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MOBILE MALWARE ANOMALY-BASED DETECTION SYSTEMS USING 

STATIC ANALYSIS FEATURES                                                                 

ABSTRACT 

Presently, the rise of demand for Android gadget motivates the unscrupulous author to 

develop malware to compromise mobile devices for malicious and private purposes. 

The categories of mobile malware types are root exploit, botnet, and Trojan. 

Consequently, in order to classify an application either malware or benign, security 

practitioners conduct two types of analysis, namely dynamic and static. Dynamic 

analysis classifies an application as malware by executing it and monitors the behavior. 

However, it demands high computing requirements and monitors in a limited range of 

time. On the other hand, static analysis reverses engineer an application and examine 

overall code thoroughly, therefore further capable of examining the whole structure of 

the application. Furthermore, static analysis consumes low resources (for instance, 

CPU, memory, storage) and less time processing.  As static analysis concentrates on the 

code, security practitioners face challenges to select the best features among thousand 

lines of it. Although they suggest several features, however, there are still provides 

many features available to be explored. Furthermore, less attention has been given to 

root exploit features specifically. It is one of the critical malware which compromises 

operating system kernel to obtain root privileges. When the attackers obtain the 

privileges, they are able to bypass security mechanisms and install other possible types 

of malware to the devices. Moreover, in order to achieve an efficient malware 

prediction in machine learning, it needs features in a minimal amount to enhance 

accuracy with fewer data, less time processing and reduces model complexity. 

Therefore, to achieve the aim of finding the best and minimal features to detect malware 

with root exploit, this study adopts bio-inspired Genetic Search (GS), conveys the range 
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of repeated features in similar application, and investigates root exploit to gain the best 

features to predict unknown malware using machine learning. The features categories 

involved in all these experiments are the permission, directory path, code-based, system 

command, and telephony. In detecting root exploit, the category involved is the novel 

features called Android Debug Bridge (ADB). By obtaining the best features derived 

from these experiments, this study applies it in machine learning to predict unknown 

malware. To demonstrate the results, this experiment evaluated six benchmarks (for 

instance, accuracy, True Positive Rate (TPR), False Positive Rate (FPR), recall, 

precision, and f-measure) to test the prediction and performance. From the outstanding 

results being collected, a website was established to validate the unique static features 

with machine learning mechanism to investigate its efficiency and practicality. Through 

the outcomes assembled, this research has verified that the unique static features 

capable of predicting unknown malware together with root exploit. The contributions of 

this study were investigated, selected, proposed, designed and evaluated the best 

features in detecting malware by using static analysis. 

Keywords: Static analysis, Android, feature selection, root exploit, machine learning 
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SISTEM PENGESANAN PERISIAN PEROSAK BERASASKAN ANOMALI 

MENGGUNAKAN CIRI-CIRI ANALISIS STATIK                                            

ABSTRAK 

Pada masa ini, permintaan tinggi pada Android mendorong penyerang tidak beretika 

membangunkan perisian perosak yang berniat jahat untuk merosakkan peranti mudah 

alih dan tujuan persendirian yang lain. Jenis-jenis perisian perosak ialah pengeksploitasi 

kawalan, botnet, dan Trojan. Untuk mengesan semua jenis perisian perosak ini, para 

pengkaji menjalankan dua jenis analisis, iaitu dinamik dan statik. Analisis dinamik 

mengklasifikasikan perisian perosak dengan melaksanakan dan memantau tingkah 

lakunya. Walaubagaimanapun, analisis ini memerlukan kadar kiraan yang tinggi dan ia 

hanya memantau dalam masa lingkungan yang terhad. Sebaliknya, analisis jenis statik 

pula, ia mengubah perisian tersebut kepada kod asal dan berupaya untuk memeriksa 

keseluruhan kod dengan teliti, dan seterusnya mampu mengkaji keseluruhan struktur 

perisian. Tambahan lagi, analisis statik memerlukan sumber yang rendah (iaitu CPU, 

memori simpanan) dan masa pemprosesan yang kurang. Oleh itu, para pengkaji 

menghadapi cabaran memilih ciri yang terbaik antara ribuan garisan kod. Walaupun 

mereka mencadangkan beberapa ciri, bagaimanapun masih ada banyak lagi ciri untuk 

diterokai. Tambahan pula, kurang tumpuan diberikan dalam mencari ciri untuk 

pengeksploitasi kawalan secara spesifik. Ia adalah salah satu perisian perosak kritikal 

yang menceroboh sistem pengoperasian kernel untuk mendapatkan kawalan 

sepenuhnya. Apabila penyerang mendapat kawalan, mereka mampu melangkau 

mekanisme keselamatan dan memasang pelbagai jenis perisian perosak yang lain. 

Dengan itu, untuk mencapai ramalan pengesanan semua jenis perisian perosak 

(termasuk pengeksploitasi kawalan) yang cekap, jumlah ciri yang terbaik dalam kadar 

minima diperlukan untuk meningkatkan ketepatan ramalan walaupun dengan data yang 
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kurang, kurang masa pemprosesan dan mengurangkan kerumitan model ramalan. Oleh 

itu, untuk mencapai tujuan mencari ciri terbaik dengan kadar yang minimum, kajian ini 

menyiasat ciri menggunakan kaedah carian genetik (GS), mengambil kira ciri yang 

berulang kali dalam perisian yang sama dan ciri dalam perisian pengeksploitasi 

kawalan. Kemudian, ciri ini digunakan dalam ramalan mesin pembelajaran bio-

inspirasi. Antara kategori ciri yang terlibat dalam eksperimen-eksperimen ini ialah 

kebenaran perisian, asas kod, laluan direktori, perintah sistem dan telefoni. Dalam 

mengesan pengekspolitasi kawalan, antara kategori ciri novel yang terlibat adalah 

Android Debug Bridge (ADB). Dengan mendapatkan ciri yang terbaik hasil daripada 

eksperimen-eksperimen ini, kajian ini memasukkan ia dalam mesin perisian ramalan 

untuk mengenalpasti perisian perosak yang masih belum dijumpai. Dalam 

mendemonstrasikan keputusan ekperimen, kajian ini menilai enam penanda aras (iaitu 

ketepatan, kadar positif benar (TPR), kadar positif palsu (FPR), penarikan balik, 

ketepatan dan ukuran-f) dalam menguji prestasi ramalan. Dari keputusan cemerlang 

dikumpulkan hasil dari menggunakan ciri yang dicadangkan, sebuah laman web 

dibangunkan dengan jentera mekanisme ramalan untuk mengesan perisian perosak. 

Melalui hasil yang dikumpulkan, penyelidikan ini telah mengesahkan bahawa ciri statik 

mampu mengesan jenis perisian perosak yang lain yang belum dijumpai lagi termasuk 

pengeksploitasi kawalan. Sumbangan utama kajian ini ialah menyiasat, memilih, 

mencadangkan, dan menilai ciri yang terbaik dalam mengesan perisian perosak dengan 

menggunakan analisis statik. 

Kata kunci: Analisis statik, Android, pemilihan ciri-ciri, pengeksploitasi akar, 

pembelajaran mesin 
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CHAPTER 1: INTRODUCTION 

In today’s lifestyle, most people, whether young or old, regularly utilized mobile 

gadgets such as the smart phone. This is because people are using their mobile devices 

as their main gadgets to manage their daily activities (e.g. connecting, communicating, 

health management, synchronous data transfer, family communications, money 

transactions, business interactions and the world’s updates). Due to the introduction of 

high technology mobile devices, the lives of human being throughout the world have 

become more convenient and communication among individuals in any part of the 

world have also become less effortless and more accessible (Union, 2016). Given this 

technology and ease of communication, manufacturers are producing even more mobile 

devices that are equipped with various produced many mobile devices with various 

types of Operating System (OS), such as Android, iOS, and Windows. As the world 

community advances in technology, they also become more dependent on mobile 

devices for various executions and duties. This has led malware creators to jump on the 

bandwagon by seizing this opportunity to develop various malware types that help them 

to execute malicious activities that harm mobile users and their mobile devices. Mobile 

device malware has been growing rapidly in scale and mobile users are being exploited 

by malware creators in various ways. 

In the context of computer technology, malware is a kind of software designed by 

unscrupulous computer programmers whose aim to perform various diverse malicious 

actions on the mobile devices without the consent of the users. These activities are to 

the benefit of the malware creators. Some of the malware activities created include 

locating a user of victim’s location, obtaining the victim’s personal data (i.e., images, 

phone contacts, and messages), and compromising the Android OS kernel in the mobile 
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devices so as to gain power of root users. The various types of malware currently 

available in the market include root exploit, botnet, and Trojan.  

In the second quarter of the year 2016, McAfee (2016) identified several new mobile 

malware samples. In September, the third quarter of the year 2016, Kaspersky Lab 

(Kasperksy, 2016) reported that the rate of users encountering mobile banking Trojan is 

almost eight times greater than it was in June, in the same year. Likewise, the number of 

malware for Android was also noted to have increased more than other mobile OSes. 

Symantec discovered new Android malware families each month from February 2014 to 

January 2015 (Symantec, 2015). Similarly, Sophos Mobile Security also revealed that 

610,389 of new Android malware samples had been detected outside of the Google Play 

market in the first 6 months of 2015 (Komili, 2016). In line with this, Google Play also 

observed that a new Android malware family called as Dresscode has been infecting 

between 500,000 and 2,000,000 users. This malware had automatically installed itself 

between 100,000 and 500,000 times in 2016 (Cimpanu, 2016).  

Following this, security analyst also detected one specific type of malware called root 

exploit, known as the malware which modifies the kernel in an Android OS. Its aim is to 

gain super-user privileges. When malware gains root and these privileges increase, the 

attackers easily installed other malware types, such as botnets, worms, or Trojans into 

the OS. When this event occurs, the attackers capable of evading detection by 

modifying the OS code, running their malicious activities stealthily, and bypassing 

permission (Bickford et al., 2010; Ma & Sharbaf, 2013; A. Schmidt et al., 2009). Such 

types of malware able to take over the root privileges and performs malicious actions 

stealthily without the victim’s knowledge (Wei et al., 2015). 
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In June 2016, a root exploit called Godless was discovered (V. Zhang, 2016). It contains 

multiple types of malware exploits to be used later by the attacker and during the news 

in writing, it has affected almost 90% of devices that run on Android 5.1, the Lollipop 

version. Another recent discovery of root exploit known as Dirty COW was detected in 

October 2016 (Arghire, 2016). Researchers say that malware has the capability to 

compromise an entire mobile device system which runs a Linux kernel that is higher 

than 2.6.22. Due to this widespread malice, there is a need to study malware and to 

provide a detection system that able to identify all types of malware including the root 

exploit. 

1.1 Malware detection 

There are two types of malware detection system: signature-based (misuse-based) and 

anomaly-based. The signature-based approach is a traditional approach which utilizes 

antivirus that deployed in mobile devices. Over time, this approach has become less 

efficient because the antivirus signature needs to regularly update its database as a way 

to facilitating it to detect new malware variant (Nissim et al., 2014) (Suarez-Tangil et 

al., 2014). In contrast, the anomaly-based approach detects unknown malware by 

considering at the training set of feature rules which have been set forth by security 

analysts. This approach is able to intelligently measure the system features. Through the 

significant deviations noted from the extracted features, the anomaly-based approach is 

able to successfully detect it as unknown malware (Yerima, Sezer, & McWilliams, 

2014). With this advantage, this thesis conducted malware analysis by adopting the 

anomaly-based detection by using machine learning (i.e. part of Artificial intelligence 

knowledge). 

In the malware detection system, there are two types of malware analysis: dynamic and 

static. Dynamic analysis is a procedure that discovers malware by performing the 
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applications and monitoring the behavior. The necessity to monitor the behavior 

requires high specifications in both memory and CPU in supporting the applications to 

run. Dynamic analysis monitors at a certain range of time depending on the 

investigation period. Hence, it could possibly miss the malware activities that are 

beyond the time range of the investigation (i.e. attacker triggers malware actions in a 

certain time or whenever the attacker decides) (Feizollah, Anuar, et al., 2013)(Yerima et 

al., 2015). In contrast, static analysis is a procedure that inspects the applications codes 

without running it. The advantage of the static analysis is that it requires low resources 

(e.g. memory and CPU) and its processing rate is fast (Chess & McGraw, 2004). In this 

regard, it covers all possible activities without any time range. 

1.2 Research motivations 

Researchers conducted a study for practical or scientific purposes. In the same way, this 

study was also motivated by a number of reasons which are classified accordingly: 

a) Statistics of Android malware: Of late, security analysts have discovered various 

types of hidden malware in more than 104 applications in the Google Play store. 

These applications have been downloaded by users over 3.2 million times and had 

caused numerous problems to user’s mobile devices (Russon, 2016). 

b) Continuously conduct research: As the owner of Android itself, Google is 

constantly looking for means to improve its systems and it is also constantly 

encouraging others to improve its systems by detect malware thereby, reducing the 

huge violations affecting mobile users (BBC, 2016). In this regard, security 

practitioners from both the industry and academia need to make their contributions 

by continuously conducting investigations pertaining to mobile malware. 

c) Research on Android: Among all the mobile device OS, Android dominates the 

smartphone market, with a share worth of $366 billion (Thomas, 2015). Android 

also has the highest worldwide market share of 88% as noted in the third quarter of 
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2016 (Forni & Van der Meulen, 2016). Android prices are available on a wide 

range, starting from as low as $50 (eBay, 2016) and such low prices allow young 

children and teenagers to buy and own an Android mobile, as a part of their daily 

lifestyle. Nonetheless, many Android users including adults, teenagers and young 

children are exposed to malware attacks which affect their devices and ruin their 

personal data and information. 

d) The increases in root exploits: The increasing number of root exploits is the 

evidence that malware creators and homebrew community attackers (smartphone 

users who break the OS kernel to obtain a customized version of an OS) are putting 

mobile users at risk. When a new version of the OS is released, malware creators 

tend to develop their own root exploits; alternatively, they wait for the homebrew 

community attackers to determine ways to break the OS (Felt et al., 2011).  

e) Minimal features: Selecting the relevant features in minimal amount for malware 

detection is crucial because this minimal features are able to reduce the runtime of 

the machine learning approach (Crussell et al., 2012). It also removes noisy and 

irrelevant data that enhances the detection (Jensen & Shen, 2008)(Sabry et al., 

2015). According to studies, five out of 41 features received better detection when 

viewed through the experiments conducted. This is an important factor that 

motivated this thesis.  

Overall, the five factors highlighted above are the main factors that have motivated this 

research to be conducted. For this effort to materialize, the problem statement is further 

elaborated.    

1.3 Problem statement 

 In malware analysis, features reside in applications which consist of a thousand lines of 

code. Selecting the relevant features through those lines is rigorous because security 
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analysts need to inspect both the malware and benign applications in order to 

distinguish the difference between them before uncovering the characters or elements 

frequently used by the malware and benign applications. The issue of this problem 

increases when deals with a thousand applications particularly during the data collection 

phase. 

The problem becomes bigger when the anomaly-based detection needs only minimal 

features for it to be better in classifying the applications as malware or benign (Feizollah 

et al. 2015). This is an important issue because minimal features have certain 

advantages such as reducing running time of the process (Crussell et al. 2012) and 

removing noisy and irrelevant data (Jensen & Shen 2008). The other advantage of the 

minimal feature is that the detection system takes lesser time to process when in a real 

environment (Chess & McGraw, 2004). As such, the experiments done in a simulation 

application would consume less processing time because the security analysts have 

already reversed engineering and extracted the features beforehand. Subsequently, the 

simulation only processes the extracted features and presents the results. In actual 

practical detection, once the user has uploaded the application, the detection system 

only needs to reverse the engineering, scan, identify application and extract features in 

the application. Given that these tasks are many; the system may also confront certain 

problems such as when the features exceed a suitable amount (e.g. 30, 40, 100, 200). 

Such problems include extracting the wrong features by mistake, facing a complicated 

and unwanted character/strings or the detection system may stop the process due to too 

many features. All these add on to the possibility of errors. In that regard, the detection 

system should only require minimal features to execute an easier and cleaner detection 

process.   
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As features consist of numerous lines of code, security analysts have to categorize these 

features into multiple categories such as permissions, string, function call, and API for 

easy identification. Given this situation, conducting an investigation on only one 

category of features would be insufficient and inadequate because precise malware 

detection in static analysis requires multiple categories of features to be examined. 

Previous studies (Karim, Salleh, Khan, et al., 2016; Seo et al., 2014; Sheen et al., 2015; 

Yerima et al., 2015; Yerima, Sezer, & Muttik, 2014) had depended on only one file, for 

example AndroidManifest.xml for the features. Due to this, the detection system may 

achieve less accuracy. In the case where the application includes zero permission in the 

AndroidManifest.xml and where the features extracted are too few or if the application 

is damaged or unable to open the AndroidManifest.xml, the detection system then 

becomes less accurate. Moreover, the risk of using too few features causes the detection 

to mistakenly classify the malware application as benign. Given this situation, it is 

imperative to consider all files that exist in an application. In summary, there is a need 

to conduct research that looks for the relevant but minimal features which reside in 

numerous lines of application code. It is also important to consider features that exist 

among multiple categories of features in all files located in the applications to ensure 

detection of unknown malware in static analysis. 

1.4 Aim and Objectives 

The aim of this study, hereby also thesis, is to develop an intelligent anomaly-based 

detection system by using static analysis. In that regard, the main objectives of this 

thesis are as follows: 

a) To review the domain of Android static analysis and its key issues 

b) To establish the need for an intelligent intrusion detection system by using static 

analysis as well as methods to identify the best features in minimal amount  

Univ
ers

ity
 of

 M
ala

ya



8 

c) To design and develop a novel framework by applying the proposed features in the 

intelligent intrusion detection system 

d) To evaluate the proposed features to detect unknown malware as well as the features 

specifically in root exploit in terms of accuracy and performance  

1.5 Research methodologies 

This study performed different methodologies in three experiments. The 1
st
 experiment 

adopted Genetic Search (GS) in the features extraction phase so as to automatically 

search for the best features in detecting malware. The 2
nd

 experiment nominated the best 

features by considering the utilization of similar features in the same application and 

applying this in range algorithm. The 3
rd

 experiment investigated the best features of the 

malware that focusing on root exploit only.  

The subsequent steps involved in these experiments include collecting the data, 

extracting the features and using these features in the intelligent prediction machine 

learning mechanism. Figure 1.1 depicts the general methodology in the experiments 

conducted.    

Data collection stage

Malware Benign 

Combined 

dataset

Features extraction stage

Proposed features

Proposed method

Reverse the .apk 

samples to .java

Scrutinize and grep the 

code

Intelligent prediction stage

Machine learning algorithms 

Classifier train and learn the 

dataset 

Detection model is developed

Test the model

Result

 

Figure 1.1: General methodologies 
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a) Data collection stage: The first step involves collecting the Android application 

package in the .apk extension. Since the aim of this study is to differentiate the 

malware and benign classes, it is important to have both types of applications for 

the experiment.  

b) Feature extraction stage: The second step performs the basic static analysis 

approach which is also known as reverse engineering. This is to retrieve the Java 

code derived from the Android application package. Once the experiment obtains 

the code, the next step adopts a unique method to obtain the exclusive features 

from the multiple categories (i.e. permission, directory path, ADB, code-based, 

system command and telephony). 

c) Intelligent prediction stage: The third step implements the anomaly-based 

detection in machine learning. It is used to conduct the intelligent prediction in 

detecting whether the classes of the applications are malware or benign.  

However, these experiments are performed differently in the dataset, in the features 

extraction method and in the classification. Table 1.1 lists these differences in 

methodologies. 

Table 1.1: Summary of methodologies 

Experiment Data collection stage Features extraction stage 

Classifier 

categories for 
intelligent 

prediction stage 

 Benign Malware Method Categories involved  

1 
Google 

Play store 
Drebin Genetic Search (GS) 

Permission, system 
command, directory 

path, and code-

based 

Bio-inspired, 

tree and bayes 

2 Androzoo Drebin 

Range of similar 

features in same 

application, Information 
Gain (IG) and refer to 

official list 

Permission, 

directory path, and 
telephony 

Bio-inspired 

3 
Google 

Play store 
Malgenome 

Frequency investigation 

and IG 

System command 

(with novel ADB), 

directory path, and 
code-based  

Bio-inspired, 

tree and bayes 
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As can be seen, the 1
st
 experiment adopts the Genetic Search (GS) to automatically 

select the features in a genetic way. Thus, this is the only experiment that involved four 

categories of features (i.e. permission, system command, directory path and code-based) 

as compared to other experiments. The purpose is to enable the GS to select the features 

based on a wide choice of features.  

The 2
nd

 experiment uses the novel range of repeated features in a similar application 

which aims to select the exclusive features. This is the only experiment that refers to the 

official list as a main source in order to avoid any missing features in the dataset of each 

category. In addition, this experiment also explores multiple types of bio-inspired 

machine learning algorithm in order to discover the potential of each classifier.  

Unlike the other experiments, the 3
rd

 experiment utilizes Malgenome as the malware 

dataset. The reason is because it provides various root exploit families more than 

Drebin. This experiment also explores the novel ADB features noted in the system 

command category of root exploit detection. 

Finally, this study utilizes the proposed method to gain the best features noted in each 

experiment and implementing these in the web based environment prototypes to detect 

unknown malware including root exploit. This study develops the prototypes of 

malware detection system to test the accuracy and performance of these best features in 

a real environment. Univ
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ity
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1.6 Thesis outline 

 

Figure 1.2: Thesis outline 

As the thesis outline projects, there are seven chapters in this thesis. Chapter 1 

introduces the motivations of this thesis. It outlines the problem statement leading to the 

study. This chapter also highlights the aim and objectives of the study before continuing 

with the methodologies of the research. It ends with the outline of the thesis provided in 

a graphical tree. 

Chapter 2 introduces the background of Android and the security system it provides in 

detecting malware including Intrusion Detection System (IDS), Intrusion Prevention 

System (IPS) and Intrusion Response System (IPS). Specifically it also reviews their 

detection capabilities. A comprehensive taxonomy and the state-of-the-art IDS are 

assessed and presented, covering information concerning signature-based, anomaly-
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based, dynamic and static analysis concepts as well as their differences, advantages and 

limitations. 

Chapter 3 focuses on existing static analysis studies along with the machine learning 

classifiers. It then continues with the review of the relevant theories for the methods in 

selecting the static features and the categories of features. This chapter also highlights 

the categories of features involved in this study by summing up all the advantages of the 

studies. Finally, it also discusses how these can be combined to produce an effective 

anomaly-based detection system. 

Chapter 4 presents the main contribution of this thesis: a novel framework with 

alternative approaches which can be used to select the best static features that are 

suitable for the machine learning detection system. In presenting the framework, this 

chapter begins by introducing the main rationale behind the framework as well as its 

operational characteristics. It also introduces the Genetic Search (GS), the range of 

repeated features and the Android Debug Bridge (ADB) used in the framework. 

Chapter 5 extends the study by conducting multiple experiments to validate and 

evaluate the proposed framework. In order to demonstrate the progress of the results, the 

evaluation will comprise three experiments: a) 1
st
 experiment is the evaluation of the 

features selected genetically from GS; b) 2
nd

 experiment is the evaluation of the features 

derived from the investigation of the repeated features obtain from similar applications;   

c) 3
rd

 experiment investigates and evaluates the root exploit features with the aid of the 

Android Debug Bridge (ADB). The evaluation consists of six benchmarks (i.e. 

accuracy, True Positive Rate (TPR), False Positive Rate (FPR), recall, precision, and f-

measure). This chapter also provides an in-depth discussion of the implications of 

applying the proposed framework in practice whilst highlighting the advantages and 

limitations at the same time. 
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Chapter 6 presents the website development as a prototype which practically utilizes the 

proposed features to detect unknown malware including features which are specific to 

root exploit. It provides an overview of the system development consisting of upload 

and reverse engineering the application, identifying and extracting the proposed features 

and the machine learning prediction. In addition, this chapter uses different samples of 

malware extracted from a reliable source to test the efficiency of the prediction. 

Chapter 7 provides the main conclusions derived from this study; it highlights the 

advantages and limitations of the study as well as suggestions for future research efforts.  
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CHAPTER 2: OVERVIEW OF ANDROID AND MALWARE DETECTION 

In recent decades, the security researchers conducted studies to overcome the malware 

violation by focusing upon areas related to detection, prevention and response options. 

Over the years, the trend in these areas expands to various interest provides security 

researchers to explore and discover these options areas. Initially, to understand the 

detection for Android, this chapter begins by providing the background of Android 

information. Furthermore, this chapter provides the introduction of the security systems 

and the detection taxonomies. This chapter also introduces the detection options (i.e. 

signature-based and anomaly-based) as well as the analysis option (i.e. dynamic and 

static). 

2.1 Background of Android 

This section describes the Android architecture as well as its application package. It is to 

understand the basic of an Android mobile device and the elements inside the Android 

application itself. Android is an open source operating system that has its own unique 

architecture. It comprises of four layers: a) Application. b) Application framework. c) 

Libraries and Android runtime. d) Linux kernel.             

2.1.1 Android architecture 

Figure 2.1 shows the Android operating system architecture in four layers: 

Univ
ers

ity
 of

 M
ala

ya



15 

Android runtime

Core Libraries
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Figure 2.1: Android architecture (Android Developers, 2015) 

According to Figure 2.1, each tier has its own task. The details of the layers are: 

a) Application layer: It is the top layer in Android architecture which interacts with 

users directly. Each application performs different task depend on the logic of the 

application. Furthermore, each application has different set of permission that need 

to be granted during install-time in order the application to perform successfully.  

b) Application framework layer: It provides the system server, which is a process 

containing the main modules for managing the device, (i.e. Activity Manager, 

Package Manager and Window Manager) and these components interact 

corresponding with Linux drivers. 

c) Libraries layer and Android runtime: Library layer consists of a set of C/C++ 

libraries, which is assigned to invoke the basic kernel functionalities. The libraries 

are used by Application framework services to invoke protected Linux operations 

and to access data stored in the device. The libraries in this layer are the bionic Libc 

(i.e. a customized implementation of Libc for Android) and SQLite. While Android 

runtime comprises of Dalvik Virtual Machine (DVM), the core component that 

responsible to executes Dalvik Executable format (DEX) application. A mobile 
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device such as Android is a resource constraint environment where the battery fast 

depleted. DVM is chosen in Android architecture due to its efficient concurrent 

execution in a resource constrained environment. In the 4.4 version release, Google 

introduced Android Runtime (ART) which offers advanced features such as Ahead-

Of-Time (AOT) compilation, improved garbage collection, development and 

debugging improvements.  

d) Linux kernel layer: It is the lowest layer in the architecture. It stores drivers such 

as Wi-fi, camera, bluetooth, display, USB, binder (i.e. a driver that implements 

Inter-Process Communication (IPC)) and more necessary driver. It is built begin on 

Linux version 2.6 and forward. 

2.1.2 Android application package 

Android application is based on Android application package file (.apk) format and used 

to install application in android-based mobile devices. Basically, .apk consists of three 

elements: a) AndroidManifest.xml. b) Classes.dex. c) Resources.  

a) AndroidManifest.xml: It is an essential file that contains the package name, 

components of the application (i.e. activities, services, broadcast receivers and 

content providers), declares permissions, instrumentation classes, minimum level of 

API and list of needed libraries (Android, 2015). 

b) Classes.dex: It contains a complied source code of the application that has been 

converted from .java (i.e. application written in Java) to .dex extension. 

c) Resources: It contains of all the necessary files for the application to execute, such 

as database, layout of the application, pictures, or graphics. 
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2.2 Security systems 

There are three types of security systems in current research area that comprises of 

Intrusion Detection System (IDS), Intrusion Prevention System (IPS) and Intrusion 

Response System (IRS). The general information of these systems is as follows: 

a) Intrusion Detection System (IDS): It is an application that automates the intrusion 

detection process to detect any possible intrusions from malware attacks (Patel et 

al., 2013). The examples of the detection process are monitors network traffic for 

suspicious activity or classify the application either malware or benign and detects 

the possible intrusions. It is a compound process consists of identification and 

detection tasks.  

b) Intrusion Prevention System (IPS): It shares the similarities with the IDS in terms 

of system deployment and detection method. However, it is different from IDS by 

one characteristics: it is designed to prevent or protect either host or network from 

malicious application or behavior from succeeding (Ghallali & El Ouahidi, 2012). It 

could adjust the security environment, such as reconfiguring the network device to 

protect from the malware attack. 

c) Intrusion Response System (IRS): It is an approach to provide responses to 

administrator or user. The responses are from the basis of threat descriptions and 

attack symptoms. There are two types of response mode, namely passive and active 

(Anuar et al., 2013). The passive response is to notify the administrator or user to 

activate other parties regarding the existence of the malware and depends on these 

parties to take further actions. The active response is to immediately execute an 

automated action to reduce the malware attacks without the human decision (Inayat 

et al., 2016). 
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Between these systems, IDS is the main part to maintain the security system. It is the 

main indicator for the IPS and IRS to execute any action (Anwar et al., 2017). By 

depending on IDS configurations and settings in detection, both IPS and IRS are 

capable to apply relevant countermeasures to potential incidents, hence decrease the 

malware violation.  

2.3 Detection taxonomies 

As this research focuses upon the detection, this section explains the detection 

taxonomies to improve the understanding of the IDS studies. Figure 2.2 depicts the 

taxonomy of detection (Alzahrani et al., 2014) consists of scope of monitoring, 

detection approach and invasiveness of a technique. 

Intrusion 

detection 

methods

Intrusion 

detection 

methods

By scope of 

monitoring

By scope of 

monitoring

Anomaly-based 

detection

Anomaly-based 

detection

By invasiveness 

of a technique

By invasiveness 

of a technique

Network levelNetwork level
Signature-based 

detection

Signature-based 

detection

Dynamic 

analysis

Dynamic 

analysis

By detection 

approach

By detection 

approach

Host levelHost level

HybridHybrid

Static analysisStatic analysis

HybridHybrid

 

Figure 2.2: Taxonomy of detection (Alzahrani et al., 2014) 

a) By scope of monitoring: IDS spotted the malware activity by monitoring the 

network activities such as unusual keystroke dynamics or protocol transmissions. 

While host level is where the IDS stationed on a mobile device and monitor the 
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network from that device. While hybrid is the combination of both network and host 

level. 

b) By detection approach: The signature-based technique (also known as misuse), is 

predominantly utilized by antivirus application that depends on detecting malware 

based on the constant unique signature. However, it is unable to predict unknown 

malware or threat because it requires consistent signature updates. For instance, 

Droidanalytics (Zheng et al., 2013) detect malware by automatically collects, 

extracts and analyses the methods and classes in Android application file, which 

then employs it as signatures. Despite the condition that signature-based able to 

detect known malware, however, it is necessary to continuously update the database 

signature once a new malware is detected. On the other hand, anomaly-based is 

capable of detecting unknown (anomaly) malware by referring to classifiers 

prediction model (Yerima, Sezer, & McWilliams, 2014). It is perceived as a 

powerful due to its higher potential to address new threats. 

c) By invasiveness of technique: There are two techniques of detection, dynamic and 

static. Dynamic is focuses on the behavior of the application and therefore only 

detects during the execution of the application. Hence, it has a limited focus because 

it detects the suspicious activity in a given running environment. On the other hand, 

static detection allows the security analysts to analyze the application without 

execute it by obtaining its source code. Thus, it is considered to be more thorough. 

While hybrid technique is the combination of both dynamic and static. 

Figure 2.3 added more information in signature and anomaly-based detection: 
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Figure 2.3: Taxonomy of detection (Inayat et al., 2016) 

In signature-based detection, the expert system is the knowledge regarding the attacks as 

if-then implication rules. Model-based reasoning is the combination models of the 

signature with evidentional reasoning. Pattern matching is used to store the known 

pattern of the malware to detect it. Static transition represents attacks as a sequence of 

state transition of the monitored systems. Key stroke detects the occurrence of malware 

by using the key stroke.  
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In anomaly-based detection, the statistical approach in detecting malware is by 

generating profiles by observing the behavior of the system activities. Machine learning 

generates an explicit or implicit model of the analyzed pattern, and knowledge-based is 

rely on the availability of the prior data of network parameter in normal and under 

malware attacks. Inayat et al (2016) claimed that the specification-based is similarly to 

anomaly detection with a difference in monitor the activity, where it monitors the 

system instead of users activity. 

2.3.1 Detection options: signature vs. anomaly 

Signature-based (also known as misuse), is predominantly utilized by antivirus 

application that depends on detecting malware based on the constant unique signature. It 

analyzes the activity or malware by comparing the collected information from a pattern 

that already defined that stored in a database. It has been used by the traditional 

antivirus long time ago. Zhou & Jiang (2012a) practiced signature-based and detect 

malware up to 79.6%. Despite the condition that signature-based able to detect known 

malware, however, it need to continuously update the database signature once a new 

malware is detected. On the other hand, anomaly-based is capable to detect unknown 

(anomaly) malware by referring to classifiers prediction model (Yerima, Sezer, & 

McWilliams, 2014). 

Unlike signature-based, anomaly-based detection does not require any signatures. It 

differentiates the normal and malware attack by training the machine learning 

approaches (i.e. Artificial Neural Network (ANN), Decision Trees (DT) and Bayesian) 

(Feizollah et al., 2017). It is a scientific discipline that is capable to predict future 

decisions and outputs based on the experiences gained through past input features 

(learning set) to predict anomalies or unknown instances (Kotsiantis et al., 

2006)(Feizollah, Shamshirband, et al., 2013). The learning set is based on given dataset; 
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furthermore, intelligent decisions are made according to certain algorithms. This 

technique has been widely used for classifying which applications fall in which classes 

(normal or malware). Furthermore, machine learning belongs to the Artificial 

Intelligence (AI) field that allows the computer to reason and to decide based on 

datasets (Kotsiantis et al., 2006). Table 2.1 tabulates the advantages and disadvantages 

between signature-based and anomaly-based detection. 

Table 2.1: Signature-based and anomaly-based advantages and disadvantages 

Signature-based Anomaly-based 

Advantages 

Minimum false alarm Able to detect new and unknown malware 

 Does not require signatures 

Limitations 

Unable to detect new and unknown 

malware 

High false alarm 

Need signatures from the database  

Need to constantly update the signature in 

the database 

 

 

The advantage of signature-based is it generates minimum false alarm as it depends on 

the continuously update signature from the database. However, it is unable to detect new 

and unknown malware if the database is outdated (Feizollah et al., 2015). In contrast, 

anomaly-based is able to detect unknown malware without require any signatures from 

the database. Nevertheless, it generates high false alarm (Anuar et al., 2008). Therefore, 

in the interest for a research to achieve minimum false alarm for anomaly-based 

detection, it depends on the type of experiments that have been conducted.   

2.3.2 Analysis options: dynamic vs. static 

There are two types of malware analysis: dynamic and static. Dynamic analysis 

investigates the behavior of the running processes by executing the application. For 

instance, a study observed network system activities to monitor the applications 

(Narudin et al., 2014). In network frames, packets, and port numbers activities, two 
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studies (Afifi et al., 2016) and (Narudin et al., 2014) examined these behaviors in 

detecting malware. While the HTTP features (i.e. establish Transmission Control 

Protocol (TCP) connection to send data from client to server), two studies (Narudin et 

al., 2014) and (Karim, Salleh, & Khan, 2016) contemplated these features to detect 

malware. As opposed to dynamic, static analysis is another method which scrutinizing 

application codes in unexecuted condition. 

Static analysis is a type of analysis which investigates the malware application code, 

hence covers over all the possible activities in an application within an unlimited range 

of time because the analysis is unexecuted (Chess & McGraw, 2004). The main step of 

static analysis procedure is the reverse engineer process. It is the process to retrieve the 

whole code and further scrutinize the structure and substance within the application 

(Aafer et al., 2013; Chang & Hwang, 2007; Sharif et al., 2008). Therefore, it is able to 

examine the overall code, requires low memory resources, minimal CPU processes and 

the analysis process is fast because the application is unexecuted. Additionally, static 

analysis is capable to discover unknown malware with enhanced detection accuracy 

with machine learning approaches (Narudin et al., 2014)(Feizollah, Anuar, et al., 2013). 

Table 2.2 compares the advantages and disadvantages of dynamic and static analysis.  

Table 2.2: Static and dynamic advantages and disadvantages 

Dynamic Static 

Advantages 

Able to detect unknown malware Low resources (e.g. CPU, memory, network, and 

storage). Relevance in mobile devices equipped with 

low specifications 

Detection of normal applications that change to 

malware on-the-fly 

Fast processing in conducting reverse engineering the 

application 

 Examining overall code and further, discover entire 

possible action 

 Able to detect unknown malware with the aid of 

machine learning 

Limitations 

High resources (e.g. CPU, memory, network, and 

storage) 

Inability to detect normal application that changes to 

malware on-the-fly 

Possibly misses the malware activities that beyond the 

analysis range 

Investigation continues in finding minimal features 

(e.g. permission, function call, and strings) to detect 

malware 

Difficulty in detecting applications that able to hide 

malicious behavior while it runs 

 

Investigation continues in finding minimal features 

(e.g. traffic, memory) to detect malware 
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In Table 2.2, both types of analyses share the similar limitations, whereas selecting the 

best features in minimal amount. In detecting malware, features refer to attributes or 

elements to differentiate an application is either malware or benign. Security 

practitioners face obstacles in investigating various features in all types of categories 

(e.g. permission, API, directory path, and code-based) along with the need to decrease 

these features at the same time. Finding best features in minimal amount is crucial 

because it enhances accuracy (i.e. accurate predictive model) with fewer data and 

reduces model complexity (Feizollah et al., 2015).  

2.4 Summary 

This chapter introduced the Android information in its architecture as well as the 

application package. It also highlighted the types of detection by providing the detection 

taxonomies, comparing their unique characteristics and operations through different 

types of detection and analyses that include signature-based, anomaly-based, dynamic 

and static analysis. Then it discusses this information to underline the advantages and 

disadvantages between them. The subsequent chapter presented a review of machine 

learning and the static features issues in previous studies to discover aspects that receive 

less attention and to facilitate the feature selection issues.  
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CHAPTER 3: MACHINE LEARNING AND STATIC FEATURES ISSUES 

As detailed in the previous chapter, this study adopts static analysis because of its rapid 

processing attribute, its overall code coverage and its low resource requirements. In the  

machine learning approach, finding the best features in minimal amount is crucial 

because with fewer data, accuracy (i.e. accurate predictive model) is enhanced thereby, 

reducing model complexity (Feizollah et al., 2015). However, searching for the malware 

features which reside in thousands of lines of code located in each application can be a 

sophisticated, difficult and complicated process that requires multiple experiments to be 

conducted. 

In most malware analysis studies, permissions have been utilized as a feature and these 

features normally reside in the AndroidManifest.xml file. It is a confinement which 

limits access to an application to utilize the part of the code or information located in the 

Android mobile devices. Studies which use only permission as features include (C.-Y. 

Huang et al., 2012; Peng et al., 2012; Sahs & Khan, 2012; Samra et al., 2013; 

Walenstein et al., 2012). However, there are numerous features, besides permission, that 

are also ready to be explored. 

Since there are numerous static features and many malware are zero-permission (X. 

Zhou et al., 2013)(Adrian, 2012), security analysts have also resorted to investigating 

other categories of features so as to increase detection accuracy. Karim et al. (2016) 

covered two categories of features such as API and permission while Arp et al. (2014) 

included categories of API, permission, URL and hardware components. These studies 

proved that by adopting other features besides permission, they improve the detection 

accuracy in malware detection.  
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In addition, there are studies that searched the features in one particular file only. For 

instance, Sanz et al. (2013), Talha et al. (2015) and Sarma et al. (2012) focused on the 

permission features extracted from only one particular file, the AndroidManifest.xml.  

In some studies, features were extracted manually and then inspected without referring 

to any reliable and completed list of resources to verify their features. (Arp et al., 2014; 

Karim, Salleh, Khan, et al., 2016; Yerima et al., 2015; Yerima, Sezer, & McWilliams, 

2014) are some examples. Comparatively, fewer studies have concentrated on root 

exploit features. The current study aims to fill that gap by first attempting to search for 

the features in the overall files. It will then conduct the experiments based on the main 

and reliable list of features as a reference before investigating the features that root 

exploit frequently uses. 

Besides mentioning the categories of features involved, it is also necessary to mention 

the method used to select the static features. In their work, Azhagusundari and 

Thanamani (2013) utilized Information Gain (IG) as a method, while Priyadarsini et al. 

(2011) used Gain Ratio (GR) as a method to search for the optimized features. Arp et al. 

(2014) adopted a method called joint vector space to identify the typical patterns of the 

features geometrically. 

Apart from the methods mentioned above, there are also opportunities for research to 

include methods that utilize evolutionary algorithms for inspecting the repeated features 

located in the same application. Stein et al. (2005) and Middlemiss and Dick (2003) 

utilized evolutionary algorithms to detect malware by using dynamic analysis.  

This chapter begins by reviewing the machine learning classifier issues, the methods 

involved in selecting the best features which are ideal for machine learning and the 

categories of the features involved. 
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3.1 Machine learning classifiers 

This study attempts to investigate and discover the different utilizations of the different 

machine learning types (i.e. function, tree and bayes) which have been frequently and 

infrequently used in past research efforts. Table 3.1 provides the machine learning 

classifiers extracted from previous static analysis studies for Android. 

Table 3.1: Machine learning classifiers in static analysis studies 

References Machine learning classifiers involved Machine learning classifiers used in this thesis 

  NB FT J48 RF MLP VP RBFN 

(Shabtai et al., 

2010) 

DT, NB, BN, Part, boosted bayesian 

network, boosted decision tree, RF, and 

voting feature interval (VFI) 

NB   RF    

(Sanz, Santos, 

Laorden, 

Ugarte-Pedrero, 

Bringas, et al., 

2013) 

Simple logistic, NB, BN, sequential minimal 

optimization, instance-based learning with 

parameter k, J48, random tree, and RF NB  J48 RF    

(Peiravian & 

Zhu, 2013) 

SVM, J48, bagging. prism and KNN 
  J48     

(Yerima, Sezer, 

& Muttik, 

2014) 

NB, part, ridor, DT, and simple logistic 

NB       

(Yerima et al., 

2015) 

RF, random tree, NB, DT, and simple 

logistic 
NB   RF    

(Chan & Song, 

2015) 

NB, SVM with sequential minimal 

optimization (SMO), radial basis function 

network (RBFN), MLP, liblinear, DT, and 

RF 

NB   RF MLP   

 Total 5 0 2 4 1 0 0 

Legends: NB = Naïve Bayes, FT = Functional Trees, RF=Random Forest, MLP = Multilayer Perceptron, VP=Voted 

Perceptron, RBFN= Radial Basis Function Network 

 

Table 3.1 lists the type of classifiers which have been applied in static analysis by 

previous research. The table shows that security analysts used NB and RF more than the 

other classifiers (i.e. FT, J48, MLP, VP and RBFN). Furthermore, these security 

analysts also used MLP once only while FT was excluded from their analyses. Based on 

this, it is useful to prefer NB and RF because security analysts had utilized these 

classifiers regularly. Moreover, they have also received huge acknowledgments in the 

intrusion detection system area  Thus, there is an opportunity for studies to discover the 

classifiers of FT, J48, MLP, VP and RBFN because previous studies (Y. Lu et al., 

2013)(Díaz-Uriarte & Alvarez de Andrés, 2006)(Caruana et al., 2008) seldom used 

these three classifiers of FT, NB and RF as a part of static analysis investigation. Hence, 
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it is beneficial to observe the distinctive results noted in frequently as well as 

infrequently used machine learning classifiers (i.e. RF, NB, FT, J48, MLP, VP and 

RBFN). Figure 3.1 depicts these classifiers in categories. Table 3.2 displayed their 

advantages.  

Neural net for 

fixed patterns

bio-inspired

Multilayer 

Perceptron

Non-linear method

Classifiers

trees

Random 

Forest

J48

Functional 

Trees

Probability

bayes

Naïve 

Bayes

Voted 

Perceptron

Radial Basis 

Function 

Network

Supervised

 

Figure 3.1: Machine learning types 

Table 3.2: Machine learning classifier advantages 

Categories Machine learning classifiers Advantages 

Bayes NB 

1) Operates on the (naïve) assumption (i.e. a fruit 

considered an apple if it is red, round, and about 3 inches). 

 

2) Performs well in certain real-life applications (i.e. file 

classification and spam filtering).  

 

3) Learning and classifying in an extremely rapid manner. 

Tree RF, FT, and J48 

1) A model is constructed from root until reaching the leaf. 

 

2) Generally known as "divide and conquer" algorithms 

(Kotsiantis, 2013).  

Bio-

inspired 
MLP, VP, and RBFN 

1) Stable learning algorithm (Lippmann, 1987).  

 

2) ANN based on the biological neural network, which 

consists of three layers (input, hidden, and output).  

 

The MLP structure is based on a feed-forward (also known as error backpropagation) 

neural system that has at least one or more layers situated between the input and output 

layer (Lippmann, 1987). The feed-forward indicates the information streams in one 
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direction, forward heading from the input to the output layer. The network learns the 

training information by altering the synaptic weight of the neurons conferred to the error 

existing on the output layer. It has been noted that Artificial Neural Network (ANN) is 

used in numerous fields due to its powerful and stable learning algorithm. Analysts have 

generally utilized the MLP for pattern classification (making inferences from perceptual 

data), recognition (focuses on regularities in data), prediction and approximation. Figure 

3.2 depicts the MLP feedforward concept. 

Input 1

Input 2

Input 3

Input layer Hidden layer Output layer

Output

 

Figure 3.2: MLP concept (Lippmann, 1987) 

Here, the figure shows the three input layers which consist of input, hidden and output 

layer.   

In the subsequent section, Figure of 3.3 indicates the Voted Perceptron (VP) which is a 

classification algorithm that was introduced by Freund and Schapire (1999). The VP 

works on a vote system. Here, the algorithm keeps a list of all the forecast vectors which 

are created after each misclassified component. It then calculates the  number of 

iterations each vector endures. By utilizing the total number of iterations as votes, the 

models which survived the most (i.e. fewer mistakes are made using this model) have a 

greater majority on the vote. This means that the information it keeps during training 

makes up the list of all the prediction vectors that were created after every mistake. 
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Each vector ascertains the quantity of the cycles it “survives” until the subsequent 

mistake is made. In this regard, the VP refers this count as the “weight” of the 

prediction vector. Figure 3.3 details the VP algorithm from the training until the 

prediction phase. 

 

Figure 3.3: VP algorithm (Freund & Schapire, 1999) 

Following the VP algorithm, the ANN types of the applications used are also discussed.  

 Here, the Radial Basis Function Network (RBFN) is one of the ANN types for the 

application of supervised learning. It uses radial basis functions which is also known as 

activation function to calculate the derived features in the neural networks. The 

application gives value to each point noted on the distance taken from its origin. Figure 

3.4 depicts the RBFN architecture which comprises input layer, hidden layer and output 

layer with bias. 
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Figure 3.4: RBFN architecture (Walczak & Massart, 2000) 

Here, the RBFN is a three-layer feedforward structure with points as indicated below: 

a) The input layer only serves as the input distributor to the hidden layer.  

b) Every node in the hidden layer is a radial function. Its dimensionality is similar to 

the dimensionality of the input information.  

c) A linear combination then calculates the output layer, particularly the weighted sum 

of the radial basis function including the bias. In the context of machine learning 

algorithm, it can be referred to the following equation:  

 (  )  ∑    (         )    

       

 3-1 

As machine learning is being connected with more complex tasks, it is important to 

recognize the most suitable data noted from a large amount of information. This data 

may contain an extensive number of features which need to be reduced through careful 

selection. The method employed for doing so is further explained.  

Univ
ers

ity
 of

 M
ala

ya



32 

3.2 Methods in selecting features for anomaly-based detection 

Theoretically, the more the features, the better the ease in accomplishing accurate 

prediction in machine learning. Nonetheless, too many features may hinder the learning 

phase and confuse the learning algorithm. Such an occurrence causes the classifiers to 

over-fit the training data (Yu & Liu, 2004). Consequently, the results of the prediction 

become inaccurate. 

Over the years, the ability to select optimized features has received attention. This 

process has been used in numerous research areas encompassing machine learning, 

statistical pattern recognition and data mining  (Blum & Langley, 1997). Security 

analysts (Appavu et al., 2011) have also highlighted that feature selection increases the 

accuracy of machine learning detection as well as reduces the complexity in machine 

learning classifiers’ learning results. Other advantages of features selection (i.e. 

selecting the best features) include the use of less measurement and less storage 

requirements, less learning, training and testing processes. The method enhances data 

visualization and data understanding and it deals with the effect of dimensionality by 

increasing prediction accuracy (Guyon & Elisseeff, 2003). 

It has been noted in machine learning prediction that as the capacity of the data rises, the 

difficulties of the classification problem and data analysis also increases significantly. 

Powell (2011) claims that this situation is known as the curse of the dimensionality. 

Generally speaking, selecting minimal features of data is necessary for the improvement 

of the prediction’s accuracy as well as for the achievement of a faster processing rate. 

Thus, it acts as cost-effective predictors. Moskovitch et al. (2008) and Koller and 

Sahami (1996) adopted the feature selection practice for their machine learning 

predictions. The practice improved their accuracy rate showing low false positive rate. 

Noting its ease, the common feature selection methods utilized in this study and its 
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inclusion of Information Gain (IG), Gain Ratio (GR) and Chi Square (CS) are further 

presented.  

3.2.1 Information Gain (IG) 

Information Gain (IG) is one of the feature selection methods proposed by Clause 

Shannon in 1948 for information theory research. This method aims to find fundamental 

limits on communication operation and signal processing (Ueltschi, 2006). It is done by 

measuring the amount of data (i.e. bits), regarding the prediction of the class and the 

corresponding class distribution (Han et al., 2001). The IG method considers feature to 

be more important if its normalized information gain is larger and if it treats all features 

as independent (Duch et al., 2003).  

    ( )                     3-2 

Table 3.3 tabulates the IG utilizations which were extracted from previous studies. 

Table 3.3: IG utilization 

References Utilization 

(Roobaert et al., 2006) Adopted for feature correlation and variable selection 

with SVM for induction purposes. 

(Appavu et al., 2011) Adopted with Bayes theorem by searching out the 

dependent features and eliminating the redundancy 

among them. 

(Azhagusundari & Thanamani, 

2013) 

Searched the optimized features by utilizing IG as well 

as discernibility matrix. 

 

In this table, it can be seen that the IG utilization was applied. Based on previous 

studies, it was noted that Roobaert et al. (2006) had successfully improved the 

generalization performance of the Support Vector Machine (SVM) models in five 

classification datasets of the competition. Hence, the IG is seen as one of the filter 

approaches used in the selecting features’ process.  

Appavu et al. (2011) adopted the Bayes theorem and the IG method to enhance the 

accuracy of the prediction of their work. Likewise, it was proven that the IG is able to 
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improve the NB machine learning classifier prediction by three percent, gaining from 

83.93% to 86%.  

Azhagusundari and Thanamani (2013) also produced an outstanding result in relation to 

the number of features selected. Their prediction accuracy also improved when the 

method was distinctly applied.  

3.2.2 Gain Ratio (GR) 

Relating this to previous studies, the gain ratio (GR) is the modification of the IG 

method. It is used for selecting the best features. It takes the number and the size of the 

branches into account when choosing the features. It considers the intrinsic information 

of a split as a means to correct the IG. The intrinsic information is the entropy of the 

distribution of instances in the branches. Here, the value of the features decreases as the 

intrinsic information increases (Han et al., 2001). The GR is defined in 3-3 as: 

          ( )  
     ( )

         
 

( )
 3-3 

 

 

The feature containing the maximum GR value is designated as the splitting feature. 

Once the split information reaches 0, then the ratio becomes unbalanced. Therefore, a 

constraint is added to hinder this situation whereby the IG of the selected essential test 

then becomes enormous (Han et al., 2001).  

In their work, Priyadarsini et al. (2011) increased the dimensionality so as to search for 

a subset of seven features from the original dataset which consist of ten features. They 

compared the reduced dataset with the original dataset to detect the accuracy of the 

prediction. Their results indicate that the level of the accuracy remains similar. This 

proves that dimensionality reduction does not affect the accuracy level. 
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3.2.3 Chi Square (CS) 

Another common feature selection method used in information technology research is 

the Chi Square (CS) where the    test is used to test the independence of two 

events. The test measures the divergence from the conveyance expected in the event. 

When it accepts the element event, it is accepted to be really autonomous of the class 

value. As a statistical test, the Chi Square is known to behave erratically for little 

expected counts, which are regular in text classifications. This is because it occurs once 

in a while with word features, and at times when having a few positive preparing cases 

for a concept (Foreman, 2003). 

The Chi Square (CS) is particularly used to test the occurrence of a specific class and 

specific terms which are independent. Therefore, it can estimate the following quantity 

for each term and rank them by scores with the equation of: 

  (     )  ∑

   *   +

∑
(            )

     
   *   +

 3-4 

 

The high scores seen in the Chi Square of    indicate that the null hypothesis (H0) of 

independence should be rejected. This also means that the occurrence of the term and 

class is dependent. If they are both dependent, then the researcher needs to select the 

feature for the classification. Other than the IG, GR and CS, there are additional 

methods used by others in selecting features. They are further mentioned below. 

3.2.4 Other feature selection methods 

In order to accomplish considerable results from the machine learning system, it is vital 

to select minimal features. Table 3.4 tabulates the information of the methods used in 

selecting the features. It also provides the information extracted from previous works. 
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Most studies (Arp et al., 2014) use Drebin to analyze joint vector space and to identify 

the typical patterns of the features in geometric form. For example, Karim et al. (2016) 

utilized the element tree xml Application Programming Interface (API) including 

regular expression to identify strings or the number of attributes noted in obtaining  

features.   

Table 3.4: Other methods in selecting features 

References Method to select features Information 

(Arp et al., 2014) Joint vector space Used to identify patterns 

of features  

(Karim, Salleh, & 

Khan, 2016) 

Element tree xml API 

and regular expression 

Used to wrap an element 

structure or string 

(T. Zhang, 2009) Forward greedy 

algorithm 

Greedily selecting 

another feature in each 

iteration  

(Lai et al., 2011) Forward-backward 

greedy algorithm 

Greedily selecting and 

removing another feature 

in each iteration  

 

Further to using Drebin, the forward greedy algorithm (T. Zhang, 2009) has also been 

used to select features. This algorithm is part of an investigation for sparse 

approximation (Tropp, 2004). The fundamental awareness of the forward greedy 

algorithm is that it greedily selects another feature per iteration. It also has the means to 

forcefully decrease the loss objective. This strategy is generally, capable of locating the 

best features. Forward greedy algorithm follows the problem-solving heuristics of 

making local optimal decisions at every phase through the inspiration of searching for 

global optimum. The forward greedy algorithm generalizes the case of measurement 

noise. It is able to identify features in a sparse eigenvalue condition. This strategy’s 

capability continues for as long as each non-zero coefficient is larger than the constant 

time of the noise level. However, forward greedy algorithm is unable to correct the 

mistakes it has previously made. Hence, Lai et al. (2011) combined the forward greedy 

algorithm strategy with the backward greedy algorithm to resolve the downside of the 

strategy. Unlike the forward greedy algorithm strategy which selects feature at every 

iteration, the backward greedy algorithm removes each feature per iteration. Therefore, 
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the features that have minimum contributions are removed and this can further decrease 

the cost function. 

Different from the joint vector space and forward greedy algorithm, the evolutionary 

algorithm (i.e. population, generation, crossover, mutation) can be used to search for 

optimal and relevant features that are contained in multiple categories. 

a) Genetic Algorithm (GA) and Genetic Search (GS) 

Genetic algorithm (GA) is the inspiration extracted from evolutionary biology. It is a 

technique that automatically improves parameters or features. Table 3.5 lists past related 

works which had deployed the GA in selecting features. The strategy has been widely 

used in numerous fields such as soil classification, colon cancer identification, gene 

expression and malware detection. 

Table 3.5: Studies of GA in selecting features 

References Objectives Year 

(Punch et 

al., 1993) 

Classify soil to three environments; a) near the roots of a crop 

(rhizosphere). b) away from the influence of the crop roots 

(non-rhizosphere). c) from a fallow field (crop residue) 

1993 

(Fröhlich et 

al., 2003) 
Classify colon cancer and gene expression 

2003 

(Middlemiss 

& Dick, 

2003) Detect malware intrusion (dynamic analysis) 

2003 

(Stein et al., 

2005) 

2005 

 

In their work, Punch et al. (1993) utilized feature selection and data classification on 

soil classification by using GA combined with the K-Nearest Neighbor (KNN). The 

KNN assists the study in measuring the similarity of the samples. However, it is unable 

to inform the relative importance of the features in discriminating known samples. 

Henceforth, GA, along with the KNN, as the main part of the evaluation stage, is 

applied to optimize the features. The dataset for their study were rhizosphere data, the 

world’s natural dataset. This dataset formed part of the soil ecosystem where plant roots, 

soil and soil biota communicate with each other. These connections were advantageous 
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to plants in that the soil fruitfulness was enhanced and harmful chemical debasement 

was upgraded. In this regard, it can be said that the study attempted to classify three 

rhizosphere classes namely: the rhizosphere, the non-rhizosphere and the crop residue.  

Likewise, Fröhlich et al. (2003) also applied the GA in their work to make three 

classifications (i.e. toy data, colon cancer, and gene in a yeast dataset). The genetic 

evolutionary process in the GA enabled them to switch the different factors and to 

optimize parameters in the Support Vector Machine (SVM) algorithm. The analysts also 

used theoretical bounds on the generalization error for the SVM by proposing a decimal 

encoding that is much more efficient than the binary encoding. If the number of features 

to be selected was unfixed beforehand, the usual binary encoding is preferred. 

Furthermore, kernel parameters such as the regularization parameter   of the SVM were 

able to be optimized by the GA for selecting a feature subset, given that the choice of 

the feature subset influences the appropriate kernel parameters and vice versa.  

Middlemiss and Dick (2003) utilized the GA to select optimal features via weighted 

feature extraction and machine learning. The study conducted was a malware detection 

study that applied the dynamic analysis approach. To accomplish their aims, the 

analysts implemented the GA to calculate the weights for the dataset features. 

Thereafter, the KNN classifier was applied to the fitness function through the GA so as 

to assess the new weighted feature set performance. Their results showed that the 

weighted set of features for the class classification of data increased the accuracy of the 

intrusion detection.   

Another study that attempted a malware detection by applying the GA is (Stein et al., 

2005). They used the GA algorithm as a method to select a subset of features which 

were put into the DT classifiers through static analysis. They then utilized the KDDCUP 
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99 as a dataset to train and test the tree classifiers. Through the assistance of GA, the 

studies were able to successfully select the best features.   

From the previous studies noted in Table 3.5, it appears that none had adopted the GA 

for selecting the best features in malware detection using static analysis with machine 

learning. In this regard, the gap provides an opportunity for others to explore the 

advantages of using the GA in selecting features genetically. Apart from discussing the 

features’ selection methods, the opportunity in using repeated features is also revealed 

below. 

3.2.5 Repeated features in similar application 

As mentioned in chapter 1, this thesis was motivated by the aim of conducting an 

experiment that calculate the repeated features noted in a similar application and its 

efficiency in detecting malware. This novel feature extraction method was inspired by 

the fact that some features are exist and manifest themselves multiple times in other 

files within one application. For instance, one of the API features, getSubscriberId, was 

discovered to exist multiple times in the same application. In this regard, this thesis 

explores a similar factor by adopting the novel method of selecting features for 

anomaly-based detection through the GA.  

On the other hand, as root exploit has received lesser attention in research hence 

following section explains the methods in detecting this type of malware.    

3.2.6 Methods in detecting root exploit 

One type of malware called root exploit is a malicious application which modifies the 

kernel in an Android OS so as to gain super-user privileges. When the attackers gain 

root and the privileges increase, they are able to install other malware types such as 

botnets, worms or Trojans. When this occurs, the attackers are also capable of evading 

detection by modifying the OS code, execute stealthily and bypassing over the 
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permission (Bickford et al., 2010; Ma & Sharbaf, 2013; A. Schmidt et al., 2009). The 

number of root exploits has increased because of malware creators and homebrew 

community attackers (i.e. smartphone users who break the OS kernel to obtain a 

customized version of the OS). When a new version of  the OS is released, malware 

creators develop their own root exploits or they wait for the homebrew community 

attackers to determine ways to break the OS (Felt et al., 2011). In this context, 

homebrew community is a group of people who change the OS default structure in 

mobile devices for their own benefit (e.g. to customize the graphic @ outlook, 

accelerate hardware capabilities). Thus, one way to deter these attacks is to conduct an 

investigation for root exploit features.  

Despite all the investigations that have been conducted, fewer studies have given focus 

to discussing root exploit malware, particularly for Android mobile devices, except for 

Droidanalyzer (Seo et al., 2014) and Droidexec (Wei et al., 2015). This justifies the 

investigation conducted on root exploit is rare especially involves Android. Unlike 

Droidanalyzer and DroidExec, this thesis aims to adopt machine learning as a means to 

detect it.  

The Droidanalyzer (Seo et al., 2014) used an algorithm to calculate the MD5 hash value 

which was cross-referenced in the database of signatures. In comparison, the similarity 

recognition applied by Droidexec (Wei et al., 2015) used a structural graph constructor 

(i.e. function–relation graph extraction and opcode component graph constructor). 

Clearly, both had also overlooked detecting root exploit with the machine learning 

strategy.  

Due to this lack of attention, this thesis uses the anomaly-based technique which adopts 

machine learning to detect unknown root exploit. Having discussed the methods in 
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detecting malware, further section explains the categories of features involves for the 

anomaly-based detection system. 

3.3 Categories of features for anomaly-based detection 

Figure 3.5 depicts the taxonomy of the mobile malware features (see (Feizollah et al., 

2015). The taxonomy divides the features into four categories: static, dynamic, hybrid 

and application metadata.  

MOBILE 

MALWARE 

FEATURES

MOBILE 

MALWARE 

FEATURES

STATIC 

FEATURES

STATIC 

FEATURES

DYNAMIC 

FEATURES

DYNAMIC 

FEATURES

HYBRID 

FEATURES

HYBRID 

FEATURES

APPLICATION 

METADATA 

FEATURES

APPLICATION 

METADATA 

FEATURES

PermissionsPermissions

Java codeJava code

Intent filtersIntent filters

Network addressNetwork address

StringsStrings

Hardware componentsHardware components

System callsSystem calls

Network trafficNetwork traffic

System componentsSystem components

User interactionsUser interactions

A group of static and 

dynamic features

A group of static and 

dynamic features

Application descriptionApplication description

Creator IDCreator ID

Application categoryApplication category
 

Figure 3.5: Taxonomy of mobile malware features (Feizollah et al., 2015) 

From the figure, it is noted that the most features are dynamic and static. Unlike the 

dynamic option, the static option seems to be carrying more features. The advantage of 

using static analysis is its rapid processing and low resources which attract security 

analysts to spend their time in exploring and searching for the best features in-depth. 

Table 3.6 tabulates the categories of features. Here, it can be seen that multiple 

categories of features (e.g. permission, API, function call, code structures, sources and 

sink, strings) were combined so as to detect malware. 
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Table 3.6: Series of features in static analysis studies 

References Features Information about the features 

(Aafer et al., 2013; 

Deshotels et al., 2014; 

S.-H. Lee & Jin, 2013) 

API 
Contain codes of an application consist of 

classes, methods, functions, and parameters 

(Gascon et al., 2013; 

A.-D. Schmidt et al., 

2009) 
Function call 

In application code, it is a declaration in an 

argument. It either contains any number of 

names either separated by commas or 
empty.  

(Suarez-Tangil, 
Tapiador, Peris-Lopez, 

& Blasco, 2014) 

Code structures 
Comprises of a line or set of programming 
codes in an application. 

(Gordon et al., 2015; 

L. Lu et al., 2012)  

Sources and sinks 

Sources and sinks are related terms. The 

sources in computing area are where the 

data enter the program, whereas sinks are 

where the data flows to leave the program 

(Rasthofer et al., 2014). 

(Faruki et al., 2013)  Bytes Referring to code in an application. 

(Junaid et al., 2016)  

Reverse-engineered 
Life Cycle Model 

Android application consists of essential 

building blocks called application 
components (activity, service, broadcast 

receiver, and content provider) which 

follow a life cycle model during execution.  

(Aung & Zaw, 2013; 

C.-Y. Huang et al., 

2012; Peng et al., 
2012; Sahs & Khan, 

2012; Samra et al., 

2013; Walenstein et 

al., 2012; Wu et al., 
2012)(Sanz, Santos et 

al., 2013)(Talha et al., 

2015)(Sarma et al., 

2012) 

AndroidManifest.xml 

 

One of the files in Android application is 

AndroidManifest.xml. It is an essential file, 
containing the package name, the 

application components (activities, 

services, broadcast receivers and content 

providers), the permission declarations,  the 
instrumentation classes, the API minimum 

level, and the list of necessary libraries 

(Android, 2015).  

(Feizollah et al., 2017) 

Intent 

Intent objects deliver an abstract definition 

of the operations in an application which 
plans to accomplish. 

(Aafer et al., 2013; Arp 
et al., 2014; Arzt et al., 

2014; Bartel et al., 

2012; Feng et al., 

2014; M. Grace et al., 
2012; J. Huang et al., 

2014; Liang et al., 

2013; Peiravian & Zhu, 

2013; Sheen et al., 
2015; Wu et al., 2012; 

Yerima et al., 2014; W. 

Zhou et al., 2013) 

API and permission 

In the Android OS process, permission and 
API are depend on to each other. Parts of 

API calls in the code needs permission to 

execute (Wu et al., 2012). 

(Apvrille & Strazzere, 

2012; Luoshi et al., 

2013; Yerima et al., 
2014) 

API, permission, and 

others 

Combined features consist of API, 

permission, and others. 

(Seo et al., 2014)  API and other features 
(exclude permission) 

Combined features consist of API and 
others, except permission. 

(M. Grace et al., 2011; 
Sarma et al., 2012; 

Shabtai et al., 2010; 

Yang & Yang, 2012) 
(Kang et al., 2015; W. 

Zhou et al., 2012) 

(Yerima et al., 2014) 

(Yerima et al., 2013) 

Permission and other 
features 

Apart from API combinations, security 

analysts also combine permission with 
other features.  

(M. C. Grace et al., 

2012; J. Lee et al., 
2015)  

Other features except 

for API and 
permission 

Features used other than API and 

permission. 
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Table 3.6 shows that the previous security analysts had investigated features either by 

extracting the existence of the features or by manually inspecting these features without 

referring to a reliable and complete list of studies as a reference. This is a disadvantage, 

as seen in some studies (Aafer et al., 2013; Arp et al., 2014; Karim et al., 2016; Sanz et 

al., 2013; Sanz et al., 2013; Yerima et al., 2014; Yerima et al., 2014) because without 

referring a complete list as guidance, the method of extracting features is likely to miss 

some  important features that significantly to detect malware during the experiment. 

Due to this, the list of features stated in the Android official website such as the list of 

permission (Android, 2015) and telephony  (Android, 2016), is important. 

Apart from this, certain existing studies as noted in Table 3.6, appear to have extracted 

the permission features from only one particular file such as the Androidmanifest.xml 

although many other applications in the Androidmanifest.xml have zero permission 

(Adrian, 2012). In this regard, it is hard to differentiate between the malware and benign 

applications. In addition, this approach may further increase the false positive detection 

value. Consequently, investigating features that reside in all the files located in an 

application including the Androidmanifest.xml file need to be explored in order to fully 

discover the potential of the features in malware detection.   

In addition, previous studies less discussed the root exploit features with machine 

learning approach. Given this scarcity, there is a need to conduct investigations to find 

the best in a minimal quantity of features to detect unknown root exploit as well as other 

types of malware by utilizing anomaly-based intelligent machine learning prediction 

system. Particularly, at this time of writing, none of the existing studies concerns root 

exploit features except Droidanalyzer (Seo et al., 2014) and Droidexec (Wei et al., 

2015).  
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3.3.1 Categories of root exploit features 

In looking at the categories of root exploit features, the Droidanalyzer (Seo et al., 2014) 

combined the API, rooting and botnet command as features for detecting root exploit 

and mobile botnet. The analysts analyzed the risky API and the strings which identified 

malware by using particular features and keywords. The system included some features 

taken from those categories of root exploit. In their work, the security analysts only 

listed the keywords as an example without revealing the exact list of the features. 

Therefore, the features to detect root exploits are still unavailable. In contrast, the 

Droidexec (Wei et al., 2015) adopted a graph constructor which used opcode 

components as features for detecting root exploit. Clearly, these two studies employ 

different approaches than machine learning to detect root exploit.  

a) Android Debug Bridge (ADB) 

One of the novel features noted in this thesis is ADB. It is a tool that permits the local 

computer to connect to the Android mobile device or an emulator. It connects the 

mobile device or other personal wireless component with the local computer therefore,  

users are able to interact with the mobile device through the command line of the local 

computer (Android Developer, 2017). 

In comparison to previous machine learning studies as shown in Table 3.6, the features 

which were precluded in this thesis are startservice -n and adb_enabled. The features 

being observed are of the ADB type which was included in the system command 

category. According to literature review, the ADB command is one of the novel types of 

features which have not been exploited through static analysis and machine learning. 

Moreover, this study combines the ADB with other categories of features (i.e. system 

command, directory path and code-based) to discover unknown root exploit. Although 

certain directory path is discussed (Yerima, Sezer, & McWilliams, 2014), the current 
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study attempts to identify specific directory paths that detect root exploit only instead of 

detecting all types of malware. In this chapter, after the root exploit features are 

discussed, the opportunities in searching for the features in the overall files by referring 

to a complete list as guidance is further explained. 

3.3.2 Searching for features in overall files and complete list as guidance 

In Section 3.3, it was mentioned that most studies had inspected the features without 

making reference to all the previous studies as a guide. Section 3.3 also mentioned the 

importance of searching and counting the features in the overall files in each 

application. This is done prior to the detection accuracy test which may decrease if 

features have been taken from one particular file only. To overcome that weakness, it is 

crucial to have the complete list of features noted in each category so as to prevent any 

features from being missed out in the experiment. The information provided in Table 

3.7 compares the similarities and differences of features extracted from the manifest 

file, the overall files as well as the complete list of guidance. 

Table 3.7: Similarities and differences in extracting features 

References Extracting features 

(Apvrille & Strazzere, 2012; Aung & 

Zaw, 2013; Karim, Salleh, Khan, et al., 

2016; Peiravian & Zhu, 2013; Peng et al., 

2012; Sanz, Santos, Laorden, Ugarte-

Pedrero, Nieves, et al., 2013; Sarma et 

al., 2012; Seo et al., 2014; Shabtai et al., 

2010; Sheen et al., 2015; Yerima et al., 

2013, 2015; Yerima, Sezer, & Muttik, 

2014; W. Zhou et al., 2012) 

 In manifest file only 

 Without referring to a complete 

list (manual inspection, 

investigation, observation) 

(Arp et al., 2014; Feizollah et al., 2017; 

Kang et al., 2015; Wu et al., 2012; 

Yerima, Sezer, & McWilliams, 2014) 
 Search in overall files 

(Talha et al., 2015)  According to the complete lists 

as guidance 

This thesis, (C.-Y. Huang et al., 2012) 

 In overall files including 

manifest 

 According to the complete lists 

as guidance 
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In the comparison of the overall features, it shows that none of the previous studies 

shown had computed similar features which were repeated multiple times in each 

application. In addition, previous studies did not calculate the repeated features 

extracted from both the malware and benign applications so as to obtain the relevant 

features. Keeping in mind these limitations, advantages and opportunities in selecting 

features through static analysis and machine learning, the following section proposes the 

key focus areas to overcome the weaknesses identified.  

3.4 Proposed study key focus areas 

Based on the issues in previous studies, the proposed study is to conduct an 

evolutionary algorithm to genetically search the features, conveys the range of repeated 

features in similar application to gain the best features and investigate the features 

specifically on root exploit. 

3.4.1 Evolutionary algorithm in selecting features 

Features refer to the elements or characteristics which are applied to mark an application 

as being malware or benign. Machine learning classifiers normally use these features as 

an input to make a decision. Minimum features are desirable because they offer 

enhanced accuracy (i.e. accurate predictive model) with fewer data; minimum features 

also reduce the complexity of the detection model by decreasing noisy and irrelevant 

data (Feizollah et al., 2015; Sarip et al., 2016; Zia et al., 2015). The current study 

adopts an evolutionary algorithm method called Genetic Search (GS) which is based on 

Genetic Algorithm (GA), to search and improve the parameters so as to provide 

minimal quantity of features in multiple categories of features. 

GA is an algorithm that mimics the natural evolutionary process which consists of the 

crossover process that combines multiple generations. It then continues to loop until the 

best generations are achieved. Frohlich et al. (2003), Middlemiss and Dick (2003), 
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Punch et al. (1993) and Stein et al. (2005) applied the GA to achieve the best parameter 

of features for their detection algorithms when trying to increase accuracy. However, as 

mentioned in Section 3.1.6, none of these studies had adopted the GA method in 

selecting features using static analysis and machine learning in detecting Android 

malware. This gap will be filled by the current study which adopts the GS to perform a 

search based on the GA as described by (Goldberg & Holland, 1988). Figure 3.6 

illustrates the basic GA processes which consists of the crossover and mutation.  

 

 

Crossover

Offspring

1 1 1 0 1

Parent 2

0 0 1 0 1

MateParent 1

1 1 0 0 1

Mutation

1 1 1 1 1

Repetition Repetition

Best generation  
Figure 3.6: Basic GA process 

To further illustrate the GA, the following analogy is offered. Consider a company 

requiring advice in designing a good vehicle characteristic that is able to enter and 

successfully exit from a high hill forest that is filled with obstacles. In this case, the 

fitness is set according to the multiple checkpoints noted in the high hill forest. First, the 

vehicle consists of small tires that have low performance engine. The vehicle keeps 

going and keeps changing the characteristics or features simultaneously. Once the 

vehicle has successfully reached the first checkpoint, the first fitness is satisfied and the 

characteristics of the vehicle are saved. The GA process then continues (the 

characteristics of the vehicle are gradually changing) until the vehicle achieves all the 

checkpoints (save all the required characteristics). Finally, the set of features of a 
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vehicle that is necessary to enter and survive the forest is successfully achieved and this 

includes the big tires, the high acceleration engine, the big tank and good quality brakes. 

The GA equation (refer to 3-5) is defined according to the   function and features string 

of length 1 known as fitness. The new features are created from the current population 

and the probability that a parent string    is selected from the N strings such as H1, H2, 

H3 until HN appears in the system equation is illustrated in the equation below.  

(  )    (  )  ∑  (  ) 
     3-5 

 

Apart from the GS, another method for selecting the best features in detecting malware 

is also explained. 

3.4.2 Repeated features in similar application 

In the aim to discover which features are frequently used by malware, the current study 

inspects the existence of each feature in both the malware and benign applications. It 

also inspects similar features which are repeatedly utilized in each application. 

Accordingly, this method calculates the frequency of the similar features that exist, do 

not exist as well as those features which are repeatedly used in similar samples. To 

obtain the results showing which features in malware are frequently used, the frequency 

identified between the malware and benign applications are subtracted so as to obtain 

the range. The subsequent section explains how root exploit is detected.  

3.4.3 Root exploit 

It is important to investigate the exclusive features that are best suited for machine 

learning classifiers in detecting unknown root exploit.  Hence, investigating features to 

detect root exploit is included in this section as the key focus area. 
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3.5 Summary 

This chapter has addressed the challenges faced in selecting features through static 

analysis. These challenges are further summarized as follows:   

a) Minimal features: There is a need to identify and select minimal amount of features 

in detecting malware. This is because excessive features may weaken the machine 

learning phase and confuse the learning algorithms and thereby, causing the 

classifiers to over-fit the training data.   

b) Investigation and method in selecting features: Using static analysis to search for 

malware features that reside in a thousand lines of code located in each application 

are sophisticated, difficult, and complicated. Thus, there is a need to identify an 

approach that select minimal amount but the best features in detecting malware.  

c) Complete list of features: Many studies have investigated features by extracting 

their existence either manually or inspecting them without referring to a reliable and 

complete list of reference. Therefore, there is a need to refer complete list of features 

to prevent any significant features that are capable of detecting malware from being 

missed.   

d) Search features in overall files: Although thousands of applications in the 

Androidmanifest.xml contain zero permission, many studies seem to be extracting 

their data from only one particular file (i.e. AndroidManifest.xml) to detect 

malware. As this may increase the false positive value, thus, it is important to 

investigate the features that reside in all the files located within an application 

including the Androidmanifest.xml file.   

e) Root exploit features: From literature review, it appears that lesser attention has 

been given to the investigation of specific features using static analysis and machine 

learning to detect root exploit. Thus, it is important to specifically investigate the 

multiple categories of features on root exploit. 
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As a conclusion, this chapter has highlighted some related and important issues and 

some strategies to reduce the limitations. Addressing the limitations and the advantages 

is important because the outcomes of this study can be used as a guideline to construct a 

valuable framework or to further improve existing studies and their methods used. 

Furthermore, the outcome may be used to enhance the anomaly-based malware 

detection through static analysis for the intrusion detection system.
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CHAPTER 4: ANOMALY-BASED DETECTION USING STATIC ANALYSIS: 

THE FRAMEWORK 

This chapter entails the methodologies developed for the proposed framework. The aim 

of the framework is to select the best features in minimal amount for the anomaly-based 

detection using static analysis with the selected methods. In order to have an effective 

anomaly-based machine learning prediction in static analysis, the process in selecting 

the minimal features is crucial. To support the process, this chapter details the strategies 

in Genetic Search (GS), range of repeated features and investigation on root exploit 

features. 

GS is based on Genetic Algorithm (GA). It is a bio-inspired mechanism inspired by 

biological evolutionary concepts. This experiment used it to select a minimal number of 

features in multiple categories of it to detect malware using machine learning 

predictions.  

The following strategy is an effort to inspect the best features by considering the range 

of repeated features in each application, including benign and malware. This range 

algorithm is inspired by the existence of similar feature multiple times in each 

application.  

Another strategy is to investigate which features are the best to detect particularly on 

root exploit. It is a type of malware which capable of evading detection and escalate 

privileges (Li & Clark, 2013). Hence, there is a need to conduct an experiment to 

investigate and identify exquisite features to detect unknown root exploit malware. Next 

section discusses all the methods in selecting features in detail. 
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4.1 Methods and categories of features 

Table 4.1 tabulates the methods in selecting features for the best in minimal amount. It 

also includes the categories of features and techniques that include in the experiment. In 

order to observe different results, each experiment has different approaches. Table 4.1 

provides the detail regarding this information.  

Table 4.1: Methods and techniques for the proposed framework 

Experiment 
Method in 

selecting features 
Categories of features and technique involved 

Machine 

learning 

classifier 

categories 

1 

a) Genetic Search 

(GS) 

a) Permission 

b) System 

command  

c) Directory path 

d) Code-based 

Search features in overall files Bio-inspired, 

tree and bayes 

2 

a) Range of 

similar features in 

same application 

b) Information 

Gain (IG) 

a) Permission  

b) Directory path 

c) Telephony 

Search 

features in 

overall files 

Refer features  

from the 

complete list 

Bio-inspired 

3 

a) Frequency 

investigation 

b) IG 

a) System 

command with 

Android Debug 

Bridge (ADB)  

b) Directory path  

c) Code-based  

Search features in overall files Bio-inspired, 

tree and bayes 

4.1.1 Genetic Search (GS) 

In order to discover the efficiency of the features selected by the GS genetically, this 

first experiment only adopts GS method alone without the aid of additional methods. 

Furthermore, this experiment covered four categories of features, which exceed than 

other experiment. This is to facilitate the GS to have a wide of choices of features 

during the evolutionary process.      

4.1.2 Range of repeated features 

In second experiment, this research subtracts the frequency of the repeated features in 

both malware and benign. This is to obtain the features of malware frequently used 

compare to benign. Next, this experiment applies the range of the features according to 
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the equation below. In order to obtain the      , the frequency of repeated features in 

malware (  ) subtracts the frequency of repeated features in benign,   . This 

algorithm then applied on all the categories of features in the experiment. In addition, 

this research is the only experiment that refers to the reliable list as a guidance to 

explore the differences between the other experiments that execute without it.   

              4-1 

4.1.3 Root exploit features 

As this experiment focuses on selecting the features to detect specifically on root 

exploit, there is a need to add the novel features such as ADB. Furthermore, the other 

addition categories of features (i.e. system command, directory path and code based) are 

also included to identify the need of these categories in root exploit. Although, these 

features are already included in other experiment in this thesis, however, this research 

attempt to discover how much critical the root exploit use these features compare to 

other types of malware. As an example, in directory path category, root exploit utilized 

certain directory path (i.e. /system/xbin/su) more than other types of malware. 

Therefore, this experiment is conducted to answer this question. Next section provides 

the proposed framework that depicts all the proposed methods and techniques.  
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4.2 Anomaly-based detection using static features framework 

a) Web-based system Android application package 

(.apk) file

Result 

(Malware @ 

benign)

b) Application reverse engineering 

stageReverse the .apk samples to 

.java

Obtain list of files and nested 

folders with .java extension

c) Feature extraction

Select and extract the features 

derived from:

Check overall files and folders in 

the application

GS
Range of 

repeated 

feature 

algorithm

Root exploit

d) Prediction

3) Root analyzer

2) Bio analyzer 

1) Genetic analyzer

 

Figure 4.1: Anomaly-based Detection Using Static Features Framework 

The framework comprises of four main elements as follows: 

a) Web-based system: This is the first part in framework that consists of application 

reverse engineering, feature extraction and prediction. It provides the graphical user 

interface functions to facilitate the end-users to predict their desired .apk files.  

b) Application reverse engineering: This is the second part of the proposed 

framework and it aims to convert the Android application package (.apk) to .java 

extension files to retrieve the code. This is done by reverse engineering the .apk file 

and subsequently obtains all the files and folders. 

c) Feature extraction: This is the third part in the framework that extracts the features 

from the application. These features are derived from the following strategies: 
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i. Evolutionary method: It is a method to search the best features by adopting 

bio-inspired GS. Initially, this research collects all the malware and benign 

features and the GS algorithm search the best generation of features from the 

collection. 

ii. Range of repeated features: As many features are repeatedly used in similar 

application, this research takes this opportunity to calculate how many features 

have been used in each application in both categories, malware and benign. By 

scrutinizing the frequencies of these repeated features, this research capable of 

identifying the features that malware frequently used with this novel method. 

iii. Root exploit investigation: In order to discover the best features that root 

exploit used, this research inspects this type of malware by investigating 

multiple categories of features including the novel Android Debug Bridge 

(ADB).  

d) Prediction: In fourth part, the system used these features as input for the machine 

learning classifiers to predict the class of the .apk file either malware or benign. As 

to discover the different results in different machine learning types as well as 

frequently and infrequently used in past research effort, the type of machine learning 

classifiers involved are function, tree, and bayes. More information can be obtained 

in Table 3.1 in Section 3.1. In addition, the final selection of machine learning 

classifiers will be selected according to the evaluation on the following section, 

which is Section 5. 

4.2.1 Operational Characteristics 

The proposed framework offers the following operational characteristics: 

a) Multiple strategies: The proposed framework applies multiple strategies in 

selecting features in malware detection process as well as thoroughly searches the 
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features in all files in each application. By implication, minimal features and deep 

searches allow a comprehensive detection result. 

b) Reduce the complexity of machine learning detection: The used of methodical 

approaches (i.e. GS and range algorithm of repeated features) in selecting the best 

features in minimal amount reduces the complexity of machine learning predictive 

model. It allows the anomaly-based detection to confront the effect of 

dimensionality to produce an efficient prediction score.  

c) Rapid detection process: The proposed framework adopts the static analysis 

method that decreases the prediction process and further achieves much faster 

detection. This type of analysis is significantly faster because it classifies the 

application without executing them. 

d) User friendly interfaces: The proposed framework allows a simple prediction of 

the results of the framework by providing a friendly graphical user interface system. 

Moreover, it also allows the security analysts to thoroughly assess the features in 

CSV and ARFF files from the prediction results to conduct further analysis. 

e) Lightweight: the proposed method adopts static analysis technique, where only 

reverse engineers the application and retrieves the code. It is done without execute 

and monitor the behavior of the application. 

f) Intelligent: this methodology employs machine learning prediction to detect 

malware, instead of signature-based method that needs to continuously update the 

malware signature in the database. 

4.3 Summary 

This chapter has focused on the conceptual framework for selecting the best features by 

conducting investigations and methods for anomaly-based machine learning in detecting 

malware. This is to increase the efficiency in malware detection process. Its description 

has included an introduction of the main models, strategies, frameworks and the 
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rationale behind their implementation, as well as their operational characteristics. In 

conclusion, this chapter highlighted the main point of this study and gave the detail of 

the framework. It is important to understand the interrelationship between those 

strategies and the model in compiling the overall process in detecting malware in order 

to achieve an outstanding result from this process. 

Having established the proposed framework using multiple strategies and methods, the 

next chapter presents the methods of the experiment, evaluations of the framework 

followed by a detailed discussion of them. It is important to understand that the results 

provide a verification of the usefulness and suitability of the framework in facilitating 

the anomaly-based static analysis in detecting malware process.  
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CHAPTER 5: EVALUATION OF THE ANOMALY-BASED DETECTION 

FRAMEWORK 

The novelty of this study is to propose a framework to have the mobile malware 

anomaly-based detection systems by conducting experiments to identify the best 

features, in order to facilitate the static analysis detection. Thus, in order to highlight the 

feasibility and suitability of the framework, this evaluation study is significant. 

This chapter provides the multiple experiments and the evaluation part based upon the 

proposed framework that aims to evaluate it in terms of its effectiveness and 

performances in relation to the static features selected. It is important to this evaluation 

study to investigate the effectiveness and performance of the proposed framework in 

order to satisfy its feasibility and suitability, in particular the ability of the framework to 

facilitate anomaly-based malware detection.  

The first experiment investigates the feasibility of the features selected from the 

evolutionary GS search method. To evaluate and compare with the results from other 

studies, the first experiment analyses the effectiveness of the GS process. With the first 

experiment results, the second experiment extends the evaluation study by analyzing the 

effect of adopting the novel range of repeated features and referring to the official list as 

the main source, in order to satisfy the process enhancement. Furthermore, instead of 

detecting all types of malware, the third experiment investigates and evaluates the 

suitability of using the proposed features, especially for root exploit. The third 

experiment also evaluates the categories of features that root exploit frequently used 

only, as opposed to the features applied in the first and second experiments that detects 

general types of malware. Finally, the chapter concludes with a summary. 
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5.1 General Description 

This chapter provides the results of the evaluations and each with its own set of results, 

discussion, and conclusion. Nonetheless, they do share a similar requirement in their 

experimental procedures. This section discusses the similarities in order to avoid any 

repetition in this chapter. In conducting the evaluation measure, the following section 

provides the description of the dataset used in the following experiments. 

5.1.1 Dataset 

Primarily, the dataset is a collection of related data to initiate the experiment in the 

initial phase. It consists of all the samples required for research activities. Typically, in 

malware detection study, there are two types of classes involved as the dataset, which 

are benign (also known as normal) and malware applications.  

a) Benign Dataset 

Benign, also known as normal or clean, is a status of an application that contains non-

malicious activities. It is considered safe for the user to utilize and install it in mobile 

devices for daily purposes. The following subsection provides the benign dataset 

applied in this study.    

i) Google Play store: This thesis used the benign dataset obtained from Google Play 

store market (Google, 2014). This market provides Android applications of various 

categories, such as business, books, comics, communication, education, 

entertainment, family, lifestyle, medical, music, shopping, transport, tools, and 

social. These applications are provided for users of Android-powered phones, 

tablets, and Android TV devices. In order to ensure the applications are in pristine 

condition, this study included the samples which are only available from the Google 

Play store. The reason for this is that, Google introduced Bouncer, a security service 

that scans the application, its developer account, reputation engine and cloud 
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infrastructure automatically. Google is continuously improving and updating the 

Bouncer detection system and is responsible for dropping the number of malicious 

applications by about 40% in the Google Play store (Hou, 2016). In addition, this 

study also conducted a scan in VirusTotal (VirusTotal, 2016). It is an online website 

which provides button for users to upload their Android package file (.apk) file and 

retrieve the results from more than 50 online antivirus results, either it malicious or 

non-malicious. This experiment uploaded the benign applications in VirusTotal and 

only included applications that received 0/50 scores, which indicates that 50 

antiviruses claimed the .apk is clean or non-malicious. 

ii) Androzoo: In the benign dataset collection phase, this study downloaded 7000 

benign applications from Androzoo (Allix et al., 2016). It is the dataset searched by 

the University of Luxembourg which contains 5 million Android application files 

from the several markets. There are Google Play store (Google, 2014), Anzhi 

(Anzhi, 2017), AppChina (AppChina, 2017), 1mobile (1mobile, 2017), AnGeeks 

(Angeeks, 2017). Slideme (Slideme, 2017), FreewareLovers (Freewarelovers, 2017), 

ProAndroid (ProAndroid, 2017), HiApk (HiApk, 2017) and F-Droid (F-Droid, 

2017). Among all of these markets, this thesis only included application from 

Google Play store. This is to ensure the applications are in pristine condition. The 

reason is, Google introduced Bouncer (Hou, 2016) to double check the clean status 

of applications. Furthermore, this thesis also examined the dataset in VirusTotal to 

confirm its benign status. After the benign dataset, the following section describes 

the malware used in this thesis. 

b) Malware Dataset 

The word malware is an abbreviated term for “malicious software.” Unethical authors 

design an application known as malware for harmful purposes, such as damaging the 

operating system of computer and gaining access to steal private data without the user’s 
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consent. The following subsections present the information of malware used in this 

thesis. 

i) Malgenome: As the experiments require malware dataset, a publicly available 

dataset called Malgenome is thus utilized and extracted, which contains 1,260 

samples. These samples consist of 49 different malware families (Y. Zhou & Jiang, 

2012b) and have been used in many studies (Afifi et al., 2016; Feizollah, Anuar, et 

al., 2013; Narudin et al., 2014). The identification includes several malware types, 

such as botnet, root exploit, and Trojan.  

ii) Drebin: Another malware dataset is Drebin (Arp et al., 2014). It is the experiment 

collaboration in University of Gottingen and Siemens, Germany. They obtain the 

malware by conducting static analysis whereas the features are embedded in a joint 

vector space to identify the application as either malware or benign. The overall 

total amount of Drebin is 5560, which consists of 179 different families. The 

subsequent section provides the information of the tools utilized throughout the 

experiment in this thesis. 

5.1.2 General tools 

This section provides the information of the tools used throughout the experiments in 

this thesis. The tools involved are Jadx, Weka, Apktool and R.   

i) Jadx: In order to gain the application code of the dataset, Jadx (Skylot, 2015) tool 

reverse engineered the Android .apk files. It is used to reverse the .dex file in .apk 

Android file to .java extension file. Once the process is accomplished, this study 

obtained all the files in the nested folders which consist of .xml and .java file 

extensions. The common file found after the reverse process is 

Androidmanifest.xml, and the common folder is called res. The 

Androidmanifest.xml file contains the Android permission, intent filters, libraries, 
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and the folder res contains the application layout with various .xml file types. The 

remaining folders contains .java file types, in which the file names differ depending 

on the application. This thesis chose Jadx for this task because it provides the 

deobfuscation option that performs best in handling the obfuscated code with 

minimal error. 

ii) Weka: It is an acronym which stands for Waikato Environment for Knowledge 

Analysis. It is the machine learning platform for machine learning (Hall et al., 

2009). Figure 5.1 depicts the Weka logo which represents the bird found in New 

Zealand, which is also called Weka.  

 

Figure 5.1: The logo of Weka 

Weka is released as an open source application that provides a graphical user 

interface (GUI) and a command line interface. The GUI facility eases the user to 

complete their machine learning projects easily. Meanwhile the command line 

interface features is very useful for scripting projects. Moreover, it is written in Java 

and provides an API that is well documented and promotes integration into the 

user’s application. 

iii) Apktool: It is a reverse engineering application that decodes the Android 

application package (.apk) file to nearly original form (.java) and able to rebuilds it 

to .apk back after certain modifications have been made  (Wiśniewski, 2015).  

iv) R: R is an open source programming language for statistical computing and 

graphics that is supported by the R Foundation for Statistical Computing. It is 

generally utilized among statisticians and data miners to conduct data analysis and  
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statistical applications. It is capable to conduct numerical computations through 

additional packages that are available (Chambers, 2017). 

This section has defined the dataset (i.e. malware, benign) and general tools used for the 

experiments in this thesis. The next section provides the evaluation measure that is used 

in the experiment in this section. 

5.1.3 Evaluation measure 

In order to evaluate the effectiveness of the features, this thesis assessed the 

performance matrix of the machine learning classifiers. Table 5.1 lists each evaluation 

in terms of accuracy, True Positive Rate (TPR), recall, precision, f-measure and False 

Positive Rate (FPR). It further lists the benchmark performance evaluation and its 

descriptions. The following section explains the experiment that involve the dataset, 

tools and evaluation measure in detecting malware 

Table 5.1: List of evaluation measure 

 Evaluation 

measure 
Descriptions Equation 

Higher value 

indicates better 

performance 

Accuracy Correctly predicts instances as 

either malware or benign  
        

 
     

           
 

True Positive 

Rate (TPR) 

Correctly predicts instances as 

malware  
       (     ) 

Recall (similar 

to TPR) 

Measures the algorithm 

performance in identifying 

malicious samples  

          (     ) 

Precision Measures whether the 

prediction is true or otherwise 

             (     ) 

F-measure Measures the weighted 

harmonic mean of precision 

and recall 

         

 
                      

                
 

Lower value 

indicates better 

performance 

False Positive 

Rate (FPR) 

Incorrectly predicts the sample 

as malware, when it is actually 

benign 

       (     ) 

 

5.2 Evaluation of Genetic Search (GS) 

This section provides the evaluation study that investigates the use of GS in selecting 

the features genetically and to satisfy the following points: 
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a) To propose an evolutionary method known as GS to select the best features in 

minimal amount. 

b) To validate the results of GS, this thesis compared it to existing anomaly-based 

experiments that utilized static features. 

5.2.1 Experiment and procedure description 

This section presents the flow of the experiment. Figure 5.2 illustrates the four phases 

experiment process. The beginning phase is data collection, which includes the reverse 

engineering process that retrieves the code of the application. The following phase is 

string identification, which consists of permission, the words in the double quote, 

function, intent, Linux command, directory path, and system command. The third phase 

applies the GS process to select the best features among all the extracted strings 

obtained in the strings identification phase. Subsequently, the fourth phase involves the 

machine learning classifier, whereas the machine learning classifier trains the 

information in the dataset to construct a detection model which is capable of predicting 

an application either benign or malware. The following subsections describe each phase 

in detail. 

Phase 4

Machine 

learning 

classifiers

Phase 3

Genetic 

algorithm 

selects strings

Identify 

106 

strings

Reverse 

engineer 

for codes 

(.xml and 

.java)

Phase 2

Phase 1

Data 

collection

Results

Android .apk 

files

Benign=550

Malware=5555

 

Figure 5.2: Structure of the experiment phases 
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a) Data collection 

This section explains the data collection phase, which is the initial step of the 

experiment. Table 5.2 lists the summary of the dataset in the experiment. Followingly, a 

reverse engineering tool called Jadx (Skylot, 2015), reverses engineered the Android 

.apk files to obtain the code of the application. 

Table 5.2: Dataset summary 

Dataset Source Total downloaded Total used in the experiments 

Malware Drebin 5560 5555 

Benign Google Play store 1209 550 

  Total = 6105 

 

b) Strings identification 

After obtaining the code of the application, the following step is to investigate and to 

identify the strings for features. Figure 5.3 illustrates the second phase for strings 

identification. To differentiate the colon, quote, and bracket in the code, Natural 

Language Toolkit (NLTK) (Bird et al., 2009) tokenizes the line and pull out the strings. 

Afterward, the existence of each feature (where 1 indicates existence and 0 indicates as 

non-existence) in both benign and malware takes place. In some cases, the strings are 

confused with one another. For example, cat, one of the Linux commands, is confused 

with other words such as concatenate, locate, and other similar words which contain cat 

strings in it. In the interest to observe the entire exact line of codes and to pull out the 

cat command, this part used the grep command in Ubuntu terminal. It is a command 

provided for the Linux platform. 
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NLTK 

(tokenize and 

count)

Grep 

command 

to .csv files

Observe 

the code and 

investigate 

the strings

Set 1 and 0 

to each 

features

106 

strings

Lines of code 

in .xml and 

.java

 

Figure 5.3: Strings identification 

Other than the Linux commands, the features listed in the next section are selected from 

other studies and additional investigation from this experiment. The permission features 

consists of 13 dangerous permissions declared in the Androguard (Desnos, 2015) open 

source tool. Furthermore, the additional features are the proposed set in the root exploit 

study (Firdaus & Anuar, 2015) that consists of the system command, directory path, and 

code-based. This is included due to the reason that this study attempts to detect all 

malware types including root exploit. It is among the malware types that exploit the 

vulnerable Android kernel to gain root and to further execute malicious actions such as 

installing botnet, spreading Trojan, providing fake antivirus results, and executing root 

privileges. 

i) Code-based: Table 5.3 lists the 36 code-based features along with their existences 

in both classes (malware and benign). For instance, createSubprocess is a code 

string exists in 307 malware samples and does not appear in benign samples. As 

the malware dataset is 5,555, and benign is less than malware which is 550; 

therefore, it is necessary to calculate the percentage by dividing the existence, and 

multiplying it by 100. Figure 5.4 depicts the code-based features in percentage 

form. The vertical red line in the middle significantly distinguishes the benign 

class with only three malware features included within the range of 50% to 100%. 
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This reveals that benign features exceed the malware existence in the code-based 

category.  

Table 5.3: Code-based features 

No Code-based 
Existence 

No Code-based 
Existence 

Malware Benign Malware Benign 

1 android.util.Log 4607 543 19 get(os.version) 531 5 

2 android.os.Handler 3878 539 20 getDefaultHost() 489 38 

3 DefaultHttpClient 3413 469 21 createSubprocess 307 0 

4 setReadTimeout 2719 406 22 com.google.update.RU.U11 272 0 

5 UrlEncodedFormEntity 2589 311 23 Forked 95 1 

6 getResourceAsStream 2386 261 24 ImageTestActivity 74 0 

7 getNetworkInfo 2157 348 25 InstallApk 73 1 

8 vnd.android.package-archive 2034 90 26 ACTION_CostInfo 72 0 

9 getExternalStorageState 1954 438 27 ACTION_SaveID 72 0 

10 checkPermission 1893 428 28 AndroidThemeService 72 0 

11 Cipher.getInstance 1738 408 29 CostNumberConfirm 72 0 

12 Math.random 1590 346 30 CostParms 72 0 

13 getLaunchIntentForPackage 1413 284 31 getResponseContentGet 72 0 

14 getSimSerialNumber 1363 36 32 getResponseContentStream 72 0 

15 setWifiEnabled 772 46 33 KeyCostTips 72 0 

16 process.waitFor 738 4 34 KeyPIDIntent 72 0 

17 getField(MANUFACTURER) 641 29 35 TASK_Network_Setting 72 0 

18 getWifiState 559 25 36 config.dat 72 3 

 

Figure 5.4: Code-based in percentage values 
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ii) Permission: The second category is the permission features, included in the 

AndroidManifest.xml file. It is a file required in every Android application main 

directory. It represents the essential information regarding the application package 

name, permission, activities, services, broadcast receivers, and content providers. 

Table 5.4 lists the permissions included in the experiments before the GS feature 

selection phase. For example, android.intent.action.MAIN is a permission that 

exists 5,355 and 541 times in the malware and benign samples, respectively. Some 

of these permissions were taken from the Androguard (Desnos, 2015) application 

which is declared as dangerous, whereas the others are added from this 

investigation. Figure 5.5 depicts the existences of these features in percentage 

form. The plot in the graph shows that both malware and benign classes are placed 

in the similar area from 0% to 100%, in which the areas are similar yet 

insignificant to each other. Meanwhile, the next section presents the directory path 

features.  

Table 5.4: Permission features 

N

o 
Permission 

Existence 
N

o 
Permission 

Existence 
Mal

ware 

Ben

ign 

Mal

ware 

Ben

ign 

1 android.intent.action.MAIN 5355 541 
2

2 
android.intent.extra.shortcut.INT

ENT 
1352 66 

2 android.content.Context 5320 548 
2

3 

android.intent.extra.shortcut.NA

ME 
1352 66 

3 
android.permission.INTERNE

T 
5234 527 

2

4 

android.permission.READ_CO

NTACTS 
1314 59 

4 
android.intent.category.LAUN

CHER 
5150 530 

2

5 

android.permission.WRITE_SM

S 
1213 6 

5 
android.telephony.TelephonyM

anager 
4902 481 

2

6 

com.android.launcher.action.IN

STALL_SHORTCUT 
1197 52 

6 android.intent.action.VIEW 4844 544 
2

7 

android.permission.CHANGE_

WIFI_STATE 
983 85 

7 
android.permission.READ_PH

ONE_STATE 
4838 388 

2

8 

android.intent.action.SCREEN_

ON 
912 107 

8 
android.permission.WRITE_E

XTERNAL_STORAGE 
3644 447 

2

9 

android.intent.extra.shortcut.IC

ON_RESOURCE 
762 55 

9 
android.intent.action.BOOT_C

OMPLETED 
3539 143 

3

0 
android.intent.action.SIG_STR 671 1 

1

0 
android.webkit.WebView 3453 494 

3

1 

android.intent.action.BATTERY

_CHANGED_ACTION 
581 0 
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1

1 
android.content.IntentFilter 3077 504 

3

2 

com.google.update.UpdateServi

ce 
406 0 

1

2 

android.permission.SEND_SM

S 
2976 72 

3

3 
com.google.update.Receiver 398 0 

1

3 
android.webkit.WebSettings 2425 396 

3

4 
com.android.packageinstaller 335 5 

1

4 

android.permission.RECEIVE_

SMS 
2127 17 

3

5 

android.permission.READ_EXT

ERNAL_STORAGE 
323 82 

1

5 

android.permission.ACCESS_

COARSE_LOCATION 
2119 297 

3

6 
com.google.map.apk 275 0 

1

6 

android.permission.ACCESS_F

INE_LOCATION 
2109 306 

3

7 
android.intent.action.NEW_OU

TGOING_CALL 
241 3 

1

7 

android.permission.WAKE_LO

CK 
2098 334 

3

8 
android.intent.extra.PHONE_N

UMBER 
173 3 

1

8 

android.permission.READ_SM

S 
2037 12 

3

9 

android.provider.Telephony.WA

P_PUSH_RECEIVED 
173 2 

1

9 
android.intent.action.DIAL 1729 184 

4

0 

android.settings.WIRELESS_SE

TTINGS 
158 46 

2

0 

android.provider.Telephony.S

MS_RECEIVED 
1446 24 

4

1 

android.provider.Telephony.MM

S_RECEIVED 
72 0 

2

1 

android.intent.action.SCREEN

_OFF 
1407 286 

4

2 

com.android.browser.application

_id 
45 28 

 

 

Figure 5.5: Permission features in percentages 

iii) Directory path: Table 5.5 lists the directory path features included in this 

experiment, in which some paths are taken from the root exploit study (Firdaus & 

Anuar, 2015) and some added from additional investigations. One of the 
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directories, system/bin/su, exists 633 times in malware and none in benign 

samples. It stores the super user information of the Android OS and attracts 

unscrupulous authors to gain root in the victim’s mobile devices. Figure 5.6 shows 

the percentage of the directory path features. The figure depicts the critical 

directory, where system/bin/secbin appears 44% in the graph, leaving the other 

features. 

Table 5.5: Directory path features 

No Directory path Existence 
Malware Benign 

1 system/bin/secbin 2434 0 
2 system/bin/su 633 17 
3 content://telephony/carriers/preferapn 625 19 
4 system/xbin/su 621 38 
5 system/bin/chmod 516 12 
6 system/etc/dhcpcd 449 0 
7 system/etc/rild/cfg 441 0 
8 content://telephony/carriers 376 3 
9 system/bin/sh 287 2 
10 application/vnd.wap.mms-message 280 7 
11 application/vnd.wap.sic 151 3 
12 DES/CBC/PKCS5Padding 134 7 
13 system/bin/mount 41 0 
14 data/local/tmp/rootshell 24 0 
15 system/bin/rm 23 0 
16 system/bin/profile 19 0 

 

 

Figure 5.6: Directory path features in percentages 
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iv) System command: The final category is the system command feature listed in 

Table 5.6. As the objective is to detect all types of malware including root exploit, 

this section included the system command from the root exploit study (Firdaus & 

Anuar, 2015). These features originated from two categories, namely, the Unix 

command and the ADB commands. Examples of Unix commands are chmod, 

chown, pm install, cat, cp -rp, and mount -o remount, and ADB commands 

include startservice -n and adb_enabled. Figure 5.7 displays these commands in 

percentage form. The commit command has the most existence in both benign and 

malware classes. 

Table 5.6: System command features 

No System command 
Existence 

Malware Benign 
1 commit 4529 536 
2 chmod 1034 49 
3 startservice -n 474 0 
4 buffer.listFiles 272 0 
5 buffer.mkdir 272 0 
6 mount -o remount 247 2 
7 chown 195 0 
8 pm install 183 0 
9 stdin 179 8 

10 cat 123 1 
11 adb_enabled 80 2 
12 cp -rp 72 0 

 

 

 
Figure 5.7: System command features 
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Figure 5.8 shows the regression line to discover the relationship of significant 

features in the malware and benign samples. The three lines (indicated as code-based, 

permission, and system command) that rise from below to the top show a positive 

relationship. The lines indicate that whenever benign features increase, malware and 

benign expand as well. This finding proves that the malware features are suitable 

attributes for detecting malware. However, the line of directory path category is 

minimal, by reason of percentage is small compared with other categories. Thus, in 

the succeeding section, the GS method search which features is the best among all 

the features in code-based, directory path, permission and system command 

categories. 

 

 

Figure 5.8: Regression lines of all categories 

c) Proposed GS and features 

The GS is based on the GA method which is inspired and based on the evolutionary 

biology in nature (e.g. crossover and mutation). This evolutionary process provides a 

technique to automatically improve characteristics or features in order to generate the 
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best generation. The evolution is able to transform the worst generation to form a better 

generation. This is done by referring to the fitness requirement. This method includes a 

set of requirements, which is when one generation is unmatched according to certain 

characteristics, the GA excludes that generation and this process repeats until the best 

generation is achieved. Furthermore, the GA is unable to solve any research problem by 

providing a final ultimate solution; instead, it serves a method to select at least the 

optimal features.  

Hence, the next process is to select the best features among the 106 features mentioned 

in the previous section. The GS process takes place in the Waikato environment 

knowledge analysis (Weka) (Hall et al., 2009) tool. As the total dataset consists of 6,105 

applications (both benign and malware), the parameter settings are 400 for populations 

in each generation, which amount to a total of 15 generations. For crossover probability, 

it is set as 0.6, which crossover the 106 features to produce the offspring list of features. 

To maintain the value of the features (0 and 1) in each application, this study set zero 

for the mutation process. At the end of the process, GA successfully produces the best 

generations of features and selected the six features as listed in Table 5.7. 

Table 5.7: Six GS-selected features 

Features Existence in  malware (%) Existence in benign (%) 

android.permission.READ_SMS 36.7 2.2 

android.permission.RECEIVE_SMS 38.3 3.1 

android.permission.WRITE_SMS 21.8 1.1 

checkPermission 34.1 77.8 

system/bin/sec/bin 43.8 0 

com.android.browser.application.id 0.8 5.1 

 

These features are included in three types of categories; first is android permission 

(read, receive, and write SMS), the second is code-based (checkPermission and 

com.android.browser.application.id), and the third is directory path (system/bin/secbin). 

In Table 5.7 the existence of malware in permission and directory path is more than 
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benign. Nevertheless, it is different for the code-based category, with the malware 

existence found to be fewer that of benign. This demonstrates that GS search the 

optimal features not according to malware existence; merely it is according to the 

evolutionary process in GS. Subsequently, in order to evaluate the effectiveness of these 

features, this study used three types of machine learning classifiers in the following 

section (bayes, trees, and function). 

d) Machine learning classification 

In constructing the machine learning model, the classifiers are run in the Weka (Frank et 

al., 2016). In this tool, it is fundamental to prepare a Comma Separated Values (.csv) 

file. As GS selected the six features and addition to the class label, this file therefore, 

contains seven columns. Furthermore, this file contains 6105 lines of rows, which 

represents the total of both malware (5555) and benign (550). Given that this work uses 

static analysis, each row comprises of 1 or 0 only. Each row represents an application, 

which shows 1 (if the feature exists @ occur) or 0 (if the feature is non-existent @ non-

occur).  

Once the .csv file application is completed, the following step is to convert it to 

Attribute-Relation File Format (.arff) file. This conversion is done by Weka. The reason 

is, ARFF is an ASCII text file format, which Weka introduced specifically to loads 

faster (Williams, 2010). To achieve natural and acceptable results, the evaluation 

process applies the randomize option to randomly shuffle the order of both classes 

(malware and benign) in the datasets. Therefore, the class categories in each application 

are arranged randomly to provide a natural order. Figure 5.9 displays the captured 

screen of some part in the ARFF file after the randomize option. Eventually, the three 

machine learning classifiers, namely, MP, RF, and NB, utilized this ARFF file for 

evaluation. 
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Figure 5.9: Part of ARFF file 

In constructing the machine learning predictive model, it is necessary to conduct k-fold 

cross validation methods, which runs repeatedly in k-fold times. In the experiment, the k 

subsets serve as the test set, whereas k-1 subsets are used as the training set. Moreover, 

the average of all k trials is computed for the evaluation (Schneider, 2016). This study 

used the 10-fold method, which repeatedly runs for 10-fold times for feature 

effectiveness. Particularly, the dataset is randomly divided into ten subsets of equal size 

and repeated ten times. In each repetition, one subset is used as the test set and the other 

nine subsets are combined to form the training set. Accordingly, the test set is excluded 

from the training set, which is used to detect unknown malware in this step. The 

following section provides the results from the six features. 

5.2.2 Results 

In the interest to evaluate the effectiveness of the six features which are selected by GS, 

it is crucial to address the machine learning classifiers performance matrix. The 

following section provides the results of this experiment in two aspects, namely, cross 

validation as well as training and testing section.  
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a) Cross validation 

Table 5.8 lists the results derived from the experiments. In cross validation, FT 

accomplished magnificent results across four categories; highest accuracy (94.22%), 

highest correctly classified instances (5752), the lowest percentage of incorrectly 

classified instances (353), and lowest FPR (23.8%). In the true positive value, all 

classifiers gain the same mark except for J48, which achieved the lowest at 95.8 %. 

Additionally, in the ROC category, MLP obtained the highest value at 0.950. In the next 

category, precision, three classifiers shared an identical value of 97.6%, whereas the 

others recorded 97.5%. Moreover, all classifiers share a similar result for the recall and 

f-measure categories except for J48. 

Table 5.8: Classifiers results in cross validation 

 Classifiers 

Categories 
Bayes Function Trees 

NB MLP FT RF J48 

Results 

Accuracy 94.17% 94.19% 94.22% 94.20% 93.89% 

Correctly 

classified 

instances 

5749 5750 5752 5751 5732 

Incorrectly 

classified 

instances 

356 355 353 354 373 

FPR 24.5% 24.2% 23.8% 24% 25.1% 

TPR 96% 96% 96% 96% 95.8% 

ROC 0.936 0.950 0.947 0.946 0.905 

Precision 97.5% 97.6% 97.6% 97.6% 97.5% 

Recall 96% 96% 96% 96% 95.8% 

F-measure 96.8% 96.8% 96.8% 96.8% 96.6% 

 

b) Training and testing 

On the other hand, Table 5.9 enlists the results retrieved from 80% training and 20% 

testing section. This step trains the classifiers with 80% of the dataset, while the 

remainder is used for testing the model in detecting malware, which is excluded in the 

training set. As the total dataset is 6105, therefore, 4884 of it is used for training, while 

1221 is for testing part. In the table, two classifiers, NB and FT share the best value in 

accuracy (95%), correctly (1160) and incorrectly (61) classified instances, and f-
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measure (97.2%). However, NB holds the best value among other classifiers in TPR and 

recall which is 96.8%. Overall, FT is the outstanding classifier which jotted the highest 

value in all categories except TPR and recall in detecting unknown malware. 

Table 5.9: Classifiers results in training and testing 

 Classifiers 

Categories 
Bayes Function Trees 

NB MLP FT RF J48 

Results 

Accuracy 95% 94.9% 95% 94.9% 94.7% 

Correctly 

classified 

instances 

1160 1159 1160 1159 1157 

Incorrectly 

classified 

instances 

61 62 61 62 64 

FPR 22.1% 22.1% 21.2% 22.1% 23.9% 

TPR 96.8% 96.7% 96.7% 96.7% 96.7% 

ROC 0.94 0.953 0.956 0.954 0.916 

Precision 97.7% 97.7% 97.8% 97.7% 97.5% 

Recall 96.8% 96.7% 96.7% 96.7% 96.7% 

F-measure 97.2% 97.2% 97.2% 97.2% 97.1% 

 

c) Before and after GA 

In the interest to observe the differences before and after the GA process, this subsection 

compares the result in predicting the class samples in Weka. This part first prepares the 

benign samples which excluded from this experiment dataset to test the prediction 

effectiveness. Table 5.10 lists ten benign samples downloaded from the Google Play 

store and further scanned in VirusTotal to confirm its benign status. In the beginning, 

this study predicts these applications using 106 features. In the following, the machine 

learning predicts these samples using the GA features. Table 5.11 details the differences 

before and after the GA process with the best prediction results highlighted in bold. 
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Table 5.10: Benign samples information 

Package name Md5 
Size 

(byte) 

com.schoenmueller.wiesbadenPlus cd217fd9a73b5660175acf5282e7f83a 27491923 

com.incisivemedia.erandroid 300ae64c25457ed12d9d4afadd90424b 3610532 

com.tester.wpswpatester 0e7c2d0422290eef1af6a80ad67e26b3 907795 

com.appsbuilder4593 2c0e53592afdf430f1052ed7873e7124 536882 

com.komfo.komfo a8f5008f60c169e67feb93cfeb2f3368 4085095 

cc.leet.free 66b129b07a3c4c8f82da428fa6809528 2191099 

com.mgz.bmpkiosk f49c0c987e0187dea84033a9fcaf55a2 27181791 

com.aor.droidedit 55f51015242995f88cc059aa368a58af 1465402 

com.bigint.writermd b45b49c5369fa351a54130124675ee03 3942002 

com.aflower.weightlosssmoothies 53939541cf6439979f154966ab0109e6 1403709 

 

Table 5.11: Before and after GA 

Classifier NB MLP FT J48 RF 

Package name Before GA 

com.schoenmueller.wiesbadenPlus B B B B B 

com.incisivemedia.erandroid B B B B B 

com.tester.wpswpatester B B B B B 

com.appsbuilder4593 B B B M B 

com.komfo.komfo B B B B B 

cc.leet.free B B B B B 

com.mgz.bmpkiosk B B B B B 

com.aor.droidedit B M M M M 

com.bigint.writermd B B B B B 

com.aflower.weightlosssmoothies B B B B B 

Prediction/total benign 10/10 9/10 9/10 8/10 9/10 

Time taken to predict (second) 0.1 175.57 1.81 0.36 0.36 

Classifier NB MLP FT J48 RF 

Package name After GA 

com.schoenmueller.wiesbadenPlus B B B M B 

com.incisivemedia.erandroid B B B B B 

com.tester.wpswpatester B B B B B 

com.appsbuilder4593 B B B M B 

com.komfo.komfo B B B B B 

cc.leet.free B B B B B 

com.mgz.bmpkiosk B B B M B 

com.aor.droidedit B B B B B 

com.bigint.writermd B B B B B 

com.aflower.weightlosssmoothies B B B B B 

Prediction/total benign 10/10 10/10 10/10 7/10 10/10 

Time taken to predict (second) 0.01 2.5 0.31 0.02 0.09 
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Table 5.11 compares the accuracy as well as the time taken in machine learning before 

and after the GA course. Figure 5.10 depicts these differences in graph manner. Before 

GA selects the features, the machine learning classifiers incorrectly predicted the benign 

applications as malware for 5 times. One of the classifiers, J48 mistakenly predict for 

two times, compare to MLP, FT, and RF which forecast wrong for one time only. 

However, Figure 5.10 places NB in the top value which shows the only one classifier 

which successfully predicts the ten applications as benign. Dissimilarly, after the GA 

selects the best features among 106 features, all the classifiers accurately predict the 

applications, except J48 which incorrectly predict three times, which is the lowest place 

in the figure. It proves that by adopting GA in decreasing the number of features, 

machine learning classifiers are capable of enhancing the accuracy in distinguishing 

between benign and malware classes effectively. Meanwhile, Figure 5.10 illustrates 

another significant aspect of the GA process which is the time consumes for the 

classifier in conducting the intelligent machine learning prediction system. 

 

Figure 5.10: The accuracy and time comparison in machine learning prediction 

Before the GA course, by using 106 features, the total time taken to predict by machine 

learning classifiers is 178.2 seconds, with MLP jotted the longest time in the figure, 

which is 175.57 seconds. In the following, by using features derived from the GA 
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method, the classifiers successfully predicted 47 correct classes as benign with a 

satisfactory short time interval, 2.93 seconds in total. This demonstrates that by 

applying 106 features, the prediction took a long time to predict the samples as the 

classifiers need to consider all the features in each sample, which leads to the detection 

being more complex. By decreasing the features with GA, the classifiers are capable of 

decreasing the features complexity in the machine learning intrusion detection system. 

Having defined the number of feature differences, the next issue is the reverse 

engineering process in static analysis. 

These machine learning steps were done in Weka whereas this study reverses engineers 

the samples and count the frequency before assigning it to the simulation. However, this 

situation is different when this prediction takes place in the actual IDS. Practically in the 

static analysis initial step, the IDS automatically reverse engineer each sample to obtain 

the code and further count each feature in machine learning classifiers. If in the situation 

where IDS needs to recognize 106 features in overall code, which include all types of 

strings including numbers, characters (e.g. double apostrophe, bracket), and symbols, 

this would possibly increase the noise of the strings and lead to irrelevant data. Figure 

5.10 illustrates the worst accuracy in prediction and time taken in the simulation before 

the GA process. The predictions would possibly reach less accuracy and the time taken 

would be a great deal longer in real IDS. MLP takes 175.57 seconds which is equal to 

2.93 minutes in the simulation, with the reverse engineering and counting features 

processes being excluded from the simulation process. Therefore, in actual IDS, MLP 

needs more than 2.93 minutes to detect malware. Henceforth, the features noise may 

increase when machine learning needs to process more than ten samples. Therefore, by 

reducing the features with the GA method, this work is able to decrease the noise of the 

string including unnecessary data, which contribute to the effectiveness of machine 

learning intelligent prediction system.  
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In addition, FT jotted promising scores in cross validation as well as training and testing 

phases, which surpasses other tree-based machine learning classifiers (i.e. RF and J48), 

despite the fact that past analysts precluded FT in their static analysis research. 

Meanwhile, the following section compares this study with previous works which apply 

similar malware dataset, Drebin.    

5.2.3 Discussion 

Every type of analysis, such as static and dynamic, applies a different method in 

examining malware and benign datasets. Correspondingly, different analyses present 

distinct advantages and disadvantages. To substantiate the effectiveness of the results, 

this section compares the results of this experiment with previous studies that used static 

and dynamic analyses with Drebin as the malware dataset. Table 5.12 compares the 

results in the accuracy category. As for the classifiers shown in the table, this section 

prefers the classifier which achieved only the best accuracy. These studies are chosen 

based on two reasons; 1) The dataset used is similar to this experiment’s study, which is 

Drebin. 2) The selected studies are published in good quality journals. 3) The research 

objective is to decrease the features to derive its relevance, which is similar to the aim of 

this experiment.  
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Table 5.12: Comparison with other studies 

Refere

nces 

Type of 

analysis 

Classifi

er 

Result Dataset Method 

for 

selecting 

features 

Features 

   Accuracy Benign  Malwa

re 

  

Ours 

Static 

FT 94.22% 550 5555 Genetic 

search 

6 features 

(permissions, 

code-based, and 

directory path) 

Drebin 

(Arp et 

al., 

2014)  

Support 

vector 

machin

e 

94% 123,453 5560 Joint 

vector 

space 

Set to a vector 

space 

Smartb

ot 

(Karim

, 

Salleh, 

& 

Khan, 

2016) 

Dynami

c 

Simple 

logistic 

regressi

on 

99.49% n/a 36 for 

learnin

g, 

4891 

for 

testing 

Element 

tree xml 

API of 

python 

and 

regular 

expressio

n 

16 network 

features  

(file system 

activities, 

network 

connections, 

information 

leakage, started 

services, SMS, 

cryptographic 

operations, DNS 

request, HTTP 

traffic parameters 

and unknown 

TCP and UDP 

conversations) 

 

In the static analysis comparison, this study method in selecting features is different 

from another Drebin study (Arp et al., 2014). GS is based on an approach which models 

the natural processes of the inheritance of multiple generations and the survival by 

fitness or adaptation to the environment. In contrast, joint vector space analyzed and 

identified the typical patterns and combinations of the features in geometric form. 

However, in the accuracy comparison, this experiment’s accuracy exceeded 0.22% more 

with Drebin. This proved that GS performed much better in selecting relevant features 

compared to joint vector space. However, the frequency of the feature in their study 

remained unknown; therefore, this section is unable to discuss which and how many 

features are used for their Linear Support Vector Machine training. 
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Smartbot (Karim, Salleh, & Khan, 2016) outperformed this experiment’s accuracy value 

of 94.22% with their 99.49% using dynamic analysis. This indicates that their method of 

using element tree xml in selecting features is convenient for the dynamic analysis. 

Nevertheless, their benign dataset is unknown, and they mentioned only the malware 

dataset in their study. In addition, although the accuracy is high in detecting malware, 

dynamic analysis consumes a much longer time compared with static as it classified the 

samples by executing it and by monitoring its behavior further. Moreover, this study 

aims to detect all types of malware (e.g. trojan, botnet, and root exploit), whereas their 

study particularly focused on detecting botnet. 

Meanwhile, in FPR comparison for both static and dynamic analyses, this experiment’s 

score is left behind compared to Drebin and Smartbot. This demonstrates that benign 

samples play an important role in producing beneficial results, whereas more benign 

samples contribute to achieving fewer FPR value (lower value indicates better 

performance). However, in Drebin, the FPR value is corresponding to one false alarm 

which is limited to 100 applications and precluded the exact list of features utilized in 

their experiment. On the other hand, this investigation implements two types of 

evaluation, the 10-fold cross validation and training and testing which include all the 

dataset. Furthermore, this study listed the six features for the machine learning classifier 

for this experiment. Meanwhile, in the Smartbot study, the experiment practices 

dynamic analysis that monitors application activities which consumes a lot of time, 

effort, performance and hardware resources. In comparison to static analysis study, this 

experiment only needs low resources (e.g. memory, CPU) than a dynamic analysis 

which consumes more hardware requirement and time. Having discussed the GS 

method, the next section conducts the range of repeated features evaluation. 
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5.3 Range of repeated features evaluation 

This section provides the evaluation study that investigates the novel range of repeated 

features method in selecting the best features that malware frequently used as well as to 

satisfy the following points: 

a) To propose the range of repeated features method to select the best features in 

minimal amount. 

b) To validate the result from the range of repeated features method, this thesis 

compared it to existing anomaly-based experiment that utilized static features. 

5.3.1 Experiment and procedure description 

This section presents the overall workflow of the experiment. Figure 5.11 illustrates the 

methodology process. The first phase begins with data collection, which includes the 

reverse engineering process that retrieves the code of the application. The following 

phase is the feature investigation to select the exquisite of it among three categories (i.e. 

permission, directory path, and telephony). In the objective to detect unknown malware, 

the third phase applies the neural network-based classifiers (MLP, VP, and RBFN). The 

following subsections describe these phases in detail. 
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Figure 5.11: Methodology of the experiment 

a) Data collection 

Primarily, the dataset is a collection of related data to initiate the experiment in the 

initial phase. It consists of all the information required for research activities. Table 5.13 

lists the summary of dataset information in this experiment. The following subsections 

describe the dataset in detail. 

Table 5.13: Dataset summary 

Dataset Source Total downloaded Total used in the experiments 

Malware Drebin 5560 5551 

Benign Google Play store 7000 5551 

  Total overall= 11102 

 

b) Feature investigation and selection 

In malware analysis, finding relevant features in minimal amount is crucial to establish 

an accurate predictive model, hence enhancing the detection accuracy of limited data 

and reducing the complexity of the predictive model (Feizollah et al., 2015). This phase 

scrutinizes and selects which features are suitable for numerous lines of codes. This 

section applied the grep command in Ubuntu terminal to observe the entire codes and 
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pull out the features. Later, this experiment used R tool to clean the data and count the 

features. Figure 5.12 displays overall features in all categories. 

 

Figure 5.12: Frequency of features in all categories 

The categories of features in this experiment are permission, directory path, and 

telephony. This study acknowledged the frequency of each feature that is existing or 

non-existing as well as those repeatedly used in each application. For instance, 

android.permission.WRITE_SMS existed in one application, and this similar 

application also utilized the same feature repetitively. In Figure 5.12, the left side shows 

the total number of features frequency which the applications repetitively used. It 

describes the malware utilized permission features found to be more than benign. 

However, in the telephony category, the range of features between malware (58535) and 

benign (55748) is small with only 2787. Meanwhile, the right-side view in Figure 5.12 

depicts the number of distinct frequency.  
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In this study, the maximum total of distinct frequency in both malware and benign in 

directory path is 113, permission is 378, and telephony is 52. In this aspect, certain 

features exist in malware but are excluded in benign, and some of it exist in benign, but 

are non-existing in malware. Therefore, in the figure, by combining the distinct features 

of malware and benign in each category, the amount will not exceed the maximum total 

of distinct frequency. For instance, in the directory path, the total distinct features of 

malware (69) and benign (25) is 94, which is lower than the maximum total (113).   

In the distinct features of view, Figure 5.12 describes that malware used more amount of 

features than benign, except for the telephony category. It shows that benign used 27 

telephony features, exceeding malware which only used 24. It is worth noting that 

dataset total amount, for both benign and malware are similar, which is 5551. Therefore, 

this investigation discovers that, if this study adds more benign samples, it derives the 

probability that benign possibly used more amounts of telephony features than malware, 

which is different than the directory path and permission categories.  

After this experiment obtained all the features frequency including the repetition, the 

subsequent step is to expose which features are most used by malware. In this step, this 

study subtracts the malware frequency with benign and obtain the range algorithm 

according to the equation in Section 4.1.2. The following section provides the top range 

features obtained from the equation in the permission, directory path, and telephony 

categories. 

i) Permission: The first category is the permission features, which is encoded in the 

AndroidManifest.xml file. Fundamentally, every Android application includes 

AndroidManifest.xml in its directory. It represents the information that consists of 

the application package name, its permissions, activities, services, broadcast 

receivers, and content providers. In this category, this experiment includes the 
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permission in the Android reliable official website (Android, 2015), as well as other 

permissions obtained from this investigation. This exploration realized that the 

number of permissions is increased because the developer is capable to create 

permission in their own desired name upon creating an Android application. Hence, 

this study stopped the process and gained 378 permissions both in malware and 

benign. As this experiment included the imperative permissions from reliable 

sources in the Android official website, this experiment considers the total as 

sufficient. Figure 5.13 depicts the top 10 permission range and the frequency. The 

highest range in the figure is android.permission.READ_PHONE_STATE which 

appear between 5000 and 7000. It shows that malware used this permission more 

regularly than benign. Moreover, the same permission is included in the top ten 

range in Figure 5.14, which is the top ten malware permission enclosed in overall 

code (including manifest) and in the manifest file only. The permission listed in both 

Figure 5.13 and Figure 5.14 are android.permission.READ_PHONE_STATE, 

com.android.launcher.permission.INSTALL_SHORTCUT, 

android.permission.ACCESS_COARSE_LOCATION and 

android.permission.READ_CONTACTS. On the other hand, the next section 

provides the directory path feature. 
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Figure 5.13: Top 10 permission range with frequency 

 

 

Figure 5.14: Top 10 malware permission range (code and manifest) with 

frequency 

ii) Directory path: The second category included in this study is the directory path. 

This experiment investigates all the possible directory paths based on the Linux file 

system (Anderson, 2016). The total features in this category are 113. Figure 5.15 

shows the top ten directory path frequency and the range. The highest range in this 
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figure is /data/data which is allocated between 6000 and 9000.  The other features 

received a smaller range and are slightly similar to each other. Afterward, this 

investigation continues with the following category, which is telephony.  

 

Figure 5.15: Top 10 directory path range with frequency 

iii) Telephony: The final category is the telephony features, also known as telephony 

manager. It is one of the Application Programming Interface (API) in the Android 

system. In order to discover the features, this investigation is based on the reliable 

Android official website (Android, 2016), which the total is 52. Figure 5.16 depicts 

the top ten telephony range including the frequency. Accordingly, the features 

among the higher ranges are the getLine1Number, getSubscriberId, and 

getSimSerialNumber. Once this experiment calculates the range of malware and 

benign, there is a need to observe the relationship of malware and benign features as 

either positive or negative.  
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Figure 5.16: Top 10 telephony range with frequency 

To discover the features relationship in malware and benign samples, this study 

provided the regression line depicted in Figure 5.17. The three lines (indicated as 

directory path, permission, and telephony) that rise from below to the top show a 

positive relationship. The lines indicate that whenever benign features increase, 

malware and benign expand. This finding proves that the malware features in this 

experiment are relevant features in detecting malware. The two significant lines, 

telephony (blue square) and permission (green triangle) depict that these two features 

are significant than directory features. In addition, this experiment used Information 

Gain (IG) value to ensure the features effectiveness in machine learning detection 

accuracy.  Univ
ers

ity
 of

 M
ala

ya



92 

 

Figure 5.17: Regression lines of features 

IG (Shannon, 1948) decides the amount of data by measuring how well it isolates the 

training samples according to the objective. This study inclines toward IG because of its 

compelling measuring features, generalization capability, accuracy enhancement, and 

short execution time (Kent, 1982). The highest IG value demonstrates the most effective 

for machine learning recognition. Table 5.14 records the twelve features in IG value 

beginning from 0.05 onwards.  

Table 5.14: Features in IG value from 0.05 onwards. 

Features Info Gain Category 

android.permission.SEND_SMS 0.2273 permission 

android.permission.READ_SMS 0.1772 permission 

android.permission.READ_PHONE_STATE 0.1591 permission 

android.permission.RECEIVE_SMS 0.1538 permission 

getSubscriberId 0.1528 telephony 

getLine1Number 0.1466 telephony 

android.permission.WRITE_SMS 0.0992 permission 

com.android.launcher.permission.INSTALL_SHORTCUT 0.0939 permission 

android.permission.RECEIVE_BOOT_COMPLETED 0.0885 permission 

getSimSerialNumber 0.0727 telephony 

android.permission.ACCESS_NETWORK_STATE 0.0708 permission 

com.android.browser.permission.READ_HISTORY_BOOKMARKS 0.0525 permission 

 

For the final decision in selecting the best features, this study considers these twelve 

features for the following reasons. First, the features in this table are included in best IG 
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value. Second, the positive relationship in regression line proves the permission and 

telephony are the significant categories which are similar to the categories in best IG 

value in Table 5.14. Third, these twelve features are included in the top ten range 

frequencies. Therefore, this experiment utilized these selected twelve features for the 

bio-inspired ANN classification in machine learning. 

c) Artificial Neural Network (ANN) evaluation 

In machine learning, the classifier's prediction is based on the predictive model. In 

building the model, this study used Weka (Waikato, 2017). In this tool, it is fundamental 

to prepare a Comma Separated Values (.csv) file. As this investigation selected the 

twelve features and addition to the class label, this file, therefore, contains thirteen 

columns. Furthermore, this file contains 11102 lines of rows, which represents the total 

of both malware (5551) and benign (5551). Given that this work utilizes static analysis, 

each row comprises of 1 or 0 only. Each row represents an application, which shows 1 

(if the feature exists @ occur) or 0 (if the feature is non-existing @ non-occur). ing 

Once the .csv file application is complete, the following step is to convert it to 

Attribute-Relation File Format (.arff) file. This conversion is done by Weka. The reason 

is, ARFF is an ASCII text file format, which Weka introduced specifically to loads 

faster (Williams, 2010). To achieve natural and acceptable results, the evaluation 

process applies the randomize option to randomly shuffle the order of both classes 

(malware and benign) in the datasets. Therefore, the class categories in each application 

are arranged randomly to provide a natural order. Figure 5.18 displays the captured 

screen of some part in the ARFF file after the randomize option. Eventually, the three 

machine learning classifiers, namely, MLP, VP, and RBFN, utilized this ARFF file for 

constructing the machine learning model. 
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Figure 5.18: Sample screenshot of arff file 

 

In constructing the machine learning predictive model, it is necessary to conduct k-fold 

cross validation methods, which runs repeatedly in k-fold times. In the experiment, the k 

subsets serve as the test set, whereas k-1 subsets are used as the training set. Moreover, 

the average of all k trials is computed for the evaluation (Schneider, 2016). This study 

used the 10-fold method, which repeatedly runs for 10-fold times for feature 

effectiveness. Particularly, the dataset is randomly divided into ten subsets of equal size 

and repeated ten times. In each repetition, one subset is used as the test set and the other 

nine subsets are combined to form the training set. Accordingly, in this step, the test set 

is excluded from the training set, which is used to detect unknown malware.  

5.3.2 Results 

This section evaluates the effectiveness of the twelve features derived from the third 

experiment investigation. The evaluation information for the results was explained in 

Section 5.1.1.  

In this section, the beginning result is MLP, followed by VP and finally RBFN. In the 

aspiration to discover results in different parameter value beginning from 0.1 to 1.0, 

these three classifiers utilized these similar values in different parameters. For MLP, the 
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parameter is the learning rate, the exponent is for VP and the minimum standard 

deviation is for RBFN. 

a) MLP 

Table 5.15 enlists MLP results with different learning rate values. It refers to the update 

network weights amount for each training period. This learning rate is for the 

backpropagation algorithm with the default value being 0.3. The value of this parameter 

should be between 0 and 1. In this table, the best parameter is the 0.1, which achieved 

the best score in four metrics, whereas the accuracy is 90%, FPR is 7.2%, precision is 

92.3% and f-measure is 89.6%. This result justifies that the evaluation value is changed 

to a better score whenever the amount of weight in learning rate is decreasing. 

Table 5.15: MLP evaluation results 

Learning rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Evaluation MLP (%) 

Accuracy 90 90 89 89 89 89 89 89 89 90 

True positive 

rate (TPR) 

87 86.8 87.7 88.2 88.3 87.3 87.9 88.1 88.3 87.2 

False positive 

rate (FPR) 

7.2 7.5 8.7 9.3 9.3 8.3 8.7 9.3 9.8 7.9 

Precision 92.3 92.1 91 90.5 90.5 91.3 91 90.5 90 91.7 

Recall 87 86.8 87.7 88.2 88.3 87.3 87.9 88.1 88.3 87.2 

F-measure 89.6 89.4 89.4 89.3 89.3 89.3 89.4 89.3 89.1 89.4 

 

b) VP 

On the other hand, Table 5.16 lists the VP evaluation value with the exponent as the 

parameter. The exponent refers to the value of the polynomial kernel in VP algorithm, 

which the default is 1. For this neural network classifier, the evaluation value changes to 

better results whenever the exponent value is increasing. The best parameter is 1.0 

which jotted 89% in accuracy, 11.3% in FPR, 88.7% in precision and 88.7% in f-

measure. This demonstrates that the increment of exponent contributes to better 

evaluation results.  

Univ
ers

ity
 of

 M
ala

ya



96 

Table 5.16: VP evaluation results 

Exponent 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Evaluation VP (%) 

Accuracy 86 84 84 83 84 85 86 87 88 89 

True Positive 

Rate (TPR) 

86.9 85.3 85.1 84.6 84.8 85.1 87 87.4 89.6 88.7 

False 

Positive Rate 

(FPR) 

13.7 16.9 17.9 17.5 16.4 15.9 15.4 13.4 13.3 11.3 

Precision 86.4 83.5 82.6 82.9 83.8 84.3 85 86.7 87.1 88.7 

Recall 86.9 85.3 85.1 84.6 84.8 85.1 87 87.4 89.6 88.7 

F-measure 86.6 84.4 83.9 83.7 84.3 84.7 86 87 88.3 88.7 

 

c) RBFN 

Table 5.17 shows the RBFN evaluation results with the best score highlighted in bold. 

The parameter is the minimum standard deviation, which is set for the clusters in the 

neural network. In this table, the lowest parameter receives good results with 87% in 

accuracy, 86.1% in TPR, 86.1% in recall and 87.1% in f-measure. This result describes 

that the most minimal standard deviation, which is 0.1, records the best evaluation 

results. So far this section has focused on the outcomes of accuracy, TPR, FPR, 

precision, recall and f-measure, while Figure 5.19 depicts all these evaluations in graph 

manner. 

Table 5.17: RBFN evaluation results 

Minimum 

standard 

deviation 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Evaluation RBFN (%) 

Accuracy 87 87 86 86 87 87 87 87 87 87 

True positive 

rate (TPR) 
86.1 85.9 83.5 83.9 83.8 83 82.8 82.4 81.5 81.2 

False 

positive rate 

(FPR) 

11.7 11.6 10.9 10.9 10.6 9.6 8.9 8.2 7.6 7.3 

Precision 88 88.1 88.5 88.5 88.8 89.6 90.3 91 91.5 91.7 

Recall 86.1 85.9 83.5 83.9 83.8 83 82.8 82.4 81.5 81.2 

F-measure 87.1 87 85.9 86.2 86.2 86.2 86.4 86.5 86.2 86.1 
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Figure 5.19: The evaluation results in graph manner 

 

Figure 5.19 demonstrates that by using this experiment’s proposed features and method, 

MLP classifier recorded the best prediction in this simulation that surpasses other 

classifiers. It marks the highest scores in accuracy, TPR, f-measure, recall, and 

precision. Furthermore, MLP achieves the low scores in incorrect prediction in 

classifying malware. Although VP seems to have the worst score compared to other 

classifiers, however, it still achieves better scores than RBFN in recall and TPR. So far, 

this experiment has focused on the outcomes in accuracy, TPR, FPR, precision, recall, 

and f-measure, while the following part describes the Receiver Operating Characteristic 

(ROC) values from different parameters. 
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d) Receiver Operating Characteristic (ROC) 

In this section, this study utilized the ROC value to discover the tradeoff between the 

TPR and FPR values. It is a fundamental indicator for diagnostic test evaluation. TPR 

(sensitivity) is plotted in the function of FPR for different cutoff points of a parameter. 

The ROC value closer to 1 indicates good classifier performance and high classification 

accuracy. Table 5.18 shows the ROC value in each parameter with the leading value 

highlighted in bold. In ROC value comparison, MLP obtains the closest value to 1 at 

0.958. This value is higher than VP and RBFN (0.888 and 0.93). This demonstrates that 

MLP performs better in comparing ROC value between VP and RBFN. On the other 

hand, Figure 5.20 displays the ROC value in graph form to reveal the pattern line when 

the parameter values are changing from 0.1 to 1.0. 

Table 5.18: ROC value in each parameter 

Classifier ROC 

Parameter 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

MLP 0.958 0.958 0.957 0.958 0.957 0.956 0.957 0.955 0.954 0.955 

VP 0.866 0.843 0.836 0.837 0.844 0.849 0.858 0.87 0.882 0.888 

RBFN 0.92 0.922 0.918 0.918 0.92 0.921 0.921 0.926 0.928 0.93 

 

In the MLP classifier, the ROC values are declining when the learning rate parameter 

increases from 0.1 to 1. It demonstrates that the MLP reaches the best ROC value in a 

lower learning rate. Unlike MLP, the ROC value of VP gradually rises whenever the 

parameters are increasing. Similarly, RBFN receives akin pattern line compared to VP. 

These lines verify that these two classifiers are experiencing better ROC value when the 

parameter values are expanding. This section thus far discusses results derived from this 

study; hence the next section presents the confusion matrix.     
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Figure 5.20: ROC value in graph form 

e) Confusion matrix 

A confusion matrix is a table to explain the performance of the machine learning 

classifier model. It provides the information of correct and incorrect prediction that have 

been done from the testing phase. Table 5.19 lists the confusion matrix of MLP, 

followed by Table 5.20 from VP, and Table 5.21 from RBFN classifiers. To clearly 

describe the correct prediction in detecting malware, Figure 5.21 depicts the pattern of 

this information between the classifiers. 

Table 5.19: Confusion matrix of MLP classifier 

Parameters Actual 
Predicted 

Predicted malware Predicted benign 

0.1 
Actual malware 4827 724 

Actual benign 402 5149 

0.2 
Actual malware 4820 731 

Actual benign 414 5137 

0.3 
Actual malware 4871 680 

Actual benign 481 5070 

0.4 
Actual malware 4896 655 

Actual benign 515 5036 

0.5 
Actual malware 4899 652 

Actual benign 517 5034 

0.6 
Actual malware 4845 706 

Actual benign 461 5090 

0.7 
Actual malware 4877 674 

Actual benign 482 5069 

0.8 Actual malware 4891 660 
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Actual benign 514 5037 

0.9 
Actual malware 4901 650 

Actual benign 543 5008 

1 
Actual malware 4840 711 

Actual benign 437 5114 

 

Table 5.20: Confusion matrix of VP classifier 

Parameters Actual 
Predicted 

Predicted malware Predicted benign 

0.1 
Actual malware 4822 729 

Actual benign 760 4791 

0.2 
Actual malware 4737 814 

Actual benign 939 4612 

0.3 
Actual malware 4725 826 

Actual benign 992 4559 

0.4 
Actual malware 4694 857 

Actual benign 969 4582 

0.5 
Actual malware 4709 842 

Actual benign 908 4643 

0.6 
Actual malware 4725 826 

Actual benign 882 4669 

0.7 
Actual malware 4830 721 

Actual benign 853 4698 

0.8 
Actual malware 4853 698 

Actual benign 746 4805 

0.9 
Actual malware 4974 577 

Actual benign 737 4814 

1 
Actual malware 4921 630 

Actual benign 626 4925 

 

Table 5.21: Confusion matrix of RBFN classifier 

Parameters Actual Predicted 

  Predicted malware Predicted benign 

0.1 
Actual malware 4780 771 

Actual benign 649 4902 

0.2 
Actual malware 4767 784 

Actual benign 645 4906 

0.3 
Actual malware 4634 917 

Actual benign 603 4948 

0.4 
Actual malware 4659 892 

Actual benign 605 4946 

0.5 
Actual malware 4649 902 

Actual benign 589 4962 

0.6 
Actual malware 4606 945 

Actual benign 533 5018 

0.7 
Actual malware 4594 957 

Actual benign 494 5057 

0.8 
Actual malware 4575 976 

Actual benign 454 5097 

0.9 
Actual malware 4524 1027 

Actual benign 420 5131 

1 
Actual malware 4508 1043 

Actual benign 407 5144 
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Figure 5.21: Comparison between correct and incorrect predictions of malware 

Between other classifiers, Figure 5.21 demonstrates that MLP jotted magnificent scores 

in predicting unknown malware with this experiment’s proposed features. In terms of 

incorrect prediction perspective, MLP collected the minimal value which is only 402 in 

the parameter of 0.1. However, RBFN nearly followed the MLP value by scoring 407 in 

the 1.0 parameter. Meanwhile, VP collected the highest incorrect prediction which is 

992 in the 0.3 parameters. 

5.3.3 Discussion 

In the enthusiasm to substantiate the adequacy of the results of this experiment, this 

section compares and discuss it with the previous studies in accuracy category. The 

previous studies are chosen based on three reasons; 1) The previous studies utilized 

similar malware in the dataset in this experiment – Drebin. 2) The selected papers were 

published in good ranking journals, which were indexed in “Thomson Reuters Institute 
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of Scientific Information” (ISI), Web of Science (WoS) database (Razak et al., 2016). 3) 

The studies utilize static analysis, which is similar to this study. Table 5.22 compares 

the studies that used Drebin. 

Table 5.22: Comparison between the simulation results 

References Classifier/system Result Dataset Features 

  Accuracy Benign Malware  

This study MLP 90% 

5551 5551 
12 (permission 

and telephony) 
 VP 89% 

 RBFN 87% 

(Karim, Salleh, 

Khan, et al., 

2016) 

DeDroid 90% 14865 5064 
18 (permission 

and API calls) 

(Arp et al., 

2014) 
Drebin 94% 123,453 5560 

Set to a vector 

space 

 

In Table 5.22 comparison, DeDroid method is different with this experiment. Dedroid 

adopted the comparative system, dissimilarly with the study which adopted machine 

learning method to detect unknown malware. By adopting intelligent machine learning, 

this third experiment is capable to classify classes between benign and malware with 

90% accuracy from MLP classifier. This accuracy value between DeDroid and this 

study is similar, which is 90% as well. Meanwhile, other classifiers (i.e. VP and RBFN) 

recorded slightly low accuracies than DeDroid. By considering the benign dataset, 

DeDroid (14865) utilized more than this study (5551). This derived the probability that, 

by increasing the benign samples, this study is capable of increasing the accuracy value 

by more than 90%. 

On the other hand, Drebin used SVM machine learning classifier and jotted 94% in 

accuracy, which surpassed this study of 90%. However, they excluded the exact list of 

features used in their paper and used 123,453 as the benign dataset. As DeDroid and 

Drebin jotted higher accuracies by using more benign than malware samples, these 

situations provide convincing evidence that by using more benign, security analyst are 
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capable of increasing the accuracy. Other than accuracy and dataset samples, features 

selection is one of the crucial attentions in malware detection as well. 

In detecting malware, feature selection provides significant effects on experimental 

results. Minimum features are desirable because it offers enhanced accuracy with fewer 

data, reduces the complexity of the detection model, decreases noise and irrelevant data 

(Feizollah et al., 2015; Sarip et al., 2016; Zia et al., 2015). Hence, in features 

comparison between DeDroid (18 features) and this study (12 features), MLP in this 

study gains similar accuracy (90%) with fewer features. The next study, Drebin used 

vector space in selecting features and achieved higher accuracy than this experiment. 

However, their study precluded the exact list of features and therefore is unable to 

compare a number of features they have used. After having conducted the range of 

repeated features method, the subsequent section is the evaluation of the root exploit 

experiment. 

5.4 Evaluation of root exploit experiment 

This section provides the evaluation study that investigates the root exploit features and 

selects the best of it for the anomaly-based detection and to satisfy the following points: 

a) To investigate the root exploit as well as the novel features of ADB. 

b) To validate the result from the selected features, this thesis compared it to existing 

anomaly-based experiment that utilized static features. 

5.4.1 Experiment and procedure description 

This section describes the experiment for root exploit feature identification. It consists 

of four stages: data collection, application reverse engineering, feature extraction, and 

machine learning. Figure 5.22 shows malware and benign applications are collected in 

the data collection stage. The following step is to reverse engineer the application to 
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retrieve the codes. Subsequently, this experiment investigates further by extracting and 

identifying the relevant features. The final stage evaluates these features using machine 

learning classifiers for evaluation of the machine learning prediction. 

Data collection stage

Root exploit 

malware 

(550 samples)

Download and 

scanned in 

virustotal

Google 

Play

Malgenome

Benign 

(550 samples)

Final dataset 

(1100 samples)

Feature extraction stage

Select 26 of 31 features

Conduct Information Gain to 

select best features

Application reverse engineering stage

Reverse the .apk samples to .java

Scrutinize and grep the code

Machine learning classifier stage

Machine learning algorithms 

Classifier train and learn the 

dataset 

Detection model is developed

Creating .arff file for WEKA

Test the model

Result

 

Figure 5.22: Detecting root exploit malware methodology 

a) Data collection 

This first experiment focuses on root exploit malware, which is present in Malgenome. 

Hence, this experiment considers all the samples of the corresponding types and 

obtained a total of 550 samples (Y. Zhou & Jiang, 2012a). Table 5.23 tabulates the 

samples family and its descriptions. 

Table 5.23: List of root exploit malware 

Root exploit Frequency Descriptions  

Asroot 8 Asroot is similar to the word in Unix terminal, that is, login as 

root. Asroot is a standalone program that capable to execute 

without OS service and installation procedure. 

BaseBridge 120 BaseBridge conducts a silent installation of additional applications 

without user approval. 

DroidDream 16 Whenever the user clicks the application icon on the home screen 

or when an intent ACTION_MAIN is received by the application, 
DroidDream directly hijacks the entry activity of the host 

application.  

DroidDeluxe 1 Without querying the user to grant the root privileges, DroidDeluxe 

leverages known root exploits to bypass the built-in security 

sandbox. 

DroidCoupon 1 DroidCoupon obfuscates the file names that are associated with 

root exploits (e.g., impersonate as picture file with .png file type). 

DroidKungfu 1 34 
DroidKungfu contains encrypted root exploit scripts and decrypts 
these scripts during runtime conditions. It remotely downloads and 

updates a new version via a network. 

DroidKungfu 2 30 

DroidKungfu 3 309 

DroidKungfu 4 20 

zHash 11 zHash contains exploid file names, which are exactly the same as 

the publicly available file names. 

Total 550  

Univ
ers

ity
 of

 M
ala

ya



105 

On the other hand, this study collected benign applications from the Google Play store 

(Google, 2014). Table 5.24 lists the benign samples with the frequency. To achieve an 

equal condition and obtain unbiased content, this work downloaded 25 applications in 

each of the 34 categories. 

Table 5.24: List of benign applications 

Category Frequency Category Frequency 

Books and Reference 15 Games (Puzzle) 11 

Business 20 Games (Racing) 11 

Comic 21 Games (Role Playing 

Games) 

23 

Communication 23 Games (Simulation) 12 

Education 11 Games (Sports) 9 

Entertainment 16 Games (Strategy) 16 

Finance 24 Games (Word) 15 

Games (Action) 18 Health and Fitness 19 

Games (Adventure) 12 Live Wallpaper 17 

Games (Arcade) 10 Media and Video 18 

Games (Board) 14 Medical 17 

Games (Card) 15 Music and Audio 11 

Games (Casino) 18 News and Magazine 23 

Games (Casual) 13 Personalization 16 

Games (Education) 15 Photography 11 

Games (Family) 15 Productivity 17 

Games (Music) 20 Shopping 24 

 Total 550 

 

To avoid malware in benign applications, this research conducted a scan using 

VirusTotal (VirusTotal, 2016). A total of 850 applications is downloaded. However, 

300 applications are discarded because of the following reasons. First, this step 

considers only the applications with VirusTotal scan result of 0, which means the 

application is malware-free. Second, certain applications are placed in multiple 

categories. For instance, one application exists in books, references and comic 

categories.  Accordingly, this second step excludes similar applications in any category 

to avoid duplicates. Third, this step is to set the total target frequency of samples as 550 

for each malware and benign applications. The reason is to observe the result by using 

the similar number of samples. By combining both malware and benign datasets, 

thereby the total are 1,100 samples (i.e. 550 benign, 550 malware). 
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b) Reverse engineering 

The general process in static analysis is reverse engineering, which involves reversing 

the application compilation to reveal its programming codes. To analyze malware and 

benign applications, this phase applies this process to the dataset. Figure 5.23 illustrates 

the reverse engineering procedure. This method applies the files, reverses them to Java 

programming codes, and selects the features from the codes. To reverse .apk to Java 

codes, this step used a tool called Jadx (Skylot, 2015). This engineering tool is able to 

reverse compiled .apk to .java extension files (java code).  

 

Reverse 

engineer by 

jadx

Input: 

Android application 

package (.apk) to jadx

Output :

1) Nested folders consist of 

files with .java extension

2)Folders named res consists 

of .xml extension

3)Androidmanifest.xml

Find strings match the 

features in all files (including 

.java and xml) using Unix 

terminal command called 

grep.  

Output:

Result 

stored in 

.csv files. 

Cleaning up 

data by 

eliminating 

unnecessary 

strings. 

 

Figure 5.23: Reverse engineering process 

The following steps involve extracting and selecting the features in the code. Given that 

many lines of code are involved, the keywords used in the malware and benign datasets 

must be determined. These processes are conducted manually using the “grep” 

command. The output in the .csv file is saved via Ubuntu’s terminal. The command is 

normally used by Unix users to find and grab any desired keyword according to user 

demand. This study uses this command to find malicious strings and keywords for the 

features. Figure 5.24 depicts a sample screenshot of the extracted information and 

shows a malware application and its Secure Hash Algorithm (SHA) name, folder name, 
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and java file. The string contains “/system/bin/chmod.” The figure also shows five 

malware samples that acquire one java file containing the “/system/bin/chmod” string. 

 

Figure 5.24: Example screenshot of chmod directory feature 

After the step grabbed the strings, it is essential to clean the data. In this case, certain 

strings are often confused with one another. For example, cat is one of the Linux 

commands. This word may be confused with other words, such as concatenate, locate, 

and other similar words containing cat strings. Thereafter, this experiment identified and 

observed the full exact line of codes. The cat command, which is specifically used for 

the Linux platform, is pulled out. 

c) Feature extraction 

This section describes the 31 features from the dataset samples. The types of features 

are system command, directory path, and code-based features. The amounts of the first, 

second, and third types of features are 12, 10, and 9, respectively. The following 

subsection describes these features briefly. 

i) System command: The system command consists of a terminal, process, and ADB 

command. Examples of terminal and process commands are adb_enabled and cat. 

As an illustration, cat is a maintain command used although the kernel version and 

API call are regularly updated. The cat is an abbreviation for “concatenate.” This 

command is the most frequently used in Unix-type OS and allows the user to view 

files, create single or multiple files, concatenates files, and redirects output via a 

terminal.  
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On the other hand, ADB command is a terminal command line tool that is allowed 

communication between the user and the Android emulator to connect to the 

Android-powered device (Android Developer, 2017). This communication tool 

allows users to easily connect to their own mobile devices via desktop computers or 

notebooks. In consequence, malware practitioners misuse this tool to gain malicious 

actions, particularly gaining root. These system commands are unique elements 

because they are unchanged and similar to other Linux-based OS commands 

globally. Furthermore, the architecture of Android depends on the Linux layer. 

Hence, this feature increases the reliability of future detection methods. Figure 5.25 

depicts the system command features existence. For instance, cat appears 21 times 

in malware samples, but only appears once in benign samples. Startservice –n 

appears 359 times in malware samples, but do not appear in benign samples.  

 

Figure 5.25: System command occurrences 
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i) Directory path: Android has its own OS directory path whereas its architecture 

is similar to Linux kernel. During feature selection, this part discovered the list of 

the directory path. The examples are /system/bin/mount and /proc, which are 

paths that unscrupulously authorize an attempt to enter and gain access to the 

kernel directories and obtain root privileges without user consent. This study 

includes these sensitive directory paths in the current experiment as features. 

Figure 5.26 shows one of the directory paths (/system/xbin/su) appear 361 times 

in the malware samples. This result is higher than benign samples, which only 

appear 38 times. 

 

Figure 5.26: Directory path occurrences 

ii) Code-based: In this study, the type of feature other than system command and 

directory path is the code-based features. Figure 5.27 illustrates the code for 

executing the command is createSubprocess, which appears 83 times in malware 

samples but do not appears in benign samples. Meanwhile, another feature that 

does not appear in the benign sample is Forked. This feature is the string in an 
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argument or a parameter, which occurs 76 times in malware samples. Other code-

based features that are included in the static analysis approach are as follows: 

setPtyWindowSize (code to execute process), three code execution processes 

(exec(), exec(“sh”), exec(“su”) ), stderr (to detect standard error), stdin (standard 

input), and stdout (standard output).  

 

Figure 5.27: Code-based occurrences 

Figure 5.28 depicts a graph that combines malware and benign samples, their 

occurrences, and their categories. The figure indicates the vertical lines from 60 to 500, 

malware class elevates the area, except one feature (exec ()). Among the 31 features, 

exec () has the highest occurrences in both benign and malware categories. Moreover, 

only malware class exists in vertical lines from 300 to 500. In this instance, the 

directory path type has four features, which is more than system command (two 

features) and code-based (two features). In this root exploit investigation; this graph 

demonstrates that directory path is more significant than system command and code-

based. 

Univ
ers

ity
 of

 M
ala

ya



111 

 

Figure 5.28: The 31 features in categories 

d) Feature selection 

The process of feature selection involves searching for any suspicious string in all 

samples (malware and benign) and gathering these strings into one list. This selection 

process involves a month-long search for each feature in the 1,100 samples. This 

investigation managed to discover only 31 features. According to the time constraint, 

this search stopped the investigation and began to select the relevant features. This 

process is vital because it helps to remove noise and irrelevant data, thereby increasing 

the accuracy of the results of the machine learning algorithms (Jensen & Shen, 2008).  

To select the most relevant features to enhance the machine learning detection accuracy 

(Spolaôr et al., 2013), this study adopted the feature selection algorithms, such as 

Information Gain (IG) (Shannon, 1948), Chi-Square (CS) (Imam et al., 1993), and 

Fisher Score (FS) (Golub et al., 1999). IG determines the amount of information by 

measuring how well it separates the training examples according to their target 

classification. CS is used as a test of independence to assess whether the assigned class is 
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independent of a particular variable. FS expresses the difference between two classes that 

are relative to a specific feature and considers the mean and standard deviation of the 

feature values in different classes. This experiment selects IG because of its effective 

measuring features, generalization capability, accuracy enhancement, and short 

execution time (Kent, 1982). Table 5.25 shows the IG result. The higher gain ratio 

indicates the feature’s relevance in a classification model for a machine learning classifier. 

Table 5.25: Information gain value 

No InfoGain Value Features Categories 

1 0.44536 startservice –n System command 

2 0.43255 .exec(“su”) Code-based 

3 0.42553 adb_enabled System command 

4 0.41233 /system/bin/chmod Directory path 

5 0.38765 /system/bin/secbin Directory path 

6 0.37179 /system/bin/su Directory path 

7 0.29953 /system/xbin/su Directory path 

8 0.13976 .exec() Code-based 

9 0.11568 chmod System command 

10 0.0799 setPtyWindowSize Code-based 

11 0.0799 createSubprocess Code-based 

12 0.07805 mount -o remount System command 

13 0.07583 chown System command 

14 0.07279 Forked Code-based 

15 0.06516 /system/bin/sh Directory path 

16 0.0578 pm install System command 

17 0.05682 cp –rp System command 

18 0.0355 echo System command 

19 0.02877 /system/bin/mount Directory path 

20 0.01563 /system/bin/rm Directory path 

21 0.01491 kill System command 

22 0.01491 cat System command 

23 0.01377 /data/local/tmp/rootshell Directory path 

24 0.01377 /system/bin/profile Directory path 

25 0.01178 Stdin Code-based 

26 0.00514 /proc Directory path 

27 0 Ps System command 

28 0 .exec(sh) Code-based 

29 0 Stderr Code-based 

30 0 Stdout Code-based 

31 0 pm uninstall System command 

 

Table 5.25 indicates only 26 of 31 features are relevant. Thus, this part only considers 

the features from 1 to 26 and excludes the remaining 5 features. The three most relevant 

features are startservice –n,  exec (“su”), and adb_enabled. The most relevant feature is 

startservice –n, which is one of the shell commands that initiated the ADB. Meanwhile, 
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the second most relevant feature is exec(“su”), which is a code that gains the super-user 

privileges in Linux kernel. This feature is the low layer of the Android OS. The third 

most relevant feature is adb_enabled, which is a code that enables the ADB option to 

provide ways for a root exploit to enter a device. It is worth noting that in these three top 

relevant features are the novel elements undiscovered in previous studies. Once this step 

gains the best 26 features, machine learning used it for evaluation phase in the preceding 

section. 

e) Machine learning classifier 

The steps in this section build the machine learning predictive model to expose 

unknown root exploit malware. In constructing the machine learning model, the 

classifiers are run in Weka (Hall et al., 2009). In building the model, the initial step is to 

prepare the Comma Separated Values (.csv) file with the static features (0 and 1). This 

file contains 27 columns and 1,101 rows. The total of 27 columns is consist of 26 

attributes (features), followed by one class column at the end (M for malware and B for 

benign). The 1,101 rows represent the samples used in this experiment (1,100 samples) 

and addition with one feature header names, thereby the total number of row is 1,101. 

Given that this experiment uses static analysis, each sample takes 1 or 0 only. Each row 

represents an application, which shows 1 (if the feature exists @ occur) or 0 (if the 

feature is non-existing @ not-occuring). 

After setting the total number of features, it is necessary to convert the .csv files to 

Attribute-Relation File Format (.arff) file using Weka. The reason is, ARFF is an ASCII 

text file format, which is developed specifically for Weka. As compared with .csv file 

loads, .arff file loads faster (Williams, 2010). Once the conversion is done, the 

subsequent step is to randomizes the instances in the file using the randomize option. It 

is used to constitute a natural data for a machine learning classifier. Figure 5.29 shows 
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the information in ARFF after the randomize option. Both classes (malware and benign) 

were crossed to each other repeatedly.  

 

Figure 5.29: Arff file 

The subsequent process is to apply 10-fold cross validation, wherein Weka randomly 

selects the parts of data for training and the remainder for testing. These actions 

(training and testing) are repeated 10 times to achieve significant results. Particularly, 

the dataset is randomly split into ten subsets of equal size and repeated ten times. In 

each repetition, nine subsets are combined to form the training set for constructing the 

predictive model, while the remainder one subset is used as the test set. To note, this test 

set is excluded from the training set, which is used to detect unknown root exploit 

malware in this study. For evaluation, this process executed three machine learning 

classifiers, namely, MP, RF, and NB. This evaluation conducts the classifier on a 

desktop computer equipped with Intel Core i7-4770 CPU of 3.40 GHZ, 16 GB of RAM, 

and Microsoft Windows 7 Professional as an operating system. 

5.4.2 Results 

In order to evaluate the effectiveness of the proposed 31 root exploit features (system 

command, directory path, and code-based features), this part of the experiment assessed 

the performance matrix of the machine learning classifiers according to Table 5.1.  
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The result in Table 5.26 shows that MLP exhibits the best TPR value at 86.2%. While in 

FPR value, RF obtains the value of 0.9%, demonstrates that RF is more effective in 

minimizing mistakes than MP and NB, which obtain FPR values of 1.1% and 2.7%, 

respectively. In a high precision aspect, it indicates that the model of the classifier is 

effective, whereas RF obtains the best value (98.9%) as compared with MP and NB. For 

the next three benchmarks (i.e. recall, f-measure, and accuracy), MLP surpasses other 

classifiers by achieving 86.2%, 92% and 92.5% respectively. However, NB consumes a 

short time to build classifier model which indicates that it is useful whenever a situation 

needs to update a model regularly in a fast manner. This section describes all the aspects 

of the study, except for the ROC curve value. The next section briefly explains the 

relevant case. 

Table 5.26: Classifier Result 

Classifier MLP RF NB 

True Positive Rate  86.2% 85.3% 83.1% 

False Positive Rate  1.1% 0.9% 2.7% 

Precision 98.8% 98.9% 96.8% 

Recall 86.2% 85.3% 83.1% 

F-Measure 92% 91.6% 89.4% 

Accuracy 92.5% 92.2% 90.2% 

Time taken to build model (second) 2.81 0.11 0.02 

Receiver operating characteristic curve 0.941 0.936 0.901 

 

a) ROC Performance 

In this area, this study used the ROC curve to illustrate the graphical representation of 

the tradeoff between the TPR and FPR values. This curve is a fundamental indicator for 

diagnostic test evaluation. TPR (sensitivity) is plotted in the function of FPR for 

different cutoff points of a parameter. The Area Under the Curve (AUC) is the total area 

under the ROC curve. An AUC value closer to 1 indicates good classifier performance 

and high classification accuracy. Figure 5.30 shows the ROC value in the three machine 

learning classifiers, namely, MP, NB, and RF. As shown, MP obtains the closest value 
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to 1 at 0.941. This value is higher than those obtained by RF and NB (0.936 and 0.901). 

The figure indicates MP performs better than NB and RF. Specifically, the line graph of 

MP is significantly higher and closer to 1. NB has the lowest value, which is far from 1. 

 

Figure 5.30: ROC curve 

5.4.3 Discussion 

This section compares and discusses the experimental results. Table 5.27 presents the 

comparison between TPR and FPR values. It is to investigate the feature performance in 

distinguishing malware and benign samples, as well as to obtain the capability of the 

machine learning classifiers. Correspondingly, this table compares these results with the 

results obtained in previous studies on static and dynamic analyses. The best result 

value is highlighted in bold. This study selects these previous works for comparison 

because of two main reasons. One is that they adopt Malgenome as malware dataset, 

which is similar to this dataset; the other is that these selected studies are published in 

reputable journals. 
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Table 5.27: Result comparison 

Type of 

analysis 

Referenc

es 

Classifie

rs 

Result Dataset Features 

TPR FPR Benign Malware 

Static Ours MLP 86.2% 1.1% 550 550 10 System 

commands, 10 

directory paths, 

6 code-based 

features (a total 

of 26 features) 

RF 85.3% 0.9% 

NB 83.1% 2.7% 

(Yerima, 

Sezer, & 

McWillia

ms, 

2014) 

Bayesian 90.9% 5.1% 1000 1000 15 selected 

mixed features 

(permission and 

code-based 

features) 

Dynami

c 

(Narudin 

et al., 

2014) 

MLP 94.83% 5.17% 20 1000 11 network 

traffics RF 99.96% 0.04% 

Bayesian 99.88% 0.12% 

KNN 98.73% 1.27% 

J48 99.9% 0.1% 

 

The static analysis results show that the TPR result of the bayesian classifier in (Yerima, 

Sezer, & McWilliams, 2014) is higher than the results when amounts of features and 

dataset malware samples differ. Specifically, their classifier obtains 90.9%, whereas this 

thesis classifiers only obtain 86.2%, 85.3%, and 83.1%. This finding proves that this 

bayesian classifier obtains high TPR values when the features are less and the dataset is 

high. However, this FPR result is significantly better. In this benchmark, a low value 

indicates few mistakes in classifying a benign sample as malware sample. This result 

demonstrates that this feature is more effective in detecting root exploit in Malgenome 

dataset. Yerima et al (2014) focused mostly on general malware types, whereas this 

research focuses on root exploits only. 

The dynamic analysis results indicate that this experiment’s TPR result is low because 

of malware samples. The TPR values in (Narudin et al., 2014) are higher than this 

experiment TPR values. Notably, this study used 550 samples whereas 1,000 samples 

are used in (Narudin et al., 2014). This limitation suggests that this investigation is able 

to obtain better results by increasing root exploit malware samples. In features 

comparison, this part used 26 features whereas their study used only 11 features. This 
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distinction indicates that few features yield accurate results in static and dynamic 

analyses. In future work, this research attempts to decrease the 26 features to obtain the 

promising results. 

Nonetheless, in MLP comparison, this work’s value is better than (Narudin et al., 2014) 

study. In their study, MLP obtains a value of 5.17%, which is higher than this 

experiment’s study (only 1.1%). Furthermore, MLP is better than another classifier in 

the static analysis in both TPR and FPR. This comparison verifies the MLP works better 

in static analysis than in dynamic analysis.  

To summarize, this experiment adopts the static analysis method which reverses 

engineer the application and examines the sample of a code without executing it. In 

detecting the malware process, this step consumes lesser time than dynamic analysis, 

which runs the samples first and then observes its behavior. Although the results are 

lower than those of dynamic analysis, this experiment proposed analysis is significantly 

faster because it classifies the samples without executing them. Furthermore, certain 

malware samples are able to avoid dynamic analysis by acting as normal samples during 

the monitor operation. Furthermore, covering all possible activities and executing each 

sample are time-consuming. 

5.5 Summary 

This chapter has discussed the evaluation study of the selected static features derived 

from the investigations and methods used in the proposed framework. The useful results 

from the experiments have demonstrated a combination of different aspects of 

evaluation, and they highlighted their unique findings and conclusions. 

The key objective of describing the evaluation at different experiments of studies is to 

investigate the unique objectives at each experiment. The result presented has shown 
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strong evidence to support the ability of the proposed framework to work robustly based 

upon its operational characteristics. Furthermore, the comparison study in the evaluation 

studies also strengthens the framework and its suitability to facilitate the anomaly-based 

malware detection using static analysis. In conclusion, the analysis made of the studies 

clearly defined their contribution as well as stating their limitations. 

To further investigate the usefulness and feasibility of the proposed framework in a 

practical mode, the following chapter presents the prototype of the proposed framework 

and evaluates it using different datasets to the one used in this chapter, in order to test 

the efficiency in predicting unknown malware.  
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CHAPTER 6: PROTOTYPE IMPLEMENTATION OF MOBILE MALWARE 

DETECTION SYSTEM 

Once the validating and evaluating the approaching framework are done, the following 

stage of the research is to design and achieve a prototype program that verifies its main 

operations and bring to light how these able to be achieved practically. This chapter 

describes the prototype implementation of the proposed framework for mobile malware 

detection using static features. The main features of the malware detection have been 

personified in a web interface, which can be used to upload the Android application and 

predict it either malware or benign. Several modeling languages, including use case 

diagrams and state diagrams, are used to provide a visual illustration of the prototype. 

Finally, this chapter used different malware dataset from the machine learning training 

phase to test the efficiency of the models. 

6.1 Web implementation overview 

Figure 6.1 illustrates the three modules in the web development with three analyzers. 

This implementation is based on Java, Javascript, and HTML. The stages are reverse 

engineering, feature extraction, and prediction. The details of the stages are: 

a) Reverse engineering: This module reverses engineers the Android application 

package (.apk) file to obtain the entire folders consist of files that end with Java 

extension (.java). This module used an open source tool known as apktool to execute 

this process. 

b) Feature extraction: To extract the proposed features, this module searches the 

features in overall files include the files in the nested folders. 

c) Prediction: This prediction module used the proposed features as input for the 

machine learning classifier to predict the class of the uploaded file either malware or 
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benign. This stage consists of three analyzers with three models. First analyzer is Root 

analyzer, second is Genetic analyzer and third is Bio analyzer.  

Prediction stage

1) Root analyzer

User upload Android 

(.apk) file

Webpage

Show new 

result 

(Malware @ 

benign)

Database

Unique-ID_<filename>

Store in 

database

2) Genetic analyzer 

3) Bio analyzer

Application reverse engineering stage

Reverse the .apk samples to .java

Obtain list of files and nested 

folders with .java extension

Features extraction stage

Select and extract the best 

features

Check overall files and folders in 

the application

 

Figure 6.1: Web development 

6.2 Prototype functionalities 

In order to gain understanding into the main functionality of the proposed framework, 

this section presents the modeling languages such as use case diagrams and state 

diagrams. 

6.2.1 Use case diagram 

Use case modeling has been commonly adopted to plot a graphical functional 

explanation of the interaction between external entities and systems, in addition to their 

cooperation. The diagrams are utilized to determine the characteristics of the developed 

systems, without the necessity to mention how those characteristics are implemented. 
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Figure 6.2 demonstrates the system level and explains the relationship between external 

systems. Following explanation provides the role of the user in the figure: 

a) Users are able to manage the web modules that represent the run application and 

download file modules. This includes the ability to upload the .apk file and 

download the csv and arff files consist of the information of features in each 

application uploaded by the user.  

 

Figure 6.2: Use case diagram 

The use case diagram has obtained a short-term summary of the modules' functionality. 

However, it lacks clarification on how those modules are operated. Hence, the state 

diagrams are utilized in the subsequent section. 

6.2.2 State diagram 

A state diagram designates all the possible states of an object as an event occurs, and is 

used to show the characteristics of an object by using many use cases of a system, in 

addition, to focusing on the flow of control one state to another. Figure 6.3 reveals all 

the possible states in the proposed framework, and it summarizes the characteristics of 

the running system.  
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Figure 6.3: Prime-state diagram 

As prime-state, there are three sub-states and short-term summary of it are provided 

below: 

a) Save the .apk file: The initial state is T2.1 when the user uploads the .apk file. 

There are four sub-states in this specific state, as shown in Figure 6.4: Database 

saved the .apk  file, Identification of .apk file, Reverse engineer command and Search the 

proposed features. In T2.2, the system identifies the extension file, either it is .apk or 

other types of file. The process continues only the uploaded file is .apk only. The 

T2.3 state starts the reverse engineer command to obtain the code and search the 

proposed features in overall files (T2.4). In the end of this state, the system sampled 

the uploaded .apk file with the proposed features. 
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Figure 6.4: Save the upload file state 

b) Assign value: This state assigns the feature vectors by creating the csv and arff 

files. These files contain the information of each feature and there are important for 

the models of the analyzers to predict the uploaded .apk file. 

  

Figure 6.5: Assign value state 

c) Model of the analyzers: This state receives the arff file and predicts according 

to the analyzers (Root, Genetic and Bio). Root analyzer predicts the unknown root 

exploit, Genetic analyzer predicts by using the proposed features from the GS bio-

inspired feature selection method, while Bio analyzer predicts by using the proposed 

features and bio-inspired classification. 

 

Figure 6.6: Model of the analyzers state 
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6.3 Demonstrating the malware detection 

The main functionalities of the proposed framework and its modules are presented in 

Section 6.2. However, this section demonstrates the three analyzers in predicting 

unknown malware. The similar stages in these analyzers are application reverse 

engineering, features extraction and prediction.  

a) Application reverse engineering: After the user uploaded their desired Android 

application package file (.apk) on the first page of the website, the system will grant 

a unique identification number followed by the name of the file to avoid duplication. 

b) Feature extraction: Afterward, the system reverses engineer the file to obtain the 

entire code that ends with Java extension (.java). This system continues the process 

by searching overall files including in the nested folders in each application to 

extract the proposed features. 

c) Prediction: Finally, the system used the features as input for the machine learning 

classifier to predict the class of the uploaded file either malware or benign.  

The differences between these analyzers are the proposed features and machine learning 

classifiers. For demonstrations of the analyzers, these prototypes used similar hardware 

specification consist of desktop computer equipped with Intel Core i7-4770 CPU of 

3.40 GHZ, 16 GB of RAM, and Microsoft windows 7 professional as an operating 

system. This section begins with Genetic analyzer in the following section. 

6.3.1 Genetic analyzer prediction system 

In Section 5.3, FT is the outstanding classifier that achieves the best prediction in 

detecting unknown malware in the simulation by adopting the best features selected by 

GS. Therefore, in order to test the genetic-selected features as well as FT machine 

learning classifiers in detecting unknown malware, this study developed an intelligent 
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prediction system in website environment called as Genetic Analyzer. Figure 6.7 depicts 

the architecture of the proposed prediction system. 

Application reverse engineering 

stage

User upload Android 

(.apk) file

Webpage

Show result -  

Malware (M) @ 

benign (B)
Unique ID_filename

Store in 

database

Reverse the .apk samples to 

.java

Obtain list of files and nested folders 

with .java extension

Database

Features extraction stage

Select and extract the genetic 

features

Check overall files and folders 

in the application
Prediction stage

FT classifier

 

Figure 6.7: Genetic analyzer architecture 

Figure 6.8 depicts the upload zone on the first page of the Genetic analyzer. Meanwhile, 

the subsequent section is the evaluation result of the prediction by using the proposed 

features. 
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Figure 6.8: Main interface of Genetic analyzer 

a) Genetic analyzer result 

In order to evaluate the efficiency of the prediction system, it is important to use 

different dataset during the simulation. Therefore, as this study has used known 

malware for learning the detection model which is Drebin in the simulation, this 

practical test utilized another malware dataset called Malgenome. Figure 6.9 displays 

the ongoing process after this investigation uploaded the Malgenome files. As shown in 

the figure, the two boxes highlight the bar as black indicated that the processes for those 

two applications are finished. The bar in the third box is white indicated that the process 

for that application is still in process. Meanwhile, Figure 6.10 depicts the prediction 

results (i.e. M indicates as malware and B indicates as benign). 
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Figure 6.9: Uploading process of Genetic analyzer 

 

 

Figure 6.10: Result page of Genetic analyzer 
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After the system finish processed all the Malgenome samples, this intelligent prediction 

result shows an outstanding accuracy of 95% in detecting malware. Hence, this 

accuracy value proves that the proposed features selected from bio-inspired GS 

combined with FT classifier, are capable to predict unknown malware. In the interest to 

discover result from another analyzer, the following section provides the Bio analyzer 

prediction system.  

6.3.2 Bio analyzer prediction system 

In Section 5.4, MLP is the best classifier that achieves the best prediction in detecting 

unknown malware in the simulation. Therefore, in order to test the best-proposed 

features as well as MLP machine learning classifiers in detecting unknown malware, 

this study developed an intelligent prediction system in website environment called as 

Bio Analyzer. Figure 6.11 depicts the architecture of the proposed prediction system. 

While the following figure - Figure 6.12 shows the upload zone on the first page of the 

Bio analyzer. Meanwhile, the subsequent section is the result of the prediction by using 

the proposed features. 

Application reverse engineering 

stage

User upload Android (.apk) 

file

Webpage

Show result -  

Malware (M) @ 

benign (B)
Unique ID_filename

Store in 

database

Reverse the .apk samples to 

.java

Obtain list of files and nested 

folders with .java extension

Database

Features extraction stage

Select and extract the range of 

repeated features

Check overall files and folders 

in the application
Prediction stage

MLP classifier

 

Figure 6.11: Bio analyzer architecture 
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Figure 6.12: Main interface of Bio analyzer 

a) Bio analyzer prediction result 

In order to evaluate the efficiency of Bio analyzer prediction system, it is important to 

use different dataset during the simulation. Therefore, as this study has used known 

malware for learning the detection model which is Drebin in the simulation, this 

practical test utilized another malware dataset called Malgenome. Figure 6.13 displays 

the ongoing process after uploaded the Malgenome files. As shown in the figure, the 

two boxes highlight the bar as black indicated that the processes for those two 

applications are finished. The bar in the third box is white indicated that the process for 

that application is still in process. The next figure is Figure 6.14 which displays the 

second page of the Bio analyzer that provides the prediction results (i.e. M indicates as 

malware and B indicates as benign). 
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Figure 6.13: Uploading process of Bio analyzer 

 

Figure 6.14: Result page of Bio analyzer 

After the system finish processed all the Malgenome samples, the intelligent prediction 

result shows an outstanding accuracy of 97% in detecting malware. Hence, this 
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accuracy value proves that the proposed features derived from the novel technique, 

combined with bio-inspired MLP classifier are capable to predict unknown malware.  

6.3.3 Root analyzer prediction system 

In the Section 5.2.1, MLP is the best classifier that achieves the best prediction in 

detecting unknown root exploit in the simulation. Therefore, in order to test the best-

proposed features as well as MLP machine learning classifiers in detecting unknown 

root exploit, this study developed an intelligent prediction system in website 

environment called as Root analyzer. Figure 6.15 depicts the architecture of the system. 

Application reverse engineering 

stage

User upload Android 

(.apk) file

Webpage

Show result -  

Malware (M) 

@ benign (B)
Unique ID_filename

Store in 

database

Reverse the .apk samples to 

.java

Obtain list of files and nested 

folders with .java extension

Database

Features extraction stage

Select and extract the root 

exploit features

Check overall files and folders 

in the application
Prediction stage

MLP classifier

 

Figure 6.15: Root analyzer architecture 

The following figure - Figure 6.16 shows the upload zone on the first page of the Root 

analyzer. Meanwhile, the subsequent section is the evaluation process of the prediction 

result. 

Univ
ers

ity
 of

 M
ala

ya



133 

 

Figure 6.16: Main interface of Root Analyzer 

a) Root analyzer result 

In order to evaluate the efficiency of the prediction system, it is important to use 

different dataset during the simulation. Therefore, as this study has used known root 

exploit for learning the detection model which is in Malgenome for the previous 

simulation, this practical test utilized different root exploit samples that included in 

Drebin. The samples are Droidrooter and Rooter families with each family represent 

three applications. Furthermore, these samples are excluded in this experiment’s 

learning machine learning detection model. Table 6.1 lists the root exploit in detail. 

Figure 6.17 shows the ongoing process after user uploading the .apk file. As shown in 

the figure, the two boxes highlight the bar as black indicated that the processes for those 

two applications are finished. The bar in the third box is white indicated that the process 

for that application is still in process. Meanwhile, Figure 6.18 depicts the prediction 

results (i.e. M indicates as malware and B indicates as benign). 
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Table 6.1: Root exploit information for prediction system testing 

Family Sha256 
Size 

(kilobyte) 

Rooter 1f5a97fb0cbaa2e10e1f080571ae081d9d85fc95519ef59a85b83ca366b10df2 13 

DroidRooter 226dc739a76faf5127a245b9cc759d4db3086710d4e71594c5578ae642774f5c 950 

DroidRooter 94112b350d0feceff0a788fb042706cb623a55b559ab4697cb10ca6200ea7714 862 

Rooter 94ea44688feb558e2786e52fbfa46d90984e40c0980e28035fd2311d5f17f8e3 13.7 

Rooter add10b0368753ec38de0dca15550d824ac141f0c86f2f123f30551bd82e82415 13 

DroidRooter edf568790907e970da583855e9b923b2f897fbeb4faf41b87436b23e262b821a 953 

 

 

Figure 6.17: Uploading process of Root analyzer 
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Figure 6.18: Result page of Root analyzer 

After the system finish processed the entire root exploit samples, the system 

successfully predicts all the six samples as root exploit as shown in Figure 6.18. Hence, 

this prediction proves that the proposed features with novel ADB type are capable to 

predict unknown root exploit. In the interest to discuss another analyzer, the next section 

provides Genetic analyzer prediction system. 

6.4 Performance of the analyzers 

One of the static analysis advantages is rapid processing. Therefore, this section 

provides ten benign samples to test the performance of each analyzer (i.e. Genetic, Bio 

and Root) in processing the detection. Table 6.2 tabulates the result of the performance 

and detail of each sample. Figure 6.19 depicts this result in graph manner for easier 

observation. 

Table 6.2: Ten benign samples for performance testing 

Time (second) Size 

(MB) 
Sha256 

Genetic Bio Root 

18 21 43 0.627 
018613c2e4174b5251e0d41963a34067ab9ad38d844 

718542847e4d854c8713d.apk 

49 52 54 1.53 
01c6d025efb072d7ba693d448adb159e8cff312555462bbe9aa1fe

377a9caca2.apk 
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50 56 70 5.34 
01c708d27ff56ceb8c3d63ed782ffd7fcd9c5b38717b53690191a04

9f43f4b7b.apk 

81 90 104 10.4 
017373928016819937f701baeb12699592e44b345eba 

84e0aacb26958872f1c3.apk 

102 111 119 12.6 
014f3e37b9a33305ae6e7c110b7ad41962fb069abf148197ec4393

f8c57e7909.apk 

125 155 160 15 
013d29b38cd765fb4a0f1dbd5b1ccae0e16810ff0377da915e9580

24d8e93e88.apk 

133 161 175 16.3 
01bf9c2de95ab5491b7d9b823bf3fc5cb8278eeb729d0083111824

7d12c7c189.apk 

135 167 179 18.7 
01dd3520955373acb27b755b15f4944a8415cc98003bfb794f4bf5

66fa2e897d.apk 

140 170 202 23.5 
018c46baba3e010cb87bb42d426fffce9fede0b871dd84974683ac4

178332c31.apk 

153 177 210 26.2 
01b3e63b2d4592d3b958380a4aa7a2a911e4d03ea030760f02b50

93048878477.apk 

179 193 218 28.5 
018d984b22bae8e9352a2097c0fee85178de7279f56c4b600ac112

7da7b5da17.apk 

 

 

Figure 6.19: Result of the performance 

In comparison to other analyzers, genetic analyzer utilized only 6 features and shows 

the significant gap. As root analyzer utilized more features than other analyzers, it 

processed much longer and consumed much more time in detection. This proved that 

machine learning processed much faster with less features. Moreover, this experiment 
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proved that static analysis processed in fast manner which only need 281 second for 

28.5 MB sample. In order to sum up all the advantages and limitations of this thesis 

framework, next section provides this information in detail. 

6.5 Advantages and limitations 

In providing a flexible platform to security analysts for configuring, analyzing and 

making a wise decision using the prediction results, the web modules give the following 

advantages: 

a) Less confuse results: The web modules provide only two classes either the 

uploaded file is malware or benign. If the results indicate more than two classes, the 

user may confuse the uploaded file is safe or dangerous to install on their mobile 

device.   

b) Provide csv and arff files: The web modules also provide the two important files 

(i.e. csv and arff) that available to be downloaded after the prediction process is 

done. These files are useful for security analysts to test in other detection systems, 

other simulation applications or discovering the features of the uploaded application. 

c) User friendly interface: The web modules provide an easy interface to ease a 

novice user to use the systems. By adopting this friendly interface and few buttons, 

many users are able to predict their Android application package file either malware 

or benign.    

d) Able to utilize it in mobile browser: The modules are based on web and therefore 

it is available for internet browser (i.e. Opera, Chrome, Firefox) on mobile devices. 

Therefore, the users are able to use the web modules in normal desktop computer as 

well as on the mobile devices.   

e) Rapid processing: As the web modules adopted static analysis, it only involves 

reverse engineer the application and searches the features in the code without 

executing the application in a certain range of time to monitor the behavior. These 
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light-weight static analysis processes only need a short time and low specification of 

hardware.  

In addressing the advantages of the web modules, they also inherit some limitations as 

follows: 

a) Applications Dependent: As the web is served by utilizing a web server, it depends 

on the productivity of the web server itself, in the event of the server is 

disconnected, the prediction procedure is impossible. Furthermore, as it also based 

on the World Wide Web, it additionally depends upon the system consistency to 

import and trade information. 

b) Acquire different vulnerabilities: As the web utilized the web applications, it is 

open to the web application vulnerabilities (i.e. cross-website scripting, SQL 

injection, HTTP Parameter Pollution (HPP), and session hijacking). In addition, the 

web modules also powerless against alternate vulnerabilities, such as equipment 

(e.g. web server) and software (e.g. internet browser). 

Therefore, for future works, it is imperative to address these limitations by using other 

security precautions and countermeasures. 

6.6 Summary 

This chapter presented the implementation stage of the proposed framework by 

providing some examples and snapshots from the web modules consist of three 

analyzers namely Root, Genetic and Bio analyzers. The details of its modules, system 

architecture, state diagrams and web modules have been presented to show how it 

interrelates. 

The reasons of presenting and demonstrating the details of the modules are to provide a 

better understanding of how the proposed framework interacts, and how the internal 
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modules are affected by the external interactions. The following chapter is the 

conclusion part that briefly discussed the limitations among others. 
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CHAPTER 7: CONCLUSION 

This chapter outlines the study by revisiting the research aim and objectives as well as 

findings. The most important finding, in addition to its limitations, are reemphasized. 

The capability of alternative studies in the same domain was also exploited and this was 

then used to develop the proposed framework which could be used to improve future 

research works in the same domain.  

7.1 Research objectives 

This study aims to develop an intelligent anomaly-based detection system using static 

analysis and the machine learning approach. Section 1.4 had described the four research 

objectives of this study. It had also maintained how the study would accomplish its 

research aim by fulfilling the following research objectives. This section is to answer 

the following research questions: a) RQ 1: What are the best features to detect malware 

in static analysis using machine learning? b) RQ2: What method should be applied to 

search for the best features in minimal amount? c) RQ3: What are the best features to 

detect malware in static analysis using machine learning? d) RQ4: What are the specific 

features to detect particularly on root exploit?  

Objective 1: To review the domain of Android static analysis and its key issues. 

The first objective was to critically investigate the current state-of-the-art malware 

detection. The research objective was accomplished by conducting a thorough review of 

the most crucial works published in online scholarly journals extracted from digital 

libraries which were accessed through the University of Malaya’s access portal; they 

include the Institute of Electrical and Electronics Engineers (IEEE), the Association for 

Computing Machinery (ACM), Elsevier and the Web of Science portals. Recent 

literature extracted from journals and conference papers were also scanned, focus and 

investigation were given to the analytical issues. In addition, recent studies which 
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focused on the detection taxonomy, the machine learning approach and the issues 

related to features were also reviewed. The intention was to fulfill the review’s 

thoroughness. Consequently, this study was able to reveal that using an approach that 

combines static analysis with anomaly based detection would offer a higher potential in 

uncovering unknown malware. The outcome offers results that are easily gained from a 

process that is rapid and resources that are low (i.e. CPU, memory, network and 

storage).  

Objective 2: To establish the need for an intelligent intrusion detection system 

by using static analysis and machine learning to identify the best features in minimal 

amount. 

The second objective of this study was to establish the information of static analysis in 

anomaly based detection by using the intelligent prediction of the machine learning 

approach. The outcomes gathered from this study would highlight the advantages and 

disadvantages of the signature versus anomaly based detection. From this study, the 

difference between static analysis and dynamic analysis was also noted. It is hereby 

reiterated that this study followed the path of examining the minimal features in 

malware detection using static analysis and its impact on the detection results. This 

study also explained the uniqueness of the study in focusing on the selection of features 

(i.e. GS and range of repeated features in similar application). It is complemented by a 

section that explains how the root exploit features manifest themselves and the need to 

conduct a search for features in overall files rather than one particular file. This study 

also stressed that it needs to refer to the official list as a main source of credibility.   
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Objective 3: To design and develop a novel framework by applying the proposed 

features in the intelligent intrusion detection system. 

The third objective of this study was to design a prototype of malware detection based 

on a novel framework according to the exclusive features discovered in the research. 

This study then devised a web based system to predict whether the Android application 

package (.apk) file is malware or benign. The .apk file is uploaded from the user; the 

system reverses the engineering, identifies the features, extracts the features from the 

application, and then identifies the classes of application with the intelligent prediction. 

From the review of literature, this study had selected the best machine classifier by 

comparing it with the Weka results. To gain clearer results from the examination of 

certain features and types of malware, the system used in this study would be further 

enhanced by three analyzers: Genetic, Bio and Root analyzers. These will provide the 

Comma Separated Values (CSV) and Attribute-Relation File Format (ARFF) files for 

security practitioners to conduct further investigations.    

Objective 4: To evaluate the proposed features to detect unknown malware as well 

as the features specifically in root exploit in terms of accuracy and performance.   

The fourth objective of this research was to evaluate the exclusive features noted in 

unknown malware detection. Thus, the evaluation of these features was examined in 

two platforms: a) Weka and b) Prototype. In the Weka simulation, the experiments 

tested the features in six evaluation measures: accuracy, True Positive Rate (TPR), 

recall, precision, f-measure and False Positive Rate (FPR). In the prototype platform, 

the experiment evaluated the features in terms of the accuracy and performance of each 

analyzer (i.e. Genetic, Bio, and Root) in a practical environment. Unlike the simulation 

platform, the prototype platform includes the practical steps not included in the Weka 

simulation. They encompass processes such as reverse engineering and identifying and 
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extracting the features from the application. From the identification of the prototype of 

the system’s results, it appears that the results were able to achieve the accuracy range, 

starting from 95% and higher. In the performance results, the systems noted the best 

results by predicting the value of 0.627 MB application size in 18 seconds only.  

7.2 Achievement of the study 

This study had begun by investigating the different types of malware detection system 

in mobile devices. It explored the issues linked to the static analysis features and 

methods. It also attempted to extract the best features noted in the unknown malware 

detection including root exploit. This was accomplished by using a methodical 

approach. In the context of this study, a novel framework that would be used to address 

the static features and to facilitate the intelligent anomaly-based detection process in 

static analysis was proposed. Several features noted in the extraction and the machine 

learning classifiers were also explored. Their capabilities were evaluated so as to satisfy 

the aim of the study. 

Within the proposed framework which consists of the experiments in addition to the 

prototypes of the intelligent prediction system, this study can thus be considered as 

successful. Several points of interest are also noted below: 

a) The development of the intelligent anomaly-based model for Malware 

Detection: The studies thus far mentioned in this thesis have established three 

models which can be used to detect unknown malware including root exploit. Using 

the proposed approach to search for the best features, it seems that the proposed 

model was able to classify the classes of features in one application either as 

malware or benign. Chapter 4 describes this issue in detail. A survey study was 

conducted to explore the strategies in selecting the best static features for anomaly-

based detection. To demonstrate the plausibility and reasonableness of the models, 

Univ
ers

ity
 of

 M
ala

ya



144 

several experiments were conducted and their outcomes derived positive results. 

Chapter 5 provides the results in detail. 

b) Issues in static analysis and feature studies: In Chapter 3, the study had 

established a critical analysis which composed of different perspectives when 

addressing the significant problems of static analysis during the feature selection 

process. In relation to this, its challenges were also discussed. Due to the desire to 

create an anomaly-based static detection framework, various issues were explored 

for the purpose of selecting the best static features. In presenting the advantages and 

disadvantages of these issues, this study was able to identify the use of multiple 

strategies as noted by previous studies. The disadvantages noted in previous 

approaches were also used to improve the feature selection process so that it 

becomes more efficient for detecting the malware.   

c) Exclusive features to detect unknown root exploit malware: This study had 

proposed a novel ADB type of features in the framework which is useful for 

detecting unknown root exploit. This proposed ADB framework was combined with 

other categories of features which consist of system command, directory path, and 

code-based. 

d) Adopting a bio-inspired Genetic Algorithm (GA) to select static features 

genetically: The study proposed Genetic Search (GS) based on GA to search the 

best generation of features that malware frequently used in genetic way. This is to 

assists the anomaly-based mechanism in detecting unknown malware.   

e) A novel approach which addresses the best features by inspecting the range of 

the repeated features in a similar application: This study had also proposed to 

develop a novel approach that is useful for addressing the best features by critically 

investigating the frequency of the same features that were continuously repeated in 

the same application.  
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f) Investigating multiple categories of features: As various categories of features 

exist and are ready to be explored at the same time, this study had investigated 

features noted in multiple categories including permission, system command, 

directory path, code-based and telephony. Such categories assist the anomaly-based 

detection to identify the unknown malware more accurately. 

g) Stages of comprehensive evaluation for the proposed framework: In addressing 

the static analysis and the features selection process in the anomaly-based detection, 

the proposed framework had also outlined several models and strategies which 

require further evaluation. The purpose of this evaluation is to examine the proposed 

framework as well as to decide if it is adequate in facilitating the anomaly-based 

detection, using static analysis, to detect the unknown malware. This evaluation was 

performed in different phases. The proposed framework which encompasses models 

and strategies selected was evaluated for its effectiveness and performance. Chapter 

5 provides the results in detail. The progressive results which demonstrate the 

suitability and feasibility of the proposed framework in enhancing the search for the 

best features in the anomaly-based detection were presented according to phases. 

More importantly, through the outstanding evaluation metric scores, the main 

criteria of the framework, as a support for malware detection, is fulfilled.   

h) Implementation of the proposed framework: To further extend on the study, 

expand on the feasibility of the proposed framework and to demonstrate its practical 

anomaly-based detection, a proof-of-concept study was designed and realized in 

Chapter 6. As an extension to the evaluation study, the implementation stage has 

developed a web-based system that focuses on the intelligent prediction models of 

the proposed framework. To illustrate the implementation stage, details of the 

proposed framework, using several modeling languages were thus presented. They 

include case diagrams, state diagrams as well as snapshots of the prototype pages. 
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7.3 Limitation of the study 

The discussions noted in previous chapters have validated that this study has adequately 

achieved its aims and objectives - the establishment of a novel framework that is useful 

for detecting unknown malware in anomaly-based detection environment. However, a 

number of limitations and challenges were encountered during the study and they are 

listed here for future references.  

a) Real-time malware activities: As this study applied the static analysis method, it 

lacks the dynamic analysis real-time inspection. In particular, static analysis is 

unable to detect a benign application that has updated its form and evolved from 

benign to malware application. To relieve this drawback, the current study needs to 

capture and obtain the Android application package (.apk) of the current application 

for malware detection in two situations: 1) after the application updates its content; 

2) at least once a month. Thus, one of the future works proposed in this study is to 

highlight this issue of normal application that evolves to malware form. 

b) Obfuscation: Another limitation of using static analysis, as is noted in this study, is 

obfuscation (Tam et al., 2017). It is an approach which complicates the decompiling 

process hence, it confuses the results. Since this study adopts static analysis, it is 

imperative that this issue be adequately addressed. At the time of writing this thesis, 

the tool to gain the exact native code was still unavailable. Thus, it is crucial for 

others to locate a reverse engineering tool that produces results which counter the 

obfuscated form. Once the application is obfuscated, it is hard to re factor the 

obfuscated code back to its original and perfect form. Henceforth, the experiment 

used in this study used Jadx as the reverse engineering tool which converts the .apk 

file to .java. It also provides the option of de-obfuscation, which is the best way of 

dealing with the obfuscated code in minimal error.  
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c) Take account the processing time: A comparison of the static analysis and 

dynamic @ real-time analysis detection had indicated that it carries a rapid 

processing speed. However, this study had excluded the activity of recording the 

time taken when the prediction had taken place in the mobile device itself. Hence, 

this activity of time taking needs to be included in future studies. This could provide 

the time processing speed of different specifications in mobile devices. 

7.4 Suggestions and Scope for Future Work 

A number of suggestions for future work outside the scope of this study have been 

identified as follows:  

a) Detecting real-time malware with static analysis: As static analysis only inspects 

the application code, it is unable to detect applications that update their forms and 

applications which have evolved from benign to malware. Thus, it would be 

beneficial for future studies to investigate this kind of malware in two situations - 

before and after the update process. This is to test that static analysis is able to detect 

malware after the update process.  

b) Recording the time taken in mobile device: Another recommendation for future 

studies is to conduct an experiment by running the prediction in the mobile device 

itself. This is to observe the time taken in the mobile device as noted in the browser 

during the time of the prediction process. This enable the study to identify the 

minimum specifications needed to run static analysis in a mobile device.   

7.5 Summary – The future for mobile malware detection system 

Security analysts had detected that the existence of Android malware is on the rise. 

They have also identified that relying on manual processes to predict and detect 

malware is time-consuming, difficult, sophisticated, complicated and error-prone. This 

study has presented a novel framework that predicts unknown malware by using 
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anomaly-based detection with static analysis features. The framework provide security 

analysts with the assistance of uncovering malware noted in previous studies. In fact, 

the entire study has demonstrated the advantages of using the proposed framework in 

facilitating malware detection. The study not only focused on single category of features 

(i.e. permission) but also other categories (i.e. directory path, system command, 

telephony, code-based) as well. The important concept lying behind the proposed 

framework is the methodical steps which include the search for all features in all files in 

each application (not depending on one single file only) and catering to the exclusive 

list of features in minimal amount for intelligent prediction in malware detection by 

using static features in static analysis.  

With the bio-inspired methods and the repeated features investigation such as GS and 

range algorithm which selects the best features in detecting malware, the adoption of the 

proposed framework has given new perspectives into future research. In fact, the future 

of static analysis with the anomaly-based detection technique is a step forward from the 

malware detection proposed by this study. All the outstanding results contribute 

significantly to the discovery of a new malware and this depends on the best features 

that were proposed in the study. Moreover, the machine learning classifier models noted 

in the prototype can assist users in discovering malware by merely uploading their 

desired Android application package file (.apk). Furthermore, this study also provides 

the best features that can be used to detect unknown root exploit. Hence, the system is 

able to predict malware including root exploit that have not been found before. 

In reality, the future of detecting malware through the intrusion detection system still 

depends on human intervention and this is normal with any security analysis. 

Nonetheless, with the help of modern technology and the anomaly-based detection 

technique, such interventions are gradually declining. This study has contributed to that 
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domain in some significant degree. Although human intervention is still needed to 

check on each application with in-depth, the best features that combine with the 

anomaly-based detection mechanism are important in double-confirming the class of the 

application as benign or malware. With more studies working to investigate the best 

features for the anomaly-based detection technique, it is hoped that one day the updated 

features could improve the static analysis investigation.         
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