

DEVELOPMENT AND APPLICATIONS OF METAHEURISTIC

ALGORITHMS IN ENGINEERING DESIGN AND STRUCTURAL

OPTIMIZATION

ALI SADOLLAH

INSTITUTE OF GRADUATE STUDIES

UNIVERSITY OF MALAYA

KUALA LUMPUR

2013

ii

DEVELOPMENT AND APPLICATIONS OF METAHEURISTIC

ALGORITHMS IN ENGINEERING DESIGN AND STRUCTURAL

OPTIMIZATION

ALI SADOLLAH

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

FACULTY OF ENGINEERING

UNIVERSITY OF MALAYA

KUALA LUMPUR

2013

iii

ABSTRACT

Metaheuristic algorithms have been extensively used in numerous domains

especially in engineering. The reason is that for solving complex optimization

problems, classical and traditional techniques may not efficiently find global

optimum solution.

In this thesis, the applications of a number of well-known metaheuristic

algorithms for solving engineering problems have been considered. In addition,

two novel optimization methods are developed and presented which are named the

mine blast algorithm (MBA) and the water cycle algorithm (WCA).

The fundamental concepts and ideas for MBA are derived from the

explosion of mine bombs in real world. Accordingly, the ideas and philosophy of

WCA are inspired from water cycle process in the nature and how rivers and

streams flow to the sea in the real world. The efficiency of the proposed optimizers

was evaluated using numerous well-known unconstrained and constrained

benchmark functions which have been widely used in literature.

Optimization of several truss structures (2D and 3D) with discrete variables

were carried out using the proposed methods and the results and computational

performances were compared with several well-known metaheuristic algorithms.

The obtained optimization results shows that the proposed new metaheuristic

algorithms are capable of offering faster convergence rate in addition to offering

better optimal solutions compared to other optimizers. Furthermore, a comparative

study was carried out to show the effectiveness of the proposed algorithms over

other well-known methods in terms of computational time (speed) and function

values.

As an illustration of statistical optimization results, the MBA and WCA

offer minimum weight of 27,532.95 and 29,304.76, respectively, for the complex

iv

200-bar truss in less number of function evaluations (computational time)

compared with other optimizers in the literature.

v

ABSTRAK

Algoritma Metaheuristic telah digunakan secara meluas dalam pelbagai

domain terutamanya dalam bidang kejuruteraan. Sebabnya ialah bahawa untuk

menyelesaikan masalah pengoptimuman kompleks, teknik klasik dan tradisional

mungkin tidak cekap mencari penyelesaian optimum global. Dalam tesis ini,

aplikasi beberapa algoritma metaheuristic yang terkenal untuk menyelesaikan

masalah kejuruteraan telah dipertimbangkan.

Di samping itu, dua kaedah pengoptimuman novel dibangunkan dan

dibentangkan yang dinamakan algoritma letupan lombong (MBA) dan algoritma

kitaran air (WCA). Konsep-konsep asas dan idea untuk MBA berasal dari letupan

bom lombong dalam dunia sebenar.

Sehubungan dengan itu, idea-idea dan falsafah WCA diilhamkan daripada

proses kitaran air dalam sifat dan bagaimana sungai dan aliran sungai ke laut

dalam dunia sebenar. Kecekapan daripada pengoptimal yang dicadangkan telah

dinilai menggunakan banyak terkenal tidak dikekang dan dikekang fungsi penanda

aras yang telah digunakan secara meluas dalam kesusasteraan.

Pengoptimuman beberapa struktur kekuda (2D dan 3D) dengan

pembolehubah diskret telah dijalankan menggunakan kaedah yang dicadangkan

dan keputusan dan persembahan pengiraan berbanding dengan algoritma

metaheuristic beberapa terkenal. Keputusan pengoptimuman diperolehi

menunjukkan bahawa algoritma baru yang dicadangkan metaheuristic mampu

menawarkan kadar penumpuan yang lebih cepat di samping menawarkan

penyelesaian yang lebih baik yang optimum berbanding pengoptimal lain.

Sebagai wakil keputusan pengoptimuman statistik, MBA dan WCA

menawarkan berat badan sekurang-kurangnya 27,532.95 29,304.76 dan masing-

vi

masing, bagi kekuda 200-bar di nombor kurang daripada penilaian fungsi (masa

pengiraan) berbanding dengan pengoptimal lain dalam kesusasteraan.

vii

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Ali Sadollah I.C/Passport No.:

Registration/Matric No.: KHA100051

Name of Degree: PhD of Engineering

Title of Project Paper/ Research Report/ Dissertation/ Thesis:

Development and applications of metaheuristic algorithms in engineering design

and structural optimization

Field of Study: Computational intelligence (soft computing methods)

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work.

(2) This work is original.

(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purpose and any excerpt from, or reference to

or reproduction of any copyright work has been disclose expressly and

sufficiently and the title of the Work and its authorship have been

acknowledge in this Work.

(4) I do not have any actual knowledge nor ought I reasonably to know that the

making of this work constitutes an infringement of any copyright work.

(5) I hereby assign all and every rights in the copyright to this work to the

University of Malaya (Koizumi), who henceforth shall be owner of the

copyright in this work and that any written consent of UM having been

first had and obtained.

(6) I am fully aware that if in the course of making this work I have infringed

any copyright whether intentionally or otherwise, I am be subject to legal

action or any other action as may be determined by UM.

Candidate‟s Signature Date:

Subscribed and solemnly declared before,

Witness‟s Signature Date:

Name:

Designation:

viii

DECLARATION

Chapters 3 to 5 are based on my published papers as follows:

1. Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2012). Mine

blast algorithm for optimization of truss structures with discrete variables.

Computers & Structures, 102-103, 49-63.

2. Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water

cycle algorithm - a novel metaheuristic optimization method for solving

constrained engineering optimization problems. Computers & Structures,

110-111, 151-166.

3. Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2012). Mine

Bomb Algorithm: a new population based algorithm for solving

constrained engineering optimization problems. Applied Soft Computing,

DOI: http://dx.doi.org/10.1016/j.asoc.2012.11.026.

In these papers, my contribution was to develop and model new

optimization engines. In addition, coding and validation of the proposed methods

was also carried out.

Associate Professor Dr. Ardeshir Bahreininejad Signature:

Professor Dr. Mohd Hamdi Signature:

Hadi Eskandar Signature:

ix

ACKNOWLEDGEMENTS

The preparation of this work started with my birth. Everything I learned

since that day, contributed to this work. I certainly have had many teachers,

friends, and advisors who helped shaping my knowledge, skills, and attitudes. I

value and thank them all, especially my lovely parents who have given me all they

have, their life, and love.

My gratitude goes to Associate Prof. Dr. Ardeshir Bahreininejad, my major

supervisor. I thank him for his faith in me and for guiding me on the right track

toward a career in my research. I appreciate his open mindedness and vast

knowledge, which he always made available for me. He has been a very generous

source of knowledge and support, and a role model to follow. I appreciate his

tremendous enthusiasm in teaching, coaching, and helping me, and I hope I can

live up to his expectation in my scientific career. I certainly am lucky to have

learned computational intelligence and metaheuristics from one of the leading

pioneers in this field. I am also greatly indebted to all my committee members,

who gave me their knowledge, support, and resources. Special appreciation is due

to Prof. Dr. Mohd Hamdi Bin Abd Shukor and Associate Prof. Dr. Judha

Purbolaksono who have gone a long way beyond duty to support me in the

difficult times. At University of Malaya, I have had tremendous support and help,

without which this work would have never been possible. Furthermore, I would

like to acknowledge and express my gratitude to the Ministry of Higher Education

of Malaysia and the University of Malaya, Kuala Lumpur, Malaysia for the all

financial support under UM.TNC2/IPPP/UPGP/628/6/ER013/2011A. I am deeply

thankful to all the faculty, staff, and colleagues who helped me in every way they

could.

Finally, I wish to dedicate this thesis to my loving parents and family.

x

TABLE OF CONTENTS

ABSTRACT ... iii

ABSTRAK .. v

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS .. x

LIST OF TABLES .. xii

LIST OF FIGURES ... xv

CHAPTER 1 : INTRODUCTION ... 1

1.1. Introduction ... 2

1.1.1. Finding the best solution ... 2

1.1.2. What is optimization? ... 2

1.1.3. Natural optimization techniques ... 3

1.2. Objectives of thesis ... 5

CHAPTER 2 : LITERATURE REVIEW ON METAHEURISTICS AND THEIR

APPLICATIONS ON ENGINEERING DESIGN ... 6

2.1. Introduction ... 7

2.2. Genetic algorithms .. 11

2.3. Ant colony optimization .. 14

2.4. Particle swarm optimization .. 16

2.5. Simulated annealing .. 17

2.6. Imperialist competitive algorithm ... 19

2.7. Artificial immune systems ... 21

2.8. Constrained and unconstrained benchmark problems 23

2.9. Truss structures .. 30

CHAPTER 3 : MINE BLAST ALGORITHM ... 35

3.1. Basic concepts ... 36

3.2. Proposed MBA .. 36

3.3. Setting the user parameters .. 41

3.4. Constraint handling approach .. 42

3.5. Convergence criteria .. 43

3.6. Steps and flowchart of MBA ... 44

CHAPTER 4 : WATER CYCLE ALGORITHM .. 46

4.1. Basic concepts ... 47

4.2. Proposed WCA .. 49

4.2.1. Create initial population .. 49

4.2.2. How does a stream flow to the rivers or sea? 51

xi

4.2.3. Evaporation condition ... 53

4.2.4. Raining process ... 54

4.3. Constraint handling approach .. 55

4.4. Convergence criteria .. 56

4.5. Steps and flowchart of WCA ... 56

CHAPTER 5 : VALIDATION OF PROPOSED METHODS 59

5.1. Differences among proposed optimizers with other existing methods 60

5.2. Unconstrained benchmark problems ... 65

5.2.1. NFEs and best function value criteria ... 66

5.2.2. Finding the global minimum among many local minima 74

5.3. Constrained and engineering benchmark problems 81

5.3.1. Constrained problem 1 .. 82

5.3.2. Constrained problem 2 .. 84

5.3.3. Pressure vessel design problem .. 85

5.3.4. Tension/compression spring design problem...................................... 87

5.3.5. Welded beam design problem ... 91

5.3.6. Speed reducer design problem .. 94

5.3.7. Rolling element bearing design problem .. 96

5.4. Truss Structures ... 99

5.4.1. 52-bar planar truss... 100

5.4.2. 25-bar spatial truss .. 104

5.4.3. 72-bar spatial truss .. 111

5.4.4. 200-bar truss .. 117

CHAPTER 6 : CONCLUSIONS ... 123

6.1. Conclusions .. 124

6.2. Future researches .. 125

REFERENCES ... 126

APPENDICES .. 142

Appendix A: Mathematical formulations for unconstrained benchmark problems

 143

Appendix B: Mathematical Formulations for constrained engineering problems145

xii

LIST OF TABLES

Table 1.1. Applications of reported methods for unconstrained and constrained

problems in this thesis. .. 29

Table 2.2. A summary of applications of considered optimizers for the truss

structures. .. 33

Table ‎5.1: Specifications of seven unconstrained benchmark functions presented in

(Pham et al., 2006; Ahrari et al., 2010). “N” stands for the number of design

variables. ... 67

Table 5.2: Initial parameters used for optimization of seven unconstrained

benchmark functions using the MBA presented in Table 5.1. 69

Table 5.3: User parameters used for optimization of seven unconstrained

benchmark functions presented in Table 57.1 using the WCA. 69

Table 5.4: Statistical results of 50 independent runs for seven unconstrained

benchmark functions in Table 5.1 using the MBA. .. 69

Table 5.5: Statistical results for seven unconstrained benchmark functions given in

Table 5.1 using the WCA. ... 70

Table ‎5.6: Comparison of results for optimization of seven unconstrained

benchmark functions presented in Table 5.1. “N/A” means not available. 71

Table ‎5.7: Comparison of results for optimization of seven unconstrained

benchmark functions presented in Table 5.1. .. 71

Table ‎5.8: Specification of seven unconstrained benchmark functions presented in

(Lee & Geem, 2005).. 72

Table ‎5.9: User parameters for the WCA for seven benchmark functions given in

Table 5.8. ... 73

Table ‎5.10: Initial parameters used for optimization of seven unconstrained

benchmark functions using the MBA presented in Table 5.8. 73

Table ‎5.11: Statistical optimization results for seven unconstrained benchmark

functions presented in Table 5.8 using the WCA.. 73

Table ‎5.12: Statistical optimization results of 50 independent runs for seven

unconstrained benchmark functions given in Table 5.8 using the MBA. 74

Table ‎5.13: Comparison of results for the optimization of seven unconstrained

benchmark functions presented in Table 5.8. .. 74

Table ‎5.14: Specifications of six unconstrained benchmark functions presented in

(Ahrari & Aatai, 2010; Mariani et al., 2011). ... 75

Table ‎5.15: User parameters for optimization of benchmark functions presented in

Table 5.14 using the MBA. ... 77

Table ‎5.16: Statistical optimization results of WCA for six benchmark functions

given in Table 5.14. ... 77

Table ‎5.17: Statistical optimization results of MBA for six unconstrained

benchmark functions presented in Table 5.14. .. 77

Table 5.18: Statistical optimization results for the GAF from (Mariani et al., 2011).

 ... 78

Table ‎5.19: Statistical optimization results for the SCE-UA from (Mariani et al.,

2011).. 78

xiii

Table ‎5.20: Statistical optimization results for the MSCE from (Mariani et al.,

2011).. 78

Table ‎5.21: Comparison of optimization results for four benchmark functions

given in Table 5.14. “ANFEs” stands for average number of function evaluations.

 ... 79

Table ‎5.22: User parameters used for the MBA for seven constrained and

engineering problems. ... 81

Table ‎5.23: Comparison of the best solution given by various algorithms for the

constrained problem 1. .. 83

Table ‎5.24: Comparison of statistical optimization results for several reported

algorithms for the constrained problem 1. .. 83

Table ‎5.25: Comparison of optimization statistical results given by various

algorithms for the constrained problem 2. .. 84

Table ‎5.26: Comparison of the best solution obtained from various studies for the

pressure vessel problem. ... 86

Table ‎5.27: Comparison of statistical results given by different optimizers for the

pressure vessel problem. ... 86

Table ‎5.28: Comparison of the best solution obtained from various algorithms for

the tension/compression spring problem. .. 88

Table ‎5.29: Comparisons of statistical optimization results obtained from various

algorithms for the tension/compression spring problem. 89

Table ‎5.30: Comparison of the best solution obtained from various algorithms for

the welded beam problem. .. 92

Table ‎5.31: Comparison of the statistical results obtained from different

optimization engines for the welded beam problem. .. 92

Table ‎5.32: Comparison of the best solution obtained using different optimizers for

the speed reducer design problem. .. 95

Table ‎5.33: Comparison of statistical results using various algorithms for the speed

reducer design problem. .. 95

Table ‎5.34: Comparison of the best solution obtained using four algorithms for the

rolling element bearing problem. .. 97

Table 5.35: Comparison of statistical results using four optimizers for the rolling

element bearing problem. .. 97

Table ‎5.36: Available cross-section areas of the AISC norm. 101

Table ‎5.37: Comparison of results for the 52-bar truss obtained using various

algorithms. ... 102

Table ‎5.38: Load cases for the 25-bar truss. ... 105

Table ‎5.39: Comparison of optimization results obtained using various methods for

the 25-bar truss for Case 1... 106

Table ‎5.40: Comparison of results obtained using various methods for the 25-bar

truss for Case 2. ... 106

Table ‎5.41: Comparison of optimization results obtained using different methods

for the 25-bar truss for Case 3. .. 106

Table ‎5.42: Load cases for the 72-bar spatial truss. .. 112

xiv

Table ‎5.43: Comparison of statistical results using the WCA and MBA for the 72-

bar truss for Cases 1 and 2. ... 113

Table ‎5.44: Comparison of the best results obtained using various methods for

Case 1 for the 72-bar truss... 113

Table ‎5.45: Comparison of the optimum results obtained using different optimizers

for Case 2 for the 72-bar truss. .. 114

Table ‎5.46: Group membership for the 200-bar truss. .. 118

Table ‎5.47: Best optimum results obtained using the MBA for the 200-bar truss.

 ... 119

Table 5.48: Best configurations obtained by the WCA for the 200-bar truss. 120

Table ‎5.49: Comparison of statistical results obtained using the WCA and MBA.

 ... 120

xv

LIST OF FIGURES

Figure 3.1. Schematic view of the mine blast algorithm including of exploration

(color lines) and exploitation (black lines) processes. .. 40

Figure 3.2. Schematic view of constraint handling approach using the proposed

method. .. 43

Figure 3.3. Flowchart of the proposed MBA. ... 45

Figure 4.1. Simplified diagram of the hydrologic cycle (water cycle). 47

Figure 4.2. Schematic diagram of how streams flow to the rivers and also rivers

flow to the sea. .. 48

Figure 4.3. Arkhangelsk city on the Dvina River (adopted from NASA, Image

Source: http://asterweb.jpl.nasa.gov/gallery-detail.asp?name=Arkhangelsk). 49

Figure 4.4. Schematic view of stream‟s flow to a specific river. 51

Figure 4.5. Exchanging the positions of the stream and the river. 53

Figure 4.6. Schematic view of WCA. ... 57

Figure 4.7. Flowchart of the proposed WCA. ... 58

Figure 5.1. Surface plot and contour lines for seven benchmark functions presented

in Table 5.1: (a) De Jong, (b) Goldstein and Price I, (c) Branin, (d) Martin and

Gaddy, (e) Rosenbrock, (f) Hyper Sphere, (g) Shaffer. .. 68

Figure 5.2. Mesh plot and contour lines for six unconstrained benchmark functions

in 2 dimensions presented in Table 9: (a) Schwefel, (b) Ackley, (c) Rastrigin, (d)

Hyper Sphere, (e) Rosenbrock, (f) Zakharov. ... 76

Figure 5.3. Function values versus the number of iterations for six benchmark

functions in Table 5.14 using the WCA: (a) Schwefel, (b) Ackley, (c) Rastrigin, (d)

Hyper Sphere, (e) Rosenbrock, (f) Zakharov (Vertical and horizontal axes are

function values and number of iterations, respectively). 80

Figure 5.4. Schematic view of pressure vessel problem. 85

Figure 5.5. Function values versus number of iterations for the pressure vessel

problem using: (a) WCA, (b) MBA. ... 87

Figure 5.6. Schematic view of tension/compression spring problem. 88

Figure 5.7. Function values with respect to the number of iterations for the

tension/compression spring problem using: (a) WCA, (b) MBA. 90

Figure 5.8. Constraint violation values with respect to the number of iterations for

tension/compression spring problem using the WCA. .. 91

Figure 5.9. Schematic view of welded beam problem. ... 91

Figure 5.10. Function values versus number of iterations for the welded beam

problem using: (a) WCA, (b) MBA. ... 93

Figure 5.11. Speed reducer design problem. ... 94

Figure 5.12. Function values versus number of iterations for the speed reducer

problem using the MBA. ... 96

Figure 5.13. Rolling element bearing design problem. ... 96

Figure 5.14. Comparison of convergence rate for the rolling element bearing

design problem using: (a) TLBO and ABC, (b) WCA, (c) MBA. 98

Figure 5.15. 52-bar planar truss. ... 100

Figure 5.16. Comparison of convergence rates for the 52-bar truss using: (a)

DHPSACO (Kaveh & Talatahari, 2009b), (b) MBA, (c) WCA. 103

xvi

Figure 5.17. 25-bar spatial truss. ... 104

Figure 5.18. Comparison of convergence rates for the 25-bar truss using PSO,

PSOPC, HPSO, and DHPSACO (Kaveh & Talatahari, 2009b): (a) Case 1, (b) Case

2, (c) Case 3. .. 108

Figure 5.19. Weight (lb) evolution history for the 25-bar truss using WCA: (a)

Case 1, (b) Case 2, (c) Case 3. .. 109

Figure 5.20. Weight (lb) evolution history for the 25-bar truss using MBA: (a)

Case 1, (b) Case 2, (c) Case 3. .. 110

Figure 5.21. 72-bar spatial truss. ... 112

Figure 5.22. Comparison of convergence rates for the 72-bar truss using PSO,

PSOPC, and HPSO: (a) Case 1, (b) Case 2. .. 115

Figure 5.23. Weight (lbs) evolution history for the 72-bar truss using the WCA: (a)

Case 1, (b) Case 2. ... 115

Figure 5.24. Weight (lbs) evolution history for the 72-bar truss using the MBA: (a)

Case 1, (b) Case 2. ... 116

Figure 5.25. 200-bar planar truss. ... 117

Figure 5.26. Comparisons of convergence rate for the 200-bar truss using: (a) GA

(Dede et al., 2011), (b) WCA and MBA. .. 121

xvii

List of Symbols and Abbreviations

ABC Artificial Bee Colony

ACO Ant Colony Optimization

AIS Artificial Immune Systems

ASCHEA Adaptive Segregational Constraint Handling Evolutionary

Algorithm

CAEP Cultural Algorithms with Evolutionary Programming

CDE Co-Evolutionary Differential Evolution

CPSO Coevolutionary Particle Swarm Optimization

CRGA Changing Range Genetic Algorithm

CULDE Cultured Differential Evolution

DE Differential Evolution

DEDS Differential Evolution with Dynamic Stochastic Selection

DELC Differential Evolution with Level Comparison

DHPSACO Discrete Heuristic Particle Swarm Ant Colony Optimization

GA Genetic Algorithm

G-QPSO Gaussian Quantum-behaved Particle Swarm Optimization

HEAA Hybrid Evolutionary Algorithm and Adaptive Constraint

Handling

HGA Hybrid Genetic Algorithm

HM Homomorphous Mappings

HS Harmony Search

HPSO Hybrid Particle Swarm Optimization

ICA Imperialist Competitive Algorithm

ISR Improved Stochastic Ranking

MBA Mine Blast Algorithm

MGA Modified Genetic Algorithm

NM-PSO Hybrid Nelder-Mead Simplex Search and Particle Swarm

Optimization

NSGA-II Non-dominated Sorting Genetic Algorithm

PESO Particle Evolutionary Swarm Optimization

PSO Particle Swarm Optimization

PSOPC Particle Swarm Optimization with Passive Congregation

PSO-DE Particle Swarm Optimization with Differential Evolution

QPSO Quantum-Behaved Particle Swarm Optimization

SA Simulated Annealing

SAPF Self Adaptive Penalty Function

SC Society and Civilization

SGA Steady State Genetic Algorithms

SR Stochastic Ranking

SMES Simple Multi-membered Evolution Strategy

TLBO Teaching-Learning-Based Optimization

WCA Water Cycle Algorithm

xviii

E Modulus of elasticity

A Area of truss member

NC Initial number of colonies

TC Total power of an empire

k Iteration number index

LB Lower bound of a problem

UB Upper bound of a problem

rand Uniformly distributed random number between 0 and 1

randn Normally distributed pseudorandom number

X Randomly generated solution/location

F the function value for the X, Actuating force

C Value of cost function

r radius

t Thickness

R Inner radius

L Length of the cylindrical section of the vessel

D Mean coil diameter

d Wire diameter

P Number of active coils, Buckling load, Vertical loads in

trusses

Z Number of friction surfaces

N Number of quantities

d Distance

m Direction (slope) of the thrown shrapnel pieces

NS Number of streams which flow to the specific rivers or sea

f(X) Value of solution X

Greek symbols

ξ A positive small number

µ Exploration factor

 Angle of the shrapnel pieces

 Reduction constant

 η Shear stress of the beam

ζ Bending stress of the beam

δ End deflection of the beam

 Allowable small non-negative value

xix

Subscripts and Superscripts

i Inner radius, Counter index

o Outer radius

s Shrapnel piece, Shell

h Head of the cylinder

pop population

vars Number of design variables

sr summation of Number of Rivers and sea

max Maximum allowed value

0 Initial distance

f Number of first shot point

n n
th

 empire, Counter index

* Optimum

col Colonies

d Search space dimension

e Exploding mine bomb

x X direction

y Y direction

z Z direction

CHAPTER 1 : INTRODUCTION

2

1.1. Introduction

Optimization is the process of making something better. An engineer or

scientist comes up with a new idea and optimization improves on that idea.

Optimization consists of trying variations on an initial concept and using the

information gained to improve on the idea. A computer is the perfect tool for

optimization as long as the idea or variable influencing the idea can be input in

electronic format (Haupt & Haupt, 2004).

1.1.1. Finding the best solution

The terminology “best” solution implies that there is more than one

solution and the solutions are not of equal value. The definition of “best” is relative

to the problem at hand, its method of solution, and the tolerances allowed. Thus the

optimal solution depends on the person formulating the problem.

Some problems have exact answers or roots, and best has a specific

definition. Examples include a solution to a linear first-order differential equation.

Other problems have various minimum or maximum solutions known as optimal

points or extrema, and best may be a relative definition. Examples include best

piece of artwork or best musical composition (Haupt & Haupt, 2004).

1.1.2. What is optimization?

Our lives confront us with many opportunities for optimization. What is the

best route to work? When designing something, we shorten the length of this or

reduce the weight of that, as we want to minimize the cost or maximize the appeal

of a product.

Optimization is the process of adjusting the inputs to or characteristics of a

device, mathematical process, or experiment to find the minimum or maximum

output or results (Haupt & Haupt, 2004). The input consists of variables. The

process or function is known as the cost function, objective function, or fitness

3

function, and the output is the cost or fitness. If the process is an experiment, then

the variables are physical inputs to the experiment.

Since in engineering applications we usually seek to the minimum values

such as minimum stress, weight, cost, etc, the output from the process or function

defines as the cost function. Since cost is something to be minimized, optimization

becomes minimization. Sometimes maximizing a function makes more sense. To

maximize a function, just put a minus sign on the front of the output and minimize

it.

Life is interesting due to the many decisions and seemingly random events

that take place. Quantum theory suggests there are an infinite number of

dimensions, and each dimension corresponds to a decision made. Real life

problems are also highly nonlinear, so chaos plays an important role too. A small

perturbation in the initial condition may result in a very different and unpredictable

solution.

These theories suggest a high degree of complexity faced when studying

nature or designing products. Science developed simple models to represent certain

limited aspects of nature. Most of these simple (and usually linear) models have

been optimized. In the future, scientists and engineers must tackle the unsolvable

problems of the past, and optimization is a primary tool needed in the intellectual

toolbox (Haupt & Haupt, 2004).

1.1.3. Natural optimization techniques

In complex optimization problem, classical and traditional approaches for

optimizing are not efficient and capable of finding the global optimum point (Lee

& Geem, 2005). Because they need the derivative of objectoive function and,

therefore, the objective function must be continous, while many complex

optimization problems have discrerte and combinatorial nature.

4

Usually, finding the derivate of complex and real life problems is

sometimes impossible or takes long time. These reasons reveal many shortfalls of

the typical minimum seekers such as exhaustive search, analytical approaches,

nelder-mead downhill simplex method (Nelder & Mead, 1965), complex method

(Box, 1965), coordinate search method (Schwefel, 1995; Luenberger 1984; Press

et al., 1992), steepest descent algorithm (Cauchy, 1847), Davidon-Fletcher-Powell

(DFP) algorithm (Powell, 1964), Broyden-Fletcher-Goldfarb-Shanno (BFGS)

algorithm (Broyden, 1965; Fletcher, 1963; Goldfarb, 1968; Shanno, 1970), and

recursive quadratic programming (Luenberger, 1984).

Since the local optimizers of the past are limited, people have turned to

more global methods based upon biological and natural processes. The need of

(new) algorithms which works without derivatives and can be applied to

combinatorial problems are crucial especially in engineering field.

The metaheuristic algorithms have been extensively used in numerous

domains especially in engineering. The advantages of metaheuristic algorithms

compared to other traditional approaches are listed as below (Lee & Geem, 2005):

1. They are very flexible in terms of usage and application.

2. Often, they consider as global optimizers.

3. Often robust to the problem size and random variables.

4. May be only practical alternative.

5. No need to calculate the derivative of function.

6. The problem can be continues or discrete.

7. Faster and stronger than other traditional methods.

 In this thesis, the main objective is to investigate and develop new

metaheuristic algorithms which can outperform (or equally perform) against the

existing methods.

5

1.2. Objectives of thesis

The objective of this thesis is to investigate, model, and develop new

metaheuristic algorithms which are based on the ideas of natural phenomena and

real life events. This study embarks on the following objectives:

1. To investigate and develope optimization algorithms which are modeled on

natural phenomena or real life events.

2. To establish mathematical models for the proposed optimization

algorithms.

3. To implement, test, and compare the proposed optimizers with other

existing optimization methods for benchmark optimization problems.

6

CHAPTER 2 : LITERATURE

REVIEW ON METAHEURISTICS

AND THEIR APPLICATIONS ON

ENGINEERING DESIGN

7

2.1. Introduction

Soft computing became a formal computer science area of study in the

early 1990's (Kincaid, 1990). Earlier computational approaches could model and

precisely analyze only relatively simple systems. More complex systems arising in

biology, medicine, the humanities, management sciences, and similar fields often

remained intractable to conventional mathematical and analytical methods.

It should be pointed out that simplicity and complexity of systems are

relative, and many conventional mathematical models have been both challenging

and very productive. Soft computing deals with imprecision, uncertainty, partial

truth, and approximation to achieve tractability, robustness, and low solution cost.

Components of soft computing include (Kincaid, 1990):

 Neural networks (NNs)

 Fuzzy systems (FSs)

 Evolutionary computation (EC), including:

o Evolutionary algorithms

 Swarm intelligence

Generally speaking, soft computing techniques resemble biological

processes more closely than traditional techniques, which are largely based on

formal logical systems, such as sentential and predicate logics, or rely heavily on

computer-aided numerical analysis (as in finite element analysis (FEM)) (Duan et

al., 1992).

Soft computing techniques are intended to complement each other. In

contrast of hard computing schemes, which strive for exactness and full truth, soft

computing approaches exploit the given tolerance of imprecision, partial truth, and

uncertainty for a particular problem. Another common contrast comes from the

http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Medicine
http://en.wikipedia.org/wiki/Humanities
http://en.wikipedia.org/wiki/Management_science
http://en.wikipedia.org/wiki/Neural_network
http://en.wikipedia.org/wiki/Fuzzy_system
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Logical_system
http://en.wikipedia.org/wiki/Finite_element_analysis

8

observation that inductive reasoning plays a larger role in soft computing than in

hard computing.

Computational intelligence (CI) is an offshoot of artificial intelligence. As

an alternative to classical artificial intelligence it rather relies on heuristic

algorithms such as in fuzzy systems, neural networks, and evolutionary

computation. In addition, CI also embraces techniques that use swarm intelligence,

fractals and chaos theory, artificial immune systems, and so forth (Golden et al.,

1981).

The CI combines elements of learning, adaptation, evolution, and fuzzy

logic (fuzzy sets) to create programs that are, in some sense, intelligent. The CI

research does not reject statistical methods, but often gives a complementary view

(as is the case with fuzzy systems).

Artificial neural networks (ANNs) is a branch of computational intelligence

that is closely related to machine learning (Feldman, 1990). The CI is further

closely associated with soft computing, connectionist systems, and cybernetics.

Over the last decades, numerous algorithms have been developed to solve a

variety of engineering optimization problems. Most of such algorithms are based

on the numerical linear and nonlinear programming methods that may require

substantial gradient information and usually seek to improve the solution in the

neighborhood of a starting point. These numerical optimization algorithms provide

a useful strategy to obtain the global optimum solution for simple and ideal

models.

However, many real world engineering optimization problems are very

complex in nature and quite difficult to solve. If there is more than one local

optimum in the problem, the results may depend on the selection of the starting

point for which the obtained optimal solution may not necessarily be the global

http://en.wikipedia.org/wiki/Inductive_reasoning
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/GOFAI
http://en.wikipedia.org/wiki/Fuzzy_system
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Fractal
http://en.wikipedia.org/wiki/Chaos_Theory
http://en.wikipedia.org/wiki/Artificial_immune_system
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Intelligence_%28trait%29
http://en.wikipedia.org/wiki/Fuzzy_system
http://en.wikipedia.org/wiki/Soft_computing
http://en.wikipedia.org/wiki/Connectionist
http://en.wikipedia.org/wiki/Cybernetics

9

optimum. Furthermore, the gradient search methods may become unstable when

the objective function and constraints have multiple or sharp peaks.

Besides, objective function of these problems may have several global

minima (i.e. several points in which the value of the objective function is equal to

the global minimum value) and it may have some local minima in which the value

of the objective function is very close to the global minimum value. In this

situation, traditional techniques are not able to find the global optimum point.

The drawbacks (efficiency and accuracy) of existing numerical methods

have encouraged researchers to rely on metaheuristic algorithms based on the

simulations and nature inspired methods to solve engineering optimization

problems. Metaheuristic algorithms commonly operate by combining rules and

randomness to imitate natural phenomena (Lee & Geem, 2005).

These phenomena may include the biological evolutionary process such as

genetic algorithms (GAs) proposed by Holland (1975) and Goldberg (1989),

animal behavior such as particle swarm optimization (PSO) proposed by Kennedy

and Eberhart (1995), and the physical annealing which is generally known as

simulated annealing (SA) proposed by Kirkpatrick et al. (1983).

Among the optimization methods, the evolutionary algorithms (EAs) which

are generally known as general purpose optimization algorithms are known to be

capable of finding the near-optimum solution to the numerical real-valued test

problems. EAs have been very successfully applied to optimization problems

(Coello, 2002).

Metaheuristic designates a computational method that optimizes a problem

by iteratively trying to improve a candidate solution with regard to a given

measure of quality (predefined tolerance). Metaheuristics make few or no

10

assumptions about the problem being optimized and can search very large spaces

of candidate solutions.

Many metaheuristic algorithms implement some form of stochastic

optimization. Metaheuristics are used for combinatorial optimization in which an

optimal solution is sought over a discrete search space. An example problem is the

travelling salesman problem (TSP) (Golden et al., 1981) where the search space of

candidate solutions grows more than exponentially as the size of the problem

increases which makes an exhaustive search for the optimal solution impossible.

This phenomenon is commonly known as the curse of dimensionality.

Popular metaheuristics for combinatorial problems include SA, ant colony

optimization (ACO) (Dorigo et al., 1991a), and tabu search (TS) (Glover, 1990).

Metaheuristics are also used for problems over real-valued search-spaces,

where the classic way of optimization is to derive the gradient of the function to be

optimized and then, employ gradient descent or a quasi-Newton method.

Metaheuristics do not use the gradient or Hessian matrix, hence, their

advantage is that the function to be optimized need not be continuous or

differentiable and it can also have several constraints (nonlinear). Popular

metaheuristic optimizers for real-valued search-spaces include particle swarm

optimization (PSO), and evolution strategies (ES) (Beyer & Schwefel, 2002).

Metaheuristics have been extensive used in numerous field of study

including engineering. The research questions are based on the suitability of

natural phenomena and real life evens for mimicking them as models for

optimization procedures.

In order to escape from local optima, metaheuristic algorithms drive some

basic heuristics either a constructive heuristic starting from a null solution and

adding elements to build a good complete one, or a local search heuristic starting

11

from a complete solution and iteratively modifying some of its elements in order to

achieve a better one.

The metaheuristic part permits the low-level heuristic to obtain solutions

better than those it could have achieved alone, even if iterated. Usually, the

controlling mechanism is achieved either by constraining or by randomizing the set

of local neighbor solutions to consider in local search, or by combining elements

taken by different solutions.

In population based algorithms such as GA and PSO, several random

numbers are produced at each iteration named as population of individual. To

obtain a reliable solution or test the reliability of an optimization algorithm, several

independent runs should be executed. Due to stochastic nature of metaheuristic

algorithms, convergence process and probably the final solution may be different

in each independent run (Goldberg, 1989; Kennedy & Eberhart, 1995).

It is worth to mention that one of the most important disadvantages in

population based algorithms is crowding of the individuals which show the

convergence of the algorithm to a point in the crowded region (Ahrari & Aatai,

2010).

If it happens in the early iterations of the algorithm, solution to which the

algorithm has converged is probably a local minimum, because the design space

has not been explored adequately. Furthermore, in the final population, similar

agents do not present different solutions, which can be a disadvantage especially

when the objective function has several global minima.

2.2. Genetic algorithms

Genetic algorithms (GAs) are adaptive heuristic search algorithm based on

the evolutionary ideas of natural selection and genetics. As such they represent an

intelligent exploitation of a random search used to solve optimization problems.

12

The GAs exploits historical information to direct the search into the region

of better performance within the search space (Holland, 1975). The basic

techniques of the GAs are designed to simulate processes in natural systems

necessary for evolution; especially those follow the principles first laid down by

Charles Darwin of "survival of the fittest.” Since in nature, competition among

individuals for scanty resources, results in the fittest individuals dominating over

the weaker ones (Holland, 1975).

 The GAs simulates the survival of the fittest among individuals over

consecutive generation for solving a problem. Each generation consists of a

population of character strings that are analogous to the chromosome that we

witness in our DNA. Each individual represents a point in a search space and a

possible solution.

The individuals in the population are then made to go through a process of

evolution. The GAs are based on an analogy with the genetic structure and

behavior of chromosomes within a population of individuals using the following

foundations (Goldberg, 1989):

 Individuals in a population compete for resources and mates.

 Those individuals most successful in each competition will produce more

offspring than those individuals that perform poorly.

 Genes from good individuals propagate throughout the population so that

two good parents will sometimes produce offspring that are better than

either parent.

 Thus each successive generation will become more suited to their

environment.

A population of individuals is maintained within search space for a GA,

each representing a possible solution to a given problem. Each individual is coded

13

as a finite length vector of components, or variables, in terms of some alphabet,

usually the binary alphabet [0, 1].

To continue the genetic analogy, these individuals are likened to

chromosomes and the variables are analogous to genes. Thus a chromosome

(solution) is composed of several genes (variables). A fitness score is assigned to

each solution representing the abilities of an individual to compete.

The individual with the optimal (near optimal) fitness score is sought. The

GA aims to use selective breeding of the solutions to produce offspring better than

the parents by combining information from the chromosomes. The GAs maintains

a population of n chromosomes (solutions) with associated fitness values.

Parents are selected to mate, based on their fitness, producing offspring via

a reproductive plan. Consequently, highly fit solutions are given more

opportunities to reproduce, so that offspring inherit characteristics from each

parent. As parents mate and produce offspring, room must be made for the new

arrivals since the population is kept at a static size (Holland, 1975).

Individuals in the population die and replaced by the new solutions,

eventually creating a new generation once all mating opportunities in the old

population have been exhausted. In this way it is hoped that over successive

generations better solutions will thrive, while the least fit solutions die out.

New generations of solutions are produced containing, on average, better

genes than a typical solution in a previous generation. Each successive generation

will contain more good partial solutions than previous generations. Eventually,

once the population has converged and is not producing offspring noticeably

different from those in previous generations, the algorithm itself is said to have

converged to a set of solutions to the problem, at hand, which is called stopping

criterion (Goldberg, 1989).

14

The following studies are a number of applications for GAs in different

field of study. Haftka and his co-workers, in particular, extensively tested the

application of GAs for maximization of the ultimate load of a laminated plate since

early 1990s (Leriche & Haftka, 1993; Kogiso et al., 1994; Todoroki and Haftka,

1998; Soremkun et al., 2001).

Nagendra et al. (1996) proposed an improved GA to find the best stacking

sequence of the skin and stiffeners laminate, and the stiffener height for minimum

weight of a composite stiffened panel under buckling constraint. Xie et al. (2009)

applied GA for optimal design of plate fin heat exchangers. The authors considered

minimization of total annual cost as an objective function and pressure drop as a

constraint.

Mishra et al. (2009) used GA to carry out second law based optimization of

cross flow plate-fin heat exchangers. The authors investigated the minimization of

entropy generation units as an objective function.

2.3. Ant colony optimization

Ant colony optimization (ACO) is a paradigm for designing metaheuristic

algorithms for combinatorial optimization problems. The first algorithm of ACO

which can be classified within this framework was presented in 1991 (Dorigo et

al., 1991a; Colorni et al., 1991) and, since then, many diverse variations of the

basic principle have been developed.

The essential trait of the ACO algorithms is the combination of a priori

information about the structure of a promising solution with a posteriori

information about the structure of previously obtained good solutions. The

characteristic of the ACO algorithms is their explicit use of elements of previous

solutions.

15

In fact, they drive a constructive low-level solution, but including it in a

population framework and randomizing the construction in a Monte Carlo way. A

Monte Carlo combination of different solution elements is suggested also by GAs,

however, in the case of the ACO, the probability distribution is explicitly defined

by previously obtained solution components.

The particular way of defining components and associated probabilities is

problem- specific, and it can be designed in different ways, facing a trade-off

between the specificity of the information used for the conditioning and the

number of solutions which need to be constructed before effectively biasing the

probability distribution to favor the emergence of good solutions.

Different applications have favored either the use of conditioning at the

level of decision variables, thus requiring a huge number of iterations before

getting a precise distribution, or the computational efficiency, thus using very

coarse conditioning information. ACO (Dorigo et. al, 1999) is a class of

algorithms, whose first member, called Ant System, was initially proposed by

Dorigo et al. (1991a) Colorni et al. (1991), and Dorigo (1992).

The main underlying idea, loosely inspired by the behavior of real ants, is

that of a parallel search over several constructive computational threads based on

local problem data and on a dynamic memory structure containing information on

the quality of previously obtained results. The collective behavior emerging from

the interaction of the different search threads has proved effective in solving

combinatorial optimization (CO) problems.

The ACO has been used with success for many combinatorial optimization

problems such as travelling salesman person (TSP) (Dorigo et al., 1991b), vehicle

routing problem (Bell & McMullen, 2004), set covering problem (Lessing et al.,

2004), and graph coloring (Costa & Hertz, 1997). Aymerich and Serra (2008)

16

studied the application of the ACO to the layup optimization of laminated panels

for maximum buckling load.

2.4. Particle swarm optimization

Particle swarm optimization (PSO) is a population based stochastic

optimization technique developed by Kennedy and Eberhart (1995) inspired by

social behavior of bird flocking or fish schooling. The PSO shares many

similarities with evolutionary computation techniques such as GAs. The system is

initialized with a population of random solutions and searches for optimal solution

by updating generations.

However, unlike GA, the PSO does not possess evolution operators such as

crossover and mutation. In the PSO, the potential solutions, called particles, fly

through the problem space by following the current optimum particles. Each

particle keeps track of its coordinates in the problem space which are associated

with the best solution (fitness) it has achieved so far (the fitness value is also

stored).

This value is called pbest which stands for personal best. Another "best"

value that is tracked by the PSO is the best value, obtained so far by any particle in

the neighbors of the particle. This location is called lbest which stands for local

best. When a particle takes all the population as its topological neighbors, the best

value is a global best and is called gbest.

The PSO concept consists of, at each time step, changing the velocity of

(accelerating) each particle toward its pbest and lbest locations. Acceleration is

weighted by a random term, with separate random numbers being generated for

acceleration toward pbest and lbest locations (Kennedy & Eberhart, 1997).

In the PSO, particles fly around in a multidimensional search space. During

flight, each particle adjusts its position according to its own experience (pbest),

17

according to the experience of a neighboring particle (lbest), and based on the best

experience so far (gbest) (Bergh & Engelbrecht, 1997).

Thus, as in modern GAs, a PSO algorithm combines local search

approaches with global search methods, attempting to balance exploration and

exploitation processes. There are some suggestions for choosing the initial

parameters used in the PSO (Trelea, 2003).

The PSO has been used for approaches that can be used across a wide range

of applications, as well as for specific applications focused on a specific

requirement. In past several years, the PSO has been successfully applied in many

research and application areas. It is demonstrated that the PSO obtains better

results in a faster and cheaper way compared with other optimizers.

Ravagnani et al. (2009) applied PSO for optimal design of shells. The

authors considered minimization of area and minimization of cost as per the

availability of data. Han et al. (2008) used PSO for rolling fin-tube heat exchanger

optimization.

Yu et al. (2008) conducted the PSO for fuzzy optimal design of plate fin

heat exchanger. The authors considered minimization of weight and minimization

of pressure drop as objectives. Miyazaki and Akisawa (2009) utilized PSO to

obtain the optimum cycle time of single stage absorption chiller.

2.5. Simulated annealing

In 1953, Metropolis et al. (1953) developed a method for solving

optimization problems that mimics the way thermodynamic systems go from one

energy level to another (Fleischer, 1995). He thought of this after simulating a heat

bath on certain chemicals. In this method, a system of particles exhibit energy

levels in a manner that maximizes the thermodynamic entropy at a given

temperature value (Fleischer, 1995).

18

In addition, the average energy level must be proportional to the

temperature, which is constant (Fleischer, 1995). This method is called simulated

annealing (SA). The name and inspiration come from annealing in metallurgy, a

technique involving heating and controlled cooling of a material to increase the

size of its crystals and reduce their defects.

The heat causes the atoms to become unstuck from their initial positions (a

local minimum of the internal energy) and wander randomly through states of

higher energy; the slow cooling gives them more chances of finding configurations

with lower internal energy than the initial one. Kirkpatrick et al. (1983) originally

thought of using the SA on a number of optimization problems

 By analogy with this physical process, each step of the SA algorithm

replaces the current solution by a random "nearby" solution, chosen with a

probability that depends both on the difference between the corresponding function

values and also on a global parameter T (temperature), which is gradually

decreased during the process. The dependency is such that the current solution

changes almost randomly when T is large, however, the rate of random changes is

decreased as T goes to zero (Kirkpatrick et al., 1983).

 The allowance for "uphill" moves potentially saves the method from

becoming stuck at local optima. Several parameters need to be included in an

implementation of the SA which are summarized by Davidson and Harel (1996):

• The set of configurations/states of the system including an initial

configuration (which is often randomly chosen).

• A generation rule for new configurations, which is usually obtained by

defining the neighborhood of each configuration and choosing the next

configuration randomly from the neighborhood of the current one.

19

• The cost function to be minimized over the configuration space (this is the

analogue of the energy).

• The cooling schedule of the control parameter (T) including initial values

and rules for when and how to change them (this is the analogue of the

temperature and its reduction).

• The termination condition which is usually based on the time, number of

iterations, and the values of the cost function and/or the control parameter.

In past several years, the SA has been successfully applied in many

applications and field of studies. Practical design of reinforced concrete retaining

walls is discussed by Ceranic et al (2001) using the SA technique. May and Balling

(1992) studied further reduction of heavy computing effort which is usually

required by the SA.

2.6. Imperialist competitive algorithm

Imperialist competitive algorithm (ICA) is inspired from the social-political

process of imperialism and imperialistic competition. Similar to many optimization

methods, ICA starts with an initial population of individuals. Each individual of

the population is called a “country”.

Some of the best countries with the minimum cost are considered as the

imperialist states and the rest will be the colonies of those imperialist states. All the

colonies are distributed among the imperialist countries based on their power.

To define the algorithm, first of all, initial countries of size NCountry are

produced. Then, some of the best countries (with the size of Nimp) in the population

are selected as imperialist states. Therefore, the rest with the size Ncol will form the

colonies that belong to imperialists.

Afterwards, the colonies are divided among imperialists according to their

power (Atashpaz-Gargari & Lucas, 2007). In such a way that the initial number of

20

each empire‟s colonies has to be proportional to its power. So, the initial number

of colonies of the n
th

 empire will be given as (Khabbazi et al., 2009):

1

(), 1,2,...,
imp

n
n col impN

i

i

Cost
NC round N n N

Cost


  



 (2.1)

where NCn is the initial number of colonies for the n
th

 empire, Ncol is the total

number of initial colonies, and Nimp is the number of imperialist state. To divide

the colonies, NCn of the colonies are randomly chosen and given to the n
th

imperialist. After dividing all colonies among imperialists and creating the initial

empires, these colonies start moving toward their relevant imperialist country.

This movement is a simple model of assimilation policy. Furthermore, the

total power of an empire is defined by the sum of the cost of the imperialist, and

some percentage of the mean cost of its colonies as given (Khabbazi et al., 2009):

n n nTC Cost (imperialist) ξ (mean (Cost(colonies of empire)))  (2.2)

where TCn is the total power of the n
th

 empire and ξ is a positive small number.

After computing the total power of empires, usually the weakest colony (or

colonies) of the weakest empire is (are) chosen by other empires and the

competition is started on possessing this colony (colonies).

Each imperialist participating in this competition, based on its power, has a

probable chance of possessing the cited colony. To start the competition, at first,

the weakest empire is chosen and then the possession probability of each empire is

estimated. The possession probability Pp is related to the total power of the empire

(TC) (Atashpaz-Gargari & Lucas, 2007).

During the imperialistic competition, the weak empires will slowly lose

their power and getting weak by the time. At the end of process, just one empire

will remain that governs the whole colonies (Khabbazi et al., 2009).

21

2.7. Artificial immune systems

The biological immune system is a robust, complex, and adaptive system

that defends the body from foreign pathogens. Depending on the type of the

pathogen, and the way it gets into the body, the immune system uses different

response mechanisms either to neutralize the pathogenic effect or to destroy the

infected cells. A detailed overview of the immune system can be found in many

textbooks such as Kubi (2002) and Hightower et al. (1995).

Furthermore, it is able to categorize all cells inside the body as self-cells or

non-self cells. Using a distributed task force and its network of chemical

messengers for communication, the biological immune system can handle this

categorization as well.

There are two major branches of the immune system. The innate immune

system is an unchanging mechanism that detects and destroys certain invading

organisms, whilst the adaptive immune system responds to previously unknown

foreign cells and builds a response to them that can remain in the body over a long

period of time (Jerne, 1973; Farmer, 1980).

Generally speaking, this remarkable information processing biological

system has caught the attention of computer science in recent years. A novel

computational intelligence technique, inspired by immunology, has emerged,

called artificial immune systems (AISs) (De Castro & Von Zuben, 1999; Nicosia et

al., 2004).

In order to imitate the AISs in optimization problems, the antibodies and

affinity are considered as the feasible solutions and the objective function,

respectively. Real-value number is used to represent the attributes of the

antibodies.

22

Similar to other population-based methods, a population of random

individuals is generated which symbolizes a pool of antibodies. Afterwards, these

antibodies undergo proliferation and maturation processes. The proliferation of

antibodies is realized by cloning each member of the initial pool depending on

their affinity (De Castro & Von Zuben, 1999).

In minimization problem, a pool member with lower objective value is

considered to have higher affinity. The proliferation rate is directly proportional to

the affinity of the antibodies. The maturation process is carried through hyper-

mutation which is inversely proportional to the antigenic affinity of the antibodies.

The next step is the application of the aging operator. This aging operator

eliminates old antibodies in order to maintain the diversity of the population and to

avoid the premature convergence. In this operator, an antibody is allowed to

remain in the population for at most ηB generations (De castro & Von Zuben,

2002).

After this period, it is assumed that this antibody corresponds to local

optima and must be eliminated from the current population, no matter what its

affinity may be. During the cloning expansion, a clone inherits the age of its parent

and is assigned an age equal to zero when it is successfully hyper-mutated i.e.

when hyper-mutation improves its affinity.

Several concepts from the immune have been extracted and applied for

solution to real world science and engineering problems (Cutello et al., 2005;

Cutello et al., 2006; Rahman et al., 2006; Liao, 2006; Cutello et al., 2007;

Panigrahi et al., 2007).

23

2.8. Constrained and unconstrained benchmark problems

As mentioned in subsections earlier in this chapter, among optimization

approaches, metaheuristic optimization engines have shown their capabilities for

finding the near-optimal solution to the numerical real-valued test problems for

which exact and analytical methods may not produce the optimal solution within a

reasonable computation time, especially when the global minimum is surrounded

by many local minima. These algorithms are usually devised by observing

phenomena happening in nature such as GA, SA, ACO, PSO, and so forth.

The GA with floating-point representation (GAF) consists of three genetic

operators (selection, crossover, and mutation) which has been carried out for

handling multimodal functions. Details of the GAF operators are presented in

literature (De Jong, 1975; Michalewicz, 1992; Michalewicz et al., 1994).

The artificial bee colony (ABC) algorithm introduced by Karaboga (2005)

is one approach that has been used to find an optimal solution in numerical

optimization problems. The ABC is inspired by the behavior of honey bees when

seeking a quality food source (Karaboga & Basturk, 2007). In addition, Akay and

Karaboga (2010) investigated the application of ABC for constrained optimization

problems.

Pham et al. (2006) developed a metaheuristic method slightly similar to the

concept of ABC, called as the bee algorithm (BA). The BA mimics the food

foraging behavior of swarms of honey bees. The BA was applied for combinatorial

optimization problems (Pham et al, 2006).

Ant colony system (ACS) was derived by the foraging behavior of real ants

(Dorigo & Gambardella, 1997). This behavior enables ants to find the shortest path

between food sources and their nest. This functionality of real ant colonies is

24

exploited in artificial ant colonies in order to solve unconstrained optimization

problems (Aymerich & Serra, 2008).

The idea of the grenade explosion method (GEM) is based on the

observation of a grenade explosion, in which the thrown pieces of shrapnel

destruct the objects near the explosion location (Ahrari & Aatai, 2010). The loss

caused by each piece of shrapnel is calculated and considered as the fitness of the

objective function at the object‟s location.

Geem et al. (2001) developed a new harmony search (HS) metaheuristic

algorithm that was conceptualized using the musical process of searching for a

perfect state of harmony. The harmony in music is analogous to the optimization

solution vector, and the musician‟s improvisations are analogous to local and

global search schemes in optimization techniques (Lee & Geem, 2005).

Bacterial foraging optimization (BFO) is based on the foraging (i.e.

searching food) strategy of Escherichia coli bacteria (Liu & Passin, 2002). In the

BFO, the optimization follows chemo-taxis, swarming, reproduction, elimination,

and dispersal events to reach global minima. However, the convergence of original

BFO to the optimum value is very slow and its performance is not satisfactory.

Therefore, in synchronous BFO (SBFO) (Bakwad et al., 2010), the best

optimum value is updated synchronously after fitness function evaluations of all

bacteria. In the SBFO, the optimization follows chemotaxis, swimming, tumbling,

and reproduction steps to reach optimum value until computational limitations are

exceeded (Bakwad et al., 2010).

The shuffled complex evolution algorithm (SCE-UA) is a general-purpose

global optimization algorithm designed to infer the traditional best parameter set

and its underlying posterior distribution within a single optimization run (Duan et

al., 1992; Vrugt et al., 2003). The goal of the original SCE-UA algorithm is to find

25

a single best parameter set in the feasible space. The modified shuffled complex

evolution algorithm (MSCE) introduces the differential evolution algorithm to be

used together with the adaptation of the downhill simplex (Mariani et al., 2011).

Differential evolution (DE) is a population-based stochastic function

minimizer (or maximize). The DE exhibits an overall excellent performance for a

wide range of benchmark multimodal functions (Ursem & Vadstrup, 2003;

Vesterström & Thomsen, 2004; Ali & Kajee-Bagdadi, 2009). The DE combines

simple arithmetical operators with the operators of recombination, mutation, and

selection to evolve from a randomly generated starting population to a final

solution.

Ahrari et al. (2010) proposed a covariance matrix adaptation evolution

strategy (CMA-ES) for overcoming of getting trapped in local minima for the EAs.

To get better performance of the CMA-ES, the Elite search sub-algorithm is

introduced and implemented in the basic algorithm. Thereafter, the importance and

effects of this modification are illustrated by optimizing a number of unimodal and

multimodal benchmark problems (Ahrari et al., 2010).

Zhao et al. (2009) developed an evolutionary optimization engine so called

learning algorithm (LA) for solving multimodal optimization. The concept of LA

is simple as follows: control parameters, of the length of the list of historical best

solutions and the “learning probability” of the current solutions being moved

towards the current best solutions and towards the historical ones, are used to

assign different search intensities to different parts of the feasible area and to direct

the updating of the current solutions (Zhao et al., 2009).

The most multimodal functions considered in the literature are the

Schwefel function, Ackley function, Rastrigin function, Sphere function,

Rosenbrock function, and Zakharov function with 30 independent variables

26

(Mariani et al., 2011). These benchmark functions are categorized as high-

dimensional problems.

The Schwefel, Ackley, Rastrigin, and Rosenbrock functions are multimodal

(various optima) functions where the number of local minima increases

exponentially with the problem dimension. They appear to be the most difficult

class of problems for many optimization algorithms.

It is important to mention that the Rosenbrock function can be treated as a

multimodal problem. Rosenbrock function has a narrow parabolic-shaped deep

valley from the perceived local optima to the global optimum. To find the valley is

trivial, but to achieve convergence to the global minimum is a difficult task.

Sphere and Zakharov functions are unimodal (one optimum) (Shang & Qiu, 2006).

Regarding the constrained optimization problems, most researchers have

examined their methods with benchmark problems given by Siddall (1982) and

Arora (1989). For constrained and engineering problems, the EAs have been

successfully applied to constrained optimization problems (Bracken & Mccormick,

1968; Homaifar et al., 1994; Koziel & Michalewicz, 1999; Coello, 2000b; Coello,

2000c; Coello, 2002; Montes & Coello, 2005a; Wang et al., 2009).

Also, GAs was applied for solving engineering and mechanical design

(Michalewicz, 1995; Deb & Goyal, 1995; Deb, 2000; Giraud-Moreau & Lafon,

2002; Coello & Montes, 2002; Gupta et al., 2007). Chootinan and Chen (2006)

proposed a constraint-handling technique by taking a gradient-based repair

method.

The proposed technique is embedded into GAs as a special operator for

solving constrained engineering problems (Chootian & Chen, 2006). Recently,

Tang et al. (2011) proposed the improved genetic algorithm (IGA) based on a

novel selection strategy to handle nonlinear programming constrained problems.

27

Accordingly, Yuan and Qian (2010) developed a new hybrid genetic

algorithm (HGA) to solve twice continuously differentiable nonlinear

programming (NLP) problems. The HGA combines the genetic algorithm with

local solver differently from some hybrid genetic algorithms (Yuan & Qian, 2010).

Amirjanov (2006) investigated an approach that adaptively shifts and

shrinks the size of the search space of the feasible region which is called changing

range genetic algorithm (CRGA). The CRGA was successfully optimized

engineering constrained problems (Amirjanov, 2006).

Fogel (1995) carried out a comparative study between evolutionary

programming (EP) and GA for some selected constrained benchmark functions.

Montes and Coello (2005b) proposed a simple multimembered evolution strategy

(ES). Later, they improved the efficiency of ES for solving engineering and

constrained problems (Montes & Coello, 2008).

He and Wang (2006) proposed an effective co-evolutionary PSO (CPSO)

for constrained problems, where the PSO was applied to evolve both decision and

penalty factors. In this method, the penalty factors were treated as searching

variables and evolved by the GA or PSO to the optimal values.

Coelho (2010) studied quantum-behaved PSO (QPSO) which is derived

using mutation operator with Gaussian probability distribution. He and Wang

(2007) developed a new hybrid PSO (HPSO) with a feasibility-based rule to solve

constrained optimization problems. Other hybridizations of the PSO with other

approaches have been studied in the literature (Parsopoulos & Vrahatis, 2005;

Renato & Santos, 2006; Zahara & Kao, 2009; Liu et al., 2010).

The DE which is a scheme for generating trial parameter vectors has been

widely used for constrained optimization problems (Lampinen, 2002; Zhang et al.,

2008; Wang & Cai, 2011; Wang & Cai, 2012b). Furthermore, other variations of

28

DE have been proposed in the literature (Zavala et al., 2005; Montes et al., 2006b;

Huang et al., 2007).

Recently, some hybrid optimization methods have been proposed for

handling constrained optimization problems (Montes et al., 2006a; Wang et al.,

2007; Wang & Cai, 2009; Wang & Li, 2010; Wang & Cai, 2012a).

Examples of such methods include teaching-learning-based optimization

(TLBO) (Rao et al., 2011; Rao & Patel, 2012a, 2012b) which is based on the

influence of a teacher on learners, the harmony search (HS) (Lee & Geem, 2005)

algorithm which is conceptualized using the musical process of searching for a

perfect state of harmony, and the society and civilization (SC) (Ray & Liew, 2003)

which is inspired from intra and intersociety interactions within a formal society

and the civilization model to solve constrained optimization problems. These

algorithms have been applied to numerous engineering optimization problems and

have shown the efficiencies in solving some specific kinds of problem.

Stochastic ranking (SR) is an optimization approach trying to balance

between objective and penalty functions stochastically and also presents a new

view on penalty function methods in terms of the dominance of penalty and

objective functions (Runarsson & Xin, 2000; Runarsson & Xin, 2005).

Cultural algorithm with a differential evolution population is proposed by

Becerra and Coello (2006). The cultural algorithm uses different knowledge

sources to influence the variation operator of the differential evolution algorithm,

in order to reduce the number of fitness function evaluations required to obtain

competitive results (Coello & Becerra, 2004).

Various other optimization methods have been developed for solving

complex and real-life problems, particularly for solving engineering constrained

problems (Kannan & Kramer, 1994; Kuang et al., 1998; Coello, 2000a; Hamida &

29

Schoenauer, 2002; Takahama & Sakai, 2005; Tessema & Yen, 2006; Hedar &

Fukushima, 2006; Rao & Savsani, 2012). Furthermore, Table 1.1 represents the

applications of considered optimizers for unconstrained and constrained

engineering problems. Constrained engineering problems include pressure vessel,

spring, welded beam, speed reducer design problem, and so forth.

Table 1.1. Applications of reported methods for unconstrained and constrained

problems in this thesis.

Authors Methods
Constrained

problems

Unconstrained

problems

Akay &

Karaboga (2010)

Artificial Bee Colony

(ABS)
× -

Pham et al.

(2006)
Bee Algorithm × -

Aymerich &

Serra (2008)

Ant Colony System

(ACS)
- ×

Ahrari & Aatai

(2010)

Grenade Explosion

Method (GEM)
- ×

Lee & Geem

(2005)
Harmony Search (HS) × ×

Bakwad et al.

(2010)

Synchronous Bacterial

Foraging Optimization

(SBFO)

- ×

Vrugt et al.

(2003)

Shuffled Complex

Evolution Algorithm

(SCE-UA)

- ×

Mariani et al.

(2011)

Modified Shuffled

Complex Evolution

Algorithm (MSCE)

- ×

Ahrari et al.

(2010)

Covariance Matrix

Adaptation Evolution

Strategy (CMA-ES)

- ×

Zhao et al. (2009)
Learning Algorithm

(LA)
 ×

Gupta et al.

(2007)
Genetic Algorithms × -

Tang et al. (2011)
Improved Genetic

Algorithm (IGA)
× -

Yuan & Qian

(2010)

Hybrid Genetic

Algorithm (HGA)
× -

Amirjanov (2006)

Changing Range

Genetic Algorithm

(CRGA)

× -

Montes & Coello

(2008)
Evolution Strategy (ES) × -

He & Wang Co-Evolutionary PSO × -

30

(2006) (CPSO)

He & Wang

(2007)
Hybrid PSO (HPSO) × -

Coelho (2010)
Quantum-behaved PSO

(QPSO)
× -

Wang & Cai

(2011,2012b)

Differential Evolution

(DE)
× -

Rao & Patel

(2012a,2012b)

Teaching-Learning-

Based Optimization

(TLBO)

× -

Ray & Liew

(2003)

Society and Civilization

(SC)
× -

Runarsson & Xin

(2000,2005)

Stochastic Ranking

(SR)
× -

2.9. Truss structures

Over the last decades, various algorithms have been used for truss

optimization problems which are very popular in the field of structural

optimization. In general, there are three main categories in structural optimization

applications: a) sizing optimization (the cross-sectional areas of the members are

considered as design variables (Rahami et al., 2008; Kaveh & Talatahari, 2009a),

b) shape optimization (nodal coordinates are considered as the design variables

(Rahami et al., 2008) and c) topology optimization (the location of links in which

nodes are considered as design variables (Rasmussen & Stolpe, 2008; Luh & Lin,

2009).

Metaheuristic methods such as GA (Wu & Chow, 1995), SA (Kirkpatrick

et al., 1983), PSO (Perez & Behdinan, 2007) and other stochastic searching

methods were used to optimize the trusses.

Goldberg and Samtani (1986) and Rajeev and Krishnamoorthy (1992) have

applied sizing optimization on truss structures. Krishnamoorthy et al. (2002) used

the GAs to optimize the space truss structure within an object-oriented framework.

Sivakumar et al. (2001) presented an optimization technique using the GA for steel

31

lattice towers. Gero et al. (2006) used the GAs for the design optimization of 3D

steel structures.

A comprehensive study has been carried out by Adeli and Sarma (2006) for

the cost optimization of truss structures using fuzzy logic and GA. Besides,

optimization of large steel structures has been investigated using parallel GA

(Adeli & Cheng, 1994a, 1994b; Saleh & Adeli, 1994; Soegiarso & Adeli, 1998;

Adeli, 2000; Sarma & Adeli, 2001).

Furthermore, for solving structural optimization problems, neural dynamic

model, which is a computational method based on the neural network topology and

nonlinear dynamic model, was developed (Adeli & Park, 1995a, 1995b). Neural

dynamic model was investigated for optimization of truss structures with

continuous design variables, bridges, and cold-form steel (Adeli & Saleh, 1997;

Adeli & Karim, 1997a, 1997b; Saleh & Adeli, 1998).

Geem et al. (2001) developed a harmony search (HS) metaheuristic

algorithm that was conceptualized using the musical process of searching for a

perfect state of harmony. The harmony in music is analogous to the optimization

solution vector, and the musician‟s improvisations are analogous to local and

global search schemes in optimization techniques (Lee & Geem, 2005). In the

sequence, the HS method was applied on truss structures using discrete and

continues variables (Lee & Geem, 2004; Lee et al., 2005).

Balling (1991, 1996) studied discrete optimization for three-dimensional

steel framed buildings using the SA. The total frame weight was minimized subject

to design-code specified constraints on stress, buckling, and deflection.

Kincaid (1990, 1991) optimized a large tetrahedral truss for obtaining

minimum surface distortion using the SA and taboo search (TS). Similarly, Chen

et al. (1991) applied the SA on large truss structures in which both passive and

32

active vibration suppression was optimized. Bennage and Dhingra (1995)

elaborated the application of SA to the design of planar and spatial structures. The

authors comprehensively addressed the influence of the SA generic parameters on

the results.

Szewczyk and Hajela (1993) examined a neural network approximation of

planar and spatial truss structures via a SA search strategy for finding global

optimum point. An interesting extension of the SA into simultaneous optimization

of size, shape, and topology was developed by Hasancebi and Erbatur (2000).

Recently, the PSO approach is used to optimize the trusses (Perez &

Behdinan, 2007). Li et al. (2009) developed a heuristic particle swarm

optimization (HPSO) for truss structures, which was proven computationally

efficient and reliable, was applied on several truss problems and the obtained

results have been compared with hybrid PSO with passive congregation (PSOPC)

and standard particle swarm optimization (PSO) (He et al., 2004).

Kaveh and Talatahari (2009b) have combined the PSOPC with ant colony

optimization (ACO) and HS to form an efficient algorithm, called heuristic particle

swarm ant colony optimization (HPSACO), which was applied on truss

optimization with discrete design variables, the so-called discrete HPSACO

(DHPSACO) (Kaveh & Talatahari, 2009b).

Also, recently, Gomes (2011) applied the PSO on truss optimization using

dynamic constraints. In addition, a summary of applications of reported

optimization methods are given in Table 1.2.

33

Table 2.2. A summary of applications of considered optimizers for the truss

structures.

Authors Methods Applications

Rahami et al. (2008)
Force Method and

Genetic Algorithm

Shape and Sizing

Optimizations

Rasmussen & Stolpe

(2008); Luh & Lin

(2009)

Parallel Cut-and-Branch

Method & Ant Colony

Optimization

Topology Optimization

Sivakumar et al.

(2001)
GA

Steel Lattice Towers

Optimization

Krishnamoorthy et al.

(2002)
GA

Space Truss Structure Within

an Object-Oriented

Framework

Gero et al. (2006) GA 3D Steel Structures

Adeli & Sarma (2006) Fuzzy Logic and GA
Cost Optimization of Truss

Structures

Sarma & Adeli (2001) Parallel GA Large Steel Structures

Saleh & Adeli (1998) Neural Dynamic Model

Truss Structures With

Continuous Design Variables,

Bridges, and Cold-Form Steel

Lee & Geem (2004) Harmony Search (HS)

Truss Structures using

Discrete and Continues

Variables

Balling (1991,1996)
Simulated Annealing

(SA)

Discrete Optimization For

Three-Dimensional Steel

Framed Buildings

Kincaid (1990,1991)
SA and Taboo Search

(TS)
Large Tetrahedral Truss

Chen et al. (1991) SA
Large Truss Structures Having

Passive and Active Vibrations

Bennage & Dhingra

(1995)
SA Planar and Spatial Structures

Szewczyk & Hajela

(1993)
SA

Neural Network

Approximation of Planar and

Spatial Truss Structures

Hasancebi & Erbatur

(2000)
SA Size, Shape, and Topology

Kaveh & Talatahari

(2009b)

Heuristic Particle

Swarm Ant Colony

Optimization

(HPSACO)

Truss Optimization with

Discrete Design Variables

Gomes (2011) PSO
Truss Optimization using

Dynamic Constraints

In summary, this chapter represented the definition of well-known existing

metaheuristic methods widely used in the literature. Their fundamental concepts

and mathematical formulations also provided in this chapter. In additions,

34

applications of these optimization engines for unconstrained, constrained, and

engineering design problems such as truss structures are given in details in this

chapter.

In the following chapters (Chapters 4 and 5), our developed methods are

described in details as our contribution in this field of research. Afterwards, in

Chapter 6, the proposed optimizers are compared with other well-known methods

in terms of solution quality and convergence rate (computational time).

35

CHAPTER 3 : MINE BLAST

ALGORITHM

36

3.1. Basic concepts

The idea of the proposed mine blast algorithm (MBA) is based on the

observation of a mine bomb explosion, in which the thrown pieces of shrapnel

collide with other mine bombs near the explosion area resulting in their explosion.

To understand this situation, consider a mine field where the aim is to clear the

mines. Hence, the goal is to find the mines, while the most important is to find the

one with the most explosive effect located at optimal point X*which can cause the

most casualties (min or max f(x) per X*).

The mine bombs of different sizes and explosive powers are planted under

the ground. When a mine bomb is exploded, it spreads many pieces of shrapnel

and the casualties (f(x)) caused by each piece of shrapnel are calculated. A high

value for casualties per piece of shrapnel in an area may indicate the existence of

other mines which may or may not have higher explosive power.

Each shrapnel piece has definite directions and distances to collide with

other mine bombs which may lead to the explosion of other mines due to collision.

The collision of shrapnel pieces with other mines may lead us to discover the most

explosive mine.

The casualties caused by the explosion of a mine bomb are considered as

the fitness of the objective function at the mine bomb‟s location. The domain

(mine field) solution may be divided into infinite grid where there is one mine

bomb in each portion of the grid.

3.2. Proposed MBA

The proposed algorithm starts with an initial point(s) called first shot

point(s). The first shot point is represented by
0

fX . The superscript f refers to the

number of first shot point(s) (f=1,2,3,…), where f can be user defined parameter.

37

This algorithm requires an initial population of individuals as is the case with some

metaheuristic methods.

This population is generated by a first shot explosion producing a number

of individuals (shrapnel pieces). The number of initial population (Npop) is

considered as the number of shrapnel pieces (Ns). The choice of first shot point(s)

may lead the algorithm to search the solution space for different locations.

In addition, it may be no need for entering the first shot point(s). The

proposed algorithm can also randomly choose the location(s) of the first shot

point(s), without being specified by the user. The algorithm uses the lower and

upper bound values given by a problem and create the first shot point value by a

small randomly generated value given as:

0 ()X LB rand UB LB    (3.1)

where X0, LB, and UB are the generated first shot point, lower and upper bounds of

the problem, respectively. rand is a uniformly distributed random number between

0 and 1. Increasing the number of first shot points increases the initial population

and results in an increase in the number of function evaluations (computational

cost).

In addition, the increase in first shot points did not offer significant

improvement in the optimization process for the problems examined in this thesis.

In this thesis, one first shot point was used randomly using Equation (3.1).

Suppose that X is the current location of a mine bomb given as:

 , 1,2,3,...,m dX X m N  (3.2)

in which Nd is the search space dimension equal to the number of independent

variables. Consider that Ns shrapnel pieces are produced by the mine bomb

explosion causing another mine to explode at Xn+1 location for 2D space:

38

1
1 (1)

1

exp() 0,1,2,3,...
f

f f fn
n e n nf

n

m
X X X n

d


 



    (3.3)

where
(1)

f

e nX 
 ,

1

f

nd 
, and

1

f

nm 
are the location of exploding mine bomb collided by

shrapnel, the distance and the direction (slope) of the thrown shrapnel pieces in

each iteration, respectively. The location of exploding mine bomb (1)

f

e nX  is defined

as:

(1) cos() 0,1,2,...f f

e n nX d rand n     (3.4)

where rand is a uniformly distributed random number and  is the angle of the

shrapnel pieces which is calculated using  =360/Ns. The exponential term in

Equation (3.3) is used to improve the obtained blast point by influencing the

information from previous solutions (f

nX). The distance 1

f

nd  and the direction of

shrapnel pieces 1

f

nm  are defined as for 2D space:

2 2

1 1 1() () 0,1,2,3,...f f f f f

n n n n nd X X F F n       (3.5)

1
1

1

0,1,2,3,...
f f

f n n
n f f

n n

F F
m n

X X







 


 (3.6)

where F is the function value for the X. To calculate the initial distance for each

shrapnel pieces d0 = (UB-LB) in each dimensions is used. The initial distance

given by the proposed algorithm is used to search the best solution within a range

(LB < d0 < UB) that is computed by the product of the initial distance and a

randomly generated number (for example rand in MATLAB programming

software).

Furthermore, in order to conduct exploration of the design space at smaller

and larger distances, the exploration factor (µ) is introduced. This constant, which

is used in the early iterations of the algorithm, is compared with an iteration

39

number index (k), and if it is higher than k, then the exploration process begins.

The formula related to the exploration of the solution space is given as:

 
2

1 0,1,2,...f f

n nd d randn n    (3.7)

(1) 1 cos() 0,1,2,...f f

e n nX d n    (3.8)

where randn is normally distributed pseudorandom number (randn in MATLAB).

The square of a normally distributed random number has the advantage of search

ability at smaller and larger distances, which offers a better exploration in early

iterations. A higher value for the exploration factor (µ) makes it possible to explore

more remote regions (better exploration), thus, the value of µ determines the

intensity of exploration.

To increase the global search ability of the proposed method, initial

distance of shrapnel pieces are reduced gradually to let the mine bombs search the

probable global minimum location. A simple formula to reduce is given as:

1 1,2,3,...
exp(/)

f
f n

n

d
d n

k 
  (3.9)

where α and k are reduction constant which is user parameter and depends on the

complexity of the problem and iteration number index, respectively. At the final

iteration, the value of distance of shrapnel will be approximately equal to zero

(ε=2.2E-16 in MATLAB). The schematic diagram of the algorithm representing

two aspects of the MBA (exploration in color lines and exploitation in black color

lines) is shown in Figure 3.1.

Based on Figure 3.1, there are two processes for searching the solution

domain in order to find the global optimum solution, the exploration and

exploitation processes. The difference between these two processes is how they

influence the whole search process towards the optimal solution. More

40

specifically, the exploration factor describes the exploration process (color lines in

Figure 3.1).

Figure ‎3.1. Schematic view of the mine blast algorithm including of exploration

(color lines) and exploitation (black lines) processes.

Actually, the exploration factor (µ) represents the number of first iterations.

Hence, if µ is set to 10, then for 10 iterations the algorithm uses Equations (3.7)

and (3.8) for calculating the distance of shrapnel pieces and the location of the

exploded mine bomb, respectively.

On the other hand, for the exploitation process (black lines in Figure 3.1),

the algorithm is encouraged to focus on the optimal point. In particular, with

respect to the exploitation process, the proposed algorithm converges to the global

optimum solution using Equations (3.4), (3.5), and (3.6) to calculate the location of

exploded mine bomb, distance, and direction of shrapnel pieces, respectively.

The distance of shrapnel pieces is reduced adaptively using Equation (3.9)

in exploitation process (i.e., as it converges to the optimal solution). The

Pseudocode for the exploration and exploitation processes is as follows:

41

if µ > k

Exploration (Equations (3.7) and (3.8))

else

Exploitation (Equations (3.4), (3.5), (3.6), and (3.9))

end

where k is the iteration number index.

3.3. Setting the user parameters

Wrong choice of values for algorithm parameters may result in a low

convergence rate, convergence to a local minimum, or undesired solutions. In this

thesis, level of complexity is defined with the number of design variables and

constraint. In general, problems having up to 4 design variables are considered as

simple optimization problem.

For problems having 4 to 20 design variables are categorized as moderate

optimization problems, and accordingly, problems with more than 20 design

variables are assumed as complex optimization problems. However, this category

may not extend for all problems having different number of design variables. It

means that there exist problems having only 2 design variables with several local

optima and therefore considered as moderate optimization problems (i.e. there are

some exceptions). The following guidelines to fine tune the parameters are offered:

• For a simple optimization problem, 10 to 15 pieces of shrapnel per mine bomb

can be sufficient. For more complex problems, higher values for the number of

shrapnel pieces (Ns) should be selected, since this leads to more mine explosions in

the field and, therefore, enables a better search of the design space. For complex

problems, Ns may be chosen as 50. On the other hand, increasing the number of

shrapnel pieces increases the computation time, in addition to an increase in the

42

number of function evaluations. In other word, the number of shrapnel pieces is the

number of population (Ns=Npop).

• Exploration factor (µ) highly depends on the complexity of the problem, the

number of independent variables and constraints, and the interval span. Usually,

for less than four design variables and moderately complex functions, the value of

µ may be taken as zero. Increasing µ may lead the possibility of getting trapped in

local minima. In fact, increasing µ means more explorations at each iteration,

while an efficient algorithm should balance between exploration and exploitation

processes.

• Reduction constant (α) also depends on the complexity of the problem, number

of decision variables, and interval span. When the interval span (LB and UB) is

large, large value for α should be chosen for more exploration. That means if we

have interval span [-100,100], then α =100 cannot be a good choice, instead α

=1000 may be better choice. A larger value for α leads to increase in

computational time and also, increases the probability of finding global minimum.

3.4. Constraint handling approach

In the search domain, shrapnel pieces may exceed the constraints of given

problem or may violate from upper and lower bounds of design variables. In the

current study, a modified feasible-based method is utilized to overcome the

constraints which the rules are given as follows (Montes & Coello, 2008):

 Rule 1: Any obtained feasible solution is fancied to any infeasible solution.

 Rule 2: Infeasible solutions having minor violation of the constraints (from

0.01 in the first iteration to 0.001 in the final iteration) are assumed as

feasible solutions.

 Rule 3: Between two feasible solutions, the one having the improved

objective function value is more interested.

43

 Rule 4: Between two infeasible solutions, the one with the smaller sum of

constraint violation is chosen.

By using the 1
th

 and 4
th

 rules, the search is oriented to the feasible area

rather than to the infeasible region, and by applying the 3
th

 rule the search is

directed to the feasible district having high quality results (Montes & Coello,

2008). For most structural optimization problems, the global minimum locates on

or close to the boundary of a feasible design space. By applying Rule 2, the

shrapnel pieces approach the boundaries and can reach the global minimum with a

higher probability (Kaveh and Talatahari, 2009b).

Figure 3.2 demonstrates the constraint handling approach for the MBA. As

can be seen from Figure 3.2, in the search space, shrapnel pieces may violate either

the problem specific constraints or the limits of the design variables. In this case,

the distance of infeasible shrapnel piece (e.g. X3 in Figure 3.2) is reduced

adaptively using Equation (3.9) whereas that violated shrapnel piece is also placed

in the feasible region.

Figure ‎3.2. Schematic view of constraint handling approach using the proposed

method.

3.5. Convergence criteria

For termination criteria, as commonly considered in metaheuristic

algorithms, the best result is calculated where the termination condition may be

assumed as the maximum number of iterations, CPU time, or  which is a small

44

value and is defined as an allowable tolerance between the last two results. The

MBA proceeds until the above convergence criteria are satisfied.

3.6. Steps and flowchart of MBA

The steps of MBA are summarized as follows:

Step 1: Choose the initial parameters of MBA.

Step 2: Check the condition of exploration factor.

Step 3: If condition of exploration factor is satisfied, calculate the distance of

shrapnel pieces and their locations according to Equations (3.7) and (3.8),

respectively, and go Step 11. Otherwise, go to Step 4.

Step 4: Calculate the distance of shrapnel pieces and their locations using

Equations (3.4) and (3.5).

Step 5: Calculate the direction of shrapnel pieces according to Equation (3.6).

Step 6: Generate the shrapnel pieces and compute their improved locations using

Equation (3.3).

Step 7: Check the constraints for generated shrapnel pieces.

Step 8: Save the best shrapnel piece as the best temporal solution.

Step 9: Does the shrapnel piece have the lower function value than the best

temporal solution?

Step 10: If true, exchange the position of the shrapnel piece with the best temporal

solution.

Step 11: Reduce the distance of the shrapnel pieces adaptively using Equation

(3.9).

Step 12: Check the convergence criteria. If the stopping criterion is satisfied, the

algorithm will be stopped. Otherwise, return to Step 2.

 Figure 3.3 demonstrates the steps of the MBA in form of flowchart. In

summary, in this chapter, the detailed explanations and formulations of the

45

proposed method were provided. In addition, setting parameters of the MBA were

investigated in this chapter. In summary, in this chapter, the detailed explanations,

formulations, and steps of the proposed method were represented.

Figure ‎3.3. Flowchart of the proposed MBA.

46

CHAPTER 4 : WATER CYCLE

ALGORITHM

47

4.1. Basic concepts

The idea of the water cycle algorithm (WCA) is inspired from nature and

based on the observation of water cycle and how rivers and streams flow downhill

towards the sea in the real world. To understand this further, an explanation on the

basics of how rivers are created and water travels down to the sea is given as

follows.

A river, or a stream, is formed whenever water moves downhill from one

place to another. This means that most rivers are formed high up in the mountains,

where snow from the winter, or ancient glaciers, melt. The rivers always flow

downhill. On their downhill journey and eventually ending up to a sea, water is

collected from rain and other streams.

Figure 4.1 is a simplified diagram for part of the hydrologic cycle. Water in

rivers and lakes is evaporated while plants give off (transpire) water during

photosynthesis. The evaporated water is carried into the atmosphere to generate

clouds which then condenses in the colder atmosphere, releasing the water back to

the earth in the form of rain or precipitation. This process is called the hydrologic

cycle (water cycle) (David, 1993).

Figure ‎4.1. Simplified diagram of the hydrologic cycle (water cycle).

48

In the real world, as snow melts and rain falls, most of water enters the

aquifer. There are vast fields of water reserves underground. The aquifer is

sometimes called groundwater (see percolation arrow in Figure 4.1). The water in

the aquifer then flows beneath the land the same way water would flow on the

ground surface (downward).

The underground water may be discharged into a stream (marsh or lake).

Water evaporates from the streams and rivers, in addition to being transpired from

the trees and other greenery, hence, bringing more clouds and thus more rain as

this cycle counties (David, 1993).

Figure 4.2 is a schematic diagram of how streams flow to the rivers and

rivers flow to the sea. Figure 4.2 resembles a tree or roots of a tree. The smallest

river branches, (twigs of tree shaped figure in Figure 4.2 shown in bright green),

are the small streams where the rivers begins to form. These tiny streams are called

first-order streams (shown in Figure 4.2 in green colors).

Wherever two first-order streams join, they make a second-order stream

(shown in Figure 4.2 in white colors). Where two second-order streams join, a

third-order stream is formed (shown in Figure 4.2 in blue colors), and so on until

the rivers finally flow out into the sea (the most downhill place in the assumed

world) (Strahler, 1952).

Figure ‎4.2. Schematic diagram of how streams flow to the rivers and also rivers

flow to the sea.

49

Figure 4.3 shows the Arkhangelsk city on the Dvina River. Arkhangelsk

(Archangel in English) is a city in Russia that drapes both banks of the Dvina

River, near where it flows into the White Sea. A typical real life stream, river, sea

formation (Dvina River) is shown in Figure 4.3 resembling the shape in Figure 4.2.

Figure ‎4.3. Arkhangelsk city on the Dvina River (adopted from NASA, Image

Source: http://asterweb.jpl.nasa.gov/gallery-detail.asp?name=Arkhangelsk).

4.2. Proposed WCA

Similar to other metaheuristic algorithms, the proposed method begins with

an initial population so called the raindrops. First, we assume that we have rain or

precipitation. The best individual (best raindrop) is chosen as a sea. Then, a

number of good raindrops are chosen as a river and the rest of the raindrops are

considered as streams which flow to the rivers and sea.

Depending on their magnitude of flow which will be described in the

following subsections, each river absorbs water from the streams. In fact, the

amount of water in a stream entering a rivers and/or sea varies from other streams.

In addition, rivers flow to the sea which is the most downhill location.

4.2.1. Create initial population

In order to solve an optimization problem using population-based

metaheuristic methods, it is necessary that the values of problem variables be

50

formed as an array. In the GA and PSO terminologies such array is called

“Chromosome” and “Particle Position”, respectively. Accordingly, in the proposed

method it is called “Raindrop” for a single solution. In a Nvar dimensional

optimization problem, an raindrop is an array of 1×Nvar. This array is defined as

follows:

1 2 3[, , ,...,]NRaindrop x x x x (4.1)

To start the optimization algorithm, a candidate representing a matrix of

raindrops of size Npop ×Nvar is generated (i.e. population of raindrops). Hence, the

matrix X which is generated randomly is given as (rows and column are the

number of population and the number of design variables, respectively):

var

var

var

1 1 1 1
1

1 2 3

2 2 2 2 2

1 2 3

3

1 2 3
pop pop pop pop

pop

N

N

N N N N

N
N

Raindrop x x x x
Raindrop

x x x x
Population of raindrops Raindrop

x x x xRaindrop

 
  
  
      
  
      

(4.2)

Each of the decision variable values (x1, x2, . . . , xNvar) can be represented

as floating point number (real values) or as a predefined set for continuous and

discrete problems, respectively. The cost of a raindrop is obtained by the

evaluation of cost function (C) given as:

var1 2os (, , ,) 1,2,3,...,i i i

i i N popC C t f x x x i N   (4.3)

where Npop and Nvars are the number of raindrops (initial population) and the

number of design variables, respectively. For the first step, Npop raindrops are

created. A number of Nsr from the best individuals (minimum values) are selected

as sea and rivers. The raindrop which has the minimum value among others is

considered as a sea.

51

In fact, Nsr is the summation of Number of Rivers (which is a user

parameter) and a single sea as given in Equation (4.4). The rest of the population

(raindrops form the streams which flow to the rivers or may directly flow to the

sea) is calculated using Equation (4.5).

1sr

Sea

N Number of Rivers  (4.4)

Raindrops pop srN N N  (4.5)

In order to designate/assign raindrops to the rivers and sea depending on

the intensity of the flow, the following equation is given:

1

{ } , 1,2,...,
sr

n
n Raindrops srN

i

i

Cost
NS round N n N

Cost


  



 (4.6)

where NSn is the number of streams which flow to the specific rivers or sea.

4.2.2. How does a stream flow to the rivers or sea?

As mentioned in Subsection 4.1 in this chapter, the streams are created

from the raindrops and join each other to form new rivers. Some of the streams

may also flow directly to the sea. All rivers and streams end up in sea (best optimal

point). Figure 4.4 shows the schematic view of stream‟s flow towards a specific

river where star and circle represent river and stream, respectively.

Figure ‎4.4. Schematic view of stream‟s flow to a specific river.

52

As illustrated in Figure 4.4, a stream flows to the river along the connecting

line between them using a randomly chosen distance given as follow:

(0,), 1X C d C   (4.7)

where C is a value between 1 and 2 (near to 2). The best value for C may be

chosen as 2. The current distance between stream and river is represented as d.

Indeed, same as the PSO, the value of C was chosen using some practical and

experimental execution of algorithm (try and error process). The value of X in

Equation (4.7) corresponds to a distributed random number (uniformly or may be

any appropriate distribution) between 0 and (C×d).

The value of C being greater than one enables streams to flow in different

directions towards the rivers. This concept may also be used in flowing rivers to

the sea. Therefore, the new position for streams and rivers may be given as:

1 ()i i i i

Stream Stream River StreamX X rand C X X      (4.8)

1 ()i i i i

River River Sea RiverX X rand C X X      (4.9)

where rand is a uniformly distributed random number between 0 and 1. Based on

our experiments, uniform random numbers more than 1 lead to diverge motion of

rivers to the sea. If the solution given by a stream is better than its connecting

river, the positions of river and stream are exchanged (i.e. stream becomes river

and river becomes stream). Such exchange can similarly happen for rivers and sea.

Figure 4.5 depicts the exchange of a stream which is the best solution

among other streams and the river. From Figure 4.5, star represents river and black

color circle shows the best stream among other streams.

53

Figure ‎4.5. Exchanging the positions of the stream and the river.

4.2.3. Evaporation condition

Evaporation is one of the most important factors that can prevent the

algorithm from rapid convergence (immature convergence). As can be seen in

nature, water evaporates from rivers and lakes while plants give off (transpire)

water during photosynthesis.

The evaporated water is carried into the atmosphere to form clouds which

then condenses in the colder atmosphere, releasing the water back to the earth in

the form of rain. The rain creates the new streams and the new streams flow to the

new rivers which flow to the sea. This cycle which was mentioned in Subsection

4.1 is called water cycle.

In the proposed method, the evaporation process causes the sea water to

evaporate as rivers/streams flow to the sea. This assumption is proposed in order to

avoid getting trapped in local optima. The following Psuocode shows how to

determine whether or not river flows to the sea.

max 1,2,3,..., 1i i

Sea River srif X X d i N

Evaporation and raining process

end

   

where dmax is a small number (close to zero). Therefore, if the distance between a

river and sea is less than dmax, it indicates that the river has reached/joined the sea.

In this situation, the evaporation process is applied and as seen in the nature after

some adequate evaporation the raining (precipitation) will start.

54

A large value for dmax reduces the search while, a small value encourages

the search intensity near the sea. Therefore, dmax controls the search intensity near

the sea (the optimum solution). The value of dmax adaptively decreases as:

1 max
max max

max

i
i i d

d d
iteration

   (4.10)

To further clarify, in order to converge to an optimal point, distance

between river and sea should be decreased at each iteration based on the Equation

(4.10). This action helps to cover the exploitation process used in the WCA in

addition of convergence purposes.

4.2.4. Raining process

After satisfying the evaporation process, the raining process is applied. In

the raining process, the new raindrops form streams in the different locations

(acting similar to mutation operator in the GA). For specifying the new locations

of the newly formed streams, the following equation is used:

()new

StreamX LB rand UB LB    (4.11)

where LB and UB are lower and upper bounds defined by the given problem,

respectively. Again, the best newly formed raindrop is considered as a river

flowing to the sea. The rest of new raindrops are assumed to form new streams

which flow to the rivers or may directly flow to the sea.

In order to enhance the convergence rate and computational performance of

the algorithm for constrained problems, Equation (4.12) is used only for the

streams which directly flow to the sea. This equation aims to encourage the

generation of streams which directly flow to the sea in order to improve the

exploration near sea (the optimum solution) in the feasible region for constrained

problems.

new

stream sea varX X randn (1,N)   (4.12)

55

where µ is a coefficient which shows the range of searching region near the sea.

Randn is the normally distributed random number. The larger value for µ increases

the possibility to exit from feasible region. On the other hand, the smaller value for

µ leads the algorithm to search in smaller region near the sea. A suitable value for

µ is set to 0.1.

In mathematical point of view, the term  in Equation (4.12) represents

the standard deviation and, accordingly, µ defines the concept of variance. Using

these concepts, the generated individuals with variance µ are distributed around the

best obtained optimum point (sea).

4.3. Constraint handling approach

In the search domain, streams and rivers may exceed the constraints of

given problem or may violate from upper and lower bounds of design variables. In

the current study, a modified feasible-based method is utilized to overcome the

constraints which the rules are given as follows (Montes & Coello, 2008):

 Rule 1: Any obtained feasible solution is fancied to any infeasible solution.

 Rule 2: Infeasible solutions having minor violation of the constraints (from

0.01 in the first iteration to 0.001 in the final iteration) are assumed as

feasible solutions.

 Rule 3: Between two feasible solutions, the one having the improved

objective function value is more interested.

 Rule 4: Between two infeasible solutions, the one with the smaller sum of

constraint violation is chosen.

By using the 1
th

 and 4
th

 rules, the search is oriented to the feasible area

rather than to the infeasible region, and by applying the 3
th

 rule the search is

directed to the feasible district having high quality results (Montes & Coello,

2008). For most structural optimization problems, the global minimum locates on

56

or close to the boundary of a feasible design space. By applying Rule 2, the

streams and rivers approach the boundaries and can reach the global minimum

with a higher probability (Kaveh & Talatahari, 2009b).

4.4. Convergence criteria

For termination criteria, as commonly considered in metaheuristic

algorithms, the best result is calculated where the termination condition may be

assumed as the maximum number of iterations, CPU time, or  which is a small

non-negative value and is defined as an allowable tolerance between the last two

results. The WCA proceeds until the maximum number of iterations as a

convergence criterion is satisfied.

4.5. Steps and flowchart of WCA

The steps of WCA are summarized as follows:

Step 1: Choose the initial parameters of the WCA: Nsr, dmax, Npop, max_iteration.

Step 2: Generate random initial population and form the initial streams (raindrops),

rivers, and sea using Equations (4.2), (4.4), and (4.5).

Step 3: Calculate the value (cost) of each raindrops using Equation (4.3).

Step 4: Determine the intensity of flow for rivers and sea using Equation (4.6).

Step 5: The streams flow to the rivers by Equation (4.8).

Step 6: The rivers flow to the sea which is the most downhill place using Equation

(4.9).

Step 7: Exchange positions of river with a stream which gives the best solution, as

shown in Figure 4.5.

Step 8: Similar to Step 7, if a river finds better solution than the sea, the position of

river is exchanged with the sea (see Figure 4.5).

Step 9: Check the evaporation condition using the Psuocode in Subsection 4.2.3.

57

Step 10: If the evaporation condition is satisfied, the raining process will occur

using Equations (4.11) and (4.12).

Step 11: Reduce the value of dmax which is user defined parameter using Equation

(4.10).

Step 12: Check the convergence criteria. If the stopping criterion is satisfied, the

algorithm will be stopped, otherwise return to Step 5.

The schematic view of the proposed method is illustrated in Figure 4.6

where circles, stars, and the diamond correspond to streams, rivers, and sea,

respectively. From Figure 4.6, the white (empty) shapes refer to the new positions

found by streams and rivers. In fact, Figure 4.6 is an extension of Figure 4.4.

Figure ‎4.6. Schematic view of WCA.

The procedure for the proposed WCA is shown in Figure 4.7 in the form of

a flowchart. In summary, in this chapter, the detailed explanations, formulations,

and steps of the proposed method were represented.

58

Figure ‎4.7. Flowchart of the proposed WCA.

59

CHAPTER 5 : VALIDATION OF

PROPOSED METHODS

60

In this chapter, at first, similarities and differences of the proposed methods

(MBA and WCA) with other existing and similar metaheuristic algorithms such as

PSO (Kennedy & Eberhart, 1995), grenade explosion method (GEM) (Ahrari &

Aatai, 2010), water flow algorithm (WFA) (Hieu, 2011), water cycle-like

algorithm (WCA) (Zhi-ding & Jie-Kang, 2011), and intelligent water drops (IWD)

algorithm (Shah-Hosseini, 2009) are provided in details accompanied with

descriptions of their processes.

Afterwards, validation and verification of proposed optimizers are carried

out using various types of unconstrained, constrained, and engineering design

problems. Comprehensive comparisons are conducted for evaluating the efficiency

and performance of the MBA and WCA. Unfortunately, the above methods

(except the GEM and PSO) were not applied for the reported problems in this

thesis. There are not existing records or publications of applications for these

methods for truss structures, constrained, and engineering design problems so far.

5.1. Differences among proposed optimizers with other existing methods

It can be a good question, what are the similarities and differences between the

MBA and WCA? The only similarity between the MBA and WCA is that both

proposed optimizers are population based methods. Except this similarity, all

factors and operators and even their concepts are different. The MBA‟s concept is

from explosion of mine bombs, while the WCA‟s ideas are inspired from water

cycle process and how streams and rivers flow to the sea in nature.

Regarding the constraint handling approach, it is worth to mention that, the

approach, given in subsections 3.4 and 4.3, is widely used strategy for controlling

constraint violation. It can be implemented for many metaheuristic methods. It

cannot count as similarity between the MBA and WCA in terms of concept and

performance. In fact, there are many ways for tackling constraint handling in the

61

literature. We used these four rules (known as direct method and given in

subsections 3.4 and 4.3) instead of, for example, penalty function approach.

Talking about differences between the WCA and PSO, the updating formulation

for positions of rivers and streams are different from given by the PSO (finding

and updating the local and global best positions). By observing carefully, we did

not use the concept of moving directly to the best solution (global best). In fact, we

utilized the concept of moving indirectly from stream to the rivers and from rivers

to the sea which is the best temporal obtained optimum point.

In the proposed WCA, rivers (a number of best selected points except the best one

(sea), Equation (4.4)) act as guidance points for conducting other individual of

populations toward the better positions (see Figure 4.6) and avoid to search on

inappropriate regions in near-optimum solutions (Equation (4.8)).

It is worth to mention that rivers, themselves, move toward to the sea (the best

solution). They are not fixed points (Equation (4.9)). In fact, this procedure

(moving streams to the rivers and, then moving rivers to the sea) leads to indirect

move toward the best solution. In other hand, in the PSO, individuals (particles)

based on the personal and best experiences find the best solution and the searching

approach is moving directly to the best optimal solution.

To mention another distinguish between the WCA and PSO is the existing of

evaporation and raining conditions which is act as mutation operator. The

evaporation and raining conditions cause to release the proposed algorithm from

getting trapped in local optimum solutions, while in the PSO there was not defined

such a mechanism.

Talking about the differences between the MBA and GEM, in the MBA, we have

different approach for finding an optimal point compared with the GEM. To

mention of them, reduction constant and exploration factor, which simulate

62

exploitation and exploration steps for the MBA. The distance of each shrapnel

pieces is calculated using Euclidean distance in 2D space and also we have the

concept of direction for each shrapnel pieces.

One of the theories of GEM is the agent‟s territory radius (Rt), which means an

agent (in the GEM agents are grenades) does not let other agents come closer than

a definite distance, which is specified by Rt. In addition, there is a concept which is

determined the intensity of exploration process. In the GEM, Le is the length of

explosion along each coordinate, in which the thrown piece of shrapnel may

destruct the objects. The values of Rt and Le are decreased adaptively in each

iteration, while the reduction rate of Le is slower than Rt for exploration purposes.

As it can be seen, the MBA and GEM are in common only in the basis of

explosion concept. It means their ideas of explosion for creating an initial

population are the same. In fact, both optimizers (MBA and GEM) are population

based methods (population of shrapnel pieces). However, the strategy of MBA to

approach towards a global optimum point is totally different. The MBA uses

different formulations and strategies to reach its best optimal point.

The MBA does not have radius territory and intensity of exploration operators

same as the GEM. In the MBA the new positions of shrapnel pieces calculate using

updating formula which is totally different with those given in the GEM. In the

MBA, two special operators are defined which do not exist in the GEM: Reduction

constant and exploration factor.

The number of initial parameters in the MBA is quit less than those offered by the

GEM. In the GEM, besides of common initial parameters for metaheuristic

algorithms (i.e. population size and maximum number of iteration), the following

values should be selected as user parameters: mmax, mmin, Tw, Nq, Le-initial, Rt-initial,

and Rrd.

http://en.wikipedia.org/wiki/Euclidean_relation

63

In contrast, for the MBA (except of common user parameters for metaheuristic

algorithms), the number of user parameters is comparatively less than the GEM

which are reduction constant (α) and exploration factor (µ).

The water flow algorithm (WFA) is inspired by the hydrological cycle in

meteorology and the erosion phenomenon in nature. The WFA combines the

amount of precipitation and its falling force to form a flexible erosion capability.

This helps the erosion process of the algorithm to focus on exploiting promising

regions strongly (Hiew, 2011).

In fact, the idea of WCA and WFA is similar to each other inspiring from water

cycle process in nature. However, the first idea of WCA was based on how streams

and rivers flow to the sea and formulations of WCA are different from those given

by the WFA.

By observing the WCA, it focuses on the motion of streams and rivers to the sea

and the evaporation condition and updating formula are fully diverse with those

suggested in the WFA. In the WFA, the concept of erosion and falling force of

raindrops are considered as another differences between the WCA and WFA.

The concept of water cycle-like algorithm (WCA) proposed by Zhi-ding and Jie-

Kang (2011) has the same concept given in the WCA by Eskandar et al. (2012).

However, for searching mechanism, they utilized the idea of relative gravity of

waters to guide particles towards better solutions. It is worth mentioning that the

WCA offered in the literature modeled the concepts of confluence, infiltration, and

total force which are completely dissimilar with the suggested model in the WCA

proposed by Eskandar et al. (2012).

Another similar method to the WCA in terms of concept is intelligent water drops

(IWD) algorithm. The IWD algorithm is a swarm-based nature-inspired

optimization algorithm (Shah-Hosseini, 2009). This algorithm contains a few

64

essential elements of natural water drops and actions and reactions that occur

between river's bed and the water drops that flow within.

The IWD consists of two parts: a graph that plays the role of distributed memory

on which soils of different edges are preserved, and the moving part of the IWD

algorithm, which is a few number of intelligent water drops. These intelligent

water drops (IWDs) both compete and cooperate to find better solutions and by

changing soils of the graph, the paths to better solutions become more reachable.

It is mentioned that the IWD needs at least two IWDs to launch. By carefully

looking at the processes of the IWD algorithm, one can be seen that the concepts

of the WCA and IWD are not the same. The only similarity between the WCA and

IWD is using the water drops agent in their populations.

To further clarify, the IWD uses the concepts of soil removal while water drops

moving to the rivers, also it gains some velocity and removes some soil from the

path it flows on which are totally different with the suggested formulations and

concepts offered by the WCA.

It is common to see an algorithm reaches the best solution for some

problems and in contrast, for some problems it cannot detect the best optimum

point. This is happen for all metaheuristic approaches such as the GA, PSO, SA,

and so forth.

For instance, the SA is a suitable optimizer for tackling combinatorial

optimization problems, while the PSO performs well for continuous problems. In

fact, depends on the nature of a problem being solved, the performance of

optimizers may differ from each other.

As for the MBA and WCA, they outperformed other considered optimizers

in terms of less computational time and solution accuracy, while for some

65

problems their results were not counted as first ranked solution. In fact, for some

problems, they have placed in 2
nd

 rank.

However, in general, for most problems in this thesis, obtained optimization results

offered by the proposed optimizers have surpassed other methods. The reason may

be depended on their strategies moving to the global optimum point which they

can search domain solution better than others using their exploration and

exploitation operators.

Regarding the parameter setting, based on our experiments and practical

executions, we offered default values for solving problems using the MBA and

WCA. If optimization results were not satisfactory, a user would change the

default values based on the parameter setting guidance given in this thesis.

It is worth mentioning that the number of initial parameters is

comparatively less for the proposed optimizers (2 for the MBA and WCA). The

difficulties for tuning the initial parameters are in their minimum level for both

methods.

5.2. Unconstrained benchmark problems

The proposed optimizers were implemented in MATLAB programming

software and run on Pentium IV, 2500 GHz CPU having 4GB RAM. For

validating of the proposed methods, the following criteria were considered in this

chapter and the results are shown in tables and figures:

 Comparing WCA and MBA with other optimizers with respect to the

number of function evaluations (NFEs) and best function value.

 Finding the global minimum among many local minima.

In the following subsection, various standard unconstrained benchmark

function minimization problems have been presented to demonstrate the efficiency

and robustness of the proposed algorithms and the obtained results were compared

66

with the results obtained using other efficient optimizers. These examples include

16 well-known unconstrained benchmark functions.

The task of optimizing each of the test functions was executed in 50

independent runs. Different number of iterations was used for different types of

benchmark problems. All benchmark functions used in this chapter are given in

Appendix A.

5.2.1. NFEs and best function value criteria

The number of function evaluations (NFEs) determine the speed

(computational time) and the robustness of the algorithm (robustness means fast

convergence rate and having the best solution quality). Less NFEs means spending

less time to reach the global optimum. This feature returns back to the structure of

the algorithm. The best solution represents the accuracy of the method. The NFEs

and best solution are dependent on each other. The ideal situation is the less NFEs

and more accurate solution.

Table 5.1 presents specifications of seven benchmark functions. For

benchmark functions in Table 5.1, the optimization process terminates when the

difference between the maximum fitness obtained and the global optimum value is

less than 0.1% of the optimum value, or less than 0.001, whichever is smaller. In

case the optimum value is zero, the solution is accepted if it differs from the

optimum value by less than 0.001 (Pham et al., 2006).

67

Table ‎5.1: Specifications of seven unconstrained benchmark functions presented in

(Pham et al., 2006; Ahrari et al., 2010). “N” stands for the number of design

variables.

No. Functions N Interval

1 De Jong 2 [-2.048,2.048]
N

2 Goldstein and Price I 2 [-2,2]
N

3 Branin 2 [-5,10]
N

4 Martin and Gaddy 2 [0,10]
N

5a Rosenbrock 2 [-1.2,1.2]
N

5b Rosenbrock 2 [-10,10]
N

5c Rosenbrock 4 [-1.2,1.2]
N

6 Hyper sphere 6 [-5.12,5.12]
N

7 Shaffer 2 [-100,100]
N

Figure 5.1 shows the surface plot and contour lines for seven benchmark

functions given in Table 5.1. Tables 5.2 and 5.3 represent the values which were

chosen for parameters used in the MBA and WCA, respectively. Tables 5.4 and

5.5 show the statistical results including worst, mean, best solution, and standard

deviation (SD) for seven unconstrained benchmark functions for the MBA and

WCA, respectively.

68

Figure ‎5.1. Surface plot and contour lines for seven benchmark functions presented

in Table 5.1: (a) De Jong, (b) Goldstein and Price I, (c) Branin, (d) Martin and

Gaddy, (e) Rosenbrock, (f) Hyper Sphere, (g) Shaffer.

69

Table 5.2: Initial parameters used for optimization of seven unconstrained

benchmark functions using the MBA presented in Table 5.1.

No. Ns µ  Max_Iteration

1 10 0 500 200

2 10 0 500 100

3 10 0 500 100

4 5 0 500 50

5a 5 0 500 100

5b 10 0 500 500

5c 50 3 500 400

6 10 0 500 100

7 50 0 1000 1000

Table 5.3: User parameters used for optimization of seven unconstrained

benchmark functions presented in Table 57.1 using the WCA.

No. Ntotal Nsr dmax Max_Iteration

1 10 3 0.01 200

2 10 3 0.01 200

3 10 3 0.01 100

4 5 2 0.01 50

5a 5 2 0.01 100

5b 10 3 0.01 500

5c 50 4 0.01 50000

6 10 3 0.01 100

7 50 4 0.01 1000

Table 5.4: Statistical results of 50 independent runs for seven unconstrained

benchmark functions in Table 5.1 using the MBA.

No. Worst Mean Best SD Optimum

1 3905.949023 3905.932168 3905.930000 4.45E-03 3905.93

2 3.000126 3.000032 3.0000009 3.45E-05 3

3 0.401670 0.397915 0.3977272 7.86E-04 0.3977272

4 2.27E-03 7.62E-04 3.68E-05 6.37E-04 0

5a 0.102756 0.011318 7.19E-08 2.41E-02 0

5b 7.63E-01 4.68E-02 9.75E-07 0.163767 0

5c1 7.599E-03 1.979E-03 1.21E-06 2.23E-03 0

5c2 3.78E-02 2.89E-03 1.16E-06 9.22E-03 0

6 4.093E-03 9.29E-04 1.34E-05 1.10E-03 0

7 9.715E-03 7.383E-03 1.08E-10 4.234E-03 0

70

Table 5.5: Statistical results for seven unconstrained benchmark functions given in

Table 5.1 using the WCA.

No. Worst Mean Best SD Optimum

1 3906.121239 3905.940137 3905.930000 3.82E-02 3905.93

2 3.000968 3.000561 3.000020 2.55E-04 3

3 0.398717 0.398272 0.397731 3.20E-04 0.397727

4 0.000929 0.000416 0.000005 3.11E-04 0

5a 0.014634 0.001345 0.000028 3.11E-03 0

5b 0.000986 0.000432 0.000001 3.20E-04 0

5c 0.000798 0.000212 0.000000 2.29E-04 0

6 0.009223 0.000600 0.000000 1.81E-03 0

7 0.009715 0.001167 0.000026 2.58E-03 0

Tables 5.6 and 5.7 present the results obtained by proposed optimizers and

those using deterministic Simplex method (SIMPSA), Stochastic Simulated

Annealing optimization procedure (NE-SIMPSA), Genetic Algorithm (GA), Ant

Colony System (ACS), Artificial Bees Colony (ABC) (Pham et al., 2006), and

Grenade Explosion Method (GEM) (Ahrari & Aatai, 2010). Optimization results

for all optimizers except the WCA and MBA were directly driven from (Ahrari &

Aatai, 2010; Pham et al., 2006; Ahrari et al., 2010).

The best NFEs in each case has been highlighted in bold as shown in Table

5.7. From Tables 5.6 and 5.7, MNFEs stands for mean number of function

evaluations and the Success criterion is in percentage.

71

Table ‎5.6: Comparison of results for optimization of seven unconstrained

benchmark functions presented in Table 5.1. “N/A” means not available.

No.

SIMPSA NE-SIMPSA GA ACS

Succ. MNFEs Succ. MNFEs Succ. MNFEs Succ. MNFEs

1 N/A N/A N/A N/A 100 10,160 100 6000

2 N/A N/A N/A N/A 100 5662 100 5330

3 N/A N/A N/A N/A 100 7325 100 1936

4 N/A N/A N/A N/A 100 2488 100 1688

5a 100 10,780 100 4508 100 10,212 100 6842

5b 100 12,500 100 5007 N/A N/A 100 7505

5c 99 21,177 94 3053 N/A N/A 100 8471

6 N/A N/A N/A N/A 100 15,468 100 22,050

7 N/A N/A N/A N/A N/A N/A N/A N/A

Table ‎5.7: Comparison of results for optimization of seven unconstrained

benchmark functions presented in Table 5.1.

No.
ABC GEM WCA MBA

Succ. MNFEs Succ. MNFEs Succ. MNFEs Succ. MNFEs

1 100 868 100 746 100 684 100 620

2 100 999 100 701 100 980 100 440

3 100 1657 100 689 100 377 100 430

4 100 526 100 258 100 57 100 100

5a 100 631 100 572 100 174 100 245

5b 100 2306 100 2289 100 623 100 830

5c 100 28,529 100 82,188 100 266 100 3700

6 100 7113 100 423 100 101 100 370

7 100 8456 100 9481 100 8942 100 6950

The comparison of results shown in Tables 5.6 and 5.7 reveals that the

WCA and MBA have found the global minimum with the desired accuracy faster

than (Less NFEs) other optimization engines. This superiority is more evident for

functions 3 to 6. By observing Tables 5.6 and 5.7, only the MBA and WCA can

compete with each other in terms of NFEs.

Also, Learning Algorithm (LA) given in (Zhao et al., 2009) solved function

7 in Table 5.6 using 19,532 function evaluations for 16-digit accuracy, while the

WCA solved the same problem for 17-digit accuracy using 11,550 function

evaluations.

72

One of the advantages of the proposed optimizers is that the function values

are reduced to near optimum point in the early iterations. This may be due to the

searching criteria and approaches of WCA and MBA where it searches a wide

region of problem domain and quickly focuses on the near optimum solutions. In

the following subsections in this chapter, this advantage is shown in higher

dimensions for benchmark functions (see Figure 5.2).

Another comparison is presented to show the superiority of the proposed

algorithms. Table 5.8 shows the specification of seven other unconstrained

benchmark functions that were optimized using the HS (Lee & Geem, 2005).

The user parameters which are used for initialization of the proposed WCA

and MBA are given in Tables 5.9 and 5.10, respectively. The statistical

optimization results for the seven unconstrained benchmark functions from Table

5.8 including the worst, mean, best solutions, and SD are summarized in Tables

5.11 and 5.12 for both proposed WCA and MBA, respectively.

Table ‎5.8: Specification of seven unconstrained benchmark functions presented in

(Lee & Geem, 2005).

No. Functions Interval N

1 Rosenbrock [-10,10]
N
 2

2 Goldstein and Price I [-5,5]
N
 2

3 Goldstein and Price II [-5,5]
N
 2

4 Six Hump Camel Back [-10,10]
N
 2

5 Easton and Fenton [0,10]
N
 2

6 Wood [-5,5]
N
 4

7 Powell Quartic [-5,5]
N
 4

73

Table ‎5.9: User parameters for the WCA for seven benchmark functions given in

Table 5.8.

No. Ntotal Nsr dmax Max_Iteration

1
20 4 1E-16 1000

20 4 1E-03 1000

2 10 3 1E-03 300

3 50 4 1E-03 1000

4 15 3 1E-03 500

5 10 3 1E-03 100

6
50 4 1E-16 500

50 4 1E-03 1000

7
50 4 1E-16 500

50 4 1E-03 1000

Table ‎5.10: Initial parameters used for optimization of seven unconstrained

benchmark functions using the MBA presented in Table 5.8.

No. Ns µ  Max_Iteration

1 10 3 500 1000

2 10 0 500 300

3 50 3 1000 1000

4 15 0 500 500

5 10 0 500 100

6 50 3 1000 1000

7 50 5 1000 5000

Table ‎5.11: Statistical optimization results for seven unconstrained benchmark

functions presented in Table 5.8 using the WCA.

No. Worst Mean Best SD Optimum

1
1.12E-01 7.60E-03 0 2.54E-02 0

4.78E-09 9.54E-10 4.52E-11 1.06E-09 0

2 3.0000 3.0000 3.0000 9.81E-07 3

3 1.1291 1.0118 1.0000 0.0360 1

4 -1.0316 -1.0316 -1.0316 1.38E-08 -1.0316285

5 1.7441 1.7441 1.7441 1.96E-06 1.74

6
8.13E-18 3.25E-19 0 1.62E-18 0

3.81E-05 1.58E-06 1.30E-10 7.60E-06 0

7
1.41E-11 5.67E-13 4.63E-38 2.83E-12 0

2.87E-09 6.09E-10 1.12E-11 8.29E-10 0

74

Table ‎5.12: Statistical optimization results of 50 independent runs for seven

unconstrained benchmark functions given in Table 5.8 using the MBA.

No. Worst Mean Best SD Optimum

1 (µ=0) 1.15E-12 4.60E-14 9.79E-27 2.30E-13 0

1 (µ =3) 5.91E-07 5.11E-08 3.60E-14 1.37E-07 0

2 2.999999 2.999999 2.999999 2.60E-12 3

3 (µ =0) 1.037497 1.006012 1.0000002 1.3E-02 1

3 (µ =3) 1.037497 1.010548 1.0000000 1.71E-02 1

4 -1.03162845 -1.03162845 -1.03162845 0 -1.0316285

5 1.744675 1.744180 1.744152 1.07E-04 1.74

6 (µ =0) 2.53E-02 3.86E-03 6.30E-06 6.16E-03 0

6 (µ =3) 1.04E-02 1.17E-03 6.37E-07 2.24E-03 0

7 (µ =0) 1.12E-04 7.11E-05 1.27E-07 3.25E-05 0

7 (µ =3) 1.05E-04 5.88E-06 1.56E-11 2.07E-05 0

Table 5.13 demonstrates the results of optimization in terms of the NFEs

and best function value. For all benchmark functions given in Table 5.13, the

WCA and MBA shows their superiority over the HS in terms of function

evaluations (convergence rate) and best obtained solution (accuracy).

Table ‎5.13: Comparison of results for the optimization of seven unconstrained

benchmark functions presented in Table 5.8.

No.
HS WCA MBA

Best Solution NFEs Best Solution NFEs Best solution NFEs

1 5.68E-10 50,000 0 820 3.60E-14 1660

2 3.0000 40,000 3.0000 2400 2.9999 1190

3 1.0000 45,000 1.0000 47,500 1.0000 8700

4 -1.0316 4870 -1.0316 3105 -1.0316 1905

5 1.7441 800 1.7441 650 1.7441 480

6 4.85E-09 70,000 0 1700 6.37E-07 8500

7 1.25E-11 100,000 4.63E-38 16,750 1.56E-11 18,600

5.2.2. Finding the global minimum among many local minima

A special ability of proposed optimizers is finding the global minimum of

functions having many local minima without being trapped in local minima. In

Subsection 5.1.1 in this chapter, the results showed this ability for the WCA and

MBA. For further clarify of this feature, six well-known unconstrained benchmark

functions are optimized using the proposed methods.

75

The multimodal functions considered are the Schwefel function, Ackley

function, Rastrigin function, Sphere function, Rosenbrock function, and Zakharov

function having 30 independent variables from (Mariani et al., 2011). Table 5.14

presents the specifications of these benchmark functions.

Table ‎5.14: Specifications of six unconstrained benchmark functions presented in

(Ahrari & Aatai, 2010; Mariani et al., 2011).

No. Functions N Interval

1 Schwefel 30 [-500,500]
N

2 Ackley 30 [-32,32]
N

3 Rastrigin 30 [-5.12,5.12]
N

4 Sphere 30 [-5.12,5.12]
N

5 Rosenbrock 30 [-30,30]
N

6 Zakharov 30 [-10,10]
N

Functions 1 to 6 are high-dimensional problems. The Schwefel, Ackley,

Rastrigin, and Rosenbrock functions are multimodal (various optima) functions

where the number of local minima increases exponentially with the problem

dimension. They appear to be the most difficult class of problems for many

optimization algorithms. It is important to mention that the Rosenbrock function

can be treated as a multimodal problem (Shang & Qiu, 2006).

Rosenbrock function has a narrow parabolic-shaped deep valley from the

perceived local optima to the global optimum. To find the valley is trivial, but to

achieve convergence to the global minimum is a difficult task. The Sphere and

Zakharov functions are unimodal (one optimum).

In order to show the complexity and difficulty of mentioned benchmark

functions, Figure 5.2 is given for representing these functions having only 2

independent variables. As shown in Figure 5.2, the global minimum is surrounded

among many local minima, even for the two-dimensional mode (see Figures 5.2a,

5.2b, and 5.2c).

76

Figure ‎5.2. Mesh plot and contour lines for six unconstrained benchmark functions

in 2 dimensions presented in Table 9: (a) Schwefel, (b) Ackley, (c) Rastrigin,

(d) Hyper Sphere, (e) Rosenbrock, (f) Zakharov.

The performance of the proposed methods were compared with Genetic

Algorithm with Floating-point representation (GAF), Shuffled Complex Evolution

algorithm (SCE-UA), Modified Shuffled Complex Evolution algorithm (MSCE)

(Mariani et al., 2011), Differential Evolution (DE), Gregarious Particle Swarm

Optimizer (GPSO), and Synchronous Bacterial Foraging Optimization (SBFO)

(Bakwad et al., 2010).

The number of function evaluations was chosen as a criterion for measuring

computational cost instead of number of iterations and CPU time. Table 5.15

provides selected initial parameters used in the MBA for optimization of functions

given in Table 5.14.

77

Table ‎5.15: User parameters for optimization of benchmark functions presented in

Table 5.14 using the MBA.

No. Ns

µ  Max_Iteration

1 50 10 10000 1000

2 50 10 1000 2000

3 50 10 10000 500

4 50 10 10000 5000

5 50 10 5000 1000

6 50 10 5000 1000

Similarly for the WCA, the number of rivers (Nsr), total number of

raindrops (Ntotal), dmax, and number of maximum iterations for test functions in

Table 5.14 were 4, 50, 1E-16, and 500, respectively. Tables 5.16 and 5.17 show

the statistical optimization results including the worst, mean, best solution, SD, and

NFEs for each benchmark function for the WCA and MBA, respectively.

Table ‎5.16: Statistical optimization results of WCA for six benchmark functions

given in Table 5.14.

No. Worst Mean Best SD NFEs

1 3.87E-4 3.82E-4 3.81E-4 1.05E-6 3050

2 4.44E-15 1.03E-15 8.88E-16 7.10E-16 1900

3 4.99E-6 2.00E-7 2.21E-12 9.99E-7 20,350

4 1.05E-17 8.44E-19 2.68E-37 2.92E-18 8000

5 1.75E-4 7.00E-6 3.01E-14 3.50E-5 18,150

6 4.64E-11 1.93E-12 2.26E-36 9.48E-12 17,750

Table ‎5.17: Statistical optimization results of MBA for six unconstrained

benchmark functions presented in Table 5.14.

No. Worst Mean Best SD NFEs

1 7.71E-05 7.69E-05 7.63E-05 5.17E-08 7800

2 2.21E-13 4.52E-14 2.22E-14 3.89E-14 48,800

3 3.58E-04 2.67E-05 1.49E-08 5.88E-01 5900

4 1.21E-14 6.59E-16 4.70E-21 2.52E-15 33,950

5 1.75E-02 2.01E-03 1.10E-07 9.80E-01 9300

6 1.44E-02 1.24E-03 1.13E-08 3.11E-03 9600

78

Tables 5.18, 5.19, and 5.20 represent the statistical optimization results of

GAF, SCE-UA, and MSCE for optimization of six unconstrained functions given

in Table 5.14, respectively. The WCA and MBA shows their superiority over other

considered algorithms in terms of the NFEs for all reported functions.

Table 5.18: Statistical optimization results for the GAF from (Mariani et al., 2011).

No. Worst Mean Best SD NFEs

1 6219.6 5434.8 3987.9 552.3 120,000

2 3.1669 1.8585 0.1209 0.6483 120,000

3 1.9902 0.2655 2.13E-13 0.5183 120,000

4 2.294E-4 4.831E-5 9.56E-11 4.292E-5 120,000

5 23.0082 51.7613 27.7946 50.6304 120,000

6 52.8072 30.9811 13.7928 10.5527 120,000

Table ‎5.19: Statistical optimization results for the SCE-UA from (Mariani et al.,

2011).

No. Worst Mean Best SD NFEs

1 8594.3853 8042.6031 7394.4199 288.5129 120,000

2 1.6462 0.1068 1.663E-04 0.3407 120,000

3 3.9798 1.5588 5.513E-09 1.1294 120,000

4 5.972E-11 5.92E-12 3.489E-16 1.212E-11 120,000

5 28.2745 27.0576 25.3911 0.6330 120,000

6 0.0393 0.0116 2.603E-04 0.0112 120,000

Table ‎5.20: Statistical optimization results for the MSCE from (Mariani et al.,

2011).

No. Worst Mean Best SD NFEs

1 6.1420 1.5598 0.1072 1.4026 120,000

2 8.882E-16 8.882E-16 8.882E-16 1E-15 120,000

3 3.9095 1.5270 5.321E-09 1.1216 120,000

4 0 0 0 0 120,000

5 25.9221 23.4675 20.3137 1.2133 120,000

6 0 0 0 0 120,000

The MSCE used 120,000 function evaluations to found the global optimum

point for functions 4 and 6 with standard deviation equal to zero, while the WCA

reached its optimal point with 37-digit and 36-digit accuracies, respectively.

79

Meanwhile, for functions 4 and 6, the NFEs for WCA are 8000 and 17750,

respectively.

Hence, as can be seen in Tables 5.16 to 5.20, the proposed optimizers can

find the optimum point faster than reported methods compared in this study with

good accuracy. The only method that can compete with the WCA and MBA in

terms of function value for some functions is the MSCE.

Furthermore, the MBA and WCA were also compared with the DE, GPSO,

and SBFO (Bakwad et al., 2010). The obtained results were compared with respect

to the best solution and the NFEs. Table 5.21 shows the comparison of

optimization results for the proposed methods against other algorithms for a

number of benchmark functions presented in Table 5.14.

Table ‎5.21: Comparison of optimization results for four benchmark functions

given in Table 5.14. “ANFEs” stands for average number of function

evaluations.

No. SBFO GPSO DE WCA MBA

Best ANFEs Best ANFEs Best ANFEs Best ANFEs Best ANFEs

2 5.18E-04 100,000 3.70E-02 200,000 8E-04 200,000 8.88E-16 13,217 1.09E-06 31,375

3 4.68E-04 100,000 0.13 200,000 27.43 200,000 2.21E-12 10,425 1.49E-08 6350

4 4.68E-04 100,000 6.60E-02 200,000 3.50E-03 200,000 2.68E-37 3334 4.70E-21 22,350
5 27.6329 100,000 2.46 200,000 34.35 200,000 3.01E-14 9600 1.10E-07 9875

By observing Table 5.21, all methods except the WCA and MBA are given

from literature (Bakwad et al., 2010). As shown in Table 5.21, the WCA and MBA

outperformed other reported optimizers in terms of NFEs and best function value.

In general, for nearly all comparative functions, the proposed algorithms show the

advantage of less number of function evaluation and acceptable function value

accuracy.

As mention in Subsection 5.1, one of the advantages of the WCA and MBA

is that the function values are reduced to near optimum point quickly in the early

iteration. Figure 5.3 illustrates the function values with respect to the number of

80

iterations for six benchmark functions presented in Table 5.14. For all six

benchmark functions the first 100 iterations are depicted to show the fast

convergence of WCA more clearly.

Figure ‎5.3. Function values versus the number of iterations for six benchmark

functions in Table 5.14 using the WCA: (a) Schwefel, (b) Ackley, (c)

Rastrigin, (d) Hyper Sphere, (e) Rosenbrock, (f) Zakharov (Vertical and

horizontal axes are function values and number of iterations, respectively).

81

5.3. Constrained and engineering benchmark problems

In this subsection, the performance of the proposed optimizers is tested by

solving several constrained and engineering optimization problems. In order to

validate the proposed methods for constraint problems, first, two constrained

benchmark problems have been applied and then, the performance of the WCA

and MBA for five engineering design problems (widely used in literatures) was

examined and the optimization results were compared with other optimization

engines.

The benchmark problems include the objective functions of various types

(quadratic, cubic, polynomial, and nonlinear functions) with various number of the

design variables, different types, and number of inequality and equality constraints.

The proposed algorithms were written in MATLAB programming software and

simulations were run on a Pentium V 2.53 GHz with 4 GB RAM.

The task of optimizing each of the test functions was executed using 50

independent runs. The maximization problems were transformed into minimization

ones as –f(x). For all benchmark problems, the initial parameters for the WCA,

(Ntotal, Nsr, and dmax) were chosen as 50, 8, and, 1E-03, respectively. Similarly, for

the MBA, the user parameters are given in Table 5.22 for considered constrained

and engineering problems in this thesis.

Table ‎5.22: User parameters used for the MBA for seven constrained and

engineering problems.

Problem Ns α µ Max iteration

Constrained Problem 1 50 20000 5 1000

Constrained Problem 2 50 5000 0 500

Pressure vessel 50 50000 10 2000

Spring design 50 5000 0 1000

Welded beam 30 150,000 5 2000

Speed reducer 50 500 10 500

Rolling element bearing 50 5000 10 1000

82

Different iteration numbers were used for each benchmark function, with

smaller iteration number for smaller number of design variables and moderate

functions, while larger iteration number for large number of desicion variables and

complex problems. The mathematical formulations and their constraints for the

mechanical engineering design problems and constrained benchmark functions are

given in Appendix B.

5.3.1. Constrained problem 1

This minimization function (see Appendix B.1) was previously solved

using homomorphous mappings (HM) (Koziel & Michalewicz, 1999), adaptive

segregational constraint handling evolutionary algorithm (ASCHEA) (Hamida &

Schoenauer, 2002), stochastic ranking (SR) (Runarsson & Xin, 2000), cultural

algorithms with evolutionary programming (CAEP) (Coello & Becerra, 2004),

hybrid PSO (HPSO) (He & Wang, 2007), changing range genetic algorithm

(CRGA) (Amirjanov, 2006), DE (Lampinen, 2002), cultured differential evolution

(CULDE) (Becerra & Coello, 2006), PSO with differential evolution (PSO-DE),

PSO (Liu et al., 2010), HS, simple multi-membered evolution strategy (SMES)

(Montes & Coello, 2005), self adaptive penalty function (SAPF) (Tessema & Yen,

2006), differential evolution with level comparison (DELC) (Wang & Li, 2010),

differential evolution with dynamic stochastic selection (DEDS) (Zhang et al.,

2008), improved stochastic ranking (ISR) (Runarsson & Xin, 2005), hybrid

evolutionary algorithm and adaptive constraint handling technique (HEAA) (Wang

et al., 2009), and α constrained simplex method ( simplex) (Takahama & Sakai,

2005).

Table 5.23 compares the reported best solutions for the CULDE, HS, GA

(Michalewicz, 1995), WCA, and MBA. The statistical results of different

algorithms accompanied with the proposed methods are given in Table 5.24. By

83

observing Table 5.24, the WCA and MBA reached the optimal solution faster and

more accurate than other algorithms in this research surpassing the WCA over

MBA in terms of number of function evaluations.

Table ‎5.23: Comparison of the best solution given by various algorithms for the

constrained problem 1.

D.V. CULDE HS GA WCA MBA Optimal

X1 78.00 78.00 78.04 78.00 78.00 78.00000

X2 33.00 33.00 33.00 33.00 33.00 33.00000

X3 29.99 29.995 27.081 29.99 29.99 29.99526

X4 45.00 45.00 45.00 45.00 44.99 45.00000

X5 36.77 36.77 44.94 36.77 36.77 36.77581

g1(X) 1.35E-08 4.34E-05 1.28 -1.96E-12 1.33E-08 -9.71E-04

g2(X) -92.00 -92.00 -93.28 -91.99 -91.99 -92

g3(X) -11.15 -11.15 -9.59 -11.19 -11.19 -1.11E+01

g4(X) -8.84 -8.84 -10.40 -8.84 -8.84 -8.87

g5(X) -4.99 -5.00 -4.99 -5.00 -4.99 -5

g6(X) 4.12E-09 6.49E-05 1.91E-03 0.00 -3.06E-09 9.27E-09

f(X) -30665.538 -30665.500 -31020.859 -30665.538 -30665.538 -30665.539

Table ‎5.24: Comparison of statistical optimization results for several reported

algorithms for the constrained problem 1.

Methods Worst Mean Best SD NFEs

HM -30645.9000 -30665.3000 -30664.500 N.A 1,400,000

ASCHEA N.A -30665.5000 -30665.500 N.A 1,500,000

SR -30665.5390 -30665.5390 -30665.5390 2E-05 88,200

CAEP -30662.2000 -30662.5000 -30665.5000 9.3 50,020

PSO -30252.3258 -30570.9286 -30663.8563 81 70,100

HPSO -30665.5390 -30665.5390 -30665.5390 1.70E-06 81,000

PSO-DE -30665.5387 -30665.5387 -30665.5387 8.30E-10 70,100

CULDE -30665.5386 -30665.5386 -30665.5386 1E-07 100,100

DE -30665.5090 -30665.5360 -30665.5390 5.067E-03 240,000

HS N.A N.A -30665.5000 N.A 65,000

CRGA -30660.3130 -30664.3980 -30665.5200 1.6 54,400

SAPF -30656.4710 -30655.9220 -30665.4010 2.043 500,000

SMES -30665.5390 -30665.5390 -30665.5390 0 240,000

DELC -30665.5390 -30665.5390 -30665.5390 1.0E-11 50,000

DEDS -30665.5390 -30665.5390 -30665.5390 2.70E-11 225,000

HEAA -30665.5390 -30665.5390 -30665.5390 7.40E-12 200,000

ISR -30665.5390 -30665.5390 -30665.5390 1.10E-11 192,000

α Simplex -30665.5390 -30665.5390 -30665.5390 4.20E-11 305,343

WCA -30665.4570 -30665.5270 -30665.5386 2.18E-02 18,850

MBA -30665.3300 -30665.5182 -30665.5386 5.08E-02 41,750

84

5.3.2. Constrained problem 2

For this maximization problem (see Appendix B.2) which is converted to

the minimization problem, the feasible region of the search space consists of 729

disjoint spheres. A point (x1, x2, x3) is feasible if and only if there exist p, q, r such

that the inequality holds, as given in Appendix B (Zahara & Kao, 2009).

For this problem, the optimum solution is X
*
= (5, 5, 5) with f(X

*
) = -1. This

problem was previously solved using the HM, SR, CULDE, CAEP, HPSO,

artificial bee colony (ABC) (Karaboga and Basturk, 2007), particle evolutionary

swarm optimization (PESO) (Zavala et al., 2005), CDE (Huang et al., 2007),

SMES, and teaching-learning-based optimization (TLBO) (Rao et al., 2011).

The statistical optimization results of twelve optimizers including the MBA

and WCA are shown in Table 5.25. From Table 5.25, although the best solution of

the WCA and MBA is not as accurate as other considered algorithms, however,

they reached the best solution considerably faster than other reported algorithms

using 6100 and 14,950 number of function evaluations, respectively.

Table ‎5.25: Comparison of optimization statistical results given by various

algorithms for the constrained problem 2.

Methods Worst Mean Best SD NFEs

HM -0.991950 -0.999135 -0.999999 N.A 1,400,000

SR -1 -1 -1 0 350,000

CAEP -0.996375 -0.996375 -1 9.7E-03 50,020

HPSO -1 -1 -1 1.6E-15 81,000

CULDE -1 -1 -1 0 100,100

SMES -1 -1 -1 0 240,000

PESO -0.994 -0.998875 -1 N.A 350,000

CDE -1 -1 -1 0 248,000

ABC -1 -1 -1 0 240,000

TLBO -1 -1 -1 0 50,000

WCA -0.999998 -0.999999 -0.999999 2.51E-07 6100

MBA -0.996539 -0.999147 -0.999813 5.44E-04 14,950

85

5.3.3. Pressure vessel design problem

In pressure vessel design problem (see Appendix B.3), proposed by Kannan

and Kramer (1994), the target is to minimize the total cost, including the cost of

material, forming, and welding. A cylindrical vessel is capped at both ends by

hemispherical heads as shown in Figure 5.4.

Figure ‎5.4. Schematic view of pressure vessel problem.

There are four design variables in this problem: Ts (x1, thickness of the

shell), Th (x2, thickness of the head), R (x3, inner radius), and L (x4, length of the

cylindrical section of the vessel). Among the four design variables, Ts and Th are

expected to be integer multiples of 0.0625 in, and R and L are continuous design

variables.

Table 5.26 shows the comparisons of the best solution for both proposed

optimizers and other compared methods. This problem has been solved previously

using the GA based co-evolution model (GA1) (Coello, 2000a), GA through the

use of dominance-based tour tournament selection (GA2) (Coello & Montes,

2002), co-evolutionary PSO (CPSO) (Renato & Santos, 2006), HPSO, hybrid

nelder-mead simplex search and particle swarm optimization (NM-PSO) (Zahara

et al., 2009), Gaussian quantum-behaved PSO (G-QPSO), quantum-behaved PSO

(QPSO) (Coelho, 2010), PSO, and co-evolutionary differential evolution (CDE)

(Huang et al., 2007) and compared with the proposed WCA and MBA as given in

Table 5.27.

86

Table ‎5.26: Comparison of the best solution obtained from various studies for the

pressure vessel problem.

D.V. CDE HPSO NM-PSO G-QPSO WCA MBA

X1 0.8125 0.8125 0.8036 0.8125 0.7781 0.7802

X2 0.4375 0.4375 0.3972 0.4375 0.3846 0.3856

X3 42.0984 42.0984 41.6392 42.0984 40.3196 40.4292

X4 176.6376 176.6366 182.4120 176.6372 -200.0000 198.4964

g1(X) -6.67E-07 -8.80E-07 3.65E-05 -8.79E-07 -2.95E-11 0

g2(X) -3.58E-02 -3.58E-02 3.79E-05 -3.58E-02 -7.15E-11 0

g3(X) -3.705123 3.1226 -1.5914 -0.2179 -1.35E-06 -86.3645

g4(X) -63.3623 -63.3634 -57.5879 -63.3628 -40.0000 -41.5035

f(X) 6059.7340 6059.7143 5930.3137 6059.7208 5885.3327 5889.3216

Table ‎5.27: Comparison of statistical results given by different optimizers for the

pressure vessel problem.

Methods Worst Mean Best SD NFEs

GA1 6308.4970 6293.8432 6288.7445 7.4133 900,000

GA2 6469.3220 6177.2533 6059.9463 130.9297 80,000

CPSO 6363.8041 6147.1332 6061.0777 86.45 240,000

HPSO 6288.6770 6099.9323 6059.7143 86.20 81,000

NM-PSO 5960.0557 5946.7901 5930.3137 9.161 80,000

G-QPSO 7544.4925 6440.3786 6059.7208 448.4711 8000

QPSO 8017.2816 6440.3786 6059.7209 479.2671 8000

PSO 14076.3240 8756.6803 6693.7212 1492.5670 8000

CDE 6371.0455 6085.2303 6059.7340 43.0130 204,800

WCA 7319.0197 6230.4247 5885.3711 338.7300 8000

MBA 6392.5062 6200.64765 5889.3216 160.34 70,650

As can be seen from Table 5.27, in terms of best solution and number of

function evaluations the proposed WCA is superior to other optimizer, while the

MBA has better statistical optimization results than the WCA.

Considering the statistical and comparison results in Table 5.27, it can be

concluded that the WCA is more efficient than the other optimization engines for

the pressure vessel design problem, in this study. Figure 5.5 depicts the function

values versus the number of iterations for the pressure vessel design problem using

both proposed methods.

87

(a)

(b)

Figure ‎5.5. Function values versus number of iterations for the pressure vessel

problem using: (a) WCA, (b) MBA.

One of the advantages of the proposed methods that may be hardly seen in

other metaheuristic algorithms is that the function values are reduced to near

optimum point in the early iterations (see Figure 5.5). This may be due to the

searching criteria and constraint handling approaches of WCA and MBA where it

initially searches a wide region of problem domain and rapidly focuses on the

optimum solution.

5.3.4. Tension/compression spring design problem

The tension/compression spring design problem (see Appendix B.4) is

described in Arora (1989) for which the objective is to minimize the weight (f(x))

88

of a tension/compression spring (as shown in Figure 5.6) subject to constraints on

minimum deflection, shear stress, surge frequency, limits on outside diameter and

on design variables. The independent variables are the wire diameter d(x1), the

mean coil diameter D(x2), and the number of active coils P(x3).

Figure ‎5.6. Schematic view of tension/compression spring problem.

The comparisons of the best solution among several reported algorithms are

given in Table 5.28. This problem has been used as a benchmark problem for

testing the efficiency of numerous optimization methods such as GA1, GA2,

CAEP, CPSO, HPSO, NM-PSO, G-QPSO, QPSO, PSO-DE, PSO, DELC, DEDS,

HEAA, society and civilization (SC) (Ray & Liew, 2003), DE, ABC, and (µ+λ)-

ES (Montes & Coello, 2005a). The obtained statistical results using the reported

optimizers and the proposed WCA and MBA are given in Table 5.29.

Table ‎5.28: Comparison of the best solution obtained from various algorithms for

the tension/compression spring problem.

D.V. DEDS HEAA NM-PSO DELC WCA MBA

X1 0.051689 0.051689 0.051620 0.051689 0.051680 0.051656

X2 0.356717 0.356729 0.355498 0.356717 0.356522 0.355940

X3 11.288965 11.288293 11.333272 11.288965 11.300410 11.344665

g1(X) 1.45E-09 3.96E-10 1.01E-03 -3.40E-09 -1.65E-13 0

g2(X) -1.19E-09 -3.59E-10 9.94E-04 2.44E-09 -7.9E-14 0

g3(X) -4.053785 -4.053808 -4.061859 -4.053785 -4.053399 -4.052248

g4(X) -0.727728 -0.727720 -0.728588 -0.727728 -0.727864 -0.728268

f(X) 0.012665 0.012665 0.012630 0.012665 0.012665 0.012665

89

Table ‎5.29: Comparisons of statistical optimization results obtained from various

algorithms for the tension/compression spring problem.

Methods Worst Mean Best SD NFEs

GA1 0.012822 0.012769 0.012704 3.94E-05 900,000

GA2 0.012973 0.012742 0.012681 5.90E-05 80,000

CAEP 0.015116 0.013568 0.012721 8.42E-04 50,020

CPSO 0.012924 0.012730 0.012674 5.20E-04 240,000

HPSO 0.012719 0.012707 0.012665 1.58E-05 81,000

NM-PSO 0.012633 0.012631 0.012630 8.47E-07 80,000

G-QPSO 0.017759 0.013524 0.012665 0.001268 2000

QPSO 0.018127 0.013854 0.012669 0.001341 2000

PSO 0.071802 0.019555 0.012857 0.011662 2000

DE 0.012790 0.012703 0.012670 2.7E-05 204,800

DELC 0.012665 0.012665 0.012665 1.3E-07 20,000

DEDS 0.012738 0.012669 0.012665 1.3E-05 24,000

HEAA 0.012665 0.012665 0.012665 1.4E-09 24,000

PSO-DE 0.012665 0.012665 0.012665 1.2E-08 24,950

SC 0.016717 0.012922 0.012669 5.9E-04 25,167

(µ+λ)-ES N.A 0.013165 0.012689 3.9E-04 30,000

ABC N.A 0.012709 0.012665 0.012813 30,000

WCA 0.015021 0.013013 0.012665 6.16E-04 2000

MBA 0.012900 0.012713 0.012665 6.30E-05 7650

The best function value is 0.012630 with 80,000 function evaluations

obtained by the NM-PSO. In terms of the NFEs, both suggested methods have

found their best solution in less number of function evaluations compared with the

NM-PSO.

From Table 5.29, two proposed methods show their superiority compared

with other methods in terms of the number of function evaluations and obtained

statistical results. Therefore, the MBA and WCA can identify optimum or very

close to optimum solutions for the tension/compression spring design problem

faster and/or more accurate than other reported optimizers mentioned in this

research.

Figure 5.7 demonstrates the function values with respect to the number of

iterations for the tension/compression spring design problem for both proposed

methods. From Figure 5.7a, in the early iterations of WCA, the initial population

90

of the algorithm was in the infeasible region. After further iterations, the

population was adjusted to the feasible region and the function values were

reduced at each iteration.

(a)

(b)

Figure ‎5.7. Function values with respect to the number of iterations for the

tension/compression spring problem using: (a) WCA, (b) MBA.

The constraint violation values with respect to the number of iterations for

the tension/compression spring problem are shown in Figure 5.8. From Figure 5.8,

the obtained solutions did not satisfy the constraints in the early iterations. As the

algorithm continued, the obtained results satisfied the constraints, while the value

of constraint violation decreased.

91

Figure ‎5.8. Constraint violation values with respect to the number of iterations for

tension/compression spring problem using the WCA.

5.3.5. Welded beam design problem

This design problem (see Appendix B.5), which has been often used as a

benchmark problem, was proposed by Coello (2000a). In this problem, a welded

beam is designed for minimum cost subject to constraints on shear stress (η),

bending stress (ζ) in the beam, buckling load on the bar (Pb), end deflection of the

beam (δ), and side constraints. There are four design variables as shown in Figure

7.9: h(x1), l(x2), t(x3) and b(x4).

Figure ‎5.9. Schematic view of welded beam problem.

92

The optimization engines previously applied to this problem such as GA1,

GA2, CAEP, CPSO, HPSO, NM–PSO, hybrid genetic algorithm (HGA) (Yuan &

Qian, 2010), modified GA (MGA) (Coello, 2000b), SC, and DE. The comparisons

of the best solutions given by different algorithms are presented in Table 5.30.

Furthermore, the comparison of the statistical optimization results for several

algorithms is given in Table 5.31.

Table ‎5.30: Comparison of the best solution obtained from various algorithms for

the welded beam problem.

D.V. CPSO CAEP HGA NM-PSO WCA MBA

X1(h) 0.202369 0.205700 0.2057 0.20583 0.205728 0.205729

X2(l) 3.544214 3.470500 3.4705 3.468338 3.470522 3.470493

X3(t) 9.048210 9.036600 9.0366 9.036624 9.036620 9.036626

X4(b) 0.205723 0.205700 0.2057 0.20573 0.205729 0.205729

g1(X) -13.655547 1.988676 1.988676 -0.02525 -0.034128 -0.001614

g2(X) -78.814077 4.481548 4.481548 -0.053122 -3.49E-05 -0.016911

g3(X) -3.35E-03 0 0 0.0001 -1.19E-06 -2.40E-07

g4(X) -3.424572 -3.433213 -3.433213 -3.433169 -3.432980 -3.432982

g5(X) -0.077369 -0.080700 -0.080700 -0.08083 -0.080728 -0.080729

g6(X) -0.235595 -0.235538 -0.235538 -0.235540 -0.235540 -0.235540

g7(X) -4.472858 2.603347 2.603347 -0.031555 -0.013503 -0.001464

f(X) 1.728024 1.724852 1.724852 1.724717 1.724856 1.724853

Table ‎5.31: Comparison of the statistical results obtained from different

optimization engines for the welded beam problem.

Methods Worst Mean Best SD NFEs

GA1 1.785835 1.771973 1.748309 1.12E-02 900,000

GA2 1.993408 1.792654 1.728226 7.47E-02 80,000

CAEP 3.179709 1.971809 1.724852 4.43E-01 50,020

CPSO 1.782143 1.748831 1.728024 1.29E-02 240,000

HPSO 1.814295 1.749040 1.724852 4.01E-02 81,000

PSO-DE 1.724852 1.724852 1.724852 6.7E-16 66,600

NM-PSO 1.733393 1.726373 1.724717 3.50E-03 80,000

MGA 1.9950 1.9190 1.8245 5.37E-02 N.A

SC 6.399678 3.002588 2.385434 9.6E-01 33,095

DE 1.824105 1.768158 1.733461 2.21E-02 204,800

WCA 1.744697 1.726427 1.724856 4.29E-03 46,450

MBA 1.724853 1.724853 1.724853 6.94E-19 47,340

93

Among those previously reported studies, the best solution was obtained

using the NM-PSO with an objective function value of f(x) = 1.724717 after

80,000 function evaluations. Using the proposed WCA and MBA, the best solution

of 1.724856 and 1.724853 was obtained using 46,450 and 47,340 number of

function evaluations, respectively.

The optimization statistical results obtained by the proposed methods

outperformed the obtained results by other considered algorithms, except the NM-

PSO, in terms of cost value. However, the WCA and MBA could offer a

competitive set of statistical results in less number of function evaluations than the

NM-PSO method as shown in Table 5.31. Figure 5.10 illustrates the function

values in terms of the number of iterations for the welded beam design problem

using both suggested optimizers.

(a)

(b)

Figure ‎5.10. Function values versus number of iterations for the welded beam

problem using: (a) WCA, (b) MBA.

94

5.3.6. Speed reducer design problem

In this constrained optimization problem (see Figure 5.11), the weight of

speed reducer is to be minimized subject to constraints on bending stress of the

gear teeth, surface stress, transverse deflections of the shafts, and stresses in the

shafts (Montes & Coello, 2005a). The variables x1 to x7 represent the face width

(b), module of teeth (m), number of teeth in the pinion (z), length of the first shaft

between bearings (l1), length of the second shaft between bearings (l2), and the

diameter of first (d1), and second shafts (d2), respectively.

Figure ‎5.11. Speed reducer design problem.

This is an example of a mixed integer programming problem. The third

variable x3 (number of teeth) is of integer values, while all other variables are

continuous. There are 11 constraints in this problem resulting in high complexity

of the problem (Kuang et. al, 1998) (the solution reported in (Kuang et al., 1998) is

infeasible).

The comparison of best solution by previous methods is given in Table

5.32. The statistical results of nine optimization methods including DELC, DEDS,

PSO-DE, ABC, TLBO, modified differential evolution (MDE) (Montes et al.,

2006a; Montes et al., 2006b), SC, HEAA, and (µ+λ)-ES is compared with the

proposed methods which is given in Table 5.33.

95

Table ‎5.32: Comparison of the best solution obtained using different optimizers for

the speed reducer design problem.

D.V DEDS DELC HEAA MDE WCA MBA

X1 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000

X2 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000

X3 17 17 17.000 17.0000 17.000 17.0000

X4 7.3333 7.3333 7.3004 7.3001 7.3000 7.3000

X5 7.7153 7.7153 7.7153 7.8000 7.7153 7.7157

X6 3.3502 3.3502 3.3502 3.3502 3.3502 3.3502

X7 5.2866 5.2866 5.2866 5.2866 5.2866 5.2866

f(X) 2994.47106 2994.47106 2994.49910 2996.35668 2994.47106 2994.48245

Table ‎5.33: Comparison of statistical results using various algorithms for the speed

reducer design problem.

Method Worst Mean Best SD NFEs

SC 3009.964736 3001.758264 2994.744241 4.0 54,456

PSO-DE 2996.348204 2996.348174 2996.348167 6.4E-06 54,350

DELC 2994.471066 2994.471066 2994.471066 1.9E-12 30,000

DEDS 2994.471066 2994.471066 2994.471066 3.6E-12 30,000

HEAA 2994.752311 2994.613368 2994.499107 7.0E-02 40,000

MDE N.A 2996.367220 2996.356689 8.2E-03 24,000

(µ+λ)-ES N.A 2996.348 2996.348 0 30,000

ABC N.A 2997.058 2997.058 0 30,000

TLBO N.A 2996.34817 2996.34817 0 10,000

WCA 2994.505578 2994.474392 2994.471066 7.4E-03 15,150

MBA 2999.652444 2996.769019 2994.482453 1.56 6300

From Table 5.33, among the compared optimization algorithms, DELC,

DEDS, and WCA have found the best solution so far. Although, MBA could not

match the best solution obtained by DELC, DEDS, and WCA, however, it detected

its best solution (second best solution) with considerably less NFEs as well as the

WCA. Figure 5.12 depicts the reduction of function values versus the number of

iterations for the speed reducer design problem using the MBA.

96

Figure ‎5.12. Function values versus number of iterations for the speed reducer

problem using the MBA.

5.3.7. Rolling element bearing design problem

The objective of this problem is to maximize the dynamic load carrying

capacity of a rolling element bearing, as demonstrated in Figure 5.13. This

problem has 10 decision variables which are pitch diameter (Dm), ball diameter

(Db), number of balls (Z), inner and outer raceway curvature coefficients (fi and fo),

KDmin, KDmax, ε, e, and  (see Figure 5.13).

Figure ‎5.13. Rolling element bearing design problem.

The five latter variables only appear in constraints and indirectly affect the

internal geometry. The number of balls (Z) is the discrete design variable and the

remainder are continuous design variables. Constraints are imposed based on

kinematic and manufacturing considerations.

97

The problem of the rolling element bearing was studied by GA (Gupta et

al., 2007), ABC, and TLBO. Table 5.34 shows the comparison of the best solution

for four optimizers in terms of design variables, function values, and constraints

accuracy. The statistical optimization results for reported algorithms were

compared in Table 5.35.

Table ‎5.34: Comparison of the best solution obtained using four algorithms for the

rolling element bearing problem.

D.V GA TLBO WCA MBA

X1 125.7171 125.7191 125.721167 125.7153

X2 21.423 21.42559 21.423300 21.423300

X3 11 11 11.001030 11.000

X4 0.515 0.515 0.515000 0.515000

X5 0.515 0.515 0.515000 0.515000

X6 0.4159 0.424266 0.401514 0.488805

X7 0.651 0.633948 0.659047 0.627829

X8 0.300043 0.3 0.300032 0.300149

X9 0.0223 0.068858 0.040045 0.097305

X10 0.751 0.799498 0.600000 0.646095

g(X1) -0.000821 0 0.000040 0

g(X2) -13.732999 13.15257 14.740597 -8.630183

g(X3) -2.724000 1.5252 3.286749 -1.101429

g(X4) 3.606000 0.719056 3.423300 -2.040448

g(X5) -0.717000 16.49544 0.721167 -0.715366

g(X6) -4.857899 0 9.290112 -23.611002

g(X7) -0.003050 0 0.000087 -0.000480

g(X8) -0.000007 2.559363 0 0

g(X9) -0.000007 0 0 0

g(X10) -0.000005 0 0 0

f(X) 81843.3 81859.74 85538.48 85535.9611

Table 5.35: Comparison of statistical results using four optimizers for the rolling

element bearing problem.

Method Worst Mean Best SD NFEs

GA N.A N.A 81843.3 N.A 225,000

ABC 78897.81 81496 81859.7416 0.69 10,000

TLBO 80807.8551 81438.987 81859.74 0.66 10,000

WCA 83942.71 83847.16 85538.48 488.30 3950

MBA 84440.1948 85321.4030 85535.9611 211.52 15,100

98

From Table 5.35, the proposed methods detected the best solution with

considerable improvement over other optimizers in this study. In terms of

statistical optimization results, the MBA and WCA offered better results with

acceptable NFEs against other considered algorithms.

Figure 5.14 compares the convergence rate for used optimizers. From

Figure 5.14a it is seen that the convergence rate of ABC and TLBO is nearly same

with a slightly higher mean searching capability for the TLBO. However, the

MBA and WCA reached the best solution at 302 and 79 iterations, respectively,

offering the best solution so far as shown in Figures 5.14b and 5.14c (see Table

5.35).

(c)

Figure ‎5.14. Comparison of convergence rate for the rolling element bearing

design problem using: (a) TLBO and ABC, (b) WCA, (c) MBA.

99

These overall engineering optimization results indicate that the proposed

methods have the capability in handling various combinatorial optimization

problems (COPs) and can offer optimum solutions (near or better than to the best-

known results) under lower computational efforts (measure as number of function

evaluations). Therefore, it can be concluded that the MBA and WCA may be

attractive alternative optimizers for constrained and engineering optimization

challenging other metaheuristic methods.

5.4. Truss Structures

In this subsection, the MBA and WCA were tested in a number of discrete

optimization benchmark problems. The examples include four well-known truss

structures. The proposed MBA and WCA were implemented in MATLAB

programming software and runs were performed on Pentium IV 2500 GHz CPU

with 4 GB RAM.

For all truss structures, number of population (Ntotal), number of rivers (Nsr),

and dmax (maximum distance between sea and river) were chosen 50, 8, and 1e-5,

respetivley, as user parameters for the WCA. Accordingly, for the MBA, the initial

parameters were set to 50, 10, and 50,000 for population size, exploration factor

(µ), and reduction constant (), respectively.

Different iteration numbers were used for each structure, with smaller

iteration number for smaller number of variables and larger values for large

number of variables. The analysis of all trusses has been performed via the finite

element method.

The number of design variables for 25, 52, 72, and 200-bar is 8, 12, 16, and

96, respectively. Similarly, the number of constraints for 25, 52, 72, and 200-bar is

80, 144, 198, and 550, respectively.

100

Based on the dimensions of design variables and constraints, 25

independent runs were performed for the 25-bar truss. However, due to high

dimensionality of problems for 52, 72, and 200-bar and the high CPU time for

computations, only 20, 15, and 15 independent runs were performed, respectively.

5.4.1. 52-bar planar truss

The 52-bar planar truss, shown in Figure 5.15, has been studied by Wu and

Chow (1995), Lee et al. (2005), Li et al. (2009), and Kaveh and Talatahari

(2009b). The material density and the modulus of elasticity are 7860 kg/m
3
 and

E=2.07×10
5
 MPa, respectively.

The stress limitation for each member of this structure is equal to ±180

MPa. This truss has 12 design variables, since its members were divided into 12

groups: (1) A1-A4, (2) A5-A10, (3) A11-A13, (4) A14-A17, (5) A18-A23, (6) A24-A26,

(7) A27-A30, (8) A31-A36, (9) A37-A39, (10) A40-A43, (11) A44-A49, and (12) A50-A52.

Figure ‎5.15. 52-bar planar truss.

The discrete variables were selected using American institute of steel

construction (AISC) data, which are shown in Table 5.36. Vertical loads were set

101

equal to Px=100 kN and Py=200 kN. In general, the problem has a variable

dimensionality of 12 and constraint dimensionality of 144 (52 tension constraints,

52 compression constraints, and 40 displacement constraints).

A maximum number of 500 iterations was imposed. The statistical results

of the 52-bar truss using the WCA include worst, mean, best solution, and standard

deviation which are 1912.646, 1909.856, 1902.995, and 7.09, respectively. Also,

the statistical results for the MBA in terms of worst, mean, best solution and

standard deviation, namely, 1912.646, 1906.076, 1902.605 and 4.09, respectively.

Table ‎5.36: Available cross-section areas of the AISC norm.

No. in.
2
 mm

2
 No. in.

2
 mm

2

1 0.111 71.613 33 3.840 2477.414

2 0.141 90.968 34 3.870 2496.769

3 0.196 126.451 35 3.880 2503.221

4 0.250 161.290 36 4.180 2696.769

5 0.307 198.064 37 4.220 2722.575

6 0.391 252.258 38 4.490 2896.768

7 0.442 285.161 39 4.590 2961.284

8 0.563 363.225 40 4.800 3096.768

9 0.602 388.386 41 4.970 3206.445

10 0.766 494.193 42 5.120 3303.219

11 0.785 506.451 43 5.740 3703.218

12 0.994 641.289 44 7.220 4658.055

13 1.000 645.160 45 7.970 5141.925

14 1.228 792.256 46 8.530 5503.215

15 1.266 816.773 47 9.300 5999.988

16 1.457 939.998 48 10.850 6999.986

17 1.563 1008.385 49 11.500 7419.340

18 1.620 1045.159 50 13.500 8709.660

19 1.800 1161.288 51 13.900 8967.724

20 1.990 1283.868 52 14.200 9161.272

21 2.130 1374.191 53 15.500 9999.980

22 2.380 1535.481 54 16.000 10322.560

23 2.620 1690.319 55 16.900 10903.204

24 2.630 1696.771 56 18.800 12129.008

25 2.880 1858.061 57 19.900 12838.684

26 2.930 1890.319 58 22.000 14193.520

27 3.090 1993.544 59 22.900 14774.164

28 3.130 2019.351 60 24.500 15806.420

29 3.380 2180.641 61 26.500 17096.740

30 3.470 2283.705 62 28.000 18064.480

31 3.550 2290.318 63 30.000 19354.800

32 3.630 2341.931 64 33.500 21612.860

102

The results obtained using the proposed methods for the 52-bar truss have

been compared with the results of SGA (Wu & Chow, 1995), HS, DHPSACO

(Kaveh & Talatahari, 2009b), PSO, PSOPC, and HPSO (Li et al., 2009) as shown

in Table 5.37. The best optimal design is highlighted in bold in Table 5.37 and it is

obvious that the MBA and WCA, both, obtained the better final design than other

reported methods.

Table ‎5.37: Comparison of results for the 52-bar truss obtained using various

algorithms.

Variables

(mm2)
SGA HS PSO PSOPC HPSO DHPSACO MBA WCA

A1-A4 4658.05 4658.05 4658.05 5999.98 4658.05 4658.05 4658.05 4658.05

A5-A10 1161.28 1161.28 1374.19 1008.38 1161.28 1161.28 1161.28 1161.28

A11-A13 645.16 506.45 1858.06 2696.77 363.22 494.19 494.19 494.19

A14-A17 3303.21 3303.21 3206.44 3206.44 3303.21 3303.21 3303.21 3303.21

A18-A23 1045.15 940.00 1283.87 1161.29 940.00 1008.38 940.00 940.00

A24-A26 494.19 494.19 252.26 729.03 494.19 285.16 494.19 494.19

A27-A30 2477.41 2290.31 3303.22 2238.71 2238.70 2290.31 2283.70 2283.70

A31-A36 1045.15 1008.38 1045.16 1008.38 1008.38 1008.38 1008.38 1008.38

A37-A39 285.16 2290.31 126.45 494.19 388.38 388.38 494.19 494.19

A40-A43 1696.77 1535.48 2341.93 1283.87 1283.86 1283.86 1283.86 1283.86

A44-A49 1045.15 1045.15 1008.38 1161.29 1161.28 1161.28 1161.28 1161.28

A50-A52 641.28 506.45 1045.16 494.19 729.25 506.45 494.19 494.19

Weight

(kg)
1970.142 1906.76 2230.16 2146.63 1905.495 1904.83 1902.605 1902.605

Figure 5.16 illustrates the comparison of convergence rates for the 52-bar

truss for the PSO, PSOPC, HPSO, DHPSACO, MBA, and WCA. The WCA

derived the best solutions at 140 iterations (7100 function evaluations as shown in

Figure 5.16c), while MBA detected its best solution at 109 iterations (5450

function evaluations as shown in Figure 5.16b).

The DHPSACO and HPSO obtained the best solution, while are not as

accurate as the results given by the proposed optimizers (MBA and WCA) at 222

and almost 2100 iterations (11100 and almost 105,000 function evaluations),

respectively (see Figure 5.16a).

103

Figure ‎5.16. Comparison of convergence rates for the 52-bar truss using: (a)

DHPSACO (Kaveh & Talatahari, 2009b), (b) MBA, (c) WCA.

In addition, the PSO and PSOPC did not reach the best solution after 3000

iterations (150,000 number of function evaluations), as shown in Figure 5.16a. It is

104

worth to mention that Figures 5.16b and 5.16c represent the weight values for 500

iterations. It is obvious that the MBA and WCA converged to their best optimal

designs much faster than competing optimizers outperforming the MBA over

WCA in terms of convergence rate and statistical results for the 52-bar truss.

5.4.2. 25-bar spatial truss

The next problem considers the weight minimization of a 25-bar

transmission tower (as shown in Figure 5.17) which was studied by Wu and Chow

(1995), Rajeev and Krishnamoorthy (1992), Ringertz (1988), Lee et al. (2005), Li

et al. (2009), and Kaveh and Talatahari (2009b). The material density and the

modulus of elasticity are 0.1 lb/in
3
 (0.0272 N/cm³) and E=10

4
 ksi (68947.57 MPa),

respectively.

The stress limitation for each member of this structure is equal to ±40,000

psi (±275.79 MPa). The allowable displacement for each node in three directions is

±0.35 in (±0.00889 m). In general, the problem has a variable dimensionality of 8

and a constraint dimensionality of 80 (25 tension constraints, 25 compression

constraints and 30 displacement constraints).

Figure ‎5.17. 25-bar spatial truss.

The cross-sectional areas of the 25 members were divided into 8 groups:

(1) A1, (2) A2-A5, (3) A6-A9, (4) A10-A11, (5) A12-A13, (6) A14-A17, (7) A18-A21 and

105

(8) A22-A25. Three optimization cases have been examined: Case 1: the discrete

variables are selected from the set D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4]

(in
2
); Case 2: the discrete variables are selected from the set D = [0.01, 0.4, 0.8,

1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6.0] (in
2
); Case 3: the design

variables are selected from Table 5.36. The load cases applied to the 25-bar truss

are described in Table 5.38.

Table ‎5.38: Load cases for the 25-bar truss.

Load cases

Nodes

Loads

Px (kips) Py (kips) Pz (kips)

1 1 1 -10 -10

 2 0 -10 -10

 3 0.5 0 0

 6 0.6 0 0

2 1 0 20 -5

 2 0 -20 -5

3 1 1 10 -5

 2 0 10 -5

 3 0.5 0 0

 6 0.5 0 0

A maximum number of 500 iterations was imposed for all cases. The

obtained statistical results of the 25-bar truss structure for Case 1 include worst,

mean, best solution, and SD which are 485.379, 484.874, 484.854, and 0.103,

respectively, using the WCA.

Similarly, the statistical results of the 25-bar truss for Case 1 for the MBA

include worst, mean, best solution, and SD which are 485.048, 484.885, 484.854,

and 7.2E-02, respectively. The best and mean numbers of function evaluations

(NFEs) are 2100 and 9900, respectively, for the Case 1 using the WCA.

The comparison of optimization results obtained using the SGA (Wu &

Chow, 1995), GA (Rajeev & Krishnamoorthy, 1992), Ringertz (1988), HS (Lee et

al., 2005), PSO, PSOPC, HPSO (Li et al., 2009), and DHPSACO (Kaveh &

106

Talatahari, 2009b) for the 25-bar truss structure (for all cases) is given in Tables

5.39 to 5.41.

Table ‎5.39: Comparison of optimization results obtained using various methods for

the 25-bar truss for Case 1.

Variables

(in
2
)

SGA GA HS PSO PSOPC HPSO MGA MBA WCA

A1 0.1 0.1 0.1 0.4 0.1 0.1 0.1 0.1 0.1

A2-A5 0.5 1.8 0.3 0.6 1.1 0.3 0.3 0.3 0.3

A6-A9 3.4 2.3 3.4 3.5 3.1 3.4 3.4 3.4 3.4

A10-A11 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1

A12-A13 1.5 0.1 2.1 1.7 2.1 2.1 2.1 2.1 2.1

A14-A17 0.9 0.8 1 1 1 1 1 1 1

A18-A21 0.6 1.8 0.5 0.3 0.1 0.5 0.5 0.5 0.5

A22-A25 3.4 3 3.4 3.4 3.5 3.4 3.4 3.4 3.4

Weight (lb) 486.29 546.01 484.85 486.54 490.16 484.85 484.85 484.85 484.85

Table ‎5.40: Comparison of results obtained using various methods for the 25-bar

truss for Case 2.

Variables (in
2
) SGA Ringertz HS PSO PSOPC HPSO MBA WCA

A1 0.4 0.01 0.01 0.01 0.01 0.01 0.01 0.01

A2-A5 2 1.6 2 2 2 2 2 2

A6-A9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6

A10-A11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

A12-A13 0.01 0.01 0.01 0.4 0.01 0.01 0.01 0.01

A14-A17 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

A18-A21 2 2 2 1.6 1.6 1.6 1.6 1.6

A22-A25 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4

Weight (lb) 563.52 568.69 560.59 566.44 560.59 560.59 560.59 560.59

Table ‎5.41: Comparison of optimization results obtained using different methods

for the 25-bar truss for Case 3.

Variables

(in
2
)

SGA PSO PSOPC HPSO DHPSACO MBA WCA

A1 0.307 1 0.111 0.111 0.111 0.111 0.111

A2-A5 1.99 2.62 1.563 2.13 2.13 2.13 2.13

A6-A9 3.13 2.62 3.38 2.88 2.88 2.88 2.88

A10-A11 0.111 0.25 0.111 0.111 0.111 0.111 0.111

A12-A13 0.141 0.307 0.111 0.111 0.111 0.111 0.111

A14-A17 0.766 0.602 0.766 0.766 0.766 0.766 0.766

A18-A21 1.62 1.457 1.99 1.62 1.62 1.62 1.62

A22-A25 2.62 2.88 2.38 2.62 2.62 2.62 2.62

Weight (lb) 556.43 567.49 556.9 551.14 551.14 551.14 551.14

107

By inspecting Table 5.39, it is evident that the WCA, similarly to the MBA,

HS, MGA, and HPSO, reached the best solution. For Cases 2 and 3, most

algorithms obtained the best solution as shown in Tables 5.40 and 5.41,

respectively. The standard deviation of the WCA, similar to the MBA, for Case 2

is zero, i.e., the worst, means and best solutions have the same values.

The best and averaged NFEs of WCA are 850 and 1900, respectively, for

the second case. Similarly, for the Case 3, the best and averaged NFEs are 1450

and 12400, respectively, using the WCA. The gained statistical results of the WCA

optimizer for the 25-bar truss for Case 3 include worst, mean, best solution and

standard deviation which are 554.743, 552.010, 551.14, and 1.358, respectively.

Similarly, the statistical results of the MBA optimizer for the 25-bar truss for Case

3 are 554.067, 551.540, 551.14, and 0.987, respectively.

Figure 5.18 shows the comparison of convergence rates of the 25-bar truss

for the PSO, PSOPC, HPSO, and DHPSACO for all considered cases. The graph

in Figures 5.19 and 5.20 depict the weight values (in lb) with respect to the number

of iterations for the three cases for the WCA and MBA, respectively. In order to

further clarify the convergence rate results, Figure 5.19a represents the weight

values for 100 iterations.

108

Figure ‎5.18. Comparison of convergence rates for the 25-bar truss using PSO,

PSOPC, HPSO, and DHPSACO (Kaveh & Talatahari, 2009b): (a) Case 1, (b)

Case 2, (c) Case 3.

109

Figure ‎5.19. Weight (lb) evolution history for the 25-bar truss using WCA: (a)

Case 1, (b) Case 2, (c) Case 3.

110

Figure ‎5.20. Weight (lb) evolution history for the 25-bar truss using MBA: (a)

Case 1, (b) Case 2, (c) Case 3.

111

By observing Figures 5.18a, 5.19a, and 5.20a (Case 1), the WCA derived

the best solution at 42 iterations (2100 function evaluations), while MBA and

HPSO needed 43 and 75 iterations (2150 and 3750 function evaluations). In

contrast, the PSO and PSOPC did not reach the best solution after 500 iterations as

depicted in Figure 5.18a.

From Figures 5.18b, 5.19b, and 5.20b (Case 2), the WCA obtained the best

solution at 17 iterations (850 function evaluations), while the MBA, HPSO, and

PSOPC reached their best solution at 19, less than 150, and 300 iterations (950,

less than 7500, and 1500 function evaluations), respectively. The PSO did not find

the best solution after 500 iterations compared to other algorithms as shown in

Figure 5.18b.

As it can be observed from Figures 5.18c, 5.19c, and 5.20c (Case 3), the

WCA detected the best solution at 29 iterations (1450 function evaluations), while

MBA, DHPSACO, and HPSO found their best solution at 48, less than 100, and at

almost 200 iterations (2400, less than 5000, and at almost 10000 function

evaluations), respectively. Conversely, the PSO and PSOPC did not find the best

solution after 500 iterations, as shown in Figure 5.18c. In this problem, the WCA

slightly outperformed MBA in terms of convergence rate (computational effort).

5.4.3. 72-bar spatial truss

The 72-bar spatial truss, shown in Figure 5.21, has been studied by Wu and

Chow (1995), Lee et al. (2005), Kaveh and Talatahari (2009b), and Li et al.

(2009). The material density is 0.1 lb/in
3
 and the modulus of elasticity is 10,000

ksi. The members are subjected to stress limitations of ±25 ksi.

112

Figure ‎5.21. 72-bar spatial truss.

The uppermost nodes are subjected to displacement limits of ±0.25 in both

in x and y directions. Hence, the problem has a variable dimensionality of 16 and

constraint dimensionality of 198 (72 tension constraints, 72 compression

constraints, and 54 displacement constraints). Two load cases were considered as

described in Table 5.42.

Table ‎5.42: Load cases for the 72-bar spatial truss.

Nodes Load case 1 Load case 2

Px (kips) Py (kips) Pz (kips) Px (kips) Py (kips) Pz (kips)

17 5 5 -5 0 0 -5

18 0 0 0 0 0 -5

19 0 0 0 0 0 -5

20 0 0 0 0 0 -5

The 72 members were divided into 16 groups as follows: (1) A1–A4, (2)

A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30 (7) A31–A34, (8) A35–

A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, (13) A55–A58, (14)

A59–A66 (15) A67–A70, and (16) A71–A72. Two optimization cases have been

studied: Case 1: the discrete variables are selected from the set D = [0.1, 0.2, 0.3,

113

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2,

2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1,3.2] (in
2
), Case 2: the discrete variables

were selected from Table 5.36. For comparison with other algorithms, a maximum

number of 1000 iterations was imposed. The comparison of obtained statistical

optimization results using the WCA and MBA are preseneted in Table 5.43.

Table ‎5.43: Comparison of statistical results using the WCA and MBA for the 72-

bar truss for Cases 1 and 2.

Methods
Best Solution Mean Solution Worst Solution SD

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

MBA 385.542 390.739 387.665 395.432 390.615 399.49 1.62 3.04

WCA 385.542 389.334 385.842 389.941 386.80 393.778 0.55 1.43

The minimum and averaged NFEs using the WCA for the Case 1 are 3200

and 19750, respectively. Accordingly for the Case 2, the best and mean NFEs by

WCA are 4600 and 26050, accordingly. Tables 5.44 and 5.45 show the

comparisons of results obtained by the SGA, HS, PSO, PSOPC, HPSO,

DHPSACO, MBA, and WCA for the 72-bar truss for Cases 1 and 2, respectively.

Table ‎5.44: Comparison of the best results obtained using various methods for

Case 1 for the 72-bar truss.

Varibales

(in
2
)

SGA HS PSO PSOPC HPSO DHPSACO MBA WCA

A1-A4 1.5 1.9 2.6 3.0 2.1 1.9 2.0 1.9

A5-A12 0.7 0.5 1.5 1.4 0.6 0.5 0.6 0.5

A13-A16 0.1 0.1 0.3 0.2 0.1 0.1 0.4 0.1

A17-A18 0.1 0.1 0.1 0.1 0.1 0.1 0.6 0.1

A19-A22 1.3 1.4 2.1 2.7 1.4 1.3 0.5 1.4

A23-A30 0.5 0.6 1.5 1.9 0.5 0.5 0.5 0.5

A31-A34 0.2 0.1 0.6 0.7 0.1 0.1 0.1 0.1

A35-A36 0.1 0.1 0.3 0.8 0.1 0.1 0.1 0.1

A37-A40 0.5 0.6 2.2 1.4 0.5 0.6 1.4 0.5

A41-A48 0.5 0.5 1.9 1.2 0.5 0.5 0.5 0.5

A49-A52 0.1 0.1 0.2 0.8 0.1 0.1 0.1 0.1

A53-A54 0.2 0.1 0.9 0.1 0.1 0.1 0.1 0.1

A55-A58 0.2 0.2 0.4 0.4 0.2 0.2 1.9 0.2

A59-A66 0.5 0.5 1.9 1.9 0.5 0.6 0.5 0.6

A67-A70 0.5 0.4 0.7 0.9 0.3 0.4 0.1 0.4

A71-A72 0.7 0.6 1.6 1.3 0.7 0.6 0.1 0.6

Weight

(lb)
400.66 387.94 1089.88 1069.79 388.94 385.54 385.54 385.54

114

Table ‎5.45: Comparison of the optimum results obtained using different optimizers

for Case 2 for the 72-bar truss.

Varibales

(in
2
)

SGA PSO PSOPC HPSO DHPSACO MBA WCA

A1-A4 0.196 7.22 4.49 4.97 1.800 0.196 1.99

A5-A12 0.602 1.80 1.457 1.228 0.442 0.563 0.442

A13-A16 0.307 1.13 0.111 0.111 0.141 0.442 0.111

A17-A18 0.766 0.196 0.111 0.111 0.111 0.602 0.111

A19-A22 0.391 3.09 2.620 2.88 1.228 0.442 1.228

A23-A30 0.391 0.785 1.130 1.457 0.563 0.442 0.563

A31-A34 0.141 0.563 0.196 0.141 0.111 0.111 0.111

A35-A36 0.111 0.785 0.111 0.111 0.111 0.111 0.111

A37-A40 1.800 3.09 1.266 1.563 0.563 1.266 0.563

A41-A48 0.602 1.228 1.457 1.228 0.563 0.563 0.563

A49-A52 0.141 0.111 0.111 0.111 0.111 0.111 0.111

A53-A54 0.307 0.563 0.111 0.196 0.250 0.111 0.111

A55-A58 1.563 1.990 0.442 0.391 0.196 1.800 0.196

A59-A66 0.766 1.620 1.457 1.457 0.563 0.602 0.563

A67-A70 0.141 1.563 1.228 0.766 0.442 0.111 0.391

A71-A72 0.111 1.266 1.457 1.563 0.563 0.111 0.563

Weight

(lb)
427.20 1209.48 941.82 933.09 393.380 390.73 389.334

By observing Table 5.44, the WCA, similarly to the DHPSACO and MBA,

outperformed the rest of considered methods with respect to the best solution for

the Case 1. Nevertheless, the design variables of the WCA were different from

those of the DHPSACO and MBA.

As shown in Table 5.45, the WCA is superior to the other reported

algorithms with respect to the derived solutions for Case 2. The best obtained

solution by WCA is highlited in bold in Table 7.45. Figures 7.22 to 7.24 depict the

convergence rate of the 72-bar truss for the two cases obtained by Li et al. (2009)

and WCA, and MBA, respectively.

115

Figure ‎5.22. Comparison of convergence rates for the 72-bar truss using PSO,

PSOPC, and HPSO: (a) Case 1, (b) Case 2.

Figure ‎5.23. Weight (lbs) evolution history for the 72-bar truss using the WCA: (a)

Case 1, (b) Case 2.

116

Figure ‎5.24. Weight (lbs) evolution history for the 72-bar truss using the MBA: (a)

Case 1, (b) Case 2.

As it can be seen in Figures 5.22a, 5.23a, and 5.24a (Case 1), the WCA

obtained the best solution at 64 iterations (3200 function evaluations), while the

MBA, DHPSACO and HPSO found the best solution at 189, 213, and almost 250

iterations (9450, 10650 and almost 12500 function evaluations), respectively. In

contrast, the PSO and PSOPC, as shown in Figure 5.22a, did not get the best

solution after 1000 iterations.

From Figures 5.22b, 5.23b, and 5.24b for Case 2, the WCA obtained the

best solution at 92 iterations (4600 function evaluations), while the MBA and

117

DHPSACO found the optimum (which is not as optimal as the WCA) at 232 and

more than 250 iterations (11600 and more than 12500 function evaluations),

respectively.

Conversely, the HPSO, PSO, and PSOPC did not reach the best solution

after 1000 iterations as shown in Figure 5.22b. For more clarification on the

convergence rate results, Figures 5.23a and 5.23b present the weight evolution

history only for 100 iterations. For the 72-bar truss, the WCA is superior to the

MBA having faster convergence rate and high quality solutions.

5.4.4. 200-bar truss

Schematic view of 200-bar truss structure is shown in Figure 5.25. The

200-bar truss is proposed and optimized under various types of constraints and

several design variables. In this research, the elements of this truss are grouped

into 96 sets (design variables) as given in Ghasemi et al. (1999).

Figure ‎5.25. 200-bar planar truss.

118

The detail of grouping for the 200-bar truss is specified in Table 5.46. In

terms of mechanical and material properties, modulus of elasticity of 30,000 ksi

and density of material of 0.283 lb/in
3
 are considered for this truss structure. The

acceptable displacement is restricted to 0.5 in and the permissible stress is set to

±30 ksi.

Table ‎5.46: Group membership for the 200-bar truss.

No. Members No. Members No. Members No. Members

1 1,4 25 46,52 49 102,114 73 146
2 2,3 26 47,51 50 103,113 74 153,156

3 5,17 27 48,50 51 104,112 75 154,155

4 6,16 28 49 52 105,111 76 157,169
5 7,15 29 57,58,61,62 53 106,110 77 158,168

6 8,14 30 59,60 54 107,109 78 159,167

7 9,13 31 64,76 55 108 79 160,166
8 10,12 32 65,75 56 115,118 80 161,165

9 11 33 66,74 57 116,117 81 162,164

10 132,139,170,177,18,25,56,63 34 67,73 58 119,131 82 163
11 19,20,23,24 35 68,72 59 120,130 83 171,172,175,176

12 21,22 36 69,71 60 121,129 84 173,174

13 26,38 37 70 61 122,128 85 178,190
14 27,37 38 77,80 62 123,127 86 179,189

15 28,36 39 78,79 63 124,126 87 180,188

16 29,35 40 81,93 64 125 88 181,187
17 30,34 41 82,92 65 133,134,137,138 89 182,186

18 31,33 42 83,91 66 135,136 90 183,185

19 32 43 84,90 67 140,152 91 184
20 39,42 44 85,89 68 141,151 92 191,194

21 40,41 45 86,88 69 142,150 93 192,193

22 43,55 46 87 70 143,149 94 195,200

23 44,54 47 95,96,99,100 71 144,148 95 196,199

24 45,53 48 97,98 72 145,147 96 197,198

The next is a list of 30 discrete values for decision variables implemented

to solve this truss: A = [0.100, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.333,

1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192,

8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180, 23.680, 28.080, 33.700 in
2
].

The 200-bar truss is imposed to three various load cases which they are given as

follows: Load case 1: 1 kip operating in the positive x direction at nodes 1, 6, 15,

20, 29, 34, 43, 48, 57, 62, and 71. Load case 2: 10 kips imposing in the negative y

direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26,

28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 47, 48, 50, 52, 54, 56, 57,

58, 59, 60, 61, 62, 64, 66, 68, 70, 71,72, 73,74, and 75. For load Case 3: Cases 1

119

and 2 are mingled. In this research, similar to other researches, load Case 3 is

considered.

This benchmark problem was considered for optimization purposes using

different methods such as modified GA (MGA) (Dede et al., 2011), GA (Ghasemi

et al., 1999), evolution strategies (ES) (Cai & Thierauf, 1993). The WCA and

MBA were applied for the optimization of the 200-bar truss and the obtained

optimization results and comparisons are given.

The optimum configurations and the best obtained weight found by the

MBA and WCA are given in Tables 5.47 and 5.48, respectively. Table 5.49

represents the comparisons of obtained statistical results (best, mean, worst, and

SD) for the WCA and MBA.

Table ‎5.47: Best optimum results obtained using the MBA for the 200-bar truss.

No. Area (in
2
) No. Area (in

2
) No. Area (in

2
) No. Area (in

2
)

1 0.347 25 2.697 49 7.192 73 9.3

2 0.1 26 0.44 50 0.1 74 1.764

3 5.952 27 0.347 51 2.697 75 1.333

4 0.347 28 3.813 52 7.192 76 4.805

5 0.1 29 0.1 53 0.347 77 4.805

6 2.697 30 0.1 54 0.1 78 0.1

7 0.347 31 6.572 55 7.192 79 13.33

8 0.347 32 0.1 56 0.1 80 1.764

9 2.697 33 2.142 57 0.1 81 0.539

10 0.1 34 5.952 58 7.192 82 8.525

11 0.1 35 0.1 59 0.1 83 0.1

12 0.44 36 0.347 60 1.764 84 0.1

13 4.805 37 7.192 61 10.85 85 3.813

14 0.1 38 1.333 62 1.333 86 0.1

15 0.539 39 0.347 63 0.1 87 5.952

16 3.813 40 6.572 64 6.572 88 14.29

17 0.1 41 2.142 65 0.539 89 0.954

18 0.347 42 0.1 66 0.347 90 2.142

19 8.525 43 7.192 67 8.525 91 10.85

20 1.081 44 0.1 68 2.142 92 3.565

21 1.174 45 0.44 69 0.347 93 1.488

22 7.192 46 4.805 70 14.29 94 5.952

23 1.488 47 0.1 71 0.44 95 19.18

24 0.1 48 0.1 72 1.333 96 6.572

Weight = 27532.95 lb (12488.73 Kg)

Maximum Constraint Violation = -2.9048e-005

120

Table 5.48: Best configurations obtained by the WCA for the 200-bar truss.

No. Area (in
2
) No. Area (in

2
) No. Area (in

2
) No. Area (in

2
)

1 0.347 25 4.805 49 10.85 73 7.192

2 0.347 26 0.1 50 0.1 74 0.1

3 5.952 27 0.347 51 0.539 75 0.539

4 0.1 28 7.192 52 5.952 76 13.33

5 0.1 29 0.347 53 0.539 77 1.174

6 2.697 30 0.1 54 0.539 78 0.44

7 0.539 31 13.33 55 7.192 79 10.85

8 0.954 32 0.1 56 0.1 80 1.333

9 2.142 33 0.44 57 0.1 81 0.1

10 0.1 34 8.525 58 14.29 82 9.30

11 0.1 35 0.539 59 0.1 83 0.347

12 0.1 36 0.347 60 0.1 84 0.954

13 3.813 37 6.572 61 10.85 85 10.85

14 0.44 38 0.1 62 0.1 86 0.347

15 0.1 39 0.1 63 1.174 87 1.174

16 4.805 40 8.525 64 7.192 88 7.192

17 0.1 41 0.347 65 0.44 89 0.1

18 0.539 42 0.44 66 0.954 90 2.697

19 3.813 43 5.952 67 13.33 91 8.525

20 0.347 44 1.488 68 0.954 92 7.192

21 0.347 45 0.1 69 0.539 93 8.525

22 13.33 46 10.85 70 9.3 94 10.85

23 0.1 47 0.347 71 0.954 95 9.30

24 0.1 48 0.347 72 0.347 96 9.30

Weight = 29304.76 lb (13292.41 Kg)

Maximum Constraint Violation = -3.1556e-04

Table ‎5.49: Comparison of statistical results obtained using the WCA and MBA.

Methods Best Solution Mean Solution Worst Solution SD NFEs

WCA 29,304.76 29,885.78 30,188.52 409.75 30,000

MBA 27,532.95 28,667.09 29,742.63 312.68 30,000

By observing Table 5.49, in this case, the MBA is superior to the WCA in

terms of statistical results obtaining minimum weight and convergence rate (see

Figure 5.27b). Using the similar information for this truss, Ghasemi et al. (1999)

obtained the minimum weight of the 200-bar truss as 30,905 lb and 31,109 lb by

GA2-800 and GA2-100, respectively.

Cai and Thierauf (1993) has detected the minimum weight of the 200-bar

truss as 31,014 lb. The weight obtained by Dede et al. (2011) is 30,868.45 lb. The

121

WCA has found its best solution of 29,304.76 lb, while the MBA has detected the

minimum weight of 27,532.95 lb for the 200-bar truss structure.

Figure 5.26 demonstrates the comparisons of convergence rate for

considered methods. As shown in Figure 5.26a, the convergence is obtained

around 612
th

 iteration (122,400 function evaluations) using the MGA. The MBA

and WCA have converged to their best solutions faster and more accurate than the

MGA after 600 iterations (30,000 function evaluations), as shown in Figure 5.26b.

Figure ‎5.26. Comparisons of convergence rate for the 200-bar truss using: (a) GA

(Dede et al., 2011), (b) WCA and MBA.

From Figure 5.26b, the MBA (represented by blue line) is converged to its

near optimum solution after almost 200 iterations, while the WCA (represented by

green line) has reached the best configuration after almost 550 iterations.

Interestingly, in terms of computational efforts, the number of population

122

(individuals) for the MBA and WCA was set to 50, while for the MGA the

population size was taken 200.

Population size of 150 were also chosen for the MBA and WCA, however,

the optimization resulted were the same optimum solutions as of the 50 population.

Hence, the MBA and WCA are capable of solving complex problems using

smaller population size which results in less number of function evaluations

(computational effort).

By comparing the 72-bar truss (16 design variables and 198 constraints)

and 200-bar truss (96 design variables and 550 constraints) problems, one may

conclude that when the number of design variables and number of constraints

increase, the MBA and WCA offer better efficiency, performance, and reliability

in finding best optimal design compared with other considered algorithms needing

less number of function evaluations and having fast convergence rate.

In summary, the applications of the MBA and WCA were tested on several

benchmark constrained and engineering design problems in this chapter.

Comprehensive comparisons were carried out in order to have fair judgment about

the performance and efficiency of the proposed optimizers. In general, for most

considered problems, the MBA and WCA offered better statistical optimization

results having less number of function evaluations (computational time) compared

with other reported optimizers.

123

CHAPTER 6 : CONCLUSIONS

124

6.1. Conclusions

In this thesis, two novel optimization engines introduced, the so-called

mine blast algorithm (MBA) and water cycle algorithm (WCA). The fundamental

concepts and ideas to formulate the MBA are derived from the explosion of mine

bombs in real world. Accordingly, the fundamental concepts and ideas which

underlie the WCA are inspired from nature and based on the water cycle process in

real world.

Thereafter, the WCA and MBA with embedded constraint handling

approaches are proposed for solving a number of unconstrained, constrained

benchmark optimization, engineering design problems, and truss structures (2D

and 3D). The statistical optimization results based on the comparisons of the

efficiency of the proposed optimizers against numerous other optimization

methods, illustrate the attractiveness of the proposed methods for handling

numerous types of constraints.

The obtained optimization results show that the proposed algorithms

generally offer better solutions than other optimizers considered in this thesis in

addition to their efficiencies in terms of having less number of function evaluations

(computational time) for almost every problem. In general, the WCA and MBA

offer competitive solutions compared with other metaheuristic optimizers based on

the reported and experimental results in this research.

However, the computational efficiency and quality of solutions given by

the WCA and MBA may depend on the nature and complexity of the underlined

problem. This also applies to the performance of most metaheuristic methods. The

proposed methods may be used for solving the real world optimization problems

which require significant computational efforts efficiently with acceptable degree

of accuracy for the solutions.

125

6.2. Future researches

Although the proposed methods (MBA and WCA) at their present format

show good potential to be used as a global optimization algorithm, they may be

improved in terms of mathematical formulation. For instance, other mathematical

modeling for the calculating the location of mine bombs, and the reduction of

distance for shrapnel pieces (for the MBA) may be considered as future research.

Furthermore, the effects of hybridization of MBA with WCA and/or other methods

may also be investigated.

In light of the needs of industry and the nature of real-life problems that are

highly-dimensioned, the proposed optimizers can be applied to large-scale

optimization and multi-objective problems. The objective of these problems may

be the cost of consumed materials, the weight of highly-bar trusses, the layout of a

factory from a high-dimensional point of view, and also other objectives which can

be considered, simultaneously.

126

REFERENCES

Adeli, H. (2000). High-performance computing for large-scale analysis,

optimization, and control. Journal of Aerospace Engineering, ASCE, 13(1), 1-10.

Adeli, H., & Park, H. S. (1995a). A neural dynamics model for structural

optimization – Theory. Computers and Structures, 57(3), 383-390.

Adeli, H., & Park, H. S. (1995b). Optimization of space structures by neural

dynamics. Neural Networks, 8(5), 769-781.

Adeli, H., & Karim, A. (1997a). Neural Dynamics model for optimization of cold-

formed steel beams. Journal of Structural Engineering, ASCE, 123(11), 1535-

1543.

 Adeli, H., & Karim, A. (1997b). Scheduling/cost optimization and neural

dynamics model for construction. Journal of Construction Management and

Engineering, ASCE, 123(4), 450-458.

Adeli, H., & Saleh, A. (1997). Optimal control of adaptive/smart bridge structures.

Journal of Structural Engineering, ASCE, 123(2), 218-226.

Adeli, H., & Sarma, K. (2006). Cost Optimization of Structures – Fuzzy Logic,

Genetic Algorithms, and Parallel Computing. John Wiley and Sons, West Sussex,

United Kingdom.

Adeli, H., & Cheng, N. T. (1994a). Concurrent genetic algorithms for optimization

of large structures. Journal of Aerospace Engineering, ASCE, 7(3), 276-296.

Adeli, H., & Cheng, N. T. (1994b). Augmented lagrangian genetic algorithm for

structural optimization. Journal of Aerospace Engineering, ASCE, 7(1), 104-118.

Ahrari, A., & Aatai, A. A. (2010). Grenade Explosion Method-A novel tool for

optimization of multimodal functions. Applied Soft Computing, 10, 1132-1140.

Ahrari, A., Saadatmand, M. R., Shariat-Panahi, M., & Atai, A. A. (2010). On the

limitations of classical benchmark functions for evaluating robustness of

evolutionary algorithms. Applied Mathematics and Computation, 215, 3222-3229.

Akay, B., & Karaboga, D. (2010). Artificial bee colony algorithm for large-scale

problems and engineering design optimization. Journal of Intelligent

Manufacturing, DOI:10.1007/s10845-010-0393-4.

Ali, A. A., & Z. Kajee-Bagdadi, Z. (2009). A local exploration-based differential

evolution algorithm for constrained global optimization. Applied Mathematics and

Computation, 208, 31-48.

Amirjanov, A. (2006). The development of a changing range genetic algorithm.

Computer Methods in Applied Mechanics and Engineering, 195, 2495-2508.

127

Arora, J. S. (1989). Introduction to optimum design. New York, McGraw-Hill.

Atashpaz-Gargari E., & Lucas, C. (2007). Imperialist Competitive Algorithm: An

Algorithm for Optimization Inspires by Imperialistic Competition. IEEE Congress

on Evolutionary Computation, Singapore.

Aymerich, F., & Serra, M. (2008). Optimization of laminate stacking sequence for

maximum buckling load using the ant colony optimization (ACO) metaheuristic.

Composites Part A: Applied Science and Manufacturing, 39(2), 262-272.

Bakwad, K. M., Pattnaik, S. S., Sohi, B. S., Devi, S., Gollapudi, S., Sagar, C. V., &

Patra, P. K. (2010). Multimodal function optimization using synchronous bacterial

foraging optimization technique. IETE journal of research, 56(2), 80-87.

Balling, R. J. (1991). Optimal steel frame design by simulated annealing. Journal

of Structural Engineering-ASCE, 117, 1780-1795.

Balling, R. J. (1996). Application of the simulated annealing algorithm to

structural design. In Grierson DE, Hajela P,editors. Emergent computing methods.

Becerra, R., & Coello, C. A. C. (2006). Cultured differential evolution for

constrained optimization. Computer Methods in Applied Mechanics and

Engineering, 195, 4303-4322.

Bell, J. E., & McMullen, P. R. (2004). Ant colony optimization techniques for the

vehicle routing problem. Advanced Engineering Informatics, 18(1), 41-48.

Bennage, W. A., & Dhingra, A. K. (1995). Single and multi-objective structural

optimization in discrete–continuous variables using simulated annealing.

International Journal for Numerical Methods in Engineering, 38, 2753-2773.

Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization

particle trajectories, Inform. Sciences, 176, 937-971.

Beyer, H. G., & Schwefel, H. P. (2002). Evolution strategies – a comprehensive

introduction. Natural Computing, 1, 3-52.

Box, M. J. (1965). A comparison of several current optimization methods and the

use of transformations in constrained problems. Computer Journal, 8, 67-77.

Bracken, J., & Mccormick, G. P. (1968). Selected applications of nonlinear

programming. John Wiley & Sons, New York.

Broyden, G. C. (1965). A class of methods for solving nonlinear simultaneous

equations. Mathematic of Computation, 19, 577-593.

Cai, J., & Thierauf, G. (1993). Discrete structural optimization using evolution

strategies. In B.H.V. Topping, A.I. Khan (Eds.), Neural Networks and

Combinatorial Optimization in Civil and Structural Engineering (pp. 95-100).

Civil-Comp, Edinburg.

128

Cauchy, A. (1847). Methodes generales pour la resolution des syst„emes

dequations simultanees. Comptes Rendus Hebd. S´eances Acad. Science, Paris, 25,

536-538.

Ceranic, B., Fryer, C., & Baines, R. W. (2001). An application of simulated

annealing to the optimum design of reinforced concrete retaining structures.

Computers & Structures, 79, 1569-1581.

Chen, G. S., Bruno, R. J., & Salama, M. (1991). Optimal placement of

active/passive members in truss structures using simulated annealing. AIAA

Journal, 29, 1327-1334.

Chootinan, P., & Chen, A. (2006). Constraint handling in genetic algorithms using

a gradient-based repair method. Computers & Operation Research, 33, 2263-2281.

Chu, C. L., Xue, X. Y., Zhu, J. C., & Yin, Z. D. (2006). In vivo study on

biocompatibility and bonding strength of hydroxyapatite-20vol%Ti composite with

bone tissues in the rabbit. Biomedical Materials and Engineering, 16(3), 203-213.

Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques

used with evolutionary algorithms: a survey of the state of the art. Computer

Methods in Applied Mechanics and Engineering, 191, 1245-1287.

Coello, C. A. C. (2000a). Use of a self-adaptive penalty approach for engineering

optimization problems. Computers in Industry, 41, 113-127.

Coello, C. A. C. (2000b). Constraint-handling using an evolutionary multiobjective

optimization technique. Civil Engineering and Environmental Systems, 17, 319-

346.

Coello, C. A. C. (2000c). Treating constraints as objectives for single-objective

evolutionary optimization. Engineering Optimization, 32(3), 275-308.

Coello, C. A. C., & Montes, E. M. (2002). Constraint-handling in genetic

algorithms through the use of dominance-based tournament selection. Advanced

Engineering Informatics, 16, 193-203.

Coello, C. A. C., & Becerra, R. L. (2004). Efficient evolutionary optimization

through the use of a cultural algorithm. Engineering Optimization, 36, 219-236.

Coelho, L. D. S. (2010). Gaussian quantum-behaved particle swarm optimization

approaches for constrained engineering design problems. Expert Systems with

Applications, 37, 1676-1683.

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimization by ant

colonies, Proceedings of ECAL'91, European Conference on Artificial Life,

Elsevier Publishing, Amsterdam.

Costa, D., & Hertz, A. (1997). Ants can color graphs. Journal of the Operational

Research Society, 48, 295-305.

129

Cutello, V., Morelli, G., Nicosia, G., & Pavone, M. (2005). Immune algorithms

with aging operators for the string folding problem and the protein folding

problem. EvoCOP, LNCS, 3448 (pp. 80–90), Heidelberg, Springer.

Cutello, V., Narzisi, G., Nicosia, G., & Pavone, M. (2006). Real coded clonal

selection algorithm for global numerical optimization using a new inversely

proportional hypermutation operator. The 21st annual ACM symposium on applied

computing, vol. 2, (pp. 950–954), Dijon, France.

Cutello, V., Nicosia, G., Romeo, M., & Oliveto, P. S. (2007). On the convergence

of immune algorithms. In the first IEEE symposium on foundations of

computational intelligence, Los Alamitos: IEEE Computer Society Press.

David, S. (1993). The water cycle. Illus. John Yates, New York, Thomson

Learning.

Davidson, R., & Harel, D. (1996). Drawing Graphs Nicely Using Simulated

Annealing. ACM Transactions on Graphics, 15(4), 301-33.

De Castro D., L. N., & Von Zuben, F. J. (1999), “Artificial Immune Systems: Part

I – Basic Theory and Applications”, Technical Report – RT DCA 01/99.

De Castro, L. N., & Zuben, F. J. (2002). Learning and optimization using through

the clonal selection principle, IEEE Transactions Evolutionary Computation, 6(3),

239-251.

Deb, K. (2000). An efficient constraint handling method for genetic algorithms.

Computer Methods in Applied Mechanics and Engineering, 186, 311-338.

Deb, K., & Goyal, M. (1995). Optimizing engineering designs using a combined

genetic search. In Eshelman, L.J. (Ed.), Proceedings of the sixth international

conference in generic algorithms (pp. 521-528). University of Pittsburgh, Morgan

KauKman Publishers, San Mateo, California.

Deb, K., & Srinivasan, A. (2006). Innovization: innovative design principles

through optimization. Proceedings of the 8th annual conference on Genetic and

evolutionary computation, New York, USA, 1629-1636.

Dede, T., Bekiroglub, S., & Ayvazc, Y. (2011). Weight minimization of trusses

with genetic algorithm, Applied Soft Computing, 11, 2565-2575.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive

systems. PhD Thesis, University of Michigan, Michigan, USA.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991a). The ant system: an autocatalytic

optimizing process. Technical Report TR91-016, Politecnico di Milano.

Dorigo, M., Maniezzo, V., & Colorni, A. (1991b). Positive feedback as a search

strategy. Technical report 91-016, Dipartimento di ElettronicaPolitecnico

diMilano, Italy.

130

Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant Algorithms for

Discrete Optimization. Artificial Life, 5(2), 137-172.

Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph.D. Thesis,

Politecnico di Milano, Milano.

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative

learning approach to the traveling salesman problem. IEEE Transactions

Evolutionary Computation, 1(1), 53-66.

Duan, Q., Gupta, V. K., & Sorooshian, S. (1992). Effective and efficient global

optimization for conceptual rainfall-runoff models, Water Resources Research, 28,

1015-1031.

Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986), The immune system,

adaptation, and machine learning. Physica, 22, 187-204.

Feldman, J. A. (1990). Neural networks, artificial intelligence and computational

reality. Computers in Industry, 14(1-3), 145-148.

Fletcher, R. (1963). Generalized inverses for nonlinear equations and optimization.

In R. Rabinowitz (ed.), Numerical Methods for Non-linear Algebraic Equations.

London: Gordon and Breach.

Fleischer, M. (1995). Simulated Annealing: Past, Present, and Future. Proceedings

of the 1995 Winter Simulation Conference, Department of Engineering

Management, Old Dominion University, Norfolk, VA.

Fogel, D. B. (1995). A comparison of evolutionary programming and genetic

algorithms on selected constrained optimization problems. Simulation, 64, 397-

404.

Geem, Z., Kim, J., & Loganathan, G.V. (2001). A new heuristic optimization

algorithm: Harmony Search. Simulation, 76, 60-68.

Gero, M. B. P., Garcia, A. B., & Diaz, J. J. D. C. (2006). Design optimization of

3D steel structures: genetic algorithms vs. classical techniques. Journal of

Constructional Steel Research, 62, 1303-1309.

Ghasemi, M. R., Hinton, E., & Wood, R. D. (1999). Optimization of trusses using

genetic algorithms for discrete and continuous variables, Engineering

Computations, 16(3), 272-301.

Glover, F. (1990). Tabu search – a tutorial. 10.1287/inte.20.4.74, 20(4), 74-94.

Giraud-Moreau, L., & Lafon, P. (2002). Comparison of evolutionary algorithms

for mechanical design components. Engineering Optimization, 34, 307-322.

Goldfarb, D., & Lapidus, B. (1968). Conjugate gradient method for nonlinear

programming problems with linear constraints. Industrial & Engineering

Chemistry Fundamentals, 7, 142-151.

131

Goldberg, D. (1989). Genetic algorithms in search, optimization and machine

learning. Addison-Wesley, Reading, MA.

Goldberg, D. E., & Samtani, M. P. (1986). Engineering optimization via genetic

algorithms. Proceedings of the Ninth Conference on Electronic Computations,

ASCE, Birmingham, Alabama, 471-482.

Golden, B., Levy, L., & Dahl, R. (1981). Two generalizations of the traveling

salesman problem. Omega, 9(4), 439-441.

Gomes, H. M. (2011). Truss optimization with dynamic constraints using a particle

swarm algorithm. Expert Systems with Applications, 38, 957-968.

Gupta, S., Tiwari, R., & Shivashankar, B. N. (2007). Multi-objective design

optimization of rolling bearings using genetic algorithm. Mechanism and Machine

Theory, 42, 1418-1443.

Hamida, S. B, & Schoenauer, M. (2002). ASCHEA: new results using adaptive

segregational constraint handling. IEEE Transaction on Evolutionary

Computation, 1, 884-889.

Han, W. T., Tang, L. H., & Xie, G. N. (2008). Performance comparison of particle

swarm optimization and genetic algorithm in rolling fin-tube heat exchanger

optimization design. Proceedings of the ASME Summer Heat Transfer Conference,

Jacksonville, FL, 5-10.

Han, X., Xu, D., & Liu, G. R. (2003). A computational inverse technique for

material characterization of a functionally graded cylinder using a progressive

neural network. Neurocomputing, 51, 341-360.

Hasancebi, O., & Erbatur, F. (2000). Layout optimization of trusses using

simulated annealing. In Topping BHV, editor. Computational Engineering using

metaphors from nature (pp. 175-190). Civil-Comp Press.

Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithms. (2nd ed.), John

Wiley & Sons, Inc. publication, doi:10.1002/0471671746.

He, Q., & Wang, L. (2006). An effective co-evolutionary particle swarm

optimization for engineering optimization problems. Engineering Applications of

Artificial Intelligence, 20, 89-99.

He, Q., & Wang, L. (2007). A hybrid particle swarm optimization with a

feasibility-based rule for constrained optimization. Applied Mathematics and

Computation, 186, 1407-1422.

He, S., Wu, Q. H., Wen, J. Y., Saunders, J. R., & Paton, R. C. (2004). A particle

swarm optimizer with passive congregation. Biosystems, 78, 135-147.

Hedar, A. R., & Fukushima, M. (2006). Derivative-Free filter simulated annealing

method for constrained continuous global optimization. Journal of Global

Optimization, 35, 521-549.

132

Hedia, H. S. (2005). Design of functionally graded dental implant in the presence

of cancellous bone. Journal of Biomedical Materials Research - Part B Applied

Biomaterials, 75, 74-80.

Hedia, H. S., & Mahmoud, N. A. (2004). Design optimization of functionally

graded dental implant. Bio-Medical Materials and Engineering, 14, 133-143.

Hedia, H. S., Shabara, M. A. N., El-midany, T. T., & Fouda, N. (2006). Improved

design of cementless hip stems using two-dimensional functionally graded

materials. Journal of Biomedical Materials Research - Part B Applied

Biomaterials, 79, 42-49.

Hieu, T. T. (2011). A water flow algorithm for optimization problems. PhD thesis,

National University of Singapore.

Hightower, R. R., Forrest, S., & Perelson, A. S. (1995). The evolution of emergent

organization in immune system gene libraries. Proceedings of the 6th Conference

on Genetic Algorithms, 344-350.

Holland, J. (1975). Adaptation in natural and artificial systems. University of

Michigan Press, Ann Arbor, MI.

Homaifar, A., Qi, C. X., & Lai, S. H. (1994). Constrained optimization via genetic

algorithms. Simulation, 62, 242-253.

Huang, F. Z., Wang, L., & He, Q. (2007). An effective co-evolutionary differential

evolution for constrained optimization. Applied Mathematics and Computation,

186(1), 340-356.

Huiskes, R., Dalstra, M., Vondervenne, R., Grootenboer, H., & Slooff, T. J.

(1987). A hypothesis concerning the effect of implant rigidity on adaptive cortical

bone remodeling in the femur. Journal of Biomechanics, 20 (8), 808-809.

Jerne, N. K. (1973). Towards a network theory of the immune system. Annals of

Immunology, 125(c), 373-389.

Kannan, B. k., & Kramer, S. N. (1994). An augmented lagrange multiplier based

method for mixed integer discrete continuous optimization and its applications to

mechanical design. Journal of Mechanichal Design, 116, 405-411.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical

optimization, Technical Report-TR06, Erciyes University, Engineering Faculty,

Computer Engineering Department, Turkey.

Karaboga, D., & Basturk, B. (2007). Artificial bee colony (ABC) optimization

algorithm for solving constrained optimization problems. Foundations of Fuzzy

Logic and Soft Computing, 4529, 789-798.

Kaveh, A., & Talatahari, S. (2009a). Particle swarm optimizer, ant colony strategy

and harmony search scheme hybridized for optimization of truss structures.

Computers & Structures, 87, 267-283.

133

Kaveh, A., & Talatahari, S. (2009b). A particle swarm ant colony optimization for

truss structures with discrete variables. Journal of Constructional Steel Research,

65, 1558-1568.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. ICNN - IEEE

International Conference on Neural Networks, Perth, Australia, 4, 1942 1948.

Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm

algorithm. IEEE International Conference on Systems, Man, and Cybernatics,

Computational Cybernetics and Simulation, Orlando, FL, 5, 4104-4108.

Khabbazi, A., Atashpaz-Gargari, E., & Lucas, C. (2009). Imperialist competitive

algorithm for minimum bit error rate beam forming. International Journal of Bio-

Inspired Computation, 1, 125-133.

Kirkpatrick, S., Gelatt Jr. C. D., & Vecchi, M. P. (1983). Optimization by

Simulated Annealing. Science, 220, 671-680.

Kim, C., Park, H. B., Jin, T. E., Jeong, I. S., & Seok, C. S. (2004). Prediction of

material properties ofCF8M cast stainless steel by thermal embrittlement using

neural network. Key Engineering Materials, 270–273, 102-107.

Kincaid, R. K. (1990). Minimizing distortion and internal forces in truss structures

by simulated annealing. Proceedings of 31th AIAA/ASME/ASCE/AHS/ASC

Structural Materials and Dynamics Conference, Long Beach, USA, AIAA, 327-

333.

Kincaid, R. K. (1991). Minimizing distortion in truss structures: a comparison of

simulated annealing and taboo search. Proceedings of 32th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference, Baltimore, USA, AIAA, 424-430.

Kogiso, N., Watson, L. T., Gurdal Z., & Haftka R. T. (1994). Genetic algorithms

with local improvement for composite laminate design. Structural and

Multidisciplinary Optimization, 7, 207-218.

Koziel, S., & Michalewicz, Z. (1999). Evolutionary algorithms, homomorphous

mappings, and constrained parameter optimization. IEEE Transactions on

Evolutionary Computation, 7, 19-44.

Krishnamoorthy, C. S., Venkatesh, P. P., & Sudarshan, R. (2002). Object-oriented

framework for genetic algorithms with application to space truss optimization.

Journal of Computing in Civil Engineering, 16(1), 66-75.

Kuang, J. K., Rao, S. S., & Chen, L. (1998). Taguchi-aided search method for

design optimization of engineering systems. Engineering Optimization, 30, 1-23.

Kubi, J. (2002). Immunology. (Fifth ed.) by Richard A. Goldsby, Thomas J. Kindt,

BarbaraOsborne, W H Freeman.

Lampinen, J. (2002). A constraint handling approach for the differential evolution

algorithm. IEEE Transactions on Evolutionary Computation, 2, 1468-1473.

http://www.sciencemag.org/search?author1=S.+Kirkpatrick&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=C.+D.+Gelatt+Jr.&sortspec=date&submit=Submit
http://www.sciencemag.org/search?author1=M.+P.+Vecchi&sortspec=date&submit=Submit

134

Lee, K. S., & Geem, Z. W. (2004). A new structural optimization method based on

the harmony search algorithm. Computers and Structures, 82, 781-798.

Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous

engineering optimization: harmony search theory and practice. Computer Method

in Applied Mechanics and Engineering, 194, 3902-3933.

Lee, K. S., Geem, Z. W., Lee, S. H., & Bae, K. W. (2005). The harmony search

heuristic algorithm for discrete structural optimization. Engineering Optimization,

37(7), 663-684.

Leriche, R., & Haftka, R. T. (1993). Optimization of laminate stacking sequence

for buckling load maximization by genetic algorithm. AIAA Journal, 31(5), 951-

956.

Lessing, L., Dumitrescu, I., & Stützle, T. (2004). A comparison between ACO

algorithms for the set covering problem. ANTS Workshop, 1–12.

Li, L. J., Huang, Z. B., & Liu, F. (2009). A heuristic particle swarm optimization

method for truss structures with discrete variables. Computers & Structures, 87,

435-443.

Li, L. J., Huang, Z. B., & Liu, F. (2009). A heuristic particle swarm optimization

method for truss structures with discrete variables. Computers & Structures, 87,

435-443.

Liao G. C. (2006). Short-term thermal generation scheduling using improved

immune algorithm. Electric Power Systems Research, 76, 360–373.

Lin, D., Li, Q., Li, W., Zhou, S., & Swain, M. V. (2009). Design optimization of

functionally graded dental implant for bone remodeling. Composites Part B:

Engineering, 40, 668-675.

Lin, D., Li, Q., Li, W., & Swain, M. V. (2008a). Dental implant induced bone

remodeling and associated algorithms. Journal of Mechanical Behavior of

Biomedical Materials, doi:10.1016/ j.jmbbm.2008.11.007.

Lin, D., Li, Q., Li, W., Swain, M. V. (2008b). Functionally graded implant and its

effect on bone remodeling. Advance Materials Research, 47(50), 1035–1038.

Liu, G. R., Han, X., Xu, Y. G., & Lam, K. Y. (2001). Material characterization of

functionally graded material by means of elastic waves and a progressive-learning

neural network. Composites Science and Technology, 61(10), 1401-1411.

Liu, G. R., Lam, K. Y., & Han, X. (2002). Determination of elastic constants of

anisotropic laminated pipes using elastic waves and a progressive neural network.

Journal of Sound and Vibration, 252(2), 239-259.

Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with

differential evolution for constrained numerical and engineering optimization.

Applied Soft Computing, 10, 629-640.

135

Liu, Y., & Passino, K. M. (2002). Biomimicry of social foraging bacteria for

distributed optimization: models, principles, and emergent behaviors. Journal of

Optimization Theory and Applications, 115, 603-628.

Luenberger, D. G. (1984). Linear and Nonlinear Programming. Reading, MA:

Addison-Wesley.

Luh, G. C., & Lin, C. Y. (2009). Structural topology optimization using ant colony

optimization algorithm. Applied Soft Computing, 9, 1343-1353.

Mariani, V. C., Luvizotto, L. G. J., Guerra, F. A., & Coelho, L. D. S. (2011). A

hybrid shuffled complex evolution approach based on differential evolution for

unconstrained optimization. Applied Mathematics and Computation, 217, 5822-

5829.

May, S. A., & Balling, R. J. (1992). A filtered simulated annealing strategy for

discrete optimization of 3D steel frame works. Structural Optimization, 4, 142-

148.

McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent

in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller A. H., & E. Teller,

E. (1953). Equation of state calculations by fast computing machines. Journal of

Chemical Physics, 21, 1087-1092.

Michalewicz, Z. (1992). Genetic algorithms + data structures = evolution

programs. Springer-Verlag, AI Series, New York, NY, USA.

Michalewicz, Z. (1995). Genetic algorithms, numerical optimization, and

constraints. Proceedings of 6th International Conference on Genetic Algorithms,

Morgan Kauffman, San Mateo, 151-158.

Michalewicz, Z., Logan, T. D., & Swaminathan, S. (1994). Evolutionary operators

for continuous convex parameter spaces. Proceedings of 3rd Annual Conference

on Evolutionary Programming, World Scientific, 84-97.

Mishra, M., Das, P. K., & Sarangi, S. (2009). Second law based optimization of

cross flow plate-fin heat exchanger design using genetic algorithm. Applied

Thermal Engineering, 29, 2983-2989.

Mishra, M., Das, P. K., & Sarangi, S. (2009). Second law based optimization of

cross flow plate-fin heat exchanger design using genetic algorithm. Applied

Thermal Engineering, 29, 2983-2989.

Miyazaki, T., & Akisawa, A. (2009). The influence of heat exchanger parameters

on the optimum cycle time of adsorption chillers. Applied Thermal Engineering,

29(13), 2708-2717.

136

Montes, E. M., & Coello, C. A. C. (2005a). In MICAI: Lect. Notes Artif. Int,

Useful infeasible solutions in engineering optimization with evolutionary

algorithms (pp. 652-662), DOI:10.1007/11579427-66.

Montes, E. M., & Coello, C. A. C. (2005b). A simple multimembered evolution

strategy to solve constrained optimization problems. IEEE Transactions on

Evolutionary Computation, 9, 1-17.

Montes, E. M., & Coello, C. A. C. (2008). An empirical study about the usefulness

of evolution strategies to solve constrained optimization problems. International

Journal of General Systems, 37, 443-473.

Montes, E. M., Coello, C. A. C., & Velazquez-Reyes, J. (2006a). Increasing

successful offspring and diversity in differential evolution for engineering design.

In Proceedings of 7th international conference on adaptive computing in design

and manufacture, 131-139.

Montes, E. M., Velazquez-Reyes, J., & Coello, C. A. C. (2006b). Modified

differential evolution for constrained optimization. Evolutionary Computation,

CEC, IEEE Congress, 25-32.

Nagendra, S., Jestin, D., Guradal, Z., Haftka, R. T., & Watson, L. T. (1996).

Improved genetic algorithm for the design of stiffened composite panels.

Computers & Structures, 58(3), 543-555.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization.

Computer Journal, 7, 308-313.

Nicosia G, Cutello V, Bentley PJ, Timmis J. Artificial immune systems. In: 3rd

international conference (ICARIS 2004), Catania, Italy, LNCS, vol. 3239,

Springer-Verlag; 2004.

O‟Mahony, A. M., Williams, J. L., & Spencer, P. (2001). Anisotropic elasticity of

cortical and cancellous bone in the posterior mandible increases peri-implant stress

and strain under oblique loading. Clinic Oral Implants Research, 12(6), 648-657.

Osyczka, A. (2002). Evolutionary algorithms for single and multicriteria design

optimization: studies in fuzzyness and soft computing. Heidelberg, Physica-

Verlag

Panigrahi B. K., Yadav, S. R., Agrawal, S., & Tiwari, M. K. (2007). A clonal

algorithm to solve economic load dispatch. Electric Power Systems Research, 77,

1381-1389.

Parsopoulos, K., & Vrahatis, M. (2005). In Advances in Natural Computation,

LNCS, Unified particle swarm optimization for solving constrained engineering

optimization problems (pp. 582-591). Berlin, Springer-Verlag.

.

Perez, R. E., & Behdinan, K. (2007). Particle swarm approach for structural design

optimization. Computers & Structures, 85, 1579-1588.

137

Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2006).

The bees algorithm-A novel tool for complex optimisation problems. Intelligent

Production Machines and Systems, 454-459.

Powell, M. J. D. (1964). An efficient way for finding the minimum of a function of

several variables without calculating derivatives. Computer Journal, 7, 155-162.

Press, W. H., Teukolsky, S. A., Vettering, W. T., & Flannery, B. P. (1992).

Numerical Recipes. New York: Cambridge University Press.

Qian, H. C., Xia, B. C., Li, S. Z., & Wang, F. G. (2002). Fuzzy neural network

modeling of material properties. Journal of Materials Processing Technology,

122(2-3), 196-200.

Rahman, T. K. A., Suliman, S. I., & Musirin, I. (2006). Artificial immune-based

optimization technique for solving economic dispatch in power systems. Berlin,

Heidelberg: Springer-Verlag. pp. 338–45.

Rahami, H., Kaveh, A., & Gholipour, Y. (2008). Sizing, geometry and topology

optimization of trusses via force method and genetic algorithm. Engineering

Structures, 30, 2360-2369.

Rajeev, S., & Krishnamoorthy, C. S. (1992). Discrete optimization of structures

using genetic algorithms. Journal of Structural Engineering-ASCE, 118(5), 1233-

1250.

Rao, R. V., & Savsani, V. J. (2012). Mechanical design optimization using

advanced optimization techniques. Springer-Verlag, London.

Rao, R. V., & Patel, V. (2012a). An elitist teaching-learning-based optimization

algorithm for solving complex constrained optimization problems. International

Journal of Industrial Engineering Computation, 3, 535-560.

Rao, R. V., & Patel, V. (2012b). Multi-objective optimization of heat exchangers

using a modified teaching-learning-based-optimization algorithm. Applied

Mathematical Modeling, doi:10.1016 /j.apm.2012.03.043.

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-learning-based

optimization: A novel method for constrained mechanical design optimization

problems. Computer-Aided Design, 43, 303-315.

Rasmussen, M. H., & Stolpe, M. (2008). Global optimization of discrete truss

topology design problems using a parallel cut-and-branch method. Computers &

Structures, 86, 1527-1538.

Ravagnani, M. A. S. S., Silva, A. P., Biscaia Jr. E. C., & Caballero J. A. (2009).

Optimal design of shell and tube heat exchangers using particle swarm

optimization. Industrial & Engineering Chemistry Research, 48 (6), 2927-2935.

Ray, T., & Liew, K. M. (2003). Society and civilization: An optimization

algorithm based on the simulation of social behavior. IEEE Transactions on

Evolutionary Computation, 7, 386-396.

138

Renato, A. K., & Santos, C. L. D (2006). Coevolutionary particle swarm

optimization using gaussian distribution for solving constrained optimization

problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 36, 1407-1416.

Rho, J. Y., Hobatho, M. C., & Ashman, R. B. (1995). Relations of mechanical-

properties to density and Ct numbers in human bone. Medical Engineering &

Physics, 17(5), 347-355.

Ringertz, U. T. (1988). On methods for discrete structural constraints. Engineering

Optimization, 13(1), 47-64.

Rouge, F., & Laussane (1896). V. Pareto, Cours D'Economie Politique. volume I

and II.

Runarsson, T. P., & Xin, Y. (2000). Stochastic ranking for constrained

evolutionary optimization. IEEE Transactions on Evolutionary Computation, 4,

284-294.

Runarsson, T. P., & Xin, Y. (2005). Search biases in constrained evolutionary

optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, 35, 233-243.

Saleh, A., & Adeli, H. (1994). Parallel algorithms for integrated structural and

control optimization. Journal of Aerospace Engineering, ASCE, 7(3), 297-314.

Saleh, A., & Adeli, H. (1998). Optimal control of adaptive/smart building

structures. Computer-Aided Civil and Infrastructure Engineering, 13(6), 389-403.

Sarma, K. C., & Adeli, H. (2001). Bi-Level parallel genetic algorithms for

optimization of large steel structures. Computer-Aided Civil and Infrastructure

Engineering, 16 (5), 295-304.

Schwefel, H. (1995). Evolution and Optimum Seeking. New York, Wiley.

Shah-Hosseini, H. (2009). The intelligent water drops algorithm: a nature-inspired

swarm-based optimization algorithm. International Journal of Bio-Inspired

Computation, 1, 71-79.

Shang, Y. W., & Qiu, Y. H. (2006). A note on the extended rosenbrock function.

Evolutionary Computation, 14(1), 119-126.

Shanno, D. F. (1970). An accelerated gradient projection method for linearly

constrained nonlinear estimation. SIAM Journal on Applied Mathematics, 18, 322-

334.

Siddall, J. N. (1982). Optimal engineering design, principles and applications.

Marcel Dekker, New York.

Sivakumar, P., Rajaraman, A., Natajan, K., & Samuel, K. G. M. (2001). Artificial

intelligence techniques for optimization of steel lattice towers, recent

139

developments in structural engineering. Proceeding of Structural Engineering

Convention, 435-445.

Soegiarso, R., & Adeli, H. (1998). Parallel-vector algorithms for optimization of

large steel structures. Computer-Aided Civil and Infrastructure Engineering, 13(3),

207-217.

Soremekun, G., Gurdal, Z., Haftka, R. T., & Watson, L. T. (2001). Composite

laminate design optimization by genetic algorithm with generalized elitist

selection. Computers & Structures, 79, 131-143.

Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of

America Bulletin, 63, 923-938.

Suman, B. (2004). Study of simulated annealing based algorithms for

multiobjective optimization of a constrained problem. Computers & Chemical

Engineering, 28, 1849-1871.

Suman, B., & Kumar, P. (2006). A survey of simulated annealing as a tool for

single and multiobjective optimization. Journal of the Operational Research

Society, 15, 1143-1160.

Suppapitnarm, A., Seffen, K. A., Parks, G. T., & Clarkson, P. J. (2000). Simulated

annealing: an alternative approach to true multiobjective optimization. Engineering

Optimization, 33-59.

Szewczyk, Z., & Hajela, P. (1993). Neural network approximations in a simulated

annealing based optimal structural design. Structural Optimization, 5, 159-165.

Takahama, T., & Sakai, S. (2005). Constrained optimization by applying the α;

constrained method to the nonlinear simplex method with mutations. IEEE

Transactions on Evolutionary Computation, 9, 437-451.

Tang, K. Z., Sun, T. K., & Yang, J. Y. (2011). An improved genetic algorithm

based on a novel selection strategy for nonlinear programming problems.

Computers & Chemical Engineering, 35, 615-621.

Tessema, B., & Yen, G. G. (2006). A self adaptive penalty function based

algorithm for constrained optimization. IEEE Transactions on Evolurionary

Computation, 246-253.

Todoroki, A., & Haftka, R. T. (1998). Stacking sequence optimization by a genetic

algorithm with a new recessive gene like repair strategy. Composite Part B:

Engineering, 29(3), 277-285.

Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence

analysis and parameter selection. Information Processing Letters, 85, 317-325.

Turner, C. H., Anne, V., & Pidaparti, R. M. V. (1997). A uniform strain criterion

for trabecular bone adaptation: do continuum level strain gradients drive

adaptation?. Journal of Biomechanics, 30(6), 555-563.

140

Turner, C. H. (1998). Three rules for bone adaptation to mechanical stimuli. Bone,

23(5), 399-407.

Ursem, R., & Vadstrup, R. (2003). Parameter identification of induction motors

using differential evolution. Proceedings of the 5th Congress on Evolutionary

Computation, Piscataway, NJ, USA, 1, 790-796.

Vesterström, J., & Thomsen, R. (2004). A comparative study of differential

evolution, particle swarm optimization and evolutionary algorithms on numerical

benchmark problems. Proceedings of the Sixth Congress on Evolutionary

Computation, Piscataway, NJ, USA, 2, 1980-1987.

Vrugt, J. A., Gupta, H. V., Bouten, W., & Sorooshian, S. (2003). A shuffled

complex evolution Metropolis algorithm for optimization and uncertainty

assessment of hydrological model parameters. Water Resources Research, 39,

1201-1218.

Wang, F., Lee, H. P., & Lu, C. (2007). Thermal-mechanical study of functionally

graded dental implants with the finite element method. Journal of Biomedical

Materials Research - Part A, 80, 146-158.

Wang, Y., & Cai, Z. (2009). A hybrid multi-swarm particle swarm optimization to

solve constrained optimization problems. Frontiers of Computer Science, 3(1), 38-

52.

Wang, Y., & Cai, Z. (2012a). A dynamic hybrid framework for constrained

evolutionary optimization. IEEE Transactions on Systems Man and Cybernetics

Part B, 42(1), 203-217.

Wang, Y., & Cai, Z. (2012b). Combining multiobjective optimization with differential

evolution to solve constrained optimization problems. IEEE Transaction Evolutionary

Computation, 16(1), 117-134.

Wang, Y., & Cai, Z. (2011). Constrained evolutionary optimization by means of (µ+λ)-

differential evolution and improved adaptive trade-off model. Evolutionary Computation,

19(2), 249-285.

Wang, Y., Cai, Z., Guo, G., & Zhou, Y. (2007). Multiobjective optimization and hybrid

evolutionary algorithm to solve constrained optimization problems. IEEE Transactions on

Systems Man and Cybernetics Part B, 37(3), 560-575.

Wang, Y., Cai, Z., Zhou, Y., & Fan, Z. (2009). Constrained optimization based on

hybrid evolutionary algorithm and adaptive constraint handling technique.

Structural and Multidisciplinary Optimization, 37, 395-413.

Wang, L., & Li, L. P. (2010). An effective differential evolution with level

comparison for constrained engineering design. Structural Multidisciplinary

Optimization, 41, 947-963.

Watari, F., Yokoyama, A., Omori, M., Hirai, T., Kondo, H., Uo, M., & Kawasaki,

T. (2004). Biocompatibility of materials and development to functionally graded

implant for bio-medical application. Composites Science and Technology, 64, 893-

908.

141

Weinans, H., Huiskes, R., & Grootenboer, H. J. (1992). The behavior of adaptive

bone remodeling simulation models. Journal of Biomechanics, 25(12), 1425-1441.

Wu, S. J., & Chow, P. T. (1995). Steady-state genetic algorithms for discrete

optimization of trusses. Computers & Structures, 56, 979-991.

Xie, G. N., Sunden, B., & Wang, Q. W. (2008). Optimization of compact heat

exchangers by a genetic algorithm. Applied Thermal Engineering, 28, 895-906.

Xu, B., Shen, Z., Ni, X., Wang, J., Guan, J., & Lu, J. (2004). Determination of

elastic properties of a film substrate system by using the neural networks. Applied

Physics Letters, 85(25), 6161-6163.

Yang, J., & Cheng, J. C. (2001). Inversion of elastic constants for orthotropic pipe

by artificial neural network. Progress in Natural Science, 11, S75-8.

Yang, J., Cheng, J. C., & Berthelot, Y. H. (2002). Determination of the elastic

constants of a composite pipe using wavelet transforms and neural networks.

Journal of the Acoustical Society of America, 111(3), 1245-1250.

Yang, J., & Xiang, H.-J. (2007). A three-dimensional finite element study on the

biomechanical behavior of an FGBM dental implant in surrounding bone. Journal

of Biomechanics, 40, 2377-2385.

Yu, X. C., Cui, Z. Q., & Yu, Y. (2008). Fuzzy optimal design of the plate-fin heat

exchangers by particle swarm optimization. Proceedings of the Fifth International

Conference on Fuzzy Systems and Knowledge Discovery, Jinan, China, 574-578.

Yuan, Q., & Qian, F. (2010). A hybrid genetic algorithm for twice continuously

differentiable NLP problems. Computers & Chemical Engineering, 34, 36-41.

Zavala, A. E. M., Aguirre, A. H., & Diharce, E. R. V. (2005). Constrained

optimization via evolutionary swarm optimization algorithm (PESO). Proceedings

of the 2005 Conference on Genetic and Evolutionary Computation, New York,

USA, 209-216.

Zahara, E., & Kao, Y. T. (2009). Hybrid Nelder-Mead simplex search and particle

swarm optimization for constrained engineering design problems. Expert Systems

with Applications, 36, 3880-3886.

Zhao, X., Yao, Y., & Yan L. (2009). Learning algorithm for multimodal optimization.

Computers & Mathematics with Applications, 57, 2016-2021.

Zhang, M., Luo, W., & Wang, X. (2008). Differential evolution with dynamic stochastic

selection for constrained optimization. Information Sciences, 178, 3043-3074.

Zhi-ding, W., & Jie-Kang, W. (2011). Water cycle-like algorithm for unconstrained

optimization problems. Computer Engineering, 37(22), 187-190.

Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary

algorithms: a comperative case study. Parallel Problem Solving from Nature V. Springer,

Berlin, Germany, 292–301.

142

 APPENDICES

143

Appendix A: Mathematical formulations for unconstrained benchmark

problems

N: Number of design variables.

Rastrigin function

2

1

() (10cos(2) 10)
N

i

i

f x x ix


  

Ackley function

2

1

1

1
() 20exp(0.2) exp(cos(2)) 20

N

i N
i

i

i

x

f x x e
N N





     




Zakharov function

2 2 4

1 1 1

() (0.5) (0.5)
N N N

i i i

i i i

f x x ix ix
  

    

Schwefel function

1

() 418.9829 sin()
N

i i

i

f x N x x


  

Rosenbrock function

 
1

2 2 2

1

1

() 100() (1)
N

i i i

i

f x x x x






   

Hyper Sphere function

2

1

()
N

i

i

f x x




Martin and Gaddy function

2

2 1 2
1 2

(10)
() ()

3
x x

f x x x
    

  

Branin function

2 2

2 1 1 1

2

() () (1)cos()

5.1 7 5 1 7
1, , 7, 6, 10,

4 22 22 8 22

f x a x bx cx d e f x e

a b c d e f

      

 
        

 

144

Goldstein and Price I function

2 2 2

1 2 1 1 2 1 2 2() 1 (1) (19 14 3 14 6 3)f x x x x x x x x x          
2 2 2

1 2 1 1 2 1 2 23 (2 3) (18 32 12 48 36 27)x x x x x x x x         

Goldstein and Price II function

2 2 2 4 2

1 2 1 2 1 2

1 1
() exp (25) sin (4 3) (2 10)

2 2
f x x x x x x x

 
        

 

De Jong function

2 2 2

1 2 1() 3905.93 100() (1)f x x x x    

Six Hump Camel Back function

2 4 6 2 4

1 1 1 1 2 2 2
1() 4 2.1 4 4

3
f x x x x x x x x     

Shaffer function

 
 

2 2 2

1 2

2
2 2

1 2

sin 0.5
() 0.5

1 0.001()

x x
f x

x x

 
 

 

Wood function

2 2 2 2 2 2

2 1 1 4 3 3() 100() (1) 90() (1)f x x x x x x x       

2 2

2 4 2 410.1 (1) (1) 19.8(1)(1)x x x x        

Powell Quartic function

2 2 4 4

1 2 3 4 2 3 1 4() (10) 5() (2) 10()f x x x x x x x x x       

Easton and Fenton function

 
2 2 2

2 2 1 2
1 2 4

1 1 2

1 100 1() 12
10()

x x x
f x x

x x x

  
    
 

145

Appendix B: Mathematical Formulations for constrained engineering

problems

B.1. Constrained problem 1
3

3 1 5 1() 5.3578547 0.8356891 37.293239 40729.141f x x x x x   

subject to:

1 2 5 1 4 3 5() 85.334407 0.0056858 0.0006262 0.0022053 92 0g x x x x x x x     

2 2 5 1 4 3 5() 85.334407 0.0056858 0.0006262 0.0022053 0g x x x x x x x     

2

3 2 5 1 2 3() 80.51249 0.0071317 0.0029955 0.0021813 110 0g x x x x x x     

2

4 2 5 1 2 3() 80.51249 0.0071317 0.0029955 0.0021813 90 0g x x x x x x      

5 3 5 1 3 3 4() 9.300961 0.0047026 0.0012547 0.0019085 25 0g x x x x x x x     

6 3 5 1 3 3 4() 9.300961 0.0047026 0.0012547 0.0019085 20 0g x x x x x x x      

178 102x 

233 45x 

27 45 3,4,5ix i  

B.2. Constrained problem 2

2 2 2

1 2 3100 (5) (5) (5)
()

100

x x x
f x

     
 

subject to:

2 2 2

1 2 3() () () () 0.0625 0g X x p x q x r       

0 10 1,2,3 , , , 1,2,3,...,9ix i p q r   

B.3. Pressure vessel design problem

2 2 2

1 3 4 2 3 1 4 1 3() 0.6224 1.7781 3.1661 19.84f x x x x x x x x x x   

subject to:

1 1() 0.0193 0g x x x   

2 2 3() 0.00954 0g x x x   

146

2 3

3 3 4 3
4() 1,296,000 0

3
g x x x x     

4 4() 240 0g x x  

0 100 1,2ix i  

10 200 3,4ix i  

B.4. Tension/compression spring design problem

2

3 2 1() (2)f x x x x 

subject to:

3

2 3
41
1

() 1 0
71,785

x x
g x

x
  

2

2 1 2
3 4 22

2 1 1 1

4 1() 1 0
12,566() 5108

x x x
g x

x x x x


   



1
23
2 3

140.45
() 1 0

x
g x

x x
  

2 1
4 () 1 0

1.5
x x

g x


  

10.05 2.00x 

20.25 1.30x 

32.00 15.00x 

B.5. Welded beam design problem

2

1 2 3 4 2() 1.10471 0.04811 (14)f x x x x x x  

subject to:

1 max() () 0g x x   

2 max() () 0g x x   

3 1 4() 0g x x x  

2

4 1 3 4 2() 0.10471 0.04811 (14) 5 0g x x x x x    

147

5 1() 0.125 0g x x  

6 max() () 0g x x   

7 () () 0cg x P P x  

0.1 2 1,4ix i  

0.1 10 2,3ix i  

where,

2 22

1 2

() () 2 () , ,
2 2

x P MR
x

R Jx x
               

2 2
2 21 3 1 32 2 2

1 2() , () , 2 2 ()
2 4 2 12 2

x x x xx x x
M P L R J x x

    
       

   

2 6

3 4
3

3

2 3 2

4 3 3 4

4.013
6 4 36

() , () , () 1
2 4

c

x x
E

xPL PL E
x x P x

x x Ex x L L G
 

 
     

 

6 66000 , 14 , 30 10 , 12 10P lb L in E psi G psi     

max max max13,600 , 30,000 , 0.25psi psi in    

