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ABSTRACT 

Metaheuristic algorithms have been extensively used in numerous domains 

especially in engineering. The reason is that for solving complex optimization 

problems, classical and traditional techniques may not efficiently find global 

optimum solution.  

In this thesis, the applications of a number of well-known metaheuristic 

algorithms for solving engineering problems have been considered. In addition, 

two novel optimization methods are developed and presented which are named the 

mine blast algorithm (MBA) and the water cycle algorithm (WCA).  

The fundamental concepts and ideas for MBA are derived from the 

explosion of mine bombs in real world. Accordingly, the ideas and philosophy of 

WCA are inspired from water cycle process in the nature and how rivers and 

streams flow to the sea in the real world. The efficiency of the proposed optimizers 

was evaluated using numerous well-known unconstrained and constrained 

benchmark functions which have been widely used in literature.  

Optimization of several truss structures (2D and 3D) with discrete variables 

were carried out using the proposed methods and the results and computational 

performances were compared with several well-known metaheuristic algorithms. 

The obtained optimization results shows that the proposed new metaheuristic 

algorithms are capable of offering faster convergence rate in addition to offering 

better optimal solutions compared to other optimizers. Furthermore, a comparative 

study was carried out to show the effectiveness of the proposed algorithms over 

other well-known methods in terms of computational time (speed) and function 

values.  

As an illustration of statistical optimization results, the MBA and WCA 

offer minimum weight of 27,532.95 and 29,304.76, respectively, for the complex 
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200-bar truss in less number of function evaluations (computational time) 

compared with other optimizers in the literature. 
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ABSTRAK 

Algoritma Metaheuristic telah digunakan secara meluas dalam pelbagai 

domain terutamanya dalam bidang kejuruteraan. Sebabnya ialah bahawa untuk 

menyelesaikan masalah pengoptimuman kompleks, teknik klasik dan tradisional 

mungkin tidak cekap mencari penyelesaian optimum global. Dalam tesis ini, 

aplikasi beberapa algoritma metaheuristic yang terkenal untuk menyelesaikan 

masalah kejuruteraan telah dipertimbangkan. 

Di samping itu, dua kaedah pengoptimuman novel dibangunkan dan 

dibentangkan yang dinamakan algoritma letupan lombong (MBA) dan algoritma 

kitaran air (WCA). Konsep-konsep asas dan idea untuk MBA berasal dari letupan 

bom lombong dalam dunia sebenar.  

Sehubungan dengan itu, idea-idea dan falsafah WCA diilhamkan daripada 

proses kitaran air dalam sifat dan bagaimana sungai dan aliran sungai ke laut 

dalam dunia sebenar. Kecekapan daripada pengoptimal yang dicadangkan telah 

dinilai menggunakan banyak terkenal tidak dikekang dan dikekang fungsi penanda 

aras yang telah digunakan secara meluas dalam kesusasteraan. 

Pengoptimuman beberapa struktur kekuda (2D dan 3D) dengan 

pembolehubah diskret telah dijalankan menggunakan kaedah yang dicadangkan 

dan keputusan dan persembahan pengiraan berbanding dengan algoritma 

metaheuristic beberapa terkenal. Keputusan pengoptimuman diperolehi 

menunjukkan bahawa algoritma baru yang dicadangkan metaheuristic mampu 

menawarkan kadar penumpuan yang lebih cepat di samping menawarkan 

penyelesaian yang lebih baik yang optimum berbanding pengoptimal lain. 

Sebagai wakil keputusan pengoptimuman statistik, MBA dan WCA 

menawarkan berat badan sekurang-kurangnya 27,532.95 29,304.76 dan masing-
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masing, bagi kekuda 200-bar di nombor kurang daripada penilaian fungsi (masa 

pengiraan) berbanding dengan pengoptimal lain dalam kesusasteraan. 
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1.1. Introduction 

Optimization is the process of making something better. An engineer or 

scientist comes up with a new idea and optimization improves on that idea. 

Optimization consists of trying variations on an initial concept and using the 

information gained to improve on the idea. A computer is the perfect tool for 

optimization as long as the idea or variable influencing the idea can be input in 

electronic format (Haupt & Haupt, 2004). 

1.1.1. Finding the best solution 

The terminology “best” solution implies that there is more than one 

solution and the solutions are not of equal value. The definition of “best” is relative 

to the problem at hand, its method of solution, and the tolerances allowed. Thus the 

optimal solution depends on the person formulating the problem. 

Some problems have exact answers or roots, and best has a specific 

definition. Examples include a solution to a linear first-order differential equation. 

Other problems have various minimum or maximum solutions known as optimal 

points or extrema, and best may be a relative definition. Examples include best 

piece of artwork or best musical composition (Haupt & Haupt, 2004). 

1.1.2. What is optimization? 

Our lives confront us with many opportunities for optimization. What is the 

best route to work? When designing something, we shorten the length of this or 

reduce the weight of that, as we want to minimize the cost or maximize the appeal 

of a product. 

Optimization is the process of adjusting the inputs to or characteristics of a 

device, mathematical process, or experiment to find the minimum or maximum 

output or results (Haupt & Haupt, 2004). The input consists of variables. The 

process or function is known as the cost function, objective function, or fitness 
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function, and the output is the cost or fitness. If the process is an experiment, then 

the variables are physical inputs to the experiment. 

Since in engineering applications we usually seek to the minimum values 

such as minimum stress, weight, cost, etc, the output from the process or function 

defines as the cost function. Since cost is something to be minimized, optimization 

becomes minimization. Sometimes maximizing a function makes more sense. To 

maximize a function, just put a minus sign on the front of the output and minimize 

it. 

Life is interesting due to the many decisions and seemingly random events 

that take place. Quantum theory suggests there are an infinite number of 

dimensions, and each dimension corresponds to a decision made. Real life 

problems are also highly nonlinear, so chaos plays an important role too. A small 

perturbation in the initial condition may result in a very different and unpredictable 

solution.  

These theories suggest a high degree of complexity faced when studying 

nature or designing products. Science developed simple models to represent certain 

limited aspects of nature. Most of these simple (and usually linear) models have 

been optimized. In the future, scientists and engineers must tackle the unsolvable 

problems of the past, and optimization is a primary tool needed in the intellectual 

toolbox (Haupt & Haupt, 2004). 

1.1.3. Natural optimization techniques 

In complex optimization problem, classical and traditional approaches for 

optimizing are not efficient and capable of finding the global optimum point (Lee 

& Geem, 2005). Because they need the derivative of objectoive function and, 

therefore, the objective function must be continous, while many complex 

optimization problems have discrerte and combinatorial nature. 
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Usually, finding the derivate of complex and real life problems is 

sometimes impossible or takes long time. These reasons reveal many shortfalls of 

the typical minimum seekers such as exhaustive search, analytical approaches, 

nelder-mead downhill simplex method (Nelder & Mead, 1965), complex method 

(Box, 1965), coordinate search method (Schwefel, 1995; Luenberger 1984; Press 

et al., 1992), steepest descent algorithm (Cauchy, 1847), Davidon-Fletcher-Powell 

(DFP) algorithm (Powell, 1964), Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm (Broyden, 1965; Fletcher, 1963; Goldfarb, 1968; Shanno, 1970), and 

recursive quadratic programming (Luenberger, 1984). 

Since the local optimizers of the past are limited, people have turned to 

more global methods based upon biological and natural processes. The need of 

(new) algorithms which works without derivatives and can be applied to 

combinatorial problems are crucial especially in engineering field.  

The metaheuristic algorithms have been extensively used in numerous 

domains especially in engineering. The advantages of metaheuristic algorithms 

compared to other traditional approaches are listed as below (Lee & Geem, 2005): 

1. They are very flexible in terms of usage and application. 

2. Often, they consider as global optimizers. 

3. Often robust to the problem size and random variables. 

4. May be only practical alternative. 

5. No need to calculate the derivative of function. 

6. The problem can be continues or discrete. 

7. Faster and stronger than other traditional methods. 

 In this thesis, the main objective is to investigate and develop new 

metaheuristic algorithms which can outperform (or equally perform) against the 

existing methods. 
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1.2. Objectives of thesis 

The objective of this thesis is to investigate, model, and develop new 

metaheuristic algorithms which are based on the ideas of natural phenomena and 

real life events. This study embarks on the following objectives: 

1. To investigate and develope optimization algorithms which are modeled on 

natural phenomena or real life events. 

2. To establish mathematical models for the proposed optimization 

algorithms. 

3. To implement, test, and compare the proposed optimizers with other 

existing optimization methods for benchmark optimization problems. 
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2.1. Introduction 

Soft computing became a formal computer science area of study in the 

early 1990's (Kincaid, 1990). Earlier computational approaches could model and 

precisely analyze only relatively simple systems. More complex systems arising in 

biology, medicine, the humanities, management sciences, and similar fields often 

remained intractable to conventional mathematical and analytical methods.  

It should be pointed out that simplicity and complexity of systems are 

relative, and many conventional mathematical models have been both challenging 

and very productive. Soft computing deals with imprecision, uncertainty, partial 

truth, and approximation to achieve tractability, robustness, and low solution cost. 

Components of soft computing include (Kincaid, 1990): 

 Neural networks (NNs) 

 Fuzzy systems (FSs) 

 Evolutionary computation (EC), including:  

o Evolutionary algorithms 

 Swarm intelligence 

Generally speaking, soft computing techniques resemble biological 

processes more closely than traditional techniques, which are largely based on 

formal logical systems, such as sentential and predicate logics, or rely heavily on 

computer-aided numerical analysis (as in finite element analysis (FEM)) (Duan et 

al., 1992).  

Soft computing techniques are intended to complement each other. In 

contrast of hard computing schemes, which strive for exactness and full truth, soft 

computing approaches exploit the given tolerance of imprecision, partial truth, and 

uncertainty for a particular problem. Another common contrast comes from the 

http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Medicine
http://en.wikipedia.org/wiki/Humanities
http://en.wikipedia.org/wiki/Management_science
http://en.wikipedia.org/wiki/Neural_network
http://en.wikipedia.org/wiki/Fuzzy_system
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Logical_system
http://en.wikipedia.org/wiki/Finite_element_analysis
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observation that inductive reasoning plays a larger role in soft computing than in 

hard computing. 

Computational intelligence (CI) is an offshoot of artificial intelligence. As 

an alternative to classical artificial intelligence it rather relies on heuristic 

algorithms such as in fuzzy systems, neural networks, and evolutionary 

computation. In addition, CI also embraces techniques that use swarm intelligence, 

fractals and chaos theory, artificial immune systems, and so forth (Golden et al., 

1981). 

The CI combines elements of learning, adaptation, evolution, and fuzzy 

logic (fuzzy sets) to create programs that are, in some sense, intelligent. The CI 

research does not reject statistical methods, but often gives a complementary view 

(as is the case with fuzzy systems).  

Artificial neural networks (ANNs) is a branch of computational intelligence 

that is closely related to machine learning (Feldman, 1990). The CI is further 

closely associated with soft computing, connectionist systems, and cybernetics. 

Over the last decades, numerous algorithms have been developed to solve a 

variety of engineering optimization problems. Most of such algorithms are based 

on the numerical linear and nonlinear programming methods that may require 

substantial gradient information and usually seek to improve the solution in the 

neighborhood of a starting point. These numerical optimization algorithms provide 

a useful strategy to obtain the global optimum solution for simple and ideal 

models.  

However, many real world engineering optimization problems are very 

complex in nature and quite difficult to solve. If there is more than one local 

optimum in the problem, the results may depend on the selection of the starting 

point for which the obtained optimal solution may not necessarily be the global 

http://en.wikipedia.org/wiki/Inductive_reasoning
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/GOFAI
http://en.wikipedia.org/wiki/Fuzzy_system
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Fractal
http://en.wikipedia.org/wiki/Chaos_Theory
http://en.wikipedia.org/wiki/Artificial_immune_system
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Intelligence_%28trait%29
http://en.wikipedia.org/wiki/Fuzzy_system
http://en.wikipedia.org/wiki/Soft_computing
http://en.wikipedia.org/wiki/Connectionist
http://en.wikipedia.org/wiki/Cybernetics
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optimum. Furthermore, the gradient search methods may become unstable when 

the objective function and constraints have multiple or sharp peaks. 

Besides, objective function of these problems may have several global 

minima (i.e. several points in which the value of the objective function is equal to 

the global minimum value) and it may have some local minima in which the value 

of the objective function is very close to the global minimum value. In this 

situation, traditional techniques are not able to find the global optimum point. 

The drawbacks (efficiency and accuracy) of existing numerical methods 

have encouraged researchers to rely on metaheuristic algorithms based on the 

simulations and nature inspired methods to solve engineering optimization 

problems. Metaheuristic algorithms commonly operate by combining rules and 

randomness to imitate natural phenomena (Lee & Geem, 2005). 

These phenomena may include the biological evolutionary process such as 

genetic algorithms (GAs) proposed by Holland (1975) and Goldberg (1989), 

animal behavior such as particle swarm optimization (PSO) proposed by Kennedy 

and Eberhart (1995), and the physical annealing which is generally known as 

simulated annealing (SA) proposed by Kirkpatrick et al. (1983). 

Among the optimization methods, the evolutionary algorithms (EAs) which 

are generally known as general purpose optimization algorithms are known to be 

capable of finding the near-optimum solution to the numerical real-valued test 

problems. EAs have been very successfully applied to optimization problems 

(Coello, 2002). 

Metaheuristic designates a computational method that optimizes a problem 

by iteratively trying to improve a candidate solution with regard to a given 

measure of quality (predefined tolerance). Metaheuristics make few or no 
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assumptions about the problem being optimized and can search very large spaces 

of candidate solutions.  

Many metaheuristic algorithms implement some form of stochastic 

optimization. Metaheuristics are used for combinatorial optimization in which an 

optimal solution is sought over a discrete search space. An example problem is the 

travelling salesman problem (TSP) (Golden et al., 1981) where the search space of 

candidate solutions grows more than exponentially as the size of the problem 

increases which makes an exhaustive search for the optimal solution impossible.  

This phenomenon is commonly known as the curse of dimensionality. 

Popular metaheuristics for combinatorial problems include SA, ant colony 

optimization (ACO) (Dorigo et al., 1991a), and tabu search (TS) (Glover, 1990). 

Metaheuristics are also used for problems over real-valued search-spaces, 

where the classic way of optimization is to derive the gradient of the function to be 

optimized and then, employ gradient descent or a quasi-Newton method. 

Metaheuristics do not use the gradient or Hessian matrix, hence, their 

advantage is that the function to be optimized need not be continuous or 

differentiable and it can also have several constraints (nonlinear). Popular 

metaheuristic optimizers for real-valued search-spaces include particle swarm 

optimization (PSO), and evolution strategies (ES) (Beyer & Schwefel, 2002). 

Metaheuristics have been extensive used in numerous field of study 

including engineering. The research questions are based on the suitability of 

natural phenomena and real life evens for mimicking them as models for 

optimization procedures.  

In order to escape from local optima, metaheuristic algorithms drive some 

basic heuristics either a constructive heuristic starting from a null solution and 

adding elements to build a good complete one, or a local search heuristic starting 
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from a complete solution and iteratively modifying some of its elements in order to 

achieve a better one. 

The metaheuristic part permits the low-level heuristic to obtain solutions 

better than those it could have achieved alone, even if iterated. Usually, the 

controlling mechanism is achieved either by constraining or by randomizing the set 

of local neighbor solutions to consider in local search, or by combining elements 

taken by different solutions. 

In population based algorithms such as GA and PSO, several random 

numbers are produced at each iteration named as population of individual. To 

obtain a reliable solution or test the reliability of an optimization algorithm, several 

independent runs should be executed. Due to stochastic nature of metaheuristic 

algorithms, convergence process and probably the final solution may be different 

in each independent run (Goldberg, 1989; Kennedy & Eberhart, 1995). 

It is worth to mention that one of the most important disadvantages in 

population based algorithms is crowding of the individuals which show the 

convergence of the algorithm to a point in the crowded region (Ahrari & Aatai, 

2010). 

If it happens in the early iterations of the algorithm, solution to which the 

algorithm has converged is probably a local minimum, because the design space 

has not been explored adequately. Furthermore, in the final population, similar 

agents do not present different solutions, which can be a disadvantage especially 

when the objective function has several global minima. 

2.2. Genetic algorithms 

Genetic algorithms (GAs) are adaptive heuristic search algorithm based on 

the evolutionary ideas of natural selection and genetics. As such they represent an 

intelligent exploitation of a random search used to solve optimization problems. 
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The GAs exploits historical information to direct the search into the region 

of better performance within the search space (Holland, 1975). The basic 

techniques of the GAs are designed to simulate processes in natural systems 

necessary for evolution; especially those follow the principles first laid down by 

Charles Darwin of "survival of the fittest.” Since in nature, competition among 

individuals for scanty resources, results in the fittest individuals dominating over 

the weaker ones (Holland, 1975). 

  The GAs simulates the survival of the fittest among individuals over 

consecutive generation for solving a problem. Each generation consists of a 

population of character strings that are analogous to the chromosome that we 

witness in our DNA. Each individual represents a point in a search space and a 

possible solution. 

The individuals in the population are then made to go through a process of 

evolution. The GAs are based on an analogy with the genetic structure and 

behavior of chromosomes within a population of individuals using the following 

foundations (Goldberg, 1989): 

 Individuals in a population compete for resources and mates.  

 Those individuals most successful in each competition will produce more 

offspring than those individuals that perform poorly.  

 Genes from good individuals propagate throughout the population so that 

two good parents will sometimes produce offspring that are better than 

either parent.  

 Thus each successive generation will become more suited to their 

environment.  

A population of individuals is maintained within search space for a GA, 

each representing a possible solution to a given problem. Each individual is coded 
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as a finite length vector of components, or variables, in terms of some alphabet, 

usually the binary alphabet [0, 1].  

To continue the genetic analogy, these individuals are likened to 

chromosomes and the variables are analogous to genes. Thus a chromosome 

(solution) is composed of several genes (variables). A fitness score is assigned to 

each solution representing the abilities of an individual to compete. 

The individual with the optimal (near optimal) fitness score is sought. The 

GA aims to use selective breeding of the solutions to produce offspring better than 

the parents by combining information from the chromosomes. The GAs maintains 

a population of n chromosomes (solutions) with associated fitness values.  

Parents are selected to mate, based on their fitness, producing offspring via 

a reproductive plan. Consequently, highly fit solutions are given more 

opportunities to reproduce, so that offspring inherit characteristics from each 

parent. As parents mate and produce offspring, room must be made for the new 

arrivals since the population is kept at a static size (Holland, 1975).  

Individuals in the population die and replaced by the new solutions, 

eventually creating a new generation once all mating opportunities in the old 

population have been exhausted. In this way it is hoped that over successive 

generations better solutions will thrive, while the least fit solutions die out. 

New generations of solutions are produced containing, on average, better 

genes than a typical solution in a previous generation. Each successive generation 

will contain more good partial solutions than previous generations. Eventually, 

once the population has converged and is not producing offspring noticeably 

different from those in previous generations, the algorithm itself is said to have 

converged to a set of solutions to the problem, at hand, which is called stopping 

criterion (Goldberg, 1989). 
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The following studies are a number of applications for GAs in different 

field of study. Haftka and his co-workers, in particular, extensively tested the 

application of GAs for maximization of the ultimate load of a laminated plate since 

early 1990s (Leriche & Haftka, 1993; Kogiso et al., 1994; Todoroki and Haftka, 

1998; Soremkun et al., 2001). 

Nagendra et al. (1996) proposed an improved GA to find the best stacking 

sequence of the skin and stiffeners laminate, and the stiffener height for minimum 

weight of a composite stiffened panel under buckling constraint. Xie et al. (2009) 

applied GA for optimal design of plate fin heat exchangers. The authors considered 

minimization of total annual cost as an objective function and pressure drop as a 

constraint. 

Mishra et al. (2009) used GA to carry out second law based optimization of 

cross flow plate-fin heat exchangers. The authors investigated the minimization of 

entropy generation units as an objective function. 

2.3. Ant colony optimization 

Ant colony optimization (ACO) is a paradigm for designing metaheuristic 

algorithms for combinatorial optimization problems. The first algorithm of ACO 

which can be classified within this framework was presented in 1991 (Dorigo et 

al., 1991a; Colorni et al., 1991) and, since then, many diverse variations of the 

basic principle have been developed. 

The essential trait of the ACO algorithms is the combination of a priori 

information about the structure of a promising solution with a posteriori 

information about the structure of previously obtained good solutions. The 

characteristic of the ACO algorithms is their explicit use of elements of previous 

solutions.  
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In fact, they drive a constructive low-level solution, but including it in a 

population framework and randomizing the construction in a Monte Carlo way. A 

Monte Carlo combination of different solution elements is suggested also by GAs, 

however, in the case of the ACO, the probability distribution is explicitly defined 

by previously obtained solution components. 

The particular way of defining components and associated probabilities is 

problem- specific, and it can be designed in different ways, facing a trade-off 

between the specificity of the information used for the conditioning and the 

number of solutions which need to be constructed before effectively biasing the 

probability distribution to favor the emergence of good solutions. 

Different applications have favored either the use of conditioning at the 

level of decision variables, thus requiring a huge number of iterations before 

getting a precise distribution, or the computational efficiency, thus using very 

coarse conditioning information. ACO (Dorigo et. al, 1999) is a class of 

algorithms, whose first member, called Ant System, was initially proposed by 

Dorigo et al. (1991a) Colorni et al. (1991), and Dorigo (1992). 

The main underlying idea, loosely inspired by the behavior of real ants, is 

that of a parallel search over several constructive computational threads based on 

local problem data and on a dynamic memory structure containing information on 

the quality of previously obtained results. The collective behavior emerging from 

the interaction of the different search threads has proved effective in solving 

combinatorial optimization (CO) problems. 

The ACO has been used with success for many combinatorial optimization 

problems such as travelling salesman person (TSP) (Dorigo et al., 1991b), vehicle 

routing problem (Bell & McMullen, 2004), set covering problem (Lessing et al., 

2004), and graph coloring (Costa & Hertz, 1997). Aymerich and Serra (2008) 
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studied the application of the ACO to the layup optimization of laminated panels 

for maximum buckling load. 

2.4. Particle swarm optimization 

Particle swarm optimization (PSO) is a population based stochastic 

optimization technique developed by Kennedy and Eberhart (1995) inspired by 

social behavior of bird flocking or fish schooling. The PSO shares many 

similarities with evolutionary computation techniques such as GAs. The system is 

initialized with a population of random solutions and searches for optimal solution 

by updating generations.  

However, unlike GA, the PSO does not possess evolution operators such as 

crossover and mutation. In the PSO, the potential solutions, called particles, fly 

through the problem space by following the current optimum particles. Each 

particle keeps track of its coordinates in the problem space which are associated 

with the best solution (fitness) it has achieved so far (the fitness value is also 

stored). 

This value is called pbest which stands for personal best. Another "best" 

value that is tracked by the PSO is the best value, obtained so far by any particle in 

the neighbors of the particle. This location is called lbest which stands for local 

best. When a particle takes all the population as its topological neighbors, the best 

value is a global best and is called gbest.  

The PSO concept consists of, at each time step, changing the velocity of 

(accelerating) each particle toward its pbest and lbest locations. Acceleration is 

weighted by a random term, with separate random numbers being generated for 

acceleration toward pbest and lbest locations (Kennedy & Eberhart, 1997).  

In the PSO, particles fly around in a multidimensional search space. During 

flight, each particle adjusts its position according to its own experience (pbest), 
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according to the experience of a neighboring particle (lbest), and based on the best 

experience so far (gbest) (Bergh & Engelbrecht, 1997). 

Thus, as in modern GAs, a PSO algorithm combines local search 

approaches with global search methods, attempting to balance exploration and 

exploitation processes. There are some suggestions for choosing the initial 

parameters used in the PSO (Trelea, 2003).  

The PSO has been used for approaches that can be used across a wide range 

of applications, as well as for specific applications focused on a specific 

requirement. In past several years, the PSO has been successfully applied in many 

research and application areas. It is demonstrated that the PSO obtains better 

results in a faster and cheaper way compared with other optimizers. 

Ravagnani et al. (2009) applied PSO for optimal design of shells. The 

authors considered minimization of area and minimization of cost as per the 

availability of data. Han et al. (2008) used PSO for rolling fin-tube heat exchanger 

optimization.  

Yu et al. (2008) conducted the PSO for fuzzy optimal design of plate fin 

heat exchanger. The authors considered minimization of weight and minimization 

of pressure drop as objectives. Miyazaki and Akisawa (2009) utilized PSO to 

obtain the optimum cycle time of single stage absorption chiller. 

2.5. Simulated annealing 

In 1953, Metropolis et al. (1953) developed a method for solving 

optimization problems that mimics the way thermodynamic systems go from one 

energy level to another (Fleischer, 1995). He thought of this after simulating a heat 

bath on certain chemicals. In this method, a system of particles exhibit energy 

levels in a manner that maximizes the thermodynamic entropy at a given 

temperature value (Fleischer, 1995). 
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In addition, the average energy level must be proportional to the 

temperature, which is constant (Fleischer, 1995). This method is called simulated 

annealing (SA). The name and inspiration come from annealing in metallurgy, a 

technique involving heating and controlled cooling of a material to increase the 

size of its crystals and reduce their defects.  

The heat causes the atoms to become unstuck from their initial positions (a 

local minimum of the internal energy) and wander randomly through states of 

higher energy; the slow cooling gives them more chances of finding configurations 

with lower internal energy than the initial one. Kirkpatrick et al. (1983) originally 

thought of using the SA on a number of optimization problems 

 By analogy with this physical process, each step of the SA algorithm 

replaces the current solution by a random "nearby" solution, chosen with a 

probability that depends both on the difference between the corresponding function 

values and also on a global parameter T (temperature), which is gradually 

decreased during the process. The dependency is such that the current solution 

changes almost randomly when T is large, however, the rate of random changes is 

decreased as T goes to zero (Kirkpatrick et al., 1983).  

 The allowance for "uphill" moves potentially saves the method from 

becoming stuck at local optima. Several parameters need to be included in an 

implementation of the SA which are summarized by Davidson and Harel (1996): 

• The set of configurations/states of the system including an initial 

configuration (which is often randomly chosen). 

• A generation rule for new configurations, which is usually obtained by 

defining the neighborhood of each configuration and choosing the next 

configuration randomly from the neighborhood of the current one. 
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• The cost function to be minimized over the configuration space (this is the 

analogue of the energy). 

• The cooling schedule of the control parameter (T) including initial values 

and rules for when and how to change them (this is the analogue of the 

temperature and its reduction). 

• The termination condition which is usually based on the time, number of 

iterations, and the values of the cost function and/or the control parameter. 

In past several years, the SA has been successfully applied in many 

applications and field of studies. Practical design of reinforced concrete retaining 

walls is discussed by Ceranic et al (2001) using the SA technique. May and Balling 

(1992) studied further reduction of heavy computing effort which is usually 

required by the SA. 

2.6. Imperialist competitive algorithm 

Imperialist competitive algorithm (ICA) is inspired from the social-political 

process of imperialism and imperialistic competition. Similar to many optimization 

methods, ICA starts with an initial population of individuals. Each individual of 

the population is called a “country”.  

Some of the best countries with the minimum cost are considered as the 

imperialist states and the rest will be the colonies of those imperialist states. All the 

colonies are distributed among the imperialist countries based on their power. 

To define the algorithm, first of all, initial countries of size NCountry are 

produced. Then, some of the best countries (with the size of Nimp) in the population 

are selected as imperialist states. Therefore, the rest with the size Ncol will form the 

colonies that belong to imperialists. 

Afterwards, the colonies are divided among imperialists according to their 

power (Atashpaz-Gargari & Lucas, 2007). In such a way that the initial number of 
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each empire‟s colonies has to be proportional to its power. So, the initial number 

of colonies of the n
th

 empire will be given as (Khabbazi et al., 2009): 

1
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  (2.1) 

where NCn is the initial number of colonies for the n
th

 empire, Ncol is the total 

number of initial colonies, and Nimp is the number of imperialist state. To divide 

the colonies, NCn of the colonies are randomly chosen and given to the n
th

 

imperialist.  After dividing all colonies among imperialists and creating the initial 

empires, these colonies start moving toward their relevant imperialist country.  

This movement is a simple model of assimilation policy. Furthermore, the 

total power of an empire is defined by the sum of the cost of the imperialist, and 

some percentage of the mean cost of its colonies as given (Khabbazi et al., 2009): 

n n nTC Cost (imperialist ) ξ (mean (Cost(colonies of empire )))   (2.2) 

where TCn is the total power of the n
th

 empire and ξ is a positive small number. 

After computing the total power of empires, usually the weakest colony (or 

colonies) of the weakest empire is (are) chosen by other empires and the 

competition is started on possessing this colony (colonies).  

Each imperialist participating in this competition, based on its power, has a 

probable chance of possessing the cited colony. To start the competition, at first, 

the weakest empire is chosen and then the possession probability of each empire is 

estimated. The possession probability Pp is related to the total power of the empire 

(TC) (Atashpaz-Gargari & Lucas, 2007). 

During the imperialistic competition, the weak empires will slowly lose 

their power and getting weak by the time. At the end of process, just one empire 

will remain that governs the whole colonies (Khabbazi et al., 2009). 
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2.7. Artificial immune systems 

The biological immune system is a robust, complex, and adaptive system 

that defends the body from foreign pathogens. Depending on the type of the 

pathogen, and the way it gets into the body, the immune system uses different 

response mechanisms either to neutralize the pathogenic effect or to destroy the 

infected cells. A detailed overview of the immune system can be found in many 

textbooks such as Kubi (2002) and Hightower et al. (1995). 

Furthermore, it is able to categorize all cells inside the body as self-cells or 

non-self cells. Using a distributed task force and its network of chemical 

messengers for communication, the biological immune system can handle this 

categorization as well. 

There are two major branches of the immune system. The innate immune 

system is an unchanging mechanism that detects and destroys certain invading 

organisms, whilst the adaptive immune system responds to previously unknown 

foreign cells and builds a response to them that can remain in the body over a long 

period of time (Jerne, 1973; Farmer, 1980).  

Generally speaking, this remarkable information processing biological 

system has caught the attention of computer science in recent years. A novel 

computational intelligence technique, inspired by immunology, has emerged, 

called artificial immune systems (AISs) (De Castro & Von Zuben, 1999; Nicosia et 

al., 2004).  

In order to imitate the AISs in optimization problems, the antibodies and 

affinity are considered as the feasible solutions and the objective function, 

respectively. Real-value number is used to represent the attributes of the 

antibodies.  
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Similar to other population-based methods, a population of random 

individuals is generated which symbolizes a pool of antibodies. Afterwards, these 

antibodies undergo proliferation and maturation processes. The proliferation of 

antibodies is realized by cloning each member of the initial pool depending on 

their affinity (De Castro & Von Zuben, 1999).  

In minimization problem, a pool member with lower objective value is 

considered to have higher affinity. The proliferation rate is directly proportional to 

the affinity of the antibodies. The maturation process is carried through hyper-

mutation which is inversely proportional to the antigenic affinity of the antibodies.  

The next step is the application of the aging operator. This aging operator 

eliminates old antibodies in order to maintain the diversity of the population and to 

avoid the premature convergence. In this operator, an antibody is allowed to 

remain in the population for at most ηB generations (De castro & Von Zuben, 

2002).  

After this period, it is assumed that this antibody corresponds to local 

optima and must be eliminated from the current population, no matter what its 

affinity may be. During the cloning expansion, a clone inherits the age of its parent 

and is assigned an age equal to zero when it is successfully hyper-mutated i.e. 

when hyper-mutation improves its affinity.  

Several concepts from the immune have been extracted and applied for 

solution to real world science and engineering problems (Cutello et al., 2005; 

Cutello et al., 2006; Rahman et al., 2006; Liao, 2006; Cutello et al., 2007; 

Panigrahi et al., 2007). 
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2.8. Constrained and unconstrained benchmark problems 

As mentioned in subsections earlier in this chapter, among optimization 

approaches, metaheuristic optimization engines have shown their capabilities for 

finding the near-optimal solution to the numerical real-valued test problems for 

which exact and analytical methods may not produce the optimal solution within a 

reasonable computation time, especially when the global minimum is surrounded 

by many local minima. These algorithms are usually devised by observing 

phenomena happening in nature such as GA, SA, ACO, PSO, and so forth. 

The GA with floating-point representation (GAF) consists of three genetic 

operators (selection, crossover, and mutation) which has been carried out for 

handling multimodal functions. Details of the GAF operators are presented in 

literature (De Jong, 1975; Michalewicz, 1992; Michalewicz et al., 1994). 

The artificial bee colony (ABC) algorithm introduced by Karaboga (2005) 

is one approach that has been used to find an optimal solution in numerical 

optimization problems. The ABC is inspired by the behavior of honey bees when 

seeking a quality food source (Karaboga & Basturk, 2007). In addition, Akay and 

Karaboga (2010) investigated the application of ABC for constrained optimization 

problems.  

Pham et al. (2006) developed a metaheuristic method slightly similar to the 

concept of ABC, called as the bee algorithm (BA). The BA mimics the food 

foraging behavior of swarms of honey bees. The BA was applied for combinatorial 

optimization problems (Pham et al, 2006). 

Ant colony system (ACS) was derived by the foraging behavior of real ants 

(Dorigo & Gambardella, 1997). This behavior enables ants to find the shortest path 

between food sources and their nest. This functionality of real ant colonies is 



24 

 

exploited in artificial ant colonies in order to solve unconstrained optimization 

problems (Aymerich & Serra, 2008). 

The idea of the grenade explosion method (GEM) is based on the 

observation of a grenade explosion, in which the thrown pieces of shrapnel 

destruct the objects near the explosion location (Ahrari & Aatai, 2010). The loss 

caused by each piece of shrapnel is calculated and considered as the fitness of the 

objective function at the object‟s location. 

Geem et al. (2001) developed a new harmony search (HS) metaheuristic 

algorithm that was conceptualized using the musical process of searching for a 

perfect state of harmony. The harmony in music is analogous to the optimization 

solution vector, and the musician‟s improvisations are analogous to local and 

global search schemes in optimization techniques (Lee & Geem, 2005).  

Bacterial foraging optimization (BFO) is based on the foraging (i.e. 

searching food) strategy of Escherichia coli bacteria (Liu & Passin, 2002). In the 

BFO, the optimization follows chemo-taxis, swarming, reproduction, elimination, 

and dispersal events to reach global minima. However, the convergence of original 

BFO to the optimum value is very slow and its performance is not satisfactory. 

Therefore, in synchronous BFO (SBFO) (Bakwad et al., 2010), the best 

optimum value is updated synchronously after fitness function evaluations of all 

bacteria. In the SBFO, the optimization follows chemotaxis, swimming, tumbling, 

and reproduction steps to reach optimum value until computational limitations are 

exceeded (Bakwad et al., 2010). 

The shuffled complex evolution algorithm (SCE-UA) is a general-purpose 

global optimization algorithm designed to infer the traditional best parameter set 

and its underlying posterior distribution within a single optimization run (Duan et 

al., 1992; Vrugt et al., 2003). The goal of the original SCE-UA algorithm is to find 
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a single best parameter set in the feasible space. The modified shuffled complex 

evolution algorithm (MSCE) introduces the differential evolution algorithm to be 

used together with the adaptation of the downhill simplex (Mariani et al., 2011).  

Differential evolution (DE) is a population-based stochastic function 

minimizer (or maximize). The DE exhibits an overall excellent performance for a 

wide range of benchmark multimodal functions (Ursem & Vadstrup, 2003; 

Vesterström & Thomsen, 2004; Ali & Kajee-Bagdadi, 2009). The DE combines 

simple arithmetical operators with the operators of recombination, mutation, and 

selection to evolve from a randomly generated starting population to a final 

solution. 

Ahrari et al. (2010) proposed a covariance matrix adaptation evolution 

strategy (CMA-ES) for overcoming of getting trapped in local minima for the EAs. 

To get better performance of the CMA-ES, the Elite search sub-algorithm is 

introduced and implemented in the basic algorithm. Thereafter, the importance and 

effects of this modification are illustrated by optimizing a number of unimodal and 

multimodal benchmark problems (Ahrari et al., 2010). 

Zhao et al. (2009) developed an evolutionary optimization engine so called 

learning algorithm (LA) for solving multimodal optimization. The concept of LA 

is simple as follows: control parameters, of the length of the list of historical best 

solutions and the “learning probability” of the current solutions being moved 

towards the current best solutions and towards the historical ones, are used to 

assign different search intensities to different parts of the feasible area and to direct 

the updating of the current solutions (Zhao et al., 2009). 

The most multimodal functions considered in the literature are the 

Schwefel function, Ackley function, Rastrigin function, Sphere function, 

Rosenbrock function, and Zakharov function with 30 independent variables 
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(Mariani et al., 2011). These benchmark functions are categorized as high-

dimensional problems. 

The Schwefel, Ackley, Rastrigin, and Rosenbrock functions are multimodal 

(various optima) functions where the number of local minima increases 

exponentially with the problem dimension. They appear to be the most difficult 

class of problems for many optimization algorithms.  

It is important to mention that the Rosenbrock function can be treated as a 

multimodal problem. Rosenbrock function has a narrow parabolic-shaped deep 

valley from the perceived local optima to the global optimum. To find the valley is 

trivial, but to achieve convergence to the global minimum is a difficult task. 

Sphere and Zakharov functions are unimodal (one optimum) (Shang & Qiu, 2006). 

Regarding the constrained optimization problems, most researchers have 

examined their methods with benchmark problems given by Siddall (1982) and 

Arora (1989). For constrained and engineering problems, the EAs have been 

successfully applied to constrained optimization problems (Bracken & Mccormick, 

1968; Homaifar et al., 1994; Koziel & Michalewicz, 1999; Coello, 2000b; Coello, 

2000c; Coello, 2002; Montes & Coello, 2005a; Wang et al., 2009).  

Also, GAs was applied for solving engineering and mechanical design 

(Michalewicz, 1995; Deb & Goyal, 1995; Deb, 2000; Giraud-Moreau & Lafon, 

2002; Coello & Montes, 2002; Gupta et al., 2007). Chootinan and Chen (2006) 

proposed a constraint-handling technique by taking a gradient-based repair 

method.  

The proposed technique is embedded into GAs as a special operator for 

solving constrained engineering problems (Chootian & Chen, 2006). Recently, 

Tang et al. (2011) proposed the improved genetic algorithm (IGA) based on a 

novel selection strategy to handle nonlinear programming constrained problems.  
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Accordingly, Yuan and Qian (2010) developed a new hybrid genetic 

algorithm (HGA) to solve twice continuously differentiable nonlinear 

programming (NLP) problems. The HGA combines the genetic algorithm with 

local solver differently from some hybrid genetic algorithms (Yuan & Qian, 2010).  

Amirjanov (2006) investigated an approach that adaptively shifts and 

shrinks the size of the search space of the feasible region which is called changing 

range genetic algorithm (CRGA). The CRGA was successfully optimized 

engineering constrained problems (Amirjanov, 2006). 

Fogel (1995) carried out a comparative study between evolutionary 

programming (EP) and GA for some selected constrained benchmark functions. 

Montes and Coello (2005b) proposed a simple multimembered evolution strategy 

(ES). Later, they improved the efficiency of ES for solving engineering and 

constrained problems (Montes & Coello, 2008). 

He and Wang (2006) proposed an effective co-evolutionary PSO (CPSO) 

for constrained problems, where the PSO was applied to evolve both decision and 

penalty factors. In this method, the penalty factors were treated as searching 

variables and evolved by the GA or PSO to the optimal values.  

Coelho (2010) studied quantum-behaved PSO (QPSO) which is derived 

using mutation operator with Gaussian probability distribution. He and Wang 

(2007) developed a new hybrid PSO (HPSO) with a feasibility-based rule to solve 

constrained optimization problems. Other hybridizations of the PSO with other 

approaches have been studied in the literature (Parsopoulos & Vrahatis, 2005; 

Renato & Santos, 2006; Zahara & Kao, 2009; Liu et al., 2010). 

The DE which is a scheme for generating trial parameter vectors has been 

widely used for constrained optimization problems (Lampinen, 2002; Zhang et al., 

2008; Wang & Cai, 2011; Wang & Cai, 2012b). Furthermore, other variations of 
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DE have been proposed in the literature (Zavala et al., 2005; Montes et al., 2006b; 

Huang et al., 2007). 

Recently, some hybrid optimization methods have been proposed for 

handling constrained optimization problems (Montes et al., 2006a; Wang et al., 

2007; Wang & Cai, 2009; Wang & Li, 2010; Wang & Cai, 2012a).  

Examples of such methods include teaching-learning-based optimization 

(TLBO) (Rao et al., 2011; Rao & Patel, 2012a, 2012b) which is based on the 

influence of a teacher on learners, the harmony search (HS) (Lee & Geem, 2005) 

algorithm which is conceptualized using the musical process of searching for a 

perfect state of harmony, and the society and civilization (SC) (Ray & Liew, 2003) 

which is inspired from intra and intersociety interactions within a formal society 

and the civilization model to solve constrained optimization problems. These 

algorithms have been applied to numerous engineering optimization problems and 

have shown the efficiencies in solving some specific kinds of problem. 

Stochastic ranking (SR) is an optimization approach trying to balance 

between objective and penalty functions stochastically and also presents a new 

view on penalty function methods in terms of the dominance of penalty and 

objective functions (Runarsson & Xin, 2000; Runarsson & Xin, 2005). 

Cultural algorithm with a differential evolution population is proposed by 

Becerra and Coello (2006). The cultural algorithm uses different knowledge 

sources to influence the variation operator of the differential evolution algorithm, 

in order to reduce the number of fitness function evaluations required to obtain 

competitive results (Coello & Becerra, 2004). 

Various other optimization methods have been developed for solving 

complex and real-life problems, particularly for solving engineering constrained 

problems (Kannan & Kramer, 1994; Kuang et al., 1998; Coello, 2000a; Hamida & 



29 

 

Schoenauer, 2002; Takahama & Sakai, 2005; Tessema & Yen, 2006; Hedar & 

Fukushima, 2006; Rao & Savsani, 2012). Furthermore, Table 1.1 represents the 

applications of considered optimizers for unconstrained and constrained 

engineering problems. Constrained engineering problems include pressure vessel, 

spring, welded beam, speed reducer design problem, and so forth. 

Table 1.1. Applications of reported methods for unconstrained and constrained 

problems in this thesis. 

Authors Methods 
Constrained 

problems 

Unconstrained 

problems 

Akay & 

Karaboga (2010) 

Artificial Bee Colony 

(ABS) 
× - 

Pham et al. 

(2006) 
Bee Algorithm × - 

Aymerich & 

Serra (2008) 

Ant Colony System 

(ACS) 
- × 

Ahrari & Aatai 

(2010) 

Grenade Explosion 

Method (GEM) 
- × 

Lee & Geem  

(2005) 
Harmony Search (HS) × × 

Bakwad et al. 

(2010) 

Synchronous Bacterial 

Foraging Optimization 

(SBFO) 

- × 

Vrugt et al. 

(2003) 

Shuffled Complex 

Evolution Algorithm 

(SCE-UA) 

- × 

Mariani et al.  

(2011) 

Modified Shuffled 

Complex Evolution 

Algorithm (MSCE) 

- × 

Ahrari et al. 

(2010) 

Covariance Matrix 

Adaptation Evolution 

Strategy (CMA-ES) 

- × 

Zhao et al. (2009) 
Learning Algorithm 

(LA) 
 × 

Gupta et al. 

(2007) 
Genetic Algorithms × - 

Tang et al. (2011) 
Improved Genetic 

Algorithm (IGA) 
× - 

Yuan & Qian 

(2010) 

Hybrid Genetic 

Algorithm (HGA) 
× - 

Amirjanov (2006) 

Changing Range 

Genetic Algorithm 

(CRGA) 

× - 

Montes & Coello 

(2008) 
Evolution Strategy (ES) × - 

He & Wang Co-Evolutionary PSO × - 
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(2006) (CPSO) 

He & Wang 

(2007) 
Hybrid PSO (HPSO) × - 

Coelho (2010) 
Quantum-behaved PSO 

(QPSO) 
× - 

Wang & Cai 

(2011,2012b) 

Differential Evolution 

(DE) 
× - 

Rao & Patel 

(2012a,2012b) 

Teaching-Learning-

Based Optimization 

(TLBO) 

× - 

Ray & Liew 

(2003) 

Society and Civilization 

(SC) 
× - 

Runarsson & Xin 

(2000,2005) 

Stochastic Ranking 

(SR) 
× - 

 

2.9. Truss structures 

Over the last decades, various algorithms have been used for truss 

optimization problems which are very popular in the field of structural 

optimization. In general, there are three main categories in structural optimization 

applications: a) sizing optimization (the cross-sectional areas of the members are 

considered as design variables (Rahami et al., 2008; Kaveh & Talatahari, 2009a), 

b) shape optimization (nodal coordinates are considered as the design variables 

(Rahami et al., 2008) and c) topology optimization (the location of links in which 

nodes are considered as design variables (Rasmussen & Stolpe, 2008; Luh & Lin, 

2009). 

Metaheuristic methods such as GA (Wu & Chow, 1995), SA (Kirkpatrick 

et al., 1983), PSO (Perez & Behdinan, 2007) and other stochastic searching 

methods were used to optimize the trusses. 

Goldberg and Samtani (1986) and Rajeev and Krishnamoorthy (1992) have 

applied sizing optimization on truss structures. Krishnamoorthy et al. (2002) used 

the GAs to optimize the space truss structure within an object-oriented framework. 

Sivakumar et al. (2001) presented an optimization technique using the GA for steel 
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lattice towers. Gero et al. (2006) used the GAs for the design optimization of 3D 

steel structures.  

A comprehensive study has been carried out by Adeli and Sarma (2006) for 

the cost optimization of truss structures using fuzzy logic and GA. Besides, 

optimization of large steel structures has been investigated using parallel GA 

(Adeli & Cheng, 1994a, 1994b; Saleh & Adeli, 1994; Soegiarso & Adeli, 1998; 

Adeli, 2000; Sarma & Adeli, 2001). 

Furthermore, for solving structural optimization problems, neural dynamic 

model, which is a computational method based on the neural network topology and 

nonlinear dynamic model, was developed (Adeli & Park, 1995a, 1995b). Neural 

dynamic model was investigated for optimization of truss structures with 

continuous design variables, bridges, and cold-form steel (Adeli & Saleh, 1997; 

Adeli & Karim, 1997a, 1997b; Saleh & Adeli, 1998). 

Geem et al. (2001) developed a harmony search (HS) metaheuristic 

algorithm that was conceptualized using the musical process of searching for a 

perfect state of harmony. The harmony in music is analogous to the optimization 

solution vector, and the musician‟s improvisations are analogous to local and 

global search schemes in optimization techniques (Lee & Geem, 2005). In the 

sequence, the HS method was applied on truss structures using discrete and 

continues variables (Lee & Geem, 2004; Lee et al., 2005). 

Balling (1991, 1996) studied discrete optimization for three-dimensional 

steel framed buildings using the SA. The total frame weight was minimized subject 

to design-code specified constraints on stress, buckling, and deflection.  

Kincaid (1990, 1991) optimized a large tetrahedral truss for obtaining 

minimum surface distortion using the SA and taboo search (TS). Similarly, Chen 

et al. (1991) applied the SA on large truss structures in which both passive and 



32 

 

active vibration suppression was optimized. Bennage and Dhingra (1995) 

elaborated the application of SA to the design of planar and spatial structures. The 

authors comprehensively addressed the influence of the SA generic parameters on 

the results.  

Szewczyk and Hajela (1993) examined a neural network approximation of 

planar and spatial truss structures via a SA search strategy for finding global 

optimum point. An interesting extension of the SA into simultaneous optimization 

of size, shape, and topology was developed by Hasancebi and Erbatur (2000). 

Recently, the PSO approach is used to optimize the trusses (Perez & 

Behdinan, 2007). Li et al. (2009) developed a heuristic particle swarm 

optimization (HPSO) for truss structures, which was proven computationally 

efficient and reliable, was applied on several truss problems and the obtained 

results have been compared with hybrid PSO with passive congregation (PSOPC) 

and standard particle swarm optimization (PSO) (He et al., 2004). 

Kaveh and Talatahari (2009b) have combined the PSOPC with ant colony 

optimization (ACO) and HS to form an efficient algorithm, called heuristic particle 

swarm ant colony optimization (HPSACO), which was applied on truss 

optimization with discrete design variables, the so-called discrete HPSACO 

(DHPSACO) (Kaveh & Talatahari, 2009b).  

Also, recently, Gomes (2011) applied the PSO on truss optimization using 

dynamic constraints. In addition, a summary of applications of reported 

optimization methods are given in Table 1.2. 
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Table 2.2. A summary of applications of considered optimizers for the truss 

structures. 

Authors Methods Applications 

Rahami et al. (2008) 
Force Method and 

Genetic Algorithm 

Shape and Sizing 

Optimizations 

Rasmussen & Stolpe 

(2008); Luh & Lin 

(2009) 

Parallel Cut-and-Branch 

Method & Ant Colony 

Optimization 

Topology Optimization 

Sivakumar et al. 

(2001) 
GA 

Steel Lattice Towers 

Optimization 

Krishnamoorthy et al. 

(2002) 
GA 

Space Truss Structure Within 

an Object-Oriented 

Framework 

Gero et al. (2006) GA 3D Steel Structures 

Adeli & Sarma (2006) Fuzzy Logic and GA 
Cost Optimization of Truss 

Structures 

Sarma & Adeli (2001) Parallel GA Large Steel Structures 

Saleh & Adeli (1998) Neural Dynamic Model 

Truss Structures With 

Continuous Design Variables, 

Bridges, and Cold-Form Steel 

Lee & Geem (2004) Harmony Search (HS) 

Truss Structures using 

Discrete and Continues 

Variables 

Balling (1991,1996) 
Simulated Annealing 

(SA) 

Discrete Optimization For 

Three-Dimensional Steel 

Framed Buildings 

Kincaid (1990,1991) 
SA and Taboo Search 

(TS) 
Large Tetrahedral Truss 

Chen et al. (1991) SA 
Large Truss Structures Having 

Passive and Active Vibrations 

Bennage & Dhingra 

(1995) 
SA Planar and Spatial Structures 

Szewczyk & Hajela 

(1993) 
SA 

Neural Network 

Approximation of Planar and 

Spatial Truss Structures 

Hasancebi & Erbatur 

(2000) 
SA Size, Shape, and Topology 

Kaveh & Talatahari 

(2009b) 

Heuristic Particle 

Swarm Ant Colony 

Optimization 

(HPSACO) 

Truss Optimization with 

Discrete Design Variables 

Gomes (2011) PSO 
Truss Optimization using 

Dynamic Constraints 

 

In summary, this chapter represented the definition of well-known existing 

metaheuristic methods widely used in the literature. Their fundamental concepts 

and mathematical formulations also provided in this chapter. In additions, 
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applications of these optimization engines for unconstrained, constrained, and 

engineering design problems such as truss structures are given in details in this 

chapter.  

In the following chapters (Chapters 4 and 5), our developed methods are 

described in details as our contribution in this field of research. Afterwards, in 

Chapter 6, the proposed optimizers are compared with other well-known methods 

in terms of solution quality and convergence rate (computational time). 
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3.1. Basic concepts 

The idea of the proposed mine blast algorithm (MBA) is based on the 

observation of a mine bomb explosion, in which the thrown pieces of shrapnel 

collide with other mine bombs near the explosion area resulting in their explosion. 

To understand this situation, consider a mine field where the aim is to clear the 

mines. Hence, the goal is to find the mines, while the most important is to find the 

one with the most explosive effect located at optimal point X*which can cause the 

most casualties (min or max f(x) per X*). 

The mine bombs of different sizes and explosive powers are planted under 

the ground. When a mine bomb is exploded, it spreads many pieces of shrapnel 

and the casualties (f(x)) caused by each piece of shrapnel are calculated. A high 

value for casualties per piece of shrapnel in an area may indicate the existence of 

other mines which may or may not have higher explosive power.  

Each shrapnel piece has definite directions and distances to collide with 

other mine bombs which may lead to the explosion of other mines due to collision. 

The collision of shrapnel pieces with other mines may lead us to discover the most 

explosive mine.  

The casualties caused by the explosion of a mine bomb are considered as 

the fitness of the objective function at the mine bomb‟s location. The domain 

(mine field) solution may be divided into infinite grid where there is one mine 

bomb in each portion of the grid. 

3.2. Proposed MBA 

The proposed algorithm starts with an initial point(s) called first shot 

point(s). The first shot point is represented by 
0

fX . The superscript f refers to the 

number of first shot point(s) (f=1,2,3,…), where f can be user defined parameter. 
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This algorithm requires an initial population of individuals as is the case with some 

metaheuristic methods.  

This population is generated by a first shot explosion producing a number 

of individuals (shrapnel pieces). The number of initial population (Npop) is 

considered as the number of shrapnel pieces (Ns). The choice of first shot point(s) 

may lead the algorithm to search the solution space for different locations.  

In addition, it may be no need for entering the first shot point(s). The 

proposed algorithm can also randomly choose the location(s) of the first shot 

point(s), without being specified by the user. The algorithm uses the lower and 

upper bound values given by a problem and create the first shot point value by a 

small randomly generated value given as: 

0 ( )X LB rand UB LB            (3.1) 

where X0, LB, and UB are the generated first shot point, lower and upper bounds of 

the problem, respectively. rand is a uniformly distributed random number between 

0 and 1. Increasing the number of first shot points increases the initial population 

and results in an increase in the number of function evaluations (computational 

cost). 

In addition, the increase in first shot points did not offer significant 

improvement in the optimization process for the problems examined in this thesis. 

In this thesis, one first shot point was used randomly using Equation (3.1). 

Suppose that X is the current location of a mine bomb given as: 

 , 1,2,3,...,m dX X m N         (3.2) 

in which Nd is the search space dimension equal to the number of independent 

variables. Consider that Ns shrapnel pieces are produced by the mine bomb 

explosion causing another mine to explode at Xn+1 location for 2D space: 
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exp( ) 0,1,2,3,...
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X X X n
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
 



         (3.3) 

where
( 1)

f

e nX 
 , 

1

f

nd 
, and 

1

f

nm 
are the location of exploding mine bomb collided by 

shrapnel, the distance and the direction (slope) of the thrown shrapnel pieces in 

each iteration, respectively. The location of exploding mine bomb ( 1)

f

e nX  is defined 

as: 

( 1) cos( ) 0,1,2,...f f

e n nX d rand n           (3.4) 

where rand is a uniformly distributed random number and  is the angle of the 

shrapnel pieces which is calculated using  =360/Ns. The exponential term in 

Equation (3.3) is used to improve the obtained blast point by influencing the 

information from previous solutions ( f

nX ). The distance 1

f

nd   and the direction of 

shrapnel pieces 1

f

nm  are defined as for 2D space:  

2 2

1 1 1( ) ( ) 0,1,2,3,...f f f f f

n n n n nd X X F F n           (3.5) 

1
1

1

0,1,2,3,...
f f

f n n
n f f

n n

F F
m n

X X







 


       (3.6) 

where F is the function value for the X. To calculate the initial distance for each 

shrapnel pieces d0 = (UB-LB) in each dimensions is used.  The initial distance 

given by the proposed algorithm is used to search the best solution within a range 

(LB < d0 < UB) that is computed by the product of the initial distance and a 

randomly generated number (for example rand in MATLAB programming 

software). 

Furthermore, in order to conduct exploration of the design space at smaller 

and larger distances, the exploration factor (µ) is introduced. This constant, which 

is used in the early iterations of the algorithm, is compared with an iteration 
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number index (k), and if it is higher than k, then the exploration process begins. 

The formula related to the exploration of the solution space is given as: 

 
2

1 0,1,2,...f f

n nd d randn n          (3.7) 

( 1) 1 cos( ) 0,1,2,...f f

e n nX d n          (3.8) 

where randn is normally distributed pseudorandom number (randn in MATLAB). 

The square of a normally distributed random number has the advantage of search 

ability at smaller and larger distances, which offers a better exploration in early 

iterations. A higher value for the exploration factor (µ) makes it possible to explore 

more remote regions (better exploration), thus, the value of µ determines the 

intensity of exploration. 

To increase the global search ability of the proposed method, initial 

distance of shrapnel pieces are reduced gradually to let the mine bombs search the 

probable global minimum location. A simple formula to reduce is given as: 

1 1,2,3,...
exp( / )

f
f n

n

d
d n

k 
         (3.9) 

where α and k are reduction constant which is user parameter and depends on the 

complexity of the problem and iteration number index, respectively. At the final 

iteration, the value of distance of shrapnel will be approximately equal to zero 

(ε=2.2E-16 in MATLAB). The schematic diagram of the algorithm representing 

two aspects of the MBA (exploration in color lines and exploitation in black color 

lines) is shown in Figure 3.1. 

Based on Figure 3.1, there are two processes for searching the solution 

domain in order to find the global optimum solution, the exploration and 

exploitation processes. The difference between these two processes is how they 

influence the whole search process towards the optimal solution. More 



40 

 

specifically, the exploration factor describes the exploration process (color lines in 

Figure 3.1).  

 

 

Figure ‎3.1. Schematic view of the mine blast algorithm including of exploration 

(color lines) and exploitation (black lines) processes. 

Actually, the exploration factor (µ) represents the number of first iterations. 

Hence, if µ is set to 10, then for 10 iterations the algorithm uses Equations (3.7) 

and (3.8) for calculating the distance of shrapnel pieces and the location of the 

exploded mine bomb, respectively. 

On the other hand, for the exploitation process (black lines in Figure 3.1), 

the algorithm is encouraged to focus on the optimal point. In particular, with 

respect to the exploitation process, the proposed algorithm converges to the global 

optimum solution using Equations (3.4), (3.5), and (3.6) to calculate the location of 

exploded mine bomb, distance, and direction of shrapnel pieces, respectively.  

The distance of shrapnel pieces is reduced adaptively using Equation (3.9) 

in exploitation process (i.e., as it converges to the optimal solution). The 

Pseudocode for the exploration and exploitation processes is as follows: 
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if µ > k 

Exploration (Equations (3.7) and (3.8)) 

else 

Exploitation (Equations (3.4), (3.5), (3.6), and (3.9)) 

end 

where k is the iteration number index. 

3.3. Setting the user parameters 

Wrong choice of values for algorithm parameters may result in a low 

convergence rate, convergence to a local minimum, or undesired solutions. In this 

thesis, level of complexity is defined with the number of design variables and 

constraint. In general, problems having up to 4 design variables are considered as 

simple optimization problem.  

For problems having 4 to 20 design variables are categorized as moderate 

optimization problems, and accordingly, problems with more than 20 design 

variables are assumed as complex optimization problems. However, this category 

may not extend for all problems having different number of design variables. It 

means that there exist problems having only 2 design variables with several local 

optima and therefore considered as moderate optimization problems (i.e. there are 

some exceptions). The following guidelines to fine tune the parameters are offered: 

• For a simple optimization problem, 10 to 15 pieces of shrapnel per mine bomb 

can be sufficient. For more complex problems, higher values for the number of 

shrapnel pieces (Ns) should be selected, since this leads to more mine explosions in 

the field and, therefore, enables a better search of the design space. For complex 

problems, Ns may be chosen as 50. On the other hand, increasing the number of 

shrapnel pieces increases the computation time, in addition to an increase in the 
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number of function evaluations. In other word, the number of shrapnel pieces is the 

number of population (Ns=Npop). 

• Exploration factor (µ) highly depends on the complexity of the problem, the 

number of independent variables and constraints, and the interval span. Usually, 

for less than four design variables and moderately complex functions, the value of 

µ may be taken as zero. Increasing µ may lead the possibility of getting trapped in 

local minima. In fact, increasing µ means more explorations at each iteration, 

while an efficient algorithm should balance between exploration and exploitation 

processes. 

• Reduction constant (α) also depends on the complexity of the problem, number 

of decision variables, and interval span. When the interval span (LB and UB) is 

large, large value for α should be chosen for more exploration. That means if we 

have interval span [-100,100], then α =100 cannot be a good choice, instead α 

=1000 may be better choice. A larger value for α leads to increase in 

computational time and also, increases the probability of finding global minimum. 

3.4. Constraint handling approach 

In the search domain, shrapnel pieces may exceed the constraints of given 

problem or may violate from upper and lower bounds of design variables. In the 

current study, a modified feasible-based method is utilized to overcome the 

constraints which the rules are given as follows (Montes & Coello, 2008): 

 Rule 1: Any obtained feasible solution is fancied to any infeasible solution. 

 Rule 2: Infeasible solutions having minor violation of the constraints (from 

0.01 in the first iteration to 0.001 in the final iteration) are assumed as 

feasible solutions. 

 Rule 3: Between two feasible solutions, the one having the improved 

objective function value is more interested. 
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 Rule 4: Between two infeasible solutions, the one with the smaller sum of 

constraint violation is chosen. 

By using the 1
th

 and 4
th

 rules, the search is oriented to the feasible area 

rather than to the infeasible region, and by applying the 3
th

 rule the search is 

directed to the feasible district having high quality results (Montes & Coello, 

2008). For most structural optimization problems, the global minimum locates on 

or close to the boundary of a feasible design space. By applying Rule 2, the 

shrapnel pieces approach the boundaries and can reach the global minimum with a 

higher probability (Kaveh and Talatahari, 2009b). 

Figure 3.2 demonstrates the constraint handling approach for the MBA. As 

can be seen from Figure 3.2, in the search space, shrapnel pieces may violate either 

the problem specific constraints or the limits of the design variables. In this case, 

the distance of infeasible shrapnel piece (e.g. X3 in Figure 3.2) is reduced 

adaptively using Equation (3.9) whereas that violated shrapnel piece is also placed 

in the feasible region. 

 

Figure ‎3.2. Schematic view of constraint handling approach using the proposed 

method. 

3.5. Convergence criteria 

For termination criteria, as commonly considered in metaheuristic 

algorithms, the best result is calculated where the termination condition may be 

assumed as the maximum number of iterations, CPU time, or  which is a small 
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value and is defined as an allowable tolerance between the last  two results. The 

MBA proceeds until the above convergence criteria are satisfied. 

3.6. Steps and flowchart of MBA 

The steps of MBA are summarized as follows: 

Step 1: Choose the initial parameters of MBA. 

Step 2: Check the condition of exploration factor. 

Step 3: If condition of exploration factor is satisfied, calculate the distance of 

shrapnel pieces and their locations according to Equations (3.7) and (3.8), 

respectively, and go Step 11. Otherwise, go to Step 4. 

Step 4: Calculate the distance of shrapnel pieces and their locations using 

Equations (3.4) and (3.5). 

Step 5: Calculate the direction of shrapnel pieces according to Equation (3.6). 

Step 6: Generate the shrapnel pieces and compute their improved locations using 

Equation (3.3). 

Step 7: Check the constraints for generated shrapnel pieces. 

Step 8: Save the best shrapnel piece as the best temporal solution. 

Step 9: Does the shrapnel piece have the lower function value than the best 

temporal solution? 

Step 10: If true, exchange the position of the shrapnel piece with the best temporal 

solution. 

Step 11: Reduce the distance of the shrapnel pieces adaptively using Equation 

(3.9). 

Step 12: Check the convergence criteria. If the stopping criterion is satisfied, the 

algorithm will be stopped. Otherwise, return to Step 2. 

 Figure 3.3 demonstrates the steps of the MBA in form of flowchart. In 

summary, in this chapter, the detailed explanations and formulations of the 
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proposed method were provided. In addition, setting parameters of the MBA were 

investigated in this chapter. In summary, in this chapter, the detailed explanations, 

formulations, and steps of the proposed method were represented. 

 

Figure ‎3.3. Flowchart of the proposed MBA. 
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4.1. Basic concepts 

The idea of the water cycle algorithm (WCA) is inspired from nature and 

based on the observation of water cycle and how rivers and streams flow downhill 

towards the sea in the real world. To understand this further, an explanation on the 

basics of how rivers are created and water travels down to the sea is given as 

follows.  

A river, or a stream, is formed whenever water moves downhill from one 

place to another. This means that most rivers are formed high up in the mountains, 

where snow from the winter, or ancient glaciers, melt. The rivers always flow 

downhill. On their downhill journey and eventually ending up to a sea, water is 

collected from rain and other streams. 

Figure 4.1 is a simplified diagram for part of the hydrologic cycle. Water in 

rivers and lakes is evaporated while plants give off (transpire) water during 

photosynthesis. The evaporated water is carried into the atmosphere to generate 

clouds which then condenses in the colder atmosphere, releasing the water back to 

the earth in the form of rain or precipitation. This process is called the hydrologic 

cycle (water cycle) (David, 1993).  

 

Figure ‎4.1. Simplified diagram of the hydrologic cycle (water cycle). 
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In the real world, as snow melts and rain falls, most of water enters the 

aquifer. There are vast fields of water reserves underground. The aquifer is 

sometimes called groundwater (see percolation arrow in Figure 4.1). The water in 

the aquifer then flows beneath the land the same way water would flow on the 

ground surface (downward).  

The underground water may be discharged into a stream (marsh or lake). 

Water evaporates from the streams and rivers, in addition to being transpired from 

the trees and other greenery, hence, bringing more clouds and thus more rain as 

this cycle counties (David, 1993). 

Figure 4.2 is a schematic diagram of how streams flow to the rivers and 

rivers flow to the sea. Figure 4.2 resembles a tree or roots of a tree. The smallest 

river branches, (twigs of tree shaped figure in Figure 4.2 shown in bright green), 

are the small streams where the rivers begins to form. These tiny streams are called 

first-order streams (shown in Figure 4.2 in green colors). 

Wherever two first-order streams join, they make a second-order stream 

(shown in Figure 4.2 in white colors). Where two second-order streams join, a 

third-order stream is formed (shown in Figure 4.2 in blue colors), and so on until 

the rivers finally flow out into the sea (the most downhill place in the assumed 

world) (Strahler, 1952). 

 

Figure ‎4.2. Schematic diagram of how streams flow to the rivers and also rivers 

flow to the sea. 
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Figure 4.3 shows the Arkhangelsk city on the Dvina River. Arkhangelsk 

(Archangel in English) is a city in Russia that drapes both banks of the Dvina 

River, near where it flows into the White Sea. A typical real life stream, river, sea 

formation (Dvina River) is shown in Figure 4.3 resembling the shape in Figure 4.2.  

 

Figure ‎4.3. Arkhangelsk city on the Dvina River (adopted from NASA, Image 

Source: http://asterweb.jpl.nasa.gov/gallery-detail.asp?name=Arkhangelsk). 

4.2. Proposed WCA 

Similar to other metaheuristic algorithms, the proposed method begins with 

an initial population so called the raindrops. First, we assume that we have rain or 

precipitation. The best individual (best raindrop) is chosen as a sea. Then, a 

number of good raindrops are chosen as a river and the rest of the raindrops are 

considered as streams which flow to the rivers and sea. 

Depending on their magnitude of flow which will be described in the 

following subsections, each river absorbs water from the streams. In fact, the 

amount of water in a stream entering a rivers and/or sea varies from other streams. 

In addition, rivers flow to the sea which is the most downhill location. 

4.2.1. Create initial population 

In order to solve an optimization problem using population-based 

metaheuristic methods, it is necessary that the values of problem variables be 
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formed as an array. In the GA and PSO terminologies such array is called 

“Chromosome” and “Particle Position”, respectively. Accordingly, in the proposed 

method it is called “Raindrop” for a single solution. In a Nvar dimensional 

optimization problem, an raindrop is an array of 1×Nvar. This array is defined as 

follows: 

1 2 3[ , , ,..., ]NRaindrop x x x x         (4.1) 

To start the optimization algorithm, a candidate representing a matrix of 

raindrops of size Npop ×Nvar is generated (i.e. population of raindrops). Hence, the 

matrix X which is generated randomly is given as (rows and column are the 

number of population and the number of design variables, respectively): 

var

var

var

1 1 1 1
1

1 2 3

2 2 2 2 2

1 2 3

3

1 2 3
pop pop pop pop

pop

N

N

N N N N

N
N

Raindrop x x x x
Raindrop

x x x x
Population of raindrops Raindrop

x x x xRaindrop

 
  
  
      
  
      

 

(4.2) 

Each of the decision variable values (x1, x2, . . . , xNvar) can be represented 

as floating point number (real values) or as a predefined set for continuous and 

discrete problems, respectively. The cost of a raindrop is obtained by the 

evaluation of cost function (C) given as: 

var1 2os ( , , , ) 1,2,3,...,i i i

i i N popC C t f x x x i N       (4.3) 

where Npop and Nvars are the number of raindrops (initial population) and the 

number of design variables, respectively. For the first step, Npop raindrops are 

created. A number of Nsr from the best individuals (minimum values) are selected 

as sea and rivers. The raindrop which has the minimum value among others is 

considered as a sea.  
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In fact, Nsr is the summation of Number of Rivers (which is a user 

parameter) and a single sea as given in Equation (4.4). The rest of the population 

(raindrops form the streams which flow to the rivers or may directly flow to the 

sea) is calculated using Equation (4.5).  

1sr

Sea

N Number of Rivers        (4.4) 

Raindrops pop srN N N           (4.5) 

In order to designate/assign raindrops to the rivers and sea depending on 

the intensity of the flow, the following equation is given: 

1

{ } , 1,2,...,
sr

n
n Raindrops srN

i

i

Cost
NS round N n N

Cost


  



     (4.6) 

where NSn is the number of streams which flow to the specific rivers or sea. 

4.2.2. How does a stream flow to the rivers or sea? 

As mentioned in Subsection 4.1 in this chapter, the streams are created 

from the raindrops and join each other to form new rivers. Some of the streams 

may also flow directly to the sea. All rivers and streams end up in sea (best optimal 

point). Figure 4.4 shows the schematic view of stream‟s flow towards a specific 

river where star and circle represent river and stream, respectively. 

 

Figure ‎4.4. Schematic view of stream‟s flow to a specific river. 
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As illustrated in Figure 4.4, a stream flows to the river along the connecting 

line between them using a randomly chosen distance given as follow: 

(0, ), 1X C d C           (4.7) 

where C is a value between 1 and 2 (near to 2). The best value for C may be 

chosen as 2. The current distance between stream and river is represented as d. 

Indeed, same as the PSO, the value of C was chosen using some practical and 

experimental execution of algorithm (try and error process). The value of X in 

Equation (4.7) corresponds to a distributed random number (uniformly or may be 

any appropriate distribution) between 0 and (C×d).  

The value of C being greater than one enables streams to flow in different 

directions towards the rivers. This concept may also be used in flowing rivers to 

the sea. Therefore, the new position for streams and rivers may be given as: 

1 ( )i i i i

Stream Stream River StreamX X rand C X X           (4.8) 

1 ( )i i i i

River River Sea RiverX X rand C X X           (4.9) 

where rand is a uniformly distributed random number between 0 and 1. Based on 

our experiments, uniform random numbers more than 1 lead to diverge motion of 

rivers to the sea. If the solution given by a stream is better than its connecting 

river, the positions of river and stream are exchanged (i.e. stream becomes river 

and river becomes stream). Such exchange can similarly happen for rivers and sea.  

Figure 4.5 depicts the exchange of a stream which is the best solution 

among other streams and the river. From Figure 4.5, star represents river and black 

color circle shows the best stream among other streams. 
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Figure ‎4.5. Exchanging the positions of the stream and the river. 

4.2.3. Evaporation condition 

Evaporation is one of the most important factors that can prevent the 

algorithm from rapid convergence (immature convergence). As can be seen in 

nature, water evaporates from rivers and lakes while plants give off (transpire) 

water during photosynthesis.  

The evaporated water is carried into the atmosphere to form clouds which 

then condenses in the colder atmosphere, releasing the water back to the earth in 

the form of rain. The rain creates the new streams and the new streams flow to the 

new rivers which flow to the sea. This cycle which was mentioned in Subsection 

4.1 is called water cycle.  

In the proposed method, the evaporation process causes the sea water to 

evaporate as rivers/streams flow to the sea. This assumption is proposed in order to 

avoid getting trapped in local optima. The following Psuocode shows how to 

determine whether or not river flows to the sea. 

  

max 1,2,3,..., 1i i

Sea River srif X X d i N

Evaporation and raining process

end

   

 

where dmax is a small number (close to zero). Therefore, if the distance between a 

river and sea is less than dmax, it indicates that the river has reached/joined the sea. 

In this situation, the evaporation process is applied and as seen in the nature after 

some adequate evaporation the raining (precipitation) will start.  
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A large value for dmax reduces the search while, a small value encourages 

the search intensity near the sea. Therefore, dmax controls the search intensity near 

the sea (the optimum solution). The value of dmax adaptively decreases as: 

1 max
max max

max

i
i i d

d d
iteration

           (4.10) 

To further clarify, in order to converge to an optimal point, distance 

between river and sea should be decreased at each iteration based on the Equation 

(4.10). This action helps to cover the exploitation process used in the WCA in 

addition of convergence purposes. 

4.2.4. Raining process 

After satisfying the evaporation process, the raining process is applied. In 

the raining process, the new raindrops form streams in the different locations 

(acting similar to mutation operator in the GA). For specifying the new locations 

of the newly formed streams, the following equation is used: 

( )new

StreamX LB rand UB LB           (4.11) 

where LB and UB are lower and upper bounds defined by the given problem, 

respectively. Again, the best newly formed raindrop is considered as a river 

flowing to the sea. The rest of new raindrops are assumed to form new streams 

which flow to the rivers or may directly flow to the sea. 

In order to enhance the convergence rate and computational performance of 

the algorithm for constrained problems, Equation (4.12) is used only for the 

streams which directly flow to the sea. This equation aims to encourage the 

generation of streams which directly flow to the sea in order to improve the 

exploration near sea (the optimum solution) in the feasible region for constrained 

problems. 

new

stream sea varX X randn (1,N )          (4.12) 
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where µ is a coefficient which shows the range of searching region near the sea. 

Randn is the normally distributed random number. The larger value for µ increases 

the possibility to exit from feasible region. On the other hand, the smaller value for 

µ leads the algorithm to search in smaller region near the sea. A suitable value for 

µ is set to 0.1. 

In mathematical point of view, the term   in Equation (4.12) represents 

the standard deviation and, accordingly, µ defines the concept of variance. Using 

these concepts, the generated individuals with variance µ are distributed around the 

best obtained optimum point (sea). 

4.3. Constraint handling approach 

In the search domain, streams and rivers may exceed the constraints of 

given problem or may violate from upper and lower bounds of design variables. In 

the current study, a modified feasible-based method is utilized to overcome the 

constraints which the rules are given as follows (Montes & Coello, 2008): 

 Rule 1: Any obtained feasible solution is fancied to any infeasible solution. 

 Rule 2: Infeasible solutions having minor violation of the constraints (from 

0.01 in the first iteration to 0.001 in the final iteration) are assumed as 

feasible solutions. 

 Rule 3: Between two feasible solutions, the one having the improved 

objective function value is more interested. 

 Rule 4: Between two infeasible solutions, the one with the smaller sum of 

constraint violation is chosen. 

By using the 1
th

 and 4
th

 rules, the search is oriented to the feasible area 

rather than to the infeasible region, and by applying the 3
th

 rule the search is 

directed to the feasible district having high quality results (Montes & Coello, 

2008). For most structural optimization problems, the global minimum locates on 
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or close to the boundary of a feasible design space. By applying Rule 2, the 

streams and rivers approach the boundaries and can reach the global minimum 

with a higher probability (Kaveh & Talatahari, 2009b). 

4.4. Convergence criteria 

For termination criteria, as commonly considered in metaheuristic 

algorithms, the best result is calculated where the termination condition may be 

assumed as the maximum number of iterations, CPU time, or  which is a small 

non-negative value and is defined as an allowable tolerance between the last two 

results. The WCA proceeds until the maximum number of iterations as a 

convergence criterion is satisfied. 

4.5. Steps and flowchart of WCA 

The steps of WCA are summarized as follows: 

Step 1: Choose the initial parameters of the WCA: Nsr, dmax, Npop, max_iteration. 

Step 2: Generate random initial population and form the initial streams (raindrops), 

rivers, and sea using Equations (4.2), (4.4), and (4.5). 

Step 3: Calculate the value (cost) of each raindrops using Equation (4.3). 

Step 4: Determine the intensity of flow for rivers and sea using Equation (4.6). 

Step 5: The streams flow to the rivers by Equation (4.8). 

Step 6: The rivers flow to the sea which is the most downhill place using Equation 

(4.9). 

Step 7: Exchange positions of river with a stream which gives the best solution, as 

shown in Figure 4.5. 

Step 8: Similar to Step 7, if a river finds better solution than the sea, the position of 

river is exchanged with the sea (see Figure 4.5). 

Step 9: Check the evaporation condition using the Psuocode in Subsection 4.2.3. 
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Step 10: If the evaporation condition is satisfied, the raining process will occur 

using Equations (4.11) and (4.12). 

Step 11: Reduce the value of dmax which is user defined parameter using Equation 

(4.10).  

Step 12: Check the convergence criteria. If the stopping criterion is satisfied, the 

algorithm will be stopped, otherwise return to Step 5. 

The schematic view of the proposed method is illustrated in Figure 4.6 

where circles, stars, and the diamond correspond to streams, rivers, and sea, 

respectively. From Figure 4.6, the white (empty) shapes refer to the new positions 

found by streams and rivers. In fact, Figure 4.6 is an extension of Figure 4.4. 

 

Figure ‎4.6. Schematic view of WCA. 

The procedure for the proposed WCA is shown in Figure 4.7 in the form of 

a flowchart. In summary, in this chapter, the detailed explanations, formulations, 

and steps of the proposed method were represented. 
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Figure ‎4.7. Flowchart of the proposed WCA. 
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In this chapter, at first, similarities and differences of the proposed methods 

(MBA and WCA) with other existing and similar metaheuristic algorithms such as 

PSO (Kennedy & Eberhart, 1995), grenade explosion method (GEM) (Ahrari & 

Aatai, 2010), water flow algorithm (WFA) (Hieu, 2011), water cycle-like 

algorithm (WCA) (Zhi-ding & Jie-Kang, 2011), and intelligent water drops (IWD) 

algorithm (Shah-Hosseini, 2009) are provided in details accompanied with 

descriptions of their processes. 

Afterwards, validation and verification of proposed optimizers are carried 

out using various types of unconstrained, constrained, and engineering design 

problems. Comprehensive comparisons are conducted for evaluating the efficiency 

and performance of the MBA and WCA. Unfortunately, the above methods 

(except the GEM and PSO) were not applied for the reported problems in this 

thesis. There are not existing records or publications of applications for these 

methods for truss structures, constrained, and engineering design problems so far. 

5.1. Differences among proposed optimizers with other existing methods 

It can be a good question, what are the similarities and differences between the 

MBA and WCA? The only similarity between the MBA and WCA is that both 

proposed optimizers are population based methods. Except this similarity, all 

factors and operators and even their concepts are different. The MBA‟s concept is 

from explosion of mine bombs, while the WCA‟s ideas are inspired from water 

cycle process and how streams and rivers flow to the sea in nature. 

Regarding the constraint handling approach, it is worth to mention that, the 

approach, given in subsections 3.4 and 4.3, is widely used strategy for controlling 

constraint violation. It can be implemented for many metaheuristic methods. It 

cannot count as similarity between the MBA and WCA in terms of concept and 

performance. In fact, there are many ways for tackling constraint handling in the 



61 

 

literature. We used these four rules (known as direct method and given in 

subsections 3.4 and 4.3) instead of, for example, penalty function approach. 

Talking about differences between the WCA and PSO, the updating formulation 

for positions of rivers and streams are different from given by the PSO (finding 

and updating the local and global best positions). By observing carefully, we did 

not use the concept of moving directly to the best solution (global best). In fact, we 

utilized the concept of moving indirectly from stream to the rivers and from rivers 

to the sea which is the best temporal obtained optimum point. 

In the proposed WCA, rivers (a number of best selected points except the best one 

(sea), Equation (4.4)) act as guidance points for conducting other individual of 

populations toward the better positions (see Figure 4.6) and avoid to search on 

inappropriate regions in near-optimum solutions (Equation (4.8)). 

It is worth to mention that rivers, themselves, move toward to the sea (the best 

solution). They are not fixed points (Equation (4.9)). In fact, this procedure 

(moving streams to the rivers and, then moving rivers to the sea) leads to indirect 

move toward the best solution. In other hand, in the PSO, individuals (particles) 

based on the personal and best experiences find the best solution and the searching 

approach is moving directly to the best optimal solution. 

To mention another distinguish between the WCA and PSO is the existing of 

evaporation and raining conditions which is act as mutation operator. The 

evaporation and raining conditions cause to release the proposed algorithm from 

getting trapped in local optimum solutions, while in the PSO there was not defined 

such a mechanism. 

Talking about the differences between the MBA and GEM, in the MBA, we have 

different approach for finding an optimal point compared with the GEM. To 

mention of them, reduction constant and exploration factor, which simulate 
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exploitation and exploration steps for the MBA. The distance of each shrapnel 

pieces is calculated using Euclidean distance in 2D space and also we have the 

concept of direction for each shrapnel pieces. 

One of the theories of GEM is the agent‟s territory radius (Rt), which means an 

agent (in the GEM agents are grenades) does not let other agents come closer than 

a definite distance, which is specified by Rt. In addition, there is a concept which is 

determined the intensity of exploration process. In the GEM, Le is the length of 

explosion along each coordinate, in which the thrown piece of shrapnel may 

destruct the objects. The values of Rt and Le are decreased adaptively in each 

iteration, while the reduction rate of Le is slower than Rt for exploration purposes. 

As it can be seen, the MBA and GEM are in common only in the basis of 

explosion concept. It means their ideas of explosion for creating an initial 

population are the same. In fact, both optimizers (MBA and GEM) are population 

based methods (population of shrapnel pieces). However, the strategy of MBA to 

approach towards a global optimum point is totally different. The MBA uses 

different formulations and strategies to reach its best optimal point. 

The MBA does not have radius territory and intensity of exploration operators 

same as the GEM. In the MBA the new positions of shrapnel pieces calculate using 

updating formula which is totally different with those given in the GEM. In the 

MBA, two special operators are defined which do not exist in the GEM: Reduction 

constant and exploration factor.  

The number of initial parameters in the MBA is quit less than those offered by the 

GEM. In the GEM, besides of common initial parameters for metaheuristic 

algorithms (i.e. population size and maximum number of iteration), the following 

values should be selected as user parameters: mmax, mmin, Tw, Nq, Le-initial, Rt-initial, 

and Rrd.  

http://en.wikipedia.org/wiki/Euclidean_relation
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In contrast, for the MBA (except of common user parameters for metaheuristic 

algorithms), the number of user parameters is comparatively less than the GEM 

which are reduction constant (α) and exploration factor (µ). 

The water flow algorithm (WFA) is inspired by the hydrological cycle in 

meteorology and the erosion phenomenon in nature. The WFA combines the 

amount of precipitation and its falling force to form a flexible erosion capability. 

This helps the erosion process of the algorithm to focus on exploiting promising 

regions strongly (Hiew, 2011).  

In fact, the idea of WCA and WFA is similar to each other inspiring from water 

cycle process in nature. However, the first idea of WCA was based on how streams 

and rivers flow to the sea and formulations of WCA are different from those given 

by the WFA.  

By observing the WCA, it focuses on the motion of streams and rivers to the sea 

and the evaporation condition and updating formula are fully diverse with those 

suggested in the WFA. In the WFA, the concept of erosion and falling force of 

raindrops are considered as another differences between the WCA and WFA. 

The concept of water cycle-like algorithm (WCA) proposed by Zhi-ding and Jie-

Kang (2011) has the same concept given in the WCA by Eskandar et al. (2012). 

However, for searching mechanism, they utilized the idea of relative gravity of 

waters to guide particles towards better solutions. It is worth mentioning that the 

WCA offered in the literature modeled the concepts of confluence, infiltration, and 

total force which are completely dissimilar with the suggested model in the WCA 

proposed by Eskandar et al. (2012). 

Another similar method to the WCA in terms of concept is intelligent water drops 

(IWD) algorithm. The IWD algorithm is a swarm-based nature-inspired 

optimization algorithm (Shah-Hosseini, 2009). This algorithm contains a few 
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essential elements of natural water drops and actions and reactions that occur 

between river's bed and the water drops that flow within. 

The IWD consists of two parts: a graph that plays the role of distributed memory 

on which soils of different edges are preserved, and the moving part of the IWD 

algorithm, which is a few number of intelligent water drops. These intelligent 

water drops (IWDs) both compete and cooperate to find better solutions and by 

changing soils of the graph, the paths to better solutions become more reachable. 

It is mentioned that the IWD needs at least two IWDs to launch. By carefully 

looking at the processes of the IWD algorithm, one can be seen that the concepts 

of the WCA and IWD are not the same. The only similarity between the WCA and 

IWD is using the water drops agent in their populations.  

To further clarify, the IWD uses the concepts of soil removal while water drops 

moving to the rivers, also it gains some velocity and removes some soil from the 

path it flows on which are totally different with the suggested formulations and 

concepts offered by the WCA. 

It is common to see an algorithm reaches the best solution for some 

problems and in contrast, for some problems it cannot detect the best optimum 

point. This is happen for all metaheuristic approaches such as the GA, PSO, SA, 

and so forth.  

For instance, the SA is a suitable optimizer for tackling combinatorial 

optimization problems, while the PSO performs well for continuous problems. In 

fact, depends on the nature of a problem being solved, the performance of 

optimizers may differ from each other. 

As for the MBA and WCA, they outperformed other considered optimizers 

in terms of less computational time and solution accuracy, while for some 
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problems their results were not counted as first ranked solution. In fact, for some 

problems, they have placed in 2
nd

 rank. 

However, in general, for most problems in this thesis, obtained optimization results 

offered by the proposed optimizers have surpassed other methods. The reason may 

be depended on their strategies moving to the global optimum point which they 

can search domain solution better than others using their exploration and 

exploitation operators. 

Regarding the parameter setting, based on our experiments and practical 

executions, we offered default values for solving problems using the MBA and 

WCA. If optimization results were not satisfactory, a user would change the 

default values based on the parameter setting guidance given in this thesis.  

It is worth mentioning that the number of initial parameters is 

comparatively less for the proposed optimizers (2 for the MBA and WCA). The 

difficulties for tuning the initial parameters are in their minimum level for both 

methods. 

5.2.  Unconstrained benchmark problems 

The proposed optimizers were implemented in MATLAB programming 

software and run on Pentium IV, 2500 GHz CPU having 4GB RAM. For 

validating of the proposed methods, the following criteria were considered in this 

chapter and the results are shown in tables and figures: 

 Comparing WCA and MBA with other optimizers with respect to the 

number of function evaluations (NFEs) and best function value. 

 Finding the global minimum among many local minima. 

In the following subsection, various standard unconstrained benchmark 

function minimization problems have been presented to demonstrate the efficiency 

and robustness of the proposed algorithms and the obtained results were compared 
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with the results obtained using other efficient optimizers. These examples include 

16 well-known unconstrained benchmark functions.  

The task of optimizing each of the test functions was executed in 50 

independent runs. Different number of iterations was used for different types of 

benchmark problems. All benchmark functions used in this chapter are given in 

Appendix A. 

5.2.1. NFEs and best function value criteria 

The number of function evaluations (NFEs) determine the speed 

(computational time) and the robustness of the algorithm (robustness means fast 

convergence rate and having the best solution quality). Less NFEs means spending 

less time to reach the global optimum. This feature returns back to the structure of 

the algorithm. The best solution represents the accuracy of the method. The NFEs 

and best solution are dependent on each other. The ideal situation is the less NFEs 

and more accurate solution.  

Table 5.1 presents specifications of seven benchmark functions. For 

benchmark functions in Table 5.1, the optimization process terminates when the 

difference between the maximum fitness obtained and the global optimum value is 

less than 0.1% of the optimum value, or less than 0.001, whichever is smaller. In 

case the optimum value is zero, the solution is accepted if it differs from the 

optimum value by less than 0.001 (Pham et al., 2006). 
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Table ‎5.1: Specifications of seven unconstrained benchmark functions presented in 

(Pham et al., 2006; Ahrari et al., 2010). “N” stands for the number of design 

variables. 

No. Functions N Interval 

1 De Jong 2 [-2.048,2.048]
N
 

2 Goldstein and Price I 2 [-2,2]
N
 

3 Branin 2 [-5,10]
N
 

4 Martin and Gaddy 2 [0,10]
N
 

5a Rosenbrock 2 [-1.2,1.2]
N
 

5b Rosenbrock 2 [-10,10]
N
 

5c Rosenbrock 4 [-1.2,1.2]
N
 

6 Hyper sphere 6 [-5.12,5.12]
N
 

7 Shaffer 2 [-100,100]
N
 

 

Figure 5.1 shows the surface plot and contour lines for seven benchmark 

functions given in Table 5.1. Tables 5.2 and 5.3 represent the values which were 

chosen for parameters used in the MBA and WCA, respectively. Tables 5.4 and 

5.5 show the statistical results including worst, mean, best solution, and standard 

deviation (SD) for seven unconstrained benchmark functions for the MBA and 

WCA, respectively. 
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Figure ‎5.1. Surface plot and contour lines for seven benchmark functions presented 

in Table 5.1: (a) De Jong, (b) Goldstein and Price I, (c) Branin, (d) Martin and 

Gaddy, (e) Rosenbrock, (f) Hyper Sphere, (g) Shaffer. 
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Table 5.2: Initial parameters used for optimization of seven unconstrained 

benchmark functions using the MBA presented in Table 5.1. 

No. Ns µ  Max_Iteration 

1 10 0 500 200 

2 10 0 500 100 

3 10 0 500 100 

4 5 0 500 50 

5a 5 0 500 100 

5b 10 0 500 500 

5c 50 3 500 400 

6 10 0 500 100 

7 50 0 1000 1000 

 

Table 5.3: User parameters used for optimization of seven unconstrained 

benchmark functions presented in Table 57.1 using the WCA. 

No. Ntotal Nsr dmax Max_Iteration 

1 10 3 0.01 200 

2 10 3 0.01 200 

3 10 3 0.01 100 

4 5 2 0.01 50 

5a 5 2 0.01 100 

5b 10 3 0.01 500 

5c 50 4 0.01 50000 

6 10 3 0.01 100 

7 50 4 0.01 1000 

 

Table 5.4: Statistical results of 50 independent runs for seven unconstrained 

benchmark functions in Table 5.1 using the MBA. 

No. Worst Mean Best SD Optimum  

1 3905.949023 3905.932168 3905.930000 4.45E-03 3905.93 

2 3.000126 3.000032 3.0000009 3.45E-05 3 

3 0.401670 0.397915 0.3977272 7.86E-04 0.3977272 

4 2.27E-03 7.62E-04 3.68E-05 6.37E-04 0 

5a 0.102756 0.011318 7.19E-08 2.41E-02 0 

5b 7.63E-01 4.68E-02 9.75E-07 0.163767 0 

5c1 7.599E-03 1.979E-03 1.21E-06 2.23E-03 0 

5c2 3.78E-02 2.89E-03 1.16E-06 9.22E-03 0 

6 4.093E-03 9.29E-04 1.34E-05 1.10E-03 0 

7 9.715E-03 7.383E-03 1.08E-10 4.234E-03 0 
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Table 5.5: Statistical results for seven unconstrained benchmark functions given in 

Table 5.1 using the WCA. 

No. Worst Mean Best SD Optimum  

1 3906.121239 3905.940137 3905.930000 3.82E-02 3905.93 

2 3.000968 3.000561 3.000020 2.55E-04 3 

3 0.398717 0.398272 0.397731 3.20E-04 0.397727 

4 0.000929 0.000416 0.000005 3.11E-04 0 

5a 0.014634 0.001345 0.000028 3.11E-03 0 

5b 0.000986 0.000432 0.000001 3.20E-04 0 

5c 0.000798 0.000212 0.000000 2.29E-04 0 

6 0.009223 0.000600 0.000000 1.81E-03 0 

7 0.009715 0.001167 0.000026 2.58E-03 0 

 

Tables 5.6 and 5.7 present the results obtained by proposed optimizers and 

those using deterministic Simplex method (SIMPSA), Stochastic Simulated 

Annealing optimization procedure (NE-SIMPSA), Genetic Algorithm (GA), Ant 

Colony System (ACS), Artificial Bees Colony (ABC) (Pham et al., 2006), and 

Grenade Explosion Method (GEM) (Ahrari & Aatai, 2010). Optimization results 

for all optimizers except the WCA and MBA were directly driven from (Ahrari & 

Aatai, 2010; Pham et al., 2006; Ahrari et al., 2010).  

The best NFEs in each case has been highlighted in bold as shown in Table 

5.7. From Tables 5.6 and 5.7, MNFEs stands for mean number of function 

evaluations and the Success criterion is in percentage. 



71 

 

Table ‎5.6: Comparison of results for optimization of seven unconstrained 

benchmark functions presented in Table 5.1. “N/A” means not available. 

 

No. 

SIMPSA NE-SIMPSA GA ACS 

Succ. MNFEs Succ. MNFEs Succ. MNFEs Succ. MNFEs 

1 N/A N/A N/A N/A 100 10,160 100 6000 

2 N/A N/A N/A N/A 100 5662 100 5330 

3 N/A N/A N/A N/A 100 7325 100 1936 

4 N/A N/A N/A N/A 100 2488 100 1688 

5a 100 10,780 100 4508 100 10,212 100 6842 

5b 100 12,500 100 5007 N/A N/A 100 7505 

5c 99 21,177 94 3053 N/A N/A 100 8471 

6 N/A N/A N/A N/A 100 15,468 100 22,050 

7 N/A N/A N/A N/A N/A N/A N/A N/A 

 

Table ‎5.7: Comparison of results for optimization of seven unconstrained 

benchmark functions presented in Table 5.1. 

No. 
ABC GEM WCA MBA 

Succ. MNFEs Succ. MNFEs Succ. MNFEs Succ. MNFEs 

1 100 868 100 746 100 684 100 620 

2 100 999 100 701 100 980 100 440 

3 100 1657 100 689 100 377 100 430 

4 100 526 100 258 100 57 100 100 

5a 100 631 100 572 100 174 100 245 

5b 100 2306 100 2289 100 623 100 830 

5c 100 28,529 100 82,188 100 266 100 3700 

6 100 7113 100 423 100 101 100 370 

7 100 8456 100 9481 100 8942 100 6950 

 

The comparison of results shown in Tables 5.6 and 5.7 reveals that the 

WCA and MBA have found the global minimum with the desired accuracy faster 

than (Less NFEs) other optimization engines. This superiority is more evident for 

functions 3 to 6. By observing Tables 5.6 and 5.7, only the MBA and WCA can 

compete with each other in terms of NFEs. 

Also, Learning Algorithm (LA) given in (Zhao et al., 2009) solved function 

7 in Table 5.6 using 19,532 function evaluations for 16-digit accuracy, while the 

WCA solved the same problem for 17-digit accuracy using 11,550 function 

evaluations. 
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One of the advantages of the proposed optimizers is that the function values 

are reduced to near optimum point in the early iterations. This may be due to the 

searching criteria and approaches of WCA and MBA where it searches a wide 

region of problem domain and quickly focuses on the near optimum solutions. In 

the following subsections in this chapter, this advantage is shown in higher 

dimensions for benchmark functions (see Figure 5.2). 

Another comparison is presented to show the superiority of the proposed 

algorithms. Table 5.8 shows the specification of seven other unconstrained 

benchmark functions that were optimized using the HS (Lee & Geem, 2005).  

The user parameters which are used for initialization of the proposed WCA 

and MBA are given in Tables 5.9 and 5.10, respectively. The statistical 

optimization results for the seven unconstrained benchmark functions from Table 

5.8 including the worst, mean, best solutions, and SD are summarized in Tables 

5.11 and 5.12 for both proposed WCA and MBA, respectively. 

 

Table ‎5.8: Specification of seven unconstrained benchmark functions presented in 

(Lee & Geem, 2005). 

No. Functions Interval N 

1 Rosenbrock [-10,10]
N
 2 

2 Goldstein and Price I  [-5,5]
N
 2 

3 Goldstein and Price II [-5,5]
N
 2 

4 Six Hump Camel Back [-10,10]
N
 2 

5 Easton and Fenton [0,10]
N
 2 

6 Wood [-5,5]
N
 4 

7 Powell Quartic [-5,5]
N
 4 
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Table ‎5.9: User parameters for the WCA for seven benchmark functions given in 

Table 5.8. 

No. Ntotal Nsr dmax Max_Iteration 

1 
20 4 1E-16 1000 

20 4 1E-03 1000 

2 10 3 1E-03 300 

3 50 4 1E-03 1000 

4 15 3 1E-03 500 

5 10 3 1E-03 100 

6 
50 4 1E-16 500 

50 4 1E-03 1000 

7 
50 4 1E-16 500 

50 4 1E-03 1000 

 

Table ‎5.10: Initial parameters used for optimization of seven unconstrained 

benchmark functions using the MBA presented in Table 5.8. 

No. Ns µ  Max_Iteration 

1 10 3 500 1000 

2 10 0 500 300 

3 50 3 1000 1000 

4 15 0 500 500 

5 10 0 500 100 

6 50 3 1000 1000 

7 50 5 1000 5000 

 

Table ‎5.11: Statistical optimization results for seven unconstrained benchmark 

functions presented in Table 5.8 using the WCA. 

No. Worst Mean Best SD Optimum 

1 
1.12E-01 7.60E-03 0 2.54E-02 0 

4.78E-09 9.54E-10 4.52E-11 1.06E-09 0 

2 3.0000 3.0000 3.0000 9.81E-07 3 

3 1.1291 1.0118 1.0000 0.0360 1 

4 -1.0316 -1.0316 -1.0316 1.38E-08 -1.0316285 

5 1.7441 1.7441 1.7441 1.96E-06 1.74 

6 
8.13E-18 3.25E-19 0 1.62E-18 0 

3.81E-05 1.58E-06 1.30E-10 7.60E-06 0 

7 
1.41E-11 5.67E-13 4.63E-38 2.83E-12 0 

2.87E-09 6.09E-10 1.12E-11 8.29E-10 0 
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Table ‎5.12: Statistical optimization results of 50 independent runs for seven 

unconstrained benchmark functions given in Table 5.8 using the MBA. 

No. Worst Mean Best SD Optimum  

1 (µ=0) 1.15E-12 4.60E-14 9.79E-27 2.30E-13 0 

1 (µ =3) 5.91E-07 5.11E-08 3.60E-14 1.37E-07 0 

2 2.999999 2.999999 2.999999 2.60E-12 3 

3 (µ =0) 1.037497 1.006012 1.0000002 1.3E-02 1 

3 (µ =3) 1.037497 1.010548 1.0000000 1.71E-02 1 

4 -1.03162845 -1.03162845 -1.03162845 0 -1.0316285 

5 1.744675 1.744180 1.744152 1.07E-04 1.74 

6 (µ =0) 2.53E-02 3.86E-03 6.30E-06 6.16E-03 0 

6 (µ =3) 1.04E-02 1.17E-03 6.37E-07 2.24E-03 0 

7 (µ =0) 1.12E-04 7.11E-05 1.27E-07 3.25E-05 0 

7 (µ =3) 1.05E-04 5.88E-06 1.56E-11 2.07E-05 0 

 

Table 5.13 demonstrates the results of optimization in terms of the NFEs 

and best function value. For all benchmark functions given in Table 5.13, the 

WCA and MBA shows their superiority over the HS in terms of function 

evaluations (convergence rate) and best obtained solution (accuracy). 

Table ‎5.13: Comparison of results for the optimization of seven unconstrained 

benchmark functions presented in Table 5.8. 

No. 
HS WCA MBA 

Best Solution NFEs Best Solution NFEs Best solution NFEs 

1 5.68E-10 50,000 0 820 3.60E-14 1660 

2 3.0000 40,000 3.0000 2400 2.9999 1190 

3 1.0000 45,000 1.0000 47,500 1.0000 8700 

4 -1.0316 4870 -1.0316 3105 -1.0316 1905 

5 1.7441 800 1.7441 650 1.7441 480 

6 4.85E-09 70,000 0 1700 6.37E-07 8500 

7 1.25E-11 100,000 4.63E-38  16,750 1.56E-11 18,600 

 

5.2.2. Finding the global minimum among many local minima 

A special ability of proposed optimizers is finding the global minimum of 

functions having many local minima without being trapped in local minima. In 

Subsection 5.1.1 in this chapter, the results showed this ability for the WCA and 

MBA. For further clarify of this feature, six well-known unconstrained benchmark 

functions are optimized using the proposed methods.  
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The multimodal functions considered are the Schwefel function, Ackley 

function, Rastrigin function, Sphere function, Rosenbrock function, and Zakharov 

function having 30 independent variables from (Mariani et al., 2011). Table 5.14 

presents the specifications of these benchmark functions. 

Table ‎5.14: Specifications of six unconstrained benchmark functions presented in 

(Ahrari & Aatai, 2010; Mariani et al., 2011).  

No. Functions N Interval 

1 Schwefel 30 [-500,500]
N
 

2 Ackley 30 [-32,32]
N 

3 Rastrigin 30 [-5.12,5.12]
N
 

4 Sphere 30 [-5.12,5.12]
N
 

5 Rosenbrock 30 [-30,30]
N
 

6 Zakharov 30 [-10,10]
N
 

 

Functions 1 to 6 are high-dimensional problems. The Schwefel, Ackley, 

Rastrigin, and Rosenbrock functions are multimodal (various optima) functions 

where the number of local minima increases exponentially with the problem 

dimension. They appear to be the most difficult class of problems for many 

optimization algorithms. It is important to mention that the Rosenbrock function 

can be treated as a multimodal problem (Shang & Qiu, 2006).  

Rosenbrock function has a narrow parabolic-shaped deep valley from the 

perceived local optima to the global optimum. To find the valley is trivial, but to 

achieve convergence to the global minimum is a difficult task. The Sphere and 

Zakharov functions are unimodal (one optimum).  

In order to show the complexity and difficulty of mentioned benchmark 

functions, Figure 5.2 is given for representing these functions having only 2 

independent variables. As shown in Figure 5.2, the global minimum is surrounded 

among many local minima, even for the two-dimensional mode (see Figures 5.2a, 

5.2b, and 5.2c). 
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Figure ‎5.2. Mesh plot and contour lines for six unconstrained benchmark functions 

in 2 dimensions presented in Table 9: (a) Schwefel, (b) Ackley, (c) Rastrigin, 

(d) Hyper Sphere, (e) Rosenbrock, (f) Zakharov. 

The performance of the proposed methods were compared with Genetic 

Algorithm with Floating-point representation (GAF), Shuffled Complex Evolution 

algorithm (SCE-UA), Modified Shuffled Complex Evolution algorithm (MSCE) 

(Mariani et al., 2011), Differential Evolution (DE), Gregarious Particle Swarm 

Optimizer (GPSO), and Synchronous Bacterial Foraging Optimization (SBFO) 

(Bakwad et al., 2010).  

The number of function evaluations was chosen as a criterion for measuring 

computational cost instead of number of iterations and CPU time. Table 5.15 

provides selected initial parameters used in the MBA for optimization of functions 

given in Table 5.14. 
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Table ‎5.15: User parameters for optimization of benchmark functions presented in 

Table 5.14 using the MBA. 

No. Ns
 

µ  Max_Iteration 

1 50 10 10000 1000 

2 50 10 1000 2000 

3 50 10 10000 500 

4 50 10 10000 5000 

5 50 10 5000 1000 

6 50 10 5000 1000 

 

Similarly for the WCA, the number of rivers (Nsr), total number of 

raindrops (Ntotal), dmax, and number of maximum iterations for test functions in 

Table 5.14 were 4, 50, 1E-16, and 500, respectively. Tables 5.16 and 5.17 show 

the statistical optimization results including the worst, mean, best solution, SD, and 

NFEs for each benchmark function for the WCA and MBA, respectively. 

Table ‎5.16: Statistical optimization results of WCA for six benchmark functions 

given in Table 5.14. 

No. Worst  Mean   Best      SD NFEs 

1 3.87E-4 3.82E-4 3.81E-4 1.05E-6 3050 

2 4.44E-15 1.03E-15 8.88E-16 7.10E-16 1900 

3 4.99E-6 2.00E-7 2.21E-12 9.99E-7 20,350 

4 1.05E-17 8.44E-19 2.68E-37 2.92E-18 8000 

5 1.75E-4 7.00E-6 3.01E-14 3.50E-5 18,150 

6 4.64E-11 1.93E-12 2.26E-36 9.48E-12 17,750 

 

 

Table ‎5.17: Statistical optimization results of MBA for six unconstrained 

benchmark functions presented in Table 5.14. 

No. Worst  Mean   Best      SD NFEs 

1 7.71E-05 7.69E-05 7.63E-05 5.17E-08 7800 

2 2.21E-13 4.52E-14 2.22E-14 3.89E-14 48,800 

3 3.58E-04 2.67E-05 1.49E-08 5.88E-01 5900 

4 1.21E-14 6.59E-16 4.70E-21 2.52E-15 33,950 

5 1.75E-02 2.01E-03 1.10E-07 9.80E-01 9300 

6 1.44E-02 1.24E-03 1.13E-08 3.11E-03 9600 
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Tables 5.18, 5.19, and 5.20 represent the statistical optimization results of 

GAF, SCE-UA, and MSCE for optimization of six unconstrained functions given 

in Table 5.14, respectively. The WCA and MBA shows their superiority over other 

considered algorithms in terms of the NFEs for all reported functions.  

Table 5.18: Statistical optimization results for the GAF from (Mariani et al., 2011). 

No. Worst Mean Best SD NFEs 

1 6219.6 5434.8 3987.9 552.3 120,000 

2 3.1669 1.8585 0.1209 0.6483 120,000 

3 1.9902 0.2655 2.13E-13 0.5183 120,000 

4 2.294E-4 4.831E-5 9.56E-11 4.292E-5 120,000 

5 23.0082 51.7613 27.7946 50.6304 120,000 

6 52.8072 30.9811 13.7928 10.5527 120,000 

 

Table ‎5.19: Statistical optimization results for the SCE-UA from (Mariani et al., 

2011). 

No. Worst Mean Best SD NFEs 

1 8594.3853 8042.6031 7394.4199 288.5129 120,000 

2 1.6462 0.1068 1.663E-04 0.3407 120,000 

3 3.9798 1.5588 5.513E-09 1.1294 120,000 

4 5.972E-11 5.92E-12 3.489E-16 1.212E-11 120,000 

5 28.2745 27.0576 25.3911 0.6330 120,000 

6 0.0393 0.0116 2.603E-04 0.0112 120,000 

 

 

Table ‎5.20: Statistical optimization results for the MSCE from (Mariani et al., 

2011). 

No. Worst Mean Best SD NFEs 

1 6.1420 1.5598 0.1072 1.4026 120,000 

2 8.882E-16 8.882E-16 8.882E-16 1E-15 120,000 

3 3.9095 1.5270 5.321E-09 1.1216 120,000 

4 0 0 0 0 120,000 

5 25.9221 23.4675 20.3137 1.2133 120,000 

6 0 0 0 0 120,000 

 

The MSCE used 120,000 function evaluations to found the global optimum 

point for functions 4 and 6 with standard deviation equal to zero, while the WCA 

reached its optimal point with 37-digit and 36-digit accuracies, respectively. 
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Meanwhile, for functions 4 and 6, the NFEs for WCA are 8000 and 17750, 

respectively. 

Hence, as can be seen in Tables 5.16 to 5.20, the proposed optimizers can 

find the optimum point faster than reported methods compared in this study with 

good accuracy. The only method that can compete with the WCA and MBA in 

terms of function value for some functions is the MSCE. 

Furthermore, the MBA and WCA were also compared with the DE, GPSO, 

and SBFO (Bakwad et al., 2010). The obtained results were compared with respect 

to the best solution and the NFEs. Table 5.21 shows the comparison of 

optimization results for the proposed methods against other algorithms for a 

number of benchmark functions presented in Table 5.14.  

Table ‎5.21: Comparison of optimization results for four benchmark functions 

given in Table 5.14. “ANFEs” stands for average number of function 

evaluations. 

No. SBFO GPSO DE WCA MBA 

Best ANFEs Best ANFEs Best ANFEs Best ANFEs Best ANFEs 

2 5.18E-04 100,000 3.70E-02 200,000 8E-04 200,000 8.88E-16 13,217 1.09E-06 31,375 

3 4.68E-04 100,000 0.13 200,000 27.43 200,000 2.21E-12 10,425 1.49E-08 6350 

4 4.68E-04 100,000 6.60E-02 200,000 3.50E-03 200,000 2.68E-37 3334 4.70E-21 22,350 
5 27.6329 100,000 2.46 200,000 34.35 200,000 3.01E-14 9600 1.10E-07 9875 

 

By observing Table 5.21, all methods except the WCA and MBA are given 

from literature (Bakwad et al., 2010). As shown in Table 5.21, the WCA and MBA 

outperformed other reported optimizers in terms of NFEs and best function value. 

In general, for nearly all comparative functions, the proposed algorithms show the 

advantage of less number of function evaluation and acceptable function value 

accuracy. 

As mention in Subsection 5.1, one of the advantages of the WCA and MBA 

is that the function values are reduced to near optimum point quickly in the early 

iteration. Figure 5.3 illustrates the function values with respect to the number of 
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iterations for six benchmark functions presented in Table 5.14. For all six 

benchmark functions the first 100 iterations are depicted to show the fast 

convergence of WCA more clearly. 

 

Figure ‎5.3. Function values versus the number of iterations for six benchmark 

functions in Table 5.14 using the WCA: (a) Schwefel, (b) Ackley, (c) 

Rastrigin, (d) Hyper Sphere, (e) Rosenbrock, (f) Zakharov (Vertical and 

horizontal axes are function values and number of iterations, respectively). 
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5.3. Constrained and engineering benchmark problems 

In this subsection, the performance of the proposed optimizers is tested by 

solving several constrained and engineering optimization problems. In order to 

validate the proposed methods for constraint problems, first, two constrained 

benchmark problems have been applied and then, the performance of the WCA 

and MBA for five engineering design problems (widely used in literatures) was 

examined and the optimization results were compared with other optimization 

engines. 

The benchmark problems include the objective functions of various types 

(quadratic, cubic, polynomial, and nonlinear functions) with various number of the 

design variables, different types, and number of inequality and equality constraints. 

The proposed algorithms were written in MATLAB programming software and 

simulations were run on a Pentium V 2.53 GHz with 4 GB RAM.  

The task of optimizing each of the test functions was executed using 50 

independent runs. The maximization problems were transformed into minimization 

ones as –f(x). For all benchmark problems, the initial parameters for the WCA, 

(Ntotal, Nsr, and dmax) were chosen as 50, 8, and, 1E-03, respectively. Similarly, for 

the MBA, the user parameters are given in Table 5.22 for considered constrained 

and engineering problems in this thesis. 

Table ‎5.22: User parameters used for the MBA for seven constrained and 

engineering problems. 

Problem Ns α µ Max iteration 

Constrained Problem 1 50 20000 5 1000 

Constrained Problem 2 50 5000 0 500 

Pressure vessel  50 50000 10 2000 

Spring design 50 5000 0 1000 

Welded beam  30 150,000 5 2000 

Speed reducer 50 500 10 500 

Rolling element bearing 50 5000 10 1000 
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Different iteration numbers were used for each benchmark function, with 

smaller iteration number for smaller number of design variables and moderate 

functions, while larger iteration number for large number of desicion variables and 

complex problems. The mathematical formulations and their constraints for the 

mechanical engineering design problems and constrained benchmark functions are 

given in Appendix B. 

5.3.1. Constrained problem 1 

This minimization function (see Appendix B.1) was previously solved 

using homomorphous mappings (HM) (Koziel & Michalewicz, 1999), adaptive 

segregational constraint handling evolutionary algorithm (ASCHEA) (Hamida & 

Schoenauer, 2002), stochastic ranking (SR) (Runarsson & Xin, 2000), cultural 

algorithms with evolutionary programming (CAEP) (Coello & Becerra, 2004), 

hybrid PSO (HPSO) (He & Wang, 2007), changing range genetic algorithm 

(CRGA) (Amirjanov, 2006), DE (Lampinen, 2002), cultured differential evolution 

(CULDE) (Becerra & Coello, 2006), PSO with differential evolution (PSO-DE), 

PSO (Liu et al., 2010), HS, simple multi-membered evolution strategy (SMES) 

(Montes & Coello, 2005), self adaptive penalty function (SAPF) (Tessema & Yen, 

2006), differential evolution with level comparison (DELC) (Wang & Li, 2010), 

differential evolution with dynamic stochastic selection (DEDS) (Zhang et al., 

2008), improved stochastic ranking (ISR) (Runarsson & Xin, 2005), hybrid 

evolutionary algorithm and adaptive constraint handling technique (HEAA) (Wang 

et al., 2009), and α constrained simplex method ( simplex) (Takahama & Sakai, 

2005). 

Table 5.23 compares the reported best solutions for the CULDE, HS, GA 

(Michalewicz, 1995), WCA, and MBA. The statistical results of different 

algorithms accompanied with the proposed methods are given in Table 5.24. By 
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observing Table 5.24, the WCA and MBA reached the optimal solution faster and 

more accurate than other algorithms in this research surpassing the WCA over 

MBA in terms of number of function evaluations. 

Table ‎5.23: Comparison of the best solution given by various algorithms for the 

constrained problem 1. 

D.V. CULDE HS GA WCA MBA Optimal 

X1 78.00 78.00 78.04 78.00 78.00 78.00000 

X2 33.00 33.00 33.00 33.00 33.00 33.00000 

X3 29.99 29.995 27.081 29.99 29.99 29.99526 

X4 45.00 45.00 45.00 45.00 44.99 45.00000 

X5 36.77 36.77 44.94 36.77 36.77 36.77581 

g1(X) 1.35E-08 4.34E-05 1.28 -1.96E-12 1.33E-08 -9.71E-04 

g2(X) -92.00 -92.00 -93.28 -91.99 -91.99 -92 

g3(X) -11.15 -11.15 -9.59 -11.19 -11.19 -1.11E+01 

g4(X) -8.84 -8.84 -10.40 -8.84 -8.84 -8.87 

g5(X) -4.99 -5.00 -4.99 -5.00 -4.99 -5 

g6(X) 4.12E-09 6.49E-05 1.91E-03 0.00 -3.06E-09 9.27E-09 

f(X) -30665.538 -30665.500 -31020.859 -30665.538 -30665.538 -30665.539 

 

 

Table ‎5.24: Comparison of statistical optimization results for several reported 

algorithms for the constrained problem 1. 

Methods Worst Mean Best SD NFEs 

HM -30645.9000 -30665.3000 -30664.500 N.A 1,400,000 

ASCHEA N.A -30665.5000 -30665.500 N.A 1,500,000 

SR -30665.5390 -30665.5390 -30665.5390 2E-05 88,200 

CAEP -30662.2000 -30662.5000 -30665.5000 9.3 50,020 

PSO -30252.3258 -30570.9286 -30663.8563 81 70,100 

HPSO -30665.5390 -30665.5390 -30665.5390 1.70E-06 81,000 

PSO-DE -30665.5387 -30665.5387 -30665.5387 8.30E-10 70,100 

CULDE -30665.5386 -30665.5386 -30665.5386 1E-07 100,100 

DE -30665.5090 -30665.5360 -30665.5390 5.067E-03 240,000 

HS N.A N.A -30665.5000 N.A 65,000 

CRGA -30660.3130 -30664.3980 -30665.5200 1.6 54,400 

SAPF -30656.4710 -30655.9220 -30665.4010 2.043 500,000 

SMES -30665.5390 -30665.5390 -30665.5390 0 240,000 

DELC -30665.5390 -30665.5390 -30665.5390 1.0E-11 50,000 

DEDS -30665.5390 -30665.5390 -30665.5390 2.70E-11 225,000 

HEAA -30665.5390 -30665.5390 -30665.5390 7.40E-12 200,000 

ISR -30665.5390 -30665.5390 -30665.5390 1.10E-11 192,000 

α Simplex -30665.5390 -30665.5390 -30665.5390 4.20E-11 305,343 

WCA -30665.4570 -30665.5270 -30665.5386 2.18E-02 18,850 

MBA -30665.3300 -30665.5182 -30665.5386 5.08E-02 41,750 
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5.3.2. Constrained problem 2 

For this maximization problem (see Appendix B.2) which is converted to 

the minimization problem, the feasible region of the search space consists of 729 

disjoint spheres. A point (x1, x2, x3) is feasible if and only if there exist p, q, r such 

that the inequality holds, as given in Appendix B (Zahara & Kao, 2009). 

For this problem, the optimum solution is X
*
= (5, 5, 5) with f(X

*
) = -1. This 

problem was previously solved using the HM, SR, CULDE, CAEP, HPSO, 

artificial bee colony (ABC) (Karaboga and Basturk, 2007), particle evolutionary 

swarm optimization (PESO) (Zavala et al., 2005), CDE (Huang et al., 2007), 

SMES, and teaching-learning-based optimization (TLBO) (Rao et al., 2011). 

The statistical optimization results of twelve optimizers including the MBA 

and WCA are shown in Table 5.25. From Table 5.25, although the best solution of 

the WCA and MBA is not as accurate as other considered algorithms, however, 

they reached the best solution considerably faster than other reported algorithms 

using 6100 and 14,950 number of function evaluations, respectively. 

Table ‎5.25: Comparison of optimization statistical results given by various 

algorithms for the constrained problem 2. 

Methods Worst Mean Best SD NFEs 

HM -0.991950 -0.999135 -0.999999 N.A 1,400,000 

SR -1 -1 -1 0 350,000 

CAEP -0.996375 -0.996375 -1 9.7E-03 50,020 

HPSO -1 -1 -1 1.6E-15 81,000 

CULDE -1 -1 -1 0 100,100 

SMES -1 -1 -1 0 240,000 

PESO -0.994 -0.998875 -1 N.A 350,000 

CDE -1 -1 -1 0 248,000 

ABC -1 -1 -1 0 240,000 

TLBO -1 -1 -1 0 50,000 

WCA -0.999998 -0.999999 -0.999999 2.51E-07 6100 

MBA -0.996539 -0.999147 -0.999813 5.44E-04 14,950 
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5.3.3. Pressure vessel design problem 

In pressure vessel design problem (see Appendix B.3), proposed by Kannan 

and Kramer (1994), the target is to minimize the total cost, including the cost of 

material, forming, and welding. A cylindrical vessel is capped at both ends by 

hemispherical heads as shown in Figure 5.4. 

 

Figure ‎5.4. Schematic view of pressure vessel problem. 

There are four design variables in this problem: Ts (x1, thickness of the 

shell), Th (x2, thickness of the head), R (x3, inner radius), and L (x4, length of the 

cylindrical section of the vessel). Among the four design variables, Ts and Th are 

expected to be integer multiples of 0.0625 in, and R and L are continuous design 

variables. 

Table 5.26 shows the comparisons of the best solution for both proposed 

optimizers and other compared methods. This problem has been solved previously 

using the GA based co-evolution model (GA1) (Coello, 2000a), GA through the 

use of dominance-based tour tournament selection (GA2) (Coello & Montes, 

2002), co-evolutionary PSO (CPSO) (Renato & Santos, 2006), HPSO, hybrid 

nelder-mead simplex search and particle swarm optimization (NM-PSO) (Zahara 

et al., 2009), Gaussian quantum-behaved PSO (G-QPSO), quantum-behaved PSO 

(QPSO) (Coelho, 2010), PSO, and co-evolutionary differential evolution (CDE) 

(Huang et al., 2007) and compared with the proposed WCA and MBA as given in 

Table 5.27. 
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Table ‎5.26: Comparison of the best solution obtained from various studies for the 

pressure vessel problem. 

D.V. CDE HPSO NM-PSO G-QPSO WCA MBA 

X1 0.8125 0.8125 0.8036 0.8125 0.7781 0.7802 

X2 0.4375 0.4375 0.3972 0.4375 0.3846 0.3856 

X3 42.0984 42.0984 41.6392 42.0984 40.3196 40.4292 

X4 176.6376 176.6366 182.4120 176.6372 -200.0000 198.4964 

g1(X) -6.67E-07 -8.80E-07 3.65E-05 -8.79E-07 -2.95E-11 0 

g2(X) -3.58E-02 -3.58E-02 3.79E-05 -3.58E-02 -7.15E-11 0 

g3(X) -3.705123 3.1226 -1.5914 -0.2179 -1.35E-06 -86.3645 

g4(X) -63.3623 -63.3634 -57.5879 -63.3628 -40.0000 -41.5035 

f(X) 6059.7340 6059.7143 5930.3137 6059.7208 5885.3327 5889.3216 

 

 

Table ‎5.27: Comparison of statistical results given by different optimizers for the 

pressure vessel problem. 

Methods Worst Mean Best SD NFEs 

GA1 6308.4970 6293.8432 6288.7445 7.4133 900,000 

GA2 6469.3220 6177.2533 6059.9463 130.9297 80,000 

CPSO 6363.8041 6147.1332 6061.0777 86.45 240,000 

HPSO 6288.6770 6099.9323 6059.7143 86.20 81,000 

NM-PSO 5960.0557 5946.7901 5930.3137 9.161 80,000 

G-QPSO 7544.4925 6440.3786 6059.7208 448.4711 8000 

QPSO 8017.2816 6440.3786 6059.7209 479.2671 8000 

PSO 14076.3240 8756.6803 6693.7212 1492.5670 8000 

CDE 6371.0455 6085.2303 6059.7340 43.0130 204,800 

WCA 7319.0197 6230.4247 5885.3711 338.7300 8000 

MBA 6392.5062 6200.64765 5889.3216 160.34 70,650 

 

As can be seen from Table 5.27, in terms of best solution and number of 

function evaluations the proposed WCA is superior to other optimizer, while the 

MBA has better statistical optimization results than the WCA. 

Considering the statistical and comparison results in Table 5.27, it can be 

concluded that the WCA is more efficient than the other optimization engines for 

the pressure vessel design problem, in this study. Figure 5.5 depicts the function 

values versus the number of iterations for the pressure vessel design problem using 

both proposed methods. 
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(a) 

 

(b) 

Figure ‎5.5. Function values versus number of iterations for the pressure vessel 

problem using: (a) WCA, (b) MBA. 

One of the advantages of the proposed methods that may be hardly seen in 

other metaheuristic algorithms is that the function values are reduced to near 

optimum point in the early iterations (see Figure 5.5). This may be due to the 

searching criteria and constraint handling approaches of WCA and MBA where it 

initially searches a wide region of problem domain and rapidly focuses on the 

optimum solution. 

5.3.4. Tension/compression spring design problem 

The tension/compression spring design problem (see Appendix B.4)  is 

described in Arora (1989) for which the objective is to minimize the weight (f(x)) 
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of a tension/compression spring (as shown in Figure 5.6) subject to constraints on 

minimum deflection, shear stress, surge frequency, limits on outside diameter and 

on design variables. The independent variables are the wire diameter d(x1), the 

mean coil diameter D(x2), and the number of active coils P(x3). 

 

Figure ‎5.6. Schematic view of tension/compression spring problem. 

The comparisons of the best solution among several reported algorithms are 

given in Table 5.28. This problem has been used as a benchmark problem for 

testing the efficiency of numerous optimization methods such as GA1, GA2, 

CAEP, CPSO, HPSO, NM-PSO, G-QPSO, QPSO, PSO-DE, PSO, DELC, DEDS, 

HEAA, society and civilization (SC) (Ray & Liew, 2003), DE, ABC, and (µ+λ)-

ES (Montes & Coello, 2005a). The obtained statistical results using the reported 

optimizers and the proposed WCA and MBA are given in Table 5.29. 

 

 

Table ‎5.28: Comparison of the best solution obtained from various algorithms for 

the tension/compression spring problem. 

D.V. DEDS HEAA NM-PSO DELC WCA MBA 

X1 0.051689 0.051689 0.051620 0.051689 0.051680 0.051656 

X2 0.356717 0.356729 0.355498 0.356717 0.356522 0.355940 

X3 11.288965 11.288293 11.333272 11.288965 11.300410 11.344665 

g1(X) 1.45E-09 3.96E-10 1.01E-03 -3.40E-09 -1.65E-13 0 

g2(X) -1.19E-09 -3.59E-10 9.94E-04 2.44E-09 -7.9E-14 0 

g3(X) -4.053785 -4.053808 -4.061859 -4.053785 -4.053399 -4.052248 

g4(X) -0.727728 -0.727720 -0.728588 -0.727728 -0.727864 -0.728268 

f(X) 0.012665 0.012665 0.012630 0.012665 0.012665 0.012665 
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Table ‎5.29: Comparisons of statistical optimization results obtained from various 

algorithms for the tension/compression spring problem. 

Methods Worst Mean Best SD NFEs 

GA1 0.012822 0.012769 0.012704 3.94E-05 900,000 

GA2 0.012973 0.012742 0.012681 5.90E-05 80,000 

CAEP 0.015116 0.013568 0.012721 8.42E-04 50,020 

CPSO 0.012924 0.012730 0.012674 5.20E-04 240,000 

HPSO 0.012719 0.012707 0.012665 1.58E-05 81,000 

NM-PSO 0.012633 0.012631 0.012630 8.47E-07 80,000 

G-QPSO 0.017759 0.013524 0.012665 0.001268 2000 

QPSO 0.018127 0.013854 0.012669 0.001341 2000 

PSO 0.071802 0.019555 0.012857 0.011662 2000 

DE 0.012790 0.012703 0.012670 2.7E-05 204,800 

DELC 0.012665 0.012665 0.012665 1.3E-07 20,000 

DEDS 0.012738 0.012669 0.012665 1.3E-05 24,000 

HEAA 0.012665 0.012665 0.012665 1.4E-09 24,000 

PSO-DE 0.012665 0.012665 0.012665 1.2E-08 24,950 

SC 0.016717 0.012922 0.012669 5.9E-04 25,167 

(µ+λ)-ES N.A 0.013165 0.012689 3.9E-04 30,000 

ABC N.A 0.012709 0.012665 0.012813 30,000 

WCA 0.015021 0.013013 0.012665 6.16E-04 2000 

MBA 0.012900 0.012713 0.012665 6.30E-05 7650 

 

The best function value is 0.012630 with 80,000 function evaluations 

obtained by the NM-PSO. In terms of the NFEs, both suggested methods have 

found their best solution in less number of function evaluations compared with the 

NM-PSO.  

From Table 5.29, two proposed methods show their superiority compared 

with other methods in terms of the number of function evaluations and obtained 

statistical results. Therefore, the MBA and WCA can identify optimum or very 

close to optimum solutions for the tension/compression spring design problem 

faster and/or more accurate than other reported optimizers mentioned in this 

research. 

Figure 5.7 demonstrates the function values with respect to the number of 

iterations for the tension/compression spring design problem for both proposed 

methods. From Figure 5.7a, in the early iterations of WCA, the initial population 
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of the algorithm was in the infeasible region. After further iterations, the 

population was adjusted to the feasible region and the function values were 

reduced at each iteration. 

 

(a) 

 

(b) 

Figure ‎5.7. Function values with respect to the number of iterations for the 

tension/compression spring problem using: (a) WCA, (b) MBA. 

The constraint violation values with respect to the number of iterations for 

the tension/compression spring problem are shown in Figure 5.8. From Figure 5.8, 

the obtained solutions did not satisfy the constraints in the early iterations. As the 

algorithm continued, the obtained results satisfied the constraints, while the value 

of constraint violation decreased. 
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Figure ‎5.8. Constraint violation values with respect to the number of iterations for 

tension/compression spring problem using the WCA. 

5.3.5. Welded beam design problem 

This design problem (see Appendix B.5), which has been often used as a 

benchmark problem, was proposed by Coello (2000a). In this problem, a welded 

beam is designed for minimum cost subject to constraints on shear stress (η), 

bending stress (ζ) in the beam, buckling load on the bar (Pb), end deflection of the 

beam (δ), and side constraints. There are four design variables as shown in Figure 

7.9: h(x1), l(x2), t(x3) and b(x4). 

 

Figure ‎5.9. Schematic view of welded beam problem. 
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The optimization engines previously applied to this problem such as GA1, 

GA2, CAEP, CPSO, HPSO, NM–PSO, hybrid genetic algorithm (HGA) (Yuan & 

Qian, 2010), modified GA (MGA) (Coello, 2000b), SC, and DE. The comparisons 

of the best solutions given by different algorithms are presented in Table 5.30. 

Furthermore, the comparison of the statistical optimization results for several 

algorithms is given in Table 5.31. 

Table ‎5.30: Comparison of the best solution obtained from various algorithms for 

the welded beam problem. 

D.V. CPSO CAEP HGA NM-PSO WCA MBA 

X1(h) 0.202369 0.205700 0.2057 0.20583 0.205728 0.205729 

X2(l) 3.544214 3.470500 3.4705 3.468338 3.470522 3.470493 

X3(t) 9.048210 9.036600 9.0366 9.036624 9.036620 9.036626 

X4(b) 0.205723 0.205700 0.2057 0.20573 0.205729 0.205729 

g1(X) -13.655547 1.988676 1.988676 -0.02525 -0.034128 -0.001614 

g2(X) -78.814077 4.481548 4.481548 -0.053122 -3.49E-05 -0.016911 

g3(X) -3.35E-03 0 0 0.0001 -1.19E-06 -2.40E-07 

g4(X) -3.424572 -3.433213 -3.433213 -3.433169 -3.432980 -3.432982 

g5(X) -0.077369 -0.080700 -0.080700 -0.08083 -0.080728 -0.080729 

g6(X) -0.235595 -0.235538 -0.235538 -0.235540 -0.235540 -0.235540 

g7(X) -4.472858 2.603347 2.603347 -0.031555 -0.013503 -0.001464 

f(X) 1.728024 1.724852 1.724852 1.724717 1.724856 1.724853 

 

Table ‎5.31: Comparison of the statistical results obtained from different 

optimization engines for the welded beam problem. 

Methods Worst Mean Best SD NFEs 

GA1 1.785835 1.771973 1.748309 1.12E-02 900,000 

GA2 1.993408 1.792654 1.728226 7.47E-02 80,000 

CAEP 3.179709 1.971809 1.724852 4.43E-01 50,020 

CPSO 1.782143 1.748831 1.728024 1.29E-02 240,000 

HPSO 1.814295 1.749040 1.724852 4.01E-02 81,000 

PSO-DE 1.724852 1.724852 1.724852 6.7E-16 66,600 

NM-PSO 1.733393 1.726373 1.724717 3.50E-03 80,000 

MGA 1.9950 1.9190 1.8245 5.37E-02 N.A 

SC 6.399678 3.002588 2.385434 9.6E-01 33,095 

DE 1.824105 1.768158 1.733461 2.21E-02 204,800 

WCA 1.744697 1.726427 1.724856 4.29E-03 46,450 

MBA 1.724853 1.724853 1.724853 6.94E-19 47,340 
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Among those previously reported studies, the best solution was obtained 

using the NM-PSO with an objective function value of f(x) = 1.724717 after 

80,000 function evaluations. Using the proposed WCA and MBA, the best solution 

of 1.724856 and 1.724853 was obtained using 46,450 and 47,340 number of 

function evaluations, respectively. 

The optimization statistical results obtained by the proposed methods 

outperformed the obtained results by other considered algorithms, except the NM-

PSO, in terms of cost value. However, the WCA and MBA could offer a 

competitive set of statistical results in less number of function evaluations than the 

NM-PSO method as shown in Table 5.31. Figure 5.10 illustrates the function 

values in terms of the number of iterations for the welded beam design problem 

using both suggested optimizers. 

 

(a) 

 

(b) 

Figure ‎5.10. Function values versus number of iterations for the welded beam 

problem using: (a) WCA, (b) MBA. 
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5.3.6. Speed reducer design problem  

In this constrained optimization problem (see Figure 5.11), the weight of 

speed reducer is to be minimized subject to constraints on bending stress of the 

gear teeth, surface stress, transverse deflections of the shafts, and stresses in the 

shafts (Montes & Coello, 2005a). The variables x1 to x7 represent the face width 

(b), module of teeth (m), number of teeth in the pinion (z), length of the first shaft 

between bearings (l1), length of the second shaft between bearings (l2), and the 

diameter of first (d1), and second shafts (d2), respectively.  

 

Figure ‎5.11. Speed reducer design problem. 

This is an example of a mixed integer programming problem. The third 

variable x3 (number of teeth) is of integer values, while all other variables are 

continuous. There are 11 constraints in this problem resulting in high complexity 

of the problem (Kuang et. al, 1998) (the solution reported in (Kuang et al., 1998) is 

infeasible). 

The comparison of best solution by previous methods is given in Table 

5.32. The statistical results of nine optimization methods including DELC, DEDS, 

PSO-DE, ABC, TLBO, modified differential evolution (MDE) (Montes et al., 

2006a; Montes et al., 2006b), SC, HEAA, and (µ+λ)-ES is compared with the 

proposed methods which is given in Table 5.33. 

 

 



95 

 

Table ‎5.32: Comparison of the best solution obtained using different optimizers for 

the speed reducer design problem. 

D.V DEDS DELC HEAA MDE WCA MBA 

X1 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 

X2 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 

X3 17 17 17.000 17.0000 17.000 17.0000 

X4 7.3333 7.3333 7.3004 7.3001 7.3000 7.3000 

X5 7.7153 7.7153 7.7153 7.8000 7.7153 7.7157 

X6 3.3502 3.3502 3.3502 3.3502 3.3502 3.3502 

X7 5.2866 5.2866 5.2866 5.2866 5.2866 5.2866 

f(X) 2994.47106 2994.47106 2994.49910 2996.35668 2994.47106 2994.48245 

 

Table ‎5.33: Comparison of statistical results using various algorithms for the speed 

reducer design problem. 

Method Worst Mean Best SD NFEs 

SC 3009.964736 3001.758264 2994.744241 4.0 54,456 

PSO-DE 2996.348204 2996.348174 2996.348167 6.4E-06 54,350 

DELC 2994.471066 2994.471066 2994.471066 1.9E-12 30,000 

DEDS 2994.471066 2994.471066 2994.471066 3.6E-12 30,000 

HEAA 2994.752311 2994.613368 2994.499107 7.0E-02 40,000 

MDE N.A 2996.367220 2996.356689 8.2E-03 24,000 

(µ+λ)-ES N.A 2996.348 2996.348 0 30,000 

ABC N.A 2997.058 2997.058 0 30,000 

TLBO N.A 2996.34817 2996.34817 0 10,000 

WCA 2994.505578 2994.474392 2994.471066 7.4E-03 15,150 

MBA 2999.652444 2996.769019 2994.482453 1.56 6300 

 

From Table 5.33, among the compared optimization algorithms, DELC, 

DEDS, and WCA have found the best solution so far. Although, MBA could not 

match the best solution obtained by DELC, DEDS, and WCA, however, it detected 

its best solution (second best solution) with considerably less NFEs as well as the 

WCA. Figure 5.12 depicts the reduction of function values versus the number of 

iterations for the speed reducer design problem using the MBA. 
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Figure ‎5.12. Function values versus number of iterations for the speed reducer 

problem using the MBA. 

5.3.7. Rolling element bearing design problem  

The objective of this problem is to maximize the dynamic load carrying 

capacity of a rolling element bearing, as demonstrated in Figure 5.13. This 

problem has 10 decision variables which are pitch diameter (Dm), ball diameter 

(Db), number of balls (Z), inner and outer raceway curvature coefficients (fi and fo), 

KDmin, KDmax, ε, e, and  (see Figure 5.13).  

 

Figure ‎5.13. Rolling element bearing design problem. 

The five latter variables only appear in constraints and indirectly affect the 

internal geometry. The number of balls (Z) is the discrete design variable and the 

remainder are continuous design variables. Constraints are imposed based on 

kinematic and manufacturing considerations.  
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The problem of the rolling element bearing was studied by GA (Gupta et 

al., 2007), ABC, and TLBO. Table 5.34 shows the comparison of the best solution 

for four optimizers in terms of design variables, function values, and constraints 

accuracy. The statistical optimization results for reported algorithms were 

compared in Table 5.35. 

Table ‎5.34: Comparison of the best solution obtained using four algorithms for the 

rolling element bearing problem. 

D.V GA TLBO WCA MBA 

X1 125.7171 125.7191 125.721167 125.7153 

X2 21.423 21.42559 21.423300 21.423300 

X3 11 11 11.001030 11.000 

X4 0.515 0.515 0.515000 0.515000 

X5 0.515 0.515 0.515000 0.515000 

X6 0.4159 0.424266 0.401514 0.488805 

X7 0.651 0.633948 0.659047 0.627829 

X8 0.300043 0.3 0.300032 0.300149 

X9 0.0223 0.068858 0.040045 0.097305 

X10 0.751 0.799498 0.600000 0.646095 

g(X1) -0.000821 0 0.000040 0 

g(X2) -13.732999 13.15257 14.740597 -8.630183 

g(X3) -2.724000 1.5252 3.286749 -1.101429 

g(X4) 3.606000 0.719056 3.423300 -2.040448 

g(X5) -0.717000 16.49544 0.721167 -0.715366 

g(X6) -4.857899 0 9.290112 -23.611002 

g(X7) -0.003050 0 0.000087 -0.000480 

g(X8) -0.000007 2.559363 0 0 

g(X9) -0.000007 0 0 0 

g(X10) -0.000005 0 0 0 

f(X) 81843.3 81859.74 85538.48 85535.9611 

 

Table 5.35: Comparison of statistical results using four optimizers for the rolling 

element bearing problem. 

Method Worst Mean Best SD NFEs 

GA N.A N.A 81843.3 N.A 225,000 

ABC 78897.81 81496 81859.7416 0.69 10,000 

TLBO 80807.8551 81438.987 81859.74 0.66 10,000 

WCA 83942.71 83847.16 85538.48 488.30 3950 

MBA 84440.1948 85321.4030 85535.9611 211.52 15,100 

 

 



98 

 

From Table 5.35, the proposed methods detected the best solution with 

considerable improvement over other optimizers in this study. In terms of 

statistical optimization results, the MBA and WCA offered better results with 

acceptable NFEs against other considered algorithms.  

Figure 5.14 compares the convergence rate for used optimizers. From 

Figure 5.14a it is seen that the convergence rate of ABC and TLBO is nearly same 

with a slightly higher mean searching capability for the TLBO. However, the 

MBA and WCA reached the best solution at 302 and 79 iterations, respectively, 

offering the best solution so far as shown in Figures 5.14b and 5.14c (see Table 

5.35). 

 

 

(c) 

Figure ‎5.14. Comparison of convergence rate for the rolling element bearing 

design problem using: (a) TLBO and ABC, (b) WCA, (c) MBA. 
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These overall engineering optimization results indicate that the proposed 

methods have the capability in handling various combinatorial optimization 

problems (COPs) and can offer optimum solutions (near or better than to the best-

known results) under lower computational efforts (measure as number of function 

evaluations). Therefore, it can be concluded that the MBA and WCA may be 

attractive alternative optimizers for constrained and engineering optimization 

challenging other metaheuristic methods. 

5.4. Truss Structures 

In this subsection, the MBA and WCA were tested in a number of discrete 

optimization benchmark problems. The examples include four well-known truss 

structures. The proposed MBA and WCA were implemented in MATLAB 

programming software and runs were performed on Pentium IV 2500 GHz CPU 

with 4 GB RAM. 

For all truss structures, number of population (Ntotal), number of rivers (Nsr), 

and dmax (maximum distance between sea and river) were chosen 50, 8, and 1e-5, 

respetivley, as user parameters for the WCA. Accordingly, for the MBA, the initial 

parameters were set to 50, 10, and 50,000 for population size, exploration factor 

(µ), and reduction constant (), respectively. 

Different iteration numbers were used for each structure, with smaller 

iteration number for smaller number of variables and larger values for large 

number of variables. The analysis of all trusses has been performed via the finite 

element method. 

The number of design variables for 25, 52, 72, and 200-bar is 8, 12, 16, and 

96, respectively. Similarly, the number of constraints for 25, 52, 72, and 200-bar is 

80, 144, 198, and 550, respectively.  
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Based on the dimensions of design variables and constraints, 25 

independent runs were performed for the 25-bar truss. However, due to high 

dimensionality of problems for 52, 72, and 200-bar and the high CPU time for 

computations, only 20, 15, and 15 independent runs were performed, respectively. 

5.4.1. 52-bar planar truss 

The 52-bar planar truss, shown in Figure 5.15, has been studied by Wu and 

Chow (1995), Lee et al. (2005), Li et al. (2009), and Kaveh and Talatahari 

(2009b). The material density and the modulus of elasticity are 7860 kg/m
3
 and 

E=2.07×10
5
 MPa, respectively.  

The stress limitation for each member of this structure is equal to ±180 

MPa. This truss has 12 design variables, since its members were divided into 12 

groups: (1) A1-A4, (2) A5-A10, (3) A11-A13, (4) A14-A17, (5) A18-A23, (6) A24-A26, 

(7) A27-A30, (8) A31-A36, (9) A37-A39, (10) A40-A43, (11) A44-A49, and (12) A50-A52. 

 

Figure ‎5.15. 52-bar planar truss. 

The discrete variables were selected using American institute of steel 

construction (AISC) data, which are shown in Table 5.36. Vertical loads were set 
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equal to Px=100 kN and Py=200 kN. In general, the problem has a variable 

dimensionality of 12 and constraint dimensionality of 144 (52 tension constraints, 

52 compression constraints, and 40 displacement constraints).  

A maximum number of 500 iterations was imposed. The statistical results 

of the 52-bar truss using the WCA include worst, mean, best solution, and standard 

deviation which are 1912.646, 1909.856, 1902.995, and 7.09, respectively. Also, 

the statistical results for the MBA in terms of worst, mean, best solution and 

standard deviation, namely, 1912.646, 1906.076, 1902.605 and 4.09, respectively. 

Table ‎5.36: Available cross-section areas of the AISC norm. 

No. in.
2
 mm

2
 No. in.

2
 mm

2
 

1 0.111 71.613 33 3.840 2477.414 

2 0.141 90.968 34 3.870 2496.769 

3 0.196 126.451 35 3.880 2503.221 

4 0.250 161.290 36 4.180 2696.769 

5 0.307 198.064 37 4.220 2722.575 

6 0.391 252.258 38 4.490 2896.768 

7 0.442 285.161 39 4.590 2961.284 

8 0.563 363.225 40 4.800 3096.768 

9 0.602 388.386 41 4.970 3206.445 

10 0.766 494.193 42 5.120 3303.219 

11 0.785 506.451 43 5.740 3703.218 

12 0.994 641.289 44 7.220 4658.055 

13 1.000 645.160 45 7.970 5141.925 

14 1.228 792.256 46 8.530 5503.215 

15 1.266 816.773 47 9.300 5999.988 

16 1.457 939.998 48 10.850 6999.986 

17 1.563 1008.385 49 11.500 7419.340 

18 1.620 1045.159 50 13.500 8709.660 

19 1.800 1161.288 51 13.900 8967.724 

20 1.990 1283.868 52 14.200 9161.272 

21 2.130 1374.191 53 15.500 9999.980 

22 2.380 1535.481 54 16.000 10322.560 

23 2.620 1690.319 55 16.900 10903.204 

24 2.630 1696.771 56 18.800 12129.008 

25 2.880 1858.061 57 19.900 12838.684 

26 2.930 1890.319 58 22.000 14193.520 

27 3.090 1993.544 59 22.900 14774.164 

28 3.130 2019.351 60 24.500 15806.420 

29 3.380 2180.641 61 26.500 17096.740 

30 3.470 2283.705 62 28.000 18064.480 

31 3.550 2290.318 63 30.000 19354.800 

32 3.630 2341.931 64 33.500 21612.860 
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The results obtained using the proposed methods for the 52-bar truss have 

been compared with the results of SGA (Wu & Chow, 1995), HS, DHPSACO 

(Kaveh & Talatahari, 2009b), PSO, PSOPC, and HPSO (Li et al., 2009) as shown 

in Table 5.37. The best optimal design is highlighted in bold in Table 5.37 and it is 

obvious that the MBA and WCA, both, obtained the better final design than other 

reported methods. 

Table ‎5.37: Comparison of results for the 52-bar truss obtained using various 

algorithms. 

Variables 

(mm2) 
SGA HS PSO PSOPC HPSO DHPSACO MBA WCA 

A1-A4 4658.05 4658.05 4658.05 5999.98 4658.05 4658.05 4658.05 4658.05 

A5-A10 1161.28 1161.28 1374.19 1008.38 1161.28 1161.28 1161.28 1161.28 

A11-A13 645.16 506.45 1858.06 2696.77 363.22 494.19 494.19 494.19 

A14-A17 3303.21 3303.21 3206.44 3206.44 3303.21 3303.21 3303.21 3303.21 

A18-A23 1045.15 940.00 1283.87 1161.29 940.00 1008.38 940.00 940.00 

A24-A26 494.19 494.19 252.26 729.03 494.19 285.16 494.19 494.19 

A27-A30 2477.41 2290.31 3303.22 2238.71 2238.70 2290.31 2283.70 2283.70 

A31-A36 1045.15 1008.38 1045.16 1008.38 1008.38 1008.38 1008.38 1008.38 

A37-A39 285.16 2290.31 126.45 494.19 388.38 388.38 494.19 494.19 

A40-A43 1696.77 1535.48 2341.93 1283.87 1283.86 1283.86 1283.86 1283.86 

A44-A49 1045.15 1045.15 1008.38 1161.29 1161.28 1161.28 1161.28 1161.28 

A50-A52 641.28 506.45 1045.16 494.19 729.25 506.45 494.19 494.19 

Weight 

(kg)  
1970.142 1906.76 2230.16 2146.63 1905.495 1904.83 1902.605 1902.605 

 

Figure 5.16 illustrates the comparison of convergence rates for the 52-bar 

truss for the PSO, PSOPC, HPSO, DHPSACO, MBA, and WCA. The WCA 

derived the best solutions at 140 iterations (7100 function evaluations as shown in 

Figure 5.16c), while MBA detected its best solution at 109 iterations (5450 

function evaluations as shown in Figure 5.16b).  

The DHPSACO and HPSO obtained the best solution, while are not as 

accurate as the results given by the proposed optimizers (MBA and WCA) at 222 

and almost 2100 iterations (11100 and almost 105,000 function evaluations), 

respectively (see Figure 5.16a). 
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Figure ‎5.16. Comparison of convergence rates for the 52-bar truss using: (a) 

DHPSACO (Kaveh & Talatahari, 2009b), (b) MBA, (c) WCA. 

In addition, the PSO and PSOPC did not reach the best solution after 3000 

iterations (150,000 number of function evaluations), as shown in Figure 5.16a. It is 
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worth to mention that Figures 5.16b and 5.16c represent the weight values for 500 

iterations. It is obvious that the MBA and WCA converged to their best optimal 

designs much faster than competing optimizers outperforming the MBA over 

WCA in terms of convergence rate and statistical results for the 52-bar truss. 

5.4.2. 25-bar spatial truss 

The next problem considers the weight minimization of a 25-bar 

transmission tower (as shown in Figure 5.17) which was studied by Wu and Chow 

(1995), Rajeev and Krishnamoorthy (1992), Ringertz (1988), Lee et al. (2005), Li 

et al. (2009), and Kaveh and Talatahari (2009b). The material density and the 

modulus of elasticity are 0.1 lb/in
3
 (0.0272 N/cm³) and E=10

4
 ksi (68947.57 MPa), 

respectively. 

The stress limitation for each member of this structure is equal to ±40,000 

psi (±275.79 MPa). The allowable displacement for each node in three directions is 

±0.35 in (±0.00889 m). In general, the problem has a variable dimensionality of 8 

and a constraint dimensionality of 80 (25 tension constraints, 25 compression 

constraints and 30 displacement constraints). 

 

Figure ‎5.17. 25-bar spatial truss. 

The cross-sectional areas of the 25 members were divided into 8 groups: 

(1) A1, (2) A2-A5, (3) A6-A9, (4) A10-A11, (5) A12-A13, (6) A14-A17, (7) A18-A21 and 
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(8) A22-A25. Three optimization cases have been examined: Case 1: the discrete 

variables are selected from the set D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4] 

(in
2
); Case 2: the discrete variables are selected from the set D = [0.01, 0.4, 0.8, 

1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6.0] (in
2
); Case 3: the design 

variables are selected from Table 5.36. The load cases applied to the 25-bar truss 

are described in Table 5.38. 

Table ‎5.38: Load cases for the 25-bar truss. 

 

Load cases 

 

Nodes 

Loads 

Px (kips) Py (kips) Pz (kips) 

1 1 1 -10 -10 

 2 0 -10 -10 

 3 0.5 0 0 

 6 0.6 0 0 

2 1 0 20 -5 

 2 0 -20 -5 

3 1 1 10 -5 

 2 0 10 -5 

 3 0.5 0 0 

 6 0.5 0 0 

 

A maximum number of 500 iterations was imposed for all cases. The 

obtained statistical results of the 25-bar truss structure for Case 1 include worst, 

mean, best solution, and SD which are 485.379, 484.874, 484.854, and 0.103, 

respectively, using the WCA.   

Similarly, the statistical results of the 25-bar truss for Case 1 for the MBA 

include worst, mean, best solution, and SD which are 485.048, 484.885, 484.854, 

and 7.2E-02, respectively. The best and mean numbers of function evaluations 

(NFEs) are 2100 and 9900, respectively, for the Case 1 using the WCA.  

The comparison of optimization results obtained using the SGA (Wu & 

Chow, 1995), GA (Rajeev & Krishnamoorthy, 1992), Ringertz (1988), HS (Lee et 

al., 2005), PSO, PSOPC, HPSO (Li et al., 2009), and DHPSACO (Kaveh & 
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Talatahari, 2009b) for the 25-bar truss structure (for all cases) is given in Tables 

5.39 to 5.41. 

 

Table ‎5.39: Comparison of optimization results obtained using various methods for 

the 25-bar truss for Case 1. 

Variables 

(in
2
) 

SGA GA HS PSO PSOPC HPSO MGA MBA WCA 

A1 0.1 0.1 0.1 0.4 0.1 0.1 0.1 0.1 0.1 

A2-A5 0.5 1.8 0.3 0.6 1.1 0.3 0.3 0.3 0.3 

A6-A9 3.4 2.3 3.4 3.5 3.1 3.4 3.4 3.4 3.4 

A10-A11 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A12-A13 1.5 0.1 2.1 1.7 2.1 2.1 2.1 2.1 2.1 

A14-A17 0.9 0.8 1 1 1 1 1 1 1 

A18-A21 0.6 1.8 0.5 0.3 0.1 0.5 0.5 0.5 0.5 

A22-A25 3.4 3 3.4 3.4 3.5 3.4 3.4 3.4 3.4 

Weight (lb) 486.29 546.01 484.85 486.54 490.16 484.85 484.85 484.85 484.85 

 

Table ‎5.40: Comparison of results obtained using various methods for the 25-bar 

truss for Case 2. 

Variables (in
2
) SGA Ringertz HS PSO PSOPC HPSO MBA WCA 

A1 0.4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

A2-A5 2 1.6 2 2 2 2 2 2 

A6-A9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 

A10-A11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

A12-A13 0.01 0.01 0.01 0.4 0.01 0.01 0.01 0.01 

A14-A17 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

A18-A21 2 2 2 1.6 1.6 1.6 1.6 1.6 

A22-A25 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 

Weight (lb) 563.52 568.69 560.59 566.44 560.59 560.59 560.59 560.59 

 

Table ‎5.41: Comparison of optimization results obtained using different methods 

for the 25-bar truss for Case 3. 

Variables 

(in
2
) 

SGA PSO PSOPC HPSO DHPSACO MBA WCA 

A1 0.307 1 0.111 0.111 0.111 0.111 0.111 

A2-A5 1.99 2.62 1.563 2.13 2.13 2.13 2.13 

A6-A9 3.13 2.62 3.38 2.88 2.88 2.88 2.88 

A10-A11 0.111 0.25 0.111 0.111 0.111 0.111 0.111 

A12-A13 0.141 0.307 0.111 0.111 0.111 0.111 0.111 

A14-A17 0.766 0.602 0.766 0.766 0.766 0.766 0.766 

A18-A21 1.62 1.457 1.99 1.62 1.62 1.62 1.62 

A22-A25 2.62 2.88 2.38 2.62 2.62 2.62 2.62 

Weight (lb) 556.43 567.49 556.9 551.14 551.14 551.14 551.14 
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By inspecting Table 5.39, it is evident that the WCA, similarly to the MBA, 

HS, MGA, and HPSO, reached the best solution. For Cases 2 and 3, most 

algorithms obtained the best solution as shown in Tables 5.40 and 5.41, 

respectively. The standard deviation of the WCA, similar to the MBA, for Case 2 

is zero, i.e., the worst, means and best solutions have the same values. 

The best and averaged NFEs of WCA are 850 and 1900, respectively, for 

the second case. Similarly, for the Case 3, the best and averaged NFEs are 1450 

and 12400, respectively, using the WCA. The gained statistical results of the WCA 

optimizer for the 25-bar truss for Case 3 include worst, mean, best solution and 

standard deviation which are 554.743, 552.010, 551.14, and 1.358, respectively. 

Similarly, the statistical results of the MBA optimizer for the 25-bar truss for Case 

3 are 554.067, 551.540, 551.14, and 0.987, respectively. 

Figure 5.18 shows the comparison of convergence rates of the 25-bar truss 

for the PSO, PSOPC, HPSO, and DHPSACO for all considered cases. The graph 

in Figures 5.19 and 5.20 depict the weight values (in lb) with respect to the number 

of iterations for the three cases for the WCA and MBA, respectively. In order to 

further clarify the convergence rate results, Figure 5.19a represents the weight 

values for 100 iterations. 
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Figure ‎5.18. Comparison of convergence rates for the 25-bar truss using PSO, 

PSOPC, HPSO, and DHPSACO (Kaveh & Talatahari, 2009b): (a) Case 1, (b) 

Case 2, (c) Case 3. 
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Figure ‎5.19. Weight (lb) evolution history for the 25-bar truss using WCA: (a) 

Case 1, (b) Case 2, (c) Case 3. 
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Figure ‎5.20. Weight (lb) evolution history for the 25-bar truss using MBA: (a) 

Case 1, (b) Case 2, (c) Case 3. 
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By observing Figures 5.18a, 5.19a, and 5.20a (Case 1), the WCA derived 

the best solution at 42 iterations (2100 function evaluations), while MBA and 

HPSO needed 43 and 75 iterations (2150 and 3750 function evaluations). In 

contrast, the PSO and PSOPC did not reach the best solution after 500 iterations as 

depicted in Figure 5.18a. 

From Figures 5.18b, 5.19b, and 5.20b (Case 2), the WCA obtained the best 

solution at 17 iterations (850 function evaluations), while the MBA, HPSO, and 

PSOPC reached their best solution at 19, less than 150, and 300 iterations (950, 

less than 7500, and 1500 function evaluations), respectively. The PSO did not find 

the best solution after 500 iterations compared to other algorithms as shown in 

Figure 5.18b. 

As it can be observed from Figures 5.18c, 5.19c, and 5.20c (Case 3), the 

WCA detected the best solution at 29 iterations (1450 function evaluations), while 

MBA, DHPSACO, and HPSO found their best solution at 48, less than 100, and at 

almost 200 iterations (2400, less than 5000, and at almost 10000 function 

evaluations), respectively. Conversely, the PSO and PSOPC did not find the best 

solution after 500 iterations, as shown in Figure 5.18c. In this problem, the WCA 

slightly outperformed MBA in terms of convergence rate (computational effort). 

5.4.3. 72-bar spatial truss 

The 72-bar spatial truss, shown in Figure 5.21, has been studied by Wu and 

Chow (1995), Lee et al. (2005), Kaveh and Talatahari (2009b), and Li et al. 

(2009). The material density is 0.1 lb/in
3
 and the modulus of elasticity is 10,000 

ksi. The members are subjected to stress limitations of ±25 ksi. 
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Figure ‎5.21. 72-bar spatial truss. 

The uppermost nodes are subjected to displacement limits of ±0.25 in both 

in x and y directions. Hence, the problem has a variable dimensionality of 16 and 

constraint dimensionality of 198 (72 tension constraints, 72 compression 

constraints, and 54 displacement constraints). Two load cases were considered as 

described in Table 5.42. 

Table ‎5.42: Load cases for the 72-bar spatial truss. 

Nodes Load case 1 Load case 2 

Px (kips) Py (kips) Pz (kips) Px (kips) Py (kips) Pz (kips) 

17 5 5 -5 0 0 -5 

18 0 0 0 0 0 -5 

19 0 0 0 0 0 -5 

20 0 0 0 0 0 -5 

 

The 72 members were divided into 16 groups as follows: (1) A1–A4, (2) 

A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30 (7) A31–A34, (8) A35– 

A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, (13) A55–A58, (14) 

A59–A66 (15) A67–A70, and (16) A71–A72. Two optimization cases have been 

studied: Case 1: the discrete variables are selected from the set D = [0.1, 0.2, 0.3, 
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0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 

2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1,3.2] (in
2
), Case 2: the discrete variables 

were selected from Table 5.36. For comparison with other algorithms, a maximum 

number of 1000 iterations was imposed. The comparison of obtained statistical 

optimization results using the WCA and MBA are preseneted in Table 5.43.  

Table ‎5.43: Comparison of statistical results using the WCA and MBA for the 72-

bar truss for Cases 1 and 2. 

Methods 
Best Solution Mean Solution Worst Solution SD 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

MBA 385.542 390.739 387.665 395.432 390.615 399.49 1.62 3.04 

WCA 385.542 389.334 385.842 389.941 386.80 393.778 0.55 1.43 

 

The minimum and averaged NFEs using the WCA for the Case 1 are 3200 

and 19750, respectively. Accordingly for the Case 2, the best and mean NFEs by 

WCA are 4600 and 26050, accordingly. Tables 5.44 and 5.45 show the 

comparisons of results obtained by the SGA, HS, PSO, PSOPC, HPSO, 

DHPSACO, MBA, and WCA for the 72-bar truss for Cases 1 and 2, respectively. 

Table ‎5.44: Comparison of the best results obtained using various methods for 

Case 1 for the 72-bar truss. 

Varibales 

(in
2
) 

SGA HS PSO PSOPC HPSO DHPSACO MBA WCA 

A1-A4 1.5 1.9 2.6 3.0 2.1 1.9 2.0 1.9 

A5-A12 0.7 0.5 1.5 1.4 0.6 0.5 0.6 0.5 

A13-A16 0.1 0.1 0.3 0.2 0.1 0.1 0.4 0.1 

A17-A18 0.1 0.1 0.1 0.1 0.1 0.1 0.6 0.1 

A19-A22 1.3 1.4 2.1 2.7 1.4 1.3 0.5 1.4 

A23-A30 0.5 0.6 1.5 1.9 0.5 0.5 0.5 0.5 

A31-A34 0.2 0.1 0.6 0.7 0.1 0.1 0.1 0.1 

A35-A36 0.1 0.1 0.3 0.8 0.1 0.1 0.1 0.1 

A37-A40 0.5 0.6 2.2 1.4 0.5 0.6 1.4 0.5 

A41-A48 0.5 0.5 1.9 1.2 0.5 0.5 0.5 0.5 

A49-A52 0.1 0.1 0.2 0.8 0.1 0.1 0.1 0.1 

A53-A54 0.2 0.1 0.9 0.1 0.1 0.1 0.1 0.1 

A55-A58 0.2 0.2 0.4 0.4 0.2 0.2 1.9 0.2 

A59-A66 0.5 0.5 1.9 1.9 0.5 0.6 0.5 0.6 

A67-A70 0.5 0.4 0.7 0.9 0.3 0.4 0.1 0.4 

A71-A72 0.7 0.6 1.6 1.3 0.7 0.6 0.1 0.6 

Weight 

(lb) 
400.66 387.94 1089.88 1069.79 388.94 385.54 385.54 385.54 
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Table ‎5.45: Comparison of the optimum results obtained using different optimizers 

for Case 2 for the 72-bar truss. 

Varibales 

(in
2
) 

SGA PSO PSOPC HPSO DHPSACO MBA WCA 

A1-A4 0.196 7.22 4.49 4.97 1.800 0.196 1.99 

A5-A12 0.602 1.80 1.457 1.228 0.442 0.563 0.442 

A13-A16 0.307 1.13 0.111 0.111 0.141 0.442 0.111 

A17-A18 0.766 0.196 0.111 0.111 0.111 0.602 0.111 

A19-A22 0.391 3.09 2.620 2.88 1.228 0.442 1.228 

A23-A30 0.391 0.785 1.130 1.457 0.563 0.442 0.563 

A31-A34 0.141 0.563 0.196 0.141 0.111 0.111 0.111 

A35-A36 0.111 0.785 0.111 0.111 0.111 0.111 0.111 

A37-A40 1.800 3.09 1.266 1.563 0.563 1.266 0.563 

A41-A48 0.602 1.228 1.457 1.228 0.563 0.563 0.563 

A49-A52 0.141 0.111 0.111 0.111 0.111 0.111 0.111 

A53-A54 0.307 0.563 0.111 0.196 0.250 0.111 0.111 

A55-A58 1.563 1.990 0.442 0.391 0.196 1.800 0.196 

A59-A66 0.766 1.620 1.457 1.457 0.563 0.602 0.563 

A67-A70 0.141 1.563 1.228 0.766 0.442 0.111 0.391 

A71-A72 0.111 1.266 1.457 1.563 0.563 0.111 0.563 

Weight 

(lb) 
427.20 1209.48 941.82 933.09 393.380 390.73 389.334 

 

By observing Table 5.44, the WCA, similarly to the DHPSACO and MBA, 

outperformed the rest of considered methods with respect to the best solution for 

the Case 1. Nevertheless, the design variables of the WCA were different from 

those of the DHPSACO and MBA.  

As shown in Table 5.45, the WCA is superior to the other reported 

algorithms with respect to the derived solutions for Case 2. The best obtained 

solution by WCA is highlited in bold in Table 7.45. Figures 7.22 to 7.24 depict the 

convergence rate of the 72-bar truss for the two cases obtained by Li et al. (2009) 

and WCA, and MBA, respectively. 
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Figure ‎5.22. Comparison of convergence rates for the 72-bar truss using PSO, 

PSOPC, and HPSO: (a) Case 1, (b) Case 2. 

 

 

Figure ‎5.23. Weight (lbs) evolution history for the 72-bar truss using the WCA: (a) 

Case 1, (b) Case 2. 
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Figure ‎5.24. Weight (lbs) evolution history for the 72-bar truss using the MBA: (a) 

Case 1, (b) Case 2. 

As it can be seen in Figures 5.22a, 5.23a, and 5.24a (Case 1), the WCA 

obtained the best solution at 64 iterations (3200 function evaluations), while the 

MBA, DHPSACO and HPSO found the best solution at 189, 213, and almost 250 

iterations (9450, 10650 and almost 12500 function evaluations), respectively. In 

contrast, the PSO and PSOPC, as shown in Figure 5.22a, did not get the best 

solution after 1000 iterations. 

From Figures 5.22b, 5.23b, and 5.24b for Case 2, the WCA obtained the 

best solution at 92 iterations (4600 function evaluations), while the MBA and 
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DHPSACO found the optimum (which is not as optimal as the WCA) at 232 and 

more than 250 iterations (11600 and more than 12500 function evaluations), 

respectively. 

Conversely, the HPSO, PSO, and PSOPC did not reach the best solution 

after 1000 iterations as shown in Figure 5.22b. For more clarification on the 

convergence rate results, Figures 5.23a and 5.23b present the weight evolution 

history only for 100 iterations. For the 72-bar truss, the WCA is superior to the 

MBA having faster convergence rate and high quality solutions. 

5.4.4. 200-bar truss 

Schematic view of 200-bar truss structure is shown in Figure 5.25. The 

200-bar truss is proposed and optimized under various types of constraints and 

several design variables. In this research, the elements of this truss are grouped 

into 96 sets (design variables) as given in Ghasemi et al. (1999). 

 

 

Figure ‎5.25. 200-bar planar truss. 
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The detail of grouping for the 200-bar truss is specified in Table 5.46. In 

terms of mechanical and material properties, modulus of elasticity of 30,000 ksi 

and density of material of 0.283 lb/in
3
 are considered for this truss structure. The 

acceptable displacement is restricted to 0.5 in and the permissible stress is set to 

±30 ksi. 

Table ‎5.46: Group membership for the 200-bar truss. 

No. Members No. Members No. Members No. Members 

1 1,4 25 46,52 49 102,114 73 146 
2 2,3 26 47,51 50 103,113 74 153,156 

3 5,17 27 48,50 51 104,112 75 154,155 

4 6,16 28 49 52 105,111 76 157,169 
5 7,15 29 57,58,61,62 53 106,110 77 158,168 

6 8,14 30 59,60 54 107,109 78 159,167 

7 9,13 31 64,76 55 108 79 160,166 
8 10,12 32 65,75 56 115,118 80 161,165 

9 11 33 66,74 57 116,117 81 162,164 

10 132,139,170,177,18,25,56,63 34 67,73 58 119,131 82 163 
11 19,20,23,24 35 68,72 59 120,130 83 171,172,175,176 

12 21,22 36 69,71 60 121,129 84 173,174 

13 26,38 37 70 61 122,128 85 178,190 
14 27,37 38 77,80 62 123,127 86 179,189 

15 28,36 39 78,79 63 124,126 87 180,188 

16 29,35 40 81,93 64 125 88 181,187 
17 30,34 41 82,92 65 133,134,137,138 89 182,186 

18 31,33 42 83,91 66 135,136 90 183,185 

19 32 43 84,90 67 140,152 91 184 
20 39,42 44 85,89 68 141,151 92 191,194 

21 40,41 45 86,88 69 142,150 93 192,193 

22 43,55 46 87 70 143,149 94 195,200 

23 44,54 47 95,96,99,100 71 144,148 95 196,199 

24 45,53 48 97,98 72 145,147 96 197,198 

 

The next is a list of 30 discrete values for decision variables implemented 

to solve this truss: A = [0.100, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.333, 

1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 

8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180, 23.680, 28.080, 33.700 in
2
]. 

The 200-bar truss is imposed to three various load cases which they are given as 

follows: Load case 1: 1 kip operating in the positive x direction at nodes 1, 6, 15, 

20, 29, 34, 43, 48, 57, 62, and 71. Load case 2: 10 kips imposing in the negative y 

direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 

28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57, 

58, 59, 60, 61, 62, 64, 66, 68, 70, 71,72, 73,74, and 75. For load Case 3: Cases 1 
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and 2 are mingled. In this research, similar to other researches, load Case 3 is 

considered. 

This benchmark problem was considered for optimization purposes using 

different methods such as modified GA (MGA) (Dede et al., 2011), GA (Ghasemi 

et al., 1999), evolution strategies (ES) (Cai & Thierauf, 1993). The WCA and 

MBA were applied for the optimization of the 200-bar truss and the obtained 

optimization results and comparisons are given. 

The optimum configurations and the best obtained weight found by the 

MBA and WCA are given in Tables 5.47 and 5.48, respectively. Table 5.49 

represents the comparisons of obtained statistical results (best, mean, worst, and 

SD) for the WCA and MBA. 

Table ‎5.47: Best optimum results obtained using the MBA for the 200-bar truss. 

No. Area (in
2
) No. Area (in

2
) No. Area (in

2
) No. Area (in

2
) 

1 0.347 25 2.697 49 7.192 73 9.3 

2 0.1 26 0.44 50 0.1 74 1.764 

3 5.952 27 0.347 51 2.697 75 1.333 

4 0.347 28 3.813 52 7.192 76 4.805 

5 0.1 29 0.1 53 0.347 77 4.805 

6 2.697 30 0.1 54 0.1 78 0.1 

7 0.347 31 6.572 55 7.192 79 13.33 

8 0.347 32 0.1 56 0.1 80 1.764 

9 2.697 33 2.142 57 0.1 81 0.539 

10 0.1 34 5.952 58 7.192 82 8.525 

11 0.1 35 0.1 59 0.1 83 0.1 

12 0.44 36 0.347 60 1.764 84 0.1 

13 4.805 37 7.192 61 10.85 85 3.813 

14 0.1 38 1.333 62 1.333 86 0.1 

15 0.539 39 0.347 63 0.1 87 5.952 

16 3.813 40 6.572 64 6.572 88 14.29 

17 0.1 41 2.142 65 0.539 89 0.954 

18 0.347 42 0.1 66 0.347 90 2.142 

19 8.525 43 7.192 67 8.525 91 10.85 

20 1.081 44 0.1 68 2.142 92 3.565 

21 1.174 45 0.44 69 0.347 93 1.488 

22 7.192 46 4.805 70 14.29 94 5.952 

23 1.488 47 0.1 71 0.44 95 19.18 

24 0.1 48 0.1 72 1.333 96 6.572 

Weight = 27532.95 lb (12488.73 Kg) 

Maximum Constraint Violation = -2.9048e-005 
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Table 5.48: Best configurations obtained by the WCA for the 200-bar truss. 

No. Area (in
2
) No. Area (in

2
) No. Area (in

2
) No. Area (in

2
) 

1 0.347 25 4.805 49 10.85 73 7.192 

2 0.347 26 0.1 50 0.1 74 0.1 

3 5.952 27 0.347 51 0.539 75 0.539 

4 0.1 28 7.192 52 5.952 76 13.33 

5 0.1 29 0.347 53 0.539 77 1.174 

6 2.697 30 0.1 54 0.539 78 0.44 

7 0.539 31 13.33 55 7.192 79 10.85 

8 0.954 32 0.1 56 0.1 80 1.333 

9 2.142 33 0.44 57 0.1 81 0.1 

10 0.1 34 8.525 58 14.29 82 9.30 

11 0.1 35 0.539 59 0.1 83 0.347 

12 0.1 36 0.347 60 0.1 84 0.954 

13 3.813 37 6.572 61 10.85 85 10.85 

14 0.44 38 0.1 62 0.1 86 0.347 

15 0.1 39 0.1 63 1.174 87 1.174 

16 4.805 40 8.525 64 7.192 88 7.192 

17 0.1 41 0.347 65 0.44 89 0.1 

18 0.539 42 0.44 66 0.954 90 2.697 

19 3.813 43 5.952 67 13.33 91 8.525 

20 0.347 44 1.488 68 0.954 92 7.192 

21 0.347 45 0.1 69 0.539 93 8.525 

22 13.33 46 10.85 70 9.3 94 10.85 

23 0.1 47 0.347 71 0.954 95 9.30 

24 0.1 48 0.347 72 0.347 96 9.30 

Weight = 29304.76 lb (13292.41 Kg) 

Maximum Constraint Violation = -3.1556e-04 

 

Table ‎5.49: Comparison of statistical results obtained using the WCA and MBA. 

Methods Best    Solution Mean Solution Worst Solution SD NFEs 

WCA 29,304.76 29,885.78 30,188.52 409.75 30,000 

MBA 27,532.95 28,667.09 29,742.63 312.68 30,000 

 

By observing Table 5.49, in this case, the MBA is superior to the WCA in 

terms of statistical results obtaining minimum weight and convergence rate (see 

Figure 5.27b). Using the similar information for this truss, Ghasemi et al. (1999) 

obtained the minimum weight of the 200-bar truss as 30,905 lb and 31,109 lb by 

GA2-800 and GA2-100, respectively.  

Cai and Thierauf (1993) has detected the minimum weight of the 200-bar 

truss as 31,014 lb. The weight obtained by Dede et al. (2011) is 30,868.45 lb. The 



121 

 

WCA has found its best solution of 29,304.76 lb, while the MBA has detected the 

minimum weight of 27,532.95 lb for the 200-bar truss structure. 

Figure 5.26 demonstrates the comparisons of convergence rate for 

considered methods. As shown in Figure 5.26a, the convergence is obtained 

around 612
th

 iteration (122,400 function evaluations) using the MGA. The MBA 

and WCA have converged to their best solutions faster and more accurate than the 

MGA after 600 iterations (30,000 function evaluations), as shown in Figure 5.26b. 

 

Figure ‎5.26. Comparisons of convergence rate for the 200-bar truss using: (a) GA 

(Dede et al., 2011), (b) WCA and MBA. 

From Figure 5.26b, the MBA (represented by blue line) is converged to its 

near optimum solution after almost 200 iterations, while the WCA (represented by 

green line) has reached the best configuration after almost 550 iterations. 

Interestingly, in terms of computational efforts, the number of population 
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(individuals) for the MBA and WCA was set to 50, while for the MGA the 

population size was taken 200.  

Population size of 150 were also chosen for the MBA and WCA, however, 

the optimization resulted were the same optimum solutions as of the 50 population. 

Hence, the MBA and WCA are capable of solving complex problems using 

smaller population size which results in less number of function evaluations 

(computational effort). 

By comparing the 72-bar truss (16 design variables and 198 constraints) 

and 200-bar truss (96 design variables and 550 constraints) problems, one may 

conclude that when the number of design variables and number of constraints 

increase, the MBA and WCA offer better efficiency, performance, and reliability 

in finding best optimal design compared with other considered algorithms needing 

less number of function evaluations and having fast convergence rate. 

In summary, the applications of the MBA and WCA were tested on several 

benchmark constrained and engineering design problems in this chapter. 

Comprehensive comparisons were carried out in order to have fair judgment about 

the performance and efficiency of the proposed optimizers. In general, for most 

considered problems, the MBA and WCA offered better statistical optimization 

results having less number of function evaluations (computational time) compared 

with other reported optimizers. 
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CHAPTER 6 : CONCLUSIONS 
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6.1. Conclusions 

In this thesis, two novel optimization engines introduced, the so-called 

mine blast algorithm (MBA) and water cycle algorithm (WCA). The fundamental 

concepts and ideas to formulate the MBA are derived from the explosion of mine 

bombs in real world. Accordingly, the fundamental concepts and ideas which 

underlie the WCA are inspired from nature and based on the water cycle process in 

real world.  

Thereafter, the WCA and MBA with embedded constraint handling 

approaches are proposed for solving a number of unconstrained, constrained 

benchmark optimization, engineering design problems, and truss structures (2D 

and 3D). The statistical optimization results based on the comparisons of the 

efficiency of the proposed optimizers against numerous other optimization 

methods, illustrate the attractiveness of the proposed methods for handling 

numerous types of constraints. 

The obtained optimization results show that the proposed algorithms 

generally offer better solutions than other optimizers considered in this thesis in 

addition to their efficiencies in terms of having less number of function evaluations 

(computational time) for almost every problem. In general, the WCA and MBA 

offer competitive solutions compared with other metaheuristic optimizers based on 

the reported and experimental results in this research.  

However, the computational efficiency and quality of solutions given by 

the WCA and MBA may depend on the nature and complexity of the underlined 

problem. This also applies to the performance of most metaheuristic methods. The 

proposed methods may be used for solving the real world optimization problems 

which require significant computational efforts efficiently with acceptable degree 

of accuracy for the solutions. 
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6.2. Future researches  

Although the proposed methods (MBA and WCA) at their present format 

show good potential to be used as a global optimization algorithm, they may be 

improved in terms of mathematical formulation. For instance, other mathematical 

modeling for the calculating the location of mine bombs, and the reduction of 

distance for shrapnel pieces (for the MBA) may be considered as future research. 

Furthermore, the effects of hybridization of MBA with WCA and/or other methods 

may also be investigated. 

In light of the needs of industry and the nature of real-life problems that are 

highly-dimensioned, the proposed optimizers can be applied to large-scale 

optimization and multi-objective problems. The objective of these problems may 

be the cost of consumed materials, the weight of highly-bar trusses, the layout of a 

factory from a high-dimensional point of view, and also other objectives which can 

be considered, simultaneously. 
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Appendix A: Mathematical formulations for unconstrained benchmark 

problems 

N: Number of design variables. 

Rastrigin function 
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Goldstein and Price I function 
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De Jong function 
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Powell Quartic function 
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Appendix B: Mathematical Formulations for constrained engineering 

problems 

B.1. Constrained problem 1 
3

3 1 5 1( ) 5.3578547 0.8356891 37.293239 40729.141f x x x x x     

subject to: 

1 2 5 1 4 3 5( ) 85.334407 0.0056858 0.0006262 0.0022053 92 0g x x x x x x x       

2 2 5 1 4 3 5( ) 85.334407 0.0056858 0.0006262 0.0022053 0g x x x x x x x       

2

3 2 5 1 2 3( ) 80.51249 0.0071317 0.0029955 0.0021813 110 0g x x x x x x       

2

4 2 5 1 2 3( ) 80.51249 0.0071317 0.0029955 0.0021813 90 0g x x x x x x        

5 3 5 1 3 3 4( ) 9.300961 0.0047026 0.0012547 0.0019085 25 0g x x x x x x x       

6 3 5 1 3 3 4( ) 9.300961 0.0047026 0.0012547 0.0019085 20 0g x x x x x x x        

178 102x   

233 45x   

27 45 3,4,5ix i    

B.2. Constrained problem 2 

2 2 2

1 2 3100 ( 5) ( 5) ( 5)
( )

100

x x x
f x

     
   

subject to: 

2 2 2

1 2 3( ) ( ) ( ) ( ) 0.0625 0g X x p x q x r         

0 10 1,2,3 , , , 1,2,3,...,9ix i p q r     

B.3. Pressure vessel design problem 

2 2 2

1 3 4 2 3 1 4 1 3( ) 0.6224 1.7781 3.1661 19.84f x x x x x x x x x x     

subject to: 

1 1( ) 0.0193 0g x x x     

2 2 3( ) 0.00954 0g x x x     
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2 3

3 3 4 3
4( ) 1,296,000 0

3
g x x x x       

4 4( ) 240 0g x x    

0 100 1,2ix i     

10 200 3,4ix i    

B.4. Tension/compression spring design problem 

2

3 2 1( ) ( 2)f x x x x   

subject to: 

3

2 3
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3 4 22
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   
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23
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140.45
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x
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x x
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2 1
4 ( ) 1 0

1.5
x x
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

    

10.05 2.00x    

20.25 1.30x 
 

32.00 15.00x 
 

B.5. Welded beam design problem 

2

1 2 3 4 2( ) 1.10471 0.04811 (14 )f x x x x x x    

subject to: 

1 max( ) ( ) 0g x x     

2 max( ) ( ) 0g x x   
 

3 1 4( ) 0g x x x    

2

4 1 3 4 2( ) 0.10471 0.04811 (14 ) 5 0g x x x x x    
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5 1( ) 0.125 0g x x  
 

6 max( ) ( ) 0g x x   
 

7 ( ) ( ) 0cg x P P x  
 

0.1 2 1,4ix i    

0.1 10 2,3ix i    

where, 
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R Jx x
                 

2 2
2 21 3 1 32 2 2

1 2( ) , ( ) , 2 2 ( )
2 4 2 12 2

x x x xx x x
M P L R J x x

    
       

   
 

2 6

3 4
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xPL PL E
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x x Ex x L L G
 
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6 66000 , 14 , 30 10 , 12 10P lb L in E psi G psi       

max max max13,600 , 30,000 , 0.25psi psi in      


