
MOBILE MALWARE ANOMALY-BASED DETECTION
SYSTEMS USING STATIC ANALYSIS FEATURES

 AHMAD FIRDAUS BIN ZAINAL ABIDIN

FACULTY OF COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

MOBILE MALWARE ANOMALY-BASED DETECTION

SYSTEMS USING STATIC ANALYSIS FEATURES

AHMAD FIRDAUS BIN ZAINAL ABIDIN

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Ahmad Firdaus Bin Zainal Abidin

Matric No: WHA130060

Name of Degree: Degree of Philosophy

Title of Thesis: MOBILE MALWARE ANOMALY-BASED

DETECTION SYSTEMS USING STATIC ANALYSIS FEATURES

Field of Study: Intrusion Detection System

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or

reference to or reproduction of any copyrighted work has been disclosed

expressly and sufficiently and the title of the Work and its authorship have

been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that

the making of this work constitutes an infringement of any copyrighted work;

(5) I hereby assign all and every right in the copyright to this Work to the

University of Malaya (“UM”), who henceforth shall be owner of the

copyright in this Work and that any reproduction or use in any form or by any

means whatsoever is prohibited without the written consent of UM having

been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed

any copyright whether intentionally or otherwise, I may be subject to legal

action or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

MOBILE MALWARE ANOMALY-BASED DETECTION SYSTEMS USING

STATIC ANALYSIS FEATURES

ABSTRACT

Presently, the rise of demand for Android gadget motivates the unscrupulous author to

develop malware to compromise mobile devices for malicious and private purposes.

The categories of mobile malware types are root exploit, botnet, and Trojan.

Consequently, in order to classify an application either malware or benign, security

practitioners conduct two types of analysis, namely dynamic and static. Dynamic

analysis classifies an application as malware by executing it and monitors the behavior.

However, it demands high computing requirements and monitors in a limited range of

time. On the other hand, static analysis reverses engineer an application and examine

overall code thoroughly, therefore further capable of examining the whole structure of

the application. Furthermore, static analysis consumes low resources (for instance,

CPU, memory, storage) and less time processing. As static analysis concentrates on the

code, security practitioners face challenges to select the best features among thousand

lines of it. Although they suggest several features, however, there are still provides

many features available to be explored. Furthermore, less attention has been given to

root exploit features specifically. It is one of the critical malware which compromises

operating system kernel to obtain root privileges. When the attackers obtain the

privileges, they are able to bypass security mechanisms and install other possible types

of malware to the devices. Moreover, in order to achieve an efficient malware

prediction in machine learning, it needs features in a minimal amount to enhance

accuracy with fewer data, less time processing and reduces model complexity.

Therefore, to achieve the aim of finding the best and minimal features to detect malware

with root exploit, this study adopts bio-inspired Genetic Search (GS), conveys the range

Univ
ers

ity
 of

 M
ala

ya

iv

of repeated features in similar application, and investigates root exploit to gain the best

features to predict unknown malware using machine learning. The features categories

involved in all these experiments are the permission, directory path, code-based, system

command, and telephony. In detecting root exploit, the category involved is the novel

features called Android Debug Bridge (ADB). By obtaining the best features derived

from these experiments, this study applies it in machine learning to predict unknown

malware. To demonstrate the results, this experiment evaluated six benchmarks (for

instance, accuracy, True Positive Rate (TPR), False Positive Rate (FPR), recall,

precision, and f-measure) to test the prediction and performance. From the outstanding

results being collected, a website was established to validate the unique static features

with machine learning mechanism to investigate its efficiency and practicality. Through

the outcomes assembled, this research has verified that the unique static features

capable of predicting unknown malware together with root exploit. The contributions of

this study were investigated, selected, proposed, designed and evaluated the best

features in detecting malware by using static analysis.

Keywords: Static analysis, Android, feature selection, root exploit, machine learning

Univ
ers

ity
 of

 M
ala

ya

v

SISTEM PENGESANAN PERISIAN PEROSAK BERASASKAN ANOMALI

MENGGUNAKAN CIRI-CIRI ANALISIS STATIK

ABSTRAK

Pada masa ini, permintaan tinggi pada Android mendorong penyerang tidak beretika

membangunkan perisian perosak yang berniat jahat untuk merosakkan peranti mudah

alih dan tujuan persendirian yang lain. Jenis-jenis perisian perosak ialah pengeksploitasi

kawalan, botnet, dan Trojan. Untuk mengesan semua jenis perisian perosak ini, para

pengkaji menjalankan dua jenis analisis, iaitu dinamik dan statik. Analisis dinamik

mengklasifikasikan perisian perosak dengan melaksanakan dan memantau tingkah

lakunya. Walaubagaimanapun, analisis ini memerlukan kadar kiraan yang tinggi dan ia

hanya memantau dalam masa lingkungan yang terhad. Sebaliknya, analisis jenis statik

pula, ia mengubah perisian tersebut kepada kod asal dan berupaya untuk memeriksa

keseluruhan kod dengan teliti, dan seterusnya mampu mengkaji keseluruhan struktur

perisian. Tambahan lagi, analisis statik memerlukan sumber yang rendah (iaitu CPU,

memori simpanan) dan masa pemprosesan yang kurang. Oleh itu, para pengkaji

menghadapi cabaran memilih ciri yang terbaik antara ribuan garisan kod. Walaupun

mereka mencadangkan beberapa ciri, bagaimanapun masih ada banyak lagi ciri untuk

diterokai. Tambahan pula, kurang tumpuan diberikan dalam mencari ciri untuk

pengeksploitasi kawalan secara spesifik. Ia adalah salah satu perisian perosak kritikal

yang menceroboh sistem pengoperasian kernel untuk mendapatkan kawalan

sepenuhnya. Apabila penyerang mendapat kawalan, mereka mampu melangkau

mekanisme keselamatan dan memasang pelbagai jenis perisian perosak yang lain.

Dengan itu, untuk mencapai ramalan pengesanan semua jenis perisian perosak

(termasuk pengeksploitasi kawalan) yang cekap, jumlah ciri yang terbaik dalam kadar

minima diperlukan untuk meningkatkan ketepatan ramalan walaupun dengan data yang

Univ
ers

ity
 of

 M
ala

ya

vi

kurang, kurang masa pemprosesan dan mengurangkan kerumitan model ramalan. Oleh

itu, untuk mencapai tujuan mencari ciri terbaik dengan kadar yang minimum, kajian ini

menyiasat ciri menggunakan kaedah carian genetik (GS), mengambil kira ciri yang

berulang kali dalam perisian yang sama dan ciri dalam perisian pengeksploitasi

kawalan. Kemudian, ciri ini digunakan dalam ramalan mesin pembelajaran bio-

inspirasi. Antara kategori ciri yang terlibat dalam eksperimen-eksperimen ini ialah

kebenaran perisian, asas kod, laluan direktori, perintah sistem dan telefoni. Dalam

mengesan pengekspolitasi kawalan, antara kategori ciri novel yang terlibat adalah

Android Debug Bridge (ADB). Dengan mendapatkan ciri yang terbaik hasil daripada

eksperimen-eksperimen ini, kajian ini memasukkan ia dalam mesin perisian ramalan

untuk mengenalpasti perisian perosak yang masih belum dijumpai. Dalam

mendemonstrasikan keputusan ekperimen, kajian ini menilai enam penanda aras (iaitu

ketepatan, kadar positif benar (TPR), kadar positif palsu (FPR), penarikan balik,

ketepatan dan ukuran-f) dalam menguji prestasi ramalan. Dari keputusan cemerlang

dikumpulkan hasil dari menggunakan ciri yang dicadangkan, sebuah laman web

dibangunkan dengan jentera mekanisme ramalan untuk mengesan perisian perosak.

Melalui hasil yang dikumpulkan, penyelidikan ini telah mengesahkan bahawa ciri statik

mampu mengesan jenis perisian perosak yang lain yang belum dijumpai lagi termasuk

pengeksploitasi kawalan. Sumbangan utama kajian ini ialah menyiasat, memilih,

mencadangkan, dan menilai ciri yang terbaik dalam mengesan perisian perosak dengan

menggunakan analisis statik.

Kata kunci: Analisis statik, Android, pemilihan ciri-ciri, pengeksploitasi akar,

pembelajaran mesin

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENTS

A very special gratitude to my respectful supervisor, Dr. Nor Badrul Anuar Juma’at,

who have provided me the uncountable knowledge, assistance, remarks, patience, and

engagement for my learning period in the University of Malaya. His guidance helped

me in all the time of my research, publication, and writing of this thesis.

I would like to express my heartfelt gratitude to my beloved mother, Noraini Md Zin

for sacrificed her time raising me with endless love from a child to an adult. Without

her continuous support and encouragement, I never would have been able to achieve my

goals.

Also, I dedicated this study to my father, Zainal Abidin Baharudin who gave me

motivations when I’m in depression situations. His showed me the true meaning of life

and taught me to work hard and assist me through critical conditions.

A deep gratitude to my wife, Arniwaty Abdullah with our incoming third child. She

has stopped her master education in the University of Malaya to give way for my study

and understands me. Her dedication, devotion, and perseverance made my study goes

this far.

My grateful thanks to my mother in law, Rusnah Abdul Hamid. She has selflessly

given more time to take care of the kids (Ahmad Yusuf and Ainul Mardhiyyah) with

patient when I’m not around. Her help and support to me are greatly appreciated indeed.

Lastly, thank you to everyone who assisted me in this study, Mohd Faizal Ab Razak,

Hazim Hanif, Firdaus Afifi Md Isa, Kayode Adewole Sakariyyah, Ali Feizollah, and

Ibrahim Abaker Targio Hashem and to all my friends in the lab. I wish them happiness

and success.

Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

Abstract .. iii

Abstrak .. v

Acknowledgements ... vii

Table of Contents ... viii

List of Figures ... xii

List of Tables .. xv

List of Symbols and Abbreviations ... xvii

List of Appendices ... xix

CHAPTER 1: INTRODUCTION .. 1

1.1 Malware detection ... 3

1.2 Research motivations ... 4

1.3 Problem statement ... 5

1.4 Aim and Objectives ... 7

1.5 Research methodologies .. 8

1.6 Thesis outline ... 11

CHAPTER 2: OVERVIEW OF ANDROID AND MALWARE DETECTION 14

2.1 Background of Android ... 14

2.1.1 Android architecture ... 14

2.1.2 Android application package .. 16

2.2 Security systems .. 17

2.3 Detection taxonomies .. 18

2.3.1 Detection options: signature vs. anomaly... 21

2.3.2 Analysis options: dynamic vs. static .. 22

Univ
ers

ity
 of

 M
ala

ya

ix

2.4 Summary .. 24

CHAPTER 3: MACHINE LEARNING AND STATIC FEATURES ISSUES 25

3.1 Machine learning classifiers .. 27

3.2 Methods in selecting features for anomaly-based detection 32

3.2.1 Information Gain (IG) .. 33

3.2.2 Gain Ratio (GR) ... 34

3.2.3 Chi Square (CS) ... 35

3.2.4 Other feature selection methods ... 35

3.2.5 Repeated features in similar application .. 39

3.2.6 Methods in detecting root exploit ... 39

3.3 Categories of features for anomaly-based detection ... 41

3.3.1 Categories of root exploit features ... 44

3.3.2 Searching for features in overall files and complete list as guidance 45

3.4 Proposed study key focus areas ... 46

3.4.1 Evolutionary algorithm in selecting features.. 46

3.4.2 Repeated features in similar application .. 48

3.4.3 Root exploit .. 48

3.5 Summary .. 49

CHAPTER 4: ANOMALY-BASED DETECTION USING STATIC ANALYSIS:

THE FRAMEWORK ... 51

4.1 Methods and categories of features ... 52

4.1.1 Genetic Search (GS) ... 52

4.1.2 Range of repeated features ... 52

4.1.3 Root exploit features .. 53

4.2 Anomaly-based detection using static features framework 54

Univ
ers

ity
 of

 M
ala

ya

x

4.2.1 Operational Characteristics .. 55

4.3 Summary .. 56

CHAPTER 5: EVALUATION OF THE ANOMALY-BASED DETECTION

FRAMEWORK……………………………………………………………………….58

5.1 General Description ... 59

5.1.1 Dataset .. 59

5.1.2 General tools .. 61

5.1.3 Evaluation measure .. 63

5.2 Evaluation of Genetic Search (GS) ... 63

5.2.1 Experiment and procedure description ... 64

5.2.2 Results .. 75

5.2.3 Discussion .. 81

5.3 Range of repeated features evaluation ... 84

5.3.1 Experiment and procedure description ... 84

5.3.2 Results .. 94

5.3.3 Discussion .. 101

5.4 Evaluation of root exploit experiment ... 103

5.4.1 Experiment and procedure description ... 103

5.4.2 Results .. 114

5.4.3 Discussion .. 116

5.5 Summary .. 118

Univ
ers

ity
 of

 M
ala

ya

xi

CHAPTER 6: PROTOTYPE IMPLEMENTATION OF MOBILE MALWARE

DETECTION SYSTEM ... 120

6.1 Web implementation overview .. 120

6.2 Prototype functionalities .. 121

6.2.1 Use case diagram .. 121

6.2.2 State diagram .. 122

6.3 Demonstrating the malware detection ... 125

6.3.1 Genetic analyzer prediction system .. 125

6.3.2 Bio analyzer prediction system .. 129

6.3.3 Root analyzer prediction system .. 132

6.4 Performance of the analyzers .. 135

6.5 Advantages and limitations ... 137

6.6 Summary .. 138

CHAPTER 7: CONCLUSION ... 140

7.1 Research objectives ... 140

7.2 Achievement of the study .. 143

7.3 Limitation of the study .. 146

7.4 Suggestions and Scope for Future Work ... 147

7.5 Summary – The future for mobile malware detection system............................. 147

References ... 150

List of Publications and Papers Presented .. 163

Appendix ... 164

Univ
ers

ity
 of

 M
ala

ya

xii

LIST OF FIGURES

Figure 1.1: General methodologies ... 8

Figure 1.2: Thesis outline ... 11

Figure 2.1: Android architecture (Android Developers, 2015) 15

Figure 2.2: Taxonomy of detection (Alzahrani et al., 2014) .. 18

Figure 2.3: Taxonomy of detection (Inayat et al., 2016) .. 20

Figure 3.1: Machine learning types... 28

Figure 3.2: MLP concept (Lippmann, 1987) .. 29

Figure 3.3: VP algorithm (Freund & Schapire, 1999) .. 30

Figure 3.4: RBFN architecture (Walczak & Massart, 2000) .. 31

Figure 3.5: Taxonomy of mobile malware features (Feizollah et al., 2015) 41

Figure 3.6: Basic GA process ... 47

Figure 4.1: Anomaly-based Detection Using Static Features Framework...................... 54

Figure 5.1: The logo of Weka ... 62

Figure 5.2: Structure of the experiment phases... 64

Figure 5.3: Strings identification .. 66

Figure 5.4: Code-based in percentage values.. 67

Figure 5.5: Permission features in percentages ... 69

Figure 5.6: Directory path features in percentages ... 70

Figure 5.7: System command features .. 71

Figure 5.8: Regression lines of all categories ... 72

Figure 5.9: Part of ARFF file .. 75

Figure 5.10: The accuracy and time comparison in machine learning prediction 79

Figure 5.11: Methodology of the experiment ... 85

Univ
ers

ity
 of

 M
ala

ya

xiii

Figure 5.12: Frequency of features in all categories ... 86

Figure 5.13: Top 10 permission range with frequency ... 89

Figure 5.14: Top 10 malware permission range (code and manifest) with frequency.... 89

Figure 5.15: Top 10 directory path range with frequency .. 90

Figure 5.16: Top 10 telephony range with frequency ... 91

Figure 5.17: Regression lines of features .. 92

Figure 5.18: Sample screenshot of arff file ... 94

Figure 5.19: The evaluation results in graph manner.. 97

Figure 5.20: ROC value in graph form ... 99

Figure 5.21: Comparison between correctly and incorrectly predicted as malware 101

Figure 5.22: Detecting root exploit malware methodology .. 104

Figure 5.23: Reverse engineering process .. 106

Figure 5.24: Example screenshot of chmod directory feature 107

Figure 5.25: System command occurrences ... 108

Figure 5.26: Directory path occurrences ... 109

Figure 5.27: Code-based occurrences ... 110

Figure 5.28: The 31 features in categories .. 111

Figure 5.29: Arff file ... 114

Figure 5.30: ROC curve .. 116

Figure 6.1: Web development ... 121

Figure 6.2: Use case diagram .. 122

Figure 6.3: Prime-state diagram .. 123

Figure 6.4: Save the upload file state .. 124

Figure 6.5: Assign value state ... 124

Univ
ers

ity
 of

 M
ala

ya

xiv

Figure 6.6: Model of the analyzers state ... 124

Figure 6.7: Genetic analyzer architecture ... 126

Figure 6.8: Main interface of Genetic analyzer .. 127

Figure 6.9: Uploading process of Genetic analyzer .. 128

Figure 6.10: Result page of Genetic analyzer ... 128

Figure 6.11: Bio analyzer architecture .. 129

Figure 6.12: Main interface of Bio analyzer ... 130

Figure 6.13: Uploading process of Bio analyzer... 131

Figure 6.14: Result page of Bio analyzer .. 131

Figure 6.15: Root analyzer architecture .. 132

Figure 6.16: Main interface of Root Analyzer .. 133

Figure 6.17: Uploading process of Root analyzer .. 134

Figure 6.18: Result page of Root analyzer .. 135

Figure 6.19: Result of the performance .. 136

Univ
ers

ity
 of

 M
ala

ya

xv

LIST OF TABLES

Table 1.1: Summary of methodologies ... 9

Table 2.1: Signature-based and anomaly-based advantages and disadvantages 22

Table 2.2: Static and dynamic advantages and disadvantages .. 23

Table 3.1: Machine learning classifiers in static analysis studies 27

Table 3.2: Machine learning classifier advantages ... 28

Table 3.3: IG utilization .. 33

Table 3.4: Other methods in selecting features ... 36

Table 3.5: Studies of GA in selecting features.. 37

Table 3.6: Series of features in static analysis studies .. 41

Table 3.7: Similarities and differences in extracting features ... 45

Table 4.1: Methods and techniques for the proposed framework 52

Table 5.1: List of evaluation measure ... 63

Table 5.2: Dataset summary.. 65

Table 5.3: Code-based features ... 67

Table 5.4: Permission features .. 68

Table 5.5: Directory path features... 70

Table 5.6: System command features ... 71

Table 5.7: Six GS-selected features .. 73

Table 5.8: Classifiers results in cross validation ... 76

Table 5.9: Classifiers results in training and testing ... 77

Table 5.10: Benign samples information .. 78

Table 5.11: Before and after GA ... 78

Table 5.12: Comparison with other studies .. 82

Univ
ers

ity
 of

 M
ala

ya

xvi

Table 5.13: Dataset summary.. 85

Table 5.14: Features in IG value from 0.05 onwards.. 92

Table 5.15: MLP evaluation results .. 95

Table 5.16: VP evaluation results ... 96

Table 5.17: RBFN evaluation results .. 96

Table 5.18: ROC value in each parameter .. 98

Table 5.19: Confusion matrix of MLP classifier .. 99

Table 5.20: Confusion matrix of VP classifier ... 100

Table 5.21: Confusion matrix of RBFN classifier .. 100

Table 5.22: Comparison between the simulation results .. 102

Table 5.23: List of root exploit malware... 104

Table 5.24: List of benign applications ... 105

Table 5.25: Information gain value ... 112

Table 5.26: Classifier Result ... 115

Table 5.27: Result comparison ... 117

Table 6.1: Root exploit information for prediction system testing 134

Table 6.2: Ten benign samples for performance testing ... 135

Univ
ers

ity
 of

 M
ala

ya

xvii

LIST OF SYMBOLS AND ABBREVIATIONS

ADB
:

Android Debug Bridge

APK : Application Package

API : Application Programming Interfaces

ARFF : Attribute-Relation File Format

CPU : Central Processing Unit

CSV : Comma Separated Values

DT : Decision Tree

XML : Extensible Markup Language

FP : False Positive

FPR : False Positive Rate

FT : Functional Tree

GUI : Graphical User Interface

HTTP : Hypertext Transfer Protocol

IDS : Intrusion Detection System

JAR : Java Archive

KNN : K-Nearest Neighbors

ML : Machine Learning

MD5 : Message Digest 5

MLP : Multilayer Perceptron

NB : Naïve Bayes

PC : Personal Computer

RBFN : Radial Basis Function Network

Univ
ers

ity
 of

 M
ala

ya

xviii

RF : Random Forest

SHA1 : Secure Hash Algorithm 1

SVM : Support Vector Machine

TN : True Negative

TPR : True Positive Rate

URL : Uniform Resource Locator

VP : Voted Perceptron

Univ
ers

ity
 of

 M
ala

ya

xix

LIST OF APPENDICES

Appendix A: R SOURCE CODE…………………………………………............. 164

Appendix B: FIRST PAGE OF ACCEPTED PAPER 1…………………………... 169

Appendix C: SCREENSHOT OF ACCEPTED PAPER 2……………………....... 170

Appendix D: FIRST PAGE OF ACCEPTED COLLABORATION PAPER…...... 171

Appendix E: FIRST PAGE OF ACCEPTED CONFERENCE PAPER…............... 172

Appendix F: GENETIC ANALYZER…….. 173

Appendix G: BIO ANALYZER…….. 174

Appendix H: ROOT ANALYZER…….. 175

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

In today’s lifestyle, most people, whether young or old, regularly utilized mobile

gadgets such as the smart phone. This is because people are using their mobile devices

as their main gadgets to manage their daily activities (e.g. connecting, communicating,

health management, synchronous data transfer, family communications, money

transactions, business interactions and the world’s updates). Due to the introduction of

high technology mobile devices, the lives of human being throughout the world have

become more convenient and communication among individuals in any part of the

world have also become less effortless and more accessible (Union, 2016). Given this

technology and ease of communication, manufacturers are producing even more mobile

devices that are equipped with various produced many mobile devices with various

types of Operating System (OS), such as Android, iOS, and Windows. As the world

community advances in technology, they also become more dependent on mobile

devices for various executions and duties. This has led malware creators to jump on the

bandwagon by seizing this opportunity to develop various malware types that help them

to execute malicious activities that harm mobile users and their mobile devices. Mobile

device malware has been growing rapidly in scale and mobile users are being exploited

by malware creators in various ways.

In the context of computer technology, malware is a kind of software designed by

unscrupulous computer programmers whose aim to perform various diverse malicious

actions on the mobile devices without the consent of the users. These activities are to

the benefit of the malware creators. Some of the malware activities created include

locating a user of victim’s location, obtaining the victim’s personal data (i.e., images,

phone contacts, and messages), and compromising the Android OS kernel in the mobile

Univ
ers

ity
 of

 M
ala

ya

2

devices so as to gain power of root users. The various types of malware currently

available in the market include root exploit, botnet, and Trojan.

In the second quarter of the year 2016, McAfee (2016) identified several new mobile

malware samples. In September, the third quarter of the year 2016, Kaspersky Lab

(Kasperksy, 2016) reported that the rate of users encountering mobile banking Trojan is

almost eight times greater than it was in June, in the same year. Likewise, the number of

malware for Android was also noted to have increased more than other mobile OSes.

Symantec discovered new Android malware families each month from February 2014 to

January 2015 (Symantec, 2015). Similarly, Sophos Mobile Security also revealed that

610,389 of new Android malware samples had been detected outside of the Google Play

market in the first 6 months of 2015 (Komili, 2016). In line with this, Google Play also

observed that a new Android malware family called as Dresscode has been infecting

between 500,000 and 2,000,000 users. This malware had automatically installed itself

between 100,000 and 500,000 times in 2016 (Cimpanu, 2016).

Following this, security analyst also detected one specific type of malware called root

exploit, known as the malware which modifies the kernel in an Android OS. Its aim is to

gain super-user privileges. When malware gains root and these privileges increase, the

attackers easily installed other malware types, such as botnets, worms, or Trojans into

the OS. When this event occurs, the attackers capable of evading detection by

modifying the OS code, running their malicious activities stealthily, and bypassing

permission (Bickford et al., 2010; Ma & Sharbaf, 2013; A. Schmidt et al., 2009). Such

types of malware able to take over the root privileges and performs malicious actions

stealthily without the victim’s knowledge (Wei et al., 2015).

Univ
ers

ity
 of

 M
ala

ya

3

In June 2016, a root exploit called Godless was discovered (V. Zhang, 2016). It contains

multiple types of malware exploits to be used later by the attacker and during the news

in writing, it has affected almost 90% of devices that run on Android 5.1, the Lollipop

version. Another recent discovery of root exploit known as Dirty COW was detected in

October 2016 (Arghire, 2016). Researchers say that malware has the capability to

compromise an entire mobile device system which runs a Linux kernel that is higher

than 2.6.22. Due to this widespread malice, there is a need to study malware and to

provide a detection system that able to identify all types of malware including the root

exploit.

1.1 Malware detection

There are two types of malware detection system: signature-based (misuse-based) and

anomaly-based. The signature-based approach is a traditional approach which utilizes

antivirus that deployed in mobile devices. Over time, this approach has become less

efficient because the antivirus signature needs to regularly update its database as a way

to facilitating it to detect new malware variant (Nissim et al., 2014) (Suarez-Tangil et

al., 2014). In contrast, the anomaly-based approach detects unknown malware by

considering at the training set of feature rules which have been set forth by security

analysts. This approach is able to intelligently measure the system features. Through the

significant deviations noted from the extracted features, the anomaly-based approach is

able to successfully detect it as unknown malware (Yerima, Sezer, & McWilliams,

2014). With this advantage, this thesis conducted malware analysis by adopting the

anomaly-based detection by using machine learning (i.e. part of Artificial intelligence

knowledge).

In the malware detection system, there are two types of malware analysis: dynamic and

static. Dynamic analysis is a procedure that discovers malware by performing the

Univ
ers

ity
 of

 M
ala

ya

4

applications and monitoring the behavior. The necessity to monitor the behavior

requires high specifications in both memory and CPU in supporting the applications to

run. Dynamic analysis monitors at a certain range of time depending on the

investigation period. Hence, it could possibly miss the malware activities that are

beyond the time range of the investigation (i.e. attacker triggers malware actions in a

certain time or whenever the attacker decides) (Feizollah, Anuar, et al., 2013)(Yerima et

al., 2015). In contrast, static analysis is a procedure that inspects the applications codes

without running it. The advantage of the static analysis is that it requires low resources

(e.g. memory and CPU) and its processing rate is fast (Chess & McGraw, 2004). In this

regard, it covers all possible activities without any time range.

1.2 Research motivations

Researchers conducted a study for practical or scientific purposes. In the same way, this

study was also motivated by a number of reasons which are classified accordingly:

a) Statistics of Android malware: Of late, security analysts have discovered various

types of hidden malware in more than 104 applications in the Google Play store.

These applications have been downloaded by users over 3.2 million times and had

caused numerous problems to user’s mobile devices (Russon, 2016).

b) Continuously conduct research: As the owner of Android itself, Google is

constantly looking for means to improve its systems and it is also constantly

encouraging others to improve its systems by detect malware thereby, reducing the

huge violations affecting mobile users (BBC, 2016). In this regard, security

practitioners from both the industry and academia need to make their contributions

by continuously conducting investigations pertaining to mobile malware.

c) Research on Android: Among all the mobile device OS, Android dominates the

smartphone market, with a share worth of $366 billion (Thomas, 2015). Android

also has the highest worldwide market share of 88% as noted in the third quarter of

Univ
ers

ity
 of

 M
ala

ya

5

2016 (Forni & Van der Meulen, 2016). Android prices are available on a wide

range, starting from as low as $50 (eBay, 2016) and such low prices allow young

children and teenagers to buy and own an Android mobile, as a part of their daily

lifestyle. Nonetheless, many Android users including adults, teenagers and young

children are exposed to malware attacks which affect their devices and ruin their

personal data and information.

d) The increases in root exploits: The increasing number of root exploits is the

evidence that malware creators and homebrew community attackers (smartphone

users who break the OS kernel to obtain a customized version of an OS) are putting

mobile users at risk. When a new version of the OS is released, malware creators

tend to develop their own root exploits; alternatively, they wait for the homebrew

community attackers to determine ways to break the OS (Felt et al., 2011).

e) Minimal features: Selecting the relevant features in minimal amount for malware

detection is crucial because this minimal features are able to reduce the runtime of

the machine learning approach (Crussell et al., 2012). It also removes noisy and

irrelevant data that enhances the detection (Jensen & Shen, 2008)(Sabry et al.,

2015). According to studies, five out of 41 features received better detection when

viewed through the experiments conducted. This is an important factor that

motivated this thesis.

Overall, the five factors highlighted above are the main factors that have motivated this

research to be conducted. For this effort to materialize, the problem statement is further

elaborated.

1.3 Problem statement

 In malware analysis, features reside in applications which consist of a thousand lines of

code. Selecting the relevant features through those lines is rigorous because security

Univ
ers

ity
 of

 M
ala

ya

6

analysts need to inspect both the malware and benign applications in order to

distinguish the difference between them before uncovering the characters or elements

frequently used by the malware and benign applications. The issue of this problem

increases when deals with a thousand applications particularly during the data collection

phase.

The problem becomes bigger when the anomaly-based detection needs only minimal

features for it to be better in classifying the applications as malware or benign (Feizollah

et al. 2015). This is an important issue because minimal features have certain

advantages such as reducing running time of the process (Crussell et al. 2012) and

removing noisy and irrelevant data (Jensen & Shen 2008). The other advantage of the

minimal feature is that the detection system takes lesser time to process when in a real

environment (Chess & McGraw, 2004). As such, the experiments done in a simulation

application would consume less processing time because the security analysts have

already reversed engineering and extracted the features beforehand. Subsequently, the

simulation only processes the extracted features and presents the results. In actual

practical detection, once the user has uploaded the application, the detection system

only needs to reverse the engineering, scan, identify application and extract features in

the application. Given that these tasks are many; the system may also confront certain

problems such as when the features exceed a suitable amount (e.g. 30, 40, 100, 200).

Such problems include extracting the wrong features by mistake, facing a complicated

and unwanted character/strings or the detection system may stop the process due to too

many features. All these add on to the possibility of errors. In that regard, the detection

system should only require minimal features to execute an easier and cleaner detection

process.

Univ
ers

ity
 of

 M
ala

ya

7

As features consist of numerous lines of code, security analysts have to categorize these

features into multiple categories such as permissions, string, function call, and API for

easy identification. Given this situation, conducting an investigation on only one

category of features would be insufficient and inadequate because precise malware

detection in static analysis requires multiple categories of features to be examined.

Previous studies (Karim, Salleh, Khan, et al., 2016; Seo et al., 2014; Sheen et al., 2015;

Yerima et al., 2015; Yerima, Sezer, & Muttik, 2014) had depended on only one file, for

example AndroidManifest.xml for the features. Due to this, the detection system may

achieve less accuracy. In the case where the application includes zero permission in the

AndroidManifest.xml and where the features extracted are too few or if the application

is damaged or unable to open the AndroidManifest.xml, the detection system then

becomes less accurate. Moreover, the risk of using too few features causes the detection

to mistakenly classify the malware application as benign. Given this situation, it is

imperative to consider all files that exist in an application. In summary, there is a need

to conduct research that looks for the relevant but minimal features which reside in

numerous lines of application code. It is also important to consider features that exist

among multiple categories of features in all files located in the applications to ensure

detection of unknown malware in static analysis.

1.4 Aim and Objectives

The aim of this study, hereby also thesis, is to develop an intelligent anomaly-based

detection system by using static analysis. In that regard, the main objectives of this

thesis are as follows:

a) To review the domain of Android static analysis and its key issues

b) To establish the need for an intelligent intrusion detection system by using static

analysis as well as methods to identify the best features in minimal amount

Univ
ers

ity
 of

 M
ala

ya

8

c) To design and develop a novel framework by applying the proposed features in the

intelligent intrusion detection system

d) To evaluate the proposed features to detect unknown malware as well as the features

specifically in root exploit in terms of accuracy and performance

1.5 Research methodologies

This study performed different methodologies in three experiments. The 1
st
 experiment

adopted Genetic Search (GS) in the features extraction phase so as to automatically

search for the best features in detecting malware. The 2
nd

 experiment nominated the best

features by considering the utilization of similar features in the same application and

applying this in range algorithm. The 3
rd

 experiment investigated the best features of the

malware that focusing on root exploit only.

The subsequent steps involved in these experiments include collecting the data,

extracting the features and using these features in the intelligent prediction machine

learning mechanism. Figure 1.1 depicts the general methodology in the experiments

conducted.

Data collection stage

Malware Benign

Combined

dataset

Features extraction stage

Proposed features

Proposed method

Reverse the .apk

samples to .java

Scrutinize and grep the

code

Intelligent prediction stage

Machine learning algorithms

Classifier train and learn the

dataset

Detection model is developed

Test the model

Result

Figure 1.1: General methodologies

Univ
ers

ity
 of

 M
ala

ya

9

a) Data collection stage: The first step involves collecting the Android application

package in the .apk extension. Since the aim of this study is to differentiate the

malware and benign classes, it is important to have both types of applications for

the experiment.

b) Feature extraction stage: The second step performs the basic static analysis

approach which is also known as reverse engineering. This is to retrieve the Java

code derived from the Android application package. Once the experiment obtains

the code, the next step adopts a unique method to obtain the exclusive features

from the multiple categories (i.e. permission, directory path, ADB, code-based,

system command and telephony).

c) Intelligent prediction stage: The third step implements the anomaly-based

detection in machine learning. It is used to conduct the intelligent prediction in

detecting whether the classes of the applications are malware or benign.

However, these experiments are performed differently in the dataset, in the features

extraction method and in the classification. Table 1.1 lists these differences in

methodologies.

Table 1.1: Summary of methodologies

Experiment Data collection stage Features extraction stage

Classifier

categories for
intelligent

prediction stage

 Benign Malware Method Categories involved

1
Google

Play store
Drebin Genetic Search (GS)

Permission, system
command, directory

path, and code-

based

Bio-inspired,

tree and bayes

2 Androzoo Drebin

Range of similar

features in same

application, Information
Gain (IG) and refer to

official list

Permission,

directory path, and
telephony

Bio-inspired

3
Google

Play store
Malgenome

Frequency investigation

and IG

System command

(with novel ADB),

directory path, and
code-based

Bio-inspired,

tree and bayes

Univ
ers

ity
 of

 M
ala

ya

10

As can be seen, the 1
st
 experiment adopts the Genetic Search (GS) to automatically

select the features in a genetic way. Thus, this is the only experiment that involved four

categories of features (i.e. permission, system command, directory path and code-based)

as compared to other experiments. The purpose is to enable the GS to select the features

based on a wide choice of features.

The 2
nd

 experiment uses the novel range of repeated features in a similar application

which aims to select the exclusive features. This is the only experiment that refers to the

official list as a main source in order to avoid any missing features in the dataset of each

category. In addition, this experiment also explores multiple types of bio-inspired

machine learning algorithm in order to discover the potential of each classifier.

Unlike the other experiments, the 3
rd

 experiment utilizes Malgenome as the malware

dataset. The reason is because it provides various root exploit families more than

Drebin. This experiment also explores the novel ADB features noted in the system

command category of root exploit detection.

Finally, this study utilizes the proposed method to gain the best features noted in each

experiment and implementing these in the web based environment prototypes to detect

unknown malware including root exploit. This study develops the prototypes of

malware detection system to test the accuracy and performance of these best features in

a real environment. Univ
ers

ity
 of

 M
ala

ya

11

1.6 Thesis outline

Figure 1.2: Thesis outline

As the thesis outline projects, there are seven chapters in this thesis. Chapter 1

introduces the motivations of this thesis. It outlines the problem statement leading to the

study. This chapter also highlights the aim and objectives of the study before continuing

with the methodologies of the research. It ends with the outline of the thesis provided in

a graphical tree.

Chapter 2 introduces the background of Android and the security system it provides in

detecting malware including Intrusion Detection System (IDS), Intrusion Prevention

System (IPS) and Intrusion Response System (IPS). Specifically it also reviews their

detection capabilities. A comprehensive taxonomy and the state-of-the-art IDS are

assessed and presented, covering information concerning signature-based, anomaly-

Univ
ers

ity
 of

 M
ala

ya

12

based, dynamic and static analysis concepts as well as their differences, advantages and

limitations.

Chapter 3 focuses on existing static analysis studies along with the machine learning

classifiers. It then continues with the review of the relevant theories for the methods in

selecting the static features and the categories of features. This chapter also highlights

the categories of features involved in this study by summing up all the advantages of the

studies. Finally, it also discusses how these can be combined to produce an effective

anomaly-based detection system.

Chapter 4 presents the main contribution of this thesis: a novel framework with

alternative approaches which can be used to select the best static features that are

suitable for the machine learning detection system. In presenting the framework, this

chapter begins by introducing the main rationale behind the framework as well as its

operational characteristics. It also introduces the Genetic Search (GS), the range of

repeated features and the Android Debug Bridge (ADB) used in the framework.

Chapter 5 extends the study by conducting multiple experiments to validate and

evaluate the proposed framework. In order to demonstrate the progress of the results, the

evaluation will comprise three experiments: a) 1
st
 experiment is the evaluation of the

features selected genetically from GS; b) 2
nd

 experiment is the evaluation of the features

derived from the investigation of the repeated features obtain from similar applications;

c) 3
rd

 experiment investigates and evaluates the root exploit features with the aid of the

Android Debug Bridge (ADB). The evaluation consists of six benchmarks (i.e.

accuracy, True Positive Rate (TPR), False Positive Rate (FPR), recall, precision, and f-

measure). This chapter also provides an in-depth discussion of the implications of

applying the proposed framework in practice whilst highlighting the advantages and

limitations at the same time.

Univ
ers

ity
 of

 M
ala

ya

13

Chapter 6 presents the website development as a prototype which practically utilizes the

proposed features to detect unknown malware including features which are specific to

root exploit. It provides an overview of the system development consisting of upload

and reverse engineering the application, identifying and extracting the proposed features

and the machine learning prediction. In addition, this chapter uses different samples of

malware extracted from a reliable source to test the efficiency of the prediction.

Chapter 7 provides the main conclusions derived from this study; it highlights the

advantages and limitations of the study as well as suggestions for future research efforts.

Univ
ers

ity
 of

 M
ala

ya

14

CHAPTER 2: OVERVIEW OF ANDROID AND MALWARE DETECTION

In recent decades, the security researchers conducted studies to overcome the malware

violation by focusing upon areas related to detection, prevention and response options.

Over the years, the trend in these areas expands to various interest provides security

researchers to explore and discover these options areas. Initially, to understand the

detection for Android, this chapter begins by providing the background of Android

information. Furthermore, this chapter provides the introduction of the security systems

and the detection taxonomies. This chapter also introduces the detection options (i.e.

signature-based and anomaly-based) as well as the analysis option (i.e. dynamic and

static).

2.1 Background of Android

This section describes the Android architecture as well as its application package. It is to

understand the basic of an Android mobile device and the elements inside the Android

application itself. Android is an open source operating system that has its own unique

architecture. It comprises of four layers: a) Application. b) Application framework. c)

Libraries and Android runtime. d) Linux kernel.

2.1.1 Android architecture

Figure 2.1 shows the Android operating system architecture in four layers:

Univ
ers

ity
 of

 M
ala

ya

15

Android runtime

Core Libraries

Dalvik Virtual Machine

Application

Application framework

Libraries

Linux kernel

Home

Contacts

Dialer

Voice Dial

SMS/

MMS

Email

IM

Calendar

Browser

Media

Player

Camera

Albums

Alarm

Clock

Calculator

...

Activity Manager

Package Manager

Content Providers

Telephony

Manager
Location Manager

View System

XMPP Service

Notification

Manager

Resource

Manager

Surface

Manager

OpenGL|ES

SGL

Media

Framework

FreeType

SSL

SQLite

LibWebCore

Libc

Window ManagerActivity Manager

Display Driver

USB Driver Keypad Driver

Bluetooth

Driver
Camera Driver

WiFi Driver Audio Drivers

Flash Memory

Driver

Power

Management

Binder (IPC)

Driver

Figure 2.1: Android architecture (Android Developers, 2015)

According to Figure 2.1, each tier has its own task. The details of the layers are:

a) Application layer: It is the top layer in Android architecture which interacts with

users directly. Each application performs different task depend on the logic of the

application. Furthermore, each application has different set of permission that need

to be granted during install-time in order the application to perform successfully.

b) Application framework layer: It provides the system server, which is a process

containing the main modules for managing the device, (i.e. Activity Manager,

Package Manager and Window Manager) and these components interact

corresponding with Linux drivers.

c) Libraries layer and Android runtime: Library layer consists of a set of C/C++

libraries, which is assigned to invoke the basic kernel functionalities. The libraries

are used by Application framework services to invoke protected Linux operations

and to access data stored in the device. The libraries in this layer are the bionic Libc

(i.e. a customized implementation of Libc for Android) and SQLite. While Android

runtime comprises of Dalvik Virtual Machine (DVM), the core component that

responsible to executes Dalvik Executable format (DEX) application. A mobile

Univ
ers

ity
 of

 M
ala

ya

16

device such as Android is a resource constraint environment where the battery fast

depleted. DVM is chosen in Android architecture due to its efficient concurrent

execution in a resource constrained environment. In the 4.4 version release, Google

introduced Android Runtime (ART) which offers advanced features such as Ahead-

Of-Time (AOT) compilation, improved garbage collection, development and

debugging improvements.

d) Linux kernel layer: It is the lowest layer in the architecture. It stores drivers such

as Wi-fi, camera, bluetooth, display, USB, binder (i.e. a driver that implements

Inter-Process Communication (IPC)) and more necessary driver. It is built begin on

Linux version 2.6 and forward.

2.1.2 Android application package

Android application is based on Android application package file (.apk) format and used

to install application in android-based mobile devices. Basically, .apk consists of three

elements: a) AndroidManifest.xml. b) Classes.dex. c) Resources.

a) AndroidManifest.xml: It is an essential file that contains the package name,

components of the application (i.e. activities, services, broadcast receivers and

content providers), declares permissions, instrumentation classes, minimum level of

API and list of needed libraries (Android, 2015).

b) Classes.dex: It contains a complied source code of the application that has been

converted from .java (i.e. application written in Java) to .dex extension.

c) Resources: It contains of all the necessary files for the application to execute, such

as database, layout of the application, pictures, or graphics.

Univ
ers

ity
 of

 M
ala

ya

17

2.2 Security systems

There are three types of security systems in current research area that comprises of

Intrusion Detection System (IDS), Intrusion Prevention System (IPS) and Intrusion

Response System (IRS). The general information of these systems is as follows:

a) Intrusion Detection System (IDS): It is an application that automates the intrusion

detection process to detect any possible intrusions from malware attacks (Patel et

al., 2013). The examples of the detection process are monitors network traffic for

suspicious activity or classify the application either malware or benign and detects

the possible intrusions. It is a compound process consists of identification and

detection tasks.

b) Intrusion Prevention System (IPS): It shares the similarities with the IDS in terms

of system deployment and detection method. However, it is different from IDS by

one characteristics: it is designed to prevent or protect either host or network from

malicious application or behavior from succeeding (Ghallali & El Ouahidi, 2012). It

could adjust the security environment, such as reconfiguring the network device to

protect from the malware attack.

c) Intrusion Response System (IRS): It is an approach to provide responses to

administrator or user. The responses are from the basis of threat descriptions and

attack symptoms. There are two types of response mode, namely passive and active

(Anuar et al., 2013). The passive response is to notify the administrator or user to

activate other parties regarding the existence of the malware and depends on these

parties to take further actions. The active response is to immediately execute an

automated action to reduce the malware attacks without the human decision (Inayat

et al., 2016).

Univ
ers

ity
 of

 M
ala

ya

18

Between these systems, IDS is the main part to maintain the security system. It is the

main indicator for the IPS and IRS to execute any action (Anwar et al., 2017). By

depending on IDS configurations and settings in detection, both IPS and IRS are

capable to apply relevant countermeasures to potential incidents, hence decrease the

malware violation.

2.3 Detection taxonomies

As this research focuses upon the detection, this section explains the detection

taxonomies to improve the understanding of the IDS studies. Figure 2.2 depicts the

taxonomy of detection (Alzahrani et al., 2014) consists of scope of monitoring,

detection approach and invasiveness of a technique.

Intrusion

detection

methods

Intrusion

detection

methods

By scope of

monitoring

By scope of

monitoring

Anomaly-based

detection

Anomaly-based

detection

By invasiveness

of a technique

By invasiveness

of a technique

Network levelNetwork level
Signature-based

detection

Signature-based

detection

Dynamic

analysis

Dynamic

analysis

By detection

approach

By detection

approach

Host levelHost level

HybridHybrid

Static analysisStatic analysis

HybridHybrid

Figure 2.2: Taxonomy of detection (Alzahrani et al., 2014)

a) By scope of monitoring: IDS spotted the malware activity by monitoring the

network activities such as unusual keystroke dynamics or protocol transmissions.

While host level is where the IDS stationed on a mobile device and monitor the

Univ
ers

ity
 of

 M
ala

ya

19

network from that device. While hybrid is the combination of both network and host

level.

b) By detection approach: The signature-based technique (also known as misuse), is

predominantly utilized by antivirus application that depends on detecting malware

based on the constant unique signature. However, it is unable to predict unknown

malware or threat because it requires consistent signature updates. For instance,

Droidanalytics (Zheng et al., 2013) detect malware by automatically collects,

extracts and analyses the methods and classes in Android application file, which

then employs it as signatures. Despite the condition that signature-based able to

detect known malware, however, it is necessary to continuously update the database

signature once a new malware is detected. On the other hand, anomaly-based is

capable of detecting unknown (anomaly) malware by referring to classifiers

prediction model (Yerima, Sezer, & McWilliams, 2014). It is perceived as a

powerful due to its higher potential to address new threats.

c) By invasiveness of technique: There are two techniques of detection, dynamic and

static. Dynamic is focuses on the behavior of the application and therefore only

detects during the execution of the application. Hence, it has a limited focus because

it detects the suspicious activity in a given running environment. On the other hand,

static detection allows the security analysts to analyze the application without

execute it by obtaining its source code. Thus, it is considered to be more thorough.

While hybrid technique is the combination of both dynamic and static.

Figure 2.3 added more information in signature and anomaly-based detection:

Univ
ers

ity
 of

 M
ala

ya

20

Detection

approach

Detection

approach

Anomaly-based

detection

Anomaly-based

detection

Signature-based

detection

Signature-based

detection

Hybrid-based

detection

Hybrid-based

detection

Specification-

based detection

Specification-

based detection

StatisticalStatistical

Machine

learning

Machine

learning

Knowledge-

based

Knowledge-

based

Expert systemExpert system

Model-based

reasoning

Model-based

reasoning

Pattern matchingPattern matching

State transition

analysis

State transition

analysis

Key stroke

monitoring

Key stroke

monitoring

Figure 2.3: Taxonomy of detection (Inayat et al., 2016)

In signature-based detection, the expert system is the knowledge regarding the attacks as

if-then implication rules. Model-based reasoning is the combination models of the

signature with evidentional reasoning. Pattern matching is used to store the known

pattern of the malware to detect it. Static transition represents attacks as a sequence of

state transition of the monitored systems. Key stroke detects the occurrence of malware

by using the key stroke.

Univ
ers

ity
 of

 M
ala

ya

21

In anomaly-based detection, the statistical approach in detecting malware is by

generating profiles by observing the behavior of the system activities. Machine learning

generates an explicit or implicit model of the analyzed pattern, and knowledge-based is

rely on the availability of the prior data of network parameter in normal and under

malware attacks. Inayat et al (2016) claimed that the specification-based is similarly to

anomaly detection with a difference in monitor the activity, where it monitors the

system instead of users activity.

2.3.1 Detection options: signature vs. anomaly

Signature-based (also known as misuse), is predominantly utilized by antivirus

application that depends on detecting malware based on the constant unique signature. It

analyzes the activity or malware by comparing the collected information from a pattern

that already defined that stored in a database. It has been used by the traditional

antivirus long time ago. Zhou & Jiang (2012a) practiced signature-based and detect

malware up to 79.6%. Despite the condition that signature-based able to detect known

malware, however, it need to continuously update the database signature once a new

malware is detected. On the other hand, anomaly-based is capable to detect unknown

(anomaly) malware by referring to classifiers prediction model (Yerima, Sezer, &

McWilliams, 2014).

Unlike signature-based, anomaly-based detection does not require any signatures. It

differentiates the normal and malware attack by training the machine learning

approaches (i.e. Artificial Neural Network (ANN), Decision Trees (DT) and Bayesian)

(Feizollah et al., 2017). It is a scientific discipline that is capable to predict future

decisions and outputs based on the experiences gained through past input features

(learning set) to predict anomalies or unknown instances (Kotsiantis et al.,

2006)(Feizollah, Shamshirband, et al., 2013). The learning set is based on given dataset;

Univ
ers

ity
 of

 M
ala

ya

22

furthermore, intelligent decisions are made according to certain algorithms. This

technique has been widely used for classifying which applications fall in which classes

(normal or malware). Furthermore, machine learning belongs to the Artificial

Intelligence (AI) field that allows the computer to reason and to decide based on

datasets (Kotsiantis et al., 2006). Table 2.1 tabulates the advantages and disadvantages

between signature-based and anomaly-based detection.

Table 2.1: Signature-based and anomaly-based advantages and disadvantages

Signature-based Anomaly-based

Advantages

Minimum false alarm Able to detect new and unknown malware

 Does not require signatures

Limitations

Unable to detect new and unknown

malware

High false alarm

Need signatures from the database

Need to constantly update the signature in

the database

The advantage of signature-based is it generates minimum false alarm as it depends on

the continuously update signature from the database. However, it is unable to detect new

and unknown malware if the database is outdated (Feizollah et al., 2015). In contrast,

anomaly-based is able to detect unknown malware without require any signatures from

the database. Nevertheless, it generates high false alarm (Anuar et al., 2008). Therefore,

in the interest for a research to achieve minimum false alarm for anomaly-based

detection, it depends on the type of experiments that have been conducted.

2.3.2 Analysis options: dynamic vs. static

There are two types of malware analysis: dynamic and static. Dynamic analysis

investigates the behavior of the running processes by executing the application. For

instance, a study observed network system activities to monitor the applications

(Narudin et al., 2014). In network frames, packets, and port numbers activities, two

Univ
ers

ity
 of

 M
ala

ya

23

studies (Afifi et al., 2016) and (Narudin et al., 2014) examined these behaviors in

detecting malware. While the HTTP features (i.e. establish Transmission Control

Protocol (TCP) connection to send data from client to server), two studies (Narudin et

al., 2014) and (Karim, Salleh, & Khan, 2016) contemplated these features to detect

malware. As opposed to dynamic, static analysis is another method which scrutinizing

application codes in unexecuted condition.

Static analysis is a type of analysis which investigates the malware application code,

hence covers over all the possible activities in an application within an unlimited range

of time because the analysis is unexecuted (Chess & McGraw, 2004). The main step of

static analysis procedure is the reverse engineer process. It is the process to retrieve the

whole code and further scrutinize the structure and substance within the application

(Aafer et al., 2013; Chang & Hwang, 2007; Sharif et al., 2008). Therefore, it is able to

examine the overall code, requires low memory resources, minimal CPU processes and

the analysis process is fast because the application is unexecuted. Additionally, static

analysis is capable to discover unknown malware with enhanced detection accuracy

with machine learning approaches (Narudin et al., 2014)(Feizollah, Anuar, et al., 2013).

Table 2.2 compares the advantages and disadvantages of dynamic and static analysis.

Table 2.2: Static and dynamic advantages and disadvantages

Dynamic Static

Advantages

Able to detect unknown malware Low resources (e.g. CPU, memory, network, and

storage). Relevance in mobile devices equipped with

low specifications

Detection of normal applications that change to

malware on-the-fly

Fast processing in conducting reverse engineering the

application

 Examining overall code and further, discover entire

possible action

 Able to detect unknown malware with the aid of

machine learning

Limitations

High resources (e.g. CPU, memory, network, and

storage)

Inability to detect normal application that changes to

malware on-the-fly

Possibly misses the malware activities that beyond the

analysis range

Investigation continues in finding minimal features

(e.g. permission, function call, and strings) to detect

malware

Difficulty in detecting applications that able to hide

malicious behavior while it runs

Investigation continues in finding minimal features

(e.g. traffic, memory) to detect malware

Univ
ers

ity
 of

 M
ala

ya

24

In Table 2.2, both types of analyses share the similar limitations, whereas selecting the

best features in minimal amount. In detecting malware, features refer to attributes or

elements to differentiate an application is either malware or benign. Security

practitioners face obstacles in investigating various features in all types of categories

(e.g. permission, API, directory path, and code-based) along with the need to decrease

these features at the same time. Finding best features in minimal amount is crucial

because it enhances accuracy (i.e. accurate predictive model) with fewer data and

reduces model complexity (Feizollah et al., 2015).

2.4 Summary

This chapter introduced the Android information in its architecture as well as the

application package. It also highlighted the types of detection by providing the detection

taxonomies, comparing their unique characteristics and operations through different

types of detection and analyses that include signature-based, anomaly-based, dynamic

and static analysis. Then it discusses this information to underline the advantages and

disadvantages between them. The subsequent chapter presented a review of machine

learning and the static features issues in previous studies to discover aspects that receive

less attention and to facilitate the feature selection issues.

Univ
ers

ity
 of

 M
ala

ya

25

CHAPTER 3: MACHINE LEARNING AND STATIC FEATURES ISSUES

As detailed in the previous chapter, this study adopts static analysis because of its rapid

processing attribute, its overall code coverage and its low resource requirements. In the

machine learning approach, finding the best features in minimal amount is crucial

because with fewer data, accuracy (i.e. accurate predictive model) is enhanced thereby,

reducing model complexity (Feizollah et al., 2015). However, searching for the malware

features which reside in thousands of lines of code located in each application can be a

sophisticated, difficult and complicated process that requires multiple experiments to be

conducted.

In most malware analysis studies, permissions have been utilized as a feature and these

features normally reside in the AndroidManifest.xml file. It is a confinement which

limits access to an application to utilize the part of the code or information located in the

Android mobile devices. Studies which use only permission as features include (C.-Y.

Huang et al., 2012; Peng et al., 2012; Sahs & Khan, 2012; Samra et al., 2013;

Walenstein et al., 2012). However, there are numerous features, besides permission, that

are also ready to be explored.

Since there are numerous static features and many malware are zero-permission (X.

Zhou et al., 2013)(Adrian, 2012), security analysts have also resorted to investigating

other categories of features so as to increase detection accuracy. Karim et al. (2016)

covered two categories of features such as API and permission while Arp et al. (2014)

included categories of API, permission, URL and hardware components. These studies

proved that by adopting other features besides permission, they improve the detection

accuracy in malware detection.

Univ
ers

ity
 of

 M
ala

ya

26

In addition, there are studies that searched the features in one particular file only. For

instance, Sanz et al. (2013), Talha et al. (2015) and Sarma et al. (2012) focused on the

permission features extracted from only one particular file, the AndroidManifest.xml.

In some studies, features were extracted manually and then inspected without referring

to any reliable and completed list of resources to verify their features. (Arp et al., 2014;

Karim, Salleh, Khan, et al., 2016; Yerima et al., 2015; Yerima, Sezer, & McWilliams,

2014) are some examples. Comparatively, fewer studies have concentrated on root

exploit features. The current study aims to fill that gap by first attempting to search for

the features in the overall files. It will then conduct the experiments based on the main

and reliable list of features as a reference before investigating the features that root

exploit frequently uses.

Besides mentioning the categories of features involved, it is also necessary to mention

the method used to select the static features. In their work, Azhagusundari and

Thanamani (2013) utilized Information Gain (IG) as a method, while Priyadarsini et al.

(2011) used Gain Ratio (GR) as a method to search for the optimized features. Arp et al.

(2014) adopted a method called joint vector space to identify the typical patterns of the

features geometrically.

Apart from the methods mentioned above, there are also opportunities for research to

include methods that utilize evolutionary algorithms for inspecting the repeated features

located in the same application. Stein et al. (2005) and Middlemiss and Dick (2003)

utilized evolutionary algorithms to detect malware by using dynamic analysis.

This chapter begins by reviewing the machine learning classifier issues, the methods

involved in selecting the best features which are ideal for machine learning and the

categories of the features involved.

Univ
ers

ity
 of

 M
ala

ya

27

3.1 Machine learning classifiers

This study attempts to investigate and discover the different utilizations of the different

machine learning types (i.e. function, tree and bayes) which have been frequently and

infrequently used in past research efforts. Table 3.1 provides the machine learning

classifiers extracted from previous static analysis studies for Android.

Table 3.1: Machine learning classifiers in static analysis studies

References Machine learning classifiers involved Machine learning classifiers used in this thesis

 NB FT J48 RF MLP VP RBFN

(Shabtai et al.,

2010)

DT, NB, BN, Part, boosted bayesian

network, boosted decision tree, RF, and

voting feature interval (VFI)

NB RF

(Sanz, Santos,

Laorden,

Ugarte-Pedrero,

Bringas, et al.,

2013)

Simple logistic, NB, BN, sequential minimal

optimization, instance-based learning with

parameter k, J48, random tree, and RF NB J48 RF

(Peiravian &

Zhu, 2013)

SVM, J48, bagging. prism and KNN
 J48

(Yerima, Sezer,

& Muttik,

2014)

NB, part, ridor, DT, and simple logistic

NB

(Yerima et al.,

2015)

RF, random tree, NB, DT, and simple

logistic
NB RF

(Chan & Song,

2015)

NB, SVM with sequential minimal

optimization (SMO), radial basis function

network (RBFN), MLP, liblinear, DT, and

RF

NB RF MLP

 Total 5 0 2 4 1 0 0

Legends: NB = Naïve Bayes, FT = Functional Trees, RF=Random Forest, MLP = Multilayer Perceptron, VP=Voted

Perceptron, RBFN= Radial Basis Function Network

Table 3.1 lists the type of classifiers which have been applied in static analysis by

previous research. The table shows that security analysts used NB and RF more than the

other classifiers (i.e. FT, J48, MLP, VP and RBFN). Furthermore, these security

analysts also used MLP once only while FT was excluded from their analyses. Based on

this, it is useful to prefer NB and RF because security analysts had utilized these

classifiers regularly. Moreover, they have also received huge acknowledgments in the

intrusion detection system area Thus, there is an opportunity for studies to discover the

classifiers of FT, J48, MLP, VP and RBFN because previous studies (Y. Lu et al.,

2013)(Díaz-Uriarte & Alvarez de Andrés, 2006)(Caruana et al., 2008) seldom used

these three classifiers of FT, NB and RF as a part of static analysis investigation. Hence,

Univ
ers

ity
 of

 M
ala

ya

28

it is beneficial to observe the distinctive results noted in frequently as well as

infrequently used machine learning classifiers (i.e. RF, NB, FT, J48, MLP, VP and

RBFN). Figure 3.1 depicts these classifiers in categories. Table 3.2 displayed their

advantages.

Neural net for

fixed patterns

bio-inspired

Multilayer

Perceptron

Non-linear method

Classifiers

trees

Random

Forest

J48

Functional

Trees

Probability

bayes

Naïve

Bayes

Voted

Perceptron

Radial Basis

Function

Network

Supervised

Figure 3.1: Machine learning types

Table 3.2: Machine learning classifier advantages

Categories Machine learning classifiers Advantages

Bayes NB

1) Operates on the (naïve) assumption (i.e. a fruit

considered an apple if it is red, round, and about 3 inches).

2) Performs well in certain real-life applications (i.e. file

classification and spam filtering).

3) Learning and classifying in an extremely rapid manner.

Tree RF, FT, and J48

1) A model is constructed from root until reaching the leaf.

2) Generally known as "divide and conquer" algorithms

(Kotsiantis, 2013).

Bio-

inspired
MLP, VP, and RBFN

1) Stable learning algorithm (Lippmann, 1987).

2) ANN based on the biological neural network, which

consists of three layers (input, hidden, and output).

The MLP structure is based on a feed-forward (also known as error backpropagation)

neural system that has at least one or more layers situated between the input and output

layer (Lippmann, 1987). The feed-forward indicates the information streams in one

Univ
ers

ity
 of

 M
ala

ya

29

direction, forward heading from the input to the output layer. The network learns the

training information by altering the synaptic weight of the neurons conferred to the error

existing on the output layer. It has been noted that Artificial Neural Network (ANN) is

used in numerous fields due to its powerful and stable learning algorithm. Analysts have

generally utilized the MLP for pattern classification (making inferences from perceptual

data), recognition (focuses on regularities in data), prediction and approximation. Figure

3.2 depicts the MLP feedforward concept.

Input 1

Input 2

Input 3

Input layer Hidden layer Output layer

Output

Figure 3.2: MLP concept (Lippmann, 1987)

Here, the figure shows the three input layers which consist of input, hidden and output

layer.

In the subsequent section, Figure of 3.3 indicates the Voted Perceptron (VP) which is a

classification algorithm that was introduced by Freund and Schapire (1999). The VP

works on a vote system. Here, the algorithm keeps a list of all the forecast vectors which

are created after each misclassified component. It then calculates the number of

iterations each vector endures. By utilizing the total number of iterations as votes, the

models which survived the most (i.e. fewer mistakes are made using this model) have a

greater majority on the vote. This means that the information it keeps during training

makes up the list of all the prediction vectors that were created after every mistake.

Univ
ers

ity
 of

 M
ala

ya

30

Each vector ascertains the quantity of the cycles it “survives” until the subsequent

mistake is made. In this regard, the VP refers this count as the “weight” of the

prediction vector. Figure 3.3 details the VP algorithm from the training until the

prediction phase.

Figure 3.3: VP algorithm (Freund & Schapire, 1999)

Following the VP algorithm, the ANN types of the applications used are also discussed.

 Here, the Radial Basis Function Network (RBFN) is one of the ANN types for the

application of supervised learning. It uses radial basis functions which is also known as

activation function to calculate the derived features in the neural networks. The

application gives value to each point noted on the distance taken from its origin. Figure

3.4 depicts the RBFN architecture which comprises input layer, hidden layer and output

layer with bias.

Univ
ers

ity
 of

 M
ala

ya

31

x1 x2 x3 xn..

RBFN

Bias

Hidden

layer

Output

layer

Input

layer

w

y

Figure 3.4: RBFN architecture (Walczak & Massart, 2000)

Here, the RBFN is a three-layer feedforward structure with points as indicated below:

a) The input layer only serves as the input distributor to the hidden layer.

b) Every node in the hidden layer is a radial function. Its dimensionality is similar to

the dimensionality of the input information.

c) A linear combination then calculates the output layer, particularly the weighted sum

of the radial basis function including the bias. In the context of machine learning

algorithm, it can be referred to the following equation:

 () ∑ ()

 3-1

As machine learning is being connected with more complex tasks, it is important to

recognize the most suitable data noted from a large amount of information. This data

may contain an extensive number of features which need to be reduced through careful

selection. The method employed for doing so is further explained.

Univ
ers

ity
 of

 M
ala

ya

32

3.2 Methods in selecting features for anomaly-based detection

Theoretically, the more the features, the better the ease in accomplishing accurate

prediction in machine learning. Nonetheless, too many features may hinder the learning

phase and confuse the learning algorithm. Such an occurrence causes the classifiers to

over-fit the training data (Yu & Liu, 2004). Consequently, the results of the prediction

become inaccurate.

Over the years, the ability to select optimized features has received attention. This

process has been used in numerous research areas encompassing machine learning,

statistical pattern recognition and data mining (Blum & Langley, 1997). Security

analysts (Appavu et al., 2011) have also highlighted that feature selection increases the

accuracy of machine learning detection as well as reduces the complexity in machine

learning classifiers’ learning results. Other advantages of features selection (i.e.

selecting the best features) include the use of less measurement and less storage

requirements, less learning, training and testing processes. The method enhances data

visualization and data understanding and it deals with the effect of dimensionality by

increasing prediction accuracy (Guyon & Elisseeff, 2003).

It has been noted in machine learning prediction that as the capacity of the data rises, the

difficulties of the classification problem and data analysis also increases significantly.

Powell (2011) claims that this situation is known as the curse of the dimensionality.

Generally speaking, selecting minimal features of data is necessary for the improvement

of the prediction’s accuracy as well as for the achievement of a faster processing rate.

Thus, it acts as cost-effective predictors. Moskovitch et al. (2008) and Koller and

Sahami (1996) adopted the feature selection practice for their machine learning

predictions. The practice improved their accuracy rate showing low false positive rate.

Noting its ease, the common feature selection methods utilized in this study and its

Univ
ers

ity
 of

 M
ala

ya

33

inclusion of Information Gain (IG), Gain Ratio (GR) and Chi Square (CS) are further

presented.

3.2.1 Information Gain (IG)

Information Gain (IG) is one of the feature selection methods proposed by Clause

Shannon in 1948 for information theory research. This method aims to find fundamental

limits on communication operation and signal processing (Ueltschi, 2006). It is done by

measuring the amount of data (i.e. bits), regarding the prediction of the class and the

corresponding class distribution (Han et al., 2001). The IG method considers feature to

be more important if its normalized information gain is larger and if it treats all features

as independent (Duch et al., 2003).

 () 3-2

Table 3.3 tabulates the IG utilizations which were extracted from previous studies.

Table 3.3: IG utilization

References Utilization

(Roobaert et al., 2006) Adopted for feature correlation and variable selection

with SVM for induction purposes.

(Appavu et al., 2011) Adopted with Bayes theorem by searching out the

dependent features and eliminating the redundancy

among them.

(Azhagusundari & Thanamani,

2013)

Searched the optimized features by utilizing IG as well

as discernibility matrix.

In this table, it can be seen that the IG utilization was applied. Based on previous

studies, it was noted that Roobaert et al. (2006) had successfully improved the

generalization performance of the Support Vector Machine (SVM) models in five

classification datasets of the competition. Hence, the IG is seen as one of the filter

approaches used in the selecting features’ process.

Appavu et al. (2011) adopted the Bayes theorem and the IG method to enhance the

accuracy of the prediction of their work. Likewise, it was proven that the IG is able to

Univ
ers

ity
 of

 M
ala

ya

34

improve the NB machine learning classifier prediction by three percent, gaining from

83.93% to 86%.

Azhagusundari and Thanamani (2013) also produced an outstanding result in relation to

the number of features selected. Their prediction accuracy also improved when the

method was distinctly applied.

3.2.2 Gain Ratio (GR)

Relating this to previous studies, the gain ratio (GR) is the modification of the IG

method. It is used for selecting the best features. It takes the number and the size of the

branches into account when choosing the features. It considers the intrinsic information

of a split as a means to correct the IG. The intrinsic information is the entropy of the

distribution of instances in the branches. Here, the value of the features decreases as the

intrinsic information increases (Han et al., 2001). The GR is defined in 3-3 as:

 ()
 ()

()
 3-3

The feature containing the maximum GR value is designated as the splitting feature.

Once the split information reaches 0, then the ratio becomes unbalanced. Therefore, a

constraint is added to hinder this situation whereby the IG of the selected essential test

then becomes enormous (Han et al., 2001).

In their work, Priyadarsini et al. (2011) increased the dimensionality so as to search for

a subset of seven features from the original dataset which consist of ten features. They

compared the reduced dataset with the original dataset to detect the accuracy of the

prediction. Their results indicate that the level of the accuracy remains similar. This

proves that dimensionality reduction does not affect the accuracy level.

Univ
ers

ity
 of

 M
ala

ya

35

3.2.3 Chi Square (CS)

Another common feature selection method used in information technology research is

the Chi Square (CS) where the test is used to test the independence of two

events. The test measures the divergence from the conveyance expected in the event.

When it accepts the element event, it is accepted to be really autonomous of the class

value. As a statistical test, the Chi Square is known to behave erratically for little

expected counts, which are regular in text classifications. This is because it occurs once

in a while with word features, and at times when having a few positive preparing cases

for a concept (Foreman, 2003).

The Chi Square (CS) is particularly used to test the occurrence of a specific class and

specific terms which are independent. Therefore, it can estimate the following quantity

for each term and rank them by scores with the equation of:

 () ∑

 * +

∑
()

 * +

 3-4

The high scores seen in the Chi Square of indicate that the null hypothesis (H0) of

independence should be rejected. This also means that the occurrence of the term and

class is dependent. If they are both dependent, then the researcher needs to select the

feature for the classification. Other than the IG, GR and CS, there are additional

methods used by others in selecting features. They are further mentioned below.

3.2.4 Other feature selection methods

In order to accomplish considerable results from the machine learning system, it is vital

to select minimal features. Table 3.4 tabulates the information of the methods used in

selecting the features. It also provides the information extracted from previous works.

Univ
ers

ity
 of

 M
ala

ya

36

Most studies (Arp et al., 2014) use Drebin to analyze joint vector space and to identify

the typical patterns of the features in geometric form. For example, Karim et al. (2016)

utilized the element tree xml Application Programming Interface (API) including

regular expression to identify strings or the number of attributes noted in obtaining

features.

Table 3.4: Other methods in selecting features

References Method to select features Information

(Arp et al., 2014) Joint vector space Used to identify patterns

of features

(Karim, Salleh, &

Khan, 2016)

Element tree xml API

and regular expression

Used to wrap an element

structure or string

(T. Zhang, 2009) Forward greedy

algorithm

Greedily selecting

another feature in each

iteration

(Lai et al., 2011) Forward-backward

greedy algorithm

Greedily selecting and

removing another feature

in each iteration

Further to using Drebin, the forward greedy algorithm (T. Zhang, 2009) has also been

used to select features. This algorithm is part of an investigation for sparse

approximation (Tropp, 2004). The fundamental awareness of the forward greedy

algorithm is that it greedily selects another feature per iteration. It also has the means to

forcefully decrease the loss objective. This strategy is generally, capable of locating the

best features. Forward greedy algorithm follows the problem-solving heuristics of

making local optimal decisions at every phase through the inspiration of searching for

global optimum. The forward greedy algorithm generalizes the case of measurement

noise. It is able to identify features in a sparse eigenvalue condition. This strategy’s

capability continues for as long as each non-zero coefficient is larger than the constant

time of the noise level. However, forward greedy algorithm is unable to correct the

mistakes it has previously made. Hence, Lai et al. (2011) combined the forward greedy

algorithm strategy with the backward greedy algorithm to resolve the downside of the

strategy. Unlike the forward greedy algorithm strategy which selects feature at every

iteration, the backward greedy algorithm removes each feature per iteration. Therefore,

Univ
ers

ity
 of

 M
ala

ya

37

the features that have minimum contributions are removed and this can further decrease

the cost function.

Different from the joint vector space and forward greedy algorithm, the evolutionary

algorithm (i.e. population, generation, crossover, mutation) can be used to search for

optimal and relevant features that are contained in multiple categories.

a) Genetic Algorithm (GA) and Genetic Search (GS)

Genetic algorithm (GA) is the inspiration extracted from evolutionary biology. It is a

technique that automatically improves parameters or features. Table 3.5 lists past related

works which had deployed the GA in selecting features. The strategy has been widely

used in numerous fields such as soil classification, colon cancer identification, gene

expression and malware detection.

Table 3.5: Studies of GA in selecting features

References Objectives Year

(Punch et

al., 1993)

Classify soil to three environments; a) near the roots of a crop

(rhizosphere). b) away from the influence of the crop roots

(non-rhizosphere). c) from a fallow field (crop residue)

1993

(Fröhlich et

al., 2003)
Classify colon cancer and gene expression

2003

(Middlemiss

& Dick,

2003) Detect malware intrusion (dynamic analysis)

2003

(Stein et al.,

2005)

2005

In their work, Punch et al. (1993) utilized feature selection and data classification on

soil classification by using GA combined with the K-Nearest Neighbor (KNN). The

KNN assists the study in measuring the similarity of the samples. However, it is unable

to inform the relative importance of the features in discriminating known samples.

Henceforth, GA, along with the KNN, as the main part of the evaluation stage, is

applied to optimize the features. The dataset for their study were rhizosphere data, the

world’s natural dataset. This dataset formed part of the soil ecosystem where plant roots,

soil and soil biota communicate with each other. These connections were advantageous

Univ
ers

ity
 of

 M
ala

ya

38

to plants in that the soil fruitfulness was enhanced and harmful chemical debasement

was upgraded. In this regard, it can be said that the study attempted to classify three

rhizosphere classes namely: the rhizosphere, the non-rhizosphere and the crop residue.

Likewise, Fröhlich et al. (2003) also applied the GA in their work to make three

classifications (i.e. toy data, colon cancer, and gene in a yeast dataset). The genetic

evolutionary process in the GA enabled them to switch the different factors and to

optimize parameters in the Support Vector Machine (SVM) algorithm. The analysts also

used theoretical bounds on the generalization error for the SVM by proposing a decimal

encoding that is much more efficient than the binary encoding. If the number of features

to be selected was unfixed beforehand, the usual binary encoding is preferred.

Furthermore, kernel parameters such as the regularization parameter of the SVM were

able to be optimized by the GA for selecting a feature subset, given that the choice of

the feature subset influences the appropriate kernel parameters and vice versa.

Middlemiss and Dick (2003) utilized the GA to select optimal features via weighted

feature extraction and machine learning. The study conducted was a malware detection

study that applied the dynamic analysis approach. To accomplish their aims, the

analysts implemented the GA to calculate the weights for the dataset features.

Thereafter, the KNN classifier was applied to the fitness function through the GA so as

to assess the new weighted feature set performance. Their results showed that the

weighted set of features for the class classification of data increased the accuracy of the

intrusion detection.

Another study that attempted a malware detection by applying the GA is (Stein et al.,

2005). They used the GA algorithm as a method to select a subset of features which

were put into the DT classifiers through static analysis. They then utilized the KDDCUP

Univ
ers

ity
 of

 M
ala

ya

39

99 as a dataset to train and test the tree classifiers. Through the assistance of GA, the

studies were able to successfully select the best features.

From the previous studies noted in Table 3.5, it appears that none had adopted the GA

for selecting the best features in malware detection using static analysis with machine

learning. In this regard, the gap provides an opportunity for others to explore the

advantages of using the GA in selecting features genetically. Apart from discussing the

features’ selection methods, the opportunity in using repeated features is also revealed

below.

3.2.5 Repeated features in similar application

As mentioned in chapter 1, this thesis was motivated by the aim of conducting an

experiment that calculate the repeated features noted in a similar application and its

efficiency in detecting malware. This novel feature extraction method was inspired by

the fact that some features are exist and manifest themselves multiple times in other

files within one application. For instance, one of the API features, getSubscriberId, was

discovered to exist multiple times in the same application. In this regard, this thesis

explores a similar factor by adopting the novel method of selecting features for

anomaly-based detection through the GA.

On the other hand, as root exploit has received lesser attention in research hence

following section explains the methods in detecting this type of malware.

3.2.6 Methods in detecting root exploit

One type of malware called root exploit is a malicious application which modifies the

kernel in an Android OS so as to gain super-user privileges. When the attackers gain

root and the privileges increase, they are able to install other malware types such as

botnets, worms or Trojans. When this occurs, the attackers are also capable of evading

detection by modifying the OS code, execute stealthily and bypassing over the

Univ
ers

ity
 of

 M
ala

ya

40

permission (Bickford et al., 2010; Ma & Sharbaf, 2013; A. Schmidt et al., 2009). The

number of root exploits has increased because of malware creators and homebrew

community attackers (i.e. smartphone users who break the OS kernel to obtain a

customized version of the OS). When a new version of the OS is released, malware

creators develop their own root exploits or they wait for the homebrew community

attackers to determine ways to break the OS (Felt et al., 2011). In this context,

homebrew community is a group of people who change the OS default structure in

mobile devices for their own benefit (e.g. to customize the graphic @ outlook,

accelerate hardware capabilities). Thus, one way to deter these attacks is to conduct an

investigation for root exploit features.

Despite all the investigations that have been conducted, fewer studies have given focus

to discussing root exploit malware, particularly for Android mobile devices, except for

Droidanalyzer (Seo et al., 2014) and Droidexec (Wei et al., 2015). This justifies the

investigation conducted on root exploit is rare especially involves Android. Unlike

Droidanalyzer and DroidExec, this thesis aims to adopt machine learning as a means to

detect it.

The Droidanalyzer (Seo et al., 2014) used an algorithm to calculate the MD5 hash value

which was cross-referenced in the database of signatures. In comparison, the similarity

recognition applied by Droidexec (Wei et al., 2015) used a structural graph constructor

(i.e. function–relation graph extraction and opcode component graph constructor).

Clearly, both had also overlooked detecting root exploit with the machine learning

strategy.

Due to this lack of attention, this thesis uses the anomaly-based technique which adopts

machine learning to detect unknown root exploit. Having discussed the methods in

Univ
ers

ity
 of

 M
ala

ya

41

detecting malware, further section explains the categories of features involves for the

anomaly-based detection system.

3.3 Categories of features for anomaly-based detection

Figure 3.5 depicts the taxonomy of the mobile malware features (see (Feizollah et al.,

2015). The taxonomy divides the features into four categories: static, dynamic, hybrid

and application metadata.

MOBILE

MALWARE

FEATURES

MOBILE

MALWARE

FEATURES

STATIC

FEATURES

STATIC

FEATURES

DYNAMIC

FEATURES

DYNAMIC

FEATURES

HYBRID

FEATURES

HYBRID

FEATURES

APPLICATION

METADATA

FEATURES

APPLICATION

METADATA

FEATURES

PermissionsPermissions

Java codeJava code

Intent filtersIntent filters

Network addressNetwork address

StringsStrings

Hardware componentsHardware components

System callsSystem calls

Network trafficNetwork traffic

System componentsSystem components

User interactionsUser interactions

A group of static and

dynamic features

A group of static and

dynamic features

Application descriptionApplication description

Creator IDCreator ID

Application categoryApplication category

Figure 3.5: Taxonomy of mobile malware features (Feizollah et al., 2015)

From the figure, it is noted that the most features are dynamic and static. Unlike the

dynamic option, the static option seems to be carrying more features. The advantage of

using static analysis is its rapid processing and low resources which attract security

analysts to spend their time in exploring and searching for the best features in-depth.

Table 3.6 tabulates the categories of features. Here, it can be seen that multiple

categories of features (e.g. permission, API, function call, code structures, sources and

sink, strings) were combined so as to detect malware.

Univ
ers

ity
 of

 M
ala

ya

42

Table 3.6: Series of features in static analysis studies

References Features Information about the features

(Aafer et al., 2013;

Deshotels et al., 2014;

S.-H. Lee & Jin, 2013)

API
Contain codes of an application consist of

classes, methods, functions, and parameters

(Gascon et al., 2013;

A.-D. Schmidt et al.,

2009)
Function call

In application code, it is a declaration in an

argument. It either contains any number of

names either separated by commas or
empty.

(Suarez-Tangil,
Tapiador, Peris-Lopez,

& Blasco, 2014)

Code structures
Comprises of a line or set of programming
codes in an application.

(Gordon et al., 2015;

L. Lu et al., 2012)

Sources and sinks

Sources and sinks are related terms. The

sources in computing area are where the

data enter the program, whereas sinks are

where the data flows to leave the program

(Rasthofer et al., 2014).

(Faruki et al., 2013) Bytes Referring to code in an application.

(Junaid et al., 2016)

Reverse-engineered
Life Cycle Model

Android application consists of essential

building blocks called application
components (activity, service, broadcast

receiver, and content provider) which

follow a life cycle model during execution.

(Aung & Zaw, 2013;

C.-Y. Huang et al.,

2012; Peng et al.,
2012; Sahs & Khan,

2012; Samra et al.,

2013; Walenstein et

al., 2012; Wu et al.,
2012)(Sanz, Santos et

al., 2013)(Talha et al.,

2015)(Sarma et al.,

2012)

AndroidManifest.xml

One of the files in Android application is

AndroidManifest.xml. It is an essential file,
containing the package name, the

application components (activities,

services, broadcast receivers and content

providers), the permission declarations, the
instrumentation classes, the API minimum

level, and the list of necessary libraries

(Android, 2015).

(Feizollah et al., 2017)

Intent

Intent objects deliver an abstract definition

of the operations in an application which
plans to accomplish.

(Aafer et al., 2013; Arp
et al., 2014; Arzt et al.,

2014; Bartel et al.,

2012; Feng et al.,

2014; M. Grace et al.,
2012; J. Huang et al.,

2014; Liang et al.,

2013; Peiravian & Zhu,

2013; Sheen et al.,
2015; Wu et al., 2012;

Yerima et al., 2014; W.

Zhou et al., 2013)

API and permission

In the Android OS process, permission and
API are depend on to each other. Parts of

API calls in the code needs permission to

execute (Wu et al., 2012).

(Apvrille & Strazzere,

2012; Luoshi et al.,

2013; Yerima et al.,
2014)

API, permission, and

others

Combined features consist of API,

permission, and others.

(Seo et al., 2014) API and other features
(exclude permission)

Combined features consist of API and
others, except permission.

(M. Grace et al., 2011;
Sarma et al., 2012;

Shabtai et al., 2010;

Yang & Yang, 2012)
(Kang et al., 2015; W.

Zhou et al., 2012)

(Yerima et al., 2014)

(Yerima et al., 2013)

Permission and other
features

Apart from API combinations, security

analysts also combine permission with
other features.

(M. C. Grace et al.,

2012; J. Lee et al.,
2015)

Other features except

for API and
permission

Features used other than API and

permission.

Univ
ers

ity
 of

 M
ala

ya

43

Table 3.6 shows that the previous security analysts had investigated features either by

extracting the existence of the features or by manually inspecting these features without

referring to a reliable and complete list of studies as a reference. This is a disadvantage,

as seen in some studies (Aafer et al., 2013; Arp et al., 2014; Karim et al., 2016; Sanz et

al., 2013; Sanz et al., 2013; Yerima et al., 2014; Yerima et al., 2014) because without

referring a complete list as guidance, the method of extracting features is likely to miss

some important features that significantly to detect malware during the experiment.

Due to this, the list of features stated in the Android official website such as the list of

permission (Android, 2015) and telephony (Android, 2016), is important.

Apart from this, certain existing studies as noted in Table 3.6, appear to have extracted

the permission features from only one particular file such as the Androidmanifest.xml

although many other applications in the Androidmanifest.xml have zero permission

(Adrian, 2012). In this regard, it is hard to differentiate between the malware and benign

applications. In addition, this approach may further increase the false positive detection

value. Consequently, investigating features that reside in all the files located in an

application including the Androidmanifest.xml file need to be explored in order to fully

discover the potential of the features in malware detection.

In addition, previous studies less discussed the root exploit features with machine

learning approach. Given this scarcity, there is a need to conduct investigations to find

the best in a minimal quantity of features to detect unknown root exploit as well as other

types of malware by utilizing anomaly-based intelligent machine learning prediction

system. Particularly, at this time of writing, none of the existing studies concerns root

exploit features except Droidanalyzer (Seo et al., 2014) and Droidexec (Wei et al.,

2015).

Univ
ers

ity
 of

 M
ala

ya

44

3.3.1 Categories of root exploit features

In looking at the categories of root exploit features, the Droidanalyzer (Seo et al., 2014)

combined the API, rooting and botnet command as features for detecting root exploit

and mobile botnet. The analysts analyzed the risky API and the strings which identified

malware by using particular features and keywords. The system included some features

taken from those categories of root exploit. In their work, the security analysts only

listed the keywords as an example without revealing the exact list of the features.

Therefore, the features to detect root exploits are still unavailable. In contrast, the

Droidexec (Wei et al., 2015) adopted a graph constructor which used opcode

components as features for detecting root exploit. Clearly, these two studies employ

different approaches than machine learning to detect root exploit.

a) Android Debug Bridge (ADB)

One of the novel features noted in this thesis is ADB. It is a tool that permits the local

computer to connect to the Android mobile device or an emulator. It connects the

mobile device or other personal wireless component with the local computer therefore,

users are able to interact with the mobile device through the command line of the local

computer (Android Developer, 2017).

In comparison to previous machine learning studies as shown in Table 3.6, the features

which were precluded in this thesis are startservice -n and adb_enabled. The features

being observed are of the ADB type which was included in the system command

category. According to literature review, the ADB command is one of the novel types of

features which have not been exploited through static analysis and machine learning.

Moreover, this study combines the ADB with other categories of features (i.e. system

command, directory path and code-based) to discover unknown root exploit. Although

certain directory path is discussed (Yerima, Sezer, & McWilliams, 2014), the current

Univ
ers

ity
 of

 M
ala

ya

45

study attempts to identify specific directory paths that detect root exploit only instead of

detecting all types of malware. In this chapter, after the root exploit features are

discussed, the opportunities in searching for the features in the overall files by referring

to a complete list as guidance is further explained.

3.3.2 Searching for features in overall files and complete list as guidance

In Section 3.3, it was mentioned that most studies had inspected the features without

making reference to all the previous studies as a guide. Section 3.3 also mentioned the

importance of searching and counting the features in the overall files in each

application. This is done prior to the detection accuracy test which may decrease if

features have been taken from one particular file only. To overcome that weakness, it is

crucial to have the complete list of features noted in each category so as to prevent any

features from being missed out in the experiment. The information provided in Table

3.7 compares the similarities and differences of features extracted from the manifest

file, the overall files as well as the complete list of guidance.

Table 3.7: Similarities and differences in extracting features

References Extracting features

(Apvrille & Strazzere, 2012; Aung &

Zaw, 2013; Karim, Salleh, Khan, et al.,

2016; Peiravian & Zhu, 2013; Peng et al.,

2012; Sanz, Santos, Laorden, Ugarte-

Pedrero, Nieves, et al., 2013; Sarma et

al., 2012; Seo et al., 2014; Shabtai et al.,

2010; Sheen et al., 2015; Yerima et al.,

2013, 2015; Yerima, Sezer, & Muttik,

2014; W. Zhou et al., 2012)

 In manifest file only

 Without referring to a complete

list (manual inspection,

investigation, observation)

(Arp et al., 2014; Feizollah et al., 2017;

Kang et al., 2015; Wu et al., 2012;

Yerima, Sezer, & McWilliams, 2014)
 Search in overall files

(Talha et al., 2015)  According to the complete lists

as guidance

This thesis, (C.-Y. Huang et al., 2012)

 In overall files including

manifest

 According to the complete lists

as guidance

Univ
ers

ity
 of

 M
ala

ya

46

In the comparison of the overall features, it shows that none of the previous studies

shown had computed similar features which were repeated multiple times in each

application. In addition, previous studies did not calculate the repeated features

extracted from both the malware and benign applications so as to obtain the relevant

features. Keeping in mind these limitations, advantages and opportunities in selecting

features through static analysis and machine learning, the following section proposes the

key focus areas to overcome the weaknesses identified.

3.4 Proposed study key focus areas

Based on the issues in previous studies, the proposed study is to conduct an

evolutionary algorithm to genetically search the features, conveys the range of repeated

features in similar application to gain the best features and investigate the features

specifically on root exploit.

3.4.1 Evolutionary algorithm in selecting features

Features refer to the elements or characteristics which are applied to mark an application

as being malware or benign. Machine learning classifiers normally use these features as

an input to make a decision. Minimum features are desirable because they offer

enhanced accuracy (i.e. accurate predictive model) with fewer data; minimum features

also reduce the complexity of the detection model by decreasing noisy and irrelevant

data (Feizollah et al., 2015; Sarip et al., 2016; Zia et al., 2015). The current study

adopts an evolutionary algorithm method called Genetic Search (GS) which is based on

Genetic Algorithm (GA), to search and improve the parameters so as to provide

minimal quantity of features in multiple categories of features.

GA is an algorithm that mimics the natural evolutionary process which consists of the

crossover process that combines multiple generations. It then continues to loop until the

best generations are achieved. Frohlich et al. (2003), Middlemiss and Dick (2003),

Univ
ers

ity
 of

 M
ala

ya

47

Punch et al. (1993) and Stein et al. (2005) applied the GA to achieve the best parameter

of features for their detection algorithms when trying to increase accuracy. However, as

mentioned in Section 3.1.6, none of these studies had adopted the GA method in

selecting features using static analysis and machine learning in detecting Android

malware. This gap will be filled by the current study which adopts the GS to perform a

search based on the GA as described by (Goldberg & Holland, 1988). Figure 3.6

illustrates the basic GA processes which consists of the crossover and mutation.

Crossover

Offspring

1 1 1 0 1

Parent 2

0 0 1 0 1

MateParent 1

1 1 0 0 1

Mutation

1 1 1 1 1

Repetition Repetition

Best generation
Figure 3.6: Basic GA process

To further illustrate the GA, the following analogy is offered. Consider a company

requiring advice in designing a good vehicle characteristic that is able to enter and

successfully exit from a high hill forest that is filled with obstacles. In this case, the

fitness is set according to the multiple checkpoints noted in the high hill forest. First, the

vehicle consists of small tires that have low performance engine. The vehicle keeps

going and keeps changing the characteristics or features simultaneously. Once the

vehicle has successfully reached the first checkpoint, the first fitness is satisfied and the

characteristics of the vehicle are saved. The GA process then continues (the

characteristics of the vehicle are gradually changing) until the vehicle achieves all the

checkpoints (save all the required characteristics). Finally, the set of features of a

Univ
ers

ity
 of

 M
ala

ya

48

vehicle that is necessary to enter and survive the forest is successfully achieved and this

includes the big tires, the high acceleration engine, the big tank and good quality brakes.

The GA equation (refer to 3-5) is defined according to the function and features string

of length 1 known as fitness. The new features are created from the current population

and the probability that a parent string is selected from the N strings such as H1, H2,

H3 until HN appears in the system equation is illustrated in the equation below.

() () ∑ ()
 3-5

Apart from the GS, another method for selecting the best features in detecting malware

is also explained.

3.4.2 Repeated features in similar application

In the aim to discover which features are frequently used by malware, the current study

inspects the existence of each feature in both the malware and benign applications. It

also inspects similar features which are repeatedly utilized in each application.

Accordingly, this method calculates the frequency of the similar features that exist, do

not exist as well as those features which are repeatedly used in similar samples. To

obtain the results showing which features in malware are frequently used, the frequency

identified between the malware and benign applications are subtracted so as to obtain

the range. The subsequent section explains how root exploit is detected.

3.4.3 Root exploit

It is important to investigate the exclusive features that are best suited for machine

learning classifiers in detecting unknown root exploit. Hence, investigating features to

detect root exploit is included in this section as the key focus area.

Univ
ers

ity
 of

 M
ala

ya

49

3.5 Summary

This chapter has addressed the challenges faced in selecting features through static

analysis. These challenges are further summarized as follows:

a) Minimal features: There is a need to identify and select minimal amount of features

in detecting malware. This is because excessive features may weaken the machine

learning phase and confuse the learning algorithms and thereby, causing the

classifiers to over-fit the training data.

b) Investigation and method in selecting features: Using static analysis to search for

malware features that reside in a thousand lines of code located in each application

are sophisticated, difficult, and complicated. Thus, there is a need to identify an

approach that select minimal amount but the best features in detecting malware.

c) Complete list of features: Many studies have investigated features by extracting

their existence either manually or inspecting them without referring to a reliable and

complete list of reference. Therefore, there is a need to refer complete list of features

to prevent any significant features that are capable of detecting malware from being

missed.

d) Search features in overall files: Although thousands of applications in the

Androidmanifest.xml contain zero permission, many studies seem to be extracting

their data from only one particular file (i.e. AndroidManifest.xml) to detect

malware. As this may increase the false positive value, thus, it is important to

investigate the features that reside in all the files located within an application

including the Androidmanifest.xml file.

e) Root exploit features: From literature review, it appears that lesser attention has

been given to the investigation of specific features using static analysis and machine

learning to detect root exploit. Thus, it is important to specifically investigate the

multiple categories of features on root exploit.

Univ
ers

ity
 of

 M
ala

ya

50

As a conclusion, this chapter has highlighted some related and important issues and

some strategies to reduce the limitations. Addressing the limitations and the advantages

is important because the outcomes of this study can be used as a guideline to construct a

valuable framework or to further improve existing studies and their methods used.

Furthermore, the outcome may be used to enhance the anomaly-based malware

detection through static analysis for the intrusion detection system.

Univ
ers

ity
 of

 M
ala

ya

51

CHAPTER 4: ANOMALY-BASED DETECTION USING STATIC ANALYSIS:

THE FRAMEWORK

This chapter entails the methodologies developed for the proposed framework. The aim

of the framework is to select the best features in minimal amount for the anomaly-based

detection using static analysis with the selected methods. In order to have an effective

anomaly-based machine learning prediction in static analysis, the process in selecting

the minimal features is crucial. To support the process, this chapter details the strategies

in Genetic Search (GS), range of repeated features and investigation on root exploit

features.

GS is based on Genetic Algorithm (GA). It is a bio-inspired mechanism inspired by

biological evolutionary concepts. This experiment used it to select a minimal number of

features in multiple categories of it to detect malware using machine learning

predictions.

The following strategy is an effort to inspect the best features by considering the range

of repeated features in each application, including benign and malware. This range

algorithm is inspired by the existence of similar feature multiple times in each

application.

Another strategy is to investigate which features are the best to detect particularly on

root exploit. It is a type of malware which capable of evading detection and escalate

privileges (Li & Clark, 2013). Hence, there is a need to conduct an experiment to

investigate and identify exquisite features to detect unknown root exploit malware. Next

section discusses all the methods in selecting features in detail.

Univ
ers

ity
 of

 M
ala

ya

52

4.1 Methods and categories of features

Table 4.1 tabulates the methods in selecting features for the best in minimal amount. It

also includes the categories of features and techniques that include in the experiment. In

order to observe different results, each experiment has different approaches. Table 4.1

provides the detail regarding this information.

Table 4.1: Methods and techniques for the proposed framework

Experiment
Method in

selecting features
Categories of features and technique involved

Machine

learning

classifier

categories

1

a) Genetic Search

(GS)

a) Permission

b) System

command

c) Directory path

d) Code-based

Search features in overall files Bio-inspired,

tree and bayes

2

a) Range of

similar features in

same application

b) Information

Gain (IG)

a) Permission

b) Directory path

c) Telephony

Search

features in

overall files

Refer features

from the

complete list

Bio-inspired

3

a) Frequency

investigation

b) IG

a) System

command with

Android Debug

Bridge (ADB)

b) Directory path

c) Code-based

Search features in overall files Bio-inspired,

tree and bayes

4.1.1 Genetic Search (GS)

In order to discover the efficiency of the features selected by the GS genetically, this

first experiment only adopts GS method alone without the aid of additional methods.

Furthermore, this experiment covered four categories of features, which exceed than

other experiment. This is to facilitate the GS to have a wide of choices of features

during the evolutionary process.

4.1.2 Range of repeated features

In second experiment, this research subtracts the frequency of the repeated features in

both malware and benign. This is to obtain the features of malware frequently used

compare to benign. Next, this experiment applies the range of the features according to

Univ
ers

ity
 of

 M
ala

ya

53

the equation below. In order to obtain the , the frequency of repeated features in

malware () subtracts the frequency of repeated features in benign, . This

algorithm then applied on all the categories of features in the experiment. In addition,

this research is the only experiment that refers to the reliable list as a guidance to

explore the differences between the other experiments that execute without it.

 4-1

4.1.3 Root exploit features

As this experiment focuses on selecting the features to detect specifically on root

exploit, there is a need to add the novel features such as ADB. Furthermore, the other

addition categories of features (i.e. system command, directory path and code based) are

also included to identify the need of these categories in root exploit. Although, these

features are already included in other experiment in this thesis, however, this research

attempt to discover how much critical the root exploit use these features compare to

other types of malware. As an example, in directory path category, root exploit utilized

certain directory path (i.e. /system/xbin/su) more than other types of malware.

Therefore, this experiment is conducted to answer this question. Next section provides

the proposed framework that depicts all the proposed methods and techniques.

Univ
ers

ity
 of

 M
ala

ya

54

4.2 Anomaly-based detection using static features framework

a) Web-based system Android application package

(.apk) file

Result

(Malware @

benign)

b) Application reverse engineering

stageReverse the .apk samples to

.java

Obtain list of files and nested

folders with .java extension

c) Feature extraction

Select and extract the features

derived from:

Check overall files and folders in

the application

GS
Range of

repeated

feature

algorithm

Root exploit

d) Prediction

3) Root analyzer

2) Bio analyzer

1) Genetic analyzer

Figure 4.1: Anomaly-based Detection Using Static Features Framework

The framework comprises of four main elements as follows:

a) Web-based system: This is the first part in framework that consists of application

reverse engineering, feature extraction and prediction. It provides the graphical user

interface functions to facilitate the end-users to predict their desired .apk files.

b) Application reverse engineering: This is the second part of the proposed

framework and it aims to convert the Android application package (.apk) to .java

extension files to retrieve the code. This is done by reverse engineering the .apk file

and subsequently obtains all the files and folders.

c) Feature extraction: This is the third part in the framework that extracts the features

from the application. These features are derived from the following strategies:

Univ
ers

ity
 of

 M
ala

ya

55

i. Evolutionary method: It is a method to search the best features by adopting

bio-inspired GS. Initially, this research collects all the malware and benign

features and the GS algorithm search the best generation of features from the

collection.

ii. Range of repeated features: As many features are repeatedly used in similar

application, this research takes this opportunity to calculate how many features

have been used in each application in both categories, malware and benign. By

scrutinizing the frequencies of these repeated features, this research capable of

identifying the features that malware frequently used with this novel method.

iii. Root exploit investigation: In order to discover the best features that root

exploit used, this research inspects this type of malware by investigating

multiple categories of features including the novel Android Debug Bridge

(ADB).

d) Prediction: In fourth part, the system used these features as input for the machine

learning classifiers to predict the class of the .apk file either malware or benign. As

to discover the different results in different machine learning types as well as

frequently and infrequently used in past research effort, the type of machine learning

classifiers involved are function, tree, and bayes. More information can be obtained

in Table 3.1 in Section 3.1. In addition, the final selection of machine learning

classifiers will be selected according to the evaluation on the following section,

which is Section 5.

4.2.1 Operational Characteristics

The proposed framework offers the following operational characteristics:

a) Multiple strategies: The proposed framework applies multiple strategies in

selecting features in malware detection process as well as thoroughly searches the

Univ
ers

ity
 of

 M
ala

ya

56

features in all files in each application. By implication, minimal features and deep

searches allow a comprehensive detection result.

b) Reduce the complexity of machine learning detection: The used of methodical

approaches (i.e. GS and range algorithm of repeated features) in selecting the best

features in minimal amount reduces the complexity of machine learning predictive

model. It allows the anomaly-based detection to confront the effect of

dimensionality to produce an efficient prediction score.

c) Rapid detection process: The proposed framework adopts the static analysis

method that decreases the prediction process and further achieves much faster

detection. This type of analysis is significantly faster because it classifies the

application without executing them.

d) User friendly interfaces: The proposed framework allows a simple prediction of

the results of the framework by providing a friendly graphical user interface system.

Moreover, it also allows the security analysts to thoroughly assess the features in

CSV and ARFF files from the prediction results to conduct further analysis.

e) Lightweight: the proposed method adopts static analysis technique, where only

reverse engineers the application and retrieves the code. It is done without execute

and monitor the behavior of the application.

f) Intelligent: this methodology employs machine learning prediction to detect

malware, instead of signature-based method that needs to continuously update the

malware signature in the database.

4.3 Summary

This chapter has focused on the conceptual framework for selecting the best features by

conducting investigations and methods for anomaly-based machine learning in detecting

malware. This is to increase the efficiency in malware detection process. Its description

has included an introduction of the main models, strategies, frameworks and the

Univ
ers

ity
 of

 M
ala

ya

57

rationale behind their implementation, as well as their operational characteristics. In

conclusion, this chapter highlighted the main point of this study and gave the detail of

the framework. It is important to understand the interrelationship between those

strategies and the model in compiling the overall process in detecting malware in order

to achieve an outstanding result from this process.

Having established the proposed framework using multiple strategies and methods, the

next chapter presents the methods of the experiment, evaluations of the framework

followed by a detailed discussion of them. It is important to understand that the results

provide a verification of the usefulness and suitability of the framework in facilitating

the anomaly-based static analysis in detecting malware process.

Univ
ers

ity
 of

 M
ala

ya

58

CHAPTER 5: EVALUATION OF THE ANOMALY-BASED DETECTION

FRAMEWORK

The novelty of this study is to propose a framework to have the mobile malware

anomaly-based detection systems by conducting experiments to identify the best

features, in order to facilitate the static analysis detection. Thus, in order to highlight the

feasibility and suitability of the framework, this evaluation study is significant.

This chapter provides the multiple experiments and the evaluation part based upon the

proposed framework that aims to evaluate it in terms of its effectiveness and

performances in relation to the static features selected. It is important to this evaluation

study to investigate the effectiveness and performance of the proposed framework in

order to satisfy its feasibility and suitability, in particular the ability of the framework to

facilitate anomaly-based malware detection.

The first experiment investigates the feasibility of the features selected from the

evolutionary GS search method. To evaluate and compare with the results from other

studies, the first experiment analyses the effectiveness of the GS process. With the first

experiment results, the second experiment extends the evaluation study by analyzing the

effect of adopting the novel range of repeated features and referring to the official list as

the main source, in order to satisfy the process enhancement. Furthermore, instead of

detecting all types of malware, the third experiment investigates and evaluates the

suitability of using the proposed features, especially for root exploit. The third

experiment also evaluates the categories of features that root exploit frequently used

only, as opposed to the features applied in the first and second experiments that detects

general types of malware. Finally, the chapter concludes with a summary.

Univ
ers

ity
 of

 M
ala

ya

59

5.1 General Description

This chapter provides the results of the evaluations and each with its own set of results,

discussion, and conclusion. Nonetheless, they do share a similar requirement in their

experimental procedures. This section discusses the similarities in order to avoid any

repetition in this chapter. In conducting the evaluation measure, the following section

provides the description of the dataset used in the following experiments.

5.1.1 Dataset

Primarily, the dataset is a collection of related data to initiate the experiment in the

initial phase. It consists of all the samples required for research activities. Typically, in

malware detection study, there are two types of classes involved as the dataset, which

are benign (also known as normal) and malware applications.

a) Benign Dataset

Benign, also known as normal or clean, is a status of an application that contains non-

malicious activities. It is considered safe for the user to utilize and install it in mobile

devices for daily purposes. The following subsection provides the benign dataset

applied in this study.

i) Google Play store: This thesis used the benign dataset obtained from Google Play

store market (Google, 2014). This market provides Android applications of various

categories, such as business, books, comics, communication, education,

entertainment, family, lifestyle, medical, music, shopping, transport, tools, and

social. These applications are provided for users of Android-powered phones,

tablets, and Android TV devices. In order to ensure the applications are in pristine

condition, this study included the samples which are only available from the Google

Play store. The reason for this is that, Google introduced Bouncer, a security service

that scans the application, its developer account, reputation engine and cloud

Univ
ers

ity
 of

 M
ala

ya

60

infrastructure automatically. Google is continuously improving and updating the

Bouncer detection system and is responsible for dropping the number of malicious

applications by about 40% in the Google Play store (Hou, 2016). In addition, this

study also conducted a scan in VirusTotal (VirusTotal, 2016). It is an online website

which provides button for users to upload their Android package file (.apk) file and

retrieve the results from more than 50 online antivirus results, either it malicious or

non-malicious. This experiment uploaded the benign applications in VirusTotal and

only included applications that received 0/50 scores, which indicates that 50

antiviruses claimed the .apk is clean or non-malicious.

ii) Androzoo: In the benign dataset collection phase, this study downloaded 7000

benign applications from Androzoo (Allix et al., 2016). It is the dataset searched by

the University of Luxembourg which contains 5 million Android application files

from the several markets. There are Google Play store (Google, 2014), Anzhi

(Anzhi, 2017), AppChina (AppChina, 2017), 1mobile (1mobile, 2017), AnGeeks

(Angeeks, 2017). Slideme (Slideme, 2017), FreewareLovers (Freewarelovers, 2017),

ProAndroid (ProAndroid, 2017), HiApk (HiApk, 2017) and F-Droid (F-Droid,

2017). Among all of these markets, this thesis only included application from

Google Play store. This is to ensure the applications are in pristine condition. The

reason is, Google introduced Bouncer (Hou, 2016) to double check the clean status

of applications. Furthermore, this thesis also examined the dataset in VirusTotal to

confirm its benign status. After the benign dataset, the following section describes

the malware used in this thesis.

b) Malware Dataset

The word malware is an abbreviated term for “malicious software.” Unethical authors

design an application known as malware for harmful purposes, such as damaging the

operating system of computer and gaining access to steal private data without the user’s

Univ
ers

ity
 of

 M
ala

ya

61

consent. The following subsections present the information of malware used in this

thesis.

i) Malgenome: As the experiments require malware dataset, a publicly available

dataset called Malgenome is thus utilized and extracted, which contains 1,260

samples. These samples consist of 49 different malware families (Y. Zhou & Jiang,

2012b) and have been used in many studies (Afifi et al., 2016; Feizollah, Anuar, et

al., 2013; Narudin et al., 2014). The identification includes several malware types,

such as botnet, root exploit, and Trojan.

ii) Drebin: Another malware dataset is Drebin (Arp et al., 2014). It is the experiment

collaboration in University of Gottingen and Siemens, Germany. They obtain the

malware by conducting static analysis whereas the features are embedded in a joint

vector space to identify the application as either malware or benign. The overall

total amount of Drebin is 5560, which consists of 179 different families. The

subsequent section provides the information of the tools utilized throughout the

experiment in this thesis.

5.1.2 General tools

This section provides the information of the tools used throughout the experiments in

this thesis. The tools involved are Jadx, Weka, Apktool and R.

i) Jadx: In order to gain the application code of the dataset, Jadx (Skylot, 2015) tool

reverse engineered the Android .apk files. It is used to reverse the .dex file in .apk

Android file to .java extension file. Once the process is accomplished, this study

obtained all the files in the nested folders which consist of .xml and .java file

extensions. The common file found after the reverse process is

Androidmanifest.xml, and the common folder is called res. The

Androidmanifest.xml file contains the Android permission, intent filters, libraries,

Univ
ers

ity
 of

 M
ala

ya

62

and the folder res contains the application layout with various .xml file types. The

remaining folders contains .java file types, in which the file names differ depending

on the application. This thesis chose Jadx for this task because it provides the

deobfuscation option that performs best in handling the obfuscated code with

minimal error.

ii) Weka: It is an acronym which stands for Waikato Environment for Knowledge

Analysis. It is the machine learning platform for machine learning (Hall et al.,

2009). Figure 5.1 depicts the Weka logo which represents the bird found in New

Zealand, which is also called Weka.

Figure 5.1: The logo of Weka

Weka is released as an open source application that provides a graphical user

interface (GUI) and a command line interface. The GUI facility eases the user to

complete their machine learning projects easily. Meanwhile the command line

interface features is very useful for scripting projects. Moreover, it is written in Java

and provides an API that is well documented and promotes integration into the

user’s application.

iii) Apktool: It is a reverse engineering application that decodes the Android

application package (.apk) file to nearly original form (.java) and able to rebuilds it

to .apk back after certain modifications have been made (Wiśniewski, 2015).

iv) R: R is an open source programming language for statistical computing and

graphics that is supported by the R Foundation for Statistical Computing. It is

generally utilized among statisticians and data miners to conduct data analysis and

Univ
ers

ity
 of

 M
ala

ya

63

statistical applications. It is capable to conduct numerical computations through

additional packages that are available (Chambers, 2017).

This section has defined the dataset (i.e. malware, benign) and general tools used for the

experiments in this thesis. The next section provides the evaluation measure that is used

in the experiment in this section.

5.1.3 Evaluation measure

In order to evaluate the effectiveness of the features, this thesis assessed the

performance matrix of the machine learning classifiers. Table 5.1 lists each evaluation

in terms of accuracy, True Positive Rate (TPR), recall, precision, f-measure and False

Positive Rate (FPR). It further lists the benchmark performance evaluation and its

descriptions. The following section explains the experiment that involve the dataset,

tools and evaluation measure in detecting malware

Table 5.1: List of evaluation measure

 Evaluation

measure
Descriptions Equation

Higher value

indicates better

performance

Accuracy Correctly predicts instances as

either malware or benign

True Positive

Rate (TPR)

Correctly predicts instances as

malware
 ()

Recall (similar

to TPR)

Measures the algorithm

performance in identifying

malicious samples

 ()

Precision Measures whether the

prediction is true or otherwise

 ()

F-measure Measures the weighted

harmonic mean of precision

and recall

Lower value

indicates better

performance

False Positive

Rate (FPR)

Incorrectly predicts the sample

as malware, when it is actually

benign

 ()

5.2 Evaluation of Genetic Search (GS)

This section provides the evaluation study that investigates the use of GS in selecting

the features genetically and to satisfy the following points:

Univ
ers

ity
 of

 M
ala

ya

64

a) To propose an evolutionary method known as GS to select the best features in

minimal amount.

b) To validate the results of GS, this thesis compared it to existing anomaly-based

experiments that utilized static features.

5.2.1 Experiment and procedure description

This section presents the flow of the experiment. Figure 5.2 illustrates the four phases

experiment process. The beginning phase is data collection, which includes the reverse

engineering process that retrieves the code of the application. The following phase is

string identification, which consists of permission, the words in the double quote,

function, intent, Linux command, directory path, and system command. The third phase

applies the GS process to select the best features among all the extracted strings

obtained in the strings identification phase. Subsequently, the fourth phase involves the

machine learning classifier, whereas the machine learning classifier trains the

information in the dataset to construct a detection model which is capable of predicting

an application either benign or malware. The following subsections describe each phase

in detail.

Phase 4

Machine

learning

classifiers

Phase 3

Genetic

algorithm

selects strings

Identify

106

strings

Reverse

engineer

for codes

(.xml and

.java)

Phase 2

Phase 1

Data

collection

Results

Android .apk

files

Benign=550

Malware=5555

Figure 5.2: Structure of the experiment phases

Univ
ers

ity
 of

 M
ala

ya

65

a) Data collection

This section explains the data collection phase, which is the initial step of the

experiment. Table 5.2 lists the summary of the dataset in the experiment. Followingly, a

reverse engineering tool called Jadx (Skylot, 2015), reverses engineered the Android

.apk files to obtain the code of the application.

Table 5.2: Dataset summary

Dataset Source Total downloaded Total used in the experiments

Malware Drebin 5560 5555

Benign Google Play store 1209 550

 Total = 6105

b) Strings identification

After obtaining the code of the application, the following step is to investigate and to

identify the strings for features. Figure 5.3 illustrates the second phase for strings

identification. To differentiate the colon, quote, and bracket in the code, Natural

Language Toolkit (NLTK) (Bird et al., 2009) tokenizes the line and pull out the strings.

Afterward, the existence of each feature (where 1 indicates existence and 0 indicates as

non-existence) in both benign and malware takes place. In some cases, the strings are

confused with one another. For example, cat, one of the Linux commands, is confused

with other words such as concatenate, locate, and other similar words which contain cat

strings in it. In the interest to observe the entire exact line of codes and to pull out the

cat command, this part used the grep command in Ubuntu terminal. It is a command

provided for the Linux platform.

Univ
ers

ity
 of

 M
ala

ya

66

NLTK

(tokenize and

count)

Grep

command

to .csv files

Observe

the code and

investigate

the strings

Set 1 and 0

to each

features

106

strings

Lines of code

in .xml and

.java

Figure 5.3: Strings identification

Other than the Linux commands, the features listed in the next section are selected from

other studies and additional investigation from this experiment. The permission features

consists of 13 dangerous permissions declared in the Androguard (Desnos, 2015) open

source tool. Furthermore, the additional features are the proposed set in the root exploit

study (Firdaus & Anuar, 2015) that consists of the system command, directory path, and

code-based. This is included due to the reason that this study attempts to detect all

malware types including root exploit. It is among the malware types that exploit the

vulnerable Android kernel to gain root and to further execute malicious actions such as

installing botnet, spreading Trojan, providing fake antivirus results, and executing root

privileges.

i) Code-based: Table 5.3 lists the 36 code-based features along with their existences

in both classes (malware and benign). For instance, createSubprocess is a code

string exists in 307 malware samples and does not appear in benign samples. As

the malware dataset is 5,555, and benign is less than malware which is 550;

therefore, it is necessary to calculate the percentage by dividing the existence, and

multiplying it by 100. Figure 5.4 depicts the code-based features in percentage

form. The vertical red line in the middle significantly distinguishes the benign

class with only three malware features included within the range of 50% to 100%.

Univ
ers

ity
 of

 M
ala

ya

67

This reveals that benign features exceed the malware existence in the code-based

category.

Table 5.3: Code-based features

No Code-based
Existence

No Code-based
Existence

Malware Benign Malware Benign

1 android.util.Log 4607 543 19 get(os.version) 531 5

2 android.os.Handler 3878 539 20 getDefaultHost() 489 38

3 DefaultHttpClient 3413 469 21 createSubprocess 307 0

4 setReadTimeout 2719 406 22 com.google.update.RU.U11 272 0

5 UrlEncodedFormEntity 2589 311 23 Forked 95 1

6 getResourceAsStream 2386 261 24 ImageTestActivity 74 0

7 getNetworkInfo 2157 348 25 InstallApk 73 1

8 vnd.android.package-archive 2034 90 26 ACTION_CostInfo 72 0

9 getExternalStorageState 1954 438 27 ACTION_SaveID 72 0

10 checkPermission 1893 428 28 AndroidThemeService 72 0

11 Cipher.getInstance 1738 408 29 CostNumberConfirm 72 0

12 Math.random 1590 346 30 CostParms 72 0

13 getLaunchIntentForPackage 1413 284 31 getResponseContentGet 72 0

14 getSimSerialNumber 1363 36 32 getResponseContentStream 72 0

15 setWifiEnabled 772 46 33 KeyCostTips 72 0

16 process.waitFor 738 4 34 KeyPIDIntent 72 0

17 getField(MANUFACTURER) 641 29 35 TASK_Network_Setting 72 0

18 getWifiState 559 25 36 config.dat 72 3

Figure 5.4: Code-based in percentage values

Univ
ers

ity
 of

 M
ala

ya

68

ii) Permission: The second category is the permission features, included in the

AndroidManifest.xml file. It is a file required in every Android application main

directory. It represents the essential information regarding the application package

name, permission, activities, services, broadcast receivers, and content providers.

Table 5.4 lists the permissions included in the experiments before the GS feature

selection phase. For example, android.intent.action.MAIN is a permission that

exists 5,355 and 541 times in the malware and benign samples, respectively. Some

of these permissions were taken from the Androguard (Desnos, 2015) application

which is declared as dangerous, whereas the others are added from this

investigation. Figure 5.5 depicts the existences of these features in percentage

form. The plot in the graph shows that both malware and benign classes are placed

in the similar area from 0% to 100%, in which the areas are similar yet

insignificant to each other. Meanwhile, the next section presents the directory path

features.

Table 5.4: Permission features

N

o
Permission

Existence
N

o
Permission

Existence
Mal

ware

Ben

ign

Mal

ware

Ben

ign

1 android.intent.action.MAIN 5355 541
2

2
android.intent.extra.shortcut.INT

ENT
1352 66

2 android.content.Context 5320 548
2

3

android.intent.extra.shortcut.NA

ME
1352 66

3
android.permission.INTERNE

T
5234 527

2

4

android.permission.READ_CO

NTACTS
1314 59

4
android.intent.category.LAUN

CHER
5150 530

2

5

android.permission.WRITE_SM

S
1213 6

5
android.telephony.TelephonyM

anager
4902 481

2

6

com.android.launcher.action.IN

STALL_SHORTCUT
1197 52

6 android.intent.action.VIEW 4844 544
2

7

android.permission.CHANGE_

WIFI_STATE
983 85

7
android.permission.READ_PH

ONE_STATE
4838 388

2

8

android.intent.action.SCREEN_

ON
912 107

8
android.permission.WRITE_E

XTERNAL_STORAGE
3644 447

2

9

android.intent.extra.shortcut.IC

ON_RESOURCE
762 55

9
android.intent.action.BOOT_C

OMPLETED
3539 143

3

0
android.intent.action.SIG_STR 671 1

1

0
android.webkit.WebView 3453 494

3

1

android.intent.action.BATTERY

_CHANGED_ACTION
581 0

Univ
ers

ity
 of

 M
ala

ya

69

1

1
android.content.IntentFilter 3077 504

3

2

com.google.update.UpdateServi

ce
406 0

1

2

android.permission.SEND_SM

S
2976 72

3

3
com.google.update.Receiver 398 0

1

3
android.webkit.WebSettings 2425 396

3

4
com.android.packageinstaller 335 5

1

4

android.permission.RECEIVE_

SMS
2127 17

3

5

android.permission.READ_EXT

ERNAL_STORAGE
323 82

1

5

android.permission.ACCESS_

COARSE_LOCATION
2119 297

3

6
com.google.map.apk 275 0

1

6

android.permission.ACCESS_F

INE_LOCATION
2109 306

3

7
android.intent.action.NEW_OU

TGOING_CALL
241 3

1

7

android.permission.WAKE_LO

CK
2098 334

3

8
android.intent.extra.PHONE_N

UMBER
173 3

1

8

android.permission.READ_SM

S
2037 12

3

9

android.provider.Telephony.WA

P_PUSH_RECEIVED
173 2

1

9
android.intent.action.DIAL 1729 184

4

0

android.settings.WIRELESS_SE

TTINGS
158 46

2

0

android.provider.Telephony.S

MS_RECEIVED
1446 24

4

1

android.provider.Telephony.MM

S_RECEIVED
72 0

2

1

android.intent.action.SCREEN

_OFF
1407 286

4

2

com.android.browser.application

_id
45 28

Figure 5.5: Permission features in percentages

iii) Directory path: Table 5.5 lists the directory path features included in this

experiment, in which some paths are taken from the root exploit study (Firdaus &

Anuar, 2015) and some added from additional investigations. One of the

Univ
ers

ity
 of

 M
ala

ya

70

directories, system/bin/su, exists 633 times in malware and none in benign

samples. It stores the super user information of the Android OS and attracts

unscrupulous authors to gain root in the victim’s mobile devices. Figure 5.6 shows

the percentage of the directory path features. The figure depicts the critical

directory, where system/bin/secbin appears 44% in the graph, leaving the other

features.

Table 5.5: Directory path features

No Directory path Existence
Malware Benign

1 system/bin/secbin 2434 0
2 system/bin/su 633 17
3 content://telephony/carriers/preferapn 625 19
4 system/xbin/su 621 38
5 system/bin/chmod 516 12
6 system/etc/dhcpcd 449 0
7 system/etc/rild/cfg 441 0
8 content://telephony/carriers 376 3
9 system/bin/sh 287 2
10 application/vnd.wap.mms-message 280 7
11 application/vnd.wap.sic 151 3
12 DES/CBC/PKCS5Padding 134 7
13 system/bin/mount 41 0
14 data/local/tmp/rootshell 24 0
15 system/bin/rm 23 0
16 system/bin/profile 19 0

Figure 5.6: Directory path features in percentages

Univ
ers

ity
 of

 M
ala

ya

71

iv) System command: The final category is the system command feature listed in

Table 5.6. As the objective is to detect all types of malware including root exploit,

this section included the system command from the root exploit study (Firdaus &

Anuar, 2015). These features originated from two categories, namely, the Unix

command and the ADB commands. Examples of Unix commands are chmod,

chown, pm install, cat, cp -rp, and mount -o remount, and ADB commands

include startservice -n and adb_enabled. Figure 5.7 displays these commands in

percentage form. The commit command has the most existence in both benign and

malware classes.

Table 5.6: System command features

No System command
Existence

Malware Benign
1 commit 4529 536
2 chmod 1034 49
3 startservice -n 474 0
4 buffer.listFiles 272 0
5 buffer.mkdir 272 0
6 mount -o remount 247 2
7 chown 195 0
8 pm install 183 0
9 stdin 179 8

10 cat 123 1
11 adb_enabled 80 2
12 cp -rp 72 0

Figure 5.7: System command features

Univ
ers

ity
 of

 M
ala

ya

72

Figure 5.8 shows the regression line to discover the relationship of significant

features in the malware and benign samples. The three lines (indicated as code-based,

permission, and system command) that rise from below to the top show a positive

relationship. The lines indicate that whenever benign features increase, malware and

benign expand as well. This finding proves that the malware features are suitable

attributes for detecting malware. However, the line of directory path category is

minimal, by reason of percentage is small compared with other categories. Thus, in

the succeeding section, the GS method search which features is the best among all

the features in code-based, directory path, permission and system command

categories.

Figure 5.8: Regression lines of all categories

c) Proposed GS and features

The GS is based on the GA method which is inspired and based on the evolutionary

biology in nature (e.g. crossover and mutation). This evolutionary process provides a

technique to automatically improve characteristics or features in order to generate the

Univ
ers

ity
 of

 M
ala

ya

73

best generation. The evolution is able to transform the worst generation to form a better

generation. This is done by referring to the fitness requirement. This method includes a

set of requirements, which is when one generation is unmatched according to certain

characteristics, the GA excludes that generation and this process repeats until the best

generation is achieved. Furthermore, the GA is unable to solve any research problem by

providing a final ultimate solution; instead, it serves a method to select at least the

optimal features.

Hence, the next process is to select the best features among the 106 features mentioned

in the previous section. The GS process takes place in the Waikato environment

knowledge analysis (Weka) (Hall et al., 2009) tool. As the total dataset consists of 6,105

applications (both benign and malware), the parameter settings are 400 for populations

in each generation, which amount to a total of 15 generations. For crossover probability,

it is set as 0.6, which crossover the 106 features to produce the offspring list of features.

To maintain the value of the features (0 and 1) in each application, this study set zero

for the mutation process. At the end of the process, GA successfully produces the best

generations of features and selected the six features as listed in Table 5.7.

Table 5.7: Six GS-selected features

Features Existence in malware (%) Existence in benign (%)

android.permission.READ_SMS 36.7 2.2

android.permission.RECEIVE_SMS 38.3 3.1

android.permission.WRITE_SMS 21.8 1.1

checkPermission 34.1 77.8

system/bin/sec/bin 43.8 0

com.android.browser.application.id 0.8 5.1

These features are included in three types of categories; first is android permission

(read, receive, and write SMS), the second is code-based (checkPermission and

com.android.browser.application.id), and the third is directory path (system/bin/secbin).

In Table 5.7 the existence of malware in permission and directory path is more than

Univ
ers

ity
 of

 M
ala

ya

74

benign. Nevertheless, it is different for the code-based category, with the malware

existence found to be fewer that of benign. This demonstrates that GS search the

optimal features not according to malware existence; merely it is according to the

evolutionary process in GS. Subsequently, in order to evaluate the effectiveness of these

features, this study used three types of machine learning classifiers in the following

section (bayes, trees, and function).

d) Machine learning classification

In constructing the machine learning model, the classifiers are run in the Weka (Frank et

al., 2016). In this tool, it is fundamental to prepare a Comma Separated Values (.csv)

file. As GS selected the six features and addition to the class label, this file therefore,

contains seven columns. Furthermore, this file contains 6105 lines of rows, which

represents the total of both malware (5555) and benign (550). Given that this work uses

static analysis, each row comprises of 1 or 0 only. Each row represents an application,

which shows 1 (if the feature exists @ occur) or 0 (if the feature is non-existent @ non-

occur).

Once the .csv file application is completed, the following step is to convert it to

Attribute-Relation File Format (.arff) file. This conversion is done by Weka. The reason

is, ARFF is an ASCII text file format, which Weka introduced specifically to loads

faster (Williams, 2010). To achieve natural and acceptable results, the evaluation

process applies the randomize option to randomly shuffle the order of both classes

(malware and benign) in the datasets. Therefore, the class categories in each application

are arranged randomly to provide a natural order. Figure 5.9 displays the captured

screen of some part in the ARFF file after the randomize option. Eventually, the three

machine learning classifiers, namely, MP, RF, and NB, utilized this ARFF file for

evaluation.

Univ
ers

ity
 of

 M
ala

ya

75

Figure 5.9: Part of ARFF file

In constructing the machine learning predictive model, it is necessary to conduct k-fold

cross validation methods, which runs repeatedly in k-fold times. In the experiment, the k

subsets serve as the test set, whereas k-1 subsets are used as the training set. Moreover,

the average of all k trials is computed for the evaluation (Schneider, 2016). This study

used the 10-fold method, which repeatedly runs for 10-fold times for feature

effectiveness. Particularly, the dataset is randomly divided into ten subsets of equal size

and repeated ten times. In each repetition, one subset is used as the test set and the other

nine subsets are combined to form the training set. Accordingly, the test set is excluded

from the training set, which is used to detect unknown malware in this step. The

following section provides the results from the six features.

5.2.2 Results

In the interest to evaluate the effectiveness of the six features which are selected by GS,

it is crucial to address the machine learning classifiers performance matrix. The

following section provides the results of this experiment in two aspects, namely, cross

validation as well as training and testing section.

Univ
ers

ity
 of

 M
ala

ya

76

a) Cross validation

Table 5.8 lists the results derived from the experiments. In cross validation, FT

accomplished magnificent results across four categories; highest accuracy (94.22%),

highest correctly classified instances (5752), the lowest percentage of incorrectly

classified instances (353), and lowest FPR (23.8%). In the true positive value, all

classifiers gain the same mark except for J48, which achieved the lowest at 95.8 %.

Additionally, in the ROC category, MLP obtained the highest value at 0.950. In the next

category, precision, three classifiers shared an identical value of 97.6%, whereas the

others recorded 97.5%. Moreover, all classifiers share a similar result for the recall and

f-measure categories except for J48.

Table 5.8: Classifiers results in cross validation

 Classifiers

Categories
Bayes Function Trees

NB MLP FT RF J48

Results

Accuracy 94.17% 94.19% 94.22% 94.20% 93.89%

Correctly

classified

instances

5749 5750 5752 5751 5732

Incorrectly

classified

instances

356 355 353 354 373

FPR 24.5% 24.2% 23.8% 24% 25.1%

TPR 96% 96% 96% 96% 95.8%

ROC 0.936 0.950 0.947 0.946 0.905

Precision 97.5% 97.6% 97.6% 97.6% 97.5%

Recall 96% 96% 96% 96% 95.8%

F-measure 96.8% 96.8% 96.8% 96.8% 96.6%

b) Training and testing

On the other hand, Table 5.9 enlists the results retrieved from 80% training and 20%

testing section. This step trains the classifiers with 80% of the dataset, while the

remainder is used for testing the model in detecting malware, which is excluded in the

training set. As the total dataset is 6105, therefore, 4884 of it is used for training, while

1221 is for testing part. In the table, two classifiers, NB and FT share the best value in

accuracy (95%), correctly (1160) and incorrectly (61) classified instances, and f-

Univ
ers

ity
 of

 M
ala

ya

77

measure (97.2%). However, NB holds the best value among other classifiers in TPR and

recall which is 96.8%. Overall, FT is the outstanding classifier which jotted the highest

value in all categories except TPR and recall in detecting unknown malware.

Table 5.9: Classifiers results in training and testing

 Classifiers

Categories
Bayes Function Trees

NB MLP FT RF J48

Results

Accuracy 95% 94.9% 95% 94.9% 94.7%

Correctly

classified

instances

1160 1159 1160 1159 1157

Incorrectly

classified

instances

61 62 61 62 64

FPR 22.1% 22.1% 21.2% 22.1% 23.9%

TPR 96.8% 96.7% 96.7% 96.7% 96.7%

ROC 0.94 0.953 0.956 0.954 0.916

Precision 97.7% 97.7% 97.8% 97.7% 97.5%

Recall 96.8% 96.7% 96.7% 96.7% 96.7%

F-measure 97.2% 97.2% 97.2% 97.2% 97.1%

c) Before and after GA

In the interest to observe the differences before and after the GA process, this subsection

compares the result in predicting the class samples in Weka. This part first prepares the

benign samples which excluded from this experiment dataset to test the prediction

effectiveness. Table 5.10 lists ten benign samples downloaded from the Google Play

store and further scanned in VirusTotal to confirm its benign status. In the beginning,

this study predicts these applications using 106 features. In the following, the machine

learning predicts these samples using the GA features. Table 5.11 details the differences

before and after the GA process with the best prediction results highlighted in bold.

Univ
ers

ity
 of

 M
ala

ya

78

Table 5.10: Benign samples information

Package name Md5
Size

(byte)

com.schoenmueller.wiesbadenPlus cd217fd9a73b5660175acf5282e7f83a 27491923

com.incisivemedia.erandroid 300ae64c25457ed12d9d4afadd90424b 3610532

com.tester.wpswpatester 0e7c2d0422290eef1af6a80ad67e26b3 907795

com.appsbuilder4593 2c0e53592afdf430f1052ed7873e7124 536882

com.komfo.komfo a8f5008f60c169e67feb93cfeb2f3368 4085095

cc.leet.free 66b129b07a3c4c8f82da428fa6809528 2191099

com.mgz.bmpkiosk f49c0c987e0187dea84033a9fcaf55a2 27181791

com.aor.droidedit 55f51015242995f88cc059aa368a58af 1465402

com.bigint.writermd b45b49c5369fa351a54130124675ee03 3942002

com.aflower.weightlosssmoothies 53939541cf6439979f154966ab0109e6 1403709

Table 5.11: Before and after GA

Classifier NB MLP FT J48 RF

Package name Before GA

com.schoenmueller.wiesbadenPlus B B B B B

com.incisivemedia.erandroid B B B B B

com.tester.wpswpatester B B B B B

com.appsbuilder4593 B B B M B

com.komfo.komfo B B B B B

cc.leet.free B B B B B

com.mgz.bmpkiosk B B B B B

com.aor.droidedit B M M M M

com.bigint.writermd B B B B B

com.aflower.weightlosssmoothies B B B B B

Prediction/total benign 10/10 9/10 9/10 8/10 9/10

Time taken to predict (second) 0.1 175.57 1.81 0.36 0.36

Classifier NB MLP FT J48 RF

Package name After GA

com.schoenmueller.wiesbadenPlus B B B M B

com.incisivemedia.erandroid B B B B B

com.tester.wpswpatester B B B B B

com.appsbuilder4593 B B B M B

com.komfo.komfo B B B B B

cc.leet.free B B B B B

com.mgz.bmpkiosk B B B M B

com.aor.droidedit B B B B B

com.bigint.writermd B B B B B

com.aflower.weightlosssmoothies B B B B B

Prediction/total benign 10/10 10/10 10/10 7/10 10/10

Time taken to predict (second) 0.01 2.5 0.31 0.02 0.09

Univ
ers

ity
 of

 M
ala

ya

79

Table 5.11 compares the accuracy as well as the time taken in machine learning before

and after the GA course. Figure 5.10 depicts these differences in graph manner. Before

GA selects the features, the machine learning classifiers incorrectly predicted the benign

applications as malware for 5 times. One of the classifiers, J48 mistakenly predict for

two times, compare to MLP, FT, and RF which forecast wrong for one time only.

However, Figure 5.10 places NB in the top value which shows the only one classifier

which successfully predicts the ten applications as benign. Dissimilarly, after the GA

selects the best features among 106 features, all the classifiers accurately predict the

applications, except J48 which incorrectly predict three times, which is the lowest place

in the figure. It proves that by adopting GA in decreasing the number of features,

machine learning classifiers are capable of enhancing the accuracy in distinguishing

between benign and malware classes effectively. Meanwhile, Figure 5.10 illustrates

another significant aspect of the GA process which is the time consumes for the

classifier in conducting the intelligent machine learning prediction system.

Figure 5.10: The accuracy and time comparison in machine learning prediction

Before the GA course, by using 106 features, the total time taken to predict by machine

learning classifiers is 178.2 seconds, with MLP jotted the longest time in the figure,

which is 175.57 seconds. In the following, by using features derived from the GA

Univ
ers

ity
 of

 M
ala

ya

80

method, the classifiers successfully predicted 47 correct classes as benign with a

satisfactory short time interval, 2.93 seconds in total. This demonstrates that by

applying 106 features, the prediction took a long time to predict the samples as the

classifiers need to consider all the features in each sample, which leads to the detection

being more complex. By decreasing the features with GA, the classifiers are capable of

decreasing the features complexity in the machine learning intrusion detection system.

Having defined the number of feature differences, the next issue is the reverse

engineering process in static analysis.

These machine learning steps were done in Weka whereas this study reverses engineers

the samples and count the frequency before assigning it to the simulation. However, this

situation is different when this prediction takes place in the actual IDS. Practically in the

static analysis initial step, the IDS automatically reverse engineer each sample to obtain

the code and further count each feature in machine learning classifiers. If in the situation

where IDS needs to recognize 106 features in overall code, which include all types of

strings including numbers, characters (e.g. double apostrophe, bracket), and symbols,

this would possibly increase the noise of the strings and lead to irrelevant data. Figure

5.10 illustrates the worst accuracy in prediction and time taken in the simulation before

the GA process. The predictions would possibly reach less accuracy and the time taken

would be a great deal longer in real IDS. MLP takes 175.57 seconds which is equal to

2.93 minutes in the simulation, with the reverse engineering and counting features

processes being excluded from the simulation process. Therefore, in actual IDS, MLP

needs more than 2.93 minutes to detect malware. Henceforth, the features noise may

increase when machine learning needs to process more than ten samples. Therefore, by

reducing the features with the GA method, this work is able to decrease the noise of the

string including unnecessary data, which contribute to the effectiveness of machine

learning intelligent prediction system.

Univ
ers

ity
 of

 M
ala

ya

81

In addition, FT jotted promising scores in cross validation as well as training and testing

phases, which surpasses other tree-based machine learning classifiers (i.e. RF and J48),

despite the fact that past analysts precluded FT in their static analysis research.

Meanwhile, the following section compares this study with previous works which apply

similar malware dataset, Drebin.

5.2.3 Discussion

Every type of analysis, such as static and dynamic, applies a different method in

examining malware and benign datasets. Correspondingly, different analyses present

distinct advantages and disadvantages. To substantiate the effectiveness of the results,

this section compares the results of this experiment with previous studies that used static

and dynamic analyses with Drebin as the malware dataset. Table 5.12 compares the

results in the accuracy category. As for the classifiers shown in the table, this section

prefers the classifier which achieved only the best accuracy. These studies are chosen

based on two reasons; 1) The dataset used is similar to this experiment’s study, which is

Drebin. 2) The selected studies are published in good quality journals. 3) The research

objective is to decrease the features to derive its relevance, which is similar to the aim of

this experiment.

Univ
ers

ity
 of

 M
ala

ya

82

Table 5.12: Comparison with other studies

Refere

nces

Type of

analysis

Classifi

er

Result Dataset Method

for

selecting

features

Features

 Accuracy Benign Malwa

re

Ours

Static

FT 94.22% 550 5555 Genetic

search

6 features

(permissions,

code-based, and

directory path)

Drebin

(Arp et

al.,

2014)

Support

vector

machin

e

94% 123,453 5560 Joint

vector

space

Set to a vector

space

Smartb

ot

(Karim

,

Salleh,

&

Khan,

2016)

Dynami

c

Simple

logistic

regressi

on

99.49% n/a 36 for

learnin

g,

4891

for

testing

Element

tree xml

API of

python

and

regular

expressio

n

16 network

features

(file system

activities,

network

connections,

information

leakage, started

services, SMS,

cryptographic

operations, DNS

request, HTTP

traffic parameters

and unknown

TCP and UDP

conversations)

In the static analysis comparison, this study method in selecting features is different

from another Drebin study (Arp et al., 2014). GS is based on an approach which models

the natural processes of the inheritance of multiple generations and the survival by

fitness or adaptation to the environment. In contrast, joint vector space analyzed and

identified the typical patterns and combinations of the features in geometric form.

However, in the accuracy comparison, this experiment’s accuracy exceeded 0.22% more

with Drebin. This proved that GS performed much better in selecting relevant features

compared to joint vector space. However, the frequency of the feature in their study

remained unknown; therefore, this section is unable to discuss which and how many

features are used for their Linear Support Vector Machine training.

Univ
ers

ity
 of

 M
ala

ya

83

Smartbot (Karim, Salleh, & Khan, 2016) outperformed this experiment’s accuracy value

of 94.22% with their 99.49% using dynamic analysis. This indicates that their method of

using element tree xml in selecting features is convenient for the dynamic analysis.

Nevertheless, their benign dataset is unknown, and they mentioned only the malware

dataset in their study. In addition, although the accuracy is high in detecting malware,

dynamic analysis consumes a much longer time compared with static as it classified the

samples by executing it and by monitoring its behavior further. Moreover, this study

aims to detect all types of malware (e.g. trojan, botnet, and root exploit), whereas their

study particularly focused on detecting botnet.

Meanwhile, in FPR comparison for both static and dynamic analyses, this experiment’s

score is left behind compared to Drebin and Smartbot. This demonstrates that benign

samples play an important role in producing beneficial results, whereas more benign

samples contribute to achieving fewer FPR value (lower value indicates better

performance). However, in Drebin, the FPR value is corresponding to one false alarm

which is limited to 100 applications and precluded the exact list of features utilized in

their experiment. On the other hand, this investigation implements two types of

evaluation, the 10-fold cross validation and training and testing which include all the

dataset. Furthermore, this study listed the six features for the machine learning classifier

for this experiment. Meanwhile, in the Smartbot study, the experiment practices

dynamic analysis that monitors application activities which consumes a lot of time,

effort, performance and hardware resources. In comparison to static analysis study, this

experiment only needs low resources (e.g. memory, CPU) than a dynamic analysis

which consumes more hardware requirement and time. Having discussed the GS

method, the next section conducts the range of repeated features evaluation.

Univ
ers

ity
 of

 M
ala

ya

84

5.3 Range of repeated features evaluation

This section provides the evaluation study that investigates the novel range of repeated

features method in selecting the best features that malware frequently used as well as to

satisfy the following points:

a) To propose the range of repeated features method to select the best features in

minimal amount.

b) To validate the result from the range of repeated features method, this thesis

compared it to existing anomaly-based experiment that utilized static features.

5.3.1 Experiment and procedure description

This section presents the overall workflow of the experiment. Figure 5.11 illustrates the

methodology process. The first phase begins with data collection, which includes the

reverse engineering process that retrieves the code of the application. The following

phase is the feature investigation to select the exquisite of it among three categories (i.e.

permission, directory path, and telephony). In the objective to detect unknown malware,

the third phase applies the neural network-based classifiers (MLP, VP, and RBFN). The

following subsections describe these phases in detail.

Univ
ers

ity
 of

 M
ala

ya

85

Malware Benign

Reverse

engineer

Raw code

Extract

features

Permission

Directory

path

Telephony

manager API

 Android

official

website

Android file

system based

on Linux

 Android

official

website

Count

frequency of

each features

Features

refinement

Obtain the

range

(Malware –

benign =

range).

Compare

manifest and

code

Top 10 range

of the

frequency

Information

Gain feature

selection.

Include the

score

range from

0.05 until

1 only

Evaluation

Results

Comparison

Figure 5.11: Methodology of the experiment

a) Data collection

Primarily, the dataset is a collection of related data to initiate the experiment in the

initial phase. It consists of all the information required for research activities. Table 5.13

lists the summary of dataset information in this experiment. The following subsections

describe the dataset in detail.

Table 5.13: Dataset summary

Dataset Source Total downloaded Total used in the experiments

Malware Drebin 5560 5551

Benign Google Play store 7000 5551

 Total overall= 11102

b) Feature investigation and selection

In malware analysis, finding relevant features in minimal amount is crucial to establish

an accurate predictive model, hence enhancing the detection accuracy of limited data

and reducing the complexity of the predictive model (Feizollah et al., 2015). This phase

scrutinizes and selects which features are suitable for numerous lines of codes. This

section applied the grep command in Ubuntu terminal to observe the entire codes and

Univ
ers

ity
 of

 M
ala

ya

86

pull out the features. Later, this experiment used R tool to clean the data and count the

features. Figure 5.12 displays overall features in all categories.

Figure 5.12: Frequency of features in all categories

The categories of features in this experiment are permission, directory path, and

telephony. This study acknowledged the frequency of each feature that is existing or

non-existing as well as those repeatedly used in each application. For instance,

android.permission.WRITE_SMS existed in one application, and this similar

application also utilized the same feature repetitively. In Figure 5.12, the left side shows

the total number of features frequency which the applications repetitively used. It

describes the malware utilized permission features found to be more than benign.

However, in the telephony category, the range of features between malware (58535) and

benign (55748) is small with only 2787. Meanwhile, the right-side view in Figure 5.12

depicts the number of distinct frequency.

Univ
ers

ity
 of

 M
ala

ya

87

In this study, the maximum total of distinct frequency in both malware and benign in

directory path is 113, permission is 378, and telephony is 52. In this aspect, certain

features exist in malware but are excluded in benign, and some of it exist in benign, but

are non-existing in malware. Therefore, in the figure, by combining the distinct features

of malware and benign in each category, the amount will not exceed the maximum total

of distinct frequency. For instance, in the directory path, the total distinct features of

malware (69) and benign (25) is 94, which is lower than the maximum total (113).

In the distinct features of view, Figure 5.12 describes that malware used more amount of

features than benign, except for the telephony category. It shows that benign used 27

telephony features, exceeding malware which only used 24. It is worth noting that

dataset total amount, for both benign and malware are similar, which is 5551. Therefore,

this investigation discovers that, if this study adds more benign samples, it derives the

probability that benign possibly used more amounts of telephony features than malware,

which is different than the directory path and permission categories.

After this experiment obtained all the features frequency including the repetition, the

subsequent step is to expose which features are most used by malware. In this step, this

study subtracts the malware frequency with benign and obtain the range algorithm

according to the equation in Section 4.1.2. The following section provides the top range

features obtained from the equation in the permission, directory path, and telephony

categories.

i) Permission: The first category is the permission features, which is encoded in the

AndroidManifest.xml file. Fundamentally, every Android application includes

AndroidManifest.xml in its directory. It represents the information that consists of

the application package name, its permissions, activities, services, broadcast

receivers, and content providers. In this category, this experiment includes the

Univ
ers

ity
 of

 M
ala

ya

88

permission in the Android reliable official website (Android, 2015), as well as other

permissions obtained from this investigation. This exploration realized that the

number of permissions is increased because the developer is capable to create

permission in their own desired name upon creating an Android application. Hence,

this study stopped the process and gained 378 permissions both in malware and

benign. As this experiment included the imperative permissions from reliable

sources in the Android official website, this experiment considers the total as

sufficient. Figure 5.13 depicts the top 10 permission range and the frequency. The

highest range in the figure is android.permission.READ_PHONE_STATE which

appear between 5000 and 7000. It shows that malware used this permission more

regularly than benign. Moreover, the same permission is included in the top ten

range in Figure 5.14, which is the top ten malware permission enclosed in overall

code (including manifest) and in the manifest file only. The permission listed in both

Figure 5.13 and Figure 5.14 are android.permission.READ_PHONE_STATE,

com.android.launcher.permission.INSTALL_SHORTCUT,

android.permission.ACCESS_COARSE_LOCATION and

android.permission.READ_CONTACTS. On the other hand, the next section

provides the directory path feature.

Univ
ers

ity
 of

 M
ala

ya

89

Figure 5.13: Top 10 permission range with frequency

Figure 5.14: Top 10 malware permission range (code and manifest) with

frequency

ii) Directory path: The second category included in this study is the directory path.

This experiment investigates all the possible directory paths based on the Linux file

system (Anderson, 2016). The total features in this category are 113. Figure 5.15

shows the top ten directory path frequency and the range. The highest range in this

Univ
ers

ity
 of

 M
ala

ya

90

figure is /data/data which is allocated between 6000 and 9000. The other features

received a smaller range and are slightly similar to each other. Afterward, this

investigation continues with the following category, which is telephony.

Figure 5.15: Top 10 directory path range with frequency

iii) Telephony: The final category is the telephony features, also known as telephony

manager. It is one of the Application Programming Interface (API) in the Android

system. In order to discover the features, this investigation is based on the reliable

Android official website (Android, 2016), which the total is 52. Figure 5.16 depicts

the top ten telephony range including the frequency. Accordingly, the features

among the higher ranges are the getLine1Number, getSubscriberId, and

getSimSerialNumber. Once this experiment calculates the range of malware and

benign, there is a need to observe the relationship of malware and benign features as

either positive or negative.

Univ
ers

ity
 of

 M
ala

ya

91

Figure 5.16: Top 10 telephony range with frequency

To discover the features relationship in malware and benign samples, this study

provided the regression line depicted in Figure 5.17. The three lines (indicated as

directory path, permission, and telephony) that rise from below to the top show a

positive relationship. The lines indicate that whenever benign features increase,

malware and benign expand. This finding proves that the malware features in this

experiment are relevant features in detecting malware. The two significant lines,

telephony (blue square) and permission (green triangle) depict that these two features

are significant than directory features. In addition, this experiment used Information

Gain (IG) value to ensure the features effectiveness in machine learning detection

accuracy. Univ
ers

ity
 of

 M
ala

ya

92

Figure 5.17: Regression lines of features

IG (Shannon, 1948) decides the amount of data by measuring how well it isolates the

training samples according to the objective. This study inclines toward IG because of its

compelling measuring features, generalization capability, accuracy enhancement, and

short execution time (Kent, 1982). The highest IG value demonstrates the most effective

for machine learning recognition. Table 5.14 records the twelve features in IG value

beginning from 0.05 onwards.

Table 5.14: Features in IG value from 0.05 onwards.

Features Info Gain Category

android.permission.SEND_SMS 0.2273 permission

android.permission.READ_SMS 0.1772 permission

android.permission.READ_PHONE_STATE 0.1591 permission

android.permission.RECEIVE_SMS 0.1538 permission

getSubscriberId 0.1528 telephony

getLine1Number 0.1466 telephony

android.permission.WRITE_SMS 0.0992 permission

com.android.launcher.permission.INSTALL_SHORTCUT 0.0939 permission

android.permission.RECEIVE_BOOT_COMPLETED 0.0885 permission

getSimSerialNumber 0.0727 telephony

android.permission.ACCESS_NETWORK_STATE 0.0708 permission

com.android.browser.permission.READ_HISTORY_BOOKMARKS 0.0525 permission

For the final decision in selecting the best features, this study considers these twelve

features for the following reasons. First, the features in this table are included in best IG

Univ
ers

ity
 of

 M
ala

ya

93

value. Second, the positive relationship in regression line proves the permission and

telephony are the significant categories which are similar to the categories in best IG

value in Table 5.14. Third, these twelve features are included in the top ten range

frequencies. Therefore, this experiment utilized these selected twelve features for the

bio-inspired ANN classification in machine learning.

c) Artificial Neural Network (ANN) evaluation

In machine learning, the classifier's prediction is based on the predictive model. In

building the model, this study used Weka (Waikato, 2017). In this tool, it is fundamental

to prepare a Comma Separated Values (.csv) file. As this investigation selected the

twelve features and addition to the class label, this file, therefore, contains thirteen

columns. Furthermore, this file contains 11102 lines of rows, which represents the total

of both malware (5551) and benign (5551). Given that this work utilizes static analysis,

each row comprises of 1 or 0 only. Each row represents an application, which shows 1

(if the feature exists @ occur) or 0 (if the feature is non-existing @ non-occur). ing

Once the .csv file application is complete, the following step is to convert it to

Attribute-Relation File Format (.arff) file. This conversion is done by Weka. The reason

is, ARFF is an ASCII text file format, which Weka introduced specifically to loads

faster (Williams, 2010). To achieve natural and acceptable results, the evaluation

process applies the randomize option to randomly shuffle the order of both classes

(malware and benign) in the datasets. Therefore, the class categories in each application

are arranged randomly to provide a natural order. Figure 5.18 displays the captured

screen of some part in the ARFF file after the randomize option. Eventually, the three

machine learning classifiers, namely, MLP, VP, and RBFN, utilized this ARFF file for

constructing the machine learning model.

Univ
ers

ity
 of

 M
ala

ya

94

Figure 5.18: Sample screenshot of arff file

In constructing the machine learning predictive model, it is necessary to conduct k-fold

cross validation methods, which runs repeatedly in k-fold times. In the experiment, the k

subsets serve as the test set, whereas k-1 subsets are used as the training set. Moreover,

the average of all k trials is computed for the evaluation (Schneider, 2016). This study

used the 10-fold method, which repeatedly runs for 10-fold times for feature

effectiveness. Particularly, the dataset is randomly divided into ten subsets of equal size

and repeated ten times. In each repetition, one subset is used as the test set and the other

nine subsets are combined to form the training set. Accordingly, in this step, the test set

is excluded from the training set, which is used to detect unknown malware.

5.3.2 Results

This section evaluates the effectiveness of the twelve features derived from the third

experiment investigation. The evaluation information for the results was explained in

Section 5.1.1.

In this section, the beginning result is MLP, followed by VP and finally RBFN. In the

aspiration to discover results in different parameter value beginning from 0.1 to 1.0,

these three classifiers utilized these similar values in different parameters. For MLP, the

Univ
ers

ity
 of

 M
ala

ya

95

parameter is the learning rate, the exponent is for VP and the minimum standard

deviation is for RBFN.

a) MLP

Table 5.15 enlists MLP results with different learning rate values. It refers to the update

network weights amount for each training period. This learning rate is for the

backpropagation algorithm with the default value being 0.3. The value of this parameter

should be between 0 and 1. In this table, the best parameter is the 0.1, which achieved

the best score in four metrics, whereas the accuracy is 90%, FPR is 7.2%, precision is

92.3% and f-measure is 89.6%. This result justifies that the evaluation value is changed

to a better score whenever the amount of weight in learning rate is decreasing.

Table 5.15: MLP evaluation results

Learning rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation MLP (%)

Accuracy 90 90 89 89 89 89 89 89 89 90

True positive

rate (TPR)

87 86.8 87.7 88.2 88.3 87.3 87.9 88.1 88.3 87.2

False positive

rate (FPR)

7.2 7.5 8.7 9.3 9.3 8.3 8.7 9.3 9.8 7.9

Precision 92.3 92.1 91 90.5 90.5 91.3 91 90.5 90 91.7

Recall 87 86.8 87.7 88.2 88.3 87.3 87.9 88.1 88.3 87.2

F-measure 89.6 89.4 89.4 89.3 89.3 89.3 89.4 89.3 89.1 89.4

b) VP

On the other hand, Table 5.16 lists the VP evaluation value with the exponent as the

parameter. The exponent refers to the value of the polynomial kernel in VP algorithm,

which the default is 1. For this neural network classifier, the evaluation value changes to

better results whenever the exponent value is increasing. The best parameter is 1.0

which jotted 89% in accuracy, 11.3% in FPR, 88.7% in precision and 88.7% in f-

measure. This demonstrates that the increment of exponent contributes to better

evaluation results.

Univ
ers

ity
 of

 M
ala

ya

96

Table 5.16: VP evaluation results

Exponent 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation VP (%)

Accuracy 86 84 84 83 84 85 86 87 88 89

True Positive

Rate (TPR)

86.9 85.3 85.1 84.6 84.8 85.1 87 87.4 89.6 88.7

False

Positive Rate

(FPR)

13.7 16.9 17.9 17.5 16.4 15.9 15.4 13.4 13.3 11.3

Precision 86.4 83.5 82.6 82.9 83.8 84.3 85 86.7 87.1 88.7

Recall 86.9 85.3 85.1 84.6 84.8 85.1 87 87.4 89.6 88.7

F-measure 86.6 84.4 83.9 83.7 84.3 84.7 86 87 88.3 88.7

c) RBFN

Table 5.17 shows the RBFN evaluation results with the best score highlighted in bold.

The parameter is the minimum standard deviation, which is set for the clusters in the

neural network. In this table, the lowest parameter receives good results with 87% in

accuracy, 86.1% in TPR, 86.1% in recall and 87.1% in f-measure. This result describes

that the most minimal standard deviation, which is 0.1, records the best evaluation

results. So far this section has focused on the outcomes of accuracy, TPR, FPR,

precision, recall and f-measure, while Figure 5.19 depicts all these evaluations in graph

manner.

Table 5.17: RBFN evaluation results

Minimum

standard

deviation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation RBFN (%)

Accuracy 87 87 86 86 87 87 87 87 87 87

True positive

rate (TPR)
86.1 85.9 83.5 83.9 83.8 83 82.8 82.4 81.5 81.2

False

positive rate

(FPR)

11.7 11.6 10.9 10.9 10.6 9.6 8.9 8.2 7.6 7.3

Precision 88 88.1 88.5 88.5 88.8 89.6 90.3 91 91.5 91.7

Recall 86.1 85.9 83.5 83.9 83.8 83 82.8 82.4 81.5 81.2

F-measure 87.1 87 85.9 86.2 86.2 86.2 86.4 86.5 86.2 86.1

Univ
ers

ity
 of

 M
ala

ya

97

Figure 5.19: The evaluation results in graph manner

Figure 5.19 demonstrates that by using this experiment’s proposed features and method,

MLP classifier recorded the best prediction in this simulation that surpasses other

classifiers. It marks the highest scores in accuracy, TPR, f-measure, recall, and

precision. Furthermore, MLP achieves the low scores in incorrect prediction in

classifying malware. Although VP seems to have the worst score compared to other

classifiers, however, it still achieves better scores than RBFN in recall and TPR. So far,

this experiment has focused on the outcomes in accuracy, TPR, FPR, precision, recall,

and f-measure, while the following part describes the Receiver Operating Characteristic

(ROC) values from different parameters.

Univ
ers

ity
 of

 M
ala

ya

98

d) Receiver Operating Characteristic (ROC)

In this section, this study utilized the ROC value to discover the tradeoff between the

TPR and FPR values. It is a fundamental indicator for diagnostic test evaluation. TPR

(sensitivity) is plotted in the function of FPR for different cutoff points of a parameter.

The ROC value closer to 1 indicates good classifier performance and high classification

accuracy. Table 5.18 shows the ROC value in each parameter with the leading value

highlighted in bold. In ROC value comparison, MLP obtains the closest value to 1 at

0.958. This value is higher than VP and RBFN (0.888 and 0.93). This demonstrates that

MLP performs better in comparing ROC value between VP and RBFN. On the other

hand, Figure 5.20 displays the ROC value in graph form to reveal the pattern line when

the parameter values are changing from 0.1 to 1.0.

Table 5.18: ROC value in each parameter

Classifier ROC

Parameter 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MLP 0.958 0.958 0.957 0.958 0.957 0.956 0.957 0.955 0.954 0.955

VP 0.866 0.843 0.836 0.837 0.844 0.849 0.858 0.87 0.882 0.888

RBFN 0.92 0.922 0.918 0.918 0.92 0.921 0.921 0.926 0.928 0.93

In the MLP classifier, the ROC values are declining when the learning rate parameter

increases from 0.1 to 1. It demonstrates that the MLP reaches the best ROC value in a

lower learning rate. Unlike MLP, the ROC value of VP gradually rises whenever the

parameters are increasing. Similarly, RBFN receives akin pattern line compared to VP.

These lines verify that these two classifiers are experiencing better ROC value when the

parameter values are expanding. This section thus far discusses results derived from this

study; hence the next section presents the confusion matrix.

Univ
ers

ity
 of

 M
ala

ya

99

Figure 5.20: ROC value in graph form

e) Confusion matrix

A confusion matrix is a table to explain the performance of the machine learning

classifier model. It provides the information of correct and incorrect prediction that have

been done from the testing phase. Table 5.19 lists the confusion matrix of MLP,

followed by Table 5.20 from VP, and Table 5.21 from RBFN classifiers. To clearly

describe the correct prediction in detecting malware, Figure 5.21 depicts the pattern of

this information between the classifiers.

Table 5.19: Confusion matrix of MLP classifier

Parameters Actual
Predicted

Predicted malware Predicted benign

0.1
Actual malware 4827 724

Actual benign 402 5149

0.2
Actual malware 4820 731

Actual benign 414 5137

0.3
Actual malware 4871 680

Actual benign 481 5070

0.4
Actual malware 4896 655

Actual benign 515 5036

0.5
Actual malware 4899 652

Actual benign 517 5034

0.6
Actual malware 4845 706

Actual benign 461 5090

0.7
Actual malware 4877 674

Actual benign 482 5069

0.8 Actual malware 4891 660

Univ
ers

ity
 of

 M
ala

ya

100

Actual benign 514 5037

0.9
Actual malware 4901 650

Actual benign 543 5008

1
Actual malware 4840 711

Actual benign 437 5114

Table 5.20: Confusion matrix of VP classifier

Parameters Actual
Predicted

Predicted malware Predicted benign

0.1
Actual malware 4822 729

Actual benign 760 4791

0.2
Actual malware 4737 814

Actual benign 939 4612

0.3
Actual malware 4725 826

Actual benign 992 4559

0.4
Actual malware 4694 857

Actual benign 969 4582

0.5
Actual malware 4709 842

Actual benign 908 4643

0.6
Actual malware 4725 826

Actual benign 882 4669

0.7
Actual malware 4830 721

Actual benign 853 4698

0.8
Actual malware 4853 698

Actual benign 746 4805

0.9
Actual malware 4974 577

Actual benign 737 4814

1
Actual malware 4921 630

Actual benign 626 4925

Table 5.21: Confusion matrix of RBFN classifier

Parameters Actual Predicted

 Predicted malware Predicted benign

0.1
Actual malware 4780 771

Actual benign 649 4902

0.2
Actual malware 4767 784

Actual benign 645 4906

0.3
Actual malware 4634 917

Actual benign 603 4948

0.4
Actual malware 4659 892

Actual benign 605 4946

0.5
Actual malware 4649 902

Actual benign 589 4962

0.6
Actual malware 4606 945

Actual benign 533 5018

0.7
Actual malware 4594 957

Actual benign 494 5057

0.8
Actual malware 4575 976

Actual benign 454 5097

0.9
Actual malware 4524 1027

Actual benign 420 5131

1
Actual malware 4508 1043

Actual benign 407 5144

Univ
ers

ity
 of

 M
ala

ya

101

Figure 5.21: Comparison between correct and incorrect predictions of malware

Between other classifiers, Figure 5.21 demonstrates that MLP jotted magnificent scores

in predicting unknown malware with this experiment’s proposed features. In terms of

incorrect prediction perspective, MLP collected the minimal value which is only 402 in

the parameter of 0.1. However, RBFN nearly followed the MLP value by scoring 407 in

the 1.0 parameter. Meanwhile, VP collected the highest incorrect prediction which is

992 in the 0.3 parameters.

5.3.3 Discussion

In the enthusiasm to substantiate the adequacy of the results of this experiment, this

section compares and discuss it with the previous studies in accuracy category. The

previous studies are chosen based on three reasons; 1) The previous studies utilized

similar malware in the dataset in this experiment – Drebin. 2) The selected papers were

published in good ranking journals, which were indexed in “Thomson Reuters Institute

Univ
ers

ity
 of

 M
ala

ya

102

of Scientific Information” (ISI), Web of Science (WoS) database (Razak et al., 2016). 3)

The studies utilize static analysis, which is similar to this study. Table 5.22 compares

the studies that used Drebin.

Table 5.22: Comparison between the simulation results

References Classifier/system Result Dataset Features

 Accuracy Benign Malware

This study MLP 90%

5551 5551
12 (permission

and telephony)
 VP 89%

 RBFN 87%

(Karim, Salleh,

Khan, et al.,

2016)

DeDroid 90% 14865 5064
18 (permission

and API calls)

(Arp et al.,

2014)
Drebin 94% 123,453 5560

Set to a vector

space

In Table 5.22 comparison, DeDroid method is different with this experiment. Dedroid

adopted the comparative system, dissimilarly with the study which adopted machine

learning method to detect unknown malware. By adopting intelligent machine learning,

this third experiment is capable to classify classes between benign and malware with

90% accuracy from MLP classifier. This accuracy value between DeDroid and this

study is similar, which is 90% as well. Meanwhile, other classifiers (i.e. VP and RBFN)

recorded slightly low accuracies than DeDroid. By considering the benign dataset,

DeDroid (14865) utilized more than this study (5551). This derived the probability that,

by increasing the benign samples, this study is capable of increasing the accuracy value

by more than 90%.

On the other hand, Drebin used SVM machine learning classifier and jotted 94% in

accuracy, which surpassed this study of 90%. However, they excluded the exact list of

features used in their paper and used 123,453 as the benign dataset. As DeDroid and

Drebin jotted higher accuracies by using more benign than malware samples, these

situations provide convincing evidence that by using more benign, security analyst are

Univ
ers

ity
 of

 M
ala

ya

103

capable of increasing the accuracy. Other than accuracy and dataset samples, features

selection is one of the crucial attentions in malware detection as well.

In detecting malware, feature selection provides significant effects on experimental

results. Minimum features are desirable because it offers enhanced accuracy with fewer

data, reduces the complexity of the detection model, decreases noise and irrelevant data

(Feizollah et al., 2015; Sarip et al., 2016; Zia et al., 2015). Hence, in features

comparison between DeDroid (18 features) and this study (12 features), MLP in this

study gains similar accuracy (90%) with fewer features. The next study, Drebin used

vector space in selecting features and achieved higher accuracy than this experiment.

However, their study precluded the exact list of features and therefore is unable to

compare a number of features they have used. After having conducted the range of

repeated features method, the subsequent section is the evaluation of the root exploit

experiment.

5.4 Evaluation of root exploit experiment

This section provides the evaluation study that investigates the root exploit features and

selects the best of it for the anomaly-based detection and to satisfy the following points:

a) To investigate the root exploit as well as the novel features of ADB.

b) To validate the result from the selected features, this thesis compared it to existing

anomaly-based experiment that utilized static features.

5.4.1 Experiment and procedure description

This section describes the experiment for root exploit feature identification. It consists

of four stages: data collection, application reverse engineering, feature extraction, and

machine learning. Figure 5.22 shows malware and benign applications are collected in

the data collection stage. The following step is to reverse engineer the application to

Univ
ers

ity
 of

 M
ala

ya

104

retrieve the codes. Subsequently, this experiment investigates further by extracting and

identifying the relevant features. The final stage evaluates these features using machine

learning classifiers for evaluation of the machine learning prediction.

Data collection stage

Root exploit

malware

(550 samples)

Download and

scanned in

virustotal

Google

Play

Malgenome

Benign

(550 samples)

Final dataset

(1100 samples)

Feature extraction stage

Select 26 of 31 features

Conduct Information Gain to

select best features

Application reverse engineering stage

Reverse the .apk samples to .java

Scrutinize and grep the code

Machine learning classifier stage

Machine learning algorithms

Classifier train and learn the

dataset

Detection model is developed

Creating .arff file for WEKA

Test the model

Result

Figure 5.22: Detecting root exploit malware methodology

a) Data collection

This first experiment focuses on root exploit malware, which is present in Malgenome.

Hence, this experiment considers all the samples of the corresponding types and

obtained a total of 550 samples (Y. Zhou & Jiang, 2012a). Table 5.23 tabulates the

samples family and its descriptions.

Table 5.23: List of root exploit malware

Root exploit Frequency Descriptions

Asroot 8 Asroot is similar to the word in Unix terminal, that is, login as

root. Asroot is a standalone program that capable to execute

without OS service and installation procedure.

BaseBridge 120 BaseBridge conducts a silent installation of additional applications

without user approval.

DroidDream 16 Whenever the user clicks the application icon on the home screen

or when an intent ACTION_MAIN is received by the application,
DroidDream directly hijacks the entry activity of the host

application.

DroidDeluxe 1 Without querying the user to grant the root privileges, DroidDeluxe

leverages known root exploits to bypass the built-in security

sandbox.

DroidCoupon 1 DroidCoupon obfuscates the file names that are associated with

root exploits (e.g., impersonate as picture file with .png file type).

DroidKungfu 1 34
DroidKungfu contains encrypted root exploit scripts and decrypts
these scripts during runtime conditions. It remotely downloads and

updates a new version via a network.

DroidKungfu 2 30

DroidKungfu 3 309

DroidKungfu 4 20

zHash 11 zHash contains exploid file names, which are exactly the same as

the publicly available file names.

Total 550

Univ
ers

ity
 of

 M
ala

ya

105

On the other hand, this study collected benign applications from the Google Play store

(Google, 2014). Table 5.24 lists the benign samples with the frequency. To achieve an

equal condition and obtain unbiased content, this work downloaded 25 applications in

each of the 34 categories.

Table 5.24: List of benign applications

Category Frequency Category Frequency

Books and Reference 15 Games (Puzzle) 11

Business 20 Games (Racing) 11

Comic 21 Games (Role Playing

Games)

23

Communication 23 Games (Simulation) 12

Education 11 Games (Sports) 9

Entertainment 16 Games (Strategy) 16

Finance 24 Games (Word) 15

Games (Action) 18 Health and Fitness 19

Games (Adventure) 12 Live Wallpaper 17

Games (Arcade) 10 Media and Video 18

Games (Board) 14 Medical 17

Games (Card) 15 Music and Audio 11

Games (Casino) 18 News and Magazine 23

Games (Casual) 13 Personalization 16

Games (Education) 15 Photography 11

Games (Family) 15 Productivity 17

Games (Music) 20 Shopping 24

 Total 550

To avoid malware in benign applications, this research conducted a scan using

VirusTotal (VirusTotal, 2016). A total of 850 applications is downloaded. However,

300 applications are discarded because of the following reasons. First, this step

considers only the applications with VirusTotal scan result of 0, which means the

application is malware-free. Second, certain applications are placed in multiple

categories. For instance, one application exists in books, references and comic

categories. Accordingly, this second step excludes similar applications in any category

to avoid duplicates. Third, this step is to set the total target frequency of samples as 550

for each malware and benign applications. The reason is to observe the result by using

the similar number of samples. By combining both malware and benign datasets,

thereby the total are 1,100 samples (i.e. 550 benign, 550 malware).

Univ
ers

ity
 of

 M
ala

ya

106

b) Reverse engineering

The general process in static analysis is reverse engineering, which involves reversing

the application compilation to reveal its programming codes. To analyze malware and

benign applications, this phase applies this process to the dataset. Figure 5.23 illustrates

the reverse engineering procedure. This method applies the files, reverses them to Java

programming codes, and selects the features from the codes. To reverse .apk to Java

codes, this step used a tool called Jadx (Skylot, 2015). This engineering tool is able to

reverse compiled .apk to .java extension files (java code).

Reverse

engineer by

jadx

Input:

Android application

package (.apk) to jadx

Output :

1) Nested folders consist of

files with .java extension

2)Folders named res consists

of .xml extension

3)Androidmanifest.xml

Find strings match the

features in all files (including

.java and xml) using Unix

terminal command called

grep.

Output:

Result

stored in

.csv files.

Cleaning up

data by

eliminating

unnecessary

strings.

Figure 5.23: Reverse engineering process

The following steps involve extracting and selecting the features in the code. Given that

many lines of code are involved, the keywords used in the malware and benign datasets

must be determined. These processes are conducted manually using the “grep”

command. The output in the .csv file is saved via Ubuntu’s terminal. The command is

normally used by Unix users to find and grab any desired keyword according to user

demand. This study uses this command to find malicious strings and keywords for the

features. Figure 5.24 depicts a sample screenshot of the extracted information and

shows a malware application and its Secure Hash Algorithm (SHA) name, folder name,

Univ
ers

ity
 of

 M
ala

ya

107

and java file. The string contains “/system/bin/chmod.” The figure also shows five

malware samples that acquire one java file containing the “/system/bin/chmod” string.

Figure 5.24: Example screenshot of chmod directory feature

After the step grabbed the strings, it is essential to clean the data. In this case, certain

strings are often confused with one another. For example, cat is one of the Linux

commands. This word may be confused with other words, such as concatenate, locate,

and other similar words containing cat strings. Thereafter, this experiment identified and

observed the full exact line of codes. The cat command, which is specifically used for

the Linux platform, is pulled out.

c) Feature extraction

This section describes the 31 features from the dataset samples. The types of features

are system command, directory path, and code-based features. The amounts of the first,

second, and third types of features are 12, 10, and 9, respectively. The following

subsection describes these features briefly.

i) System command: The system command consists of a terminal, process, and ADB

command. Examples of terminal and process commands are adb_enabled and cat.

As an illustration, cat is a maintain command used although the kernel version and

API call are regularly updated. The cat is an abbreviation for “concatenate.” This

command is the most frequently used in Unix-type OS and allows the user to view

files, create single or multiple files, concatenates files, and redirects output via a

terminal.

Univ
ers

ity
 of

 M
ala

ya

108

On the other hand, ADB command is a terminal command line tool that is allowed

communication between the user and the Android emulator to connect to the

Android-powered device (Android Developer, 2017). This communication tool

allows users to easily connect to their own mobile devices via desktop computers or

notebooks. In consequence, malware practitioners misuse this tool to gain malicious

actions, particularly gaining root. These system commands are unique elements

because they are unchanged and similar to other Linux-based OS commands

globally. Furthermore, the architecture of Android depends on the Linux layer.

Hence, this feature increases the reliability of future detection methods. Figure 5.25

depicts the system command features existence. For instance, cat appears 21 times

in malware samples, but only appears once in benign samples. Startservice –n

appears 359 times in malware samples, but do not appear in benign samples.

Figure 5.25: System command occurrences

Univ
ers

ity
 of

 M
ala

ya

109

i) Directory path: Android has its own OS directory path whereas its architecture

is similar to Linux kernel. During feature selection, this part discovered the list of

the directory path. The examples are /system/bin/mount and /proc, which are

paths that unscrupulously authorize an attempt to enter and gain access to the

kernel directories and obtain root privileges without user consent. This study

includes these sensitive directory paths in the current experiment as features.

Figure 5.26 shows one of the directory paths (/system/xbin/su) appear 361 times

in the malware samples. This result is higher than benign samples, which only

appear 38 times.

Figure 5.26: Directory path occurrences

ii) Code-based: In this study, the type of feature other than system command and

directory path is the code-based features. Figure 5.27 illustrates the code for

executing the command is createSubprocess, which appears 83 times in malware

samples but do not appears in benign samples. Meanwhile, another feature that

does not appear in the benign sample is Forked. This feature is the string in an

Univ
ers

ity
 of

 M
ala

ya

110

argument or a parameter, which occurs 76 times in malware samples. Other code-

based features that are included in the static analysis approach are as follows:

setPtyWindowSize (code to execute process), three code execution processes

(exec(), exec(“sh”), exec(“su”)), stderr (to detect standard error), stdin (standard

input), and stdout (standard output).

Figure 5.27: Code-based occurrences

Figure 5.28 depicts a graph that combines malware and benign samples, their

occurrences, and their categories. The figure indicates the vertical lines from 60 to 500,

malware class elevates the area, except one feature (exec ()). Among the 31 features,

exec () has the highest occurrences in both benign and malware categories. Moreover,

only malware class exists in vertical lines from 300 to 500. In this instance, the

directory path type has four features, which is more than system command (two

features) and code-based (two features). In this root exploit investigation; this graph

demonstrates that directory path is more significant than system command and code-

based.

Univ
ers

ity
 of

 M
ala

ya

111

Figure 5.28: The 31 features in categories

d) Feature selection

The process of feature selection involves searching for any suspicious string in all

samples (malware and benign) and gathering these strings into one list. This selection

process involves a month-long search for each feature in the 1,100 samples. This

investigation managed to discover only 31 features. According to the time constraint,

this search stopped the investigation and began to select the relevant features. This

process is vital because it helps to remove noise and irrelevant data, thereby increasing

the accuracy of the results of the machine learning algorithms (Jensen & Shen, 2008).

To select the most relevant features to enhance the machine learning detection accuracy

(Spolaôr et al., 2013), this study adopted the feature selection algorithms, such as

Information Gain (IG) (Shannon, 1948), Chi-Square (CS) (Imam et al., 1993), and

Fisher Score (FS) (Golub et al., 1999). IG determines the amount of information by

measuring how well it separates the training examples according to their target

classification. CS is used as a test of independence to assess whether the assigned class is

Univ
ers

ity
 of

 M
ala

ya

112

independent of a particular variable. FS expresses the difference between two classes that

are relative to a specific feature and considers the mean and standard deviation of the

feature values in different classes. This experiment selects IG because of its effective

measuring features, generalization capability, accuracy enhancement, and short

execution time (Kent, 1982). Table 5.25 shows the IG result. The higher gain ratio

indicates the feature’s relevance in a classification model for a machine learning classifier.

Table 5.25: Information gain value

No InfoGain Value Features Categories

1 0.44536 startservice –n System command

2 0.43255 .exec(“su”) Code-based

3 0.42553 adb_enabled System command

4 0.41233 /system/bin/chmod Directory path

5 0.38765 /system/bin/secbin Directory path

6 0.37179 /system/bin/su Directory path

7 0.29953 /system/xbin/su Directory path

8 0.13976 .exec() Code-based

9 0.11568 chmod System command

10 0.0799 setPtyWindowSize Code-based

11 0.0799 createSubprocess Code-based

12 0.07805 mount -o remount System command

13 0.07583 chown System command

14 0.07279 Forked Code-based

15 0.06516 /system/bin/sh Directory path

16 0.0578 pm install System command

17 0.05682 cp –rp System command

18 0.0355 echo System command

19 0.02877 /system/bin/mount Directory path

20 0.01563 /system/bin/rm Directory path

21 0.01491 kill System command

22 0.01491 cat System command

23 0.01377 /data/local/tmp/rootshell Directory path

24 0.01377 /system/bin/profile Directory path

25 0.01178 Stdin Code-based

26 0.00514 /proc Directory path

27 0 Ps System command

28 0 .exec(sh) Code-based

29 0 Stderr Code-based

30 0 Stdout Code-based

31 0 pm uninstall System command

Table 5.25 indicates only 26 of 31 features are relevant. Thus, this part only considers

the features from 1 to 26 and excludes the remaining 5 features. The three most relevant

features are startservice –n, exec (“su”), and adb_enabled. The most relevant feature is

startservice –n, which is one of the shell commands that initiated the ADB. Meanwhile,

Univ
ers

ity
 of

 M
ala

ya

113

the second most relevant feature is exec(“su”), which is a code that gains the super-user

privileges in Linux kernel. This feature is the low layer of the Android OS. The third

most relevant feature is adb_enabled, which is a code that enables the ADB option to

provide ways for a root exploit to enter a device. It is worth noting that in these three top

relevant features are the novel elements undiscovered in previous studies. Once this step

gains the best 26 features, machine learning used it for evaluation phase in the preceding

section.

e) Machine learning classifier

The steps in this section build the machine learning predictive model to expose

unknown root exploit malware. In constructing the machine learning model, the

classifiers are run in Weka (Hall et al., 2009). In building the model, the initial step is to

prepare the Comma Separated Values (.csv) file with the static features (0 and 1). This

file contains 27 columns and 1,101 rows. The total of 27 columns is consist of 26

attributes (features), followed by one class column at the end (M for malware and B for

benign). The 1,101 rows represent the samples used in this experiment (1,100 samples)

and addition with one feature header names, thereby the total number of row is 1,101.

Given that this experiment uses static analysis, each sample takes 1 or 0 only. Each row

represents an application, which shows 1 (if the feature exists @ occur) or 0 (if the

feature is non-existing @ not-occuring).

After setting the total number of features, it is necessary to convert the .csv files to

Attribute-Relation File Format (.arff) file using Weka. The reason is, ARFF is an ASCII

text file format, which is developed specifically for Weka. As compared with .csv file

loads, .arff file loads faster (Williams, 2010). Once the conversion is done, the

subsequent step is to randomizes the instances in the file using the randomize option. It

is used to constitute a natural data for a machine learning classifier. Figure 5.29 shows

Univ
ers

ity
 of

 M
ala

ya

114

the information in ARFF after the randomize option. Both classes (malware and benign)

were crossed to each other repeatedly.

Figure 5.29: Arff file

The subsequent process is to apply 10-fold cross validation, wherein Weka randomly

selects the parts of data for training and the remainder for testing. These actions

(training and testing) are repeated 10 times to achieve significant results. Particularly,

the dataset is randomly split into ten subsets of equal size and repeated ten times. In

each repetition, nine subsets are combined to form the training set for constructing the

predictive model, while the remainder one subset is used as the test set. To note, this test

set is excluded from the training set, which is used to detect unknown root exploit

malware in this study. For evaluation, this process executed three machine learning

classifiers, namely, MP, RF, and NB. This evaluation conducts the classifier on a

desktop computer equipped with Intel Core i7-4770 CPU of 3.40 GHZ, 16 GB of RAM,

and Microsoft Windows 7 Professional as an operating system.

5.4.2 Results

In order to evaluate the effectiveness of the proposed 31 root exploit features (system

command, directory path, and code-based features), this part of the experiment assessed

the performance matrix of the machine learning classifiers according to Table 5.1.

Univ
ers

ity
 of

 M
ala

ya

115

The result in Table 5.26 shows that MLP exhibits the best TPR value at 86.2%. While in

FPR value, RF obtains the value of 0.9%, demonstrates that RF is more effective in

minimizing mistakes than MP and NB, which obtain FPR values of 1.1% and 2.7%,

respectively. In a high precision aspect, it indicates that the model of the classifier is

effective, whereas RF obtains the best value (98.9%) as compared with MP and NB. For

the next three benchmarks (i.e. recall, f-measure, and accuracy), MLP surpasses other

classifiers by achieving 86.2%, 92% and 92.5% respectively. However, NB consumes a

short time to build classifier model which indicates that it is useful whenever a situation

needs to update a model regularly in a fast manner. This section describes all the aspects

of the study, except for the ROC curve value. The next section briefly explains the

relevant case.

Table 5.26: Classifier Result

Classifier MLP RF NB

True Positive Rate 86.2% 85.3% 83.1%

False Positive Rate 1.1% 0.9% 2.7%

Precision 98.8% 98.9% 96.8%

Recall 86.2% 85.3% 83.1%

F-Measure 92% 91.6% 89.4%

Accuracy 92.5% 92.2% 90.2%

Time taken to build model (second) 2.81 0.11 0.02

Receiver operating characteristic curve 0.941 0.936 0.901

a) ROC Performance

In this area, this study used the ROC curve to illustrate the graphical representation of

the tradeoff between the TPR and FPR values. This curve is a fundamental indicator for

diagnostic test evaluation. TPR (sensitivity) is plotted in the function of FPR for

different cutoff points of a parameter. The Area Under the Curve (AUC) is the total area

under the ROC curve. An AUC value closer to 1 indicates good classifier performance

and high classification accuracy. Figure 5.30 shows the ROC value in the three machine

learning classifiers, namely, MP, NB, and RF. As shown, MP obtains the closest value

Univ
ers

ity
 of

 M
ala

ya

116

to 1 at 0.941. This value is higher than those obtained by RF and NB (0.936 and 0.901).

The figure indicates MP performs better than NB and RF. Specifically, the line graph of

MP is significantly higher and closer to 1. NB has the lowest value, which is far from 1.

Figure 5.30: ROC curve

5.4.3 Discussion

This section compares and discusses the experimental results. Table 5.27 presents the

comparison between TPR and FPR values. It is to investigate the feature performance in

distinguishing malware and benign samples, as well as to obtain the capability of the

machine learning classifiers. Correspondingly, this table compares these results with the

results obtained in previous studies on static and dynamic analyses. The best result

value is highlighted in bold. This study selects these previous works for comparison

because of two main reasons. One is that they adopt Malgenome as malware dataset,

which is similar to this dataset; the other is that these selected studies are published in

reputable journals.

Univ
ers

ity
 of

 M
ala

ya

117

Table 5.27: Result comparison

Type of

analysis

Referenc

es

Classifie

rs

Result Dataset Features

TPR FPR Benign Malware

Static Ours MLP 86.2% 1.1% 550 550 10 System

commands, 10

directory paths,

6 code-based

features (a total

of 26 features)

RF 85.3% 0.9%

NB 83.1% 2.7%

(Yerima,

Sezer, &

McWillia

ms,

2014)

Bayesian 90.9% 5.1% 1000 1000 15 selected

mixed features

(permission and

code-based

features)

Dynami

c

(Narudin

et al.,

2014)

MLP 94.83% 5.17% 20 1000 11 network

traffics RF 99.96% 0.04%

Bayesian 99.88% 0.12%

KNN 98.73% 1.27%

J48 99.9% 0.1%

The static analysis results show that the TPR result of the bayesian classifier in (Yerima,

Sezer, & McWilliams, 2014) is higher than the results when amounts of features and

dataset malware samples differ. Specifically, their classifier obtains 90.9%, whereas this

thesis classifiers only obtain 86.2%, 85.3%, and 83.1%. This finding proves that this

bayesian classifier obtains high TPR values when the features are less and the dataset is

high. However, this FPR result is significantly better. In this benchmark, a low value

indicates few mistakes in classifying a benign sample as malware sample. This result

demonstrates that this feature is more effective in detecting root exploit in Malgenome

dataset. Yerima et al (2014) focused mostly on general malware types, whereas this

research focuses on root exploits only.

The dynamic analysis results indicate that this experiment’s TPR result is low because

of malware samples. The TPR values in (Narudin et al., 2014) are higher than this

experiment TPR values. Notably, this study used 550 samples whereas 1,000 samples

are used in (Narudin et al., 2014). This limitation suggests that this investigation is able

to obtain better results by increasing root exploit malware samples. In features

comparison, this part used 26 features whereas their study used only 11 features. This

Univ
ers

ity
 of

 M
ala

ya

118

distinction indicates that few features yield accurate results in static and dynamic

analyses. In future work, this research attempts to decrease the 26 features to obtain the

promising results.

Nonetheless, in MLP comparison, this work’s value is better than (Narudin et al., 2014)

study. In their study, MLP obtains a value of 5.17%, which is higher than this

experiment’s study (only 1.1%). Furthermore, MLP is better than another classifier in

the static analysis in both TPR and FPR. This comparison verifies the MLP works better

in static analysis than in dynamic analysis.

To summarize, this experiment adopts the static analysis method which reverses

engineer the application and examines the sample of a code without executing it. In

detecting the malware process, this step consumes lesser time than dynamic analysis,

which runs the samples first and then observes its behavior. Although the results are

lower than those of dynamic analysis, this experiment proposed analysis is significantly

faster because it classifies the samples without executing them. Furthermore, certain

malware samples are able to avoid dynamic analysis by acting as normal samples during

the monitor operation. Furthermore, covering all possible activities and executing each

sample are time-consuming.

5.5 Summary

This chapter has discussed the evaluation study of the selected static features derived

from the investigations and methods used in the proposed framework. The useful results

from the experiments have demonstrated a combination of different aspects of

evaluation, and they highlighted their unique findings and conclusions.

The key objective of describing the evaluation at different experiments of studies is to

investigate the unique objectives at each experiment. The result presented has shown

Univ
ers

ity
 of

 M
ala

ya

119

strong evidence to support the ability of the proposed framework to work robustly based

upon its operational characteristics. Furthermore, the comparison study in the evaluation

studies also strengthens the framework and its suitability to facilitate the anomaly-based

malware detection using static analysis. In conclusion, the analysis made of the studies

clearly defined their contribution as well as stating their limitations.

To further investigate the usefulness and feasibility of the proposed framework in a

practical mode, the following chapter presents the prototype of the proposed framework

and evaluates it using different datasets to the one used in this chapter, in order to test

the efficiency in predicting unknown malware.

Univ
ers

ity
 of

 M
ala

ya

120

CHAPTER 6: PROTOTYPE IMPLEMENTATION OF MOBILE MALWARE

DETECTION SYSTEM

Once the validating and evaluating the approaching framework are done, the following

stage of the research is to design and achieve a prototype program that verifies its main

operations and bring to light how these able to be achieved practically. This chapter

describes the prototype implementation of the proposed framework for mobile malware

detection using static features. The main features of the malware detection have been

personified in a web interface, which can be used to upload the Android application and

predict it either malware or benign. Several modeling languages, including use case

diagrams and state diagrams, are used to provide a visual illustration of the prototype.

Finally, this chapter used different malware dataset from the machine learning training

phase to test the efficiency of the models.

6.1 Web implementation overview

Figure 6.1 illustrates the three modules in the web development with three analyzers.

This implementation is based on Java, Javascript, and HTML. The stages are reverse

engineering, feature extraction, and prediction. The details of the stages are:

a) Reverse engineering: This module reverses engineers the Android application

package (.apk) file to obtain the entire folders consist of files that end with Java

extension (.java). This module used an open source tool known as apktool to execute

this process.

b) Feature extraction: To extract the proposed features, this module searches the

features in overall files include the files in the nested folders.

c) Prediction: This prediction module used the proposed features as input for the

machine learning classifier to predict the class of the uploaded file either malware or

Univ
ers

ity
 of

 M
ala

ya

121

benign. This stage consists of three analyzers with three models. First analyzer is Root

analyzer, second is Genetic analyzer and third is Bio analyzer.

Prediction stage

1) Root analyzer

User upload Android

(.apk) file

Webpage

Show new

result

(Malware @

benign)

Database

Unique-ID_<filename>

Store in

database

2) Genetic analyzer

3) Bio analyzer

Application reverse engineering stage

Reverse the .apk samples to .java

Obtain list of files and nested

folders with .java extension

Features extraction stage

Select and extract the best

features

Check overall files and folders in

the application

Figure 6.1: Web development

6.2 Prototype functionalities

In order to gain understanding into the main functionality of the proposed framework,

this section presents the modeling languages such as use case diagrams and state

diagrams.

6.2.1 Use case diagram

Use case modeling has been commonly adopted to plot a graphical functional

explanation of the interaction between external entities and systems, in addition to their

cooperation. The diagrams are utilized to determine the characteristics of the developed

systems, without the necessity to mention how those characteristics are implemented.

Univ
ers

ity
 of

 M
ala

ya

122

Figure 6.2 demonstrates the system level and explains the relationship between external

systems. Following explanation provides the role of the user in the figure:

a) Users are able to manage the web modules that represent the run application and

download file modules. This includes the ability to upload the .apk file and

download the csv and arff files consist of the information of features in each

application uploaded by the user.

Figure 6.2: Use case diagram

The use case diagram has obtained a short-term summary of the modules' functionality.

However, it lacks clarification on how those modules are operated. Hence, the state

diagrams are utilized in the subsequent section.

6.2.2 State diagram

A state diagram designates all the possible states of an object as an event occurs, and is

used to show the characteristics of an object by using many use cases of a system, in

addition, to focusing on the flow of control one state to another. Figure 6.3 reveals all

the possible states in the proposed framework, and it summarizes the characteristics of

the running system.

Univ
ers

ity
 of

 M
ala

ya

123

Figure 6.3: Prime-state diagram

As prime-state, there are three sub-states and short-term summary of it are provided

below:

a) Save the .apk file: The initial state is T2.1 when the user uploads the .apk file.

There are four sub-states in this specific state, as shown in Figure 6.4: Database

saved the .apk file, Identification of .apk file, Reverse engineer command and Search the

proposed features. In T2.2, the system identifies the extension file, either it is .apk or

other types of file. The process continues only the uploaded file is .apk only. The

T2.3 state starts the reverse engineer command to obtain the code and search the

proposed features in overall files (T2.4). In the end of this state, the system sampled

the uploaded .apk file with the proposed features.

Univ
ers

ity
 of

 M
ala

ya

124

Figure 6.4: Save the upload file state

b) Assign value: This state assigns the feature vectors by creating the csv and arff

files. These files contain the information of each feature and there are important for

the models of the analyzers to predict the uploaded .apk file.

Figure 6.5: Assign value state

c) Model of the analyzers: This state receives the arff file and predicts according

to the analyzers (Root, Genetic and Bio). Root analyzer predicts the unknown root

exploit, Genetic analyzer predicts by using the proposed features from the GS bio-

inspired feature selection method, while Bio analyzer predicts by using the proposed

features and bio-inspired classification.

Figure 6.6: Model of the analyzers state

Univ
ers

ity
 of

 M
ala

ya

125

6.3 Demonstrating the malware detection

The main functionalities of the proposed framework and its modules are presented in

Section 6.2. However, this section demonstrates the three analyzers in predicting

unknown malware. The similar stages in these analyzers are application reverse

engineering, features extraction and prediction.

a) Application reverse engineering: After the user uploaded their desired Android

application package file (.apk) on the first page of the website, the system will grant

a unique identification number followed by the name of the file to avoid duplication.

b) Feature extraction: Afterward, the system reverses engineer the file to obtain the

entire code that ends with Java extension (.java). This system continues the process

by searching overall files including in the nested folders in each application to

extract the proposed features.

c) Prediction: Finally, the system used the features as input for the machine learning

classifier to predict the class of the uploaded file either malware or benign.

The differences between these analyzers are the proposed features and machine learning

classifiers. For demonstrations of the analyzers, these prototypes used similar hardware

specification consist of desktop computer equipped with Intel Core i7-4770 CPU of

3.40 GHZ, 16 GB of RAM, and Microsoft windows 7 professional as an operating

system. This section begins with Genetic analyzer in the following section.

6.3.1 Genetic analyzer prediction system

In Section 5.3, FT is the outstanding classifier that achieves the best prediction in

detecting unknown malware in the simulation by adopting the best features selected by

GS. Therefore, in order to test the genetic-selected features as well as FT machine

learning classifiers in detecting unknown malware, this study developed an intelligent

Univ
ers

ity
 of

 M
ala

ya

126

prediction system in website environment called as Genetic Analyzer. Figure 6.7 depicts

the architecture of the proposed prediction system.

Application reverse engineering

stage

User upload Android

(.apk) file

Webpage

Show result -

Malware (M) @

benign (B)
Unique ID_filename

Store in

database

Reverse the .apk samples to

.java

Obtain list of files and nested folders

with .java extension

Database

Features extraction stage

Select and extract the genetic

features

Check overall files and folders

in the application
Prediction stage

FT classifier

Figure 6.7: Genetic analyzer architecture

Figure 6.8 depicts the upload zone on the first page of the Genetic analyzer. Meanwhile,

the subsequent section is the evaluation result of the prediction by using the proposed

features.

Univ
ers

ity
 of

 M
ala

ya

127

Figure 6.8: Main interface of Genetic analyzer

a) Genetic analyzer result

In order to evaluate the efficiency of the prediction system, it is important to use

different dataset during the simulation. Therefore, as this study has used known

malware for learning the detection model which is Drebin in the simulation, this

practical test utilized another malware dataset called Malgenome. Figure 6.9 displays

the ongoing process after this investigation uploaded the Malgenome files. As shown in

the figure, the two boxes highlight the bar as black indicated that the processes for those

two applications are finished. The bar in the third box is white indicated that the process

for that application is still in process. Meanwhile, Figure 6.10 depicts the prediction

results (i.e. M indicates as malware and B indicates as benign).

Univ
ers

ity
 of

 M
ala

ya

128

Figure 6.9: Uploading process of Genetic analyzer

Figure 6.10: Result page of Genetic analyzer

Univ
ers

ity
 of

 M
ala

ya

129

After the system finish processed all the Malgenome samples, this intelligent prediction

result shows an outstanding accuracy of 95% in detecting malware. Hence, this

accuracy value proves that the proposed features selected from bio-inspired GS

combined with FT classifier, are capable to predict unknown malware. In the interest to

discover result from another analyzer, the following section provides the Bio analyzer

prediction system.

6.3.2 Bio analyzer prediction system

In Section 5.4, MLP is the best classifier that achieves the best prediction in detecting

unknown malware in the simulation. Therefore, in order to test the best-proposed

features as well as MLP machine learning classifiers in detecting unknown malware,

this study developed an intelligent prediction system in website environment called as

Bio Analyzer. Figure 6.11 depicts the architecture of the proposed prediction system.

While the following figure - Figure 6.12 shows the upload zone on the first page of the

Bio analyzer. Meanwhile, the subsequent section is the result of the prediction by using

the proposed features.

Application reverse engineering

stage

User upload Android (.apk)

file

Webpage

Show result -

Malware (M) @

benign (B)
Unique ID_filename

Store in

database

Reverse the .apk samples to

.java

Obtain list of files and nested

folders with .java extension

Database

Features extraction stage

Select and extract the range of

repeated features

Check overall files and folders

in the application
Prediction stage

MLP classifier

Figure 6.11: Bio analyzer architecture

Univ
ers

ity
 of

 M
ala

ya

130

Figure 6.12: Main interface of Bio analyzer

a) Bio analyzer prediction result

In order to evaluate the efficiency of Bio analyzer prediction system, it is important to

use different dataset during the simulation. Therefore, as this study has used known

malware for learning the detection model which is Drebin in the simulation, this

practical test utilized another malware dataset called Malgenome. Figure 6.13 displays

the ongoing process after uploaded the Malgenome files. As shown in the figure, the

two boxes highlight the bar as black indicated that the processes for those two

applications are finished. The bar in the third box is white indicated that the process for

that application is still in process. The next figure is Figure 6.14 which displays the

second page of the Bio analyzer that provides the prediction results (i.e. M indicates as

malware and B indicates as benign).

Univ
ers

ity
 of

 M
ala

ya

131

Figure 6.13: Uploading process of Bio analyzer

Figure 6.14: Result page of Bio analyzer

After the system finish processed all the Malgenome samples, the intelligent prediction

result shows an outstanding accuracy of 97% in detecting malware. Hence, this

Univ
ers

ity
 of

 M
ala

ya

132

accuracy value proves that the proposed features derived from the novel technique,

combined with bio-inspired MLP classifier are capable to predict unknown malware.

6.3.3 Root analyzer prediction system

In the Section 5.2.1, MLP is the best classifier that achieves the best prediction in

detecting unknown root exploit in the simulation. Therefore, in order to test the best-

proposed features as well as MLP machine learning classifiers in detecting unknown

root exploit, this study developed an intelligent prediction system in website

environment called as Root analyzer. Figure 6.15 depicts the architecture of the system.

Application reverse engineering

stage

User upload Android

(.apk) file

Webpage

Show result -

Malware (M)

@ benign (B)
Unique ID_filename

Store in

database

Reverse the .apk samples to

.java

Obtain list of files and nested

folders with .java extension

Database

Features extraction stage

Select and extract the root

exploit features

Check overall files and folders

in the application
Prediction stage

MLP classifier

Figure 6.15: Root analyzer architecture

The following figure - Figure 6.16 shows the upload zone on the first page of the Root

analyzer. Meanwhile, the subsequent section is the evaluation process of the prediction

result.

Univ
ers

ity
 of

 M
ala

ya

133

Figure 6.16: Main interface of Root Analyzer

a) Root analyzer result

In order to evaluate the efficiency of the prediction system, it is important to use

different dataset during the simulation. Therefore, as this study has used known root

exploit for learning the detection model which is in Malgenome for the previous

simulation, this practical test utilized different root exploit samples that included in

Drebin. The samples are Droidrooter and Rooter families with each family represent

three applications. Furthermore, these samples are excluded in this experiment’s

learning machine learning detection model. Table 6.1 lists the root exploit in detail.

Figure 6.17 shows the ongoing process after user uploading the .apk file. As shown in

the figure, the two boxes highlight the bar as black indicated that the processes for those

two applications are finished. The bar in the third box is white indicated that the process

for that application is still in process. Meanwhile, Figure 6.18 depicts the prediction

results (i.e. M indicates as malware and B indicates as benign).

Univ
ers

ity
 of

 M
ala

ya

134

Table 6.1: Root exploit information for prediction system testing

Family Sha256
Size

(kilobyte)

Rooter 1f5a97fb0cbaa2e10e1f080571ae081d9d85fc95519ef59a85b83ca366b10df2 13

DroidRooter 226dc739a76faf5127a245b9cc759d4db3086710d4e71594c5578ae642774f5c 950

DroidRooter 94112b350d0feceff0a788fb042706cb623a55b559ab4697cb10ca6200ea7714 862

Rooter 94ea44688feb558e2786e52fbfa46d90984e40c0980e28035fd2311d5f17f8e3 13.7

Rooter add10b0368753ec38de0dca15550d824ac141f0c86f2f123f30551bd82e82415 13

DroidRooter edf568790907e970da583855e9b923b2f897fbeb4faf41b87436b23e262b821a 953

Figure 6.17: Uploading process of Root analyzer

Univ
ers

ity
 of

 M
ala

ya

135

Figure 6.18: Result page of Root analyzer

After the system finish processed the entire root exploit samples, the system

successfully predicts all the six samples as root exploit as shown in Figure 6.18. Hence,

this prediction proves that the proposed features with novel ADB type are capable to

predict unknown root exploit. In the interest to discuss another analyzer, the next section

provides Genetic analyzer prediction system.

6.4 Performance of the analyzers

One of the static analysis advantages is rapid processing. Therefore, this section

provides ten benign samples to test the performance of each analyzer (i.e. Genetic, Bio

and Root) in processing the detection. Table 6.2 tabulates the result of the performance

and detail of each sample. Figure 6.19 depicts this result in graph manner for easier

observation.

Table 6.2: Ten benign samples for performance testing

Time (second) Size

(MB)
Sha256

Genetic Bio Root

18 21 43 0.627
018613c2e4174b5251e0d41963a34067ab9ad38d844

718542847e4d854c8713d.apk

49 52 54 1.53
01c6d025efb072d7ba693d448adb159e8cff312555462bbe9aa1fe

377a9caca2.apk

Univ
ers

ity
 of

 M
ala

ya

136

50 56 70 5.34
01c708d27ff56ceb8c3d63ed782ffd7fcd9c5b38717b53690191a04

9f43f4b7b.apk

81 90 104 10.4
017373928016819937f701baeb12699592e44b345eba

84e0aacb26958872f1c3.apk

102 111 119 12.6
014f3e37b9a33305ae6e7c110b7ad41962fb069abf148197ec4393

f8c57e7909.apk

125 155 160 15
013d29b38cd765fb4a0f1dbd5b1ccae0e16810ff0377da915e9580

24d8e93e88.apk

133 161 175 16.3
01bf9c2de95ab5491b7d9b823bf3fc5cb8278eeb729d0083111824

7d12c7c189.apk

135 167 179 18.7
01dd3520955373acb27b755b15f4944a8415cc98003bfb794f4bf5

66fa2e897d.apk

140 170 202 23.5
018c46baba3e010cb87bb42d426fffce9fede0b871dd84974683ac4

178332c31.apk

153 177 210 26.2
01b3e63b2d4592d3b958380a4aa7a2a911e4d03ea030760f02b50

93048878477.apk

179 193 218 28.5
018d984b22bae8e9352a2097c0fee85178de7279f56c4b600ac112

7da7b5da17.apk

Figure 6.19: Result of the performance

In comparison to other analyzers, genetic analyzer utilized only 6 features and shows

the significant gap. As root analyzer utilized more features than other analyzers, it

processed much longer and consumed much more time in detection. This proved that

machine learning processed much faster with less features. Moreover, this experiment

Univ
ers

ity
 of

 M
ala

ya

137

proved that static analysis processed in fast manner which only need 281 second for

28.5 MB sample. In order to sum up all the advantages and limitations of this thesis

framework, next section provides this information in detail.

6.5 Advantages and limitations

In providing a flexible platform to security analysts for configuring, analyzing and

making a wise decision using the prediction results, the web modules give the following

advantages:

a) Less confuse results: The web modules provide only two classes either the

uploaded file is malware or benign. If the results indicate more than two classes, the

user may confuse the uploaded file is safe or dangerous to install on their mobile

device.

b) Provide csv and arff files: The web modules also provide the two important files

(i.e. csv and arff) that available to be downloaded after the prediction process is

done. These files are useful for security analysts to test in other detection systems,

other simulation applications or discovering the features of the uploaded application.

c) User friendly interface: The web modules provide an easy interface to ease a

novice user to use the systems. By adopting this friendly interface and few buttons,

many users are able to predict their Android application package file either malware

or benign.

d) Able to utilize it in mobile browser: The modules are based on web and therefore

it is available for internet browser (i.e. Opera, Chrome, Firefox) on mobile devices.

Therefore, the users are able to use the web modules in normal desktop computer as

well as on the mobile devices.

e) Rapid processing: As the web modules adopted static analysis, it only involves

reverse engineer the application and searches the features in the code without

executing the application in a certain range of time to monitor the behavior. These

Univ
ers

ity
 of

 M
ala

ya

138

light-weight static analysis processes only need a short time and low specification of

hardware.

In addressing the advantages of the web modules, they also inherit some limitations as

follows:

a) Applications Dependent: As the web is served by utilizing a web server, it depends

on the productivity of the web server itself, in the event of the server is

disconnected, the prediction procedure is impossible. Furthermore, as it also based

on the World Wide Web, it additionally depends upon the system consistency to

import and trade information.

b) Acquire different vulnerabilities: As the web utilized the web applications, it is

open to the web application vulnerabilities (i.e. cross-website scripting, SQL

injection, HTTP Parameter Pollution (HPP), and session hijacking). In addition, the

web modules also powerless against alternate vulnerabilities, such as equipment

(e.g. web server) and software (e.g. internet browser).

Therefore, for future works, it is imperative to address these limitations by using other

security precautions and countermeasures.

6.6 Summary

This chapter presented the implementation stage of the proposed framework by

providing some examples and snapshots from the web modules consist of three

analyzers namely Root, Genetic and Bio analyzers. The details of its modules, system

architecture, state diagrams and web modules have been presented to show how it

interrelates.

The reasons of presenting and demonstrating the details of the modules are to provide a

better understanding of how the proposed framework interacts, and how the internal

Univ
ers

ity
 of

 M
ala

ya

139

modules are affected by the external interactions. The following chapter is the

conclusion part that briefly discussed the limitations among others.

Univ
ers

ity
 of

 M
ala

ya

140

CHAPTER 7: CONCLUSION

This chapter outlines the study by revisiting the research aim and objectives as well as

findings. The most important finding, in addition to its limitations, are reemphasized.

The capability of alternative studies in the same domain was also exploited and this was

then used to develop the proposed framework which could be used to improve future

research works in the same domain.

7.1 Research objectives

This study aims to develop an intelligent anomaly-based detection system using static

analysis and the machine learning approach. Section 1.4 had described the four research

objectives of this study. It had also maintained how the study would accomplish its

research aim by fulfilling the following research objectives. This section is to answer

the following research questions: a) RQ 1: What are the best features to detect malware

in static analysis using machine learning? b) RQ2: What method should be applied to

search for the best features in minimal amount? c) RQ3: What are the best features to

detect malware in static analysis using machine learning? d) RQ4: What are the specific

features to detect particularly on root exploit?

Objective 1: To review the domain of Android static analysis and its key issues.

The first objective was to critically investigate the current state-of-the-art malware

detection. The research objective was accomplished by conducting a thorough review of

the most crucial works published in online scholarly journals extracted from digital

libraries which were accessed through the University of Malaya’s access portal; they

include the Institute of Electrical and Electronics Engineers (IEEE), the Association for

Computing Machinery (ACM), Elsevier and the Web of Science portals. Recent

literature extracted from journals and conference papers were also scanned, focus and

investigation were given to the analytical issues. In addition, recent studies which

Univ
ers

ity
 of

 M
ala

ya

141

focused on the detection taxonomy, the machine learning approach and the issues

related to features were also reviewed. The intention was to fulfill the review’s

thoroughness. Consequently, this study was able to reveal that using an approach that

combines static analysis with anomaly based detection would offer a higher potential in

uncovering unknown malware. The outcome offers results that are easily gained from a

process that is rapid and resources that are low (i.e. CPU, memory, network and

storage).

Objective 2: To establish the need for an intelligent intrusion detection system

by using static analysis and machine learning to identify the best features in minimal

amount.

The second objective of this study was to establish the information of static analysis in

anomaly based detection by using the intelligent prediction of the machine learning

approach. The outcomes gathered from this study would highlight the advantages and

disadvantages of the signature versus anomaly based detection. From this study, the

difference between static analysis and dynamic analysis was also noted. It is hereby

reiterated that this study followed the path of examining the minimal features in

malware detection using static analysis and its impact on the detection results. This

study also explained the uniqueness of the study in focusing on the selection of features

(i.e. GS and range of repeated features in similar application). It is complemented by a

section that explains how the root exploit features manifest themselves and the need to

conduct a search for features in overall files rather than one particular file. This study

also stressed that it needs to refer to the official list as a main source of credibility.

Univ
ers

ity
 of

 M
ala

ya

142

Objective 3: To design and develop a novel framework by applying the proposed

features in the intelligent intrusion detection system.

The third objective of this study was to design a prototype of malware detection based

on a novel framework according to the exclusive features discovered in the research.

This study then devised a web based system to predict whether the Android application

package (.apk) file is malware or benign. The .apk file is uploaded from the user; the

system reverses the engineering, identifies the features, extracts the features from the

application, and then identifies the classes of application with the intelligent prediction.

From the review of literature, this study had selected the best machine classifier by

comparing it with the Weka results. To gain clearer results from the examination of

certain features and types of malware, the system used in this study would be further

enhanced by three analyzers: Genetic, Bio and Root analyzers. These will provide the

Comma Separated Values (CSV) and Attribute-Relation File Format (ARFF) files for

security practitioners to conduct further investigations.

Objective 4: To evaluate the proposed features to detect unknown malware as well

as the features specifically in root exploit in terms of accuracy and performance.

The fourth objective of this research was to evaluate the exclusive features noted in

unknown malware detection. Thus, the evaluation of these features was examined in

two platforms: a) Weka and b) Prototype. In the Weka simulation, the experiments

tested the features in six evaluation measures: accuracy, True Positive Rate (TPR),

recall, precision, f-measure and False Positive Rate (FPR). In the prototype platform,

the experiment evaluated the features in terms of the accuracy and performance of each

analyzer (i.e. Genetic, Bio, and Root) in a practical environment. Unlike the simulation

platform, the prototype platform includes the practical steps not included in the Weka

simulation. They encompass processes such as reverse engineering and identifying and

Univ
ers

ity
 of

 M
ala

ya

143

extracting the features from the application. From the identification of the prototype of

the system’s results, it appears that the results were able to achieve the accuracy range,

starting from 95% and higher. In the performance results, the systems noted the best

results by predicting the value of 0.627 MB application size in 18 seconds only.

7.2 Achievement of the study

This study had begun by investigating the different types of malware detection system

in mobile devices. It explored the issues linked to the static analysis features and

methods. It also attempted to extract the best features noted in the unknown malware

detection including root exploit. This was accomplished by using a methodical

approach. In the context of this study, a novel framework that would be used to address

the static features and to facilitate the intelligent anomaly-based detection process in

static analysis was proposed. Several features noted in the extraction and the machine

learning classifiers were also explored. Their capabilities were evaluated so as to satisfy

the aim of the study.

Within the proposed framework which consists of the experiments in addition to the

prototypes of the intelligent prediction system, this study can thus be considered as

successful. Several points of interest are also noted below:

a) The development of the intelligent anomaly-based model for Malware

Detection: The studies thus far mentioned in this thesis have established three

models which can be used to detect unknown malware including root exploit. Using

the proposed approach to search for the best features, it seems that the proposed

model was able to classify the classes of features in one application either as

malware or benign. Chapter 4 describes this issue in detail. A survey study was

conducted to explore the strategies in selecting the best static features for anomaly-

based detection. To demonstrate the plausibility and reasonableness of the models,

Univ
ers

ity
 of

 M
ala

ya

144

several experiments were conducted and their outcomes derived positive results.

Chapter 5 provides the results in detail.

b) Issues in static analysis and feature studies: In Chapter 3, the study had

established a critical analysis which composed of different perspectives when

addressing the significant problems of static analysis during the feature selection

process. In relation to this, its challenges were also discussed. Due to the desire to

create an anomaly-based static detection framework, various issues were explored

for the purpose of selecting the best static features. In presenting the advantages and

disadvantages of these issues, this study was able to identify the use of multiple

strategies as noted by previous studies. The disadvantages noted in previous

approaches were also used to improve the feature selection process so that it

becomes more efficient for detecting the malware.

c) Exclusive features to detect unknown root exploit malware: This study had

proposed a novel ADB type of features in the framework which is useful for

detecting unknown root exploit. This proposed ADB framework was combined with

other categories of features which consist of system command, directory path, and

code-based.

d) Adopting a bio-inspired Genetic Algorithm (GA) to select static features

genetically: The study proposed Genetic Search (GS) based on GA to search the

best generation of features that malware frequently used in genetic way. This is to

assists the anomaly-based mechanism in detecting unknown malware.

e) A novel approach which addresses the best features by inspecting the range of

the repeated features in a similar application: This study had also proposed to

develop a novel approach that is useful for addressing the best features by critically

investigating the frequency of the same features that were continuously repeated in

the same application.

Univ
ers

ity
 of

 M
ala

ya

145

f) Investigating multiple categories of features: As various categories of features

exist and are ready to be explored at the same time, this study had investigated

features noted in multiple categories including permission, system command,

directory path, code-based and telephony. Such categories assist the anomaly-based

detection to identify the unknown malware more accurately.

g) Stages of comprehensive evaluation for the proposed framework: In addressing

the static analysis and the features selection process in the anomaly-based detection,

the proposed framework had also outlined several models and strategies which

require further evaluation. The purpose of this evaluation is to examine the proposed

framework as well as to decide if it is adequate in facilitating the anomaly-based

detection, using static analysis, to detect the unknown malware. This evaluation was

performed in different phases. The proposed framework which encompasses models

and strategies selected was evaluated for its effectiveness and performance. Chapter

5 provides the results in detail. The progressive results which demonstrate the

suitability and feasibility of the proposed framework in enhancing the search for the

best features in the anomaly-based detection were presented according to phases.

More importantly, through the outstanding evaluation metric scores, the main

criteria of the framework, as a support for malware detection, is fulfilled.

h) Implementation of the proposed framework: To further extend on the study,

expand on the feasibility of the proposed framework and to demonstrate its practical

anomaly-based detection, a proof-of-concept study was designed and realized in

Chapter 6. As an extension to the evaluation study, the implementation stage has

developed a web-based system that focuses on the intelligent prediction models of

the proposed framework. To illustrate the implementation stage, details of the

proposed framework, using several modeling languages were thus presented. They

include case diagrams, state diagrams as well as snapshots of the prototype pages.

Univ
ers

ity
 of

 M
ala

ya

146

7.3 Limitation of the study

The discussions noted in previous chapters have validated that this study has adequately

achieved its aims and objectives - the establishment of a novel framework that is useful

for detecting unknown malware in anomaly-based detection environment. However, a

number of limitations and challenges were encountered during the study and they are

listed here for future references.

a) Real-time malware activities: As this study applied the static analysis method, it

lacks the dynamic analysis real-time inspection. In particular, static analysis is

unable to detect a benign application that has updated its form and evolved from

benign to malware application. To relieve this drawback, the current study needs to

capture and obtain the Android application package (.apk) of the current application

for malware detection in two situations: 1) after the application updates its content;

2) at least once a month. Thus, one of the future works proposed in this study is to

highlight this issue of normal application that evolves to malware form.

b) Obfuscation: Another limitation of using static analysis, as is noted in this study, is

obfuscation (Tam et al., 2017). It is an approach which complicates the decompiling

process hence, it confuses the results. Since this study adopts static analysis, it is

imperative that this issue be adequately addressed. At the time of writing this thesis,

the tool to gain the exact native code was still unavailable. Thus, it is crucial for

others to locate a reverse engineering tool that produces results which counter the

obfuscated form. Once the application is obfuscated, it is hard to re factor the

obfuscated code back to its original and perfect form. Henceforth, the experiment

used in this study used Jadx as the reverse engineering tool which converts the .apk

file to .java. It also provides the option of de-obfuscation, which is the best way of

dealing with the obfuscated code in minimal error.

Univ
ers

ity
 of

 M
ala

ya

147

c) Take account the processing time: A comparison of the static analysis and

dynamic @ real-time analysis detection had indicated that it carries a rapid

processing speed. However, this study had excluded the activity of recording the

time taken when the prediction had taken place in the mobile device itself. Hence,

this activity of time taking needs to be included in future studies. This could provide

the time processing speed of different specifications in mobile devices.

7.4 Suggestions and Scope for Future Work

A number of suggestions for future work outside the scope of this study have been

identified as follows:

a) Detecting real-time malware with static analysis: As static analysis only inspects

the application code, it is unable to detect applications that update their forms and

applications which have evolved from benign to malware. Thus, it would be

beneficial for future studies to investigate this kind of malware in two situations -

before and after the update process. This is to test that static analysis is able to detect

malware after the update process.

b) Recording the time taken in mobile device: Another recommendation for future

studies is to conduct an experiment by running the prediction in the mobile device

itself. This is to observe the time taken in the mobile device as noted in the browser

during the time of the prediction process. This enable the study to identify the

minimum specifications needed to run static analysis in a mobile device.

7.5 Summary – The future for mobile malware detection system

Security analysts had detected that the existence of Android malware is on the rise.

They have also identified that relying on manual processes to predict and detect

malware is time-consuming, difficult, sophisticated, complicated and error-prone. This

study has presented a novel framework that predicts unknown malware by using

Univ
ers

ity
 of

 M
ala

ya

148

anomaly-based detection with static analysis features. The framework provide security

analysts with the assistance of uncovering malware noted in previous studies. In fact,

the entire study has demonstrated the advantages of using the proposed framework in

facilitating malware detection. The study not only focused on single category of features

(i.e. permission) but also other categories (i.e. directory path, system command,

telephony, code-based) as well. The important concept lying behind the proposed

framework is the methodical steps which include the search for all features in all files in

each application (not depending on one single file only) and catering to the exclusive

list of features in minimal amount for intelligent prediction in malware detection by

using static features in static analysis.

With the bio-inspired methods and the repeated features investigation such as GS and

range algorithm which selects the best features in detecting malware, the adoption of the

proposed framework has given new perspectives into future research. In fact, the future

of static analysis with the anomaly-based detection technique is a step forward from the

malware detection proposed by this study. All the outstanding results contribute

significantly to the discovery of a new malware and this depends on the best features

that were proposed in the study. Moreover, the machine learning classifier models noted

in the prototype can assist users in discovering malware by merely uploading their

desired Android application package file (.apk). Furthermore, this study also provides

the best features that can be used to detect unknown root exploit. Hence, the system is

able to predict malware including root exploit that have not been found before.

In reality, the future of detecting malware through the intrusion detection system still

depends on human intervention and this is normal with any security analysis.

Nonetheless, with the help of modern technology and the anomaly-based detection

technique, such interventions are gradually declining. This study has contributed to that

Univ
ers

ity
 of

 M
ala

ya

149

domain in some significant degree. Although human intervention is still needed to

check on each application with in-depth, the best features that combine with the

anomaly-based detection mechanism are important in double-confirming the class of the

application as benign or malware. With more studies working to investigate the best

features for the anomaly-based detection technique, it is hoped that one day the updated

features could improve the static analysis investigation.

Univ
ers

ity
 of

 M
ala

ya

150

REFERENCES

1mobile. (2017). 1mobile. Retrieved January 12, 2017, from http://market.1mobile.com/

Aafer, Y., Du, W., & Yin, H. (2013). DroidAPIMiner: Mining API-Level Features for

Robust Malware Detection in Android. Security and Privacy in Communication

Networks (pp. 86–103).

Adrian. (2012). For Android apps, “zero permissions” does not actually mean zero

permissions. Retrieved February 26, 2017, from

http://www.androidauthority.com/android-apps-zero-permissions-75001/

Afifi, F., Anuar, N. B., Shamshirband, S., & Choo, K.-K. R. (2016). DyHAP: Dynamic

Hybrid ANFIS-PSO Approach for Predicting Mobile Malware. Plos One, 11(9), 1–

21. Retrieved from http://dx.plos.org/10.1371/journal.pone.0162627

Allix, K., Bissyandé, T. F., Klein, J., & Traon, Y. Le. (2016). AndroZoo: Collecting

Millions of Android Apps for the Research Community. MSR ’16 Proceedings of

the 13th International Conference on Mining Software Repositories, Austin, Texas
(pp. 468–471).

Alzahrani, A. J., Stakhanova, N., Gonzalez, H., & A.Ghorbani, A. (2014).

Characterizing Evaluation Practices of Intrusion Detection Methods for

Smartphones. River Journal, 1–36.

Anderson, B. (2016). Understanding the Android File Hierarchy. Retrieved July 8,

2016, from http://www.all-things-android.com/content/understanding-android-file-

hierarchy

Android. (2015). App Manifest. Retrieved April 28, 2015, from

http://developer.android.com/guide/topics/manifest/manifest-intro.html

Android. (2016). Telephony Manager. Retrieved July 1, 2016, from

https://developer.android.com/reference/android/telephony/TelephonyManager.htm

l

Android Developer. (2017). Android Debug Bridge (ADB). Retrieved January 1, 2017,

from http://developer.android.com/tools/help/adb.html

Android Developers. (2015). Android Security Overview. Android. Retrieved

September 1, 2015, from https://source.android.com/devices/tech/security/

Angeeks. (2017). Angeeks. Retrieved January 12, 2017, from

http://bbs.angeeks.com/portal.php

Anuar, N. B., Papadaki, M., Furnell, S., & Clarke, N. (2013). Incident prioritisation

using analytic hierarchy process (AHP): Risk Index Model (RIM). Security and

Communication Networks, 6(9), 1087–1116.

Anuar, N. B., Sallehudin, H., Gani, A., & Zakari, O. (2008). Identifying false alarm for

network intrusion detection system using hybrid data mining and decision tree.

Univ
ers

ity
 of

 M
ala

ya

151

Malaysian Journal of Computer Science, 21(2), 101–115.

Anwar, S., Mohamad Zain, J., Zolkipli, M. F., Inayat, Z., Khan, S., Anthony, B., &

Chang, V. (2017). From Intrusion Detection to an Intrusion Response System:

Fundamentals, Requirements, and Future Directions. Algorithms, 10(2), 39.

Retrieved from http://www.mdpi.com/1999-4893/10/2/39

Anzhi. (2017). Anzhi. Retrieved January 12, 2017, from http://www.anzhi.com/

Appavu, S., Rajaram, R., Nagammai, M., Priyanga, N., & Priyanka, S. (2011). Bayes

Theorem and Information Gain Based Feature Selection for Maximizing the

Performance of Classifiers. International Conference on Computer Science and

Information Technology (CCSIT), Bangalore, India (pp. 501–511).

AppChina. (2017). AppChina. Retrieved January 12, 2017, from

http://www.appchina.com/

Apvrille, A., & Strazzere, T. (2012). Reducing the window of opportunity for Android

malware Gotta catch ’em all. Journal in Computer Virology, 8(1), 61–71.

Retrieved February 12, 2014, from http://link.springer.com/10.1007/s11416-012-

0162-3

Arghire, I. (2016). Android Root Exploits Abuse Dirty COW Vulnerability. Retrieved

November 4, 2016, from http://www.securityweek.com/android-root-exploits-

abuse-dirty-cow-vulnerability

Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H., & Rieck, K. (2014). DREBIN:

Effective and Explainable Detection of Android Malware in Your Pocket. 21th

Annual Network and Distributed System Security Symposium (NDSS), San Diego,
CA (pp. 1–15).

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y. Le, et al.

(2014). FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-

aware Taint Analysis for Android Apps. Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation, Edinburgh,
United Kingdom (pp. 259–269).

Aung, Z., & Zaw, W. (2013). Permission-Based Android Malware Detection.

International Journal of Scientific & Technology Research, 2(3), 228–234.

Azhagusundari, B., & Thanamani, A. S. (2013). Feature Selection based on Information

Gain. International Journal of Innovative Technology and Exploring Engineering

(IJITEE), 2(2), 18–21.

Bartel, A., Klein, J., Le Traon, Y., & Monperrus, M. (2012). Automatically securing

permission-based software by reducing the attack surface: an application to

Android. Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering (ASE), Essen, Germany (pp. 274–277).

BBC, N. (2016). Malware hits millions of Android phones. Retrieved September 4,

2016, from http://www.bbc.com/news/technology-36744925

Univ
ers

ity
 of

 M
ala

ya

152

Bickford, J., O’Hare, R., Baliga, A., Ganapathy, V., & Iftode Liviu. (2010). Rootkits on

smart phones: attacks, implications and opportunities. HotMobile ’10 Proceedings

of the Eleventh Workshop on Mobile Computing Systems & Applications,
Annapolis, Maryland (pp. 49–54).

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python.

O’Reilly Media, Inc. Retrieved from http://www.nltk.org/book_1ed/

Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in

machine learning. Artificial Intelligence, 97(97), 245–271.

Caruana, R., Karampatziakis, N., & Yessenalina, A. (2008). An empirical evaluation of

supervised learning in high dimensions. Proceedings of the 25th international

conference on Machine learning, Helsinki, Finland (pp. 96–103).

Chambers, J. (2017). The Comprehensive R Archive Network. Retrieved January 1,

2017, from https://cran.r-project.org/

Chan, P. P. K., & Song, W. K. (2015). Static detection of Android malware by using

permissions and API calls. International Conference on Machine Learning and

Cybernetics, Lanzhou, China (Vol. 1, pp. 82–87).

Chang, T.-K., & Hwang, G.-H. (2007). The design and implementation of an

application program interface for securing XML documents. Journal of Systems

and Software, 80(8), 1362–1374.

Chess, B., & McGraw, G. (2004). Static analysis for security. IEEE Security & Privacy

Magazine, 2(6), 76–79. Retrieved from

www.ieeexplore.ieee.org/iel5/8013/29915/01366126.pdf

Cimpanu, C. (2016). A new Android malware family called DressCode can be used as a

proxy to relay attacks inside corporate networks and steal information from servers

previously considered secure. Retrieved September 1, 2016, from

http://news.softpedia.com/news/dresscode-android-malware-discovered-on-

official-google-play-store-507829.shtml

Crussell, J., Gibler, C., & Chen, H. (2012). Attack of the clones: Detecting cloned

applications on Android markets. Computer Security – ESORICS 2012. Lecture

Notes in Computer Science (Vol. 7459, pp. 37–54).

Deshotels, L., Notani, V., & Lakhotia, A. (2014). DroidLegacy: Automated Familial

Classification of Android Malware. Proceedings of ACM SIGPLAN on Program

Protection and Reverse Engineering Workshop, San Diego, CA, USA (pp. 1–12).

Desnos, A. (2015). Androguard. Retrieved June 29, 2015, from

https://github.com/androguard/androguard

Díaz-Uriarte, R., & Alvarez de Andrés, S. (2006). Gene selection and classification of

microarray data using random forest. BMC Bioinformatics, 7(3), 1–13.

Duch, W., Biesiada, J., Winiarski, T., Grudziński, K., & Grąbczewski, K. (2003).

Feature Selection Based on Information Theory Filters. Neural Networks and Soft

Univ
ers

ity
of

Mala
ya

153

Computing (pp. 173–178). Physica, Heidelberg.

eBay. (2016). Online Shopping. Retrieved April 4, 2016, from www.ebay.com

F-Droid. (2017). F-Droid. Retrieved January 12, 2017, from http://f-droid.org

Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M. S., & Bharmal, A. (2013). AndroSimilar:

Robust Statistical Feature Signature for Android Malware Detection. Proceedings

of the 6th International Conference on Security of Information and Networks,
Aksaray, Turkey (pp. 152–159).

Feizollah, A., Anuar, N. B., Salleh, R., Amalina, F., Ma’arof, R. R., & Shamshirband, S.

(2013). A Study Of Machine Learning Classifiers For Anomaly-Based Mobile

Botnet Detection. Malaysian Journal of Computer Science, 26(4), 251–265.

Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017).

AndroDialysis: Analysis of Android Intent Effectiveness in Malware Detection.

Computers & Security, 65, 121–134. Retrieved from

http://linkinghub.elsevier.com/retrieve/pii/S0167404816301602

Feizollah, A., Anuar, N. B., Salleh, R., & Wahab, A. W. A. (2015). A review on feature

selection in mobile malware detection. Digital Investigation, 13, 22–37. Retrieved

from http://linkinghub.elsevier.com/retrieve/pii/S1742287615000195

Feizollah, A., Shamshirband, S., Anuar, N. B., Salleh, R., & Kiah, M. L. M. (2013).

Anomaly Detection Using Cooperative Fuzzy Logic Controller. 16th FIRA

RoboWorld Congress (FIRA), Kuala Lumpur, Malaysia (pp. 220–231).

Felt, A. P., Finifter, M., Chin, E., Hanna, S., & Wagner, D. (2011). A survey of mobile

malware in the wild. Proceedings of the 1st ACM workshop on Security and

privacy in smartphones and mobile devices (SPSM), Illinois, USA (pp. 3–14).

Feng, Y., Anand, S., Dillig, I., & Aiken, A. (2014). Apposcopy: Semantics-Based

Detection of Android Malware Through Static Analysis. Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software
Engineering, Hong Kong, China (pp. 576–587).

Firdaus, A., & Anuar, N. B. (2015). Root-exploit Malware Detection using Static

Analysis and Machine Learning. Proceedings of the Fourth International

Conference on Computer Science & Computational Mathematics (ICCSCM 2015),
Langkawi, Malaysia (pp. 177–183).

Foreman, G. (2003). An Extensive Empirical Study of Feature Selection Metrics for

Text Classification. Journal of Machine Learning Research, 3, 1289–1305.

Forni, A. A., & Van der Meulen, R. (2016). Gartner Says Five of Top 10 Worldwide

Mobile Phone Vendors Increased Sales in Second Quarter of 2016. Retrieved

January 1, 2017, from http://www.gartner.com/newsroom/id/3415117

Frank, E., Hall, M. A., & Witten, I. H. (2016). The WEKA Workbench. Morgan

Kaufmann, Fourth Edition. Retrieved from

http://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf

Univ
ers

ity
 of

 M
ala

ya

154

Freewarelovers. (2017). Freewarelovers. Retrieved January 12, 2017, from

http://www.freewarelovers.com

Freund, Y., & Schapire, R. E. (1999). Large Margin Classification Using the Perceptron

Algorithm. Machine Learning, 37(3), 277–296.

Fröhlich, H., Chapelle, O., & Schölkopf, B. (2003). Feature Selection for Support

Vector Machines by Means of Genetic Algorithms. Proceedings of the 15th IEEE

International Conference on Tools with Artificial Intelligence (ICTAI’03),
Sacramento, California, USA (pp. 142–148).

Gascon, H., Yamaguchi, F., Arp, D., & Rieck, K. (2013). Structural Detection of

Android Malware using Embedded Call Graphs. Proceedings of the 2013 ACM

workshop on Artificial Intelligence and Security, Berlin, Germany (pp. 45–54).

Ghallali, M., & El Ouahidi, B. (2012). Security of Mobile Phones: Prevention Methods

for The Spread of Malware. 6th International Conference on Sciences of

Electronics, Technologies of Information and Telecommunications (SETIT),
Sousse, Tunisia (pp. 648–651).

Goldberg, D. E., & Holland, J. H. (1988). Genetic Algorithms and Machine Learning.

Machine Learning, 3(2–3), 95–99.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P.,

Coller, H., et al. (1999). Molecular classification of cancer: class discovery and

class prediction by gene expression monitoring. Science (New York, N.Y.),

286(5439), 531–537.

Google. (2014). Google Play Store. Retrieved January 1, 2014, from

https://play.google.com/store?hl=en

Gordon, M. I., Kim, D., Perkins, J., Gilham, L., Nguyen, N., & Rinard, M. (2015).

Information-Flow Analysis of Android Applications in DroidSafe. Network and

Distributed System Security Symposium (NDSS), San Diego, CA (pp. 8–11).

Grace, M. C., Zhou, W., Jiang, X., & Sadeghi, A.-R. (2012). Unsafe Exposure Analysis

of Mobile In-App Advertisements. Proceeding 5th ACM conference on Security

and Privacy in Wireless and Mobile Networks, Tucson, Arizona, USA (Vol. 67, pp.

101–112).

Grace, M., Zhou, Y., Wang, Z., & Jiang, X. (2012). Systematic Detection of Capability

Leaks in Stock Android Smartphones. Proceedings of the 19th Network and

Distributed System Security Symposium (NDSS), San Diego, CA (pp. 1–15).

Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2011). RiskRanker: Scalable and

Accurate Zero-day Android Malware Detection. Proceedings of the 10th

International Conference on Mobile Systems, Applications, and Services, Low
Wood Bay, Lake District, UK (pp. 281–293).

Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection.

Journal of Machine Learning Research, 3(3), 1157–1182.

Univ
ers

ity
 of

 M
ala

ya

155

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).

The WEKA Data Mining Software: An Update. ACM SIGKDD Explorations,

11(1), 10–18.

Han, J., Kamber, M., & Pei, J. (2001). Data Mining: Concepts and Techniques. The

Morgan Kaufmann Series in Data Management Systems.

HiApk. (2017). HiApk. Retrieved January 12, 2017, from http://www.hiapk.com

Hou, O. (2016). A Look at Google Bouncer. Retrieved September 9, 2016, from

http://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-

bouncer/

Huang, C.-Y., Tsai, Y.-T., & Hsu, C.-H. (2012). Performance Evaluation on

Permission-Based Detection for Android Malware. Proceedings of the

International Computer Symposium ICS 2012 Held at Hualien, Taiwan (Vol. 21,

pp. 111–120).

Huang, J., Zhang, X., Tan, L., Wang, P., & Liang, B. (2014). AsDroid: Detecting

Stealthy Behaviors in Android Applications by User Interface and Program

Behavior Contradiction. Proceeding ICSE 2014 Proceedings of the 36th

International Conference on Software Engineering, Hyderabad, India (pp. 1036–

1046).

Imam, I. F., Michalski, R. S., & Kerschberg, L. (1993). Discovering Attribute

Dependence in Databases by Integrating Symbolic Learning and Statistical

Analysis Techniques. Proceedings of the 1st International Workshop on

Knowledge Discovery in Databases, Washington, DC (pp. 1–13).

Inayat, Z., Gani, A., Anuar, N. B., Khan, M. K., & Anwar, S. (2016). Intrusion response

systems: Foundations, design, and challenges. Journal of Network and Computer

Applications, 62, 53–74. Elsevier. Retrieved from

http://linkinghub.elsevier.com/retrieve/pii/S1084804515002994

Jensen, R., & Shen, Q. (2008). Computational Intelligence and Feature Selection:

Rough and Fuzzy Approaches. Wiley-IEEE Press.

Junaid, M., Liu, D., & Kung, D. (2016). Dexteroid: Detecting Malicious Behaviors in

Android Apps Using Reverse-Engineered Life Cycle Models. Computers and

Security, 59, 92–117.

Kang, H., Jang, J., Mohaisen, A., & Kim, H. K. (2015). Detecting and Classifying

Android Malware using Static Analysis along with Creator Information.

International Journal of Distributed Sensor Networks - Special issue on Advanced
Big Data Management and Analytics for Ubiquitous Sensors, 11(6), 1–17.

Karim, A., Salleh, R., & Khan, M. K. (2016). SMARTbot: A Behavioral Analysis

Framework Augmented with Machine Learning to Identify Mobile Botnet

Applications. Plos One, 11(3), 1–35. Retrieved from

http://dx.plos.org/10.1371/journal.pone.0150077

Karim, A., Salleh, R., Khan, M. K., Siddiqa, A., & Choo, K.-K. R. (2016). On the

Univ
ers

ity
 of

 M
ala

ya

156

Analysis and Detection of Mobile Botnet. Journal of Universal Computer Science,

22(4), 567–588.

Kasperksy. (2016). IT threat evolution Q3 2016 Statistics. Retrieved November 15,

2016, from https://securelist.com/analysis/quarterly-malware-reports/76513/it-

threat-evolution-q3-2016-statistics/

Kent, J. T. (1982). Information gain and a general measure of correlation. Biometrika,

163–173.

Koller, D., & Sahami, M. (1996). Toward optimal feature selection. Proceedings of the

Thirteenth International Conference on Machine Learning (ICML), San Francisco,
CA (pp. 284–292).

Komili, O. (2016). Sophos detects 100% of Android malware in independent test – for

the sixth time in a row. Retrieved January 1, 2016, from

https://blogs.sophos.com/2015/08/14/sophos-detects-100-of-android-malware-in-

independent-test-for-the-sixth-time-in-a-row/

Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence

Review, 39(4), 261–283.

Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: A review

of classification and combining techniques. Artificial Intelligence Review,

26(2006), 159–190.

Lai, H., Tang, Y., Luo, H., & Pan, Y. (2011). Greedy feature selection for ranking.

International Conference on Computer Supported Cooperative Work in Design
(CSCWD), Lausanne, Switzerland (pp. 42–46).

Lee, J., Lee, S., & Heejo, L. (2015). Screening Smartphone Applications Using

Malware Family Signatures. Computers & Security, 52, 234–249. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-642-39218-4_2

Lee, S.-H., & Jin, S.-H. (2013). Warning System for Detecting Malicious Applications

on Android System. International Journal of Computer and Communication

Engineering, 2(3), 324–327.

Li, Q., & Clark, G. (2013). Mobile security: a look ahead. Security & Privacy,

(February), 78–81.

Liang, S., Keep, A. W., Might, M., Lyde, S., Gilray, T., Aldous, P., & Horn, D. Van.

(2013). Sound and Precise Malware Analysis for Android via Pushdown

Reachability and Entry-Point Saturation. ACM workshop on Security and privacy

in smartphones and mobile devices, Berlin, Germany (pp. 21–32).

Lippmann, R. P. (1987). An Introduction to Computing with Neural Nets. IEEE ASSP

Magazine, 4(2), 4–22.

Lu, L., Li, Z., Wu, Z., Lee, W., & Jiang, G. (2012). CHEX: Statically Vetting Android

Apps for Component Hijacking Vulnerabilities. CCS Proceedings of the ACM

Conference on Computer and Communications Security, Raleigh, North Carolina,

Univ
ers

ity
 of

 M
ala

ya

157

USA (pp. 229–240).

Lu, Y., Zulie, P., Jingju, L., & Yi, S. (2013). Android malware detection technology

based on improved Bayesian Classification. Instrumentation, Measurement,

Computer, Communication and Control (IMCCC), Shenyang, China (pp. 1338–

1341).

Luoshi, Z., Yan, N., Xiao, W., Wang, Z., & Xue, Y. (2013). A3: Automatic Analysis of

Android Malware. International Workshop on Cloud Computing and Information

Security (CCIS), Shanghai, China (pp. 89–93).

Ma, Y., & Sharbaf, M. S. (2013). Investigation of Static and Dynamic Android Anti-

virus Strategies. 10th International Conference on Information Technology: New

Generations (ITNG), Las Vegas, Nevada (pp. 398–403).

McAfee. (2016). McAfee Labs Threats Report. Retrieved December 1, 2016, from

http://www.mcafee.com/us/resources/reports/rp-quarterly-threats-sep-2016.pdf

Middlemiss, M. J., & Dick, G. (2003). Weighted feature extraction using a genetic

algorithm for intrusion detection. The 2003 Congress on Evolutionary

Computation (CEC), Canberra, Australia (Vol. 3, pp. 1–7).

Moskovitch, R., Stopel, D., Feher, C., Nissim, N., & Elovici, Y. (2008). Unknown

malcode detection via text categorization and the imbalance problem. IEEE

International Conference on Intelligence and Security Informatics, Taipei, Taiwan
(pp. 156–161).

Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2014). Evaluation of machine

learning classifiers for mobile malware detection. Soft Computing, 20(1), 343–357.

Retrieved November 18, 2014, from http://link.springer.com/10.1007/s00500-014-

1511-6

Nissim, N., Moskovitch, R., Rokach, L., & Elovici, Y. (2014). Novel active learning

methods for enhanced PC malware detection in windows OS. Expert Systems with

Applications, 41(13), 5843–5857. Retrieved from

http://dx.doi.org/10.1016/j.eswa.2014.02.053

Patel, A., Taghavi, M., Bakhtiyari, K., & Ju, J. C. (2013). An intrusion detection and

prevention system in cloud computing: A systematic review. Journal of Network

and Computer Applications, 36, 25–41.

Peiravian, N., & Zhu, X. (2013). Machine Learning for Android Malware Detection

Using Permission and API Calls. International Conference on Tools with Artificial

Intelligence (ICTAI), Herndon, VA, USA (pp. 300–305).

Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C., et al.

(2012). Using Probabilistic Generative Models for Ranking Risks of Android

Apps. ACM Conference on Computer and Communications Security, (CCS),

Raleigh, North Carolina, USA (pp. 241–252). Retrieved from

http://doi.acm.org/10.1145/2382196.2382224

Powell, W. B. (2011). Approximate Dynamic Programming: Solving the Curses of

Univ
ers

ity
 of

 M
ala

ya

158

Dimensionality. Wiley Series in Probability and Statistics.

Priyadarsini, R. P., Valarmanthi, M. L., & Sivakumari, S. (2011). Gain Ratio Based

Feature Selection Method for Privacy Preservation. ICTACT Journal on Soft

Computing, 1(4), 201–205.

ProAndroid. (2017). ProAndroid. Retrieved January 12, 2017, from

http://proandroid.net

Punch, W. F., Goodman, E. D., Pei, M., Chia-Shun, L., Hovland, P., & Enbody, R.

(1993). Further Research on Feature Selection and Classification Using Genetic

Algorithms. Proceedings of the 5th International Conference on Genetic

Algorithms, San Francisco, CA, USA (pp. 557–564).

Rasthofer, S., Arzt, S., & Bodden, E. (2014). A Machine-learning Approach for

Classifying and Categorizing Android Sources and Sinks. Symposium on Network

and Distributed System Security (NDSS), San Diego, CA, USA (pp. 1–15).

Razak, M. F. A., Anuar, N. B., Salleh, R., & Firdaus, A. (2016). The rise of malware’’:

Bibliometric analysis of malware study. Journal of Network and Computer

Applications, 75, 58–76. Retrieved from

http://dx.doi.org/10.1016/j.jnca.2016.08.022

Roobaert, D., Karakoulas, G., & Chawla, N. V. (2006). Information Gain, Correlation

and Support Vector Machines. Feature Extraction: Foundations and Applications

(Vol. 207, pp. 463–470).

Russon, M.-A. (2016). Android malware discovered on Google Play has infected

millions of users with spyware. Retrieved June 13, 2016, from

http://www.ibtimes.co.uk/android-malware-discovered-google-play-store-1553341

Sabry, A., Orman, Z., Mohsin, A., & Brifcani, A. (2015). A novel feature-selection

approach based on the cuttlefish optimization algorithm for intrusion detection

systems. Expert Systems With Applications, 42(5), 2670–2679. Retrieved from

http://dx.doi.org/10.1016/j.eswa.2014.11.009

Sahs, J., & Khan, L. (2012). A Machine Learning Approach to Android Malware

Detection. European Intelligence and Security Informatics Conference, (EISIC),

University of Southern Denmark Odense, Denmark (pp. 141–147).

Samra, A. A. A., Kangbin, Y., & Ghanem, O. A. (2013). Analysis of Clustering

Technique in Android Malware Detection. Seventh International Conference on

Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),
Taichung, Taiwan (pp. 729–733).

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P. G., & Alvarez, G.

(2013). PUMA: Permission Usage to detect Malware in Android. Advances in

Intelligent Systems and Computing (pp. 289–298).

Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Nieves, J., Bringas, P. G., &

Álvarez Marañón, G. (2013). Mama: Manifest Analysis for Malware Detection in

Android. Cybernetics and Systems, 44(6–7), 469–488.

Univ
ers

ity
 of

 M
ala

ya

159

Sarip, A. G., Hafez, M. B., & Daud, M. N. (2016). Application Of Fuzzy Regression

Model For Real Estate Price Prediction. Malaysian Journal of Computer Science,

29(1), 15–27.

Sarma, B., Li, N., Gates, C., Potharaju, R., Nita-rotaru, C., & Molloy, I. (2012). Android

Permissions: A Perspective Combining Risks and Benefits. SACMAT ’12

Proceedings of the 17th ACM symposium on Access Control Models and
Technologies, New Jersey, USA (pp. 13–22).

Schmidt, A.-D., Bye, R., Schmidt, H.-G., Clausen, J., Kiraz, O., Yuksel, K. A.,

Camtepe, S. A., et al. (2009). Static Analysis of Executables for Collaborative

Malware Detection on Android. IEEE International Conference on

Communications (ICC), Dresden, Germany (pp. 1–5).

Schmidt, A., Schmidt, H., Batyuk, L., Clausen, J. H., Camtepe, S. A., Albayrak, S., &

Yildizli, C. (2009). Smartphone Malware Evolution Revisited: Android Next

Target? IEEE Conference Publications, Montreal, Quebec, Canada (pp. 1–7).

Schneider, J. (2016). Cross Validation. Retrieved August 1, 2016, from

http://www.cs.cmu.edu/~schneide/tut5/node42.html

Seo, S.-H., Gupta, A., Mohamed Sallam, A., Bertino, E., & Yim, K. (2014). Detecting

mobile malware threats to homeland security through static analysis. Journal of

Network and Computer Applications, 38, 43–53. Retrieved May 23, 2014, from

http://linkinghub.elsevier.com/retrieve/pii/S1084804513001227

Shabtai, A., Fledel, Y., & Elovici, Y. (2010). Automated Static Code Analysis for

Classifying Android Applications Using Machine Learning. Ninth International

Conference on Computational Intelligence and Security, Nanning, Guangxi
Zhuang Autonomous Region China (pp. 329–333).

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System

Technical Journal, 27(July 1928), 379–423. Retrieved from http://cm.bell-

labs.com/cm/ms/what/shannonday/shannon1948.pdf

Sharif, M., Yegneswaran, V., Saidi, H., Porras, P., & Lee, W. (2008). Eureka: A

framework for enabling static malware analysis. Lecture Notes in Computer

Science (Vol. 5283, pp. 481–500).

Sheen, S., Anitha, R., & Natarajan, V. (2015). Android based malware detection using a

multifeature collaborative decision fusion approach. Neurocomputing, 151, 905–

912. Retrieved from http://dx.doi.org/10.1016/j.neucom.2014.10.004

Skylot. (2015). Jadx. Retrieved February 1, 2014, from https://github.com/skylot/jadx

Slideme. (2017). Slideme. Retrieved January 12, 2017, from http://slideme.org/

Spolaôr, N., Cherman, E. A., Monard, M. C., & Lee, H. D. (2013). A comparison of

multi-label feature selection methods using the problem transformation approach.

Electronic Notes in Theoretical Computer Science, 292, 135–151.

Stein, G., Chen, B., Wu, A. S., & Hua, K. A. (2005). Decision Tree Classifier For

Univ
ers

ity
 of

 M
ala

ya

160

Network Intrusion Detection With GA-based Feature Selection. ACM-SE 43

Proceedings of the 43rd annual Southeast regional conference, Kennesaw,
Georgia (Vol. 2, pp. 136–141).

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Blasco, J. (2014). Dendroid: A

text mining approach to analyzing and classifying code structures in Android

malware families. Expert Systems with Applications, 41(4), 1104–1117. Retrieved

from http://dx.doi.org/10.1016/j.eswa.2013.07.106

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Ribagorda, A. (2014). Evolution,

detection and analysis of malware for smart devices. IEEE Communications

Surveys and Tutorials, 16(2), 961–987.

Symantec. (2015). Symantec Intelligence Report. Retrieved December 1, 2015, from

http://www.symantec.com/content/en/us/enterprise/other_resources/b-intelligence-

report-01-2015-en-us.pdf

Talha, K. A., Alper, D. I., & Aydin, C. (2015). APK Auditor: Permission-based Android

malware detection system. Digital Investigation, 13, 1–14. Retrieved from

http://www.sciencedirect.com/science/article/pii/S174228761500002X

Tam, K., Feizollah, A. L. I., Anuar, N. O. R. B., Salleh, R., & Cavallaro, L. (2017). The

Evolution of Android Malware and Android Analysis Techniques. ACM

Computing Surveys (CSUR), 49(4), 1–41.

Thomas, P. (2015). Google’s Android Operating System Dominates the Smartphone

Market. Retrieved June 11, 2016, from http://finance.yahoo.com/news/google-

android-operating-system-dominates-170640913.html

Tropp, J. A. (2004). Greed is Good: Algorithmic Results for Sparse Approximation.

IEEE Transactions on Information Theory, 50(10), 2231–2242.

Ueltschi, D. (2006). Shannon entropy. Chapter 6. Retrieved from

http://www.ueltschi.org/teaching.html

Union, I. T. (2016). ICT facts and figures. Retrieved from http://www.itu.int/en/ITU-

D/Statistics/Documents/facts/ICTFactsFigures2016.pdf

VirusTotal. (2016). VirusTotal. Retrieved August 24, 2016, from

https://www.virustotal.com/

Waikato, U. (2017). Weka 3: Data Mining Software in Java. Retrieved January 1, 2017,

from http://www.cs.waikato.ac.nz/ml/weka/

Walczak, B., & Massart, D. L. (2000). Local modelling with radial basis function

networks. Chemometrics and Intelligent Laboratory Systems, 50(2), 179–198.

Retrieved from http://dx.doi.org/10.1016/S0169-7439(99)00056-8

Walenstein, A., Deshotels, L., & Lakhotia, A. (2012). Program Structure-Based Feature

Selection for Android Malware Analysis. Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications Engineering (Vol.

107, pp. 51–52).

Univ
ers

ity
 of

 M
ala

ya

161

Wei, T., Lee, H., Tyan, H.-R., Liao, H. M., Jeng, A. B., & Wang, J. (2015). DroidExec:

Root Exploit Malware Recognition Against Wide Variability via Folding

Redundant. 17th International Conference Advanced Communication Technology

(ICACT), PyeongChang, Korea (pp. 161–169).

Williams, G. (2010). ARFF Data. Retrieved September 10, 2015, from

http://datamining.togaware.com/survivor/ARFF_Data0.html

Wiśniewski, R. (2015). Apktool. Retrieved June 29, 2015, from

https://ibotpeaches.github.io/Apktool/

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., & Wu, K.-P. (2012). DroidMat: Android

Malware Detection through Manifest and API Calls Tracing. Seventh Asia Joint

Conference on Information Security, Tokyo, Japan (pp. 62–69).

Yang, Z., & Yang, M. (2012). Leak miner: Detect information leakage on android with

static taint analysis. Third World Congress on Software Engineering (WCSE),

Wuhan, China (pp. 101–104).

Yerima, S. Y., Sezer, S., & McWilliams, G. (2014). Analysis of Bayesian classification-

based approaches for Android malware detection. IET Information Security, 8(1),

25–36. Retrieved January 23, 2014, from http://digital-

library.theiet.org/content/journals/10.1049/iet-ifs.2013.0095

Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013). A New Android

Malware Detection Approach Using Bayesian Classification. IEEE 27th

International Conference on Advanced Information Networking and Applications
(AINA), Barcelona, Spain (pp. 121–128).

Yerima, S. Y., Sezer, S., & Muttik, I. (2014). Android Malware Detection Using

Parallel Machine Learning Classifiers. Eight International Conference on Next

Generation Mobile Apps, Services and Technologies, (NGMAST), St. Anthony’s
College of the University of Oxford, UK (pp. 37–42).

Yerima, S. Y., Sezer, S., & Muttik, I. (2015). High Accuracy Android Malware

Detection Using Ensemble Learning. IET Information Security, 9(6), 313–320.

Retrieved from http://digital-library.theiet.org/content/journals/10.1049/iet-

ifs.2014.0099

Yu, L., & Liu, H. (2004). Efficient Feature Selection via Analysis of Relevance and

Redundancy. Journal of Machine Learning Research, 5, 1205–1224. Retrieved

from http://portal.acm.org/citation.cfm?id=1044700

Zhang, T. (2009). On the Consistency of Feature Selection using Greedy Least Squares

Regression. Journal of Machine Learning Research, 10, 555–568.

Zhang, V. (2016). “GODLESS” Mobile Malware Uses Multiple Exploits to Root

Devices. Retrieved November 4, 2016, from http://blog.trendmicro.com/trendlabs-

security-intelligence/godless-mobile-malware-uses-multiple-exploits-root-devices/

Zheng, M., Sun, M., & Lui, J. C. S. (2013). Droid analytics: A signature based analytic

system to collect, extract, analyze and associate android malware. 12th IEEE

Univ
ers

ity
 of

 M
ala

ya

162

International Conference on Trust, Security and Privacy in Computing and
Communications, (TrustCom), Melbourne, VIC, Australia (pp. 163–171).

Zhou, W., Zhou, Y., Grace, M., Jiang, X., & Zou, S. (2013). Fast, scalable detection of

“Piggybacked” mobile applications. CODASPY ’13 Proceedings of the second

ACM conference on Data and Application Security and Privacy, San Antonio,
Texas, USA (pp. 185–195).

Zhou, W., Zhou, Y., Jiang, X., & Ning, P. (2012). Detecting Repackaged Smartphone

Applications in Third-Party Android Marketplaces. CODASPY ’12 Proceedings of

the second ACM conference on Data and Application Security and Privacy, San
Antonio, Texas, USA (pp. 317–326).

Zhou, X., Demetriou, S., He, D., Naveed, M., Pan, X., Wang, X., Gunter, C. a., et al.

(2013). Identity, location, disease and more: inferring your secrets from android

public resources. Proceedings of the ACM SIGSAC conference on computer &

communications security, Berlin, Germany (pp. 1017–1028).

Zhou, Y., & Jiang, X. (2012a). Dissecting Android Malware: Characterization and

Evolution. IEEE Symposium on Security and Privacy, San Francisco, CA (pp. 95–

109). Retrieved December 12, 2013, from

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6234407

Zhou, Y., & Jiang, X. (2012b). Android Malware Genome Project. Retrieved from

http://www.malgenomeproject.org/

Zia, T., Akhter, M. P., & Abbas, Q. (2015). Comparative Study of Feature Selection

Aapproaches for Urdu Text Categorization. Malaysian Journal of Computer

Science, 28(2), 93–109.

Univ
ers

ity
 of

 M
ala

ya

163

LIST OF PUBLICATIONS AND PAPERS PRESENTED

1. A. Firdaus, N. B. Anuar, M. F. A. Razak, and A. K. Sangaiah, “Bio-inspired

computational paradigm for feature investigation and malware detection: interactive

analytics,” Multimedia Tools and Applications, pp. 1–37, 2017.

2. A. Firdaus, N. B. Anuar, A. Karim, and M. F. A. Razak, “Discovering Optimal

Features using Static Analysis and Genetic Search Based Method for Android Malware

Detection”, Journal of Frontiers of Information Technology & Electronic Engineering,

Accepted 15 March 2017.

3. M. F. A. Razak, N. B. Anuar, R. Salleh, and A. Firdaus, “The rise of malware’’:

Bibliometric analysis of malware study,” Journal of Network and Computer

Applications, vol. 75, pp. 58–76, 2016.

4. A. Firdaus and N. B. Anuar, “Root-exploit Malware Detection using Static

Analysis and Machine Learning,” in Proceedings of the Fourth International Conference

on Computer Science & Computational Mathematics (ICCSCM 2015), Langkawi,

Malaysia, 2015, pp. 177–183.

Univ
ers

ity
 of

 M
ala

ya

