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ABSTRACT 

Hundreds of marine and brackish water dinoflagellates are associated with the natural 

phenomenon called harmful algal blooms (HABs). HAB is known to cause negative 

impacts to coastal ecosystems and threaten human lives by contaminating seafood. The 

dinoflagellates Alexandrium minutum and A. tamiyavanichii are capable of producing the 

sodium channel-blocking neurotoxins, saxitoxins (STXs). The purpose of this study is to 

investigate the dynamics and life cycle transitions of these two species in Malaysian 

waters in order to understand the triggering environmental factors in formation of blooms. 

Field sampling was undertaken at two paralytic shellfish poisoning (PSP) hotspots, 

Tumpat, Kelantan and Kuantan Port, Pahang. Clonal cultures of A. tamiyavanichii were 

established from Kuantan Port, and A. minutum from Tumpat. Microscopic enumeration 

coupled with quantitative qPCR assay was used to detect the low cell abundance of toxic 

Alexandrium species in both the motile vegetative cell and dormant resting-cyst phases 

in Kuantan Port. The results from a 14-months survey showed that cell abundance up to 

17 cells m-3 of A. tamiyavanichii was present between April 2015 and May 2016. In order 

to understand the bloom dynamics in relation to the life cycle transitions, A. minutum 

were used in cross-mating and cyst germination experiments. The results revealed that 

the period of encystment-excystment for A. minutum were relatively short (~10 days). 

This study provides baseline data for future predictive modelling study and early warning 

of HABs, particularly A. minutum and A. tamiyavanichii. 
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ABSTRAK 

Beratusan spesies dinoflagelat marin dan air payau adalah berkait rapat dengan 

fenomena semula jadi yang dipanggil ledakan alga berbahaya (HABs). HABs diketahui 

menyebabkan impak negatif kepada ekosistem persisiran pantai dan mengancam nyawa 

manusia melalui makanan laut yang tercemar. Dinoflagelat Alexandrium minutum dan A. 

tamiyavanichii mampu menghasilkan neurotoksin penghalang saluran ion sodium, 

saxitoxins (STXs). Tujuan kajian ini adalah untuk menyiasat dinamik dan peralihan 

kitaran hidup dua spesies ini di perairan Malaysia untuk memahami faktor-faktor 

persekitaran yang mecetus pembentukan ledakan. Kerja lapangan telah dijalankandua 

kawasan panas keracunan kerang-kerangan peralitik (PSP), Tumpat, Kelantan dan 

Kuantan, Pahang. Kultur klon A. tamiyavanichii telah didirikan dari Kuantan dan A. 

minutum dari Tumpat. Penghitungan microskopik berserta cerakin kuantitatif qPCR 

digunakan untuk mengesankan kelimpahan sel rendah Alexandrium spesies dari kedua-

dua peringkat hidup sel vegetatif dan sista yang tidak beraktif di Pelabuhan Kuantan 

Keputusan penyelidikan selama 14-bulan telah menunjuk kelimpahan sebanyak 17 sel m-

3 A. tamiyavanichii dari April 2015 sehingga Mei 2016. Untuk memahami dinamik 

ledakan yang berhubung dengan peralihan kitaran hidup, A. minutum telah digunakan 

dalam eksperiment mengawan silang dan percambahan sista. Hasil keputusan 

menunjukkan bahawa tempoh pembentukan-pencambahan sista bagi A. minutum adalah 

agak pendek (~10 hari). Kajian ini telah menyediakandata asas dalam kajian model 

ramalan dan amaran awal HAB untuk spesies A. tamiyavanichii and A. minutum. 
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CHAPTER 1: 

GENERAL INTRODUCTION 

 

1.1. Introduction 

Harmful algal blooms (HABs) are extraordinary phenomena of high proliferation of 

harmful algae that prevail in the coastal zone, where most of the global seafood 

production, fish resources, and maricultures are situated (Rossi & Fiorillo, 2010; Alvarez 

et al., 2011; Moore et al., 2015). High density of toxin-producing algal species may 

produce high concentration of toxins and cause negative impacts to the environment and 

human health (Rossi & Fiorillo, 2010; Moore et al., 2015). Some marine dinoflagellates 

in the genus Alexandrium tend to produce a group of neurotoxins, collectively named 

saxitoxins (STXs) (Anderson, 1998), that are responsible for paralytic shellfish poisoning 

(PSP) in humans (Lim et al., 2012). STXs cause abnormal function of neurons through 

the voltage-sensitive sodium channels blockage (Catterall et al., 1979) and occasionally 

cause death (Hall et al., 1990).  

Internationally, a wide range of coastal hydrographic regimes is suffering from PSP 

events. Incidents of PSP related to Alexandrium spp. were reported in Thailand (Fukuyo 

et al., 1988; Kodama et al., 1988), Japan (Hashimoto et al., 2001; Oh et al., 2009), 

northeastern Brazil (Menezes et al., 2010), and Mediterranean Sea (Vila et al., 2005). In 

Malaysia, paralytic shellfish poisoning (PSP) event is a severe issue and found frequently 

associated with Alexandrium spp. and Pyrodinium bahamense (Usup et al., 2002a; Usup 

et al., 2002c; Lim et al., 2012). Alexandrium tamiyavanichii caused PSP event with three 

people poisoned after consuming mussels from Sebatu, Strait of Malacca in 1991 (Usup 

et al., 2002a; Usup et al., 2002c; Lim et al., 2006). In September 2001, six people were 

hospitalized and one fatally after consuming clams Polymesoda spp. contaminated by A. 

minutum for the first time in Tumpat, Kelantan (Usup et al., 2002a; Usup et al., 2002c; 
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Lim et al., 2004). The bloom of A. tamiyavanichii in Kuantan, Pahang was reported for 

the first time by Mohammad-Noor et al. (2017). Blooms of P. bahamense in Sabah 

recurred almost annually (Usup et al., 2002a; Lim et al., 2004) and resting cysts were 

found at the surface sediment (Furio et al., 2006). These resting cysts may be viable and 

play an important role in bloom initiation or decline, and dispersal or depopulation of a 

particular area (Furio et al., 2012). Information known about the dynamics and life cycle 

of cysts and factors promoting the bloom formation of harmful species have been well 

documented in several regions, particularly the temperate regions (Kim et al., 2002; 

Garces et al., 2004; Richlen et al., 2016), but not been clearly defined in the tropical Asian 

Pacific region. Therefore, monitoring and understanding toxic species cysts abundance 

and distribution in relation to its planktonic motile form are essential to provide early 

warning and prediction (Furio et al., 2012; Usup et al., 2012).  

In this study, environmental factor (nutrient sources) triggering the bloom of harmful 

(paralytic shellfish toxin) PST-producers in Malaysia were investigated. This information 

will lead to better understanding on the initiation and development of blooms and future 

socioeconomic implication. In brief, the methodology involved collection of plankton 

and hydrographic data along transect lines. Plankton and sediment samples were collected 

for quantitative assessments at monthly interval along transects. Vertical profiles of in 

situ salinity and chlorophyll a were determined. Water samples were taken for nutrient 

concentration determined. Vegetative cells and dormant cysts were identified and 

enumerated microscopically in conjunction with the molecular approach of quantitative 

realtime PCR (qPCR). Cyst encystment and excystment were studied by cross-mating 

experiment and observed daily to determine the dormancy period of the cysts. 
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1.2.  Research Objectives 

The main aim of this study is to investigate the life cycle of PST-producers in bloom 

dynamics. The specific objectives are as below: 

1. To investigate the dynamics of encystment and excystment of A. minutum. 

2. To determine the spatial abundance and distribution of A. tamiyavanichii in term of 

planktonic and cyst stages in Kuantan Port, Pahang. 

3. To investigate the triggering physico-chemical water parameters of A. 

tamiyavanichii. 

 

1.3. Thesis Structure 

This dissertation is compiled into four chapters. Chapter 1 emphasized on the gap 

lack of tropical PST-producers in life cycle and bloom dynamics. Research aim and 

objectives was also stated. A brief background studies about PST-producers in relation 

with environmental factors and pollutions were made in Chapter 2. In addition, qPCR 

assay as an advanced molecular approach was brief introduced in this chapter. In Chapter 

3, sexual reproduction of a tropical toxic dinoflagellate, A. minutum was investigated. 

Cross-mating (encystment) and cyst germination (excystment) experiments were 

developed to investigate the sexual mechanisms of A. minutum. The rate of encystment-

excysment of tropical cysts was determined in this study. Chapter 4 investigated the 

abundance and spatial distribution of a PST-producer, A. tamiyavanichii in Kuantan Port, 

Malaysia. This chapter discussed about the factors influenced the abundance of 

phytoplanktons, particularly Alexandrium spp. Both motile and cyst forms of A. 

tamiyavanichii were detected by using qPCR assay to determine the cell density. The 

findings of this study were concluded in the last chapter (Chapter 5). 
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CHAPTER 2:  

LITERATURE REVIEW 

 

2.1. Harmful Algal Blooms (HABs) 

Phytoplankton is a microscopic marine photosynthetic organism, plays important roles 

in marine food web as a primary food source, and in global carbon cycle as oxygen 

producer by removing inorganic carbon dioxide. Some of these algae are recorded toxic 

species and their high proliferation lead to harmful algal bloom (HAB) (Alvarez et al., 

2011). HAB is also known as “red tide” which carries the meaning of discolored seawater 

with red-brown pigments of some algae (Camacho et al., 2007). Usually, the proliferation 

of algae is greatly influenced by water temperature, dissolved oxygen (DO) 

concentration, salinity, light intensity and nutrient concentration (Rodriguez et al., 2009). 

Many negative effects are brought to the coastal areas as well as aquaculture. Therefore, 

this frequent and harmful phenomenon has led to the concern to monitor the quality and 

quantity of seafood for human consumption, especially in spring and summer (Rossi & 

Fiorillo, 2010). 

 

2.2. Shellfish and Fish Poisoning 

These algae are categorized into toxic, potentially toxic, and non-toxic, high biomass 

producers as they cause harm in multiple level (Ignatiades & Gotsis-Skretas, 2010). 

Among 2,000 living and 2,500 fossil species described, there are more than 70 species 

involved in HABs and produced biotoxins (Taylor, 2004). The toxins produced are small 

molecular weight guanidium˗containing neurotoxins and polyethers (Taylor, 2004). 

Consumption of contaminated seafood and direct exposure to HABs might cause shellfish 

poisoning and fish kill (Taylor, 2004; Camacho et al., 2007). Paralytic shellfish poisoning 

(PSP) were mainly contributed by genera of Alexandrium spp. (Anderson, 1998), P. 
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bahamense (Gacutan et al., 1985), and Gymnodinium catenatum (Dolah, 2000), diarrheic 

shellfish poisoning (DSP) by Dinophysis spp. (Lee et al., 1989), amnesic shellfish 

poisoning (ASP) by Pseudo-nitzschia spp. and Nitzschia spp. (Bates, 2000; Van Dolah, 

2000), neurotoxic shellfish poisoning (NSP) by Karenia brevis (Kirkpatrick et al., 2004; 

Watkins et al., 2008), azaspiracid shellfish poisoning (AZP) by Protoperidinium 

crassipes (Furey et al., 2010) and Azadinium spp. (Magdalena et al., 2003), and ciguatera 

fish poisoning (CFP) by Gambierdiscus spp. (Van Dolah, 2000), Prorocentrum spp., and 

Ostreopsis sp. (Fukuyo et al., 2011). 

 

2.3. Paralytic Shellfish Toxin (PST)-Producers and Events 

The marine dinoflagellates, Alexandrium spp. (Anderson, 1998), Pyrodinium 

bahamense (Gacutan et al., 1985), and G. catenatum (Hallegraeff, 1993; Van Dolah, 

2000) were highly contributed to PSP cases. They produced neurotoxin, STXs and the 

toxins were accumulated in filter feeders, such as mussels and scallops (Lim et al., 2012). 

STXs block the voltage-sensitive sodium channels and caused to abnormal function of 

neurons (Catterall et al., 1979). The symptoms of the PSP were diarrheal, vomiting, 

nausea, numbness, muscle paralysis, and respiratory difficulty (Yasumoto et al., 1978; 

Hallegraeff, 1993; Costa et al., 2015). The symptoms of intoxication were shown within 

30 minutes or up to hours after consumption (Yasumoto et al., 1978). 

PSP cases have brought into public health concerns and economic impacts globally. In 

Philippines, frequent blooms of P. bahamense (135 times) were occurred between 1983 

and 2005 (Bajarias et al., 2006). There were 2,162 PSP cases recorded with 123 fatalities 

at 135 times of blooms (Bajarias et al., 2006). Besides that, blooms of P. bahamense were 

also found in the coastal waters of Florida, USA (Phlips et al., 2006).  

In addition, blooms of G. catenatum and PSP outbreaks were frequently reported in 

the Portuguese waters in late 1980s to early 1990s, and recurrent in 2005 (Costa et al., 
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2015). Several PSP outbreaks that associated with G. catenatum were first found in 1976 

in Spain and the production of blue mussels from this region were detected high 

concentration of STX (Anderson, 1989). Since then, G. catenatum was expanded world 

widely, and suggested this species might have been introduced artificially in Tasmania, 

Australia by ballast water, where there was no bloom and incident before 1975 

(Hallegraeff, 1992; Matsuoka et al., 2006). In 1979, PSP cases in Mexico with 28 persons 

affected and three fatalities by consumption of contaminated oysters and coquina clams 

(Cortes-Altamirano & Nunez-Pasten, 1992; Ang, 2012). Besides that, PSP event was also 

first reported in Japan in 1986 and its resting cysts were also found in the sediment even 

though in low concentration (Matsuoka et al., 2006).  

Furthermore, PSP cases of A. tamarensis were reported in the waters of Gulf of 

Thailand (Fukuyo et al., 1988; Kodama et al., 1988). In early December of 1999, bloom 

of A. tamiyavanichii caused PSP outbreak and high toxin contents was found in the 

contaminated mussel Mytilus galloprovincialis, the Pacific oyster Crassostrea gigas, and 

the ark shell Scapbarca broughtonii in Seto Inland Sea, Japan (Hashimoto et al., 2001; 

Oh et al., 2009). The toxic marine dinoflagellate, A. tamiyavanichii were also found in 

northeastern Brazil (Menezes et al., 2010). Several PSP events that associated with A. 

minutum were also reported in Northern Adriatic Sea, Eastern Aegean, Tyrrhenian Sea, 

and Catalan-Balearic Basin (Vila et al., 2005). In Arenys de Mar harbour, resting cysts 

were found and determined as the main recurrence factor of A. minutum blooms (Vila et 

al., 2005).  

In September, 2001, A. minutum was first known in Malaysian waters after a PSP 

incident reported in Tumpat, Kelantan (Usup et al., 2002a); six people were hospitalized 

with one fatality (Lim et al., 2004). Annual blooms of P. bahamense were recurred from 

the west coast of Sabah and high toxin concentration of this species was detected (Usup 

et al., 2002a). Besides that, in 1991, three persons were poisoned after consumption of 
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contaminated mussels by A. tamiyavanichii from Sebatu, Strait of Malacca (Usup et al., 

2002a; Usup et al., 2002c; Lim et al., 2006). While in November, 2013, bloom of A. 

tamiyavanichii was reported for the first time from the east coast of Kuantan, Pahang, 

with ten person were hospitalised (Mohammad-Noor et al., 2017). 

 

2.4.  Life Cycle of Alexandrium Species 

In the life histories of some toxic species such as A. minutum and A. tamiyavanichii, 

were involving asexual and sexual reproductions in the life cycle transformations (Fig. 

2.1) (Anderson, 1998). Binary division or asexual division of the cells helps in 

proliferation of vegetative cells which might cause to HAB (Anderson, 1998). In sexual 

reproduction, compatible gametes were undergone sexual induction and sometimes they 

were performed a unique swimming behaviour (Smith & Persson, 2005; Persson et al., 

2013). The compatible gametes were conjugated and formed planozygotes and settled 

down as resting cysts (Figueroa & Bravo, 2005; Figueroa et al., 2007). The resting cysts 

play an important role in bloom initiation or termination, and dispersal or depopulation 

of a particular area (Furio et al., 2012). In addition, temporary cysts can be also formed 

sometimes through sexual or asexual reproductions (Bravo et al., 2010). However, the 

information about temporary cysts is limited to understand its role in the life cycle and 

natural population (Bravo et al., 2010). Hence, monitoring and understanding toxic 

species cysts abundance and distribution in relation to its planktonic motile form are 

essential as the life cycle transitions highly influence the bloom dynamics (Anderson, 

1998). 
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Figure 2.1: Life cycle of Alexandrium minutum that involve sexual and asexual 

reproductions. 
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The vegetative cells and gametes have similar morphological characteristics. The 

motile planktonic was identified based on their overall shape and Kofoidian thecal plate 

tabulation (Fig. 2.2) (Usup et al., 2002a). In contrast, cysts formed in an immotile form 

and settle down on the sediment or bottom of attachment (Matsuoka & Fukuyo, 2000; 

Bravo et al., 2010). According to Matsuoka & Fukuyo (2000), cyst was identified based 

on their cyst body, wall structure and colour, surface ornamentation, and archeophyle 

(Fig. 2.3). Occasionally, dormancy period of cyst was used as a identify feature of cyst 

type (Matsuoka & Fukuyo, 2000; Bravo et al., 2010). Resting cysts have dormancy period 

whereas pellicle cysts have no mandatory dormancy period (Bravo et al., 2010). For 

temperate A. minutum resting cyst, it has dormancy period of approximately 1.5 months 

(Bravo et al., 2010) whereas A. tamiyavanichii has no dormancy period and could 

germinate within 1 week (Nagai et al., 2011). 

 

 

Figure 2.2: Kofoidian thecal plate tabulation of Alexandrium species showing the 

ventral, dorsal, apical and antapical views. Apical plates are represented as ('), 

precingular plates as (''), postcingular (''') and antapical plates ('''') (Source: 

Taylor et al., 1995). 
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Figure 2.3: Morphology of resting cyst of Alexandrium minutum and Alexandrium 

tamiyavanichii. Ventral view of Alexandrium minutum, showing spherical (A1), 

lateral view, showing bean-like shape (A2), and Alexandrium tamiyavanichii, 

showing ellipsoidal (B) (Source: Matsuoka and Fukuyo, 2000). 

 

The encystment (cyst formation) and excystment (cyst germination) of dinoflagellate 

are highly influenced by environmental regimes such as nutrient sources, salinity, 

temperature (Figueroa et al., 2011), water turbulence (Maia-Barbosa & Bozelli, 2006), 

grazing, competition (Furio et al., 2012), eutrophication and pollution conditions (Maia-

Barbosa & Bozelli, 2006; Satta et al., 2014). Therefore, expression of tropical cysts and 

temperate cysts in encystment-excystment were believed that having differ environmental 

conditions and acclimation. Besides that, previous studies have shown some of the resting 

cysts were also regulated by their own endogenous clock (Genovesi et al., 2009; Bravo et 

al., 2010; Moore et al., 2015). Under optimal environmental conditions, dormant resting 

cysts are not influenced by these factors to germinate; the resting cysts endogenous clock-

controlled germinate even under conditions with limited growth factors, such as limited 

light intensity and cold temperature (Anderson, 1998; Bravo et al., 2010). Until now, the 

main factors and mechanisms of encystment-excystment of resting cyst were not well 

understood (Furio et al., 2012).   
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2.5. Environmental Factors 

The growth physiology and bloom dynamics of dinoflagellate are highly related to 

both internal (endogenous) and environmental (exogenous) factors (Kremp & Anderson, 

2000; Moore et al., 2015). However, the current understanding on environmental factors 

that regulating the life cycle of the dinoflagellate cells transitions is still remain poor 

(Figueroa et al., 2011).  

The environmental factors that affect the bloom dynamics of Alexandrium spp. are 

salinity (Figueroa et al., 2011; Lim et al., 2011), temperature (Kremp & Anderson, 2000; 

Figueroa et al., 2011; Moore et al., 2015), concentration of nitrogen and phosphate 

(Figueroa et al., 2011; Lin et al., 2016), cell density (Figueroa et al., 2011), oxygen 

conditions (Kremp & Anderson, 2000), and light intensity (Kremp & Anderson, 2000; 

Moore et al., 2015). These factors induce Alexandrium spp. in encystment (Figueroa et 

al., 2011) and excystment (Moore et al., 2015), might initiate or terminate blooms. 

Nevertheless, most of the studies are derived from temperate regions, this might likely 

showed different growth physiology from tropical counterparts (Lim et al., 2011). 

Temperature and light intensity in tropical rainforest climate are always optimum and 

unlimited. Therefore, studies on dynamics of tropical Alexandrium spp. associated with 

environmental factors such as salinity, nutrient source and oxygen conditions are 

interesting to be investigated. 

 

2.6. Anthropogenic Activities and Pollutions 

Anthropogenic activities brings negative impacts to human health and environmental 

indirectly or directly. The incidence of HABs recorded in recent years increased and 

highly related to the anthropogenic activities (Gowen et al., 2012; Louzao et al., 2015). 

The examples of human activities are industry, agriculture, shipping, and navigation 

(Dailianis, 2011). The inputs of anthropogenic nutrients (Davidson et al., 2014) and 
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environmental pollutants (Dailianis, 2011) have changed the water conditions physically 

and chemically. 

Non-native species was introduced into a new region in the forms of motile cells and 

resting cyst by ballast tank waters and sediments, respectively (Hallegraeff & Bolch, 

1992). Diatom resting spores (e.g. Chaetoceros spp.) and dinoflagellate resting cysts (e.g. 

Alexandrium spp.) were carried in the ballast tank sediment (Hallegraeff & Bolch, 1992). 

The aquatic non-indigenous species were potentially toxic and altered the ecosystem 

structure and diversity (Burkholder et al., 2007). The viable cysts have long term survival 

ability may deposited in the sediments for years (Furio et al., 2012; Miyazono et al., 2012). 

Thus, no matter the invasive species in motile or cyst form, they were high risk to bloom 

and dominant in the conducive environment (Burkholder et al., 2007). 

Bauxite is an alumina ore (Al2O3) which is contains mixtures of various minerals such 

as kaolin and quartz (Donoghue et al., 2014). It is a main source of manufacturing 

aluminium (Al), sandpaper, polishing powders. The first discovered and mined of bauxite 

in Malaysia is Johor since 2000 (Noor Hisham Abdullah et al., 2016), and Kuantan Port 

in April 2014 (Lines, 2015). In early 2014, Indonesia banned exportation of bauxite and 

India raised ore tariffs, thus increased demanding resource from China and created some 

economic opportunities. In a short period of time, mining activities such as transporting 

and stockpiling of bauxite in huge quantities in Kuantan Port had led to environmental 

issues such as air, river and sea pollutions (Noor Hisham Abdullah et al., 2016). This also 

brought high risks to the public health and living quality (Donoghue et al., 2014). Due to 

the extensive and aggressive mining activities in Kuantan that caused community outrage, 

mining moratorium were imposed from 15 January to 31 December 2016 (Radhi, 2016). 

Crude oil and petroleum products content differ chemical compositions (Wang et al., 

1999), but mainly contain hydrogen and carbons (hydrocarbons) which are chronically 

polluting waters (Teal & Howarth, 1984). Oil is an important energy source involved in 
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industrial development and urbanization (Dailianis, 2011). The spillage of oils and 

petroleum formed oil slick in the water column and sank on the sediment (Brooks et al., 

2015). This oil slick might cause anoxic condition at the bottom of the seafloor and 

decreased abundance of benthic communities (Teal & Howarth, 1984; Brooks et al., 

2015). 

 

2.7.  Quantification Real-Time Polymerase Chain Reaction (qPCR) Assay 

One of the advanced molecular techniques is qPCR assay. It involves in various 

important fields to identify, monitor and quantify (Klein, 2002; Antonella & Luca, 2013; 

Park et al., 2016). The qPCR assay is a high specificity, sensitivity, simplicity and less 

time-consuming (Maeda et al., 2003; Peirson et al., 2003). The qPCR assay amplifies the 

targeting genomic DNA by using fluorophore-labeled primers, sequence-specific probe, 

and general nonspecific DNA binding fluorophores (Bustin, 2005). It combines the 

applications of nucleic acid amplification and detection in a single step (Bustin, 2005; 

Bustin et al., 2005). Besides that, it allows to monitor the reaction of amplification 

products (Klein, 2002), and eliminate the need for gel electrophoresis (Bustin, 2005; 

Bustin et al., 2005). The qPCR assay able to detect the targeting species despite the 

concentration of DNA is low (Peirson et al., 2003). During the amplification, fluorescence 

intensity which is linear correlation to amplification products is also measured for 

quantification (Klein, 2002; Bustin, 2005). In past, many researches were successfully 

enumerate vegetative cells (Antonella & Luca, 2013; Kon et al., 2015) and cysts (Kim et 

al., 2016; Park et al., 2016) of specific species by using qPCR assay. A simple method 

for removing DNA debris from sediment samples was developed (Kim et al., 2016) to 

avoid false positive results that caused by the not degraded DNA of dead cells (Antonella 

& Luca, 2013). 
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The common fluorophores used are SYBR green-based and Taqman hydrolysis probe-

based assay. For SYBR green-based detection, it is a cheaper assay as no probes are 

required, but it may generate false positive results from primer dimer or non-specific 

amplified sequence (Maeda et al., 2003). In contrast, Taqman probe-based detection 

required specific probe in order to generate fluorescent signals and significantly reduced 

the false positive results (Maeda et al., 2003).  
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CHAPTER 3: 

SEXUAL REPRODUCTION OF A TROPICAL TOXIC DINOFLAGELLATE 

ALEXANDRIUM MINUTUM (DINOPHYCEAE) 

 

3.1.  Introduction 

A. minutum is one of the toxic species associated with PSP events. It produces voltage-

gated sodium channel-blocking neurotoxins, collectively called STX, leading to 

paresthesia, coordination loss, nausea, vomiting, diarrhea and occasionally death by 

asphyxiation in the victims due to consumption of contaminated shellfish (Llewellyn, 

2006; Kodama, 2010; Burrell et al., 2013). 

Blooms of A. minutum and PSP events are frequently reported from the Asia Pacific 

region (Usup & Azanza, 1998; Usup et al., 2002a). Malaysia is no exception, PSP cases 

were reported since the mid 1970s (Roy, 1977; Lim et al., 2006).  In September, 2001, 

HAB was first encountered in Tumpat, Kelantan which is a semienclosed lagoon (Usup 

et al., 2002a; Lim et al., 2004; Lim et al., 2006). Outbreak of toxic A. minutum bloom 

caused PSP incidents with six people being hospitalized and one casualty after consuming 

contaminated benthic clam Polymesoda spp. (Usup et al., 2002a; Lim et al., 2004). Since 

then, no recurrence of blooms and A. minutum was found to be a common species in the 

waters. Till end of August, 2015, HAB was occurred and sustained approximately four 

months and high toxicity was detected in the clams (Law et al., In  prep.). Local shellfish 

collector and traders faced losses of income from this event due to ban of shellfish 

collection and trading in the area.  

The accumulation rate of resting cyst was strongly affected by the environmental 

regimes (Pospelova et al., 2004; Elshanawanya et al., 2010). In temperate region, the 

process of encystment-excystment was coincided with seasonal bloom and changes in 

water temperature (Garces et al., 2004). Encystment occurred with the present of gametes 
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from compatible mating types  (Garces et al., 2004) and was further induced under 

environmental stressors (e.g. nutrient depletion, low temperature, darkness, dissolved 

oxygen, salinity) (Blackburn et al., 1989; Garces et al., 2004; Figueroa et al., 2011). 

Excystment was considered to be regulated by both internal and environmental factors 

(Figueroa & Bravo, 2005; Genovesi et al., 2009; Moore et al., 2015). Nevertheless, this 

process could potentially occur any time (even under unfavourable conditions) without 

specific requirements (e.g. nutrient rich, room temperature, light intensity, dissolved 

oxygen and salinity) (Blackburn et al., 1989; Figueroa & Bravo, 2005; Moore et al., 

2015). 

Different from temperate Pacific region, Malaysia has a tropical rainforest climate. 

Most of the studies were done in temperate or subtropical counterpart, might showed 

dissimilar physiological adaptation [e.g. A. minutum, A. tamiyavanichii (Lim et al., 2006) 

A. tamarense, and A. peruvianum (Lim & Ogata, 2005), P. bahamense var. compressum 

and Alexandrium spp. (Furio et al., 2012)]. Biogeographical distribution and cyst 

assemblages were described in tropical coastal marine waters in order to highlight the 

importance of cyst mapping in relation to HAB phenomenon (Furio et al., 2012). Better 

understanding on existing toxic species cysts formation and germination are essential to 

provide early warning and prediction (Furio et al., 2012; Usup et al., 2012). However, the 

information about the encystment-excystment and factors promoting the bloom formation 

of the tropical species, A. minutum were limited.  

Present study was carried out to investigate the sexual reproduction of A. minutum 

under culture conditions to understand: 1) sexual behaviour and development of cyst 

formation and germination; 2) factor (nutrient) promoting excystment; and 3) determine 

the mating types of each culture strains. 

  

Univ
ers

ity
 of

 M
ala

ya



 

17 

3.2.  Materials and Methods 

3.2.1.  Algal Cultures and Natural Cyst Collection 

Cells of A. minutum were collected from a semi-enclosed lagoon, Sungai Geting, 

Kelantan, Malaysia (N 6°13'31.13", E 102° 6'44.79") by 20-m mesh plankton net hauls. 

Live samples were brought back to the laboratory for single-cell isolation and culture 

establishment. Fifteen cultures were established and used in this study (Appendix B). The 

cultures were maintained in ES-DK medium (Kokinos & Anderson, 1995) at 25 ± 0.5 °C, 

salinity of 15, pH 7.8, and 12:12 h light:dark photoperiod (Lim et al., 2011).  

Sediment samples were collected from the same site, using a flow-through Ekman grab 

sampler or a sediment corer. Undisturbed surface sediment of 2 cm thickness was taken 

by pooling, and placed into tightly-sealed dark containers (Matsuoka & Fukuyo, 2000; 

Miyazono et al., 2012). The sediment samples were placed at room temperature and 

brought back to the laboratory. Ten grams of sediment were immediately processed by 

suspending in filtered seawater, and sonicated for 1 min (operated at 10% amplitude) in 

ice bath using a QSonica Q55 ultrasonic processor (QSonica LLC, CT, USA), followed 

by fractionation using Nitex mesh sieves to obtain 20–125 µm fractions. The samples 

were examined under a Leica DM750 compound microscope (Leica, Germany). Viable 

cysts were isolated by micropipetting for later excystment experiments. 

 

3.2.2.  Cross-Mating Experiment and Encystment 

Cross-mating experiment was performed in a pairwise combination in a 24-wells 

sterile tissue culture plate. Clonal cultures were harvested at mid-exponential phase and 

cross-mating was conducted by mixing two clonal cultures in each well. Monoclonal 

cultures were self-crossed for homothallism test (Mardones et al., 2014). The plates were 

incubated at culture conditions as described above.  
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Samples were examined under an Olympus SZX10 stereo-microscope (Olympus, 

Tokyo, Japan) daily. Cells at different life stages were further identified by using a Leica 

DM3000 LED compound research microscope (Leica), and images captured by DFC450 

digital camera (Leica). The cell sizes at each life cycle stage were measured, with means 

and standard deviations presented.  

Swimming behavior of cells were recorded on an Olympus SZX10 stereo-microscope 

with a DP21 digital camera (Olympus). The video recording was taken under 63× 

magnification. The footages were acquired using VirtualDub (www.virtual dub.org) in a 

continuous mode, time period of 2 s, resolution of 400 × 300 pixels, and frame rate of 15 

frames s−1. Cell movements were tracked by LabTrack (www.bioras.com), with a 

threshold of average background subtraction, for tracking rapid moving objects.  

 

3.2.3.  Reproduction Compatibility and Mating Types 

The number of resting cysts formed in each pairwise combination was quantified. A 

cross-mating matrix was developed for sexual compatibility analysis (Blackburn et al., 

2001; Figueroa et al., 2010; Mardones et al., 2014). The mating types of the clonal 

cultures were categorized by fitting in an incompatibility group system as described in 

Blackburn et al. (2001). The indices of reproductive success were measured and estimated 

as described in Blackburn et al. (2001): 

Strain reproductive compatibility (RC) = CI × AV  

where,  

CI, compatibility index, the number of successful crosses resulting in a score of ≥1 

divided by the total number of possible crosses, with exception of self-crosses; 

AV, average vigour, the average of scores (03) for cyst production per cross in 

successful crosses involving a particular strain. 
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3.2.4.  Cyst Germination Experiment 

In laboratory setup, compatible strains of A. minutum cultures were selected for the 

subsequent germination experiment. A total of 100 laboratory-produced cysts were 

successfully isolated for each treatment (100 cysts for filtered seawater treatment and 100 

cysts for ESDK enriched medium. The isolated cysts were observed daily (Bolch et al., 

1991; Matsuoka & Fukuyo, 2000). The changes in cell morphology and cellular content 

of resting cysts to germination of motile planomeiocytes were observed microscopically. 

Viability of cysts was determined by cyst germination to planomeiocytes, that later 

yielded the germling cells that were able to produce vegetative progeny (Vahtera et al., 

2014).  

For wild cyst germination experiment, natural cysts were isolated individually from 

sediment samples collected from Sungai Geting during two bloom events: November 23, 

2015 (n = 30) and March 5, 2016 (n = 100). The isolated cysts were then transferred into 

96-well plates containing filtered seawater and enriched medium. The cysts were 

incubated under the same culture conditions as described above. Cyst germination was 

observed daily as described earlier. The frequency of successful excystment in both 

laboratory-produced and natural cysts was determined (Destombe & Cembella, 1990). 

 

3.3.  Results  

3.3.1.  Mating Compatibility and Encystment 

Both asexual and sexual reproductions were observed in the mating cultures. Binary 

fission was observed (Fig. 3.1. EF) in single-strain (clonal) cultures and mixed-cultures 

of non-compatible strains, with increase in cell densities through cell division. However, 

cell density decreased in the culture mixture of compatible strains. The mixed-cultures of 

compatible strains remained viable for longer duration (68 weeks) compared to clonal 

cultures or mixed cultures of non-compatible strains (3 weeks).  
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The laboratory-induced sexual life cycle stages of A. minutum are depicted in Fig. 3.1. 

Two singlets with distinct cell sizes were observed in the mixed cultures of compatible 

strains (Fig. 3.1 AD).  

Mating pairs that attached to each other at the sulcal region were observed after 24 h 

of mixing. The mating pairs were found fusing with either identical size of cells 

(isogamous) (Fig. 3.1 G, J, K, L) or with different sizes of singlets (anisogamous) (Fig. 

3.1 H−I).  Fusion of more than two cells was also observed, but rare. The mating pairs 

moved in a whirling pattern.  

Planozygotes were observed on the second day after mixing, the planozygotes can be 

distinguished by two longitudinal flagella (Fig. 3.1 M−R). Movement of planozygotes 

was much slower when compared to the vegetative cells and mating cells. It lost its 

flagella gradually and the theca shed off, and encysted into a cyst. A process-like 

ornament planozygote was also found in cultures (Fig. 3.1 O). Occasionally, theca 

remained without rupture (Fig. 3.1 T−X). It was observed that not all planozygotes 

encysted. Some were also observed sporadically in both clonal and non-compatible cross-

mating cultures. The zygotes appeared transparent, with scattered chlorophyll contents, 

and lost the longitudinal flagella (Appendix C). 

The resting cysts were observed settling down at the bottom of culture plate in day 

3−5. The cyst is spherical at the ventral view (Fig. 3.1 U−X), and ellipsoidal or bean-like 

shape at the lateral view (Fig. 3.1 S−T). The resting cysts formed are with transparent 

double-walls, and the surface is smooth (Fig. 3.1 S−X). Its content appeared granular with 

a condensed amber-colored accumulation body. Sometimes, a mucilaginous material was 

found covering the cysts. The resting cysts in the wild have similar features as those of 

the laboratory-produced cysts, and they were found mostly aggregated or attached to 

particles (Fig. 3.2).  

 

Univ
ers

ity
 of

 M
ala

ya



 

21 

 

Figure 3.1: Light micrographs of Alexandrium minutum. Vegetative cell with a 

longitudinal flagellum (A, B), gamete (C), gamete with a moving longitudinal 

flagellum (D), vegetative division (E, F), isogamous (G, J, K, L), anisogamous (H, 

I), planozygote showing two longitufinal flagella (arrows) (M−N), process-like 

ornament planozygote (O), planozygote with big cell size (P−R), resting cyst or 

hypnozygote with red bodies and a mucilaginous material surrounding at lateral 

view (S, T), resting cyst or hypnozygote with two red bodies and condensed 

chloroplast (U), resting cyst with red bodies and uncondensed chloroplast (V−X). 

Scale bars, 10 µm. 
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Figure 3.2: Natural cysts of Alexandrium minutum found in Sungai Geting, 

Malaysia. Resting cyst with unshed theca (A). Newly-formed resting cyst with 

sheded theca (B). Resting cysts with red bodies and condensed chloroplasts (C). 

Resting cysts with uncondensed chloroplasts (D−F), arrow shows a mucilaginous 

material surrounding the resting cyst. Scale bars, 10 µm. 

 

Sexual induction was detected immediately on the day of culture mixing. Sexual 

induction behavior was observed in the compatible singlets; where the singlets 

swam/danced and accumulated in “spots” with circulation motion (Fig. 3.3 AB), and 

sometimes changed in direction suddenly without interference. The movement of the 

dancing singlets is faster than of the vegetative cells. Giant spot of accumulated dancing 

cells were found in the water column (Fig. 3.3 A), but scattered small spots of 

accumulated dancing cells usually observed in the bottom layer of the culture wells (Fig. 

3.3 B). Unlike compatible cells, the motility patterns of non-compatible cells were 

random and disorder (Fig. 3.3 C), which is similar to those in clonal cultures (Fig. 3.3 D); 

where they moved forward with a self-rotating pattern at different directions and changed 

their ways with or without interference. 
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Figure 3.3: Trajectories of Alexandrium minutum cells in compatible mating cultures (A−B), non-compatible mating cultures (C), and single 

clonal culture (D). Yellow and green squares are the beginning and final configuration of cells, blue lines show the paths of each tracking point 

across frames. The footages are with continuous mode, time period of 2 s, and frame rate of 15 frames s−1. 

2
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A. minutum sizes varied at different life-history stages (Fig. 3.4). Vegetative cells and 

gametes are observed in two size ranges; big cells are in the range of 26.5 ± 1.8 m long, 

24.4 ± 2.2 m wide (n = 21), while smaller cells are 21.4 ± 2.4 m long and 19.0 ± 2.3 

m wide (n = 20). However, sizes of gametes and vegetative cells were not precluded 

from being smaller and bigger. The obvious morphological distinction of gametes was 

the slightly protruding narrow epitheca and lesser chlorophyll contents (Fig. 3.1 CD). 

Planozygotes was larger: 32.9 ± 3.5 m in length, 30.8 ± 3.5 m in width (n = 24), likely 

due to the fusion of two basal bodies. The sizes of planozygotes were slightly smaller 

than the laboratory-produced resting cyst (33.8 ± 3.7 m in diameter; n = 28), even though 

it was observed that planozygotes can be sometimes larger than the laboratory-produced 

resting cysts. Some planozygotes were also found smaller in size, which had similar cell 

size and morphology to vegetative cells, but can be distinguished by having biflagella 

(Fig. 3.1 MN). 

Univ
ers

ity
 of

 M
ala

ya



 

25 

 

Figure 3.4: Cell dimensions of Alexandrium minutum different life-history stages. 

Cyst, resting cysts or hypnozygotes. Cells/ G+, vegetative cells or big-sized gametes. 

G, small-sized gametes. Plano, planozygotes and planomeiocytes. 

 

3.3.2. Mating Compatibility of Alexandrium minutum Cultures 

A matrix of cross-mating compatibility of cultures established in this study is presented 

in Table 3.1. The intercross experiments showed 50.5% (53 of 105 combinations, n = 2) 

of positive mating compatibility and resting cysts formation.  

The cross-mating results revealed a multiple mating systems in A. minutum from 

Sungai Geting Lagoon. Strains AmTm01 and AmTm05 were likely the same mating type 

because of similar mating compatibility, while AmTm09 was a mating type that could 

mate with most strains studied (Table 3.1). By fitting an incompatibility group system, 

the crossing matrix was categorized into four, five, six or seven mating types (Table 3.1).  
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Gamete fusion and small amount of transparent planozygotes were observed in 

individual strains AmTm06, AmTm08, AmTm09, AmTm13, AmTm14, and AmTm15, 

but no cyst was found in the self-crossing experiments. Cyst formation was only observed 

in cross-mating cultures, indicating that the species is heterothallic. 
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Table 3.1: Cross-mating of Alexandrium minutum strains in a pairwise combination. Scoring criteria for encystment: 0, unsuccessful crosses; 

1, 199 cysts ml-1; 2, ≥100 cysts ml-1. Highlighted and lined boxes show the categorization of mating types according to incompatibility group 

system. 

 

 

 

 

 

Strains 
AmTm 

01 

AmTm 

05 

AmTm 

10 

AmTm 

15 

AmTm 

04 

AmTm 

13 

AmTm 

11 

AmTm 

02 

AmTm 

03 

AmTm 

06 

AmTm 

08 

AmTm 

12 

AmTm 

14 

AmTm 

07 

AmTm 

09 

AmTm01 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

AmTm05 0 0 0 0 0 0 2 1 1 1 1 2 2 2 1 

AmTm10 0 0 0 0 0 0 2 0 2 2 1 2 2 2 1 

AmTm15 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 

AmTm04 0 0 0 0 0 0 0 1 1 1 1 0 1 2 1 

AmTm13 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 

AmTm11 1 2 2 1 0 0 0 0 0 0 0 0 0 0 2 

AmTm02 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 

AmTm03 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 

AmTm06 1 1 2 1 1 0 0 0 0 0 0 0 0 1 1 

AmTm08 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 

AmTm12 1 2 2 1 0 1 0 0 0 0 0 0 0 0 1 

AmTm14 1 2 2 1 1 1 0 0 0 0 0 0 0 0 1 

AmTm07 1 2 2 1 2 2 0 0 0 1 0 0 0 0 1 

AmTm09 1 1 1 1 1 1 2 0 0 1 1 1 1 1 0 

2
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The strain AmTm05 alone showed 64% (9 of 14 combinations) successful cross-

mating, but each positive cross showed different mating compatibility and efficiency in 

cyst formation (Fig. 3.5). Some crosses (e.g. [AmTm05 × AmTm14]) produced >100 

cysts in a week, while some crosses (e.g. [AmTm05 × AmTm07]) produced low number 

of cysts (<20 cysts formed in a week) (Fig. 3.5, Table 3.2). 

 

Figure 3.5: The daily encystment (cysts ml-1) of Alexandrium minutum AmTm05 

with other cross-mating strains (AmTm02, 06, 07, 09, and 14). 

 

All the strains showed successful crosses (CIs > 0) but low cyst production (AVs ≤ 2). 

Reproductive compatibility index (RC) of all strains ranged from 0.29  1.00, with the 

strain AmTm02 the lowest (Table 3.2).  

  Univ
ers

ity
 of

 M
ala

ya



 

29 

Table 3.2: Reproductive compatibility of each Alexandrium minutum strain 

measured by compatibility index (CI), average vigor (AV) and reproductive 

compatibility (RC). 
 

Strain CI AV RC 

AmTm01 0.64 1.00 0.64 

AmTm02 0.29 1.00 0.29 

AmTm03 0.36 1.20 0.43 

AmTm04 0.50 1.14 0.57 

AmTm05 0.64 1.44 0.93 

AmTm06 0.43 1.00 0.43 

AmTm07 0.50 1.14 0.57 

AmTm08 0.43 1.33 0.57 

AmTm09 0.86 1.08 0.93 

AmTm10 0.57 1.75 1.00 

AmTm11 0.36 1.60 0.57 

AmTm12 0.50 1.29 0.64 

AmTm13 0.36 1.20 0.43 

AmTm14 0.57 1.50 0.86 

AmTm15 0.57 1.00 0.57 

 

3.3.3.  Cyst Dormancy and Germination  

The dormancy period of A. minutum cysts from Sungai Geting Lagoon was relatively 

short, estimated to be less than a week. In laboratory-produced cysts, excystment was first 

observed 35 days after encystment, either in enriched seawater medium or filtered 

seawater (Fig. 3.6 AB), while natural cysts collected from the wild had shorter dormancy 

of 2 days. 

In the laboratory-produced cysts, the higher number of excystments was observed in 

enriched medium (cumulative excystment rate, 40  60 %) compared to filtered seawater 

(cumulative excystment rate, 10  20 %) (t-test, P<0.0001). The success rate of 

excystment differed among different crosses (Fig. 3.6 AB). For example, cysts obtained 

from the cross [AmTm10 × AmTm07] exhibited higher cumulative excystment rates 
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(62.9% in enriched medium, 20% in filtered seawater) compared to the cross [AmTm10× 

AmTm11] (34.3% and 11.4% in enriched medium and filtered seawater, respectively).  

Natural cysts of A. minutum collected from different bloom events exhibited different 

excystment rates (Fig. 3.6 CD). Cysts collected from November 2015 bloom exhibited 

lower success rates (27  33%) as compared to the cysts collected from March 2016 

bloom (70  77%). Incubation under enriched medium did not significantly influence 

germination for 2015 bloom-collected cysts (t-test, P>0.05), but showed slight difference 

for 2016 bloom-collected cysts (t-test, P = 0.006). Generally, the natural cysts had higher 

success rates under incubation with filtered seawaters (Fig. 3.6 CD), indicating that 

excystment of natural cysts was not affected by nutrient availability. 

 

Figure 3.6: Cumulative percentage excystment of Alexandrium minutum over time 

in the ES-DK enriched medium (open circles) and filtered seawater (grey circles). 

(AB) Laboratory-produced cysts from cross-mating strains of [AmTm10 × 

AmTm07] (A), and [AmTm10 × AmTm11] (B). (CD) Natural cysts collected from 

November 2015 bloom (C) and March 2016 bloom events (D). 
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When the cyst germinated, planomeiocyte with two longitudinal flagella was observed; 

its morphology was similar to planozygote. The state of planomeoicyte remained for a 

day (sometimes less than a day), and followed by emergence of two or four germling 

cells. Among the 200 natural cysts isolated, 89 cysts germinated into two germling cells 

and 57 cysts germinated into four germling cells. In enriched medium, the germling cells 

were sustained for approximately two months without adding additional nutrients.  

 

3.4.  Discussion 

Like many dinoflagellates, the life cycle of A. minutum comprised two types of 

reproduction, i.e. asexual and sexual reproductions (Anderson, 1998, Probert et al., 2002). 

These reproduction systems were highly affecting their growth dynamics in the 

environment. In asexual reproduction, binary fission was performed to increase the cell 

population; this rapid increment of cell population may cause abrupt proliferation of cells, 

but ceased if sexual reproduction was induced and formed resting cysts (Anderson, 1998), 

this process was interpreted to cause bloom termination (Kremp & Anderson, 2000).  

Despite the numerous studies on dinoflagellate sexuality and cyst formation, the 

processes of gamete formation have been inadequately described, partly owing to the fact 

that many species are hologamous, of which the vegetative cells and gametes are 

morphologically indistinguishable (Kremp & Anderson, 2004). However, several studies 

have demonstrated that these two life-history forms (vegetative cells vs. gametes) of 

Alexandrium cells, like many dinoflagellates species, exhibit distinctive swimming 

patterns and behaviors (e.g., Probert et al., 2002; Persson et al., 2013). These features thus 

were used to examine the life history of dinoflagellates in laboratory setting (Smith and 

Persson, 2005; Persson et al., 2013). The distinctive motion characteristic of Alexandrium 

gametes allows the investigations of the processes involving sexual induction of this 

bloom-forming species. The movements of gametes observed in this study (Fig. 3.3) were 
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in agreement with the previously described dinoflagellate mating behaviors; displaying 

the “swarming” or “dancing” patterns, circular movements and frequent directional 

changes without interference as elucidated in Smith and Persson (2005) and Persson et 

al. (2013). The swimming behaviors were postulated to increase the cell-to-cell contacts 

for mating purpose (Persson & Smith, 2013, Persson et al., 2013). In the wild, several 

studies have demonstrated that the mating cells were found in the thin layers of 

pycnocline, with giant spot of accumulated dancing cells observed (Persson et al., 2008; 

Persson et al., 2013). In our laboratory observations, giant spot of accumulated dancing 

cells were detected in the water column (Fig. 3.3 A), while small spots of accumulated 

dancing cells were usually found in the bottom layer of culture plate (Fig. 3.3 B). The 

swimming pattern and accumulation behavior during sexual induction might explain the 

formation of patches during blooms in the field (Persson & Smith, 2013). Gamete 

expression and sexual induction were detected in all the cross-mating experiments 

(disregarding successful mating), indicating that all the strains were readily searching for 

the compatible complementary singlets with which to mate. However, this action did not 

warrant a successful encystment, as only compatible strains will produce cysts.  

The fusion of mating pairs was believed only contribute by gametes, likely from the 

vegetative cells that had undergone some physically and metabolically transformation 

(Persson & Smith, 2013). Some studies postulated that gametes might produce 

pheromone-like chemical compounds such as protoplast release-inducing protein (PR-IP) 

and agglutinin that promote gamete-gamete recognition (Sawayama et al., 1993a; 

Sawayama et al., 1993b; Kremp & Anderson, 2004; Kobiyama et al., 2007). Kremp and 

Anderson (2004), on the other hand, reported that cell wall of gametes contained specific 

chemical structures that helped in gametes fusion and conjugation. Sexual induction of A. 

minutum in this study was observed within 24 h after inoculation of compatible strains in 

a laboratory setting. The change of behaviors of cells was somehow immediate, and 
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relatively shorter than those observed in Lingulodinium polyedrum (Figueroa & Bravo, 

2005), A. tamutum and the temperate A. minutum (Figueroa et al., 2007), which was 2−4 

days after inoculation. Given the shorter time needed for sexual induction and cyst 

formation in the tropical A. minutum, it is crucial to investigate the factors triggering 

sexual induction in the wild and laboratory setting to better understand the bloom 

dynamics of this tropical species. 

The size ranges of tropical A. minutum and temperate A. minutum differed, where the 

tropical A. minutum vegetative cells were larger than gametes, while temperate A. 

minutum vegetative cells (20.1 ± 2.4 m length, 17.8 ± 2.1 m width, n = 65) were found 

smaller than gametes (21.4 ± 2.0 m length, 18.8 ± 1.9 m width, n = 13) (Figueroa et 

al., 2007). In addition, the tropical A. minutum planozygotes and resting cysts were larger 

than the temperate planozygotes (22.8 ± 1.4 m length, 20.2 ± 1.3 m width, n = 6) and 

the resting cyst (30.0 ± 2.9 m diameter, n = 135) (Figueroa et al., 2007). The presence 

of biflagella in planozygotes was used to distinguish planozygote from the vegetative 

cells that had similar cell sizes. Bigger planozygotes might be due to fusion of two basal 

bodies of compatible vegetative cells.   

The features such as angle of cells attachment and position of longitudinal flagella 

were used to distinguish the mating pairs from dividing cells (Persson et al., 2013). The 

movement of planozygotes was slow, even though with a biflagellate structure but it did 

not contribute to an expected fast motion. Apart from the flagella arrangement, swimming 

speed decreased as cell size increased (Lewis et al., 2006). The slow movement of 

planozygotes decreased the cell-to-cell contact (Persson & Smith, 2013, Persson et al., 

2013) and some eventually encysted into cysts (Figueroa & Bravo, 2005, Figueroa et al., 

2007); while some cysts formed without rupturing their thecae (Gribble et al., 2009). 

The cyst wall of dinoflagellate was used to differentiate pellicle cysts and resting cysts 

(Bravo et al., 2010). Morphologically, resting cysts were defined as cysts with double-
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layered cyst walls whereas pellicle cysts were with single-layered cyst wall (Bravo et al., 

2010). The resting cysts produced in the laboratory and of those found in the wild had 

similar morphological features as depicted in Bravo et al. (2010). Both pellicle cysts and 

resting cysts were observed morphologically in the present study. In addition, Matsuoka 

and Fukuyo (2000) showed that most Alexandrium resting cysts have similar 

morphology: spherical cyst body with single or usually double layer-transparent cyst 

walls, and was covered by a transparent mucilaginous material, this was observed in the 

present study for both laboratory-produced cysts and wild cysts. The sticky mucus layer 

of Alexandrium cysts was speculated to aid sinking by attaching to heavier particles, to 

prevent grazing or assisted in greater dispersion (Smith et al., 2009). However, chemical 

composition and production of the cyst mucilage is not known. 

A. minutum culture strains in this study exhibited higher number of successful crosses 

but relatively low cyst production, the temperate Chilean A. catenella also showed higher 

successful crosses (24 of 45 combinations) and low cysts production, but cyst formation 

occurred 26−45 days after inoculation (Mardones et al., 2014). In contrast, formation of 

A. minutum cysts in this study was relatively fast, 3−5 days after incubation. The 

reproductive compatibility of the tropical A. minutum was slightly higher when compared 

to G. catenatum (Blackburn et al., 2001; Figueroa et al., 2010). A. minutum in this study 

demonstrated multiple heterothallic mating system, this was commonly observed in the 

mating-types of Alexandrium spp. [A. tamerense (= A. excavatum) (Destombe and 

Cembella, 1990); A. tamutum, A. minutum (Figueroa et al., 2007), A. fundyense (Persson 

et al., 2013) and A. catenella (Mardones et al., 2014)]. 

The encystment and excystment processes that the tropical A. minutum cells passed 

through, including the mandatory dormancy period, were relatively short, estimated 

within a period of 5  10 days. This is in agreement with the findings of some studies of 

temperate Alexandrium species: A. catenella on the Catalan coast (Figueroa & Bravo, 
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2005); A. tamarense/A. catenella in Thau Lagoon (Genovesi et al., 2009). A slightly 

longer mandatory dormancy period of 15  18 days has been observed in A. catenella on 

the west coast of South Africa (Joyce & Pitcher, 2006). The relatively shorter mandatory 

dormancy period of the tropical Alexandrium clearly showed that vernalization is not 

required for excystments. While some temperate Alexandrium species possessed 

vernalization period for excystments (Montresor & Marino, 1996), some do not require 

vernalization period (Joyce and Pitcher, 2006), but this overwintering strategy has served 

to synchronize excystments (Genoversi et al., 2009). Excystment of benthic resting cysts 

was always linked to bloom initiation (Kremp & Anderson, 2000). If vernalization is not 

the prerequisite for the tropical Alexandrium cysts to undergo excystment, it is postulated 

that excystments of this tropical Alexandrium could occur throughout the entire year 

without circannual rhythm. Conversely, natural cysts of a tropical species P. bahamense 

has a mandatory dormancy period of ~90 days under laboratory setting (G. Usup, per. 

comm.). It is believed that cyst germination and dormancy period is regulated by a cyclic 

endogenous clock (Matsuoka & Fukuyo, 2000; Itakura & Yamaguchi, 2001; Matrai et al., 

2005; Genovesi et al., 2009; Moore et al., 2015). Dormancy periods of temperate A. 

minutum cysts with <3 months (Garces et al., 2004) and 1.5 months (Bravo et al., 2010) 

had been reported. This further supported the species-dependent dormancy period in PST-

producing dinoflagellates. 

While environmental conditions are believed to trigger excystments and cyst 

germination, many studies have shown strong dependency on species, biogeographical 

and ecotypic adaptations (Canon, 1993; Itakura & Yamaguchi, 2001; Kim et al., 2002; 

Anderson et al., 2005a; Anderson et al., 2005b; Fauchot et al., 2005; Joyce & Pitcher, 

2006; Fauchot et al., 2008; Genovesi et al., 2009). The experimental results in this study 

indicated that both wild and laboratory-produced resting cysts were viable and capable of 

germinating under incubation in either enriched seawater medium or filtered seawater. 
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This finding revealed that cyst germination is not affected by nutrient availability as has 

been demonstrated in other studies (Binder and Anderson, 1987; Genovesi et al., 2009). 

 

3.5.  Conclusion 

In conclusion, the rapid encystment-excystment processes of the tropical A. minutum 

observed in this study, and the high success rates of excystments and shorter cyst 

dormancy period are believed to play a crucial role in the bloom dynamics of this species 

in tropical coastal region.   
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CHAPTER 4:  

ABUNDANCE AND SPATIAL DISTRIBUTION OF A PARALYTIC 

SHELLFISH TOXIN-PRODUCER, ALEXANDRIUM TAMIYAVANICHII IN 

KUANTAN PORT, PAHANG, MALAYSIA (DINOPHYCEAE) 

 

4.1. Introduction 

The well-known PST-producer, A. tamiyavanichii is one of the species that involved 

in HABs, which can cause tremendous impact to socio-economy and human health. 

Several reported PSP cases in Malaysia were found associated with Alexandrium spp. 

(Usup et al., 2002b). In 1991, A. tamiyavanichii has caused PSP event with three victims 

poisoned after consuming mussels from Sebatu, the Straits of Malacca (Usup et al., 

2002a; Usup et al., 2002c; Lim et al., 2006). On the other hand, an incident of PSP has 

been reported for the first time in Kuantan Port, Pahang in November 2013, where ten 

people were hospitalized after consuming shellfish contaminated by PSTs from A. 

tamiyavanichii (Mohammad-Noor et al., 2017). 

Blooms of Alexandrium species were believed to strongly influence by nutrient 

sources and water salinity (Figueroa et al., 2011). Nutrient such as low 

phosphate/nitrogen ratio have played an important role in inducing or shifting sexuality 

and cyst formation (Figueroa et al., 2011). While for the salinity, it affected the growth 

rates, biochemical components, and cellular pigment concentrations; Leong et al. (2006) 

reported that outbreak of a bloom was observed at low salinity. Under the unfavourable 

conditions such as nutrient depletion and low salinity, Alexandrium species formed 

dormant resting cysts (Anderson, 1989). It is common that resting cyst was found at the 

surface sediment in the blooming areas (Furio et al., 2006). Cysts might be viable (Furio 

et al., 2012) as it plays an important role in dispersal and depopulation (Furio et al., 2012). 

Thus, spatial abundance and distribution of dormant cysts and its planktonic motile form 
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are crucial to be investigated by both microscopic and molecular enumeration for the 

better understanding of bloom development.  

Presence of the toxic species, particularly A. tamiyavanichii in Kuantan Port has 

initiated public health concerns. In this study, an investigation of the environmental 

parameters of nutrients, salinity and temperature that may trigger the bloom of this PST-

producer were conducted, and the relationship of these abiotic stressors and the 

phytoplankton assemblages in the water was examined.   

 

4.2.  Materials and Methods 

4.2.1.  Study Site 

The study area was conducted in Kuantan Port, Pahang, which is a multi-cargo port 

facing the South China Sea. Four sampling sites were sampled in this port with water 

depth of approximately 13 m (Fig. 4.1), which placed in the inner (KP 3 and 4) and the 

closed-outer (KP 1 and 2) part of the deep sea Kuantan Port.  Monthly samplings were 

undertaken fourteen times by collecting plankton, sediment, and hydrographic samples 

from April, 2015 to May, 2016. The environments were polluted by the bauxite activities 

(Fig. 4.7 A−B) and oil spill can be seen in the surface of the waters (Fig. 4.7 C−D). 
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Figure 4.1: Map of Kuantan Port, Pahang, showing the four sampling sites in the 

close-outer part (KP1 and KP2) and inner port (KP3 and KP4). 

 

4.2.2.  Algal Cultures 

Single cell isolation was performed by micropipetting technique (Hoshaw & 

Rosowski, 1973). A fine capillary pipette was prepared by taking aseptically a sterile 

Pasteur pipette and a Latex tubing was used to attach with the wide end of the capillary 

pipette for cell isolation. The isolated cell was transferred into a sterile 96-wells tissue-

culture plate containing 0.2 m-filtered seawater. The isolates were transferred into 

culturing tubes containing ES-DK medium (Kokinos & Anderson, 1995) after it reached 

>100 cells. Cultures was maintained at 25 ± 0.5°C, pH 7.8, and 12:12 h light:dark 

photoperiod. The medium was prepared and adjusted to desired salinity of 30 PSU by 

adding distilled water in natural filtered seawater (Lim et al., 2006). 
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4.2.3.  Species Identification 

Water samples collected from the field were preserved in acidic Lugol’s solution. 

Plankton cells were then identified under a Leica compound microscope (DM3000 LED, 

Leica, Germany) with 20−100× magnifications. Aliquot of 1 mL samples were used for 

phytoplankton enumeration at 20× magnification using a Sedgewick-Rafter counting 

chamber. 

Alexandrium species were further identified by thecal plate tabulation (Balech, 1995). 

Cells were stained with Imamura-Fukuyo (IF) staining solution (Yuki & Fukuyo, 1992) 

after treated with freshly prepared 10% hypochroric acid solution. The morphological 

characteristics of cell shapes were determined, and cell dimensions measured by using an 

image processing program, Image J (ver. 1.50d). 

For molecular analysis, about 100 mL of clonal cultures were harvested by using 

sieving method during mid-exponential phase. The cells were further concentrated by 

centrifugation (580 ×g, 10 min) to precipitate cell pellets. Genomic DNA (gDNA) was 

extracted by using Mo-Bio PowerPlant DNA isolation kit (Mo-Bio, USA) by following 

the manufacturer’s instruction.  

Gene amplification was carried out by using a peqSTAR thermocycler (peqSTAR 

96× Universal Gradient, peqLab, Germany). A 25-L PCR master mixture included 1× 

Taq buffer, 0.2 mM dNTPs, 2 mM MgCL2, and 1 mM each primer were first prepared 

before adding 2 µL gDNA and 0.2 µL Taq polymerase (Invitrogen, Life Technologies, 

USA). The primer pair, ITS1F (5'-TCGTAACAAGGTTTCCGTAGGTG-3') and ITS1R 

(5'-ATATGCTTAAGTTCAGCGGG-3') (Leaw et al., 2001) were used to amplify the 

internal transcribed spacer (ITS) region of the ribosomal RNA gene (rDNA), wherease 

the primer pair, D1R (5'-ACCCGCTGAATTTAAGCATA-3') and D3Ca (5'-

ACGAACGATTTGCACGTCAG-3') (Scholin et al., 1994) were used to amplify the 

large subunit (LSU) rDNA. PCR conditions were as follow: initial denaturing at 94°C for 
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4 min, 35 cycles of primer annealing at 50°C for 45 s, and primer extension at 72°C for 1 

min, and followed by substances clearance at 72°C for 7 min before kept at 4°C. PCR 

products were further purified by QIAquick PCR purification kit (Qiagen, Hilden, 

Germany) and later sequenced by the First Base private sequencing laboratory (Selangor, 

Malaysia) using an ABI 3770XL automated sequencer.  

 

4.2.4.  Phytoplankton Spatial Distribution 

Aliquot of 1 mL of Lugol-preserved samples that collected by using Van Dorn 

sampler were used for phytoplankton enumeration at 20× magnification using a 

Sedgewick-Rafter counting chamber under compound microscope (DM750, Leica, 

Germany). The total number of diatoms and dinoflagellates enumerated were then used 

for the determination of Diatom:Dinoflagellate (D:D) ratio and relative abundance of 

each dinoflagellate species. 

For chlorophyll a determination, water samples were processed and extraction in the 

dark or dim condition. Phytoplankton samples were harvested by filtration with glass-

fibre filters and followed by acetone (90%) extraction for 18 h before analyses. The 

absorbance of spectrophotometer was read at wavelengths of 750, 664, 647 and 630 nm. 

Total chlorophyll a concentration was calculated by using the following equation 

(Parsons et al., 1984): 

[Chl a] (μg L-1) = 
[ 11.64 (𝐴𝑏𝑠 663) − 2.16 (𝐴𝑏𝑠 645) + 0.10 (𝐴𝑏𝑠 630) ] (𝐸)(𝐹)

𝑉(𝐿)
 

where, F is the dilution factor; 

E is the volume of acetone used (mL); 

V is the volume of water filtered (L); 

L is the cuvette path length (cm) 
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4.2.5.  Spatial Distribution of Alexandrium tamiyavanichii by qPCR Assay 

Saline ethanol-preserved planktonic samples were undergone genomic DNA isolation 

using DNeasy® Plant Mini Kit (Qiagen, Hilden, Germany) following the manufacturer’s 

instructions. The gDNAs extracted were amplified by qPCR (Applied Biosystems® 7500 

Fast Real-time PCR System ver. 2.0.6) using A. tamiyavanichii species-specific primer 

pairs and Taqman probe targeting internal transcribed spacer ribosomal II (ITS2) rDNA 

(Table 4.1) (Kon et al., 2015).  

 

Table 4.1: Alexandrium tamiyavanichii species-specific qPCR primer-probe set 

(Kon et al., 2015). 

 

Primer Primer sequences (5' – 3') 

TamiaiiF GCATTGATGTGCTTGACTGCATTGC 

TamiaiiR GCAACACACACCAATGTACAACCAC 

Tamia-probe TGAGCTGTAAGGGTCAATGTGTATGCA 

 

The region was amplified in a total reaction volume of 10 µl containing the 1× 

Taqman® Fast Advanced Master Mix (Applied Biosystems, California, United States), 

200 nM probes, 300nM of each primers, and 2 µl genomic DNA template in each reaction. 

The qPCR amplification was performed with the following thermal-cycling conditions: 

holding stages at 50°C for 2 min and 95 °C for 20 s, followed by 40 cycles of denaturation 

at 94 °C for 3 s, and extension at 60 °C for 30 s.   

A synthetic gene fragment-based calibration curve was constructed with 10-fold serial 

dilutions to determine total extractable gene copy number per cell in the samples. The 

assay was run with no template control (NTC) and 10-fold serial dilutions of A. 

tamiyavanichii synthetic gene fragment as the positive controls.  
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4.2.6.  Spatial Abundance and Distribution of Alexandrium tamiyavanichii Cysts 

Sediment samples were collected using a flow-through Ekman grab sampler 

(Matsuoka & Fukuyo, 2000). Replicate samples were taken from top 2 cm undisturbed 

sediment surface, pooled and placed into tightly-sealed containers to prevent germination 

(Matsuoka et al., 1988; Matsuoka & Fukuyo, 2000; Miyazono et al., 2012). Samples were 

kept dark at 4°C until processing (Matsuoka et al., 1988).  

Sediment samples (10 g) were suspended in filtered seawater and sonicated for 1 min 

(operated at 10% amplitude) using a QSonica Q55 sonicator ultrasonic processor 

(QSonica, LLC, USA). The sonified sediments were fractionated through Nitex screens 

(Endecotts Ltd, UK) to obtain a 20 – 53 µm size component (Matsuoka et al., 1988). The 

processed samples were stained with acidic Lugol’s solution to enumeration in 

Sedgewick-Rafter counting chamber at 20× magnification using a compound microscope 

(DM750, Leica, Germany) (Vila et al., 2005).  

For molecular-based enumeration, 1 mL of processed sediment samples were 

undergone mechanical breakage prior to genomic DNA isolation by using Mo-Bio 

PowerSoil Extraction Kit (Mo-Bio Laboratories, USA) (Erdner et al., 2010). Assay of 

qPCR were also performed by using A. tamiyavanichii species-specific primers/probes 

that listed in Table 4.1 (Kon et al., 2015). 

 

4.2.7. Cross-Mating Experiment  

Cross-mating experiment was performed by using clonal cultures of A. tamiyavanichii 

in 24-wells tissue culture plate. Clonal cultures in exponential phase were cross-mating 

in a pairwise combination and monoclonal cultures were also self-crossed. The cross-

mating cultures were incubated at culture conditions as described in section 3.2.2. 

Samples were examined under an Olympus SZX10 stereo-microscope (Olympus, Tokyo, 

Japan) daily. Micrographs of resting cysts formed were taken by using a Leica DM3000 
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LED compound research microscope attached with DFC450 digital camera (Leica). 

Using same method described above, the cross-mating experiment was also performed 

by using clonal cultures of A. leei. 

 

4.2.8.  Physico-Chemical Data 

Salinity and temperature were determined in situ using a multiparameter water quality 

sonde (HI9829 multiparameter, Hanna instruments, Italy). Water pH was also determined 

using pH meter (LAQUAtwin pH33 Compact, Horiba, Japan). 

Biochemical samples were collected by using Van Dorn sampler in 2-3 m depth and 

20 µm mesh plankton net, respectively. Water samples were kept frozen for nutrient 

analyses of ammonia, phosphorus, and silica by spectrophotometer following 

manufacturer’s instructions (DR3900, Hach Company, USA) and total nitrogen (TN) by 

Total Organic Carbon Analyzer (TOC-L Analyzer, Shimadzu, Japan). Filtered water 

sample of each station (10 mL) was used as negative control in spectrophotometer, and 

calibration curve prepared from ultrapure water and serial dilutions of 5 mg L-1 potassium 

nitrate (KNO3) was used as standard in TN analysis. The obtained readings (mg L-1) of 

dissolved inorganic nutrients, ammonia nitrogen (NH3-N), phosphate phosphorus (PO4-

P), and silicate (SiO2), were further converted into nitrogen (N), phosphorus (P) and silica 

(Si) (µM L-1), respectively by the following equations (Parsons et al., 1984). 

[Nutrient] (µM L-1) = 
𝑥 (𝑚𝑔 𝐿−1) × 1000

𝑀𝑊𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡
 

where, MW is the molecular weight  

MW of nitrogen (N) is 14.006720, 

MW of phosphorus (P) is 30.973762, 

MW of silica (Si) is 28.085530 
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4.2.9.  Statistical Analyses 

Canonical correlation analysis (CCA) was carried out to analyse the relationship of 

planktonic abundance to other parameters. Prior to CCA, phytoplankton cell 

abundance was performed in logarithm transformation [log (x+1)] to decrease 

the variability of data by minimize the influence of prevalent groups and increase 

the weight of rare group.  

 

4.3.  Results 

4.3.1.  Algal Cultures 

Several species of Alexandrium were encountered from the sampling sites. A total of 

32 clonal cultures of A. tamiyavanichii and 43 cultures of A. leei were established. A. 

tamiyavanichii were reported as PST-producing species whereas A. leei as a non-toxic 

species. Both species formed long chain in the cultures. 

 

4.3.2. Species Identification 

A total of six genera of dinoflagellates, eight genera of diatoms, and one genus of 

raphidophyte were recorded. There were eleven species of harmful dinoflagellates 

recorded in Kuantan Port (Fig. 4.2). Harmful dinoflagellates consists of A. 

tamiyavanichii, Prorocentrum micans, P. sigmoides, Dinophysis acuminate, D. caudata, 

D. miles, Ceratium furca, C. fusus, Akashiwo sanguinea, Noctiluca scintillans and 

Chatonella spp. Non-harmful dinoflagellates and diatoms found in Kuantan Port were A. 

leei, Protoperidinium spp., Ceratium spp., Coscinodiscus spp., Pleurosigma spp., 

Navicula spp., Eucampia spp., Ditylum spp., Odontella spp., Rhizosolenia spp. and 

Guinardia spp. 
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Figure 4.2: Micrographs of the phytoplankton that collected from field. 

Alexandrium spp. (A−B). Protoperidinium spp. (C). Prorocentrum spp. (D−E). 

Ceratium spp. (F−J). Dinophysis spp. (K−M). Noctiluca spp. (N). Chatonella spp. 

(O). Coscinodiscus spp. (P). Pleurosigma spp. (Q). Navicula spp. (R−S). Eucampia 

spp. (T−U). Ditylum spp. (V). Odontella spp. (W). Rhizosolenia spp. (X−Y). 

Guinardia spp. (Z−AB). Scale bar, 10µm. 
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A. tamiyavanichii and A. leei were confirmed by their thecal plate tabulation (Fig. 

4.3) and further confirmed molecularly (Appendix D). Both plate 1’ of A. tamiyavanichii 

and A. leei were directly connected to the apical pore complex (APC) and both species 

showed anterior attachment pore in their APC. Ventral pore (v.p.) of A. tamiyavanichii 

were connected in between plate 1’ and 4’, whereas v.p. of A. leei were located in the 

plate 1’, connected with a groove from right margin of 1’. A triangle precingular part 

(p.pr.) was found connected with anterior plate (S.a.), which was a unique characteristic 

only presented in A. tamiyavanichii. In A. tamiyavanichii, posterior plate (S.p.) is longer 

than wide, whereas posterior plate (S.p.) of A. leei is wider than long. A groove was 

presented in the right margin of S.p. plate of A. tamiyavanichii and posterior attachment 

was found in central in some cells but these features absence in A. leei. 
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Figure 4.3: Thecal plate tabulation of Alexandrium species. (A) Apical view of 

Alexandrium tamiyavanichii, showing apical pore complex (APC), anterior plate 

(S.a.), precingular part (p.pr.), first apical plate (1’), and location of ventral pore 

(v.p.). (B) Antapical view of Alexandrium tamiyavanichii, showing posterior plate 

(S.p.). (C) Apical and ventral view of A. leei, showing APC, S.a., plate 1’, and 

location of v.p. (D) Antapical view of A. leei, showing S.p.  Scale bar, 10µm. 

 

4.3.3.  Phytoplankton Spatial Distribution 

Total chlorophyll a was measured to represent the whole phytoplankton assemblages 

throughout the study areas (Fig. 4.4 A). Densities of dinoflagellates and diatoms were 

correlated with the total chlorophyll a concentration. Microscopic enumeration which 

only encountered up to genus level enumerated the cell density of Alexandrium spp. (A. 

tamiyavanichii and A. leei) (Fig. 4.4 B) whereas qPCR assay which is species-specific 

and high sensitivity quantified the cell density of A. tamiyavanichii (Fig. 4.4 C). 
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In April 2015, chlorophyll a concentration was ~1.07 µg L-1 and the abundance of 

Alexandrium spp. were moderately high (241 cells L-1). However, the species-specific 

qPCR assay revealed that no A. tamiyavanichii cell was detected in the sample. 

In August 2015, cell density of phytoplankton was moderate (~0.99 µg L-1); densities 

of Alexandrium spp. in the inner port and outer port were ~7932 cells L-1 and ~111 cells 

L-1, respectively. By qPCR quantification, A. tamiyavanichii was detected, and the cell 

density was ~17 cells m-3. Relative abundance of Alexandrium spp. was the highest 

among dinoflagellates in the inner port, with the Diatom:Dinoflagellate (D:D) ratio of 

~0.26. 

The highest cell density of phytoplankton in January 2016 and March 2016 were ~1.74 

µg L-1 and ~1.44 µg L-1, respectively. It was dramatically decreased in February 2016 

with density of~0.66 µg L-1. Coincidentally, a bauxite mining moratorium was enforced 

almost a year (11 months) from January 2016 onwards. Cell density of Alexandrium spp. 

enumerated through the microscope in March 2016 was ~91 cells L-1 and the qPCR 

quantification of A. tamiyavanichii was ~5 cells m-3. The D:D ratio of the January 2016 

and March 2016 were 182.11 and 70.71, respectively, where higher densities of diatoms 

were observed compared to dinoflagellates. 
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Figure 4.4: Phytoplankton spatial distribution. Total chlorophyll a (A). 

Microscopic enumeration of Alexandrium species (B). The qPCR quantification of 

Alexandrium tamiyavanichii (C). 

 

In the microscopic enumeration, Alexandrium spp., Dinophysis spp., Ceratium spp., 

Prorocentrum spp., and Protoperidinium spp. were the five dominant dinoflagellates 

commonly found in Kuantan Port waters. Protoperidinium spp. was the most abundant 

species and frequently detected in all sampling dates. In April 2015, enormous cell 

densities of dinoflagellates decreased. 

In the beginning and end of dry seasons (June and September 2015), all the cell 

abundance of five dominant dinoflagellates were the lowest. However, during the dry 

seasons (July and August 2015), cell abundance of these five dominant dinoflagellates 
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increased and showed higher cell densities. In between the inter-monsoon and wet 

seasons, low cell densities of five dominant dinoflagellates were slightly fluctuated, and 

increased again in May 2016.  
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Fig. 4.5. Cell densities of five dominant dinoflagellates enumerated by microscopic 

count. Alexandrium spp. (A). Dinophysis spp. (B). Ceratium spp. (C). Prorocentrum 

spp. (D). Protoperidinium spp. (E).   
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Similar cell abundance trend with dinoflagellates, enormous cell densities of diatom 

were decreased in April 2015 and showed lowest cell densities in the beginning and end 

of dry season (June 2015 and September 2015) with 958−3686 cells L-1 and 743−2153 

cells L-1, respectively. Abundance of diatom showed high densities in July 2015 with 

17507−47670 cells L-1 and highest densities in January 2016 with 36085−70236 cells L-

1. Nevertheless, zooplankton density was observed constantly throughout the sampling 

dates. 

 

Fig. 4.6.  Cell density of other phytoplankton and zooplankton. Diatom (A). 

Zooplankton (B). 

 

4.3.4.  Cyst Spatial Abundance and Distribution 

Sediments were collected from each of the stations were in different compositions 

(Fig. 4.7). The sediments from the inner port were covered by a thick layer of bauxite, 

whereas sediments from outer port were covered by a thick layer of black sludge. 
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In qPCR quantification, very low A. tamiyavanichii cysts were detected; 1 cyst g-1 from 

both KP2 and KP4 in August 2015, and 3 cysts g-1 from KP1 in May 2016. No cyst was 

found under microscopic enumeration.  

 

Figure 4.7: Sampling environment and sediment collected from Kuantan Port. 

Inner port (KP 3 & 4) (A−D). Sediment collected from the inner port (E). Outer 

port (KP 1 & 2) (F). Sediment collected from outer port (G). 

 

Cross-mating experiment of A. tamiyavanichii showed low reproduction compatibility 

and cyst reproduction. The experimental data showed that some crosses (e.g. [AcKP02 × 

AcKP09] and [AcKP02 × AcKP16]) produced less than three cysts in 2-weeks 

incubation. Cysts of A. tamiyavanichii appear elongated and oval (Fig. 4.8 A−C). 

 

 

Figure 4.8: Micrographs of laboratory-produced cyst of Alexandrium 

tamiyavanichii.   
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4.3.5.  Physico-Chemical Environmental Variability 

Hydrographic data such as salinity, water temperature and pH of water samples were 

recorded (Fig. 4.9). Salinity from April 2015 to August 2015 fluctuated between 32−35 

PSU. Salinity decreased from 32 PSU to 28.5 PSU in the subsequent months (Fig. 4.9 A). 

The water temperature and pH in Kuantan Port was constant (26.62−31.89 °C; pH 

7.82−8.30) except in months of October (pH 8.87) and December 2015 (pH 7.28). Data 

of temperature and pH were not obtained in the first few monthly samplings (April − 

September 2015) due to the breakdowns of instruments (salinometer and pH meter). 

 

Figure 4.9: Hydrographic data. Salinity (A). Water temperature (B). Water pH 

(C). 
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Concentrations of total nitrogen (TN) was relatively constant except a sudden 

increment (66.33 ~ 141.57 µM) in May 2016. The high concentration of TN was 

contributed by other N-compounds such as nitrite and nitrate as the concentrations of 

ammonia was low. From April 2015 until the end of the dry season (September 2015), 

concentration of ammonia slightly increased. In September 2015, concentration of 

ammonia in the outer port (6.43 µM) was higher than inner port (14.28~16.06 µM). In 

between inter-monsoon and wet seasons, concentration of ammonia decreased until 

January 2016. A dramatically increase in concentration of ammonia (6.78 µM to 14.99 

µM) in February 2016. In August 2015, concentration of phosphate was the lowest (2.10 

µM) and dramatically increased (6.94 µM) in following month. By entering the inter-

monsoon season, concentration of phosphate was relatively constant and showed higher 

than previous months. Concentration of silica fluctuated less. In January 2016, all the 

nutrient concentrations were slightly increase. 
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Figure 4.10: Chemical data. Total nitrogen (A). Ammonia (B). Phosphate (C). 

Silica (D). 

 

CCA plot revealed the relationships of phytoplankton abundances and the 

environmental parameters (Fig. 4.11). In the triplot, cell density of both Alexandrium spp. 

and Prorocentrum sp. were strongly influence by salinity and N:P ratio, whereas 

Dinophysis spp. was affected by TN. Diatom abundance was correlated with high 

phosphate concentration and P:N ratio. Phosphate in conjugation to ammonia was 
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contributed to density of zooplankton. Total chlorophyll a representing the whole 

assemblage of phytoplankton showed high contribution by P:N ratio. 

 

 

Figure 4.11: Canonical correlation analysis (CCA) showed the relationship of 

planktonic abundance to environmental factors. 

 

4.4.  Discussion 

In this study, samplings in Kuantan Port were conducted during the peak season of 

bauxite mining activities such as shipments and stockpiles. The air, river and seawater 

were seriously been polluted by bauxite (as showed in Fig 4.7). The seawater was changed 

to brownish red and the sediment in the Kuantan Port was covered by a thick layer of 

bauxite. Due to the bauxite pollution, the Kuantan government had restricted the 

regulation for bauxite-related activities on January 2016 and temporary moratorium of 

the port was also been implemented (Radhi, 2016). By the time, cell density of 

phytoplankton was increased (Fig. 4.4 A). This has shown that the bauxite tailing in 

Kuantan Port was acted as clay dispersion and flocculation. Clay dispersal is an effective 

HAB-control treatment that frequently used in Japan, South Korea, and China (Seo et al., 
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2008; Louzao et al., 2015) to mitigate phytoplankton blooms by aggregation and 

sedimentation of the phytoplankton (Sengco & Anderson, 2004; Seo et al., 2008; Louzao 

et al., 2015). In Batata Lake, Brazil, the bauxite taillings that accumulated from year 1979 

till 1989 was acted as an Amazonian crystalline system, in which it has affected the cell 

density of phytoplankton were decreased by 60% (Roland & de Assis Esteves, 1998; 

Maia-Barbosa & Bozelli, 2006). According to Melack (1985), the electrical interactions 

between bauxite tailing and cells was explained as the reason of descending cell density 

of phytoplankton (Melack, 1985; Roland & de Assis Esteves, 1998). The collisions of 

particles caused by Brownian motion had induced the electrical double layer and reduced 

the electrostatic repulsion between particles (Avnimelech et al., 1982). Besides that, 

electrolyte between the particles had reduced the electrostatic repulsion too (Avnimelech 

et al., 1982). Thus, the electrical interactions help to coagulate tailings with two or more 

algal cells. In addition, spilled oil was also observed in the Kuantan Port surface water 

(Fig. 4.7 C−D) and caused to the formation of dirty blizzard or oil-associated marine snow 

(Brooks et al., 2015; Passow, 2016). The oily particulate matter aggregated with 

phytoplankton through physical coagulation and flocculent materials rapidly sank on the 

seafloor (Joye et al., 2014; Passow, 2016). The sedimentation of algal-pollutants 

flocculation reduced the seawater turbidity, particularly in the euphotic zone (Melack, 

1985; Roland & de Assis Esteves, 1998). The reduction of turbidity had increased the 

light intensity in the water. The increased light intensity as the one of important 

phytoplankton growth factor had increased the possibility of HAB. However, this 

phenomenon has been reported that it was able to reduce approximately 60% of 

phytoplankton (Brooks et al., 2015). The aggregation and flocculation of algal and 

pollutants increased the sedimentation rates (Melack, 1985). Due to the sedimentation, 

benthic organisms such as clams, crabs, seagrass, coral and microalgae, were potentially 

in the risk of temporary anoxic (Brooks et al., 2015). Anoxic of the benthic organisms 
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might cause imbalance of biodiversity and destroy the marine ecosystems. Besides that, 

the pollutions also led to the sudden changes of environmental conditions (Melack, 1985; 

Louzao et al., 2015). The nutrient interchange between sediment and water column was 

impeded by bauxite tailings (Roland & de Assis Esteves, 1998) and oily particulate 

matter. Thus, pollutions in Kuantan Port was the factor that cause the cell density of 

phytoplankton become low and barely find cyst in this study.  

In this study, the CCA have shown that the nutrient sources affected the cell density 

of phytoplankton whereas salinity was highly influenced the cell density of Alexandrium 

spp. In August 2015, both total nitrogen and phosphate concentration were low but high 

concentration of ammonia and salinity. This environment condition had given an 

advantage for the dinoflagellate a better growth condition, especially Alexandrium spp. 

Under the low P and N, dinoflagellate was the late succession species in Kuantan Port, it 

is well defended from grazing and enable to survive for growth (Lin et al., 2016). This 

showed the nutrient sources were one of the main factors caused bloom of HAB in August 

2014 (Mohammad-Noor et al., 2017). Besides that, ecophysiology and toxin production 

of Alexandrium spp. were also affected by salinity. A. tamiyavanichii is a salinity-

dependent growth, it will be grew better in 20 – 30 PSU with the optimum salinity was 

25 PSU (Lim & Ogata, 2005).  

Preview phytoplankton diversity study from Mohammad-Noor et al. (2013) have 

shown the A. tamiyavanichii was absent in Kuantan, which it was incongruence with the 

findings in present study. In this study, A. tamiyavanichii can be commonly found in 

Kuantan Port waters with low abundance (Fig. 4.4). Therefore, A. tamiyavanichii can be 

suspected introduction to Kuantan Port through ballast water of shipments and it also had 

caused to the first HAB case in Kuantan Port in 2014 (Mohammad-Noor et al., 2013). 

Besides that, this study also found the high cell density of Alexandrium spp. in August 

2015, with the cell density up to 9637 cells L-1. This might likely had exceeded the 
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regulatory threshold of bioaccumulate PSP toxins by shellfish at 80 µg STX eq. 100 g−1, 

which it will be equivalence with 20−40 cells L-1 of A. tamiyavanichii (Kon et al., 2015). 

Besides that, other potential harmful species also has been found in this study. The 

potential harmful dinoflagellate such as Prorocentrum micans (putative palytoxin and 

ovatoxin-a producer) (Ignatiades & Gotsis-Skretas, 2010), P. sigmoides (cause fish 

killing) (Lu & Hodgkiss, 2004), Dinophysis acuminata (okadaic acid and Dynophysis-

toxin producer) (Ignatiades & Gotsis-Skretas, 2010; Hattenrath-Lehmann et al., 2013), D. 

caudata (okadaic acid and palytoxin producer) (Ignatiades & Gotsis-Skretas, 2010; Munir 

et al., 2010), D. miles (okadaic acid producer) (Munir et al., 2010), Ceratium furca (cause 

fish killing) (Munir et al., 2010), Ceratium fusus (cause fish killing) (Munir et al., 2010), 

Akashiwo sanguinea (cause fish killing) (Badylak et al., 2014), Noctiluca scintillans 

(cause fish killing) (Lu & Hodgkiss, 2004; Xu et al., 2017), and Chattonella spp. (fish 

killer) (Imai & Yamaguchi, 2012) were also regularly found in the waters.  

Cyst carried a crucial role in bloom initiation, termination, dispersion, and 

depopulation in an area (Kremp & Anderson, 2000). Among the phytoplankton that found 

in this study, A. tamiyavanichii (Nagai et al., 2003), Protoperidinium spp. (Lewis et al., 

1984; Matsuoka & Fukuyo, 2000), Akashiwo sanguinea (Tang & Gobler, 2015), and 

Chattonella spp. (Imai & Yamaguchi, 2012) were the species that are capable to produce 

cyst in their life cycle. In this study, cross-mating experiment was carried out with A. 

tamiyavanichii strains isolated from Kuantan Port. The reproduction compatibility and 

cyst germination experiments were failed to further investigate in this study due to the 

low successful encystment of a mating pair (<10 cysts). The calculation of cyst production 

in reproductive compatibility was performed in logarithmic scale (Blackburn et al., 2001) 

and formation of 0−10 resting cysts in logarithms were determined as 0 cyst production. 

While for the environment samples, the qPCR have detected very low number of A. 

tamiyavanichii cysts, 13 cycts g-1. Nevertheless, there have some cases such as in Arenys 
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de Mar harbor, the presence of resting cysts in that harbor has become the recurrence 

factor of A. minutum bloom (Vila et al., 2005). Possibility of recurrence of A. 

tamiyavanichii or other harmful dinoflagellates at Kuantan port in future due to resting 

cyst germination could not be ruled out. Therefore, a routine monitoring of the harmful 

planktonic and cysts was still necessary conducted on this area. 

 

4.5.  Conclusion 

This study showed the effects of pollution and physiochemical on the abundance of 

planktonic dinoflagellates and cysts in Kuantan Port. The bauxite related activities and 

oil spill in Kuantan Port have reduced the cell density of the phytoplankton and impeded 

nutrient interchange between sediment and water column. The limited phosphate and 

nitrogen concentration had favoured the late succession species from HAB. In this study, 

A. tamiyavanichii as a PST-producer was strongly influenced by physiochemical 

variability (high N:P ratio and optimum salinity) and pollutions. However, a continuous 

and long term monitoring in this area would better explain the dynamics of phytoplankton 

and factors promoting blooms, particularly A. tamiyavanichii. In addition, further study 

about A. tamiyavanichii cyst and completion of ecophysiological would provide better 

understanding of HABs. Hence, HABs are anticipated given the ideal conditions in 

Kuantan port. 
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CHAPTER 5: 

CONCLUSIONS AND RECOMMENDATION 

 

The resting cyst of harmful dinoflagellates plays an important role in the bloom 

dynamics. The formation and germination of cysts are crucial processes in the life cycle 

transitions of the species that might trigger blooms initiation and termination in a region. 

The tropical cyst of A. minutum had a relatively short encystment-excystment period (<10 

days) in Malaysian waters, with no significant dormancy period. On the other hand, the 

experimental data in this study revealed that the encystment rate of A. tamiyavanichii is 

relatively low. Studies on encystment and excystment of A. tamiyavanichii resting cysts 

are very limited, thus it is interesting to further investigate the processes of this species. 

In tropical regions, environment factors such as nutrient sources and water temperature 

are probably not the main factor that triggering bloom initiation but might be the factor 

that caused the bloom to develop. In this study, anthropogenic activities that caused the 

changes of environmental factors and pollutions have influenced the bloom dynamics of 

phytoplankton in the waters and also in the sediments. Particularly for Alexandrium spp., 

environmental conditions with low P:N ratios and optimum salinity helped to increase the 

inoculum of the cells and potentially caused blooms. On the other hand, bauxite mining 

and oil spill had severely polluted the water and sediment. They not only reduced the cell 

density of the phytoplankton in the water column, but also impeded cyst germination and 

cell growth in the sediment. This study has provided valuable information that will be 

used as the early warning for HABs, in both the life stages of motile vegetative cells and 

dormant resting cysts. 
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