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ABSTRACT 

Traditionally, the Recursive Least Squares (RLS) algorithm was used in the 

Generalized Predictive Control (GPC) framework solely for model adaptation purposes. 

In this work, the RLS algorithm was extended to also cater for self-tuning of the 

controller. Specifically, the analytical expressions proposed by Shridhar and Cooper 

(1997b) for offline tuning of the move suppression weight was deployed for online 

tuning. This new combination, denoted as the Adaptive-Model Based Self-Tuning 

Generalized Predictive Control (AS-GPC), contains both model adaptation and self-

tuning capabilities within the same controller structure. Several RLS algorithms were 

screened and the Variable Forgetting Factor Recursive Least Squares (VFF-RLS) 

algorithm was selected to capture the dynamics of the process online for the purpose of 

model adaptation in the controller. Based on the evolution of the process dynamics 

given by the VFF-RLS algorithm in the form of First Order Plus Dead Time (FOPDT) 

model parameters, the move suppression weight for the AS-GPC was recalculated 

automatically at every time step based on the analytical tuning expressions. The 

proposed control scheme was tested and implemented on a validated mechanistic 

transesterification process, known for inherent nonlinearities. Closed loop simulation of 

the transesterification reactor revealed the superiority of the proposed control scheme in 

terms of servo and regulatory control as compared to other variants of advanced 

controllers and the conventional PID controller. Not only is the proposed control 

scheme adept in tackling issues of process nonlinearities, it also minimizes user 

involvement in the tuning of the controller and consequently reduces process 

interruptions. 
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ABSTRAK 

 

Secara tradisional, algoritma Kuasa Dua Minima Rekursif (KDMR) digunakan 

dalam kerangka Kawalan Ramalan Am (KRA) semata-mata untuk tujuan adaptasi 

model. Dalam karya ini, algoritma KDMR dilanjutkan untuk melingkungi penalaan 

pengawal secara automatik. Khususnya, persamaan analitikal yang dicadangkan oleh 

Shridhar dan Cooper (1997a) untuk penalaan pemberat penekanan pergerakan secara 

luar talian digunakan untuk penalaan dalam talian. Gabungan baru ini, yang dinamakan 

sebagai Kawalan Ramalan Am berdasarkan Prinsip Adaptasi Model dan Penalaan 

Automatik (KRA-PAMPA), menpunyai keupayaan adaptasi model dan penalaan 

automatik dalam struktur pengawal yang sama. Beberapa algoritma KDMR telah ditapis 

dan algoritma Kuasa Dua Minima Rekursif dengan Faktor Perlupaan Berubah (KDMR-

FPB) dipilih untuk menganggar dinamik proses secara dalam talian untuk tujuan 

adaptasi model dalam struktur pengawal. Berdasarkan evolusi dinamik proses yang 

dianggarkan oleh algoritma KDMR-FPB dalam bentuk parameter model Tertib Pertama 

dengan Masa Mati (TPMM), pemberat penekanan pergerakan untuk KRA-PAMPA 

dihitung semula secara automatik pada setiap sela waktu dengan menggunakan 

persamaan penalaan analitikal tersebut. Skema kawalan yang dicadangkan ini diuji dan 

dilaksanakan ke atas satu proses transesterifikasi mekanistik yang telah disahkan dan 

dikenali dengan dinamik sejati yang tidak lelurus. Simulasi gelung tertutup reaktor 

transesterifikasi memaparkan keunggulan skema kawalan yang dicadangkan, baik 

dalam kawalan servo mahupun dalam  kawalan gangguan proses berbanding dengan 

pengawal termaju yang lain dan juga pengawal PID. Skema kawalan yang dicadangkan 

bukan sahaja mahir dalam menangani ketaklelurusan proses, tetapi juga dapat 

mengurangkan penglibatan pengguna dalam hal-ehwal penalaan pengawal dan 

seterusnya mengurangkan gangguan proses. 
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CHAPTER 1  

INTRODUCTION 

 

1.1  Background of the Research 

 

Although simple conventional controllers with fixed controller settings (e.g. the 

classical PID controllers) are still the most widely implemented automation strategy in 

the industry, there are cases where these controllers simply fail to deliver the expected 

control objectives. To deal with nonlinear processes where the process dynamics are 

poorly understood, process and control engineers often face difficulties in selecting the 

appropriate controller settings (i.e. controller tuning parameters) for the controller. The 

different response characteristics involved across the operational regions for a nonlinear 

process make it impossible to select a single set of controller settings which can give the 

controller equal performance across all operational regions in the process. Furthermore, 

in the event of unanticipated changes occurring in the process, e.g. stirrer failure, 

sticking valves etc., a controller with fixed controller settings (e.g. tuned for normal 

operations) will not be able to perform accordingly in the interest of mitigating the 

losses due to the technical failures. In view of these uncertainties encountered in process 

control, it is undoubtedly needful for a more intelligent process control scheme to be 

implemented, where the time-varying dynamics of the process can be accounted for in 

the design of the controller output. In simple terms, the controller must be able to ‘adapt’ 

itself to the changing dynamics of the process; hence the phrase ‘adaptive control’, to 

the best of the author’s knowledge, have been used at least from the beginning of the 

1950’s, e.g. an American patent was issued to Caldwell (1950) on the subject of 

adaptive regulator. 
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The aforementioned challenges and difficulties encountered by process and 

control engineers are more so true in the case of implementing Model Predictive 

Controllers (MPC). For one of the well-known MPC strategies in particular, i.e. the 

Generalized Predictive Controller (GPC) (Clarke, Mohtadi, & Tuffs, 1987a, 1987b), if 

such a controller is to be made adaptive, two key components within the structure of the 

controller can be made adaptive – the GPC internal model and the GPC tuning 

parameters. The need for the internal model and the tuning parameters of the GPC to be 

made adaptive is obvious: for a nonlinear and time-varying process, it is impossible to 

adopt a single Linear Time Invariant (LTI) model to represent the dynamics of the 

process across all operational regions and at all times, hence model adaptation and / or 

updating of the controller tuning parameters should be considered. To achieve the first 

objective, viz. to enable model adaptation in the GPC controller, the Recursive Least 

Squares (RLS) algorithm is normally used to capture the dynamics of the process in the 

form of process model parameters of a LTI system at every time step. As the process 

evolves in time, the model parameters change accordingly with the changing dynamics 

of the process, and consequently the internal model of the GPC controller is updated 

with time (Clarke, Mohtadi, and Tuffs, 1987a).  

 

As pertaining to the second objective, several authors have proposed different 

methods to auto-tune the MPC controller online at every control interval. Majority of 

these self-tuning studies conducted were implemented in the framework of Dynamic 

Matrix Control (DMC) (Al-Ghazzawi, Ali, Nouh, & Zafiriou, 2001; Ali & Al-Ghazzawi, 

2003; Han, Zhao, & Qian, 2006; Kawai et al., 2007), and a thorough review revealed 

that only a handful were concerned with the self-tuning of the GPC (Liu & Wang, 2000; 

Valencia-Palomoa & Rossiter, 2010). However, despite the scarcity of literature in 

specific relation to the self-tuning of the GPC controller, the self-tuning strategies 
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developed for the DMC are in principle applicable for the GPC. In these methods, with 

exception to the work done by Valencia-Palomoa and Rossiter (2010), optimization 

routines were used to compute the optimal set of controller tuning parameters online. In 

short, optimization routines were used not only for the purpose of producing optimized 

control moves, but also for the purpose of computing the optimal controller tuning 

parameters. Although these methods do not require much knowledge about the process 

from the control engineer to initiate the tuning procedure --- thus alleviating the pains 

that control engineers faced in tuning the predictive controller --- these approaches 

which involved the implementation of additional optimization routines were 

computationally demanding and mathematically involved (Garriga & Soroush, 2010). 

Moreover, these studies utilized a static internal model, and no conscious attempts were 

made to account for the nonlinearities and time-varying dynamics of the process in the 

model itself. 

 

This study aims to design a GPC controller with both model adaptation and self-

tuning capabilities, but with greater implementation simplicity. Although in some cases 

a proper nonlinear control law is needed to obtain adequate results, these are beyond the 

scope of this thesis. The control algorithm developed in this work (which employs the 

general adaptive control framework) is best suited to controlling processes with slowly 

time-varying process model parameters. The overall simplified schematic diagram of 

the proposed strategy is illustrated in Figure 1.1. The main strategy here is to restrict the 

self-tuning implementation solely for the tuning of the move suppression weight, which 

is reported by various researchers to be an effective parameter in affecting the closed 

loop performance of the GPC (McIntosh, Shah, & Fisher, 1991; Shridhar & Cooper, 

1997a, 1997b). Since the RLS identification scheme can be easily cast in the form of a 

First Order Plus Dead Time (FOPDT) parameter estimation problem, the output of the 
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RLS algorithm can be used both for model adaptation in the GPC controller and for 

online auto-tuning of the move suppression weight by utilizing the easy-to-use tuning 

correlations as proposed by Shridhar and Cooper (1997b). Furthermore, it will be shown 

through simulation results that the tuning correlations, although originally designed and 

intended for use with unconstrained predictive controllers, yielded good results even in 

the constrained case.  

 

 

 

Figure 1.1: The simplified overall implementation schematic diagram of the newly 

proposed scheme. 

 

As opposed to the conventional GPC strategy, where users are required to re-

determine the model parameters and retune the controller manually when unsatisfactory 

controller performance arises, the newly proposed scheme (as illustrated in Figure 1.1) 
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throughout the entire course of implementation), and setpoints, while the re-modelling 

of the process and the retuning of the move suppression weight are taken care of by the 

controller itself. In practice, a normal user (e.g. operators and technicians) needs only be 

concerned about the values of the remaining tuning parameters and the setpoints, while 

the manipulation of the RLS design parameters (which normally are determined one-off) 

shall be reserved for expert users (e.g. engineers) only. In short, the proposed control 

algorithm relieves a normal user from the challenging efforts involved in retuning the 

GPC tuning parameters as well as re-modeling the process offline to combat poor 

controller performance arising from process nonlinearities. With these, the benefits of 

the predictive controller are enhanced via synergistic combination of model adaptation 

and self-tuning capabilities with little increase in computational cost. For ease of 

reference, the proposed control algorithm, which incorporates both the model adaptation 

and self-tuning strategies in a single controller, is referred to as the Adaptive-Model 

Based Self-Tuning Generalized Predictive Control (AS-GPC), while the GPC with 

model adaptation only (which was included for comparison purposes) is termed 

Adaptive-Model Based Generalized Predictive Control (A-GPC).  

 

In this study, the AS-GPC was deployed on a validated mechanistic biodiesel 

(i.e. Fatty Acid Methyl Ester, FAME) transesterification reactor model developed by 

Mjalli, Lee, Kiew, and Hussain (2009). In addition, the performance of the AS-GPC 

scheme was benchmarked against that of the A-GPC and GPC schemes. Due to the 

complex set of chemical reactions as well as the complicated heat and mass transfer 

characteristics involved, the dynamics of the transesterification reactor is highly 

nonlinear. Figure 1.2 shows the simplified schematic diagram of the biodiesel 

production process. As in most chemical plants, the transesterification reactor is the 

most crucial unit operation to be controlled as it has primary effects on the quality of the 
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biodiesel.  The overall reaction for the production of biodiesel in the transesterification 

reactor is shown here: 

KOH
TG 3MeOH G 3FAME+ +����⇀↽����                                                                               (1.1) 

where TG = triglycerides, MeOH = methanol, G = glyceride, and KOH = potassium 

hydroxide catalyst. This reaction occurs as a sequence of three steps, where TG 

decomposes to diglycerides (DG) and monoglycerides (MG) with the production of 

glycerol (G) and FAME, as shown below: 

TG MeOH DG FAME

DG MeOH MG FAME

MG MeOH G FAME

+ +

+ +

+ +

⇌

⇌

⇌

                                                                                     (1.2) 

As this work focuses on the development and deployment of the abovementioned 

advanced controllers on the transesterification reactor model, readers interested in the 

modeling of the transesterification reactor based on the reactions shown in Eqn. (1.2) 

are referred to the work of Mjalli, Lee, Kiew, and Hussain (2009). 

 

 

Figure 1.2: Simplified schematic diagram of a biodiesel production process. 
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Figure 1.3 shows the strategy by which the AS-GPC scheme was deployed on 

the biodiesel reactor. The A-GPC scheme used for comparison purpose in this work is a 

subset of the AS-GPC scheme, where cθ̂θθθ  in the case of the A-GPC scheme excludes the 

online computed move suppression weight, indicating model adaptation only in the 

controller structure. The design of the reactor here is based on one of the available 

technologies as described in Tapasvi, Wiesenborn, and Gustafson (2004), where the 

biodiesel reactor is operated below the boiling point of methanol (b.p. = 64.7˚C). The 

pressure of the reactor is atmospheric and is not controlled. Instead, the temperature of 

the reactor is controlled to maximize the yield of biodiesel and to minimize the 

generation of unwanted by-products. Close control of the reactor temperature (i.e. 

within the range of 5 °C below the boiling point of methanol) is necessary as the rate of 

reaction increases with increasing reaction temperature (Leung, Wu, & Leung, 2010), 

but too high a temperature accelerates the saponification reaction of triglycerides 

(Eevera, Rajendran, & Saradha, 2009; Leung & Guo, 2006). In addition to controlling 

the reactor temperature, the concentration of the FAME is also controlled to ensure the 

stability, consistency and the quality of the biodiesel produced. This is important 

because the concentration of the biodiesel produced in the reactor must lie within the 

required specifications before proceeding to downstream processing.  

 

To deal with this, the strategy here as illustrated in Figure 1.3 involves the 

deployment of two Single Input Single Output (SISO) AS-GPC control loops (ie. a 

decentralized AS-GPC strategy) to regulate the reactor temperature (T) and the FAME 

concentration (CME) by manipulating the reactant flow rate (Fo) and the coolant flow 

rate (Fc) respectively. In addition, four key variables were identified as major 

disturbances to the biodiesel reactor, viz. the feed temperature (TO), initial concentration 

of triglycerides (CTGO), coolant inlet temperature (TCO), and stirrer rotational speed (N). 



 

Although unable to fully account for the interactions between all variab

of a centralized control structure, the decentralized control structure was chosen in this 

work due to its relative 

design is used considering the nature of the tuning corr

which are only applicable for SISO loop

 

 

Figure 1.3:  Simplified schematic of the decentralized AS

reactor operating at atmospheric pressure. 

flow rate, CME is the concentration of FAME, and 

estimated process model parameters and the online computed move suppression weight.

 

 

 

 

Although unable to fully account for the interactions between all variab

of a centralized control structure, the decentralized control structure was chosen in this 

work due to its relative simplicity in design and implementation. Also, the decentralized 

design is used considering the nature of the tuning correlations employed in this work, 

which are only applicable for SISO loops. 

:  Simplified schematic of the decentralized AS-GPC scheme on the biodiesel 

reactor operating at atmospheric pressure. Fc is the coolant flow rate, F

is the concentration of FAME, and cθ̂θθθ  are the controller settings, 

estimated process model parameters and the online computed move suppression weight.

8 

Although unable to fully account for the interactions between all variables as in the case 

of a centralized control structure, the decentralized control structure was chosen in this 

design and implementation. Also, the decentralized 

elations employed in this work, 

 

GPC scheme on the biodiesel 

is the coolant flow rate, Fo is the reactant 

are the controller settings, i.e. the 

estimated process model parameters and the online computed move suppression weight. 
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1.2  Research Objectives 

 

Following an overview of this research in the previous section, the objectives of 

this research are: 

 

i) To screen diverse forms of the RLS algorithm for their strengths and weaknesses 

in tracking time-varying systems, and to select one for implementation. 

 

ii) To perform an open loop dynamic system analysis on the transesterification 

process for the purpose of studying the nonlinearities and extent of loop 

interactions in the process. 

 

iii) To perform offline system identification on the various operational regions of 

the transesterification process in the form of FOPDT model. The results were 

incorporated into the design of the AS-GPC as a backup and contingency 

measure. 

 

iv) To design, code and develop the AS-GPC algorithm, where the output of the 

selected RLS algorithm is used not only for model adaptation in the GPC 

controller, but also for self-tuning of the move suppression weights by using the 

analytical tuning expressions proposed by Shridhar and Cooper (1997b).  

 

v) To study the closed loop performance of the AS-GPC scheme in the constraint-

free case for the transesterification process and to analyze the locations of the 

closed loop poles to ensure the soundness and stability of the basic 

unconstrained controller design. 
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vi) To deploy the newly proposed constrained AS-GPC algorithm on a nonlinear 

process, i.e. the transesterification process, and testing its performance in servo 

and regulatory control. Comparisons with the constrained A-GPC, GPC and 

conventional PID schemes were included where appropriate. 

 

1.3  Structure of Thesis 

 

The remaining six chapters are organized as follows: 

 

a) Chapter 2 reviews the pertinent literature of this research, i.e. adaptive 

control, recursive system identification techniques, and the GPC strategy. 

Furthermore, recent developments in the offline and online tuning 

methods of the GPC were surveyed, which motivated the AS-GPC 

scheme. The necessary mathematical background involved in the 

development of the AS-GPC is also covered.   

 

b) Chapter 3 discusses the methods used in meeting all the research 

objectives. In particular, the architecture of the AS-GPC scheme is 

elaborated. 

 

c) Chapter 4 presents the results and discussions on the screening of the 

various RLS algorithms in fulfillment of objective (i), where one specific 

RLS algorithm was selected for implementation throughout this work.  
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d) Chapter 5 discusses the results of the open loop dynamic system analysis 

as well as the results of the offline system identification as stated by 

research objectives (ii) and (iii). 

 

e) Chapter 6 is the core of this work, where objectives (iv) - (vi) are 

delivered. The closed loop performance of the AS-GPC was tested and 

simulated on a validated mechanistic transesterification reactor model. 

Necessary analysis and benchmarking with other control schemes were 

also included to demonstrate the superiority of the newly proposed 

scheme. 

 

f) Chapter 7 concludes this research, and proposes future extensions. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1  Introduction to Adaptive Control 

 

The development of adaptive control was primarily motivated by the growth of 

the aerospace industry in the 1950’s. However, these initial attempts were mostly 

unsuccessful (Åström, 1983). The rapid development of adaptive control strategy took 

place only in the 1970’s, when the design of adaptive controllers was founded on more 

secure theoretical framework and modern control concepts. Since then, adaptive control 

has emerged as an active area of research. The rising need for the implementation of 

adaptive control in the chemical and process industry is in conjunction with the 

increasing complexity of modern day processes. The use of adaptive control systems 

was described by Seborg, Edgar, and Shah (1986) as having the capability to “offer 

significant potential benefits for difficult process control problems where the process is 

poorly understood and/ or changes in unpredictable ways”.  One example of the many 

complex processes where adaptive control has been widely applied is the 

polymerization reaction (Seborg, Edgar, & Shah, 1986) where many complex 

physicochemical phenomena are still poorly understood (Elicabe & Meira, 1988; 

Mendoza-Bustos, Penlidis, & Cluett, 1990). In addition to this, Seborg, Edgar, and Shah 

(1986) in their review on adaptive control also reported many other successful adaptive 

control experimental applications across a wide variety of processes (i.e. absorption/ 

desorption plants, chemical reactors, distillation columns etc.). Recent applications of 

adaptive control continue to be reported, e.g. Moon, Cole and Clark (2006), 

Khodabandeh and Bolandi (2007), Mjalli and Hussain (2009) etc. 
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The extent of coverage on the subject of adaptive control are rather widespread, 

with several excellent technical review papers (Åström, 1983; Åström, Borisson, Ljung, 

& Wittenmark, 1977; Seborg, Edgar, & Shah, 1986), books (Åström & Wittenmark, 

1994; Clarke, 1981; Ioannou & Fidan, 2006), and tutorial (Isermann, 1982) available in 

the literature. In these resources, the various types of adaptive controllers available are 

documented in detail. In addition to these, Anderson and Dehghani (2008) gave a 

specific review on the different type of challenges present in adaptive control. 

 

The orientation of subsequent sections in this chapter is as follows: First, the 

different forms of adaptive control strategies available will be addressed, with special 

attention being given to the self-tuning control strategy. Next, the various components 

of self-tuning control strategy will be elucidated in detail, viz. the necessary theoretical 

framework of the various RLS algorithms, the GPC algorithm and the various GPC 

tuning methods.  

 

2.2  Different Forms of Adaptive Control  

  

Different adaptive control strategies were developed to deal with nonlinearities 

in the process (Bequette, 1991; Di Marco, Semino, & Brambilla, 1997). Due to the 

innumerable amount of adaptive control strategies documented in the control literature, 

here a brief description of the more common adaptive control techniques will be given.  

 

2.2.1 Gain Scheduling 

  

Adaptive control in its simplest form can be implemented by having 

predetermined sets of controller settings for different operating points of a process 



14 
 

(Åström, 1983; Seborg, Edgar, & Shah, 1986). This form of adaptive control strategy, 

however, does not cater to processes which are time-varying with respect to a specific 

operating point. A simple implementation of such adaptive control strategy is the ‘gain 

scheduling’ method (Leith & Leithead, 2000; Rugh, 1991). In gain scheduling, if the 

process gain (Kp) changes in a predictable manner, the controller settings can be 

adjusted such that the product of Kp and Kc (the proportional gain) is a constant.  In this 

case, the different values of Kp are predetermined for different operating points of the 

process, and interpolation is used to obtain the values of Kp in between operating points. 

Although the gain scheduling method is implementation-wise simple, Wong and Seborg 

(1986) showed that for a process with a large dead time, the standard gain scheduling 

based controllers exhibit poorer control of the process than conventional PID controllers. 

Further, it is not suitable for processes where the dynamics change with time and 

operational regions (e.g. the time constant and dead time of the process vary with time 

and operational regions).  

  

2.2.2  Multiple Model Adaptive Control 

  

The simple adaptation strategy as illustrated in Section 2.2.1 can also be 

extended to cater to model-based controllers. In this case, a number of local LTI models, 

each representing the dynamics of the process at a specific operating point are 

predetermined. This form of adaptive control technique is referred to as the Multiple 

Model Adaptive Control (MMAC). The reason for employing multiple models lies in 

the fact that a nonlinear process can be approximated by having multiple local LTI 

models (the more the better), each representing a particular operating region of the 

process (Banerjee, Arkun, Ogunnaike, & Pearson, 1997). However, due to the practical 

limits on the number of models feasible for implementation, the approximate dynamics 
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of the process in between the different operating points are usually obtained by some 

form of scheduling activity (e.g. interpolation). Chow, Kuznetsov, and Clarke (1998), 

for instance, showed that for predictive control, scheduling can be done by interpolating 

the poles and zeros of the corresponding local models. Gendron et al. (1993) in their 

design of a multiple model pole placement controller, weighted the process models 

based on the output variable. This weighted model was then used to design the pole 

placement controller. Townsend, Lightbody, Brown, and Irwin (1998) used the 

prediction error instead as a criterion for weighting the process models. All of these 

examples utilized the MMAC strategy to design a single controller (i.e. the models are 

interpolated and weighted and the results are implemented on a single controller). The 

MMAC strategy can also be implemented in another manner: the controller outputs can 

be interpolated and weighted instead of the process models (Dougherty & Cooper, 

2003a, 2003b; Yu, Roy, Kaufman, & Bequette, 1992). In this case, multiple linear 

controllers are designed based on the various local LTI models which correspond to 

different operating points of the process. The control outputs from the various linear 

controllers are then weighted to produce a control output which is sent to the process. 

The MMAC approach, although a possible approximation of nonlinear processes, 

theoretically requires an infinite amount of models to accurately describe a highly 

nonlinear process. In reality, this is not achievable, giving process and control engineers 

a hard time in deciding the practical amount of models/controllers to be used. 

Furthermore, constructing multiple models by offline system identification is 

cumbersome and requires perturbation of the process from its nominal operating region, 

which may not be desirable during normal operations. Also, the use of the MMAC 

approach is restricted to systems which are nonlinear with respect to different operating 

regions only, and does not include systems which are non-stationary in time with 

respect to a certain operating region. 



 

2.2.3  Model Reference Adaptive System

 

Another common adaptive control technique is the

Systems (MRAS). This technique was first developed by Whitaker, Yamron and Kezer 

(1958) for control of aircrafts. Figure 2.1 shows a block diagram of a typical MRAS. In 

this technique, a reference model is used to specify the ideal response of the process 
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2.2.4  Self-tuning Control 

  

Among the different forms of adaptive control strategies available, the self-

tuning approach has received the most attention in the past decades (Åström, Borisson, 

Ljung, & Wittenmark, 1977; Seborg, Edgar, & Shah, 1986; Shah & Cluett, 1991). The 

basic idea behind the self-tuning approach is to produce a controller which is able to 

retune itself in real time in order to suit the changing dynamics of the process. Figure 

2.2 shows the block diagram of the general self-tuning control framework, where u = 

process input, y = process output, d1 and d2 = disturbances, and ysp = setpoint. From the 

figure, given the input and the output of the process, a recursive parameter estimator is 

used to capture the dynamics of the process online by means of estimating the process 

model parameters (θp) in the form of a LTI model recursively. Subsequently, based on 

the preferred choice of control law, θp is then used to calculate the appropriate 

controller settings (θc) which caters to the most recent process dynamics. This sequence 

of estimating the process model parameters and retuning of the controller occurs in real 

time for as long as the process is in operation, which makes this control strategy 

particularly attractive for controlling difficult time-varying and nonlinear process. 

Hence, the success of self-tuning control in various processes is evident (Ahlberg & 

Cheyne, 1976; Bengtsson & Egardt, 1985; Buchholt & Kümmel, 1979; Clarke & 

Gawthrop, 1981; Corrêa, Corrêa, & Freire, 2002; Ertunc, Akay, Boyacioglu, & Hapoglu, 

2009; Hallager, Goldschmidt, & Jorgensen, 1984; Harris, MacGregor, & Wright, 1978; 

Ho, Mjalli, & Yeoh, 2010a, 2010b; Hodgson & Clarke, 1982; Khodabandeh & Bolandi, 

2007; Kwalik & Schork, 1985; McDermott, 1984; Moon, Clark, & Cole, 2005; Moon, 

Cole, and Clark, 2006; Tingdahl, 2007). 
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Other forms of adaptive control strategies (e.g. gain scheduling, MRAS etc.) will be 

referred to their respective terms as described previously. 

 

2.3  Recursive System Identification Techniques 

 

As alluded to previously in Section 2.2.4, one of the key components in self-

tuning control is the recursive parameter estimation, viz. the online process modeling. 

This technique seeks to overcome the shortcomings of the MMAC approach in 

approximating the true behavior of a process by estimating the process model 

parameters of a system recursively in real time. Such an approach is not only equivalent 

to having a huge models bank with infinite amount of local linear models (without the 

penalty of exorbitant efforts in constructing these models offline), but also is capable of 

dealing with time-varying processes.  

 

 Among the many recursive identification algorithms available in the literature 

(Ljung, 1987; Ljung & Söderstöm, 1983), Seborg, Edgar, and Shah (1986) in his 

comprehensive review on self-tuning control concluded that the RLS algorithm and the 

Extended Least Squares (ELS) algorithm are the two most frequently employed 

parameter estimation techniques in adaptive control. However, the RLS algorithm is 

more popular due to its simplicity and fast convergence when properly applied (Seborg, 

Edgar, & Shah, 1986). The following subsections are dedicated to address the various 

theoretical aspects of the RLS algorithms, including the efforts of various researchers in 

improving the properties of the RLS algorithm. 
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2.3.1  Model Structure 

 

The local dynamics of a general multivariable process can be represented by a 

Multi Inputs Multi Outputs (MIMO) discrete time Auto-Regressive eXogenous (ARX) 

model. Consider a MIMO discrete time ARX model with m inputs (uk), n outputs (yk), a 

bias parameter (dk) and a stochastic noise variable with normal distribution and zero 

mean (vk): 

( ) ( )1 1
a y b u d + vk k D k kz z− −

−= +                                                                                    (2.1) 

where a[n×n] and b[n×m] are polynomial matrices in the z-domain given as: 

( ) α1

1
a I a

i

ii
z z− −

=
= + ∑                                                                                                  (2.2) 

( ) β1

1
b b

i

ii
z z− −

=
= ∑                                                                                                         (2.3) 

  

In Eqn. (2.1), the subscript k is a nonnegative integer which denotes the 

sampling instance, (k = 0, 1, 2...), D ≥ 0 is the known dead time of the process 

expressed as an integer multiple of the sampling time (ts), whereas α and β in Eqns. (2.2) 

- (2.3) are known positive integers and I is the identity matrix. The form of the process 

model in Eqn. (2.1) can be easily simplified to cater to the SISO case by setting n = m = 

1. 

 

It is to be noted that the integers α and β represent the orders of the  respective 

output and input associated polynomials, where having large values of α and β is 

equivalent to increasing the order of the model. In recursive parameter estimation, 

having a higher order process model implies an increase in the number of parameters to 

be estimated, which introduces additional computational burden. On the other hand, 

having a model order that is too low may not adequately describe the dynamics of the 
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process. Typical values of α and β recommended by Seborg, Edgar, and Shah (1986) are 

α = 2 or 3 and β = 2 or 3. Alternatively, choosing a valid D value and α = β = 1 would 

give a FOPDT ARX model, which in many case serves as a good approximation for the 

purpose of control system design (Seborg, Edgar, & Mellichamp, 2004). 

  

As in all discrete time systems, there is a loss of dynamic information when a 

continuous process is subjected to sampling operation. Therefore, the sampling time of 

a discrete time system must be carefully selected to minimize the loss of dynamic 

information. While having a large sampling time causes slow controller action due to 

the inadequately sampled data, selecting a small value of sampling time may cause 

excessive control action and the possibility of the process model exhibiting non-

minimum phase behavior (Åström, Hagander, & Sternby, 1984). One possible rule of 

thumb for selecting the value of sampling time was proposed by Åström and 

Wittenmark (1997), where the sampling time is selected in terms of the settling time 

(tsettling) of the process: 

settling settling

15 6
s

t t
t≤ ≤                                                                                                          (2.4) 

For FOPDT systems, a good rule of thumb for selecting the sampling time is to select it 

such that it is approximately one tenth of the process time constant, i.e. ts ≈ 0.1τp 

(Seborg, Edgar, & Shah, 1986). Other rule of thumbs are also available in the literature, 

e.g. Middleton (1991).  

 

2.3.2  Recursive Least Squares Algorithm 

 

To capture the dynamics of a slowly time-varying process, RLS algorithm is 

used for online estimation of the coefficient matrices in a(z-1) and b(z-1) in Eqn. (2.1). 
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With the data of the inputs and the outputs of the process constantly being fed to the 

RLS algorithm, the RLS seeks to minimize a weighted cost function, V of the form:  

2

21
λ

k k i

k ii
V −

=
= ∑ ε                                                                                                          (2.5) 

where ( ]λ 0,1∈  is the forgetting factor, and n

i ∈ℜε  is the vector of prediction error at 

the i-th instance.  

 

Many variants of the RLS algorithm are reported in the literature (Fortescue, 

Kershenbaum, & Ydstie, 1981; Kulhavy & Karny, 1985; Mikleš & Fikar, 2007; Park, 

Jun, & Kim, 1991; Rao Sripada & Fisher, 1987; Salgado, Goodwin, & Middleton, 1988; 

Shah & Cluett, 1991), with the aim of improving the tracking performance of the 

conventional RLS algorithm (Ljung, 1987; Ljung & Söderstöm, 1983). The 

conventional form of the RLS equations is shown here for reference (where λ = 1): 

1
ˆy
T

k k k k−= −ε θ ψ                                                                                                              (2.6) 

1

1

P

P

k k
k T

k k k

−

−

=
λ +

γ
ψψψψ

ψ ψψ ψψ ψψ ψ
                                                                                                        (2.7) 

1 1
1

1

1 P P
P P

P

T

k k k k
k k T

k k k

− −
−

−

 
= − λ λ + 

ψ ψψ ψψ ψψ ψ
ψ ψψ ψψ ψψ ψ

                                                                                       (2.8) 

1
ˆ ˆ
k k k k−= +θ θ γ ε                                                                                                              (2.9) 

 

In these equations, γ is the Kalman gain and P is the covariance matrix of the 

prediction error.  The regressor matrix, ψ and the matrix of the estimated process model 

parameters, θ̂  (which in essence is the explicit form of θp mentioned in Figure 2.2) are 

represented by:  

1 1,..., ,..., ,y y , u u
T T T T T

k k k D k Dψψψψ − −α − − − −β = − − 1                                                                  (2.10) 

1 1
ˆ ,..., , ,..., ,a a b b dT

α β =  θ                                                                                          (2.11) 
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In the conventional RLS algorithm, the forgetting factor, λ is kept constant at 

unity. This form of the RLS algorithm is best suited for identifying the process model 

parameters of a LTI system only, and when implemented on time-varying systems, the 

algorithm loses its adaptivity in the long run. To overcome the shortcomings of the 

conventional RLS algorithm, a constant forgetting factor of ( ]λ 0,1∈  is employed 

instead to weigh down older data as the most recent data are more important in a slowly 

time-varying environment (Ljung, 1987; Ljung & Söderstöm, 1983; Mikleš & Fikar, 

2007; Shah & Cluett, 1991). However, it is difficult to select a proper value of the 

forgetting factor as too small a value would cause the parameter estimates to be very 

uncertain (i.e. Pk and γk becomes large), whereas a large forgetting factor would cause 

the algorithm to be insensitive to process parameter changes. With regards to this  

problem, Fortescue, Kershenbaum, and Ydstie (1981) proposed the use of a time-

varying forgetting factor, where the forgetting factor is varied according to the changes 

in the prediction error. In addition to the time-varying forgetting factor scheme, Cordero 

and Mayne (1981) suggested an additional mechanism to ensure that the trace of the 

covariance matrix remains bounded even when there is no new information coming into 

the RLS algorithm. This algorithm is referred to as the Variable Forgetting Factor 

Recursive Least Squares (VFF-RLS) and is given here: 

1
ˆy
T

k k k k−= −ε θ ψ                                                                                                            (2.12) 

1

11

P

P

k k
k T

k k k

−

−

=
+

ψ
γ

ψ ψ
                                                                                                      (2.13) 

1

λ 1
σ 1 P

T

k k
k T

k k kψ ψψ ψψ ψψ ψ−

= −
 + 

ε ε
                                                                                            (2.14) 

1 1P P
T

k k k k kω ψω ψω ψω ψ− −= − γ                                                                                                    (2.15) 

if  trace of

otherwise                    
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1
ˆ ˆ
k k k k−= +θ θ γ ε                                                                                                            (2.17) 

where σ/σw is selected to be a large number ≈ 1000 (σw is the variance of any process 

output measurement noise), while C is a design constant. From Eqn. (2.14), when the 

prediction error is small, λk →  1. On the other hand, when the prediction error is huge, 

λk is automatically adjusted to a smaller value (λk < 1). The VFF-RLS scheme has 

excellent performance in tracking time-varying process model parameters and was 

successfully implemented on a chip refiner and a paper box machine (Ydstie, 

Kershenbaum, & Sargent, 1985). 

 

A similar approach was adopted to vary the value of the forgetting factor 

according to the prediction error of the RLS algorithm in the work of Park, Jun, and 

Kim  (1991), where the equations of the forgetting factor are shown here: 

                                                                                             (2.18) 

ρ T

k k kL NINT  = −  ε ε                                                                                                    (2.19) 

In Eqns. (2.18) - (2.19), λmin is the minimum forgetting factor, NINT[ i ] is defined as the 

nearest integer to [ i ], and ρ is a design parameter. Equations (2.6) - (2.9), with (2.18) 

and (2.19) are referred to as the Exponential Weighting Recursive Least Squares 

(EWRLS), following Park, Jun, and Kim (1991). 

 

Another interesting approach in identifying time-varying process parameters is 

to forget only in the direction where new information is coming in (Ljung & 

Gunnarsson, 1990). This approach was demonstrated by Kulhavý and Kárný (1985) in 

the Exponential and Directional Forgetting (EDF) algorithm. To speed up convergence 

in the EDF algorithm, Bittanti, Bolzern, and Campi (1990) proposed an addition of a 

correction factor referred to as the Bittanti factor to the equation of covariance update. 

The modified EDF algorithm is shown here: 

( )min minλ λ 1 λ 2 kL

k = + − ⋅
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δ
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r

ψ ψψ ψψ ψψ ψ− −
− −

= − +
+

                                                                                     (2.24) 

1
ˆ ˆ
k k k k−= +θ θ γ ε                                                                                                            (2.25) 

where [ ]δ 0,0.01∈  is the Bittanti factor. The value of the Bittanti factor used should be 

small to avoid over-sensitivity in the EDF algorithm, which could lead to erroneous 

parameter estimates. 

 

2.3.3  Factorization of the Covariance Matrix 

 

As the various equations of covariance update, i.e. Eqns. (2.8), (2.16) and (2.24), 

involve subtraction operations, round-up errors due to the limited accuracy of the 

computer, there is a possibility that the covariance matrix becomes non positive definite. 

The resulting instability caused by a non positive definite covariance matrix will affect 

the performance of the RLS algorithm significantly. Hence, to attain numerical stability 

during implementations of the RLS algorithms, the positive definite feature of the 

covariance matrix must be retained during recursions. One way to overcome this 

problem is to use the square root filtering technique (Potter & Stern, 1963), where the 

covariance matrix is factored as P = SST (in which S is an upper triangular matrix called 

the square root of P) and subsequent updates of P be accomplished through the 

factorized component S. Alternatively, Bierman (1976) suggested to use the 
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factorization of P = UDUT, where U is an upper triangular matrix and D is a diagonal 

matrix. As in the square root filtering technique, instead of updating the covariance 

matrix directly, the factorized components (i.e. U and D) of the covariance matrix are 

updated instead. Both methods described above are useful for achieving numerical 

stability in RLS implementations (Ljung, 1987; Seborg, Edgar, & Shah, 1986), and the 

choice of factorization method is a matter of preference. In this work, Bierman’s UDUT 

factorization method is used. Due to the amount of details involved (omitted in the 

original paper), the rigorous derivation of Bierman’s method is shown in Appendix A. 

 

2.4  Generalized Predictive Control Strategy 

 

The development of modern control concepts in the past decades has led to the 

emergence of the MPC technology, where an explicit process model is employed within 

the control algorithm to predict the future behavior of the process response at every time 

step over a given prediction horizon. An overall concept of the MPC strategy is as 

illustrated in Figure 2.3. The predicted future output trajectories are then used to 

compute the optimal sequence of the future input trajectories over a specified control 

horizon by minimizing the error between the desired future setpoints and the predicted 

future outputs. From the optimal input sequence, only the first move is eventually 

implemented in the process. This sequence of calculation is repeated at every sampling 

time step.  
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Figure 2.3: The basic concept of Model Predictive Control (MPC). 

 

 Excellent reviews and books on the development of various model predictive 

controllers are available in the literature (Camacho & Bordons, 1999; Garcia, Prett, & 

Morari, 1989; Qin & Badgwell, 2003; Rossiter, 2003). The different variants of the 

model predictive controllers in principle share the same basic concept as illustrated in 

Figure 2.3, with minor differences in the modeling/prediction assumptions involved. 

Among the many model predictive controllers available in the literature as well as in the 

industry (e.g. Dynamic Matrix Control, Quadratic Dynamic Matrix Control etc.), the 
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GPC devised by Clarke, Mohtadi, and Tuffs (1987a, 1987b) has attained the status of 

being one of the most popular MPC algorithms (Clarke, 1988; Garriga & Soroush, 

2010). Originally developed for the purpose of adaptive control (in terms of model 

adaptation without real time adjustment of the tuning parameters), the GPC is known to 

be a “general purpose” algorithm capable of handling the following process control 

scenarios (Clarke, Mohtadi, & Tuffs, 1987a) all in one algorithm: 

• A non-minimum phase plant 

• An open loop unstable plant or plant with badly damped poles 

• A plant with unknown order 

• A plant with unknown or variable dead time 

 

These properties of the GPC are of significant importance particularly in 

adaptive control applications when the plant order and dead time are usually unknown. 

To further illustrate the suitability of implementing the GPC algorithm for adaptive 

control purposes, Qin and Badgwell (2003) in their excellent review on the practical 

real world applications of the MPC controllers categorized the GPC under the category 

of “adaptive MPC algorithms”. In addition, the GPC is proven to show good 

performance properties and a certain degree of robustness when implemented for the 

purpose of adaptive control (Clarke, Mohtadi, & Tuffs, 1987a). Figure 2.4 presents the 

simplified block diagram of the GPC strategy to aid understanding of the subsequent 

technical discussions. In GPC, the Controlled Auto-Regressive Integrated Moving 

Average (CARIMA) model is employed for prediction: 

( ) ( ) ( )-1

1 1
T v

a y b u
k

k k D

z
z z− −

−= +
∆

                                                                            (2.26) 

In Eqn. (2.26), T(z-1) is a design polynomial matrix (Clarke, Mohtadi, & Tuffs, 1987a, 

1987b; Yoon & Clarke, 1995), and ∆ = 1 – z-1. When T(z-1) = I, the CARIMA model 
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takes the form of an ARX model with an integrated white noise term for modeling 

disturbances. Model adaptation in the GPC algorithm is done by having the coefficient 

matrices of a(z-1) and b(z-1) updated recursively by the RLS algorithm. 

 

 To facilitate explanation on the theoretical framework of the GPC algorithm, the 

symbols and variables used hereafter in this text will follow the conventions developed 

by Rositter (2003). First, the vector of future and past variables at sampling instance k 

are defined as: 
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where the notation of arrows pointing right is used for strictly future (not including 

current value) vectors and the notation of arrows pointing left for past (including current 

value) vectors, ∆u is the vector of change in the input variables (i.e. the slew rate), in 

which the elements are defined as ∆ui = ui – ui-1, and r is the vector of set points. The 

positive integers N2 and M are the maximum prediction horizon and control horizon 

respectively, which serve as tuning parameters for the GPC.  

 



 

Figure 2.4: Simplified block diagram of the

symbols: yk = process outputs, 

process inputs, uk - 1 

the optimized future slew rates, 

rates, r
k→
 = future setpoints, 

input constraints, ∆u

slew rate constraints, 

horizon, M = control horizon, 

weights on the output residuals, 

matrix in the CARIMA model, 

 

 

: Simplified block diagram of the conventional GPC strategy. Meaning 

= process outputs, y
k→
 = predicted future outputs, y

←

 = process inputs at previous instance, ∆uk = first slew rates from 

the optimized future slew rates, 
1

u
k→ −

∆  = optimized future slew rates, 

= future setpoints, umax = upper limit of input constraints, 

umax = upper limit of slew rate constraints, ∆

slew rate constraints, N1 = minimum prediction horizon, N2 = maximum prediction 

= control horizon, Ri = 1, …, m = move suppression weights, 

weights on the output residuals, ai = 1, …, α and bi = 1, …, β = coefficients of the polynomial 

matrix in the CARIMA model, D = discrete dead time. 
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GPC strategy. Meaning of 

y
k←
 = past outputs, uk = 

= first slew rates from 

= optimized future slew rates, 
1

u
k← −

∆  = past slew 

= upper limit of input constraints, umin = lower limit of 

= upper limit of slew rate constraints, ∆umin = lower limit of 

= maximum prediction 

= move suppression weights, Wi = 1, …, n = 

= coefficients of the polynomial 
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 To arrive at the form of model that is useful for predicting the future behavior of 

the process in the GPC algorithm, the CARIMA model shown in Eqn. (2.26) must first 

be written in the following form: 

( ) ( ) ( ) ( )
1 1

-1 -1

y u
A b v

T T

k k D
kz z

z z

− − −
   ∆
   = +
      

                                                                      (2.28) 

where ( ) ( )1 1 1 α 1
1 α 1...A a = I A Az z z z− − − − −

+= ∆ + + + . 

  

Since white noise vk has zero mean and can be assumed zero in the future 

(Rossiter, 2003), with T(z-1) = I, Eqn. (2.28) can be written for N2 steps ahead into the 

future as shown:  

                                                                         (2.29) 

The constructions of CA, HA, Cb, and Hb matrices are given in Appendix B. Equation 

(2.29) can then be rearranged to arrive at the following formulation for prediction: 

                                                                                   (2.30) 

where 1
A bH = C C
− , 1

A bK = C H
− , and 1

A AQ = C H
−− . Suffice to note here that 

( )2 1H
N N M− ×∈ℜ , ( ) ( )2 1 1

K
N N D− × +β−∈ℜ , and ( ) ( )2 1 1

Q
N N− × α+∈ℜ . In this equation, the 

minimum prediction horizon N1 is introduced, and consequently the value of the control 

horizon M should be lesser or equal to (N2 – N1) in order for Eqn. (2.30) to be valid. 

 

  To compute the optimal sequence of future input trajectories, the GPC control 

law can be obtained by considering the following cost function: 

                                                               (2.31) 

In Eqn. (2.31), ( ) ( )2 1 2 1W
n N N n N N× − × × −      ∈ℜ  and ( ) ( )

R
m M m M× × ×∈ℜ  are positive definite 

diagonal weighting matrices defined as: 

1 1
A A b bC y H y C u H u

k kk k → ←− −→ ←
+ = ∆ + ∆

1 1
y H u K u Q y

k kk k→ ←− −→ ←
= ∆ + ∆ +

1 1
r y W r y u R u

T

T

k k k kk k

J
→ → → →− −→ →

   = − − + ∆ ∆   
   
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 

⋯

⋱ ⋮

⋮ ⋱ ⋱

⋯

;                                                                                             (2.32) 

where the diagonal elements of the matrix W consists of the weights ����,…,� for output 

residuals, whereas the diagonal elements of the matrix R consists of the move 

suppression weights ����,…,	  for changes in inputs. These weights are tunable 

parameters for obtaining good performance in the GPC controller. In the original GPC 

algorithm devised by Clarke, Mohtadi, and Tuffs (1987a), however, Wi = 1 (i.e. W I= ) 

was imposed on the GPC cost function and the same will be used in this work for 

simplicity and to reduce the amount of tuning parameters involved.  

 

  For the unconstrained GPC, the solution to 

1

0
u

k

J

→ −

∂
=

∂∆
 in Eqn. (2.31) with 

W I=  yields the following unconstrained GPC control law: 

( ) 1

1
1

u e H H R H r Q y K uT T T

k
k kk

−

→ ← −←

 ∆ = + − − ∆  
                                                       (2.33) 

where [ ]1 , , ,...,e I
T

m m m mM× ×
= 0 0 0 .   

 

In the unconstrained GPC, it is possible to derive the closed loop transfer 

function for the purpose of evaluating the closed loop poles. To do this, Eqn. (2.33) is 

first rewritten in the following form: 

1

ˆ ˆ ˆu P r N y D uk k k k
k kk

→ ← −←
∆ = − − ∆                                                                                    (2.34) 
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where: 

( ) 1

1P̂ = e H H R H
T T T

k

−
+  

( ) 1

1N̂ = e H H R H Q
T T T

k

−
+                                                                                        (2.35) 

( ) 1

1D̂ = e H H R H K
T T T

k

−
+  

 

Defining the components of Eqn. (2.35) as in Eqn. (2.36), Eqn. (2.34) can be 

rewritten as Eqn. (2.37): 

1 1 1 21 2
ˆ ˆ ˆ ˆ ˆP = P P P Pk k N k N k N k N+ + + + + +

 
 ⋯  

1 2
ˆ ˆ ˆ ˆ ˆN = N N N Nk k k k k− − −α

 
 ⋯                                                                         (2.36) 

( )1 2 3 1
ˆ ˆ ˆ ˆ ˆD = D D D Dk k k k k D+− − − − −β

 
 ⋯  

( ) ( ) ( )1 1ˆ ˆ ˆu P r N y D uk k k k k k kz z z− −∆ = − − ∆                                                                 (2.37) 

where: 

( ) 1 1 1 2

1 1 1 2

1 2
1 2

ˆ ˆ ˆ ˆ ˆP = P P P P
N N N N

k k N k N k N k Nz z z z z+ +
+ + + + + ++ + + +…  

( )1 1 2
1 2

ˆ ˆ ˆ ˆ ˆN = N N N Nk k k k kz z z z− − − −α
− − −α+ + +…                                                          (2.38) 

( ) ( )
( )11 1 2 3

1 2 3 1
ˆ ˆ ˆ ˆ ˆD = D D D D

D

k k k k k D+
z z z z z

− + −β− − − −
− − − − −β+ + + +…  

 

Rearranging Eqn. (2.37) gives the following: 

( ) ( ) ( )1 1ˆ ˆ ˆI D u P r N yk k k k k kz z z− − + ∆ = −                                                                   (2.39) 

From Eqn. (2.1), ignoring the stochastic components (i.e. the bias parameter and the 

noise term), it can be shown that: 

( ) ( )
1

1 1
y a b u

D

k k
z z z

−
− − − =                                                                                         (2.40) 
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Substituting Eqn. (2.40) in Eqn. (2.39) yields: 

( ) ( ) ( ) ( ) ( ){ } ( )
11 1 1

1 1 1 1 1ˆ ˆ ˆu b I D b N a P r
D D

k k k k kz z z z z z z z
−− − −

− − − − − − −       = + ∆ +       
 

                                                                                                                                  
   (2.41) 

 

Hence, the closed loop transfer function is obtained in a straight forward manner 

by utilizing Eqn. (2.41) in Eqn. (2.40): 

( ) ( ) ( ) ( ) ( ){ } ( )
11 1 1

1 1 1 1 1ˆ ˆ ˆ∆y a I D b N a P r
D

k k k k kz z z z z z z
−− − −

− − − − − −       = + +            (2.42) 

where the closed loop poles are given by the solution to the following characteristic 

equation: 

( ) ( ) ( ) ( )( )1 1
1 1 1 1ˆ ˆdet ∆ 0I D b N a

D

k kz z z z z
− −

− − − − −     + + =                                        (2.43) 

                                            

The straightforward solution to the GPC cost function and the derivation of the 

GPC closed loop transfer function as described above are only possible with the 

unconstrained GPC. For the constrained GPC, the cost function J is minimized with 

respect to 
1

u
k→ −

∆  while satisfying the following constraints: 

min max
1

u u u
k→ −

≤ ≤   

min max
1

u u u
k→ −

∆ ≤ ∆ ≤ ∆                                                                                                  (2.44) 

 

The optimal sequence of the future input trajectories is then obtained by 

rearranging and solving Eqn. (2.31) in the form of a Quadratic Programming (QP) 

problem (given W I= ): 
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1 1 1

1

1

1

2

Subject to

min
u

u B u g u

 u

T T

k k k

k

k

→ → →− − −

→ −

→ −
∆

 ∆ ∆ + ∆ 
 

∆ − ≤ 0Ω µΩ µΩ µΩ µ

                                                                           (2.45) 

where B and g are defined as (Rossiter, 2003): 

B = H H R
T +   

1
g = H K u Q y rT

kk k
→← − ←

 ∆ + −  
                                                                                     (2.46) 

The matrices Ω and µ in Eqn. (2.45) can be obtained by formulating Eqn. (2.44) in the 

form of linear inequalities, of which the details can be found in Camacho and Bordons 

(1999), Maciejowski (2002), and Rossiter (2003). The solution to the QP problem in 

Eqn. (2.45) yields the optimal future input trajectories, where only the first move is 

implemented in the process.  

 

  Regarding stability in the constrained case, although it can be guaranteed by 

parametric interpretations and the use of the well-known “dual-mode” algorithms with 

guaranteed convergence (Rossiter, 2003), in terms of evaluating stability by means of 

the closed loop poles, there has not been any possibility of doing so for the constrained 

GPC. Thus, this work considers only the stability in the unconstrained case through its 

closed loop transfer function. Despite the fact that stability in the unconstrained case 

does not guarantee stability in the constrained case, it is still worth doing a study in the 

stability of the former scenario (Rossiter, 2003) because if the control law in the 

unconstrained case does not give good performance, the corresponding constrained case 

cannot be expected to give good performance. 
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2.5  Generalized Predictive Control: Tuning Methods 

 

 As alluded to in the previous section, the GPC algorithm has several tuning 

parameters which can be adjusted to affect the performance of the controller. For ease 

of reference, the tuning parameters are recapitulated here: 

a) Minimum prediction horizon (N1) 

b) Maximum prediction horizon (N2) 

c) Control horizon (M) 

d) Move suppression weight (Ri) 

 

Over the decades, many authors had proposed different formulations and 

strategies to tune the GPC controller. In a recent work, Garriga and Soroush (2010) 

presented a review on the various MPC (i.e. GPC and DMC) tuning methods available, 

with a specific section dedicated specifically to the subject of “auto-tuning” 

(synonymous to “self-tuning” in the context of this work). In the following subsections, 

a brief review on the various offline GPC tuning methods is given, followed by 

discussions on the developments of self-tuning methods. 

 

2.5.1  Minimum and Maximum Prediction Horizons (N1 and N2) 

 

 In general, the value of N1 in the GPC formulation is set to 1 if the dead time of 

the plant is not known a priori as selecting a value of N1 much greater than the dead 

time of the plant will cause the controller to ignore the dynamics of the plant within the 

(N1 - dead time) horizon. This may cause the controller performance to deteriorate since 

the ignored dynamics can be crucial in determining the appropriate control output. As 

such, the value of N1 = 1 is a conservative choice if nothing is known about the dead 
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time of the process (Banerjee & Shah, 1992; Clarke, Mohtadi, & Tuffs, 1987b; 

McIntosh, Shah, & Fisher, 1989, 1991). Conversely, if the discrete dead time of the 

plant is known a priori, N1 can be selected as equal to (discrete dead time + 1) to 

minimize computations (Camacho & Bordons, 1999; Clarke, Mohtadi, & Tuffs, 1987a). 

Other tuning guidelines for selecting the minimum prediction horizon based on the 

order of a(z-1) and 
∗(z-1) [where 
∗(z-1) = z-Db (z-1)] are also available in the literature 

(Clarke & Mohtadi, 1989; McIntosh, Shah, & Fisher, 1989, 1991). 

 

 As for N2, in order to guarantee the stability of the closed loop system, its value 

should be set to infinite (Camacho & Bordons, 1999; Maciejowski, 2002; Rossiter, 

2003), which in practical terms would mean setting N2 to large values. If a finite value 

for N2 is selected, its value should be carefully chosen based on tuning guidelines to 

ensure the closed loop stability of the system. Clarke, Mohtadi, and Tuffs (1987a) 

proposed setting the value of N2 between the order of 
∗(z-1) and the discrete rise time 

of the process. In another work, Clarke and Mohtadi (1989) proposed that the value of 

N2 be chosen based on a rise time of 95 % of the process steady state. A more explicit 

tuning correlation was proposed by Shridhar and Cooper (1997b) for the selection of N2 

for SISO FOPDT systems: 

p
2 5

s

N CEIL D
t

 τ 
= +  

  
                                                                                             (2.47) 

where τp is the process time constant and CEIL[ i ] is defined as the nearest next integer 

to [ i ]. Although Eqn. (2.47) was originally developed for the tuning of DMC, the 

authors claimed that the same equation can be also used for tuning the GPC. Many other 

tuning guides had been proposed for the selection of N2 (Banerjee & Shah, 1992; 

McIntosh, Shah, & Fisher, 1989, 1990, 1991; Trierwieler & Farina, 2003; Yamuna & 

Unbehauen, 1997), however, the general agreement is that N2 should be sufficiently 
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large to cover the important parts of the step response curve (Mikleš & Fikar, 2007) as 

well as to ensure the stability of the closed loop system. 

 

2.5.2  Control Horizon (M) 

 

 In the GPC formulation, selecting a value of M = 1 produces a conservative 

controller, whereas values of M > 1 produces a more robust controller at the cost of 

increased computation load. Several authors have proposed to set the value of M = 1 

(Banerjee & Shah, 1992; Clarke & Mohtadi, 1989; Clarke, Mohtadi, & Tuffs, 1987a, 

1987b; McIntosh, Shah, & Fisher, 1989, 1991; Yamuna & Unbehauen, 1997). Other 

than that, Clarke and Mohtadi (1989) proposed that M be equated to the discrete dead 

time of the process, whereas McIntosh, Shah, and Fisher (1989, 1991) proposed that M 

be chosen based on the order of a(z-1) plus one. In his book on MPC, Rossiter (2003) 

stated that “a value of M ≥ 3 often seems to give performance close to the global 

optimal”. Other prediction horizon based and stability based tuning rules for selecting 

the value of M in the GPC framework are available in the work of Rawlings and Muske 

(1993) as well as in the work of Trierwieler and Farina (2003). In general, the 

guidelines given by these authors suggest that the value of M should not be overly large. 

Furthermore, the control horizon does not have significant effects on the closed loop 

performance in the presence of move suppression (Shridhar & Cooper, 1997b), which is 

the reason for the authors’ proposal of the values of M between 1 to 6. 

 

2.5.3  Move Suppression Weight (Ri)  

 

The move suppression weight, also known as the move suppression coefficient, is 

used to penalize the slew rates such that a larger penalty produces a more robust but 
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sluggish controller. Conversely, selecting a small value of Ri or a complete absence of 

move suppression produces an aggressive but less robust controller. This section shall 

be restricted to the more common methods of tuning Ri (Garriga & Soroush, 2010) and 

shall not cover the concepts deployed in algorithms such as the Predictive Functional 

Control etc (Rossiter, 2003). Several authors have proposed to select the value of Ri 

based on actual control performance, i.e. trial and error (Karacan, Hapoglu, & Alpbaz, 

2001; McIntosh, Shah, & Fisher, 1989, 1991). In these studies, the strategies used by 

the authors involved making Ri the single active tuning parameter, while all other tuning 

parameters were fixed. This strategy concurs with the perspective of optimal feedback 

control (e.g. the Linear Quadratic Regulator, LQR), where the weights of the objective 

function to be minimized are the sole tuning parameters of the controller (Mikleš & 

Fikar, 2007). Clarke and Mohtadi (1989) suggested setting the value of Ri = 0. However, 

if numerical stability is an issue of concern, the authors proposed to adopt values of Ri ≈ 

0. Banerjee and Shah (1992) suggested choosing values of Ri in the range between 1 - 2. 

Yamuna and Unbehauen (1997) proposed to tune the move suppression weight based on 

the following relationship: 

2iR N= κ + π                                                                                                                 (2.48) 

where κ and π are constants determined from past Ri and N2 values. Using this 

relationship, Ri is recalculated each time N2 is retuned based on the performance tuning 

procedure proposed by McIntosh, Shah, and Fisher (1990). 

 

 In another tuning formulation by McIntosh, Shah, and Fisher (1989), the authors 

proposed that an initial guess for the “relative control weighting (��
∗)” be calculated 

based on trace(HT
H) and subsequent values of Ri be calculated based on the relationship 

of Ri = ��
∗  
∗(1). In addition, the value of ��

∗  can be fine-tuned during operation to 

improve the overall performance. Most of the methods described to this juncture are not 
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suitable for RLS-based self-tuning purposes due to the lack of association between the 

tuning guides and the process model parameters. Shridhar and Cooper (1997b) in their 

attempt to tune Ri based on the process model parameters of an open loop stable SISO 

FOPDT model proposed the following analytical expressions to calculate its value: 

2
pKiR f=                                                                                                                      (2.49) 

where: 

( )p

0 1

3.5 1
2 1

500 2s

M

f MM
M

t

=


τ= − 
+ − > 

 

                                                                    (2.50) 

Equations (2.49) - (2.50), although developed originally for unconstrained DMC, can 

also be directly applied for tuning the Ri in the GPC (Mikleš & Fikar, 2007). The 

authors also proposed to select the usual values of M ranging from 1 to 6 when these 

expressions are applied. Since Eqns. (2.49) - (2.50) are developed based on a process 

model and are relatively easy to implement, the self-tuning component in the AS-GPC 

proposed in this work shall be designed based on these equations. As to the success of 

this tuning strategy, several researchers had obtained good results with it (Nithya, Gour, 

Sivakumaran, Radhakrishnan, & Anantharaman, 2007; Tahami & Ebad, 2009; 

Villanueva Perales, Ollero, Gutierrez Ortiz, & Gomez-Barea, 2009). However, in the 

review of Garriga and Soroush (2010), the authors concluded that this tuning strategy 

yielded faster response at the expense of more aggressive controller moves. To what 

extent this conclusion holds true when the tuning strategy is deployed in a recursive 

fashion, remains a question to be answered in Chapter 6 of this thesis.  

 

2.5.4  Self-Tuning Methods  

 

 In these methods, tuning of the GPC is not done offline by control engineers, but 

rather, the controller automatically retunes itself in real time. As the effect of an 
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individual tuning parameter strongly depends on the settings of the other tuning 

parameters in the GPC controller (McIntosh, Shah, & Fisher, 1991), the task of 

controller tuning is not straightforward for an inexperienced control engineer. Hence, 

with the implementations of self-tuning strategies, minimal knowledge is required of the 

control engineer to initiate the tuning procedure.  

 

 In the literature, although the majority of the developments in self-tuning of the 

MPC were tailored specifically for the DMC, in general the same principle can be 

applied on the GPC. In the work of Al-Ghazzawi, Ali, Nouh, and Zafiriou (2001), the 

authors developed analytical sensitivity expressions relating the process outputs and the 

DMC tuning parameters (i.e. the weights on the output residuals and the move 

suppression coefficients) and utilized it for automatic online adjustments of the tuning 

parameters. The prediction and control horizons were set at predetermined values and 

only the weights on the output residuals and the move suppression weights were retuned 

in real time. Han, Zhao, and Qian (2006) proposed a self-tuning strategy based on 

Particle Swarm Optimization (PSO). A novel performance index was developed and 

PSO was used to search for the optimal tuning parameters while minimizing the 

performance index to cater to the worst operating conditions. Kawai et al. (2007) 

applied this method to tune the DMC. However, instead of computing the entire set of 

tuning parameters online, the optimization problem was restricted to computing the 

optimal values of the inputs and outputs weights only, hence reducing the computation 

load required. Ali and Al-Ghazzawi (2003) presented a self-tuning scheme based on 

fuzzy logics. In this scheme, the prediction horizon, the move suppression weights, and 

the weights of the output residuals were determined from predefined fuzzy rules which 

formulate the general tuning guides reported in the literature, while the control horizon 

was fixed at a constant value. As for the GPC, Liu and Wang (2000) proposed two 
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algorithms to carry out a multi-objective optimization for the purpose of obtaining the 

optimal set of tuning parameters as well as to optimize the control moves online. In a 

recent work for the GPC implemented through the Programmable Logic Controller 

(PLC), Valencia-Palomoa and Rossiter (2010) suggested to auto-tune the GPC based on 

estimates of model behavior as compared to standard second order characteristics (i.e. 

rise time, settling time, overshoot, process gain, dead time and sampling time of the 

process) of the process. In all these studies, a static internal model was employed for the 

predictive controller, and no model adaptation scheme was adopted explicitly. This 

work attempts to incorporate both the model adaptation and self-tuning strategies in the 

GPC controller by using the output of the RLS algorithm, of which the details are given 

in Section 3.6. To what extent the performance of the controller can be improved (if 

there is any at all), remains a question to be answered in this work. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1  General Remarks 

 

 In this chapter, only the necessary procedures and methods used to meet the 

objectives of the research will be elucidated in detail, while the results of the respective 

sections are presented in the subsequent chapters. Unless mentioned otherwise, all 

simulations involved in this work were programmed using Simulink® version 7.1 of 

MATLAB® program version R2008a. Where the use of S-function in Simulink® is 

involved, the programs were coded as an M-file to be embedded within the S-function 

block. The use of MATLAB toolboxes where applicable will be highlighted in the 

sections concerned. 

 

3.2  Coding and Screening of Various RLS algorithms 

      

 Selected RLS algorithms with Bierman’s UDU
T factorization were coded as S-

functions. An example code of the RLS algorithm, specifically the VFF-RLS algorithm, 

is given in Appendix C. To ensure proper and correct coding, the conventional RLS 

algorithm was first coded and implemented on a simple LTI model, with fixed process 

model parameters. The results obtained, viz. the estimated process model parameters 

from the simulation was validated with the results obtained from the sample program 

(which also utilizes the conventional RLS algorithm) given by Mikleš and Fikar (2007). 

The covariance matrix and the prediction error of the identification were also validated 

against those obtained from the sample program. Upon successful validation of the 

coded conventional RLS algorithm, other variants of the RLS algorithm were obtained 
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by slight modification of the code for the conventional RLS algorithm. The simulation 

results obtained by using the modified RLS algorithms should not differ much from 

those obtained from the conventional RLS algorithm, since the system involved here is 

linear time invariant, and these modifications of the RLS algorithm only show 

significant differences in performance when the system being identified is time-varying. 

 

 To test the performance of the various RLS algorithms in identifying time-

varying systems, a hypothetical, stable, discrete time LTI transfer function in the z-

domain was used as the process model: 

( )
1 2 3 4 5

1 2 3 4 5

0.6 0.7 0.8 0.9 1.0

1 0.1 0.2 0.3 0.4 0.5
p

z z z z z
G z

z z z z z

− − − − −

− − − − −

+ + + +
=

+ + + + +
                                                   (3.1) 

In Eqn. (3.1), there are altogether ten parameters to be identified. This number of 

parameters was chosen to make system identification more difficult in order to 

challenge each RLS algorithm. To simulate a process model where the process model 

parameters are time-varying, the process model parameters, which consist of random 

and arbitrary values but resemble a stable plant, were varied abruptly at the 70th time 

step as follows: 

( )
1 2 3 4 5

1 2 3 4 5

0.1 0.9 1.5 0.2 0.3

1 1.1 0.8 0.6 0.7 0.3
p

z z z z z
G z

z z z z z

− − − − −

− − − − −

+ + − −
=

+ + + + +
                                                   (3.2) 

 

To ensure that the system is sufficiently excited, white Gaussian noise with zero 

mean and variance of 0.1 was used as an input to the system, while the same noise type 

with a variance of 0.01 was added to the output of the system to simulate a noisy 

environment. The Euclidean norm of the parameter error, 2 0 2
ˆ|| ||L = −θ θ

 

at every time 

step was calculated and plotted against time, where θ0 is the vector of parameters which 

contains the true values of the process model parameters, as shown in Eqns. (3.1) and 

(3.2), and θ̂  is the vector of estimated parameters. Based on the Euclidean norm of the 
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parameter error, the convergence and the steady state parameter mis-adjustment error of 

the various RLS algorithms were analyzed to explore the strengths and weaknesses of 

each algorithm. Based on the screening results, one of the RLS algorithms was selected 

for self-tuning control implementations in this work.  

 

3.3  Coding of the Generalized Predictive Controller 

 

The GPC algorithms (excluding the quadratic programming solver) for both the 

unconstrained and the constrained versions were coded as S-functions. For the 

constrained GPC, in order to solve the quadratic programming problem online at every 

time step, the subroutine ‘quadprog’ under the Optimization ToolboxTM was used with 

the default settings retained.  

 

For validation purposes, assuming the knowledge of the internal GPC model 

used, e.g. a first order CARIMA model, it is possible to manually determine the 

numerical values of CA, HA, Cb, and Hb matrices (as shown in Appendix B), which 

eventually can be used to determine the H, K, and Q matrices as shown in Eqns. (2.29) - 

(2.30). These manually determined results were used to validate the results obtained 

from the coded GPC algorithm. The S-functions for the unconstrained and constrained 

GPC algorithm and its variants developed here are shown in Appendix D and E 

respectively. Although decentralized controllers were designed in this work, the GPC 

algorithm coded here can handle multivariable control problems, as shown in one of the 

author’s publications (Ho, Mjalli, & Yeoh, 2010a).  
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3.4  Open Loop Dynamic System Analysis of the Biodiesel Reactor  

 

 Open loop dynamic system analysis of the transesterification reactor model was 

done for the following reasons: 

a) To show the nonlinearities exhibited by the transesterification process, hence 

justifying the need for an advanced control algorithm to be implemented. 

b) To use the data of the open loop response for the transesterification process for 

offline system identification, where the parameters of a FOPDT model were 

estimated. The estimated model parameters were then used in the design of the 

control schemes presented in this work.  

 

To study the open loop transients of the transesterification process, the 

manipulated variables (i.e. Fo and Fc) were increased in small steps across the respective 

operating ranges by manipulating the control valve openings. For ease of reference, the 

control valves for manipulating Fo and Fc were termed CV-101 and CV-102 

respectively. In the work of Mjalli, Lee, Kiew, and Hussain (2009), loop pairings were 

done by using the Relative Gain Array (RGA) analysis, where Fo was paired against 

CME, while Fc was paired with T. With these pairing results retained, it is of interest in 

this study to show via the open loop transients the nonlinearities involved in the 

transesterification process as well as the extent of the process interactions observed. 

Series of step changes in the valve stem positions of CV-101 and CV-102 (which in 

turn manipulate Fo and Fc) were designed and introduced to the process in the manner as 

shown in Table 3.1. The values of the valve stem positions can be of any arbitrary 

numbers spanning from 0 % to 100 %, but since the nominal valve stem positions of 

CV-101 and CV-102 for the biodiesel reactor are 17 % and 26.8 % respectively, it is 

more convenient to choose combinations that step through these values. 
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Table 3.1: Trends of step changes in the valve stem positions of CV-101 and CV-102 at 

every time interval of 3000 s. The control valves fully shut and fully open at 0 % and 

100 % respectively. 

Simulation 
Valve Stem Position for  

CV-101 (%) 

Valve Stem Position for  

CV-102 (%) 

1 7 : +10 : 97  26.8 

2 97 : -10 : 7 26.8 

3 17 6.8 : +10 : 96.8 

4 17 96.8 : -10 : 6.8 

5 7 : +10 : 97 6.8 : +10 : 96.8 

6 7 : +10 : 97 96.8 : -10 : 6.8 

7 97 : -10 : 7 6.8 : +10 : 96.8 

8 97 : -10 : 7 96.8 : -10 : 6.8 

 

 

Referring to simulation 1 from the table, the valve stem position for CV-101 was 

set at 7 % in the beginning of simulation (to be varied afterwards), while maintaining a 

constant valve stem position of 26.8 % for CV-102 throughout the entire simulation. 

Upon achieving steady state of the output variables, a positive step change of 10 % in 

the valve stem position for CV-101 was introduced at 3000 s. Subsequent introductions 

of positive step changes of the same magnitude were done at intervals of 3000 s until 

the valve approaches its high operating range at 97 %. The open loop transients of the 

input (i.e. Fo and Fc) and output (i.e. CME and T) variables as well as the corresponding 

valve stem positions were then recorded. It is important to note that the time duration of 

3000 s selected was sufficiently long to capture the open loop transients of the process 

after every step change and the output variables were able to achieve steady states 

within the given time duration. In simulation 2, instead of having an ascending trend in 
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the valve stem position for CV-101, step changes of the same magnitude in the opposite 

direction (i.e. from 97 % to 7 %) were introduced. 

 

In simulations 3 and 4, the same procedures as in simulations 1 and 2 were used 

to study the effect of the valve stem position for CV-102 on the output variables. The 

valve stem position for CV-101 was maintained at 17 %, while step changes of opposite 

directions were introduced on separate runs (i.e. the positive step changes for simulation 

3 and the negative step changes for simulation 4) across the entire operating range of 

the valve (6.8 % - 96.8 %). In simulations 5 – 8, instead of only manipulating a single 

input as in simulations 1 – 4, a series of step changes was introduced to both inputs 

simultaneously in a fashion similar to the 22 factorial design, where all possible 

combinations of step changes in the ascending and descending trends were considered. 

The open loop transients in these experiments were important to show the nonlinearities 

and process interactions observed under all possible combinations of input perturbations. 

 

3.5  Offline System Identification of the Biodiesel Reactor 

 

As alluded to in Section 3.4, the data of the open loop transients are useful for 

offline system identification where simple LTI transfer function models can be 

identified and used in control design purposes. In this study, the FOPDT model was 

chosen as the model structure for system identification (the reasons for this choice will 

be elaborated in the following section). Although the biodiesel reactor is a multivariable 

process, for simplicity, system identification was performed in a decentralized fashion, 

where only Fo – CME and Fc – T relationships were modeled, thus omitting the possible 

process interactions involved. The iterative prediction-error minimization method 

(Ljung, 2008), denoted by the ‘pem’ subroutine under the System Identification 
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ToolboxTM, was used to estimate the model parameters of a FOPDT model with a 

maximum allowable estimated dead time of 100 s. Since it is of interest in this study to 

identify individual SISO models, the data from simulations 1 and 3 in Table 3.1 were 

used for achieving this purpose. The estimated Kp, τp, and θd (i.e. dead time) were 

recorded and the R2 (i.e. coefficient of determination) of the model fit was computed. 

 

3.6  Advanced Control System Design for the Biodiesel Reactor 

 

In this work, it is of interest to study the performance of the AS-GPC scheme as 

compared to the A-GPC and GPC schemes. The GPC scheme in this case is the 

conventional GPC algorithm without model adaptation or self-tuning. Before exploring 

the performances of these schemes under closed loop conditions on the 

transesterification reactor, the control architecture of the various schemes under 

consideration must be clearly defined. For all schemes, two controllers were designed, 

one for the Fo - CME loop and the other for the Fc - T loop. It should be noted that the 

procedures here are general and applicable to both the unconstrained and constrained 

versions of the particular control scheme under discussion.  

 

The conventional GPC scheme differs from the AS-GPC and A-GPC schemes in 

that no RLS algorithm is involved. The model parameters used in the GPC remained 

unchanged throughout its entire implementation and were obtained by converting the 

continuous time model parameters (i.e. from the offline system identification outlined in 

Section 3.4) to the corresponding discrete version using Eqns. (3.3) - (3.5) (Seborg, 

Edgar, & Mellichamp, 2004):  

1

p

exp s
t

a
 

= − − 
τ  

                                                                                                           (3.3) 
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1 p

p

K 1 exp stb
  

= − −   τ   
                                                                                               (3.4) 

d

s

D CEIL
t

 θ
=  

 
                                                                                                             (3.5) 

The sampling time ts selected for both CME and T loops were based on the values of τp 

identified around the nominal operating conditions as outlined in Section 3.4, where  

ts ≈ 0.1τp according to rule of thumb (Seborg, Edgar, & Shah, 1986). Values of θd were 

also obtained from the offline system identification around the nominal operating 

conditions. In the GPC scheme, the controller tuning parameters were calculated by 

using Eqns. (2.49) - (2.50) proposed by Shridhar and Cooper (1997b).  

 

As opposed to the GPC scheme where no RLS algorithm is needed, for each 

separate control loop in the AS-GPC and A-GPC schemes, the screened and selected 

RLS algorithm by using the procedures outlined in Section 3.2 was used to identify the 

process model parameters of a SISO first order ARX model, which would then be 

incorporated in the CARIMA representation to be used for prediction in the controller. 

The reasons for identifying the process model parameters of a SISO first order ARX 

model, which can easily be recast in the form of a FOPDT model (i.e. ignoring the bias 

parameter and the noise term), are obvious: 

i) The FOPDT model is a widely used model structure for control design 

purposes and often serves as a reasonable approximation for the dynamics of 

most processes (Seborg, Edgar, & Mellichamp, 2004). 

ii) Tuning correlations based on the FOPDT model for predictive controllers 

are available (Shridhar & Cooper, 1997b), which can be conveniently 

adapted to design the AS-GPC controller. 
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Table 3.2 shows the necessary parameters to be defined in the SISO ARX model 

for each loop to cater for parameter estimation purposes. Among the parameters shown, 

the values of n, m, α and β were determined in a straightforward manner based on the 

structure of the model chosen (i.e. a SISO first order ARX model). As for the values of 

D and ts, both were determined in the same manner as described for the GPC scheme. 

 

Table 3.2: Parameters of the discrete time SISO ARX model which must be defined for 

parameter estimation purposes, both for the FAME concentration (CME) and the reactor 

temperature (T) loops. 

Parameter Symbol Unit 

Number of outputs n - 

Number of inputs m - 

Order of a(z-1) α - 

Order of b(z-1) β - 

Discrete dead time D - 

Sampling time  ts s 

 

 

 Prior to coupling the screened and selected RLS algorithm (as outlined in 

Section 3.2) to the GPC algorithm for the design of the AS-GPC and A-GPC schemes, 

the parameters associated with the specific form of the RLS algorithm (e.g. σ and C for 

the VFF-RLS algorithm etc.) chosen for control system design must be determined. 

Readers are referred to Subsection 2.3.2 for more information on the parameters. 

Figures 3.1 and 3.2 show the adaptive strategies used in the AS-GPC and the A-GPC 

schemes respectively. In both the AS-GPC and the A-GPC schemes, the RLS algorithm 

estimates the process model parameters of a SISO first order ARX model, viz. a1 and b1, 

for both the CME and T loops, which will then be incorporated in the CARIMA 

representation as shown in Eqn. (2.26) for use in the controller. Ignoring the stochastic 
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components (i.e. the bias parameter and the noise term), the SISO first order ARX 

model can be recast in the following form, which in essence is a representation of a 

discrete time FOPDT model: 

1
1

1
11

D

k k

b z z
y u

a z

− −

−

 
=  + 

                                                                                                        (3.6) 

 

Generally, for any particular system to be stable, the poles must lie within the 

unit circle of the z-plane, i.e. |z| < 1 (Seborg, Edgar, & Mellichamp, 2004). Before the 

estimated SISO ARX model parameters can be passed to the GPC for model adaptation 

in the SISO CARIMA model or self-tuning purposes, the pole of the identified model 

(i.e. z = -a1) was screened to ensure that the identified model had stable dynamics (since 

the transesterification reactor is an open loop stable process). In the case of a FOPDT 

model, the stability domain can be further simplified. To do this, consider the 

continuous time domain equivalent of Eqn. (3.6) given in Eqn. (3.7), which can only be 

stable, if τp > 0: 

( ) ( )
d

p

p

K

1

s
e

y s u s
s

−θ 
=   τ + 

                                                                                                  (3.7) 

Since the values of pτ ∈ℜ  and st ∈ℜ  must be positive for all real physical processes, 

imposing the conditions of τp > 0 and ts > 0, a1 in Eqn. (3.3) can only take on negative 

real values. Knowing z = -a1 for the particular system described by Eqn. (3.6), the 

criterion for the identified pole to imply stable dynamics is z ∈  (0, 1) or a1 ∈  (-1, 0). 

Hence, the poles of the identified model for the AS-GPC and A-GPC schemes were 

screened based on this rule. In short, at any particular time step, if the value of the 

estimated a1 falls between -1 and 0, the updated a1 and b1 are passed to the GPC; 

otherwise a backup model previously identified from Section 3.5 and converted to its 

discrete time equivalent using Eqns. (3.3) - (3.5) are used in the controller. This is 



 

further illustrated in Figures 3.1 

Route 1 is implemented on 

Route 2 is implemented as a contingency option should the identified model be unstable.

    

Figure 3.1: The adaptive strategy used in the A

whether Route 1 or Route 2 is implemented

further illustrated in Figures 3.1 - 3.2, where for both the A-GPC and AS

Route 1 is implemented on the basis of stable dynamics of the identified model, while 

Route 2 is implemented as a contingency option should the identified model be unstable.

: The adaptive strategy used in the A-GPC scheme. Pole screening dictates 

whether Route 1 or Route 2 is implemented at every time step. 
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GPC and AS-GPC schemes, 

the basis of stable dynamics of the identified model, while 

Route 2 is implemented as a contingency option should the identified model be unstable. 

 

Pole screening dictates 



 

Figure 3.2: The adaptive 

whether Route 1 or Route 2 is implemented

                                                                     

 For the A-GPC scheme, the estimated process model parameters were used only 

for model adaptation in the GPC controller. 

parameters were chosen

of ts and the nominal

tuning guidelines presented in Table 3.3 were taken from the work of Shridhar 

Cooper (1997b) except the one presented for 

throughout most MPC literature 

the tuning parameters were fixed throughout

for the AS-GPC scheme, 

manner as described for the A

had stabilized, further proce

the updated move suppression weight for each loop. In this s

adaptive strategy used in the AS-GPC scheme. Pole screening dictates 

whether Route 1 or Route 2 is implemented at every time step. 

                                                                       

GPC scheme, the estimated process model parameters were used only 

for model adaptation in the GPC controller. In this case, the values of the tuning 

parameters were chosen based on the guideline summarized in Table 3.

nominal values of τp and D selected previously in this section

s presented in Table 3.3 were taken from the work of Shridhar 

except the one presented for N1, which is a standard guide

t MPC literature (Camacho & Bordons, 1999). In the A

the tuning parameters were fixed throughout the entire closed loop implementation

GPC scheme, the values of N1, N2, M and Ri were initialized in the same 

as described for the A-GPC scheme. However, as soon as the RLS algorithm 

further processing of the model parameters were performed

the updated move suppression weight for each loop. In this strategy, the values of 
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Pole screening dictates 

GPC scheme, the estimated process model parameters were used only 

In this case, the values of the tuning 

in Table 3.3 using the value 

in this section. Most of the 

s presented in Table 3.3 were taken from the work of Shridhar and 

, which is a standard guideline 

In the A-GPC scheme, 

closed loop implementation. As 

were initialized in the same 

s soon as the RLS algorithm 

performed to compute 

trategy, the values of N1, N2 
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and M remained unchanged during implementation, leaving Ri as the single active 

tuning parameter to be manipulated automatically by the controller in real time. For this 

purpose, simple manipulation of Eqn. (3.3) is needed to solve for τp and Kp at every 

time step based on the updated value of a1 from the RLS algorithm: 

( )p

1ln
s
t

a

−
τ =

−
 > 0 as a1 ∈ (-1, 0) and 1

p

1

K
1

b

a
=

+
                                                         (3.8) 

Hence, with values of τp and Kp, Ri can be updated accordingly using the equations 

developed by Shridhar and Cooper (1997b), i.e. Eqns. (2.49) - (2.50). It is to be noted 

that Eqn. (3.8) is used only for computing Ri, while the values of N1 and N2 for a certain 

value of ts were calculated based on the nominal values of τp and D obtained earlier 

through offline system identification.  

 

Table 3.3: Tuning guideline used in this work for the A-GPC and AS-GPC schemes 

Tuning Parameter Symbol Value A-GPC AS-GPC 

Min. prediction horizon N1 D + 1 Fixed Fixed 

Max. prediction horizon N2 Eqn. (2.47) Fixed Fixed 

Control horizon M 1 - 6 Fixed Fixed 

Move suppression weight Ri Eqns. (2.49) - (2.50) Fixed Adaptive 

 

3.7  Closed Loop Performance Validation and Analysis on the Biodiesel Reactor 

 

 Since the tuning correlation proposed by Shridhar and Cooper (1997b) were 

intended for use with unconstrained predictive controllers, the constraint-free version of 

the AS-GPC was implemented first on the biodiesel reactor and tested for the ability to 

track changes in setpoint. The nature of setpoints introduced to the CME and T loops was 

of magnitudes ±0.1 kmol/m3 and ±2 K around the respective nominal operating 

conditions. The closed loop poles for the constraint-free AS-GPC were calculated based 
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on Eqn. (2.43) to study the stability of the unconstrained AS-GPC. Following this, the 

control strategy adopted in the AS-GPC was further pushed to its limits by 

incorporating constraints [Eqn. (2.44)] to the controller. The constrained AS-GPC 

scheme was tested for the ability of handling both the servo and the regulatory problems. 

Furthermore, the performance of the constrained AS-GPC scheme was benchmarked 

against that of the constrained A-GPC, constrained GPC and conventional PID schemes. 

The screenshot of the AS-GPC implementation in Simulink® version 7.1 is given in 

Figure 3.3. 

 

 

Figure 3.3: Screenshot of AS-GPC implementation in Simulink® version 7.1 

 

The Internal Model Control (IMC) method (Chien & Fruehauf, 1990; Rivera, 

Morari, & Skogestad, 1986) and the Ziegler-Nichols (ZN) method (Ziegler & Nichols, 

1942) as shown in Table 3.4 were used to tune the PID controllers. The selection of the 

IMC design parameter τc in this work was based on the rule of thumb proposed by 

Skogestad (2003, 2004), where τc = θd. The CME and T profiles under closed loop 
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conditions using the same setpoint changes as described above were plotted and the 

various performance indicators were assessed. 

 

Table 3.4: Internal Model Control (IMC) and the open loop Ziegler-Nichols (ZN) based 

PI and PID controller settings, where Kc = proportional gain, τI = integral time constant, 

τD = derivative time constant, τc = IMC design parameter, Kp = process gain, τp = 

process time constant, and θd = process dead time.  
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CHAPTER 4  

SCREENING OF VARIOUS RLS ALGORITHMS 

 

4.1  Chapter Overview 

 

To screen the various RLS algorithm and to test their performance, the methods 

outlined in Section 3.2 were used. First, the effects of the various parameters of 

different RLS algorithms were explored to discover their effects on the sensitivity of 

different RLS algorithms. Following this, the performance of the various algorithms 

were compared and analyzed before a decision was made on the selection of the 

algorithm to be used in this work. To facilitate discussions, the essential differences (i.e. 

the equations involved for updating the covariance matrix) between the VFF-RLS, 

EWRLS, and EDF algorithms are given in Table 4.1. For a complete presentation of the 

equations, readers are referred to Section 2.3.2. 
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Table 4.1: Summary of essential differences between the VFF-RLS, EWRLS and EDF 

algorithms. 

Algorithm How the Covariance Matrix is Updated Reference of Equation 

VFF-RLS 

1) Select a value for σ, then calculate the 

forgetting factor, λk: 

 

1

λ 1
σ 1 P

T

k k
k T

k k kψ ψψ ψψ ψψ ψ−

= −
 + 

ε ε
 

Eqn. (2.14) 

2) Use λk to update the covariance matrix P:
 

 

1 1P P
T

k k k k kω ψω ψω ψω ψ− −= − γ  Eqn. (2.15) 

if  trace of

otherwise                    

 
P

     

k k k k

k

k

Cω ωω ωω ωω ω

ωωωω

λ λ ≤
= 


 Eqn. (2.16) 

EWRLS 

1) Select a value for ρ, then calculate the 

forgetting factor, λk: 
 

ρ T

k k kL NINT  = −  ε ε
                                  

Eqn. (2.18) 

 Eqn. (2.19) 

2) Use λk to update the covariance matrix P:
 

 

1 1
1

1

1 P P
P P

P

T

k k k k
k k T

k k k

ψ ψψ ψψ ψψ ψ
ψ ψψ ψψ ψψ ψ

− −
−

−

 
= − λ λ +   

Eqn. (2.8) 

EDF 

1) Select values for λ and δ, then calculate 

the value of βk: 
 

1P
T

k k k kr ψ ψψ ψψ ψψ ψ−=
 

Eqn. (2.21) 

1 λ
λ if  0

β

1 if  0                

k

kk

k

r
r

r

− − >
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 =  
Eqn. (2.23) 

2) Use βk to update the covariance matrix P:
 

 

1 1
1 1

δ
β

P P
P P I

T

k k k k
k k

k k
r

ψ ψψ ψψ ψψ ψ− −
− −

= − +
+

 
Eqn. (2.24) 

 

( )min minλ λ 1 λ 2 kL

k = + − ⋅
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4.2  Effect of σ on the Performance of the VFF-RLS Algorithm 

 

In the VFF-RLS algorithm, the design parameter σ can be adjusted to control the 

sensitivity of the forgetting factor (λk) towards the changes in the prediction error at 

every time step. The effects of the parameter σ on the convergence and the steady state 

mis-adjustment error of the VFF-RLS algorithm are shown in Figure 4.1 through the 

Euclidean norm of the parameter estimation error. At low values of σ, from Eqn. (2.14), 

the corresponding values of the forgetting factor are generally lower (λk << 1). This 

would mean that in general, great amount of old data are forgotten at every time step. At 

a small value of σ = 0.1, the Euclidean norm of the parameter estimation error fluctuates, 

which suggests that the algorithm forgets a great amount of past data, even the 

important ones. The remaining data are not sufficient for the algorithm to capture the 

dynamics of the system; hence the Euclidean norm of the parameter estimation error 

fluctuates, as though the process model parameters are always changing. At high values 

of σ ≥ 10, huge values of the forgetting factor (λk ≈ 1) are obtained at every time step, 

causing the VFF-RLS algorithm to remember most data so that the effects of small 

changes in the most recent prediction error are not reflected significantly in the 

adaptation of the parameter estimates. Thus the algorithm is insensitive to changes in 

the true system parameters and the Euclidean norm of the parameter estimation error 

remains at relatively high values. The guiding principle is that moderate values of σ ~ 1 

are good values to be selected for implementation. 
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Figure 4.1: Effects of the design parameter σ on the performance of the VFF-RLS 

(Variable Forgetting Factor Recursive Least Squares) algorithm in tracking changes in 

parameters at the 70th time step for the hypothetical system in Section 3.2. 

 

4.3  Effect of ρ on the Performance of the EWRLS Algorithm 

 

 In the EWRLS algorithm, the design parameter ρ can be adjusted to control the 

sensitivity of the forgetting factor towards changes in the prediction error at every time 

step. The Euclidean norm of the parameter estimation error for the EWRLS algorithm is 

shown in Figure 4.2. The same reasoning used to explain the effects of the parameter σ 

on the performance of the VFF-RLS algorithm can be used here to explain the effects of 

the parameter ρ on the performance of the EWRLS algorithm, since both algorithms 

used the same approach in handling time-varying system parameters. From the figure, at 

high values of ρ = 100, based on Eqns. (2.18) and (2.19), low values of forgetting factor 

(λk << 1) are obtained, which would affect the performance of the algorithm in 

capturing the dynamics of the system. On the other hand, at low values of ρ ≤ 1, the 
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resulting value of the forgetting factor obtained at every time step is closer to unity; 

hence the algorithm is insensitive to changes in the true system parameters. From the 

results, values of ρ ~ 10 are suitable to be selected for implementation. 

 

 

Figure 4.2: Effects of the design parameter ρ on the performance of the EWRLS 

(Exponential Weighting Recursive Least Squares) algorithm in tracking changes in 

parameters at the 70th time step for the hypothetical system in Section 3.2.  

 

4.4  Effects of λ and δ on the Performance of the EDF Algorithm 

 

 Two parameters are important in the EDF algorithm in controlling the sensitivity 

of the algorithm towards parameter changes, viz. the constant forgetting factor λ and the 

Bittanti factor δ. The Euclidean norm of the parameter estimation error is shown in 

Figure 4.3. A 22 factorial design was used to pair different values of 

( ] [ ]λ 0,1 and 0,0.01 ∈  δ∈
 
introduced to the algorithm. From the figure, it can be inferred 

that the EDF algorithm tracks changes in process model parameters sufficiently well 

Time Step

0 100 200 300 400 500

E
u
c
li
d
e
a
n
 N
o
rm
 o
f 
th
e
 

P
a
ra
m
e
te
r 
E
s
ti
m
a
ti
o
n
 E
rr
o
r,
 L
2

0.1

1

10

ρ = 0.1
ρ = 1
ρ = 10
ρ = 10070

th
 time step



63 
 

under relatively high values of the forgetting factor λ and the Bittanti factor δ. At low 

values of the forgetting factor λ and the Bittanti factor δ, the Euclidean norm of the 

parameter estimation error remains at relatively large values, hence it can be concluded 

that these low values of the forgetting factor λ and the Bittanti factor δ causes the 

algorithm to be insensitive to changes in true system parameters. From the results, the 

combination of λ ~ 0.985 and δ ~ 0.01 is suitable to be selected for implementation. 

 

 

Figure 4.3: Effects of the forgetting factor λ and the Bittanti factor δ on the 

performance of the EDF (Exponential and Directional Forgetting) algorithm in tracking 

changes in parameters at the 70th time step for the hypothetical system in Section 3.2. 

 

4.5  Performance Comparison between the VFF-RLS, EWRLS, and EDF 

Algorithms 

 

 Before comparing the performance of the various RLS algorithms, it is useful to 

summarize the recommended values of the design parameters for each RLS algorithm 

observed from the results above, as shown in Table 4.2. Based on these values, in each 
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of these algorithms (i.e. the VFF-RLS algorithm, the EWRLS algorithm, and the EDF 

algorithm), the respective design parameters that affect the sensitivity of the algorithm 

towards changes in true system parameters, as described by Eqns. (3.1) - (3.2) on p. 44, 

were tuned by trial and error such that the performance is the best in each variant.  

 

Table 4.2: Summary of recommended values of the design parameters for all RLS 

algorithms  

Algorithm Design Parameter Recommended Values 

VFF-RLS σ ~ 1 

EWRLS ρ ~ 10 

EDF [λ, δ] [~0.985, ~0.01] 

 

Figure 4.4 shows the performance of different RLS algorithms in tracking 

parameter changes. The conventional RLS algorithm was also included as a reference.  

From the figure, the convergence of the VFF-RLS algorithm and the EWRLS algorithm 

are the fastest among all the algorithms. However, the steady state mis-adjustment error 

of the VFF-RLS algorithm is slightly lower than the EWRLS algorithm. The EDF 

algorithm is slow in tracking parameter changes as the Euclidean norm of the parameter 

estimation error decreases slowly with time. As observed in Figure 4.4 and in 

agreement with most literature (Mikleš & Fikar, 2007; Shah & Cluett, 1991), the 

performance of the conventional RLS algorithm is poor in tracking time-varying system 

parameters. From Figures 4.1 – 4.4, the VFF-RLS algorithm and the EWRLS algorithm 

are the preferable algorithms to be implemented in the subsequent studies on the 

biodiesel reactor, because these algorithms have easily adjustable parameters to control 

the sensitivity of the forgetting factor towards the changes in the prediction error. These 
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design parameters can have substantial influence on the performance of the algorithms 

in identifying time-varying systems. The EDF algorithm, as illustrated in Figure 4.3, has 

very narrow ranges of adjustable design parameter windows ( ] [ ]( )λ 0,1 and 0,0.01 ∈  δ∈  

and the various combinations of the two design parameters do not have significant 

effects on the performance of the EDF algorithm relative to the VFF-RLS algorithm and 

the EWRLS algorithm. 

 

Figure 4.4: The relative performance of three variants of the Recursive Least Squares 

(RLS) algorithms against the conventional RLS in tracking changes in parameters at the 

70th time step for the hypothetical system in Section 3.2: VFF-RLS is the Variable 

Forgetting Factor RLS algorithm (σ = 1), EWRLS is the Exponential Weighting RLS 

algorithm (ρ = 8), EDF is the Exponential and Directional Forgetting algorithm ([λ, δ] = 

[0.985, 0.01]).      
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4.6  Choice of RLS 

 

 In the previous section, the results showed that the VFF-RLS algorithm and the 

EWRLS algorithm are the more preferable recursive parameter estimation algorithms to 

be implemented in this work. Since the reliability of the VFF-RLS algorithm has been 

tested and validated by various researchers in adaptive control applications (Corrêa, 

Corrêa, & Freire, 2002; Ho, Mjalli, & Yeoh, 2010a; Ydstie, Kershenbaum, & Sargent, 

1985), it shall be used throughout this work for parameter estimation purposes. 

However, the selection of the VFF-RLS algorithm in this work is by no means implying 

the inferiority of the EWRLS algorithm, as proven by the successful implementation in 

the author’s recent work (Ho, Mjalli, & Yeoh, 2010b). 
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CHAPTER 5  

OPEN LOOP DYNAMIC SYSTEM ANALYSIS AND 

OFFLINE SYSTEM IDENTIFICATION OF THE 

BIODIESEL REACTOR 

 

5.1  Chapter Overview 

 

 Due to the greater challenges in designing advanced controllers as compared to 

designing the conventional PID controllers (e.g. requiring a deeper understanding of 

controller design knowledge, increased computational complexity etc.), the use of any 

advanced control algorithm on a particular process must be well justified. In this chapter, 

the open loop dynamics of the transesterification reactor were scrutinized to show the 

inherent nonlinearities and process interactions involved, thus justifying the use of the 

AS-GPC as advocated in this work. The procedures for obtaining the open loop 

transients are as stated in Section 3.4. 
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5.2  Dynamic System Analysis on the Biodiesel Reactor 

 

 

Figure 5.1: Flow characteristics of the control valve CV-101 for manipulating the 

reactant flow rate (Fo). 

 

 

Figure 5.2: Flow characteristics of the control valve CV-102 for manipulating the 

coolant flow rate (Fc). 
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In this work, all control valves (i.e. CV-101 and CV-102 as shown in Figure 1.3, 

p. 8) were assumed linear in the simulations (as illustrated in Figures 5.1 – 5.2). Figures 

5.3 – 5.4 show the open loop transients of CME and T as the valve stem position for CV-

101 (and consequently Fo in a proportional manner) was increased/decreased at 

intervals of 3000 s across the entire input region with each step size of 10 % in 

magnitude. The valve stem position for CV-102 was held constant at 26.8 %, thus 

maintaining a constant Fc of 0.00268 m3/s. From the figures, although the 

increments/decrements in the valve stem position of CV-101 were kept constant at 

every step change, the open loop transients for both CME and T exhibited 

increments/decrements of varying sizes. While changes in the valve stem position of 

CV-101 at low input regions produced huge changes in both CME and T, the same 

changes applied at higher input regions produced only marginal changes in the output 

variables. As such, the dynamics of the process are operating point dependent, and such 

process nonlinearities are known to be challenging issues in process control. 

Furthermore, since the loop pairings of Fo – CME and Fc – T as proposed by Mjalli, Lee, 

Kiew, and Hussain (2009) were retained in this work, the drifts in the T profile (while 

Fc was held constant by a constant valve stem position for CV-102) in these figures 

suggest the presence of significant process interactions which further complicates the 

process control scenario. Since the set of ordinary differential equations (cf. Mjalli, Lee, 

Kiew, & Hussain, 2009) describing the biodiesel reactor was nonlinear and coupled, the 

above observations were expected. 
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Figure 5.3: Open loop transients of the FAME concentration (CME) and the reactor 

temperature (T) as the stem position for CV-101, which was used to manipulate the 

reactant flow rate (Fo), was increased at intervals of 3000 s across the entire input region 

with step increments of 10% each. The coolant flow rate (Fc) was held constant by 

maintaining the stem position for CV-102 at 26.8 %.  
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Figure 5.4: Open loop transients of the FAME concentration (CME) and the reactor 

temperature (T) as the stem position for CV-101, which was used to manipulate the 

reactant flow rate (Fo), was decreased at intervals of 3000 s across the entire input 

region with decrement step sizes of 10 % each. The coolant flow rate (Fc) was held 

constant by maintaining the stem position for CV-102 at 26.8 %.  
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As opposed to Figures 5.3 – 5.4 (where the stem position of CV-101 was varied 

while the stem position of CV-102 was held constant), Figures 5.5 – 5.6 show the open 

loop transients of CME and T as the stem position for CV-102 was increased/decreased 

at intervals of 3000 s across the entire input region with each increment/decrement in 

step size of 10 %. The stem position for CV-101 was held constant at 17 %. From the 

figures, process nonlinearity as pertaining to operating range dependent dynamics was 

observed, albeit to a lesser extent as compared to those observed in Figures 5.3 – 5.4. 

The open loop transients for both CME and T exhibited increments/decrements of 

slightly varying sizes under the input perturbations as depicted in the figures. 

Furthermore, the changes in the CME profiles as observed in these figures suggest that 

for a 2 × 2 transesterification process, the design of the decentralized controller for the 

Fo – CME loop (which is responsible for rejecting any drift in CME arising from changes 

in Fc) cannot ignore the effects of process interaction.  

 

To further explore the dynamics of the transesterification process, instead of 

having a single input perturbation as in previous figures, the valve stem positions for 

both CV-101 and CV-102 were manipulated concurrently in manners as shown in 

Figures 5.7 – 5.10. In general, the nonlinearity patterns exhibited by previous figures 

were also present. The transient behaviors of the CME and T profiles within specified 

operating ranges were seen to be strictly local, where no two same process responses 

were observed. Furthermore, due to process interactions, “overshoots” were observed in 

Figures 5.7 and 5.10 for the open loop T profiles. As such, the biodiesel reactor is a 

nonlinear process due to both the operating point dependent dynamics and the process 

interactions observed, hence justifying the need for the implementation of an advanced 

control scheme. 
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Figure 5.5: Open loop transients of the FAME concentration (CME) and the reactor 

temperature (T) as the stem position for CV-102, which was used to manipulate the 

coolant flow rate (Fc), was increased at intervals of 3000 s across the entire input region 

with each individual increment in step size of magnitude 10 %. The reactant flow rate 

(Fo) was held constant by maintaining the stem position for CV-101 at 17 %.  
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Figure 5.6: Open loop transients of the FAME concentration (CME) and the reactor 

temperature (T) as the stem position for CV-102, which was used to manipulate the 

coolant flow rate (Fc), was decreased at intervals of 3000 s across the entire input region 

with each individual decrement in step size of magnitude 10 %. The reactant flow rate 

(Fo) was held constant by maintaining the stem position for CV-101 at 17 %.  
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Figure 5.7: Open loop transients of the FAME concentration (CME) and the reactor 

temperature (T) as the stem positions for CV-101 and CV-102, and consequently the 

reactant flow rate (Fo) and coolant flow rate (Fc), were increased at intervals of 3000 s 

across the entire input region with each individual increment in step size of magnitude 

10 %.  
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Figure 5.8: Open loop transients of the FAME concentration (CME) and the reactor 

temperature (T) as the stem positions for CV-101 and CV-102, and consequently the 

reactant flow rate (Fo) and coolant flow rate (Fc), were varied in opposite directions (i.e. 

the former had an ascending trend, while the latter had a descending trend) at intervals 

of 3000 s across the entire input regions with each individual change in step size of 

magnitude 10 %.  
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Figure 5.9: Open loop transients of the FAME concentration (CME) and the reactor 

temperature (T) as the stem positions for CV-101 and CV-102, and consequently the 

reactant flow rate (Fo) and coolant flow rate (Fc), were varied in opposite directions (i.e. 

the former had a descending trend, while the latter had an ascending trend) at intervals 

of 3000 s across the entire input regions with each individual change in step size of 

magnitude 10 %.  
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Figure 5.10: Open loop transients of the FAME concentration (CME) and the reactor 

temperature (T) as the stem positions for CV-101 and CV-102, and consequently the 

reactant flow rate (Fo) and coolant flow rate (Fc), were decreased at intervals of 3000 s 

across the entire input region with each individual decrement in step size of magnitude 

10 %.  
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5.3 Offline First Order Plus Dead Time (FOPDT) System Identification 

 

 As alluded to previously in Section 3.5, the data of the open loop transients for 

the biodiesel reactor is useful for the purpose of estimating the model parameters of a 

FOPDT model. These estimated model parameters are of particular importance in the 

design of a non-adaptive, classical GPC (which is needed for comparison of 

performance to the AS-GPC). Other than that, in the design of the AS-GPC and A-GPC 

schemes, the estimated model parameters serve as a backup model in the case of failure 

in the online modeling mechanism, viz. the RLS algorithm. Since this study focused on 

the design of decentralized controllers for the transesterification process, only SISO 

models were identified here, viz. the Fo – CME and Fc – T relationships. As such, the 

open loop transients as shown in Figure 5.3 and 5.5 (i.e. for Fo – CME and Fc – T 

relationships respectively) were chosen for the purpose of offline system identification. 

Tables 5.1 – 5.2 show the FOPDT model parameters of the Fo – CME and Fc – T loops 

respectively. The results also showed that the estimated FOPDT models attained a high 

degree of fitting capabilities, as depicted by the coefficients of determination (R2). 
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Table 5.1: First Order Plus Dead Time (FOPDT) model parameters of the reactant flow 

rate (Fo) – FAME concentration (CME) relationship. The offline system identification 

was performed on the various open loop transients of the CME profile (as shown in 

Figure 5.3) across its entire operating range.  

Model 

Changes in 

CV-101 Stem 

Position [%] 

Kp × 10
3
 

[(kmol/m
3
)/%] 

τp [s] θd [s] R
2
 

1 7 - 17 -26.5 141.0 60.9 0.9971 

2 17 - 27 -17.3 185.1 40.6 0.9995 

3 27 - 37 -12.3 193.9 34.5 0.9997 

4 37 - 47 -9.3 196.3 30.8 0.9998 

5 47 - 57 -7.2 196.8 28.3 0.9998 

6 57 - 67 -5.7 197.0 25.8 0.9999 

7 67 - 77 -4.7 197.0 23.8 0.9999 

8 77 - 87 -3.9 197.0 21.9 0.9999 

9 87 - 97 -3.2 196.8 20.5 0.9999 
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Table 5.2: First Order Plus Dead Time (FOPDT) model parameters of the coolant flow 

rate (Fc) – reactor temperature (T) relationship. The offline system identification was 

performed on the various open loop transients of the T profile (as shown in Figure 5.5) 

across its entire operating range. 

Model 

Changes in 

CV-102 Stem 

Position [%] 

Kp×10
2
 

[(K)/%] 
τp [s] θd [s] R

2
 

1 6.8 - 16.8 -12.5 224.4 19.8 0.9999 

2 16.8 - 26.8 -11.5 215.8 19.8 0.9999 

3 26.8 - 36.8 -10.7 207.8 19.7 0.9999 

4 36.8 - 46.8 -9.9 200.4 19.6 0.9999 

5 46.8 - 56.8 -9.3 193.6 19.6 0.9999 

6 56.8 - 66.8 -8.7 187.1 19.5 0.9999 

7 66.8 - 76.8 -8.1 181.2 19.4 0.9999 

8 76.8 - 86.8 -7.6 175.5 19.4 0.9999 

9 86.8 - 96.8 -7.1 170.3 19.3 0.9999 

 

 The model parameters shown in the tables above are in the continuous time 

domain. Suffice to note here that for the purpose of controller design (which will be 

discussed in the following chapter), the model parameters shown in the tables have to 

be converted to its discrete time equivalent (i.e. a1, b1, D, ts), as described in Section 3.6. 

 

5.4  Concluding Remarks 

 

 In this chapter, it was shown through open loop tests that the transesterification 

reactor is a nonlinear multivariable process. This is further corroborated by the results 

of the offline system identification shown in Tables 5.1 - 5.2, which show a wide range 
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of model parameters across the operating ranges of the biodiesel reactor. As such, the 

control scheme implemented on the reactor must be able to handle these challenges. In 

the next chapter, the closed loop performance of the AS-GPC scheme on the biodiesel 

reactor will be analyzed and discussed in detail. Comparisons with the A-GPC, GPC 

and conventional PID schemes will also be studied. 
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CHAPTER 6  

DESIGN AND IMPLEMENTATION OF THE AS-GPC ON 

THE BIODIESEL REACTOR 

 

6.1  Chapter Overview 

 

 In this chapter, the closed loop performance of the unconstrained AS-GPC is 

discussed in terms of the setpoint tracking ability, followed by an analysis of the closed 

loop poles at every sampling time to show that the proposed control scheme in the 

constraint-free setup is stable for the particular case study and time duration considered. 

The study on the closed loop poles in the unconstrained case was done with the sole 

purpose of ensuring the soundness in the controller design for this basic setup. Although 

the notion of closed loop stability in the unconstrained case carries no meaning when 

constraints are imposed on the controller, a poorly performing unconstrained AS-GPC 

cannot be expected to give good performance when the constraints are active. Thus, it is 

worthwhile to study the closed loop stability of the unconstrained AS-GPC.  

 

To explore the full strength of the proposed control scheme, the constrained AS-

GPC was implemented on the biodiesel reactor and compared with the constrained A-

GPC and GPC schemes. Unless mentioned otherwise, in general the term “constrained” 

shall be omitted when referring to the constrained controllers throughout this chapter, 

be it the AS-GPC, A-GPC or GPC scheme. The performances of these schemes were 

then explored in terms of the ability in handling servo problem. A comparison with the 

conventional PID controller, tuned according to best practices (IMC and Ziegler-

Nichols), was also included. Towards the end of this chapter, having revealed the 
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superiority of the AS-GPC scheme, the control scheme was tested for the ability in 

rejecting load disturbances in the process. 

 

6.2  Control System Design 

 

Before any discussions are presented on the closed loop performance of the 

various control schemes, it is necessary to first define several important parameters for 

the various decentralized control schemes as outlined in Section 3.6. The nominal 

operating conditions of the biodiesel reactor are shown in Table 6.1. Depending on the 

quality of the feed, the setpoint might have to be adjusted which overrides the nominal 

operating conditions. For the purpose of model selection for the GPC scheme and 

backup model selection for the AS-GPC and A-GPC schemes (as well as the calculation 

of the tuning parameters where applicable), the results of the offline system 

identification obtained around the nominal operating conditions of the reactor and 

converted to its discrete time equivalent were used (i.e. Model 2 of Table 5.1 and Model 

3 of Table 5.2 for the CME and T loops respectively). This strategy is intuitive as the 

reactor is expected to operate at the nominal operating conditions should there be no 

other unexpected scenarios causing a change in the operating conditions. Hence, it is 

hereafter understood that where fixed model parameters (viz. a1, b1, D and ts) or fixed 

tuning parameters (viz. N1, N2, and Ri) are involved, they shall be calculated based on 

these nominal settings. Table 6.2 shows the parameter values of the discrete time first 

order SISO ARX models (cf. Section 2.3.1) used in this work. The values shown in 

Table 6.2 were adopted for all VFF-RLS based control schemes presented in this study, 

whether unconstrained or constrained. 
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Table 6.1: Nominal operating conditions of the biodiesel reactor (Mjalli, Lee, Kiew, & 

Hussain, 2009) 

Parameter Symbol Value Unit 

Reactor temperature T 60 ̊ C 

Reactor pressure Pr 1 atm 

Reactant flow rate Fo 0.119 m3/s 

Coolant flow rate Fc 0.00268 m3/s 

Mixer rotational speed N 6 rps 

Initial concentration of triglycerides CTGO 1.11 kmol/m3 

Initial concentration of methanol CAO 21.499 kmol/m3 

 

 

Table 6.2: Parameter values of discrete time SISO ARX models for both the FAME 

concentration (CME) and the reactor temperature (T) loops. 

Parameter Symbol CME Loop T Loop Unit 

Number of outputs n 1 1 - 

Number of inputs m 1 1 - 

Order of a(z-1) α 1 1 - 

Order of b(z-1) β 1 1 - 

Discrete dead time D 3 1 - 

Sampling time  ts 20 20 s 

 

 

From the screening results of the various RLS algorithms in Chapter 4, the VFF-

RLS algorithm shall be employed. In this case, two VFF-RLS algorithms were designed; 

one each for the CME and T loops respectively. Table 6.3 shows the parameter values of 

the VFF-RLS algorithms for both loops. It is worth mentioning again that these settings 

were used for all VFF-RLS based control schemes presented in this study. In Table 6.3, 

the values of σ were chosen based on the rule of σ/σw ≈ 1000 (Shah & Cluett, 1991), 

where σw is the variance of any process output measurement noise. Although the 
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transesterification reactor model was deterministic in nature (i.e. no noise addition to 

the process outputs), σw = 0 cannot be selected to avoid division by zero in Eqn. (2.14). 

Hence, σw was assumed to be 0.001 (i.e. a very small amount of noise) for both loops. 

As for the values of C, they were chosen based on process experience. The initial 

covariance matrix P0 was chosen as a matrix with large numbers in the diagonal for 

both loops to imply a huge uncertainty in the initial parameter estimates 0
ˆ T
θ , which is a 

standard setting given in the RLS literature (Mikleš & Fikar, 2007). 

 

Table 6.3: Parameter values of the VFF-RLS algorithms for both the FAME 

concentration (CME) and reactor temperature (T) loops. 

Parameter CME Loop T Loop 

σ 1 1 

C 100 100 

P0 
6

3 31 10 I ××  6
3 31 10 I ××  

0
ˆ T
θ  1 3×0  1 3×0  

 

One key important feature in implementing the VFF-RLS algorithm is that the 

algorithm should only be deployed when all process inputs and outputs are at steady 

states. Furthermore, another critical condition is that there must be sufficient excitation 

in the system in order for the VFF-RLS to perform correctly, i.e. the condition of 

persistence of excitation (Ljung & Söderstöm, 1983). It has been reported that during 

closed loop conditions, the addition of perturbation signals as well as perturbation in 

setpoints can be used to excite the VFF-RLS algorithm to ensure proper convergence of 

the parameter estimates (Hägglund & Åström, 2000; Mikleš & Fikar, 2007; Seborg, 

Edgar, & Shah, 1986; Vogel, 1988). Hence, in this study, upon deployment of the VFF-

RLS algorithm at time = 500 s (as long as the process is at steady state, the VFF-RLS 
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algorithm can be deployed at any time and not necessarily at time = 500 s as mentioned), 

the adaptive mechanisms in the different control schemes (whether the AS-GPC scheme 

and its unconstrained counterpart or the A-GPC scheme) were only activated 1000 s 

after the first change in setpoint for each respective loop. The time of adaptation can be 

chosen arbitrarily on the condition that it must be initiated after the process model 

parameters converged, which can be observed from the real-time transients of the model 

parameters in practice. In this case, the first setpoint change in the CME loop occurred at 

time = 500 s, whereas for the T loop, the first setpoint change occurred at time = 4000 s. 

The changes in setpoint for the two loops were introduced at different instances to 

capture the effect of loop interactions. As an additional measure to safeguard the 

convergence of the parameter estimator, small amount of white noises with zero mean 

and variances of 4×10-5 (kmol/m3)2 and 4×10-5 K2 respectively were added to the data of 

the CME and T entering the VFF-RLS algorithm. The values of variance chosen were 

arbitrary as long as they were sufficiently small. 

 

 Tables 6.4 - 6.5 show the values of SISO CARIMA model (cf. Section 2.4) 

parameters and tuning parameters adopted in the AS-GPC, A-GPC and GPC schemes 

for both the CME and T loops. It should be noted again that the parameters a1 and b1 in 

the SISO CARIMA representation were estimated by the VFF-RLS algorithm and that 

T(z-1) = 1 was chosen for simplicity. From the tables, the GPC scheme in this case 

served as a base case controller, where no adaptation mechanism was implemented. As 

mentioned above, the adaptive mechanisms in the AS-GPC and A-GPC schemes were 

only activated after the commencement of the first change in setpoint for both loops. 

The GPC internal model and the backup models for the AS-GPC and A-GPC schemes 

were calculated from the nominal continuous time equivalent. As for the values of the 

tuning parameters, they were calculated using the guideline presented in Table 3.3. As 
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the value of M ranges from 1 - 6 according to the guideline, it was decided that M = 6 

be selected in this study to allow some robustness in the computation of control moves. 

In general, the tuning parameters were all fixed for all schemes with the exception that 

the value of Ri be made adaptive in the AS-GPC scheme.  
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Table 6.4: Values of SISO CARIMA model parameters [with T(z-1) = 1] and tuning 

parameters of the AS-GPC, A-GPC and GPC schemes for the FAME concentration 

(CME) loop. For this loop, the adaptive mechanisms were activated at time = 1500 s (i.e. 

1000 s after the first change in setpoint at time = 500 s) for the AS-GPC and A-GPC 

schemes. 

Parameter Symbol Time AS-GPC* A-GPC GPC 

Model 
parameters 

a1, b1, D 

< 1500 s 
a1 = -0.89758 
b1 = -0.00177 
D = 3 

a1 = -0.89758 
b1 = -0.00177 
D = 3 

a1 = -0.89758 
b1 = -0.00177 
D = 3 

≥ 1500 s Adaptive Adaptive 
a1 = -0.89758 
b1 = -0.00177 
D = 3 

Minimum 
prediction 
horizon 

N1 

< 1500 s 4 4 4 

≥ 1500 s 4 4 4 

Maximum 
prediction 
horizon 

N2 

< 1500 s 50 50 50 

≥ 1500 s 50 50 50 

Control 
horizon 

M 

< 1500 s 6 6 6 

≥ 1500 s 6 6 6 

Move 
suppression 
weight 

Ri 

< 1500 s 0.000114 0.000114 0.000114 

≥ 1500 s Adaptive 0.000114 0.000114 

* For both constrained and unconstrained cases 
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Table 6.5: Values of SISO CARIMA model parameters [with T(z-1) = 1] and tuning 

parameters of the AS-GPC, A-GPC and GPC schemes for the reactor temperature (T) 

loop. For this loop, the adaptive mechanisms were activated at time = 5000 s (i.e. 1000 s 

after the first change in setpoint at time = 4000 s) for the AS-GPC and A-GPC schemes. 

Parameter Symbol Time AS-GPC* A-GPC GPC 

Model 
parameters 

a1, b1, D 

< 5000 s 
a1 = -0.90825 
b1 = -0.00981 
D = 1 

a1 = -0.90825 
b1 = -0.00981 
D = 1 

a1 = -0.90825 
b1 = -0.00981 
D = 1 

≥ 5000 s Adaptive Adaptive 
a1 = -0.90825 
b1 = -0.00981 
D = 1 

Min. 
prediction 
horizon 

N1 

< 5000 s 2 2 2 

≥ 5000 s 2 2 2 

Max. 
prediction 
horizon 

N2 

< 5000 s 53 53 53 

≥ 5000 s 53 53 53 

Control 
horizon 

M 

< 5000 s 6 6 6 

≥ 5000 s 6 6 6 

Move 
suppression 
weight 

Ri 

< 5000 s 0.004924 0.004924 0.004924 

≥ 5000 s Adaptive 0.004924 0.004924 

* For both constrained and unconstrained cases 
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6.3 Unconstrained AS-GPC Implementation and Analysis 

 

 Having defined the necessary parameters associated with the AS-GPC scheme 

as shown above, the proposed scheme without constraints on the controller was first 

tested on the biodiesel reactor for the performance in servo control. In this case, a series 

of setpoint changes in opposite directions from the nominal operating conditions of the 

CME and T loops was introduced to the process. Figures 6.1 - 6.2 show the CME and T 

profiles and the corresponding controller moves under successive, random setpoint 

changes. In general, the unconstrained AS-GPC performed well in terms of the ability 

in tracking setpoint changes for both loops. As mentioned above, the adaptive 

mechanisms in the unconstrained AS-GPC (i.e. model adaptation and self-tuning) were 

only activated at time = 1500 s. Hence, prior to that, chattering in the controller moves 

for the CME loop was observed, which caused an overshoot in the CME profile. The 

chattering phenomenon was caused by the nonlinearity across the operating region, of 

which a GPC based on a localized model and fixed tuning parameters was unable to 

cope. The chattering phenomenon disappeared upon deployment of the adaptive 

mechanisms in the unconstrained AS-GPC. This is an indication that for a nonlinear 

process, the adaptive mechanisms in the unconstrained AS-GPC were capable of 

regulating the controller moves even when the setpoint was changed to another 

operating region (i.e. moved away from the nominal operating condition). The effect of 

loop interactions was also observed for the CME loop, albeit in small magnitudes. As for 

the T loop, the unconstrained AS-GPC demonstrated good performance in terms of the 

ability to attain minimal overshoot and negligible effect of loop interactions. However, 

the controller moves observed were slightly aggressive, where slew rates of 

approximately 20 % were observed for a single actuator movement. Furthermore, 

actuator saturation was also observed at time = 18000 s (otherwise not observed 
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throughout the entire simulation), which contributed to a slight overshoot in the T 

profile. Although these observations were still practically realizable, clearly the 

situation could be improved if constraints were imposed on the controller. Despite all 

the minor shortcomings of the constraint-free AS-GPC, suffice to note here that the 

unconstrained AS-GPC generally performed well, with maximum rise times of 600 s 

and 500 s for the CME and T loops respectively. In addition, the maximum settling times 

for both loops were also observed to be identical to the maximum rise times. 
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Figure 6.1: Performance of the unconstrained AS-GPC in tracking changes in setpoint 

for the FAME concentration (CME) loop and its corresponding controller moves. Model 

adaptation and self-tuning of the controller for this loop was activated at time = 1500 s. 
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Figure 6.2: Performance of the unconstrained AS-GPC in tracking changes in setpoint 

for the reactor temperature (T) loop and its corresponding controller moves. Model 

adaptation and self-tuning of the controller for this loop was activated at time = 5000 s.
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T loop. The greater number of poles calculated for the CME loop as compared to the T 

loop was due to the larger dead time of the model imposed, resulting in higher order 

dynamics of the input for the CME loop. In general, all the closed loop poles for both 

loops were located within the unit circle, implying stable closed loop dynamics during 

the simulation interval. The evaluation of the closed loop poles in this case serves as an 

a posteriori check on the stability of the closed loop at a particular time instance. The 

general idea is that for as long as the evaluated closed loop poles are stable during 

implementation, the system is stable but the stability at the current instance is by no 

means an indication of future stability. For both the CME and T loops, only a pair of 

conjugate poles was observed to be distant from the origin, leaving the rest very near to 

zero. Thus, it can be inferred that while the poles near the origin were prone to 

producing near deadbeat behavior in the controller performance at the expense of 

aggressive controller moves, the single pair of conjugate poles some distance away 

from the origin tend to dampen the controller moves in such a way that a good 

compromise was achieved between aggressive controller moves and fast closed loop 

response. It should also be noted in the unconstrained AS-GPC framework, the model 

parameters adopted by the controller as well as the move suppression weights were 

changing continuously to adapt to the changing dynamics of the process. As such, the 

closed loop poles (which were dependent on the model parameters and the tuning 

parameters in the form of the closed loop characteristic equation) were not static in the 

locations. Instead, as observed in the figures, the location of each pole spread within 

certain vicinity in the z-domain. As aforementioned, although the stability results 

obtained from the analysis of the locations of unconstrained closed loop poles here 

cannot be used to assess the closed loop stability of the constrained AS-GPC, 

nonetheless the analysis here verified the soundness of the basic unconstrained 
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controller setup, without which it is impossible to further extend the current scheme to 

also include active constraints. 

 

 

Figure 6.3: Locations of Closed Loop Poles (CLP) for the unconstrained AS-GPC in 

the z-domain for the FAME concentration (CME) loop. Five CLPs were obtained at 

every control interval, and shown here are superpositions of the CLPs obtained 

throughout the entire simulation. The unit circle was plotted to indicate the boundary of 

stability, where CLPs located within the unit circle stabilize the process. 
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Figure 6.4: Locations of Closed Loop Poles (CLP) for the unconstrained AS-GPC in 

the z-domain for the reactor temperature (T) loop. Three CLPs were obtained at every 

control interval, and shown here are superpositions of the CLPs obtained throughout the 

entire simulation. The unit circle was plotted to indicate the boundary of stability, where 

CLPs located within the unit circle stabilize the process. 
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Table 6.6: Constraints imposed on the AS-GPC, A-GPC and GPC schemes expressed 

primarily in flow rates (m3/s). The corresponding valve stem positions (%) are given in 

parentheses. 

Parameters Symbols Lower Limit Upper Limit 

Reactant flow rate Fo 
2.10×10-2 m3/s 

(3 %) 

6.79×10-1 m3/s 

(97 %) 

Coolant flow rate Fc 
3.00×10-6 m3/s 

(3 %) 

9.70×10-5 m3/s 

(97 %) 

Reactant slew rate ∆Fo 
-3.50×10-2 m3/s 

(-5 %) 

3.50×10-2 m3/s 

(5 %) 

Coolant slew rate ∆Fc 
-5.00×10-6 m3/s 

(-5 %) 

5.00×10-6 m3/s 

(5 %) 

 

 

The setpoint changes as used above to test the performance of the unconstrained 

AS-GPC were retained. The results of the simulations were shown in Figures 6.5 - 6.8. 

From the figures, a general observation is that the GPC scheme showed fast closed loop 

responses with slight overshoots for both loops. Moreover, the effect of loop 

interactions was significant. Chattering behavior in the controller moves were also 

observed for the CME loop throughout the entire simulation. On the other hand, as 

expected, the shortcomings exhibited by the GPC scheme were mitigated to a certain 

extent by having model adaptation in the controller as in the A-GPC scheme. In this 

case, the A-GPC scheme successfully tackled the issue of overshoots, while maintaining 

similar speed of closed loop transients as in the GPC scheme. The extent of loop 

interactions observed was also less significant as compared to those observed for the 

GPC scheme. Further, the controller moves for the T loop produced by the A-GPC 

scheme showed a narrower range of operation for the same magnitude of change in 

setpoint as compared to those exhibited by the GPC scheme. Although the CME and T 

profiles  as well as the controller moves for the T loop exhibited by the A-GPC scheme 
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showed improved performance, the controller moves exhibited by the A-GPC scheme 

were still not satisfactory for the CME loop, where chatterings were still observed.  

 

The discussions thus far showed that model adaptation alone was not sufficient 

to ensure good performance in all performance indicators assessed, particularly when 

dealing with a nonlinear process such as the transesterification reactor. However, with 

the deployment of the AS-GPC (as illustrated in the same figures), the downsides of the 

A-GPC and GPC schemes previously mentioned were not noticeable. Not only did the 

AS-GPC scheme retained similar fast closed loop responses and the good loop 

interactions handling capability as demonstrated by the A-GPC scheme for both loops, 

the proposed scheme produced far better and smoother controller moves for the CME 

loop (as shown in Figure 6.6). Although the controller moves for the T loop did not 

show significant improvements as compared to those observed for the A-GPC scheme, 

nonetheless the controller moves were sufficiently smooth for practical implementation. 

In general, it can be concluded that the performance of the AS-GPC scheme was 

superior to that of the A-GPC and GPC schemes. Moreover, contrasting the 

performance of the unconstrained AS-GPC as shown in Figures 6.1 - 6.2, constrained 

AS-GPC had no issues with actuator saturation or excessive slew rates. In addition, 

although the biodiesel reactor process seemed to be largely FOPDT, simulation results 

showed that without a proper model and appropriate tuning parameters, the predictive 

controller was not able to perform as expected even for a seemingly FOPDT process. 

Hence, the use of the biodiesel reactor model was adequate to demonstrate the relevance 

of the AS-GPC.  

 

  



100 
 

 

Figure 6.5: Comparison of performance between the GPC, A-GPC and AS-GPC 

schemes in tracking a series of changes in setpoint for the FAME concentration (CME) 

loop. Model adaptation and self-tuning of the AS-GPC for this loop was activated at 

time = 1500 s. 
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Figure 6.6: Controller moves produced by the GPC, A-GPC and AS-GPC schemes in 

tracking a series of changes in setpoint for the FAME concentration (CME) loop. 
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Figure 6.7: Comparison of performance between the GPC, A-GPC and AS-GPC 

schemes in tracking a series of changes in setpoint for the reactor temperature (T) loop. 

Model adaptation and self-tuning of the controller for this loop was activated at time = 

5000 s. 
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Figure 6.8: Controller moves produced by the GPC, A-GPC and AS-GPC schemes in 

tracking a series of changes in setpoint for the reactor temperature (T) loop. Model 

adaptation and self-tuning of the controller for this loop was activated at time = 5000 s. 
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represented by a1’ and b1’. At the onset of simulation, these figures demonstrate that 

while the VFF-RLS algorithm had yet to stabilize, the values of a1 and b1 estimated by 

the VFF-RLS algorithm were not employed as the internal model of the AS-GPC 

scheme. Instead, a pre-calculated set of model parameters were used. The figures also 

show that the estimated process model parameters converged approximately 500 s after 

the first change in setpoint for both loops (the first change in setpoint occurred at 500 s 

and 4000 s for the CME and T loops respectively). The parameters did not converge at 

first due to insufficient excitation at the onset of simulation where the process was at the 

steady state. As soon as a setpoint change was introduced, the controller began to 

respond, which provided necessary excitation to the VFF-RLS algorithm for successful 

system identification. To ensure that adaptation in the controller was based on 

converged parameters, as indicated previously, the adaptive mechanisms in the AS-GPC 

were only activated 1000 s after the first change in setpoint for both loops, i.e. the 

controller eventually adopts the estimated parameters produced by the VFF-RLS 

algorithm for control calculations. 
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Figure 6.9: Transients of the process model parameters identified by the VFF-RLS 

algorithm (i.e. a1 and b1) as well as those eventually adopted as the internal model of the 

AS-GPC scheme (i.e. a1’ and b1’) for the FAME concentration (CME) loop.  The first set 

point change occurred at time = 500 s, while AS-GPC was activated at time = 1500 s. 
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Figure 6.10: Transients of the process model parameters identified by the VFF-RLS 

algorithm (i.e. a1 and b1) as well as those eventually adopted as the internal model of the 

AS-GPC scheme (i.e. a1’ and b1’) for the reactor temperature (T) loop.  The first set 

point change occurred at time = 4000 s, while AS-GPC was activated at time = 5000 s. 
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for both loops were generally close to unity because for a slowly time-varying system, 

the prediction errors were generally within a small range of magnitudes (which meant 

that there was no sudden and abrupt change in the model parameters such that a huge 

amount of past data had to be forgotten). In addition to the above observations, the 

robustness of the AS-GPC was also demonstrated by the fact that the controller 

performance was adamant to slight plant model mis-match as inferred by the constant 

fluctuations in the prediction errors. It can be concluded thus far that parameter 

estimation by the VFF-RLS algorithms for both loops was successful.  

 

 

Figure 6.11: Prediction error profiles of the VFF-RLS algorithms for both the FAME 

concentration (CME) and reactor temperature (T) loops in the AS-GPC scheme. 
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Figure 6.12: Forgetting factor profiles of the VFF-RLS algorithms for both the FAME 

concentration (CME) and reactor temperature (T) loops in the AS-GPC scheme. 
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Figure 6.13: Temporal evolution of the move suppression weights (Ri) for both FAME 

concentration (CME) and reactor temperature (T) loops in the AS-GPC scheme. 
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observed. As for the T loop, the T profile observed was sluggish. Upon activation of the 

AS-GPC scheme at time = 17500 s, the controller performance (i.e. the response and the 

controller moves) for both the CME and T loops recovered speedily within 600 s. The 

AS-GPC scheme was able to automatically determine the suitable values of the move 

suppression weights for both loops, which contributed to the improved performance. 

The illustrations used here by no means implied that the engineer would arrive at such a 

bad initial estimate of the move suppression weights; but rather to emphasize that if it 

were to happen, the AS-GPC is still able to salvage the situation. The implications from 

these results are twofold: 1) model adaptation alone without a properly tuned move 

suppression weight is not sufficient to ensure good performance of the controller, 2) the 

AS-GPC scheme is well able to auto-tune the move suppression weight without a priori 

knowledge on its value. 
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Figure 6.14: The corrective action produced by the AS-GPC scheme in salvaging the 

poor controller response caused by improper tuning of the move suppression coefficient 

for the FAME concentration (CME) loop. The self-tuning mechanism was activated at 

time = 17500 s. The move suppression weight at time < 17500 s is 10, upon tuning its 

magnitude was around 1×10-3. 
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Figure 6.15: The corrective action produced by the AS-GPC scheme in salvaging the 

poor controller response caused by improper tuning of the move suppression coefficient 

for the reactor temperature (T) loop. The self-tuning mechanism was activated at  

time = 17500 s. The move suppression weight at time < 17500 s is 45, upon tuning its 

magnitude was around 3×10-3. 
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6.5 Benchmarking with the Performance of Conventional PID Controllers 

 

 To reveal the superiority of the AS-GPC scheme against conventional PID 

schemes, the same setpoint tests as mentioned above were conducted on the biodiesel 

reactor model using conventional PID controllers. As mentioned in Section 3.7, the PID 

controllers were tuned using the IMC approach as it is one of the good PID tuning 

methods available (Chien & Fruehauf, 1990; Garcia & Morari, 1982; Rivera, Morari, & 

Skogestad, 1986). Besides that, the ZN tuning method was also used to tune the PID 

controllers as it is a widely used method in the industry. Calculations of the PID tuning 

parameters were done based on the nominal continuous time model parameters for each 

loop (i.e. Model 2 of Table 5.1 for the CME loop and Model 3 of Table 5.2 for the T loop) 

by utilizing the equations presented in Table 3.4. As the CME loop usually involved 

noisy process data in reality, the derivative action for the CME loop was turned off 

throughout this work. This decision is also justified by the poor performance obtained 

from the deployment of a PID controller tuned using the various methods described 

above on the CME loop during preliminary simulations. For the T loop, the opposite is 

true, where preliminary simulations showed that the PID controller performed better 

than the PI controller. Figures 6.16 - 6.19 show the results of the closed loop 

simulations for both the IMC-based and ZN-based PID controllers (or PI controllers for 

the CME loop) on the biodiesel reactor model, while Table 6.7 show the values of the 

tuning parameters employed for each scheme. To ease reading below, instead of writing 

“PI/PID controllers” to cater for the slight difference in both controllers, the general 

term “PID controllers” will be used.  
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Table 6.7: Values of Internal Model Control (IMC) and Ziegler-Nichols (ZN) based 

PID tuning parameters (Kc = proportional gain, τI = integral time constant, τD = 

derivative time constant, τc = IMC design parameter) for the FAME concentration (CME) 

and reactor temperature (T) loops. 

Tuning 

method 
Loop Kc τI τD τc 

IMC 
CME -132.02 185.09 0 40.556 

T -36.35 217.68 9.41 19.703 

ZN 
CME -237.64 135.05 0 - 

T -1183.41 39.41 9.85 - 

 

 Of the two methods used to tune the PID controllers, generally the IMC-based 

PID controllers exhibited better performance than the ZN-based PID controllers. The 

ZN-based PID controllers yielded high overshoots in the CME and T profiles. In addition, 

the controller moves produced were aggressive and chaotic especially for the T loop. 

Such controller moves were generally not realizable during practical implementations. 

The performance of the IMC-based PID controllers were better as compared to the ZN-

based PID controllers in that the overshoots observed were lower and the controller 

moves produced were of fairly good quality for the CME loop and less chaotic for the T 

loop (although still not realizable for practical implementations). Despite the improved 

performance of the IMC-based PID controllers as compared to the ZN-based PID 

controllers, the performance of the IMC-based PID controllers (as revealed in Figures 

6.16 - 6.19) paled in comparison to the performance of the AS-GPC (as demonstrated in 

Figures 6.5 - 6.8) in the ability to attain minimal overshoot and good controller moves. 

Table 6.8 shows the comparison of the maximum and minimum overshoots exhibited 

by the AS-GPC and the IMC-based PID controllers for both loops, which clearly 

revealed the superiority of the AS-GPC in achieving virtually no overshoots (as 
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illustrated by Figures 6.5 and 6.7). A common observation for the IMC-based PID 

controller is that a tradeoff exists between good closed loop response and realizable 

controller moves. Although the responses attained by the IMC-based PID controllers 

were fast, these were achieved at the expense of aggressive controller moves. 

Furthermore, these controllers with fixed controller settings lacked the ability to handle 

nonlinearities arising from changes in the operating range of the reactor. The AS-GPC 

scheme, however, was able to tackle all these issues and produced good setpoint 

tracking together with superior quality of the controller moves. 

 

 

Figure 6.16: Performance of the Internal Model Control (IMC) PI controller and the 

Ziegler-Nichols (ZN) PI controller in tracking a series of changes in setpoint for the 

FAME concentration (CME) loop.  
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Figure 6.17: The corresponding controller moves produced by the Internal Model 

Control (IMC) PI controller and the Ziegler-Nichols (ZN) PI controller for tracking a 

series of changes in setpoint for the FAME concentration (CME) loop. 
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Figure 6.18: Performance of the Internal Model Control (IMC) PID controller and the 

Ziegler-Nichols (ZN) PID controller in tracking a series of changes in setpoint for the 

reactor temperature (T) loop.  
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Figure 6.19: The corresponding controller moves produced by the Internal Model 

Control (IMC) PID controller and the Ziegler-Nichols (ZN) PID controller for tracking 

a series of changes in setpoint for the reactor temperature (T) loop. 
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6.6 Regulatory Performance of the Constrained AS-GPC 

 

For a particular control scheme to be considered efficient in handling process 

control problems, the controller not only has to perform well in tracking setpoint 

changes, but it should also be able to reject disturbances. Hence, the AS-GPC scheme 

was further scrutinized for the efficacy in regulatory control. Four variables (i.e. TO, 

CTGO, TCO and N) were identified as possible disturbance variables in the mechanistic 

transesterification model (Mjalli, Lee, Kiew, & Hussain, 2009) as alluded to in Section 

1.1. A 5 % step increment in the nominal value of a quantity chosen from CTGO, TO, TCO, 

and N was introduced at time = 37500 s, following the setpoint tests. Figures 6.20 - 6.21 

show the performance of the AS-GPC scheme in rejecting the various load disturbances. 

The AS-GPC scheme successfully rejected all the disturbances within reasonable time, 

bringing both CME and T back to their set points within 1000 seconds at the most. 

Changes in CTGO had the largest effect on the CME profile whereas disturbances in TCO 

affected the pace of recovery of T most significantly. Further, it was observed that N 

had negligible effects on the profiles of both CME and T. It should be noted that a 5 % 

step increment in the disturbance variables did not require much control efforts to tame 

the process for the CME loop as revealed by the narrow range of controller movements. 

This, however, was not the case for the T loop, as a 5 % step increment in TO required 

substantial effort in the controller movement (≈ + 40 %) to recover from the process 

interruption. Despite that, generally the controller moves for both loops were observed 

to be non-aggressive and actuator saturation did not occur. 

 

 

 

 



120 
 

 

 

Figure 6.20: Effects of various individual disturbance variables, viz. the feed 

temperature (TO), concentration of triglycerides (CTGO), coolant inlet temperature (TCO), 

and stirrer rotational speed (N), on the performance of the AS-GPC control scheme in 

controlling the FAME concentration (CME) and the corresponding controller moves for 

the reactant flow rate (Fo). Five percent step increment in the nominal values of TO, 

CTGO, TCO, and N were introduced at time = 37500 s. These disturbances were 

introduced one at a time, hence shown here are superpositions of four separate runs. 
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Figure 6.21: Effects of various individual disturbance variables, viz. the feed 

temperature (TO), concentration of triglycerides (CTGO), coolant inlet temperature (TCO), 

and stirrer rotational speed (N), on the performance of the AS-GPC control scheme in 

controlling the reactor temperature (T) and the corresponding controller moves for the 

coolant flow rate (Fc). Five percent step increment in the nominal values of TO, CTGO, 

TCO, and N were introduced at time = 37500 s. These disturbances were introduced one 

at a time, hence shown here are superpositions of four separate runs. 
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6.7  Concluding Remarks 

 

 In this chapter, it was shown that by incorporating the model adaptation and 

self-tuning mechanisms simultaneously in the AS-GPC, the controller moves produced 

were improved while achieving good closed loop responses as compared to A-GPC and 

GPC schemes. Moreover, for a nonlinear process such as the transesterification process, 

even the high performance IMC-based PID scheme, could not rival the performance of 

the AS-GPC. In this study, the AS-GPC scheme proved to be efficient in handling both 

servo and regulatory control problems. With the implementation of this scheme, the 

modeling and tuning issues were dealt with automatically by the controller, thus 

reducing human intervention and effort in troubleshooting control issues caused by 

incorrect modeling and tuning of the controller. Consequently, this resulted in improved 

control performance when dealing with process nonlinearities and uncertainties. 
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CHAPTER 7  

CONCLUSIONS, THESIS AND RECOMMENDATIONS 

 

7.1  Conclusions and Thesis 

 

 The main aim of this work is to design and develop a GPC controller with both 

model adaptation and self-tuning capabilities. To accomplish this, the output of the RLS 

algorithm is used not only for model adaptation in the GPC controller, but also for self-

tuning through the use of the FOPDT-based explicit analytical expressions proposed by 

Shridhar and Cooper (1997b). This novel combination (i.e. the AS-GPC scheme) was 

not reported elsewhere in the academic literature. To systematically achieve this 

ultimate aim, several research objectives were formed and met, as summarized below: 

 

i) Three variants of the RLS algorithms were screened, i.e. the EWRLS 

algorithm, VFF-RLS algorithm, and the EDF algorithm. The EWRLS and 

VFF-RLS algorithms had more flexibility in dealing with variability in the 

process dynamics. For this work, the VFF-RLS algorithm was chosen due to 

its successful implementation track records. 

 

ii) Open loop dynamic system analysis was performed on the validated 

mechanistic biodiesel reactor model developed by Mjalli, Lee, Kiew, and 

Hussain (2009). The results showed that the dynamics of the process were 

operating point dependent as well as displaying loop interactions, hence 

justifying the need for an advanced control scheme. 
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iii) Offline FOPDT system identification was successfully performed on the 

biodiesel reactor at different operating regions. These results showed that the 

process model parameters identified at different operating regions were 

different, thus confirming the existence of nonlinearities in the process 

dynamics. The results obtained were also used to design a backup GPC 

controller for the AS-GPC scheme to prevent severe process upsets prior to 

the activation or during the failure of adaptive mechanisms. 

 

iv) The AS-GPC scheme was successfully designed and developed. Closed loop 

implementation of the unconstrained AS-GPC on the biodiesel reactor 

showed good performance, albeit having rather large input slew rates due to 

the absence of active constraints on controller moves. The closed loop poles 

exhibited by the unconstrained AS-GPC implied stable dynamics. 

 

v) The shortcoming of the unconstrained AS-GPC was rectified by imposing 

constraints on the controller. Better controller moves were achieved 

compared to those of the unconstrained cases. Simulation results also 

showed that while the A-GPC scheme with model adaptation alone 

performed better than the conventional GPC scheme, the AS-GPC scheme 

with both model adaptation and self-tuning of the move suppression weight 

outperformed the corresponding A-GPC scheme. The AS-GPC scheme also 

showed better performance than the conventional PID scheme tuned using 

among the best PID tuning methods, i.e. the IMC method. In addition, good 

regulatory control was also achieved by the AS-GPC scheme. 

 

 The evidence throughout this work supports the thesis that better controller 

performance can be obtained by having both model adaptation and self-tuning in the 
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GPC controller structure. One possibility of achieving this is to use the RLS algorithm 

both to model the process continuously in the form of a FOPDT model and to retune the 

controller using the tuning correlations proposed by Shridhar and Cooper (1997b). 

 

7.2  Recommendations for Future Work 

 

 This work had shown that the traditional use of the RLS algorithm for model 

adaptation in the GPC controller can be extended further to cater also for the controller 

self-tuning. On the basis of this idea, several future extensions of the work are possible: 

 

i) Instead of only tuning a single active parameter as in this work, self-tuning 

of all the GPC tuning parameters based on the output of the RLS algorithm 

can be made possible based on proposed tuning correlations available in the 

literature. This would further relieve control engineers of the efforts 

involved in tuning the controller. Furthermore, contrary to existing self-

tuning methods, no real time optimization is needed to compute the optimal 

tuning parameters. 

 

ii) A MIMO AS-GPC can be designed and developed based on the analytical 

FOPDT based tuning expressions proposed by Shridhar and Cooper (1997a) 

for MIMO open loop stable systems. It is expected that a MIMO AS-GPC 

scheme will demonstrate improved capability in handling loop interactions. 

 

iii) New model-based analytical tuning expressions for the GPC can be 

developed based on second order process models to cater to processes with 

higher order dynamics which the FOPDT approximation fails to capture. 
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The same approach as adopted in this work can be used, where the RLS 

algorithm estimates the model parameters of the second order model, and the 

tuning parameters are calculated based on the estimated parameters. 

 

iv) To more rigorously validate its performance, the AS-GPC scheme can be 

deployed on real world nonlinear processes (e.g. a lab scale biodiesel 

reactor), where noises, measurement errors plus hysteresis and nonlinearities 

of control valves etc. are prevalent. Comparison with auto-tuned PID 

controllers can also be done. 

 

v) A proper stability analysis of the proposed constrained control scheme can 

be done. While the observations are that the closed loop implementation of 

the AS-GPC was stable on the biodiesel reactor model, in general this is not 

easy to prove; hence the issue of closed loop stability deserves deeper 

examination. 

 

vi) The convergence rates for the RLS algorithm, the speed of change of the 

model parameters and the interaction between these and the control law 

updates (which are important in affecting the performance of the controller) 

can be studied at a deeper level. 
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APPENDIX A: DERIVATION OF BIERMAN’S UDU
T
 

FACTORIZATION 

 

To fill in the missing details in the original paper (Bierman, 1976), this appendix 

derives Bierman’s UDUT factorization method of the covariance matrix used in all RLS 

algorithm implementations throughout this study. Here, the general results of the UDUT 

factorization are shown before further modifications are introduced to make the 

factorization method applicable to specific forms of RLS algorithms. 

 

A.I  Overview of the Method 

  

 Consider the equation of covariance update shown here: 

ˆ P P
P P

Tψψψψψψψψ
= −

ϕ
                                                                                                          (A.1) 

where PTr ψ ψψ ψψ ψψ ψϕ = + . For simplicity, variables which are not known a priori are written 

with the caret symbol, whereas the omission of the caret symbol denotes variables 

which are yet unknown.  

 

 Direct updating as prescribed in Eqn. (A.1) could lead to instability, hence an 

indirect method was proposed by Bierman.  Supposing that the covariance matrix P at 

every instance can be factored in the form of Eqn. (A.2):  

P =UDU
T                                                                                                                    (A.2) 

where D n n×∈ℜ  is a diagonal matrix, U n n×∈ℜ  is an upper triangular matrix with ones in 

the diagonal, and n is the number of rows (or number of columns) of P. Bierman’s 
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method strives to find the updated components of the factored form, i.e. the Û  and D̂  

components, in terms of U and D. 

 

 To do this, Eqn. (A.1) can be rewritten in the factored form: 

ˆ ˆ ˆ UDU UDU
UDU UDU

T T T
T T ψψψψψψψψ

= −
ϕ

                                                                          (A.3) 

Following this, Eqn. (A.3) can be rearranged to arrive at Eqn. (A.4): 

( )( )ˆ ˆ ˆ
D U U D

UDU U D U

T
T T

T T
ψ ψψ ψψ ψψ ψ 

 = −
 ϕ
 

                                                                  (A.4) 

Defining h = U Tψψψψ  and x = Dh , Eqn. (A.4) follows the following transformation: 

ˆ ˆ ˆ Dhh D
UDU U D U

T
T T 

= − ϕ 
                                                                                      (A.5) 

ˆ ˆ ˆ xx
UDU U D U

T
T T 

= − ϕ 
                                                                                            (A.6) 

since D D
T = . 

 

 Bierman suggested the following to complete the factorization of the right hand 

side of Eqn. (A.6): following the rationale of Agee and Turner (1972), the terms in the 

square bracket are further factored in the form of U  and D : 

xx
UDU = D

T
T −

ϕ
                                                                                                        (A.7) 

Upon obtaining UDUT , substitution into A.6 and rearranging slightly, the new factors 

of the covariance matrix can be found: 

( ) ( )ˆ ˆ ˆUDU UU D UU
TT =                                                                                               (A.8) 

where Û UU=  and D̂ D= .  
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To conclude, the whole idea in Bierman’s method is to update P̂  indirectly 

through its updated factorized components Û  and D̂  at every time instance. The 

challenge in obtaining Û  and D̂ , however, lies in the factorization as shown in Eqn. 

(A.7), which the rigorous derivation will be shown in the next section. 

 

A.II  Rigorous Derivation of Bierman’s UDU
T
 Factorization Method 

 

 To begin with the derivation of Bierman’s method, consider the following: 

[ ] jkijik
j

ip pj jk
j p

                  

T T

T

UDU UD U

U D U

  = 

=

∑

∑∑
                                                                                      (A.9) 

where the use of subscripts indicate the position of a particular numerical element in the 

corresponding matrix/vector array. For instance, ipU  represents the numerical element 

in the i-th row and p-th column of the matrix U. The subscripts used here are unique 

within the scope of this appendix, and should not be confused with identical subscripts 

used in other chapters of this thesis. Eqn. (A.9) can be written as: 

n

ij jj jkik
j i

n

ij kj j
j=i

                  =

T TUDU U D U

U U D

=

  =  ∑

∑
                                                                                           (A.10) 

 

 To enable the factorization as shown in Eqn. (A.7), it is necessary to revisit the 

work of Agee and Turner (1972), where the factorization of a positive definite matrix 

plus a symmetric dyad was first discussed in detail. Although Agee and Turner (1972) 

performed the factorization in the form of LDLT (where L is the lower triangular 

matrix), similar strategy can be used to re-derive the method for the case of UDUT 

factorization (which will be shown in this section).  
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Without going into the mathematical details, Figure A.1 presents the pictorial 

roadmap of the stages involved in deriving the factorization. To begin deriving the 

equations, consider the following factorization, where U’ is an upper triangular matrix 

with ones in the diagonal, D’ is a diagonal matrix, A is a positive definite matrix, c is a 

constant, and w is a column vector: 

' ' '
U DU A ww

T Tc= +                                                                                                   (A.11) 

The right hand side of Eqn. (A.11) resembles that of a positive definite matrix plus a 

symmetric dyad, which according to Agee and Turner (1972) can be factorized. The 

objective here is to deduce a set of general relationships which can be used to obtain '
U  

and '
D . 
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Figure A.1: Pictorial roadmap showing the stages involved in deriving useful equations 

for the factorization of a positive definite matrix plus a symmetric dyad. 

 

 From Eqn. (A.11), since A is a positive definite matrix, it can also be factored in 

the form of UDUT, resulting in: 

' ' '
U DU UDU ww

T T Tc= +                                                                                           (A.12) 

 

 Using Eqn. (A.10), Eqn. (A.12) can be written in the following form for every 

numerical element in its left hand side matrix (i.e. the ' ' '
U DU

T  matrix): 

n n
' ' '
ij kj j ij kj j i k

j=i j=i

U U D U U D cww= +∑ ∑                                                                                (A.13) 

' ' '
U D U A ww

T Tc= + ' ' '
U D U UDU ww

T T Tc= +

n n
' ' '
ij kj j ij kj j i k

j= i j= i

U U D U U D cw w= +∑ ∑

( ) ( ) ( )
n n2 2 2' '

ij j ij j i
j= i j= i

U D U D c w= +∑ ∑

[ ]'
kn kn n n k'

n

1
U U D cw w

D
= +

( )2'
n n nD D c w= +

Factorize A

Writing in summation 

form up to j = i to n

k = i

R
e

p
e

a
ti

n
g

 t
h

e
 s

u
m

m
a

ti
o

n
 

fo
r 

j 
=

 i
 t

o
 n

−
1

, n
−

2
, …

i = n

i = n

j = n−1 to 1

k =1 to n

2'
n n nD D c w = +  

( )n n
'
n

cD
c

D
=

( )n'
kn kn n k'

n

1
U U cw w

D
 = +  

( )n
k k kn nw w U w= −

( ) ( ) ( )j+1 j+1 j'
kj kj j k'

j

1
U U c w w

D
 = +  

( )
( )j+1

j j

'
j

c D
c

D
=

( ) ( ) ( )j j+1 j+1
k k kj jw w U w= −

( ) ( ) 2
j+1 j+1'

j j jD D c w = +  

k =1 to j

j = n Deducing the general pattern for 

D’j and U’kj

k =1 to n
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When k = i: 

( ) ( ) ( )
n n2 2 2' '

ij j ij j i
j=i j=i

U D U D c w= +∑ ∑                                                                             (A.14) 

 

From Eqns. (A.13) and (A.14), when i = n, the summations are the simplest as 

they have one term each, the resulting expressions are as shown in Eqns. (A.15) and 

(A.16) respectively: 

' ' '
nn kn n nn kn n n kU U D U U D cw w= +                                                                                   (A.15) 

( ) ( ) ( )
2 2 2' '

nn n nn n nU D U D c w= +                                                                                  (A.16) 

Since '
nn nn 1U U= = , Eqns. (A.15) and (A.16) becomes: 

[ ]'
kn kn n n k'

n

1
U U D cw w

D
= +                                                                                          (A.17) 

( )2'
n n nD D c w= +                                                                                                        (A.18) 

The right hand sides of Eqns. (A.17) and (A.18) are known a priori, hence '
nD  and '

knU  

can be easily found, for k 1,2, , n= … . 

 

Up to this point, it was shown how '
nD  and '

knU  can be obtained. Ultimately, the 

goal of this section is to show how ' ' '
n n 1 1, , ,D D D− …  and ' ' '

kn k,n 1 k1, , ,U U U− …  can be found 

through a set of general relationships. For clarity, a comma is used to separate the row 

and column indexes for '
k,n 1U −  and this convention will be adopted hereafter for similar 

representations throughout this appendix. This is unrelated to the shorthand convention 

where a comma implies a derivative.   
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To deduce the general relationships, the derivations to obtain ' '
n 1 n 2,D D− −  and 

' '
k,n 1 k,n 2,U U− −  will be shown in the following text. To proceed, consider rewriting Eqn. 

(A.13) in the following form: 

n 1 n 1
' ' '
ij kj j ij kj j

j=i j=i

 U U D U U D E
− −

= +∑ ∑                                                                                      (A.19) 

where ' ' '
in kn n in kn n i k=E U U D U U D cww− + .  

 

 To simplify the expression E in Eqn. (A.19), consider Eqn. (A.17) with k = i: 

' '
in n in n n iU D U D cw w= +                                                                                                (A.20) 

Multiplying Eqns. (A.17) and (A.20) produces the following expression: 

( ) ( ) ( )2 2' ' '
in kn n in kn n n i k n n kn i in k'

n

1
U U D U U D cw ww cD w U w U w

D
 = + + +                       (A.21) 

Substituting Eqn. (A.21) into the expression E and rearranging gives: 

( )

( )( )

( ) ( ) ( )

2n
in kn n kn i n in k n i k'

n

n
i in n k kn n'

n

n n n
i k

=

    =

    = 

cD
E U U w U ww U w w ww

D

cD
w U w w U w

D

c w w

 − − + 

− −                                                 (A.22) 

where: 

( )n n
'
n

cD
c

D
=  

( )n
i i in nw w U w= −                                                                                                         (A.23) 

( )n
k k kn nw w U w= −                                                     

 

Rewriting Eqn. (A.19) with the simplified expression of E leads to Eqn. (A.24): 

( ) ( ) ( )
n 1 n 1

n n n' ' '
ij kj j ij kj j i k

j=i j=i

 U U D U U D c w w
− −

= +∑ ∑                                                                        (A.24) 
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Note that at this point, the form of Eqn. (A.24) is similar to that of Eqn. (A.13). To find 

'
n 1D −  and '

k,n 1U − , similar procedures for obtaining Eqns. (A.14) – (A.18) as shown 

previously are repeated here. Thus, when k = i, Eqn. (A.24) becomes: 

( ) ( ) ( ) ( )
2n 1 n 12 2 n n' '

ij j ij j i
j=i j=i

U D U D c w
− −

 = +  ∑ ∑                                                                       (A.25) 

 

Again, starting from the smallest summation terms, from Eqns. (A.24) and 

(A.25), when i = n - 1, the resulting expressions are as shown in Eqns. (A.26) and (A.27) 

respectively: 

( ) ( ) ( )n n n' ' '
n 1,n 1 k,n 1 n 1 n 1,n 1 k,n 1 n 1 n 1 kU U D U U D c w w− − − − − − − − −= +                                                      (A.26) 

( ) ( ) ( ) ( ) 22 2 n n' '
n 1,n 1 n 1 n 1,n 1 n 1 n 1U D U D c w− − − − − − −

 = +                                                              (A.27) 

Substituting for '
n 1,n 1 n 1,n 1 1U U− − − −= = , Eqns. (A.26) and (A.27) become: 

( ) ( ) ( )n n n'
k,n 1 k,n 1 n 1 n 1 k'

n 1

1
U U D c w w

D
− − − −

−

 = +                                                                        (A.28) 

( ) ( ) 2
n n'

n 1 n 1 n 1D D c w− − −
 = +                                                                                               (A.29) 

Hence, '
n 1D −  and '

k,n 1U −  are found from Eqns. (A.28) and (A.29), for k =1,2,…,n 1− . 

 

Subsequently, similar procedures as shown above are repeated to obtain '
n 2D −  

and '
k,n 2U − .   Equation (A.24) is first recast in the following form: 

n 2 n 2
' ' '
ij kj j ij kj j

j=i j=i

 U U D U U D F
− −

= +∑ ∑                                                                                      (A.30) 

where ( ) ( ) ( )n n n' ' '
i,n 1 k,n 1 n 1 i,n 1 k,n 1 n 1 i k=F U U D U U D c w w− − − − − −− + .  
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When k = i, Eqn. (A.28) becomes: 

( ) ( ) ( )n n n' '
i,n 1 n 1 i,n 1 n 1 n 1 iU D U D c w w− − − − −= +                                                                             (A.31) 

Similarly, multiplying Eqns. (A.28) and (A.31) produces the following expression: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
' ' '
i,n 1 k,n 1 n 1

22 n n n n n n n n

i,n 1 k,n 1 n 1 n 1 i k n 1 n 1 k,n 1 i i,n 1 k'
n 1

1

U U D

U U D c w w w c D w U w U w
D

− − −

− − − − − − − −
−

   = + + +   
                

                                                                                                                                    (A.32) 

Substituting Eqn. (A.32) into the expression F and rearranging gives: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

n
2

n n n n n n nn 1
i,n 1 k,n 1 n 1 k,n 1 i n 1 i,n 1 k n 1 i k'

n 1

n
n n n nn 1

i i,n 1 n 1 k k,n 1 n 1'
n 1

n 1 n 1 n 1

i k

=

    =

    = 

c D
F U U w U w w U w w w w

D

c D
w U w w U w

D

c w w

−
− − − − − − −

−

−
− − − −

−

− − −

  − − + 

   − −                  (A.33) 

where: 

( )
( )n

n 1 n 1
'
n 1

c D
c

D

− −

−

=  

( ) ( ) ( )n 1 n n

i i i,n 1 n 1w w U w
−

− −= −                                                                                               (A.34) 

( ) ( ) ( )n 1 n n

k k k,n 1 n 1w w U w
−

− −= −                                                     

 

Equation (A.30) with the simplified expression for F becomes: 

( ) ( ) ( )
n 2 n 2

n 1 n 1 n 1' ' '
ij kj j ij kj j i k

j=i j=i

 U U D U U D c w w
− −

− − −= +∑ ∑                                                                 (A.35) 

When k = i, Eqn. (A.35) takes the form of: 

( ) ( ) ( ) ( )
2n 2 n 22 2 n 1 n 1' '

ij j ij j i
j=i j=i

U D U D c w
− −

− − = +  ∑ ∑                                                                   (A.36) 

 

When i = n − 2, Eqns. (A.35) and (A.36) are simplified to the following 

expressions: 
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( ) ( ) ( )n 1 n 1 n 1' ' '
n 2,n 2 k,n 2 n 2 n 2,n 2 k,n 2 n 2 n 2 kU U D U U D c w w

− − −
− − − − − − − − −= +                                             (A.37) 

( ) ( ) ( ) ( ) 22 2 n 1 n 1' '
n 2,n 2 n 2 n 2,n 2 n 2 n 2U D U D c w

− −
− − − − − − −

 = +                                                        (A.38) 

Given '
n 2,n 2 n 2,n 2 1U U− − − −= = , Eqns. (A.37) and (A.38) become: 

( ) ( ) ( )n 1 n 1 n 1'
k,n 2 k,n 2 n 2 n 2 k'

n 2

1
U U D c w w

D

− − −
− − − −

−

 = +                                                                (A.39) 

( ) ( ) 2
n 1 n 1'

n 2 n 2 n 2D D c w
− −

− − −
 = +                                                                                          (A.40) 

Hence, '
n 2D −  and '

k,n 2U −  are obtained from Eqns. (A.39) and (A.40), for k 1,2, , n 2= −… . 

 

 Similar procedures as shown above can be used to obtain the expressions for the 

remaining elements, viz. ' '
n 3 1, ,D D− …  and ' '

k,n 3 1, , kU U− … . Derivations above suggest a set 

of general relationships which is more practical for computer implementations. They are: 

( )

( )
( )

( )
( )

( )
( )

n n
'
n

n
n 1 n 1

'
n 1

n 1
n 2 n 2

'
n 2

j+1

j j

'
j

cD
c

D

c D
c

D

c D
c

D

c D
c

D

− −

−

−
− −

−

=

=

=

=

⋮

                                                                                                       (A.41) 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

k k kn n

n 1 n n
k k k,n 1 n 1

n 2 n 1 n 1

k k k,n 2 n 2

j j+1 j+1
k k kj j

w w U w

w w U w

w w U w

w w U w

−
− −

− − −
− −

= −

= −

= −

= −

⋮

                                                                                        (A.42) 
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( )
( ) ( )

( ) ( )

( ) ( )

2'
n n n

2
n n'

n 1 n 1 n 1

2
n 1 n 1'

n 2 n 2 n 2

2
j+1 j+1'

j j j

D D c w

D D c w

D D c w

D D c w

− − −

− −
− − −

= +

 = +  

 = +  

 = +  

⋮

                                                                                      (A.43) 

[ ]

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

'
kn kn n n k'

n

n n n'
k,n 1 k,n 1 n 1 n 1 k'

n 1

n 1 n 1 n 1'
k,n 2 k,n 2 n 2 n 2 k'

n 2

j+1 j+1 j+1'
kj kj j j k'

j

1

1

1

1

U U D cw w
D

U U D c w w
D

U U D c w w
D

U U D c w w
D

− − − −
−

− − −
− − − −

−

= +

 = + 

 = + 

 = + 

⋮

                                                              (A.44) 

where j 1,2, ,n= …  (note that ( )n+1
c c= , ( )n+1

k kw w= , and ( )n+1

j jw w= ) and k 1,2, , j= … . 

Using Eqns. (A.42) and (A.43), an alternative general form of Eqn. (A.44) can be 

derived: 

( ) ( ) ( )j+1 j+1 j'
kj kj j k'

j

1
U U c w w

D
 = +                                                                                       (A.45) 

  

 To summarize, given the a priori knowledge of c, U, D, and w, the sequence of 

calculations for obtaining '
U  and '

D  matrices are shown here: 

Starting from j = n , calculate: 

( )2'
n n nD D c w= +                                                                                                        (A.46) 

( )n n
'
n

cD
c

D
=                                                                                                                   (A.47) 

( )

( )

n
k k kn n

n'
kn kn n k'

n

k 1,2, , n1

w w U w

U U cw w
D

= −


= = +  

…                                                                     (A.48) 
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Subsequently, for j = n – 1 to 1, compute the following: 

( ) ( ) 2
j+1 j+1'

j j jD D c w = +                                                                                                 (A.49) 

( )
( )j+1

j j

'
j

c D
c

D
=                                                                                                               (A.50) 

( ) ( ) ( )

( ) ( ) ( )

j j+1 j+1

k k kj j

j+1 j+1 j'
kj kj j k'

j

k 1, 2, , j1

w w U w

U U c w w
D

= −


= = +  


…                                                               (A.51) 

  

 With Eqns. (A.46) - (A.51), the factorization as shown in Eqn. (A.7) can now be 

done. For this specific factorization, consider the following relationships between Eqns. 

(A.7) and (A.11): 

A D≡  

1
c ≡ −

ϕ
 

w x≡                                                                                  

'
U U≡                                      

'
D D≡                                                                                                                         (A.52) 

In order for the first relationship in Eqn. (A.52) to hold true, clearly: 

U =U = I

A =UDU IDI D

T

T T∴ = =
                                                                                          (A.53) 

 

 Using Eqns. (A.52), Eqns. (A.46) - (A.51) after some rearrangements become: 

Starting from j = n : 

( )2

n n n

1
D D x= −

ϕ
                                                                                                      (A.54) 

( )n n

n

D

D

ϕ
ϕ =                                                                                                                  (A.55) 
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( )n

k

k

kn
n k

n

0 if k = n 

otherwise

k 1,2, , j1 if k = n

1
otherwise

   

         

x
x

U
x x

D


=  

 
=

 =  − ϕ 

…                                                             (A.56) 

Subsequently, for j = n – 1 to 1: 

( )
( ) 2
j+1

j j jj+1

1
D D x = −  ϕ

                                                                                             (A.57) 

( )
( )j+1

j j

j

D

D

ϕ
ϕ =                                                                                                             (A.58) 

( )
( )

( )
( ) ( )

j

k j+1

k

j+1 jkj
j kj+1

j

0 if k = j

otherwise

k 1,2, , j1 if k = j

1
otherwise

        

             

x
x

U
x x

D


= 

 


=
 =  − ϕ 

…                                                    (A.59) 

 

 Up to this stage, the problem is in principle solved, i.e. D  and U  had been 

found in terms of known quantities.  However, the equations are inconvenient as they 

involve ϕ; further they are not yet in the final form reported by Bierman. To ease 

understanding of the following derivations, Figure A.2 shows the pictorial roadmap of 

the steps ahead in obtaining the final form of equations. 
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Figure A.2: Pictorial roadmap showing the steps involved to obtain the final version of 

Bierman’s factorization algorithm. The blocks with dotted borders represent the final 

forms useful for implementation. 

 

Taking into consideration the expression PTr ψ ψψ ψψ ψψ ψϕ = + , Eqns. (A.54) - (A.59) 

can be further simplified. To proceed, consider the following: 

( )( )

n

q q
q=1

P

  U DU

  h x

  =

T

T T

T

r

r

r

r h x

ϕ = +

+

= +

+∑

ψ ψψ ψψ ψψ ψ

= ψ ψ= ψ ψ= ψ ψ= ψ ψ

                                                                                              (A.60) 

 

 

 

 

 

 

 

What will be done

Deduce φ(j)

Equation used Final result

i 1

q q
q=1

i i i

q q
q=1

ˆ
r h x

D D

r h x

− 
+ 

 =
 + 
 

∑

∑

Deduce ( )j+1
jD ϕ

( )
( ) ( )j+1 jkj
j kj+1

j

1 if k = j

1
otherwise

             

U
x x

D




= − ϕ

Deduce forms for  
( ) ( )j+1 j
j kand  x x

j 1
j

ij ij ik kj 1
k=i

q q
q=1

1 j = i

ˆ j i
h

U U U x

r h x

−

−





= − ≥
 +


∑
∑

j

ij ik kj
k=i

Û U U= ∑

i = 1 to n

j = i to n

i = 1 to n

i iD̂ = D
( )

( ) 2
j+1

j j jj+1

1
D D x = −  ϕ
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Using Eqn. (A.60) in Eqn. (A.54) gives: 

( )

( )

( )

( ) ( )

2

n n n

2

n n

n
2

n q q n n
q=1

n

q q
q=1

n 1
2

n q q n n n n n n n
q=1

n

q q
q=1

n 1

q q
q=1

n n

q q
q=1

1

    

    

    

    

D D x

D x

rD h x D x

r h x

rD h x D h D h D D h

r h x

r h x

D

r h x

−

−

= −
ϕ

ϕ −
=

ϕ

 
+ − 

 =
+

 
+ + − 

 =
+

 
+ 

 =
 + 
 

∑

∑

∑

∑

∑

∑

                                                   (A.61) 

 

To find n 1D − , Eqns. (A.55) and (A.56) can first be rewritten in the following 

forms: 

( )n n

n

n 1

q qn
q=1

q q n
q=1

q q
q=1

n 1

q q
q=1

D

D

r h x

r h x

r h x

r h x

−

−

ϕ
ϕ =

 
+   = + 

   + 
 

= +

∑
∑

∑

∑

                                                                              (A.62) 

( )n
n 1 n 1x x− −=                                                                                                                    (A.63) 
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Substituting Eqns. (A.62) − (A.63) in Eqns. (A.57) for j = n − 1 yields: 

( )

( ) ( )

2

n 1 n 1 n 1n 1

q q
q=1

n 2
2

n 1 q q n 1 n 1 n 1 n 1 n 1 n 1 n 1
q=1

n 1

q q
q=1

n 2

q q
q=1

n 1 n 1

q q
q=1

1

      

      

D D x

r h x

rD h x D h D h D D h

r h x

r h x

D

r h x

− − −−

−

− − − − − − − −

−

−

− −

= −
+

 
+ + − 

 =
+

 
+ 

 =
 + 
 

∑

∑

∑

∑

∑

                                (A.64) 

  

 From Eqns. (A.61) and (A.64), a general relationship is observed (for j = n to 1): 

j 1

q q
q=1

j j j

q q
q=1

r h x

D D

r h x

− 
+ 

 =
 

+ 
 

∑

∑
                                                                                               (A.65) 

where the solution to D̂  in Eqn. (A.8) is found through j jD̂ D= . 
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Next, from Eqns. (A.56) and (A.59), the following can be written: 

( ) ( ) ( ) ( ) ( ) ( )

[ ]
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

[ ]
( ) ( ) ( ) ( ) ( )

n n n n n n

1 2 n 2 n 1 n

1 2 n 2 n 1

n 1 n 1 n 1 n 1 n 1

1 2 n 2 n

n n n

1 2 n 2

1 2 2

n 2 n 2 n 2 n 2 n 2
1 2 n 1 n

n

1

0

0

0 0

0 0

0

x   

 

x

             

             

x

             

T

T

n

T

x x x x x

x x x x

x x x x

x x x

x x x

x x x x

x

− −

− −

− − − − −
−

−

−

− − − − −
−

   =   

=

   =   

 =  

=

   =   

=

⋯

⋯

⋯

⋯

⋯

⋯

( ) ( ) ( )

( ) ( )

[ ]

( ) [ ]
( ) [ ]

1 n 1 n 1

2 n

n n
1 2

1 2

2

1

1

0 0

0 0 0

0 0 0

0 0

0

             

             

x

x

T

T

x x

x x

x x

x

− − − 
 

 =  

=

  = 

  = 

⋯

⋯

⋯

⋮

⋯

                                                    (A.66) 

 

Hence, Eqn. (A.66) can be summarized as: 

( )j
k

k

0 if k j

otherwise

 
x

x

≥
= 


                                                                                                (A.67) 

( )j+1

j jx x=                                                                                                                     (A.68) 

 

 To deduce the general relationships for φ(j), recall from Eqn. (A.62) that 

( )
n 1

n

q q
q=1

r h x
−

ϕ = +∑ . Following this, using Eqns. (A.58) and (A.65), the following 

expressions are deduced: 
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( )
( )

( )
( )

n 1 n 1

n 1

n 2

q qn 1
q=1

q q n 1
q=1

q q
q=1

n 2

q q
q=1

n 1
n 2 n 2

n 2

n 3

q qn 2
q=1

q q n 3
q=1

q q
q=1

         =

         = 

         =

         =

n
D

D

r h x

r h x

r h x

r h x

D

D

r h x

r h x

r h x

− −

−

−

−

−

−

−
− −

−

−

−

−

ϕ
ϕ =

 
+   + 

   + 
 

+

ϕ
ϕ =

 
+   + 

   + 
 

∑
∑

∑

∑

∑
∑

∑

( )

n 3

q q
q=1

j 1
j

q q
q=1

 

= 

r h x

r h x

−

−

+

ϕ +

∑

∑

⋮                                                                            (A.69) 

 

 Using results from Eqn. (A.69), Eqn. (A.65) can be recast in the following form: 

( ) ( )j+1 j
j j

j 1

j q q
q=1

            

D D

D r h x
−

ϕ = ϕ

 
= + 

 
∑

                                                                                         (A.70) 

Hence, using Eqns. (A.67) – (A.68), for k < j, Eqn. (A. 59) becomes: 

( )

j k

kj j 1

j q q
q=1

j j k

j 1

j q q
q=1

j k

j 1

q q
q=1

       =

      

x x
U

D r h x

D h x

D r h x

h x

r h x

−

−

−

= −
 

+ 
 

−
 

+ 
 

= −
+

∑

∑

∑

                                                                                           (A.71) 
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 From Eqn. (A.8), Û UU= . With this, using Eqn. (A.71), it can be shown that 

for ik 0U ≠  (k ≥ i) and kj 0U ≠  (j ≥ k), the entries ij
ˆ 0U ≠  (j ≥ i) become: 

j

ij ik kj
k=i

j 1

ij jj ik kj
k=i

j 1
ik j k

ij jjj 1
k=i

q q
q=1

j 1
j

ij ik kj 1
k=i

q q
q=1

ˆ

1

1 j = i

j i

     

     

      =

U U U

U U U U

U h x
U U

r h x

h
U U x

r h x

−

−

−

−

−

=

= +

= − =
+





− ≥
 +


∑

∑

∑
∑

∑
∑

∵
                                                                      (A.72) 

 

 To summarize the factorization method presented in this section, the final 

version of Bierman’s algorithm tailored for Eqn. (A.1) is given here in sequence: 

a) Compute the U and D matrices by the factorization of P = UDUT. 

b) Compute h = UT
ψ. 

c) Compute x = Dh. 

d) Compute the following for i = 1 to n and j = i to n: 

i 1

q q
q=1

i i i

q q
q=1

ˆ
r h x

D D

r h x

− 
+ 

 =
 + 
 

∑

∑
                                                                                    (A.73) 

j 1
j

ij ij ik kj 1
k=i

q q
q=1

1 j = i

ˆ j i
h

U U U x

r h x

−

−





= − ≥
 +


∑
∑

                                                           (A.74) 

e) Steps (b) – (d) are used in a recursive fashion to update the covariance matrix P 

during RLS implementations.  
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A.III  Application of Bierman’s Factorization Method on Different RLS 

Algorithms 

 

 For the various RLS algorithms, modifications are made to improve the tracking 

performance of the various algorithms, which in turn resulted in slight differences in the 

equation of covariance update than that shown in Eqn. (A.1). In this section, the results 

presented in the previous section will be modified accordingly to cater to the various 

versions of RLS algorithms used in this work. The modifications for the VFF-RLS 

algorithm will first be discussed, followed by discussions on the EWRLS and the EDF 

algorithms.  

 

 For the VFF-RLS algorithm, the equation of covariance update takes on the 

following form, following the conventions as defined in Eqn. (A.1): 

1 1
if  trace of

1 1ˆ

otherwise                    
1

P P P P
P P  

P P
P

P P
P     

P

T T

T T

T

T

C
ψψ ψψψψ ψψψψ ψψψψ ψψ
ψ ψ ψ ψψ ψ ψ ψψ ψ ψ ψψ ψ ψ ψ

ψψψψψψψψ
ψ ψψ ψψ ψψ ψ

    
− − ≤    λ + λ +    = 

 − +

                                  (A.75) 

Using the same procedure as shown in Eqns. (A.1) – (A.6), Eqn. (A.75) becomes: 

1 1
if  trace of

ˆ ˆ ˆ

otherwise                    

xx xx
U D U U D U  

UDU
xx

U D U     

T T
T T

T

T
T

C
       

− − ≤       λ ϕ λ ϕ       = 
  −  ϕ 

                 (A.76) 

where r = 1 in UDU
T Tr ψ ψψ ψψ ψψ ψϕ = + . Following this, it is obvious that Eqn. (A.76) can be 

written as: 

( ) ( ) ( ) ( )

( ) ( )

if  trace of
ˆ ˆ ˆ

otherwise                    

D D
UU UU UU UU  

UDU

UU D UU

T T

T

T

C


≤ λ λ= 



                                    (A.77) 
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With these, the modified Eqns. (A.73) and (A.74) for the VFF-RLS algorithm 

are: 

For i = 1 to n and j = i to n: 

( ) ( )

i 1

q q
q=1i
i

q q
q=1

i i 1

q q
q=1

i i

q q
q=1

1

if  trace of

1

ˆ

1

otherwise                    

1

D
UU UU  

T

h x
D

C

h x

D

h x

D

h x

−

−

  
+  

   ≤
  λ λ+  
  

= 
  + 
 
  +   

∑

∑

∑

∑

                                        (A.78) 

j 1
j

ij ij ik kj 1
k=i

q q
q=1

1 j = i

ˆ j i

1

h
U U U x

h x

−

−





= − ≥
 +


∑
∑

                                                                        

(A.79) 

 

 As for the EWRLS algorithm, it can be shown in the same manner as above that 

the corresponding Bierman’s equations are: 

For i = 1 to n and j = i to n: 

i 1

q q
q=1i

i i

q q
q=1

ˆ
h x

D
D

h x

− 
λ + 

 =
 λ λ + 
 

∑

∑
                                                                                               (A.80) 

j 1
j

ij ij ik kj 1
k=i

q q
q=1

1 j i

ˆ j i
h

U U U x

h x

−

−

=



= − ≥
 λ +


∑
∑

                                                                       (A.81) 

where the original equation of covariance update is: 

1ˆ
1

P P
P P

P

T

T

 
= − λ + 

ψ

ψ ψ

ψψψψ
                                                                                              (A.82) 
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Similarly, for the EDF algorithm, the following results are applicable: 

For i = 1 to n and j = i to n: 

i 1
1

q q
q=1

i i i
1

q q
q=1

β

β

h x

D D

h x

−
−

−

 
+ 

 =
 + 
 

∑

∑
ɶ                                                                                              (A.83) 

j 1
j

ij ij ik kj 1
1 k=i

q q
q=1

1 j = i

j i

β

h
U U U x

h x

−

−
−





= − ≥
 +


∑
∑

ɶ                                                                     (A.84) 

where: 

ˆ ˆ ˆUDU UDU I
T T= + δɶ ɶ ɶ                                                                                                   (A.85) 

and the original equation of covariance update is: 

1
ˆ δ

β

P P
P P I

T

r−= − +
+

ψψψψψψψψ
                                                                                                (A.86) 

 

 To wind up the discussion as pertaining to Bierman’s UDUT factorization 

method, suffice to note here that Eqns. (A.78) – (A.89), (A.80) – (A.81), and (A.83) – 

(A.85) are the final versions of equations used in this work for different RLS algorithms. 

The coding of the equations is dependent on the preference of the programmers and is 

omitted here. 
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APPENDIX B: AN EXAMPLE ON THE CONSTRUCTION 

OF CA, HA, Cb, and Hb MATRICES IN THE GPC 

PREDICTION EQUATION 

 

For a system with α = β = 2, discrete dead time D = 4, and T(z-1) = I, the Two 

Inputs Two Outputs (TITO) CARIMA model is expressed as: 

1 2 1 2
1 2 1 2 4

I
I a a y b b u vk k kz z z z− − − −

−   + + = + +    ∆
                                                        (B.1) 

where the process model parameters a1, a2, b1, and b2 are defined as: 

111 112
1

121 122

a
a a

a a

 
=  

 
; 211 212

2
221 222

a
a a

a a

 
=  

 
; 111 112

1
121 122

b
b b

b b

 
=  

 
; 211 212

2
221 222

b
b b

b b

 
=  

 
                    (B.2) 

 

Rearranging Eqn. (B.1) in the form of Eqn. (27) gives the following: 

( ) ( )1 2 3 1 2 4
1 2 1 3 1 2( )I a a a a y b b u vk k kI z z z z z z− − − − − −   + − + − + − = + ∆ +                      (B.3) 

For the sake of the following discussion, Eqn. (B.3) is rewritten as: 

1 1 2 2 3 3 1 5 2 6y A y A y A y b u b u vk k k k k k k− − − − −+ + + = ∆ + ∆ +                                                   (B.4) 

where:  

111 112
1 1

121 122

A a I =
A A

A A

 
= −  

 
; 211 212

2 2 1
221 222

A a a
A A

A A

 
= − =  

 
; 311 312

3 3
321 322

A a
A A

A A

 
= − =  

 
     (B.5) 

Equation (B.4) in its explicit TITO form is given as: 

1, 1, 1 1, 2 1, 3311 312111 112 211 212

2, 2, 1 2, 2 2, 3321 322121 122 221 222

1, 5111 112 211 212

2, 5121 122 221 222

k k k k

k k k k

k

k

y y y yA AA A A A

y y y yA AA A A A

ub b b b

ub b b b

− − −

− − −

−

−

           
+ + +           

            
∆   

= +   ∆   

1, 6 1,

2, 6 2,

k k

k k

u v

u v

−

−

∆   
+    ∆    

                 (B.6) 
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 Since white noise v(k) = 0 for future values, and choosing the value of maximum 

prediction horizon N2 = 7, Eqn. (B.6) can be written for multiple instances and 

assembled in the following form: 

1, 1

2, 1

1, 2

2, 2

1, 3 1, 1,

2, 3 2, 2,

1, 4 1, 1

2, 4 2, 1
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+

+

+

+
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                                               (B.7) 

where the CA, HA, Cb, and Hb matrices are: 
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111 112 211 212 311 312

121 122 221 222 321 322

211 212 311 312

221 222 321 322

311 312

321 322

0

0

0

0

0

0

0

0

A
H

A A A A A A

A A A A A A

A A A A

A A A A

A A

A A

 
 
 
 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 
 
  

0

; 

111 112

121 122

211 212 111 112

221 222 121 122

211 212 111 112

221 222 121 122

0

0

0

0

0

0

0

0

0

0

0

0

b
C

b b

b b

b b b b

b b b b

b b b b

b b b b

 
 
 
 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 
 
 
 

0

0

; 

111 112 211 212

121 122 221 222

111 112 211 212

121 122 221 222

111 112 211 212

121 122 221 222

111 112 211 212

121 122 221 222

211 212

221 222

0

0

0

0

0

0

0

0

0

0

0

0

b
H

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b b b

b b

b b

 
 
 
 
 
 
 
 
 
 
 =
 
 
 
 
 




 

0

0 





                               (B.8) 

 

Hence, for any system, the CA, HA, Cb, and Hb matrices can be obtained in the 

same manner as shown above. Note that at this juncture, for a given model order, dead 

time and the size of the process, N2 is the only effective controller tuning parameter (i.e. 

among N1, M, etc.) which determines the size of the CA, HA, Cb, and Hb matrices. The 

roles of the remaining tuning parameters are only seen in the formulation procedures of 

the GPC cost function, i.e. Eqns. (2.30) – (2.31). 
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