. (2007). 

Air heat exchangers with long heat pipes: Experiments and predictions. Applied 
Thermal Engineering, 27(14-15), 2426-2434. 

 
Han, Z. (2008). Nanofluids with Enhanced Thermal Transport Properties. Unpublished 

PhD’s thesis, University of Maryland at College Park, College Park, Maryland. 



132 

 

Hewitt, G. F., Shires, G. L., & Bott, T. R. (1993). Process heat transfer. Florida: CRC 
Press, Inc. 

 
He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., & Lu, H. (2007). Heat transfer and flow 

behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing 
upward through a vertical pipe. International Journal of Heat and Mass 
Transfer, 50(11-12), 2272-2281. 

 
He, Y., Men, Y., Zhao, Y., Lu, H., & Ding, Y. (2009). Numerical investigation into the 

convective heat transfer of TiO2 nanofluids flowing through a straight tube 
under the laminar flow conditions. Applied Thermal Engineering, 29(10), 1965-
1972. 

 
Hojjat, M., Etemad, S. G., Bagheri, R., & Thibault, J. (2011). Convective heat transfer 

of non-Newtonian nanofluids through a uniformly heated circular tube. 
International Journal of Thermal Sciences, 50(4), 525-531 

 
Hong, K. S., Hong, T.-K., & Yang, H.-S. (2006). Thermal conductivity of Fe nanofluids 

depending on the cluster size of nanoparticles. Appl. Phys. Lett., 88, 031901  
 
Huminic, G., & Huminic, A. (2013). Numerical analysis of laminar flow heat transfer of  

nanofluids in a flattened tube. International Communications in Heat and Mass 
Transfer, 44, 52-57. 

 
Hwang, Y. J., Ahn, Y. C., Shin, H. S., Lee, C. G., Kim, G. T., Park, H. S., et al. (2006). 

Investigation on characteristics of thermal conductivity enhancement of 
nanofluids. Current Applied Physics, 6(6), 1068-1071. 

 
Hwang, Y., Lee, J.-K., Lee, J.-K., Jeong, Y.-M., Cheong, S.-i., Ahn, Y.-C., et al. (2008). 

Production and dispersion stability of nanoparticles in nanofluids. Powder 
Technology, 186(2), 145-153. 

 
Ijam, A., & Saidur, R. (2012) Nanofluid as a coolant for electronic devices (cooling of 

electronic devices). Applied Thermal Engineering, 32, 76-82. 
 
Increase Performance Inc. Flue gas calculator. Retrieved 26th March 2011, from 

http://www.increase-performance.com/calc-flue-gas-prop.html 
 
Incropera, F. P., Dewitt, D. P., Bergman, T. L., & Lavine, A. S. (2007). Fundamentals 

of heat and mass transfer (6th ed.). New York: John Wiley andSons. 
 
Jahar, S. (2011). Performance of nanofluid-cooled shell and tube gas cooler in 

transcritical CO2 refrigeration systems. Applied Thermal Engineering, 31(14-
15), 2541-2548. 

 
Jang, S. P., & Choi, S. U. S. (2004). Role of Brownian motion in the enhanced thermal 

conductivity of nanofluids. Applied Physics Letters, 84(21), 4316-4318. 
 
Jang, S. P., & Choi, S. U. S. (2006). Cooling performance of a microchannel heat sink 

with nanofluids. Applied Thermal Engineering, 26(17-18), 2457-2463. 
 
Jayamaha, L. (2008). Energy Efficient Building Systems, Green Strategies for Operation 



133 

 

and Maintenance. Singapore: McgrawHill Education. 
 
Jung, J.-Y., Oh, H.-S., & Kwak, H.-Y. (2009). Forced convective heat transfer of 

nanofluids in microchannels. International Journal of Heat and Mass Transfer, 
52(1-2), 466-472. 

Jung, J.-Y., & Yoo, J. Y. (2009). Thermal conductivity enhancement of nanofluids in 
conjunction with electrical double layer (EDL). International Journal of Heat 
and Mass Transfer, 52(1-2), 525-528. 

 
Jung, S., Jo, B., Shin, D., & Banerjee, D. (2010). Experimental Validation of a Simple 

Analytical Model for Specific Heat Capacity of Aqueous Nanofluids. SAE 
Technical Paper 2010-01-1731. 

 
Kakac, S. & Liu, H.T. (2002). Heat exchanger selection,rating and thermal design (2nd 

ed.). New York: CRC Press. 
 
Keblinski, P., Phillpot, S. R., Choi, S. U. S., & Eastman, J. A. (2002). Mechanisms of 

heat flow in suspensions of nano-sized particles (nanofluids). International 
Journal of Heat and Mass Transfer, 45(4), 855-863. 

 
Keblinski, P., Eastman, J. A., & Cahill, D. G. (2005). Nanofluids for thermal transport. 

Materials Today, 8(6), 36-44. 
 
Keblinski, P. (2009). Thermal conductivity of nanofluids. In S. Volz (Ed.), Thermal 

nanosystems and nanomaterials: Springer. 
 
Khanafer, K., & Vafai, K. A critical synthesis of thermophysical characteristics of 

nanofluids. International Journal of Heat and Mass Transfer, 54(19-20), 4410-
4428. 

 
Kim, D., Kwon, Y., Cho, Y., Li, C., Cheong, S., Hwang, Y., et al. (2009). Convective 

heat transfer characteristics of nanofluids under laminar and turbulent flow 
conditions. Current Applied Physics, 9(2, Supplement 1), 119-123. 

 
Ko, T. H. (2006). Analysis of optimal Reynolds number for developing laminar forced 

convection in double sine ducts based on entropy generation minimization 
principle. Energy Conversion and Management, 47(6), 655-670. 

 
Ko, T. H., & Wu, C. P. (2009). A numerical study on entropy generation induced by 

turbulent forced convection in curved rectangular ducts with various aspect 
ratios. International Communications in Heat and Mass Transfer, 36(1), 25-31. 

 
Kole, M., & Dey, T. K. (2010). Viscosity of alumina nanoparticles dispersed in car 

engine coolant. Experimental Thermal and Fluid Science, 34(6), 677-683. 
 
Kulkarni, D. P., Vajjha, R. S., Das, D. K., & Oliva, D. (2008). Application of aluminum 

oxide nanofluids in diesel electric generator as jacket water coolant. Applied 
Thermal Engineering, 28(14-15), 1774-1781. 

 
Kulkarni, D. P., Das, D. K., & Vajjha, R. S. (2009). Application of nanofluids in 

heating buildings and reducing pollution. Applied Energy 86(12),2566-2573. 
 



134 

 

Lee, J.-H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., et al. 
(2008). Effective viscosities and thermal conductivities of aqueous nanofluids 
containing low volume concentrations of Al2O3 nanoparticles. International 
Journal of Heat and Mass Transfer, 51(11-12), 2651-2656. 

 
Lee, S. W., Park, S. D., Kang, S., Bang, I. C., &  Kim, J. H. (2011). Investigation of 

viscosity and thermal conductivity of SiC nanofluids for heat transfer 
applications. International Journal of Heat and Mass Transfer, 54, 433-438. 

 
Leong.K.C, Yang.C, and Murshed, S. M. S. (2006). A model for the thermal 

conductivity of nanofluids-the effect of interfacial layer. J.Nanopart  Res, 8, 
245254. 

 
Leong, K. Y., Saidur, R., Kazi, S. N., & Mamun, A. H. (2010). Performance 

investigation of an automotive car radiator operated with nanofluid-based 
coolants (nanofluid as a coolant in a radiator). Applied Thermal Engineering, 
30(17-18), 2685-2692. 

 
Leong, K. Y., Saidur, R., Khairulmaini, M., Michael, Z., & Kamyar, A. (2012). Heat 

transfer and entropy analysis of three different types of heat exchangers operated 
with nanofluids. International Communications in Heat and Mass Transfer, 
39(6), 838-843. 

 
Lin, C.-Y., Wang, J.-C., and Chen, T.-C. (2011). Analysis of suspension and heat 

transfer characteristics of Al2O3 nanofluids prepared through ultrasonic 
vibration. Applied Energy, 88(12), 4527-4533. 

 
Liu, D., Tang, G.-F., Zhao, F.-Y., & Wang, H.-Q. (2006). Modeling and experimental 

investigation of looped separate heat pipe as waste heat recovery facility. 
Applied Thermal Engineering, 26(17-18), 2433-2441. 

 
Liu, M.-S., Lin, M. C.-C., Tsai, C. Y., & Wang, C.-C. (2006). Enhancement of thermal 

conductivity with Cu for nanofluids using chemical reduction method. 
International Journal of Heat and Mass Transfer, 49(17-18), 3028-3033. 

 
Liu, M.S., Lin, C.C., & Wang, C.C. (2011). Enhancement of thermal conductivityies 

with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water 
nanofluid on a water chiller system. Nanoscale Research Letters, 6(297),1-23 

 
Li, X. F., Zhu, D. S., Wang, X. J., Wang, N., Gao, J. W., & Li, H. (2008). Thermal 

conductivity enhancement dependent pH and chemical surfactant for Cu-H2O 
nanofluids. Thermochimica Acta, 469(1-2), 98-103. 

 
Lotfi, R., Rashidi, A. M., & Amrollahi, A. (2012). Experimental study on the heat 

transfer enhancement of MWNT-water nanofluid in a shell and tube heat 
exchanger. International Communications in Heat and Mass Transfer, 39(1), 
108-111. 

 
Lu, W.-Q., & Fan, Q.-M. (2008). Study for the particle's scale effect on some 

thermophysical properties of nanofluids by a simplified molecular dynamics 
method. Engineering Analysis with Boundary Elements, 32(4), 282-289. 

 



135 

 

Lundgren, T. S. (1972). Slow flow through stationary random beds and suspensions of 
spheres. J. Fluid Mech, 51(2), 273-299. 

 
Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2012). Latest developments on the 

viscosity of nanofluids. International Journal of Heat and Mass Transfer, 55(4), 
874-885. 

 
Mingzheng, Z., Guodong, X., Jian, L., Lei, C., & Lijun, Z. (2012). Analysis of factors 

influencing thermal conductivity and viscosity in different kinds of surfactant 
solutions. Experimental Thermal and Fluid Science, 36, 22-29. 

 
Mintsa, H. A., Roy, G., Nguyen, C. T., & Doucet, D. (2009). New temperature 

dependent thermal conductivity data for water-based nanofluids. International 
Journal of Thermal Sciences, 48(2), 363-371. 

 
Moghaddami, M., Mohammadzade, A., & Esfehani, S. A. V. (2011). Second law 

analysis of nanofluid flow. Energy Conversion and Management, 52(2), 1397-
1405. 

 
Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of 

TiO2--water based nanofluids. International Journal of Thermal Sciences, 44(4), 
367-373. 

 
Murshed, S. M. S., Leong, K. C., & Yang, C. (2008a). Thermophysical and 

electrokinetic properties of nanofluids - A critical review. Applied Thermal 
Engineering, 28(17-18), 2109-2125. 

 
Murshed, S. M. S., Leong, K. C., & Yang, C. (2008b). Investigations of thermal 

conductivity and viscosity of nanofluids. International Journal of Thermal 
Sciences, 47(5), 560-568. 

 
Murshed, S. M. S., Leong, K. C., & Yang, C. (2009). A combined model for the 

effective thermal conductivity of nanofluids. Applied Thermal Engineering, 
29(11-12), 2477-2483. 

 
Mousa, M. G. (2011). Effect of nanofluid concentration on the performance of circular 

heat pipe. Ain Shams Engineering Journal, 2(1), 63-69. 
 
Namburu, P. K., Kulkarni, D. P., Misra, D., & Das, D. K. (2007). Viscosity of copper 

oxide nanoparticles dispersed in ethylene glycol and water mixture. 
Experimental Thermal and Fluid Science, 32(2), 397-402 

 
Nasiri, A., Shariaty-Niasar, M., Rashidi, A. M., & Khodafarin, R. (2012). Effect of 

CNT structures on thermal conductivity and stability of nanofluid. International 
Journal of Heat and Mass Transfer, 55, 1529-1535. 

 
Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Mare, T., Boucher, S., et al. 

(2007). Temperature and particle-size dependent viscosity data for water-based 
nanofluids -Hysteresis phenomenon. International Journal of Heat and Fluid 
Flow, 28(6), 1492-1506. 

 



136 

 

Nguyen, C. T., Desgranges, F., Galanis, N., Roy, G., Maré, T., Boucher, S., et al. 
(2008). Viscosity data for Al2O3-water nanofluid--hysteresis: is heat transfer 
enhancement using nanofluids reliable? International Journal of Thermal 
Sciences, 47(2), 103-111. 

 
Noie, S. H. (2006). Investigation of thermal performance of an air-to-air thermosyphon 

heat exchanger using є-NTU method. Applied Thermal Engineering, 26(5-6), 
559-567. 

 
Noie-Baghban, S. H., & Majideian, G. R. (2000). Waste heat recovery using heat pipe 

heat exchanger (HPHE) for surgery rooms in hospitals. Applied Thermal 
Engineering, 20(14), 1271-1282. 

 
Nuntaphan, A., Tiansuwan, J., & Kiatsiriroat, T. (2002). Enhancement of heat transport 

in thermosyphon air preheater at high temperature with binary working fluid: A 
case study of TEG-water. Applied Thermal Engineering, 22(3), 251-266. 

 
Otanicar, T. P., Phelan, P. E., Prasher, R. S., Rosengarten, G., & Taylor, R. A. (2010). 

Nanofluid-based direct absorption solar collector. Journal of renewable and 
Sustainable Energy, 2, 033102-033113. 

 
Pandiyarajan, V., Chinna Pandian, M., Malan, E., Velraj, R., & Seeniraj, R. V. (2011). 

Experimental investigation on heat recovery from diesel engine exhaust using 
finned shell and tube heat exchanger and thermal storage system. Applied 
Energy, 88(1), 77-87. 

 
Park, K.-J., & Jung, D. (2007). Boiling heat transfer enhancement with carbon 

nanotubes for refrigerants used in building air-conditioning. Energy and 
Buildings, 39(9), 1061-1064. 

 
Paul, G., Sarkar, S., Pal, T., Das, P. K., & Manna, I. (2012). Concentration and size 

dependence of nano-silver dispersed water based nanofluids. Journal of Colloid 
and Interface Science, 371(1), 20-27. 

 
Peyghambarzadeh, S. M., Hashemabadi, S. H., Hoseini, S. M., & Seifi Jamnani, M. 

(2011a). Experimental study of heat transfer enhancement using water/ethylene 
glycol based nanofluids as a new coolant for car radiators. International 
Communications in Heat and Mass Transfer, 38(9), 1283-1290. 

 
Peyghambarzadeh, S. M., Hashemabadi, S. H., Jamnani, M. S., & Hoseini, S. M. 

(2011b). Improving the cooling performance of automobile radiator with 
Al2O3/water nanofluid. Applied Thermal Engineering, 31(10), 1833-1838. 

 
Phuoc, T. X., & Massoudi, M. (2009). Experimental observations of the effects of shear 

rates and particle concentration on the viscosity of Fe2O3 deionized water 
nanofluids. International Journal of Thermal Sciences, 48(7), 1294-1301. 

 
Prasher, R., Bhattacharya, P., & E.Phelan, P. (2006). Brownian-motion-based 

convective-conductive model for the effective thermal conductivity of 
nanofluids. Journal of Heat Transfer, 128, 588-595. 

 



137 

 

Putra, N., Septiadi, W. N., Rahman, H., & Irwansyah, R. (2012). Thermal performance 
of screen mesh wick heat pipes with nanofluids. Experimental Thermal and 
Fluid Science, 40, 10-17. 

 
Qu, J., Wu, H.-y., & Cheng, P. (2010). Thermal performance of an oscillating heat pipe 

with Al2O3-water nanofluids. International Communications in Heat and Mass 
Transfer, 37(2), 111-115. 

 
Qu, J., & Wu, H. (2011). Thermal performance comparison of oscillating heat pipes 

with SiO2/water and Al2O3/water nanofluids. International Journal of Thermal 
Sciences, 50(10), 1954-1962. 

 
Ramesh, K. S., & Dusan, P. S. (2003). Fundamentals of heat exchanger design. New 

Jersey: John Wiley and Sons. 
 
Roberts, N. A., & Walker, D. G. (2010). Convective Performance of Nanofluids in 

Commercial Electronics Cooling Systems. Applied Thermal Engineering, 
30(16), 2499-2504. 

 
Saidur, R., Ahamed, J. U., & Masjuki, H. H. (2010). Energy, exergy and economic 

analysis of industrial boilers. Energy Policy, 38(5), 2188-2197. 
 
Sahin, A. Z. (2000). Entropy generation in turbulent liquid flow through a smooth duct 

subjected to constant wall temperature. International Journal of Heat and Mass 
Transfer, 42(8), 1469-1478. 

 
Sahin.A.Z. (1998). A second law comparison for optimum shape of duct subjected to 

constant wall temperature and laminar flow. Heat and mass transfer, 22, 425-
430. 

 
Saneipoor, P., Naterer, G. F., & Dincer, I. (2011). Heat recovery from a cement plant 

with a Marnoch Heat Engine. Applied Thermal Engineering, 31(10), 1734-1743. 
 
Sarit, K. D., Choi, S. U. S., Yu, W., & Pradeep, T. (2008). Nanofluids science and 

technology. New Jersey: Wiley Interscience. 
 
Sarit, K.D. (2009). Process heat transfer. Oxford: Alpha Science. 
 
Shafahi, M., Bianco, V., Vafai, K., & Manca, O. (2010). An investigation of the thermal 

performance of cylindrical heat pipes using nanofluids. International Journal of 
Heat and Mass Transfer, 53(1-3), 376-383. 

 
Shalchi-Tabrizi, A., & Seyf, H. R. (2012). Analysis of entropy generation and 

convective heat transfer of Al2O3 nanofluid flow in a tangential micro heat sink. 
International Journal of Heat and Mass Transfer, 55(15-16), 4366-4375. 

 
Shi, X., Che, D., Agnew, B., & Gao, J. (2011). An investigation of the performance of 

compact heat exchanger for latent heat recovery from exhaust flue gases. 
International Journal of Heat and Mass Transfer, 54(1-3), 606-615. 

 
Shima, P. D., Philip, J., & Raj, B. (2010). Influence of aggregation on thermal 

conductivity in stable and unstable nanofluids. Appl. Phys. Lett, 97, 153113. 



138 

 

 
Sigma Aldrich. (2013).Nanomaterials. Retrieved 4th August 2013, from 

http://www.sigmaaldrich.com/malaysia.html 
 
Singh, P. K., Anoop, K. B., Sundararajan, T., & Das, S. K. (2010). Entropy generation 

due to flow and heat transfer in nanofluids. International Journal of Heat and 
Mass Transfer, 53, 4757-4767. 

 
Srimuang, W., & Amatachaya, P. (2012). A review of the applications of heat pipe heat 

exchangers for heat recovery. Renewable and Sustainable Energy Reviews, 
16(6), 4303-4315. 

 
Strandberg, R., & Das, D. K. (2010). Influence of temperature and properties variation 

on nanofluids in building heating. Energy Conversion and Management, 51(7), 
1381-1390. 

 
Stijepovic, M. Z., & Linke, P. (2011). Optimal waste heat recovery and reuse in 

industrial zones. Energy, 36(7), 4019-4031. 
 
Suresh, S., Venkitaraj, K. P., Selvakumar, P., & Chandrasekar, M. (2012). A 

comparison of thermal characteristics of Al2O3/water and CuO/water nanofluids 
in transition flow through a straight circular duct fitted with helical screw tape 
inserts. Experimental Thermal and Fluid Science, 39, 37-44. 

 
Taborek, J. (1991). Industrial Heat Exchanger Design Practices. In S. Kakac (Ed.), 

Boilers, evaporators condensers. New York: John Wiley and Sons.Inc. 
 
Teke, I., Agra, Ö., AtayIlmaz, S. Ö., & Demir, H. (2010). Determining the best type of 

heat exchangers for heat recovery. Applied Thermal Engineering, 30(6-7), 577-
583. 

 
Teng, T.-P., Hung, Y.-H., Teng, T.-C., Mo, H.-E., & Hsu, H.-G. (2010). The effect of 

alumina/water nanofluid particle size on thermal conductivity. Applied Thermal 
Engineering, 30(14-15), 2213-2218. 

 
Timofeeva, E. V., Smith, D. S., Yu, W., France, D. M., Singh, D. V., & Routbort, J. L. 

(2010). Particle size and interfacial effects on thermo-physical and heat transfer 
characteristics of water-based α-SiC nanofluids. Nanotechnology, 21(215703 
(10pp)), 21. 

 
Tsai, T.-H., & Chein, R. (2007). Performance analysis of nanofluid-cooled 

microchannel heat sinks. International Journal of Heat and Fluid Flow, 28(5), 
1013-1026. 

 
United States, Energy Information Administration. (2011). Annual Energy Outlook 

2011 Early Release Overview. Retrieved 26th March 2011,from 
http://www.eia.gov/forecasts/aeo/pdf/0383er(2011).pdf 

 
US Research Nanomaterials, Inc. (2013). Nanopowders. Retrieved 4th August 2013, 

from http://us-nano.com/nanopowders 
 



139 

 

Vajjha.R.S., D.K.Das, & Mahagaonkar.B.M. (2009). Density measurement of different 
nanofluids and their comparison with theory. Petroleum Science and 
Technology, 27, 612-624. 

 
Vajjha, R. S., & Das, D. K. (2009). Experimental determination of thermal conductivity 

of three nanofluids and development of new correlations. International Journal 
of Heat and Mass Transfer, 52(21-22), 4675-4682. 

 
Vajjha, R. S., Das, D. K., & Kulkarni, D. P. (2010). Development of new correlations 

for convective heat transfer and friction factor in turbulent regime for 
nanofluids. International Journal of Heat and Mass Transfer, 53(21-22), 4607-
4618. 

 
Velagapudi, V., Konijeti, K.,&Aduru, K. (2008). Empirical correlations to predict 

thermophysical and heat transfer characteristics of nanofluids. Thermal Science, 
12, 27-37. 

 
Wang, X.-j., Zhu, D.-s., & Yang, S. (2009). Investigation of pH and SDBS on 

enhancement of thermal conductivity in nanofluids. Chemical Physics Letters, 
470(1-3), 107-111. 

 
Wang, X.-Q., & Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: a 

review. International Journal of Thermal Sciences, 46(1), 1-19. 
 
Webb.R.L. (1994). Principles of enhanced heat transfer. New York: Wiley. 
 
Wen, D., & Ding, Y. (2004). Experimental investigation into convective heat transfer of 

nanofluids at the entrance region under laminar flow conditions. International 
Journal of Heat and Mass Transfer, 47(24), 5181-5188. 

 
Wu, S., Zhu, D., Li, X., Li, H., &  Lei, J. (2009). Thermal energy storage behavior of 

Al2O3-H2O nanofluids. Thermochimica Acta, 483(1-2), 73-77. 
 
Xu, G., Huang, S., Yang, Y., Wu, Y., Zhang, K., & Xu, C. (2013). Techno-economic 

analysis and optimization of the heat recovery of utility boiler flue gas. Applied 
Energy (in press). 

 
Yang, F., Yuan, X., & Lin, G. (2003). Waste heat recovery using heat pipe heat 

exchanger for heating automobile using exhaust gas. Applied Thermal 
Engineering, 23(3), 367-372. 

 
Yang, L., Du, K., Ding, Y. H., Cheng, B., & Li, Y. J. (2012). Viscosity-prediction 

models of ammonia water nanofluids based on various dispersion types. Powder 
Technology, 215-216, 210-218. 

 
Yanjia, W., & Chandler, W. (2010). The Chinese nonferrous metals industry--energy 

use and CO2 emissions. Energy Policy, 38(11), 6475-6484. 
 
Yilmaz, A. (2009). Minimum entropy generation for laminar flow at constant wall 

temperature in a circular duct for optmum design. Heat mass transfer, 45, 1415-
1421. 

 



140 

 

Yoo, D.-H., Hong, K. S., & Yang, H.-S. (2007). Study of thermal conductivity of 
nanofluids for the application of heat transfer fluids. Thermochimica Acta, 
455(1-2), 66-69. 

 
Yousefi, T., Veisy, F., Shojaeizadeh, E., & Zinadini, S. (2012). An experimental 

investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-
plate solar collectors. Experimental Thermal and Fluid Science, 39, 207-212. 

 
Yu, W., & Choi, S. U. S. (2003). The role of interfacial layers in the enhanced thermal 

conductivity of nanofluids: A renovated Maxwell model. Journal of 
Nanoparticle Research, 5, 167-171. 

 
Yu, W., & Choi, S. U. S. (2004). The role of interfacial layers in the enhanced thermal 

conductivity of nanofluids: A renovated Hamilton–Crosser model. Journal of 
Nanoparticle Research, 6, 355-361. 

 
Yu, W., France, D. M., Choi, S. U. S., & Routbort, J. L. (2007). Review and assessment 

of nanofluid technology for transportation and other applications (No. 
ANL/ESD/07-9). Argonne: Energy System Division,Argonne National 
Laboratoryo. Document Number) 

 
Yu, W., Xie, H., Chen, L., & Li, Y. (2009). Investigation of thermal conductivity and 

viscosity of ethylene glycol based ZnO nanofluid. Thermochimica Acta, 491(1-
2), 92-96. 

 
Yu, W., Xie, H., Chen, L., & Li, Y. (2010). Investigation on the thermal transport 

properties of ethylene glycol-based nanofluids containing copper nanoparticles. 
Powder Technology, 197(3), 218-221. 

 
Yu, W., Xie, H., Li, Y., Chen, L., & Wang, Q. (2011). Experimental investigation on 

the thermal transport properties of ethylene glycol based nanofluids containing 
low volume concentration diamond nanoparticles. Colloids and Surfaces A: 
Physicochemical and Engineering Aspects, 380(1-3), 1-5. 

 
Zeinali, H. S., Nasr, E. M., & Etemad, S. G. (2007). Experimental investigation of 

convective heat transfer of Al2O3/water nanofluid in circular tube. International 
Journal of Heat and Fluid Flow, 28(2), 203-210. 

 
Zarifi, E., Jahanfarnia, G., & Veysi, F. (2013). Thermal-hydraulic modelling of 

nanofluids as the coolant in VVER- 1000 reactor core by the porous media 
approach. Annals of Nuclear Energy, 51,203-212. 

 
Zhang, X., Gu, H., & Fujii, M. (2007). Effective thermal conductivity and thermal 

diffusivity of nanofluids containing spherical and cylindrical nanoparticles. 
Experimental Thermal and Fluid Science, 31(6), 593-599. 

 
Zhou, S.-Q., & Ni, R. (2008). Measurement of the specific heat capacity of water-based 

Al2O3 nanofluid. Appl. Phys. Lett, 92, 093123. 
 
Zhou, L.-P., Bu-XuanWang, Peng, X.-F., Du, X.-Z., & Yang, Y.-P. (2010). Research 

Article On the Specific Heat Capacity of CuO Nanofluid. Advances in 
Mechanical Engineering, 1-4. 



141 

 

Zhu, D., Li, X., Wang, N., Wang, X., Gao, J., & Li, H. (2009). Dispersion behavior and 
thermal conductivity characteristics of Al2O3-H2O nanofluids. Current Applied 
Physics, 9(1), 131-139. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



142 

 

APPENDIX A 

CURRICULUM VITAE 

 

 

Leong Kin Yuen obtained his M.Eng in mechanical engineering from University of 

Malaya, Malaysia and a B.Eng in mechanical engineering from University Tun Hussein 

Onn, Presently, he is a lecturer at Universiti Pertahanan Nasional Malaysia (UPNM) 

teaching Heat Transfer, Air Conditioning and Refrigeration, Engineering Drawing and 

Control Engineering. To date, he has published seven (7) ISI- cited papers where most 

of the papers are nanofluids related papers. He is also a principle investigator for one of 

the nanofluids project funded by the Ministry of Higher Education, Malaysia under the 

FRGS grant to UPNM. He also reviews articles submitted to the International Journal of 

Heat and Mass Transfer, Heat Transfer- Asian Research and Nano-Micro Letter.  

 

 

 

 

 

 

 

 

 

 



143 

 

APPENDIX B 

LIST OF PUBLICATIONS 

 

1) K.Y.Leong ,R. Saidur, T.M.I Mahlia,Y.H.Yau, Performance Investigation of     

            Nanofluids as Coolant in Thermosyphon Air Preheater,-International   

            Communication Heat and Mass Transfer – 39 (2012) 523–529 (ISI/SCOPUS-  

           Cited Publication- 1.892IF)-Q1          

2) K.Y.Leong ,R. Saidur, T.M.I Mahlia,Y.H.Yau, Modeling of shell and tube heat  

           recovery exchanger operated with nanofluid based coolants, International Journal   

           of Heat and Mass Transfer, 55 (4), (2012) 808-816  (ISI/SCOPUS-Cited  

           Publication-2.407IF) –Q1 

3) K.Y.Leong, R.Saidur, T.M.Mahlia, Y.H.Yau, Entropy generation analysis of  

            nanofluid flow in a circular tube subjected to constant wall temperature,  

            International Communication Heat and Mass Transfer, 39(8) (2012) 1169-1175  

            (ISI/SCOPUS- Cited Publication-1.8921IF)- Q1           

4) K.Y.Leong ,R. Saidur, T.M.I. Mahlia,Y.H.Yau,Predicting size reduction of shell  

            and tube heat recovery exchanger operated with nanofluids based coolants and   

            its associated energy saving, Energy Education Science and Technology Part A,  

            30(1) (2012)1-14 (SCOPUS- Cited Publication) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



144 

 

APPENDIX C 

INVITATION AS A REVIEWER 

 
 

 
 
 
 
 
 
 
 



145 

 

 
 
 
 
 
 
 
 
 
 

 



146 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



147 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



148 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



149 

 

APPENDIX D 

INVITATION TO THE 2
ND

 ANNUAL CONGRESS OF NANO S&T 2012 CHINA 
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APPENDIX E 

 

INVITATION TO SUBMIT PAPER TO FRONTIER IN HEAT PIPE (FHP) 
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APPENDIX F 

SPPEECH INVITATION FROM NANOSCIENCE AND TECHNOLOGY 2013, 
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APPENDIX G 

SAMPLE CALCULATIONS 

Some of the sample calculations used in this study are as follows  

1) Thermal conductivity enhancement of ethyelene/glycol based 0.5 vol% 

Al2O3 (13nm) nanofluids  

 k(ethylene glycol/water- 6 0.5 vol.% Al2O3 + 13nm- 5 0.4116 

 k(ethylene g; ycol/water- 5 0.378 

% enhancement 5  k�v��oª�,�V + k��£Ïª��� �ªÏ��ª/*v���k��£Ïª��� �ªÏ��ª/*v��� 3 100%
5 0.4116 + 0.3780.378 3 100%       5 8.9%       

2) Shell and tube heat recovery exchanger 

Shell side calculation (Convective heat transfer coefficient) 

 Cross olow area, A�� 5 (DV + N��d�-B       
 N�� 5 DVP� 5 2.090.044450 5 47.019123     
A�� 5 82.09 + 47.019123(0.0254-91.776 5 1.590788           
Equivalent diameter, D� 5 4YP�? + πd�?4 Zπd�    
 D� 5 4Y0.044450? + π(0.0254-?4 Zπ(0.0254- 5  0.073629 m 

Flue gas viscosity, μ�� 5 0.000019 Nsm? 

Flue gas Prandtl number, Pr�� 5 0.759492 

Flue gas Reynolds number Re�� 5 \m��
A��] D�µ�� 5 Y 26.31.590788Z Y0.0736290.000019Z 

                                                                                           5   64067.863724 
Flue gas convective heat transfer coefoicient , h�� 5 0.36kD� Re��Q.@@Pr��RF   
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 h�� 5 0.36(0.000029-0.073629 64067.863724Q.@@0.759492RF 5 0.056418 

5 56.418 Wm?K 

 

Tube side calculation (Convective heat transfer coefficient) 

1vol. % Cu+H2O 

Thermal conductivity of nanooluids, k�� 5 0.000305 kWmK 

Density of nanooluid ρ�� 5 1150.421900 kgmF 

Specioic heat of nanoolui, c�.�� 5 2.516754 kJkgK 

Prandtl number of, Pr�� 5 22.222115 

Number of tubes per pass, Nt,p 

N�,� 5 N� 5 1024 since single tube pass is considered 

Tube side olow area per pass, A�,� 5 π4 d,?N�,� 

 A�,� 5 π4 d,?N�,� 5 π4 (0.0229-?(1024- 5 0.421810m? 

 Nanooluids Reynold number, Re�� 5 m��
 d,A�,�µ��                                                                       
Re�� 5 (111.6 3 0.0229-(0.421810 3 0.002697- 5 2246.543355 (laminar olow- 

  Nusselt number, Nu 5 3.66 

Nanooluids convective heat transfer coefoicient, h�� 5 Nu��k��d,     
 h�� 5 (3.66-(0.000305-0.0229 5 48.82 kWm?K   
Overall heat transfer coefficient 

Overall heat transfer coefficient, Uo 



154 

 

 1U� 5 1h�� 6
d�ln Yd�d, Z2k* 6 1h�� d�d,  

1U� 5 156.418 6 0.0229 ln 0.02540.0229®2(395.96- 6 148.82 0.02540.0229 

U� 5 24.723411 Wm?K 

 

3) Size reduction and energy saving of shell and tube heat exchanger 

Estimation of nanooluids convective heat transfer coefoicient, h�� 5 49.5 Wm?K 

Estimation of olue gas convective heat transfer coefoicient, h�� 5 30 Wm?K 

Overall heat transfer coefoicient, U� 5 1149.5 6 130 5 18.67924528 Wm?K 

Heat capacity, Q 5 26.3 3 1149.2766 3 (150 + 35- 5 3475987.077W 

 LMTD 5 8T��,,� + T��,���9 + 8T��,��� + T��,,�9In YT��,,� + T��,���T��,��� + T��,,�Z
  

              5 (150 + 55.46453799- + (35 + 30-In 150 + 55.4645379935 + 30 ® 5 90.98318372.95473  

               5 30.45903442  

Required heat transfer area, A 5 QLMTD 3 U 

A 5 QLMTD 3 U 5 3475987.077(30.45903442-(18.67924528- 5 6109.458181 

Shell diameter, DV 5 0.637� CLCTP �(A-(PR-?8d�,�9L �R ?�
 

DV 5 0.637� 10.93 �(6109.458181-(1.75-?(0.0254-5 �R ?� 5 6.439753015m 
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 Number of tubes, N� 5 0.785 YCTPCL Z (DV-?(PR-?(d��-? 

 Number of tubes, N� 5 0.785 Y0.931 Z (6.439753015-?(1.75-?(0.0254-? 5 15323.13038 

Number of tubes per pass, 

N�,� 5 N� 5 15323.13038 since single tube pass is considered 

Tube side olow area per pass, A�,� 5 π4 d,?N�,� 

Tube side olow area per pass, A�,� 5 π4 0.0229?(15323.13038- 5 6.311147683 

For 1 vol.% Copper +Ethylene glycol  

 Nanooluids Reynold number, Re�� 5 m��
 d,A�,�µ��                                                                       
  Re�� 5 m��
 d,A�,�µ�� 5 60 3 0.02296.767221121 3 0.014561307 5 14.94932983 laminar olow 

Nusselt number, Nu 5 3.66 

Nanooluids convective heat transfer coefoicient, h�� 5 Nu��k��d,     
 h�� 5 3.66 3 0.0002956430.0229 5 47.23 WmK   ~49.5 WmK (Prediction- 
Assume tube is made from copper with 8933kg/m3 (density) 

Cross section area of tube 5  π4 0.0254? + π4 0.0229? 5 0.00009483682823 m? 

Volume of the tube 5 0.00009483682823 3 5 5 4.7419144115 3 10�SmF 

Mass of tubes (overall- 5 8933 3 4.7419144115 3 10�S 3 15323.13038 

                                             5 649915.46375 kg 

Energy required for material processingfor 1000 boilers (tube side- 
5 1.17517 3 649915.46375 3 1000 576286705.54 kWh  

Assume tube is made from steel with 7854kg/m3 (density) 
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Cross section area of shell 5  π4 6.453753015? + π4 6.439753015?5 0.141789886 m? 

Volume of shell 5 0.141789886 3 5 5 0.70894943 

Mass of shell 5 0.70894943 3 7854 5 5568088.816 kg  

Energy required for material processingfor 1000 boilers (shell side- 
5568088.816 3 0.45224 3 1000 5 2518112.486 kWh 

Total energy consumption 5 2518112.486 6 76286705.54 5 78804818.03 kWh   
Energy saving 5  Energy consumption�� + Energy consumption ��

5 84737707.93 + 78804818.03 5 5932.889906MWh 

 

4) Entropy generation analysis 

Thermo-physical properties of water based (1 vol.%) Al2O3 nanofluids 

k���k� 5 1.0 6 1.0112�� 6 2.4375�� \ 47d�(nm-] +  0.0248 �� \ k�0.613] 

k���0.613 5 1.0 6 1.0112(0.01- 6 2.4375(0.01- Y4730Z +  0.0248 (0.01- Y 360.613Z 

Thermal conductivity of nanooluids, k��� 5 k�� 5 0.633679594 WmK 

µ��0.000855 5 1(1 + � -?.@ 5 1(1 + 0.01-?.@ 

Vicosity of nanooluid, μ�� 5 0.000876755 Nsm? 

Density of nanooluid, ρ�� 5 (1 + �-ρ� 6 �ρ�  
                                                5  (1 + 0.01-997.0089731 6 (0.01- (3970- 
                                                5 1026.738883 kgmF    
 

Specioic heat of nanooluid, c�,�� 5 (1 + �-ρ�c�,� 6 �ρ�c�,�ρ��  
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                          5  (1 + 0.01-(997.0089731-(4179- 6 (0.01-(3970-(765-1026.738883
5 4046.993896 JkgK 

Dimensionless wall temperature difference, τ 5 T* + 300T* 5 0.02 

Wall temperature, T* 5  306.122449 

Cross section area (circular tube- 5 π4 d? 5 π4 0.0229? 5 4.118706509 3 10�S 

Velocity of nanooluids, u�� 5 m
ρ��A� 5 0.01(1026.738883-(4.118706509 3 10�S-      
                                                                   5 0.023644103 ms? 

Eckert number, Ec 5 u��?C�,��T*  5 0.023644103?4046.993896 3 306.122449 5 4.51251 3 10�RQ  
Nanooluids Reynolds number, Re�� 5 4m
 ��πd£µ�� 
5 (4-(0.01-π(0.0229-(0.000876755- 5 634.0743717 (laminar olow-      
Convective heat transfer coefoicient, h�� 5 Nuk��d£                                              
h�� 5 (3.66-(0.633679594-0.0229 5 101.2780486 Wm?K 

Stanton number, St 5 h��ρ��u����c�,��            
5  101.2780486(1026.738883-(0.023644103-(4046.993896-      

                           5 0.001029991  
Dimensionless length of a circular tube, λ 5 LD  5 50.0229 5 218.3406114 

Friction factor, f 5 64Re 5 64634.0743717 5 0.100934532 
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Total dimensionless entropy generation, Ψ 

Ψ 5 11 + e�S��� �ln �1 + τe�S���1 + τ � + τ81 + e�SV��9 6 18 f EcSt ln �eSV�� + τ1 + τ �¡ 

5 7.08586 3 10�@ 

 

5) Thermosyphon air preheater 

Properties of air 

ρv,� 5 0.938006 kgmF 

μv,� 5 2.18274 3 10�@ Nsm? 

Pr 5 0.6954 

c�,v,� 5 1011.3 JkgK 

Thermal resistance of air side (evaporator) 

Air Reynolds number, Rea,uvw 5 ρv,�uuvwd�
µv,�  

Rea,uvw 5 0.9380006(1.367295402-(0.015-2.18274 3 10�@ 5 881.3678843 

Colburn factor j 5 0.14Re�Q.F?T Ys�sªZ�Q.@Q? Y fVd�Z
Q.QFR

 

                                5 0.14(881.3678843-�Q.F?T Y0.030.03Z�Q.@Q? Y 0.010.015ZQ.QFR
5 0.014950566 

Convective heat transfer coefoicient of air hv,�,��v 5 j ρv,�uuvw¨�,v,�Prv,�? F�  

hv,�,��v 5 j ρv,�uuvw¨�,v,�Prv,�? F�

5 (0.014950566-(0.938006-(1.367295402-(1011.3-
0.6954?F                                       
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5 24.70486532 

Fin efoicency, η� 5 tanhmlml  

m 5 � 2hv,�,��vko,� f�£,�`��VV 5  � 2(24.70486532- (239.19-(0.0004- 5 22.72504428 

η� 5 tanhmlml 5 tanh(22.72504428 3 0.015-(22.72504428 3 0.015- 5 0.962987276 

Total surface temperature effectiveness, η� 

η� 5 1.0 + (1.0 + 0.962987276-  3 11.22168613.67169192 5 0.969620061   
Air thermal resistance , Rv,�,��v 5 1(24.70486532-(0.969620061 - 5 0.041746101 

 

Thermal resistance of air side (condenser) 

Same calculation as evaporator side 

Air thermal resistance , Rv,�,������V�� 5 0.034452879 

 

Thermal resistance of working fluid at evaporator 

Water based (1 vol.%) Al2O3 nanofluids  

Convective heat transfer coefficient, hnf/eva 

h��,��vk�� \ µ��?ρ��,ª8ρ��,ª + ρ��,�9g]
R/F 5 Y43Z

RF 1Re��R/F 

h��,��v0.704815957 \ 0.000287073?987.97546(987.97546 + 40.286476-9.81]
R/F 5 Y43Z

RF 130��R/F 

h��.��v 5 12.01471751 kWm?K 

Thermal resistance of nanooluids at evaporator, R��,��v 5 1α��αv,�® h��,��v 
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R��,��v 5 1 34.0992248196.2631628®12014.71751 5 0.00047905 

 

Thermal resistance of working fluid at condenser 

Water based (1 vol.%) Al2O3 nanofluids  

Convective heat transfer coefficient, hnf,cond 

h��,����k�� \ µ��?ρ��,ª8ρ��,ª + ρ��,�9g]
R/F 5 43 Y 43Re��Z

RF
 

h��,���� 5 6.775680502 kWm?K 

Thermal resistance of nanooluids at condenser, R��,������V�� 
R��,������V�� 5 1α��αv,�® h��,����      5 0.000849457  
Overall heat transfer coefoicient at  evaporator, 5 10.041746101 6 0.00047905 

5 23.68256796 

Overall heat transfer coefoicient at  condenser 5 10.034452879 6 0.000849457 

28.32673729 

Total overall heat transfer coefoicient at both sides 5 52.00930525 Wm?K 


