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ABSTRACT 

The reliable prediction of stream flow (SF) is an important aspect in the planning, design 

and management of surface water and rivers systems. This prediction can be performed 

using either process-based or data driven-based models (DDMs). Several modelling 

approaches fall under DDMs, such as statistical and artificial intelligence (AI) techniques. 

AI includes artificial neural networks (ANNs), support vector machines (SVM) and other 

techniques. The main goal of this research is to develop and employ a group of efficient 

AI-based models for predicting the real-time hourly stream flow (Q) in the downstream 

area of the Selangor River basin, taken here as the paradigm of humid tropical rivers in 

Southeast Asia. The Q of this river is yet to be subjected to prediction using AI. Despite 

intensive applications of monthly and daily SF prediction using AI over the last two 

decades, the prediction of Q is rare, particularly in small rivers in humid tropical regions, 

such as the Selangor River. The significance of this research lies in the uniqueness of the 

considered process and the novelty of the applied methodology in the modelling process. 

The performance of AI-based models can be improved through the integration of the 

hydrological description of SF in the modelling process through estimation of lag time 

(Lt) and analysis of the long-term changes of SF regimes which verified considerable 

changes may potentially result in increasing the probability of floods occurring in future. 

The integration process is essential to the selection of input and output variables of AI-

based models and the lag intervals between them. The modelling process are performed 

in two phases to explore the possibility of improving the performance of AI-based models 

through the accurate timing of the model variables based on Lt estimation by two 

approaches, namely, the correlation coefficient and hydrological graphical approaches. 

Through the two modelling phases, four AI techniques, which include three types of 

ANNs, namely, the multi-layer perceptron network, radial basis function network, and 
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generalized regression neural networks, along with SVM, are employed to develop six 

AI-based models to predict the Q. Three scenarios were employed to achieve six 

combinations of input variables, the first adopts RF and the second adopts WL while the 

third adopts both WL and RF as input variables. A total of 8753 patterns of Q, water level, 

and rainfall hourly records representing a one-year period (2011) were utilized in the 

modelling process. 

The performance evaluation of the developed AI-based models shows that high 

correlation coefficient (R) between the observed and predicted Q is achieved by most of 

the developed models. For example, R in SVM-M6 model is 0.992 and 0.953 for the 

training and testing data sets, respectively. The developed AI-based models were 

efficiently employed in some hydrological applications, such as Q prediction, analysis of 

the influence of both water level and rainfall on Q and estimation of the missing records 

of Q. They also were employed in flood early warning throughout the advanced detection 

of hydrological conditions that could lead to formations of floods.  

Key words: Stream flow, surface water, hydrology, lag time, humid tropical rivers, 

hydrological modelling, artificial intelligence, artificial neural networks and support 

vector machines. 
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ABSTRAK 

Ramalan aliran sungai (SF) yang tepat adalah satu aspek penting dalam perancangan, reka 

bentuk dan pengurusan permukaan air dan sistem sungai. Ramalan ini boleh dilakukan 

sama ada dengan menggunakan model berasaskan proses atau model berasaskan data 

(DDMs). Pendekatan model di bawah DDMs adalah seperti statistik dan teknik 

kecerdasan buatan (AI). AI termasuk rangkaian neural buatan (ANNs), mesin vektor 

sokongan (SVM), dan teknik-teknik lain. Matlamat utama kajian ini adalah untuk 

membangunkan dan menggunakan model berasaskan AI yang efisyen untuk meramal 

masa sebenar aliran sungai setiap sejam (Q) di kawasan hilir lembangan Sungai Selangor, 

di mana sungai ini  mewakili sungai bertropika lembap di Asia Tenggara. Q sungai ini 

masih belum tertakluk kepada ramalan menggunakan AI. Walaupun aplikasi ramalan SF 

untuk bulanan dan harian dengan menggunakan AI telah digunakan sejak dua dekad yang 

lalu, ramalan Q jarang berlaku, terutamanya dalam sungai-sungai kecil seperti Sungai 

Selangor. Kepentingan kajian  ini terletak pada keunikan proses yang telah diambil kira 

dan pembaharuan metodologi yang digunakan dalam proses pemodelan. 

Prestasi model berasaskan AI dapat ditingkatkan melalui integrasi hidrologi SF dalam 

proses pemodelan melalui anggaran jarak masa (Lt) dan analisis perubahan rejim jangka 

panjang SF yang disahkan perubahan besar yang berpotensi boleh menyebabkan 

kebarangkalian banjir yang berlaku pada masa akan datang. Proses integrasi adalah 

penting untuk pemilihan input dan output pembolehubah model berasaskan AI dan jarak 

masa di antara mereka. Proses pemodelan dilaksanakan dalam dua fasa untuk meneroka 

kemungkinan meningkatkan prestasi model berasaskan AI melalui masa yang tepat bagi 

pembolehubah model berdasarkan Lt anggaran oleh dua kaedah: pekali korelasi dan 

pendekatan grafik baru. Melalui dua fasa pemodelan, empat teknik AI, termasuk tiga jenis 

ANN, iaitu, “multi-layer perceptron network”, “radial basis function network”, and 
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“generalized regression neural networks”, bersama-sama dengan SVM, bekerja untuk 

membangunkan enam model berasaskan AI untuk meramalkan Q. Tiga senario telah 

digunakan untuk mencapai enam gabungan input pembolehubah, yang pertama 

menggunakan RF manakala yang kedua menggunakan WL dan ketiga menggunakan 

kedua-dua WL dan RF sebagai pembolehubah input. Sebanyak 8753 corak Q, paras air 

dan hujan direkodkan setiap sejam bagi mewakili tempoh satu tahun (2011) yang telah 

digunakan dalam proses pemodelan. 

Penilaian prestasi model berasaskan AI menunjukkan bahawa ketepatan ramalan dicapai 

oleh kebanyakan model yang dibangunkan. Sebagai contoh, pekali korelasi Q yang 

diperhatikan dan Q ramalan menggunakan model SVM-M6 adalah 0.992 dan 0.953 untuk 

latihan dan ujian data set masing-masing. Model berasaskan AI yang berjaya digunakan 

dalam beberapa aplikasi hidrologi, seperti meramalkan Q, analisis kedua-dua pengaruh 

paras air dan hujan di Q dan anggaran rekod hilang Q. Model berasaskan AI juga berjaya 

digunakan dalam amaran banjir dan mampu mengesan keadaan hidrologi yang boleh 

membawa kepada banjir. 

Kata kunci: aliran sungai, permukaan air, hidrologi, jarak masa, sungai bertropika 

lembap,  pemodelan hidrologi, kecerdasan buatan, rangkaian neural buatan,  rangkaian 

neural tiruan dan mesin vektor sokongan. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

Water resources are the fundamental requirement for human life and civilization. In 

tropical humid regions, surface water is the main resource for domestic, industrial, and 

agricultural water usage. Surface water is commonly represented by stream flow (SF), 

which represents the runoff stage of the hydrological cycle. SF is the response of a river 

basin to rainfall (RF), and other related hydrological factors under particular 

meteorological circumstances. SF is considered one of the most complicated hydrological 

processes. In the past decades, hydrologists have struggled to understand the formation 

process of SF to analyze and predict it. 

The availability of an accurate method of SF analysis and modelling is of immense 

importance to the proper resolution of several challenges related to the planning, design 

and management of surface water recourses and river systems, such as the management 

of water supply, the optimum design of water storage and drainage networks, irrigation 

planning, improving power generation efficiency, planning of impending increase or 

decrease of basin capacities and water quality control (Cui & Singh, 2015; Dibike & 

Solomatine, 2001; Toro et al., 2013; Turan & Yurdusev, 2009). 

SF analysis and modelling are very useful in the management of risky hydrological 

events, such as floods and droughts. They can provide early warning of upcoming floods 

and high SF events. They also help in regulating basin outflow during droughts and low 

SF periods (Hassan et al., 2014; Zhang et al., 2015). 
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The availability of an accurate method of SF prediction and analysis can also assist in the 

environmental protection of river basins, such as the prevention and comprehension of 

hydrologic hazards, such as erosion, mud and sediment movement over river basins 

(Tehrany et al., 2015; Toro et al., 2013). SF studies are not only significant in hydrological 

applications related to river systems but also in socioeconomic conditions and human 

activities related to river basins, such as recreation, fish and wild life propagation 

(Rakhshanehroo et al., 2010). 

A variety of prediction techniques and huge efforts have been proposed and conducted to 

investigate a wide range of hydrological processes related to the SF, such as formation 

mechanism, relation with other components of hydrological cycle, long-term variations 

analysis, modelling and prediction. Reviewing SF applications reveals how such task is a 

challenge, given that surface water hydrological systems are complex and dynamic, 

characterized by a huge amount of temporal and spatial instability of input and output 

variables, and generally exhibit non-linear reactions to influencing parameters, which are 

interrelated in complicated way (Akhtar et al., 2009; Alfieri et al., 2014; Charron & 

Ouarda, 2015; Cui & Singh, 2015; Dai et al., 2015; Hatmoko et al., 2015; Meshgi et al., 

2015; Nolan et al., 2015; Noori et al., 2011; Saber et al., 2015; Yucel et al., 2015; Zazo 

et al., 2015).  

Several methods and models have been employed in SF analysis and prediction. They can 

generally be categorized into two main approaches: process-based models and data 

driven-based models (DDMs) (Hassan et al., 2014; Remesan & Mathew, 2015). 

Process-based models are also known as physically-based or conceptual models, and are 

based on the actual physics of hydrological processes. These models have been designed 

to simulate interior sub-relationships included in physical mechanisms that rule the 
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hydrological process, making them too complex, demanding, and time consuming (Athira 

& Sudheer, 2015; Sahoo & Jha, 2015). 

By contrast, DDMs depend directly on observed data without, but in consideration of, 

physical mechanisms that underlie the hydrological processes. These models can 

investigate the relationship between the dependent and independent variables of the 

hydrological processes and dispense with the mathematical formulation of the complex 

underlying process, making it efficient, less demanding  and less time consuming (Clark 

et al., 2015; Jain & Kumar, 2007; Nilsson et al., 2006). 

Each of these techniques has a specific set of advantages and disadvantages, based on 

data availability and modelling conditions. The lack of a full physical description of 

complex hydrological systems encourages hydrologists and researchers to find alternative 

modelling tools. However, whereas DDMs may lack the ability to demonstrate the 

physical process, it is more practical, more rapid and less demanding; at the same time, it 

exhibits superior performance relative to process-based models, especially when it is 

dependent on sufficient training data (Aqil et al., 2007; Bronstert et al., 2014; Kentel, 

2009). 

Many modelling techniques are categorized under DDMs, such as statistical methods and 

artificial intelligence techniques (AI). Statistical methods include methods, such as linear 

and nonlinear regression models, and autoregressive integrated moving average model, 

whereas AI techniques include advance modelling techniques, such as artificial neural 

networks (ANNs), support vector machines (SVM), fuzzy rule-based systems (FRBS), 

and genetic algorithms (GAs) (Daniel et al., 2011; Kisi et al., 2012; Solomatine et al., 

2008). AI techniques are considered one of the most promising and efficient modelling 

tools in DDMs (Kalteh et al., 2008).  
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AI-based models are becoming adequate alternatives in many hydrological modelling 

applications, especially when the data required for process-based models are unavailable 

or limited. Various AI modelling techniques, such as ANNs and SVM, have recently been 

applied successfully to a wide range of hydrological systems. General literature reviews 

on the applications of ANNs in hydrology and water recourses have been debated in the 

Task Committee on Application of ANNs in Hydrology by the American Society of Civil 

Engineering. The importance of ANNs as a prediction tool has been recognized and 

proven by this society (ASCE, 2000b). 

In this research, three types of ANNs, namely, multi-layer perceptron network (MLP), 

radial basis function network (RBF), and generalized regression neural networks 

(GRNN), along with SVM were employed in real-time hourly stream flow (Q) prediction 

in Selangor River basin - as a paradigm of humid tropical rivers in Southeast Asia - which 

have not been predicted utilizing AI techniques. Also, statistical methods were employed 

in the long-term changes analysis of SF regimes and lag time (Lt) estimation between the 

upstream and downstream stations, which is necessary to select the lag intervals between 

the input and output variables of AI-based models. 

1.2 Problem Statement 

In the past century, considerable variations in SF regimes have been verified in about a 

quarter of the world’s rivers (Descroix et al., 2012; Walling & Fang, 2003; Yang et al., 

2005; Yue et al., 2003; Zhang et al., 2000). Apparent variations in the SF regime of the 

Selangor River have also been verified through long-term variation analysis over a 50-

year period (Seyam & Othman, 2014b). These changes may potentially result in the 

formation of hydrological circumstances that can raise the probability of high and low SF 

events, which draws attention to the necessity of improving prediction tools and early 
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warning systems of the SF process to sidestep the hazardous effects that may ensue from 

the variations in SF regime of the Selangor River. 

One of the most important keys to improving the SF modelling and prediction process is 

to develop new efficient SF modelling and prediction techniques. Performance, 

simplicity, less-demanding usage, applicability, and cost effectiveness are the main 

required characteristics of efficient hydrological modelling techniques (Ammar et al., 

2009; Bierkens, 2006; Harou et al., 2009). Consequently, current trends in SF prediction 

applications are motivated to develop new and efficient techniques using DDMs, 

particularly, AI-based models, which are considered one of the most promising 

techniques in SF prediction applications (Nourani, 2012). 

SF variability can occur across many time scales that can vary from hourly to daily, 

seasonal to annual, and beyond (Hassan et al., 2014). Despite the existence of intensive 

applications of monthly and daily SF modelling and prediction through AI techniques in 

the last decade (as shown in Chapter 2), the prediction of Q, especially in humid tropical 

regions, is uncommon in the literature (Gopakumar et al., 2007; Nourani et al., 2014). 

However, such prediction is very necessary and required in many hydrological practical 

applications, such as the planning, design, and management of rivers and water resource 

systems, particularly in small river basins, such as the Selangor River basin. To the best 

of the researcher’s knowledge, AI techniques are yet to be used to predict real-time Q in 

the Selangor River basin. 

In small river basins, the time of concentration, which is the time taken by water to move 

from the hydraulically most distal part of the river basin to the outlet or reference point 

downstream, is usually less than one day. Daily or monthly SF cannot be considered a 

sufficient representative of the real-time SF and its variations over short time periods. The 

prediction of Q is more useful and practical than the prediction of daily or monthly SF 
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because Q in small river basins can change dramatically within a period of a few hours. 

Q is considered as a sufficient representative of the real-time Sf and its variations over 

short time periods, especially in small river basins (Besaw et al., 2010). 

Reviewing the literature shows that the performance of Q prediction using AI techniques 

still requires more improvement, given the weak performance of developed AI-based 

models in many previous studies, as discussed in Chapter 2. In addition, many preliminary 

considerations in Q predictions using AI techniques, such as the determination of the 

input and output variables of AI-based models and the lag intervals between them have 

not been adequately investigated so far, despite their potential role in improving the 

performance of AI-based models (Crout et al., 2008). 

The prediction accuracy of AI-based models can be significantly improved through the 

accurate selection of model variables and lag intervals between them, which are mainly 

based on the accurate timing of the input and output variables of AI-based models (Fang 

et al., 2008). The more accurately the effect of such considerations in Q prediction are 

investigated, the more precise the Q prediction process is (Damangir, 2001; Yao et al., 

2014). To the best of the researcher’s knowledge, no known ideal hydrological approach 

has been developed so far to explain the dilemma of the accurate timing of the input and 

output variables of AI-based models, thereby lending this research great significance in 

the field of Q prediction and hydrological modelling using AI techniques. 
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1.3 Goal and Objectives 

The main goal of this research is to develop and employ a group of AI-based models to 

predict the real-time Q in the downstream area using the hourly records of the water level 

(WL) and RF stations of the upstream area in the Selangor River basin as paradigm of 

humid tropical rivers in Southeast Asia, which has not been modeled before using AI 

techniques. 

This research aims to achieve the main goal through the following objectives: 

1. To improve the hydrological description of the SF process by investigating the long-

term variations of the SF regime and Lt estimation in the river basin. 

2. To develop a hydrological graphical approach (NGA) and derive new empirical 

formulas for estimating the Lt between the upstream and downstream stations. 

3. To develop a group of efficient AI-based models for predicting real-time Q by three 

types of ANNs, namely, MLP, RBF, and GRNN along with SVM. 

4. To explore the ability of the accurate timing of the input and output variables of AI-

based models to improve the prediction performance of Q.   

5. To employ the developed AI-based models in several hydrological applications, such 

as prediction and analytical tools, estimation of the missing records of Q and early 

warning of high SF events. 
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1.4 Significance of the Research 

The significance, particularly the original contribution, of this research, lies in the 

uniqueness of the considered process and the novelty of the applied methodology in the 

modelling process. The high performance and applicability of the developed AI-based 

models also have an immense role in enhancing the significance of the research. 

Q is the hydrological process considered in this research. The prediction of the real-time 

Q, especially in humid tropical regions, is rare in the literature, although such prediction 

is necessary and required in many hydrological applications, particularly in small river 

basins, such as the Selangor River basin, thereby lending this research real novelty. 

This research also integrates the hydrological description of SF in the modelling process 

using AI techniques, which is also rarely found in the related literature. The integration 

process and variety of the employed modelling techniques, such as the four AI techniques, 

lead to very high prediction accuracy. The performance evaluation of the results of the 

AI-based models shows that high correlation coefficient (R) between the observed and 

predicted Q was reached for most of the developed models 

The research is also highly significant given the high applicability of the developed AI-

based models. These models have been employed successfully in a wide range of 

hydrological applications, such as the prediction of a head Q, investigation of the 

influence of WL and RF on Q, and estimation of the missing records of Q. Furthermore, 

the models are beneficial in flood early warning and the advance detection of hydrological 

conditions that may lead to the formation of floods. 
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1.5 Scope of the Research 

This study is concerned with the analysis and prediction of Q using four AI techniques, 

which include three types of ANNs -MLP, RBF and GRNN- along with SVM. The hourly 

records of WL and RF data from the upstream stations represent the input variables 

(independent) of the AI-based models, while the Q data in the downstream station 

represent the output variable (dependent) of the AI-based models. The records of the 

upstream stations were utilized to predict the real-time Q in the downstream station in an 

ahead period that is approximately equal to the estimated Lt between the upstream and 

downstream stations. 

The study area of this research is the Selangor River basin, which is the main river in the 

state of Selangor in Malaysia. The Selangor River basin may be considered as a suitable 

paradigm of humid tropical rivers in Southeast Asia. Hydrological data were collected 

from hydrological stations located in the Selangor River basin. 

The SF data from the 1960 to 2011 regime were extracted from the Rantau Panjang 

gauging station and were then employed to investigate the long-term variations in SF 

regime. The WL and RF data of three-year period from 2009 to 2011, which were utilized 

in the Lt estimation, whereas WL and RF data of one-year period (2011) were utilized in 

the development of the AI-based models, were sourced from four stations located in the 

upstream area of the Selangor River basin. The hydrological data were subjected to 

normality and homogeneity testing using Shapiro–Wilk and Pettitt's tests, respectively. 

The accuracy of the AI modelling process was improved by enhancing the hydrological 

description and understanding of the SF process through the analysis of the long-term 

variations of the SF regime and Lt estimation. The Lt between the upstream and 

downstream stations was estimated using three methods: (1) empirical formulas, (2) the 

correlation coefficient approach (CCA) and (3) HGA based on the hydrological definition 
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of the Lt. This understanding and accurate Lt estimation are necessary to select the input 

and output variables of AI-based models and the lag intervals between them. Three 

performance evaluation criteria, namely correlation coefficient (R), coefficient of 

determination (R2) and mean absolute error (MAE) were employed to assess the 

performance of the AI-based models. 

The developed AI-based models were employed as prediction and analytical tools to 

investigate the influence of WL and RF on Q. Furthermore, they were applied to estimate 

the missing Q records. Finally, they were employed in floods early warning and the 

advance detection of the hydrological conditions, which could lead to the formation of 

floods through six hydrological scenarios. 

1.6 Thesis Outline 

The thesis is organized in five chapters, beginning with the introduction, which includes 

a general background of the research topic, problem statement, objectives, significance, 

and scope of the research. 

The literature review is described in the second chapter, where many topics are reviewed, 

such as the general principles of SF modelling and AI techniques, such as ANNs and 

SVM, along with their related previous applications on SF prediction. The preliminary 

considerations in SF modelling using AI-based models, such as limitations of AI 

techniques, selection of the appropriate SF modelling technique, determination of the 

input and output variables of the AI-based models and improvement of the performance 

of the AI-based models, are included in the second chapter. 

The third chapter presents the research methodology and briefly describes the study area, 

data collection and preliminary data analysis. The research methodology includes the 
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hydrological description of the Selangor River basin which includes the overview of the 

Selangor River basin hydrology, the long-term variations in the SF regime and the Lt 

estimation between the upstream and downstream stations. This chapter also includes a 

detailed description of the modelling process and development of AI-based models to 

predict the real-time Q which includes several steps such as selection of model variables, 

the lag intervals between the input and output variables, the modelling patterns, model 

structure, model training and the performance evaluation criteria.  

The results and discussion are found in the fourth chapter. This chapter presents a detailed 

hydrological description of the Selangor River basin, including an analysis of the long-

term changes in SF regimes over a 50-year period from 1960 to 2010 and the results of 

Lt estimation between upstream and downstream stations, which is required in the 

selection of the lag intervals between the input and output variables of the AI-based 

models. This chapter also presents the results and discussion of the two phases of the 

modelling process and the six AI-based models, which were trained and developed by the 

four AI techniques: MLP, RBF, GRNN, and SVM. The results include the description of 

the developed AI-based models, the performance evaluation criteria, such as R, R2, and 

MAE, of the AI-based models, and a comparison between the observed and predicted Q 

by the AI-based models. This chapter also includes description of some hydrological 

applications of the developed AI-based models.  

Finally, the conclusions and recommendations are presented in the fifth chapter, where 

various conclusions and recommendations derived from the research results are 

presented, as well as the proposed future research works related to the research topic. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

Chapter 2 presents a general overview of the principles of SF modelling using AI 

techniques, followed by a brief background of the modelling approaches that have been 

applied in SF prediction and analysis, especially AI techniques, along with their previous 

applications in SF prediction and analysis. A brief summary of preliminary considerations 

in SF modelling using AI techniques is included as well. The preliminary considerations 

include an explanation of the advantages and disadvantages of AI techniques, selection 

of the appropriate SF modelling technique, determination of the input and output 

variables of the AI-based models and how to improve the performance of AI-based 

models. 

2.2 General Overview of Stream Flow Modelling using AI Techniques 

The SF prediction process exhibits a high amount of temporal and spatial variability and 

is overwhelmed by the complexity of physical processes and uncertainty in parameter 

estimations. Therefore, SF modelling using traditional process-based models requires a 

considerable amount of effort and significant quantity of data, whereas DDMs can offer 

an efficient modelling and prediction tool. AI techniques are considered one of the most 

promising DDMs techniques in SF modelling and prediction applications (Maier et al., 

2010; Nourani, 2012). 
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SF modelling and prediction using AI techniques depends mainly on previous records of 

WL, RF and SF records in predicting the ahead SF. These data are usually gauged in 

monthly, daily, hourly, or shorter time steps. In a large river basin, the monthly or daily 

time step may be adequate for SF prediction applications, and the spatial variation of the 

model’s variables in large river basins is usually more significant than the temporal 

variation. In a small river basin, the monthly and daily time step are usually longer than 

the response time of the river basin to RF event. Therefore, an hourly time step is 

mandatory for accurate and real-time SF prediction. In a small river basin, such as the case 

study of this research, the Selangor River Basin, hourly records of the hydrological 

variables are necessary to develop reliable models for SF prediction (Besaw et al., 2010; 

Talei & Chua, 2012). 

In humid tropical rivers, SF is generally perennial and fluctuates depending mainly on the 

intensity and duration of the RF. Most of the SF in the downstream area is sourced from 

the RF in upstream areas, which requires time to arrive downstream. The concept of travel 

time is used to estimate the time needed by the water to move from any location within 

the river basin to another. This conception is frequently employed in many hydrological 

applications. Various expressions have been adopted and used to describe the concept of 

travel time, such as concentration time and Lt, as a result of developments in hydrological 

models and applications (Banasik et al., 2005; Green & Nelson, 2002; Grimaldi et al., 

2012; Honarbakhsh et al., 2012; Talei & Chua, 2012). The performance of AI-based 

models can be significantly improved by the accurate selection of model variables and 

the lag intervals between them, which mainly depend on the accurate timing of the input 

and output variables of AI-based models (Fang et al., 2008). 

The uncertainty in the hydrological modelling using AI techniques is mainly related to 

three main categories (i.e. data, models and human). The uncertainty is considered to be 

caused mainly by the following elements: 
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 Structural uncertainty: caused by processes those are not accounted for in the 

model; that is results from the simplification of the processes simulated in the 

model. 

 Variables uncertainty: caused by inaccurate measurements or mistakes in 

selecting model variables and related to a number of unrelated variables, which 

may be inserted in the model. 

 Modelling uncertainty: related to modelling technique applied in the modelling 

process. 

 Human uncertainty: related to the knowledge, experience and expertise of the 

modeller (Campoli et al., 2014; Maier et al., 2008; Piotrowski, 2014). 

 

SF modelling and prediction using AI techniques have the advantage of minimizing the 

bad role of most uncertainties, given that they depend directly on investigating the 

hydrological data, particularly exploring the relations between the variables (i.e., input 

and output variables), without full description and understanding of the hydrological and 

physical behavior of the river basin systems. 

2.3 Modelling Approaches of Stream Flow 

Modelling approaches of hydrological processes can be categorized into two main 

approaches: process-based models and DDMs. Process-based models are also known as 

hydrological models (including conceptual and physically based models). DDMs are also 

known as empirical and black-box models. In contrast to process-based models, DDMs 

depend directly on mathematical equations, which are not derived from hydrological 

processes in the river basin but from the direct investigation of the hydrological data. 

Recent advancements in computer sciences and technology have significantly enhanced 
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the abilities of DDMs, especially those of AI (Remesan & Mathew, 2015; Solomatine et 

al., 2008). 

Given that SF analysis and prediction are two of the most common hydrological 

problems, several models based on different areas of knowledge under many approaches 

have been proposed and developed, leading to various levels of accuracy and modelling 

output (Toro et al., 2013). Similar to modelling approaches of hydrological processes, SF 

modelling approaches can also be generally categorized into two main approaches: 

process-based models and DDMs. These approaches have their specific set of advantages 

and disadvantages, based on data availability and modelling conditions (Aqil et al., 2007; 

Kentel, 2009). 

2.3.1 Process-Based Modelling Approach 

Process-based modelling approach includes the modelling techniques by which the 

specifications of the model are derived from a group of functional elements and their 

relations with one another and the system environment, through physical processes. The 

functional elements are selected at an identified level of hierarchy, commonly one level 

under the level of the whole system. Therefore, the model system can be considered an 

suitable equivalent of the actual system at the identified level of hierarchy (Mäkelä et al., 

2000). 

In hydrological modelling applications, process-based models can be recognized by three 

sides: (i) demonstration level of hydrological processes, (ii) spatial illustration of the 

model and (iii) temporal range of the model. Two main types are considered in the 

classification of process-based models depending on the demonstration of hydrological 

processes: physically-based models and conceptual models (Kokkonen & Jakeman, 2001; 

Toro et al., 2013). 
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Physically-based models depend on the mathematical simulation of interior sub-processes 

included in the prototype and physical mechanisms that rule the process (Chen & Chau, 

2006). An example of the simple hydrological model (i.e., physically- based) is that in 

which the input is RF subdivided into its constituents and routed over the sub-processes 

to the basin outlet as SF to the surface and deep storage or to the atmosphere as 

evapotranspiration (Toro et al., 2008). Figure 2.1 displays a physically-based model that 

includes some hydrological parameters together with their interactions (Toro et al., 2008). 

 

Figure 2.1: Simple hydrological climate model (physically-based model) 

(Toro et al., 2013) 

In conceptual models, elements should be calculated from fitting the model to 

hydrological description and historical records. Conceptual models employ a 

mathematical structure based on the full description of river basin features, such as RF 

specifications (i.e., intensity and duration of RF events), basin specifications (i.e., area, 

shape, slope and land use patterns, and vegetation and soil types), and climatic 

specifications (i.e., temperature, humidity, and wind speed) to predict SF (Jain & Kumar, 
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2007; Nilsson et al., 2006). Figure 2.2 shows a classic structure of a simple conceptual 

model (Francés et al., 2007). 

 

 

Figure 2.2: Conceptual watershed hydrological model  

Adopt from (Francés et al., 2007) 

where D represents the flow from one tank to another and H represents the existing water 

in each tank. 

For many reasons, such as the unavailability of the required data, especially in developing 

countries (Samsudin et al., 2011), and the complexity of the physical process of surface 

hydrological systems, which are mainly caused by the data gathering of multiple 

parameters and variables that vary in space and time, the process-based modelling 

approach is incapable of an adequately precise and reliable performance in the SF 

prediction process (Akhtar et al., 2009; Firat & Turan, 2010). 
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2.3.2 Data Driven-Based Modelling Approach 

DDMs depend on investigating the row data of a system, particularly on studying the 

relations between system parameters (i.e., input and output variables) without exploring 

the physical behavior of the process. DDMs characterize large advancements in classic 

empirical models. 

Figure 2.3 displays a general explanation of the modelling concept of DDMs. The main 

function of DDMs is to investigate the relation between the inputs and outputs variables 

of a system using training data, which are assumed to be demonstrative of the system’s 

behaviors. Once the model is trained, it should be verified and tested to evaluate the 

modelling accuracy and error and to determine how well the model can generalize new 

data and cases. 

 

Figure 2.3: General description of the modelling concept of DDMs  

(Solomatine et al., 2008) 
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In SF modelling, DDMs are based directly on observed hydrological data, such as RF, 

WL, and SF without, but in consideration of, the physical mechanisms that underlie the 

SF processes. SF modelling and prediction using traditional process-based models require 

much effort and a significant amount of data, whereas DDMs provide less-demanding 

efficient SF prediction tools. 

However, DDMs may lack the full capability to describe the hydrological mechanism of 

the SF process. It is more practical, more rapid, and less demanding in terms of data usage, 

and it exhibits superior performance relative to process-based models. The latest progress 

in computational intelligence has improved the abilities of DDMs in hydrological 

applications (Aqil et al., 2007; Kentel, 2009). AI is considered one of the common types 

of DDMs. It includes numerous modelling techniques, such as ANNs, SVM, FRBSs, and 

GAs (Daniel et al., 2011; Kisi et al., 2012; Solomatine et al., 2008).  

Considering the complexity in SF prediction and modelling, simple empirical models, 

such as statistical methods, are inadequate to model the complex hydrological systems, 

such as SF, because they are completely nonlinear, complex, and dynamic systems. 

Applying more advanced techniques, such as ANNs and SVM, which can analyze and 

investigate the complexity of the SF process, even without ensuring the whole physical 

description of the SF system, is significant for high accurate SF prediction  (Aqil et al., 

2007; Toro et al., 2013).  

Given the aforementioned reasons, statistical techniques have been applied widely in 

analysis of SF long-term change, whereas AI techniques, such as ANNs and SVM, have 

been widely applied in many complex hydrological applications, including SF prediction, 

as discussed in Section 2.7 (Ch et al., 2013; Kisi et al., 2012; Machado et al., 2011; Sahu 

et al., 2011; Shabri & Suhartono, 2012; Wei et al., 2013). ANNs and SVM have recently 

become adequate and promising alternative tools in SF prediction, especially when the 
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physical description and data required for the process-based models are unavailable or 

incomplete (Nilsson et al., 2006; Samsudin et al., 2011). 

In this research, three types of ANNs (i.e. MLP, RBF and GRNN) along with SVM were 

applied in the prediction of Q in the Selangor River basin. A brief description of these 

methods is described in the following sections. 

2.4 Artificial Neural Networks  

2.4.1 Introduction to Artificial Neural Networks  

ANNs is an advanced data-driven modelling technique with a flexible mathematical 

structure making it proficient in modelling the non-linear and complex relations among 

the observed data sets without the need to fully physically recognize the natural systems 

(Adamowski & Sun, 2010). ANNs have the capability to learn and generalize from 

historical and previous data to create expressive explanations even when modelling data 

contain some errors or shortage (Jain et al., 2004; May & Sivakumar, 2009).  

The fundamental premise of ANNs is inspired by the human brain’s learning systems. 

ANNs are a simplified mathematical example of natural neural networks (Armaghani et 

al., 2015; Ziaee et al., 2015). The human brain contains a huge number of neurons, linked 

together by synapses to form networks of neurons, which are named. The peculiarity of 

the brain is its operative usage of huge parallelism, the parallel computing arrangement, 

and the vague information-processing ability. Each neuron includes a cell that utilizes 

biochemical reactions to collect signal and convey output reactions (Abraham, 2005). 

Figure 2.4 presented a schematic diagram of mammalian neuron. 
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Figure 2.4: Schematic diagram of mammalian neuron (Abraham, 2005) 

 

Treelike networks of nerve fibers named dendrites are linked to the cell body (soma), 

where the cell nucleus is placed. Single fiber named axon are spreading from the soma 

are linked to other neurons through synaptic terminals and dendrites of the next cell. The 

transformation of signals between the neurons is a composite chemical process (Abraham, 

2005). 

Similar to the mechanism of mammalian neuron, the artificial neurons joined together to 

form NN. The construction of ANNs is, as rule, layered. Three training processes are 

performed in the ANNs by three steps i.e. the Neural network (NN) receives data from 

the external source and transforming them to the neuron which process data then the 

neurons produce the output of the networks.  

An artificial neuron example is presented in the Figure 2.5. The model consists of N 

inputs, one output, a summation block and an activation block (Hoła & Schabowicz, 

2005). 
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Figure 2.5: Schematic diagram of artificial neuron (Hoła & Schabowicz, 2005) 

ANNs are comprised of a vast, interconnected structure of processing elements. The 

computational power of these processing elements is minimal when in isolation. 

However, within large networks, the computational power is massive, providing ANNs 

with the capacity to model complex, nonlinear, and interrelated systems such as 

hydrological systems, even without prior physical and geometric description of the 

hydrological system (May & Sivakumar, 2009).  

The structure of ANNs entails three or more layers: input layer, hidden layer(s) and output 

layer. The role of the input layer is to send the input data pattern to the hidden layer. The 

output layer produces an output of the NN to a particular input. The intermediate hidden 

layers, which may be only one hidden layer, receive the input data from the first layer. 

These act as a collection of feature detectors in many ways based on the activation 

function and network architecture.  

Selecting suitable neural network architecture is the most essential and challenging task 

in the ANNs-based model building process. The modeler should choose an efficient 

testing means applicable to a large number of options to keep the model within 

manageable scales. The main assumptions to be defined are network topology, training 

algorithm, and input selection (Anctil et al., 2004; Sudheer et al., 2002). 
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A random sample of neural networks that contain of three layers is shown in Figure 2.6 

 

Figure 2.6: General schematic diagram of ANNs with three layers  

 

2.4.2 History of Artificial Neural Networks 

A first attention in ANNs was appeared after the development of neurons by McCulloch 

and Pitts in 1943 which offered as empirical models that could execute the computational 

processes (Krose & Smagt, 1996). Hebb (1949) developed the first description of 

biological learning rule for synaptic adjustment. He proposed that the connectivity of the 

brain is repeatedly varying as an organism learns differing functional operations, and that 

neural gatherings are created by such variations. 

Rosenblatt (1958) introduced a theory for a hypothetical nervous system called a 

perceptron which is a novel method of supervised learning. The theory is used to present 

how information about the physical process is recognized, remembered, and how does 

x1 

x2 

x3 

x4 

Y 

Input layer 

Output layer 

Hidden layer 
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information reserved in memory influence recognition and behavior. The theory works 

as a channel between biophysics and psychology. 

When Minsky and Seymour (1969) presented the shortages of perceptron models in a 

book entitled  “Perceptrons”. Several NN researches were being conveyed and many 

academics and scientists left the neural network field. Only a few academics and scientists 

continued their efforts in NN field, such as Teuvo Kohonen, Stephen Grossberg, James 

Anderson, and Kunihiko Fukushima (Krose & Smagt, 1996). 

Hopfield (1982) discovered how to store data in dynamically steady networks. His efforts 

help the scientists to use neural networks in their physical applications. The attention in 

NN re-arisen after many significant theoretical discoveries were attained in the 1980s, 

such as the error back-propagation by (Rumelhart et al., 1986), the most widespread 

learning algorithm for training of multilayer-perceptrons NN and also by the new 

hardware progresses which improved the processing capabilities.  

The new attention of neural networks is reflected in the occurrence of huge number of 

researchers, experts, funding, applications, conferences, and journals associated with 

neural networks (Krose & Smagt, 1996). Since the late 1980s, ANNs have been used 

successfully to model a variety of different process in many fields. Recently, ANNs have 

become gradually common in numerous applications as a modelling tool since it has the 

capability to explain the really complex processes. The flexible topology of ANNs makes 

it proficient in modelling nearly all input-output relationships especially the prediction 

applications (ASCE, 2000b). 
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2.4.3 Training Process of Artificial Neural Networks  

When ANNs are trained, a specific input results in a target output. This process is 

presented in Figure 2.7. The NN training process includes modifying the connections 

(weights) between neurons, depending on comparing the NN output with the target 

(observed data), until the NN output closes to the observed data with minimum global 

error (E).  

 

 

Figure 2.7: Neural Network Mechanism  

 

Studying the training processes of ANNs mathematically is like estimating a real 

multivariable function F(X) by another formula F(W,X), where  X	 = 	 (Xଵ, Xଶ, … . , X)	  

is the input vector and W	 = 	 (Wଵ, Wଶ, … . , W)	   is the weight vector. In the training 

process, the aim is to select the vector arranged for the optimum calculation of f(x) based 

on observed data (Dibike & Solomatine, 2001). 

During the training process, consider an input pattern ݔ from the training set 

൛(ݔଵ, ,(ଵݖ ,ଶݔ) ,(ଶݖ … . … , ൫ݔ,   whichݕ ൯ൟ is inserted to the NN to provide an outputݖ

varies from the target ܼ.  
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The goal of the training process is to make ݕ and  ݕ having same value for,  =

1,2, … … . . ,ܲ. The function of the training process is to decrease E, based on the squared 

error between the predicted and observed data, as can be seen in Equation 2.1 

E = 	ܧ



ୀଵ

= 	 	(ݖ ݕ	− 	)ଶ	


ୀଵ

		



ୀଵ

																																					(2.1) 

where ݕ is the output of the ݇௧ node in the output layer for the ௧	data pattern and 

  .௧ (Mustafa et al., 2015)  is the total output error from all the nodes for theܧ

As the training process continues, the NN structure is frequently changed, includes 

modifying the neurons number and the weights of the links between neurons. The changes 

continue until the ANNs output gain acceptable similarity with the observed data 

(Basheer & Hajmeer, 2000; Palani et al., 2008; Singh & Datta, 2007). 

After minimizing E for the training set, new input patterns, those have not employed in 

the training process are interred to the NN to produce new outputs to test NN. NN should 

be able to predict new input patterns with comparable accuracy to learned patterns 

(Mustafa et al., 2015). 

Many types and architectures of ANNs have been developed and used in regression and 

classification applications such MLP, RBF, GRNN and Kohonen self-organizing 

networks (Figueroa-García et al., 2015), Recurrent neural networks (Rather et al., 2015), 

self-organized neural networks (Zhang, 2000), adaptive self-organizing map neural 

network (Kiumarsi et al., 2015), Hierarchical markovian radial basis function neural 

network classifier (Kokkinos & Margaritis, 2015), Fuzzy delayed neural network (Wang 

et al., 2015), adaptive neuro fuzzy inference system (ANFIS) (Kisi et al., 2012), Hopfield 

neural networks (Bai et al., 2015), Cellular neural networks (Chua & Yang, 
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1988), Cohen–Grossberg neural networks (Liu et al., 2015) and bidirectional associative 

memory (BAM) neural networks (Qi et al., 2015).  

In addition to the developed types and architectures of ANNs, there are many algorithms 

available for training the NN, such as gradient descent backpropagation algorithm, 

gradient descent backpropagation with momentum algorithm, conjugate gradient 

backpropagation algorithm, Quasi-Newton algorithm, and Levenberg-Marquardt training 

algorithm (Chang et al., 2014; Piotrowski, 2014; Schmidhuber, 2015).  

In this research three ANNs types namely, multi-layer perceptron networks (MLP), radial 

basis function networks (RBF) and generalized regression neural networks (GRNN) 

along with SVM were applied in SF modelling and prediction.  

2.4.3.1 Multi-Layer Perceptron Network (MLP)  

MLP are the widely employed, feed-forward networks with unlimited numbers of hidden 

layers. The back propagation learning algorithm is the common learning rule for MLP. In 

MLP, the neurons are arranged in layers as illustrated in Figure 2.6.  

The Figure presents a random sample of MLP containing three layers. Each neuron in the 

hidden and output layers receives weighted inputs from all neurons in the previous layer. 

The active incoming vector is then forwarded through an activation function such as the 

sigmoid, linear, or cubic polynomial function, to the next layer.  

This means that each single neuron performs two actions. Initially, data from an external 

source is assimilated for the input layer, or from neurons in a previous layer for the hidden 

and output layers. Then, it creates an output dependent upon a prearranged activation 

function and sends it to the neuron in the next layer. This process in one neuron is 

comparatively non-complex; complications with MLP are eventually achieved through 
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contact and combinations between neurons in networks layers (Adamowski & Sun, 

2010). 

As an example of a training process, consider the net input to neuron in the hidden is the 

summation of the weighted inputs from the neurons in the input layer and is denoted by 

,()ܫ ()ܫ = ଵݔଵݓ + ଵݔଶݓ + ଷݔଷݓ +  																																				ݔݓ				⋯

where, xi is the input vector, and N is the total number of data patterns. Then I(in) is 

proceeded by an activation function to produce the output V, V= f (I(in)). For instance, the 

most common activation function is a sigmoid function, which is denoted as follows: 

(ݔ)݂ =
1

1 + (ݔ−)	ݔ݁
																																																																																	(2.2) 

This process is reiterated for all input vectors. At the end of a pass, via the whole training 

data set all the neurons modify the weights depending on the difference between the 

observed and simulated data regarding each weight. These variations then change weight 

in order to make errors decay rapidly. 

Considering wm represents the value after iteration m of a weight w, then: 

ܹ = ିଵݓ +  (2.3)																																																															ݓ∆

Where Δwm is the variation in weight w at the end of iteration m and is computed as 

follows: 

ݓ∆ =  (2.4)																																																																							݀	ߝ−	

where ε is the factor guiding the rate of change in weights. dm is given by: 

݀ = 	(
ܧ߲
ݓ߲

ே

ୀଵ

)																																																																		(2.5) 
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where N is the total number of data patterns, and E is the training output error (Dibike & 

Solomatine, 2001). 

The back propagation learning algorithm (BP) is the common learning rule for MLP. BP 

is trained using the Levenberg–Marquardt optimization technique. Throughout all BP 

simulations, the weights are modified .Training process contains two stages: 

1- Forward pass: The outputs of NN are calculated and the difference between the 

observed data and network outputs (the error) also calculated.  

2- Backward pass: The error is used to change weights between the neurons in networks 

layers. Each data pattern to be trained using this process. 

This process is still repeated time and time again until one of stopping conditions reached 

such as a specified number of trials elapse, or when the error falls in suitable level, or 

when the error can’t do more improvement.  

2.4.3.2 Radial Basis Function network (RBF)  

RBF is a feed forward NN like MLP but with a different training process as presented in 

Figure 2.8. It includes only one hidden layer with a number of neurons that are completely 

connected to the output layer (Wu et al., 2008). The mapping function of RBF is mostly 

built based on the Gaussian activation function. The training process in RBF runs in two 

stages: the first is in the hidden layer, and the second in the output layer (Dibike & 

Solomatine, 2001). 

In RBF, connections from the input layer to the hidden layer require unit weights without 

a training process. The hidden layer executes a fixed nonlinear transformation with 

constant parameters. The hidden layer also contains neurons and a parameter vector called 

the center that can be recognized as the hidden layer’s weight vector. The standard 
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Euclidean distance is used to determine the distance between the center and the input 

vector (Haddadnia et al., 2003; Sahoo & Ray, 2006). 

Each neuron in the hidden layer is represented by an activation function that receives and 

transforms the input. Euclidean distance is the input to the activation function while the 

output of the RBF neuron φi is described by Equation 2.6  

߮(ݔ) = ݔ‖߱ − ܿ‖																																																																											(2.6) 

where cj is the center of the ith RBF neuron, ߱ is the activation function, x is the input 

vector, and ‖ݔ − ܿ‖ indicates a norm that is commonly the Euclidean distance.  

 

While there are several options for ߱, the Gaussian function is generally used as the 

activation function. As such, the output of the RBF neuron with the Gaussian activation 

function φi is described by Equation 2.7  

߮(ݔ) = ݔ݁− ቆ−
ݔ‖ − ܿ‖

ଶ

ଶߙ2
ቇ																																																																							(2.7) 

where αi is the spread or the radial distance from the center of the ith RBF neuron. The 

function value ω is maximum at the center, c, and decrease as the x, goes away from the 

center. Thus, the neurons in the RBF have localized receptive fields. The weighted sum 

of the inputs is sent to output using a activation function. The output y of the RBF is 

calculated using the Equation 2.8  

ݕ = 	ߚ߮(ݔ) + ܾ


ୀଵ

																																																																								(2.8) 

where ߚ is the joint weighted value of the ith basis function, b is the bias and m is the 

number of RBF centers. Since each RBF center must replay at least one input pattern, m 

Univ
ers

ity
 of

 M
ala

ya



 31 

is less than or equal to the total number of input patterns. RBF accuracy is highly 

influenced by c, α, and m selection (Firat, 2008; Haddadnia et al., 2003; Iliyas et al., 

2013). 

 

Figure 2.8:  Schematic diagram of RBF architecture  

(Iliyas et al., 2013) 

 

2.4.3.3 Generalized Regression Neural networks (GRNN) 

GRNN is new ANNs technique developed by Specht (1991). Unlike the feed forward 

neural 1986network, the training data are propagated through the network just one time 

as one-pass learning algorithms. Accordingly, it does not need an iterative training 

process and so training is accomplished in a short time (Firat, 2008). 

MLP performance is greatly affected by the initial weight of the training process. 

Conversely, this issue is not challenged in GRNN training, nor is the local minima issue 

(Cigizoglu, 2005). Generally, GRNN performs comparably to other common ANNs 

techniques that use a smaller training dataset (KiŞI, 2006).  
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The GRNN structure is presented in Figure 2.9.  GRNN contains four layers: the input, 

pattern, summation and output layers. The GRNN structure resembles that of MLP and 

RBF with two hidden layers. However, its training process differs vastly, since it depends 

on kernel regression networks with one-pass learning algorithms (Cigizoglu, 2005).  

The number of neurons in the first layer is the number of input variables. The first layer 

is joined to the pattern layer which includes one neuron for each training pattern. The 

pattern layer is joined to the summation layer which consists of two dissimilar kinds of 

summation, namely a single division unit and summation units (Firat, 2008).  

In GRNN training, the radial basis and linear activation functions are used in the pattern 

and output layers. The neurons of the pattern layer are linked to the S and D summation 

neurons in the summation layer. S represents the summation unit utilized to calculate the 

sum of weighted replies of the pattern layer. D represents the summation neuron used to 

compute un-weighted outputs of pattern neurons. The output layer only divides the output 

of each S by that of each D, yielding the output for the input pattern (Kim et al., 2004).  

Considering a set of training data  {ݔ ,݀}ୀଵ
ே   where xi is the input vector, di is the 

corresponding output value and N is the total number of data patterns. GRNN is based on 

the following formulas: 
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ܻ
ᇱ =

∑ ݕ . ,ݔ)ܩ−]ݔ݁ )]ேݔ
ୀଵ
∑ ேݔ݁
ୀଵ

,ݔ)ܩ−] [(ݔ 																																																																							(2.9) 

,ݔ)ܩ (ݔ = (ݔ ݔ	−
ߪ

		)ଶ


ୀଵ

																																																																							(2.10) 

where yi is the weight connection between the ith neuron in the pattern layer and the S-

summation neuron, G is the Gaussian function, m is the number of variables of an input 

vector, xk and xik are the ith element of x and xi, respectively, and σ is the spread parameter 

whose optimum value is selected using trial and error (Firat, 2008). 

 

 

Figure 2.9: Schematic diagram of GRNN architecture 
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2.5 Support Vector Machine 

2.5.1 Introduction to Support Vector Machine  

SVM is the state-of-the-art neural network technology based on statistical learning theory 

introduced as a classification tool by Vapnik in the 1970s. SVM is a tool for investigating 

learning problem that offers adequate performance using linear or nonlinear function. It 

is a type of neural network that automatically determines the structural 

components.  SVM has been applied successfully in various classification and clustering 

applications. Recently, it has been extended to apply regression and prediction 

applications (Khader & McKee, 2014; Li et al., 2013; Lou et al., 2013; Shi & Xu, 2012; 

Wei, 2015; Wieland et al., 2010; Zakaria & Shabri, 2012; Zhou et al., 2013). 

In SVM, the linear model is primarily employed to set nonlinear class boundaries by 

nonlinearly mapping the input data into a high-dimensional feature space. In the new 

domain, the linear model characterizes a nonlinear decision boundary in the original 

domain (Solomatine et al., 2008; Wang et al., 2009). In other words, SVM constructs an 

optimal separating hyperplane in the new hypothetical field. This hyperplane may be 

either a line, a plane, or a surface that divides the data into two classes. When the data are 

split linearly, linear machines are trained for an optimal hyperplane that separates the data 

with minimum error (Chen & Yu, 2007; Solomatine et al., 2008).  

SVM is advantageous because it follows the structural risk minimization principle, which 

aims to limit errors in both the training data set and the generalized model. With this 

feature, SVM can effectively generalize results even with limited input patterns (T. Asefa 

et al., 2006; Ding et al., 2014).  
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2.5.2 History of Support Vector Machine   

SVM is a comparatively new AI modelling technique based on statistical learning theory 

introduced by Vapnik in the 1970s. SVM has been developed as a classification tool and 

it was applied successfully in a wide range of classification and clustering applications 

in. Recently, SVM have been successfully extended to apply in regression and prediction 

applications (Solomatine et al., 2008; Wu et al., 2008; Yu et al., 2006).  

In the last few years, it has become a commonly used as modelling technique, due to the 

high performance of SVM, and have become an actual challenger to ANNs in regression 

and prediction applications. Since then there have been increasing SVM applications in 

the wide range fields such, civil engineering, water resources and other engineering 

applications (Tirusew Asefa et al., 2006; Behzad et al., 2009; Han et al., 2007; Misra et 

al., 2009; Zakaria & Shabri, 2012). 

2.5.3 Training Process of Support Vector Machines  

Consider a set of training data {ݔ ,݀}ୀଵ
ே  (xi is the input vector, di is the corresponding 

output and N is the number of data patterns), the linear regression function of SVM can 

be expressed as follows: 

(ݓ,ݔ)݂ = 	ݓ ∙ (ݔ)	∅ + ܾ																																																																											(2.11) 

where w is the weight vector; b is the bias; and ∅ is nonlinear mapping function.  
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The two factors (w and b) are computed by minimizing the following function: 

Lఌ(y, f(X,ω)) = |y − f(X,ω)|ఌ 

ఌ(݀ܮ (ݕ, = 	 ቄ|݀ − 	ݓ) ∙ (ݔ)	∅ + ܾ)| − 	ݓ)|	݂݅								ߝ ∙ (ݔ)	∅ + ܾ) − |ݕ > ߝ
݁ݏ݅ݓݎℎ݁ݐ																					0

ቅ						(2.12) 

where y represents observed value. ε denotes the tube size and corresponds to the 

approximate accuracy of the training data points. Within the extent of the ε-tube and 

penalized losses Lε, the loss function describes the tolerated errors when data are located 

external of the tube. 

The nonlinear SVR problem can be expressed as the following optimization problem: 

ܴ௪,క,క∗
= )	ܥ

ே

ୀଵ

ߦ + (∗ߦ 	+
1
2
‖߱‖ଶ																																																																		(2.13) 

C∑ (ே
ୀଵ ߦ +   . is the first term in Equation (2.13) and represents training error (risk)	∗)ߦ

where ξ and ξ* are slack variables represent the upper and lower training errors, 

respectively, subject to error tolerance ε. These variables describe the difference between 

the observed data and the related boundary values of the ε-tube. 

It is zero when the predicted data are within the ε-tube, as shown in Figure 2.10.  ଵ
ଶ
‖ω‖ଶ 

is the second term and denotes the generalization term. It is a measure of function flatness. 

C   is a positive constant that represents the regularized constant and regulates the trade-

off between empirical risk and the regularization term. By maximizing the value of C, we 

can enhance the significance of empirical risk relative to the regularization term.  
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Equation (2.13) can then be solved using Equations (2.14) and (2.15) according to the 

following convex optimization problem:  

Minimize:   

1
2
‖߱‖ଶ + )	ܥ

ே

ୀଵ

ߦ +  (2.14)																																																																													∗)ߦ

Subject to  ቐ
(ݔ)∅	ݓ + ܾ − ݀ 	≤ ߝ	 + 	 ߦ
݀ − (ݔ)∅	ݓ) + ܾ) ≤ ߝ	 + 	 ∗ߦ

ߦ 	, ∗ߦ ≥ 0
ቑ 		݅ = 1,2,3																																														(2.15) 

Figure 2.10 shows the main concept of SVM based on Equation (2.13-2.15). In this 

regression problem, most data patterns are presumably within the ε-tube. If the data 

pattern (xi, di) is outside the ε-tube, errors are induced in ξ and ξ*. These variables are 

thus reduced in the objective function. By limiting both the regularization ଵ
ଶ
‖߱‖ଶ + and 

the training error ∑ (ே
ୀଵ ߦ +  ,∗), in order to alleviate under- and over-fitting (Chen & Yuߦ

2007; Noori et al., 2011; Wu et al., 2008). 

 

Figure 2.10: Nonlinear SVM with Vapnik’s e-insensitive loss function 

(Chen & Yu, 2007) 
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Figure 2.11 presents the Schematic diagram of SVM, where the K(xi,x) is the output of 

the ith hidden node for input vector x, it is a mapping of the input x and the support 

vector xi  by selecting the kernel function (Chen & Yu, 2007).  

Some mostly used kernel functions in SVM are as follows: 

- Linear ݅ݔ)ܭ, (ݔ = xi ⋅ x 

- Polynomial ݅ݔ)ܭ, (ݔ = [γ(xi ⋅ x) + c]ௗ 

- Sigmoid ݅ݔ)ܭ, (ݔ = tanh[γ(xi ⋅ x) + c] 

- Radial basis function ݅ݔ)ܭ, (ݔ = exp(−γ|xi − x|ଶ) 

 

Many applications in hydrological modelling have proved the efficiency of the radial 

basis function in SVM.  The results of the SVM model to be stated as Equation (2.16),  

(ݔ)݂ = αഥ ⋅ K(x , x) + b


ୀଵ

																																																				(2.16) 

Where,	x  represents the support vector, and m represents the number of support vectors. 

The SVM model employed herein has three interdependent parameters (C, ε, γ) to be 

valued. The near optimal values of these parameters are obtained by a trial and error 

method. The Lagrange coefficients αഥ and the bias term b can be solved analytically, and 

the best structure is thus achieved.  Univ
ers

ity
 of

 M
ala

ya



 39 

 

Figure 2.11: Schematic diagram of SVM architecture (Chen & Yu, 2007) 

 

2.6 Previous Studies 

Numerous applications of SF prediction and analysis have recently been implemented 

worldwide. They are now in the mainstream of hydrological science in terms of the 

number of approaches, techniques, models, applications, and publications. Hundreds of 

applications can be found in the literature on this field. A few examples of related 

applications are presented and evaluated in the following subsections. 

2.6.1 Long-Term Variations Analysis of the Stream Flow 

Investigations of the long-term variations of SF regime have increasing attention over the 

last decade. Several applications have been performed worldwide to explore the probable 

long-term variations in SF regime.  
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Burn et al. (2004) investigated the hydrologic trends of the Liard River basin in Canada. 

They reached the conclusion that the river’s hydrologic trends are related to variations in 

both climatological and large-scale atmospheric progression.  

Xiong and Guo (2004) studied the changes in the annual SF of the Yangtze River in 

China, using a trend test. According to results, there was no important trend in the annual 

maximum flood, whereas a declining trend was noticed in the annual minimum and mean 

SF. 

Birsan et al. (2005) evaluated the trends in the daily SF data of 48 basins in Switzerland 

using the Mann–Kendall test over 3 sub-periods (1931–2000, 1961–2000, 1971–2000). 

An increment in annual SF was noted in approximately 60% of the stations.  

Ma et al. (2008) examined the variations in annual SF for 8 sub-basins in the Shiyang 

River basin in China over a 50-year period. They employed the Kendall and Pettitt tests 

to detect changes in SF. According to results, significant decline was verified in the 

annual SF in 5 of the 8 sub-basins.  

Kumar et al. (2009) investigated the SF trend in Indiana state which is located in Midwest 

region of USA using 31 gauging SF stations over about 50-year period. Trends were 

estimated using the Mann–Kendall test for SF characteristics including low, mean, and 

high annual SF. A declining trend was verified in low and mean SF in about 70% of 

stations. 

Korhonen and Kuusisto (2010) analyzed the variations of SF regime in Finland over the 

1912–2004 period. Neglected changes were noticed in mean annual SF, but significant 

changes in seasonal means of SF were detected. The mean monthly SF in winter and 

spring where increased, whereas no variations in the mean monthly SF in autumn were 

noticed.  
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Burn et al. (2010) studied the probable influence of climate change in extreme 

hydrological events trends’ in Canada. Both high and low SF events of 68 gauging 

stations were investigated over about 50-year. They utilized the Mann-Kendall test to 

evaluate the trends. The results verified a decline in the maximum annual SF and 

maximum spring SF with declining trend in event timing (earlier events). 

Morán-Tejeda et al. (2011) examined the changeability in the Duero River basin’s SF 

regime (northern Spain) over the 1961–2006 period. A moderate decrease in SF was 

witnessed in winter and spring. Variations of SF regime appeared in both the timing and 

magnitude asspects. 

Gautam and Acharya (2012) applied a widespread trend investigation system of SF in 

Nepal. According to results, 24% of variables had trends, of which 41% were declining 

and 59% increasing.  

Miao et al. (2012) explored the explanations behind SF changes in the Yellow River in 

China. They employed SF data from 23 stations over about 50-year period from 1956 to 

2008 in the investigation process. According to results, SF presented a declining trend. 

Hannaford and Buys (2012) investigated the trends in SF regime in UK over about 40-

year period from 1969–2008. Trends were inspected depending on seasonal scale. 

According to results, SF and high SF event increased in winter and autumn, whereas SF 

declined in spring and no variations appeared in summer. 

Sun et al. (2013) quantified the variations in annual SF using climate elasticity in Poyang 

Lake Basin, China. They utilized SF datasets at four hydrological stations over 40-year 

period from 1961 to 2000. Slight variations have been noticed in the timing of the mass 

center of the SF with minor increase of annual SF. 
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Z. Chen et al. (2013) evaluated the impacts of climate change and human activities on SF 

regime of Kaidu River Basin in China over 50-year period from 1960 to 2009. According 

to results, noticeable increases have been verified in annual SF. 

Jena et al. (2014) investigated the reasons for recent floods in the Mahanadi river basin 

in eastern India. Trends of extreme floods were analyzed related to trends of extreme RF. 

The analysis proved that the latest occurrences of floods are because of an increment in 

extreme rainfall in the basin. 

Mediero et al. (2014) analyzed the floods trends’ in magnitude, frequency and timing 

aspects in Spain. Annual maximum SF data were extracted in three periods: 1942 to 2009, 

1949 to 2009 and 1959 to 2009. Mann–Kendall test was chosen to explore trends. An 

overall declining trend in magnitude and frequency of floods was noticed in the three 

periods, with more remarkable occur in the third period. A trend in the timing (i.e. towards 

later floods) was also noticed in the northwest of Spain. Most such trends in flood series 

could be elucidated by the rising trends in evapotranspiration. 

2.6.2 ANNs Applications in Stream Flow Modelling 

ANNs have been widely applied in SF modelling and prediction for a multiplicity of 

objectives in the two last decades. Nilsson et al. (2006) investigated the opportunity of 

modelling monthly Sf for two Norwegian river basins using ANNs and conceptual runoff 

modelling (CM). ANNs offered the best predictions of monthly SF for both basins with 

R2 of 0.82 and 0.71, respectively. Thereafter, they used a combination of ANNs and CM 

improve the modelling performance. The R2 for both basins was improved to 0.86 and 

0.75, respectively. 

Nayebi et al. (2006) employed ANNs-based models for daily SF prediction in the upper 

sub-watershed of the Kor watershed in southwestern region of Iran. They investigated the 
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effect of minimum air temperature on the modelling performance. They developed four 

ANNs-based models with deferent combination of input variables for SF prediction. The 

models with minimum air temperature as input variables achieved the best performance 

in SF prediction.  

Sahoo and Ray (2006) applied ANNs for SF prediction of a Hawaii stream in Hawaii 

island, USA. The predicted SF by ANNs-based models were compared to SF estimated 

by conventional rating curves which estimated by the United States Geological Survey, 

the results verified that ANNs-based models outclass the conventional rating curves in 

SF prediction. 

Sahoo et al. (2006) applied ANNs to evaluate flash floods and their associated with water 

quality specifications using observed data of a Hawaii stream in Hawaii island, USA. 

They demonstrated that ANNs can predict SF, turbidity and specific conductance with 

high R although they didn’t reached good results in prediction of dissolved oxygen, PH 

and water temperature. 

Pulido-Calvo and Portela (2007) employed ANNs for one-step ahead daily SF forecasting 

in some Portuguese basins. They applied many ANNs-based models with several inputs 

combinations such the flow in previous days. The models with inputs of three previous 

days flow combined verified very high performance. Generally the work proved that it is 

potential to reach accurate daily SF predictions using ANNs, even with inadequate data. 

Aqil et al. (2007) utilized two types of ANNs namely, feed forward and recurrent NN 

with three types of training algorithm in real-time SF prediction. ANNs-based models 

were developed and evaluated based on results for 1 to 5-h ahead prediction in the 

Cilalawi River in Indonesia. According to results, high performance was reached for most 

of models for 1-h ahead with R around 0.91. However, the model performance declines 
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with increasing the lead-time, the results suggested that recurrent and feed forward 

network are capable to predict the SF up to 5 hr in advance with high accuracy. 

Jain and Kumar (2007) developed a new hybrid time series NN model contains an overall 

modelling framework. It integrates between the conventional and ANNs, it was tested 

using the monthly SF data in Colorado River in Lees Ferry, USA. The results suggested 

that the proposed approach provided a strong modelling tool able to capture the non-

linearity of the hydrological time series and accordingly generating more accurate 

predictions.  

Ahmed and Sarma (2007) generated SF data of the Pagladia River in Assam, India by 

ANNs. They compared ANNs with other existing models such as autoregressive moving 

average (ARMA) model and Thomas-Fiering model. The comparison conducted based 

on five different statistics of the historical data and synthetically generated data. ANNs 

demonstrated the highest performance in generating SF data. 

Gopakumar et al. (2007) explored the applicability of ANNs for prediction of daily SF in 

the Achencoil River basin un India. Although the developed ANNs model revealed high 

performance for rainy period, the performance for the low flow period didn’t revealed 

same performance. To improve ANNs-based models performance’, the modelling data 

were analyzed using Self Organizing Maps (SOM). The new approach for SF modelling 

utilizing the result of SOM analysis enhanced the model performance of daily SF 

prediction. 

Singh and Kumar (2007) proposed the application of ANNs to estimate the missing mean 

monthly SF of Narmada River in India. The performance of ANNs-based model was 

compared with the Langbein's log deviation method and provided an adequate alternate 

to this method. 
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Turan and Yurdusev (2009) employed both of FFBP, GRNN and fuzzy logic to estimate 

missing SF records by the records of the four SF gauge upstream stations in the Birs River 

in Switzerland. The performances of these models were evaluated to select the best fit 

model. Based on the performance evaluation, the three modelling techniques 

demonstrated acceptable performance. However, FFBP outperforms other models. 

Kentel (2009) applied ANNs for estimation of monthly SF. They used previous RF, SF, 

and the related month as input variables to forecast SF of Guvenc River in Turkey. They 

studied the influences of input vectors, number of training trails, and initial weights of the 

connections of NN on the ANNs-based models performance. ANNs achieved promising 

results in SF prediction, making it an adequate alternative SF prediction technique. 

Rakhshanehroo et al. (2010) applied ANNs for flood prediction in similar basins in Iran. 

ANNs was trained as an event-based modelling tool utilizing data from only 2 of the 

basins. The prediction performance then evaluated for all basins, high prediction accuracy 

was reached. They came to conclusion that the ANNs model may be utilized for flood 

prediction in similar basin with accepted accuracy. 

Besaw et al. (2010) developed ANNs-based model to predict SF in ungauged basins from 

sub-basins in Northern Vermont, USA. They employed time-lagged records of RF and 

temperature as input variables of the ANNs-based model. Time series analysis of the 

climate Q data offers an efficient method to decide the suitable steps number of time-

lagged input variables. The results suggested that the proposed methods are appropriate 

to predict Q in ungagged basin and also it was shown that Q prediction was superior to 

those using daily records for the small river basins.  

Sahu et al. (2011) applied ANNs for forecasting SF in open channel flow. They compared 

the performance of ANNs-based model with four widely used approaches. The results 

showed that the ANNs-based model is superior to other models in SF prediction. 
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Machado et al. (2011) explored the ability of ANNs-based model to predict the monthly 

RF-SF in the Jangada River basin, Paraná, Brazil. The prediction accuracy of ANNs-

based model was compared to those of a conceptual-based model. The ANNs-based 

model achieved the higher performance based on some statistical performance evaluation 

criteria such as R and Nash-Sutcliffe statistics. 

Tiwari et al. (2012) proposed a novel modelling approach for prediction of daily SF using 

neural units with higher-order synaptic operations (NU-HSO). They compared between 

ANNs-based models with NU-HSO and conventional ANNs-based models. The 

prediction process was performed using 1- to 5-day lead time prediction in the Mahanadi 

River basin at the Naraj gauging station. According to results, ANNs-based models with 

NU-HSO achieved higher performance than conventional ANNs-based models based on 

some statistical performance evaluation criteria such as R and Nash-Sutcliffe statistics. 

Thus, this results shows that ANNs-based models with NU-HSO can be an adequate 

alternative SF prediction technique. 

Tiwari et al. (2013)  employed self-organising maps (SOM) to homogeneously classify 

the data sets of four types of ANNs-based models developed for daily SF predictions. The 

four types are traditional ANNs, wavelet-based NN (WNN), bootstrap-based NN (BNN) 

and wavelet-bootstrap-based NN (WBNN).  According to results of pridection process, 

the SOM’s efficiency in clasfication of data into different clusters were noticed through 

enhancing the accuracy and reliability of daily SF prediction. 

Wei et al. (2013) developed WNN hybrid modelling approach for monthly SF prediction 

in the Weihe River, China. Monthly SF records from three stations were employed to 

train and test the model for 48-month-ahead prediction. The prediction results using 

WNN achieved high enhancement in the model performance in comparison to the results 

of normal ANNs-based model. 
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Sahay and Srivastava (2014) developed a wavelet transform-genetic algorithm-neural 

network model (WAGANN) for prediction 1-day-ahead monsoon SF. Discrete wavelet 

transform (DWT) was used for preprocessing the time series and genetic algorithm (GA) 

for optimizing the initial parameters of an ANNs to the NN training. Four WAGANNs 

models with different combination of inputs variables are developed for prediction of SF 

in two Indian Rivers, the Kosi and the Gandak. According to results, WAGANNs models 

domestrated better pridection accuracy than autoregression models (ARs) and GA-

optimized ANNs based models which use original SF time series for inputs variables.  

 Elsafi (2014) employed ANNs to predict SF in the Nile River at Dongola Station in 

Sudan. Readings from stations along the Blue Nile, White Nile, Main Nile, and River 

Atbara from the period between 1965 and 2003 were employed in the modelling process. 

The results showed that the ANNs model may be utilized for flood prediction in the Nile 

River with high accuracy. 

2.6.3 SVM Applications in Stream Flow Modelling 

Given that it is comparatively new, SVM is not as widely applied as ANNs, although it 

has been applied in several SF applications. However, recent literature provides some 

applications of SF modelling and prediction using two or more AI techniques (i.e., SVM 

and ANNs) to improve the performance of the modelling process.  

Tirusew Asefa et al. (2006) applied SVM for SF predictions in arid regions based on two 

time scales: seasonal SF and Q. The results of these models revealed a good efficiency in 

explaining spatial and temporal SF process. SF was predicted using local-climatological 

data and demanding less input variables than process-based models. Seasonal SF 

prediction was also enhanced by integrating atmospheric circulation indicators in the 

modelling process. 
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Lin et al. (2006) applied SVM for long-term SF prediction. They used a shuffled complex 

evolution algorithm to detect the suitable specifications of the SVM-based model. The 

SVM prediction model was evaluated by the long-term monthly SF records of the 

Manwan Hydropower station, Lancang River in Yunnan Province, China. They compared 

the performance of SVM-based model with ARMA and ANNs-based models, the results 

verified that SVM could be considered as a very promising tool in long-term SF 

prediction. 

Chen and Yu (2007) applied SVM in real-time flood prediction in Lan-Yang River, 

Taiwan. They used the cross-correlation technique to select the input variables of the 

SVM-based models. The real-time prediction performance was evaluated, the results 

indicated that the SVM is a probable prediction technique in SF. 

Behzad et al. (2009) investigated the ability of SVM, ANNs, and ANNs integrated with 

GA (ANNs–GA) models to predict one-day lead SF of the Bakhtiyari River in Iran. They 

used local climate and RF records in the modelling process. The results proved that the 

SVM-based model outperforms the ANNs and ANNs–GA in predicting one-day lead SF. 

Noori et al. (2011) explored the ability of some preprocessing techniques (i.e. principal 

component analysis (PCA), Gamma test (GT), and forward selection (FS) in improving 

the monthly SF prediction by SVM in the Sofichay River, 120 km to Tabriz southwest, 

Iran. They used 18 input variables, such as monthly RF, discharge, sun radiation, and 

temperature (as minimum, maximum and mean) with three temporal lags belong to t, t-1, 

and t-2. Consequently, PCA, GT, and FS techniques were applied to decrease the input 

variables from 18 to 5 by PCA and GT, and to 7 by FS. Results showed that the 

performance of the improved SVM-based model (i.e. PCA-SVM and GT-SVM) models 

outperform the conventional SVM-based model. R2 between the observed and predicted 
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SF for PCA-SVM based model was equal to 0.92 and 0.88 in the training and testing data 

sets, respectively. 

Guo et al. (2011) applied SVM for monthly SF prediction. They used adaptive insensitive 

factor to improve the performance of SVM-based model and the wavelet denoise method 

to minimize the noise in SF data. The performance of the SVM-based model is explored 

and compared with the performance of ANNs-based model. The results verified that the 

improved SVM-based model is of better generalization capability and prediction accuracy 

than ANNs-based models. 

Samsudin et al. (2011) proposed a novel hybrid prediction model for monthly SF, which 

combines the group method of data handling (GMDH) and the least squares support 

vector machine (LSSVM). They applied GMDH to determine the useful input variables 

for the LSSVM model. Monthly SF data from two stations, the Selangor and Bernam 

Rivers in Selangor state of Peninsular Malaysia were employed in the modelling process. 

The performance of the new hybrid model was compared with ANNs, Autoregressive 

Integrated Moving Average (ARIMA). RMSE and R were used to evaluate the models’ 

performances. The new hybrid model has been found to provide more accurate prediction 

compared to the other models. 

Shabri and Suhartono (2012) applied SVM for monthly SF prediction in the Kinta River 

in Perak, Malaysia. They investigated the capability of a least-squares support vector 

machine LSSVM model to enhance the performance of SF prediction. They applied 

Cross-validation and grid-search techniques to determine the model variables. The 

accuracy of the LSSVM model was compared with the conventional statistical ARIMA, 

ANNs and conventional SVM models. According to results, the LSSVM model 

outclasses the other modelling techniques and it could be employed effectively in SF 

prediction. 
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Kisi et al. (2012) evaluated the performance of some AI techniques such as ANFIS, ANNs 

and SVM in prediction daily SF in two stations in north-western Turkey. They also 

compared the performance of the three models with two linear regression models. The 

results showed that the ANFIS, ANNs and SVM are superior in prediction of daily SF. 

Kalteh (2013) applied two AI techniques (i.e., SVM and ANNs) in prediction of monthly 

SF of Kharjegil and Ponel stations in Iran. He also coupled the SVM and ANNs with the 

wavelet transform to improve the modelling performance. According to results, both 

ANNs and SVM coupled with wavelet transform, provided more precise prediction than 

the traditional ANNs and SVM. However, it is noticed that SVM coupled with wavelet 

transform provided better prediction than ANNs coupled with wavelet transform. The 

results also indicated that traditional SVM outperform slightly better than traditional 

ANNs. 

Ch et al. (2013), investigated the ability of the hybrid model (support vector machine-

quantum behaved particle swarm optimization) SVM-QPSO in forecasting monthly SF 

of Vijayawada and Polavaram stations of Andhra Pradesh in India. The results indicated 

that SVM-QPSO is an accurate and reliable prediction tool for monthly SF. 

Tehrany et al. (2015) proposed a novel ensemble method by coupling SVM and frequency 

ratio (FR) to produce spatial modelling in flood formation assessment in the upper 

catchment of the Kelantan basin in Malaysia. They applied another machine learning 

algorithm (decision tree (DT)) to evalulate the performance of the proposed method. 

Around 155 flood sites were selected from several sources over the study area. The flood 

sites were accidentally separated into two dataset; (115 sites) for training and the 

remaining (40 sites) for testing. According to results, coupling SVM and FR domestrated 

higher prediction accuracy than DT as the prediction rate was 85.21% and 82.00 % for 
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the two methods respectively. The results demonstrated the efficiency of the proposed 

ensemble method in flood formation assessment. 

Wei (2015) proposed a new method to predict river stages with a head prediction from 1 

to 4 hr in the Tanshui River Basin, Taiwan throughout 50 historical typhoon events over 

11-year period from 1996 to 2007. He employed both lazy and eager learning approaches. 

Two lazy learning models namely, the locally weighted regression (LWR) and the k-

nearest neighbor (kNN) models and three eager learning models ANNs, SVR, and linear 

regression (REG) where employed in this study. According to results, in the eager 

learning models, ANNs and SVM produced more accurate prediction results than REG 

while in the lazy learning models, LWR outperformed more than kNN.  

2.6.4 Accurate Time Applications in Stream Flow Modelling 

Although the Lt estimation process has been extensively studied during the current and 

past decades (Allen, 1976; Askew, 1970; Banasik et al., 2005; Bhadra et al., 2010; 

Honarbakhsh et al., 2012; Reed et al., 1975; Toth, 2008), the accurate timing of input and 

output variables of SF prediction models is still a general problem in AI-based models; 

consequently, this issue is under ongoing investigation by hydrological modelers 

worldwide (Abrahart et al., 2007; Akhtar et al., 2009; Nourani et al., 2014).  

Sudheer et al. (2002) developed a novel statistical method of minimizing the timing errors 

in SF predictions models. The technique is based on statistical analyses, such as cross-, 

auto- and partial-auto-correlation of the potential influencing variables that correspond to 

different time lags. The results obtained from these statistical analyses helped to identify 

the most adequate variables combinations. The approach of (Sudheer et al., 2002) has 

been also applied by (Aqil et al., 2007) in real-time SF modelling using ANNs.  
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de Vos and Rientjes (2005) investigated the constraints facing the application of ANNs 

for RF-runoff modelling. They found that timing errors is one of the main limitations as 

a result of a dominating autoregressive component introduced by using previous SF 

records as model input. Two probable solutions to the timing problem were proposed. 

The first solution is to try several alternatives in the determination of the variables of 

ANNs-based models. The second solution is to evaluate the performance of model 

through a combination of multiple indices during the modelling process.  

Yu et al. (2006) employed the hydrological theory of response time in river basin in 

determination of the variables of SVM-based model which developed for real-time flood 

stage prediction in Lan-Yang River, Taiwan. They developed two models to predict 

multiple-hour-ahead stage. The results verified that the SVM-based models with accurate 

selection of variables can be applied successfully in prediction of the flood one-to-six-

hours ahead.  

Abrahart et al. (2007) integrated a time-error correction procedure into the optimization 

process of ANNs –based models to predict SF in both short and long forecasting periods. 

Their course of action produced adequate improvement over a shorter forecasting period, 

but only slight improvement for longer forecasting was reached.  

Talei and Chua (2012) studied the influence of Lt on event-based RF-runoff modelling 

with some AI-based models (i.e. the adaptive network-based fuzzy inference system 

(ANFIS)) in a sub-basin within the Kranji Reservoir basin in Singapore. They observed 

that the models produced considerably more accurate results compared to other models 

in which Lt was not included in the modelling process.  

Chang et al. (2014) applied one static ANNs  and two dynamic ANNs to develop multi-

step-ahead (Floodwater Storage Pond) FSP water level prediction models in the Yu–

Cheng station in Taipei, Taiwan through two scenarios. Scenario 1 assumes RF and FSP 
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water level records as input variables of the model while scenario 2 assumes only RF 

records as input variables of the model. They calculated R in the recognition of the 

maximum correlations between FSP water level and RF at different lag intervals for each 

station then employed Gamma test (GT) to select the effective variables (RF stations) that 

pointedly influence the FSP water level. According to results, the GT can recognize the 

effective RF stations as inputs to the ANNs-based models. Coefficients of efficiency of 

prediction process is within 0.9–0.7 (scenario I) and 0.7–0.5 (scenario II) in the testing 

stages for 10–60-min., ahead predictions, respectively. According to results, it can be 

concluded that ANNs-based model is beneficial tool to the local authorities for flood 

control and awareness. 

2.6.5 General Remarks on the Previous Studies 

Over the last two decades or so, the use of AI techniques for the prediction of hydrologic 

processes has become a well-established research field. In the late 1990s, AI was a novel 

modelling method and, accordingly, considerable number of studies was directed to the 

employ the AI in several hydrological processes to judge their convenience as a new 

alternative modelling tool. A comprehensive literature review of the applications of AI 

techniques in hydrology and water resources engineering over that era is provided in the 

Task Committee on Application of ANNs in Hydrology by the ASCE (ASCE, 2000a; 

ASCE, 2000b) and some other review papers (Dawson & Wilby, 2001; Maier & Dandy, 

2000).  

Given the fast evolving of AI techniques in the hydrologic modelling during the last 15 

years, several review papers was prepared to describe and evaluate the use of AI 

techniques in hydrological applications. Table 2.1 presents some review papers on the 

application AI-based models on hydrology and water resources over the last decade, from 

2006 to 2015. 
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Table 2.1: List of some review papers on the application AI-based models on 

hydrology over the last decade 

Author and Year Paper title 

 Solomatine (2006)  DDMs and computational intelligence methods in 

hydrology 

 Kalteh et al. (2008)  Review of the SOM approach in water resources: 

Analysis, modelling and application 

 Solomatine and Ostfeld 

(2008) 

 DDMs: Some past experiences and new approaches 

Maier et al. (2010)  Methods used for the development of NN for the 

prediction of water resource variables in river systems: 

Current status and future directions 

Abrahart et al. (2012)  Two decades of anarchy? Emerging themes and 

outstanding challenges for NN river forecasting 

Nourani et al. (2014)  Applications of hybrid wavelet–AI models in hydrology: 

A review 

Seth (2015) Use of ANNs and GA in Urban Water Management: A 

Brief Overview  

 

Among the literature review, many remarks were obtained based on investigation of the 

methods and results included in the previous studies: 

 The majority of SF prediction studies employed a daily or monthly time step, whereas 

the prediction of Q using AI techniques especially in humid tropical regions is 

uncommon in the literature. To the best of the researcher’s knowledge, AI techniques 

are yet to be used to predict real-time Q in the Selangor River basin. 

 The main objective of the Hydrologists and Neurohydrologists is to develop efficient 

SF models in terms accuracy, simplicity, less-demanding usage, applicability and cost 
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effectiveness. Therefore, considerable efforts are required to simplify the AI-based 

model along with enhancement of its performance particularly in complex process 

such as SF prediction. Developing models with high performance make them 

beneficial tool to the local authorities for the SF prediction and related applications. 

 Despite the huge efforts in hydrological modelling by AI, so far, there is no 

recognized method for selecting the best input variables and optimum structure of AI-

based model in Q prediction. Trial-and-error method was commonly employed which 

requires efforts, particularly in complex application.  

 The performance of Q prediction using AI techniques still requires more 

improvement, given the low performance and limited applicability of AI-based 

models in many previous studies. In addition the methodologies for AI-model’s 

development need to be more simplified with higher chance of applicability.   

 The accurate timing of input and output variables of SF prediction models is still a 

general problem in AI-based models; consequently, this issue is under ongoing 

investigation by hydrological modelers worldwide. 

 One of the significant concerns was investigating which AI techniques can best fit the 

hydrological description of SF. The weak awareness about this matter has resulted in 

the use of different AI techniques without adequate concern as to the suitability and 

applicability of the developed models.  

 Most of the developed AI-based models for Q prediction did not provide enough 

investigation of the influence of the hydrological variables on Q which is the base for 

hydrological description. Despite of the black box nature of AI techniques, the recent 

progress in AI assists to produce general hydrological description of the SF in both 

time and spatial aspects as can be seen in few studies. 
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2.7 Preliminary Considerations in Stream Flow Modelling Using AI-based 

Models 

Many preliminary considerations should be addressed and solved before the SF modelling 

process can be performed. These considerations include several topics, such as the 

advantages and disadvantages of AI techniques, the selection of appropriate modelling 

techniques, the determination of the most adequate variables of the AI-based models and 

the lag intervals between them and how to improve the performance of the modelling 

process. It could be achieved throughout improving the understanding of the SF process 

by some procedures such as the analysis of long-term changes in SF regimes and the Lt 

estimation. 

2.7.1 Advantages and Disadvantages of Artificial Intelligence Techniques 

Given the progress of computer technology, AI techniques are now capable of 

implementing fast, easy, and efficient simulations of complex processes and huge number 

of data patterns (Dawson et al., 2006). Hydrological modelling using AI techniques has 

many advantages over traditional modelling techniques, some of which are as follows: 

 AI-based models have the capability to directly use field-recorded data without 

detailed inspection and simplification, in contrast to traditional regression 

analyses, which require it in advance. However, AI techniques require less 

inspection but there is need to check the quality of data in terms of normality, 

homogeny, etc. 

 AI-based models have the capability to model and simulate any types of nonlinear 

systems and process that are difficult to model by traditional modelling 

techniques.  
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 Trained AI-based models can generate a predicted value for the output variable 

for any reasonable input pattern that fell within the range of their training data. 

 AI-based models can investigate mathematical interactions between variables of 

the considered process and the effect of the independent variables on the 

dependant variable (Baxter et al., 2004; Kerh & Lee, 2006).  

Despite the significant advantages of AI techniques, a number of disadvantages limit their 

operation and may adversely affect their performance. The effects of the disadvantages 

of AI techniques can be dramatically minimized by the better understanding and careful 

practice of AI-based models. The main limitations of AI techniques are as follows: 

 The modelling capabilities of AI techniques are highly affected by the 

specifications of the model. Unfortunately, no ideal approach exists so far for 

determining the best specifications of AI-based models, such as the structure and 

training algorithm of ANNs and the kernel function and hyper-parameters (i.e., C 

and ε, respectively) of SVM. As an alternative, the specifications of AI-based 

models are generally selected based on the previous experience of the modeller 

and some guidelines and procedures listed in the literature (ASCE, 2000; T. Asefa 

et al., 2006). 

 There is no recognized approach to selecting the optimum modelling technique. 

Neurohydrologists commonly employ a trial-and-error method, followed by a 

detailed performance evaluation analysis, which sometimes requires huge efforts, 

particularly in complex applications (Basheer & Hajmeer, 2000; Maier et al., 

2010).  

 The danger of over fitting sometimes occurs in ANNs because they behave like 

the human brain, which has the defect of over-memorizing (i.e., called “over 
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fitting” in ANNs techniques). ANNs-based models can be over trained; as a result, 

their generalizability in the prediction process diminishes. Over fitting commonly 

occurs when the training time is too long or the model includes too many hidden 

neurons (Abrahart et al., 2004). 

 AI techniques are efficient interpolators but not efficient extrapolators. The 

capability of ANNs to perform well when deal with input data that fell within the 

range of their training data, but their performance declined when the input vectors 

were far from the range of the variables used for training purposes (Sivakumar & 

Berndtsson, 2010). 

 There is no ideal approach to select the best number of dataset pattern or dividing 

them during the training process. This is a classic challenge that is still facing 

Neurohydrologists and commonly implementing trial and error method, of their 

own choosing. The more patterns lead to slower training process and could be 

expensive or not easy to collect whereas an inadequate number of records decline 

the performance of AI-based model (Bowden et al., 2005; Sivakumar & 

Berndtsson, 2010).  

2.7.2 Selection of the Appropriate Stream Flow Modelling Technique 

No single data driven-based modelling technique can explore all the hydrological 

modelling and prediction processes, particularly those with complex processes such as 

SF. The wide range of modelling techniques are depending on different aspects of 

modelling mechanisms, and thus no single technique can fully investigate all the features 

of SF process (Sivakumar & Berndtsson, 2010). 

The decision to choose any of the SF modelling techniques mainly depends on two 

elements: first, the available amount of understanding of the physical behavior of the SF 
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process and the river basin hydrology, and second, the availability of hydrological data 

that describe the SF and related variables. Figure 2.12 shows the appropriateness of SF 

modelling techniques based on two elements: understanding the physical process and 

availability of data. 

Figure 2.12 shows that in the case of sufficient understanding both the physical process 

and the data, the process-based models are the suitable modelling technique. The model 

in this case is developed depending on the physical understanding of the process. The 

model may then be calibrated using the available data. In the case of sufficient data but 

insufficient understanding of the physical process, the AI-based models are the suitable 

modelling technique. If both data and understanding of the physical process are 

insufficient, statistical methods can be applied only as an initial tool to improve the 

general understanding of the SF process (Basheer & Hajmeer, 2000; Sivakumar & 

Berndtsson, 2010).  

After the data collection process in the study area, Selangor River basin, it was noticed 

that the description of the physical characteristics of the SF process and the related 

parameters of the river basin hydrology have not been sufficiently addressed and 

described yet. However, enough data have been successfully collected for the SF and the 

related variables. Accordingly, AI-based models are the most suitable modelling 

technique for SF prediction and modelling based on the availability of sufficient 

modelling data.  

Several types of modelling techniques can be classified as AI-based models. In this 

research, ANNs and SVM are applied in SF modelling and prediction, whereas statistical 

methods are applied in the analysis of the long-term variations of SF regimes. 
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Figure 2.12: Appropriateness of stream flow modelling techniques  

Adopted from (Basheer & Hajmeer, 2000) 

2.7.3 Determination of the Input and Output Variables of the AI-based models 

SF modelling and prediction using AI is a complex process and it is influenced by many 

parameters that are intricately interrelated (Akhtar et al., 2009). Determining the most 

adequate input and output variables is considered one of the main challenges in 

developing AI-based models. In SF prediction, it is commonly based on a priori and 

previous knowledge of the river basin hydrology, which provides an initial indication of 

the potential inputs and outputs (Kretzschmar et al., 2014; Maier & Dandy, 2000; Nourani 

et al., 2014).  

Given that the main goal is to predict the ahead real-time Q in the downstream area of a 

tropical river from the upstream WL and RF records, the hourly records of the WL and 

RF upstream stations are used as input variables of the AI-based models, whereas the 
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hourly records of SF in the downstream station are used as output variable of the AI-based 

models. 

The input and output variables of the AI-based models where selected through three 

scenarios, scenario (1) adopts only the RF data of upstream stations as input variables, 

scenario (2) adopts only the WL data of upstream stations as input variables, and scenario 

(3) adopts both the WL and RF data of upstream stations as input variables. 

Equation 2.16 shows the relationship between Q and influential variables: 

Q(୲ା୲) = f(X(୲)) + e																																																															(2.16) 

where Q(t+Lt) presents the ahead hourly stream flow; X(t) is the input vector, which includes 

the input variables RF and/or WL; and e is the random error.  

Determining the variables of the input vector of the AI-based models includes also finding 

the lag intervals of antecedent records of the WL and RF records with the highest effect 

on the ahead Q, which can be detected through the Lt estimation (Sudheer et al., 2002).  

2.7.4 Improvement of the Performance of the Modelling Process 

The performance of SF models can be improved through a better understanding of the 

hydrological systems of a river basin such as analyzing the SF regime (Gautam & 

Acharya, 2012). The SF model performance can also be significantly improved by 

selecting the most adequate input and output variables, which mainly depends on Lt 

estimation; therefore, it is of great significance in several surface water hydrological 

analyses and models (Bowden et al., 2005; Fang et al., 2008; Yao et al., 2014).  

In this research, WL and RF records of the upstream station are used as the input variables 

of the AI-based model, whereas the SF data from the downstream station are used as the 

output variables of the AI-based model. Therefore, estimating the Lt between the 
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upstream and downstream stations is a fundamental step in determining a potential 

combination of input and output variables for AI-based models. It is also important in 

exploring the sensitivity of various combinations of input and output variables to the 

prediction accuracy of AI-based models. 

2.7.4.1 Analysis of Long-Term Variations in Stream Flow Regimes 

SF regimes can be described by various parameters such as rate, magnitude, duration, 

timing and fluctuations over a varied scale of frequencies, including hourly, daily, 

monthly, yearly, decadal and multi- decadal (Krasovskaia & Gottschalk, 2002; Morán-

Tejeda et al., 2011). Investigation of these parameters assists in understanding the whole 

SF regime and related hydrological phenomena, such as low and high SF events. 

Furthermore, the long-term variations in a SF regime can be recognized clearly based on 

the description of SF through these parameters (Poff et al., 1997; Richter, 1996; Yang et 

al., 2005).  

Due to the variations of SF, long-period records of SF are essential to investigate and 

describe the SF regime. The statistical analyses used in long-term variations in SF regimes 

should be performed using long-period records (i.e. 50 years or more) as trends resulted 

from short observations may be part of weather fluctuations or just temporary changes 

(Gautam & Acharya, 2012; Kundzewicz & Robson, 2004; Opitz-Stapleton & 

Gangopadhyay, 2011).  

There are many reasons why variations in SF appear, for example, climate change, human 

activities and geomorphic variations, which are possibly the main sources of SF change 

(Chang et al., 2014; Sang et al., 2013). Usually the changes in SF grow slowly; over the 

last 100-year period, an apparent decline in yearly SF has been verified in about 25% of 

the world’s rivers (Descroix et al., 2012; Walling & Fang, 2003; Yang et al., 2005; Yue 

et al., 2003; Zhang et al., 2000).  
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Studying the changes in the SF regime is essential to enhance understanding the river 

hydrologic system which is necessary for the improvement of accuracy of SF and flood 

prediction (Gautam & Acharya, 2012; Xu et al., 2012). It is not only important from 

hydrologic aspects but also from both socioeconomic and natural aspects. As example, 

ecosystems are highly influenced by variations in SF regime because they are dependent 

on SF to protect their composition and continuity (Richter, 1996).  

In the view of the above discussion, the better analysis of SF regimes is considered a very 

important step to improve the researches knowledge about the SF process which leading 

to improve the performance of SF modelling and prediction processes. 

2.7.4.2 Lag Time Estimation 

The travel time concept is used to estimate the time needed by the flow to move from any 

location to another within the river basin. This notion is frequently employed in many 

hydrological applications. Due to developments in hydrologic models and applications, 

various expressions of travel time have been adopted and often used, such as 

concentration time and Lt (Green & Nelson, 2002; Honarbakhsh et al., 2012; Thomas et 

al., 2015). 

The travel time concept could be described by two ways: the hydrological (operational) 

and conceptual (theoretical) definitions. The hydrological definitions are applicable when 

hydrological data is available (Fang et al., 2005). The conceptual definition for time of 

concentration is the period taken by a water to move from the hydraulically most distal 

part of the basin to the outlet or reference point downstream (Fang et al., 2005; Kirpich, 

1940; McCuen et al., 1984). The hydraulically most distant point is the point with the 

longest travel time to the basin outlet, and not necessarily with the longest flow path. The 

theoretical definition of Lt is the time a water drop takes to travel from an upstream 

location to a downstream location within river basin (Woodward, 2010).  
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Travel time reflects the speed at which the river basin responds to RF events (Pavlovic & 

Moglen, 2008) and is influenced by several parameters including the slope and length of 

the flow path, flow path roughness, flow depth, initial soil moisture, and duration and 

intensity of the effective RF (Green & Nelson, 2002; McCuen, 2009; Singh, 1988). These 

parameters are very complex and thus render estimation difficult and time consuming. 

Due to the complexity of describing all physical and hydrological specifications of the 

entire flow path and other basic parameters affecting travel time, many empirical 

equations for Lt estimation have been derived based on flow path and basin average 

parameters to simplify travel time estimation (Green & Nelson, 2002; Singh, 1976).  

Hydrologically, a perfect estimation of travel time cannot be achieved, as it requires 

infinite, steady and continuous RF over the river basin, which is an impossible condition 

in reality (Saghafian & Julien, 1995). 

 Definition of Lag Time 

In hydrological modelling applications, travel time is generally represented by Lt. The 

main hydrological definition of Lt is the difference in time between the center of mass of 

effective RF and the center of mass of direct runoff (i.e. hydrograph) produced by the 

effective RF (Banasik et al., 2005; Viessman & Lewis, 2003).  

Several other hydrological definitions of Lt between the WL upstream station and SF 

downstream station can be handled, which are reported by (Viessman & Lewis, 2003), 

(Fang et al., 2005), (Honarbakhsh et al., 2012), (Grimaldi et al., 2012), (Talei & Chua, 

2012) and referenced herein:   

(1) The time interval from the time of maximum WL rate to the time of the peak 

of hydrograph of SF station;  
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(2) The time interval from the time of the centroid of actual WL excess to the time 

of the peak of hydrograph;  

(3) The time from the end of WL excess to the inflection point on hydrograph; 

and 

(4) The time interval from the beginning of WL excess to the centroid of 

hydrograph.  

The hydrological definitions of Lt between the RF upstream station and SF downstream 

station are similar with the hydrological definitions between the WL upstream station and 

SF downstream station and they are based on the same hydrological concepts. It should 

be noted that for these definitions to be applicable to estimating the Lt between two 

locations or between two stations within the river basin, they must be hydraulically 

connected without any significant non-natural barriers (Viessman & Lewis, 2003).  

Figure 2.13 describes two of definitions of Lt. (1) Time interval from the centroid of the 

RF to the centroid of hydrograph (t1); and (2) time interval from the centroid of RF to the 

peak of hydrograph (t2) (Talei & Chua, 2012). 
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Figure 2.13: Schematic illustration of lag time estimation based on two different 

definitions (Talei & Chua, 2012) 

 

 Lag Time Estimation Methods  

In literature, three main approaches have been applied for estimating the Lt, first of which 

is the estimation using empirical formulas. Huge number of empirical formulas have been 

used to estimate Lt, Li and Chibber (2008) presented and evaluated about fourteen 

empirical formulas with different data requirements. In the current research, four 

empirical formulas were employed to estimate the Lt between upstream stations, and a 

downstream station. 

The second approach is to estimate Lt by calculating the R between WL or RF hourly 

records of upstream stations and Q records of downstream station. The Lt is thus defined 

as the lag interval that required in providing the highest R between the upstream and 

downstream records. This method is not completely in high agreement with the classic 

definitions of Lt, but can be measured to provide an approximation of the Lt.  
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The third approach is to estimate the Lt based on the observed data of WL or EF and SF 

through one of the hydrological (operational) definitions of Lt. In the current research, 

the first hydrological definition of Lt was employed to estimate the Lt between upstream 

stations, and a downstream station.  

 Influence of the hydrological parameters on the Lag Time 

Lt between two places among the river basin could be different due to many hydrological 

parameters such as basin, flow path and RF characteristics. The basin parameters that 

affect the Lt are areal extent, surface topographic, vegetation, and land use. The flow path 

characteristics that affect the Lt are slope, length, roughness, flow depth and antecedent 

soil moisture. RF characteristics that affect the Lt are intensity and duration. There are 

other parameters may be slightly affect the Lt, such as wind speed, relative humidity and 

climate conditions (Green & Nelson, 2002; McCuen, 2009; Sabzevari et al., 2010; Singh, 

1988). These parameters are very complex, thus making it difficult and time consuming 

to study.  

Due to the complexity of description all physical and hydrological characteristics of the 

entire flow path and other parameters influencing the Lt; many empirical equations and 

estimation approaches have been derived based on the flow path and basin average 

parameters to simplify the estimation of the Lt (Green & Nelson, 2002; Singh, 1976). 

Although the availability of empirical equations to estimate the Lt (Grimaldi et al., 2012; 

Li & Chibber, 2008), the influence of the hydrological parameters that are likely affecting 

the Lt such as RF and SF have not been studied intensively.  

The investigation of the influence of the hydrological parameters that are likely affecting 

the Lt is very important key in SF modelling and detection the times of high SF events. 

Mostly, the Lt reflects the speed at which the river basin responds to RF events (Pavlovic 

& Moglen, 2008).  
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The RF and SF are considered as the main variables affecting the Lt. To investigate the 

effect of these parameters on the Lt, RF intensity was represented by two variables, peak 

rainfall intensity (Rfp) and the average of previous 48 hour rainfall (Rf48) while the SF 

was represented by two variables, peak hourly stream flow (Qp) and the average of 

previous 48 hour stream flow (Q48). Rf48 and Q48 are used to represent the degree of 

saturation in the river basin (Simas, 1996).   
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CHAPTER 3: METHODOLOGY 

 

3.1 Introduction 

Chapter 3 presents the methodology and briefly describes the study area, data collection 

and preliminary data analysis. The research methodology includes the hydrological 

description of the Selangor River basin and the development of AI-based models. The 

hydrological description of the Selangor River basin includes several procedures, such as 

the overview of the Selangor River basin hydrology, analyses of the long-term variations 

in the SF regime, and the Lt estimation between the upstream and downstream stations, 

which is essential in selecting the variables of AI-based models.  

The development of AI-based models includes many steps such as the selection of the 

AI-based model variables and modelling patterns, identification of AI-based model 

structures and general description of the training processes. The main procedures of the 

research methodology are presented in detail through this chapter. The research 

methodology is briefly presented as follows: 

 Review of the related literature, such as books, scientific reports, and journal 

papers.  

 Selection of the appropriate case study area. The Selangor River basin was 

selected as the study area.  

 Data collection from the hydrological stations located in the Selangor River basin. 

The SF, RF and WL hourly records of a one-year period (2011) were utilized in 

the development of the AI-based models, whereas the SF, WL and RF hourly 
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records of the high SF events over a three-year period (2009, 2010, and 2011) 

were utilized in the Lt estimation. The SF records over a 50-year period from 1961 

to 2011 were used in the analysis of long-term variations in the SF regimes. 

 Preliminary data analysis, including the basic statistical analysis, check for 

normality and homogeneity tests. 

 The improvement of the hydrological description of the Selangor River basin 

through the long-term variation analysis of the SF regime over a 50-year period 

and the development of HGA for estimation of the Lt between upstream and 

downstream stations. 

 Determination of the input and output variables of AI-based models and lag 

intervals between them depending on the estimation of the Lt between upstream 

and downstream stations. 

 Modelling process and development of AI-based models to predict real-time Q.  

 Evaluation of the developed AI-based models performance by multi-evaluation 

criteria, namely, R, R2 and MAE. 

 Application of the AI-based models in many applications, such as prediction and 

analytical tools to investigate the influence of the hydrological variables on SF. 

They are also employed in estimation of the missing records of Q and the flood 

early warning throughout the advance detection of the hydrological conditions 

that may lead to formations of floods through six hydrological scenarios. 
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The main steps of the research methodology are briefly illustrated in the following 

flowchart. 

 

Figure 3.1: Main steps of the research methodology  
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3.2 Case Study Description 

The study area of this research is Selangor River basin, which is one of the main rivers in 

Malaysia. It is located in northern part of the Selangor state and has an approximate area 

of 1960 km2 (Hassan et al., 2004; Lee, 2002; Samsudin et al., 2011). The Selangor River 

Basin provides approximately 50% of the water consumed in Selangor and Kuala Lumpur 

states (Subramaniam, 2004).  

3.2.1 General Description of Malaysia 

Malaysia covers an area of about 330,000 km2 including the Peninsular Malaysia, which 

is located in the southern east of the Asia, and the States of Sabah and Sarawak in the 

northwestern part of Borneo Island. Peninsular Malaysia, covering 131,598 km2, has its 

land frontier with Thailand to the north, and is connected to Singapore by a causeway in 

the south. Malaysia locates near the Equator between latitude 1° and 7° North and 

between longitude 100° and 119° East (Shafie, 2009). Figure 3.2 displays regional map 

of Malaysia. 

Peninsular Malaysia contains hills and mountains ranges, covering around 30% of the 

Peninsula area and track nearly parallel to the long axis of the country. The rolling to 

undulating land is seen mainly at the seaward flanks and the intervening zones among the 

mountain ranges. Figure 3.3 displays Political map of Malaysia 
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Figure 3.2:  Regional map of  Malaysia 

 

Figure 3.3: Political map of Malaysia 
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3.2.2 Location and Topography of Selangor River Basin 

The Selangor River basin is one of the main rivers in the Malaysian Peninsula’s west 

coast. It is located in the Selangor state and has an approximate area of 1960 km2, 

approximately a quarter of Selangor state. It is the main river in the Selangor state.  

Selangor River starts at the border between the states of Selangor and Pahang at an 

elevation of 1700 m and it streams nearly 110 km from the northeast to the southwest 

(Hassan et al., 2004; Lee, 2002; Samsudin et al., 2011).  Figure 3.4 shows the location 

map and Figure 3.5 shows the topography map of the Selangor River basin. 

3.2.3 Climate and Rainfall of Selangor River Basin 

The study area can be considered a paradigm of the humid tropical rivers in Southeast 

Asia. This river basin is under a humid tropical climate, and the temperature varies 

slightly throughout the year. On average, the temperature reaches 32 °C in the daytime 

and 23 °C at night. Average annual rainfall is between 2000 mm and 3000 mm, and 

evaporation ranges from 1600 mm to 1800 mm. The annual average relative humidity is 

approximately 80% (Breemen, 2008; Shafie, 2009; Zin et al., 2013). The average flow of 

this river is 57 m3/s. Approximately 10% of the time, the flow either exceeds 122 m3/s or 

drops to below 23 m3/s as a result of seasonal variations in rainfall (Green & Nelson, 

2002). 
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Figure 3.4: The location map of Selangor River basin 

 

Figure 3.5: The topography map of Selangor River basin  

Selangor State Peninsular Malaysia 
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3.3 Research Data 

Data is considered the backbone of any SF modelling applications, thus, high quality data 

is vital to get high accurate results in modelling, prediction and analysis process. The 

hydrological data were sourced from the hydrological stations located in the Selangor 

River Basin. Two of these stations gauge SF, seven gauge water level, and more than 

twenty gauge rainfall. 

Unfortunately, only the Rantau Panjang gauging station has enough data of SF data from 

1961 to 2011. This station is located in the downstream area of the River basin. Before 

this station, all of the major tributaries of this river converge. Thus, the SF at the Rantau 

Panjang Station is suitable representative of the SF at the study area.  

The WL and RF records were extracted from four upstream stations as shown in Table 

3.1. The SF, WL and RF hourly records of 1-year period 2011 were utilized in 

development of the AI-based models, while the SF, WL and RF hourly records of the 

high SF events over three-year period (2009, 2010 and 2011) were utilized in the Lt 

estimation.  

Figure 3.6 presents the location of the utilized hydrological stations and main tributaries 

in the Selangor River basin.  

Table 3.1: Hydrological stations in the Selangor River basin 

 

 

 

 

 

 

 

 

Station Name Function Latitude Longitude 

Rantau Panjang SF 03 24 10.0 101 26 35.0 

Ulu Yam WL & RF 03 27 38.4 101 38 14.4 

Batang Kali WL & RF 03 28 11.7 101 38 23.3 

Kerling WL & RF 03 35 18.1 101 36 22.8 

Ampang Pecah WL & RF 03 32 25.4 101 39 48.3 
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Figure 3.6: Locations of the main hydrological stations and tributaries in the Selangor 

River basin 

3.4 Preliminary Data Check 

The preliminary data check analysis includes the basic statistical analysis of data, 

normality and homogeneity tests. The outcomes of these tests verified that the SF data 

could be considered normally distributed and homogeneous.  

3.4.1 The Basic Statistical Analysis  

The research data were statistically analyzed to briefly demonstrate its quality and 

reliability. About 8753 patterns of Q, WL and RF hourly records representing one year 

period (2011), used for modelling process. The data basic statistical characteristics of 

data, such as minimum, maximum, mean and standard deviation (SD) of hourly records 

of all stations are shown in Table 3.2.  
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The Q, WL and RF hourly records of first three days of January 2011 were presented in 

Appendix A as example of the full records of data. 

Table 3.2: Statistical basic analysis of the data used 

 

3.4.2 The Normality Test 

The normality test is a statistical test to inspect whether the data is fine-modelled by a 

normal distribution or not (Coin, 2008; Tenreiro, 2011). It is widely employed in 

statistical analyses. The Shapiro–Wilk test is the common normality test, particularly, in 

hydrological applications. It was derived in 1965 by Samuel Shapiro and Martin Wilk, 

then adjusted by Royston in 1992 and again in 1995. It utilizes the null 

hypothesis principle to check whether a sample  came from a normally 

distributed population or not. The null-hypothesis of this test is that the population is 

normally distributed. Thus if the p-value is less than the selected significance level, then 

the null hypothesis is rejected and there is evidence that the data tested are not from a 

normally distributed population  (Razali & Wah, 2011; Royston, 1992).  

Station Function Latitude Longitude Mean Min. Max. SD 

Rantau Q (m3/s) 03° 24' 10.0'' 101° 26' 35.0'' 60.35 23.94 294.6 39.00 

Ulu Yam WL (m) 03° 27' 38.4'' 101° 38' 14.4'' 32.24 30.56 35.49 0.49 

Batang Kali WL (m) 03° 28' 11.7'' 101° 38' 23.3'' 32.42 27.03 34.71 0.78 

Kerling WL (m) 03° 35' 18.1'' 101° 36' 22.8'' 44.18 43.93 45.61 0.12 

Ampang WL (m) 03° 32' 25.4'' 101° 39' 48.3'' 50.16 49.61 50.89 0.15 

Ulu Yam RF (mm/hr) 03° 27' 38.4'' 101° 38' 14.4'' 0.16 0.00 19.33 0.73 

Batang Kali RF (mm/hr) 03° 28' 11.7'' 101° 38' 23.3'' 0.24 0.00 22.67 0.91 

Kerling RF (mm/hr) 03° 35' 18.1'' 101° 36' 22.8'' 0.25 0.00 25.33 1.06 

Ampang RF (mm/hr) 03° 32' 29.1'' 101° 39' 44.4'' 0.24 0.00 28.00 1.08 
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The results of the Shapiro–Wilk test contain two values: W and p-value. W lies between 

0 and 1. High W values lead to acceptance of normality, whereas small W values lead to 

rejection of it. When W is equal to 1, it indicates complete data normality. For the p-value 

value, if it is higher than the selected significance level, the normality will be accepted 

(Razali & Wah, 2011).  

The normality of average annual SF at Rantau Panjang station over 50-year period from 

1961 to 2010 was tested with the Shapiro-Wilk test. Additional graphical technique of 

checking the normality was employed; it is based on comparison between the frequency 

distribution (histogram) of average annual SF records and the normal probability curve 

of the data. The data is considered normally distributed if the histogram of the data is in 

high agreement with the normal distribution curve of data (Mecklin & Mundfrom, 2004; 

Shahla Ramzan et al., 2013). 

The Shapiro–Wilk test was applied on annual SF data. Based on the test results W (0.976) 

and P (0.411), the normality of annual SF are verified. The normality of annual SF was 

also inspected by graphical technique. Figure 3.7 demonstrates a very high similarity 

between the frequency distribution and normal probability curve of average annual SF 

data. Thus, it is normally distributed. 

Univ
ers

ity
 of

 M
ala

ya



 80 

10 20 30 40 50 60 70 80 90

Average Annually Flow 

0

2

4

6

8

10

12

14

16

18

20

N
o.

 o
f o

bs
.

 

Figure 3.7: Frequency distribution and normal probability curve of average annual 

stream flow 

 

3.4.3 The Homogeneity Test 

The homogeneity test is a statistical test for discovering data variability. It is used to check 

whether data have been obtained from homogeneous or heterogeneous source. Literature 

offers many homogeneity tests of hydrological time series data, for example, the standard 

normal homogeneity test, Buishand's test and Pettitt's test (Buishand, 1982; Kang & 

Yusof, 2012; Pettitt, 1979). 

In this research, Pettitt's test was applied to verify the homogeneity of annual average SF 

data from the Rantau Panjang station over 50 year-period from 1961 to 2010. 

The p-value (Two-tailed) - calculated using 10000 Monte Carlo simulations, is equal to 

0.161. It is higher than the significance level p-value of 0.05, meaning that the SF data is 

homogeneous data. 
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3.5 The Hydrological Description of Selangor River Basin 

The performance of SF modelling process can be greatly improved by the amelioration 

of the hydrological description of the river basin. Therefore, it is of great significance to 

achieve suitable level of hydrological description before carrying out the modelling 

process. In this research, the hydrological description have been achieved via some 

procedures such as the over view of Selangor River basin hydrology, the long-term 

changes analyses in SF regime and the Lt estimation between the upstream and 

downstream stations which is very essential to select the variables of AI-based models 

and lag intervals between them. 

3.5.1 Hydrological Overview of the Selangor River Basin 

The main tributaries of the Selangor River are Rening, Kerling, Batang Kali and Guntong. 

Many minor branches joint the main tributaries or the main stream of the river itself. Due 

to high slope of flow paths in the upstream area, the branches are fast flowing through 

mountain with granite and sedimentary bedrock. In the downstream area, the river enters 

the fluvial plain and becomes a low-gradient, meandering river. The river bed slope in the 

last 30 km is around zero (Breemen, 2008).  

The mean SF over a 50-year period from 1961 to 2010 is around 57 m3/s. Seasonal 

variations in RF make SF to exceed 122 m3/s or to drop under 23 m3/s in about 10% over 

the time (Nelson, 2002). Figure 3.8 presents the mean annual SF of the Selangor River 

over a 50-year period between 1961 and 2011.  

 

Univ
ers

ity
 of

 M
ala

ya



 82 

 

Figure 3.8: Mean annual stream flow in the Selangor River over a 50-year period from 

1961 to 2010 

 

3.5.2 Analysis of the Long-Term Variations of the Stream Flow Regime 

To achieve accurate investigations of the long-term changes in the SF regime, the 

statistical analyses should be performed using lengthy periods (i.e. 50 years or more) 

(Kundzewicz & Robson, 2004; Walling & Fang, 2003).  

The long-term variations analyses include an investigation of the changes in the 

hydrological variables describing the annual SF over the 50-year period from 1961 to 

2010 along with testing their changes’ trend. Analyses were performed based on two time 

scales. The first is yearly and the second is the sub-periodic changes. The sub periods 

were reached by segmentation of the 50 years into 7 sub-periods via two methods: the 

direct segmentation and change-point test. 

The work also includes an exploration of the variations in the monthly SF regime and the 

yearly duration of high and low SF from 1961 to 2010 and inspecting the trend of changes. 
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For the high and low SF, the assessment was performed with respect to the duration and 

magnitude as both parameters play an important role to understand the variations of SF 

regime (Mirabbasi et al., 2012).  

Investigation of yearly duration of high SF comprises three levels, danger level, warning 

level and alert level while investigation of the yearly duration of low SF analysis was 

conducted at a single level, that when the SF drop below 14.5 m3/s, which is around 25% 

of the average SF over the study period. 

3.5.2.1 Determination of Representative Hydrological Variables 

The long-term variations in SF regime could be explored via SF features like magnitude, 

rate, frequency, duration, timing and rate of change. These features are generally applied 

in three circumstances: average, low and high flow. Several hydrological variables can 

be employed to investigate the variations in the features of SF (Moliere et al., 2009).  

In this research, the variations in SF were investigated depending on SF rate (discharge), 

which is the quantity of water passing through an identified location per of time (Poff et 

al., 1997; Richter, 1996; Yang et al., 2005).   

Nine hydrological variables describing SF were selected to investigate the long-term 

changes of the Selangor River’s SF regime. The variables are mean annual stream flow 

(SF1), maximum annual stream flow over the sub-period (SF2), minimum annual stream 

flow over the sub-period (SF3), maximum monthly flow over a single year (SF4), 

minimum monthly stream flow over a single year (SF5), the deference between maximum 

and minimum stream flow (RA), SD, coefficient of variation (CV) and the Pluviometric 

Ratio (PR).  

SD and CV are statistical measures of dispersion in a data series around its average; and 

the CV denotes the ratio of standard deviation to the SF1. The CV is employed in 
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matching the amount of dispersion and variation among data series (Albrecher et al., 

2010; Boik & Shirvani, 2009).  

PR corresponds to the ratio between maximum and minimum SF, and it is indication of 

seasonal variability. When the PR value is close to 1, seasonal variability is minor, but 

when the value is above 1, seasonal variability rises directly (Laraque et al., 2007). The 

mathematical formula for RA and PR are as follow. 

RA = SF4 – SF5 

PR = SF4/SF5 

The values of nine variables were calculated from the Q records at the Rantau Panjang 

station over a 50-year period from 1961 to 2010. Table 3.3 shows the nine variables and 

their measurement units. 

Table 3.3: Hydrological variables utilized to describe the annual stream flow 

# Var. Definition Unit 

1 SF1 Mean annual stream flow  m3/s 

2 SF2 Maximum annual stream flow over the sub-period m3/s 

3 SF3 Minimum annual stream flow over the sub-period m3/s 

4 SF4 Maximum monthly stream flow over a single year m3/s 

5 SF5 Minimum monthly stream flow over a single year m3/s 

6 RA 
The deference between maximum and minimum 
annual stream flow 

m3/s 

7 SD Standard Deviation m3/s 

8 CV Coefficient of variation  ratio 

9 PR The Pluviometric Ratio ratio 
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3.5.2.2 Segmentation of the Study Period 

To study and analyze the long-term changes in SF regime over long periods i.e. 50 years, 

the yearly variations may be not adequate to investigate the trend of long-term variations. 

For this cause, long periods could be segmented into short sub-periods, such as 7 or 10 

years. The short sub-periods are commonly include consecutive years with comparable 

hydrologic features (Descroix et al., 2012).  

The segmentation process could be carried out by many methods such as the Hidden 

Markov model, the Hubert model and the change-point test. The change-point method is 

a statistics test employed to find the date(s) at which a big change happens in a data series. 

The selected dates demonstrate a change in the mean or variance (Beaulieu et al., 2009; 

Rougé et al., 2012; Villarini et al., 2011). In literature, many approaches have been 

employed to check for the existence of change points in the data of long periods such as 

Bayesian inference, moving t-test and Pettit’s test (Descroix et al., 2012; Ma et al., 2008; 

Rougé et al., 2012; Xiong & Guo, 2004; Zheng et al., 2007).  

In this research, the 50-year period from 1961 to 2010 was segmented into seven sub-

periods by two techniques. The first is the change points using Pettit’s test, while the 

second method is direct segmentation method. The first technique entails selecting 

multiple change-points, as calculated using Pettitt's test. This technique leads to the 

segmentation of the study period into seven, non-identical sub-periods. The second 

method is direct segmentation in which the study period was divided into seven identical 

7-year sub-periods. The sub-periods obtained in the two ways are presented in Table 3.4. 
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Table 3.4: Sub-periods obtained via two segmentation techniques 

Sub-period 

No. 

Segmentation technique 

Change-point Direct 

1 1961-1972 1961-1967 

2 1973-1978 1968-1974 

3 1979-1986 1975-1981 

4 1987-1991 1982-1988 

5 1992-1995 1989-1995 

6 1996-2004 1996-2002 

7 2005-2010 2003-2009 

 

3.5.3 Lag Time Estimation 

Three approaches have been applied to estimate the Lt between the upstream and 

downstream stations. In the first approach, the Lt is estimated through four available 

empirical formulas. In the second approach, the Lt is estimated by CCA, whereas, the Lt 

is estimated by calculating the R to lag intervals between the antecedent hourly records 

of WL and RF records of the upstream stations and the Q in the downstream station. In 

the third approach, the Lt is estimated using HGA based on the hourly records of WL, RF 

and Q through the hydrological (operational) definition of Lt.  

The first approach is performed only to provide an initial approximation of the Lt between 

the upstream and downstream stations. The results of both the second and third 

approaches are employed in the Q modelling process, particularly in the selection of the 

variables of AI-based models and lag intervals between them.  
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3.5.3.1 Lag Time Estimation Methods 

 Lag Time Estimation Using Empirical Formulas 

To estimate the Lt between the upstream and downstream stations using empirical 

formulas, it is necessary to determine the basic morphometric specifications of the flow 

path between the mentioned stations, such as flow path length, average flow path slope 

and mean flow of channel velocity.  

By referring to the hydrological and topographical maps of the Selangor River basin, the 

basic morphometric specifications of the hydrological stations and the flow paths between 

them were determined; moreover, Lt was estimated between the upstream and 

downstream stations by carrying out the following subsequent procedures: 

1. Determining the coordinates (x, y, z) of the downstream and upstream stations; 

2. Determining the flow paths between the upstream and downstream stations and 

measuring the its’ lengths;  

3. Measuring the difference in elevation between the upstream and downstream 

stations; 

4. Calculating the flow path slopes between the upstream and downstream stations; 

and 

5. Applying the empirical formulas that require only morphometric parameters to 

estimate the Lt.  

Lt estimation was performed by using the four empirical formulas listed in Table 3.5. The 

topographic specifications are shown in Table 3.6. 
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Table 3.5: Empirical formulas used to estimate the Lt in hours (hr) 

Name formula 

Kirpich (1940) Lt = 0.00325 L 0.77 S -0.385 

Johnstone and Cross (1949)  Lt = 0.0017153 L0.5 S- 0.5 

Carter (1961) Lt = 0.001628 L0.6 S- 0.3 

Viparelli (1961, 1963) Lt = L/ V 

 
 

where Lt is the lag time (hr), L is the flow path length (meters) between the upstream and 

downstream stations, S is the average slope of the flow path from the upstream to the 

downstream station, and V is the mean flow channel velocity (m/s) with recommended 

values between 1 and 1.5 m/s (Grimaldi et al., 2012). In the Selangor river basin, which 

is a very flat area with a slight slope between the upstream and downstream areas, the 

flow channel velocity is fixed at 1.0 m/s. 

Table 3.6: Topographic specifications of the upstream and downstream stations and the 

flow paths between them  

Station Name Location 
Elevation H L S 

M m km ratio 

Rantau Panjang Downstream 13 - - - 

Ulu Yam Upstream 40 27 38.5 0.070% 

Batang Kali Upstream 46 33 38.3 0.086% 

Kerling Upstream 56 43 44.9 0.096% 

Ampang Pecah Upstream 51 38 47.6 0.080% 
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 Lag Time Estimation Using the Correlation Coefficient approach  

In CCA, the Lt was estimated by calculating the R that corresponds to 24 different time 

lag intervals between the antecedent hourly records of WL or RF records at the upstream 

stations and the Q at downstream station. Calculation of the R leads to detect which the 

antecedent records of WL or RF records that have the highest effect on the predicted 

stream. The correlations were analyzed based on the hourly antecedent records.  

Lt was estimated by calculating the R corresponding to 24 different time lags from 0 h to 

24 h between the antecedent hourly records of WL or RF of upstream stations.  These 

records represent the input variables of AI-based models, whereas those of Q in the 

downstream station denote the output variable. The estimated Lt using R approach was 

utilized to determine the input variables of the AI-based models in first phase of the 

modelling process. 

 Lag Time Estimation Using the Hydrological Graphical Approach  

Lt was estimated using HGA through the hydrological definition of Lt (the time interval 

from the time of maximum WL or RF at the upstream stations to the time of the peak rate 

of runoff at the downstream station). HGA where employed to estimate the Lt between 

both of the WL and RF upstream stations, and the downstream station. The followings 

procedures were performed to estimate Lt between the WL upstream stations and 

downstream station: 

a. Collecting hourly records of the WL and SF stations and check the quality, 

continuity and reliability of the collected data; 

b. Determining the high SF events during the three-year period: 2009, 2010 and 

2011;  

c. Drawing the hydrograph of the downstream station and WL graphs of the 

upstream stations for each event; 
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d. Determining the peak time in the hydrograph and WL graphs; 

e. Estimating the Lt by measuring the time interval between the peak times in the 

hydrograph and WL graphs; 

f. Repeating these steps for all high-SF events. 134 WL-SF events were used to 

estimate the Lt. A sufficient number of events are necessary for better Lt 

estimation; and 

g. Analysis of the estimated Lt for all events and calculating the mean of the 

estimated Lt. The mean value is deemed the best representative of Lt between WL 

and downstream stations. 

Figure 3.9 describes HGA for estimating the Lt using the observed WL–SF event by 

applying the first hydrological definition of Lt, also, the procedures to estimate Lt are 

described in the flowchart as shown in Figure 3.10 (Seyam & Othman, 2014a).  

 

Figure 3.9:  Hydrological graphical approach for estimation of Lag time between 

upstream water level stations and downstream station  
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Figure 3.10: Flowchart of the hydrological graphical approach for estimation of Lag 

time based on the observed water level and stream flow  

Same procedures were applied to estimate the Lt between the upstream RF stations and 

downstream station, the only difference is estimating time interval between the peak times 

in the hydrograph of downstream station and hyetograph of upstream stations as described 

in Figure 3.11 which describes the HGA of Lt estimation using the observed RF-SF event 

by applying the first hydrological definition of Lt.  100 RF-SF events were used to 

estimate the Lt.  

The procedure of estimating Lt is additionally described in the flowchart in Figure 3.12. 

The estimated Lt using HGA between both the WL and RF upstream stations, and the 
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downstream station was utilized to select the lag intervals between the input and output 

variables of the AI-based models in second phase of the modelling process. 

 

 

Figure 3.11: Hydrological graphical approach for estimation of Lag time between 

upstream rainfall stations and downstream station  
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Figure 3.12: Flowchart of the hydrological graphical approach for estimation of Lag 

time based on the observed ranifall and stream flow  

 

3.5.3.2 Derivation of new empirical formulas to estimate the Lt  

The high complexity of surface water systems and interaction among the variables 

influencing the Lt, justify the necessity to derive new empirical formulas to estimate the 

Lt. Linear and nonlinear empirical formulas were both derived to estimate the Lt and 

study the influence of some related hydrological variables on the Lt. 

The RF and SF are considered as the main variables affecting the Lt. To derive new 

empirical formulas to estimate the Lt, the RF was represented by two variables, peak 
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rainfall intensity (Rfp) and the average of previous 48 hour rainfall (Rf48) while the SF 

was represented by two variables, peak hourly stream flow (Qp) and the average of 

previous 48 hour stream flow (Q48). Rf48 and Q48 are used to represent the degree of 

saturation in the river basin (Simas, 1996).  

The input (independent) variables of the empirical formulas are Rfp, Rf48, Qp and Q48 

while the output (dependent) variable is the Lt. Linear and non-linear empirical formulas 

were derived directly using the estimated Lt by HGA approach from 100 high RF-SF 

events. 

3.6 Development of AI-based Models  

The modelling process and development of AI-based models to predict the real-time Q 

includes several procedures and practical steps. After conducting the preliminary data 

check, the input and output variables of the model, the lag intervals between the input and 

output variables, and the modelling patterns should be selected followed by the selection 

of the model structure. Thereafter, the modelling process can be performed.  

The selection of the AI-based models variables was performed in two phases. First, the 

results of the Lt estimated by CCA were employed to select the lag intervals between the 

input and output variables of the AI-based models. The results of the HGA were then 

employed in the second phase to select the lag intervals between the input and output 

variables of the AI-based models. The two phases of the variables selection and modelling 

process were used to explore the ability of improving the performance of AI-based models 

by the accurate timing of their variables based on the Lt estimation. 

Univ
ers

ity
 of

 M
ala

ya



 95 

Finally, the developed models were evaluated and tested based on the performance 

evaluation criteria. These main steps should be performed in the development of any AI-

based models, even used to predict the Q or any other similar hydrological process.  

3.6.1 Variables Determination of AI-based Models  

In the development of AI-based models, determining the adequate input and output 

variables is a key issue to achieve high performance models. In models of Q prediction, 

model variables are commonly selected based on a priori knowledge of river basin 

hydrology, which provides initial indications of potential inputs and outputs (Bowden et 

al., 2005; Maier & Dandy, 2000). The SF in tropical rivers can be characterized as the 

function of several influential variables, including RF, WL and the physical 

characteristics of the river (Firat, 2007).  

In this research, the main objective is to predict Q of downstream area from the hourly 

WL and RF records of upstream station. Thus, the hourly records of WL and RF of 

upstream stations were employed as input variables (independent variables) while, those 

of SF data in downstream station was used as output variable (dependent variables). The 

Equation 3.1 presents the relationship between the Q and influential variables: 

Q(୲ା୲) = f(X(୲)) + e																																																																		(3.1) 

where, Q(t+Lt) represents ahead hourly stream flow; Lt represents the lag time between 

upstream and downstream stations; X(t) is the input vector, which include the input 

variables i.e. RF and/or WL; e is the random error. 

Three scenarios in selecting the input variables of the AI-based models were considered. 

In the first scenario, only the RF records of upstream stations were employed as input 

variables. In the second scenario, only the WL records of upstream stations were 
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employed as input variables while in the third scenario, both of RF and WL records of 

upstream stations were employed as input variables.  

In these three scenarios, two input vectors were applied. In the first, the single antecedent 

record of upstream stations was used. In the second, the average of three antecedent 

records was used. Given six input vectors, every one of them includes deferent 

combinations of input and output variables.  

The single antecedent record of Q in the downstream station is considered another input 

variable of AI-based model that needed to predicts the Q for a head period equal to the Lt 

between the upstream and downstream stations. The estimated Lt between the upstream 

and downstream stations determines the Lag intervals between the input and output 

variables for the six input vectors. Using these input vectors, six combinations of input 

and out variables has been generated as shown in Table 3.7.    

Table 3.7: Input vectors of the AI-based models 

 

 

 

 

 

 

Where, Rfu(t) represents a single records of hourly rainfall intensity at Ulu Yam station,  

Rfu(ŧ) represents the average of three antecedent records of hourly rainfall intensity at Ulu 

No. Input Vector  X(t) Output 

1 Rfu(t), Rfb(t), Rfk(t), Rfa(t), Q(t) Q(t+Lt) 

2 Rfu(ŧ), Rfb(ŧ), Rfk(ŧ), Rfa(ŧ), Q(t) Q(t+Lt) 

3 Wlu(t), Wlb(t), Wlk(t), Wla(t), Q (t) Q(t+Lt) 

4 Wlu(ŧ), Wlb(ŧ), Wlk(ŧ), Wla(ŧ), Q (t) Q(t+Lt) 

5 Wlu(t), Wlb(t), Wlk(t), Wla(t), Rfu(t), Rfb(t), Rfk(t), Rfa(t), Q(t) Q(t+Lt) 

6 Wlu(ŧ), Wlb(ŧ), Wlk(ŧ), Wla(ŧ), Rfu(ŧ), Rfb(ŧ), Rfk(ŧ), Rfa(ŧ), Q(t) Q(t+Lt) Univ
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Yam station, Wlu(t) represents a single records of water level at Ulu Yam station and Wlu(ŧ) 

represents the average of three antecedent records of hourly rainfall at Ulu Yam station.  

Rfb(t) represents a single records of hourly rainfall intensity at Batang Kali station,  Rfb(ŧ) 

represents the average of three antecedent records of hourly rainfall intensity at Batang 

Kali station, Wlb(t) represents a single records of water level at Batang Kali station and 

Wlb(ŧ) represents the average of three antecedent records of hourly rainfall at Batang Kali 

station.  

Rfk(t) represents a single records of hourly rainfall intensity at Kerling station,  Rfk(ŧ) 

represents the average of three antecedent records of hourly rainfall intensity at Kerling 

station, Wlk(t) represents a single records of water level at Kerling station and Wlk(ŧ) 

represents the average of three antecedent records of hourly rainfall at Kerling station.  

Rfa(t) represents a single records of hourly rainfall intensity at Ampang Pecah station,  

Rfa(ŧ) represents the average of three antecedent records of hourly rainfall intensity at 

Ampang Pecah station, Wla(t) represents a single records of water level at Ampang Pecah 

station and Wla(ŧ) represents the average of three antecedent records of hourly rainfall at 

Ampang Pecah station.  

Q(t) represents hourly stream flow at Rantau Panjang station and Q(t+Lt) represents ahead 

hourly stream flow at Rantau Panjang station with prediction time equal to Lt. 

3.6.2 Estimation of the Lag Intervals between the Input and Output Variables  

In determining the input variables of AI-based models to predict Q, the antecedent records 

of WL and RF that significantly affect the predicted Q should be estimated to select the 

most accurate lag intervals between the input and output variables (Sudheer et al., 2002).  
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These records could be accurately selected based on the results of Lt estimation between 

upstream and downstream stations as the hourly records of WL and RF at the upstream 

station represent the input variables of the AI-based model, whereas Q from the 

downstream station represent the output variables of the AI-based model.  

The Lt between the upstream and downstream station was estimated by three approaches 

i.e. empirical formulas, CCA and NGA. The results of Lt are indicative of the potential 

lag intervals between the input and output variables for the AI-based models to predict 

real-time Q in the downstream area. Both of second and third approaches to estimate Lt, 

were employed in the selection of the lag intervals between the input and output variables 

of AI-based models, while, the first approach is performed only to provide an initial 

approximation of Lt between the upstream and downstream stations. 

3.6.3 Integration of the Lag Time Results in the Selection of Models Variables 

The results of Lt estimation were employed to explore the ability of the accurate timing 

of the input and output variables of AI-based models to improve the prediction 

performance of Q. The variables selection of AI-based models and modelling process 

were performed in two phases. First, the results of the Lt estimated by CCA were 

employed to select the lag intervals between the input and output variables of the AI-

based models. The results of the HGA were then employed in the second phase to select 

the lag intervals between the input and output variables of AI-based models. The two 

phases of the variable selection and modelling process were used to explore the ability of 

improving the performance of AI-based models by the accurate selection of their 

variables based on the Lt estimation. 
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3.6.4 Selection of the Modelling Patterns 

About 8753 patterns of hourly records of Q, WL and RF representing a one-year period 

(2011), were used for modelling. The basic statistical characteristics of the data, such as 

minimum, maximum, mean and standard deviation of hourly records of all stations 

employed are shown in Table 3.2.  

For each ANNs-based model, the modelling data was divided into three datasets: 50% for 

training (4387 patterns), 25% for validation (2193 patterns) and 25% for testing the 

models (2193 patterns) (Maier et al., 2010). For each SVM-based models, the modelling 

data was divided into two datasets as 75% for training (6580 patterns) and 25% for testing 

the models (2193 patterns). The modelling patterns should be arranged as matrix in a 

suitable format, such as a spreadsheet for modelling requirements. The modelling matrix 

includes the data combinations of input and output variables as shown in Appendix B 

which presents group of modelling cases for three days. 

The training dataset is utilized to train the models while the validation dataset is used in 

the early stopping of training process to prevent over-fitting and overtraining during the 

training step. The testing dataset serves to assess the performances of the AI-based models 

(Tiwari & Chatterjee, 2010). 

3.6.5 Identification of AI-based Models Structure  

After selecting the appropriate combination of input and output variables for the AI-based 

model and the modelling patterns, the structure of the modelling technique should be 

determined to initiate in the modelling processes. Model structure defines the functional 

form of the connection between inputs and output(s) variables of the model(Maier et al., 

2010). The optimal model structure should compromise between generalization capability 
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and model complexity. Similar procedures are applied for both ANNs- and SVM-based 

models. 

3.6.5.1 ANNs-based Models 

The NN specifications, including network structure, connection scheme and weight 

range, should be selected to develop the ANNs-based models using the techniques (i.e., 

MLP, RBF, and GRNN). The number of layers and number of neurons per layer often 

specify the network framework. Next, the neuron specifications, that is, the activation 

function and its range, should be determined, followed by system dynamics and training 

algorithm selection. The following procedures describe how to identify the structure of 

the ANNs-based models: 

1. Define the NN specifications, such as the network structure, the types of 

connections, the order of connections, and the weight range; 

2. Select the node properties, such as the activation range and the activation 

(transfer) function; 

3. Select the system dynamics, such as the weight initialization scheme, the 

activation-calculating formula, and the learning rule; and 

4. Determine the topology of a NN, including the number of layers and neurons per 

layer. Each neural network should include three layers: input, hidden, and output. 

The input layer represents the input data, and the output layer comprises the model 

output. The hidden layer includes the activation function to provide nonlinearities 

for the NN and may consist of one or more layers with an unlimited number of 

neurons (Maier et al., 2010). 

So far, no scientific approach to selecting the ideal number of hidden layers and neurons 

exists. The optimal number of neurons is identified using a trial-and-error process by 

developing many ANNs-based models and evaluating them. In the case of the ANNs-
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based model with few hidden layers and neurons, high training and error occurs because 

of underfitting and high statistical bias. In the case of the ANNs-based model with many 

hidden layers and neurons, low training error with high generalization error occurs 

because of overfitting and high variance (Abrahart et al., 2004). 

The optimum number of hidden layers of the ANNs-based models is influenced in a 

complex manner by several elements:  

 the number of input variables;  

 the number of data patterns;  

 the complexity of the process to be modelled;  

 the amount of noise in the training data;  

 the type of the ANNs-based model; and 

 the type of training algorithm and activation function (Maier et al., 2010). 

3.6.5.2 SVM-based Models 

An appropriate model structure should be selected first to develop the SVM-based 

models. Usually the construction of the SVM-based model involves similar procedures 

to those of ANNs-based models with some changes based on the differences between the 

modelling mechanisms of the two approaches. The following procedures describe how to 

identify the structure of the SVM-based models: 

1. Select the appropriate features of the SVM-based model. This step is critical and 

based on the goal of the model; 

2. Select the training constant and capacity of the model. They should be scaled 

within an appropriate range based on the size and complexity of the training data; 

3. Select a suitable kernel function. Some kernel functions should be tested before 

selecting the best one; and 
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4. Select the best parameters C and gamma. C is the penalty coefficient used to 

define how much error can be tolerated and gamma is related to the kernel 

function being chosen, influencing the final space distribution. These two 

parameters influence the performance of SVM-based model and have to be 

selected carefully (X. Chen et al., 2013).  

3.6.6 Models Training  

Once the structure of the AI-based model is identified, the conditions for stopping the 

training process should be fixed prior to beginning the training process. Some of the 

conditions that control the training are the maximum number of iterations, maximum time 

of training, target performance that specifies the tolerance between the observed and the 

predicted Q, and minimum learning rate.  

The training process of the ANNs- and SVM-based model usually involves similar 

procedures with some changes based on the differences between the modelling 

mechanisms of the two approaches. 

The training process in the ANNs-based models includes the following steps: The input 

variable records are inserted into the input layer and then weighted and forwarded to the 

hidden layer. The neurons in the hidden layer create outputs by applying an activation 

function to the sum of the weighted input values. Next, the outputs of the hidden layer are 

weighted by the connections between the hidden and output layers. The desired results 

are finally produced in the output layer. The ANNs-based models reach the optimum 

prediction performance by continuously modifying the interconnected weights until good 

accord is achieved between the observed and predicted Q with minimum residuals 

between them. 
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The training process in the SVM-based models includes the following steps: The input 

variable records are inserted into the input layer and then passed on to the hidden layer to 

create outputs by applying a kernel function to the sum of the input values. Next, the 

outputs of the hidden layer are weighted, and the desired results are finally produced in 

the output layer. The SVM-based models reach the optimum prediction performance by 

changing the kernel function and modifying the values of SVM parameters continuously 

until a good accord is achieved between the observed and the predicted Q with minimum 

residuals between them (X. Chen et al., 2013).   

3.6.7 Models Calibration  

The ANNs-based model is still under training to reach the best model performance. 

However, the NN may “memorize” the training set instead of learning it. Calibration is 

employed to prevent memorization from occurring. Calibration is used to indicate that 

the NN has trained enough, thereby ending the iteration process. This process can be 

performed based on best correlation or minimum error. The calibration process is not 

required in the SVM-based models. 

3.6.8 Performance Evaluation Criteria 

The performance of the models was assessed based on three criteria: R, R2, and MAE. R 

is a statistical technique used to indicate the strength and direction of a linear relationship 

between two groups of data representing two variables or observed and predicted data 

(i.e. the observed and predicted Q) (Perugu et al., 2013). The most widely used is the 

Pearson correlation coefficient (R).  

It is obtained by dividing the covariance of the two variables by the product of their 

standard deviations, as described in Equation 3.2  
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R =
∑ (x୧ − xത) (y୧ − yത)୬
୧ୀଵ

ට∑ (x୧ − xത)ଶ∑ (y୧ − yത)ଶ ୬
୧ୀଵ  ୬

୧ୀଵ

																																																			(3.2) 

where n is the number of pairs of data, and x and y are two variables (i.e. the observed 

and predicted Q).  

The R values fall between +1 and −1 and indicate the strength of the linear relationship 

between the variables; R = 0 signifies no linear relationship between the variables. R is 

+1 in a perfectly increasing linear relationship circumstance, whereas R is −1 in a 

perfectly decreasing linear relationship instance.  

R2 describes the variance between the two groups of data or two variables (i.e. observed 

and predicted Q). It indicates how well the data fit a model. It is a statistic 

parameter employed to measure of how well real-world data are simulated by the model. 

R2 values between 0 and 1, A value of 0 indicates no correlation, while a value of 1 mean 

that the model can explain all of the observed variance (Besaw et al., 2010). 

MAE is used to evaluate the residual or the differences between the two groups of data 

or two variables (i.e. the observed and predicted Q). Theoretically, the minimum value of 

MAE is zero, meaning the model represents a perfect fit, something that is not easy to 

achieve. MAE has no maximum value (Davydenko & Fildes, 2014; Schulmerich et al., 

2015). The following equation represents MAE: 

MAE =
∑ หX୭,୧ − X୫,୧ห୬
୧ୀଵ

n
																																																																					(3.3)		 
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3.6.9 Procedural Steps in Building AI-based Models 

In this research, both ANNs- and SVM-based models were designed and built using the 

STATISTICA software. In addition to both basic and advanced statistics, STATISTICA 

offers specialized tools for developing ANNs- and SVM-based models. The procedural 

steps in building and applying for SVM-based models and ANNs-based models vary 

slightly according to the employed tool. Using STATISTICA, the procedural steps 

involves the following procedures: 

3.6.9.1 Data Importation 

The input modelling data matrix which includes the modelling patterns should be fed into 

the program so that the model can be trained by the data entry tool. The data must be in a 

suitable format, such as a spreadsheet. The modelling data matrix includes the cases that 

the model uses in the training and testing processes. 

3.6.9.2 Problem Definition 

The input (independent) and output (dependent) variables for the model should be defined 

before conducting the training. The modelling process is performed in two phases. In first 

phase, the results of the Lt estimated by CCA are applied in the selection of the lag 

intervals between the AI-based models variables. Thereafter, the results of HGA are 

applied in the second phase. The input and output variables of the first and second 

modelling phase are described in chapter four. 

3.6.9.3 Data Division 

The modelling data cases for the ANNs-based models are divided into three datasets: 50% 

for training (4387 patterns), 25% for validation (2193 patterns) and 25% for testing the 

models (2193 patterns). The modelling data for the SVM-based models are divided into 

two datasets: 75% for training (6580 patterns) and 25% for testing the models (2193 
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patterns). The patterns of theses sets are randomly selected, and the modeller can change 

these percentages. 

3.6.9.4 Model Structure Design 

The appropriate structure of the models should be selected for the employed techniques. 

Four AI techniques (i.e., MLP, RBF, GRNN, and SVM) are employed in the two 

modelling phases, resulting in 32 AI-based models to predict Q. This step was previously 

presented in Section 3.6.5.  

3.6.9.5 Model Training  

Once the structure of the models is designed, the software becomes ready to start training 

process. The model continuously trains until one of the stopping conditions is achieved, 

in which case the training process is stopped, as mentioned in Section 3.6.6. 

3.6.9.6 Model Testing  

After stopping the training process, the model is then tested using a group of cases were 

not used in the training session. Thereafter, the model performance is assessed based on 

three criteria: R, R2, and MAE. The model is then ready to be applied to predict any other 

values of input variables.  

3.6.10 Flowchart of the Modelling Process Using STATISTICA Program 

The main procedural steps in building AI-based models using STATISTICA are 

described in Figure 3.13. 
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Figure 3.13: Flowchart of the procedural steps in building AI-based Models using 

STATISTICA program 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Introduction 

Chapter 4 presents the results and discussion of the research. It contains a detailed 

hydrological description of the Selangor River basin, including an analysis of the long-

term changes in the SF regimes of the Selangor River basin over a 50-year period from 

1960 to 2010 and the results of the Lt estimation between the upstream and downstream 

stations, which are required in determining the input and output variables of the AI-based 

models and the lag intervals between them.  

Chapter 4 also presents the results and discussion of the two phases of the Q modelling 

process, including the description of the six AI-based models that were trained and 

developed by four AI techniques, namely, MLP, RBF, GRNN and SVM, resulting in the 

development of 32 AI-based models to predict the real-time Q. The results include the 

specifications of the AI-based models, the performance evaluation criteria (i.e., R, R2 and 

MAE) of the AI-based models and the comparison between the observed and the 

predicted Q via the AI-based models.  

The results also include exploring the ability of improving the performance of AI-based 

models by the accurate selection of the lag intervals between the input and output 

variables of the model based on the estimation of the Lt. A description of some 

hydrological applications of the developed AI-based models are also included and 

discussed in Chapter 4.  

 

Univ
ers

ity
 of

 M
ala

ya



 109 

4.2 Results of the Long-Term Changes of Stream Flow Regime 

The results include the variations among nine variables describing the annual SF, the 

changes in monthly SF and changes in the annual duration of high and low SF events. 

The analysis was performed based on two time scales: yearly and sub-periodic. The sub-

periods were estimated by segmentation of the study period into seven sub-periods using 

two methods, namely the change-point test and direct method.  

Significant changes were observed in the nine variables as well as the monthly SF and 

the yearly duration of high and low SF with respect to time. The observed variations 

verified the presence of long-term variations in SF regime, which will raise the possibility 

of floods and droughts happening in future. 

4.2.1 The Changes in the Hydrological Variables of Annual Stream Slow  

4.2.1.1 The Yearly Changes  

Investigation of the changes in the nine variables over 50-year period from 1961 to 2010 

was performed firstly based on a yearly time scale.  

Figure 4.1 presents three time series of SF1, SF2 and SF3. There is no apparent trend in 

the three variables. This figure demonstrates almost negligible variations and a minor 

trend in the three variables, although it is noticed that the values of the three variables get 

farther from the mean values with respect to time.  

The time series of SD, CV, RA and PR over the 50-year period from 1961 to 2010 are 

shown in Figure 4.2. According to this figure, no clear trend was noticed in the SD, CV, 

RA and PR variables to describe the dispersion of annual SF data.  
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Generally, the outcomes of the investigation process based on a yearly time scale didn’t 

provide clear trend and results, which justify the necessity to the investigation based on a 

sub-periodic time scale as reached via two segmentation methods described in Chapter 3.  

 

Figure 4.1: Changes in mean annual flow, maximum monthly stream flow per year and 

minimum monthly flow per year over the study period 
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Figure 4.2: Changes in hydrological variables over the study period: (a) standard 

deviation (SD), (b) the range between maximum and minimum stream flow (RA), (c) 

coefficient of variation (CV) and (d) the Pluviometric Ratio (PR) 
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4.2.1.2 The Sub-Periodic Changes 

 The Changes over the Sub-Periods Obtained via the Change-Point Test 

The variations of the nine hydrological variables over the sub-periods reached by the 

change-point test are presented in Figure 4.3. Although the analysis shows almost 

negligible variations in SF1 over the sub-period as presented in Figure 4.3 (a), the SF2 

gradually increased, particularly from the fourth sub-period. 

According to this result, the occurrence of high SF increased in the latest sub-periods. 

Such variations result in appropriate hydrological circumstances, whereas flood events 

will possibly take place more often in future.  

Although the SF2 generally increased, it is observed that the SF3 declined, especially 

from the fifth sub-period. Evidently, low SF occurrence increased in the latest sub-

periods, leading to suitable hydrological conditions for droughts to occur. As such, 

drought periods may happen more frequently in future.  

Figure 4.3 (b) indicates that the RA increases significantly with respect to time.  Figure 

4.3 (b) also presents an incessant increase of SD with respect to time. In addition, it is 

noted that the SF gets farther from the SF1, providing another indication of the increasing 

probability of high and low SF events occurring in future. 

In the early sub-periods, the PR values are close to 1 as can be seen in Figure 4.3 (c), 

indicating that the dispersion in SF is negligible. In the later sub-periods, there is an 

incessant increment in PR. The PR is equal to 2.89 and 2.35 in the last two sub-periods, 

meaning that annual variability of SF is becoming very high. This is another evidence of 

increased probability of high and low SF events. Figure 4.3 (c) indicates a constant 

increase in the CV with respect to time. The CV in the last two sub-periods are doubled 

compared to its value in the first two sub-periods.  
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Obviously, the annual SF was stay around the mean in early sub-periods. Significant 

dispersion started to occur in the annual SF and the nine variables in the later sub-periods. 

These analyses therefore, verify the presence of considerable variations in the annual SF 

regime of the Selangor River basin along with the fact that these variations can produce 

appropriate hydrological circumstances for the increased probability of high and low Sf 

events occurring in future.  
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Figure 4.3: Variations in hydrological variables over the sub-periods obtained by 

change-point test: (a) mean, maximum and minimum annual flow, (b) standard 

deviation and range between maximum and minimum annual stream flow and (c) 

coefficient of variation and Pluviometric ratio 
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 The Changes over the Sub-Periods Obtained via the Direct Technique 

The variations of hydrological variables over the sub-periods reached by direct technique 

are illustrated in Figure 4.4. Generally, the results of the hydrological variable variations’ 

over the sub-periods obtained by direct method are comparable to those of change-point 

test.  

This symmetry emphasizes the results regarding the long-term variations of annual SF 

and provides further evidence about formation appropriate hydrological circumstances 

for the increased probability of high and low SF events occurring in future. 
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Figure 4.4: Changes in hydrological variables over the sub-periods obtained by direct 

technique: (a) mean, maximum and minimum annual stream flow, (b) standard 

deviation and range between maximum and minimum annual stream flow and (c) 

coefficient of variation and Pluviometric ratio. 
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4.2.2 The Changes in the Monthly Stream Flow 

4.2.2.1 The Yearly Changes 

Investigation of the changes in the monthly Sf over 50-year period from 1961 to 2010 

was performed firstly based on a yearly time scale. According to results, no significant 

change was observed in the monthly SF. However, slight decline was noticed in monthly 

SF for January, May, November and December, whereas slight increase was noticed in 

monthly SF for March, April, July, August and September. Almost no changes was 

noticed in monthly SF for the other months. Figure 4.5 presents changes of monthly SF 

of four months (January to April) over 50-year period from 1961 to 2010.  

Generally, the results of the yearly investigation of monthly SF didn’t provide clear trend 

and results, which justify the necessity to the investigation based on a sub-periodic time 

scale as reached via two segmentation methods described in Chapter 3.  

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 119 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 120 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 121 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 122 

 

 

 

Figure 4.5:  Changes in monthly stream flow over the study period 

(a) January, (b) February, (c) March, (d) April, (e) May, (f) June, (g) July, (h)  

August, (i) September, (j) October  (k) November and (l) December 
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4.2.2.2 The Sub-Periodic Variations 

 The Changes over the Sub-Periods Obtained via the Change-Point Test 

The Variations of the mean monthly SF of the sub-periods reached by the change-point 

test over the 50-year period from 1961 to 2010 are presented in Figure 4.6.  

According to results, clear changes were observed in the mean monthly SF of the sub-

periods over the study period particularly in January, May and from September to 

December, whereas in other months, no significant change was observed. 

 The Changes over the Sub-Periods Obtained via the Direct Technique 

The Variations of the mean monthly SF of the sub-periods reached by the direct technique 

over the 50-year period from 1961 to 2010 are presented in Figure 4.7. Generally, these 

changes are very similar to those changes perceived by means of the change-point test. 

This resemblance emphasizes the result regarding variations in monthly SF over the study 

periods. 
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Figure 4.6: Changes in monthly stream flow over the sub-periods obtained by the 

change-point test 

 

 

Figure 4.7: Changes in monthly stream flow over the sub-periods obtained by the direct 

technique 
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4.2.3 The Changes in High and Low Stream Flow Duration 

4.2.3.1 The Yearly Changes 

The yearly duration of high and low SF events were investigated over 50-year period 

from 1961 to 2010. The results include an evaluation of the changes in high and low SF 

duration and trend testing.  

The high SF duration analysis was investigated based on three levels: danger level, when 

the SF is higher than 250 m3/s; warning level, when the SF is above 180m3/s; and alert 

level, when the SF is more than 160 m3/s. The three levels are as determined by the 

Department of Irrigation and Drainage (DID). The low SF duration analysis was 

investigated in a single level, which is when the SF falls below 14.5 m3/s which denotes 

about 25% of the average annual SF over 50-year period from 1961 to 2010.  

Figures 4.8 show the annual duration of the three levels of high SF while Figures 4.9 

shows the annual duration of low SF. There is a noteworthy rise in the danger level 

duration, particularly in the last decade, while slight change occurs in both of duration of 

warning and alert levels. Minor change was also observed in the yearly duration of the 

low SF.  

For more clear results, the three years moving average of annual duration of the high and 

low SF were employed to investigate the overall trend of changes over the 50-year period 

from 1961 to 2010. Figure 4.10 presents the three years moving average of the annual 

duration of the three levels of high while Figure 4.11 presents the three years moving 

average of the annual duration of low SF over 50 years. The three moving average also 

shows significant increment in the duration of danger level. Figure 4.9 also displays a 

minor increase in the duration of warning level, almost no variation in the duration of 

alert level and a minor decline in the duration of low SF. Such changes in the yearly 
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duration of SF danger level results in formation of suitable hydrological circumstances, 

whereas the flood events would probably take place more frequently in future. 
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Figure 4.8: Yearly duration of high stream flow over 50 years: (a) danger level, (b) 

warning level and (c) alert level 

 

Figure 4.9: Yearly duration of low stream flow over 50 years 
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Figure 4.10: Three years moving average of the yearly duration of high and low stream 

flow: (a) danger level, (b) warning level and (c) alert level  

 

Figure 4.11: Three years moving average of the yearly duration of low stream flow 
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4.2.4 General Discussion about the Analysis of Stream Flow Regimes 

The long-term changes analysis contains an investigation of the variations in nine 

variables describing annual SF.  The changes in the monthly SF and annual duration of 

high and low SF were included in the investigation. The analyses were performed based 

on two time scales namely, yearly and sub-periodic changes. The sub-periods were 

achieved by segmentation of the study period into 7 sub-periods by two methods namely, 

change-point test and direct technique.  

Even the results shown almost minor variations in SF1 over the study period, the SF2 

generally increased while the SF3 declined with respect to time. It was also noticed that 

the variables describing the dispersion in SF data, incessantly increased with respect to 

time. No significant change was observed in the monthly SF, whereas an obvious 

increment was noticed in the annual duration of danger level of SF while a slight 

increment was noticed in the annual duration of both warning and alert levels. A slight 

decline was observed in the yearly duration of low SF. According to these outcomes, two 

main results were drawn as follows: 

 Obvious variations were detected in the annual SF, monthly SF and annual duration 

of high SF over the 50-year periods from 1961 to 2010. These variations verified the 

existence of the long-term variations in the SF regime. 

 The verified long-term variations in SF regime may potentially result in the formation 

of appropriate hydrological circumstances that can increase the probability of high 

and low SF events occurring in future. 
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4.3 Lag Time Estimation 

Three approaches were applied to estimate the Lt: (1) empirical formulas, (2) CCA, and 

(3) NGA. The results of both the second and third approaches were employed in the SF 

modelling process, particularly in the selection of the lag intervals between the input and 

the output variables of the AI-based models. The first approach was performed only to 

provide an initial approximation of the Lt.  

The results of the CCA were applied in the first phase of the modelling process, and those 

of HGA were applied in the second phase of the modelling process. The results of HGA 

were also employed in deriving new empirical formulas to estimate the Lt between the 

RF upstream station and the SF downstream station, which are presented in this section. 

4.3.1 Lag Time Estimation using the empirical formulas 

The estimated Lt between the upstream and downstream stations using the 

aforementioned empirical formulas in Chapter 3 is shown in Table 4.1. The mean 

estimated values (mean of the 4 empirical formulas) of the Lt between the downstream 

station and WL at Ulu Yam, Batang Kali, Kerling and Ampang Pecah stations are 12.4, 

11.58, 12.6 and 13.90 hr, respectively.  

The results of Lt estimation demonstrate a remarkable difference depending on the 

empirical formula Similar variations in the estimated Lt values were identified throughout 

several earlier studies (Grimaldi et al., 2012). For example Sharifi and Hosseini (2011)  

found that the value of Lt estimated by the different empirical formulas can vary up to 

500%.  
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Table 4.1: The estimated Lag time with the four empirical formulas 

Station Name 
Estimated Lt by Empirical formulas (hr) 

Kirpich Johnstone Carter Viparelli 

Ulu Yam 18.07 12.71 8.11 10.69 

Batang Kali 16.63 11.44 7.60 10.64 

Kerling 18.04 11.74 8.10 12.47 

Ampang Pecah 20.24 13.25 8.86 13.22 
 

 

4.3.2 Lag Time Estimation Using the Correlation Coefficient Approach 

The results of the CCA for the WL and RF stations are presented in Figure 4.12. The 

highest R values for the WL and RF stations are around 12 and 17 hr, respectively. R is 

generally not high, and it can be explained by the high complexity of the relation between 

the WL, RF, and Q and by the influence of other hydrological parameters on SF (Chang 

et al., 2014).  

Although R is generally weak, it is useful in selecting the lag intervals between the input 

and output variables of the AI-based models. The estimated Lt using this approach was 

utilized to select the lag intervals between the input and output variables of the AI-based 

models in the first phase of the modelling process.  
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Figure 4.12: Correlation analysis between between hourly stream flow records in 

downstream station and the hourly records of upstream station in different time steps: 

(a) Water level stations and (b) Rainfall stations 
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4.3.3 Lag Time Estimation by the Hydrological Graphical Approach 

The HGA was employed to estimate the Lt between the WL and RF upstream stations 

and the downstream station. 

4.3.3.1 Lag time between Water Level Upstream Stations and the Downstream 

Station 

A total of 134 WL–SF events were employed to estimate the Lt between four WL 

upstream station and the downstream SF stations by the NGA. Table 4.2 lists the 

estimated Lt of ten events of the four stations between the downstream SF and upstream 

WL stations. The estimated Lt of all the events (134) between the SF and WL stations is 

presented in Appendix C. 

A basic statistical analysis of the results of the Lt between the SF and WL stations is 

presented in Table 4.3. It includes the mean, standard deviation (SD), coefficient of 

variation (CV), maximum and minimum.  

The mean values of the Lt between the SF and WL stations at Ulu Yam, Batang Kali, 

Kerling and Ampang Pecah are 12.39, 12.38, 13.18 and 13.16 hr, respectively. The results 

suggest that the maximum estimated value of Lt that occurred at the Ampang Pecah 

station was 18 hr, whereas the minimum estimated value was 8 hr. Table 4.3 shows that 

the maximum Lt estimated values are 17, 17, 17 and 18 hr for the Ulu Yam, Batang Kali, 

Kerling and Ampang Pecah stations, whereas the minimum values are 9, 9, 9 and 8 hr for 

the same stations, respectively.  

The SD of the estimated Lt for all the stations is similar, with the highest SD value (2.42) 

at Kerling and the lowest SD value (1.96) at Batang Kali. Likewise, the CV of the Lt for 

all the stations is similar, with the highest CV value (0.19) at Ulu Yam and Kerling and 

the lowest SV value (0.15) at Ampang Pecah. 
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Table 4.2: The estimated lag time of ten events between the downstream stream flow 

station and water level upstream stations 

 

Table 4.3: Basic statistical analysis of the hydrological graphical approach results of the 

lag time between the downstream station and water level upstream stations 

Station Ulu 
Yam 

Batang 
Kali 

Kerling Ampang 
Pecah 

Mean 12.39 12.38 13.18 13.16 

SD 2.38 1.96 2.42 2.03 

CV 0.19 0.16 0.18 0.15 

Mean + SD 14.77 14.35 15.60 15.19 

Mean - SD 10.01 10.42 10.76 11.12 

Maximum 17.00 17.00 17.00 18.00 

Minimum 9.00 9.00 9.00 8.00 

St.  Ulu Yam St.  Batang Kali St.  Kerling St.  Ampang 
Pecah 

Q WL Lt Q WL Lt Q WL Lt Q WL Lt 

m3/s m hr m3/s m hr m3/s m hr m3/s m hr 

102.6 35.3 14.0 102.6 33.8 15.0 102.6 45.3 15.0 102.6 50.4 14.0 

183.1 36.1 17.0 183.1 34.5 13.0 183.1 44.8 10.0 203.5 50.4 16.0 

183.1 36.1 16.0 183.1 34.5 12.0 183.1 44.8 11.0 198.9 50.1 14.0 

203.5 34.4 13.0 203.5 34.4 16.0 203.5 45.4 16.0 137.1 50.1 13.0 

113.6 33.7 14.0 113.6 33.0 10.0 113.6 45.8 17.0 110.9 50.0 15.0 

141.8 34.4 9.0 136.8 33.4 10.0 136.8 45.2 14.0 97.6 50.0 11.0 

198.9 34.9 13.0 141.8 33.6 12.0 137.1 45.5 12.0 184.7 50.1 11.0 

137.1 34.8 13.0 198.9 33.6 14.0 110.9 44.5 11.0 189.3 50.1 13.0 

110.9 33.4 11.0 137.1 33.6 10.0 97.6 44.6 12.0 77.9 50.2 12.0 

97.6 33.8 10.0 110.9 33.0 11.0 180.7 44.4 15.0 168.7 50.2 15.0 
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4.3.3.2 Lag time between Rainfall Upstream Stations and the Downstream Station 

A total of 100 of RF-SF events were applied to estimate the Lt between the downstream 

SF station and four RF upstream stations by NGA. Table 4.4 presents the estimated Lt of 

ten events between the downstream SF and four upstream RF stations. The estimated Lt 

of all the events (100) between the SF and RF stations is presented in Appendix C. 

A basic statistical analysis of the hydrological estimation of the Lt between the SF and 

RF stations is presented in Table 4.5. It includes the mean, standard deviation (SD), 

coefficient of variation (CV), maximum and minimum.  

The mean values of the Lt between the downstream station and RF stations, Ulu Yam, 

Batang Kali, Kerling and Ampang Pecah are 14.44, 14.70, 15.05 and 14.74 hr, 

respectively. Table 4.5 shows that the maximum Lt estimated values are 20, 20, 21 and 

21 hr for the Ulu Yam, Batang Kali, Kerling and Ampang Pecah stations, whereas the 

minimum values are 10, 10, 9 and 9 hr for the same stations, respectively.  

The standard deviation (SD) of the estimated Lt for all the stations is similar, as the 

highest SD value for Ampang Pecah is 2.83 and the lowest for Kerling is 2.5. The 

coefficient of variation (CV) for Lt is also very similar for all stations, with the highest 

CV value at Ampang Pecah and Ulu Yam stations (0.19) and at Kerling (0.17).  
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Table 4.4: The estimated lag time of ten events between the downstream stream flow 

station and rainfall upstream stations 

 

Table 4.5: Basic statistical analysis of the estimated Lag time between downstream 

station and rainfall upstream stations. 

Station Ulu Yam Batang 
Kali Kerling Ampang 

Pecah 

Mean 14.44 14.70 15.05 14.74 

SD 2.76 2.58 2.50 2.83 

CV 0.19 0.18 0.17 0.19 

Maximum 20.00 20.00 21.00 21.00 

Minimum 10.00 10.00 9.00 9.00 

Mean + SD 17.21 17.28 17.55 17.57 

Mean - SD 11.68 12.12 12.55 11.91 

 

 

St.  Ulu Yam St.  Batang Kali St.  Kerling St.  Ampang Pecah 

Q RF Lt Q RF Lt Q RF Lt Q RF Lt 

m3/s mm/hr hr m3/s mm/hr hr m3/s mm/hr hr m3/s mm/hr hr 

102.6 17.5 16.0 102.6 20.5 17.0 136.8 13.4 15.0 167.0 30.1 16.0 

171.6 19.9 14.0 183.1 18.5 19.0 141.8 4.1 16.0 113.6 13.1 17.0 

136.8 10.3 17.0 167.0 9.5 15.0 103.2 43.2 9.0 171.6 42.4 12.0 

141.8 37.3 15.0 136.8 9.4 15.0 198.1 40.0 14.0 136.8 11.4 15.0 

79.5 26.6 14.0 141.8 11.7 15.0 198.8 16.0 12.0 141.8 14.3 16.0 

103.2 19.2 10.0 79.5 36.6 14.0 137.1 14.0 13.0 198.1 3.3 16.0 

198.1 7.6 16.0 198.1 5.8 16.0 77.9 24.0 16.0 198.8 22.3 12.0 

198.8 49.3 12.0 198.8 53.9 12.0 168.7 7.0 15.0 184.3 24.8 10.0 

184.3 23.9 10.0 184.3 32.5 10.0 148.5 7.0 21.0 134.6 20.0 10.0 

137.1 6.3 14.0 137.1 10.5 14.0 74.3 10.0 15.0 170.9 25.7 9.0 
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4.3.4 New Empirical Formulas to Estimate the Lag Time 

The input (independent) variables of the empirical formulas are Rfp, Rf48, Qp, and Q48, 

and the output (dependent) variable is the Lt. The linear and nonlinear empirical formulas 

are directly derived using the estimated Lt by the HGA approach from 100 high SF-RF 

events. 

Based on the estimated Lt between the upstream RF and downstream SF stations by the 

HGA approach from 100 high SF-RF events, the four hydrological variables were 

calculated to construct combination patterns of variables for every event to employ these 

combinations in deriving new empirical formulas. 

The results of the combinations of ten events for Rfp, Rf48, Qp, and Q48 and the estimated 

Lt between the Ulu Yam and Rantau Panjang stations are presented in Table 4.6. The 

results of the combinations of Rfp, Rf48, Qp, and Q48 and the estimated Lt of all the events 

between the downstream SF and four RF upstream stations are presented in Appendix C.  
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Table 4.6:  Results of Ten events: Peak rainfall intensity, previous 48 hour rainfall, 

peak stream flow, previous 48 hour stream flow and the Lt between the Ulu Yam station 

and Rantau Panjang station. 

Qp Q48 RFp RF48 Lt 

m3/s m3/s mm/hr mm/hr hr 

102.6 58.3 17.5 36.0 16.0 

171.6 93.3 19.9 27.0 14.0 

136.8 73.4 10.3 43.8 17.0 

141.8 110.8 37.3 100.0 15.0 

198.1 123.8 7.6 79.8 16.0 

198.8 99.9 49.3 92.0 12.0 

184.3 146.0 23.9 131.1 10.0 

137.1 84.8 6.3 16.0 14.0 

110.2 76.9 18.2 44.9 12.0 

120.7 92.1 14.9 27.0 13.0 

 

4.3.4.1 Linear Empirical Formula 

A new linear empirical formula was derived to estimate the Lt between the RF upstream 

and downstream stations (Equation 4.1). The independent variables of the formula are 

Rfp, Rf48, Qp, and Q48, and the dependent variable is Lt. A moderate agreement between 

the observed lag time (Lto) and estimated lag time (Lte), as shown in Figure 4.13    

Lt = 15.95+0.0221*Qp-0.024*Q48-0.067*Rfp-0.020*Rf48                                           (4.1) 

Table 4.7 shows the p-value and R between the hydrological variables and the Lte by the 

linear formula. The R value between Lto and Lte is 0.5194. The significance levels (p-

values) of Qp, Q48, Rfp and Rf48 are 0.0574, 0.0002, 0.00 and 0.00, respectively. It reveals 

the presence of a relationship between all the hydrological variables and Lt, excluding Q. 
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The regression analysis results between Lte and Qp, Q48, Rfp, and Rf48 are −0.1957, 

−0.3678, −0.7944 and −0.6179, respectively.  

Figure 4.14 shows the correlation between the hydrological variables and Lte. The 

regression analysis results between Lte and the hydrological variables signify that Lte is 

strongly inversely proportional to Rfp and Rf48, whereas it is moderately inversely 

proportional to Q48. Based on the results, Lte is directly proportional to Qp through a 

weak–strength relationship.  
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Figure 4.13: Correlation between the observed lag time and the estimated lag time by 

linear equation 
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Figure 4.14: Hydrological variables versus estimated lag time by the linear equation: 

(a) peak stream flow, (b) previous 48 hour stream flow, (d) peak rainfall intensity and 

(c) previous 48 hour rainfall. 
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4.3.4.2 Nonlinear Empirical Formula 

A new nonlinear empirical formula was derived to estimate the Lt between the upstream 

and downstream stations (Equation 4.2). Several nonlinear formulas were derived to 

estimate Lt, and a polynomial to-the-third-degree equation proved the highest estimation 

performance. The R value between Lto and Lte is 0.6306. The independent variables of 

the formula are Rfp, Rf48, Qp and Q48 and the dependent variable is Lt. A very good 

agreement was found between the Lto and Lte as shown in Figure 4.15.    

Lt=24.08+0.26*Qp-.0019*Qp2+0.4698E-5*Qp3-0.73*Q48+0.0082*"Q482-0.2908E-4*Q483-

0.19*Rfp+0.0045*Rfp2-0.4249E-4*Rfp3+7.37*Rf48-5.4997 *Rf48
2+0.9818*Rf48

3                                 (4.2) 

Table 4.7 shows the p-value and R between the hydrological variables and the Lte by the 

polynomial equation. The R between Lto and Lte was 0.6306. The significance levels (p-

values) of Qp, Q48, Rfp and Rf48 are  0.1187, 0.0028, 0.00 and 0.00, respectively. It reveals 

the existence of relationship between all the hydrological variables and Lt, excluding Qp. 

The regression analysis results between Lte and Qp, Q48, Rfp and Rf48 are 0.1612, −0.3029, 

−0.6543 and −0.5091 respectively. 

Figure 4.16 shows the correlation between the hydrological variables and Ltp. The results 

of the regression analysis between Lte and the hydrological variables indicate that Lte is 

strongly inversely proportional to Rfp and Rf48, whereas it is moderately inversely 

proportional to Q48. Based on the results, Lte is directly proportional to Qp through a weak-

strength relationship.  
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Table 4.7: p-value and correlation coefficient between the hydrological variables and 

the estimated lag time by the linear and polynomial formula. 

Variable 
Polynomial equation Linear equation  

p-level r p-level r 

Qp 0.1187 0.1612 0.0574 0.1957 

Q48 0.0028 -0.3029 0.0002 -0.3678 

RFp 0.00 -0.6543 0.00 -0.7944 

RF48 0.00 -0.5091 0.00 -0.6179 
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Figure 4.15: Correlation between the observed lag time and the estimated lag time by 

the polynomial equation Univ
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Figure 4.16: Hydrological variables versus the estimated lag time by the polynomial 

equation: (a) peak stream flow (b) previous 48 hour stream flow, (c) peak rainfall 

intensity, and (d) previous 48 hour rainfall. 
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4.3.5 General Discussion about the Lag Time Estimation 

Three approaches were applied to estimate the Lt: the empirical formulas, CCA, and 

NGA. The results of both the second and third approaches were employed in the SF 

modelling process, particularly in the selection of the lag intervals between the input and 

output variables of AI-based models. The first approach was performed only to provide 

an initial approximation of the Lt.  

The mean values of estimated Lt obtained with the four empirical formulas between the 

downstream station and the WL stations at Ulu Yam, Batang Kali, Kerling and Ampang 

Pecah stations are 12.4, 11.58, 12.6 and 13.90 hr respectively. The R between the results 

of the HGA and empirical formulas methods was 0.72, signifying a good accord among 

results. However, the R between the Lt estimated in the two approaches is not an indicator 

of which method provides the more accurate estimation.  

The Lt estimation results of 100 RF-SF events by the HGA were applied in the derivation 

of two empirical formulas to estimate the Lt between upstream and downstream stations. 

The input (independent) variables of the empirical formulas are Rfp, Rf48, Qp, and Q48, 

and the output variable (dependent) is the Lt between the upstream and downstream 

stations. The first empirical formula is a linear equation, and the second is a polynomial 

to the third degree with R between the observed and estimated Lt 0.5194 and 0.6306, 

respectively.  

The derived empirical formulas significantly simplify the Lt estimation process by a quick 

and easy approach directly based on the RF and SF records without the necessity of 

identifying the full description of all the parameters that affect the Lt. The empirical 

formulas are applicable only for the Selangor River basin, but they can be modified for 

other humid tropical river basins based on the results of the Lt estimation by the NGA, 

which is applicable for all humid tropical rivers.  
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The HGA and derived empirical formulas have the potential to be used in many future 

hydrological applications, especially those related to the surface water hydrology and 

river basin integrated management. The results of the CCA were applied in the first phase 

of the modelling process, and those of HGA were applied in the second phase of the 

modelling process. 

4.4 AI-based Models to Predict Real-time Hourly Stream Flow 

The modelling process was performed in two phases. First, the results of the Lt estimated 

by CCA were applied to select the lag intervals between the input and output variables of 

the AI-based models, whereas the results of the HGA were then applied to in the second 

phase of the modelling process. Three scenarios in selecting the input variables of the 

models were considered. Two input vectors were applied for these three scenarios. Given 

six input vectors, every one of them includes different combinations of input and output 

variables.  

In the first phase of the modelling process, six models with different combinations of 

input variables were trained and developed by four AI techniques—MLP, RBF, GRNN, 

and SVM—resulting in the development of 24 AI-based models to predict the Q. In the 

second phase of the modelling process, only two models, those that achieved the highest 

R among the six models of the first phase, were selected for the second phase, resulting 

in the development of eight AI-based models to predict the Q. The total number of 

developed AI-based models throughout the two modelling phases is 32. 

The performances of the developed models were assessed based on training, testing and 

overall data set performances. The best-fitting model for predicting the Q is determined 

based on the performance evaluation of the testing data sets. The performance evaluation 

criteria are mentioned in Section 3.6.8. 
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4.4.1 AI-based Models: First Phase of the Modelling Process 

In the first phase of the modelling process, six AI-based models with different 

combinations of input variables were selected to predict the Q in the Rantau Panjang 

station. The six models were trained and developed by four AI techniques—MLP, RBF, 

GRNN, and SVM—resulting in the development of 24 AI-based models to predict the Q, 

as shown in Table 4.8.  

The lag intervals between the input and output variables of the AI-based models were 

selected based on the results of the CCA to estimate the Lt between the upstream and 

downstream stations. The different combinations of the input and output variables of six 

AI-based models are shown in Table 4.9. Figure 4.17 shows the lag intervals between the 

input and output variables for the AI-based models of the first modelling phase.  

Table 4.10 shows a group of 15 modelling cases of M6 as example of 8872 modelling 

cases. A larger group of modelling cases of M6 for three days is presented in Appendix 

B. 

Table 4.8: AI-based models of the first modelling phase  

Modelling 

technique 

Model No. 

M1 M2 M3 M4 M5 M6 

MLP MLP-M1 MLP-M2 MLP-M3 MLP-M4 MLP-M5 MLP-M6 

RBF RBF-M1 RBF-M2 RBF-M3 RBF-M4 RBF-M5 RBF-M6 

GRNN GRNN-M1 GRNN-M2 GRNN-M3 GRNN-M4 GRNN-M5 GRNN-M6 

SVM SVM-M1 SVM-M2 SVM-M3 SVM-M4 SVM-M5 SVM-M6 
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Table 4.9: Input and output variables of the AI-based models 

 

Table 4.10: Group of modelling cases of M6  

date time Q  ( t ) Wlu(ŧ) Wlb(ŧ) Wlk(ŧ) Wla(ŧ) Rfu(ŧ-5) Rfb(ŧ-5) Rfk(ŧ-5) Rfa(ŧ-5) Q(t+12) 

10/01/2011 01:00 32.31 32.55 32.61 44.17 50.03 0.00 0.00 0.00 0.00 30.70 

10/01/2011 02:00 32.43 32.55 32.60 44.17 50.03 0.00 0.00 0.00 0.00 30.15 

10/01/2011 03:00 32.55 32.55 32.61 44.17 50.03 0.00 0.00 0.00 0.00 29.74 

10/01/2011 04:00 32.77 32.55 32.61 44.17 50.03 0.00 0.00 0.00 0.00 29.73 

10/01/2011 05:00 32.96 32.55 32.62 44.17 50.03 0.00 0.00 0.00 0.00 29.91 

10/01/2011 06:00 33.08 32.55 32.60 44.17 50.03 0.00 0.07 0.00 0.20 30.11 

10/01/2011 07:00 33.08 32.55 32.62 44.18 50.03 0.00 0.17 0.00 0.50 30.44 

10/01/2011 08:00 32.90 32.55 32.62 44.18 50.03 0.00 0.27 0.20 0.80 31.71 

10/01/2011 09:00 32.46 32.55 32.63 44.17 50.04 0.00 0.30 0.60 0.90 33.66 

10/01/2011 10:00 32.11 32.55 32.62 44.16 50.04 0.00 0.30 1.00 0.90 36.02 

10/01/2011 11:00 31.60 32.54 32.60 44.15 50.04 0.00 0.30 1.20 0.90 38.64 

10/01/2011 12:00 31.14 32.54 32.58 44.14 50.03 0.00 0.30 1.20 0.90 40.92 

10/01/2011 13:00 30.70 32.55 32.57 44.13 50.03 0.00 0.30 1.20 0.90 42.83 

10/01/2011 14:00 30.15 32.55 32.58 44.12 50.03 0.00 0.30 1.20 0.90 44.65 

10/01/2011 15:00 29.74 32.55 32.59 44.13 50.03 0.00 0.30 1.20 0.90 46.76 

 

Model Inputs Output No. input 
Variables 

M1 Rfu(t), Rfb(t), Rfk(t), Rfa(t), Q(t) Q(t+17) 5 

M2 Rfu(ŧ), Rfb(ŧ), Rfk(ŧ), Rfa(ŧ), Q(t) Q(t+17) 5 

M3 Wlu(t), Wlb(t), Wlk(t), Wla(t), Q (t) Q(t+12) 5 

M4 Wlu(ŧ), Wlb(ŧ), Wlk(ŧ), Wla(ŧ), Q (t) Q(t+12) 5 

M5 
Wlu(t), Wlb(t), Wlk(t), Wla(t), Rfu(t-5), Rfb(t-5), Rfk(t-5), Rfa(t-5), 

Q(t) 
Q(t+12) 9 

M6 
Wlu(ŧ), Wlb(ŧ), Wlk(ŧ), Wla(ŧ), Rfu(ŧ-5), Rfb(ŧ-5), Rfk(ŧ-5), Rfa(ŧ-5), 

Q(t) 
Q(t+12) 9 
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where ● is the input variables and ▲ is the output variable 

Figure 4.17: Lag  intervals between the input and output variables of the AI-models: a) 

Model 1, b) Model 2, c) Model 3, d) Model 4, e) Model 5 and  f) Model 6  
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4.4.1.1 MLP-based Models 

Six models with different combination of input variables were trained and developed by 

MLP to predict Q. The developed models’ performance was assessed based on the 

training and testing data sets, as well as the overall performance of the data sets. The best 

fit model to predict Q is thus determined according to the performance of the testing data 

sets. Table 4.11 present the performance evaluation results as denoted by the R and MAE 

of the MLP-based models.  

Figure 4.18 compares the performance levels of the six MLP models and determines that 

the best fit model is MLP-M6. Over MLP models, this model displays the highest R values 

(0.989 and 0.904) and the lowest MAE (10.83 and 10.922) in both the training and testing 

data sets, respectively.  

Figure 4.19 shows the correlation between the observed and predicted Q in MLP-M6 

model giving training and testing data set. The observed and predicted Q of the training 

and testing data sets, seem to be in good accord with R2 0.806 and 0.817, respectively. In 

Figure 4.20, a comparison between the observed and predicted Q by MLP-M6 for the 

period of September 2013 can be seen. Acceptable agreement with small error between 

the observed and predicted Q is observed. The results verified the high performance of 

the model. The full records of the observed and predicted Q by MLP-M6 for September 

2013 are presented in Appendix D.  
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Figure 4.18: Performance values of MLP-based models: (a) correlation coefficient and 

(b) mean absolute error 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 155 

 

 

 
 

Figure 4.19: Correlation between the observed and predicted hourly stream flow by 

MLP-M6 model: (a) Training data set and (b) Testing data set 
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Figure 4.20: Comparison between the observed and predicted hourly stream flow by 

the MLP-M6 model for the period of September 2013 

 

Table 4.11: Performance values of MLP-based models 

 

 

Model 
Training data set Testing data set Overall data 

R MAE R MAE R MAE 

MLP-M1 0.869 11.550 0.874 12.039 0.873 11.823 

MLP-M2 0.880 11.771 0.882 12.163 0.877 11.741 

MLP-M3 0.886 12.088 0.882 11.640 0.881 11.991 

MLP-M4 0.881 11.897 0.893 11.578 0.883 11.913 

MLP-M5 0.889 11.052 0.894 11.586 0.890 11.352 

MLP-M6 0.898 10.922 0.904 10.839 0.895 11.025 Univ
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4.4.1.2 RBF-based Models 

Six models with different input variable combinations were trained and developed using 

RBF to predict Q. The performance of the developed models was evaluated via the 

training data set, testing data set and overall data performance. The results of the 

performance evaluation criteria (i.e. R and MAE) of the RBF-based models are presented 

in Table 4.12. 

A comparison of the performance evaluation for the six RBF-based models is provided 

in Figure 4.21. This figure indicates that the best fit RBF model is RBF-M6 with the 

highest values of R and lowest value of MAE for the training and testing data sets. The R 

between the observed and predicted Q by the RBF-M6 model is 0.987 and 0.965, while 

MAE is 3.37 and 6.141 for the training and testing data sets, respectively.  

Figure 4.22 shows the correlation between the observed and predicted Q by RBF-M6 

model, (a) training data set and (b) Testing data set. The observed and predicted Q of the 

training and testing data sets seem to be in good accord with R2 0.975 and 0.930 

respectively. In Figure 4.23, a comparison between the observed and predicted Q by RBF-

M6 for September 2013 can be seen. Good agreement with small error between the 

observed and predicted Q was is evident. The results verified the high performance of the 

model. The full records of the observed and predicted Q by RBF-M6 for September 2013 

are presented in Appendix D. 
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Figure 4.21: Performance values of RBF-based models: (a) correlation coefficient and 

(b) mean absolute error 
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Figure 4.22: Correlation between the observed and predicted hourly stream flow by 

RBF-M6 model: (a) training data set and (b) Testing data set 
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Figure 4.23: Comparison between the observed and the predicted hourly stream flow 

by the RBF-M6 model for the period of September 2013 

 

Table 4.12: Performance values of RBF-based models 

 

 

 

 

 

 

 

Model 
Training data set Testing data set Overall data 

R MAE R MAE R MAE 

RBF-M1 0.888 11.193 0.887 11.046 0.885 11.292 

RBF-M2 0.890 11.099 0.890 11.488 0.889 11.287 

RBF-M3 0.983 4.864 0.925 9.513 0.955 7.147 

RBF-M4 0.982 4.604 0.947 7.984 0.963 6.316 

RBF-M5 0.980 4.176 0.943 7.623 0.964 5.735 

RBF-M6 0.987 3.370 0.965 6.141 0.976 4.720 Univ
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4.4.1.3 GRNN-based Models 

Six models with different input variable combinations were trained and developed using 

GRNN to predict Q. The performance of the developed models was evaluated via the 

training data set, testing data set and overall data performance. Table 4.13 provides the 

results of the performance evaluation criteria (i.e. R and MAE) of the GRNN-based 

models.  

A comparison of the performance evaluation for the six GRNN-based models can be seen 

in Figure 4.24. Evidently, the best fit GRNN model is GRNN-M6 with the highest R 

values and lowest MAE value for the training and testing data sets. The R between the 

observed and predicted Q by the GRNN-M6 model is 0.99 and 0.965, while MAE is 2.634 

and 5.24 for the training and testing data sets, respectively.  

Figure 4.25 presents the correlation between the observed and predicted Q by the GRNN-

M6 model, (a) training data set, and (b) testing data set. The observed and predicted Q of 

the training and testing data sets seem to be in good accord with R2 0.9796 and 0.931, 

respectively. In Figure 4.26, a comparison between the observed and predicted Q by 

GRNN-M6 for September 2013 can be seen. There is good agreement with small error 

between the observed and predicted Q. The results verified the high performance of the 

model. The full records of the observed and predicted Q by GRNN-M6 for September 

2013 are presented in Appendix D. 
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Figure 4.24: Performance values of GRNN-based models: (a) correlation coefficient 

and (b) mean absolute error 
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Figure 4.25: Correlation between the observed and predicted hourly stream flow by 

GRNN-M6 model: (a) training data set and (b) Testing data set 
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Figure 4.26: Comparison between the observed and predicted hourly stream flow by 

the GRNN-M6 model for the period of September 2013 

 

Table 4.13: Performance values of GRNN-based models 

 

 

 

 

 

 

 

 

 

Model 
Training data set Testing data set Overall data 

R MAE R MAE R MAE 

GRNN-M1 0.922 8.878 0.904 10.267 0.912 9.524 

GRNN-M2 0.924 9.231 0.906 9.620 0.911 9.570 

GRNN-M3 0.991 2.510 0.952 6.456 0.970 4.357 

GRNN-M4 0.992 2.291 0.964 5.174 0.976 3.839 

GRNN-M5 0.996 1.571 0.955 5.584 0.972 3.529 

GRNN-M6 0.990 2.634 0.965 5.240 0.976 3.987 
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4.4.1.4 SVM-based Models 

Six models with different combination of input variables were trained and developed by 

SVM to predict Q. The performances of the models were assessed based on the training 

and testing data sets, as well as the overall performance of the data sets. The best fit model 

to predict Q is thus determined according to the performance of the testing data sets. Table 

4.14 shows the performance evaluation results as denoted by the R and MAE of the SVM-

based models.  

Figure 4.27 compares the performance levels of the six SVM-based models and 

determines that the best fit model is SVM-M6. This model displays the highest R values 

(0.992 and 0.953) and the lowest MAE (0.061 and 0.253) in both the training and testing 

data sets, respectively.  

Figure 4.28 shows the correlation between the observed and predicted Q in the SVM-M6 

model given training and testing data sets. The observed and predicted Q of the training 

and testing data sets seem to be in good accord with R2 0.986 and 0.909, respectively. 

Figure 4.29 compares the observed and predicted Q in SVM-M6 for the period of 

September 2013. These flows are highly consistent with very small error. The results 

verified the high performance of the model. The full records of the observed and predicted 

Q by SVM-M6 for September 2013 are presented in Appendix D. 
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Figure 4.27: Performance values of SVM-based models: (a) correlation coefficient and 

(b) mean absolute error 
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Figure 4.28: Correlation between the observed and predicted hourly stream flow by 

SVM-M6 model: (a) training data set and (b) Testing data set 
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Figure 4.29: Comparison between the observed and the predicted hourly stream flow 

by the SVM-M6 model for the period of September 2013 

 

Table 4.14: Performance values of SVM-based models 

 

 

Model 
Training data set Testing data set Overall data 

R MAE R MAE R MAE 

SVM-M1 0.927 0.180 0.891 0.378 0.919 0.165 

SVM-M2 0.927 0.180 0.891 0.378 0.919 0.165 

SVM-M3 0.970 0.117 0.938 0.288 0.962 0.113 

SVM-M4 0.979 0.097 0.946 0.270 0.971 0.099 

SVM-M5 0.984 0.084 0.943 0.277 0.974 0.094 

SVM-M6 0.992 0.061 0.953 0.253 0.982 0.078 Univ
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4.4.1.5 Comparison between the Performances of the Four AI techniques: First 

Phase  

The best fit model for predicting Q in first modelling phase is determined based on 

evaluating the performance of the testing data sets. Through the detailed discussion in the 

previous sub-sections, it appears that M6 provides the best performance out of the other 

models while M5 could be considered the second, based on its performance evaluation 

results shown in Tables (4.11,4.12, 4.13 and 4.14). 

M6 was trained and developed using four AI modelling techniques: MLP, RBF, GRNN 

and SVM. The results of performance evaluation criteria (i.e. R and MAE) of the MLP-

M6, RBF-M6, GRNN-M6 and SVM-M6 models are presented in Table 4.15.  

The comparison  of the performance evaluation with respect to R and MAE for the four 

M6 models can be seen in Figure 4.30. Here, the R values for the RBF-M6, GRNN-M6 

SVM-M6 models are similar, while the R value for MLP-M6 is lower than the other 

models.  

It is noted that SVM-M6 provides the best MAE with lowest values, 0.061 and 0.253 for 

the training and testing data sets, respectively. GRNN could be considered second, as 

GRNN-M6 provides low values with 2.634 and 5.240 for the training and testing data 

sets, respectively. MLP provides highest values of MAE, with 11.55 and 12.039 for the 

training and testing data sets respectively. 

Even the SVM-M6, GRNN-M6 models provide similar R values between the observed 

and predicted Q. However, it can be said that among all models, SVM-M6 is considered 

the best model for Q prediction according to its lowest MAE value between the observed 

and predicted Q which is significantly lower than the MAE of other three techniques. 
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Figure 4.30: Performance values of the best fit AI-based models: (a) correlation 

coefficient and (b) mean absolute error 
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Table 4.15: Performance values of the four AI techniques applied in Model 6 

 

Model Training Data Set Testing Data Set Overall data 

  R MAE R MAE R MAE 

MLP-M6 0.869 11.550 0.874 12.039 0.87327 11.823 

RBF-M6 0.987 3.370 0.965 6.141 0.976 4.720 

GRNN-M6 0.990 2.634 0.965 5.240 0.976 3.987 

SVM-M6 0.992 0.061 0.953 0.253 0.982 0.078 

 

4.4.2 AI-based Models: Second Phase of Modelling Process 

In the second phase of modelling process, only two models, those achieved the highest R 

among the six models of the first phase, were selected for the second phase. The new two 

models were named as M5a and M6a.  They were trained and developed by the same four 

AI techniques: MLP, RBF, GRNN and SVM resulting in the development of eight AI-

based models to predict the Q as shown in Table 4.16.  

In this modelling phase, the lag intervals between the input and output variables of the 

AI-based models were selected based on the results of the HGA to estimate the Lt between 

the upstream and downstream stations.  

New companions of variables and modelling cases of the M5a and M6a were employed 

giving, the changes of the lag intervals between the input and output variables which were 

selected based on the results of the HGA as shown in Table 4.17.  Figure 4.31 presents 

the Lag intervals between the input variables and output variable for M5a and M6a 

models. Table 4.18 presents a group of 15 modelling cases of M6a as example of 8872 
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modelling cases. A larger group of modelling cases of M6 for three days is presented in 

Appendix B. 

Table 4.16: AI-based models of the second modelling phase  

Modelling 

technique 

Model No. 

M5a M6a 

MLP MLP-M5a MLP-M6a 

RBF RBF-M5a RBF-M6a 

GRNN GRNN-M5a GRNN-M6a 

SVM SVM-M5a SVM-M6a 

 

Table 4.17: Input and output variables of the AI-based models 

 

 

 

 

 

 

 

 

Model Inputs Output No. input 
Variables 

M5a 
Wlu(t), Wlb(t), Wlk(t), Wla(t), Rfu(t-2), Rfb(t-2), Rfk(t-2), 
Rfa(t-2), Q(t) Q(t+13) 9 

M6a 
Wlu(ŧ), Wlb(ŧ), Wlk(ŧ), Wla(ŧ), Rfu(ŧ-2), Rfb(ŧ-2), Rfk(ŧ-2), 
Rfa(ŧ-2), Q(t) Q(t+13) 9 
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Table 4.18: Group of modelling cases of M6a  

date time Q ( t ) Wlu(ŧ) Wlb(ŧ) Wlk(ŧ) Wla(ŧ) Rfu(ŧ-2) Rfb(ŧ-2) Rfk(ŧ-2) Rfa(ŧ-2) Q(t+13) 

10/01/2011 01:00 32.31 32.55 32.61 44.17 50.03 0.00 0.00 0.00 0.00 30.15 

10/01/2011 02:00 32.43 32.55 32.60 44.17 50.03 0.00 0.00 0.00 0.00 29.74 

10/01/2011 03:00 32.55 32.55 32.61 44.17 50.03 0.00 0.07 0.00 0.20 29.73 

10/01/2011 04:00 32.77 32.55 32.61 44.17 50.03 0.00 0.17 0.00 0.50 29.91 

10/01/2011 05:00 32.96 32.55 32.62 44.17 50.03 0.00 0.27 0.20 0.80 30.11 

10/01/2011 06:00 33.08 32.55 32.60 44.17 50.03 0.00 0.30 0.60 0.90 30.44 

10/01/2011 07:00 33.08 32.55 32.62 44.18 50.03 0.00 0.30 1.00 0.90 31.71 

10/01/2011 08:00 32.90 32.55 32.62 44.18 50.03 0.00 0.30 1.20 0.90 33.66 

10/01/2011 09:00 32.46 32.55 32.63 44.17 50.04 0.00 0.30 1.20 0.90 36.02 

10/01/2011 10:00 32.11 32.55 32.62 44.16 50.04 0.00 0.30 1.20 0.90 38.64 

10/01/2011 11:00 31.60 32.54 32.60 44.15 50.04 0.00 0.30 1.20 0.90 40.92 

10/01/2011 12:00 31.14 32.54 32.58 44.14 50.03 0.00 0.30 1.20 0.90 42.83 

10/01/2011 13:00 30.70 32.55 32.57 44.13 50.03 0.00 0.30 1.20 0.90 44.65 

10/01/2011 14:00 30.15 32.55 32.58 44.12 50.03 0.00 0.30 1.20 0.90 46.76 

10/01/2011 15:00 29.74 32.55 32.59 44.13 50.03 0.00 0.30 1.20 0.90 49.52 
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a 

  
b 

where ● is the input variables and ▲ is the output variable 

Figure 4.31: Lag intervals between the input and output variables of the AI- based 

models: a) Model 5a, b) Model 6a  
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4.4.2.1 MLP-based Models 

M5a and M6a were trained and developed by MLP to predict Q. The performance of the 

developed models was assessed based on the training and testing data sets, as well as the 

overall performance of the data sets. The best fit model to predict Q is thus determined 

according to the performance of the testing data sets. Table 4.19 presents the performance 

evaluation results as denoted by the R and MAE of M5a and M6a. This table shows that 

the best fit model is MLP-M6a. This model displays the highest R values (0.902 and 

0.894) and the lowest MAE (10.721 and 11.076) in both the training and testing data sets, 

respectively.  

Figure 4.32 shows the correlation between the observed and predicted Q in MLP-M6a 

model giving training and testing data set. The observed and predicted Q of the training 

and testing data sets, seem to be in good accord with R2 0.822 and 0.80, respectively. In 

Figure 4.33, a comparison between the observed and predicted Q by MLP-M6a for the 

period of September 2013 can be seen. Acceptable agreement with small error between 

the observed and predicted Q is apparent. The results verified the high performance of 

the model. The full records of the observed and predicted Q by MLP-M6a for the period 

of September 2013 are presented in Appendix D.  
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Figure 4.32: Correlation between the observed and predicted hourly stream flow by 

M6a-MLP model: (a) training data set and (b) testing data set 
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Figure 4.33: Comparison between the observed and predicted hourly stream flow via 

the M6a-MLP model for the period of September 2013 

 

Table 4.19: Performance values of MLP-based models 

 

 

 

 

Model 
Training data set Testing data set Overall data 

R MAE R MAE R MAE 

MLP-M5a 0.878 12.062 0.885 12.376 0.879 11.957 

MLP-M6a 0.902 10.721 0.894 11.076 0.903 10.681 
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4.4.2.2 RBF-based Models 

M5a and M6a were trained and developed by RBF to predict Q. Table 4.20 presents the 

performance evaluation results as denoted by the R and MAE of M5a and M6a. This table 

shows that the best fit model is RBF-M6a. This model displays the highest R values (0.984 

and 0.962) and the lowest MAE (3.965 and 6.690) in both the training and testing data 

sets, respectively.  

Figure 4.34 presents the correlation between the observed and predicted Q in RBF-M6a 

model giving training and testing data set. The observed and predicted Q of the training 

and testing data sets, seem to be in good accord with R2 0.969 and 0.926, respectively. In 

Figure 4.35, a comparison between the observed and predicted Q by RBF-M6a for the 

period of September 2013 can be seen. Good agreement with small error between the 

observed and predicted Q is apparent. The results verified the high performance of the 

model. The full records of the observed and predicted Q by RBF-M6a for the period of 

September 2013 are presented in Appendix D.  
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Figure 4.34: Correlation between the observed and predicted Q by RBF-M6a model: 

(a) training data set and (b) Testing data set 
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Figure 4.35: Comparison between observed and the predicted Q via the RBF-M6a 

model for the period of September 2013 

 

Table 4.20: Performance values of RBF-based models 

 

 

 

 

 

 

 

 

Model 
Training data set Testing data set Overall data 

R MAE R MAE R MAE 

RBF-M5a 0.985 3.90 0.945 7.686 0.965 5.850 

RBF-M6a 0.984 3.965 0.962 6.690 0.971 5.318 
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4.4.2.3 GRNN-based Models 

M5a and M6a models were trained and developed using GRNN to predict Q. The results 

of performance evaluation criteria i.e. R and MAE of the GRNN models are presented in 

Table 4.21. The best fit model is GRNN-M6a with the highest R values and lowest MAE 

value for the training and testing data sets. The R between the observed and predicted Q 

by the GRNN-M6a model is 0.996 and 0.964 while the MAE is 1.421 and 4.271 for the 

training and testing data sets respectively. 

Figure 4.36 presents the correlation between the observed and predicted Q in GRNN-M6a 

model giving training and testing data set. The observed and predicted Q of the training 

and testing data sets, seem to be in very good accord with R2 0.992 and 0.93, respectively. 

In Figure 4.37, a comparison between the observed and predicted Q by GRNN-M6a for 

the period of September 2013 can be seen. High agreement with small error between the 

observed and predicted Q is apparent. The results verified the high performance of the 

model. The full records of the observed and predicted Q by GRNN-M6a for the period of 

September 2013 are presented in Appendix D. 

Table 4.21: Performance values of GRNN-based models 

 

 

 

 

 

 

 

Model 
Training data set Testing data set Overall data 

R MAE R MAE R MAE 

GRNN-M5a 0.997 1.247 0.951 5.690 0.974 3.397 

GRNN-M6a 0.996 1.421 0.964 4.271 0.978 3.013 Univ
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Figure 4.36: Correlation between the observed and predicted Q by GRNN-M6a model: 

(a) training data set and (b) Testing data set 
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Figure 4.37: Comparison between the observed and predicted Q via the GRNN-M6a 

model for the period of September 2011 

 

4.4.2.4 SVM-based Models 

M5a and M6a models were trained and developed using SVM to predict Q. The results 

of performance evaluation criteria i.e. R and MAE of the SVM models are presented in 

Table 4.22. The best fit SVM model is SVM-M6a with the highest R values and lowest 

MAE value for the training and testing data sets. The R between the observed and 

predicted Q by the SVM-M6a model is 0.985 and 0.952 while the MAE is 0.083 and 

0.254 for the training and testing data sets, respectively. 

Figure 4.38 presents the correlation between the observed and predicted Q in SVM-M6a 

model giving training and testing data set. The observed and predicted Q of the training 

and testing data sets, seem to be in very high accord with R2 0.980 and 0.907, respectively. 

In Figure 4.39, a comparison between the observed and predicted Q by SVM-M6a for the 

period of September 2013 can be seen. A very high agreement with very small error 
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between the observed and predicted Q is apparent. The results verified the high 

performance of the model. The full records of the observed and predicted Q by SVM-

M6a for the period of September 2013 are presented in Appendix D. 

 
 

 

Figure 4.38: Correlation between the observed and the predicted hourly stream flow by 

M6a-SVM model: (a) training data set and (b) Testing data set 
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Figure 4.39: Comparison between the observed and the predicted hourly stream flow 

via the M6a-SVM model for the period of September 2013 

 

Table 4.22: Performance values of SVM-based models 

 

 

 

 

 

 

Model 
Training data set Testing data set Overall data 

R MAE R MAE R MAE 

SVM-M5a 0.978 0.098 0.942 0.278 0.969 0.102 

SVM-M6a 0.985 0.083 0.952 0.254 0.977 0.089 
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4.4.2.5 Comparison between the Performances of the Four AI techniques: Second 

Phase  

The comparison between the four AI techniques was performed by analysis the 

performance of the best fit model for predicting Q which is determined based on the 

performance evaluation of testing data sets of the developed models over the second 

modelling phase. Through the detailed discussion in the previous sections, it appears that 

M6a provides better performance than M5a, based on its performance evaluation results 

shown in Tables (4.19, 4.20, 4.21 and 4.22). 

M6a was trained and developed using the four AI modelling techniques: MLP, RBF, 

GRNN and SVM. The results of performance evaluation criteria, i.e. R and MAE of the 

MLP-M6a, RBF-M6a, GRNN-M6a and SVM-M6a models are presented in Table 4.23.  

The performance evaluation comparison with respect to R and MAE for the four M6 

models can be seen in Figure 4.40. As presented in this figure, the results of comparison 

is similar to the results of the first phase of modelling as the value of R of RBF-M6a, 

GRNN-M6a and SVM-M6a models are very similar, while the value of R of MLP-M6 is 

lower than other models. For the MAE values, it is noted that SVM-M6a provides the 

minimum values with 0.083 and 0.254 for the training and testing data sets respectively, 

while others models provide higher value of MAE such as MLP-M6a with 11.824 and 

11.411 for the training and testing data sets respectively. 

Even the RBF, GRNN and SVM provide similar values R between the observed and 

predicted hourly Q, but is can be said that SVM are considered the best technique to the 

predict the hourly Q depending on its lowest value of MAE between the observed and 

predicted Q which are significantly lower than other techniques. 
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Figure 4.40: Performance values of the best fit AI-based models: (a) correlation 

coefficient and (b) mean absolute error 
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Table 4.23: Performance values of the four AI techniques applied in Model 6a 

 

Model 

  

Training data set Testing data set Overall data 

R MAE R MAE R MAE 

MLP-M6a 0.879 11.824 0.888 11.411 0.886 11.683 

RBF-M6a 0.984 3.965 0.962 6.69 0.971 5.318 

GRNN-M6a 0.996 1.421 0.964 4.271 0.978 3.013 

SVM-M6a 0.985 0.083 0.952 0.254 0.977 0.089 

 

4.5 Applications of AI-based Models 

The developed AI-based models can be utilized in several hydrological applications. In 

this study, they were employed as prediction tools, as shown in the previous section, and 

as analytical tools to investigate the influence of WL and RF on Q. They were also applied 

to estimate the missing Q records. Finally, they were employed in flood early warning 

throughout the advance detection of hydrological conditions that could lead to formations 

of floods.  

However, not all AI-based models have the ability to understand and investigate the 

physical behavior of hydrological systems. AI-based models must be able to explore the 

physical behavior of hydrological systems so that they can be applied in hydrological 

applications.  

All the developed models were checked so that the best-fitting model in investigation of 

the physical behavior of hydrological systems is selected for the applications. The result 

shows that MLP–M6a provides the most hydrological sounds in the investigation of the 

influence of the input variables on Q. This result means that this model achieves the 
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highest ability in exploring the hydrological description of the applied process. The 

hydrological applications in this research were performed using the MLP-6a model.  

4.5.1 Utilizing AI-based Models as Analytical Tool 

Hypothetical modelling cases of input variables were assumed and modeled to study the 

influence of the input variables, WL and RF of the four upstream stations, on Q. The 

hypothetical cases were prepared by gradually changing the values of the input variable 

from the minimum to the maximum value within the range of the input variables. The 

ranges of the input variables were divided into ten steps, and the values were gradually 

increased from the minimum to the maximum value of the range. Table 4.24 shows the 

hypothetical values of the gradual change of the input variables.  

The hypothetical values were used to determine the input cases and develop eight input 

matrices to study the influence of both WL and RF of the four upstream stations on Q. 

The input combinations of the modelling cases of these matrices were predicted using 

MLP-6a to obtain the output of these hypothetical cases. The investigation of the 

relationship between the hydrological variables and the results of the hypothetical cases 

can help to determine the influence of the WL and RF on Q. 
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Table 4.24: Hypothetical cases of input variables 

 Q Wlu Wlb Wlk Wla Rfu Rfb Rfk Rfa 

Min. 23.9 30.6 27.0 43.9 49.6 0.0 0.0 0.0 0.0 

Max. 294.6 35.5 34.7 45.6 50.9 19.3 22.7 25.3 28.0 

Mean 32.24 32.42 44.18 50.16 0.16 0.24 0.25 0.24  

1 23.9 30.6 27.0 43.9 49.6 0.0 0.0 0.0 0.0 

2 51.0 31.1 27.8 44.1 49.7 1.9 2.3 2.5 2.8 

3 78.1 31.5 28.6 44.3 49.9 3.9 4.5 5.1 5.6 

4 105.2 32.0 29.3 44.4 50.0 5.8 6.8 7.6 8.4 

5 132.2 32.5 30.1 44.6 50.1 7.7 9.1 10.1 11.2 

6 159.3 33.0 30.9 44.8 50.3 9.7 11.3 12.7 14.0 

7 186.4 33.5 31.6 44.9 50.4 11.6 13.6 15.2 16.8 

8 213.4 34.0 32.4 45.1 50.5 13.5 15.9 17.7 19.6 

9 240.5 34.5 33.2 45.3 50.6 15.5 18.1 20.3 22.4 

10 267.6 35.0 33.9 45.4 50.8 17.4 20.4 22.8 25.2 

11 294.6 35.5 34.7 45.6 50.9 19.3 22.7 25.3 28.0 

 

 

4.5.1.1 Influence of the Water Level in Upstream Stations on the Stream Flow  

Four input matrices were employed to investigate the influence of WL of the upstream 

stations on SF. The input values of these matrices were derived from the hypothetical 

values mentioned in Table 4.24. Each matrix was employed to study the influence of the 

WL of one upstream station on the SF. The values of WL and RF of the other stations 

were fixed at the mean value, as shown in Table 4.25, to provide the model with the ability 

to investigate the influence of changes on one specific station. Table 4.25 shows the 

hypothetical cases to study the influence of WL on SF and the predicted results of the 

investigation process using MLP-6a.  
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The axiomatic theory indicates that the Q in the downstream station is directly 

proportional to the WL in the upstream stations, which was proved through Figure 4.41. 

This figure shows the results of the investigation of the influence of all the WL upstream 

stations on the Q. The WL in the upstream stations directly affects the SF in the Rantau 

Panjang station (downstream station). Figure 4.41 shows that the influence of the WL is 

valid over the full ranges of the WL records of the downstream station, meaning that the 

MLP-6a model can be used as a hydrological sound tool in investigating the influence of 

WL on SF. 

Table 4.25: Results of the hypothetical cases to study the influence of Water Level in 

upstream stations on Stream Flow 

 

Q (t) Wlu Wlb Wlk Wla Rfu Rfb Rfk Rfa Q (t+13) 

Ulu Yam station 

60.34 30.56 32.42 44.18 50.16 0.16 0.24 0.25 0.24 55.67 

60.34 31.05 32.42 44.18 50.16 0.16 0.24 0.25 0.24 55.29 

60.34 31.55 32.42 44.18 50.16 0.16 0.24 0.25 0.24 55.72 

60.34 32.04 32.42 44.18 50.16 0.16 0.24 0.25 0.24 57.08 

60.34 32.53 32.42 44.18 50.16 0.16 0.24 0.25 0.24 59.40 

60.34 33.03 32.42 44.18 50.16 0.16 0.24 0.25 0.24 62.69 

60.34 33.52 32.42 44.18 50.16 0.16 0.24 0.25 0.24 66.86 

60.34 34.01 32.42 44.18 50.16 0.16 0.24 0.25 0.24 71.81 

60.34 34.50 32.42 44.18 50.16 0.16 0.24 0.25 0.24 77.39 

60.34 35.00 32.42 44.18 50.16 0.16 0.24 0.25 0.24 83.41 

60.34 35.49 32.42 44.18 50.16 0.16 0.24 0.25 0.24 89.70 

Batang Kali station 

60.34 32.24 27.03 44.18 50.16 0.16 0.24 0.25 0.24 49.58 

60.34 32.24 27.80 44.18 50.16 0.16 0.24 0.25 0.24 48.20 

60.34 32.24 28.57 44.18 50.16 0.16 0.24 0.25 0.24 48.03 

60.34 32.24 29.33 44.18 50.16 0.16 0.24 0.25 0.24 48.90 

60.34 32.24 30.10 44.18 50.16 0.16 0.24 0.25 0.24 50.59 

60.34 32.24 30.87 44.18 50.16 0.16 0.24 0.25 0.24 52.85 
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Table 4.25 Continued 

Q (t) Wlu Wlb Wlk Wla Rfu Rfb Rfk Rfa Q (t+13) 

60.34 32.24 31.64 44.18 50.16 0.16 0.24 0.25 0.24 55.39 

60.34 32.24 32.41 44.18 50.16 0.16 0.24 0.25 0.24 57.88 

60.34 32.24 33.17 44.18 50.16 0.16 0.24 0.25 0.24 60.06 

60.34 32.24 33.94 44.18 50.16 0.16 0.24 0.25 0.24 61.07 

60.34 32.24 34.71 44.18 50.16 0.16 0.24 0.25 0.24 62.67 

Kerling station 

60.34 32.24 32.42 43.93 50.16 0.16 0.24 0.25 0.24 45.97 

60.34 32.24 32.42 44.09 50.16 0.16 0.24 0.25 0.24 53.79 

60.34 32.24 32.42 44.26 50.16 0.16 0.24 0.25 0.24 62.56 

60.34 32.24 32.42 44.43 50.16 0.16 0.24 0.25 0.24 72.25 

60.34 32.24 32.42 44.60 50.16 0.16 0.24 0.25 0.24 82.77 

60.34 32.24 32.42 44.77 50.16 0.16 0.24 0.25 0.24 93.91 

60.34 32.24 32.42 44.93 50.16 0.16 0.24 0.25 0.24 105.45 

60.34 32.24 32.42 45.10 50.16 0.16 0.24 0.25 0.24 117.11 

60.34 32.24 32.42 45.27 50.16 0.16 0.24 0.25 0.24 128.58 

60.34 32.24 32.42 45.44 50.16 0.16 0.24 0.25 0.24 139.62 

60.34 32.24 32.42 45.61 50.16 0.16 0.24 0.25 0.24 150.02 

Ampang Pecah station 

60.34 32.24 32.42 44.18 49.61 0.16 0.24 0.25 0.24 49.62 

60.34 32.24 32.42 44.18 49.74 0.16 0.24 0.25 0.24 51.65 

60.34 32.24 32.42 44.18 49.87 0.16 0.24 0.25 0.24 53.69 

60.34 32.24 32.42 44.18 50.00 0.16 0.24 0.25 0.24 55.66 

60.34 32.24 32.42 44.18 50.12 0.16 0.24 0.25 0.24 57.44 

60.34 32.24 32.42 44.18 50.25 0.16 0.24 0.25 0.24 58.93 

60.34 32.24 32.42 44.18 50.38 0.16 0.24 0.25 0.24 60.05 

60.34 32.24 32.42 44.18 50.50 0.16 0.24 0.25 0.24 60.75 

60.34 32.24 32.42 44.18 50.63 0.16 0.24 0.25 0.24 61.01 

60.34 32.24 32.42 44.18 50.76 0.16 0.24 0.25 0.24 60.84 

60.34 32.24 32.42 44.18 50.89 0.16 0.24 0.25 0.24 60.30 
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Figure 4.41: Influence of the water level variables in the stream flow: (a) Ulu Yam 

station (b) Batang Kali station (c) Kerling station (d) Ampang Pecah station 
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4.5.1.2 Influence of the Rainfall in Upstream Stations on the Stream Flow 

Four input matrices were employed to investigate the influence of RF of the upstream 

stations on SF.  The input values of these matrices were derived from the hypothetical 

values mentioned in Table 4.24. Each matrix was employed to study the influence of the 

RF of one upstream station on the SF. The values of WL and RF of the other stations were 

fixed at the mean value, as shown in Table 4.26, to provide the model with the ability to 

investigate the influence of changes on one specific station. Table 4.26 shows the 

hypothetical cases to study the influence of RF on SF and the predicted results of the 

investigation process using MLP-6a.  

The axiomatic theory indicates that the Q in downstream station is directly proportional 

to the RF in the upstream stations, which was verified through Figure 4.42. This figure 

presents the results of the investigation of the influence of four RF stations on the SF. The 

RF in the upstream stations directly affects the SF in the Rantau Panjang station. Through 

the Figure 4.42, it can be reached that the influence of the WL records is valid over the 

almost ranges of RF records of upstream excluding Batang Kali and Kerling stations, 

meaning that the MLP-6a model can be used as a hydrological sound tool in investigating 

the influence of RF on SF. 

In high RF events of Batang Kali and Kerling stations, the MLP-6a model failed to 

investigate the effect of RF on the SF. There are many potential reasons to justify this 

behavior of the model, such as non-enough modelling cases of the high RF events and the 

potential errors that may be found in the modelling data.  
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Table 4.26: Results of the hypothetical cases to investigate the influence of Rainfall on 

Stream Flow 

Ulu Yam station 

Q (t) Wlu Wlb Wlk Wla Rfu Rfb Rfk Rfa Q (t+13) 

60.34 32.24 32.42 44.18 50.16 0.00 0.24 0.25 0.24 57.27 

60.34 32.24 32.42 44.18 50.16 1.93 0.24 0.25 0.24 64.92 

60.34 32.24 32.42 44.18 50.16 3.87 0.24 0.25 0.24 71.59 

60.34 32.24 32.42 44.18 50.16 5.80 0.24 0.25 0.24 76.96 

60.34 32.24 32.42 44.18 50.16 7.73 0.24 0.25 0.24 80.88 

60.34 32.24 32.42 44.18 50.16 9.67 0.24 0.25 0.24 83.38 

60.34 32.24 32.42 44.18 50.16 11.60 0.24 0.25 0.24 84.59 

60.34 32.24 32.42 44.18 50.16 13.53 0.24 0.25 0.24 84.71 

60.34 32.24 32.42 44.18 50.16 15.47 0.24 0.25 0.24 83.98 

60.34 32.24 32.42 44.18 50.16 17.40 0.24 0.25 0.24 82.65 

60.34 32.24 32.42 44.18 50.16 19.33 0.24 0.25 0.24 80.95 

Batang Kali station 

60.34 32.24 32.42 44.18 50.16 0.16 0.00 0.25 0.24 57.04 

60.34 32.24 32.42 44.18 50.16 0.16 2.27 0.25 0.24 65.36 

60.34 32.24 32.42 44.18 50.16 0.16 4.53 0.25 0.24 73.25 

60.34 32.24 32.42 44.18 50.16 0.16 6.80 0.25 0.24 80.53 

60.34 32.24 32.42 44.18 50.16 0.16 9.07 0.25 0.24 87.13 

60.34 32.24 32.42 44.18 50.16 0.16 11.33 0.25 0.24 93.09 

60.34 32.24 32.42 44.18 50.16 0.16 13.60 0.25 0.24 98.49 

60.34 32.24 32.42 44.18 50.16 0.16 15.87 0.25 0.24 103.47 

60.34 32.24 32.42 44.18 50.16 0.16 18.13 0.25 0.24 108.19 

60.34 32.24 32.42 44.18 50.16 0.16 20.40 0.25 0.24 112.79 

60.34 32.24 32.42 44.18 50.16 0.16 22.67 0.25 0.24 117.45 

Kerling station 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.00 0.24 57.17 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 2.53 0.24 64.46 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 5.07 0.24 70.60 
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Table 4.26 Continued, 
 

Q (t) Wlu Wlb Wlk Wla Rfu Rfb Rfk Rfa Q t+13) 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 7.60 0.24 74.99 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 10.13 0.24 77.20 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 12.67 0.24 77.06 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 15.20 0.24 74.70 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 17.73 0.24 70.50 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 20.27 0.24 65.00 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 22.80 0.24 58.78 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 25.33 0.24 52.36 

Ampang Pecah station 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.25 0.00 56.75 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.25 2.80 69.78 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.25 5.60 81.34 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.25 8.40 90.44 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.25 11.20 96.60 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.25 14.00 99.81 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.25 16.80 100.33 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.25 19.60 98.63 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.25 22.40 95.21 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.25 25.20 90.59 

60.34 32.24 32.42 44.18 50.16 0.16 0.24 0.25 28.00 85.24 
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Figure 4.42: Influence of rainfall variables in the stream flow: (a) Ulu Yam station (b) 

Batang Kali station (c) Kerling station (d) Ampang Pecah station 
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4.5.2 Utilizing AI-based Models to Estimate the Missing Stream Flow Records 

The AI-based models were utilized to estimate the missing records of Q, which could be 

lost because of some errors or was unread from the beginning. Suppose the 24 hourly 

records of Q on August 28, 2010, have been lost or have not been read at that time. These 

records have not entered the developed model before, and the results are considered a real 

indication of the performance of the MLP-6a model.  

The MLP-6a model was used to model these cases and estimate their Q. Table 4.27 

presents the records of Q on August 28, 2010, and the predicted results using the MLP-

6a model. Figure 4.43 shows the comparison between the observed and predicted Q via 

the MLP-6a model. The observed Q were compared with the predicted to check the 

capability of the MLP-6a model in estimating lost Q. A good agreement between the 

observed and estimated SF was observed, meaning that the MLP-6a model can be used 

in estimating the missing records of Q. 

 

Figure 4.43: Comparison between the observed and preidected Q by MLP-6a model on 

28th August 2010 
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Table 4.27: Observed and predicted Q by MLP-6a model on 28th August 2010 

Q (t) Wlu Wlb Wlk Wla Rfu Rfb Rfk Rfa 
Qo

(t+13)

Qp

(t+13)

32.33 32.62 32.84 44.23 50.21 0.60 0.00 0.80 0.00 40.46 46.88 

32.56 32.62 32.84 44.22 50.15 0.60 0.00 0.80 0.00 40.69 45.86 

31.88 32.60 32.75 44.26 50.29 0.60 0.00 0.80 0.00 40.63 48.03 

32.11 32.61 32.81 44.24 50.27 0.60 0.00 0.80 0.00 41.13 47.66 

32.79 32.63 32.84 44.21 50.10 0.60 0.00 0.80 0.00 40.20 45.38 

33.02 32.64 32.83 44.21 50.09 0.60 0.00 0.80 0.00 38.14 45.14 

33.25 32.64 32.81 44.20 50.08 0.60 0.00 0.80 0.00 37.33 44.78 

33.47 32.65 32.77 44.20 50.08 0.60 0.00 0.80 0.00 38.76 44.79 

34.13 32.69 32.73 44.18 50.08 0.60 0.00 0.80 0.00 47.21 44.70 

36.03 32.68 32.72 44.17 50.08 0.43 0.00 0.53 0.00 52.29 43.97 

38.17 32.66 32.72 44.18 50.08 0.23 0.00 0.27 0.00 57.91 44.09 

39.67 32.65 32.78 44.23 50.11 0.03 0.00 0.00 0.20 61.24 46.98 

40.63 32.74 32.94 44.26 50.16 0.00 0.00 3.00 3.03 64.74 70.95 

41.13 32.94 33.08 44.28 50.18 4.97 0.00 9.00 6.20 66.66 85.09 

40.46 33.00 33.12 44.24 50.17 6.67 0.00 9.00 6.13 66.34 78.19 

40.69 33.02 33.02 44.23 50.12 6.67 0.00 6.00 3.30 65.47 80.90 

40.20 32.94 32.93 44.20 50.10 1.70 0.00 0.00 0.13 63.26 54.37 

38.14 32.91 32.86 44.17 50.09 0.00 0.00 0.00 0.00 59.58 43.95 

37.33 32.79 32.82 44.14 50.09 0.00 0.00 0.00 0.00 55.57 41.74 

38.76 32.68 32.78 44.12 50.09 0.00 0.00 0.00 0.00 51.53 41.13 

42.11 32.62 32.75 44.12 50.09 0.00 0.00 0.00 0.00 48.32 42.58 

47.21 32.63 32.73 44.11 50.09 0.00 0.00 0.00 0.00 45.44 45.15 

52.29 32.61 32.70 44.11 50.09 0.00 0.00 0.00 0.00 42.29 47.94 

Univ
ers

ity
 of

 M
ala

ya



 202 

4.5.3 Utilizing AI based Model in the Early Warning of High Stream Flow Events 

Based on the results of previous sections, it has been verified that the SF is affected in 

direct relationship with WR and RF. MLP-6a model was employed to predict the potential 

high SF events and determine the hydrological conditions lead to form these events. The 

high SF events were investigated through three levels: danger level when the SF is higher 

than 250 m3/s; warning level when the SF is above 180 m3/s; and alert level when the SF 

is more than 160 m3/s. The three levels are just indictors of high SF events, they have 

been determined by the Department of Irrigation and Drainage Malaysia (DID). 

Six scenarios have been arranged through hypothetical cases of input variables to 

investigate how the RF and WL in upstream stations can produce high SF events in 

downstream area and to investigate how the changes of RF intensity lead to formation of 

three levels of high SF events (i.e. Alert, Warning, and Danger levels). The initial SF was 

changed for each scenario in order to include wide range of hydrological situations in this 

study. 

The hypothetical cases of the six scenarios were prepared through gradual changing of 

input RF variables values’ from minimum value to maximum value within the range of 

MLP-6a validity which is start from 0 mm/hr to about 20 mm/hr of Batang Kali station, 

from 0 mm/hr to about 15 mm/hr of Ulu Yam station and Ampang Pecah station while 

Kerling station is start from 0 mm/hr to about 12 mm/hr.  

In all the scenarios, the investigation process was performed via three situations ( i.e., A, 

B and C) related to the existing saturation of the river basin, which was represented by 

the WL of the upstream stations. The WL values in situation (A) were assumed to be 

stable around the average value. The values of the Ulu Yam, Batang Kali, Kerling, and 

Ampang Pecah stations were 32.2, 32.4, 44.2, and 50.2 m, respectively. Meanwhile, the 

WL values in situation (B) were assumed to be stable around the average value plus SD, 
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and the values of the Ulu Yam, Batang Kali, Kerling, and Ampang Pecah stations were 

32.73, 33.20, 44.30, and 50.31 m, respectively. The WL values in situation (C) were 

assumed to be stable around the average plus double SD, and the values of the Ulu Yam, 

Batang Kali, Kerling and Ampang Pecah stations were 33.21, 33.98, 44.42, and 50.47 m, 

respectively. Every situation is represented by a set of 11 hypothetical cases to provide a 

sufficient number of results in the investigation process.  

4.5.3.1 Scenario No. 1 

The initial Q in the Rantau Panjang downstream station was assumed to be stable around 

the average value of Q, which is 60 m3/s. The RF in the Batang Kali station was selected 

to investigate the role of the changes of RF intensity in the formation of the high SF events 

in the downstream area. The RF intensity in the Batang Kali station gradually increased 

from the minimum to the maximum value over the validity range of the model from 0 

mm/h to 20 mm/h. The RF of the other upstream stations was assumed to be stable around 

their average plus the double SD of each RF station.  

The hypothetical cases of scenario No. 1 and the predicted Q are shown in Table 4.28. 

The predicted Q of the three situations of scenario No. 1 is shown in Figure 4.44. The 

figure shows that increasing the RF of the Batang Kali station from 0 mm/hr to 20 mm/hr 

results in a significant influence on the predicted Q.  

The initial Q in scenario No. 1 is 60 m3/s for all situations. The predicted Q in situation 

A increases from 78.80 m3/s to 138.33 m3/s by increasing the RF intensity in the Batang 

Kali station from 0 mm/h to 20 mm/h, whereas in situation B, it increases from 93.12 m3/s 

to 140.51 m3/s. In situation C, it increases from 110.86 m3/s to 149.50 m3/s.  

The predicted Q is still in the normal level zone for all situations of scenario No. 1. The 

Q in the high RF intensity is near the alert level but does not reach it within the range of 
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the MLP-6a validity, which starts from 0 mm/hr to approximately 20 mm/hr of the Batang 

Kali station.  

    

Figure 4.44: Predicted hourly stream flow of scenario No. 1 
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Table 4.28: Results of scenario No. 1 
 

Scenario No.1  Situation A 

Q (t) Wlu Wlb Wlk Wla Rfu Rfb Rfk Rfa Qp (t+13) 

60.00 32.2 32.4 44.2 50.2 1.62 0.00 2.36 2.40 78.80 

60.00 32.2 32.4 44.2 50.2 1.62 2.00 2.36 2.40 87.66 

60.00 32.2 32.4 44.2 50.2 1.62 4.00 2.36 2.40 95.93 

60.00 32.2 32.4 44.2 50.2 1.62 6.00 2.36 2.40 103.47 

60.00 32.2 32.4 44.2 50.2 1.62 8.00 2.36 2.40 110.23 

60.00 32.2 32.4 44.2 50.2 1.62 10.00 2.36 2.40 116.22 

60.00 32.2 32.4 44.2 50.2 1.62 12.00 2.36 2.40 121.54 

60.00 32.2 32.4 44.2 50.2 1.62 14.00 2.36 2.40 126.27 

60.00 32.2 32.4 44.2 50.2 1.62 16.00 2.36 2.40 130.56 

60.00 32.2 32.4 44.2 50.2 1.62 18.00 2.36 2.40 134.54 

60.00 32.2 32.4 44.2 50.2 1.62 20.00 2.36 2.40 138.33 

Scenario No.1  Situation B 

60.00 32.73 33.20 44.30 50.31 1.62 0.00 2.36 2.40 93.12 

60.00 32.73 33.20 44.30 50.31 1.62 2.00 2.36 2.40 101.63 

60.00 32.73 33.20 44.30 50.31 1.62 4.00 2.36 2.40 109.25 

60.00 32.73 33.20 44.30 50.31 1.62 6.00 2.36 2.40 115.88 

60.00 32.73 33.20 44.30 50.31 1.62 8.00 2.36 2.40 121.53 

60.00 32.73 33.20 44.30 50.31 1.62 10.00 2.36 2.40 126.26 

60.00 32.73 33.20 44.30 50.31 1.62 12.00 2.36 2.40 130.18 

60.00 32.73 33.20 44.30 50.31 1.62 14.00 2.36 2.40 133.42 

60.00 32.73 33.20 44.30 50.31 1.62 16.00 2.36 2.40 136.13 

60.00 32.73 33.20 44.30 50.31 1.62 18.00 2.36 2.40 138.44 

60.00 32.73 33.20 44.30 50.31 1.62 20.00 2.36 2.40 140.51 

Scenario No.1  Situation C 

60.00 33.21 33.98 44.42 50.47 1.62 0.00 2.36 2.40 110.86 

60.00 33.21 33.98 44.42 50.47 1.62 2.00 2.36 2.40 119.21 

60.00 33.21 33.98 44.42 50.47 1.62 4.00 2.36 2.40 126.43 

60.00 33.21 33.98 44.42 50.47 1.62 6.00 2.36 2.40 132.46 

60.00 33.21 33.98 44.42 50.47 1.62 8.00 2.36 2.40 137.35 

60.00 33.21 33.98 44.42 50.47 1.62 10.00 2.36 2.40 141.19 

60.00 33.21 33.98 44.42 50.47 1.62 12.00 2.36 2.40 144.10 

60.00 33.21 33.98 44.42 50.47 1.62 14.00 2.36 2.40 146.24 

60.00 33.21 33.98 44.42 50.47 1.62 16.00 2.36 2.40 147.76 

60.00 33.21 33.98 44.42 50.47 1.62 18.00 2.36 2.40 148.80 

60.00 33.21 33.98 44.42 50.47 1.62 20.00 2.36 2.40 149.50 
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4.5.3.2 Scenario No. 2 

The same hydrological conditions of scenario No. 1 were employed in the investigation 

process of scenario No. 2, except for the initial Q in the Rantau Panjang downstream 

station, which was assumed to be 120 m3/s. 

The hypothetical cases and the predicted Q of scenario No. 2 are shown in Appendix E. 

The predicted Q of the three situations of scenario No. 2 is shown in Figure 4.45. The 

figure shows that increasing the RF intensity of the Batang Kali station from 0 mm/hr to 

20 mm/hr results in a significant influence on the predicted Q.  

The initial Q in scenario No. 2 is 120 m3/s for the three situations. The predicted Q in 

situation A increases from 127.04 m3/s to 186.91 m3/s by increasing the RF intensity in 

the Batang Kali station from 0 mm/hr to 20 mm/hr whereas, in situation B, it increases 

from 146.62 m3/s to 187.46 m3/s. In situation C, it increases from 160.27 m3/s to 193.78 

m3/s.  

In situation B, the predicted Q approaches the alert level zone at the RF intensity of 8 

mm/hr while approaches the warning level at RF 16 mm/hr in the Batang Kali station. In 

situation B, the Q approaches the alert level at the RF intensity of 4 mm/hr while 

approaches the warning level at the RF intensity of 13 mm/hr. In situation C, the Q 

approaches the alert level at the RF intensity of 0 mm/hr while approaches the warning 

level at the RF intensity of 6 mm/hr.  

The predicted Q is still in warning level zone in the high RF intensity, for all situations 

of scenario No. 2 and doesn’t approach the danger level within the range of MLP-6a 

validity. 
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Figure 4.45: Predicted hourly stream flow of scenario No. 2 

 

4.5.3.3 Scenario No. 3 

The same hydrological conditions of scenario No. 1 were employed in the investigation 

process of scenario No. 3, except for the initial Q in the Rantau Panjang downstream 

station, which was assumed to be 160 m3/s. 

The hypothetical cases of scenario No. 3 and the predicted Q are shown in Appendix E. 

The predicted Q of the three situations of scenario No. 3 is shown in Figure 4.46. This 

figure shows that increasing the RF intensity of the Batang Kali station from 0 mm/hr to 

20 mm/hr results in a significant influence on the predicted Q.  

The initial Q in scenario No. 3 is 160 m3/s for the three situations. The predicted Q in 

situation A increases from 171.46 m3/s to 212.32 m3/s by increasing the RF intensity in 

the Batang Kali station from 0 mm/hr to 20 mm/hr whereas, in situation B, it increases 
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from 171.46 m3/s to 212.32 m3/s. In situation C, it increases from 187.27 m3/s to 216.78 

m3/s.  

In situation A, the Q approaches the warning level at the RF intensity of 5 mm/hr, whereas 

in situation B, the Q approaches the warning level at the RF intensity of 2 mm/hr. In 

situation C, the Q approaches in the warning zone at the RF intensity of 0 mm/hr. 

The predicted Q is still in warning level zone for the most range of RF intensity, for all 

situations of scenario No. 3 and doesn’t approach the danger level within the range of 

MLP-6a validity. 

 

 

Figure 4.46: Predicted hourly stream flow of scenario No. 3 
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4.5.3.4 Scenario No. 4 

The same hydrological conditions of scenario No. 1 were employed in the investigation 

process of scenario No. 4, except for the initial Q in the Rantau Panjang downstream 

station, which was assumed to be 180 m3/s. 

The hypothetical cases and the predicted Q of scenario No. 4 are shown in Appendix E. 

The predicted Q of the three situations of scenario No. 4 is shown in Figure 4.47. This 

figure shows that increasing RF intensity of Batang Kali station from 0 mm/hr to 20 

mm/hr results in a significant influence on the predicted Q.  

The initial Q in scenario No. 4 is 180 m3/s for the three situations. The predicted Q in 

situation A increases from 170.16 m3/s to 223.55 m3/s by increasing the RF intensity in 

the Batang Kali station from 0 m/hr to 20 mm/hr, whereas in situation B, it increases from 

183.99 m3/s to 222.73 m3/s. In situation C, it increases from 198.64 m3/s to 226.36 m3/s. 

In situation A, the Q approaches the warning level at the RF intensity of 2 mm/hr, whereas 

in situation B and situation C, the Q approaches the warning zone from the RF intensity 

of 0 mm/hr. The predicted Q is still in warning level zone for the most range of RF 

intensity, for all situations of scenario No. 4 and does not approach the danger level within 

the range of MLP-6a validity. 
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Figure 4.47: Predicted hourly stream flow of scenario No. 4  

 

4.5.3.5 Scenario No. 5 

The same hydrological conditions of scenario No. 1 were employed in the investigation 

process of scenario No. 5, except for the initial Q in the Rantau Panjang downstream 

station, which was assumed to be 200 m3/s. 

The hypothetical cases of scenario No. 5 and the predicted Q are shown in Appendix E. 

The predicted Q of the three situations of scenario No. 4 is shown in Figure 4.48. The 

figure shows that increasing RF intensity of Batang Kali station from 0 mm/hr to 20 

mm/hr results in a significant influence on the predicted Q.  

The initial Q in scenario No. 5 is 200 m3/s for the three situations. The predicted Q in 

situation A, increases from 208.67 m3/s to 231.90 m3/s by increasing the RF intensity in 

the Batang Kali station from 0 mm/hr to 20 mm/hr whereas, in situation B, it increases 
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from 195.20 m3/s to 233.07 m3/s. In situation C, it increases from 182.29 m3/s to 234.79 

m3/s. 

The predicted Q approaches the warning zone in the 3 situations of scenario No. 5 at the 

RF intensity of 0 mm/hr. The predicted Q is still in the warning level zone and does not 

approach the danger level for all situations. The Q in the high RF intensity is near the 

danger level but doesn’t reach it within the range of MLP-6a validity which starts from 0 

mm/hr to about 20 mm/hr of Batang Kali station.  

 

Figure 4.48: Predicted hourly stream flow of scenario No. 5 
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4.5.3.6 Scenario No. 6 

Given that the Q did not approach the danger level in all previous scenarios, which mainly 

focus on changing the RF in only one station, new hydrological conditions have been 

assumed to detect the conditions that may lead Q to approach the danger level.  

The same hydrological conditions in scenario No. 5 were used in the investigation process 

of scenario No. 6, except for the RF intensity in the Kerling station, which gradually 

increased from 0 mm/hr to 20 mm/hr, such as the RF intensity in the Batang Kali station. 

Only situation C was applied in this scenario because it provided the highest Q through 

the scenario No. 5. 

The hypothetical cases of scenario No. 6 and the predicted Q are shown in Appendix E. 

The predicted Q of scenario No. 6 is shown in Figure 4.49. The figure shows that 

increasing the RF intensity of both the Batang Kali and Kerling stations from 0 mm/hr to 

20 mm/hr results in a significant influence on the predicted Q.  

The initial Q in scenario No. 6 is 200 m3/s. The predicted Q increases from 205.18 m3/s 

to 250.85 m3/s by increasing the RF intensity of the Batang Kali and Kerling stations 

from 0 mm/h to 20 mm/h. The predicted Q approaches the danger level at around the RF 

intensity of 20 mm/hr of both the Batang Kali and Kerling stations.  

Based on the results of scenario No. 6 and the previous scenarios, reaching the danger 

level in the downstream area required high RF intensity in at least two upstream stations. 

The danger levels cannot be reached if the high RF intensity is present in only one 

upstream station. 
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Figure 4.49: Predicted hourly stream flow of scenario No. 6 

 

4.6 General Discussion about the AI-based Models and its’ Applications 

This section provides a general discussion about the AI-based models and it applications 

which were covered in sections 4.4 and 4.5. The ability of the AI techniques for Q 

prediction in the downstream area from the upstream WL and RF records in the humid 

tropical area was successfully explored. A total of six AI-based models with different 

combinations of input variables were developed using four AI techniques: MLP, RBF, 

GRNN and SVM through two modelling phases. 

The modelling process was performed in two phases. First, the results of the Lt estimated 

by CCA were applied to select the lag intervals between the input and output variables of 

AI-based models. The results of HGA were then applied in the second phase of the 

modelling process. The two phases of the modelling process were performed to explore 

the ability of improving the performance of AI-based models by the accurate selection of 

the lag intervals between the model variables based on the accurate estimation of the Lt.   
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The hourly records of Q, RF, and WL for a one-year period (2011) were applied to train 

and test the AI-based models. The hourly records of WL and RF in the upstream stations 

were used as input variables (independent variables), whereas the Q data in the 

downstream station were used as output variable (independent variables) of the AI-based 

models. The model performances were assessed based on three performance evaluation 

criteria: R, R2, and MAE.  

Based on the performance evaluation of the developed models, M6 from the first 

modelling phase and M6a from the second modelling phase achieved the best 

performance among all the models. The correlation between the observed and predicted 

Q of all the developed models, particularly by the M6 and M6a models, appears to be 

consistent for both training and testing data sets.  

The performance of the four AI techniques is compared by analyzing the performance of 

the best-fitting model for predicting the Q, which is determined based on the performance 

evaluation of the testing data sets. The results suggest that the SVM is superior to the 

ANNs in predicting Q. 

The developed AI-based models were then successfully utilized as prediction and 

analytical tools to investigate the influence of the input variables on Q. The results of the 

investigation of the influence of all WL and RF on Q proved that the RF and WL of the 

upstream stations directly affected the Q in the Rantau Panjang station (downstream 

station).  

The AI-based models were also utilized to estimate the missing Q records. The records 

of Q on August 28, 2010, which were not entered into the developed models before, were 

predicted by the AI-based models to check the capability of the developed models to 

estimate Q. A good agreement between the observed (hidden records) and estimated Q 

was observed. 
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Finally, the AI-based models were applied in early warning of upcoming high SF events. 

Six scenarios were arranged through the hypothetical cases of the input variables to 

investigate how the RF and WL in the upstream stations can affect the SF in the 

downstream area and how the changes in RF intensity lead to the formation of high SF 

events, as represented by the three levels (i.e., alert, warning, and danger). Based on the 

results of the studied scenarios, reaching the danger level in the downstream area required 

high RF intensity in at least two upstream stations. The danger levels cannot be reached 

if the high RF intensity is present in only one upstream station. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Introduction 

Many conclusions, recommendations and suggestions for future work related to the 

research topic were obtained based on the results of this study.  

5.2 Conclusions 

The following conclusions were obtained based on the results of this study: 

1. A better understanding of the river basin hydrology is the key to improving the 

performance of the AI-based models in predicting SF. Investigating the long-term 

changes in SF regimes and the Lt estimation was implemented in this study to enhance 

the understanding of the river basin hydrology, and their results were included in the 

SF modelling process to improve the prediction performance of Q through the 

accurate timing of the input and output variables of the AI-based models.  

2. The analysis of the long-term variations in the SF regime in the Selangor River basin 

includes an investigation of the variations in nine hydrological variables that describe 

the yearly SF and the variations in the monthly SF, as well as the variations in the 

yearly duration of high and low SF over a 50-year period from 1961 to 2010. Apparent 

changes were observed through the analysis of the long-term variations. The results 

verified the existence of long-term variations in the SF regime that may result in the 

formation of appropriate hydrological conditions to increase the occurrence 

probability of flood and drought events in the future. 
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3. The Lt between the upstream and downstream stations was estimated using three 

approaches namely, empirical formulas, CCA and NGA. The estimated Lt by HGA 

was applied in deriving the two empirical formulas to estimate the Lt between the RF 

upstream and downstream stations. The derived empirical formulas significantly 

simplify the Lt estimation process by a quick and easy approach that is directly based 

on the RF and SF records without the necessity of identifying the full description of 

all the parameters that affect the Lt. The HGA is applicable for all humid tropical 

rivers, whereas the derived empirical formulas are applicable only for the Selangor 

River basin, but they can be modified for other humid tropical rivers. 

4. The ability of the three techniques of ANNs (i.e. MLP, RBF, and GRNN) along with 

SVM for real-time Q prediction in the downstream area from the upstream WL and 

RF records in the Selangor River basin was explored and successfully achieved with 

high performance throughout two modelling phases. In the first phase, the estimated 

Lt by CCA was employed to select the lag intervals between the input and output 

variables of the AI-based models, whereas the estimated Lt by HGA was applied in 

the second phase. The two phases of the modelling process were used to explore the 

ability of improving the performance of the AI-based models through the accurate 

timing of variables of the AI-based models depending on the Lt estimation. In the first 

phase, six models with different combinations of input variables were trained and 

developed by four AI techniques resulting in the development of 24 AI-based models 

to predict the Q. In the second phase, only two models, those achieved the highest R 

among the six models of the first phase were selected, resulting in the development 

of eight. The total number of developed AI-based models in the two modelling phases 

is 32. 

5. The performance evaluation of the developed AI-based models was assessed based 

on the three performance evaluation criteria: R, R2, and MAE. It shows that high R 
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was reached for most of the developed models. The results show the ability of the 

accurate timing of the variables of the AI-based in enhancing the performance of the 

AI-based models, thereby improving the performance of the Q prediction. High 

agreement between the observed and predicted Q was observed also for most of the 

developed models. The results suggested that SVM is superior to ANNs in predicting 

Q given the R values between the observed and the predicted Q by the SVM–M6 

model are 0.992 and 0.953, whereas the MAE values are 0.061 and 0.253 for the 

training and testing data sets, respectively. The achieved values of the R and MAE of 

SVM are generally better than those of the three ANNs techniques.   

6. The developed AI-based models were successfully employed in many hydrological 

applications, such as prediction tools to predict the future Q and as analytical tools to 

investigate the influence of the RF and WL on Q. They were also employed in 

estimation of the missing records of Q. Furthermore, they were employed in flood 

early warning through the advance detection of hydrological conditions that may lead 

to the formation of floods via six hydrological scenarios which were arranged to select 

the hydrological conditions that may lead to the formations of floods. According to 

results of applications, it can be concluded that AI-based models are beneficial tool 

to the local authorities for flood control and awareness. 

7. To the best of the researcher’s knowledge, this research can be considered a unique 

contribution to the field of real-time Q prediction. The significance of this research 

lies in the uniqueness of the considered process and the novelty of the applied 

methodology in the modelling process. The integration of the hydrological description 

of SF in the modelling process and high performance and applicability of the 

developed AI-based models also have an immense role in enhancing the significance 

of the research. 
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5.3 Recommendations 

The following recommendations were made based on the results of this study: 

1. The analysis of the long-term changes of the SF regime in the Selangor River basin is 

a key toward achieving an extensive knowledge of the changes in the SF regime of 

this river. The outcome of exploring the long-term variations in the SF regime 

promotes the awareness of the demand for a better understanding of the Selangor 

River hydrology and draws attention to the necessity of the development of water 

resource management systems, considering the increasing probability of future 

droughts. Awareness is also drawn to improving the flood protection plans in response 

to the increasing possibility of future flood events to prevent the negative impacts that 

may result from the probable variations in the SF regime. 

2. Further studies should be directed to develop and improve the performance of HGA 

and the empirical formulas to estimate the Lt between the upstream and downstream 

stations in the Selangor River basin and tropical humid rivers. The new studies mainly 

start with improving the availability and quality of the required hydrological data, 

which is one of the main challenges in this research. HGA and the derived empirical 

formulas have the potential to be employed in many future hydrological applications, 

especially those related to surface water hydrology and river systems.  

3. Given the high R achieved by ANNs and SVM in real-time Q prediction in the 

Selangor River basin, which is a paradigm of humid tropical rivers, these techniques 

can be applied in the Q prediction in other river basins in humid tropical areas, 

especially in Southeast Asia. The results also offer a starting point to explore new 

possible hydrological processes in the Selangor River basin, such as RF, water 

quality, and sedimentation to be modelled and predicted using ANNs and SVM.  
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4. Although the ANNs and SVM performed well in real-time Q prediction, higher R in 

the Selangor River basin can be investigated by employing other AI techniques, such 

as FRBSs and GAs in Q prediction. The role of Lt estimation in achieving high  R 

between the observed and predicted Q by ANNs and SVM offers enough motivation 

to explore possible improvements by employing the Lt estimation in real-time Q 

modelling process using other AI techniques.   

5. The role of Lt estimation in achieving high R between the observed and predicted Q 

offers a starting point to explore the effect of integration Lt estimation in modelling 

and prediction of new possible hydrological processes, such as RF, water quality, and 

sedimentation in Selangor River basin or other river basins in humid tropical areas. 
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