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ABSTRACT 

This thesis introduces applications of support vector machine (SVM) and hidden 

Markov model (HMM) for signal processing and image processing. The result of the 

SVM classifier treated as is used as observation to the HMM and the state is estimated 

by probabilistic argument maximization. The probability of state is calculated by the 

classification outcome and the previous state. This method is tested on two case studies. 

The first case study is about controlling an automated wheel chair using 

electrooculography (EOG) traces in electroencephalograph (EEG). EOG traces 

originate from eyeball and eyelid movements and they are embedded in EEG signals 

collected from the scalp of the user at three different locations. Features extracted from 

the EOG traces are used to determine whether the eyes are open or closed, and whether 

the eyes are gazing to the right, center or left. These features are utilized as inputs to a 

few SVM classifiers whose outputs are regarded as observations to an HMM. The 

HMM determines the state of the system and generates commands for navigating the 

wheelchair accordingly. The second case is related to bin level classification and 

collection scheduling. First the exact bin location and orientation are detected using 

Hough line detection and angle measurement. Then the Gabor filter (GF) features are 

extracted from the bin opening in the image and used as inputs to an SVM classifier. 

The output is the exact bin locations and waste level classification, which is empty, low, 

full or overflow. The classes of waste level are considered as observation of HMM to 

estimate the interval to collection time. The system achieves 98% accuracy in 

estimating the wheelchair navigation command from EOG tracing in EEG signal and 

100% accuracy in estimating the waste collection schedule. 
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ABSTRAK 

Tesis ini memperkenalkan aplikasi menggunakan gabungan mesin sokongan vektor 

kod (SVM) dan model Markov tersembunyi (HMM) teknik untuk pemprosesan isyarat 

dan imej. Hasil pengelasan SVM digunakan sebagai pemerhatian kepada HMM yang 

hasil keadaanya dianggandari kebarangkalian maksima hujah yang diguna pakai. 

Kaedah ini diuji ke atas dua kes masalah anggaran. Kes pertama adalah mengerai mata 

menatap kawalan gerakan kerusi roda automatik menggunakan jejak EOG. Artifak 

electrooculography (EOG) yang dikesan adalah berasal dari bebola mata dan 

pergerakan kelopak mata yang dapat dilihat di dalam isyarat EEG dan direkod dari tiga 

lokasi yang berbeza. Ciri-ciri yang diambil dari artifak EOG digunakan untuk 

menentukan sama ada mata adalah terbuka atau tertutup, dan pandangan ke kanan atau 

kiri. Ciri-ciri ini digunakan sebagai masukan ke beberapa penjodoh SVM yang 

keluarannya dianggap sebagai pemerhatian untuk HMM. HMM menentukan keadaan 

sistem dan menjana arahan untuk memandu arah kerusi roda itu seperti yang diarahkan. 

Kes kedua ialah mengenai pengesanan tahap sisa pepejal di dalam tong sampah dan 

penjadualan untuk kutipan. Sisir dan orientasi tong sampah dikesan dengan 

menggunakan teknik Hough Trasnform dan ukuran sudut. Kemudian, ciri-ciri turas 

Gabor (GF) akan dikeluarkan dari imej tong sampah yang dalam keadaan terbuka dan 

digunakan sebagai masukan ke pengelas SVM. Keluaran dari SVM adalah lokasi tong 

sampah tersebut dan pengelasan tahap sisa sama ada dalam tahap kosong, rendah penuh 

atau melimpah. Kelas tahap kepenuhan sisa ini digunakan oleh HMM sebagai 

pemerhatian untuk menganggarkan jadual koleksi yang berkadar dengan masa. Sistem 

ini mencapai ketepatan 98% dalam menganggarkan pandangan mata dari isyarat EEG 

untuk kawalan kerusi roda dan ketepatan 100 % dalam menganggarkan jadual kutipan 

sisa.  
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CHAPTER 1 

Introduction 

1.1 Chapter Overview 

Support vector machine (SVM) is a well-known binary classification method for 

classifying logical or numerical features of a sample in a given instant and hidden 

Markov model (HMM) is well used state estimation method. In this chapter a brief 

background study of “Eye Gaze Controlled Wheel Chair Navigation System using 

EEG” and “Solid Waste Bin Level Classification and Collection Scheduling” are 

presented. In the following chapter the problems and the proposed solutions using 

HMM and SVM will be stated. This is followed by the objectives of the thesis and 

finally, the outline of the thesis will be described. 

1.2 Eye Gaze Controlled Wheel Chair Navigation System using EOG traces in 

EEG:  

Over the years various forms of human machine interface (HMI) systems have been 

developed for different purposes. Recent advancement in signal processing have 

enabled HMI users to issue commands in the forms of voice, motion of body parts, 

electromyography (EMG) [1, 2], electrooculography (EOG) [3-5], 

electroencephalography (EEG) [6, 7] or a combination of input signals [8, 9]. HMI 

using voice and visual cues like hand gestures have been successfully used by people 

with Parkinson disease, quadriplegia, amputated or missing limbs, and motor skill 

disorders [5]. Those HMI systems are not as effective for patients of amyotrophic lateral 

sclerosis (ALS), Motor Neuron Diseases, Guillain-Barre-Syndrome or brain stem 

infections due to difficulties in performing voluntary muscle movement. Those most 

severely affected may lose all voluntary muscle control and may be completely locked 

in their bodies, unable to communicate in any way. They affect nearly two million 
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people in the United States alone, and far more around the world [1-3]. Brain or eye 

activity is often the only available method of unimpaired communication [4, 5]. People 

largely paralyzed by massive brainstem lesions can often use eye movements to answer 

questions [6]. 

EEG is an electrical brain signal recorded from the surface of the scalp using 

electrodes. EEG signals have been utilized by researchers from diverse fields to study 

epilepsy, apnea, coma, and various brain or neural functions and disorders. EEG signals 

have also been used to help those with disabilities translate their intentions into 

computer commands via a Human Machine Interface (HMI). Several useful derivatives 

of EEG signals such as P300 wave [7-9], mu and beta rhythms and steady-state visual 

evoked potentials (SSVEP) have been investigated [10-12]. Electrooculography (EOG) 

is the electrical signal or potential difference between retina (negative pole) and cornea 

(positive pole) of the eye. The induced voltage can be measured in vertical or horizontal 

direction using two sets of electrodes placed at outer canthi. The EOG signal can vary 

from 50 to 3500μV with frequency below 100Hz. The positive pulse is generated when 

the cornea moves towards positive electrodes and vice versa. Besides noise, EOG 

signals may also contain artifacts from EEG, EMG, electrocardiography (ECG), head 

movement, electrodes placement and luminance. Likewise, EEG signals may also 

contain noise and traces of other signals like EOG.  

The dipolar potential of the human eye can affect EEG signal [13] for example 

blinking or low frequency eye movement patterns can cause a dipolar artifact in the 

signal [14]. The main disadvantage of EOG is obtrusive, while EEG is invasive but not 

obtrusive [6]. Since electrodes are connected to the scalp via a cap worn on the head, 

they are attached securely so that the user can concentrate on the tusks with 

unobstructed sight. Progress in signal processing and statistical algorithms to classify 

signals allows to be implemented in BCI systems for various applications. 
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There are two types of classifiers widely used for signal classification and they are 

statistical and neural network classifiers. Previous approaches on brain signal 

application and analysis show that the Neural Network has a good performance in 

classification process but lack in robustness and speed. SVM a form of neural classifier 

that is stable, robust and accurate. In many instances, it has been shown that it performs 

better than a common artificial neural network classifier like MLP. HMM is a statistical 

tool that can be used to model processes that involves changing in sequences. The 

survey on algorithms which are mostly applied in EEG analysis is presented in Table 

1.1. 

Table 1.1: Properties of classifiers used in BCI research from [15] 
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Classifiers 

FLDA X     X   X   X     

RFLDA X     X   X X X     

Linear-SVM X     X   X X X   X 

RBF-SVM   X   X   X X X   X 

 Neural Networks 

MLP   X   X   X     X   

BLR NN   X   X   X     X   

ALN NN   X   X   X     X   

TDNN       X X       X   

FIRNN   X   X X       X   

GDNN   X   X X       X   

Gaussian NN   X   X   X     X   

LVQ NN   X   X   X     X   

Perceptron X     X   X   X     

RBF-NN   X   X   X     X   

PeGNC   X   X   X X   X   

Fuzzy ARTMAP NN   X   X     X   X   

 Estimators 

HMM   X   X   X     X   

IOHMM   X     X X     X   

Bayes quadratic   X   X     X   X   

Bayes graphical network   X   X     X   X   

k-NN   X     X   X   X   

Mahalanobis distance   X     X   X   X   
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1.3 Solid Waste Bin Level Classification and Collection Scheduling: 

Human activities generate waste that must be managed and disposed of properly. In 

areas of large population, waste is a big concern and solid waste management (SWM) is 

an attempt to manage, re-use and reduce the amount waste materials that are growing 

with the increase in human population all over the world. Increasing population, 

growing economy, rapid urbanization and the rise in community living standard have 

greatly accelerated the daily rate of municipal waste production [16].  A survey on solid 

waste management system of different cities in developed countries shows that efficient 

SWM systems require skilled personnel, appropriate equipment, right infrastructure, 

proper maintenance and the support of the central and local government as well as the 

consumers [17]. Sustained development and improvement of the existing SWM system 

in developing countries can only be attained with financial support of the government, 

interest in solid waste management and increased awareness of the negative impacts of 

untended waste that pollutes the environment especially in overly populated areas [18, 

19].  

The rapid rise of population in cities and the resulting increase in waste is posing 

serious challenges to local authorities and solid waste management companies handling 

waste collection and disposal as well as tracking the movement and flow of waste [20]. 

A notable number of research works on SWM have been published but most of them 

are related to bin truck and land fill planning and management [6]. To increase the 

accuracy and efficiency of SWM, the use of modern tools like radio frequency 

identification (RFID), general packet radio systems (GPRS), global positioning systems 

(GPS) and geographical information systems (GIS) are recommended [21]. Common 

issues that are prevalent in high density residential areas like apartments and slums are 

improper disposal of waste, overflowing waste bins and smelly bin area due to spill. 

These problems could be minimized with an online monitoring system where the 
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garbage level in the bins is detected automatically so that the garbage can be collected 

before the bins overflow and the rubbish spills. 

Static garbage collection is a common practice where waste is collected from bins at 

fixed interval, normally once or twice a week. Johansson et al, [22] studied the 

effectiveness of different scheduling and routing policies based on real-time bin data 

from several recycling stations in Malmoe, Sweden. The study indicates that dynamic 

garbage collection can be implemented with the use of bins equipped with level sensors 

to improve the collection process, and reduce operating costs and collection time as 

compared to static collection with fixed routes.  

1.4 Problem Statement: 

Electroencephalography (EEG) is a form of electrical signal recorded from the 

surface of the scalp using electrodes. EEG signals obtained from some positions on the 

scalp contain traces of EOG signals related to vertical eyelid and horizontal eyeball 

movements. These movements can be classified using SVM classifiers. The gaze 

direction itself is not directly known but traceable from the EOG artifacts recorded. It 

can be inferred using an HMM if the current gaze direction is known.  

In the second case study, features extracted from waste bin images are used as 

inputs to SVM classifiers to determine the bin position and orientation as well as the 

waste level inside the bins. Then the garbage collection scheduling is automatically 

updated by an HMM based on the level of waste detected in the bins.  

1.5 Thesis Objectives 

The objectives of the work presented in this thesis are stated as follows. 
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1. To classify and estimate states of brain signal using support vector machine (SVM) 

and hidden Markov model (HMM) in “Eye Gaze Controlled Automated Wheel 

Chair Maneuver System Using EEG”. 

2.  To classify the waste level and estimate the collection scheduling using support 

vector machine (SVM) and hidden Markov model (HMM) in “Solid Waste Bin 

Level Classification and Collection Scheduling System.”  

1.6 Thesis Outline 

This thesis is divided into five chapters. Chapter two presents a literature survey on 

the theory and the application areas of HMM and SVM. Brief reviews on image 

processing techniques that are relevant to the case studies are presented in this chapter. 

Semiautonomous wheel chair navigation systems those use EEG and EOG signals are 

presented in this chapter. The chapter ends with the description of a number of works 

that have been reported on solid waste bin level classification. 

In Chapter 3 the methodology of the proposed wheel chair system controlled by 

EOG traces in EEG is explained. This includes signal acquisition, feature extraction, 

classification, state estimation and wheel chair navigation. The results of every step are 

compiled in the result and discussion section of the chapter. 

Chapter 4 presents the waste bin level classification and collection scheduling 

system. Details of the implementation of image acquisition, image preprocessing, bin 

detection, feature extraction, classification and state estimation steps are elaborated. The 

results achieved by the proposed method are compared with those of previous methods 

in terms of classification accuracy and execution time is presented in the last part of the 

chapter.  

Finally in chapter five, the works are summarized and a conclusion is drawn. 

Possible future works are also outlined.   
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CHAPTER 2 

Literature Survey 

2.1 Chapter Overview 

In this chapter a survey on the theory and applications of hidden Markov model 

(HMM) support vector machine (SVM) classifier is presented. Then image processing 

techniques that are used in the work are described. This is followed by a short review on 

semi-autonomous wheel chair navigation systems that have been designed and reported. 

Finally recent waste level classification approaches related to the second case study is 

introduced.  

2.2 Hidden Markov Model (HMM) 

An hidden Markov model (HMM) is a doubly stochastic process with an underlying 

stochastic process that is not observable (it is hidden), but can only be observed through 

another set of stochastic processes that produce the sequence of observed symbols [23]. 

HMM estimates the state of system based on observations and previous states. The 

observation is only visible part of the system where states are deterministic hidden part 

of the process.  

The element of the model are defined as follows 

 T = Length of the observation sequence 

 N = Number of possible states 

 M = Number of observation symbols 

 S = States (S1, S2… SN) 

 O = Observations (O1, O2… OM) 

 qt = Estimated state at time t 

 vt = Observation at time t 
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There are three probabilities that govern the estimation of states form the sequence 

of observations. The probabilities are as follows: 

 Initial state distribution:  ii SqP  1 , The probability of Si the initial 

state,  

 Transition probability distribution    jtitijij SqSqPaaA   |; 1 , 

probability of current state qt in condition of previous state qt-1.  

 Emission probability distribution    jtitijij OvSqPbbB  |; , 

probability of current state St in condition of current observation Ot. 

The model is denoted by the distributions as A, B, The state is detected by 

maximizing the product of probabilities as shown in equation (2.1) and (2.2). 

     ttttt vqPqqPPqP |.|).(| 1   (2.1) 

  |maxarg tt qPq   (2.2) 

Where, P(qt|) is the probability of the state q at time t for a given model . The 

distribution of probabilities between states and observations are shown in Figure 2.1. In 

the figure i,j,k,l are the instances of states and a,b,c,d are the instances of the 

observations. 

 

Figure 2.1: Probity distribution of hidden Markov model.  

q1 = Si q2 = Sj q3 = Sk q4 = Sl

v1 =Oa v2 =Ob v3 =Oc v4 =Od

a(i,j) a(j,k) a(k,l)

b(a,i) b(b,j) b(c,k)
b(d,l)

(i)



9 

 

2.2.1 Basic Three Problems of Hidden Markov Model (HMM) 

Computation of the probability distributions has three basic problems in real time 

implementation of HMM in state estimation [23].  The basic problems are: 

Evaluation problem: Measure the degree of matching between a given observation 

sequence (  tvvvV 21, ) and the model  that matching score presents how well the 

given model matches a given observation sequence. This problem denotes to P(V| λ).  

Decoding problem: Calculate the most likely sequence of hidden states qi from a 

model λ=(A,B, ) and an observed sequence  V=v1,v2,…,vT.  

Learning problem: Determine HMM parameters λ’=(A’,B’, ’) that best fit for 

training observation sequences  tvvvV 21, and general structure of HMM 

(numbers of hidden and visible states). This is the problem of model parameters A, B 

and  optimization to A’, B’ and ’ so as best describe how a given observation 

sequence comes about. 

2.2.2 Solution of the Basic Problems 

Solution of Evaluation Problem: This problem can be considered as the scoring 

problem of the model. The aim is to calculate the probability of the observation 

sequence (  tvvvV 21, ) in condition with the given model λ=(A,B, ) i.e. P(V|). 

This problem was solved by forward-backward procedure [24, 25]. Forward variable 

t(i) is defined as the joint probability of v1, v2, v3 … vt and state qt = Si with condition 

of given . The evaluation score can be calculated from the forward variable as; 

 



N

i
T iOP

1

)|(   (2.3) 
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where   )|,( 21  ittt SqvvvPi    (2.4) 

The backward variable t(i) is defined as the probability of the partial observation 

sequence from t+1 to the end, given state Si at time t and the model .  

),|()( 21  ittttt SqvvvPi     (2.5) 

Solution of decoding problem: This problem is to find the optimal state sequence for 

a given observation and model can be solved in several possible ways. That means there 

are several possible optimal stare sequences. One well used method to solve this 

problem is Viterbi Algorithm [26, 27]. To find the best state sequence  tqqqQ 21, , 

for given observation sequence  tvvvV 21, , the best suit score can be defined as; 

    |,max 2121
,, 12,1

tit
qqq

t vvvSqqqPi
t







 
(2.6) 

Where,t(i) is the best score (highest probability) along a single path, at time t, 

which accounts for the first t observations and ends in state Si. By induction we have: 

   11 max)(  





 tjijt

i
t Obaij   (2.7) 

The maximization of t needed to be tracked to find the maximum t+1. 

Solution of learning problem: This problem is to solve the optimized parameter of 

the model There is no conventional or deterministic method to analytically solve the 

problem. Initially the values of A, B and can be assumed any values that follow the 

constrainsThe parameters can optimized  by likelihood theory by maximizing the 

probabilities of given training observation sequence and corresponding states. 
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2.3 Applications of HMM 

HMM is a well-recognized tool of speech recognition [28, 29] and hand writing 

recognition [30, 31]. The system is also used in biomedical computational problems 

[32] and statistical analysis [33].  

Yann et al. [34] introduced a navigation system for disable people using HMM. In 

this system the user can select destination from a graphical user interface (GUI). The 

system calculates the direction of the wheel chair movement by decoding the states 

from the choice of route. Morere et. al, [35] propose an intelligent navigation route 

selection system for disable people using HMM. The intelligent system relies on a 

modification of the most frequently used routes and assists the user when navigating by 

suggesting the next movement when the route has been recognized. 

Ren et al. [36] introduced a HMM based map-matching technique for wheelchair 

navigation. The map-matching method employs the Viterbi algorithm to estimate the 

correct sidewalk segments as hidden states in a HMM in order to match GPS trajectory 

on the corresponding segment sequence.  

Bartolein et al. [37] presented easy system of wheelchair control for severely 

disabled users. The gaze of the person is used to estimate the intended motion direction. 

This method produces state queue only from relevant gaze behavior. 

In image processing HMM is used mainly for sequencial pattern recognition like  

hand writing and facial expression recognition. Anand et al. [38] presented a HMM-

Based face recognition system along with singular value decomposition (SVD) 

Coefficients. Observation vectors are generated by dividing each face image into 

overlapping blocks and SVD coefficients acts as a base for constructing the observation 

sequence. The system decodes seven state of HMM from the observation through 

quantization process. 
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Samanta et al. [39] developed a handwriting recognition method using non-

homogeneous HMM. The observations are extracted by Von Mises distribution and 

Gaussian distribution. In this method HMM parameter smoothing is applied avoid 

possible over-fitting and poor generalization.  

2.4 Support Vector Machine (SVM) 

In the field of machine learning and pattern classification support vector machine 

(SVM) is one of the commonly used neural classifier [40, 41].  

SVM transform linear data in a nonlinear space using transfer functions. The idea is 

to use a mapping function that transform the data in to a linearly separable feature space 

from nonlinear. Kernel functions are used to transform the data in linear feature space 

from nonlinear attribute.  The performance of the SVM largely depends on the adaption 

of the Kernel in the feature space. SVM has a learning theory that automatically 

optimizes the separating hyperplane.  

Support vector machine is a kind of classifier developed on statistical learning 

theory. For a statistical dataset it set a decision function that split the data in two classes. 

Physically the decision function can be shown as a plane between the two classes. That 

plane is known as hyperplane. That decision function comes up with a two parameters 

w and b. w is the distant parameter and b is the bias (Figure 2.2). Given a training data 

set 𝑇 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),⋯ , (𝑥𝑙 , 𝑦𝑙)}, 𝑥𝑖𝜖𝑅
𝑛, 𝑦𝑖𝜖{−1,+1}, 𝑖 = 1,2,⋯ , 𝑙. If it is linearly 

separable, then there exist (w, b) let the following inequality tenable. 

 
 







10

10

ii

ii

ybxw

ybxw
  (2.8) 

The distance between this two parallel hyperplanes is 2/(||w||)
2
. It is reasonable to 

adopt the maximum margin criterion, so the above classification problem is equivalent 

to the primal optimization problem as;  
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2

, 2

1
min w

bw
 (2.9) 

   .,2,1,0.. libxwyts ii   (2.10) 

From the optimal solution (w*, b*) of equation (2.9), we obtain the optimal 

classification boundary (w*·x) + b* = 0, and the decision function f(x) = sgn((w*·x) + 

b*). The data nearest to the optimal boundary are called support vectors. The result of 

the decision function for support vectors is 0. 

 

Figure 2.2: Support vector machine. 

In practical, data are likely to be corrupted by noise, and then linear separable 

problems become almost inseparable. Also, we need think about the robust and 

generation performance of the method. A commonly used technique is using penalty 

parameters to allow misclassification. A negative variable called “slack variable” is 

introduced with the optimization problem mentioned equation (2.11). 


l

i
bw

Cw ,
2

1
min

2

,
  

   .,2,1,0,.. , libxwyts iiii    

(2.11) 
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Where, 𝜉𝑖 is the slack variable. To solve the optimization problem equation (2.11) 

can be converted to the following Lagrangian dual problem: 

   
  


l

i

l

j

l

i
ijijiji

bw
xxyy

1 1 1, 2

1
min   

.,2,1,0,0..
1

liCyts i

l

i
ii 



  

(2.12) 

From the solution of equation (2.12)) we can construct the decision function: 

    












 



l

i
iii bxxyxf

1

sgn   (2.13) 

This is the basic linear support vector machine [42]. This basic decision function 

makes a linear hyperplane on the feature space.  

The aim of Kernel function is to build a nonlinear hyperplane that can give best 

classification result. Using the Kernel function the decision rule becomes   

    












 



l

i
iii bxxkyxf

1

sgn   (2.14) 

Where, 𝑘(𝑥𝑖 ∙ 𝑥) = (𝜑(𝑥𝑖) ∙ 𝜑(𝑥)) is the Kernel function. This is the nonlinear 

SVM [43]. This mapped data into a higher feature space including nonlinear features, 

then construct a hyperplane in that space so all other equations are the same. The 

learning model transforms the optimization into Kernel form. 

 

   
  


l

i

l

j

l

i
ijijiji

bw
xxkyy

1 1 1, 2

1
min   

.,2,1,0,0..
1

liCyts i

l

i
ii 



  

(2.15) 

Frequently used transfer functions include: 
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 Linear Kernel: (𝑥 ∙ 𝑥′) = (𝑥 ∙ 𝑥′) . (This Kernel is for the basic linear SVM) 

 Polynomial Kernel: 𝑘(𝑥 ∙ 𝑥′) = ((𝑥 ∙ 𝑥′) + 𝑐)
𝑑
, 𝑐 ≥ 0.  

d is the degree of the polynomial function 

 Radial basis function (RBF) Kernel: 𝑘(𝑥 ∙ 𝑥′) = 𝑒
−
||𝑥−𝑥′||

𝜎2 . 

2.5 Applications of the SVM 

For signal classification showed that SVM has been reported to show a more stable 

and robust performance than other neural classifiers [15, 44]. This is also true for image 

processing [45-47]. 

Xu et, al. [48] proposed a new method to reduce the number of support vectors to 

speed up SVM decision for Online EEG processing in motor imagery signal 

classification. The method first obtains all the support vectors by classical SVM. Then, 

-index that measures the average distance between each support vector and its nearest 

neighbors is evaluated. Next, the support vector with smallest -index is selected. And 

then iteratively re-weight -index and select only a few support vectors to represent all 

the support vectors. 

Lin [49] presented an approach that identified the genre of songs played based on  

EEG signal classification of the listener using SVM. That system recorded a 92.73 % 

classification rate based on 60 features derived from EEG components in a window of 

one second.  

Rebsamen et al. [50] presented a brain controlled wheelchair (BCW) which is based 

on a slow but safe P300 signal. To circumvent the problem caused by the low 

information rate of the EEG signal, a motion guidance strategy providing safe and 

efficient control without complex sensors or sensor processing is proposed in this thesis. 

The action of movement was detected from P-300 brainwave by SVM classification. 
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Jianchao Yang et al. [51] presented a spatial pyramid matching (SPM) Kernel for 

image classification in SVM. In this thesis an extension of the SPM method is 

developed generalizing vector quantization to sparse coding followed by multi-scale 

spatial max pooling, and propose a linear SPM Kernel based on SIFT sparse codes.  

Belongie et al. [52] introduced an approach of measuring similarity between shapes 

and exploit it for object recognition using SVM. Features from reference points are 

extracted to match between two shapes. The contexts of the feature points have 

similarity than other points in image frame. Following this phenomenon the system 

detects a shape similar to a given template. 

2.6 Image Processing Techniques 

2.6.1 Canny Edge Detection 

The edges from the gray converted image were extracted before line detection. In 

this method canny edge detection technique was used to find the edges. At first canny 

edge detector smooth the image to eliminate and noise and then finds the image gradient 

to highlight regions with high spatial derivatives. The algorithm then tracks along these 

regions and suppresses any pixel that is not at the maximum (nonmaximum 

suppression). The gradient array is reduced by hysteresis analysis. Two thresholds are 

used in hysteresis. If the magnitude of any pixel is found below than the first threshold 

then the pixel value is set to zero (made a nonedge), if the magnitude is found above the 

high threshold then it is made an edge and if the magnitude is between the two 

thresholds then it is set to zero unless there is a path from this pixel to a pixel with a 

gradient above second threshold [53]. 

2.6.2 Hough Transform 

Hough transform is an automated digital image analysis method to detect arbitrary 

shapes.  This transform detect parameters of shapes from the boundary points in image. 
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The simplest Hough transform application is line detection. A line can be defined by 

two parameters and as equation (2.16).




























sinsin

cos
xy


(2.16) 

is the distance of the line from the reference point and is the angel of the vector 

orthogonal to the line from reference point. The line parameters are shown in Figure 

2.3. 

 

Figure 2.3: (a) Line parameters of Hough transform, (b)  plot of Hough transform. 

Each and every point in an image has corresponding values for value 

fromto. The plot of  against  (Figure 2.3(b)) shows the curve of  values of all 

corresponding pixel positions of ones. The high intensity point on the plot shows the 

presence of pixels on same line. Selecting the picks on  and  plot the parameters of a 

line can be calculated. The line coordinates can be calculated back from the equation 

(2.17). 

  sincos yx  (2.17) 

2.7 Electroencephalography (EEG) 

BCI acquire and analyze neural signals to create a communication channel directly 

between the brain and the computer [54]. There are several methods of recording brain 
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signals, such as: electroencephalography (EEG), magnetic resonance imaging (MRI) or 

magneto encephalography (MEG). EEG provides high temporal resolution and is 

comparatively easy to apply. The conventional international 10/20 system is used in 

EEG acquisition (Figure 2.4 (a)). The reference points in Figure 2.4(a) are the nasion 

and inion. The skull perimeters are measured in the transverse and median planes. 

Electrode locations are determined by dividing these perimeters into 10% and 20% 

intervals from the nasion and inion points. Three other electrodes are placed on each 

side, equidistant from the neighboring points as shown in Figure 2.4 (b). In this system, 

the electrodes are placed over the skull with a cap. A conductive gel (or fluid) is used to 

make contact between the skin and the electrode. Several approaches have been done to 

make the acquisition system more user-friendly. These include: dry contact [55], textile 

electrodes [56] or Emotive EPOC Interface [57]. The dipolar potential of the human eye 

can have a great impact on the EEG signal [13]. 

 

Figure 2.4: (a) International 10/20 EEG acquisition system, (b) Electrode position over 

head in international 10/20 system [58]. 

2.8 Wheel Chair Navigation Using EEG 

Neuromuscular disorders affect nerves that control voluntary muscles [59, 60]. 

When the neurons got affected, communication between the nervous system and the 

muscles deteriorates thereby weakening the muscles progressively [61, 62].  People 

with severe motor disabilities can still maintain an acceptable quality of life with the use 

of HMIs that do not take signals that require muscle control as inputs. A semi-
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autonomous wheelchair is an example of HMI where the user interacts with the system 

to navigate indoor and outdoor. Examples of semi-autonomous wheelchairs with 

different levels of manual assistance are listed in Table 2.1.  

Table 2.1: Examples of semi-autonomous wheelchair. 

HMI System Navigation Type 
Control 

Method 
Safety Sensors Specialty 

Nav-Chair [63, 64] 
Semi-

Autonomous 
Joystick 

Ultrasonic 

Sensor 
Avoid Obstacle 

Berman 

Autonomous [65] 

Semi-

Autonomous 
Joystick Sonar Sensor Avoid Hazard  

SENARIO [66] 
Semi and Full 

Autonomous 

Voice and 

Goal to goal 

Multiple types 

of sensor 
Control without hand 

OMNI [67] 
Semi/Full 

Autonomous 

Joy Stick and 

Goal to goal 

Multiple types 

of sensor 

Can be run in high or low 

level autonomous 

navigation 

MAid [68] 
Semi-

Autonomous 
Joystick Motion Sensor Crowed Avoidance  

Wheesly [69] 
Semi-

Autonomous 
EOG 

Proximity and 

sonar sensor 

Command system can 

change by the need of user  

VAHM [70] 
Semi/Full 

Autonomous 

Joy Stick and 

Goal to goal 

Ultrasonic 

Sensor 

Combination of High and 

Low level autonomous 

navigation 

Smart Wheel Chair 

[71, 72] 

Semi-

Autonomous 

EEG, P-300 

wave 
No sensors Run by mental tusk 

BIDIM-EOG [73] 
Semi-

Autonomous 
EOG No sensors 

Fully controlled by eye 

movement 

Assistive robotics using EEG have been commercialized to aid human with 

debilitating disability ability [74]. Examples of BCI designed using EEG for this pupose 

are peoplebot [75], iRobot [76], robotino [77]. Several researches have been conducted 

by the rehabilitation engineers to develop intelligent wheel controlled by EEG or 

derivative of EEG for mobility assistance like NavChair [63, 64] , Berman Autonomous 

Wheelchair [65].  

Millan et, al. [78] and Rebsamen et, al. [72] proposed methods without the mode 

shifting for semiautonomous wheelchair. Those systems are based on P300. The system 
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flashes predefined target destinations several times in a random order. The target is 

selected by largest P300 stimuli of the user. Then, the intelligent wheelchair reaches the 

selected target autonomously.  

2.9 Electrooculography (EOG) 

 EOG is the system to measure the potential of corneo-retinal system. Several 

electrodes are placed around the eye. The conventional arrangement of the electrodes 

for obtaining an EOG signal is shown in Figure 2.5. The electrodes are made of Ag-

AgCl. Two electrodes are placed to the left and to the right of the outer canthus of the 

eye to detect horizontal movement. Two additional electrodes are placed above and 

below of the eye to detect vertical movement. Another electrode is connected to the 

forehead of the subject (or ear) to serve as a ground. Since the signal amplitude is very 

low, it is passed through differential amplifiers with high gain [73, 79-81]. The voltage 

difference of EOG varies from 50 to 3500 μV with a frequency from DC to 100Hz. 

There is a nearly linear relationship between changes in the potential difference 

(voltage) and gaze angle. This is approximately 20 μV for each change of gaze. Two of 

the most successful EOG projects are integral system for assisted mobility (SIAMO) 

[82, 83] and Eagle eye [81] which involved rehabilitation of handicapped people. 

 

Figure 2.5: Conventional EOG electrode assembly [81]. 
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2.10 Wheel Chair Navigation Using EOG: 

Among various types of bio signal used for wheel chair navigation EOG is found to 

be easy to acquire and analyse like EEG.  

Barea et. Al, [73, 80, 84] developed a navigation system consists of a standard 

electric wheelchair with an on-board computer, sensors and a graphic user interface 

(GUI) run by the computer. They have introduced a model named BiDiM-EOG which 

controls the cursor of the GUI. The user can convey command by clicking direction 

option on the GUI. 

Yathunanthan et. Al, [85] introduced a system to detect eye movement by 

processing EOG signal, and associates the eye movement to motion commands of the 

wheelchair such as forward, reverse, left and right. That system detects the peaks of the 

EOG to identify eye movement directions that is interpreted to movement command of 

the wheel chair. A 99% accurate classification rate has been by this experiment. 

Wijesoma et. al. [86] and Champaty et. al, [87] developed a mobile assistive platform 

that can be controlled by eye using the peaks in EOG. Boquete et. al, [88] also used 

EOG as media of navigation command in eye movement guided wheel chair navigation. 

That system detects and classifies the eye movement using artificial neural network.  

Noor et. al, [89] applied fuzzy logic to interpret wheel chair navigation commands from 

EOG peaks. 

Hashimoto et. al, [90] developed the command conveying system using both EOG 

and EMG signals. Based on the biopotential signals, the interface recognizes the 

operator’s gestures, such as closing the jaw, wrinkling the forehead, and looking 

towards left and right. By combining these gestures, the operator controls linear and 

turning motions, velocity, and the steering angle of the wheelchair.  

Wei et. al, [91] presented a combined system using EOG and EMG to classify 

human facial movement based on multi-channel forehead bio-signals. Five face 
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movements form three face regions: forehead, eye and jaw are selected and classified in 

back propagation artificial neural networks (BPANN) by using a combination of 

transient and steady features from EMG and EOG waveforms. The identified face 

movements are subsequently employed to generate five control commands for 

controlling a simulated Intelligent Wheelchair. 

2.11 Solid Waste Bin Level Classification and Collection Scheduling 

Bin level is very important information for the collection and disposal of wastes. 

Bin level detection has been studied by several researchers for last five years. Early 

researchers used different kinds of sensors to detect the bin. Due to the cost 

ineffectiveness and workload, recent researches are focused on image processing 

techniques in this regards.  

2.11.1 Sensor Based Methods  

Garbage bin level detection has been proposed and studied as a means to improve 

the collection and disposal of wastes in the last five years. In one pilot study, infrared 

LED level sensors equipped with wireless communication system were installed in 

3300 garbage bins in Sweden [22]. In each bin, four sensors were installed at different 

height. The garbage level is detected by the highest sensor obstructed by the wastes. 

Other types of sensors proposed by researchers are capacitive moisture sensor [92], 

point-level capacitive sensor [93] and optical sensor [94]. However, the cost of 

installation and regular cleaning of the sensors lead many to believe that using sensors 

for bin level detection is impractical. Skilled personnel are required to clean and or 

troubleshoot defective sensors and mountings regularly. This process the process is 

tedious and time consuming. Moreover, some sensors are only suitable to be used in 

certain conditions. For example, capacitive sensors those are sensitive to humidity, 

work well for volume measurements during rainy season.  



23 

 

2.11.2 Image Processing Based Methods  

An automated bin collection system based on a combination of image processing 

and digital distance sensors was developed by a team of researchers from Politecnico di 

Milano and the Shanghai Jiao Tong University [11]. A low cost image acquisition 

system and distance sensors were used to detect changes in waste level in the bins. The 

difference between two consecutive frames of acquired images and the height of the bin 

level measured by the distance sensors were monitored in real time. In another work, 

Vicentini et al. employed a similar image difference technique to detect both change 

and height of the waste level in a bin by subtracting the previous frame from the current 

frame [12]. An intelligent real time image processing method using a motion sensor and 

camera was introduced by Zhu et al. [13]. The closing and opening of bin was detected 

by motion sensor and images of the bin were captured by a camera mounted over it. The 

level of waste in the bin was determined by comparing two consecutive images. The 

drawback of methods that rely on image difference is the need to always capture exactly 

the same area or objects in consecutive image frames. Thus, it is important to ensure the 

camera position is fixed relative to the bin opening area at all time. A little jitter, shift or 

rotation to the mounting or the camera itself results in erroneous classification. This 

stringent requirement is impractical in real time applications. To neutralize this 

deficiency, advanced statistical learning theories and image processing techniques were 

used in subsequent works that adopted image difference technique [10]. 

A method using gray level aura (GLAM) matrix as a feature extractor and K-nearest 

neighbor (KNN) as a classifier was developed by Hanna et al. [14]. The method 

provided a robust solution for automated solid waste bin level detection, collection and 

management. GLAM of an image measures the amount of each gray level occur in the 

presence of other grey levels in the neighborhood. Feature vectors were constructed by 

the aura measures of captured image frames. Samples of features were extracted from 
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training images and stored as references in the form of vectors. In the classification 

process, a feature vector is extracted from the captured frame and then compared to the 

stored reference vectors. K reference vectors that are nearest to the input feature vector 

are selected and the class of the input vector is determined by a majority vote of the 

classes of its nearest neighbors [15]. The system showed good classification rate but its 

accuracy dropped when the bin was shifted or rotated. 

Islam et al, [16] came up with a solution for shifted bin using template matching and 

Dynamic Time Warping (DTW). DTW is a pattern matching algorithm which finds the 

warping path of two patterns from their distance metric [17]. First, the captured image 

was scanned section by section to find the location of the bin using a template of the bin 

as a reference. The similarity between the section of the image and the template was 

measured using DTW. The section that registered the minimum score was considered as 

containing the bin. Then the features were extracted from the bin area using Gabor 

Filter (GF) and classified by Multi-Layer Perception (MLP) into several classes. 

However, the system requires a fixed camera position and bin orientation to operate 

effectively. Furthermore, the presence of square objects with size similar to the bin 

opening in the image affected its performance. The accuracy of the method fell the 

when the bin got rotated or overflown with rubbish and when square objects are present 

in the image.  

W. A. Zaila et, al. [18] utilized Hough transform to extract line information from the 

entire image and used the line coordinates as a feature for bin level classification. In 

their work, gradient information is used with Hough transform to find lines in each 

frame. Then using the voting procedure of Hough Transform the coordinates of edge 

lines with high intensity are extracted and used to detect the presence of waste inside 

and outside of the bin. They claim that a good classification is achieved in detecting the 

presence of waste outside the bin. However, the accuracy of the waste level in the bin is 
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only 82.93%. This is because the edge information is obtained from the entire image 

rather than just from inside the bin area. Furthermore, there is no guarantee that the 

rubbish will always display strong linear edge gradient especially when their shape is 

arbitrarily nonlinear. Since no attempt is made to locate the bin opening, it is assumed 

that the level of rubbish in the bin corresponds to the number of lines detected in the 

whole image, which is not always accurate. 

2.12 Summary 

In this chapter a literature survey on brief algorithm and applications of HMM and 

SVM are presented. These sections are followed by the descriptions of image 

processing algorithms which are relevant to the cases of the objectives. In the next 

sections EEG and EOG signals and their applications in wheel chair navigation systems 

are described. Finally a brief literature review on solid waste bin level detection is 

presented.   
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CHAPTER 3 

Case Study 1: Eye Gaze Controlled Automated Wheel Chair 

Navigation System Using EEG 

3.1 Introduction 

In this chapter framework of wheel chair navigation system based on SVM and 

HMM is presented. In the following sections the methodology, feature extraction 

classification, experiment and the results of the case study is described in detail.  

3.2 Methodology 

Blinking and horizontal eye movement signals can be traced from dipolar artifacts 

in EEG signals [14]. The spectral amplitude of the trace in the alpha response is higher 

when the eyes are closed than when they are open [40]. Therefore, the eyelid position 

can be inferred from the trace obtained from the O2 occipital region. By contrast, the 

low frequency artifacts extracted from the delta rhythm of the frontal lobe are related to 

the horizontal eyeball movement. Hence, the user’s gaze direction can be inferred from 

the frontal leads of F9 and F10 [95]. Another important cue extracted from the delta 

rhythm trace is blinking. Since both the natural and intentional blink exhibit the same 

cue, double blink is used instead.  

In our experiments, the electrodes are placed at F9, F10 and O2 sites as shown in 

Figure 3.1. In the experiment, the earlobe is used as reference and FPz is taken as the 

ground. 

The O2, F9 and F10 signals are sampled at 256 samples per second (Hz). The EOG 

trace in the O2 signal is obtained by bandpass filtering the signal with a Butterworth 

filter with a passband of 8-13Hz. The F9 and F10 signals are filtered with a Chebyshev 
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lowpass filter with a cutoff frequency of 4Hz. Then for each filtered signal, a window of 

128 samples is analyzed every 0.5 second. 

 

Figure 3.1: The positions of the electrodes and samples of their trace signals. 

3.2.1 Open or closed eye classification 

The alpha trace of channel O2 exhibits higher amplitude of signal fluctuation when 

the eyes are closed than when they are open as shown in Figure 3.2. The common 

amplitude of the signal is around 5-10uV when the eyes are open and 20 – 40μV when 

they are shut. 

 

Figure 3.2: Alpha signal during closed and open eye. 

From the alpha trace, two simple features can be calculated to distinguish closed 

from open eyes, variance and central tendency measurement (CTM). The variance (σ
2
) 

of the 128 samples in the 0.5s window is given by 

 



N

i

ix
N 1

22 1
  (3.1) 

where N is 128 and   is the mean of the samples.  



28 

 

Central Tendency Measurement (CTM) is simply a 2D plot of sample difference. It 

is a plot of [x(n + 2) – x(n + 1)] against [x(n + 1) – x(n)] that displays the rate of 

variability in a time series. From this plot, the ratio of the samples that fall inside a 

circle of radius r over the total number of samples is calculated. Let N be the total 

number of points in a window frame. Excluding the end points there are N-2 points in 

the CTM plot. The CTM ratio is defined as 
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We find that the CTM ratio of alpha trace is bigger during closed eye than open eye 

as shown in Figure 3.3. In our experiment, the radius of the circle (r) was fixed at 2. 

Both variance and CTM are used together to determine whether the eyes are closed or 

open. 

 

Figure 3.3: (a) CTM plot of closed eye alpha (b) CTM plot of open eye alpha. 

3.2.2 Gaze direction classification  

In our system, only three gaze directions are used and they are left, center and right. 

As the eyeballs move from one direction to another, voltage levels of the F9 and F10 

traces changes in the opposite directions. For example, when the eye gaze shifts from 

center to left, the F9 trace decreases but the F10 trace increases by the same amount. 
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The same phenomenon is observed when the gaze moves from right to center. But when 

the eye gaze moves from center to right or from left to center, the F9 trace increases 

while the F10 trace decreases.  

The eye gaze can also shift directly from left to right or the reverse. When this 

happens, a higher jump in voltage levels in F9 and F10 traces is observed as shown in 

Figure 3.4. This is probably due to a full distance shift by the eyeballs going from 

corner to corner as compared to a half distance shift from center to corner (or corner to 

center). To accentuate the effect of the opposite voltage level movements in F9 and F10 

traces caused by gaze shift, we subtract F10 from F9 and extract two features from the 

difference signal. They are the voltage level rise and average first derivative. The 

derivative of the i
th

 sample is defined as 

 
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Where, n = 128 and a = 5 in our experiment. Then the average of the first 

derivatives (f) is calculated as 
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The two features are fed to a series of SVM classifiers that classifies a gaze shift 

into 5 classes which are unchanged, half right, half left, full right and full left. Full right 

is the corner to corner gaze shift from left to right, while full left is the corner to corner 

gaze shift from right to left. Half right and half left are semi gaze shift to the right and 

left respectively. Half right represents either a center to right or left to center gaze shift 

since they both produce the same voltage level change. Similarly, half left represents 

either a center to left or right to center gaze shift. Knowing the eye gaze direction prior 
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to half left or half right gaze shift, allows the system to determine the final gaze 

direction.  

 

Figure 3.4: Samples of voltage jumps caused by gaze shifts 

3.2.3 Double blink detection classification 

When the user blinks his eyes, intentionally or otherwise, a short positive pulse or 

spike is detectable in both the F9 and F10 signals temporarily.  Therefore adding F9 and 

F10 signals should accentuate the blink signal and attenuate the effect of horizontal eye 

movement as shown in Figure 3.5. Since natural and intentional blinks generate 

identical pulse in the added signal, they are indistinguishable. Thus, a double blink is 

used instead as one of the instructions in the system. Since a double blink consists of 

two close blinks, two spikes or pulses should be observed within two consecutive 

window frames. Variance and average first derivative can be extracted from the sum 

signal (F9 + F10) to detect the presence of a double blink. 
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Figure 3.5: (a) EEG signal pattern of F9 and F10 Channels when blinks. (b) Added 

pattern of EEG signal. 

3.2.4 Sliding window 

While monitoring the alpha trace, a conventional window frame might capture an 

interval when the eyes are just about to open or shut. During this short period, the signal 

is in transition from low amplitude to high or vice versa. In this case, the samples in the 

window are a mixture of those with low and high amplitudes as shown in Figure 3.6. 

Consequently, the variance obtained neither represents open nor closed eye condition. 

Therefore, a sliding window is used to adjust the position of the frame so that it will 

either contain samples of closed or open eye exclusively.  

First, the absolute values of the samples in the window are divided into 8 adjoining 

subintervals where each subinterval contains 16 samples. Then the average of samples 

in each subinterval is calculated and the averages of the first and last subinterval are 

compared. If the absolute difference of the two averages is more than a specified 

threshold, the window is shifted to the right by 16 samples. The process is repeated until 

their difference is less than the specified threshold. Once this condition is met, the 

variance and CTM of the samples in the whole window can be calculated. 
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Figure 3.6: (a) Conventional window, (b) sliding window capturing close eye in alpha 

rhythm. 

For the sum and difference signals of the F9 and F10 traces, the position of the 

window is also adjusted so that an important cue will be at the center of the window as 

illustrated in Figure 3.7. This step is necessary to obtain high classification accuracy. 

First, the samples in the window are divided into 8 adjoining subintervals where each 

subinterval contains 16 samples. Then the average first derivative of samples in each 

subinterval is calculated and the averages from the first and last subinterval are 

compared. If their absolute difference is more than a specified threshold, the window is 

shifted to the right by 16 samples. The process is repeated until the difference is less 

than the threshold. Once this condition is met, the variance, VLD and AFD of the 

samples are calculated. 

 

Figure 3.7: (a) Conventional window capturing part of a cue in difference signal, (b) 

sliding window capturing the full cue, (c) conventional window capturing part of a cue 

in sum signal and (d) sliding window capturing the full cue. 
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3.2.5 SVM Classifier 

An SVM is a binary classifier that is useful for segregating the input features into 

two classes. For closed or open eye classification using the alpha trace features only a 

single SVM is sufficient. This is also true for the double blink detection using features 

from the sum signal. However, to classify the gaze shifts using features from the 

difference signal, four SVMs are needed. The first SVM determines whether the gaze is 

shifted or not. If the gaze is shifted, the second SVM decides whether the shift is to the 

left or right. If the gaze is shifted to the right, the third SVM will further classify it into 

full or half shift. Similarly, if the gaze is shifted to the left, the fourth SVM will 

determine whether the left shift is half or full.  The classification process is depicted in 

Figure 3.8. Using the outcome of this classification and the initial gaze direction (prior 

state), the HMM will decide the current gaze direction (current state) of the system and 

the appropriate command for the wheelchair. 

 

Figure 3.8: Flow of classification process 
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3.2.6 Hidden Markov Model (HMM) 

The system is designed to allow the wheelchair to move forward and backward in 

three different directions. It should be able to stop as well. However, there are only a 

limited number of distinct horizontal eyeball movements and they are insufficient to 

move the wheelchair in 6 different directions. Another problem is that, left to center and 

center to right gaze shifts produce the same voltage change in the difference trace 

signal. This is also true for right to center and center to left gaze shifts. Thus, we resort 

to using an HMM to tackle this challenge. 

An HMM is a statistical model where the state is not directly visible. In our case, the 

state is left, middle or right. The transition from one state to another is governed by the 

features extracted from the alpha and delta traces. The probability of the current state of 

the model P(St|Model), is obtained by multiplying the transition probability of the 

previous state to current state P(St|St-1) and the probability of detecting the current 

observation given the current state P(Ot|St). The gaze direction that maximizes the 

product of the probabilities is chosen as the current state as stated in the following 

equations. 

     ttttt SOPSSPModelSP |.|| 1  (3.6) 

  ModelSPS tt |maxarg  (3.7) 

It is assumed that the previous state is known. At the beginning (t = 0), when the 

previous state does not exist yet, the initial probability P(π) is used to replace the 

transition probability P(St|St-1). Details on the fundamental and implementation of 

HMM are available in [54]. The hidden markov model is shown in Figure 3.9. 
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Figure 3.9: Hidden Markov model. 

3.2.7 The overall system 

The system is designed to have two modes of operation namely the ready and run 

mode. Both modes contain three states which are right, middle and left. In both modes, 

the state of the system follows the gaze direction of the eyes. The O2, F9 and F10 traces 

are analyzed every 0.5 second. Features extracted from these signals are used to inspect 

the condition of the eyes whether they are closed or open, the occurrence of double 

blink and gaze shift. 

The ready mode allows the system to be executed at software level only so that the 

user can train and check the system functionality while the wheelchair is stationary. 

This mode also allows the user to select either forward or backward as the direction the 

wheelchair will go when it enters run mode. For run mode, both the software and 

hardware of the system are fully functional. In this mode the wheelchair will move 

according the gaze direction. It can move straight, turn left or turn right, in forward or 

backward direction. It stops if the user closes his eyes or double blink.  

When the system is turned on, it is assigned to the middle state of the ready mode by 

default. The state should follow the gaze direction of the eyes at all time. If the state of 

the system fails to follow the gaze shift correctly, an error occurs. The system is 

designed to correct minor errors automatically but inform the user when a major error is 



36 

 

detected. A minor error occurs when the state is correct but the command signal is 

wrong. For instance, the current state is middle but the command asks the system to 

move the state from left to right. In this case, the system will just move the state from 

center to right. A major error occurs when the state is wrong and a command cannot be 

executed at all. For example, the state is right and the command is to move the state 

from left to right. In this case, the system cannot execute the command as the state is 

already right. Thus, the system will alert the user to move his gaze to the center and 

reset its state to the middle. For whatever reason, the user can also reset the system 

manually by closing her eyes for at least 3 seconds. 

Once the user is familiar with the system, she may want to command the wheelchair 

to move. The first step is to choose the direction the wheelchair will go when entering 

the run mode, either forward or backward. The move direction is chosen by shifting the 

state to the right or left, for forward or backward direction respectively. Then the user 

should maintain her gaze in that direction for at least 3 seconds or 6 consecutive frames 

to lock the chosen direction. The user can change the move direction by gazing at the 

opposite direction and maintaining her gaze for at least 3 seconds. But if the user wants 

to unlock the move direction, she simply has to shut her eyes for at least 3 seconds. This 

action unlocks the move direction and returns the system to middle state of ready mode. 

The user is expected to set her gaze to the center when opening her eyes so that her gaze 

will match with the default state. Once a move direction is selected and the user is ready 

to move the wheelchair, he should blink twice to send the system into run mode 

immediately. This is a backup measure to correct a major error if the system fails to 

correct it automatically. 
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Figure 3.10: The modes and states of the system. 

Upon entering the run mode, the user is given 3 seconds to direct his gaze to where 

he wants to go before it is taken as the first instruction to move the wheelchair. Each 

instruction will be executed for at least 2 seconds to maintain the stability of the moving 

wheelchair and avoid command overcrowding. Another restriction is that the 

wheelchair will stop before turning or changing direction. And finally, only a gradual 

change of direction is allowed. An abrupt change of direction from left to right or vice 

versa will be executed with an intermediate step of going straight for 2 seconds. For 

instance, if a user wishes to change the direction of the wheelchair from right to left, the 

wheelchair will change direction gradually from left to straight first before turning left. 

This is to prevent the wheelchair from toppling over. At all time, the wheelchair is 

moving at 5km/h. If a user wishes to stop the wheelchair, all she has to do is close her 

eyes for at least 0.5 second so that the system will terminate whatever command it is 

executing and stop. This action makes the system exit run mode and sends it to middle 

state of ready mode without unlocking its move direction. If the user wishes to re-enter 
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the run mode, he has to double blink as before. In ready mode, the user can also select a 

new move direction, reset the system or rest.  

It should be noted that in run mode, double blink cue is not used. This is because 

detecting a double blink is more time consuming as it occupies two consecutive 

windows. The last point to note is that in a span of two seconds, only one command is 

kept for the next move while the wheelchair is executing the current instruction. If the 

user produces multiple instructions within that interval, only the latest is kept as the 

next command to be executed. 

3.3 Experiments 

The EEG signals are recorded using g-USBAMP toolkit from Guger Technology at 

a sampling rate of 256Hz. Silver electrodes are placed at five different locations on the 

scalp according to the standard International 10–20 system. The locations are F9, F10, 

O2 with earlobe as reference and FPz as ground. These locations are selected since they 

contain the strongest EOG trace in filtered signal with minimum noise. The horizontal 

gaze movement and blink are interpreted from the F9 and F10 channels. Close and 

opened eye condition is inferred from the O2 channel. The recorded signals are 

analyzed using LabView software of National Instrument. The window size is 0.5s 

since it is the smallest possible for capturing a blink pulse.  

The experiments are conducted in three sessions namely the offline, online and 

navigation session. In the offline session, the user is exposed to the system functionality 

and data are collected to train the SVMs and HMM, and determine the values of 

thresholds needed for sliding window adjustment.  This is followed by an online session 

where the user is asked to move the wheelchair according to randomly chosen 

instructions. Lastly, a real time navigation session wherein the user is asked to navigate 
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the wheelchair along two routes is performed. Details of the experiments in each session 

are described in the following section. 

3.3.1 Offline session 

The objectives of the training session are to check the system condition and record 

alpha and delta signals for calculating thresholds and training the SVMs and HMM. 

This session is conducted in ready mode and thus the wheelchair is stationary.  A series 

of instructions are issued to the user and the time allocated for each instruction is 5 

second. Then a 5 second break is given before the next instruction is issued. Turn left, 

turn right, go straight, double blink and close eye are the five possible instructions that 

are randomly assigned. The participant is expected to respond within 2 seconds after the 

instruction is announced. The change in states and modes are shown by the LED display 

on the user interface. If any of the instruction is wrongly or not executed, the instruction 

is repeated. Altogether, 100 instructions must be executed by each participant and the 

output signals recorded. 

3.3.2 Online Session  

The online session is conducted in run mode and thus the wheelchair will move 

according to the user’s commands. First, each participant is instructed to lock the move 

direction to forward and enter the run mode.  In run mode, there are only 4 possible 

instructions which are turn left, turn right, go straight and close eye. In total, 20 

instructions are assigned to each participant, 5 from each command. The instructions are 

randomly assigned every 5 seconds without break. Upon hearing a command, the 

participant is expected to perform it accordingly. A command is considered successfully 

executed if the user is able to move the wheelchair correctly in less than 2 seconds.  

Next, the participant is instructed to change the move direction to backward. Then 

20 instructions are assigned to each participant randomly, 5 from each command as 
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before. Throughout this session, changes in the state are also displayed on the user 

interface panel by LED lights. After that the participant is given 30 minutes to tinker 

with the system freely to gain more familiarity before the navigation session 

commenced. 

3.3.3 Navigation Session 

Two routes are designed to allow the user to navigate in indoor environment as 

shown in Figure 3.11. The passage width is in the range of 4.5m to 1.5m. The first route 

is shorter and its total optimal length is 13.5m with four checkpoints of A1, B1, C1 and 

D1. The second route has a total optimal length of 54.4m with seven checkpoints from 

A2 to G2. The participants are responsible for maneuvering the wheelchair to pass 

through these check points starting from the first point to the last point and then return 

to the first point. However, when the participants reach the dead end points of D1 (in 

Fig. 11 (a)) and G2 (in Fig. 11(b)) they are expected to reverse the wheelchair backward 

to exit the tight end and only make a u-turn at point C1 and F2 respectively. Each 

participant is given 3 attempts to repeat the task and at the end of the session they are 

asked to answer a set of questionnaires regarding their experience.  

 

Figure 3.11: The navigation route with checkpoints (a) Route 1 (b) Route 2. 
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3.3.4 Hardware implementation 

From the result of the classifier, a command to the wheelchair is identified and 

issued. The system checks whether it is the same command that is currently being 

executed. If it is the same, the execution of the current command is prolonged. If it is 

different, a new instruction in the form of a digital command is sent to a digital to 

analog module that converts the digital signal to an analog voltage level. The module 

used in our experiment is NI9264 by National Instrument. The analog output is then 

sent to a motor controller that controls the right and left motors of the wheelchair as 

shown in Figure 3.12 (a). The controller will switch on the right, left or both motors if 

the command is turn left, turn right or move forward respectively. If shut eye is 

detected, both motors will stop and the system will exit run mode and enter ready mode 

at middle state. The mode, move direction and current state are all displayed in front of 

the user by led lights as shown in Figure 3.12 (c). 

 

Figure 3.12: (a) Diagram of integrated system (b) a subject undergoing the experiment 

(c) print screen of the user interface. 
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3.4 Results and Discussion 

3.4.1 Offline and online session results 

A total of 20 healthy subjects participated in the offline and online sessions. They 

are mainly undergraduate and postgraduate students with no neurological impairments 

or nystagmus. Other data on the subjects are given in Table 3.1. In the offline session, 

the participants were required to perform double blink, eye close and horizontal 

saccades to the left and right. Altogether, 2000 signals were recorded from the 

participants. Features extracted from the EOG traces were used to train the SVMs and 

calculate the thresholds necessary for the sliding window operation. 

Table 3.1: Average height, weight, gender and corrective lenses of the subjects 

according to age groups 

Age Group Avg height (cm) Avg weight (kg) Male  Female Wearing lenses 

20-23 167.33 62.33 2 3 2 

24-27 169.02 73.14 8 2 4 

28-31 171.33 65.52 2 1 0 

32-35 152.50 61.20 0 2 2 

 

This is followed by the online session where participants were instructed to execute 

the four commands in forward and backward directions. Throughout the session, each 

of the four commands was performed 100 times in the forward and then backward 

direction. The summary of the online tests is presented in the confusion matrix of Table 

3.2. Overall, the total execution rate is 98%. It can be observed that the go straight and 

close eye commands are perfectly classified and executed. Six turn right and eight turn 

left commands are wrongly executed. Out of these errors, 8 commands are not executed 

within 2 seconds and the remaining six errors are corner to corner gaze shifts that are 

wrongly interpreted as corner to center shift. This is mainly due to the user failing to 

shift his/her gaze from corner to corner rapidly. This generates weaker pulses in F9 and 

F10 that are similar to the ones generated by corner to center gaze shift. Factors that 

may cause this error are fatigue, inattention and distraction. Another possible cause is 
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the wheelchair movement that might lead to head or body movement, which could 

result in unwanted EEG or EOG artifacts. The artifacts might in turn affect the accuracy 

of command estimation. 

Table 3.2: Confusion matrix for system errors in direction estimation. 

Command Actions 
Right-

Middle 

Left-

Middle 

Middle

-Right 

Left-

Right 

Middle

-Left 

Right-

Left 

Close 

Eye 

Not 

Executed 

Go 

Straight 

Right-

Middle 
100 0 0 0 0 0 0 0 

Left-

Middle 
0 100 0 0 0 0 0 0 

Turn 

Right 

Middle-

Right 
0 0 98 0 0 0 0 2 

Left-

Right 
0 3 0 96 0 0 0 1 

Turn Left 

Middle-

Left 
0 0 0 0 97 0 0 3 

Right-

Left 
3 0 0 0 0 95 0 2 

Stop 
Close 

Eye 
0 0 0 0 0 0 100 0 

A comparison with similar wheelchair navigation studies is given in Table 3.3. 

Although the classification rate achieved by Rebsamen et al. [8] is slightly higher, the 

execution time of their system is way higher than 1 second. On top of that, our system 

features backward movement, which is not available in other systems. Furthermore, 

they employed P300 synchronous system, which requires the user to follow the system 

pace. 

3.4.2 Navigation session results 

Five participants with the highest score in the online session were selected to 

perform the navigation tests. Then the performances of the wheelchair system and the 

participant were evaluated according to the following criteria. 

1) Task Success: Completion of the navigation through the end of path.  

2) Path length: Distance in meter traveled to accomplish the task. 

3) Time: Time in seconds taken to accomplish the task. 
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4) Path Optimality Ratio: Ratio of the path length to the optimal path (the optimal 

path was 13.5m for Route 1 and 54.4m for Route 2. See Figure 5)  

5) Time Optimality Ratio: Ratio of the time taken to the optimal time to complete 

the task (the optimal time was approximately 9.7s for Route 1 and 39s for Route 2 

based on maximum and rotational velocities of 1.39m/s and 0.4rad/s)  

6) Collisions: Total number of collisions during the tasks. A collision is not 

considered a failure as long as the system is able to continue with a new command, or 

requires a brief intervention from the supervisor. 

7) Mean velocity: Mean velocity in meter per seconds during motion. 

8) Useful Accuracy: Ratio of correct selections to the total number of selections. 

All subjects succeeded in navigating the wheelchair along the routes without 

collision. The results of the corresponding metrics are summarized in Table 3.4. The 

average distances travelled by the participants were 15.76 meter and 75.42 meter for 

route 1 and route 2 respectively. The path optimality ratios were low (1.17 for route 1 

and 1.35 for route 2) which suggests that the participants were able to travel close to the 

designated paths. The average times to traverse the routes were 15.04 and 85.67 second 

for route 1 and route 2 respectively. On average the ratio of the optimal times were 1.55 

for route 1 and 2.05 for route 2. The participants took longer time to complete the 

second route as it has more turns and longer narrow passages. The actual time is higher 

than the optimal time as it includes mode changing, command selection and 

computational time. The mean velocity of the wheelchair was 1 m/s for first route. For 

the second route the participants had lower a velocity 0.88 m/s. The maximum speed 

was limited to 1.3 m/sec for safety reasons. The useful accuracy is 98% for route 1 and 

97% for route 2. In general, a narrow performance gap observed among the participants 
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signifies the system usability and consistency to navigate and maneuver the wheelchair 

in open and small space. 

Table 3.3: Comparison between this study and other HMI system used for wheelchair 

navigation. 

HMI system Classifier 
Classification 

accuracy (%) 

 

Time(s) 

Huang et al. 

(2012) [31] 

Imagery Synchronous Mahalanobis Linear 

Distance (MLD) 

84.3 60.4 

Kus et al. 

(2012) [32] 

Imagery Asynchronous MLD 74.84 8.81 

Choi et al. 

(2013) [33] 

Imagery + 

SSVEP + 

P300 

Asynchronous SVM, CCA and 

Bayesian 

84.4 – 91 27.2 

Long et al. 

(2012) [34] 

Imagery + 

P300 

Asynchronous 

 

LDA 83.10 6 

Rebsamen et al. 

(2010) [12] 

P300 Synchronous SVM 99.78 6 

Iturrate et al. 

(2009) [35] 

P300 Synchronous Stepwise Linear 

Discriminant 

Analysis 

94 5.40 

Diez et al. 

(2011) [36] 

SSVEP Asynchronous Fourier transform 81.68 4.48 

Parini et al. 

(2009) [37] 

SSVEP Asynchronous LDA 97.5 2.38 

Postelnicu 

(2012) [55] 

EOG Asynchronous Fuzzy Logic 95.63 2.6 

Proposed study EEG + EOG Asynchronous SVM and HMM 98 0.68 

Table 3.4: Metrics to evaluate the Navigation Performance. 

Factors 

Task 1 Task 2 

min max mean std min max mean Std 

Task Success 1 1 1 0 1 1 1 0 

Path Length 13.87 17.14 15.76 1.17 55.46 95.57 75.42 19.27 

Time 12.66 17.86 15.04 1.93 67.52 117.06 85.67 18.84 

Path Optimally Ratio 1.03 1.27 1.17 0.09 1.02 1.76 1.35 0.32 

Time Optimally Ratio 1.30 1.84 1.55 0.20 1.52 2.99 2.05 0.51 

Collisions 0 0 0 0 0 0 0 0 

Mean Velocity 0.90 1.12 1.00 0.10 0.64 1.09 0.88 0.18 

Useful Accuracy 0.95 1 0.98 0.01 0.95 1 0.97 0.02 

3.4.3 Participant Experience Evaluation 

At the end of the navigational session, the participants were given a set of 

questionnaires to express their navigational experience in three metrics of average 

workload, learnability and confidence as presented in Figure 3.13. The metrics were 

measured in scale between 0 and 5 from the least to the most. The workload metrics 
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denotes the effort to accomplish the tasks. All participants agreed that it took a higher 

workload to complete Route 2 than Route 1. Because of the route 2 has more turns and 

narrower passage than the route 1. Participant P3 and P5 recorded the most effort 

required to operate the wheelchair in both route. The learnability metrics indicates that 

the participants adapted to control the navigation system based on their experience from 

the previous attempt thus increasing their confidence to perform the task. 

 

Figure 3.13: The assessment of the participants’ navigational experience as (a) work 

load (b) learnability (c) confidence. The scale of 0–5 (least to the most) was used to 

express the metrics. 

At the end of the navigational session, the participants were given a set of 

questionnaires to express their navigational experience in three metrics of average 

workload, learnability and confidence as presented. Figure 14 shows the workload, 

learnability and confidence metrics of the navigation experiment. The metrics were 

measured in scale between 0 and 5 from the least to the most. The workload metrics 

denotes the effort to accomplish the tasks. The participants reported significant increase 

in work load for route 2 than route 1 (Mean = 3.92 vs 4.44, t(4) = -2.23, p = 0.04). This 
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is because route 2 has more turns and narrower passage than route 1. Participants also 

reported increment in learnability from route 1 to route 2 (Mean = 3.68 vs. 3.96, t(4) = -

1.72, p = 0.08). The learnability metrics indicates that the participants adapted to control 

the navigation system based on their experience from previous attempts. Their 

confidence was same to perform the tasks (Mean = 3.56 vs. 3.08, t(4) = 2.59, p < 0.05). 

Figure 3.14 shows the workload, learnability and confidence metrics of the navigation 

experiment. 

 
 

  
 

 
 

Workload Learnability Confidence  

 

Figure 3.14: Workload, learnability and confidence metrics of the navigation 

experiment 

3.5 Summery 

In this chapter, the methodology of the first case study about wheel chair navigation 

system controlled by EOG traces in EEG is described. The methodology includes signal 

acquisition, feature extraction, classification, state estimation and wheel chair 

navigation processes. The wheel chair can be steered in total six directions as three 

direction forwardly and three direction backwardly. The results of every step are 

compiled in the result and discussion section of the chapter. The asynchronous system 

achieved an average classification rate of 98% in an online test with an average 

execution time of less than 1s.   
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CHAPTER 4 

Case Study 2: Solid Waste Bin Level Classification and 

Collection Scheduling 

4.1 Introduction 

In this chapter the system of solid waste bin level classification and garbage 

collection scheduling using SVM and HMM is presented. In the following sections the 

methodology and the result of the system is described in detailed. 

4.2 Methodology 

An automatic waste level detection system should be robust against bin shift, 

rotation, occlusion of the bin opening by large objects and confusion from objects 

littered outside the bin.  To achieve this objective we propose a system that detects the 

bin opening area and extracts features from it. Then the features are used as inputs to a 

classifier that determines the waste level in the bin. The system is used to detect 3 bins 

in captured image and schedule their collection sate using HMM. Figure 4.1 shows the 

flowchart of steps in the proposed algorithm. Details of each step of the algorithm are 

given in the following subsections. 

 

Figure 4.1: Flow of steps involved in the proposed method. 
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4.2.1 Image 

The images are 800x600 pixels in size and they are captured with a low cost camera 

positioned above the bin. The bin is rectangular in shape and its area is approximately 

300x300. Samples of some bin images with different waste levels are shown in Figure 

4.2.  

 

Figure 4.2: Samples of bin images at different waste levels (a) empty, (b) partial (c) full 

and (d) overflowing. 

 

Figure 4.3: Bin database samples at different levels (a) empty-empty-empty, (b) empty-

empty-low, (c) empty-low-full, (d) full-full-full, (e) overflow-overflow-full and (f) 

toppled-low-full. 
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4.2.2 Bin Opening Detection 

Assuming that the bin is upright, the bin opening is the area that contains the waste. 

To detect this area, we must first locate the four corners and the edge of the bin 

opening. So the first step is to obtain the edge information of the image using Canny 

Edge Operator before employing Hough Transform to detect straight lines in the edge 

image [53]. The Hough transform only provides two parameters for each line detected 

in the image. They are the magnitude of the vector from the reference point to the 

nearest point on the line and the angle formed by the vector and the horizontal axis at 

the reference point. In the line equation these parameters are normally represented by  

and  and the line equation can be written as;  

 byax  (4.1) 

Where, a = cos  and b = sin . A table consisting of all possible combinations of  

and is rendered and for each pair of  and the total number of edge pixels that fall 

on the line that the two parameters represent is recorded. Thirty lines with the most 

number of edge pixels are analyzed and the length of each line is checked to see 

whether it belongs to the bin contour. But more importantly, the intersection points of 

two orthogonal lines are sought because they are candidates for bin corners. When two 

lines are intersecting at point (x, y), equation (4.1) can be written for both lines at (x, y) 

as follows: 

111  ybxa  (4.2) 

222  ybxa  (4.3) 

The orthogonality of the intersecting lines can be tested by multiplying a1 by a2 and 

b1 by b2 and summing their products. If the sum is zero or nearly zero then the two lines 
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are considered orthogonal. The point of intersection (x, y) for the orthogonally 

intersecting lines are obtained from; 
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If the bin is rotated, all of its corners will also be rotated by the same angle. For each 

corner candidate, the angle of rotation can be obtained from the  parameter of one of 

the two lines that form the corner. Then a template of an empty bin is rotated according 

to the detected angle of rotation before it is superimposed on the corner candidate for 

similarity matching.  The locations of the remaining three bin corners of the template 

are checked to see if they coincide with other corner candidates. If other candidates are 

present, the similarity matching is based on all of the candidates. Otherwise, it is 

calculated for a single candidate only.  

The similarity between the corners in the image and the template is calculated using 

edge pixels along the intersecting lines only. In our work, correlation coefficient is 

chosen as the measure of similarity and it is calculated by the following equation.  
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(4.6) 

Where, I is the candidate bin area in the image, T is the bin template, m and n is the 

pixel in I, and and  are mean of pixel values of I and T respectively. The location 

of the template superimposed on the corner candidate with the highest correlation 
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values is considered as the correct bin areas. Bin areas as same number of bins supposed 

to be present in the image are considered for further processing. 

4.2.3 Feature Extraction 

Gabor filter is a Gaussian envelope modulated by a sinusoidal function. A 2-D 

Gabor filter can be written as [96]; 
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Where, x’ = x cosθ + y sinθ, y’ = -x sinθ + y cosθ, K is scale of magnitude, is 

spatial aspect ratio, wavelength of the sinusoidal function, is phase offset and  

rotation angle of the Gaussian envelope. Features used in the classification of the waste 

level are obtained by convolving the bin area in the image with a set of Gabor filters. At 

each pixel (x, y) in the bin area, the absolute value of the convolution of a Gabor filter 

and the pixels in the neighborhood centered at (x, y) is calculated. Then the absolute 

values of the convolution at all pixels in the bin area are summed to produce one 

feature. By changing the angle of rotation  a different Gabor filter is obtained and with 

this new filter another feature can be generated by repeating the same convolution 

process. Gabor filter features can also be obtained from the area outside of the bin in the 

image by following the same procedure. 

4.2.4 Classification 

The number of bin corners detected can be used as a feature for waste level 

classification. From the detected bin areas, a total of 4 more features can be extracted 

using four different Gabor filters. Then from the area outside of the bin, another 4 

features are obtained using the same Gabor filters. So, altogether a total of 16 features 
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are used as inputs to four SVM classifiers to ensure the bin area and determine the 

waste level in the bin which can be empty, partially full, full or overflowing.  

In our experiments, four SVM classifiers are used in the waste level classification. 

Radial Basis function is used as the Kernel. As a supervised classifier, an SVM requires 

training and 100 images of the bins with different waste level are used to train the 

SVMs before testing. Using the number of bin corners detected and the first four Gabor 

features first SVM is trained by accurate bin images as class 1 and incorrect bin 

candidates as class -1. As a result exact bin locations were figured out from the first 

level. If the number of area classified as exact bin location is less than the number of 

bins supposed to be found then it is concluded that the absent bins are topple over or 

removed from the expected location or fully occluded by the wastes. The second SVM 

decides whether the levels of exact bins are empty or filled. For the filled class, the third 

SVM takes the same set of input features and divides it into partially full and full 

classes. The last SVM operates independently of the first three. It takes the four Gabor 

features from outside of the bin area to check whether waste is littered outside the bin. 

However, the output of this classifier is only considered when the waste level of the bin 

is classified as full by the second classifier to identify overflowing cases. In deciding 

the four classes of the waste level, we assume that waste only starts to overflow after 

the bin is full. We do not consider the odd cases where rubbish is littered outside the bin 

when it is still empty or partially full. If these odd categories were to be included, they 

could be detected by considering the output of the fourth SVM for all cases. The 

classification steps are shown in Figure 4.4. 
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Figure 4.4: Bin level classification steps. 

4.2.5 Scheduling 

The collection schedule is related to the state of the HMM. The number of days left 

before the collection of garbage from the bins is related to the current state of the HMM 

which are not necessary, 3 day, 2 day, 1 day and immediate. The current state of the 

HMM is determined by rubbish levels in the bins and the previous state of the HMM. 

The observation and state transition are shown in  

Table 4.1. The state starts from “Not Necessary” where all the 3 bin levels are 

empty. If bin levels are classified as low for any number of bins and all bins are 

detected then the state starts count down from three days. The state starts from 1 day if 

the levels found full for any number of bins and others are overflown but not absent. 

The state count down depends on the previous state where as the current state also 

depends on the observation. At the end of the count down the “Immediate” state 

indicates that the waste should be collected that instant. If any bin absent or three bins 

are over flown the state jumped to “Immediate” from any stage.  
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Table 4.1: State transition and observations of Bin collection scheduling 

Bin Observation Previous State Current State Next State 

Bin1 Empty 

Any Not Necessary Not Necessary Bin2 Empty 

Bin3 Empty 

Bin1 Low 

Not Necessary 3 days Count Down Bin2 Empty/Low/Full 

Bin3 Empty/Low/Full 

Bin1 Full 

Not Necessary/More 

than 1 day 
1 day Immediate Bin2 Full/Over Flown 

Bin3 Full/Over Flown 

Bin1 Over Flown 

Any Immediate Immediate Bin2 Over Flown 

Bin3 Over Flown 

Bin1 Any 

Any Immediate Immediate Bin2 Any 

Bin3 Absent 

4.3 Experiments 

The database consists of 300 images of single and 200 images of three 120L sized 

waste bin those are empty, partially full, full or overflowing with rubbish. Altogether 

there are %00 images of the bin at four different waste levels in the custom database. 

Each image is 800x600 pixels in size and the bin area is approximately 300x300 pixels. 

100 images are used for training the SVM classifiers and the remaining 200 for single 

bin and 200 for three bin images are used for testing. For each image, greyscale 

conversion is performed to transform it into a grayscale image followed by edge 

detection using canny edge detector. The output is a binary edge image as shown in 

Figure 4.5. 
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Figure 4.5: Edge detection of binary bin image. 

Then line detection is performed on the binary image using Hough transform as 

shown in Figure 4.6. The aim is to detect the four sides of the bin opening and its 

corners. Each corner is represented by the intersection of two orthogonal lines. The 

position and orientation of the corner are obtained from the two intersecting lines that 

form the angle. Since rubbish with sharp corners and edge may be present in the image, 

a total of up to 20 corner candidates are considered in each image. Then each corner 

candidate is superimposed on one corner of an empty bin template after the template is 

rotated to match the orientation of the candidate. Correlation coefficient between the 

candidate and template corner is calculated using the edge pixels of the image and the 

template around the corner position. 

In calculating the correlation coefficient of a candidate, if other candidates exist at 

the corners of the template area, they are considered collectively. Otherwise only the 

edge pixels of one corner are used in the calculation since the rest of the bin area is 

assumed covered by rubbish.  

Once the bin area is determined, eight Gabor features can be extracted from the bin 

area and outside of the bin area using four different Gabor filters. The Gabor filters are 

obtained by fixing the values of θ at 0
0
, 45

0
, 90

0
 and 135

0
 as shown in Figure 4.7. The 

four Gabor features obtained from the bin area and the number of bin corners detected 
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is used as inputs to the first SVM to detect whether the bin is empty or filled. The 

second SVM uses the same five features to further divide filled category into partially 

full or full. And finally, the last SVM takes the four Gabor features extracted from the 

area outside of the bin to check whether waste is littered outside the bin.  

 

Figure 4.6: (a)  plot of the lines detected in the image (b) detected lines. 

 

Figure 4.7: The Gabor filters obtained by setting K =1, = 0.5, , and (a) 

0
0
, (b) 45

0
, (c) 90

0
 and (d) 135

0
. 

4.4 Results and Discussion 

The accuracy of the proposed method in locating the bin area and classifying the 

waste level is evaluated separately. First, the bin area is detected since garbage level 

classification is only meaningful if the bin is located correctly. The performance of the 



58 

 

proposed method in locating the bin and classifying the level in single bin images are 

compared against that of the dynamic time warping (DTW) approach used by Islam et 

Al. [97]. Both methods use an empty bin template, but in the DTW method the template 

is simply moved in 20 pixel step across the image to find an area that best matches the 

template. At each location, row and column intensity projection is performed on a 

300x300 pixel area to produce a series of values. Then the sequence of projection 

values is compared with the one obtained from the template using DTW. The location 

that gives the minimum distance between the two sequences is considered as the true 

location of the bin.  For empty and partially full bin, the classification accuracy of the 

DTW method is 100% but it drops to 96% and 82% for full and overflowing bin 

respectively. This is because in some erroneous images the edge and corners of the bin 

are occluded by rubbish. To achieve good bin localization accuracy, the DTW method 

requires the bin opening area to be as similar to the template as possible. Thus, the 

presence of objects that are absent in the templates confuses the DTW algorithm and 

affects its accuracy. The bin localization accuracy of the proposed method is 100% for 

empty, partially full and full bins. For overflowing bins the accuracy drops a bit to 99%. 

The 1% error occurs when the bin opening is almost completely occluded by waste. 

Samples of detected bin area by DTW and the proposed method are shown in Figure 4.8 

while the results are summarized in Table 4.2.  

For waste level classification, the DTW method employs a multilayer perceptron 

(MLP) as a classifier. The method uses both sine and cosine functions at a single 

orientation to modulate the Gaussian function to produce one Gabor filter. After 

convolving the bin area with the Gabor filter, it performs column projection on the 

magnitude of the convolution result to generate 300 feature values. The features are 

used as inputs to the MLP classifier to determine the waste level of the bin. The 

classifiers of both methods were trained using 100 images of a garbage bin with 



59 

 

different waste levels. Then their ability to classify the waste level of 200 test images is 

tested. For each test image, if the bin location is correctly detected then its waste level 

will be classified. Otherwise, the waste level would not be evaluated since it was 

irrelevant.  

Table 4.2: Performance comparison of the proposed and the DTW methods in bin area 

detection 

Classes 

DTW Proposed Method 

TP FN Accuracy TP FN Accuracy 

Empty 50 0 100.00% 50 0 100.00% 

Low 0 0 100.00% 0 0 100.00% 

Full 48 2 96.00% 50 0 100.00% 

Overflow 41 9 82.00% 49 1 98.00% 

  

Average 94.50% 

 

Average 99.50% 

TP = True Positive 

FN = False negative 

Finally, the classifier of our method was replaced by a K nearest neighbor (KNN) 

and MLP to see how they fared against SVMs. Table 4.3 summarizes the outcome of 

the waste level classification and the performances of the different classifiers. It should 

be noted that only one KNN and MLP classifier was used in the experiments as opposed 

to three SVMs. 

Candidates of the images with three bins also filtered and the features were 

extracted by Gabor filter. The exact locations of the bins were detected by SVM. The 

number of locations indicates the number of bins present in the frame. 100 images were 

selected to train the classifier to detect bin locations. The rest of the images from the 

dataset (200 images) were used as test image for the classifier. Bin images extracted 

from the first layer were used in the following layers for level classification.  The results 
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of bin locations detected in the three bin images at different conditions are shown in 

Figure 4.9 and Figure 4.10. 

(a) 

 

(b) 

 

(c) 

 

Figure 4.8: Comparison of bin location detection by DTW and proposed method (a) 

Input images (b) detected bins by DTW and (c) by the proposed method. 

Table 4.3: Waste level classification results of the proposed method against the DTW 

approach 

Methods 

Bin Detection Classification 

Overall 

Accuracy 

Execution 

Time Total 

Tested  

Correct 

Number  

Classified 

Total 

Number 

Correct 

DTW-MLP 200 189 189 186 93.00% 2.46s 

Proposed Method-

KNN 
200 199 199 195 98.00% 0.63s 

Proposed Method-

MLP 
200 199 199 196 99.00% 1.13s 

Proposed Method-

SVM 
200 199 199 199 100.00% 0.63s 
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(a) (b) (c) 

Figure 4.9: Detected bin location in three bin images (a) Level, (b) Input image and (c) 

Detected locations. 
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(a) (b) (c) 

Figure 4.10: Detected bin location in three bin images (a) Level, (b) Input image and (c) 

Detected locations. 
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The conditions of the bins in three bin images were observed by SVM classification 

of waste level. The output sequence of the classifier was used as the training 

observation of HMM. The HMM parameters were calculated by Forward-Backward 

algorithm and optimized by Baum–Welch algorithm. The states are decoded by Viterbi 

algorithm. Rate of successful estimated states were considered as the score of the 

model. The model was optimized until the score 100%. The confusion matrix of 

collection states of the waste bins decoded by HMM is shown in Table 4.4. The average 

accuracy of the state estimator found 100%. 

Table 4.4: Confusion matrix of state estimation 

Conditions Not Necessary 3 days 2 days 1 day Immediate 

Not Necessary 25 0 0 0 0 

3 days 0 14 0 0 0 

2 days 0 0 10 0 0 

1 day 0 0 0 21 0 

Immediate 0 0 0 0 30 

4.5 Summary 

In this chapter the method of second case study about garbage level classification in 

solid waste bins and the rubbish collection schedule is described elaborately. The 

system classifies the bin levels using SVM and determines the days left before 

collection using HMM. The results of the method are compiled in result and discussion 

section. The results prove that the system is robust against bin shift and rotation, 

occlusion by large objects and uncertainty introduced by similar square objects littered 

outside the bin. 
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CHAPTER 5 

Conclusion 

5.1 Introduction 

The objective of the thesis is showcase two applications of SVM and HMM 

working in tandem. In the first case study SVM and HMM are used with other signal 

processing tools navigate a wheel chair in semi-autonomous mode. In the second case 

study, they are used with other image processing tools to determine the waste level in 

several bins to decide the collection schedule. The performance of the method is 

compared with the methods used for those cases in previous works.  

5.2 Summary of the Work 

In the first case of study, electrooculography (EOG) traces within the 

electroencephalography (EEG) signals are used to drive a wheelchair navigation 

system. Sliding window is used to capture important signatures in the EOG traces 

accurately without partial loss of information. Features are extracted from the signals in 

the window and used to infer the condition (whether they are open or closed) and gaze 

direction of the eyes using a number of SVMs and an HMM. The HMM determines the 

state of the system and generates commands sequentially that move the wheelchair. The 

wheelchair can be steered in six directions and three different modes of operation are 

made available to ensure safety and convenience to the user. The asynchronous system 

achieves an average classification rate of 98% in an online test while its average 

execution time is less than 1s. An actual navigation session was performed wherein five 

participants undertook two navigation tasks by maneuvering the wheelchair through two 

designated routes. The participants managed to complete the tasks without collisions. In 

this session, the usability of the backward movement proved useful when the 

wheelchair was trapped at tight dead ends with no space to make u-turn. Good average 
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accuracy of 98% for Route 1 and 97% for Route 2 shows that the system is easy to use 

and stable. The second case study introduces a bin detection algorithm that employs 

Hough line detection and simple cross correlation to detect the position and orientation 

of a garbage bin in an image. Then Gabor filtering is performed to extract eight features 

from the inside and outside of the bin area. Together with the number of bin corners 

detected, the eight Gabor features are used as inputs to four SVM classifiers to 

determine the waste level in the bin which is either empty, partially, full or overflowing. 

The outcome of the classifier used in HMM as observation to estimate the collection 

schedule of solid wastes. The proposed system was tested on a custom database 

comprising 200 images of single and 100 images of three shifted, rotated, occluded and 

toppled bin containing garbage of various levels.  It achieved an excellent bin detection 

rate of 99.5%, waste level classification rate of 100% and the combined state estimator 

of showed a 100% accurate performance on estimating collection states from the waste 

levels. The method outperforms the dynamic time warping (DTW) approach in both bin 

detection and waste level classification. The results prove that the system is robust 

against bin shift and rotation, occlusion by large objects and uncertainty introduced by 

similar square objects littered outside the bin. Its fast execution time makes it suitable 

for real time application. 

5.3 Future Work 

Despite the encouraging results, there are always avenues to enhance the 

performance and robustness of the method. Since the participants of the wheel chair 

navigation experiments are all healthy this system still need to be tested by real patients 

with neuromuscular disordered.  The second case study only involves bin with 

rectangular shape. The robustness of the system should be tested on bins with different 

shapes, sizes and colors. In future work different kernel functions can be tested to 
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optimize the classification performance of the SVM. Fuzzy HMM could be 

implemented to improve the state transition accuracy in future works.   

5.4 Points of Summary 

The following points are summarized from the thesis 

 A method is developed and tested to classify eye gaze movements from EEG 

and estimate the states using HMM for “Eye Gaze Controlled Automated 

Wheel Chair Maneuver System Using Brain Controlled Interface”. 

 A “Solid Waste Bin Level Classification and Collection Scheduling” method 

using SVM and HMM is developed and implemented. 

 The results of the proposed model are compared with previous methods. 
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Appendix A 

Gray Level Aura Matrix 

The GLAM of an image measures the amount of each gray level in the neighborhood of 

each other gray level. An example of an aura on a binary lattice with the four nearest 

neighborhood system is shown in figure. The aura ‘c’ of ‘a’ with respect to ‘b’ 

characterizes how the subset ‘b’ is present in the neighborhood of ‘a’. The aura measure 

m(a, b) measures the amount of ‘b’s sites presented in the neighborhood of ‘a’. 

 

Figure: Example of an aura matrix on a binary lattice with the four-NS. 

Appendix B 

K nearest Neighbor  

The KNN algorithm is considered as supervised learning method used in image 

processing applications. Samples are classified based on closest training by a majority 

vote of its neighbors (Maji & Pal, 2010). The feature vectors are stored in the training 

period. The class of the test sample K is determined by the distances from the sample to 

the train vectors. The Euclidean distance is measured by examining the root of square 

differences between the coordinates of two samples. The minimum distance from 

vectors belong to a specific class indicate the presence of nearest neighbors feature 

vectors of that class around the K. In Figure  the mapping of the K-vector and features on 

a 2 dimensional space are shown. dc are the distance from the K to c class vectors, “*”, 



75 

 

“x” and “o” are the training vector from different classes and • is the K vector for 

testing.   

 

Figure : Map of KNN classifier   

Appendix C 

Neural Network 

Artificial neural networks (NNs) which are inspired by biological nervous systems 

are promising and powerful tools in identification and modeling of nonlinear systems 

due to their impressive merit in data processing and learning capabilities. As the name 

Multilayer Neural Networks suggests, the network consists of multiple layers of 

neurons which are usually considered as three layers, namely input layer, hidden layer 

and output layer. However, the number of neurons in each layer is to be determined and 

can be defined based on the designer choice. Figure  shows a three layer neural network 

where the two weighting matrices, W and V are depicted by arrows. 
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Figure : Basic Schematic of Neural network 

The real capability of multilayer NNs is due to their ability in approximating 

nonlinear functions. The Cybenko theorem [39] shows that a feed forward neural 

network is capable of approximating any continuous, multivariate function to any 

desired degree of accuracy. Nonlinear parameter selections of neural network showed 

robust performance for flexible joint state estimation in a robotic simulation by 

Abdollahi, Farazaneh et al, (Abdollahi, Talebi, & Patel, 2006). The combined state 

estimation using neural network and Kalman filter provide an easier and improved   

algorithm for approximation problems ("Frontmatter and Index," 2002; Iiguni, Sakai, & 

Tokumaru, 1992). The limitation of any neural network to map a function arises from 

poor selection of the neural network parameters and weights or an insufficient number 

of the hidden neurons. 

Appendix D 

Dynamic Time warping 

 DTW algorithm has grossed its acceptance by being very efficient to detect pattern 

similarity. It minimizes the distortion and shifting effects by permitting elastic 

transformation of time series (Assecondi et al., 2009). Suppose U and V are two time 

series; where, n and m are the respective length. A warping path P is a contiguous set of 

matrix elements that defines a mapping between Q and C. This path derived from the 

Euclidian Distance matrixes between each element of the both series. A graphical 
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representation of the wrapping path has shown in figure. The wrapping path is a set of 

points from the matrix that follows the minimum distance of adjacent cells. The 

selection of path value follows three conditions 

 Boundary conditions: P1 = (1,1) and PK = (m,n), simply stated, this requires 

the warping path to start and finish in diagonally opposite corner cells of the 

matrix. 

 Continuity: Given Pk = (a,b) then Pk-1 = (a’,b’) where a–a' ≤1 and b-b' ≤ 1. 

This restricts the allowable steps in the warping path to adjacent cells 

(including diagonally adjacent cells). 

 Monotonicity: Given Pk = (a,b) then Pk-1 = (a',b') where a–a' ≥ 0 and b-b'  ≥ 

0. This forces the points in P to be monotonically spaced in time. 

There can be more than one path in the distance matrices that satisfy above 

conditions. The cost function in (8) defines the scores of the paths.  



 

K
k KPVUDTW 1 /min),(  (8) 

The wrapping path is the path that minimizes the cost. The cost of the minimum 

path is considered to be the score of the matching.  

 

Figure: An Example of Wrapping path 
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