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ABSTRACT

Game theory is a branch of mathematics involving the study of cooperation and

conflicts in the society. Given the importance of cooperation in the fight for common

goods, the emergence of cooperation amongst selfish individuals is a fundamental and

important issue in the economics and behavioural sciences. The aim of this thesis is to

further our understanding of the roles of various factors such as incentives and network

on the enhancement of cooperation in different economic models involving non-linear

systems. In particular, two models, one involving social dilemma with N-players and the

other involving economic behaviours with two players are studied. These two models

are used to develop a third model which retains the main features of the second model,

but modified to include N-players with an evolutionary trait as in the first model. This

is to give some insights on the effects of the various features in the first model on the

frequency of cooperation and magnitude of incentives, i.e. technological leapfrogging

in the second model. Punishing strategy, which can be regarded as a form of direct

or indirect reciprocity, is another important mechanism in promoting cooperation. In a

recent model of N-player Snowdrift game with evolutionary trait incorporating a costly

punishing strategy, the role of punishment and the effects of a structured population

connected through a square lattice in promoting cooperation are investigated. One of

the main challenges in the studies of evolutionary games is bridging the gap between

theoretical and empirical research. Different problems have been studied in the hope of

applying the findings to implement game theory to a practical scenario where the market

is dominated by only a few players. Therefore, the role of punishment is studied in a

Cournot duopoly. In the industry, the role of the punisher in Snowdrift game can be

taken up by the patent system as the latter punishes the free-riders by giving intellectual
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property rights to the innovators (cooperators), thereby causing technological lagging in

the free-riders (defectors). Therefore, punishment in this case is given in the form of

incentive-denial. The effect of patenting on cooperation and defection is thus studied in a

long-term research and development (R&D) Cournot duopoly differential game, as well as

to determine the sustainability of R&D incentives in an environment where technological

innovation is almost a public good. Finally, the R&D Cournot duopoly differential game

model is simplified to an extent which allows the study of the model in an evolutionary

well-mixed N-player setting to identify precisely the factors directly affecting the firms’

investment rate and technological leapfrogging. With the introduction of an evolutionary

feature to the simplified R&D Cournot duopoly model, the latter allows the study of

the effect of an N-player evolutionary game on the various factors in the original R&D

Cournot duopoly model. The R&DCournot duopoly model is modified with the view that

it can be readily generalized to incorporate other interesting and practical features such as

real-life networking effects not present in the original Cournot duopoly game.
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ABSTRAK

Teori permainan adalah salah satu cabang dalam bidang matematik yang mengkajise-

lidik isu kerjasama dan konflik dalam masyarakat. Kerjasama adalah asas dan isu penting

dalam kajiselidik ekonomi dan perangai manusia kerana kepentingan kerjasama adalah

untuk kebaikan semua. Objektif tesis ini adalah untuk mendalamkan kefahaman tentang

faktor-faktor yang akan menggalakkan kerjasama dalam model ekonomi yang berlain-

an dan melibatkan sistem tak-linear seperti insentif dan struktur rangkaian. Khususnya,

model sosial dilema yang melibatkan N pemain dan model tingkah-laku ekonomi yang

melibatkan dua pemain dikaji. Kedua-dua model ini digunakan untuk membina model ke-

tiga yang megekalkan ciri-ciri model kedua dan diubahsuai untuk mengandungi N pemain

dan ciri evolusi seperti dalam model pertama. Ini adalah untuk mengkaji kesan ciri-ciri

dalam model pertama terhadap kekerapan kerjasama dan pintasan teknologi dalam model

kedua. Strategi denda adalah mekanisme penting dalam mengalakan kerjasama. Kami

mengkaji watak dan kesan strategi denda dalam mengalakkan kerjasama dengan meng-

gunakan model evolusi permainan “Snowdrift" yang melibatkan N pemain dan strategi

denda yang terkini dalam populasi yang dihubungkan dalam struktur “lattice". Dalam

kajian evolusi permainan, mendekatkan jurang antara teori dan kajian empirikal adalah

salah satu cabaran besar. Pelbagai kajian telah dilakukan dalam pencarian kaedah untuk

mengimplikasi teori permainan dalam senario dunia nyata dimana pasaran dikuasai oleh

beberapa pemain sahaja. Justeru itu, watak denda dikaji dengan menggunakan “Cournot

duopoly" yang lebih praktikal. Dalam industri, watak denda dalam permainan “Snowdrift"

boleh digantikan dengan sistem paten kerana sistem paten menghukum pihak yangmenya-

lin dengan memberikan pihak inovator hak monopoli dalam penggunaan sesuatu inovasi

yang boleh menjauhkan jurang kepakaran teknologi penyalin. Dengan itu, keuntungan
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pihak yang berkerjasama boleh dilindungi melalui paten. Dalam kes ini, denda adalah

dalam bentuk insentif-penafian. Kami mengkaji kesan paten terhadap strategi kerjasama

dan strategi pembelotan dengan menggunakan model pembezaan, penyelidikan dan pem-

bangunan jangka panjang “Cournot duopoly" yang lebih praktikal. Kami juga mangkaji

sama ada insentif penyelidikan dan pembangunan boleh dikekalkan dalam situasi dimana

innovasi teknologi adalah milik umum. Akhir sekali, kami meringkaskan model pembe-

zaan “Cournot duopoly" agar model ini boleh dikaji dengan tetapan evolusi “well-mixed"

yang melibatkan N pemain dalam mengenal pasti secara tepat faktor-faktor penting yang

mempengaruhi kadar pelaburan firma-firma dan pintasan teknologi. Kami memasukkan

elemen evolusi dalam model yang telah dimodifikasi ini agar model yang telah dimodifi-

kasi ini boleh digunakan untuk mengkaji kesan permainan yang melibatkan N pemain ke

atas factor-factor penting yang mempengaruhi strategi pemain dalam model asal. Kami

memodifikasikan model asal penyelidikan dan pembangunan “Cournot duopoly" dengan

tujuan model ini siap sedia untuk pengubahsuaian atau penggabungan unsur-unsur lain

yang menarik dan praktikal yang tidak hadir dalam model asal “Cournot duopoly" seperti

kesan rangkain dunia nyata.
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CHAPTER 1: INTRODUCTION TO GAME THEORY

Game theory is a branch of applied mathematics frequently applied to economics to study

strategic situations involving several stakeholders, each with different goals, whose actions

can affect one another. In game theory, a game is any situation where multiple players

can affect the outcome, a player is a stakeholder, a move or option is an action a player

can take and, at the end of the game, the payoff for each player is the outcome. In general,

the value of game theory lies in understanding the interactions between players and the

likely outcome which is dependent on the actions of players with potentially conflicting

motives. Game theory is a well-developed field of study that has attracted some of the

world’s greatest mathematicians, with two Nobel Prizes won in the field.

1.1 History of Game Theory

The origins of game theory go far back in time. Recent work suggests that the division of

an inheritance described in the Talmud (in the early years of the first millennium) predicts

the modern theory of cooperative games and, in 1713, James Waldegrave developed a

strategy for a card game (Bellhouse, 2007) that provided the first known solution to a two

player game.

The earliest example of a formal game-theoretic analysis is the study of a duopoly by

Antoine Cournot in his book of 1838, titled “Researches into the Mathematical Principles

of the Theory of Wealth” (Cournot, 1838) where he attempted to explain the underlying

rules governing the behaviour of duopolists.

In 1883, J. Bertrand presented a model of price competition in a duopoly market

(Bertrand, 1883). Emile Borel suggested a formal theory of games in 1921 (Borel, 1921),

which was furthered by John von Neumann in 1928 in his paper “On the Theory of Parlor

Games” (von Neumann, 1928). The works of A. Cournot were continued by Heinrich Von
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Stackelberg, who describe the quantity leadership model in his 1934 book titled “Market

Structure and Equilibrium” (von Stackelberg, 1934).

As the science of industrial organization gained its popularity, mathematical methods,

especially game theory, proved to be the mainstream in analyzing the economic markets.

John von Neumann and Oskar Morgenstern are considered to be the pioneers of game

theory, releasing their monograph, named “Theory of Games and Economic Behaviour”,

a 600 pages mathematical treatment that laid the groundwork of the field, in 1944 (von

Neumann & Morgenstern, 1944). Their work provided much of the basic terminologies

and problem setup that are still in use today and is usually credited as the origin of the formal

study of game theory. This work focused on finding unique strategies that allowed players

to minimize their maximum losses (minimax solution) by considering all the possible

responses of other players, for every possible strategy of their own. Building upon their

1928 work on two player games where the winnings of one player are equal and contrary

to the losses of his opponent (zero-sum) and where each player knows the strategies

available to all players and their consequences (perfect information), von Neumann and

Morgenstern (1944) extended the minimax theorem to include games involving imperfect

information and games with more than two players.

The golden age of game theory occurred in the 1950s and 1960s when researchers

focused on finding sets of strategies, known as equilibria, to “solve” a game if all players

behaved rationally. The most famous of these is the Nash equilibrium proposed by John

Nash (Nash, 1950, 1951), later made famous in the film “A Beautiful Mind” starring

Russell Crowe. Nash equilibrium exists if no player can unilaterally move to improve their

own outcome. In other words, they have no incentive to change, since their strategy is

the best they can do given the actions of the other players. Nash also made significant

contributions to bargaining theory and examined cooperative games where threats and
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promises are fully binding and enforceable (Drechsel, 2010).

In 1965, Reinhard Selten introduced the concept of subgame perfect equilibria

(Selten, 1965), which describes strategies that deliver Nash equilibrium across every

sequential subgame of the original game. Such subgame perfect equilibria may be found

by first determining optimal action of the player who makes the last move of the game.

Then, the optimal action of the next to last moving player is determined assuming the last

player’s action as given. The process, known as backward induction, continues until all

players’ actions have been determined. In 1967 and 1968, JohnHarsanyi formalizedNash’s

work and developed incomplete information games (Harsanyi, 1967, 1968a, 1968b). He,

along with John Nash and Reinhard Selten, won the Nobel Prize for Economics in 1994.

Another important contribution to game theory during the 1950s and 1960s was Luce and

Raiffa’s book, “Games and Decisions” (Luce & Raiffa, 1957). The Prisoner’s Dilemma,

introduced by the RAND Corporation (Poundstone, 1992) is also a product of this period.

Further adding to the acclaim of game theory, another Nobel Prize was awarded to

game theorists, Robert Aumann and Thomas Schelling, in 2005. Schelling used game

theory in his 1960 book, “The Strategy of Conflict” (Schelling, 1960) to explain why

credible threats of nuclear annihilation from the U.S. and the former Soviet Union were

counterbalancing through mutually assured destruction and therefore were not likely to

be used. He also argued that the ability to retaliate was more useful than the ability to

withstand an attack. Aumann’s work (e.g. Aumann et al., 1995) was mathematical and

focused on whether cooperation increases if games are continually repeated rather than

played out in a single encounter. He showed that cooperation is less likely when there

are many participants, when interactions are infrequent, when the time horizon is short or

when others’ actions cannot be clearly observed.
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Throughout the years, game theory has been applied to many different fields of

study. Biologist have used it to learn species behaviour (Hofbauer & Sigmund, 1998).

Algorithmic game theory is an example of application in computer science (Roughgarden,

2010). In mathematics, there is a complete branch that studies decision making process

(Mazalov, 2014). It also has its influences in business where it can model interaction of

stakeholder, dynamics in interest rates etc. (Geckil & Anderson, 2009).

1.2 Definitions of Games

The object of study in game theory is the game. What is a Game? Every child understands

what games are. When someone overreacts, we sometimes say “it’s just a game”. Games

are often not serious. Mathematical games are different. From its beginning, it was the

purpose of game theory to be applied to serious situations in economics, politics, business,

and other areas. Even wars can be analyzed by mathematical game theory.

A game is any situation with three aspects, consisting of the players, the strategies,

and the payoffs. There is a set of participants, whom we call the players. Each player has

a set of options for how to behave; we will refer to these as the player’s possible strategies.

For each choice of strategy, each player receives a payoff that can depend on the strategies

selected by the others. The payoffs are generally represented by numbers-the higher the

number, the more favourable the outcome is for the player.

Despite that, mathematical games have strict rules that specify exactly what the

players are allowed to do. Though many real-world games allow for discovering new

moves or ways to act, games that can be analyzed mathematically have a rigid set of

possible moves, usually all known in advance.

Mathematical games may have many possible outcomes, each producing payoffs

for the players. The payoffs may be monetary, or they may express satisfaction. A

mathematical game is “thrilling” in that its outcome cannot be predicted in advance. Since
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its rules are fixed, this implies that a game must either contain some random elements or

have more than one players. Mathematical games also involve decision making, and can

therefore at least partly be analyzed via game theory.

In real-life, game cheating is possible. Cheating means players consciously choose

to not play by the rules. Game theory doesn’t even acknowledge the existence of cheating.

It simply determines how to win without cheating. Rational behaviour is usually assumed

for all players. That is, players have preferences, beliefs about the world (including the

other players), and try to optimize their individual payoffs while being aware that other

players are trying to do the same.

Equilibrium is the point in a game where both players have made their decisions and

an outcome is reached. A Nash equilibrium, named after the Nobel winning economist,

John Nash, is a solution to a game involving two or more players who want the best

outcome for themselves and must take the actions of others into account. When a Nash

equilibrium is reached, players cannot improve their payoffs by independently changing

their strategy. This means that it is the best strategy assuming the other has chosen a

strategy and will not change it. For example, in the Prisoner’s Dilemma game, confessing

is a Nash equilibrium because it is the best outcome, taking into account the likely actions

of others.

1.3 Types of Games

In game theory, different types of games help in the analysis of different types of problems.

The different types of games are formed on the basis of the number of players involved

in a game, symmetry of the game, cooperation amongst players, etc. Cooperative games

are the one in which the players are convinced to adopt a particular strategy through

negotiations and agreements between players (Curiel, 1997). Non-cooperative games are

the games in which the players decide on their own strategies to maximize their profits
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(Nash, 1951). Of the two types of games, non-cooperative games are able to model

situations to the finest details, producing accurate results.

A symmetric game (see Shapley, 1964) is a game where the payoffs for playing a

particular strategy depend only on the other strategies employed, not on who is playing

them. If the identities of the players can be changed without changing the payoff to the

strategies, then a game is symmetric. Many of the commonly studied 2 × 2 games are

symmetric. Examples of symmetric games are the chicken game (Rapoport & Chammah,

1966), the Prisoner’s Dilemma, and the Stag Hunt game (Skyrms, 2004).

On the other hand, asymmetric games (see Samuelson & Zhang, 1992) are games

where there are no identical strategy sets for both players. The strategy that provides

benefit to one player may not be equally beneficial for the other player. For instance, the

ultimatum game and similarly the dictator game have different strategies for each player.

Constant sum games (see Straffin, 1993) are games in which the sum of outcomes

of all the players remains constant no matter which strategy is chosen by each player.

Zero sum game (see Straffin, 1993) is a type of constant sum game in which the sum of

outcomes of all players is zero. In a zero sum game, the strategies of different players

cannot affect the available resources. Moreover, in a zero sum game, the gain of one player

is always equal to the loss of the other player. Examples of zero sum games are chess and

gambling.

On the other hand, non-zero sum games (see Straffin, 1993) are the games in which

sum of the outcomes of all players is not zero. A non-zero sum game can be transformed

to a zero sum game by adding a dummy player. The losses of dummy player are overridden

by the net earnings of players.

Simultaneous games (see Prisner, 2014) are games where both players move simul-

taneously, or if they do not move simultaneously, the later players do not have knowledge
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about the move of other players. On the contrary, sequential games (see Haurie &

Krawczyk, 2000) are games in which each player knows the moves of the players who

have already adopted a strategy. However, in sequential games, the players do not have

deep knowledge about the strategies of the other players. For example, a player may know

that an earlier player did not perform one particular action, while he does not know which

of the other available actions the first player actually performed. Often, simultaneous

games are represented in normal form while sequential games are represented in extensive

form.

Normal (or strategic) form games (see Ozdaglar, 2015) refer to description of game

in the form of matrix where the payoff and the strategies of a game are represented in a

tabular form. Normal form games help in identifying the dominated strategies and Nash

equilibrium. A classical example of a normal form game is the Prisoner’s Dilemma.

On the other hand, the extensive form, also called a game tree (see Straffin, 1993),

is more detailed than the normal form of a game. It is a complete description of how

the game is played over time. This includes the order in which players take actions, the

information that players have at the time they must take those actions, and the times at

which any uncertainty in the situation is resolved. A game in extensive form may be

analyzed directly, or can be converted into an equivalent normal form.

In game theory, an extensive-form game (see Luce & Raiffa, 1957) has perfect

information if each player, when making any decision, is perfectly informed of all the

events that have already occurred. Chess is an example of a game with perfect information

as each player can see all of the pieces on the board at all times. Other examples of perfect

games include Tic-tac-toe, Irensei, and Go. Card games where each player’s cards are

hidden from other players, as in contract bridge and poker, are examples of games with

imperfect information.

7

Univ
ers

ity
 of

 M
ala

ya



Combinatorial games (seeBeck, 2008) are two-person gameswith perfect information

and no chance moves, and with a win-or lose outcome. Such a game is determined by

a set of positions, including an initial position, and the player whose turn it is to move.

Player moves from one position to another, with the players usually alternating moves,

until a terminal position is reached. A terminal position is one from which no moves are

possible. Then one of the players is declared the winner and the other the loser.

Much of game theory is concerned with finite, discrete games (see Bajari et al., 2010),

that have a finite number of players, moves, events, outcomes, etc. Continuous games

(see Webb, 2007) extends the notion of a discrete game, where the players choose from a

finite set of pure strategies. The continuous game concepts allow games to include more

general sets of pure strategies, which may be uncountable infinite.

Differential games (see Isaacs, 1999; Tanimoto, 2015) such as the continuous pursuit

and evasion game are continuous games where the evolution of the players’ state variables

are governed by differential equations. The problem of finding an optimal strategy in

a differential game is closely related to the one in optimal control theory (Kirk, 2012).

Typical cases of differential games are the games with a random time horizon. In such

games, the terminal time is a randomvariablewith a given probability distribution function.

Gameswith an arbitrary, but finite, number of players are often calledN-person games

(see Straffin, 1993). An important difference between two person games and N-person

games, apart from the complexity of the mathematics involved, is the fact that coalitions

may form between players of N-person games affecting the game dynamics. Since we are

concerned with opposing interests, a player in this perspective need not be a single person

but can be a nation, a football team or a pair of Bridge partners.

Some of the best-known games used to illustrate social dilemma are the Prisoner’s

Dilemma, Stag Hunt game, Chicken, Hawk-dove (see Binmore, 2007), and Snowdrift
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game (see Doebeli & Hauert, 2005). And some of the best known games used to model

the economic behaviours are Cournot game, Stackelberg game and Bertrand game. They

will be discussed in the following sections.

1.3.1 Prisoner’s Dilemma

As a branch of applied mathematics, game theory has been used to study a wide variety

of human and animal behaviours. One of the most famous classic examples in the

development of game theory is the Prisoner’s Dilemma. Originally framed by Merrill

Flood and Melvin Dresher working at RAND organization in 1950, it is the standard

model of social dilemma which has been studied extensively. Albert W. Tucker formalized

the game with prison sentence rewards and named it “Prisoner’s Dilemma” (Poundstone,

1992).

The story behind the name “Prisoner’s Dilemma” is that of two suspects who have

been apprehended by the police and are being interrogated in separate rooms. The police

strongly suspect that these two individuals are responsible for a robbery, but there is not

enough evidence to charge either of them for the crime. However, if they both chose

to resist arrest, they could be charged with a lesser crime, carrying a one-year sentence.

Each of the suspects is told the following story. “If you confess, and your partner doesn’t

confess, then you will be released and your partner will be charged with the crime. Your

confession will be sufficient to convict him of the robbery and he will be sent to prison for

10 years. If you both confess, then we don’t need either of you to testify against the other,

and you will both be convicted of the robbery. (Although in this case your sentence will

be less—4 years only—because of your guilty plea.) Finally, if neither of you confess,

and then we can’t convict either of you of the robbery, so we will charge each of you with

resisting arrest. Your partner is being offered the same deal. Do you want to confess?”
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To formalize this story as a game, we need to identify the players, the possible strate-

gies, and the payoffs. The two suspects are the players, and each has to choose between

two possible strategies: Confess (defect) or Not-Confess (cooperate). The situation is best

illustrated in what is called a “payoff matrix” as follows:

Cooperator

Defector

Cooperator Defector

©­­«
R S ª®®¬T P

If both players cooperate, they both receive the reward R for cooperating. If both

players defect, they both receive the punishment payoff P. If first player defects while

the opponent cooperates, then the first player receives the temptation payoff T , while the

opponent receives the “sucker’s” payoff S. Similarly, if the first player cooperates while the

opponent defects, then the first player receives the sucker’s payoff S, while the opponent

receives the temptation payoff T . To be a Prisoner’s Dilemma game in the strong sense,

the following condition must hold for the payoffs: T > R > P > S.

The payoff relationship R > P implies that mutual cooperation is superior to mutual

defection, while the payoff relationships T > R and P > S imply that defection is the

dominant strategy for both agents. A state where none of the participants can improve

its payoff by unilaterally changing its strategy is called a Nash equilibrium (Nash, 1951),

and in the case of this game, mutual defection is the only strong Nash equilibrium in the

game. The dilemma then is that mutual cooperation yields a better outcome than mutual

defection but it is not the rational outcome because from a self-interested perspective, the

choice to cooperate, at the individual level, is irrational.

The Prisoner’s Dilemma is a standard example of a game analysed in game theory

that shows why two completely “rational” individuals might not cooperate, even if it

appears that it is in their best interests to do so. Prisoner’s Dilemma games are models of
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societal and organizational conflict situations. The intriguing nature of the dilemmas and

the potential importance of the situations they model have led to the study of Prisoner’s

Dilemma “problems” in several disciplines. Economists have used Prisoner’s Dilemma

games as a model of oligopolistic price setting (Shubik, 1955). Political scientists have

studied them as models of the free-rider problem associated with public goods (Hardin,

1971). Psychologists have studied behaviour in different forms of the Prisoner’s Dilemma

game (Rapaport & Chammah, 1965) and have often used them as a vehicle for studying

personality differences (Terhune, 1968). This intense scrutiny has focused on techniques

for increasing the amount of cooperation in Prisoner’s Dilemma games (Dawes et al.,

1977).

The Prisoner’s Dilemma is meant to study short term decision-making where the

actors do not have any specific expectations about future interactions or collaborations.

There is a substantial relationship between the StagHunt game and the Prisoner’sDilemma.

In biology, many circumstances that have been described as Prisoner’s Dilemma might

also be interpreted as a Stag Hunt game, depending on how fitness is calculated. It is also

the case that some human interactions that seem like Prisoner’s Dilemmas may in fact be

Stag Hunts.

1.3.2 Stag Hunt

In game theory, the Stag Hunt (see Skyrms, 2004) is a game which describes a conflict

between safety and social cooperation. Other names for it or its variants include “assurance

game”, “coordination game”, and “trust dilemma”. The Stag Hunt is a story that became

a game. The story is briefly told by Rousseau, in “A Discourse on Inequality” in 1755

(Rousseau, 1992). Jean-Jacques Rousseau described a situation in which two individuals

go out on a hunt. Each can individually choose to hunt a stag or hunt a hare. Each player

must choose an action without knowing the choice of the other. If an individual hunts a
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stag, he must have the cooperation of his partner in order to succeed. An individual can

get a hare by himself, but a hare is worth less than a stag. This is taken to be an important

analogy for social cooperation. If we illustrate the situation in a payoff matrix as in the

Prisoner’s Dilemma,

Cooperator

Defector

Cooperator Defector

©­­«
R S ª®®¬T P

the following condition must hold for the payoffs: R > T > P > S. So you can see in

the payoff matrix that if both players cooperate, i.e. both player 1 and player 2 choose a

stag, then they will both get the largest payoff of R. But if both players do not cooperate,

i.e. player 1 chooses a hare and player 2 chooses a stag, then player 2 will get the smallest

payoff of S and player 1 will get a payoff of T , and vice versa. If both players choose to

hunt the hare, then both players will get a payoff of P.

A Stag Hunt is a game with two pure strategy Nash equilibria—one that is risk

dominant another that is payoff dominant. The strategy pair (Stag, Stag) is payoff dominant

since payoffs are higher for both players compared to the other pure Nash equilibrium,

(Hare, Hare). On the other hand, (Hare, Hare) risk dominates (Stag, Stag) strategy since if

uncertainty exists with regard to the other player’s action, gathering will provide a higher

expected payoff. The more uncertainty players have concerning the actions of the other

player(s), the more likely they will choose the strategy corresponding to it.

The Stag Hunt differs from the Prisoner’s Dilemma in that there are two Nash equi-

libria: when both players cooperate and both players defect. In the Prisoners Dilemma,

the only Nash equilibrium is when both players choose to defect. Stag Hunt is in many

ways like Prisoner’s Dilemma except that in Stag Hunt, mutual cooperation is individually

preferable to unilateral defection. Therefore, Stag Hunts are more likely to foster cooper-
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ation than Prisoner’s Dilemma. Moreover, a Prisoner’s Dilemma can be changed into a

Stag Hunt in situations where the benefits of an opponent’s defection can be mitigated.

1.3.3 Chicken Game

Chicken game (see Rapoport & Chammah, 1966) is an influential model of conflict for two

players in game theory. The name “chicken” has its origins in a game in which two drivers

drive towards each other on a collision course: one must swerve, or both may die in the

crash, but if one driver swerves and the other does not, the one who swerved will be called

a “chicken”, meaning a coward. This terminology is most prevalent in political science

and economics. It is presumed that the best thing for each driver is to stay straight while

the other swerves (since the other is the “chicken” while a crash is avoided). Additionally,

a crash is presumed to be the worst outcome for both players. This yields a situation where

each player, in attempting to secure his best outcome, risks the worst. The pure strategy

equilibria are the two situations wherein one player swerves while the other does not. If

we illustrate the situation in a payoff matrix as in the Prisoner’s Dilemma,

Cooperator

Defector

Cooperator Defector

©­­«
R S ª®®¬T P

the order of preference is T > R > S > P.

Chicken game is like Prisoner’s Dilemma except that unrequited cooperation is prefer-

able to mutual defection. Defection is therefore less likely than Prisoner’s Dilemma be-

cause its potential costs are greater. Unlike Stag Hunt game and Prisoner’s Dilemma,

iteration may reduce the likelihood for cooperation because a reputation for cooperation

reduces an opponent’s timidity towards defection.
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1.3.4 Hawk-Dove Game

Hawk-Dove game (see Binmore, 2007) is motivated by the following story. Suppose two

animals are engaged in a contest to decide how a piece of food will be divided between

them. Each animal can choose to behave aggressively (the Hawk strategy) or passively

(the Dove strategy). If the two animals both behave passively, they divide the food evenly,

and each get a payoff of R. If one behaves aggressively while the other behaves passively,

then the aggressor gets most of the food, obtaining a payoff of T , while the passive one

only gets a payoff of S. But if both animals behave aggressively, then they destroy the

food (and possibly injure each other), each getting a payoff of P. Thus we have the payoff

matrix

Cooperator

Defector

Cooperator Defector

©­­«
R S ª®®¬T P

with the order of preference T > R > S > P. This game has two Nash equilibria: (Dove,

Hawk) and (Hawk, Dove). Without knowing more about the animals, we cannot predict

which of these equilibria will be played. The Hawk-Dove game is identical to the Chicken

game from a game-theoretic point of view.

1.3.5 Snowdrift Game

The study of game theory has slowly evolved over the years, from coordination games and

domination games like StagHunt and Prisoner’sDilemma respectively to anti-coordination

games like Snowdrift game (see Doebeli & Hauert, 2005). The Snowdrift game is a

theoretical model of cooperation within the context of game theory. A mixed strategy of

cooperation and defection can emerge under a Snowdrift game system of payoffs, which

makes it very different from the Prisoner’s Dilemma. The problem of cooperation is easily
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illustrated in the famous Prisoner’s Dilemma where two players have the opportunity to

either cooperate or defect, with cooperation resulting in a benefit to the opposing player

but entailing a cost to the cooperator. In this situation, an individual player in a one-shot

interaction is always better off when defecting, independent of what the other player does.

However, the Prisoner’s Dilemma does not represent the frequent situation where

individuals obtain immediate direct benefits from the cooperative acts they perform and

costs of cooperation are shared between cooperators. Such a situation is encapsulated in

the Snowdrift game, which derives its name from the following situation. There are two

drivers driving in opposite direction on a road blocked by a snowdrift. Both the drivers

share the same interest: both want the snowdrift to be removed. But who’s going to get

out and shovel? It might seem fair just to get out and shovel the snow together—–in other

words, to cooperate. But what if the other driver just sits there and refuses to help? If the

cost of shoveling is low compared to the benefit of getting out of the drift, it will be in the

driver interest to shovel. Indeed, the other driver is a freeloader who shares the benefit

undeservedly. If the cost of shoveling was too high to bear, the driver would have refused

to do it, letting both of them freeze there. That would be the Prisoner’s Dilemma. But if

the cost of shoveling is lower than the costs of doing nothing, then a mixed strategy will

be optimal. As long as freeloaders aren’t too common, that strategy will pay off. So a

population engaged in the Snowdrift game will come to a mixed proportion of shovelers

and freeloaders. The situation can be illustrated in a payoff matrix below:

Cooperator

Defector

Cooperator Defector

©­­«
R S ª®®¬T P

In this game, cooperation yields a benefit b that is accessible to both players (i.e. free

passage to go home), whereas the cost c (i.e. removing the snowdrift) is shared between

15

Univ
ers

ity
 of

 M
ala

ya



cooperators (Doebeli & Hauert, 2005). If both players cooperate, they both receive the

reward R = b−c/2 for cooperating. If both players defect, they both receive the punishment

payoff P = 0. If first player defects while the opponent cooperates, then the first player

receives the temptation payoff T = b, while the opponent receives the “sucker’s” payoff

S = b− c. Similarly, if the first player cooperates while the opponent defects, then the first

player receives the sucker’s payoff S = b − c, while the opponent receives the temptation

payoff T = b. In Snowdrift game, the benefit of getting out of the drift is higher than the

cost of shovelling, b > c > 0. Thus, the following condition must hold for the payoffs:

T > R > S > P.

Situations similar to the Snowdrift game are ubiquitous in human working life. For

example, two scientists accomplishing a research project would each benefit if the other

invests more time than oneself in the writing of the paper reporting the collaborative work.

But if one of the collaborators does not contribute at all, the best option probably remains

to do all the work on one’s own. The Snowdrift game has the same characteristics as the

game of chicken or the Hawk-Dove game, but these games are usually framed in terms of

competitive interactions.

1.3.6 Cournot Duopoly Game

As a branch of applied mathematics, game theory was initially developed in economics

to understand a large collection of economic behaviors, including behaviors of firms,

markets, and consumers. The first use of game-theoretic analysis was by a well-known

mathematician, philosopher and economist Antoine Augustin Cournot in 1838 with his

solution of the Cournot duopoly in his book titled “Researches into the Mathematical

Principles of the Theory ofWealth” (Cournot, 1838). He applied mathematical models for

analysing market demand and production costs, provided profit maximization conditions

for different types of market structures and presented the classic duopoly model, named
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in his honour.

Duopoly is a form of oligopoly market having two participants only: producers or

sellers. Oligopoly is a market structure in which a small number of firms have the large

majority of market share (i.e. cell phone services market, food product markets, internet

services market and etc. in Malaysia). An oligopoly is similar to a monopoly, except that

rather than one firm, two or more firms dominate the market. There is no precise upper

limit to the number of firms in an oligopoly, but the number must be low enough that the

actions of one firm significantly impact and influence the others.

The Cournot Duopoly is a classic oligopolistic market in which there are two enter-

prises producing the same commodity and selling it in the same market. As the number

of competitors is limited to just two, their interaction becomes even more important. This

is in contrast to the N-player games where the decision of individuals have less impact on

the dynamics of the system. In a classic Cournot duopoly, every producer, before making

decisions on prices and quantities, has to take into account not only the current strategy

of the competitor, but his forthcoming responsive actions as well.

In a Cournot game, the players are the firms, the actions of each firm are the set of

possible outputs (any nonnegative amount) and the payoff of each firm is its profit. This

gamemodels a situation in which each player chooses quantities (outputs) of homogeneous

products simultaneously without communication and the market determines the price at

which they are sold. Research has shown that decision-makers operating in the same

market over an extended period of time tend to have similar views of market demand

and good knowledge of one another’s cost structure. Hence, the Cournot duopoly game

assumes that the two players have the same view of market demand, have good knowledge

of each other’s cost functions, and choose their profit-maximizing output with the belief

that their rival chooses the same way.
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Specifically, if firm 1 produces the output q1 and firm 2 produces the output q2, then

the price at which each unit of output is sold is P(q1 + q2), where P is the inverse demand

function. Let us denote firm 1’s total cost function by TC1(q1) and firm 2’s by TC2(q2).

Then firm 1’s total revenue when the pair of outputs chosen by the firms is (q1, q2) is

T R1 = P(q1+q2)q1, so that its profit isV1 = P(q1+q2)q1−TC1(q1); firm 2’s total revenue

is T R2 = P(q1 + q2)q2, and hence its profit is V2 = P(q1 + q2)q2 − TC2(q2). Firm 1’s

marginal revenue, MR1, is determined by taking the derivative of total revenue T R1 with

respect to q1, while treating q2 as a constant because firm 1 can’t change the quantity of

output produced by firm 2. Firm 1’s marginal cost, MC1, is determined by taking the

derivative of total cost TC1 with respect to q1. Similar functions are constructed for firm

2.

Now, how do we determine the firms’ outputs so that they are in Nash equilibrium?

First of all, we need to have a specific cost function and demand function to determine the

profit function,V . Then, we find the firms’ best reaction functions by taking the derivatives

of firms’ profit functions with respect to firms’ outputs, and setting these derivatives equal

to zero. Since

∂Vi

∂qi
=

∂

∂qi
[P(qi + q j)qi − TCi(qi)] = 0,

P′(qi + q j)qi + P(qi + q j) −
∂[TCi(qi)]

∂qi
= 0,

P′(qi + q j)qi + P(qi + q j) − MCi(qi) = 0,

for i, j = 1, 2 and i , j, we have

P′(q1 + q2)q1 + P(q1 + q2) − MC1(q1) = 0, (1.1)

P′(q1 + q2)q2 + P(q1 + q2) − MC2(q2) = 0. (1.2)

By solving Eq.(1.1) and Eq.(1.2) simultaneously, we can find a pair of firms’ outputs,
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(q1, q2), that maximizes the firms’ profits. In the Cournot duopoly model, both firms

determine the profit-maximizing quantities simultaneously.

1.3.7 Stackelberg Game

In a Cournot game both producers choose their outputs simultaneously. If one of them

could outrun his competitor and become the first to credibly announce the planned output,

the game would become a Stackelberg game. It was developed in 1934 by Heinrich Von

Stackelbelrg in his “Market Structure and Equilibrium” (von Stackelberg, 1934). The

game would be of two stages: first, a Stackelberg leader chooses his output, and then

a Stackelberg follower, having all the information on the leader’s choice at his disposal,

makes the decision on his output (a perfect information game).

In a Stackelberg model of duopoly, one firm serves as the industry leader. As the

industry leader, the firm is able to implement its decision before its rivals. Thus, if firm 1

makes its decision first, firm 1 is the industry leader and firm 2 reacts to or follows firm

1’s decision. However, in making its decision, firm 1 must anticipate how firm 2 reacts to

that decision. An example of such leadership may be Microsoft’s dominance in software

markets. Although Microsoft can make decisions first, other smaller companies react to

Microsoft’s actions when making their own decisions. The actions of these followers,

in turn, affect Microsoft. The primary difference between the Cournot and Stackelberg

duopoly models is that firms choose simultaneously in the Cournot model and sequentially

in the Stackelberg model.

To find the Nash equilibrium of a Stackelberg game, we need to use backward

induction, as in any sequential game. That is, we start by analyzing the decision of the

follower. Because firm 2 reacts to firm 1’s output decision, we begin by deriving firm 2’s

reaction function. Firm 2 produces the output q2, so that the price at which each unit of

output is sold is P(q1 + q2), where P is the inverse demand function. Denote firm 2’s total
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cost function by TC2(q2). Then firm 2’s total revenue is T R2 = P(q1+q2)q2, and hence its

profit is V2 = P(q1 + q2)q2 − TC2(q2). As usual, we need to have a specific cost function

and demand function to determine the profit function V2. Firm 2’s marginal cost MC2 is

determined by taking the derivative of total cost TC2 with respect to q2, while treating q1

as a constant because firm 2 is unable to change the quantity of output produced by firm

1. Then, we find firm 2’s best reaction function by taking the derivative of firm 2’s profit

function with respect to firm 2’s output, and setting the derivative equal to zero. We have

P′(q1 + q2)q2 + P(q1 + q2) − MC2(q2) = 0. (1.3)

Note that firm 2 has exactly the same reaction function as in the Cournot duopoly. We

solve Eq.(1.3) for q2 to get firm 2’s reaction function.

At this point, substitute firm 2’s reaction function into firm 1’s demand curve. This

is the critical difference from the Cournot duopoly. By substituting firm 2’s reaction

function in its decision-making process, firm 1 is anticipating firm 2’s reaction to its

output decision. Now, if firm 1 produces the output q1, then the price at which each unit of

output is sold is P(q1), where P is the inverse demand function of q1 (by substituting firm

2’s reaction function, q2(q1)). Denoting firm 1’s total cost function by TC1(q1), the total

revenue of firm 1 is given by T R1 = P(q1)q1, so that its profit is V1 = P(q1)q1 − TC1(q1).

Firm 1’s marginal revenue MR1 is determined by taking the derivative of total revenue

T R1 with respect to q1. Firm 1’s marginal cost MC1 is determined by taking the derivative

of total cost TC1 with respect to q1. Then, we find firm 1’s best output by taking the

derivative of firm 1’s profit V1 with respect to q1, setting the derivative equal to zero, and

solving for q1. We have

dV1
dq1
=

d
dq1
[P(q1)q1 − TC1(q1)] = 0,

P′(q1)q1 + P(q1) − MC1(q1) = 0. (1.4)
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Finally, substitute the value q1 obtained into firm 2’s reaction function to determine

q2. In the Cournot model, firm 1 simply notes that the market demand is satisfied by the

output produced by it and firm 2 and both firms make simultaneous decisions. On the

other hand, the Stackelberg model reflects sequential decisions where firm 1 substitutes

an equation to represent how firm 2 reacts to its production decision. The simultaneous

decision-making associated with the Cournot model leads to different outcomes from the

outcomes associated with sequential decisions of the Stackelberg model. The Stackelberg

leadership model results in a higher market quantity and lower price for the good as

compared to the Cournot model.

1.3.8 Bertrand Game

The Cournot and Stackelberg duopoly theories in managerial economics focus on firms

competing through the quantity of output they produce. In 1883, J. Bertrand proposed

a different model of competition between two duopolists (Bertrand, 1883), based on

allowing the firms to set prices rather than to fix production quantities. The Bertrand

duopoly model examines price competition amongst firms that produce differentiated but

highly substitutable products. Each firm’s quantity demanded is a function of not only the

price it charges but also the price charged by its rival. Coca-Cola and Pepsi are examples

of Bertrand duopolists.

With the Bertrand model, we focus on what price is selected to maximize the profits.

The quantity demanded for firm 1 and firm 2 is a function of both the price the firm estab-

lishes and the price established by their rival because the goods are highly substitutable.

Thus, each firm has the demand function qi(P1, P2), relating quantity demanded to its

price and its rival’s price.

To find the Nash equilibrium of the game, we first need to find the Bertrand reaction

function for each firm. In the Bertrand model, firms compete with the price. Therefore,
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reaction functions are expressed in terms of price, not quantities. Each firm’s total revenue

equals price times quantity, so T R1 = P1q1(P1, P2) and T R2 = P2q2(P1, P2). To simplify

the analysis, assume that both firms have zero marginal costs for their products. Profit

maximization then requires each firm to choose a price that maximizes its total revenue.

Hence, we find the firms’ best reaction functions by taking the derivatives of the firms’

total revenue function, with respect to the firms’ prices, and setting the derivatives equal

to zero. Since

dT Ri

dPi
=

d
dPi
[Piqi(Pi, Pj)] = 0,

Pi
dqi(Pi, Pj)

dPi
+ qi(Pi, Pj) = 0,

for i, j = 1, 2 and i , j, we have

P1
dq1(P1, P2)

dP1
+ q1(P1, P2) = 0, (1.5)

P2
dq2(P1, P2)

dP2
+ q2(P1, P2) = 0. (1.6)

By solving Eq.(1.5) and Eq.(1.6) simultaneously, we can find a pair of firms’ price (P1, P2)

that maximizes the firms’ profits. In the Bertrand duopoly model, both firms determine

the profit-maximizing price simultaneously.

1.4 Evolutionary Games

In the above sections, we discussed the basic ideas of game theory, in which individual

players make decisions, and the payoff to each player depends on the decisions made by

all. In this section, we explore the notion of evolutionary game theory (see Sigmund &

Nowak, 1999; Tanimoto, 2015), which shows that the basic ideas of game theory can be

applied even to situations in which no individual is overtly reasoning, or even making

explicit decisions. Rather, game-theoretic analysis will be applied to settings in which

individuals can exhibit different forms of behaviour (including those that may not be the
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result of conscious choices), and determine which forms of behaviour have the ability to

persist in the population. This shares some similarities with the herding models (Rodgers

& Yap, 2002) where the agents select the larger groups to join due to the higher return

associated with the latter.

As its name suggests, this approach has been applied most widely in the area of

evolutionary biology, the domain in which the idea was first articulated by John Maynard

Smith in “Evolution and the Theory of Games”, Cambridge University Press, 1982.

Evolutionary biology is based on the idea that an organism’s genes largely determine its

observable characteristics, and hence its fitness in a given environment. Organisms that

are more fit will tend to produce more offspring, causing genes that provide greater fitness

to increase their representation in the population. In this way, fitter genes tend to win over

time, because they provide higher rates of reproduction.

The key insight of evolutionary game theory is that much behaviour involves the

interaction of multiple organisms in a population, and the success of any one of these

organisms depends on how its behaviour interacts with that of others. So the fitness of

an individual organism can’t be measured in isolation; rather it has to be evaluated in the

context of the full population in which it lives. This opens the door to a natural game-

theoretic analogy: an organism’s genetically-determined characteristics and behaviours

resemble its strategy in a game, its fitness resembles its payoff, and this payoff depends on

the strategies (characteristics) of the organisms with which it interacts.

Evolutionary game theory considers games involving a population of decisionmakers,

where the frequency with which a particular decision is made can change over time in

response to the decisions made by all individuals in the population. In biology, this is

intended to model (biological) evolution, where genetically programmed organisms pass

along some of their strategy programming to their offspring. In economics, the same
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theory is intended to capture population changes because people play the game many

times within their lifetime, and consciously (and perhaps rationally) switch strategies.

In the evolutionary interpretation, there is a large population of individuals, each of

which can adopt one of the strategies. The game describes the payoffs that result when

two of these individuals meet. The dynamics of this game are based on the assumption

that each strategy is played by a certain fraction of individuals. Consequently, given this

distribution of strategies, individuals with better average payoff will be more successful

than others, so that their proportion in the population increases over time. This, in turn,

may affectwhich strategies are better than others. Inmany cases, in particular in symmetric

games with only two possible strategies, the dynamic process will move to equilibrium.

Although evolutionary game theory has provided numerous insights to particular

evolutionary questions, a growing number of social scientists have become interested in

evolutionary game theory in hopes that it will provide tools for addressing a number of

deficiencies in the traditional theory of games like the equilibrium selection problem,

the problem of hyperrational agents and the lack of a dynamical theory in the traditional

theory of games.

The concept of Nash equilibrium has been the most used solution concept in game

theory since its introduction by John Nash in 1950. A selection of strategies by a group of

agents is said to be in Nash equilibrium if each agent’s strategy is a best-response to the

strategies chosen by the other players. By best-response, we mean that no individual can

improve her payoff by switching strategies unless at least one other individual switches

strategies as well. This need not mean that the payoffs to each individual are optimal in

a Nash equilibrium: indeed, one of the disturbing facts of the Prisoner’s Dilemma is that

the only Nash equilibrium of the game, when both agents defect is suboptimal. Yet a

difficulty arises with the use of Nash equilibrium as a solution concept for games: if we
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restrict players to using pure strategies, not every game has a Nash equilbrium.

A more significant problem with invoking the Nash equilibrium as the appropriate

solution concept arises because games with multiple Nash equilibria exist. When there

are several different Nash equilibria, how is a rational agent to decide which of the several

equilibria is the “right one” to settle upon? Attempts to resolve this problem have produced

a number of possible refinements to the concept of a Nash equilibrium, each refinement

having some intuitive purchases. Unfortunately, so many refinements of the notion of a

Nash equilibrium have been developed that, in many games which have multiple Nash

equilibria, each equilibrium could be justified by some refinement present in the literature.

The problem has thus shifted from choosing amongst multiple Nash equilibria to choosing

amongst the various refinements.

In evolutionary game theory, we no longer think of individuals as choosing strategies

as they move from one game to another. This is because our interests are different. We’re

now concerned less with finding the equilibria of single games than with discovering

which equilibria are stable, and how they will change over time. So we now model “the

strategies themselves” as playing against each other. One strategy is ‘better’ than another

if it is likely to leave more copies of itself in the next generation, when the game will be

played again. We study the changes in distribution of strategies in the population as the

sequence of games unfolds.

For evolutionary game theory, a new equilibrium concept is introduced by Smith

(1982). In this new concept, a set of strategies is considered to be evolutionary stable

strategy (ESS) if, when adopted, serves to stop the spreading of an initially rare strategy.

The traditional theory of games imposes a very high rationality requirement upon

agents (see Luce & Raiffa, 1957). This requirement originates in the development of

the theory of utility which provides the underpinnings of game theory. Numerous results
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from experimental economics have shown that these strong rationality assumptions do

not describe the behaviour of real human subjects. Humans are rarely (if ever) the

hyperrational agents described by traditional game theory. The evolutionary, population-

dynamic view of games is useful because it does not require the assumption that all players

are sophisticated and think the others are also rational, which is often unrealistic. Instead,

the notion of rationality is replaced with the much weaker concept of reproductive success:

strategies that are successful on average will be used more frequently and thus prevail in

the end.

The theory of evolution is a dynamical theory. The approach to evolutionary game

theory involves the construction of an explicit model of the process by which the frequency

of strategies changes in the population, and the properties of the evolutionary dynamics

within that model are studied. This approach explicitly models the dynamics present in

interactions amongst individuals in the population. Since the traditional theory of games

lacks an explicit treatment of the dynamics of rational deliberation, evolutionary game

theory can be seen, in part, as filling an important lacuna of traditional game theory.

For much of the history of game theory, a great deal of research in evolutionary

game theory has focused on the properties and applications of the replicator equation.

The replicator equation has become an essential tool over the past 40 years in applying

evolutionary game theory to behavioral models in the biological and social sciences. The

replicator equation was introduced in 1978 by Taylor and Jonker (Taylor & Jonker, 1978)

and describes the evolution of the frequencies of population types, taking into account their

mutual influence on their fitness. This important property allows the replicator equation

to capture the essence of selection and, amongst other key results; it provides a connection

between the biological concepts of evolutionarily stable strategies with the economical

concept of Nash equilibrium. The replicator equation, due to Taylor and Jonker, was the
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first and most successful proposal of an evolutionary game dynamics.

The replicator equation is derived in a specific framework that involves a number of

assumptions, beginning with that of an infinite, well mixed population with no mutations.

By well mixed population it is understood that every individual either interacts with every

other one or at least has the same probability to interact with any other individual in

the population. This hypothesis implies that any individual effectively interacts with

a player which uses the average strategy within the population, an approach that has

been traditionally used in physics under the name of mean-field approximation (Hauert

& Szabo, 2005). Deviations from the well mixed population scenario affect strongly

and non-trivially the outcome of the evolution, in a way which is difficult to apprehend

in principle. Such deviations can arise when one considers, for instance, finite size

populations, alternative learning/reproduction dynamics, or some kind of structure (spatial

or temporal) in the interactions between individuals.

Within the population dynamics framework, the state of the population, i.e. the

distribution of strategy frequencies, is given by x. A first key point is that we assume that

xi are differentiable functions of time t. This requires in turn assuming that the population

is infinitely large (or that xi are expected values for an ensemble of populations). Within

this hypothesis, we can now postulate a law of motion for x(t). Assuming further that

individuals meet randomly, engaging in a game with payoff matrix W, then fi = (Wx)i

is the expected payoff for an individual using strategy si, and f = xTWx is the average

population payoff in the population state x. If we, consistently with our interpretation of

payoff as fitness, postulate that the per capita rate of growth of the subpopulation using

strategy si is proportional to its payoff, we arrive at the replicator equation

Ûxi = xi

(
fi − f

)
,
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where fi and f are the fitness for an individual using strategy si and average population

fitness (or instantaneous average fitness), respectively. The term f arises to ensure the

constraint
∑

i xi = 1, and Ûxi denotes the time derivative of xi. In mathematical terms, this

equation translates into the elementary principle of natural selection: individuals with

strategies that enable efficient reproduction will replace those employing strategies with

smaller fitness.

In the next section, two famous evolutionary games, the evolutionary Prisoner’s

Dilemma game and the evolutionary Snowdrift game, will be discussed in detail.

1.4.1 Evolutionary Prisoner’s Dilemma

The evolutionary Prisoner’s Dilemma games were introduced by Robert Axelrod in “The

Evolution of Cooperation” in 1984 (Axelrod, 1984) to study the emergence of cooperation

rather than exploitation amongst selfish individuals. Since the pioneeringwork ofAxelrod,

this approach has become a fruitful tool in the area of political and behaviour sciences,

biology, and economics.

In evolutionary biology, the Prisoner’s Dilemma is usually framed in terms of fitness

costs and benefits. Cooperators provide a benefit b to their co-player at a cost c to

themselves (b > c) and defectors neither provide benefits nor pay costs. The payoffs for

the joint behaviour of two interacting individuals are usually written in the form of a payoff

matrix:

Cooperator

Defector

Cooperator Defector

©­­«
R S ª®®¬T P

.

Mutual cooperation pays R = b − c whereas mutual defection pays nothing. However if

only one player defects and the other cooperates, then the defectors gets the benefit T = b
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without having to pay the costs and the cooperators faces the costs c without receiving

any benefit, hence S = −c. Thus, just as in the case of the prisoners, it is always better to

defect irrespective of the other players behaviour, but if both players follow this reasoning,

they end up with nothing instead of b − c. The elements of the payoff matrix satisfy the

following conditions: T > R > P > S and 2R > T +S. In what follows, it will be assumed

that the payoffs for the Prisoner’s Dilemma are the same for everyone in the population.

Evolutionary dynamics is about populations and in this case about the change in

frequencies of cooperators and defectors. In an infinite population with a fraction of

co-operators xC , a fraction of defectors xD = 1− xC and randomly interacting individuals,

the evolutionary fate of cooperators is given by the replicator equation:

Ûxi = xi[ fi − f ],
ÛxC

ÛxD

 =


xC

xD

 ·


fC − f

fD − f


where fC and fD represent the average payoffs (fitness) of cooperators and defectors

respectively, and f = xC fC + xD fD denotes the average population payoff (fitness). The

average payoff (fitness) of cooperators is simply fC = xC(b − c) + xD(−c). Similarly,

the average payoff (fitness) of defectors is fD = xCb + xD(0). We can rewrite them as

fC = xCb − c and fD = xCb respectively, where xD = 1 − xC . Thus, cooperators are

always worse off ( fD > fC) and irrespective of their initial frequency, they will dwindle

and eventually disappear.

The only stable equilibrium under the replicator dynamics occurs when everyone

in the population follows the only evolutionary stable strategy. For the evolutionary

Prisoner’s Dilemma, the state where everybody defects (xD = 1, xC = 0) is the only

evolutionary stable strategy. This nicely illustrates the fact that evolutionary dynamics
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represents a myopic optimization process: even though fitter individuals are selected in

every time step, the overall fitness of the population decreases.

The Prisoner’s Dilemma is the “standard model” of a social dilemma because if

everybody defects, the mean group pay-off is lower than if everybody had cooperated.

In the Prisoner’s Dilemma, cooperators are doomed if interactions occur randomly. In

structured populations, individuals interact only with their neighbours and cooperators

may thrive by aggregating in clusters and thereby reducing exploitation by defectors.

In finite populations, a surprisingly simple rule determines whether evolution favours

cooperation: b > ck, that is, if the benefits b exceed k-times the costs c of cooperation,

where k is the (average) number of neighbours. The spatial Prisoner’s Dilemma has

led to the general belief that spatial structure is beneficial for cooperation. Interestingly,

however, this no longer holds when relaxing the social dilemma and considering the

Snowdrift game.

In the continuous Prisoner’s Dilemma, cooperative investments gradually decrease

and defection dominates just as in the traditional Prisoner’s Dilemma. In the Prisoner’s

Dilemma, defection always generates a higher payoff than cooperation, regardless of the

opponent’s strategy. Consequently, stable cooperation can only evolve under a Prisoner’s

Dilemma system of payoffs if some kind of information transfer is possible. One example

is the iterated Prisoner’s Dilemma, in which two players encounter each other repeatedly.

In this circumstance, one player can punish defection, leading to conditional strategies

–— the most famous of which is “tit for tat” which yield a positive payoff for cooperation.

1.4.2 Evolutionary Snowdrift Game

The Snowdrift game derives its name from a situation in which two drivers are trapped

on either side of a snowdrift and have the options of staying in the car or removing the

snowdrift. Letting the opponent do all the work is the best option, but if the other player
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stays in the car it is better to shovel, lest one never gets home (Sugden, 1986). Similar

situations occur whenever the act of cooperation provides a common good that can be

exploited by others, but that also provides some benefits to the cooperator itself.

In the Snowdrift game, cooperation yields a benefit b to the cooperator as well as to

the opposing player, and incurs a cost c if the opponent defects, but only a cost c/2 if the

opponent cooperates. If both players cooperate, they both receive the reward R = b− c/2

for cooperating. If both players defect, they both receive the punishment payoff P = 0.

If first player defects while the opponent cooperates, then the first player receives the

temptation payoff T = b, while the opponent receives the “sucker’s” payoff S = b − c.

Similarly, if the first player cooperates while the opponent defects, then the first player

receives the sucker’s payoff S = b − c, while the opponent receives the temptation payoff

T = b.

In contrast to the Prisoner’s Dilemma, the best strategy now depends on the co-

player’s decision: if the other driver shovels it is best to be lazy but when facing a lazy

bum it is better to start shoveling instead of remaining stuck in the snow. The payoff

matrix of the Snowdrift game is given by:

Cooperator

Defector

Cooperator Defector

©­­«
R S ª®®¬T P

The benefit of getting out of the drift is higher than the cost of shovelling (b > c > 0).

Thus, the following condition must hold for the payoffs: T > R > S > P. In what follows,

it will be assumed that the payoffs for the Snowdrift game are the same for everyone in

the population. Note that for 2b > c > b, the Snowdrift game turns into the Prisoner’s

Dilemma. For even higher cost c > 2b, mutual defection becomes the mutually preferred

outcome.
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In the evolutionary Snowdrift game, the players wish to achieve a higher reward by

changing their strategy through referencing to the strategy of better performing opponent

in multiple rounds of the game. How will a population of individuals that repeatedly plays

the Snowdrift game evolve? In infinite populations with a fraction of cooperators xC , and

a fraction of defectors xD = 1− xC , the evolutionary dynamics is again determined by the

replicator equation:

Ûxi = xi[ fi − f ],
ÛxC

ÛxD

 =


xC

xD

 ·


fC − f

fD − f


with fC = xC(b − c/2) + xD(b − c) and fD = xCb + xD(0). We can rewrite them as

fC = b − c(1 − xC/2) and fD = xCb, respectively, where xD = 1 − xC .

In contrast to the Prisoner’s Dilemma, the stable equilibrium xD = 1 and xC = 0

is now unstable and an interior fixed point exists with fC = fD for xC = 1 − r and

r = c/(2b − c). Thus, in the Snowdrift game cooperators and defectors can co-exist at

some equilibrium frequency, which is determined by the costs and benefits of the game.

This originates in the fact that in the Snowdrift game it is always better to adopt a strategy

that differs from the co-player. As a consequence, fC > fD holds if cooperators are rare

xC → 0, but fD > fC if cooperators are abound and defectors are rare xD → 0. Note

that at the equilibrium, the population as a whole is worse off than if everybody would

cooperate, f = (1− r2)(b− c/2) < b− c/2 –– this is the hallmark of social dilemmas and

is another instance of myopic optimization.

The Prisoner’s Dilemma does not represent the frequent situation where individuals

obtain immediate direct benefits from the cooperative acts they perform and costs of

cooperation are shared between cooperators. Such a situation is encapsulated in the
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Snowdrift game. Doebeli et al. (2004) considered the Snowdrift game as a model for the

evolution of cooperation. Amixed strategy of cooperation and defection can emerge under

a Snowdrift game system of payoffs, which makes it very different from the Prisoner’s

Dilemma.

In contrast to the continuous Prisoner’s Dilemma, the continuous Snowdrift game

exhibits rich dynamics but most importantly provides an intriguing natural explanation for

phenotypic diversification and the evolutionary origin of cooperators and defectors. Thus,

selection may not always favour equal contributions but rather promote states where two

distinct types co-exist –– those that fully cooperate and those that exploit. In the context of

human societies and cultural evolution this could be termed the Tragedy of the Commune

because differences in contributions to a communal enterprise have significant potential

for escalating conflicts on the basis of accepted notions of fairness.

Building on the foundation of iterated Prisoner’s Dilemmawith conditional strategies,

the cumulative payoffs can be used to approximate the payoffs of the Snowdrift game, and

this transfer of information changes one payoff structure into another. However, more

importantly the Snowdrift game is still a social dilemma because defection is favoured

when the other player cooperates, which occurs at the cost of the overall group pay-off.

In one-shot interactions, the predicted proportion of cooperative acts is zero for the

Prisoner’s Dilemma, while the Snowdrift game results in a mixed evolutionary stable state

with the proportion of cooperative acts being 1 − c/(2b− c). The assumption of one-shot

interactions is, however, not always realistic because repeated interactions amongst the

same individuals often occur with iteration having been shown to favour cooperation in

the iterated Prisoner’s Dilemma.

Despite its potential importance for explaining cooperation amongst non-relatives,

both the Snowdrift game and the iterated Snowdrift game have received little attention.
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This is surprising because similar social dilemmas such as the Hawk–Dove game or the

Chicken game, which have the same pay-off ranking but a different matrix structure,

have been successfully used in behavioural ecology to study cooperation and conflicts in

animals, as well as being employed in politics, economy and sociology to study the effects

of various factors on human cooperation. However, despite the difficulty in accurately

determining the payoff values, the Snowdrift game is regarded as an important alternative

to the Prisoner’s Dilemma.

1.5 Research Objectives

From the ancient tribal villages where humans worked together to hunt for food and fight

off predators, to the modern companies where marketing teams carry out brainstorming

to come up with ways to improve the sales of products, humans have been cooperating for

survival and mutual benefits for millennia. Hence, one of the most important problems to

which evolutionary game theory is being applied is the understanding of the emergence

of cooperation in human (albeit non-exclusively) societies. This is an evolutionary puzzle

that can be accurately expressed within the formalism of game theory.

As we have seen, rational players should unavoidably defect and never cooperate,

thus leading to a very bad outcome for both players. On the other hand, it is evident that if

both players had cooperated they would have been much better off. This is a prototypical

example of a social dilemma which is, in fact, partially solved in societies. Indeed, the

very existence of human society, with its highly specialized labour division, is a proof that

cooperation is possible.

This thesis serves to study the dynamics of cooperation. In particular, it focuses on

studying the factors promoting and prohibiting cooperation in the society.

In reality, some individuals are willing to pay a cost so as to punish others who do

not behave well, e.g. non-cooperative opponents. Such a punishing strategy, which can
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be regarded as a form of direct or indirect reciprocity, is another important mechanism in

promoting cooperation.

Therefore, the first objective of this research is to study the role of punishment and

the effects of a structured population in promoting cooperation. As a following on a recent

model of Snowdrift game incorporating a costly punishing strategy (Xu et al., 2011), we

study the effects of a population connected through a square lattice (N. W. H. Chan et al.,

2013). As far as we are aware, such a model has never been studied before, as previous

work focused on well-mixed population (Xu et al., 2011).

In the studies of evolutionary games, bridging the gap between theoretical and em-

pirical research is one of the main challenges for the studies of cooperation. Different

problems have been studied in the hope of applying the findings to implement the game

theory to a practical scenario. An example is the well-known patent war between Apple

and Samsung. It is possible to protect the profit of a cooperator or innovator via patenting.

In the industry, the role of the punisher in a Snowdrift game can be taken up by the patent

system as a patent grants an innovator monopoly rights over the use of an innovation for

a given period of time.

Hence, the second objective of this research is to study the role of punishment in a

more practical Cournot duopoly economic model (Yap et al., 2014) for an oligopoly. We

study the effect of patenting on cooperation and defection in the sustainment of long-term

R&D incentives. The patent system seeks to provide incentives to innovate as well as to

disseminate the innovation. Therefore, we also investigate whether patenting is effective

in giving enough incentives to firms to innovate. The punishment to the free-riders in this

model will be in the form of incentive-denial, rather than actual deduction of payoff as in

the case of the N-player evolutionary game in Chapter 2.
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The third objective of this study is to simplify the above R&D Cournot duopoly

model to an extent which allows us to identify precisely the factors that directly affect the

strategy of the players and study the effect of patenting by using an evolutionary well-

mixed N-player setting to see whether the results in the former can be reproduced. This

modified model extends the model to a non-oligopolistic market and serves to study the

effect of an N-player evolutionary game on the various factors previously studied.

Thus, three economic models involving non-linear systems are presented in this

thesis.

1.6 Overview of the Thesis

This thesis is organized as follows. In Chapter 1 (this chapter), we have introduction of

game theory, history of game theory, definitions and types of games, and the objectives

of the research. In Chapter 2, our model (N. W. H. Chan et al., 2013) of N-player

evolutionary Snowdrift game with the punishing strategy in a structured population with

agents connected by a square lattice is presented. In Chapter 3, the effect of patenting

on cooperation and defection (Yap et al., 2014) by using a Cournot duopoly model is

investigated and discussed. In Chapter 4, the R&D Cournot duopoly model in Chapter

3 is simplified to an extent which allows the study of the effect of patenting by using an

evolutionary well-mixed N-player setting and identify precisely the factors that directly

affect the strategy of the players. Finally, in Chapter 5, the research is summarized and

some avenues for future research are proposed.
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CHAPTER 2: EVOLUTIONARY SNOWDRIFT GAME INCORPORATING
COSTLY PUNISHMENT IN STRUCTURED POPULATIONS

2.1 Introduction

As discussed in Chapter 1, the understanding of emergence of cooperation in human

societies is one of the most important problems to which evolutionary game is being

applied. This chapter aims accurately express the evolutionary puzzlewithin the formalism

of game theory.

The role of punishment and the effects of a structured population in promoting

cooperation are important issues. Therefore, within a recent model of Snowdrift game

incorporating a costly punishing strategy (P) in a well-mixed population (Xu et al., 2011),

we study the effects of a population connected through a square lattice (N. W. H. Chan et

al., 2013). The punishers, who carry basically a cooperative (C) character, are willing to

pay a cost α so as to punish a non-cooperative (D) opponent by β. Depending on α and β,

the cost to-benefit ratio r in Snowdrift game, and the initial conditions, the system evolves

into different phases that could be homogeneous or inhomogeneous. The spatial structure

imposes geometrical constraint on how one agent is affected by neighbouring agents.

In contrast to Snowdrift game incorporating a costly punishing strategy in a well-

mixed population (Xu et al., 2011), where punishers are suppressed due to the cost of

punishment, the altruistic punishing strategy can flourish and prevail for appropriate values

of the parameters, implying an enhancement in cooperation by imposing punishments in a

structured population. The system could evolve to a phase corresponding to the coexistence

of C, D and P strategies at some particular payoff parameters, and such a phase is absent

in a well-mixed population.

We used pair approximation as our analytic approach and we extended it from a

two-strategy system to a three-strategy system. We show that the pair approximation
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can, at best, capture the numerical results only qualitatively. Due to the improper way of

including spatial correlation imposed by the lattice structure, the approximation does not

give the frequencies of C, D, and P accurately and fails to give the homogeneous AllD

and AllP phases.

The plan of this chapter is as follows. Section 2.2 is the literature review. Section 2.3

introduces the model and the strategy updating process. Results of extensive numerical

simulations, both for the steady state and the dynamics, are presented and discussed in

Section 2.4. The discussion is supported by results on the time evolution of the system.

The different phases for different combinations of the payoff parameters are revealed by

extensive simulations, both for the asynchronized and synchronized strategy updating

schemes. The isolated phases are identified as special local structures of strategies that

are stable due to the lattice structure. In Section 2.5, the analytical results of the pair

approximation extended to three strategies are presented. The inadequacy of the pair

approximation is discussed. Results are summarized in Section 2.6.

2.2 Literature Review

The emergence of cooperation amongst selfish individuals is a fundamental and important

issue in the research on the behaviour in populations (Nowak & Highfield, 2011). It has

attracted the attention of researchers across different fields, including ecologists, physicists

and applied mathematicians. Game theoretical models give a powerful tool for studying

the emergence of cooperative behaviour (Smith & Price, 1973; Smith & Szathmary,

1995). The Prisoner’s Dilemma (Rapaport & Chammah, 1965) is the “standard model” of

a social dilemma and which has been studied extensively. However, due to the difficulty in

accurately determining the payoff values, the Snowdrift game is regarded as an important

alternative to Prisoner’s Dilemma. In recent years, the Snowdrift game has been applied

to study the emergence of cooperation in a competing population (Zheng et al., 2007;
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Zhong et al., 2006; Wang et al., 2006; Santos & Pacheco, 2005; Hauert & Doebeli, 2004).

The players in these models take on one of two strategies, cooperative and non-

cooperative, and could evolve their strategy by assessing the performance when they play

the game repeatedly. It was found that for Snowdrift game in a well-mixed population

(Xu et al., 2011) under an imitation mechanism for strategy updates, cooperation could

emerge but a phase consisting of entirely cooperative players (i.e., an AllC phase) does

not exist (Hauert & Doebeli, 2004). The well-mixed condition is typically not a good

representation of how agents are connected in real populations. Hauert & Doebeli (2004)

also studied how a structured population with agents connected in the form of regular

lattices would affect cooperation. It was found that an AllC phase exists and cooperation

could be enhanced or suppressed due to spatial structures (Santos&Pacheco, 2005; Hauert

& Doebeli, 2004; Xu et al., 2007). They also applied the pair approximation that gives

results in qualitative agreement with numerical results (Hauert & Doebeli, 2004).

In reality, some individuals are willing to pay a cost so as to punish others who do

not behave well, e.g., non-cooperative opponents. Such a punishing strategy, which can

be regarded as a form of direct or indirect reciprocity (Ohtsuki et al., 2006) is another

important mechanism in promoting cooperation. Costly punishment, for example, was

found to promote and stabilize cooperative behavior (Yamagishi, 1986; Ostrom et al.,

1992; Fehr & Gachter, 2000) in the Public Good game (Kagel & Roth, 1995), which is a

generalization of Prisoner’s Dilemma to incorporate N-person interactions. However, the

role of punishment remains a topic of recent studies, e.g., punishment was found to be not

necessarily effective in promoting cooperation (Rand et al., 2009; Ohtsuki et al., 2009;

Nowak, 2008; Dreber et al., 2008).

In a recent work, Xu et al. (2011) had incorporated a punishing strategy into Snowdrift

game and studied the effect in a well-mixed population via the replicator dynamics. It
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was found that, depending on the payoff parameters, inhomogeneous phases consisting of

only two strategies are resulted: a cooperative phase with cooperators and punishers that

represents an enhancement in cooperation due to punishment, and a mixed phase with

cooperators and non-cooperators similar to Snowdrift game.

In this work, the model of Snowdrift game is studied with the punishing strategy in

a structured population with agents connected by a square lattice. Results of extensive

numerical simulations, both for the steady state and the dynamics, are presented in and

contrasted with those in a well-mixed population. Depending on the payoff parameters,

the system evolves into different phases that could be homogeneous and inhomogeneous.

Due to the lattice structures, there are special local structures of strategies that are stable

at particular values of the parameters.

In contrast to a well-mixed population where punishers are suppressed due to the

cost of punishment (Xu et al., 2011), the altruistic punishing strategy can flourish and

prevail for appropriate values of the payoff parameters, implying an enhancement in

cooperation by imposing punishments. The system could evolve to a phase corresponding

to the coexistence of the three strategies, while such a phase is absent in a well-mixed

population.

The pair approximation, which is a commonly used analytic approach, is extended

to the present three-strategy system. The results show that the pair approximation can, at

best, capture the numerical results only qualitatively. It does not give the frequencies of

the three strategies and fails to give the homogeneous phases with entirely non-cooperators

and punishers scenarios observed in simulations.

2.3 Model

The Snowdrift game reflects a kind of social dilemma typically described by the following

scenario. There are two drivers hurrying home in opposite directions on a road blocked
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by a snowdrift. Each of them has a choice of two possible actions: to shovel the snowdrift

and go home or not to shovel and hope that the driver on the other side would shovel the

snowdrift so that he could go home without work. Here, to shovel is a cooperative (C)

strategy and not to shovel is a defection (D) strategy, where the usage of C and D follows

standard practice in games. If both drivers take C, they could go home and hence get a

benefit b. Shovelling is a a laborious job with a total cost of c. Thus, each cooperative

driver gets a net reward of R = b − c/2 by sharing the labour. If they take D, they would

be stuck, and each gets a payoff of P = 0, corresponding to the worst scenario. If only one

driver takes C and the other takes D, then both of them could go home and the D-strategy

gets a temptation payoff of T = b but the C-strategy gets a sucker payoff of S = b− c. We

require b > c > 0 so as to have T > R > S > P as in Snowdrift game. For one shot of the

Snowdrift game, the better choice is to take D if his opponent takes C and to take C if his

opponent takes D.

In evolutionary Snowdrift game where the players wish to achieve a higher reward by

changing their strategy through referencing to the strategy of better performing opponents

in multiple rounds of the game, cooperation could emerge. In a well-mixed population,

for example, the frequency of cooperation decreases with the ratio c/b. In a structured

population such as that for players located at the nodes of a regular lattice, an AllC phase

with enhanced cooperation could appear for small c/b but the frequency of cooperation is

suppressed in a large range of c/b, when compared with a well-mixed population (Hauert

& Doebeli, 2004).

In real-life situation, it has been noticed that there exist other strategies. There

are punishers who themselves are cooperative but would pay a cost to punish the non-

cooperative players. This is to say that some cooperators would prefer to pay for extra cost

α to punish the defective opponents by letting them lose some benefit β. Such punishing
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action is also a kind of altruistic behaviour (Fehr & Gachter, 2002). In Xu et al. (2011),

a third punishing (P) strategy was introduced into Snowdrift game. The payoff matrix for

Snowdrift game with punishers is given by

C D P

C

D

P

©­­­­­­­«
R S R

T P T − β

R S − α R

ª®®®®®®®¬
,

(2.1)

where an element in the matrix in Eq.(2.1) gives the payoff to the player taking the strategy

in the left-hand column when the opponent takes the strategy in the upper row. When

P-players meet C-players, they behave just like C-players. When they meet D-players,

however, the P-players are still rational where they pay a punishment cost of α so as to

lead to a damage β to a D-player with β > α, where the latter inequality makes the

punishing action rational. When a C-player encounters a P-player, the P-player does not

behave differently to the C-player and they both receive the same payoff R. In general, we

can simplify the payoffs by setting R = 1 and P = 0. Further simplification is done by

introducing a cost-to-benefit parameter r = c/(2b − c), 0 < r < 1 so that S = 1 − r and

T = 1 + r . The payoff matrix can be rewritten as

C D P

C

D

P

©­­­­­­­«
1 1 − r 1

1 + r 0 1 + r − β

1 1 − r − α 1

ª®®®®®®®¬
(2.2)

with β > α.

To study the effects of a structured population, we consider a system of N players

occupying the nodes of a two dimensional (2D) square lattice. Every player has k̄ = 4
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nearest neighbours as his opponents. Therefore, at any instant of time, an average payoff

V̄i = Vi/k̄ can be assigned to every player i with Vi calculated by Eq.(2.2) based on the

strategies of player i and its neighbours at that time. The players update their strategies

by referencing his opponent’s performance. Strategy updates can be carried out either

asynchronously or synchronously. In the asynchronous updating scheme, a target player

i is randomly selected amongst all the players for an update at a time step. The targeted

player selects a nearest neighbour j randomly as his reference player. If V̄i ≥ V̄j , player

i will keep his strategy. If V̄i < V̄j , player i will take on the strategy of player j with the

probabilityω = (V̄j−V̄i)/(1+r) (Zhong et al., 2006), where the denominator (1+r) ensures

ω ≤ 1. An average of N steps are required for each player to have a chance to update his

strategy, constituting a Monte Carlo step (MCS). In the synchronous updating scheme, all

the players perform an attempt for strategy update every time step simultaneously.

2.4 Simulation Result and Discussion

Westudy both the dynamics and the steady states of themodel using numerical simulations.

To bring out the key features, we focus on the asynchronous updating scheme. Results

using the synchronous updating scheme are similar and will be shown later. The initial

condition with uniform distribution of the three strategies C, D and P on the nodes of

a 2D square lattice is applied and the periodic boundary condition is imposed. For the

simulation, one Monte Carlo step (MCS) refers to the evolutionary time scale that every

player in the system has, on average, been chosen for a strategy update once. Results are

obtained in a 90 × 90 lattice. It has been confirmed that the number of time steps for

reaching the long-time behavior depends on the parameters r , α and β. For the steady-state

results that follow, sufficient time steps have been used to ensure that the steady state has

been reached.
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Figure 2.1: The frequencies fc, fp, and fd in the long time limit as functions of r , as
obtained by simulations. The parameters are α = 0.01 and β = 0.05, with a uniform
initial distribution of characters and an asynchronous update scheme.

Figure 2.1 shows the steady state frequencies of cooperation fc, defection fd and

punishment fp, in the long-time limit, as a function of the cost-to-benefit ratio r using

α = 0.01 and β = 0.05 as an example via the asynchronous update. We have checked that

even lattices of a smaller size give the same results. Compared with the non-increasing

(non-decreasing) dependence of fc ( fd) against r in a Snowdrift gamewithout the punishers

based on the same strategy updating mechanism (Zhong et al., 2006), introducing the

punishing action into Snowdrift game has leads to much richer behavior. In this particular

case, there are non-monotonic behavior in the frequencies as r varies.

For very small r (r . 0.05), both C and P strategies are effective in suppressing D. As

the D-against-D situation is too harmful for small r , the D strategy almost becomes extinct.

The cost of punishment that the P-players pay eventually causes the C strategy to flourish.

The non-trivial dynamical evolution of the frequencies in this regime is shown in Figure

2.2(a) for r = 0.02. In the early stage, fd decreases while fc and fp increase with the same

rate, indicating that the dynamics is that of switching from D strategy to C or P strategy

with equal probabilities. This is the stage when there are sufficient D-players around for

them to be nearest neighbors of each other, resulting in a low payoff. When t & 100 MCS,

fd continues to drop and becomes small, with only fc continuing to increase. At this time,
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besides the direct switching from D to C, there are also indirect switching to C through

the sequence of D→ P→ C. This comes about when fd is small so that chances are that

a C-player is connected to a P-player. When this C–P pair of neighbors each has a similar

competing environment in which there is a same number of D-players, the P-player will

get a lower payoff than the C-player in the pair due to the cost of punishment. Thus, when

the P-player refers to the C-player in the pair for strategy update, P will switch to C. This

mechanism of enhancing the C strategy becomes more apparent after t & 103 MCS, when

fd becomes tiny. The presence of D-players is necessary for the dynamical process, since

the dynamics stops when the system runs out of D-player by definition. However, under

the asynchronous updating scheme there are a few remaining isolated D-players.
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Figure 2.2: Time evolution of the frequencies fc(t), fp(t), and fd(t) as obtained by
numerical simulations for (a) r = 0.02, (b) r = 0.2, and (c) r = 0.6. The parameters are
α = 0.01 and β = 0.05 as in Figure 2.1, with a uniform initial distribution of characters
and an asynchronous updating scheme.

For 0.05 < r < 0.24 (see Figure 2.1), the C strategy loses its edge as the payoff

they get becomes smaller when they encounter a D-strategy opponent. In this range of r ,

there is a rapid increase in fp accompanied by a corresponding rapid drop in fc; and fd

remains tiny. The increasing trend of fp lasts until r ≈ 0.24, where nearly all the players

take on the P strategy. Therefore, in this range of r , the punishing strategy flourishes and

suppresses the D strategy. The dynamics typical of this range is shown in Figure 2.2(b) for

r = 0.2. Within a short time, fd drops at a more gradual pace when compared to the case
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with r = 0.02 because of the better payoff against the C strategy. The initial condition

randomly puts the three strategies on to the nodes in the lattice. Thus, the initial switching

from D strategy happens at places where a D-player locally has a C or P-neighbor serving

as the reference for strategy update and the D-player has one or more D-neighbors to make

his payoff low. Thus, they will be switching from the D strategy to either C or P strategy

within a short time, as seen in Figure 2.2(b) for t < 100 MCS. However, comparing a

D-player referencing to a C-player having a certain local competing environment and to a

P-player having the same local competing environment, there is a slightly higher chance

for the switching from D to P than the switching from D to C. It is because the switching

probability ω is related to the difference in average payoffs and thus the positive factor

(β − α) gives the switching from D to P an edge. This explains the slightly higher fp for

t < 100 MCS. This small effect amplifies as the dynamics proceeds, where the D-players

remaining in the system tend to have C-players as neighbors and make the payoffs to these

C-players low. This is the scenario for t > 300 MCS, when C-players with low payoffs

switch to D or P and fc drops. At the same time, the switching from D to P continues.

For t > 1000 MCS, fd stays tiny and the net effect is a switching from C to P directly

or through a sequence C→ D→P indirectly, resulting in a dominating P population. It

should be noted that this flourishing of the P strategy at r = 0.24 does not occur in a

well-mixed population (Xu et al., 2011) and the local competing environments in a square

lattice affect the dynamics.

For r > 0.24, fd grows at the expense of fp, and fc becomes extinct at r ≈ 0.24

(see Figure 2.1). The increasing r benefits the D strategy and diminishes the importance

of the punishment β of the P strategy. For r < 0.67, a mixed population with D and P

strategies results. Figure 2.2(c) shows the dynamics typical of the mixed population phase

at r = 0.6. Even after 1 MCS, the high value of r leads to switching from both C and P
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strategies to the D strategy. This trend continues up to t ∼ 100 MCS. After that time, fd

levels off. The system now contains many D-players. Recall that D against D leads to the

lowest payoff. Too many D-players in the system lower their payoff. They are switching

from D strategy to P strategy and at the same time switching from C strategy to D strategy.

The net effect is an increase in fp beyond t = 100 MCS at the expense of fc. Eventually,

fc vanishes and a finite but small fp results. Such a non-trivial dynamics is specific to a

structured population. When r becomes sufficiently large (r & 0.67), the punishing effect

becomes negligible and P strategy also becomes extinct, giving rise to a homogeneous

AllD ( fd = 1) population.

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 v 
 q 

 u 

 p 

 o 

r

1

2

3

4

5

6

7

8

9

D

P

C+D

C+P

D+P

C+D+P

TZ

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 v 

 u 

 q 

 p 

 o 

(b)(a)

r

Figure 2.3: Phase diagram showing the nature of the steady state population in the r − β
space for the (a) synchronous updating and (b) asynchronous updating schemes, for the
case of α = 0.1. The lines are obtained by considering local stable structures and they
explain the presence of the isolated dots.

To explore how the steady state frequencies depend on the interplay between the

punishment parameter β and the cost to-benefit ratio r , detailed simulations are carried

out over the range 0.1 = α < β < 1.0 and 0 < r < 1. The results are displayed in Figure

2.3 in the r − β space for both the synchronous (Figure 2.3(a)) and asynchronous (Figure

2.3(b)) updating schemes. Different colors are used to represent the phases. The results

are obtained in square lattices of size 30 × 30, and it has been confirmed that the results

are the same in 60× 60 lattices. Note that the isolated dots are also simulation results and
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the reason of their presence will be discussed.

There are four dominating regions in Figure 2.3. They are the mixed phases of C +

P (yellow), C + D (red), D + P (orange) and the homogeneous AllD phase (magenta). For

small r and large β, the D strategy cannot survive and a mixed C + P phase results. Note

that AllC phase does not occur. This is because the dynamics stops when the D strategy

becomes extinct and does not allow further switching between C and P strategies to arrive

at an AllC phase. For intermediate values of r and relatively large β, the C strategy cannot

survive and only the punishers could suppress the D strategy. This gives rise to a region of

D + P phase. As r becomes sufficiently large, the D + P phase eventually loses its stability,

leading to the region corresponding to the AllD phase in the right hand side of Figure 2.3.

Interestingly, for a range of small β in an intermediate range of r (around 0.25 <

r < 0.6), the P strategy becomes extinct as the small punishment cannot suppress the

D strategy and the punishment cost α in turn destabilizes P itself. This gives rise to

the regions of C + D phase. The lower left corner in Figure 2.3(b) (r < 0.2) is also

eye-catching. The 2D square lattice restricts the local competing environment and the

P strategy could exist for a long time in the evolutionary process. Thus a small region

of the C + D + P phase appears at small r , and even the results in Figure 2.3(b) were

obtained after an extremely long time of 5 × 106 time steps. Furthermore, the C strategy

may become extinct during the evolutionary process and the system could evolve into a D

+ P phase. Therefore, there are two narrow phases of C + D + P and D + P around r ≈ 0.2

at small β for the asynchronous updating scheme (Figure 2.3(b)). Two points should be

noted regarding the C + D + P phase: (i) fd is tiny in this phase and (ii) this phase is not

found in a well-mixed population (Xu et al., 2011).

Ideally, these phases would be separated by sharp phase boundaries. However, the

phases are separated by a narrow transition zone (TZ) in the simulation results. In these
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transition zones (blue regions in Figure 2.3), the final phase in different runs could be

either one of the phases separated by the transition zone. For synchronous updates (Figure

2.3(a)), there exists a narrow AllP (cyan) phase, which is not found in a well-mixed

population, next to the D + P phase; and there is a broader transition zone between the C

+ P phase and the AllP phase.

The isolated dots in Figure 2.3 are features that come from the spatial structure and

can be explained by considering the stability of special local structures of strategies. Here,

we use the lines obtained by considering local stable structures to explain the presence

of the isolated dots. We consider a local structure with a D-player surrounded by four

P-players. Each of the P-neighbors, besides having the D-player as a neighbor, has either

C or P players as the other three neighbors. According to Eq.(2.2), the payoffs to the

D-player and to the P-neighbors are 4(1+r − β) and 1(1−r −α)+3(1) respectively. In this

case, the payoffs to the D-player and to the P-neighbors are identical when the condition

β = (5r + α)/4 is satisfied. This condition gives the line-o in Figure 2.3. Under this

condition, the local structure of a D-player with four P-neighbors is stable where it will

not switch as long as the neighborhoods of its four P-neighbors do not change. Note that

the dark yellow dots in Figure 2.3(b) lie exactly on the line-o. This explains the presence

of the isolated dark yellow dot.

Similarly, we examine the stability of the local structure of a neighboring pair of D

strategies surrounded by C players. The payoffs to the D-player and to the C-neighbors

according to Eq.(2.2) are 1(0) + 3(1 + r) and 1(1 − r) + 3(1) respectively. Their payoffs

are identical under the condition r = 1/4. Therefore, we obtained the stability condition,

r = 1/4 which gives the line-p in Figure 2.3. A final phase with a few D strategy pairs

scattered in an otherwise AllC background may thus occur at r = 1/4. Indeed, the red

dots in the C + P region (yellow) correspond to this special case and they lie on the line-p.
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The local structure of a pair of C strategies surrounded by D players is stable under

the condition of r = 3/4 as shown by the line-q in Figure 2.3. According to Eq.(2.2),

the payoffs to the C-player and to the D-neighbors are 1(1) + 3(1 − r) and 1(1 + r) + 3(0)

respectively. Their payoffs are identical when the condition r = 3/4 is satisfied. This

leads to C + D isolated dots within the AllD (magenta) region.

The D + P isolated (orange) dots within the AllD region can correspond to two special

local structures and they lie on the line-u and line-v in Figure 2.3. The line-u given by

β = 4r+3α−3 is obtained by examining the stability of the local structure of a neighboring

pair of P strategies surrounded by D players. With this local structure, the payoffs to the

P-player and to the D-neighbors are 1(1)+3(1− r −α) and 1(1+ r − β)+3(0) respectively,

according to Eq.(2.2). Their payoffs are identical under the condition β = 4r + 3α− 3 and

gives the line-u. Another possible structure is that of four P strategies forming a square

surrounded by D players. According to Eq.(2.2), the payoffs to the P-player and to the

D-neighbors are 2(1)+ 2(1− r − α) and 1(1+ r − β)+ 3(0) respectively. Their payoffs are

identical when the condition β = 3r + 2α − 3 is satisfied. Therefore, such a structure is

stable when β = 3r + 2α − 3 and gives the line-v in Figure 2.3. These two local structures

leads to D + P isolated (orange) dots within the AllD phase. The discussion on the phases,

the dynamics and the isolated dots in the phase diagram have highlighted the importance

of the lattice structure.

2.5 Analytical Result and Discussion

2.5.1 Pair Approximation Extended to Three Strategies

Pair approximation is a common analytic approach previously applied to the evolutionary

snowdrift game on a square and other lattices (Hauert & Doebeli, 2004). Morita extended

the pair approximation for two-strategy games to study the effects of degree fluctuations

and large clustering in networks (Morita, 2008). Perc formulated the pair approximation
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for an evolutionary prisoner’s dilemma on spatial networks incorporating a third strategy

corresponding to the presence of loners (Perc & Marhl, 2006), the behavior of which is

different from the punishers in the present work. The approach invokes an approximation

that for a link, say, that connects a C player to a D player, the probability that the C player

is also connected to another player with the x(x = c, d) strategy is given by fx,c fc,d/ fc,

where fc,d is the density of c-d links in the system and fx,c carries an analogous meaning,

together with a weighing factor for the occurrence of different configurations based on the

binomial coefficients. Essentially, the pair approximation handles a three-site correlation

(e.g., the three-site connection of x− c− d) through two-site correlations given by the link

densities. As the detail of the spatial structure is not incorporated, the pair approximation

gives results only in qualitative agreement with numerical simulations.

We extended the pair approximation to the case of three strategies. In a square lattice,

each node has k̄ = 4 nearest neighbors. There are 32 types of links connecting two sites

with three strategies C, D, and P, namely c-c, c-d, c-p, d-c, d-d, d-p, p-c, p-d, and p-p

links. Let fx,y be the densities of these links in the system, with x and y being c, d, and

p. Due to fx,y = fy,x and normalization condition
∑

x,y fx,y = 1 for the nine link densities,

we may choose to focus on five link densities, fc,c, fc,d , fc,p, fd,d and fd,p, and treat them

as the variables for tracing the time evolution of the system. Using these variables, the

frequencies of C, D, P can be given by fx =
∑

y fx,y where x = c, d, p.

In the evolutionary snowdrift game, changes take place only when a target player

switches the strategy to that of a referencing player. When a target player plays strategy

x and the neighboring referencing player plays strategy y, the probability of selecting the

active x–y link for consideration of switching is fx,y. Due to the square lattice structure,

there are k̄ − 1 = 3 other links that will affect the target player and referencing player’s

average payoff V̄x and V̄y respectively, besides the x–y link. Let there be mx c-x links,
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nx d-x links, and (3 − mx − nx) p-x links that are connected to x besides the x–y link.

Similarly, for the referencing agent with strategy y, let there be my c-y links, ny d-y links,

and (3 − my − ny) p-y links besides the x–y pair connected to the target player. The

switching probability ωx,y for the target player to switch his strategy from x to y is given

by

ωx,y(mx, nx,my, ny) =
V̄y(x,my, ny) − V̄x(y,mx, nx)

1 + r
(2.3)

If x switches to be y, there will be corresponding changes in the numbers of the pairs

of different kinds by a certain amount. Let ∆nx→y
x′,y′ (mx, nx) be the change in the number of

x′-y′ pairs due to the switching event from x to y for given mx and nx . The corresponding

change in fx′,y′ under such a switching, regardless of the values of my and ny surrounding

the referencing player, is then given by

∆ f x→y
x′,y′ (mx, nx) =

∆nx→y
x′,y′ (mx, nx)

Nk̄
fx,y

∑
my,ny

T (3)my,nyΩy(my, ny)ωx,y . (2.4)

We use T (3)m,n to represent the coefficient in the trinomial expression, i.e.,

T (3)m,n =

(
3

m, n, 3 − m − n

)
=

3!
m!n!(3 − m − n)!

, (2.5)

and it gives the number of configurations amongst k̄ − 1 links for given values of m and

n. The term

Ωy(my, ny) =
f my
c,y f ny

d,y f 3−my−ny
p,y

f 3
y

, (2.6)

gives the probability of occurrence of a configuration in terms of the link densities and

frequencies. Nk̄ is the total number of pairs in the system.

Taking into account of all the possible values of mx and nx surrounding the target

player due to a particular switching from the x strategy to the y strategy, we obtain the
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change in fx′,y′ as:

∆ f x→y
x′,y′ =

∑
mx,nx

T (3)mx,nxΩx(mx, nx)∆ f x→y
x′,y′ (mx, nx). (2.7)

Finally, we include the possibility that both x and y could be c, d and p. Therefore, we

arrive at the final expression for ∆ fx′,y′ as a result of a switching in strategy as:

∆ fx′,y′

=
∑
x,y

∆ f x→y
x′,y′

=
1

Nk̄

∑
x,y,mx,nx

T (3)mx,nxΩx(mx, nx)∆nx→y
x′,y′ (mx, nx) fx,y

∑
my,ny

T (3)my,nyΩy(my, ny)ωx,y (2.8)

where x′, y′ = c, d, p. Eq.(2.8) extended the pair approximation to cases with three

strategies and k̄ = 4. Based on Eq.(2.8), the equations for ∆ fc,c, ∆ fc,d , ∆ fc,p, ∆ fd,d , and

∆ fd,p are explicitly given by the following:

∆ fc,c(Nk̄) =
∑

mc,nc

T (3)mc,nc (−2mc)Ωc(mc, nc) fc,d
∑

md,nd

T (3)md,ndΩd(md, nd)ωc,d

+
∑

md,nd

T (3)md,nd (2 + 2md)Ωd(md, nd) fd,c
∑

mc,nc

T (3)mc,ncΩc(mc, nc)ωd,c

+
∑

mc,nc

T (3)mc,nc (−2mc)Ωc(mc, nc) fc,p
∑

mp,np

T (3)mp,np
Ωp(mp, np)ωc,p

+
∑

mp,np

T (3)mp,np
(2 + 2mp)Ωp(mp, np) fp,c

∑
mc,nc

T (3)mc,ncΩc(mc, nc)ωp,c (2.9)

∆ fc,d(Nk̄) =
∑

mc,nc

T (3)mc,nc (mc − nc − 1)Ωc(mc, nc) fc,d
∑

md,nd

T (3)md,ndΩd(md, nd)ωc,d

+
∑

mc,nc

T (3)mc,nc (−nc)Ωc(mc, nc) fc,p
∑

mp,np

T (3)mp,np
Ωp(mp, np)ωc,p

+
∑

md,nd

T (3)md,nd (nd − md − 1)Ωd(md, nd) fd,c
∑

mc,nc

T (3)mc,ncΩc(mc, nc)ωd,c
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+
∑

md,nd

T (3)md,nd (−md)Ωd(md, nd) fd,p
∑

mp,np

T (3)mp,np
Ωp(mp, np)ωd,p

+
∑

mp,np

T (3)mp,np
npΩp(mp, np) fp,c

∑
mc,nc

T (3)mc,ncΩc(mc, nc)ωp,c

+
∑

mp,np

T (3)mp,np
mpΩp(mp, np) fp,d

∑
md,nd

T (3)md,ndΩd(md, nd)ωp,d (2.10)

∆ fc,p(Nk̄) =
∑

mc,nc

T (3)mc,nc (−3 + mc + nc)Ωc(mc, nc) fc,d
∑

md,nd

T (3)md,ndΩd(md, nd)ωc,d

+
∑

mc,nc

T (3)mc,nc (−4 + 2mc + nc)Ωc(mc, nc) fc,p
∑

mp,np

T (3)mp,np
Ωp(mp, np)ωc,p

+
∑

md,nd

T (3)md,nd (3 − md − ndΩd(md, nd) fd,c
∑

mc,nc

T (3)mc,ncΩc(mc, nc)ωd,c

+
∑

md,nd

T (3)md,ndmdΩd(md, nd) fd,p
∑

mp,np

T (3)mp,np
Ωp(mp, np)ωd,p

+
∑

mp,np

T (3)mp,np
(2 − 2mp − np)Ωp(mp, np) fp,c

∑
mc,nc

T (3)mc,ncΩc(mc, nc)ωp,c

+
∑

mp,np

T (3)mp,np
(−mp)Ωp(mp, np) fp,d

∑
md,nd

T (3)md,ndΩd(md, nd)ωp,d (2.11)

∆ fd,d(Nk̄) =
∑

mc,nc

T (3)mc,nc (2 + 2nc)Ωc(mc, nc) fc,d
∑

md,nd

T (3)md,ndΩd(md, nd)ωc,d

+
∑

md,nd

T (3)md,nd (−2nd)Ωd(md, nd) fd,c
∑

mc,nc

T (3)mc,ncΩc(mc, nc)ωd,c

+
∑

md,nd

T (3)md,nd (−2nd)Ωd(md, nd) fd,p
∑

mp,np

T (3)mp,np
Ωp(mp, np)ωd,p

+
∑

mp,np

T (3)mp,np
(2 + 2np)Ωp(mp, np) fp,d

∑
md,nd

T (3)md,ndΩd(md, nd)ωp,d (2.12)

∆ fd,p(Nk̄) =
∑

mc,nc

T (3)mc,nc (3 − mc − nc)Ωc(mc, nc) fc,d
∑

md,nd

T (3)md,ndΩd(md, nd)ωc,d

+
∑

mc,nc

T (3)mc,ncncΩc(mc, nc) fc,p
∑

mp,np

T (3)mp,np
Ωp(mp, np)ωc,p

+
∑

md,nd

T (3)md,nd (−3 + md + nd)Ωd(md, nd) fd,c
∑

mc,nc

T (3)mc,ncΩc(mc, nc)ωd,c

+
∑

md,nd

T (3)md,nd (−4 + md + 2nd)Ωd(md, nd) fd,p
∑

mp,np

T (3)mp,np
Ωp(mp, np)ωd,p
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+
∑

mp,np

T (3)mp,np
(−np)Ωp(mp, np) fp,c

∑
mc,nc

T (3)mc,ncΩc(mc, nc)ωp,c

+
∑

mp,np

T (3)mp,np
(2 − mp − 2np)Ωp(mp, np) fp,d

∑
md,nd

T (3)md,ndΩd(md, nd)ωp,d

(2.13)

with T (3)m,n and Ω defined in Eqs.(2.5) and (2.6), respectively. Further extension to lattices

with other values of k̄ is straightforward.
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Figure 2.4: Comparison of results of the frequencies fc (black), fp (blue), and fd (red)
obtained by numerical simulations using the asynchronous updating (open symbols) and
synchronous updating (solid symbols) with results of the pair approximation (lines).
Parameters are:(a) α = 0.01 and β = 0.05 and (b) α = 0.1 and β = 0.5.

Given an initial condition, Eq.(2.8) traces the changes in the link densities as the time

evolves. These equations can be used to study the time evolution and the steady state.

Eqs.(2.9) - (2.13) can be used to solve for steady states by setting their right-hand sides

to zero or by iterating the equations for sufficiently long time. The results in Figure 2.4

are obtained using these equations. We compare the steady state results from Eq.(2.8)

with results from numerical simulations in Figure 2.4 to test the validity of the pair

approximation. Simulation results for both the asynchronous and synchronous updating

schemes are shown. As discussed earlier in association with Figure 2.1, the two updating

schemes give results with the same key features. The numerical results are essentially
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the same for the case of α = 0.1 and β = 0.5 (see Figure 2.4(b)), and some differences

are shown in the range of small r for the case of α = 0.01 and β = 0.05 (see Figure

2.4(a)). Results of the pair approximation (three solid lines) capture some of the main

features, including the non-monotonic behavior of fp and the drop of fc to almost zero as a

function of r . However, the agreement is qualitative at best. The pair approximation fails

to give the AllD phase at large r (see Figure 2.4(a) and (b)) and the AllP phase obtained

in synchronous updates (see Figure 2.4(b)). In addition, fd starts to increase at a lower

value of r than those revealed by the simulation results, and the non-monotonic behavior

in fc at small r (see Figures 2.1 and 2.4(a)) is missing.

The inadequacy of the pair approximation, both for Snowdrift game in lattices (Hauert

& Doebeli, 2004) and in the present case with three strategies, comes mainly from

the missing of detailed spatial structures and thus a longer spatial correlation within

the approximation. Strategy switching of a target player is related to the payoff of a

neighboring referencing player, a value that depends on the neighbor’s neighbors of the

target player. Therefore, a spatial correlation up to the next-nearest neighbors is essential

for understanding a wide class of evolutionary games in spatially structured populations.

Such correlation necessarily incorporates the geometry of the underlying lattice. This

correlation is not properly treated in the pair approximation, as evidenced by the same set

of equations (Eq.(2.8)) for different spatial structures with the same value of k̄ within the

pair approximation.

Figures 2.5 and 2.6 show snapshots of cluster of characters for every 10 MCS on

the 30 × 30 square lattices with parameters r = 0.80 , α = 0.01 and β = 0.05. In this

model, we assume that at time t = 0, each configuration, say a c-c link, has an equal

probability of occurring. However, in a structured population, finite or infinite, there is

always a probability of clustering of same character types at t = 0. These small “islands”

56

Univ
ers

ity
 of

 M
ala

ya



0 10 20 30
0

10

20

30
 t=10

0 10 20 30
0

10

20

30
 t=20  

0 10 20 30
0

10

20

30
 t=30

0 10 20 30
0

10

20

30
 t=40  

0 10 20 30
0

10

20

30
 t=50  

0 10 20 30
0

10

20

30
 t=60  

0 10 20 30
0

10

20

30
 t=70  

0 10 20 30
0

10

20

30
 t=80  

0 10 20 30
0

10

20

30
 t=90  

Figure 2.5: Snapshots of cluster of characters for every 10 MCS on the 30× 30 square
lattices. The parameters are r = 0.80, α = 0.01 and β = 0.05. The red squares
denote cooperators, green squares denote defectors, and blue squares denote punishers.
Continued in Figure 2.6.

will have large impact on the rate of change of characters as time progresses. Consider a

cluster of D characters at t = 0 without the presence of P characters amongst its neighbors,

the surrounding C characters will be converted by the D characters in the cluster. Thus,

the cluster of character D grows larger in size. When its border touches a region with

a mixture of C and P characters, the P characters will reduce the payoff of some of the

D characters, but due to the large number of D-characters in the neighborhood, and if

the punishment is not severe enough, the P characters will not be able to convert all the

D-characters into P characters before being converted by the C characters. Once the P

characters are converted, the remaining C characters will no longer be protected by the

P characters, and eventually all of the C characters will be converted by the D characters

as well. In fact, it is highly possible that when the initial small “island” of D characters
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Figure 2.6: Continued from Figure 2.5. Snapshots of cluster of characters for every 10
MCS on the 30 × 30 square lattices.

expands, its border will be touching a mixture of C and P characters instead of just P or C

characters since a region of C and P characters will not change much in its demographics

due to the C and P having the same payoff when interacting with each other.

At t = 0, regions with uniform distributions of C, D and P will see C dominating

all the character types, given a high enough punishment and cost to punish. Thus when

the “island” of D expands into this region of C characters, the C will be converted.

Additionally, since the mixture of C and P will not change much demographically as

mentioned, even if the “island” of D expands into a neighborhood with P dominance, the

presence of C, with a high enough cost to punish, will result in P being converted by C,

which will in turn be dominated by D.

Finally, for an “island” of P surrounded by D, each P in the “island” has a chance of

being converted if r > (3 − (4 − np)α + β)/(5 − np) where np is the number of adjacent P
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characters. So, for a large enough r , “islands” of P will also be eventually converted by the

D characters. The above thus explains the importance of clustering of same character types

on the final character distribution, a feature which is not present in the pair-approximation.

Thus, pair approximation can, at best, capture the numerical results only qualitatively.

2.6 Conclusion

We have studied the effects of structured population in a Snowdrift game consisting of

cooperative punishers. The spatial structure imposes geometrical constraint on how one

agent is affected by other agents. Results of extensive numerical simulations, both for

the steady state and the dynamics, are presented. Possible phases are identified and

discussed, and isolated phases in the r − β space are identified as special local structures

of strategies that are stable due to the lattice structure. In a well-mixed population, the

altruistic punishers often have lower payoffs compared to the cooperators due to the cost

of punishment, and as a result the punishers are suppressed as long as cooperators and

defectors are present in the system. In a structured population such as that of a square

lattice studied in this chapter, the altruistic punishing strategy can flourish and prevail for

appropriate values of the payoff parameters. It implies an enhancement in cooperation

due to the presence of the punishing mechanism as the punishing strategy is cooperative in

nature. The coexistence of C, D, and P strategies is not found in a well-mixed population.

In a square lattice, it is possible for the system to evolve to C + D + P phase at some

particular payoff parameters. We extended the commonly used analytic approach of pair

approximation from a two-strategy system to a three-strategy system. The results can,

at best, capture the main features qualitatively. The theory fails to give the static AllD

and AllP phases observed numerically (see Figure 2.4) and in general does not give the

frequencies fc , fd , and fp accurately. Similar discrepancies were also found in applying

the pair approximation to structured populations engaging in the Snowdrift game without
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punishers. From the formulation of the theory, the discrepancies stem from the improper

way of accounting for the spatial correlations up to at least the next-nearest-neighbors as

imposed by the lattice structure. In closing, while the focus is on results in a square lattice,

the approach used to understand the numerical results is general and thus can be applied to

populations of different structures with different values of k̄. As a final note to close this

chapter, it can be concluded that punishment is very effective at promoting cooperation in

an evolutionary Snowdrift game with a structured network.
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CHAPTER 3: LONG-TERM RESEARCH AND DEVELOPMENT INCENTIVES
IN A DYNAMIC COURNOT DUOPOLY

3.1 Introduction

In Chapter 2, we have studied Snowdrift game incorporating a costly punishing strategy in

a population connected through a square lattice. It has been shown that the punishers are

very effective in preventing defection if the initial population of the punishers is sufficiently

large. In the studies of evolutionary games, bridging the gap between theoretical and

empirical research is one of the main challenges for the studies of cooperation. Different

problems have been studied in the hope of applying the findings to implement the game

theory to a practical scenario, such as the well-known patent war between Apple and

Samsung. Therefore, wewant to study the role of punishment in amore practical economic

model. In the industry, the role of the punisher in a Snowdrift game can be taken up by

the patent system as it is possible to protect the profit of a cooperator or innovator via

patenting. Thus, we use a more practical Cournot duopoly economic model to investigate

the effect of patenting on cooperation and defection. In the Snowdrift game, a person who

chooses to invest energy to shovel the snow is termed a cooperator, and in the Cournot

duopoly, a person who chooses to invest in research is termed an innovator. Similarly,

in the Snowdrift game, a person who chooses not to invest energy to shovel and instead

hope that the other person will shovel is called a defector, while in the Cournot duopoly,

the person who chooses to use the technology developed by the innovator is called a

free-rider. Thus, the concept of cooperation and defection in the evolutionary Snowdrift

game considered in Chapter 2 are replaced by innovation and freeriding respectively.

Before there was a patent system, anyone could copy anyone’s inventions without fear

of patent infringement. The inventor could choose either to share the idea with others, or

keep it secret if he or she had an idea with the potential to be widely used and make a lot
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of money. But sharing the idea exposes the inventor to the risk of a copycat stealing the

inventor’s work and profiting. By keeping the idea secret, the inventor could capitalize on

it exclusively and obtain maximum benefit from his or her invention .

However, in the aggregate, if every inventor keeps his or her work secret then all

inventors and society at large would suffer from a stagnant technology sector. Inventors

would waste most of their time duplicating other inventors’ work, working in secret to

solve problems that another inventor has already (secretly) solved. As a society, it is

beneficial for inventors to share their ideas with each other to allow others to build on the

current state of the art instead of wasting immense amounts of time by concealing and

reduplicating work. Keeping science and technology inventions secret is very undesirable

for society, and for each inventor.

The patent system gives inventors who publicly disclose their work special protection

to guarantee nobody copies their ideas without permission. As a result, inventors can share

their work so society benefits from vibrant technology development, while the inventors’

ideas are protected from copycats. Patent system seeks to provide incentives to innovate

as well as to disseminate the innovation. Therefore, we also investigate whether patenting

is effective in giving enough incentives to firms to innovate, or in the terminology of the

Snowdrift game, to cooperate.

In this chapter, we develop a research and development (R&D) Cournot duopoly

differential game played by ex-ante asymmetric firms and in which the dynamics of

technological diffusion depends on the technology gap between the firms. Technology

Diffusion is the process by which an innovation is communicated through certain channels

over time to the members of a social system. It is a special type of communication, in

that the messages are concerned with new ideas (Rogers, 2003). The Cournot Duopoly

(as discussed in Chapter 1, section 1.3.6) is a classic oligopolistic market in which there
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are two enterprises producing the same commodity and selling it in the same market.

The Cournot duopoly game models a situation in which each firms choose quantities

(outputs) of homogeneous products simultaneouslywithout communication and themarket

determines the prices at which they are sold. Before making decisions on quantities and

prices, each firm has to take into account not only the current strategy of the competitor,

but his forthcoming responsive actions as well. In this study, we show that in the long-run

equilibrium firms have incentives to innovate as long as the knowledge externalities are

bidirectional.

The plan of this chapter is as follows. Section 3.2 is the literature review. In section

3.3, the dynamic Cournot duopoly R&D model is introduced and solved. In Section 3.4,

results are presented and discussed. Results are illustrated through the use of numerical

simulations. A summary of the results is given in Section 3.5.

3.2 Literature Review

It has been well established that when one firm independently develops a cost reducing

innovation, the firm’s competitors benefit in the sense that they can use the innovation

to reduce their own costs. When such spillover effects are significant, noncooperative

firms might be expected to research too little from the standpoint of the industry since

each firm tends to ignore the positive externality which its research generates on the cost

of its rival firm (see D’Aspremont & Jacquemin, 1988; Henriques, 1990; Simpson &

Vonortas, 1994). However, it is also observed that when spillovers are endogenous the

firm’s disincentive to engage in R&D activity is partially offset. This is because its own

R&D can potentially enhance its capacity to absorb its rival’s technology (Grunfeld, 2003;

Kamien & Zang, 2000; Katsoulacos & Ulph, 1998; Kultti & Takalo, 1998). Moreover,

reduced costs of rival firms due to spillovers will lead all firms to compete more intensively

in the product market. Empirical findings by Cohen and Levinthal (1989) reinforce the
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fact that spillovers have two opposing effects on R&D investment in strategic games:

firstly, they increase the firm’s incentive to raise its own R&D and, secondly, they create

a disincentive for the rival firm to invest in R&D as free riding becomes a better strategy.

D’Aspremont, Jacquemin (1988, 1990) and Kamien et al. (1992) have independently

developed game theoretical models to analyze both the cooperative and noncooperative

behaviors of firms to engage in R&D activities when spillovers exist. While subsequent

research by Henriques (1990), Suzumura (1992), Salant and Shaffer (1998), Simpson

and Vonortas (1994), Amir (2000) and many others have extended and generalized their

models, very few studies have emphasized on the explicit modeling of spillovers in R&D

games. The lack of attention given to the treatment of spillovers can be regarded as a lacuna

in this literature as empirical works by Cohen and Levinthal (1989) and Griliches (1992)

clearly point out both the complexity and importance of spillovers in R&Dmodels. In fact,

Cohen and Levinthal (1989) show that contrary to conventional wisdom, intra-industry

spillovers can encourage R&D investment. Moreover, Cameron (2005) observed that as

the technology gap between a leader firm and the follower firm narrows, the follower must

undertake more formal R&D since its ability to freeride on the leader’s R&D reduces.

Hence, spillovers are not completely exogenous as assumed in the R&D game literature;

they depend on the technology gap between firms. In this study, the aim is to take this

relationship between spillovers and technology gap into account.

Katsoulacos and Ulph (1998) were the first to endogenize spillovers in the two

stage R&D game. In contrast to previous works which considered the spillover rate as

purely exogenous when comparing the cooperative case with the noncooperative regime,

they focused on the impact of research joint ventures on innovative performance. The

concept of endogenous spillovers was explored further by Kamien and Zang (2000) and

generalized by Leahy and Neary (2007) who argued that the firm cannot capture any
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spillovers from its rival without engaging in R&D itself. By incorporating absorptive

capacity as a strategic variable, they distinguished between two components of spillovers;

an exogenous component which represents involuntary spillovers from the firm’s R&D

activity and an endogenous component that allows the firm to exert control over spillovers.

Our notion of spillovers is more general than the one used by these authors as it not only

allows for absorptive capacity but also allows the spillover to depend on the technology

gap between firms.

Our proposed framework uses the strategic interaction approach of R&D games to de-

velop a dynamic Cournot duopoly model in which firms can invest in process innovations

in an environment with imitation via knowledge spillovers. Time is assumed to be contin-

uous and while firms still choose R&D before output as in D’Aspremont and Jacquemin

(1988), a differential equation is used to describe how the spillover function (which deter-

mines the rate of technology diffusion) evolves over time. We determine whether R&D

incentives can be sustained in an environment where technological innovation is almost a

public good. We prove the existence of two types of asymmetric equilibria; one in which

the leader maintains its technological advantage and one in which the follower catches up

with the leader. We find that if the technology diffusion is bidirectional, the equilibrium

where both firms invest in R&D at a constant positive rate is stable. Hence, we conclude

that the imitation via knowledge spillovers does not deter innovation. While our results

are similar to those by Spence (1984) and Bessen and Maskin (2009), our framework

differs from theirs as we do not assume that the firms are symmetric (as in Spence, 1984),

the technology diffusion rate in our model is not exogenous (as in both Bessen & Maskin,

2009; Spence, 1984) and dynamic strategic interactions with feedback effects are taken

into account in our model (unlike Bessen & Maskin, 2009; Spence, 1984).
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A precursor paper by Luckraz (2008) considers a similar framework as ours in the

context of endogenous growth theory. Our model differs from the model in Luckraz

(2008) in the following ways. First, in contrast to Luckraz (2008), here both technology

catch-up and leapfrogging are allowed. Secondly, we find some important properties of

the steady state equilibrium that Luckraz (2008) was unable to find and finally, unlike

Luckraz (2008), we are able to draw more direct conclusions about whether imitation via

knowledge spillovers can hinder R&D.

3.3 Model

In our model, we assume that the market structure is a duopoly. At each time t, firm 1

and firm 2 produce an identical product and compete in Cournot fashion in the product

market. Our Cournot assumption comes from the fact that we are interested in modelling

cost reducing innovations rather than product innovation; hence, we assume product

homogeneity just like in d’Aspremont and Jacquemin (1988). The Cournot duopoly game

proceeds as follows. In each time t, the two firms play a two stage Cournot game. Both

firms conduct process R&D to reduce their per unit cost of production at the first stage and

choose output in the second stage. Each firm’s marginal cost of production evolves over

time according to an equation of motion and time is assumed to be continuous. While we

assume that one firm is the technology leader and the other firm is the laggard, we do not

assume as in Luckraz (2008) that the leader is always more productive than the follower.

In fact, we impose such a restriction only at t = 0 and hence, technology catch-up and

leapfrogging are allowed in this model. This is similar to the situation of the defectors

in the Snowdrift game where it is possible for the defectors to have a higher payoff than

the cooperators. Moreover, we assume that the technology leader also benefits from some

minimal spillovers from the follower but to a lesser extent than the follower benefits from

the leader.
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More formally we denote time by t ∈ [0,+∞) and assume that for each t ∈ [0,+∞),

firm 1 and firm 2 face a demand function given by Pt = A/Qt , where A is the unit time

demand, Pt is the price function and Qt = q1t + q2t is the quantity demanded with q1t and

q2t are quantities produced by firm 1 and firm 2 respectively at time t . In order for our

demand function and its corresponding welfare function to be well-defined, we need to

assume that both price and quantity are bounded. In particular, we assume that there exist
−

P and
−

Q such that Qt ∈

[
A
−

P
,
−

Q
]
and Pt ∈

[
A
−

Q
,
−

P
]
.

The marginal cost of production of firm i is given by cit and there are no fixed costs.

We assume that firms can invest in R&D to reduce their marginal cost of production. More

formally, we assume that for each i, cit is given by

cit ≡
1

Xit
(3.1)

where Xit is the productivity level of firm i. We assume that for each t and i = 1, 2, Xit

∈ [1,+∞). The time derivative of firm i’s productivity level is given by

·

Xit = Λit
(
Xit, X jt

)
Rit (3.2)

where Xi0 is given, X10 > X20 > 1 and Rit ∈ [0,+∞) is the level of R&D conducted by

firm i in time t. Moreover, firm 1 is the technology leader and firm 2 is the technology

follower. Note that X10 > X20 implies that the leader is more productive than the follower

at t = 0. We assume that the depreciation rate is zero for simplicity. We also assume that

Λit
(
Xit, X jt

)
: [1,+∞)2 → R+ is given by

Λit
(
Xit, X jt

)
≡ X1−σi

it Xσi
jt (3.3)

where i, j = 1, 2, i , j and 0 < σ1 ≤ σ2 < 1/2 are the technology diffusion parameters.

The technology diffusion parameter, σi, plays a crucial part in our model as it reflects

the extent to which technological knowledge is a public good in the model. Note that
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the technology leakage is involuntary and there is imitation via knowledge spillovers for

innovations. On the other hand, each firm needs to undertake some R&D on its own in

order to benefit from the technology transfer. While we assume an ex-ante asymmetric

setup in which the follower can always free-ride on leader at least as much as the leader

can free-ride on the follower, our range of parameter values for σ1 and σ2 also allows

us to consider extreme cases like σ1 → 0 and σ2 → 1/2 , where the laggard firm fully

free-rides on the leader or σ1 → σ2. The ex-ante asymmetric assumption allows us to

determine whether, with the imitation via knowledge spillovers, the follower will choose

a very low level of innovation in equilibrium while freeriding on the leader’s R&D. σi is

assumed to be less than 1/2 to reflect the fact that the elasticity of firm i’s productivity

with respect to its own R&D is greater than the elasticity its productivity with respect to

its rival’s R&D. Thus, the technology diffusion process is imperfect.

Our definition of spillovers is similar to Cohen and Levinthal (1989) together with

some extensions. In particular, we define spillovers to include valuable knowledge gener-

ated in the research process of the leader and which becomes accessible to the follower if

and only if the latter is reverse engineering the innovator’s research process. It is important

here to note that empirical findings by Cohen and Levinthal (1989) state that spillovers

have two opposing effects on R&D investment in strategic games: firstly, they increase

the firm’s incentive to raise its own R&D and, secondly, they create a disincentive for the

rival firm to invest in R&D as freeriding becomes a better strategy.

In practical terms, our assumption that σ1 ≤ σ2 will imply that when an industry’s

market leader is surpassed by the follower, the rate of technological diffusion from the

new leader (old follower) to the new follower (old leader) is smaller than that from the

new follower to the new leader. The smartphone industry is a good real world example

of this assumption. Recently, a Silicon Valley jury ordered Samsung Electronics to pay
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Apple $290million for copying vital iPhone and iPad features (Canadian Press , November

2013). Despite the fact that Samsung had surpassed Apple to become the new market

leader, Apple argued in court that Samsung’s Android-based phones were still copying

important iPhone features.

This assumption also has a technical significance as it is important for a full char-

acterization of asymmetry. If on the contrary we had assumed that the order reverses

when leapfrogging takes place, the game would look exactly like the game played at the

beginning of time (that is, at t = 0) since the time horizon is infinite. As the system’s

behaviour repeats itself after every round of leapfrogging, this leads to the outcome that

the importance of leapfrogging is diminished. On the other hand, with this assumption,

the game played by the two firms once leapfrogging takes place is a different game than

the one played at the initial time step. This allows us to capture new dynamical behaviour

after the first leapfrogging. Hence, with this assumption our model can capture richer

dynamics than in a model where the order of the diffusion parameter is reversed. More

formally, we have the following:

Let σ1 (Gt) and σ2 (Gt) be the technology diffusion rate of firm 1 and firm 2 respec-

tively in differential game Γ (σ1 (Gt) , σ2 (Gt)) with Gt being the technology gap between

the two firms at time t so that σ1 (Gt) ≤ σ2 (Gt) if and only if Gt > 1, where X1t
X2t
= Gt .

Assume as before that G0 > 1. Suppose that
{
G∗t

}∞
t=0 is the technology gap induced by

a closed-loop equilibrium, then either there exists some t′ such that Gt ′ < 1 and Gt > 1

for t ∈ [0, t′) or such t′ does not exist. If such t′ exists, then the closed-loop equilibrium

induced
{
G∗t

}∞
t=0 will be a cyclical equilibrium such that each firm will alternate between

innovating and imitating behavior. Thus, the game played over interval [0, t′) repeats itself

ad infinitum with firms taking turns to be the leader. Such an equilibrium was studied

recently by Luckraz (2013). On the other hand, if such t′ does not exist, then the differen-
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tial game will be one where leapfrogging never takes place and will thus be similar to the

differential game studied by Luckraz (2008).

We will find it useful to define the following expressions:

Gt =
X1t

X2t
, (3.4)

·

Gt =
X2t

·

X1t − X1t
·

X2t

X2
2t

, (3.5)

·

Xit

Xit
= αit, (3.6)

where αit is the investment rate of firm i at time t and αit ∈

[
0, −α

]
for i = 1, 2.

·

Gt is the

derivative of technology gap between the two firms at time t. By dividing Eq.(3.5) with

Eq.(3.4), we get

·

Gt

Gt
=

X2t
·

X1t − X1t
·

X2t

X2
2t

(
X2t

X1t

)
=

·

X1t

X1t
−

·

X2t

X2t
= α1t − α2t . (3.7)

Now using Eqs.(3.2), (3.3) and (3.6), we get

R1t(X
1−σ1
1t Xσ1

2t ) = X1tα1t, (3.8)

R2t(X
1−σ2
2t Xσ2

1t ) = X2tα2t . (3.9)

By rearranging Eqs.(3.8) and (3.9), we can derive the following useful expressions:

R1t =
X1tα1t

X1−σ1
1t Xσ1

2t

= α1t
Xσ1

1t

Xσ1
2t

= α1tG
σ1
t , (3.10)

R2t =
X2tα2t

X1−σ2
2t Xσ2

1t

= α2t
Xσ2

2t

Xσ2
1t

=
α2t

Gσ2
t
. (3.11)

Finally, we let (Rit)
2 /2 be the cost of R&D for each firmwhere i = 1, 2. It is important

to note that our assumption that αit is non-negative together with our assumption that the

depreciation rate is zero imply that the marginal cost of production, cit ≡
1

Xit
will never

increase over time. Our justification for this assumption is the following. The marginal
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cost, cit ≡
1

Xit
reflects the cost per unit given the state-of-the-art technology at time t. An

increasing marginal cost will imply that the state-of-the-art technology gets worse over

time. Since it is unlikely that technology worsens over time, our assumption rules out this

possibility. The complete dynamic optimization problem is given in the following section.

3.3.1 Solving the Model

Firm i solves an infinite horizon dynamic optimization problem by choosing qit and Rit

to maximize its discounted sum of profits, taking the other firm’s strategies (q jt and Rjt),

the dynamics of the productivity level of each firm and the initial and terminal values of

the productivity levels as given. Firm i’s dynamic optimization problem can be given as

Vi ≡ max
qit,Rit

∫ +∞

0
exp {−ρt}

[
πi

(
qit, q jt, Xit

)
− (Rit)

2 /2
]

dt

subject to
·

Xit = Λit
(
Xit, X jt

)
Rit, Xi0 is given, XiT ≥ 0 as T → +∞,

for distinct i, j = 1, 2,

and where ρ ∈ (0,+∞) is the discount rate and πi
(
qit , q jt , Xit

)
is the total revenue of firm i

minus its total production cost at time t. The above optimal control problem is onewith two

control variables and two state variables. We try to simplify the problem before solving

it. First, we observe that qit does not enter the equation of motion
·

Xit = Λit
(
Xit, X jt

)
Rit .

Therefore, given our two stage game assumption in each t and given that the R&D level

Rit is chosen before output qit in each t, we can find the optimal qit as a function of Xit and

X jt in each t to reduce the optimal control problem to one with only one control variable,

namely, Rit . Hence, since optimal qit ≡ q∗i
(
Xit, X jt

)
does not depend on t directly, the

infinite horizon game with two stages in each t can be collapsed to an infinite horizon

game with only one stage in each t. We therefore solve for q∗i
(
Xit, X jt

)
for each t. Firm

i’s profit function in any t is given by
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max
qit
(Ptqit − citqit) for i = 1, 2 and j , i,

where the demand equation, Pt =
A

qit+qjt
. The first order condition for firm i is given by

A
(
qit + q jt

)
− Aqit − cit

(
qit + q jt

)2
= 0.

By symmetry, we have

A
(
qit + q jt

)
− Aq jt − c jt

(
qit + q jt

)2
= 0.

Solving the above two equations simultaneously, we have

qit =
Ac jt(

cit + c jt
)2 for distinct i, j = 1, 2.

After substituting the above in the demand equation to obtain Pt , we have

Pt =
A

qit + q jt
=

A
Acjt

(cit+cjt)
2 +

Acit
(cit+cjt)

2

=

(
cit + c jt

)2(
cit + c jt

) = cit + c jt .

Hence, the profit function for firm i at time t is given by

πi = (Pt − cit)qit = [(cit + c jt) − cit]qit = c jtqit =
Ac2

jt(
cit + c jt

)2 for distinct i, j = 1, 2.

Since cit ≡
1

Xit
, firm i’s dynamic optimization problem can be rewritten as

Vi ≡ max
qit,Rit

∫ +∞

0
exp {−ρt}


A

(
1

Xjt

)2(
1

Xit
+ 1

Xjt

)2 − (Rit)
2 /2

 dt

subject to
·

Xit = Λit
(
Xit, X jt

)
Rit, Xi0 is given, XiT ≥ 0 as T → +∞,

for distinct i, j = 1, 2.

The above optimal control problem is one with one control and two state variables.

We next make use of the technology gap to simplify the problem further. Using Eq.(3.4),
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we have

A
(

1
Xjt

)2(
1

Xit
+ 1

Xjt

)2 =


A

(
1 + 1

Gt

)−2
if i = 1, j = 2

A (1 + Gt)
−2 if i = 2, j = 1

.

Finally, Eqs.(3.10) and (3.11) allow us to make a change in variable so that the control

variable is now αit . By the same token, the R&D cost, (Rit)
2 /2 can also be written in

terms of αit . Consequently, using Eqs.(3.1), (3.4), (3.6), (3.7), (3.10) and (3.11), we can

write down firm 1’s and firm 2’s objective functions as follows

V1 ≡ max
α1t∈[0,ᾱ]

∫ +∞

0
exp {−ρt}

[
A

(
1 +

1
Gt

)−2
−
α2

1tG
2σ1
t

2

]
dt (3.12)

subject to
·

Gt = (α1t − α2t)Gt, G0 > 1 is given and GT ≥ 0 as T → +∞

V2 ≡ max
α2t∈[0,ᾱ]

∫ +∞

0
exp {−ρt}

[
A (1 + Gt)

−2 −
α2

2t

2G2σ2
t

]
dt (3.13)

subject to
·

Gt = (α1t − α2t)Gt, G0 > 1 is given and GT ≥ 0 as T → +∞.

Note that since we have alreadymade use of Eq.(3.2) to substitute for R1t in problem (3.12)

and R2t in problem (3.13), Eq.(3.2) does not enter as a separate constraint in Eq.(3.12)

and Eq.(3.13). We assume that the two firms act noncooperatively and that the above can

be represented as a continuous time dynamic game in which firm i’s control variable is

given by αit ∈ [0,
_
α] for i = 1, 2, the state variable is given by Gt ∈ (0,+∞) and G0 > 1

is a given initial condition. We could have formulated the problem in such a way that

Rit is used as firm i’s control variable. We choose to use αit as the control variable for

mathematical convenience. Also it is common in the growth literature to use investment

as the control variable and stock of knowledge as the state variable (Hayashi, 1982).

The dynamic game is said to have a steady state if and only if lim
t→+∞

αit exists for

i = 1, 2. Denote lim
t→+∞

αit by αi for i = 1, 2. The dynamic game is said to have a steady

state equilibrium if and only if there exists some triple
(
G∗, α∗1, α

∗
2
)
that solves the dynamic
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system when it is at its steady state.

The N-tuple (φ1, ..., φN ) of functions φi : X × {1, ..N} → Rmi with set of possible

strategies, X , states {1, ..N} and set of possible strategies played by the mth player for i

time steps, Rmi is called a feedback closed loop Nash equilibrium if, for each i ∈ {1, 2..N},

a rule ui (.) of the problem above exists for each player and is given by ui (.) = φi (x (i) , i)

with x(i) is set of control variables in function of i.

In order to find a state perfect feedbackNash equilibrium, we assume that the functions

α1 (Gt) : (0,+∞) → [0, _α] and α2 (Gt) : (0,+∞) → [0, _α] exist and enter firm 2’s and firm

1’s current value Hamiltonian equations (see Appendix A) respectively. Indeed, firm 1’s

and firm 2’s current value Hamiltonian equations are given respectively by

H1 (Gt, α1t, λ1t) = A
(
1 +

1
Gt

)−2
−
α2

1tG
2σ1
t

2
+ λ1t (α1t − α2 (Gt))Gt, (3.14)

H2 (Gt, α2t, λ2t) = A (1 + Gt)
−2 −

α2
2t

2G2σ2
t

+ λ2t (α1 (Gt) − α2t)Gt . (3.15)

The necessary conditions for the optimal control problem for firm 1 and firm 2

are given by α1 (Gt) = λ1 (Gt)G
1−2σ1
t and α2 (Gt) = −λ2 (Gt)G

1+2σ2
t respectively where

λi (Gt) : (0,+∞) → R. Using the latter to substitute for α1 (Gt) and α2 (Gt), we can derive

the following adjoint equations for firm 1 and firm 2:

·

λ1t = ρλ1t −


2AGt

(1 + Gt)
3 − α

2
1tσ1G2σ1−1

t + λ1tα1t+

λ1tλ2 (Gt) (2 + 2σ2)G1+2σ2 + λ1t ×
dλ2 (Gt)

dGt
× G2+2σ2

t


, (3.16)

·

λ2t = ρλ2t −


−2A

(1 + Gt)
3 +

σ2α
2
2t

G2σ2+1
t

− λ2tα2t+

λ1 (Gt) λ2t (2 − 2σ1)G1−2σ1 + λ2t ×
dλ1 (Gt)

dGt
× G2−2σ1

t


. (3.17)

Note that we do not need to incorporate α1t as a function of Gt in firm 1’s Hamiltonian
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function since its derivative with respect to Gt will vanish by the envelope theorem in

the adjoint equation. Also, α2t as a function of Gt does not enter firm 2’s Hamiltonian

function for the same reason.

Finally, the transversality conditions for the above system are given by

lim
T→+∞

exp {−ρT} λiT = 0 and lim
T→+∞

GT = 0

which are equivalent to lim
T→+∞

exp {−ρT} λiT GT = 0 for i = 1, 2. The transversality

conditions imply that the last term on the right hand side of Eq.(3.16) as well as the last

term on the right hand side of Eq.(3.17) vanish as t → +∞. We will use Eq.(3.16) and

Eq.(3.17) to prove the propositions in the following section.

Note thatQt ∈

[
A
−

P
,
−

Q
]
and Pt ∈

[
A
−

Q
,
−

P
]
imply that A is bounded from above by

−

P
−

Q and

from below by A2
−

P
−

Q
. Since the only condition required for the Mangasarian conditions (that

the Hamiltonian is jointly concave in the control and the state variables) to be satisfied is

that A is bounded from above and from below,
−

P
−

Q can be chosen so that the Mangasarian

conditions are satisfied.

3.4 Results and Discussion

In this section we present our results. Our first task will be to show that for a subset

of the parameter space of the model, the closed-loop system has a stable steady state

equilibrium. In this study, by steady state we mean the state in which the state variable

grows at a constant rate. A special case of this definition will be a steady state where the

state variable’s growth rate is zero. A trivial steady state in our model will be one where

αit = 0 for i = 1, 2. If both firms conduct R&D at a positive rate in equilibrium, we would

then be able to argue that the incentives to innovate and thereby long-run R&D incentives

are not hindered by the imitation via knowledge spillovers. The existence results will be
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given in Proposition 3.1 whereas the stability results will be given in Proposition 3.2. In

order to test the robustness of this result, we determine the behavior of the firms’ investment

rates in the neighborhood of the steady state equilibrium in Proposition 3.3. In Proposition

3.4, a characterization of the result with respect to the diffusion rate parameter σi will also

be given. Such results will help us understand how the optimal R&D behavior of the firms

varies with the technology diffusion rate. Finally, we analyze the welfare implications of

our results by determining the dynamics of the mark-up ratio in Proposition 3.5.

We begin by stating the following assumption:

A1. ρ ∈ (σi
_
α,+∞) for i = 1, 2, that is, the impatience rate of players is bounded from

below by the product of the technology diffusion rate (of both firms) and the maximum

feasible investment rate.

The following facts will help us understand the economic rationale behind A1. First,

note that A1 implies that if ρ > σi
_
α for i = 1, 2, it follows that ρ > σiα j for all i, j ∈ {1, 2}

since αi 6
_
α for i = 1, 2. Second, in economic models the impatience rate is equal to

the rate of interest (market rate of return on capital). Third, note that σiα j can be seen as

the fraction of firm j’s investment rate that accrue to firm i. Thus, the returns on firm i’s

freeriding behavior are given by the growth rate of its own cost reduction due to the R&D

of firm j.

We can now give the economic justification for A1. From the above three observa-

tions, one can infer that A1 states that the rate of return on the freeriding behavior of a

firm is strictly less than the market rate of return on capital. Although it possible that the

rate of return on R&D exceeds the market rate of return (α j > ρ), it can never be the case

that σiα j > ρ. Therefore, there are no incentives for firms to engage purely in freeriding

behavior in our model. Hence, the relevant subset of the parameter space considered in

the model will be the parameter values that satisfy A1 in addition to all conditions given
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and justified in the previous section.

We will show in Proposition 3.1 and Proposition 3.2 that if future payoffs are suffi-

ciently discounted, that is, if the firms are sufficiently impatient, there will exist a stable

steady state equilibrium in which the follower surpasses the leader in terms of productivity

and in which both firms invest in R&D at a constant rate. The sufficiently high discount

rate is needed to ensure that the technology leader has enough incentives to conduct R&D

in the current state in which it is still maintaining its technological lead and thereby en-

joying greater current profits although in some future state it may be surpassed by the

follower due to the latter’s freeriding behavior which would result in lower future profits

for the leader.

First, consider the set Ω = {σ1, σ2: 0 < σ1 ≤ σ2 < 1/2, 3σ1 + 2σ2 > 1 and 4σ2
1 +

4σ2
2 + 7σ1σ2 < 1}. Then, we let _

αi be the maximum feasible investment rate of firm i.

3.4.1 Proposition 3.1 (Existence)

(i) If the dynamic game is at its steady state then α1 = α2 for a subset of the parameter

space that satisfies A1 minus Ω. (ii) If σ1+ σ2 > 1/2 (< 1/2), then there exists some

ρ∗ ∈ (σ2
_
αi,+∞) such that for all ρ > ρ∗ the dynamic game has a steady state equilibrium.

Moreover, the equilibrium is asymmetric, that is, Gt < 1 ( > 1).

Analytical Proof of Proposition 3.1(i). Now we present the proof for Proposition 3.1 (i).

Multiplying both sides of Eq.(3.16) and Eq.(3.17) by exp {−ρt} and with the transversality

condition, lim
T→+∞

exp {−ρT} λiT GT = 0, the (λ1t ×
dλ2(Gt )

dGt
×G2+2σ2

t ) term in Eq.(3.16) and

the (λ2t ×
dλ1(Gt )

dGt
× G2−2σ1

t ) term in Eq.(3.17) vanish as t →∞. Hence,

·

λ1t = ρλ1t −

[
2AGt

(1 + Gt)
3 − α

2
1tσ1G2σ1−1

t + λ1tα1t + λ1tλ2 (Gt) (2 + 2σ2)G1+2σ2

]
, (3.18)

·

λ2t = ρλ2t −

[
−2A

(1 + Gt)
3 +

σ2α
2
2t

G2σ2+1
t

− λ2tα2t + λ1 (Gt) λ2t (2 − 2σ1)G1−2σ1

]
. (3.19)

We then rewrite the costate variables for firm 1 and firm 2 as
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λ1t = α1tG
−1+2σ1
t , (3.20)

λ2t = −α2tG
−1−2σ2
t , (3.21)

respectively and their derivatives as

·

λ1t = (2σ1 − 1)α1tG
−2+2σ1
t

·

Gt + G−1+2σ1
t

·
α1t, (3.22)

·

λ2t = (2σ2 + 1)α2tG
−2−2σ2
t

·

Gt − G−1−2σ2
t

·
α2t . (3.23)

By substituting Eqs.(3.20), (3.21), (3.22), (3.23), and (3.7) into Eq.(3.18), we have the

following

(2σ1 − 1)α1tG
−2+2σ1
t Gt (α1t − α2t) + G−1+2σ1

t
·
α1t

= ρα1tG
−1+2σ1
t −

2AGt

(1 + Gt)
3 + α

2
1tσ1G2σ1−1

t − α2
1tG
−1+2σ1
t

−

(
α1tG

−1+2σ1
t

) (
−α2tG

−1−2σ2
t

)
(2 + 2σ2)G

1+2σ2
t ,

(2σ1 − 1)α1t (α1t − α2t) +
·
α1t = ρα1t −

2AG2−2σ1
t

(1 + Gt)
3 + α

2
1tσ1 − α

2
1t + α1tα2t (2 + 2σ2) ,

σ1α
2
1t − (1 + 2 (σ1 + σ2))α1tα2t − ρα1t +

·
α1t = −

2AG2−2σ1
t

(1 + Gt)
3 . (3.24)

By substituting Eqs.(3.20), (3.21), (3.22), (3.23), and (3.7) into Eq.(3.19), we have the

following

(2σ2 + 1)α2tG
−2−2σ2
t Gt (α1t − α2t) − G−1−2σ2

t
·
α2t

= ρ
(
−α2tG

−1−2σ2
t

)
+

2A

(1 + Gt)
3 − α

2
2tσ2G−1−2σ2

t − α2
2tG
−1−2σ2
t

−

(
α1tG

−1+2σ1
t

) (
−α2tG

−1−2σ2
t

)
(2 − 2σ1)G

1−2σ1
t ,

(2σ2 + 1)α2t (α1t − α2t) −
·
α2t = −ρα2t +

2AG1+2σ2
t

(1 + Gt)
3 − α

2
2tσ2 − α

2
2t + α1tα2t (2 − 2σ1) ,
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− σ2α
2
2t − (1 − 2 (σ1 + σ2))α1tα2t + ρα2t −

·
α2t =

2AG1+2σ2
t

(1 + Gt)
3 . (3.25)

Since ·
α1 =

·
α2 = 0 at the steady state, we have

σ1α
2
1 − (1 + 2 (σ1 + σ2))α1α2 − ρα1 = −

2AG2−2σ1
t

(1 + Gt)
3 , (3.26)

−σ2α
2
2 − (1 − 2 (σ1 + σ2))α1α2 + ρα2 =

2AG1+2σ2
t

(1 + Gt)
3 . (3.27)

We prove Proposition 3.1(i) by contradiction. Suppose α1 , α2. Then either (i)

α2 > α1 or (ii) α2 < α1. Suppose (i) holds. Then from Eq.(3.7), we find that lim
t→+∞

·

Gt

Gt
< 0.

If we let lim
t→+∞

·

Gt

Gt
= k < 0, then

lim
t→+∞

∫
dGt

Gt
= lim

t→+∞

∫
kdt,

lim
t→+∞

ln Gt = lim
t→+∞

kt + c, (where c is a constant)

lim
t→+∞

Gt = lim
t→+∞

exp {kt} · exp {c} .

From the above, we conclude that lim
t→+∞

Gt = 0 at the steady state since k < 0.

Consequently, Eqs.(3.26) and (3.27) reduce to the following equations at the steady state.

σ1α
2
1 − (1 + 2 (σ1 + σ2))α1α2 = ρα1, (3.28)

−σ2α
2
2 − (1 − 2 (σ1 + σ2))α1α2 = −ρα2. (3.29)

Thus (i) leads to Eqs.(3.28) and (3.29). Next suppose that (ii) holds. Then from Eq.(3.7),

we find that lim
t→+∞

·

Gt

Gt
> 0. Therefore since lim

t→+∞
Gt = lim

t→+∞
exp {kt}.exp {c} still holds and

k > 0,we have lim
t→+∞

Gt = +∞. Consequently, Eqs.(3.26) and (3.27) reduce to Eqs.(3.28)

and (3.29). Hence, since both (i) and (ii) reduce to Eqs.(3.28) and (3.29), to obtain a

contradiction, we only need to show that given the parameters of the model, no pair(
α∗1, α

∗
2
)
can be used to solve Eqs.(3.28) and (3.29). From Eqs.(3.28) and (3.29), we have
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the following after re-arranging

α1 =
ρ + [1 + 2 (σ1 + σ2)]α2

σ1
, (3.30)

α2 =
ρ − [1 − 2 (σ1 + σ2)]α1

σ2
. (3.31)

Solving Eqs.(3.30) and (3.31) simultaneously, we obtained

α1 =
(2σ1 + 3σ2 + 1) ρ

σ1σ2 − 4 (σ1 + σ2)
2 + 1

,

α2 =
(3σ1 + 2σ2 − 1) ρ

σ1σ2 − 4 (σ1 + σ2)
2 + 1

.

Suppose thatσ1,σ2 and ρ are unrestricted and that α1, α2 are not bounded from above, then

(3.28) and (3.29) have four possible solutions (three boundary and one interior solution)

given by

(
α∗1, α

∗
2
)
=

{
(0, 0) ,

(
0,

ρ

σ2

)
,

(
ρ

σ1
, 0

)}
(boundary solutions),

(
α∗1, α

∗
2
)
=

{(
(2σ1 + 3σ2 + 1) ρ

σ1σ2 − 4 (σ1 + σ2)
2 + 1

,
(3σ1 + 2σ2 − 1) ρ

σ1σ2 − 4 (σ1 + σ2)
2 + 1

)}
(interior solution).

Now since α1 , α2, (0, 0) cannot be a solution. From A1, we have ρ > σ2
_
α ≥ σ1

_
α

(since σ2 ≥ σ1). Therefore α1t <
ρ
σ1

and α2t <
ρ
σ2

for all t. Hence,
(
0, ρ

σ2

)
and(

ρ
σ1
, 0

)
are not feasible solutions. We next consider the interior solution

(
α∗1, α

∗
2
)
=(

(2σ1+3σ2+1)ρ
σ1σ2−4(σ1+σ2)

2+1
,
(3σ1+2σ2−1)ρ

σ1σ2−4(σ1+σ2)
2+1

)
. By definition of interior solutions, α∗1 > 0 and α∗2 > 0.

Now since σ1, σ2 and ρ are all positive, the numerator of α∗1 must be positive. As a result,

the denominator of α∗1 must be positive too. Consequently, the denominator of α∗2 will be

positive and hence its numerator must be positive as well. Thus, for the interior solution

to make sense the following inequalities must hold

(3σ1 + 2σ2 − 1)ρ > 0,

σ1σ2 − 4(σ1 + σ2)
2 + 1 > 0,

for all ρ ∈ (σ2
_
α,+∞) , and for all σ1, σ2 ∈

(
0, 1

2

)
such that σ1 ≤ σ2. However it can be

80

Univ
ers

ity
 of

 M
ala

ya



shown that the above inequalities are satisfied if and only if σ1 and σ2 belong to the

following set

Ω = {σ1, σ2: 0 < σ1 ≤ σ2 < 1/2, 3σ1 + 2σ2 > 1 and 4σ2
1 + 4σ2

2 + 7σ1σ2 < 1}.

Hence we have a contradiction. Since α1 , α2 cannot hold, we can say that if the

dynamic game is at its steady state then α1 = α2 for a subset of the parameter space that

satisfies A1 minus Ω. The proof is complete. Next, we present the proof for Proposition

3.1 (ii).

Analytical proof of Proposition 3.1(ii). From the above Proposition 3.1(i), we know that

α1 = α2 at the steady state. We can let α∗1 = α∗2 = α∗ and using the fact ·α1 =
·
α2 = 0

at the steady state, it can be verified that Eq.(3.26) and Eq.(3.27) reduce to the following

equations

ρα∗ −
2AG2−2σ1

t

(1 + Gt)
3 + (1 + σ1 + 2σ2) (α

∗)
2
= 0, (3.32)

−ρα∗ +
2AG1+2σ2

t

(1 + Gt)
3 + (1 − 2σ1 − σ2) (α

∗)
2
= 0. (3.33)

First we observe that α∗ = 0 is not a possible solution to the above system since both

A and Gt are positive real numbers. Therefore, α∗ > 0. Solving Eq.(3.32) and Eq.(3.33)

simultaneously (summing Eq.(3.32) and Eq.(3.33)) we have

α∗ =

√√√(
2AGt

(1 + Gt)
3

) (
G1−2σ1

t − G2σ2
t

2 − σ1 + σ2

)
. (3.34)

Since from the hypothesis of the proposition we know that σ1 + σ2 > 1/2 (or

2σ2 > 1 − 2σ1) and α∗ is a real number, the above expression makes sense if and only

if Gt ≤ 1. Moreover, if Gt = 1, Eq.(3.32) and Eq.(3.33) will imply that A = 0 which

violates our assumption that A ∈ (0,∞). Hence, if there exists some Gt ∈ (0,+∞) that
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solves Eq.(3.32) and Eq.(3.33), it must belong to the interval (0, 1). Replacing Eq.(3.34)

in Eq.(3.33) and after simplifying we have

ρ2 (1 + Gt)
3

2AGt

(
G1−2σ1

t − G2σ2
t

2 − σ1 + σ2

)
=

(
(1 − 2σ1 − σ2)G

1−2σ1
t + G2σ2

t (1 + σ1 + 2σ2)

2 − σ1 + σ2

)2

.

(3.35)
Eq.(3.35) can be reduced to

(2 − σ1 + σ2) ρ
2

2A

[
1

G2σ1
t

−
1

G1−2σ2
t

]
=

(
(1 − 2σ1 − σ2)G

1−2σ1
t + G2σ2

t (1 + σ1 + 2σ2)
)2

(1 + Gt)
3 .

(3.36)
We fix Gt = GL , where GL ∈ (0, 1). Since RHS of Eq.(3.36) is not equal to +∞

for all Gt ∈ (0, 1), we can choose ρ∗ ∈ (σ2
_
αi,+∞) such that the LHS of Eq.(3.36)

> RHS of Eq.(3.36) when Gt = GL . Now consider the RHS of Eq.(3.36). Let R (Gt) =(
(1−2σ1−σ2)G

1−2σ1
t +G2σ2

t (1+σ1+2σ2)
)2

(1+Gt )
3 be a function from (0,+∞) into R. It is straightforward

to verify that R (Gt) is a positive real valued function. Note that R (Gt) is continuous

at Gt = 1 and R (1) > 0. Then, we choose the δ-neighborhood of 1 denoted by N R
δ (1)

(where δ > 0) such that for all Gt ∈ N R
δ (1) ∩ (0, 1), we have |R (1) − R (Gt)| <

R(1)
2 .

Next, let L (Gt) =
(2−σ1+σ2)ρ

2

2A

[
1

G2σ1
t

− 1
G1−2σ2

t

]
be a function from (0,+∞) into R.

Since σ1+ σ2 > 1/2, L (Gt) is positively valued for all Gt ∈ (0, 1). Note that L (Gt) is

continuous at Gt = 1 and L (1) = 0. Then, we choose the δ′-neighborhood of 1 denoted by

N L
δ′ (1) (where δ

′ > 0) such that for allGt ∈ N L
δ′ (1)∩(0, 1), we have |L (1) − L (Gt)| <

R(1)
2 .

Let N∗ = N R
δ (1) ∩ N L

δ′ (1) ∩ (0, 1). Pick any Gt ∈ N∗ and denote it by GU . This gives us

|L (GU) − 0| <
R (1)

2
and

|R (1) − R (GU)| <
R (1)

2
.

The above two inequalities imply

L(GU) <
R(1)

2
< R(GU).
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Figure 3.1: Investment rates of the leader, α1t and the follower, α2t versus timesteps.

In both cases, at Gt = GU , RHS of Eq.(3.36) > LHS of Eq.(3.36). Finally, we define a

function F : (0, 1) → R by

F(Gt) =
(2 − σ1 + σ2) ρ

2

2A

[
1

G2σ1
t

−
1

G1−2σ2
t

]

−

(
(1 − 2σ1 − σ2)G

1−2σ1
t + G2σ2

t (1 + σ1 + 2σ2)
)2

(1 + Gt)
3 . (3.37)

Since F (Gt) is continuous on (0, 1) and we know from the previous argument that

F (GU) < 0 and F (GL) > 0, so by the intermediate value theorem there exists G∗ such

that F (G∗) = 0. This proves the existence of a pair (G∗, α∗) that solves the above system

at the steady state. The proof for the case where σ1 + σ2 < 1/2 is omitted as it is similar

to case where σ1 + σ2 > 1/2. �

Proposition 3.1(i) states that if a steady state were to exist in this dynamic game, then

it needs to have the symmetric investment property, that is, each firm invests in R&D at the
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Figure 3.2: Technology gap, Gt versus timesteps for (a) σ1+ σ2 > 1/2 and (b) σ1+
σ2 < 1/2.
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Figure 3.3: Productivity levels of the leader, X1t and the follower, X2t versus time steps
for (a) σ1+ σ2 > 1/2 and (b) σ1+ σ2 < 1/2.
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same rate. Therefore the equilibrium, if it exists, is symmetric in some sense. However,

although each firm invests in R&D at the same rate at the steady state, their respective

productivity levels are not necessarily equal, that is, α1 = α2 does not always imply that

Gt = 1 at the steady state. Proposition 3.1(i) shows the establishment of an important

long-run relationship between the investment rate of the two firms. A simulation using

profit maximizing rules was run with the parameter values σ1 = 0.45, σ2 = 0.49, X10 = 3;

X20 = 2; α10 = 0.02; α20 = 0.32 to test the proposition. Figure 3.1 shows that when the

simulation is at its steady state, α1 is equal to α2. Hence, the simulation result agrees with

Proposition 3.1(i).

Part (ii) of the proposition gives the range of parameter values that guarantee the

existence of an equilibrium. Figure 3.2 shows that when the simulation reaches its steady

state equilibriumwith (a)σ1 = 0.45,σ2 = 0.49 (σ1+σ2 > 1/2),Gt < 1 and (b)σ1 = 0.20,

σ2 = 0.25 (σ1 + σ2 < 1/2), Gt > 1. The figure agrees with Proposition 3.1(ii). Indeed,

Proposition 3.1 (ii) shows that two types of steady state equilibria may exist depending on

the parameter values. In the first one, the leader maintains its technological lead over the

follower and in the second one, the follower catches up with the leader. Thus, although

the firms invest at the same rate in equilibrium, their productivity levels differ.

We also observe that if the rate of technology diffusion is high, that is, σ1+σ2 > 1/2,

then the technology laggard leapfrogs the leader whereas if the technology diffusion rate

is low, that is, σ1+ σ2 < 1/2, the technology leader maintains its technological advantage.

Thus, in order for an equilibrium where the leader maintains its technological advantage

to exist, the rate of technological diffusion cannot be too high. Figures 3.3(a) and 3.3(b)

agree with these observations. This just confirms our intuition.

Now, by part (i) of the proposition, we can conclude that the equilibrium inwhich both

firms invest at a positive rate in equilibrium exists. Hence, neither the leader is discouraged
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from innovating despite the lack of appropriability nor does the laggard reduce its own

innovation and try to free-ride fully on the leader. The intuition behind this result is

that the imitation via knowledge spillovers in our model creates a source of competitive

pressure which deters the technology leader from maximizing short-run monopoly and

“forces” the leader to innovate further. This type of forcing of a cooperator to cooperate

further is interesting given the absence of spillover phenomenon in the Snowdrift game

in the previous chapter. In order to complete our analysis, we next give the conditions for

the above system to be stable.

By definition, when we say that an equilibrium point is locally stable, we mean that

all solutions which begin from an initial condition close to the equilibrium point converge

to the equilibrium point as time goes to infinity. An equilibrium point is said to be globally

stable if all initial starting conditions lead to it.

3.4.2 Proposition 3.2 (Stability)

(i) If σ1+ σ2 > 1/2, then there exists ρ∗∗ ∈ (ρ∗,+∞) such that for all ρ > ρ∗∗, the dynamic

game is locally stable if and only if G∗ ∈
(

2−2σ1
1+2σ1

, 1+2σ2
2−2σ2

)
.

(ii) If σ1+ σ2 > 1/2, σ1, σ2 > 1/4 and ρ ∈ (ρ∗∗,+∞), then there exists σ∗1 ∈ (1/4, 1/2)

such that for all σ1 ≥ σ
∗
1 , G∗ is a locally stable equilibrium.

Analytical Proof of Proposition 3.2(i). First, we recall from Proposition 3.1(ii) that

when σ1+ σ2 > 1/2, Gt ∈ (0, 1) in equilibrium. Since
·

Gt = 0 at the steady state from

Proposition 3.1(i), the above system is stable if and only if
·

dGt

dGt
(G∗) < 0. From Eq.(3.7),

we find that
·

dGt

dGt
= α1t − α2t + Gt

(
dα1t
dGt
−

dα2t
dGt

)
. Since from Proposition 3.1 we know

that α1t − α2t → 0 as t → +∞ at the steady state, it suffices to show that the sign of(
dα1t
dGt
−

dα2t
dGt

)
is negative when evaluated at G∗. Taking the derivative with respect to Gt

on both sides of Eqs.(3.24) and (3.25) and using the fact that d
·
α1t

dGt
and d

·
α2t

dGt
tend to zero at

the steady state (by definition of steady state), we have the following equations
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[2σ1α1t − ρ − α2t (1 + 2 (σ1 + σ2))]
dα1t

dGt
− α1t [1 + 2 (σ1 + σ2)]

dα2t

dGt

= −
d

dGt

(
2AG2−2σ1

t

(1 + Gt)
3

)
(3.38)

[−2σ2α2t + ρ − α1t (1 − 2 (σ1 + σ2))]
dα2t

dGt
− α2t [1 − 2 (σ1 + σ2)]

dα1t

dGt

=
d

dGt

(
2AG1+2σ2

t

(1 + Gt)
3

)
. (3.39)

We let q1 ≡ 2σ1α1t − ρ − α2t (1 + 2 (σ1 + σ2)), q2 ≡ −α1t (1 + 2 (σ1 + σ2)), r1 ≡

−2σ2α2t + ρ−α1t (1 − 2 (σ1 + σ2)), r2 ≡ −α2t (1 − 2 (σ1 + σ2)), m ≡ − d
dGt

(
2AG2−2σ1

t

(1+Gt )
3

)
and

n ≡ d
dGt

(
2AG1+2σ2

t

(1+Gt )
3

)
. By using these notations, we have

q1
dα1t

dGt
+ q2

dα2t

dGt
= m (3.40)

r1
dα2t

dGt
+ r2

dα1t

dGt
= n. (3.41)

We solve Eqs. (3.40)and (3.41) simultaneously and obtain the following

dα1t

dGt
=

q2n − r1m
r2q2 − r1q1

(3.42)

dα2t

dGt
=

q1n − r2m
r1q1 − r2q2

. (3.43)

Recall from the above that
·

dGt

dGt
< 0 if

(
dα1t
dGt
−

dα2t
dGt

)
< 0. Thus, we determine the sign

of
(

dα1t
dGt
−

dα2t
dGt

)
. We observe that Eqs. (3.42) and (3.43) imply that

dα1t

dGt
−

dα2t

dGt
=
(q1 + q2) n − (r1 + r2)m

r2q2 − r1q1
. (3.44)

We can choose ρ = ρ̂ to be large enough so that q1 < 0 , r1 > 0, |r1q1 | > |r2q2 |

and r1 > r2. Let ρ∗∗ = max { ρ̂, ρ∗}. Also note that q2 < 0 always holds. As a result,

the denominator of Eq.(3.44) is positive. Hence, m, n > 0 are sufficient conditions for the

sign of
(

dα1t
dGt
−

dα2t
dGt

)
to be negative. Now, m > 0 if and only if
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−
d

dGt

(
2AG2−2σ1

t

(1 + Gt)
3

)
> 0,

− (1 + Gt)
3 (2 − 2σ1)

(
2AG1−2σ1

t

)
+ 3 (1 + Gt)

2
(
2AG2−2σ1

t

)
(1 + Gt)

6 > 0,

− (1 + Gt) (2 − 2σ1) + 3Gt > 0,

Gt >
2 − 2σ1
1 + 2σ1

.

And that n > 0 if and only if

d
dGt

(
2AG1+2σ2

t

(1 + Gt)
3

)
> 0,

(1 + Gt)
3 (1 + 2σ2)

(
2AG2σ2

t

)
− 3 (1 + Gt)

2
(
2AG1+2σ2

t

)
(1 + Gt)

6 > 0,

(1 + Gt) (1 + 2σ2) − 3Gt > 0,

2Gt (σ2 − 1) > − (1 − 2σ2) ,

Gt <
1 + 2σ2
2 − 2σ2

,

since 0 < σ2 < 1/2 implies that σ2 − 1 < 0. Moreover, σ1+ σ2 > 1/2 ensures that

the interval
(

2−2σ1
1+2σ1

, 1+2σ2
2−2σ2

)
exists. Hence, as long as σ1+ σ2 > 1/2, the system is stable

when Gt ∈

(
2−2σ1
1+2σ1

, 1+2σ2
2−2σ2

)
. Therefore, we can say that if σ1+ σ2 > 1/2, then there exists

ρ∗∗ ∈ (ρ∗,+∞) such that for all ρ > ρ∗∗ the dynamic game is locally stable if and only if

G∗ ∈
(

2−2σ1
1+2σ1

, 1+2σ2
2−2σ2

)
.
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Analytical Proof of Proposition 3.2(ii). We recall from Proposition 3.1 (ii) that G∗ < 1

if σ1+ σ2 > 1/2. Hence, we will be looking for a subset of (0, 1) that contains G∗ for

which the system is stable. Now since from Proposition 3.2(i) we know that the system is

stable for G∗ ∈
(

2−2σ1
1+2σ1

, 1+2σ2
2−2σ2

)
, we need to show that

(
2−2σ1
1+2σ1

, 1+2σ2
2−2σ2

)
∩ (0, 1) is non-empty

and that G∗ lies in that intersection. But from the hypothesis of this proposition we know

that σ1, σ2 > 1/4. The latter ensures that 2−2σ1
1+2σ1

< 1 and that 1+2σ2
2−2σ2

> 1. Hence, G∗ is

stable if G∗ ∈
(

2−2σ1
1+2σ1

, 1
)
.Thus, it suffices to show that G∗ belongs to

(
2−2σ1
1+2σ1

, 1
)
for some

plausible range of values for the parameter σ1. Since G∗ ∈ (0, 1), we know that there

exists an interval (a, b), where a > 0 and b < 1, such that G∗ ∈ (a, b). Note that
(

2−2σ1
1+2σ1

, 1
)

decreases to 0 for σ1 ∈ (1/4, 1). Hence, for an arbitrary G∗ and fixing the values of a

and b, we know that there exists σ1 ∈ (1/4, 1) such that
(

2−2σ1
1+2σ1

, 1
)
⊇ (a, b). Since the

same argument works for any generic G∗ ∈ (0, 1), and σ1 > 1/4 from the hypothesis of

the proposition, σ∗1 can always be chosen so that G∗ belongs to
(

2−2σ1
1+2σ1

, 1
)
. Therefore,

we can say that if σ1+ σ2 > 1/2, σ1, σ2 > 1/4 and ρ ∈ (ρ∗∗,+∞), then there exists

σ∗1 ∈ (1/4, 1/2) such that for all σ1 ≥ σ
∗
1 , G∗ is a locally stable equilibrium. �

Proposition 3.2(i) shows that if the steady state technology level G∗ belongs to

interval
(

2−2σ1
1+2σ1

, 1+2σ2
2−2σ2

)
, then it will be a locally stable equilibrium. Figure 3.4 shows that

the simulation result agrees with Proposition 3.2. In Figure 3.4, dα2t/dGt is greater than

dα1t/dGt , which agrees with the proof of Proposition 3.2 above. Proposition 3.2 (ii)

shows that the equilibrium found in Proposition 3.1 (ii) indeed belongs to
(

2−2σ1
1+2σ1

, 1+2σ2
2−2σ2

)
,

and hence is stable. Therefore, the equilibrium in which the technology laggard surpasses

the leader is stable as long as the technology diffusion rate is large enough (since σ1+

σ2 > 1/2 implies that Gt < 1 at the steady state from Proposition 3.1(ii)). In fact, since

σ∗1 > 1/4 , some level of technology diffusion from the laggard to the leader also needs

to take place in order for the system to be stable. Intuitively, this prevents the leader from
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reducing his investment down to zero when the follower has surpassed the leader. Note

that although the follower leapfrogs the leader in equilibrium, we still refer to firm 1 as

the leader and firm 2 as the follower due to the ex-ante asymmetric assumption that we

imposed on the initial condition X10 > X20 > 1 and the parameter configuration σ1 ≤ σ2.

Proposition 3.2 (ii) also gives the sufficient conditions for a dynamic stable equilibrium in

which each firm invests in innovation at a positive rate to exist. The condition we found

(σ∗1 > 1/4) requires that spillovers need to be bidirectional(though not symmetrically

bidirectional) and it puts a constraint on how much technology diffusion is admissible

in an environment with imitation via knowledge spillovers. Thus, industry level growth

driven by R&D and innovations can be sustained with imitation via knowledge spillovers.

Figure 3.4 shows that the stability is local and only hold at the steady state.
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Simulation result for Long−term R&D incentives in a Dynamic Cournot Duopoly

 

 

Leader
Follower

Figure 3.4: Investment rates of the leader, α1t and the follower, α2t versus technology
gap, Gt for σ1+ σ2 > 1/2. These values are at the steady state equilibrium. The stability
is local and only holds at the steady state.
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At this point it will be useful to comment on the path to and from the stable steady

state. Since G0 > 1, G0 is not stable and because G∗ < 1, at least one leapfrogging must

take place on the path to the steady state. This implies that for at least one t# we have

α1t# − α2t# < 0. However, since we know from Proposition 3.1(i) that α1t − α2t = 0 at the

steady state, there must exist some
−
t > t# such that either α1t is rising or α2t is falling.

This also suggests that the dynamics of the control variables may be complicated even on

the equilibrium path. While we do not derive the paths of α1t and α2t in the transitional

dynamics, we give a result that describes the economic intuition driving their behavior.

The next proposition shows that the firms’ R&D investment rates, that is, α1t and α2t are

strategic substitutes in the neighborhood of the steady state.

3.4.3 Proposition 3.3 (Transitional Dynamics)

If σ1+ σ2 > 1/2 and ρ ∈ (ρ∗∗,+∞), then there exists a neighborhood of the steady state

equilibrium such that dα1t
dα2t

< 0.

Analytical Proof of Proposition 3.3. First of all, dividing Eq.(3.42) by Eq.(3.43) gives

the following expression at the steady state

dα1t

dα2t
=

r1m − q2n
q1n − r2m

. (3.45)

Recall that from the proof of Proposition 3.2(i), when ρ ∈ (ρ∗∗,+∞), r1 > 0, q2 < 0 and

q1 < 0. And σ1+ σ2 > 1/2 implies that r2 > 0. It is straightforward to show that dα1t
dα2t

< 0

as r1m − q2n > 0 and q1n − r2m < 0. �

Proposition 3.3 shows the effects of both freeriding and competition for greatermarket

share in the neighborhood of the stable equilibrium. Indeed, we observe that if the leader

increases its investment rate, the follower responds by lowering its own investment rate as

it tends to free-ride more on the leader’s research. On the other hand, if the leader reduces
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its investment rate, the follower responds by investing more to maintain its market share.

Thus, it is never the case that both firms reduce R&D investment in the equilibrium path.

This result reinforces the idea that innovations and imitation via knowledge spillovers are

compatible.

In order to determine how the equilibrium investment rates change with changes in

the technology diffusion parameters, we give the following comparative statics result.

3.4.4 Proposition 3.4 (Comparative Statics)

If σ1+ σ2 > 1/2 and ρ ∈ (ρ∗∗,+∞), then α∗ (where α∗ = α∗1 = α
∗
2) is increasing in σ1

and decreasing in σ2.

Analytical Proof of Proposition 3.4. From Eq.(3.34), we know that

α∗ =

√√√(
2AGt

(1 + Gt)
3

) (
G1−2σ1

t − G2σ2
t

2 − σ1 + σ2

)
.

Moreover, σ1+ σ2 > 1/2 implies that G∗ < 1. We find the sign of dα∗
dσ1

.

sgn
d

dσ1

©­«
√√√(

2AGt

(1 + Gt)
3

) (
G1−2σ1

t − G2σ2
t

2 − σ1 + σ2

)ª®¬ = sgn
d

dσ1

©­«
√√√(

G1−2σ1
t − G2σ2

t

2 − σ1 + σ2

)ª®¬
= sgn

d
dσ1

(
G1−2σ1

t − G2σ2
t

2 − σ1 + σ2

)
(since

√
(.) > 0).

d
dσ1

(
G1−2σ1

t − G2σ2
t

2 − σ1 + σ2

)
=
(2 − σ1 + σ2) (1 − 2σ1)G

−2σ1
t +

(
G1−2σ1

t − G2σ2
t

)
(2 − σ1 + σ2)

2 > 0,

since σ1 + σ2 > 1/2 and Gt < 1 implies that G1−2σ1
t − G2σ2

t > 0.

We next find the sign of dα∗
dσ2

.

sgn
d

dσ2

©­«
√√√(

2AGt

(1 + Gt)
3

) (
G1−2σ1

t − G2σ2
t

2 − σ1 + σ2

)ª®¬ = sgn
d

dσ2

(
G1−2σ1

t − G2σ2
t

2 − σ1 + σ2

)
.
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d
dσ2

(
G1−2σ1

t − G2σ2
t

2 − σ1 + σ2

)
=
− (2 − σ1 + σ2) 2σ2G2σ2−1

t −

(
G1−2σ1

t − G2σ2
t

)
(2 − σ1 + σ2)

2 < 0.

Therefore, we can say that if σ1+ σ2 > 1/2 and ρ ∈ (ρ∗∗,+∞), then α∗ (where α∗ = α∗1 =

α∗2) is increasing in σ1 and decreasing in σ2. This completes the proof of Proposition 3.4.

�

Proposition 3.4 states that although the equilibrium R&D investment rate increases

with the rate of technology diffusion from the follower to the leader, it decreases with

the rate of technology diffusion from the leader to the follower. This result gives the

same message as in the stability requirement in Proposition 3.2(ii); that in order for a

stable equilibrium to exist, some diffusion from the follower to the leader also needs

to take place. Since the higher the diffusion from the follower (leader) to the leader

(follower), the higher (lower) the value of the equilibrium investment rate, the equilibrium

investment rate decreases in the relative diffusion from the leader to the follower. Hence,

the bidirectional nature of the spillovers plays an important role in our results. A higher

equilibrium investment rate can be achieved only if the extent to which spillovers are

bidirectional is greater.

Our final result will look at some welfare implications of the dynamic Cournot

game. Our strategy will be to look at behavior of the mark-up ratio (a measure of market

inefficiency) and growth rate (see Appendix B) of output.

3.4.5 Proposition 3.5 (Welfare)

Assume that σ1+ σ2 > 1/2 and ρ ∈ (ρ∗∗,+∞), then the steady state growth rate of Pt−cit
Pt

for i = 1, 2 is zero, whereas the steady state growth rate of Qt is equal to α∗, where

α∗ = α∗1 = α
∗
2.

Analytical Proof of Proposition 3.5. From Proposition 3.1(i), we know that there exists

a steady state characterized by α1 = α2 = α
∗. We first compute the growth rate of Pt−cit

Pt
.
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For a variable yt , denote the growth rate of yt by g (yt). Note that Pt−cit
Pt
=

cjt
cit+cjt

(since

Pt = cit + cit). Let i = 1 and j = 2, and by substitution cit =
1

Xit
and Gt =

X1t
X2t

from Eqs.

(3.1) and (3.4) respectively we have

c2t

c1t + c2t
=

1
X2t

1
X1t
+ 1

X2t

=
X1t

X1t + X2t

=
1

1 + 1
Gt

.

Now, the growth rate of c2t
c1t+c2t

is given by the following

g

(
c2t

c1t + c2t

)
= g

(
1

1 + 1
Gt

)
= g (1) − g

(
1 +

1
Gt

)
= 0 − g

(
1

Gt

)
= 0 − (0 − g (Gt))

= 0 (since g (Gt) = 0 at the steady state).

We then compute the growth rate of Qt . Note that Qt =
A

cit+cjt
(as Pt =

A
Qt
). Then we have

g

(
A

cit + c jt

)
= g (A) − g

(
cit + c jt

)
= 0 − g

(
X jt + Xit

Xit X jt

)
= 0 − [α∗ − (α∗ + α∗)]

= α∗,

where we have made used of the fact that g
(
X jt + Xit

)
=

·

Xit+
·

Xjt

Xit+Xjt
. Since Xit grows at α∗ for

each i, we must have
·

Xit = Xitα
∗ (from Eq.(3.6)) and hence,

·

Xit+
·

Xjt

Xit+Xjt
=
(Xit+Xjt)α∗

Xit+Xjt
= α∗. �
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Proposition 3.5 shows that while the growth rate of the inefficiency measure tends to

zero at the steady state, the growth rate of output is positive and hence sustainable. Thus,

although the duopolists conduct R&D perpetually in order to increase their profits, the

price mark-up is not increasing at the steady state.

3.5 Conclusion

In this chapter, we proposed a framework to model R&D incentives when both strategic

interactions and process innovations with technology diffusion (due to a lack of intellectual

property (IP) protection) are considered. While on the one hand growth models that

consider strategic interactions tend to downplay the role of R&D spillovers, on the other

hand, R&D games studied in the Industrial Organization literature are rarely presented

in a continuous time framework and the relation between technology diffusion and the

dynamics of the technology gap is not considered. We showed that the presence of

bidirectional asymmetric spillovers does not necessarily deter the firms (both leader and

follower) from investing at a positive rate. The economic rationale for this observation

is that the positive effect of technology diffusion on innovation due to competition (firms

fighting for greater market share) is greater than the negative effect due to freeriding. Our

results suggest that policy makers and regulators should reconsider the issues relating to

imitation and innovation.

As a final note to close this chapter, it can be concluded that innovation or cooperation

in an R&D Cournot duopoly can be sustained amongst both innovators and free-riders

given a high enough technology diffusion rate, and that the free-riders still need to innovate

or cooperate to overtake the innovators or cooperators in terms of productivity.

However, what if the two firms are no longer the only dominant players in the market,

and face competition from new players? Will the current features still appear when

oligopolism no longer exist? How will the choice to switch between innovation and
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freeriding change the dynamics of the game? These questions will be addressed in the

next chapter.
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CHAPTER 4: TECHNOLOGY DIFFUSION, INVESTMENT RATE AND
PRODUCTIVITY IN AN EVOLUTIONARYWELL-MIXED N-PERSON

RESEARCH AND DEVELOPMENT MODEL

4.1 Introduction

In Chapter 3, we have studied the role of punishment in a more practical Cournot duopoly

economicmodel where the role of the punisher in Snowdrift game has been taken up by the

patent system. We have developed a research and development (R&D) Cournot duopoly

differential game played by ex-ante asymmetric firms with the dynamics of technological

diffusion depending on the technology gap between the firms. It was found that if the

technology diffusion is bidirectional, both firms invest in R&D at a constant positive

rate, and that imitation via knowledge spillovers does not deter innovation. The economic

rationale observed is that the positive effect of technology diffusion on innovation (absence

of patent system) due to competition (firms fighting for greater market share) is greater

than the negative effect due to freeriding. In particular, it showed that patent system in a

two player game has not much impact on innovation. In other words, it means that the urge

for high productivity prevails over that for freeriding, as in the case of the evolutionary

Snowdrift model where players change their strategies based on the performance of their

strategies.

Since Cournot models (Touffut, 2007) are commonly used for economic studies, the

price-demand relationship is an essential part of the modelling process. Other ingredients

that are commonly studied in economics include technology gap, technology diffusion

rates, productivity etc. In Chapter 3, the main feature studied in the developed Cournot

duopoly model was the investment-technology diffusion-technology gap relationship. The

investment rate is the most important feature in the model as it measures both the inno-

vation intensity and productivity of an industry. Although this model was successful in
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showing the effect of patenting on innovation, the large number of factors in this model

makes it hard to identify precisely the factors that directly affect the investment rate.

Therefore, in this chapter, we modified the Cournot duopoly economic model of the re-

search and development industry to allow a better understanding of the underlying factors

directly influencing the investment rate of the players and the technological leapfrogging.

Technology diffusion rate σ and technology gap G are the two parameters hypothesized as

the underlying factors. Furthermore, the original model only involves two players without

adaptive behaviors. By using an evolutionary well-mixed N-player setting, it would be

interesting to see how the introduction of the evolutionary feature affects the overall dy-

namics of the model. Thus, we incorporate the hypothesized two parameters, namely, the

technology diffusion rate and technology gap, into an evolutionary well-mixed N-player

model, with all of the other parameters from the original model removed.

We also developed a numerical simulation for the model, which can be extended to

a lattice model for future studies. A set of differential equations based on the replicator

dynamics is used to study the behaviour observed in the simulation result. The replicator

dynamics equation was solved by using iterative methods. The technological leapfrogging

observed in the original work in Chapter 3 was reproduced in this current evolutionary

well-mixed N-player model, thereby verifying the hypothesis that the underlying factors

directly influencing the investment rate of the players are the technology diffusion rate

and technology gap. In addition, our results show that for G >> 1 the cutoff value of the

technology diffusion rate of the imitator for the leapfrogging to occur is dependant on the

investment rate of the population. In particular, the results also show that the investment

rate must be sufficiently high for the leapfrogging to occur.

The plan of this chapter is as follows. Section 4.2 is the literature review. Section 4.3

introduces the model in detail. Both analytical and simulation results are presented and
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discussed in Section 4.4. Results shown in Chapter 3 are reproduced, together with other

interesting results. This is followed by conclusions in Section 4.5.

4.2 Literature Review

Nowadays, it has become common for game theory to be presented as the most efficient

tool for duopolymarket research; although such opinion obviously lacks critical evaluation

of game theory’s practical application. The game theory approach is usually limited to

designing a complicated multi-variable mathematical model, which leads to purely the-

oretical conclusions based on multiple assumptions, without deepening into possibilities

to apply the model in practice. Many authors aim to fill up this niche, suggesting opinion

on practical application of game theory in duopoly market research (e.g. Romualdas &

Algirdas, 2008).

There are many game theory models commonly applied to analyze duopoly mar-

kets (e.g. Romualdas & Algirdas, 2008). The models are employed to estimate market

equilibrium, to evaluate gains and losses of each market player and the efficiency of equi-

librium at the industry level. The Prisoner’s Dilemma model is applied to a hypothetical

market entrance game with possible side payments by reformulating the classic model

(Skinner & Chamberlin, 2001; Rasmusen, 2006) and using the payoff matrix to show the

possible combinations of players’ actions and expected payoffs (profits). The problem

is solved easily with the iterated dominance technique (Romualdas & Algirdas, 2008).

The technique of applying theoretical models to hypothetic market situations accompa-

nied by non-complicated mathematical calculations is used. Therefore, motivated by this

work, we simplify the R&D Cournot duopoly model in Chapter 3 to an extent which

allows us to study it using an evolutionary well-mixed N-player setting and solve it using

non-complicated mathematical methods. The simplified model can also be extended to

a lattice model or other complex networks for future studies. Such other networks may
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include scale-free, small-world and random networks.

In the developed Cournot duopoly model in Chapter 3, the investment rate is the

most important feature in the model as it measures both the innovation intensity and

productivity of an industry. It is hard to identify precisely the factors that directly affect

the investment rate due to the large number of factors in the model. Given the effects

of technology diffusion rate and technological gap on the investment rate in the model,

there is a possibility that these two factors will have a direct impact on the investment

rates, even in the absence of the price and demand factors. In this way, the possibility of

the price, demand and other factors affecting the investment rate is removed. With this

removal, the model is simplified to an extent which allows us to create a payoff matrix

which focuses on the technology diffusion rates of the innovators and the imitators as well

as the technology gap. With the created payoff matrix, we can extend our study by using

other network settings like square lattice in Chapter 2 in future works.

In Chapter 3, we have developed and solved an R&D Cournot duopoly model to

investigate the effect of patenting on cooperation and defection. The model is very

successful in giving insights on whether patenting is effective in giving enough incentives

to firms to innovate. In particular, it showed that patenting in a two player game has not

much impact on innovation. Hence, in this chapter we study the effect of patenting by

using a N-player setting. N-player setting has been widely used in game theory models

like the famous Prisoner’s Dilemma and Snowdrift game as it represents a real world

social interaction. The N-person Snowdrift game resembles the division of labor in group

projects in the real world (Chan et al., 2008). It is usually the case that there are free-riders

who do not participate much in the work and yet get the credits. Unless no one is willing

to take part, the whole group will earn credits from the completion of the project by the

work of some active individual(s). It is similar to our R&D Cournot duopoly model where
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the imitator try to free-ride on the innovator’s R&D.

There has been much discussion on the evolutionary metaphor in economics in recent

years (Dixon et al., 2002). In biology, successful species or genes tend to become more

common because they give rise to more progeny. In the context of social evolution,

mechanisms of propagation might also be present: successful firms grow and diversify,

their managers circulate, good firms take over bad firms, unsuccessful firms go bust.

However, in social evolution there is also the mechanism of imitation: firms tend to

imitate the more successful practices of other firms. There is also learning: firms will

receive signals from the capital market and elsewhere about how they are performing

relative to other firms (this will lead less successful firm types to adapt their behavior).

Models with evolutionary updating of the fractions of agents have recently been proposed

by many authors in economic and financial models (Hommes and Brock, 1997; Droste

et al., 2002; Hommes et al., 2011; Hommes, 2013; Anufriev et al., 2013). In particular,

Droste et al. (2002) consider an evolutionary Cournot duopoly with homogeneous goods,

linear demand and quadratic production costs. Pairs of firms, each with its own behavioral

rule, are randomly matched at every time period to play the game. Hommes et al. (2011)

consider a similar evolutionary setup with linear demand and linear production costs

but with random matching of N-firms at a time, which can switch, on the basis of past

performances, between costly rational and cheap boundedly rational expectation rules

on aggregate output of their rivals. Therefore, motivated by these works, we introduce

the evolutionary feature in our simplified Cournot duopoly R&D model. We include

evolutionary traits where a player may, with a certain probability, change to a different

character class if his payoff is less than a randomly chosen player. The payoff of each

strategy plays the central role in determining the frequency of the corresponding population

class. The interaction of the N players will be based on the payoff matrix which focuses on
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the technology diffusion rates of the innovators and the imitators as well as the technology

gap. The N players are randomly matched at a time.

In modifying the Cournot duopoly model in Chapter 3 to an evolutionary N-player

setting, one of the goals is to determine the factors causing the leapfrogging. In particular,

it is expected that the results in Chapter 3 will be reproduced if the hypothesis that the

factors that cause leapfrogging are technology diffusion rate and technology gap is true.

This newly developed research and development model also serves to study the effect of

the evolutionary feature of an N-player game on innovation or cooperation amongst the

players.

4.3 Model

Due to the large number of variables and parameters in the previous model, any investiga-

tion of the effect of patenting on an N-player game becomes difficult. Thus, we propose

a simplified model where only the most important features from the said Cournot game

(Fehr & Gachter, 2000) are included. In a standard cooperator-defector game, the payoff

matrix is given by

I F

I

F

©­­­«
R S

T P

ª®®®¬ . (4.1)

Consider two firms competing in a game. Firm 1 is an innovator (I) and invented a

product. He then filed for a patent to protect his idea. The profit, taken as the amount

of revenue collected from the sale of the product, is denoted by b. The technology

diffusion rate reflects the extent to which the technology knowledge is a public good.

The technology leakage is involuntary. If a firm needs a product produced, it needs to

either undertake some innovation on its own or to “steal” it from an innovator. σ1 and
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σ2 are the technology diffusion rates for the innovator(I) and imitator (F) respectively,

and 0 < σ1 < σ2 < 1/2 . The technology leakage of the innovator is always greater

than that of the imitator. If the innovator shares this project with another innovator, the

resultant profit each player receives is given by the total profit minus the cost to carry out

research, divided by two. The difference in the technology diffusion rate is equivalent to

the cost, c, to do research, since the amount of technology stolen is equal in monetary

value to the research cost. Thus, c can be replaced by σ2 − σ1. Since the technological

gap G is beneficial to the innovator in an innovator-imitator interaction, if the innovator

is competing with an imitator, the profit the innovator receives is given by the sum of

the profit from sales and the technological gap minus the cost for the research. Since the

technological gap causes the imitator to lose the benefit, if an imitator is competing with

an innovator, the net profit he gets is given by the profit from sales plus the difference in

the technology diffusion rates between the two players minus the technological gap. If an

imitator meets another imitator, neither of them innovates, so no product is produced and

the net profit is zero. Below is the payoff matrix of the new Cournot duopoly game:

I F

I

F

©­­­«
b − (σ2 − σ1)

2
b − (σ2 − σ1) + G

b + (σ2 − σ1) − G 0

ª®®®¬ . (4.2)

This payoff matrix follows the economics of the Cournot model (Fehr & Gachter,

2000). As discussed in Chapter 3, if σ1 + σ2 > 1/2, the imitator leapfrogs the innovator,

and if σ1 + σ2 < 1/2, the innovator leads the imitator. Moreover, for both σ1 + σ2 > 1/2

and σ1 + σ2 < 1/2, there exists a steady state equilibrium which is asymmetric, that is,

σ1 + σ2 > 1/2 corresponds to G < 1, and σ1 + σ2 < 1/2 corresponds to G > 1. To

reproduce the result that the imitator has enough incentive to leapfrog the innovator, we
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would need σ2 − σ1 > G and b > 0. From the asymmetric property, this requirement can

be satisfied. Thus, a suitable configuration for the payoff ordering is

b + (σ2 − σ1) − G > b − (σ2 − σ1) + G >
b − (σ2 − σ1)

2
> 0 and T > S > R > P.

Different behaviours may emerge from this ordering of payoffs compared to the Pris-

oner’s Dilemma and Snowdrift games, and it would be interesting to investigate whether

innovation can emerge from this ordering.

We next make use of the technology gap to simplify the payoff matrix further. In the

previous work, we have the steady state investment rate

α∗ =

√
2AG(G1−2σ1 − G2σ2)

(1 + G)3(2 − σ1 + σ2)
.

Note that at steady state, the investment rates of both players are the same (Smith & Price,

1973). We let α∗ = α and assume that σ1 → 0, where the laggard firm fully free-rides on

the leader, therefore giving

σ2 =
2AG(G − G2σ2)

α2(1 + G)3
− 2. (4.3)

At steady state, α and A are constant, hence we let 2A/α2 = K , giving

σ2 = KG
G − G2σ2

(1 + G)3
− 2. (4.4)

Eq.(4.6) reflects the dependance of the technological diffusion rate between any two players

on the technological gap between them.

From Proposition 3.1 (ii), two types of steady-state equilibria may exist depending on

the parameter values. In the first one, the leader maintains its technological lead over the
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follower and in the second one, the follower catches up with the leader. In addition, if the

rate of technology diffusion is high, that is, σ1 + σ2 > 1/2, then the technology laggard

leapfrogs the leader whereas if the technology diffusion rate is low, that is, σ1 +σ2 < 1/2,

the technology leader maintains its technological advantage. Therefore, two cases are

considered.

Case 1: G >> 1. Technology gap between two firms are large. Since K is a constant, we

can conveniently assume unity for its value. We have

σ2 =
G − G2σ2

G2 ,

G2σ2 = G − G2σ2 .

From our study in Chapter 3, for G >> 1, σ1 + σ2 < 1/2. Hence when the technology

diffusion rate is very low,

G2σ2 − G + 1 = 0. (4.5)

By completing the square,

G =
1 ±
√

1 − 4σ2
2σ2

, σ2 <
1
4
. (4.6)

To satisfy G >> 1 for all values of σ2 < 1/4, Eq.(4.6) has to take the form

G =
1 +
√

1 − 4σ2
2σ2

, σ2 <
1
4
. (4.7)

This shows that the technology gap between them will be large if the laggard firm’s

technology diffusion rate is low. Thus, the payoff matrix now becomes

I F

I

F

©­­­«
b − σ2

2
b − σ2 +

1 +
√

1 − 4σ2
2σ2

b + σ2 −
1 +
√

1 − 4σ2
2σ2

0

ª®®®¬ , σ2 <
1
4
. (4.8)
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To simplify the model for more detailed analysis, we introduce a parameter r and by

substituting b = 1 + r and σ2 = 2r , giving the following payoff matrix:

I F

I

F

©­­­«
1 − r

2
1 − r +

1 +
√

1 − 8r
4r

1 + 3r −
1 +
√

1 − 8r
4r

0

ª®®®¬ , r <
1
8
. (4.9)

Case 2: G << 1. Technology gap between two firms are small. We have

σ2 = KG(G − G2σ2) − 2.

From our study in Chapter 3, for G << 1, σ1 + σ2 > 1/2. Hence when the technology

diffusion rate is very high (σ2 → 1/2),

σ2 = KG(G − 0) − 2,

G = ±

√
2 + σ2

K
, σ2 > −2. (4.10)

Given that σ2 > 0, therefore for G > 0, we have

G =

√
2 + σ2

K
, σ2 ∈

(
0,

1
2

)
. (4.11)

Thus, the payoff matrix becomes

I F

I

F

©­­­«
b − σ2

2
b − σ2 +

√
2 + σ2

K

b + σ2 −

√
2 + σ2

K
0

ª®®®¬ , σ2 ∈

(
0,

1
2

)
. (4.12)

Same as in case 1 above, by substituting b = 1 + r and σ2 = 2r , we have the following
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payoff matrix:

I F

I

F

©­­­«
1 − r

2
1 − r +

√
2 + 2r

K

1 + 3r −

√
2 + 2r

K
0

ª®®®¬ , r > 0. (4.13)

Note that in Chapter 3, the proof of proposition 3.1(ii) says that:

(i) A ∈ (0,∞) and α ∈ (0, α)

(ii) Eq.(4.3) makes sense if and only if G > 1 (for the case σ1 + σ2 < 1/2) or G < 1 (for

the case σ1 + σ2 > 1/2).

Hence, K = 2A/α2 ∈ (0,∞).

4.4 Results

4.4.1 Simulation Results

To simulate themodel, we consider a system of N (N >> 1) players. At the initial time step,

there is a chosen distribution of innovators and imitators. The system evolves like this: at

each subsequent time step, a target player i is randomly chosen to compete with another

player randomly chosen from the population. This gives a payoff Vi to the target player.

Then, at the same time step, a referencing player j is chosen and compete with a randomly

selected player in the same way as the target player, and obtain a payoff Vj . The target

player i then compares his payoff with the referencing player j for a possible switch in

character. If Vj > Vi, then the target player switches his character to that of his referencing

player with probability P = Vj−Vi
D , where the denominator, D, is the largest element in

the payoff matrix to make sure that the probability P is less than unity. Else if Vj < Vi,

the target player retains his current character. The time step ends after player i makes

an attempt to update his character, and after all players, on average, have updated their

characters; this time interval is referred to as an evolutionary time step. As in previous
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studies on stock market dynamics, such as the herding model (Rodgers & Yap, 2002), we

can assume that the productivity (or return) of a class of players is directly proportional

to the size of the corresponding class. The result for case G >> 1 is shown in Figure 4.1,

and the result for case G << 1 is shown in Figure 4.2.
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Figure 4.1: Simulation result for case G >> 1.

4.4.2 Analytical Results

4.4.2.1 Solving of the Replicator Dynamics Equations Using Iterations

In a well-mixed population, a set of differential equations based on the replicator dynamics

(Hofbauer&Sigmund, 1998) can be used to study the behaviour observed in Figure 4.1 and

Figure 4.2. The basic idea is that if the instantaneous fitness Fi(t) (i = I, F) of a character

is higher (lower) than the instantaneous average fitness F(t) in the population, then the

frequency of that character will grow (drop). Thus, the time evolution of the frequency of

each character, fi (i = I, F) is governed by the following differential equations:

dfi
dt
= fi(t)(Fi(t) − F(t)). (4.14)
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Figure 4.2: Simulation result for case G << 1.

Based on the payoff matrices (Eq.(4.9)and Eq.(4.13)), the fitness of each character is given

by:

For case 1: G >> 1,

FI(t) = fI(t)
(
1 − r

2

)
+ fF(t)

(
1 − r +

1 +
√

1 − 8r
4r

)
, (4.15)

FF(t) = fI(t)

(
1 + 3r −

1 +
√

1 − 8r
4r

)
+ fF(t)(0). (4.16)

For case 2: G << 1,

FI(t) = fI(t)
(
1 − r

2

)
+ fF(t)

(
1 − r +

√
2 + 2r

K

)
, (4.17)

FF(t) = fI(t)

(
1 + 3r −

√
2 + 2r

K

)
+ fF(t)(0). (4.18)

Since the probability of switching to character i is fi(t), the instantaneous average fitness

F(t) is given by
F(t) = fI(t)FI(t) + fF(t)FF(t). (4.19)
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With a uniform initial distribution of frequencies, as in the figures showing the simulation

results, Eqs.(4.15) to (4.18) can be iterated in time to obtain the long time limit of fi

(i = I, F). Figure 4.3 and Figure 4.4 show the steady-state frequencies as obtained

by iterating the equations in Eq.(4.14) to convergence for case G >> 1 and G << 1

respectively.
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Figure 4.3: Iterations result for case G >> 1.

4.4.2.2 Solving of the Replicator Dynamics Equations Using Newton’s Method

The time evolution of the frequency of each character, fi (i = I, F), is governed by the

differential equations: dfi
dt
= fi(t)(Fi(t) − F(t)). (4.20)

The fitness of each character i is given by

FI(t) = fI(t)PII + fF(t)PIF, (4.21)

FF(t) = fI(t)PFI + fF(t)PFF, (4.22)
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Figure 4.4: Iterations result for case G << 1.

where the payoff matrix is

©­­­«
PII PIF

PFI PFF

ª®®®¬ =
©­­­«

1 − r
2

1 − r + G

1 + 3r − G 0

ª®®®¬ . (4.23)

The instantaneous average fitness is given by

F(t) = fI(t)FI(t) + fF(t)FF(t).

For character I,

dfI
dt
= fI(t)[FI(t) − F(t)] (4.24)

= fI(t)[ fI(t)PII + fF(t)PIF − ( fI(t)FI(t) + fF(t)FF(t))]

= fI(t)[ fI(t)PII + fF(t)PIF − fI(t)( fI(t)PII + fF(t)PIF)

− fF(t)( fI(t)PFI + fF(t)PFF)]

112

Univ
ers

ity
 of

 M
ala

ya



= fI(t)
[

fI(t)
(
1 − r

2

)
+ fF(t)(1 − r + G) − fI(t)

(
fI(t)

(
1 − r

2

)
+ fF(t)(1 − r + G)

)
− fF(t) ( fI(t)(1 + 3r − G) + fF(t)(0))

]
= fI(t)

[
fI(t)

(
1 − r

2

)
+ fF(t)(1 − r + G) − f 2

I (t)
(
1 − r

2

)
− fI(t) fF(t)(2 + 2r)

]
. (4.25)

When
dfI
dt
= 0,

fI(t)
[

fI(t)
(
1 − r

2

)
+ fF(t)(1 − r + G) − f 2

I (t)
(
1 − r

2

)
− fI(t) fF(t)(2 + 2r)

]
= 0. (4.26)

Since fI(t) , 0, we have

fI(t)
(
1 − r

2

)
+ fF(t)(1 − r + G) − f 2

I (t)
(
1 − r

2

)
− fI(t) fF(t)(2 + 2r) = 0. (4.27)

For character F,

dfF
dt
= fF(t)[FF(t) − F(t)]

= fF(t)[ fI(t)PFI + fF(t)PFF − ( fI(t)FI(t) + fF(t)FF(t))]

= fF(t)[ fI(t)PFI + fF(t)PFF − fI(t)( fI(t)PII + fF(t)PIF)

− fF(t)( fI(t)PFI + fF(t)PFF)]

= fF(t)
[

fI(t)(1 + 3r − G) + fF(t)(0) − fI(t)
(

fI(t)
(
1 − r

2

)
+ fF(t)(1 − r + G)

)
− fF(t) ( fI(t)(1 + 3r − G) + fF(t)(0))

]
= fF(t)

[
fI(t)(1 + 3r − G) − f 2

I (t)
(
1 − r

2

)
− fI(t) fF(t)(2 + 2r)

]
. (4.28)

When
dfF
dt
= 0,
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fF(t)
[

fI(t)(1 + 3r − G) − f 2
I (t)

(
1 − r

2

)
− fI(t) fF(t)(2 + 2r)

]
= 0. (4.29)

Since fF(t) , 0, we have

fI(t)(1 + 3r − G) − f 2
I (t)

(
1 − r

2

)
− fI(t) fF(t)(2 + 2r) = 0. (4.30)

Let a = 1−r
2 , b = 1 − r + G, c = 2 + 2r , and d = 1 + 3r − G, and substitute into

Eqs.(4.27) and (4.30). We obtain

− a f 2
I (t) + a fI(t) + b fF(t) − c fI(t) fF(t) = 0 (4.31)

and

− a f 2
I (t) + dfI(t) − c fI(t) fF(t) = 0. (4.32)

We solve Eqs.(4.31) and (4.32) simultaneously by using the Newton’s method,

©­­­«
fI(n+1)

fF(n+1)

ª®®®¬ =
©­­­«

fI(n)

fF(n)

ª®®®¬ − J( fI(n), fF(n))−1
©­­­«

M( fI(n)(t), fF(n)(t))

N( fI(n)(t), fF(n)(t))

ª®®®¬ , (4.33)

where

M( fI(n)(t), fF(n)(t)) = −a f 2
I(n)(t) + a fI(n)(t) + b fF(n)(t)

− c fI(n)(t) fF(n)(t), (4.34)

N( fI(n)(t), fF(n)(t)) = −a f 2
I(n)(t) + dfI(n)(t) − c fI(n)(t) fF(n)(t), (4.35)

J( fI(n), fF(n)) =
©­­­­«

∂M
∂ fI(n)

∂M
∂ fF(n)

∂N
∂ fI(n)

∂N
∂ fF(n)

ª®®®®¬
. (4.36)

The result for case G >> 1 is shown in Figure 4.5, and the result for case G << 1 is shown
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in Figure 4.6.
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Figure 4.5: Newton’s method result for case G >> 1.
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Figure 4.6: Newton’s method result for case G << 1.

We have compared the simulation results and analytical results in Figures 4.7 and 4.8

for G >> 1 and G << 1 respectively. It can be seen from Figures 4.7 and 4.8 that the

115

Univ
ers

ity
 of

 M
ala

ya



simulation results agree with both the iteration results and the Newton’s method results. In

the previous study, it was shown that no leapfrogging occurs for G >> 1, and leapfrogging

only occurs when G << 1. It can be seen from Figure 4.7 that the innovator dominates the

imitator for G >> 1. This is to say that the imitator can never leapfrog the innovator for

this case. It can be seen from Figure 4.8 that the imitator can leapfrog the innovator when

the rate of technology diffusion is high and G << 1. Thus, narrowing of the technology

gap is required for leapfrogging to occur. We have thus reproduced the results from the

previous study in Chapter 3 using an evolutionary N-player well-mixed setting, without

the inclusion of price, demand and other factors. This also indicates that the leapfrogging

feature is only dependent on the technology diffusion and technology gap.
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Figure 4.7: Comparison of results obtained by numerical simulation, iteration and New-
ton’s method for case G >> 1.

In addition, fromFigure 4.8, this work has shown that, for thismodifiedR&DCournot

duopoly model, the cut-off value of the technology diffusion rate of the imitator for the

leapfrogging to occur depends on the investment rate of the population. In particular, the

cutoff value of r for the leapfrogging to happen decreases with the increase in the value

of K . The results from Figure 4.8 also show that there is a cutoff in the investment rate
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Figure 4.8: Comparison of results obtained by numerical simulation, iteration and New-
ton’s method for case G << 1.

of the population, K = 2A/α2 > 1, for the leapfrog to occur; the investment rate of the

population must be sufficiently high for the imitator to overtake the innovator in terms

of research productivity. This also shows that freeriding does not deter the innovation

incentives of the firms. Despite freeriding on the innovator, the imitator needs to undertake

more innovation to narrow the technology gap before the leapfrogging can be performed

by the imitator. To maintain its leadership, further innovation is needed by the innovator.

Therefore freeriding contributes to a certain degree of cooperation as both firms take

initiatives to improve the technology. In physical terms, this translates to the intuition

that too high an investment intensity in the population implies lower technology diffusion.

Note that in reality, we have to assume that σ1 is closer to zero than σ2 is closer to 0.5,

e.g. σ1 = 0.02 and σ2 = 0.499. But in this modified version, since σ1 is assumed to be

so close to zero that it is assumed to be exactly zero, σ2 must then be greater than 0.5 for

σ1+σ2 > 1/2. We can look at these two versions of the same system this way: the former

is concerned with individual values of σ1 and σ2, and the latter is with σ1+σ2, that is, the
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net diffusion (because it is the net diffusion that affects the latter model, individual values

of σ1 and σ2 do not affect the results). But the two models still agree on this fact: that if

the diffusion rate is high enough, leapfrog will occur, albeit at different cut-offs.

4.4.3 Special Consideration: Consequences of Adopting r

In the previous sections, we have shown a presence of leapfrogging for σ1 +σ2 > 1/2 and

G < 1, and an absence of leapfrogging for σ1 + σ2 < 1/2 and G > 1. In both cases, there

exist a constraint for r since σ2 = 2r . The parameter r introduced in this work is used

to simplify the model for more detailed analysis. However, there is a need to study the

effect of introducing this new parameter on the model as a whole. Thus, it will be useful

to investigate any implications of having the constraint 0 < r < 1/4.

By substituting σ2 = 2r into σ2 =
2AG(G−G2σ2 )
α2(1+G)3 − 2 (from Eq.(4.3)) and letting

K = 2A/α2, we have

(1 + G)3(2 + 2r) + K(G4r+1 − G2) = 0.

Let
f (G, r) = (1 + G)3(2 + 2r) + K(G4r+1 − G2) = 0. (4.37)

Since we are assuming σ1 = 0 (the laggard firm fully free-rides on the leader),

we can only consider the case σ1 + σ2 < 1/2 in the previous study because given that

0 < σ1 < σ2 < 1/2 and σ1 = 0, the constraint is that σ1 + σ2 will always be less than

1/2. Also, since σ2 = 2r , there exists a constraint 0 < r < 1/4.

For 0 < σ2 < 1/2 and 0 < r < 1/4, f (G, r) can be approximated by a Lagrange

interpolating polynomial of degree 3 and then solved to get the values of G for the

respective values of r .
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Figure 4.9: G vs r for (a) K = 265 and (b) K = 2005.

We found that for K ∈ [265,∞), Eq.(4.37) will have at least one real root for G that

is greater than unity for 0 < r < 1/4. See Figures 4.9(a) and 4.9(b) for the values of G for

respective values of r .
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Figure 4.10: Iteration results for (a) K = 265 and (b) K = 2005.

Additionally, for K ∈ (0, 265), all values of G are less than unity. Hence, our result

for the G versus r agrees with the statement in the proof of Proposition 3.1(ii), but with

the requirement that K ≥ 265.
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Also, for K ≥ 2005, the exponential relationship of G versus r is maintained for the

entire range of 0 < r < 1/4. Thus, there exists a cut-off for the value of K = 2005 for this

exponential paradigm.

Figures 4.10(a) and 4.10(b) show the iteration results. The iterations results are the

same for any value of K = [265,∞), where the imitator will never leapfrog the innovator.

We have thus reproduced the results from the previous study.

4.5 Conclusion

We have simplified the R&D Cournot duopoly model in Chapter 3 to an extent which

allows us to study it using an evolutionary well-mixed N-player setting and solve it using

non-complicated iterative and numerical methods, the results of which agree with those in

the simulations. The technological leapfrogging observed in the original work in Chapter 3

was reproduced in this current evolutionary well-mixed N-player model, thereby verifying

the hypothesis that the underlying factors directly influencing the investment rate of the

players and technological leapfrogging are the technology diffusion rate and technology

gap. In addition, for this modified R&D Cournot model, we show that for G >> 1,

the cutoff value of the technology diffusion rate of the imitator for the leapfrogging to

occur is dependant on the investment rate of the population, and the investment rate of the

population must be sufficiently high for the imitator to overtake the innovator in terms of

research productivity. Despite freeriding on the innovator, the imitator needs to undertake

more innovation to narrow the technology gap before the leapfrogging can be performed

by the imitator. To maintain its leadership, further innovation is needed by the innovator.

Therefore freeriding does not deter the innovation incentives of the firms but contributes

to a certain degree of cooperation as both firms take initiatives to improve the technology.

We simplified our R&D Cournot duopoly model intentionally, with the view that it can be

readily generalized to incorporate other interesting and practical features such as real-life
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networking effects in the Cournot duopoly game. As a final note to close this chapter,

it can be concluded that innovation or cooperation in an adaptive R&D non-oligopolistic

economic model can be sustained given high enough technology diffusion and investment

rates.
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CHAPTER 5: CONCLUSION

Why do people cooperate? This question is still not well answered, but (Nowak, 2006)

suggested that we cooperate because doing so is usually synergistic. In the long run,

cooperation creates more benefits for less cost and makes our lives easier and better. But

why don’t people always cooperate? We don’t do so if we can spare ourselves the effort

of working with someone else, but still gain benefits from the cooperator. Since there

are good reasons to cooperate and good reasons not to do so, the question “under what

conditions will people cooperate?” arises. Despite its seeming simplicity, this question

is very complicated to answer, from both a theoretical and an experimental points of

view. Indeed, in the words of Ernst Fehr and Simon Gachter (2002), “people frequently

cooperate with genetically unrelated strangers, often in large groups, with people they

will never meet again, and when reputation gains are small or absent”, leaving human

cooperation as an “evolutionary puzzle” (Johnson & Bering, 2006).

Game theory, first developed in the 1930s, is a tool for studying cooperation. Tra-

ditionally, research in game theory is the study of strategic decision making, which is

focused either on whether a rational player should cooperate in a one-off interaction or on

looking for “winning solutions” that allow an individual who wants to cooperate to make

the best decisions across repeated interactions. In an evolutionary game, we consider

players who interact with each other many times, try out different types of strategies over

time, and copy the strategies of other players who are more successful. This evolutionary

approach to game theory has already led to many useful insights about how to encourage

cooperation. It has been known that by punishing defectors appropriately, specific co-

operative strategies can do well in an evolutionary setting (for example, see Boyd et al.,

2010). Therefore, in this research, we studied the enhancement of cooperation in game

theory by using three different models and populations. Specifically, we developed three
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models of non-linear systems, and enhanced two types of cooperation, namely public

goods cooperation and duopoly cooperation.

In reality, some individuals are willing to pay a cost so as to punish others who do

not behave well (defectors). Such a punishing strategy, which can be regarded as a form

of direct or indirect reciprocity, is an important mechanism for promoting cooperation.

In Chapter 2, we studied the role of punishment and its effects on promoting cooperation

in a structured population. Using a recent model of Snowdrift game that incorporates a

costly punishing strategy in a well-mixed population (Xu et al., 2011), we developed a

Snowdrift game that incorporates a costly punishing strategy in a population connected

through a square lattice. In a well-mixed population, the altruistic punishers often have

lower payoffs compared to the cooperators due to the cost of punishment, and as a result,

the punishers are suppressed as long as cooperators and defectors are present in the system.

In contrast to a well-mixed population, for appropriate values of the payoff parameters

in a population connected through a square lattice, the altruistic punishing strategy can

flourish and prevail. This implies that there is an enhancement in cooperation due to the

presence of the punishing mechanism as the punishing strategy is cooperative in nature.

The collapse of cooperation occurs only when the ratio of costs to benefits becomes too

high. In addition, the coexistence of cooperation (C), defection (D), and punishment

(P) strategies (C+D+P phase) is not found in a well-mixed population, but in a square

lattice, it is possible for the system to evolve to C+D+P phase for some payoff parameters.

The evolutionary cooperation showed in our model is a public goods cooperation for the

sake of societal benefit. We used pair approximation as our analytic approach and we

extended it from a two-strategy system to a three-strategy system. We showed that the

pair approximation can, at best, capture the numerical results only qualitatively due to the

improper way of including spatial correlation imposed by the lattice structure.
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In the studies of evolutionary games, bridging the gap between theoretical and em-

pirical research is one of the main challenges for the study of cooperation. Different

problems have been studied in the hope of applying the findings to a practical scenario.

Therefore, in Chapter 3, we studied the role of punishment in a more practical Cournot

duopoly economic model. In the industry, the role of the punisher in the Snowdrift game

can be taken up by a patent system that grants an innovator monopoly rights over the use

of an innovation for a given period of time, thereby making it possible to protect the profits

of a cooperator or innovator via patenting. We developed a research and development

(R&D) Cournot duopoly differential game played by ex-ante asymmetric firms, in which

the dynamics of technological diffusion depend on the technology gap between the firms.

We studied the effect of patenting on cooperation and defection in the sustainment of long-

term R&D incentives, and whether R&D incentives can be sustained in an environment

where technological innovation is almost a public good. We proved the existence of two

types of asymmetric equilibria: one in which the technology leader maintains its tech-

nological advantage, and the other in which the technology follower catches up with the

leader. We found that if the technology diffusion is bidirectional, the equilibrium where

both firms invest in R&D at a constant positive rate is stable. In the long-run equilibrium,

firms have incentives to innovate as long as the knowledge externalities are bidirectional.

Hence, we concluded that imitation via knowledge spillovers does not deter innovation.

We proposed a framework to model R&D incentives when both strategic interactions

and process innovations with technology diffusion (due to a lack of intellectual property

protection) are considered. In contrast to the evolutionary cooperation showed in Chapter

2, which is for the sake of societal benefit, the duopoly cooperation showed in this model

is for the sake of economic benefit.
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In Chapter 4, we simplified the R&D Cournot duopoly differential game model in

Chapter 3 to an extent that allows us to study it using an evolutionary well-mixed N-

player setting, and to identify precisely the factors that directly affect the firms’ investment

rate and technological leapfrogging. The technological leapfrogging observed in Chapter

3 was reproduced, thereby verifying the hypothesis that the underlying factors directly

influencing the investment rate of the firms are the technology diffusion rate and technology

gap. In addition, for this modified R&D Cournot model, we showed that for technology

gap G >> 1, the cutoff value of the technology diffusion rate of the imitator for the

leapfrogging to occur is dependant on the investment rate of the population, that is, the

investment rate of the population must be sufficiently high for the imitator to overtake the

innovator in terms of research productivity. Despite freeriding (no patent system) on the

innovator, the imitator needs to undertake more innovation to narrow the technology gap

before the leapfrogging can be performed by the imitator. Further innovation is needed by

the innovator in order to maintain its leadership. Therefore, freeriding does not deter the

innovation incentives of the firms, and contributes to cooperation, to a certain degree, as

both firms take initiatives to improve their technologies. We simplified our R&D Cournot

duopoly model intentionally, with the view that it can be readily generalized to incorporate

other interesting and practical features such as real-life networking effects in the Cournot

duopoly game. We have also developed a numerical simulation for the model, which can

be extended to a lattice model for future studies. We used a set of differential equations

based on replicator dynamics to study the behaviour observed in the simulation results,

and solved these equations using iterative methods.

In summary, we have shown that firstly, punishment is very effective in promoting

cooperation in an N-player evolutionary game with a structured network. Secondly,

we have also shown that cooperation in a two-player oligopolistic differential game can
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prevail given a high enough technology diffusion rate. Thirdly, we have also shown

that cooperation in an N-player non-oligopolistic evolutionary game with a well-mixed

network can be sustained given high enough technology diffusion and investment rates.

Given that the aim of this thesis is to investigate the dynamics of cooperation, it would be

useful to find the common factor(s) promoting cooperation in the various games studied

in this work. It can be seen that the appropriate infrastructure for interactions must be

present for the factor promoting cooperation for the particular game to work efficiently.

In the case of the Snowdrift game, it is the structured network; while in the cases of

the R&D games, it is the ease with which technology is diffused. Although achieved

through different means, the aim of all players in all three games is the same, which is

to obtain higher benefits. Specifically, the players in the N-player evolutionary Snowdrift

and non-oligopolistic R&D games strive for a higher payoff, while the firms in the Cournot

duopoly R&D game fight for a greater market share.

In the real world, many examples have shown that cooperation can contribute to

mutual benefit. One example is the Android mobile operating system. Android is

the most widely used mobile operating system in the world, and many mobile phone

manufacturers, for example Samsung, Asus, and Huawei, use Android in their products.

Although Google is the maker of Android, Android itself is an open source platform,

and anyone may use it or customize it for free (see https://source.android.com). This

makes Android an economical choice for the creation of a cost-competitive smartphone.

Moreover, Android is designed to empower developers to produce innovative applications

that cater to different sectors of our daily life. Android not only enhances innovation in

smartphones, but it also improves the quality of life of its users (Farkade &Kaware, 2015).

We have found that it is impossible to guarantee cooperation amongst members of

a group in the long run. We can expect a lot of cooperation, on average, given the right
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amount of payoffs. The challenge, then, in developing a real world model that can ensure

cooperation at equilibrium, is determining the optimal payoffs and how to capture the

complexity of human interactions. Cooperation is an important trait in the society. After

all, quoting from a Polish proverb, “TWO HEADS ARE BETTER THAN ONE”.
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