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ABSTRACT 

Despite the wide variety of research in medicine and bioengineering treatment strategies 

developed over the last half century, heart disease remains among the most serious diseases 

threatening human longevity. Modeling the mechanics of the human myocardium, 

particularly the left ventricle, which is the main pumping chamber and most common site for 

heart disease, plays a significant role in better understanding the performance of the heart in 

healthy and diseased states. The core part of this work constitutes the implementation of a 

more realistic three-dimensional finite element model of the human left ventricle to provide 

a reliable description of both myofiber orientation and material characteristics. In this study, 

direct and inverse finite element methods of human left ventricle were developed. The direct 

finite element method is suitable for studying the influences of different mesh densities, 

constitutive models, fibers orientations, and myofiber volume fractions. Meanwhile, the 

inverse finite element method served to determine the bulk modulus of the left human 

ventricle during a cardiac cycle. The simulation results indicate that the changes in transverse 

angle hardly affected the pressure-volume relation of the ventricle, but significantly do so 

with changes in helix angle (up to 50% change). The ejection fraction decreased with 

decreasing total volume fraction (increasing the infarct myocardial volume). Total volume 

fraction of less than 60% deceased the ejection fraction by over 50%. Thus, the myofibers’ 

architecture plays a significant role in the mechanics of the left ventricle. Finally, the 

myocardium bulk modulus may be employed as a diagnostic tool (clinical indicator) for heart 

ejection fraction, and hence, heart function performance. Therefore, this study offers a new 

perspective and means of studying living-myocardium tissue properties. The research may 

also pave the way towards more effective treatment.  

iii 

 



ABSTRAK 

Walaupun terdapat pelbagai kajian dalam bidang perubatan dan rawatan biokejuruteraan 

yang dibangunkan sejak lebih setengah abad yang lalu, penyakit jantung masih kekal sebagai 

salah satu penyakit yang serius yang memberi ancaman kepada jangka hayat umur manusia. 

Model mekanik myocardium manusia terutamanya ventrikel kiri, yang merupakan pam 

utama dan lokasi yang paling biasa bagi penyakit jantung, memainkan peranan penting dalam 

pemahaman yang lebih baik terhadap prestasi jantung di dalam keadaan yang sihat dan 

berpenyakit. Dengan pengetahuan ini, kita akan dapat mengenal pasti sindrom kegagalan 

jantung dan kajian mengenai kuantiti yang tidak boleh diukur dalam suasana klinikal atau 

eksperimen. Bahagian utama karya ini adalah pelaksanaan model unsur terhingga tiga 

dimensi yang lebih realistik daripada ventrikel kiri manusia yang memberikan penerangan 

yang lebih mantap mengenai orientasi myofiber dan sifat-sifat bahan. Dalam kajian ini , 

kaedah unsur terhingga langsung dan tidak langsung untuk ventrikel kiri manusia telah 

dibangunkan. Kaedah langsung unsur terhingga adalah sesuai untuk mengkaji pengaruh 

ketumpatan yang mesh yang berbeza, model juzuk yang berbeza, orientasi myofiber yang 

berbeza , dan pecahan isipadu myofiber yang berbeza. Sementara itu, kaedah unsur terhingga 

secara songsang telah digunakan untuk menentukan modulus pukal ventrikel kiri manusia 

semasa kitaran jantung. Keputusan simulasi menunjukkan bahawa perubahan dalam sudut 

melintang tidak memberi kesan terhadap hubungan antara tekanan-isipadu ventrikel, namun  

perubahan dalam sudut helix mempunyai kesan signifikan (perubahan sehingga 50%) 

terhadap hubungan antara tekanan-isipadu ventrikel.  Pecahan pelemparan dikurangkan 

dengan mengurangkan pecahan isipadu total (meningkatkan isipadu infarct myocardium). 

Pecahan isipadu total yang kurang daripada 60% menurunkan pecahan pelemparan sehingga 

50%. Maka, seni bina myofiber memainkan peranan penting dalam mekanisme ventrikel kiri. 
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Justeru modulus myocardium pukal boleh digunakan sebagai alat diagnostik (penunjuk 

klinikal) daripada pecahan pelemparan jantung, dan dengan itu prestasi fungsi jantung. Oleh 

itu, kajian ini menawarkan perspektif baru dan kaedah untuk kajian hidup – sifat tisu 

myocardium. Penyelidikan ini juga boleh membuka jalan ke arah rawatan yang lebih 

berkesan. 
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  INTRODUCTION 

1.1 General background 

Heart disease is the leading cause of death nearly in the entire world, especially in developed 

countries. According to the World Health Organization (WHO), deaths caused by heart 

disease each year are more than by cancer, diabetes, respiratory diseases, and accidents 

combined. Death attributable to heart disease in the United States of America today is over 

25% of the total number of deaths. 

Computational cardiac models are undoubtedly powerful tools used to guide successful 

patient therapy design. They not only play a crucial role in reproducing biological cardiac 

behavior by incorporating experimental findings but also serve as a virtual testing 

environment for predictive analyses where experimental techniques fall short. 

1.2 Anatomy and functions of the heart  

The heart is a hollow muscular organ located behind and to the left of the breastbone and 

between the lungs (Toronto, 1964). The heart is contained within a sack called “the 

pericardium,” which sits on top of the diaphragmatic muscle and is surrounded by the 

ribcage. These structures all serve to protect the heart. As shown in Figure 1.1, the 

pericardium consists of two parts, the inner serous pericardium and the outer fibrous 

pericardium. (Iaizzo, 2009). 
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Figure 1.1: Internal anatomy of the heart. The walls of the heart consist of three layers – the 
superficial epicardium, the middle myocardium composed of cardiac muscle, and the inner 
endocardium (Iaizzo, 2009) 

 

The heart has two separate pumps, the right and left side, which work together. The right 

side of the heart collects de-oxygenated blood from the body via the superior and inferior 

vena cava in the right atrium; the right atrium pumps the blood through the tricuspid valve 

into the right ventricle; the right ventricle pumps the blood through the pulmonary valve into 

the lungs -- a cycle known as “pulmonary circulation.” In the lungs, carbon dioxide is 

removed from the blood and oxygen is picked up. Meanwhile, the left side of the heart 

collects oxygenated blood from the lungs via the pulmonary veins in the left atrium; the left 

atrium pumps the blood through the bicuspid valve into the left ventricle (LV); the LV pumps 

the blood out of the heart through the aortic valve, a cycle called “systemic circulation.” 

When this pumping cycle is complete, the aortic valve closes to prevent blood from dropping 

back into the heart (Figure 1.2) (Martini et al., 2012). 
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Figure 1.2: Blood flow (American Heart Association, 2013) 

 

As shown in Figure 1.2, the heart is a single organ divided into four chambers, two at the 

top: right and left atria, and two at the bottom: right and left ventricles (Phibbs, 2007). The 

upper chambers, the atria, receive blood returning to the heart and transfer it to the lower 

chambers, the ventricles, which pump blood from the heart (Sherwood, 2012). Blood flows 

through the heart in one direction from veins to atria, to ventricles, and to arteries (Gray & 

Lewis, 1918). The four valves are the tricuspid, pulmonary, mitral, and aortic valves 

(Figure 1.2). The tricuspid valve positioned between the right heart atrium and right ventricle 

controls blood flow between the right atrium and right ventricle. The pulmonary valve 

separates the right ventricle from the pulmonary artery, and it lies between the right ventricle 

and pulmonary artery. The pulmonary artery takes deoxygenated blood from the heart to the 

lungs. The mitral valve (bicuspid valve) located at the left side of the heart, between the left 

atrium and LV, allows oxygen-rich blood from the lungs to flow between the left atrium and 
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LV. The aortic valve separates the LV from the aorta and controls blood flow between the 

LV and the main blood vessel leaving the heart (Snell, 2011). 

The sinus-atrial (SA) node contains pacemaker cells, which help the heart beat in a regular 

rhythm (Figure 1.3). The SA node’s activity, i.e., the heart rate, is essentially controlled by 

three sources. First, the SA node has its own intrinsic rhythm (more than 60 beats per 

minute). Second, the sympathetic as well as the parasympathetic nervous system are directly 

coupled to the SA node and have an increasing or decreasing effect on the heart rhythm, 

respectively. Third, a number of hormones, such as adrenalin, influence the SA node’s 

activity (Gacek, 2012). 

The SA node sends out a regular electrical impulse, causing the atria to contract and pump 

blood into the bottom chambers, or ventricles. After the atria contract, the electrical impulse 

reaches the ventricles through a junction box called the atrioventricular (AV) node, which is 

located at the base of the right atrium. The AV node is only a conductive link between the 

atria and ventricles. This node acts as a filter that permits the atrial contraction to fill the 

ventricles with blood before the ventricles begin to contract. The bundle of His represents a 

continuation of the AV node and provides the electrical connection to the ventricles. It 

separates into two parts: one that activates the right ventricle and the other the LV. These 

parts descend on either side of the septum and divide into hundreds of tiny nerve fibrils 

called Purkinje fibers throughout the wall of each ventricle. Purkinje fibers are conductile 

cells that conduct action potentials very rapidly. These fibers, however, cause the ventricles 

to contract and pump out the blood. The blood from the right ventricle goes to the lungs and 

the blood from the LV goes to the body (Berne & Levy, 1996; Smith & Roberts, 2011). This 

process takes 0.8 seconds and is a single heartbeat. The electrical currents occurring during 

depolarization (contraction) and repolarization (relaxation) of the myocytes are powerful 
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enough to be detected by electrodes on the surface of the body using conductive adhesive 

patches. The obtained recording is called the electrocardiogram (ECG). By comparing the 

information obtained from an ECG, a clinician can monitor the heart’s electrical activity, 

which is directly related to the performance of specific nodal, conducting, and contractile 

components (Davey et al., 2008). 

 

 

Figure 1.3: Conduction system of the heart (American Heart Association, 2013) 

 

The ECG is subdivided into two segments that are separated by three waves: the P wave 

represents atrial contraction, the complex QRS represents LV depolarization, and the T wave 

represents the ventricles’ repolarization (Figure 1.4). 
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Figure 1.4: Normal electrocardiogram (Rn, 2007) 

 

The first, PR segment, represents the time delay of the AV node’s electrical stimulation. The 

second, ST segment, denotes the time delay between the end of ventricle contraction and 

beginning of full ventricular relaxation. The PR interval extends from the start of atrial 

depolarization to the start of the QRS complex (ventricular depolarization) rather than to R, 

because in abnormal ECGs the peak can be difficult to determine. PR interval of more than 

0.2 seconds may be indicative of damage to the conducting pathways or AV node. The QT 

interval indicates the time required for the ventricles to undergo a single cycle of 

depolarization and repolarization. It is usually measured from the end of the PR interval 

rather than from the bottom of the Q wave. The QT interval can be longer due to conduction 

problems, coronary ischemia, or myocardial damage. A congenital heart defect can cause 

sudden death without warning, but may be detectable as a prolonged QT interval (Sperelakis 

et al., 2000; Walsh & Crumbie, 2007). 
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1.3 The cardiac cycle 

There is continuous demand for blood in the human body. To fulfill this demand the heart 

beats about seventy times a minute to pump blood through the human body. The events that 

occur from the beginning of one heartbeat to the beginning of the next are known as a 

“cardiac cycle.” The cardiac cycle is divided into two main stages: a period of relaxation 

called diastole, in which the heart fills with blood, followed by a period of contraction, or 

systole, and ejection of blood. During every beat, the heart undergoes seven different phases 

(Figure 1.5). Each of these is reviewed in more detail below. 

 

Figure 1.5: Cardiac cycle for left ventricle function  (Hall, 2011) 
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Atrial Systole (Atrial Contraction) is the first phase of a cardiac cycle, which occurs when 

the left atrium contracts causing an increase in left atrial pressure (Sandhar, 2004). Following 

atrial contraction, the left atrial pressure eventually falls causing the mitral valve to close, 

thus concluding the diastole phase (Klabunde, 2011).  

Isovolumetric Contraction: This is when the valves of the left and right ventricles are 

closed and the myocardium is contracting. The cavity pressure increases while the volume 

stays constant (Sicar, 2008). 

Rapid Ejection: As soon as the pressure in the left ventricle exceeds the pressure in the 

aorta, the aortic valves open and blood flows rapidly from the ventricle into the aorta. This 

corresponds to a sharp decrease in ventricular volume. Atrial pressure drops below venous 

pressure, and the atria begin to fill at this time (Rhoades & Bell, 2009). 

Reduced Ejection: Following rapid ejection, the rate of outflow from the ventricle decreases 

and the ventricular and aortic pressures begin to decrease. At this point, muscle fibres have 

become shorter and can no longer contract forcefully. The venous pressure is still greater 

than atrial pressure, and the atria are still filling (Deepa, 2012). 

Isovolumetric Relaxation: During the isovolumetric relaxation phase the myocardium is 

relaxing and all valves are closed, so the pressure and tension drops very rapidly as the 

volume of the ventricles does not change; the residual volume of blood in the LV is 

approximately 40-50 ml (Cosin Aguilar et al., 2009). 

Rapid Filling Phase (Rapid Inflow): In the rapid filling phase, ventricular pressure 

decreases below atrial, the atrioventricular valves open and filling occurs rapidly from 50 to 

85 ml (Sherwood, 2012). 
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Reduced Filling Phase (Diastasis): It is the longest phase of the cardiac cycle in which the 

left ventricle continues to fill with blood and expands slowly until nearly full (Sembulingam 

& Sembulingam, 2002). The typical amount of blood in the LV after filling is approximately 

110-120 ml. As the ventricle fills, the intraventricular pressure increases, slowing the filling 

rate (Levy et al., 2007). 

1.4 Myocardium contraction 

The myocardium consists of muscle fibers held together by collagen fibers (Figure 1.6). The 

muscle fibers, or myocytes, make up approximately 70% of the myocardial volume. The 

network of collagen fibers accounts for only about 1.5% of the myocardium (LeGrice et al., 

1995; Stevens & Hunter, 2003; Aaronson et al., 2012).  

The muscle fiber actually consists of a bundle of several hundred smaller fibers called 

myofibrils. As seen in Figure 1.7, the muscle fibers themselves make up larger units called 

fascicles. Numerous fascicles, in turn, are bound together by fascia to form a section of 

muscle. There are approximately one hundred fibers in a fascicle, and each muscle fiber 

contains between one thousand and two thousand myofibrils. When viewed under an 

electron microscope, it is visible that each myofibril is primarily composed of two kinds of 

filaments (thick and thin) organized into regular, repeating sub-units. These sub-units are 

called sarcomeres (the function units of contraction) (Davies et al., 2004). 
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Figure 1.6: Schematic of fibrous sheet structure of cardiac tissue. The myocardium is 
composed of muscle fibers bound together by a mesh of collagen fibers 

 

 

Figure 1.7: Step dissection of muscle tissue, showing a sample muscle section, fascicle, 
muscle fiber, myofibril, and sarcomere (Davies et al., 2004) 
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Thick filaments are made of hundreds of molecules of the protein myosin. At the molecular 

level, a thick filament is a shaft of myosin molecules arranged in a cylinder. Thin filaments 

are approximately half the diameter of thick filaments, and primarily contain the 

protein actin. The thin filaments look like two strands of pearls twisted around each other 

(Figure 1.8 and 1.9). 

 

Figure 1.8: Real sarcomere (Sherwood, 2012) 

 

 

Figure 1.9: The sarcomere -- the contractile mechanism of muscle (Koeppen & Stanton, 
2009) 
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In order for the muscle to contract, the thick and thin filaments must slide past each other, 

moving Z disks from either end of the sarcomere closer to each other. During this shortening 

of sarcomeres, there is no change in the length of either thick or thin filaments (Figure 1.8 

and Figure 1.9). This is the sliding-filament mechanism of muscle contraction. A sarcomere 

shortens when myosin heads and thick filaments form a cross-bridge with actin molecules 

and thin filament. Cross-bridge formation is initiated when calcium ions released from the 

sarcoplasmic reticulum bind to troponin. This binding causes troponin to change shape 

(Figure 1.10). Tropomyosin moves away from the myosin binding sites on actin allowing 

the myosin head to bind to actin and form a cross-bridge. Also note that the myosin head 

must be activated before the cross-bridge cycle can begin. This occurs when adenosine 

triphosphate (ATP) binds to the myosin head and is hydrolyzed to adenosine diphosphate 

(ADP) and inorganic phosphate (P). The energy liberated from the hydrolysis of ATP 

activates the myosin head, forcing it into a cocked position (Clark, 2005; Plowman & Smith, 

2013) 

 

Figure 1.10: Troponin changes shape and pulls tropomyosin out of the myosin head binging 
sites (Widmaier, 2013) 

 

Cross-bridge cycle may be divided into four steps (Figure 1.11): 

1. Cross-bridge formation                                  2. The power stroke 

3. Cross-bridge detachment                               4. Reactivation of myosin head 
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Figure 1.11: The cross-bridge cycle: how muscle fibers contract (Widmaier, 2013) 

 

The first step in the cross-bridge cycle is the binding of the activated myosin head with actin, 

and releasing inorganic phosphate (P) to form a cross-bridge. The second step is the power 

stroke. In this phase, ATP is released and the activated myosin head pivots, sliding the thin 

filament toward the center of the sarcomere. The third step entails the dissociation of myosin 

and actin. When another ATP binds to the myosin head, the link between the myosin head 

and actin weakens and the myosin head detaches. The fourth step is the activation of the 

myosin head. During this step, ATP is hydrolyzed to ADP and inorganic phosphate (P). The 

energy released during hydrolysis reactivates the myosin head returning it to the cocked 

position (Chandler & Brown, 2008; Katz, 2011). 

As long as the binding sites on actin remain exposed, the cross-bridge cycle will repeat; as 

the cycle repeats the thin filaments are pulled toward each other and the sarcomere shortens. 

This shortening causes the whole cardiac muscle to contract. The cross-bridge cycle ends 

when calcium ions are actively transported back into the sarcoplasmic reticulum. Troponin 
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returns to its original shape allowing tropomyosin to glide over and cover the myosin binding 

sites on actin (Sherwood, 2012). 

1.5 Heart diseases 

Heart disease is a broad term used to describe a wide range of diseases affecting the heart. 

Most people think there is only one reason for heart disease but in fact, there are several 

causes potentially affecting the function of the heart, with over 50 different types of heart 

disease. Some of the more common heart diseases are described below: 

Coronary Artery Disease (CAD): CAD is the leading cause of mortality in the United 

States, accounting for more than 250,000 deaths annually (Bogaert et al., 2005; Rao & 

Thanikachalam, 2005). CAD occurs due to the narrowing of the coronary artery that supplies 

blood and oxygen to the heart muscle. As we get older, the lining of the heart artery gets 

damaged and thickened due to the accumulation of "plaque," which is a combination of fatty 

material, cholesterol, and other substances. This slow process is known as "Atherosclerosis" 

and can sometimes cause cracks or fissures in the coronary artery. Consequently, the blood 

cells called "Platelets" stack onto the damaged area and start the formation of blood clots 

that prevent blood flow to the heart muscle, which is necessary for survival (Figure 1.12). In 

an effort to compensate for the final functional myocytes, left ventricle remodeling may 

occur where the heart enlarges and expands along with increased thinning of the heart wall, 

causing adverse geometric and functional changes; if left untreated, this may lead to heart 

failure (Pfeffer & Braunwald, 1990; Sutton & Sharpe, 2000). 
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Figure 1.12: Progression of heart attack. (a) Plaque buildup in the walls of the coronary 
artery; (b) Plaque becomes unstable and ruptures; (c) Platelets stack on the damaged area 
and start forming blood clots; (d) Clot completely blocks the coronary artery resulting in the 
death of all muscle tissue below the blockage (American Heart Association, 2013) 

 

Myocardial infarction (MI) and Ischemia: MI often entails myocardial cell death owing 

to a number of reasons. Most commonly, myocardial infarction occurs when normal blood 

flow to the heart decreases (Figure 1.12). Reduced blood flow usually results from a 

thrombus in the coronary artery  (Gaasch et al., 1985; Anversa & Sonnenblick, 1990; Yusuf 

et al., 2004). 

Hypertrophy (Hypertrophic Cardiomyopathy): This is when the chamber muscle tissue 

enlarges due to one of several different causes (Figure 1.13). The most common cause is 

high blood pressure, something that requires the heart muscle to work harder. As the 

workload increases, the chamber walls grow thicker, lose elasticity and may eventually fail 

to pump with as much force as that of a healthy heart (Alpert, 1971; Katholi & Couri, 2011). 

Dilated (Congestive) Cardiomyopathy: A weakness in the heart walls causes them to 

enlarge (Figure 1.13). In some cases, it prevents the heart from relaxing and filling with 

blood as it should. Over time, it can affect the whole heart (Fuster et al., 1981; Wheeler et 

al., 2009). 
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Figure 1.13: Illustration of the differences between a normal heart, hypertrophic 
cardiomyopathy, dilated cardiomyopathy, and with electrical disorders (arrhythmogenic 
right ventricular cardiomyopathy) (American Heart Association, 2013) 
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Electrical disorders: Include abnormal heart impulse rhythm and can be caused by 

problems with the heart’s electrical system (Figure 1.13). The electrical impulses may 

happen too fast, too slowly, or erratically (tachycardia, bradycardia and arrhythmia) causing 

the heart to beat too fast, too slowly, or erratically (Farwell & Gollob, 2007).  

Carditis: This condition entails heart tissue inflammation and it is categorized into three 

different disorders, depending on where the inflammation occurs (Figure 1.14). Endocarditis 

refers to inflammation of the heart’s inner tissue layer (endocardium), myocarditis refers to 

inflammation of the heart muscle, and pericarditis refers to inflammation of the sac that holds 

the heart (pericardium) (Steere et al., 1980; Carter et al., 2004).  

Valvular Disease: Damage occurs to one or more of the four cardiac valves, namely mitral, 

pulmonary, tricuspid, and aortic. The most common types of valve disease are valvular 

stenosis and valvular insufficiency (Bekeredjian & Grayburn, 2005; Henein, 2008). In 

valvular stenosis, the valve opening is smaller than normal due to stiff or fused leaflets, 

causing the heart to work very hard to pump the blood through it and thus causing heart 

failure (Figure 1.15). In valvular insufficiency, the valve is unable to close effectively, 

meaning that blood will be able to flow backwards. Both these conditions may lead to 

compensation by the heart chambers, which in turn could possibly lead to other conditions 

affecting the heart. 
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Figure 1.14: (a) Normal heart and pericardium; (b) Heart with pericarditis (inflamed 
pericardium) (Bonow et al., 2011)   
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Figure 1.15: Aortic valve in normal and stenosis states (Otto & Bonow, 2013) 

 

1.6 Myocardium bulk modulus 

One of the tools with the potential to facilitate the early detection of human heart failure is 

to understand the mechanical behavior of the LV in normal and diseased states. Then there 

would be continuous interest in determining the material properties of the myocardium by 

mechanically testing excised strips from it. These strips, under prescribed homogeneous 

loading conditions, produce stress-strain relationships. These tests were originally done 

uniaxially, but more recently, biaxial tests have also been performed. A uniaxial test is used 

to define passive stress-strain relationships in the fiber’s direction (Kohl et al., 2011). It is a 

very useful test in determining the general characteristics of the behavior of cardiac tissue in 
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both healthy and diseased states, but is not sufficient to provide a unique description of the 

myocardium’s three-dimensional (3D) constitutive behavior. Due to the incompressibility of 

cardiac tissue, biaxial tests can be used to determine certain multidimensional stress-strain 

relationships for the fibers and cross-fibers (Fung & Cowin, 1994). Despite the frequent 

assumption that human myocardial tissue is incompressible, the fact remains that all 

myocardial tissue has some degree of compressibility. Furthermore, the subject on the 

compressibility of myocardium tissue is raised as a result of systolic intra- and extra-vascular 

blood displacements (Yin et al., 1996). Consequently, it is evident that myocardium tissue 

compressibility changes during the cardiac cycle. 

The information embodied in the myocardial tissue bulk modulus adds further insight to the 

mechanical nature of the soft tissue. Bulk modulus is very important as a standalone 

parameter and as additional information to shear/Young's modulus. Precise myocardial bulk 

modulus values are especially required to improve the accuracy of finite element (FE) 

simulation for human heart modeling. In the last several decades, publications related to 

cardiac modeling have addressed the myocardial bulk modulus from many different 

perspectives. The published myocardial bulk modulus values recorded by researchers who 

were interested in simulating LV performance during the diastolic phase are quite small, for 

instance 28kPa (Bettendorff-Bakman et al., 2006) and 160kPa (Veress et al., 2005). This 

may be attributed to small changes in ventricular wall volume. Some studies evaluated the 

bulk modulus under the assumption that during the rapid filling phase, the volume change 

of the ventricular wall should be less than 10%. Additionally, relatively high bulk modulus 

values were used by researchers who analyzed the systolic phase, e.g., 380kPa (Shim et al., 

2012), 600kPa (Dorri et al., 2006), and 25MPa (Marchesseau et al., 2012). High values for 

the bulk modulus during the systolic phase are due to the systolic intra- and extra-vascular 
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blood displacements that give rise to tissue compressibility. A mean, constant value for 

myocardial bulk modulus was assumed during each cardiac phase. 

Despite the widespread use of uniaxial and biaxial tests for determining myocardial 

characteristics, there are four major problems that arise from these kinds of studies  (Yettram 

& Beecham, 1998; Périé et al., 2013): 

1. Tests were carried out on non-human tissue, and as a result may not be directly 

applicable to humans. 

2. The properties may not be directly relevant to FE heart models due to the 

myocardium’s heterogeneous behavior. 

3. The myocardium’s mechanical properties change drastically immediately after 

death. 

4. There is variation in the mechanical property values according to experimental 

loading conditions. 

 All the above limitations prompt researchers to find alternate ways of running experiments, 

without having to excise samples from the myocardium. Hence, a group of researchers have 

moved toward using MRI and FE or mathematical methods to determine mechanical 

properties in vivo (Augenstein et al., 2006; Wang et al., 2009). Others have applied scanning 

acoustic microscopy with high frequency ultrasound to measure the bulk modulus and 

describe the mechanical properties of the myocardium (Dent et al., 2000). However, most 

bulk modulus experimental values obtained from these studies are very high (≈ 3GPa) and 

cannot be used directly in FE modeling.  
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1.7 Problem statement 

With heart disease being such a major health problem as well as a large financial strain on 

healthcare, it is no wonder that over recent years, cardiology has featured prominently as a 

medical research field. It is in the hopes of better understanding the functions of the heart 

and the effect diseases have, that research has continued. Greater knowledge may enable 

earlier disease detection and medical intervention at less advanced stages. Research may also 

pave the way towards more effective treatment. 

The heart is extremely complicated in terms of its structure and function. It would be a grave 

mistake to model it purely from a mechanical point of view without an appreciation of its 

complex biological nature. Therefore, this research has aimed to model the behavior of the 

human heart muscle including an accurate description of both muscle fiber orientation and 

material properties. 

For many years, researchers have attempted to determine the material properties of 

myocardium involving precise measurement of the ventricles of animals. Only a few have 

used data gathered from human subjects, since this data is usually hard to come by and is 

often severely limited in terms of quality and quantity. The research introduced a novel 

method to determine the material properties of beating human heart, and in particular the 

myocardial bulk modulus. 

1.8 Study objectives  

The first main objective of this research is to develop a 3D model of the LV, which is the 

main pumping chamber and most common site for heart disease, based on an accurate 

description of both muscle fiber orientation and material characteristics. The proposed model 

is used to study the effects of myocardial fiber architecture on LV mechanics.  
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The second objective, and to overcome the above shortcomings in determining live tissue 

properties, an inverse FE procedure using the ANSYS® computer code approach is suggested 

to determine, in vivo, the myocardial tissue bulk modulus during the cardiac cycle. The 

proposed inverse technique is based on published, experimentally measured LV pressure-

volume curves. By using published LV experimental data as output, the bulk modulus versus 

time curve is traced with an inverse technique. The recurring changes of myocardial tissue 

bulk modulus in the LV wall during a cardiac cycle result in a highly efficient global function 

of the normal heart. Therefore, the myocardial bulk modulus can be effectively used as a 

diagnostic tool of heart ejection fraction. 

1.9 Thesis outline 

The first chapter of this dissertation concerns the physiology and architecture of the heart. 

Basic concepts of the heart’s anatomy and functions are initially presented. Then the cardiac 

cycle, myocardial contraction process, and heart diseases are outlined. 

In order to understand the evolution of the ventricle mechanics model developed in the 

dissertation, a brief history of cardiac modeling research is presented in chapter two. 

Ventricle model development has ranged from thin walled to thick walled and FE models. 

Moreover, the mechanical behavior of cardiac tissue is modeled using a variety of material 

response functions, from a simple phenomenological description to a biophysical 

representation based on the microscopic myocardial architecture. Following some historical 

remarks, the aim of the present work and study plan are presented. 

In chapter three, the heart tissue is studied from a continuum mechanics point of view. 

Selected elements of continuum mechanics are outlined. The approach for LV motion 

formulation and material behavior of the myocardium tissue are discussed. 
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The implementation of an FE model of the LV is shown in chapter four. To this end, a thick-

walled ellipsoid truncated at two-thirds of the major axis is chosen for modeling a human 

LV. Appropriate boundary conditions are also imposed, and the constitutive behavior 

including detailed information about fiber orientation patterns is prescribed. A new approach 

using a direct FE method of studying the effect of myocardial fiber architecture on LV 

mechanics is presented. Moreover, a novel approach using the inverse FE method to 

determine, in vivo, the myocardial bulk modulus during a cardiac cycle is introduced. This 

chapter plays a central role in the dissertation; however, since the procedures are based on a 

simplified geometry, there is still margin for improvement with respect to accuracy and 

completeness of fiber orientation and material properties. At the end of this chapter, the 

merits and limitation of the proposed FE model are discussed. 

The results of FE implementation are discussed in chapter five. In particular, the sensitivity 

of LV mechanics, such as mesh density, myofiber volume fraction, myofiber orientation, 

and different constitutive models is presented using the direct FE method. Besides, 

determining the human myocardial bulk modulus and the correlation between LV 

repolarization and myocardium tissue compressibility are described using the inverse FE 

method. A balanced discussion taking into account work from other groups is provided in 

chapter six. 

Finally, based on the results and discussion presented in chapters five and six, the 

conclusions and recommendations are drawn in chapter seven. 
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 REVIEW OF CARDIAC MODELING RESEARCH 

2.1 Introduction 

The heart has always been recognized as the most important organ in the body. Even at the 

beginnings of human civilization, the heart was considered by many cultures to contain 

magical powers and often symbolized life itself. It is therefore hardly surprising that there 

has been a great deal of interest in its structure and function. Even with all the technological 

advances from different aspects, it remains impossible to understand the heart completely. 

This is not due to a lack of quality research but owing to the complexity of the heart. 

Simplified models can be useful to aid comprehend the behavior of the heart, to identify the 

symptoms of heart failure and be able to study quantities that cannot be measured clinically 

or in experimental settings, such as mechanical stress through the heart wall.  

Cardiac research started in the days of early anatomists. In the 15th century, Leonardo Da 

Vinci, whose Mona Lisa painting is the most famous in the world, described the movement 

of the heart wall by using metal pins implanted through an animal’s chest wall (Keele, 1951). 

This was an early attempt at describing and understanding the heart’s movement, in a limited 

way. Now with advancements in instruments, heart muscle properties can be precisely 

measured to provide the necessary information and comprehend the heart’s behavior. 

2.2 The development of thin walled models 

(Woods, 1892) made the first attempt to create a mathematical model of the LV using 

Laplace’s law for the evolution of wall tension in the heart. This model approximates 

myocardial tension to be proportional to the product of pressure and radius. Sixty years later 

by (Burch et al., 1952), who employed a spherical model to study the effects of various 

pressures and ventricular volumes on ventricle performance, as well as the effects of the 
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structural arrangement of muscular fibers and manner of contraction. Five years later 

(Burton, 1957) demonstrated via Laplace’s law the importance of ventricle size and shape 

on its performance. Assuming an ellipsoidal geometry, this type of analysis was refined by 

(Sandler & Dodge, 1963), who investigated the role of ventricular pressure, volume and 

shape in determining stress and tension within the LV wall during the cardiac cycle. These 

forces were calculated by using Laplace’s law LV dimensions, as determined from biplane 

angiocardiograms in human subjects with heart disease. A number of other authors utilized 

this model to analyze human and animal patient data. (Wong & Rautaharju, 1968) and 

(Ghista & Sandler, 1969) developed thick shell theories. Their analyses yielded nonlinear 

stress distributions through the wall thickness, but it was not possible for Laplace’s law to 

predict results. However, their assumptions with regard to the LV’s deformation behavior 

are restricted. In addition, in the development of Laplace’s law their theories neglected the 

effect of transverse normal stress (radial stress) and transverse shear deformation, which are 

significant for the LV. (Mirsky, 1969) presented a system of different equations for the stress 

equilibrium in the LV wall assuming an ellipsoidal geometry. His analysis of the stresses in 

the ventricular wall indicates that maximum stresses occur at the inner layers and decrease 

to a minimum at the epicardial surface -- a result partially validated experimentally. 

2.3 The development of thick walled models 

(Wong & Rautaharju, 1968) developed a formula that allows stress distribution calculations 

for either a spherical thick shell, or an ellipsoidal shell, or a paraboloid of revolution. Their 

analyses overcame the shortcomings of Laplace’s formula for a thin wall, which is an ill-

defined and practically meaningless quantity in a structure like the human LV. The formula 

can be used for any of three configurations by varying certain parameters according to known 
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or assumed heart dimensions. This model is similar to that previously used by (Sandler & 

Dodge, 1963), except that the stresses are allowed to vary through the wall’s thickness. 

Despite inclusion in earlier models, bending and shear were still mostly not included. 

(Streeter et al., 1970) proposed an analysis of stress in the LV wall based on the realistic 

assumption that the myocardium is essentially composed of fiber elements that carry only 

axial tension and vary in orientation through the wall. The geometry based on that obtained 

from ten dogs rapidly fixed in situ at the end of diastole and end of systole.  

(Ghista & Sandler, 1970) developed a simple model to predict the oxygen consumption rate 

of a healthy LV. The geometry of this model was obtained by cineangiocardiography and 

the LV chamber pressure was obtained by means of fluid-filled catheters subsequent to 

retrograde or transeptal catheterization.  

(Wong, 1973) produced a thick-walled ellipsoidal shell with non-uniform wall thickness LV 

model. This model served to compute the sarcomere lengths at various wall layers during 

the diastole. This method gives passive and active fiber tension as separate quantities within 

each fiber and is used to analyze isovolumetric contraction, which assumes the myocardium 

is homogenous, isotropic and viscoelastic. The fiber orientations obtained from (Streeter Jr 

et al., 1969) and myocardium were modeled using Hill’s model and Huxley’s sliding 

filament theory (Hill, 1938; Haselgrove & Huxley, 1973).  

(Tözeren, 1983) came up with a cylindrical model of LV to estimate the local stresses and 

deformations that occur during the cardiac cycle. The LV presented as thick hollow tube 

composed of solid fibers embedded in an inviscid fluid matrix. It was concluded that wall 

thickness and fiber orientation distribution hardly affect the pressure-volume relation in the 
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diastole. In the systole, the pumping efficiency was shown to increase with increasing 

thickness of the modeled LV and with increasing contractility of the heart muscle fibers.  

(Phillips & Petrofsky, 1984) calculated the active systolic elastic moduli for the 

circumferential and longitudinal LV axes by using contractile filament stress and fiber strain. 

Compressive strains were introduced into the model, which generated the fiber stresses. 

These stresses and strains then helped calculate the active systolic elastic moduli for the 

circumferential and longitudinal LV axes. These material property parameters were 

determined at four points during cardiac systole. The data obtained from thirty-nine patients 

with various pathological conditions was evaluated using pressure and volume data acquired 

from single-plane cineangiography. The results indicate that the active moduli exponentially 

decrease during cardiac systole.  

(Kim et al., 1985) developed a mathematical method of estimating the local epicardial 

deformation, wall thickness, and regional circumferential and longitudinal wall stress using 

biplane coronary cineangiography for four dogs and a normal patient. In this method, the 

motion images of the coronary artery bifurcation points were the local markers and the 

accuracy of using these was compared with the more invasive method of using implanted 

lead beads. The estimation results validate this analysis compared to the experimental results 

based on the implanted lead beads. The main advantages of this method are that it can 

evaluate the wall stress and wall deformation together with blood vessel conditions and it is 

far safer than implanting lead beads. 

2.4 The development of finite element models 

(Janz & Grimm, 1972) were the first group of researchers who attempted to create an FE 

model to analyze the mechanical behavior of a rat heart LV. The ventricle was modeled as a 
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heterogeneous, linearly elastic, thick-walled solid of revolution. The geometric data applied 

was obtained from heart cross-sections of adult Sprague-Dawley albino male rats.  

(Hamid & Ghista, 1974) developed an FE model of the LV to predict the stresses through 

the wall chamber and aortic valve. The element type utilized in this model was developed 

by (Zienkiewicz, 1971). The 20-noded isoparametric brick element is ideally suited for LV 

modeling. The model geometry was obtained by cineangiocardiographic imaging at mid-

ejection.  

(Nikravesh et al., 1981) developed a new FE model that obtains much better reconstructions 

than offered by single or even bi-plane cineangiography. Besides, this method adds wall 

thickness, something partially lacking in cineangiography. However, FE reconstructions 

indicate that no analysis was performed on the FE meshes obtained. 

(Yettram et al., 1983) presented an FE model to study the effect of myocardial fiber 

architecture on the behavior of the human LV during diastole. The myocardium has a 

complex anisotropic fiber structure. Variations were made to both fiber orientation and the 

ratio of elastic moduli along and across the fibers. The results signify that at least in diastole, 

when the LV is considered to be a passive structure under the action of internal blood 

pressure, the effect of the real fiber arrangement is generally a reduction of deformation as 

well as direct stresses. In spite of fiber angle changes across the wall, the analyses correctly 

predicted the lack of LV rotation about the long axis. 

(Horowitz et al., 1986)  introduced an FE technique for simulating an entire cardiac cycle. 

Time-sequential canine heart data obtained by dynamic computerized tomography served to 

initiate the simulation as well as to provide real data for result evaluation. The model had 

two element types: the “Truss” element to simulate the anisotropic nature of the myocardium 
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with varying fiber angles, and a basic 20-noded isoparametric brick element to form the basic 

structure. The simulation allowed for the evaluation of time-varying stress and strain 

distributions in the ventricle wall and active forces prevailing in the myocardial fibers.  

(McPherson et al., 1987) developed a type of LV geometry FE analysis using 3D 

echocardiographic reconstructions to study the effect of acute myocardial ischemia on the 

myocardial elastic modulus. The data was collected from six open-chest dogs before and 

after coronary occlusion using the data acquisition and reconstruction method proposed by 

(Nikravesh et al., 1981). In the FE analysis after coronary occlusion, two analyses were 

performed: one utilizing the control elastic modulus for all LV segments and one in which 

ischemic (dyskinetic) segments were assigned a higher elastic modulus. It was concluded 

that the myocardial diastolic elastic modulus was increased by ischemia and this approach 

may facilitate the clinical assessment of intrinsic muscle stiffness. 

(Bovendeerd et al., 1991) proposed another FE model of the LV based on the same geometric 

data as (Huyghe et al., 1991).  This model was  meant to study the mechanics of the ischemic 

LV during the cardiac cycle. The muscle fiber stiffness was assumed twice that in the fiber 

direction than in the cross-fiber direction. The results show that global deformation was 

asymmetric with respect to the ischemic region. It was deduced that the ischemic LV 

pressure was about 12% lower, the ejection volume was 20% lower and aortic flow reduced 

compared to a simulation without ischemic LV pressure. 

(Fann et al., 1991) evaluated 2D subepicardial and subendocardial deformations in the LV’s 

anterior, lateral, and posterior regions in a closed-chest, conscious dog heart. Eight dogs 

underwent the placement of 22 radiopaque markers into in the LV myocardium. These were 

located at the anterior, lateral and posterior subepicardial and subendocardial, mid-ventricle 

level. Eight hours later, biplane videofluoroscopy was performed. It appeared that 

30 

 



circumferential shortening occurred in all layers and regions; similarly, longitudinal 

shortening occurred in all layers except that of the posterior endocardium.  

(Bovendeerd et al., 1992) investigated the dependence of local LV wall mechanics on 

myocardial muscle fiber orientation using an FE model described by (Huyghe et al., 1991). 

They considered an anisotropic model with the active and passive components of myocardial 

tissue, dependence of active stress on time, strain and strain rate, activation sequence of the 

LV wall and aortic afterload. The muscle fiber angle distribution through the myocardium 

varied in order to make the active muscle stress homogeneous throughout the myocardium 

layers.  The muscle fiber angle is defined as the angle between the muscle fiber direction 

and local circumferential direction, otherwise known as the helix angle. The transmural 

variation of the helix angle assumed was from +60˚ at the endocardium through to 0˚ in the 

mid-wall layers to -60˚ at the epicardium. The active muscle fiber stresses at the equatorial 

region were 110 kPa, 30 kPa and 40 kPa in the respective myocardium layers from the 

endocardium to the epicardium. It was concluded that the distribution of active muscle fiber 

stress and muscle fiber strain across the LV wall is very sensitive to transmural distribution 

of the helix fiber angle. However, the problem with this approach is that no consideration is 

give to the effect that geometry may play on stress distribution. The LV is never stress-free, 

so there are stress changes and no absolute stresses are implied. 

(Hashima et al., 1993) developed a new means of studying the non-uniform mechanical 

function that occurs in normal and ischemic ventricle myocardium. An array of 25 lead 

markers was sewn onto the epicardium of the LV’s anterior free wall in an open-chest, 

anesthetized canine preparation. Bi-plane cineangiography was used to track the position of 

the markers before and during induced ischaemia. The strains during the cardiac cycle were 
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calculated using marker triplets. Large stain gradients were observed across the infarct 

regions. 

Subsequently, (Bovendeerd et al., 1994) investigated the influence of fiber direction 

variations on the distribution of stress and strain in the LV wall using an FE model described 

by (Huyghe et al., 1991) to simulate LV mechanics. An additional angle to helix fiber angle, 

the transverse fiber angle, was employed to model the continuous course of the muscle fibers 

between the inner and outer layers of the ventricle wall. This angle is defined as the angle 

between the circumferential direction and fiber path projection onto the plane perpendicular 

to the local longitudinal direction, whereas the helix fiber angle is defined as the angle 

between the local circumferential direction and fiber path projection onto the plane 

perpendicular to the local radial direction. Three model runs were carried out: the first run 

had the transverse fiber angle always at zero and the helix fiber angle at -60º at the 

epicardium, 0º at the mid-wall and +60º at the endocardium. The second run had the same 

angles except the helix fiber angle at the mid-wall was +15º. The third run had the same 

angles as the second except the transverse fiber angle was at a maximum at the mid-wall and 

zero at the endocardium and epicardium. It was found that the changes in fiber orientation 

hardly affected the pressure-volume relation of the LV but significantly affected the spatial 

distribution of the local ventricle wall stresses and strains. 

(Van Campen et al., 1994) compared the two-phase axisymmetric porous medium non-linear 

FE model by (Huyghe et al., 1991)  with the 3D-FE model by (Bovendeerd et al., 1994), and 

predicted outcome from canine experiments. In the axisymmetric porous medium non-linear 

FE model, the two-phase approach led to transmural/intramural intramyocardial pressure 

gradients, which was qualitatively consistent with experimental data. This model also 

qualitatively correctly predicted myocardium stiffening due to an increase in intracoronary 
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blood volume. Finally, the quasi-linear viscoelasticity approach led to the experimentally 

observed effects of hysteresis in the pressure-volume curve and of residual stress. The 3D 

model by (Bovendeerd et al., 1994) shows that regional distributions of local ventricle wall 

stresses are very sensitive to the spatial distribution of muscle fiber orientation. On the other 

hand, the change in LV pressure and aortic flow is hardly affected by a change in the spatial 

distributions of helix and transverse fiber angles. Important aspects of the mechanics of a 

beating LV are predicted by this model; the influence of muscle fiber orientation on ventricle 

mechanics, redistribution of intracoronary blood in the ventricle wall during the cardiac 

cycle, viscoelastic behavior of myocardial tissue, and regional decrease of myocardial 

perfusion, result in the formation of an ischemic region. 

(Taber et al., 1996) explored the effects of various anatomical and mechanical features on 

the torsion behavior of the LV. They used two theoretical models to study the mechanics of 

this phenomenon: a compressible cylinder and an incompressible ellipsoid of revolution. 

The analyses of both models account for large-strain passive and active material behavior, 

with a muscle fiber angle that varies linearly from endocardium to epicardium. A comparison 

of theoretical and published experimental results by (Beyar et al., 1989) for a normal LV 

showed qualitative agreement in the dynamic pattern of torsion during the cardiac cycle. The 

models indicated that relative to the end of diastole, the peak twist occurs near the end of the 

diastole and depends on myocardial compressibility, muscle fiber angle, contractility, and 

ventricle geometry. It is also worth noting that twist increases with increasing 

compressibility, contractility, and ventricle wall thickness, while it decreases with increasing 

cavity volume. 

(Schmid et al., 1997) developed an FE method for the human left and right ventricles to 

study the anisotropic structure of the myocardium. Magnetic Resonant Imaging (MRI) 
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produced the geometry of a human heart while the anisotropic structure of the myocardium 

had two basic sources: first, a common band-like structure of both ventricles introduced a 

global anisotropy, and second, the muscle fiber arrangement within the band caused intrinsic 

local anisotropy. According to the results, the variation in muscle fiber arrangement affected 

the global cardiac performance. 

(Yettram & Beecham, 1998) described a computer method for determining a long-fiber to 

cross-fiber elastic modulus ratio in ventricle myocardium by using an FE model and 

matching cavity volume and ventricle length against valves derived from cineangiographic 

and pressure data. The results obtained in the work show that using FE modeling has at least 

the potential to determine overall transversely isotropic mechanical properties of the heart’s 

LV myocardium. 

(Usyk et al., 2000) proposed 3D FE model to investigate the effect of laminar orthotropic 

myofiber architecture on regional stress and strain in a canine LV at the end of diastole and 

end of systole. The geometry of the canine LV was represented by a truncated ellipsoid of 

revolution. The focus, inner and outer surface dimensions of the LV wall were calculated 

from experimental data. The results indicated that the passive material changes had little 

effect on systolic LV strains. Incorporating a significant component of active stress 

transverse to the muscle fibers greatly improved the agreement between measured and 

modeled transverse end-systolic shear strains.  

(LeGrice et al., 2001) described a computer model (Auckland heart model) for a detailed and 

realistic representation of important ventricular anatomy aspects. The model is based on an 

extensive anatomic dataset collected systematically by the researchers and others over more 

than a decade. It includes preliminary descriptions of the Purkinje fiber network, coronary 

vessels and collagen organization. A number of research groups on integrative studies of 
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cardiac electrical and mechanical functions have used this model. However, the model is 

limited in important ways. One pertains to the geometry and muscular architecture of the 

atrial chambers, the second is the distribution and characteristics of the transmural 

penetration of Purkinje fibers, and finally, the coronary circulation architecture within the 

myocardium.  

(Kerckhoffs et al., 2003) provided new insight into the interpretation of cardiac deformation 

towards various forms of cardiac pathology by using a 3D FE model of an LV. Myocardium 

material was considered anisotropic, nonlinearly elastic and time dependent. They assumed 

that the delay between depolarization and the onset of crossbridge formation was the same 

for all myofibers. The simulation results showed that the LV mechanics with unphysiological 

synchronous depolarization myofiber strain were more homogeneous and more physiologic. 

It was found that the delay between depolarization and onset of crossbridge formation is 

distributed such that contraction is more synchronous than depolarization. It should be noted 

that the variations in depolarization timing caused larger relative changes in the distribution 

of myofiber strain than for myofiber stress.    

(Smaill et al., 2004) developed an FE model of a ventricle to study normal electrical 

activation and re-entrant arrhythmia. The model was based on the actual 3D microstructure 

of a transmural LV segment and can predict that cleavage planes between muscle layers may 

give rise to non-uniform, anisotropic electrical propagation and also provide a substrate for 

myocardial bulk resetting during defibrillation. The results indicate that the spread of 

electrical activation from an ectopic stimulus is slow in the direction perpendicular to 

cleavage planes, and this could contribute to the formation of macroscopic re-entrant 

electrical circuits, particularly in an ischemic heart. It was concluded that the structure 
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discontinuities in the ventricle’s myocardium might play a role in the initiation of re-entrant 

arrhythmia and future studies that address this hypothesis should be carried out. 

(Xia et al., 2005) analyzed the cardiac ventricle wall motion based on a 3D electromechanical 

biventricular model with realistic geometric shape and fiber structure, which couples the 

electrical and mechanical properties of the heart. They concluded that the inclusion of heart 

motion in the model had a significant effect on the simulation electrocardiogram (ECG) 

signal, particularly in the ST segment and T-wave regions. The simulation results are in good 

accord with results obtained from the Magnetic Resonant Tagging (MRT) technique. The 

study suggests that the electromechanical biventricular model might be a useful tool to assess 

the mechanical function of two ventricles and to study body surface potential in a more 

realistic way. 

(Bettendorff-Bakman et al., 2006) developed a 3D FE model of the human left and right 

ventricles using realistic geometry and taking into account the nonlinear mechanical tissue. 

They investigated to what extent ventricular pressure causes the rapid and large increase of 

internal volume of both ventricles that occurs during the rapid filling phase in a healthy 

human heart. They also analyzed the influence of cardiac tissue viscoelasticity on the 

mechanical behavior of the heart during the first third of the passive diastole. The results 

were compared with the filling phase of the human LV as extrapolated from measurements 

by (Nonogi et al., 1988). In conclusion, the ventricle pressure measured during rapid filling 

could not be the sole cause of the rise in observed ventricle volume, while the influence of 

tissue viscoelasticity should not be disregarded in ventricle mechanics under normal 

physiological conditions. 

In 2006, (Dorri et al., 2006)proposed an FE method based on realistic geometry obtained 

from MRI to simulate the 3D deformations of human LV myocardium due to contractile 
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fiber forces at the end of systole. The model was considered anisotropic and the fiber 

structure of the myocardial tissue was included in the form of a fiber orientation vector field, 

as reconstructed from the measured fiber trajectories in a postmortem human heart. The 

contraction was modeled by an additive second Piola-Kirchhoff active stress tensor. In this 

study, the researchers attempted to determine an LV deformation pattern by inverting the 

modeling process, i.e. extrapolating stresses from deformations rather than determining 

deformations from assumed fiber stresses. The results signify that the principal and normal 

strains are in good agreement with MRI measurements. It was concluded that systolic 

deformation measurement might provide useful diagnostic information. 

In the same year, (Ubbink et al., 2006)  investigated to what extent strain computed with a 

3D FE model by (Kerckhoffs et al., 2003) matched strain determined experimentally. 

Discrepancies between the model-computed and experimentally measured deformation of a 

healthy LV wall are related to the choice of myofiber orientation in the model. Finally, they 

compared myocardial wall strain measured in three healthy subjects using MRT. Wall strain 

was computed with the model for various settings of myofiber orientation. They deduced 

that the presented FE model could accurately simulate circumferential strain, but failed to 

accurately simulate circumferential-radial shear strain. The time course of circumferential-

radial shear strain seemed very sensitive to the choice of myofiber orientation, in particular 

to the choice of transverse angle. It is worth mentioning that the discrepancies between 

circumferential-radial shear strain in the model and experiment significantly reduced when 

the transverse angle increased by 25%. 

(Bettendorff-Bakman et al., 2008) presented two models to study the mechanism of 

ventricular aspiration during the rapid filling phase. The first was an FE model of the two 

human ventricles, derived from MRI measurements taken at the end of systole in a healthy 
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human individual; the second was an ellipsoidal FE model of the LV. The internal volume 

of both models for the left and right ventricles was about 50 ml. This study was performed 

under the assumption of linear elasticity allowing for large deformations and taking into 

account the effective compressibility of the myocardium due to intramural fluid flow. The 

myocardium was assumed to behave like a homogenous, isotropic material and it was 

claimed that anisotropy is not considered of decisive importance based on a previous 

publication by (Bovendeerd et al., 1994) and (Vetter & McCulloch, 2000). The results were 

compared with measurements by (Nonogi et al., 1988) relating to the rapid filling phase of 

the human LV. Apparently, ventricular aspiration plays a key role in the ventricle filling 

process under normal physiological conditions. 

(Niederer & Smith, 2009) developed a multi-scale biophysical electro-mechanics model of 

a rat LV. They integrated a wide range of experimental data into a common and consistent 

modeling framework to investigate how feedback loops regulate heart contraction. The 

results showed that the length-dependent Ca50 and filament overlap, which makes up the 

Frank-Starling Law, seemed to be the dominant regulators of efficient work transduction. 

Analyzing the fiber velocity field in the absence of the Frank-Starling mechanisms showed 

that the decreased efficiency in the transduction of work in the absence of filament overlap 

effects was caused by increased post systolic shortening, whereas the decreased efficiency 

in the absence of length-dependent Ca50 was caused by an inversion in the regional strain 

distribution. Finally, it was concluded that the feedback from muscle length on tension 

generation at the cellular level is an important control mechanism of the efficiency with 

which the heart muscle contracts at whole organ level. 

(Göktepe & Kuhl, 2010) presented a fully implicit, entirely FE-based approach to the 

strongly coupled non-linear problem of cardiac electro-mechanics. The intrinsic coupling 

38 

 



arises from both the excitation-induced contraction of cardiac cells and the deformation-

induced generation of current due to the opening of ion channels. The suggested unified 

algorithmic formulation was thoroughly set out with complete particulars of the weak 

formulation, consistent linearization, and discretization. It was concluded that the inherent 

anisotropic microstructure of cardiac tissue is reflected in the model by means of the modern 

notions of coordinate-free representation of anisotropy in terms of structural tensors. This 

concerns not only the passive and active non-linear stress response but also the deformation-

dependent conduction tensor. 

(Göktepe et al., 2011) developed a 3D FE biventricular heart method to simulate the passive 

response of myocardium tissue, particularly when coupled with active cardiomyocytes 

contraction and electric excitation. The myocardium was assumed as a convex model and 

anisotropic hyperelastic material that accounts for the local orthotropic microstructure of 

cardiac muscle. The parameters employed in the numerical analysis were identified by 

solving an optimization problem based on six simple shear experiments on explanted cardiac 

tissue. Important features were combined in this model, such that it is not based on the 

individual Green Lagrange strain tensor components, but is entirely invariant-based. The 

model is not only isotropic, but also fully orthotropic, and it is characterized in terms of only 

eight parameters that provide a clear physical interpretation. 

(Bagnoli et al., 2011) developed an FE model of the human LV to analyze the twisting 

behavior of cardiac and investigate the influence of various biomechanical parameters on 

cardiac kinematics. The model was a thick-walled ellipsoid composed of nine concentric 

layers with internal volume of about 43ml. The myocardium was assumed to be linear-elastic 

isotropic, embedded in incompressible liquid with arrays of reinforcement bars oriented to 

reproduce the globally anisotropic behavior of cardiac tissue. The ventricle model was 
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combined with simple lumped-parameter hydraulic circuits reproducing preload and 

afterload. The simulation results were in good agreement with experimental data and 

confirmed the importance of symmetric transmural patterns for fiber orientation. 

(Wang et al., 2012) developed a realistic 3D FE model of the human LV derived from non-

invasive imaging data to investigate this model’s sensitivity to small changes in constitutive 

parameters and changes in fiber distribution during the diastole phase. They also made 

comparisons between their model and similar models with experimental data, and 

demonstrated qualitative and quantitative differences in stress and strain distributions. In the 

framework of (Holzapfel & Ogden, 2009), the LV myocardium was treated as an 

inhomogeneous, thick-walled, nonlinearly elastic, incompressible material with fiber-

reinforced myocardium tissue microstructure by expressing the strain-energy functional 

using fiber-based material invariants. In the incompressible case, their strain-energy 

functional had eight material parameters with relatively physical meanings. By employing 

three independently developed sets of constitutive parameters, it was found that the 

structure-based constitutive law employed here is relatively insensitive to small 

parameterization errors. The end-diastolic pressure-volume relationship of the model 

prediction was in good agreement with experimental data derived from human hearts. It was 

also found that changes in sheet orientation had relatively little impact on the model results, 

whereas changes in fiber angle distribution dramatically altered the stress and strain 

distributions. This highlights the importance of using a realistic fiber structure, especially in 

pathological conditions that involve pathophysiological remodeling of fiber orientation. It 

should be noted that a large difference was observed in the stress and strain predictions 

generated by the different constitutive models, even in cases in which the material 

parameters were fitted to the same experimental data. 
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An excellent introduction and more comprehensive reviews on FE-based research can be 

found in works by (Vinson, 1977), (Grewal, 1988), (Beecham, 1997), and (Zhong et al., 

2012). 

2.5 Aim of the present work 

The aim of the present work is to create and develop a 3D FE model of the human LV that 

provides realistic descriptions of both muscle fiber orientation and material characteristics 

based on experimental data documented in literature. This model was used to study the 

sensitivity of LV mechanics and determine the bulk modulus (k) of human myocardium. The 

virtual model can help medical students understand the sensitivity of cardiac parameters on 

human LV function and measure quantities that can otherwise not be measured in clinical or 

experimental setting. 

2.6 Study plan 

It is clear that the heart is extremely complicated in terms of structure and function. It would 

be a grave mistake to model it purely from a mechanical point of view without some 

appreciation of its complex biological nature. For this reason, the key objective of this study 

plan is to develop an efficient, robust, modular, and unified FE approach to accurately 

describe the LV myocardium. 

For many years, researchers have attempted to analyze and quantify the behavior of the 

human heart, and particularly the left ventricle (LV). Some have worked with a simplified 

geometry of LV, spheres, ellipses of revolution and general ellipsoids using a theoretical 

approach. Others have done experimental work involving precise measurements of animal 

ventricles, most commonly of dogs or pigs. Only a few have used data gathered from human 

subjects since this sort of information is usually hard to come by and it is often severely 
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limited in terms of quality and quantity. The attempts made to overcome the inadequacies of 

experimental data form a basis of this study. 

Several developed LV constitutive models include the following: active and passive material 

properties of the myocardium, a realistic description of muscle fiber orientation, forces 

exerted upon the heart from outside (e.g., the lungs, diaphragm and chest wall) and the action 

of blood within the heart chambers. The best model that mimics human LV behavior is 

selected from several developed models. 

Following best model selection, two FE analyses are presented. The first FE analysis is done 

directly and is aimed at studying the effects of myocardial fiber architecture and material 

properties on LV mechanics during the cardiac cycle. The second FE analysis is done 

inversely, whereby an iteration of FE simulation was performed to find the myocardium bulk 

modulus that gives the best fit between the computed and experimentally measured LV 

internal cavity volumes. Finally, this study gives another example of FE’s role in helping 

with accurate diagnosis and more effective human heart disease treatment. 
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 PROBLEM FORMULATION OF LEFT VENTRICLE MOTION 

3.1 Introduction 

In continuum mechanics, materials may have shape deformations depending on the applied 

loads, material properties, and original shapes. To study the mechanics of a beating heart, a 

heart model can be loaded with (physiological) cavity pressure. It is possible to examine a 

heart model’s deformation under cavity pressure by solving equilibrium equations to find 

the deformed state where the applied load is balanced by internal wall stresses. A constitutive 

relation can give the relation between deformation and stress in the material (the heart model) 

and the material is characterized by a material law. The resulting equations and domain for 

solving these are too complex to allow analytical solving and therefore the FE method is 

used. 

3.2 Dynamic equilibrium equation of left ventricle 

By applying a pressure load on the endocardial surface, a heart model deforms until it reaches 

a new equilibrium state. To identify the heart model deformation it is necessary to consider 

the change in material length, i.e. the material line segment 𝑑𝑑𝑑𝑑 in the undeformed heart 

model must be reconfigured (due to applied load) into 𝑑𝑑𝑑𝑑 in the deformed heart model. This 

deformation is quantified by the deformation gradient tensor F, which is defined in standard 

finite deformation theory by Equation (3.1): 

𝑑𝑑𝑑𝑑 = 𝑭𝑭𝑑𝑑𝑑𝑑 (3.1) 

Some equations that describe the constitutive law for myocardial tissue have been proposed 

based on the hyperelastic material theory. It postulates the existence of strain energy 
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potential W that does not depend on the material’s deformation history but rather on the right 

Cauchy-Green deformation tensor C. A measure of the deformation is defined as follows: 

𝑪𝑪 = 𝑭𝑭𝑇𝑇𝑭𝑭 =  �
𝜕𝜕𝑥𝑥𝑘𝑘
𝜕𝜕𝑋𝑋𝑀𝑀

𝜕𝜕𝑥𝑥𝑘𝑘
𝜕𝜕𝑋𝑋𝑁𝑁

� (3.2) 

Equation (3.2) defines Green's deformation tensor or the right Cauchy-Green deformation 

tensor (Atkin & Fox, 1980), which indicates how each component of the undeformed line 

segment 𝑑𝑑𝑑𝑑 contributes to the squared length of the deformed line segment 𝑑𝑑𝑑𝑑. 

In materials undergoing large deformations, it is necessary to define stress tensors and the 

way they enter into the governing equations. Stress is defined as the force per unit area on 

an infinitesimally small plane surface. The quantities of force and area can be referred either 

to the reference (undeformed) or deformed configurations, leading to three important ways 

of representing stress in a deforming body: using Cauchy, and the first or second Piola-

Kirchhoff stress tensors. 

The components of the second Piola-Kirchhoff stress tensor are given by the derivatives of 

W(C) with respect to the components of C. As C depends only on a material coordinate 

system, rigid body movement has no influence on the strain energy. Thus the axiom of 

objectivity, which requires the constitutive law to be invariant with respect to rigid motion 

of the spatial frame of reference, is satisfied (Fedorov et al., 2010). 

The constitutive law for myocardial tissue has three features: high nonlinearity, anisotropy, 

and dependence on excitation. To describe the myocardial tissue anisotropy (Humphrey et 

al., 1990a, 1990b) defined W, as a function of the vector defining the preferred direction of 

muscle fibers. Developing Humphrey's model (Lin & Yin, 1998) proposed a new 

constitutive equation, which described the changes in the stress-strain behavior caused by 
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excitation. They divided W into two components: a passive component (Wpass) and an active 

component (Wact). (Watanabe et al., 2004) defined the coefficient of Wact as a function of the 

excitation rate. Using W, the mixed variational form of the governing equation for nearly 

incompressible hyperelastic materials is: 

� {𝜌𝜌 �𝑢̈𝑢 ∙  𝛿𝛿𝛿𝛿 + �𝜕𝜕𝜕𝜕/ 𝜕𝜕𝐶𝐶𝑖𝑖𝑖𝑖 + 𝜆𝜆 𝜕𝜕𝜕𝜕
𝑉𝑉

/𝜕𝜕𝐶𝐶𝑖𝑖𝑖𝑖�𝛿𝛿𝐶𝐶𝑖𝑖𝑖𝑖� 𝑑𝑑𝑑𝑑 =� 𝑡𝑡 �𝑢̈𝑢
𝑆𝑆

∙ 𝛿𝛿𝛿𝛿  𝑑𝑑𝑑𝑑 

 
(3.3) 

� 𝛿𝛿𝛿𝛿 ∙ (𝛹𝛹 − 𝜆𝜆/𝛼𝛼)
𝑉𝑉

𝑑𝑑𝑑𝑑 = 0 

 
(3.4) 

Equation (3.3) is the form of the dynamic equilibrium equation with the constraint of slight 

compressibility. Here, V denotes the initial material configuration; 𝜌𝜌 is the nominal mass 

density; ü is the acceleration vector; δu is the variation of the displacement vector u; Cij is 

the ij-th component of C; λ is the Lagrange multiplier that corresponds to the negative half 

of hydrostatic pressure; Ψ is a function to describe volume change; δCij is the variation of Cij 

due to δu; and S is the surface on V where the nominal traction force vector is applied. 

Equation ( 3.4) is the form of the slight compressibility constraint. Here δλ denotes the 

variation in λ and α is a large value corresponding to the bulk modulus. As excitation rate 

changes, W changes, causing a shift in the stress-strain relationship, leading to breaking of 

the equilibrium states described in Equations (3.3) and (3.4). To recover the equilibrium 

states, the muscle deforms. 

3.3 Linear momentum 

Liner momentum balance for a body is a generalization of Newton's second law for a particle. 

Malvern produced this generalization that Cauchy later wrote in terms of stress. The 
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principle of conserving linear momentum applied to a set of particles (or rigid body) can be 

stated as the time rate of (linear) momentum change of a collection of particles that equals 

the net force exerted on the collection. This is expressed mathematically by (Malvern, 1969) 

in Equation (3.5), where t is the traction vector (external surface forces per unit area), b 

represents the body forces (per unit mass), and the rate of momentum change is written in 

terms of the material derivative (d/dt) and the velocity vector v. 

� t
𝑆𝑆

𝑑𝑑𝑑𝑑 + � 𝜌𝜌 b
𝑉𝑉

 𝑑𝑑𝑑𝑑 =  
𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜌𝜌 𝑣𝑣 dV
𝑉𝑉

 
 (3.5) 

Cauchy’s formula is substituted into Equation ( 3.5) to form Equation ( 3.6), which is 

appropriate for a material with constant density. Here σi j are components of the Cauchy 

stress tensor and are physical stresses ( 𝑡𝑡 𝑑𝑑𝑑𝑑 =  𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛�𝑖𝑖 𝑑𝑑𝑑𝑑 ), since ij are unit vectors. Note that 

Equation (3.6) is written in component form, where the body force and velocity vectors have 

components b = b ji j and v = v j i j, respectively. 

� 𝜎𝜎𝑖𝑖𝑖𝑖
𝑆𝑆

𝑛𝑛�𝑖𝑖 𝑑𝑑𝑑𝑑 + � 𝜌𝜌 �𝑏𝑏𝑗𝑗  −  
𝑑𝑑𝑑𝑑𝑗𝑗

𝑑𝑑𝑑𝑑
�

𝑉𝑉

 𝑑𝑑𝑑𝑑 =  0 
(3.6) 

Applying the divergence theorem to Equation (3.6) yields Equation (3.7), where 𝑓𝑓𝑖𝑖 =  𝑑𝑑𝑣𝑣
𝑖𝑖

𝑑𝑑𝑑𝑑
 

are components of the acceleration vector. 

� �
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
 + 𝜌𝜌 𝑏𝑏𝑖𝑖 − 𝜌𝜌 𝑓𝑓𝑖𝑖�

𝑉𝑉
𝑑𝑑𝑑𝑑 = 0 

(3.7) 
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If Equation (3.7) is to be valid for arbitrary volumes, the integrand must vanish. It is assumed 

here that the integrand is continuous. This produces Equation (3.8), which is the component 

form of Cauchy’s first law of motion for rectangular Cartesian coordinates. 

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
 + 𝜌𝜌 𝑏𝑏𝑖𝑖  =  𝜌𝜌 𝑓𝑓𝑖𝑖 

(3.8) 

It is often convenient to express Cauchy’s first law of motion in terms of the second Piola- 

Kirchhoff stress components, as in Equation (3.9). 

𝜕𝜕
𝜕𝜕𝑋𝑋𝑀𝑀

�𝑇𝑇𝑀𝑀𝑀𝑀
𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑋𝑋𝑁𝑁

� + 𝜌𝜌𝑜𝑜𝑏𝑏𝑖𝑖  =  𝜌𝜌𝑜𝑜𝑓𝑓𝑖𝑖 
(3.9) 

The conservation of linear momentum in the absence of body forces is: 

𝜕𝜕
𝜕𝜕𝑋𝑋𝑀𝑀

�𝑇𝑇𝑀𝑀𝑀𝑀
𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑋𝑋𝑁𝑁

�  = 0 
(3.10) 

where T is the second Piola-Kirchhoff stress tensor, X is the coordinate in the undeformed 

and x in the deformed body. 

3.4 Angular momentum 

The principle of angular momentum conservation states that the time rate of change in the 

total momentum for a continuum is equal to the vector sum of the moments of external forces 

acting on the continuum (Reddy, 2008). Angular momentum conservation is satisfied by 

requiring the second Piola-Kirchhoff stress tensor to be symmetric: 

𝑇𝑇𝑀𝑀𝑀𝑀  =  𝑇𝑇𝑁𝑁𝑁𝑁 (3.11) 

The second Piola-Kirchhoff stress tensor is used rather than Cauchy stress because it refers 

all stress back to a known reference state instead of the unknown deformed state. 
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3.5 Boundary conditions (essential and forced) 

There are two types of boundary conditions: essential (displacement) and forced (natural).  

Essential boundary conditions: For most of the actual simulations, the displacement 

describes the support or constraints on the solid, and hence the prescribed displacement 

values are often zero. The LV heart chamber can be modeled in isolation using a free body 

diagram, but the displacement boundary conditions just below the valves must be specified. 

Forced boundary conditions: There are two types of forced (natural) boundary conditions 

on force boundaries (endocardial and epicardial surfaces): force generated by internal blood 

pressure induced in the LV cavity onto the endocardium surface and force generated by the 

external surface pressure from surrounding organs onto the epicardium. 

Now consider a body of volume V and surface S loaded by a surface traction s, which is in 

equilibrium with the internal stress vector t. If the body is subjected to an arbitrarily small 

displacement δu that satisfies compatibility and any displacement boundary conditions 

specified on S (where δu must be zero), then the principle of virtual work can be expressed 

in the form of Equation (3.12) (Hughes, 1994). 

� 𝑠𝑠 𝛿𝛿u 𝑑𝑑𝑑𝑑 = � 𝑡𝑡  𝛿𝛿u 𝑑𝑑𝑑𝑑
𝑆𝑆𝑆𝑆2

 
(3.12) 

where S2 is the portion of the boundary that is not subjected to displacement boundary 

conditions. 

The virtual displacements may be resolved into components δu = δujij. Cauchy’s formula 

(𝑡𝑡 𝑑𝑑𝑑𝑑 =  𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛�𝑖𝑖 𝑑𝑑𝑑𝑑) is then substituted into Equation (3.12) to yield Equation 3.13). 
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� 𝑠𝑠 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿 = � 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛�𝑖𝑖 𝛿𝛿uj 𝑑𝑑𝑑𝑑
𝑆𝑆𝑆𝑆2

 
(3.13) 

The right-hand-side surface integral in Equation 3.13) is transformed into a volume integral 

using Gauss’ theorem (Fung, 1965) to give Equation 3.14). 

� 𝑠𝑠 𝛿𝛿u 𝑑𝑑𝑑𝑑 = � �
𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
 𝛿𝛿uj + 𝜎𝜎𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕uj
𝜕𝜕𝑥𝑥𝑖𝑖

� 𝑑𝑑𝑑𝑑
𝑉𝑉𝑆𝑆2

 (3.14) 

 

Cauchy’s first law of motion (Equation (3.8)) is substituted into the volume integral in 

Equation (3.14) to give Equation 3.15). Moreover, Equation 3.15) is expressed in terms of 

the second Piola-Kirchhoff stress tensor, as written in Equation (3.16). 

� 𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕uj
𝜕𝜕𝑥𝑥𝑖𝑖𝑉𝑉

𝑑𝑑𝑑𝑑 =� 𝜌𝜌 �𝑏𝑏𝑖𝑖 −  𝑓𝑓𝑖𝑖�
𝑉𝑉

𝛿𝛿uj 𝑑𝑑𝑑𝑑 + � 𝑠𝑠 𝛿𝛿u 𝑑𝑑𝑑𝑑
𝑆𝑆2

 

 
(3.15) 

� 𝑇𝑇𝑀𝑀𝑀𝑀
1
𝐽𝐽
𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑋𝑋𝑀𝑀

𝜕𝜕𝜕𝜕uj
𝜕𝜕𝑋𝑋𝑁𝑁𝑉𝑉

𝑑𝑑𝑑𝑑 =� 𝜌𝜌 �𝑏𝑏𝑖𝑖 −  𝑓𝑓𝑖𝑖�
𝑉𝑉

𝛿𝛿uj 𝑑𝑑𝑑𝑑 + � 𝑠𝑠 𝛿𝛿u 𝑑𝑑𝑑𝑑
𝑆𝑆2

 

 
(3.16) 

All terms in Equation (3.16) have now been defined apart from the right-hand side integral 

involving the surface traction vector s. If external surface pressures are applied, this integral 

must be evaluated for those boundary portions that sustain the loads. In the absence of 

boundary pressures, this term vanishes. 

Consider a deforming surface with unit normal 𝑛𝑛� = 𝑛𝑛�𝑗𝑗𝑖𝑖𝑗𝑗 . If the surface is loaded by a 

pressure, P(appl) (a physical stress), then the surface traction vector has components s = 

P(appl)𝑛𝑛�𝑗𝑗𝑖𝑖𝑗𝑗  and the right-hand side surface integral of Equation ( 3.16) is evaluated using 

Equation (3.17). 
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� 𝑠𝑠 𝛿𝛿u 𝑑𝑑𝑑𝑑 = � 𝑃𝑃(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
𝑆𝑆2𝑆𝑆2

𝑛𝑛�𝑗𝑗𝛿𝛿uj 𝑑𝑑𝑑𝑑 
(3.17) 

This surface integral is then substituted into Equation (3.16) to yield the governing equations 

for finite deformation elasticity with respect to rectangular Cartesian coordinates given in 

Equation 3.18). 

� 𝑇𝑇𝑀𝑀𝑀𝑀
1
𝐽𝐽
𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑋𝑋𝑀𝑀

𝜕𝜕𝜕𝜕uj
𝜕𝜕𝑋𝑋𝑁𝑁𝑉𝑉

𝑑𝑑𝑑𝑑 =� 𝜌𝜌 �𝑏𝑏𝑖𝑖 −  𝑓𝑓𝑖𝑖�
𝑉𝑉

𝛿𝛿uj 𝑑𝑑𝑑𝑑 + � 𝑃𝑃(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
𝑆𝑆2

𝑛𝑛�𝑗𝑗𝛿𝛿uj 𝑑𝑑𝑑𝑑 

 

(3.18) 

It remains to solve Equation 3.18) in terms of the unknown virtual displacement δuj, subject 

to any displacement boundary conditions. For geometrically simple bodies with 

straightforward material behavior, Equation3.18) can be used in its present form. 

3.6 Finite element formulation 

The heart of any finite element formulation is the element stiffness description. The finite 

element formulation and equations governing the model dynamics are derived from the 

Lagrangian equations of motion (Zienkiewicz & Taylor, 2000).  

𝑢̇𝑢  + 𝑘𝑘 (𝑢𝑢 −  𝑢𝑢0)  =  𝑃𝑃 (3.19) 

where u and u0 is the displacement vector in the deformed and undeformed body 

respectively; k is the finite element stiffness matrix; and P is the applied load vector. 

The LV model stiffness matrix k is calculated by directly adding the element stiffness matrix 

𝑘𝑘𝑒𝑒, where n is the number of elements in the LV model as: 

𝑘𝑘 =  �  𝑘𝑘𝑖𝑖𝑒𝑒
𝑛𝑛

𝑖𝑖=1

 
(3.20) 
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The element stiffness matrix 𝑘𝑘𝑒𝑒can be expressed as: 

𝑘𝑘𝑒𝑒 =  � 𝐵𝐵𝑇𝑇
𝑣𝑣𝑒𝑒

𝐷𝐷 𝐵𝐵 𝑑𝑑𝑑𝑑 
(3.21) 

where ve is the element volume; B is the strain-displacement relation matrix; and D is the 

stress-strain relation matrix. 

The strain-displacement relation matrix B is directly associated with the shape function and 

geometry of each element. The strain-displacement relation in terms of element nodal 

displacement can be expressed as: 

∆𝜖𝜖 = 𝐵𝐵 ∆𝑢𝑢 (3.22) 

where ∆𝜖𝜖 is the incremental strain vector and ∆𝑢𝑢 is the incremental displacement vector. 

The stress-strain relation in the element can be expressed as: 

∆𝜎𝜎 = 𝐷𝐷 ∆𝜖𝜖 (3.23) 

where ∆𝜎𝜎 is the incremental stress vector. 

The vector of the applied load P acting on the LV model is given by: 

𝑃𝑃 =  𝑃𝑃𝑚𝑚𝑚𝑚 +  𝑃𝑃𝑏𝑏𝑏𝑏  +  𝑃𝑃𝑠𝑠𝑠𝑠 (3.24) 

where Pma is the active force generated by the myocardium muscles; Pbp is the force 

generated by the blood pressure on the endocardium surface; and 𝑃𝑃𝑠𝑠𝑠𝑠 is the force generated 

by external pressure from surrounding organs onto the epicardium surface. 
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The active force generated by the myocardium muscles is expressed as: 

𝑃𝑃𝑚𝑚𝑚𝑚 =  �𝑁𝑁𝑇𝑇𝑝𝑝𝑚𝑚𝑚𝑚
𝑣𝑣𝑒𝑒

 𝑑𝑑𝑑𝑑 
(3.25) 

where N is the element shape function. 

The force PbP generated by the blood pressure in the LV cavity can be expressed as: 

𝑃𝑃𝑏𝑏𝑏𝑏 =  � 𝑁𝑁𝑇𝑇𝑝𝑝𝑏𝑏𝑏𝑏
𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 𝑑𝑑𝑑𝑑 
(3.26) 

where sendo is the surface area of elements on the endocardial surface. 

The external surface force 𝑃𝑃𝑠𝑠𝑠𝑠 generated from the pressure of the surrounding organs: 

𝑃𝑃𝑠𝑠𝑠𝑠 =  � 𝑁𝑁𝑇𝑇𝑝𝑝𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑
𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒

 (3.27) 

where sepi  is the surface area of the elements on the epicardial surface. 

The LV model equilibrium is obtained when the following global energy functional is 

minimized: 

𝐸𝐸𝑔𝑔 =  𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 +  𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 (3.28) 

where Eexf is the energy due to the external forces and Edef is the deformation energy. 

3.7 Basis functions for the element used 

To analyze stress in a body undergoing large elastic deformations, the equations that govern 

finite deformation elasticity developed in previous sections must be solved. For materials 

with regular geometries and simple properties, this may be done analytically. However, for 
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most practical applications materials behave nonlinearly and assume complex shapes, like 

the heart muscle. Irregular domains may be discretized into a number of smaller regular 

elements, over which quantities of interest (for example the geometric coordinates of a point) 

are continuously approximated. The two main types of basis functions applied in this thesis, 

also known as shape or interpolation functions, are 20-node hexahedral and 15-node solid 

triangular basis functions. These are used to approximate quantities of interest (for instance 

geometric or solution variables) that vary over a particular domain. They consist of sets of 

polynomials of different degrees, depending on the desired approximation accuracy 

(generally the higher the degree, the better the approximation). 

The 20-node hexahedral element is shown in Figure 3.1 and has twenty nodes located at 

the corners and mid-edges of the element. It has three translational degrees of freedom at 

each node. The shape function defining the geometry and variation of displacement is given 

as follows: 

For corner nodes: 

𝑁𝑁𝑖𝑖 =  
1
8

(1 + 𝑟𝑟𝑟𝑟𝑖𝑖)(1 + 𝑠𝑠𝑠𝑠𝑖𝑖)(1 + 𝑡𝑡𝑡𝑡𝑖𝑖)(𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖 + 𝑡𝑡𝑡𝑡𝑖𝑖 − 1)       𝑖𝑖 = 1, 2, … . ,8  
 (3.29) 

where r,s,t are natural coordinates and, ri, si, ti are the natural coordinates’ values for a node 
i.  
For mid-side nodes: 

𝑁𝑁𝑖𝑖 =  
1
4

(1 − 𝑟𝑟2)(1 + 𝑠𝑠𝑠𝑠𝑖𝑖)(1 + 𝑡𝑡𝑡𝑡𝑖𝑖)           𝑖𝑖 = 9, 13, 15, 11   (3.30) 

𝑁𝑁𝑖𝑖 =  
1
4

(1 − 𝑠𝑠2)(1 + 𝑟𝑟𝑟𝑟𝑖𝑖)(1 + 𝑡𝑡𝑡𝑡𝑖𝑖)          𝑖𝑖 = 10, 14, 16, 12 
(3.31) 

𝑁𝑁𝑖𝑖 =  
1
4

(1 − 𝑡𝑡2)(1 + 𝑟𝑟𝑟𝑟𝑖𝑖)(1 + 𝑠𝑠𝑠𝑠𝑖𝑖)            𝑖𝑖 = 18, 19, 20, 17 
(3.32) 
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Figure 3.1: Twenty-node hexahedral element (Krishnamoorthy, 1995) 

 

A 15-node solid triangular element is illustrated in Figure 3.2 and has fifteen nodes located 

at the element’s corners and mid-edges. The shape function defining the geometry and 

variation of displacement is given as follows: 

For corner nodes 𝐿𝐿1 =  𝑡𝑡1 = 1: 

𝑁𝑁1 =  
1
2
𝐿𝐿1(2𝐿𝐿1 − 1)(1 + 𝑡𝑡) −

1
2
𝐿𝐿1(1 − 𝑡𝑡2) 

 (3.33) 

For mid-edge triangle: 

𝑁𝑁7 =  2𝐿𝐿1𝐿𝐿2(1 + 𝑡𝑡),        𝑒𝑒𝑒𝑒𝑒𝑒.   (3.34) 

For mid-edge rectangle: 

𝑁𝑁10 =  𝐿𝐿1(1 − 𝑡𝑡2),        𝑒𝑒𝑒𝑒𝑒𝑒.   (3.35) 
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Figure 3.2: Fifteen-node solid triangular element (Krishnamoorthy, 1995) 

 

3.8 Solution procedure 

Essentially, FE software ANSYS was employed to solve the governing equations described 

from Section 3.2 to Section 3.7. These governing equations are based on the finite 

deformation theory. The basic steps involved in FE analysis are: 

1. Create and discretized the LV domain into finite elements.  In other words, subdivide 

the LV into nodes and elements. 

2. Assume a shape function to represent the physical behavior of an element. 

3. Develop equations for an element. 

4. Assemble the elements to present the entire problem. Construct the global stiffness 

matrix. 

5. Apply boundary conditions: initial conditions and loading. 

6. Solve a set of nonlinear algebraic equations simultaneously to obtain displacement 

at different nodes. 
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The ANSYS program calculates the system stiffness matrix at each load step increment. If 

the displacements at the end of the increment satisfy the chosen tolerance, no recycling takes 

place. During recycling, the strains recovered from the previous iteration are used as 

estimated strains for stiffness evaluation. The system from Equation 3.36) becomes: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+  𝑘𝑘(𝑢𝑢)𝛿𝛿𝛿𝛿 =  𝑃𝑃 −  𝐼𝐼(𝑢𝑢) 
(3.36) 

where k (stiffness matrix) and I (vector of resorting loads corresponding to element internal 

loads) are functions of u (displacement). Suppose that the last obtained approximate solution 

is termed ui, where i indicates the iteration number. Equation 3.36) may then be written as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+  𝑘𝑘�𝑢𝑢𝑖𝑖�𝛿𝛿𝛿𝛿 =  𝑃𝑃 −  𝐼𝐼(𝑢𝑢𝑖𝑖) 
(3.37) 

The above equation is solved for  . This concludes one iteration and no recycling takes place 

if convergence is satisfied. This convergence is known as displacement checking and it is 

defined as: 

‖𝛿𝛿𝛿𝛿‖
‖𝑢𝑢 − 𝑢𝑢𝑜𝑜‖

< 𝑇𝑇𝑇𝑇𝑇𝑇 
(3.38) 

where TOL is the relative displacement tolerance. If convergence is not satisfied, recycling 

occurs and the next appropriate solution is obtained: 

𝑢𝑢𝑖𝑖+1 =  𝑢𝑢𝑖𝑖 + 𝛿𝛿𝛿𝛿𝑖𝑖 (3.39) 

The solution converges rapidly if the total loads (internal and external) P are smooth 

functions of the generalized nodal displacement u and if the starting guesses uo are not too 

far away from the actual solution.                                                                           
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3.9 Convergence criteria 

For an incremental solution based on iterative methods, realistic criteria should be used to 

terminate the iteration. At the end of each iteration, the solution obtained should be checked 

to see whether it has converged within preset tolerance or whether the iteration is diverging. 

If the convergence tolerance is too loose, inaccurate results are obtained, and if the tolerance 

is too tight, a great deal of computational effort is spent to obtain needless accuracy. 

Similarly, an ineffective divergence check can terminate the iteration when the solution is 

not actually diverging or force the iteration to search for an unattainable solution. 

In order to carry out a mesh sensitivity test, numerical simulations were performed by 

varying the number of elements in the LV wall. The mesh sensitivity was tested on the LV 

cavity volume and pressure variables by varying the number of elements. It was found that 

a computational domain of 22080 elements was sufficient for convergence. The simulation 

results did not show any difference when the convergence criterion set was changed from 

10–5 to 10–6 (values of tolerance). Hence, the study was carried out with the convergence 

criteria of 10–5. 
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 METHODOLOGY 

4.1 Introduction 

An FE analysis tool is necessary because the myocardium mechanics problem is complex 

and the corresponding analytical solution is not feasible otherwise. The most notable 

difficulty is with predicting the following parameters: 

1.  The globally anisotropic behavior of cardiac tissue due to the muscle fiber 

arrangement 

2. Live tissue mechanical properties, such as myocardial tissue bulk modulus 

Therefore, the desired FE analysis is supposed to assist to evaluate the myocardial tissue 

bulk modulus and study the effects of myocardial fiber architecture in LV function. This 

chapter thus explains myofiber structure and the procedure of creating an FE model suitable 

for solving these problems. 

4.2 Model assumption 

In this study, a model for the mechanical behavior of LV is proposed with less restrictive 

assumptions than those inherent in previous studies: 

• The assumed geometry is ellipsoid truncated at two-thirds of the major axis. This 

simplified geometry is based on MRI clinical measurements (initial volume = 50ml). 

• The myocardial fiber architecture was assumed to be layers of uniformly spaced 

reinforcement bars (rebar) within the continuum 3D elements; each layer was set 

parallel to two of the isoparametric directions in the element’s local coordinate 

system. 
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• A uniform elastic foundation was assumed to mimic the influence of surrounding 

organs and tissue on heart deformation. 

• The rate of myocardial Young's modulus change was assumed the same as that of 

LV internal cavity pressure multiple by constant value. This constant was calculated 

based on the hypothesis presented in section 4.6.  

4.3 Left ventricle geometry and finite element model 

A 3D FE model was built to simulate the deformation mechanics of the LV using ANSYS® 

commercial software. To simplify the analysis, the FE simulation model was represented by 

an ellipsoid truncated at two-thirds of the major axis including two sets of fibers (myocardial 

fibers bound by a mesh of collagen fibers) attached to each other to form a spatial network. 

The geometric parameters and dimensions of the LV model in the initial undeformed 

configuration (at hypothetical zero pressure applied inside the LV cavity) are shown in 

Figure 4.1. 

The wall thickness of the LV model, in the reference unstressed state, was divided into seven 

equal-thickness layers. Figure 4.2a shows the initial shape of a typical FE mesh used for the 

present computations, while Figure 4.2b illustrates the end-diastolic deformed shape of the 

FE mesh. The LV model wall was discretized with a 20-node tetrahedral prism element, with 

the exception of the apical region that was meshed using a 15-node triangular prism element. 

The current FE mesh consists of 22,080 total elements and 29,777 nodes. This discretization 

of the current LV model is quite enough and any further mesh refinement shows very little 

improvement (Hassaballah et al., 2014). The LV blood cavity was modeled by the 

hydrostatic fluid 3D solid element, which is well suited for calculating fluid (blood) volume 

and pressure for coupled problems involving fluid-solid interaction. Hydrostatic fluid 
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elements were overlaid on the faces of the 3D solid element enclosing the fluid volume. 

Figure 4.2c presents a section view of the FE mesh, clarifying the shape of the elements used 

to model the LV internal cavity. Nine nodes define the hydrostatic fluid element: eight on 

the internal LV cavity surface (endocardium) and the remaining, pressure node, at the base 

center. This pressure node defines the LV pressure, which is assumed uniform through the 

LV cavity; the predefined pressure value is automatically moved to the centroid of the fluid 

volume. In all FE computations, the LV cavity and LV wall volumes were kept constant at 

50ml and 73.6ml, respectively. The circumference of the LV internal cavity was divided into 

48 equally spaced divisions, i.e. 48 elements along the circumferential direction. 

 

Figure 4.1: Geometric parameters of thick-walled ellipsoid truncated at two-thirds of the 
major axis used to simulate the LV model (to clarify the half-solid model presented) 
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Figure 4.2: The left ventricular FE mesh (a) Initial shape of the FE mesh; (b) Deformed 
shape of the FE mesh at the LV end-diastole; (c) Section view in the FE mesh presenting the 
elements used to simulate the LV cavity 

 

Two separate parallel sets of 3D fiber network contractile muscle fiber bundles (myofibers) 

bound by a mesh of collagen fibers were embedded within a continuum 3D solid element to 

reproduce the globally anisotropic behavior of cardiac tissue. Computationally, these fibers 

were modeled as layers of uniformly spaced reinforcement bars (rebar) within the continuum 

3D elements; each layer was set to be parallel to two of the isoparametric directions in the 

element’s local coordinate system. 
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The collagen fibers were arranged in the radial direction, while the myofibers’ orientation 

changed with position within the LV wall. The 3D reinforcing element was used to simulate 

both myofibers and collagen fibers. The continuum 3D element is suitable for simulating 

reinforcing fibers with arbitrary orientations and to model myofiber force. The force is 

restricted in the fiber’s direction only (uniaxial fiber tension). The reinforcing element was 

firmly attached to its base element, i.e. no relative movement between the reinforcing 

element and the base was allowed. FE computations were conducted with myofiber and 

collagen fiber volume fractions of 0.7 and 0.015, respectively (LeGrice et al., 1995; Stevens 

et al., 2003). 

4.4 Material model 

The myocardium tissue (matrix) is represented as an isotropic, slightly compressible 

hyperelastic material with relatively soft properties, using the energy function given by 

Equation 4.1). 

𝑊𝑊 =  �
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𝛼𝛼𝑛𝑛
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𝛼𝛼𝑛𝑛 +  𝜆𝜆3

𝛼𝛼𝑛𝑛�  − 3 �
𝑁𝑁

𝑛𝑛=1

 + 4.5𝐾𝐾( 𝐽𝐽
1
3  − 1 )2 

 
(4.1) 

 

where 𝜇𝜇𝑛𝑛 and 𝛼𝛼𝑛𝑛 are material constants, K is the initial bulk modulus, and J is the volumetric 

ratio defined by J = λ1λ2λ3, where λ1, λ2 and λ3 are the principal stretch ratios. 

Table 4.1 shows the Ogden parameters employed in the present study to simulate the 

material properties of myocardium tissue. The parameters were calculated through uniaxial 

and relaxation tests carried out by (Hassan et al., 2012). The collagen fiber behavior was 

represented by isotropic linear elastic with large displacements to simulate the large strains 

occurring in the collagen fiber during LV filling. Table 4.2 summarizes the material 

properties for collagen. 
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Table 4.1: Values of two-term Ogden parameters found by  (Hassan et al., 2012) 
Parameter Value Units 

µ1 0.22 MPa 

µ2 0.11 MPa 

α1 11.77 ___ 

α2 14.34 ___ 

 

 

Table 4.2: Collagen material properties (Bagnoli et al., 2011) 
Young’s modulus, E (kPa) Poisson’s ratio, 𝛎𝛎 Density, 𝛒𝛒 (kg/m3) 

50 0.49 1000 

 

4.5 Left ventricle myofiber architecture 

Cardiac muscle tissue is composed of a helical network of muscle fibers oriented at different 

angles throughout the ventricle wall in the form of sheets separated by a complex structure 

of cleavage surfaces (Figure 1.6 andFigure 4.3) (Helm et al., 2005; Sengupta et al., 2006; 

Arts et al., 2012). This arrangement of muscle fibers is responsible for the orthotropic 

mechanical properties of cardiac muscle (Guccione et al., 2010). The alternating contraction 

and relaxation of cardiac muscle is the result of the shortening and stretching of the 

individual muscle, which cause efficient blood ejection (Streeter, 1979; Costa et al., 1999). 

In other words, fiber architecture is a key feature of the myocardium, where the fiber 

orientation plays a significant role in both systolic deformation and early diastolic function 

(Shapiro & Rademakers, 1997). 
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Figure 4.3: Visualization of the left ventricle’s fiber structure. The color intensity depends 
on the inclination angle value. The dark blue and dark green represent larger angles for the 
epicardium and endocardium, respectively (Rohmer et al., 2006) 

 

The LV fiber architecture can be described spatially by two inclination angles: the helix 

angle (β) and transverse angle (η) (Scollan et al., 1998). The helix angle (β) is defined as the 

angle between the local circumferential direction and the projection of the fiber path 

perpendicular to the local radial direction (Figure 4.4a and Figure 4.5b). The transverse angle 

(η) is defined as the angle between the local circumferential direction and the projection of 

the fiber path on the plane perpendicular to the local longitudinal direction (Figure 4.4a and 

Figure 4.5b) (Schmid et al., 1997). 
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Figure 4.4: Fiber orientation angles (helix angle β and transverse angle η) with the cardiac 
mechanical coordinate LV axes (a) Radial, circumferential, longitudinal, and long axis 
directions; (b) Definition of helix angle (β); and (c) Definition of transverse angle (η) 

 

With the recent advances in imaging technologies, fiber angle orientation can be measured 

via diffusion tensor magnetic resonance imaging (DT-MRI) (Lombaert et al., 2011; 

Lombaert et al., 2012; Yang et al., 2012). Previous studies have shown that the helix angle 

(β) varies continuously from approximately +60˚ at the endocardium (the inner heart layer) 

to -60˚ at the epicardium (the outermost heart layer), whereas the transverse angle (η) varies 

continuously from approximately +15˚ at the base to -15˚ at the apex (Figure 4.5) (Hsu et 

al., 1998; Geerts et al., 2002; Kerckhoffs et al., 2003; Chen et al., 2005). 
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Figure 4.5: Fiber orientation within the myocardium (a) Slices taken at various depths 
through the wall (Streeter Jr et al., 1969); (b) Myofiber orientation as a function of transmural 
position at several longitudinal positions; helix angle (--) and transverse angle  (-) are 
components of myofiber orientation (Kerckhoffs et al., 2003) 

 

In this study, based on DT-MRI measurements done by (Rohmer et al., 2006) the 

corresponding variations in fiber helix angles (β) through the eight regions (Figure 4.6) are 

listed in Table 4.3. The helix angle (β) distribution varied smoothly across the LV wall 

thickness from a negative angle at the epicardium to a positive angle at the endocardium, 

respectively. The transverse angle (η) distribution was taken as a variable value in a linear 

manner from +15˚ at the base to the circumferential direction (η = 0˚) in the equatorial region 

to -15˚ at the apex (Kerckhoffs et al., 2003). The collagen fibers are arranged in the radial 

directions. 
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Table 4.3: The corresponding fiber helix angle (β) variations through the eight regions 
Left ventricle region Variations in fiber helix angles (β) 

Septum-basal region -60˚: +40˚ 

Anterior-basal region -40˚: +60˚ 

Lateral-basal region -20˚: +50˚ 

Posterior-basal region -20˚: +60˚ 

Septum-apical region -50˚:  +40˚ 

Anterior-apical region -20˚: +60˚ 

Lateral-apical region -20˚: +50˚ 

Posterior-apical region -20˚: +60˚ 

 

 
Figure 4.6: Eight LV regions used to clarify the helix angle (β) 
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4.6 Loading and boundary conditions 

To demonstrate the performance of the proposed FE model, an LV pressure vs. time curve 

for a healthy human heart was used (Figure 4.7). This case was adapted from the 

experimental measurements performed by (Hall, 2011). The LV pressure vs. time curve in 

Figure 4.7 represents the FE model applied loads, while the accompanying LV internal 

cavity volumes were adopted as the FE model’s target values. 

 
Figure 4.7: Measured LV pressures during one cardiac cycle starting from atrial systole 

 

The surrounding organs (lungs, ribcage, and diaphragm) affect the heart’s external surface. 

In order to simulate the boundary conditions imposed by these surrounding organs and 

tissues, an elastic foundation 3D structural surface effect element with stiffness Kf = 0.02kPa 

was used (Bettendorff-Bakman et al., 2006, 2008). Due to the lack of information on the 

influence of surrounding organs and tissue on heart deformation, a uniform elastic 

foundation was assumed. 

To prevent rigid body motion of the model, the degrees of freedom for all nodes at the base 

were suppressed in the longitudinal direction (UY=0). To avoid possible excessive 

deformations of FE mesh elements, the pressure node was fixed laterally (UX=UZ=0) 

(Figure 4.8). 
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Figure 4.8: The boundary conditions of the LV model (UY = 0 for nodes at the base of the 
LV and UX = UZ = 0 for the pressure node) 

 

4.7 Myocardium active and passive material properties 

The LV pressure response to volume changes during the ejection phase relies on the active 

elastance property activated by muscle action. During the systolic phase, the muscle 

generates adequate contractile force (muscle active force) to provide sufficient LV pressure 

to open the aortic valve and pump an appropriate volume of blood (ZHONG et al., 2007). 

At the beginning of the isovolumic contraction, the LV’s internal cavity pressure increases 

rapidly and the peak pressure and consequently muscle contraction force continually 

increase to sustain the increasing LV pressure. Both LV pressure and muscle contraction 

force increase simultaneously until a peak is reached. During cardiac cycle, the LV wall is 

subjected to dual forces: the active force generated by the myocardium muscle and the force 

generated by the blood pressure in the LV cavity. The active muscle force is not only 
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governed by myocardial passive properties but also depend mainly on the myocardium’s 

active elastance operating throughout the cardiac cycle. 

In this study we suggest a simple method to calculate the active myofiber elastance properties 

taking into consideration that the maximum myofiber Young's modulus value does not 

exceed 0.5MPa (Watanabe et al., 2006; Venugopal et al., 2012). The active myofiber elastic 

properties during the cardiac cycle can be simply calculated by multiplying the LV pressure 

value (given in Figure 4.7) with a constant value of 29.5, i.e. the value of active myofiber 

Young's modulus depending linearly on the intracavital pressure. This constant value of 0.5 

(maximum myofiber Young's modulus) is divided by the maximum LV pressure value. The 

computation of active myofiber Young's modulus based on the above-calculated constant 

represents the present study hypothesis. Figure 4.9 shows the calculated active myofiber 

Young's modulus vs. time during one cardiac cycle. The time-dependent calculated values 

of active myofiber Young’s modulus are applied to the FE model in order to calculate the 

contraction force in the myocardial wall. 

 
Figure 4.9: Calculated active myofiber Young's modulus (myocardial stiffness) during one 
cardiac cycle 
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4.8 Direct and inverse finite element methods 

Usually, FE analysis can be done directly when the input parameters, such as LV geometry, 

LV internal cavity pressure and myocardium tissue properties are known. Once the model is 

constructed, the desired outputs including deformation behavior, LV cavity volume, LV wall 

stresses and strains can be predicted from the model. However, it is not uncommon in reality 

for some or all output values to be known from experiments beforehand, while some of the 

input parameters still need to be determined. This requires doing the FE analysis inversely, 

where FE simulation iteration is performed to find the material properties that give the best 

fit between the computed and experimentally measured LV internal cavity volumes. An 

inverse FE approach is a complex engineering process that can determine the unknown 

causes of known consequences. This approach has the advantage that determining the 

dynamic properties is measured non-invasively. 

Direct FE method: The direct method regarding computer-assisted FE analysis explains the 

steps to follow to mimic muscle contractions (systole) and expansions (diastole). Figure 4.10 

shows the direct FE computation sequence procedures for human LV and provides a reliable 

description of both muscle fiber orientation and material characteristics based on 

experimental data documented in the literature. This method helps explore the influences of 

different mesh densities, constitutive models, orientations, and fiber volume fractions.  

Inverse FE method: Figure 4.11 represents the inverse FE computation sequence procedure 

for myocardial bulk modulus identification. The myocardial tissue bulk modulus, as the 

required output, is inversely identified. The LV pressure vs. time curve is shown in 

Figure 4.7 as the inputs are applied on the internal LV cavity surface (endocardium) via the 

pressure node of the hydrostatic fluid element (Figure 4.2). The other passive material 

properties of myocardium tissue (section 2.4) are fixed as material constants. The calculated 

71 

 



active myofiber Young's modulus (Figure 4.8) is used to simulate the muscle active 

contraction force generated through the LV wall during the cardiac cycle.  

An initial guessed value of tissue compressibility for the myocardium was then applied, and 

by successive computations, it was refined until the calculated LV cavity volume matched 

the measured volume. Iterative FE computation for the LV cavity volume during the cardiac 

cycle was carried out. At the end of each computation step, the FE-predicted LV cavity 

volume was compared with the measured value. The computation ended if the relative error 

between the computed and measured values was ≤ 1%. For this calculation, the total 

computation time for each run was about 1000s using PC Intel Core i7 (2.93 GHz with RAM 

2.00GB). At the start of all FE computations, the LV wall was initially assumed stress-free 

(LV cavity pressure equaled zero). 
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Figure 4.10: Flowchart of direct finite element method 
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Figure 4.11: Flowchart of the inverse FE computation sequence for LV tissue bulk-modulus 
identification  
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4.9 Finite element models’ merits and limitations 

The direct FE model is presented in a sensitivity study of cardiac mechanics with respect to 

myocardial fiber architecture. In particular, we explore the influence of various mesh 

densities, constitutive models, orientations, and fiber volume fractions. This valuable study 

informs future modeling efforts. Meanwhile, an inverse FE model with the ability to 

determine the myocardial tissue bulk modulus during a cardiac cycle is presented. The 

advantages of both proposed methods include: 

1. Slightly compressible hyperelastic tissue properties. 

2. Realistic boundary conditions based on MRI observations. 

3. Myofiber orientation simulated based on data obtained from MRI. 

4. The effect of interaction between blood and internal LV wall cavity. 

5. The effect of surrounding organs and tissues on heart deformation.  

However, these models are limited in important ways, including: 

1. Simplified LV geometry. 

2. Incomplete understanding of some heart diseases. 

3. The models’ inability to study the effects of electrical activation, blood flow, porous 

medium and cardiac metabolism. 

4. The measured data taken for a healthy human heart "ideal proband." 

5. More realistic mechanical properties of LV tissue are still needed. 

These limitations and weaknesses can serve as a basis for future model improvements. 
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  FINITE ELEMENT SIMULATION RESULTS 

5.1 Introduction 

The current chapter introduces the simulation results of different mesh densities to help 

choose the FE model most suitable to complete the proposed study. The remainder of the 

chapter contains the simulation results for two different FE approaches of the human LV. 

The first approach is aimed to study the effects of myocardial fiber architecture on LV 

function using the direct FE method. The influence of different myofiber volume fractions 

and various sets of myofiber orientation on LV function is especially assessed (see sections 

5.3 and 5.4). The stress and deformation pattern of the LV model at the end of diastole is 

also provided using the direct FE method in section 5.5. The second approach is intended to 

determine, in vivo, the myocardial tissue bulk modulus during a cardiac cycle using the 

inverse FE method. Therefore, the simulation results of myocardial tissue compressibility 

and hence the bulk modulus (𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  1
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

) are presented in sections 5.6 

and 5.7, respectively. 

5.2 Mesh size sensitivity analysis 

FE discretization using fine meshes gives results that are more accurate; however, the 

resulting model can become excessively large, increasing solution and processing time. 

There is often a tradeoff between the accuracy resulting from a refined model versus the time 

it takes for analysis and data processing. Therefore, it is advantageous to perform mesh 

sensitivity analyses to select an adequate yet reasonable level of mesh refinement capable of 

predicting various response parameters. Four different FE mesh configurations with 3, 5, 7 

and 9 layers (one element per layer) through the wall thickness were utilized for this purpose. 

The 2 myofiber inclination angles, namely helix angle (β) and transverse angle (η) vary 
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continuously across the LV wall thickness, which is divided throughout the layers 

(Figure 5.1).  

 
Figure 5.1: Variations in helix angle (β) and transverse angle (η) through the LV wall 
thickness (for simplicity a 3-layer model is presented) 

 

Figure 5.2 shows a comparison of the obtained FE results for pressure-volume (PV) loops 

using four different mesh densities. Table 5.1 summarizes the effect of mesh size on time 

required for solution and maximum error of LV internal cavity volume. The maximum 

differences in LV internal volumes among 7 layers and 9 layers through the wall thickness 

mesh was less than 2% (≈1.8%). Furthermore, mesh refinement increased the computation 

time and may produce a negligible difference in results. Therefore, the mesh density of 

22,080 elements (7 layers through wall thickness mesh) would be adequate from the 

viewpoints of efficiency, computational time costs, mesh distortion, and accuracy. 
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Figure 5.2: Comparison for PV loops obtained from FE simulation using different mesh sizes 
 

Table 5.1: Comparison of mesh size sensitivity 

Model No. of elements Time required to solve (min) 
Maximum error on LV 

cavity (%) 

3-Layers 8064 6 7 

5-Layers 11521 11 5.1 

7-Layers 22080 18.5 2.9 

9-Layers 28388 30 1.1 
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5.3 Effect of myofiber volume fraction 

To investigate the effect of total myofiber volume fraction Øtot on cardiac cycle behavior, 

LV simulation models with different sets of values for Øtot were performed. A parametric 

study on the effects of Øtot with the values of 60%, 70%, 80%, and 90% was done. Figure 5.3 

and Figure 5.4 display comparisons of the obtained FE results for the LV internal volumes 

versus time and PV loops using the adopted values of myofiber volume fractions. It is evident 

that the corresponding ejection fractions (EF) when using LV models with Øtot of 60%, 70%, 

80%, and 90% were 50%, 52%, 54% and 57% respectively. Clearly, the EF decreased with 

decreasing Øtot. Finally, the above results confirm that myocardial infarction, which causes 

damage to the myocardium with a decreasing total number of effective myofibers, impairs 

the heart's ability to eject blood and therefore diminishes EF.  

 
Figure 5.3: Comparison between the LV volumes obtained from FE simulation for using 
different total myofiber volume fractions Øtot 

 

0

40

80

120

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

LV
 c

av
ity

 v
ol

um
e 

(m
l)

Time  (sec)

Measured Volume
Ø_tot= 90%
Ø_tot= 80%
Ø_tot= 70%
Ø_tot= 60%

79 

 



 

Figure 5.4: Comparison between PV loops obtained from FE simulation when using different 
total myofiber volume fractions Øtot 

 

5.4 Effect of myofiber orientations 

To study the effect of transverse angle (η) on the volume-time response during the cardiac 

cycle, LV simulation models with diverse sets of values for η were performed. Four different 

sets were employed: the first set had transmural variation η = -15o at the apex through 0o at 

the equatorial level to +15o at the base, and the other three sets had constant values of η = -

15o, 0o, and +15o all throughout the LV wall. The FE analysis results for the LV internal 

volumes vs. time and PV loops are given in Figure 5.5 and Figure 5.6 respectively. The 

changes in myofiber orientation distribution for η hardly affect the LV’s volume-time 

relation. 
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Figure 5.5: Comparison of LV internal volumes obtained from FE simulation using both 
constant and variable distributions of transverse angle (η) 

 
Figure 5.6: Comparison of PV loops obtained from FE simulation using both constant and 
variable distributions of transverse angle (η) 
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To examine the effect of helix angle (β) on the volume-time response during the cardiac 

cycle, LV simulation models using different sets of values for (β) were performed. Three 

sets of helix inclination angle (β) with constant values of β = -60o, 0o, and +60o all throughout 

the LV wall were used. The FE results for the LV internal volumes vs. time and PV loops 

are shown in Figure 5.7 and Figure 5.8 respectively. The obtained FE simulation results for 

all values of  β yield realistic filling and contraction of the LV cavity, except for the first 

third of diastole and ejection for β = -60o and +60°, where the calculated internal LV volume 

is higher than experimental measurements. It is also noted that there is a slight difference 

between the obtained FE results for myofiber distribution (β) = -60o  and +60o. 

 

 

Figure 5.7: Comparison of LV internal volumes obtained from FE simulation using constant 
distribution of helix angles 
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Figure 5.8: Comparison of PV loops obtained from FE simulation using constant distribution 
of helix angles 

 

To study the effect of non-symmetric helix angle (β) distribution through the LV wall 

thickness on the volume-time response during the cardiac cycle, two asymmetric 

distributions (-30o: +60o and -60o: +30o) were used. In the first set, β varied from -30° at the 

epicardium through a variable angle in the mid-wall layers to +60° at the endocardium; in 

the second set β varied from -60° at the epicardium through a variable angle in the mid-wall 

layers to +30° at the endocardium. Figure 5.9 and Figure 5.10 illustrate the comparisons 

between FE results obtained in case of using the two asymmetric sets (-30o: +60o and -60o: 

+30o) with the results obtained by using a symmetric set (-60o: +60o). It can be seen that very 

similar FE results were obtained for both symmetric and asymmetric sets. The calculated 

values using both systems are also in good agreement with measurement results. 
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Figure 5.9: Comparison of LV internal volumes obtained from FE simulation using both 
symmetric and asymmetric helix angle (β) distributions 

 

Figure 5.10: Comparison of LV internal volumes obtained from FE simulation using both 
symmetric and asymmetric helix angle (β) distributions 
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The effect of complex myofiber orientations based on DT-MRI measurements (Rohmer et 

al., 2006) on the volume-time response during the cardiac cycle was investigated.  Myofibers 

without inclination angles (no spiral), i.e. longitudinal, radial and circumferential 

orientations, were also investigated. This means that the transmural myofibers aligned with 

the cardiac mechanical coordinate axis (Figure 4.4). Figure 5.11 and Figure 5.12 display 

comparisons between the obtained FEA results for the LV internal volumes vs. time and PV 

loops using complex myofiber orientations and myofiber without inclination. It is obvious 

that the oblique myofiber orientation (spiral shape) plays an important role in the cardiac 

cycle, i.e. fiber orientation greatly influences LV mechanics. In addition, the calculated FE 

results of LV volumes for longitudinal and radial myofiber orientation distributions were 

overestimated. 

 

Figure 5.11: Comparison of LV internal volumes obtained from FE simulation using 
different myofiber orientations 
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Figure 5.12: Comparison of PV loops obtained from FE simulation using different myofiber 
orientations 

 

 However, the FE results achieved for both complex myofiber and circumferential 

orientations are in good agreement with the actual measurements. This is in accord with the 

results achieved in R-squared analysis; the FE data outcome for complex myofiber fits well 

with the measured points (R-squared value of 74%). The calculated R-squared value for 

circumferential myofiber was 70%. 
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5.5 Stress and deformation pattern 

Stress and deformation pattern results from FE analyses for the LV model at the end of 

diastole were evaluated with the distributions and variations of these values through the wall 

thickness. Figure 5.13(a-d) illustrates the distribution of displacement vector sum, von Mises 

total strain, von Mises stress, and the maximum shear stresses through the LV wall thickness 

at the end of diastole. It is visible that the largest value occurs on the endocardium side at 

the base of the LV wall. With the exception of shear stress the maximum value occurs near 

the apex, something attributed to apical torsion. 
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Figure 5.13: The contour plots of the deformation and stress distribution through the LV wall 
at the end of diastole using linear elastic material model (a) displacement vector sum; (b) 
von Mises total strain; (c) von Mises total stress; and (d) XZ plane shear stress 
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5.6 Variations of tissue compressibility during one cardiac cycle 

During a cardiac cycle, the myocardial wall tissue experiences successive active contraction 

and relaxation consequent to depolarization and repolarization, respectively. Due to the heart 

beating and the LV pressure dynamics response, a significant amount of energy is expended 

to compress the heart wall, essentially squeezing the myocardium cells closer together.  

Figure 5.14 shows the FE results for the myocardial tissue compressibility variations 

throughout one cardiac cycle. It is noticed that the myocardium tissue is nearly 

incompressible for a short period of time, or about 0.16sec throughout the cardiac cycle (not 

exceeding 20% of total cardiac cycle time). The tissue exhibits incompressible behavior in 

the reduced ejection and isovolumic relaxation phases. It is additionally observed that 

myocardium tissue compressibility decreases rapidly at the beginning of the rapid ejection 

phase. Subsequently, myocardium tissue compressibility gradually increases in the rapid 

filling phase and remains nearly constant during reduced filling, followed by a further 

increase during atrial systole (roughly 30% increase of the maximum tissue compressibility). 

The difference between the maximum myocardial tissue compressibility of 3kPa-1 and 

minimum value of ≈ 0 kPa-1 may be a good index for normal ventricular function. A decrease 

in this value means abnormal cardiac function occurrences, perhaps due to myocardial 

infarction or heart dysfunction. The myocardial tissue compressibility increases with 

decreasing ventricle contractile force. This leads to an increase in LV cavity size, meaning 

that the heart cannot pump blood efficiently and structural alterations of the myocardium 

occur (i.e. the heart is enlarged and its pumping ability is impaired). Hence, the myocardial 

tissue compressibility should be considered if myocardial performance, myocardial 

deformation, and heart wall stresses, response time is critical. 
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Figure 5.14: FE-computed myocardial tissue compressibility during one cardiac cycle vs. 
time 

 

5.7 Variations of bulk modulus during one cardiac cycle 

Figure 5.15b presents the FE results for the variations in myocardial bulk modulus during 

one cardiac cycle. Large variations occurred during the rapid ejection and isovolumic 

relaxation phases. The myocardial bulk modulus reached a maximum value at the end of 

ejection and began to decline at the beginning of isovolumic relaxation, i.e. the LV wall 

tissue was stiffened by contraction and softened by relaxation. Evidently, the myocardial 

bulk modulus increased exponentially during the ejection phase until a peak value, followed 

by a linear decrease in isovolumic relaxation phase (i.e. the myofibrils returned to their 

original length). The peak, bulk modulus value occurred at 0.43sec and the bulk modulus 

duration changed from 0.3sec to 0.5sec. 
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Figure 5.15: (a) FE-computed LV cavity ventricular volume; (b) FE-computed myocardial 
tissue bulk modulus during one cardiac cycle vs. time; (c) Accompanying ECG during one 
cardiac cycle vs. time 
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With regard to timing, the computed durations for bulk modulus changes were compared 

with the ECG for one cardiac cycle (Figure 5.15c). It is observed that the durations for the 

onset and ending of LV repolarization marked by T wave (on surface ECG) agree very well 

with the onset and ending durations of bulk modulus changes (Figure 5.15c). It is also clear 

that the onset and ending times of LV repolarization from 0.3sec to 0.5sec are sharply 

defined. Actually, the electrical signals were not included in the present FE analysis, but 

their impact partook in the present FE model by introducing myofiber active elastance. 

Figure 5.15a-c displays a good correlation (synchronization) between the instantaneous 

variation in myocardial tissue bulk modulus and the onset and ending of LV repolarization 

(T wave). 
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  DISCUSSION AND COMPARISONS 

6.1 Introduction 

The overarching aim of this work was to develop a 3D model of a beating LV based on an 

accurate description of both muscle fiber orientation and mechanical properties. The model 

served to study the influence of myofiber architecture on the mechanics of LV function 

(using the direct FE method) and to predict, in vivo, the myocardial bulk modulus during the 

various phases of the cardiac cycle (using the inverse finite element method). 

The parametric study with the direct FE method showed that the myofiber architecture, 

particularly the myofiber volume fraction and myofiber orientation, significantly influences 

LV function mechanics and hence the orthotropic mechanical properties of cardiac muscle. 

The inverse FE method demonstrated that the predicted myocardial bulk modulus may be 

used as a clinical diagnostic tool of heart diseases.  

In order to present a more balanced discussion, this chapter provides comparisons between 

our work and experimental measurements or works from other groups on the proposed direct 

and inverse FE methods.  

6.2 Comparison of internal cavity volume using different material models 

In order to check the validity of our model, two different constitutive models were employed 

using the direct FE method. The first was the three-term Ogden model according to 

(Bettendorff-Bakman et al., 2006) (Table 6.1) and the second was the two-term Ogden model 

following (Ghaemi et al., 2009a; Ghaemi et al., 2009b) (Table 6.2). 
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Table 6.1: Three-term Ogden parameter values employed by (Bettendorff-Bakman et al., 
2006) 

Parameter Value Unit 

µ1 -0.03   kPa 

µ2 0.0014   kPa 

µ3 -0.05   kPa 

α1 -45 ___ 

α2 38.07 ___ 

α3 -14 ___ 

 
 
Table 6.2: Two-term Ogden parameter values used by (Ghaemi et al., 2009a; Ghaemi et al., 
2009b) 

Parameter Value Unit 

µ1 9.99 kPa 

µ2 6.36 kPa 

α1 2.4   ___ 

α2 2.4   ___ 

 

Figure 6.1 and Figure 6.2 provide comparisons between the calculated LV internal volumes 

versus time and PV loops using different material models. It is clear that the stroke volume 

(SV) values of  the constitutive models obtained by (Bettendorff-Bakman et al., 2006) and 

(Ghaemi et al., 2009a; Ghaemi et al., 2009b) are small compared to the measured values. 

Also, it can be seen that the material parameters obtained from our model (Hassan et al., 

2012) are in good agreement with the measurements. 
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Figure 6.1: Comparison of LV internal volumes obtained from FE simulation using different 
constitutive models 

 

Figure 6.2: Comparison of PV loops obtained from FE simulation using different constitutive 
models 
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6.3 Comparison between inverse simulation and experimental cavity volumes 

Figure 6.3 depicts the comparison between the predicted FE and experimentally measured 

LV cavity volumes using the inverse FE method. Obviously, the inverse FE model can 

accurately predict the change in LV cavity volume during a cardiac cycle. The LV volume 

change continuously throughout the cardiac cycle and the various events (cardiac cycle 

phases) can be predicted. 

 

Figure 6.3: Comparison between the FE predicted LV cavity volume and experimentally 
measured data 
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equal to that at the end systolic volume (ESV = 50 ml). The LV cavity volume remained 

constant during the isovolumic relaxation phase until 0.5sec, followed by a rapid increase 

during the rapid filling phase until 0.65sec. Finally, the LV volume slightly increased during 

the reduced filling phase up to the end of the cardiac cycle. 

6.4 Comparison between predicted FE bulk modulus and ejection fraction 

The predicted myocardial bulk modulus (K) and ejection fraction (EF) were compared using 

the inverse FE method. Four different LV pressure-volume diagrams with different sets of 

physiological conditions were employed, as seen in Figure 6.4a, b. The initial LV cavity 

volumes of the models were 50ml, 50ml, 65ml, and 70ml for Model_1, Model_2, Model_3, 

and Model_4 respectively, while the LV wall thickness was kept constant as described in 

Figure 4.1. Figure 6.4c indicates the variations in predicted myocardial bulk modulus during 

one cardiac cycle. There is a discrepancy among the peak values of myocardial bulk moduli: 

1500kPa, 2855kPa, 4760kPa, and 8000kPa, corresponding to ejection fractions of 61.5% 

(Hall, 2011), 58.3% (Klabunde, 2011), 56.3% (Courneya & Parker, 2010) and 53.6 % 

(Stouffer, 2011) respectively. 

Figure 6.5 shows the variations in maximum bulk modulus versus ejection fraction. It is 

clear that the ejection fraction increased with decreasing peak myocardial bulk modulus 

values. Such decrease (i.e. increasing myocardial tissue compressibility) caused an increase 

in myocardial contraction, which led to an increased heart ejection fraction. Further studies 

are still required to verify the correlation among the myocardial tissue bulk modulus as a 

marker for heart function, strain and strain rate. Finally, the above results confirm the 

hypothesis in computing the active myofiber Young's modulus and inverse FE analysis usage 

to determine the myocardial tissue bulk modulus. 
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Figure 6.4: (a) Measured LV pressures vs. time for two different cardiac cycles; (b) 
Measured LV cavity volumes vs. time; (c) FE computed myocardial tissue bulk modulus vs. 
time 
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Figure 6.5: Comparison between the FE predicted maximum bulk modulus and ejection 
fraction 
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  CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusion 

In the present study, the human LV wall was modeled as a thick-walled ellipsoid truncated 

at two-thirds of the major axis with spatial myofiber angle distribution. The ellipsoidal 

geometry was selected for modeling the human LV for it closely resembles real anatomical 

shape and is quite simple. The model was designed to present a sensitivity study of cardiac 

mechanics with respect to myocardial fiber architecture using a direct FE model of the 

human LV (Hassaballah et al., 2014). Meanwhile, an inverse FE model of a human LV was 

used to determine the myocardial bulk modulus during the cardiac cycle (Hassaballah et al., 

2013). Based on the results and discussion presented in the preceding section, the following 

conclusions can be drawn: 

1. The oblique orientation of myofibers plays an important role in both systolic 

deformation and early diastolic function. 

2. The transverse angle (η) has little effect on the human LV function during the cardiac 

cycle. 

3. The myofiber volume fraction and fiber orientation greatly influence LV mechanics 

during the cardiac cycle. 

4. Simulation results are more sensitive to changes in helix angle (β) than to transverse 

angle (η) changes. 

5. The myocardial bulk modulus can serve as a diagnostic tool (clinical indicator) of 

heart ejection fraction. 
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6. According to the simulation results, the present FE model is sensitive to the overall 

cardiac function parameters expressed in terms of LV pressure-volume variations 

during cardiac cycle and ejection fraction.  

7. The calculations of active myofiber Young's modulus (myocardium’s active 

properties) based on LV pressure proved to be correct. 

7.2 Recommendation 

Several areas still require further investigation and potential improvements, as follows: 

1. It is vitally important to use MRI data including a reasonably accurate description of 

real geometry and myofiber orientation.  

2. The data used in this analysis was taken assuming a healthy heart "ideal proband" 

and this is quite weak to draw any significant conclusions. It is necessary to establish 

a database with information from normal hearts at different developmental stages 

and from pathological hearts through disease progression.    

3. The greatest challenge is to develop a model correlating cardiac function-electrical 

activation of the myocardium, soft tissue myocardial mechanics, ventricle fluid 

mechanics, and coronary flow. 
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