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ABSTRACT 

A 13.56 MHz, planar coil, inductively coupled plasma reactor was experimentally 

and theoretically characterized; with emphasis on the effects of neutral gas heating on 

the distribution of the H mode magnetic fields of the source coil and the E-H mode 

transition characteristics of the discharge.    

The radially resolved electron density, ne, electron temperature, Te and electron 

energy distribution function (EEDF) were measured using a Langmuir probe at different 

axial distances above the dielectric plate for 0.03, 0.07 and 0.2 mbar argon pressures. 

The range of ne and Te obtained were (0.065 ± 0.004)-(4.0 ± 0.6) × 1017 m-3 and      

(1.38 ± 0.08)-(3.8 ± 0.2) eV assuming Maxwellian distribution. The measured ne 

distribution at 0.2 mbar suggested significant influence of neutral gas heating. EEDF 

plots showed that the distributions were Maxwellian-like.  

The radially resolved absolute axial magnetic field, |Bz|, and absolute radial magnetic 

fields, |Br|, were measured using electrostatically compensated magnetic probes in the 

appropriate orientations. The fields were measured at different axial distances above the 

dielectric plate for the chamber in evacuated condition and for 0.03, 0.07 and 0.2 mbar 

argon pressures. R.f. power was set at 180 W.  Maximum |Bz| and |Br| fields were 

obtained when the chamber was in evacuated condition with values of (1.507 ± 0.005) × 

10-4 T and (7.67 ± 0.01) × 10-5 T, respectively.  

The peak E-H mode transition current, Itr and peak H-E mode transition current, Imt 

were measured using a current probe for 0.02-0.2 mbar argon pressures. The minimum 

value for Itr was (13.5 ± 0.5) A at 0.08 mbar, whereas, the minimum value for Imt was 

(8.3 ± 0.1) A at 0.3 mbar. As pressure is increased, hysteresis between E-H mode and 

H-E mode transitions was observed to become more distinct.  
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The line averaged neutral gas temperature, Tn, was measured using a fiber probe with 

the actinometry optical emission spectroscopy (AOES) technique at 0.03, 0.05, 0.07, 0.1 

and 0.2 mbar argon pressure for different axial distances above the dielectric plate. R.f. 

power was varied from 100 W to 200 W. The range of Tn obtained was                               

(350 ± 30)-(840 ± 30) K. 

For theoretical characterization, two predictive models were used. The first was an 

electromagnetic field model that simulates |Bz| and |Br|, using empirically fitted, 

spatially resolved electron density, ne (r, z) and electron temperature, Te (r, z). 

Simulations were run for spatially averaged Tn and heuristically fitted, spatially 

distributed temperature, Tn (r, z). Tn (r, z) gave the closest agreement to the measured 

magnetic fields. 

The second model was a power deposition model that simulates Itr and Imt. 

Simulations were run for Tn = 300 K and at elevated Tn. Calculations better matched the 

measured values only when neutral gas heating was considered. The effect of hysteresis 

in mode transition of the discharge was also demonstrated using a fitted 3D power 

evolution plot.  

These results indicate that neutral gas heating plays an important role in influencing 

plasma parameters. Thus, knowledge of the effects of neutral gas heating is essential in 

providing better understanding of the formation and maintenance of the plasma 

discharge. 
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ABSTRAK 

Reaktor plasma makmal yang berjanakan gegelung sesatah enam lilitan pada 

frekuensi 13.56 MHz telah dicirikan secara eksperimen dan teori; dengan penekanan 

diberikan kepada kesan-kesan pemanasan gas neutral terhadap taburan medan magnetik 

mod H yang dijanakan oleh gegelung sesatah serta ciri-ciri peralihan mod E-H plasma. 

Ketumpatan elektron, ne, suhu elektron, Te dan fungsi taburan tenaga elektron, EEDF 

telah diukur mengikut jejari reaktor dengan menggunakan kuar Langmuir pada jarak 

paksi berbeza di atas plet dielektrik untuk tekanan argon 0.03, 0.07 dan 0.2 mbar. Julat 

ne dan Te yang diperoleh ialah (0.065 ± 0.004)-(4.0 ± 0.6) × 1017 m-3 dan                  

(1.38 ± 0.08)-(3.8 ± 0.2) eV dengan andaian taburan Maxwell. Ukuran taburan ne pada 

tekanan 0.2 mbar telah menunjukkan pengaruh pemanasan gas neutral yang ketara. 

EEDF yang diplot memberikan taburan yang menyerupai taburan Maxwell. 

Medan magnet mutlak paksian, |Bz| dan medan magnet mutlak jejarian, |Br| juga telah 

diukur mengikut jejari reaktor dengan mengunakan kuar magnetik lawanan elektrostatik 

pada orientasi masing-masing. |Bz| dan |Br| juga telah diukur pada jarak paksi berbeza di 

atas plat dielektrik untuk reaktor pada keadaan vakum dasar dan pada tekanan argon 

0.03, 0.07 dan 0.2 mbar. Kuasa frekuensi radio telah ditetapkan pada 180 W. Medan |Bz| 

dan |Br| maksima (masing-masing bernilai (1.507 ± 0.005) × 10-4 T dan (7.67 ± 0.01) × 

10-5 T) telah diperolehi untuk reaktor pada keadaan vakum dasar. 

Arus puncak peralihan mod E ke mod H, Itr dan arus puncak peralihan mod H ke 

mod E, Imt telah diukur dengan mengunakan kuar arus untuk julat tekanan argon 0.02-

0.2 mbar. Nilai minima untuk Itr ialah  (13.5 ± 0.5) A pada tekanan 0.08 mbar, manakala 

nilai minima untuk  Imt ialah (8.3 ± 0.1) A pada tekanan 0.3 mbar. Apabila tekanan 

argon meningkat, kesan histerisis di antara peralihan mod E-H dan peralihan mod H-E 

bertambah ketara. 
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Suhu purata satah gas neutral, Tn, telah diukur mengunakan kuar gentian optik 

dengan teknik aktinometri spektroskopi pancaran optik (AOES) pada tekanan argon 

0.03, 0.05, 0.07, 0.1 dan 0.2 mbar untuk jarak paksi berbeza di atas plet dielektrik. 

Kuasa frequensi radio telah dibezakan dari 100-200 W. Julat Tn yang diperoleh ialah 

(350 ± 30)-(840 ± 30) K. 

Untuk pencirian teori, dua model ramalan telah digunakan. Model ramalan pertama 

ialah model medan elektromagnetik yang mensimulasikan |Bz| dan |Br| dengan 

mengunakan taburan ketumpatan elektron ruangan, ne (r, z) serta taburan suhu elektron 

ruangan, Te (r, z) yang suaikan secara empirikal. Simulasi telah dijalankan dengan 

menggunakan suhu purata Tn serta taburan suhu ruangan yang diperoleh daripada 

penyesuaian  heuristik, Tn (r, z). Simulasi dengan Tn (r, z) telah memberikan persetujuan 

yang terbaik dengan medan magnet ukuran. 

Model ramalan kedua ialah model pemendapan kuasa yang mensimulasikan Itr dan 

Imt. Simulasi telah dijalankan pada suhu Tn = 300 K dan pada suhu Tn tertingkat. Nilai-

nilai simulasi lebih menyetujui nilai-nilai ukuran hanya apabila kesan pemanasan gas 

neutral diambil kira.  Kesan histerisis terhadap peralihan mod plasma juga telah 

ditunjukkan dengan menggunakan plot evolusi kuasa 3 dimensi yang disuaikan.  

Keputusan-keputusan ini menunjukkan bahawa pemanasan gas neutral memainkan 

peranan penting dalam mempengaruhi parameter plasma. Oleh itu, pengetahuan tentang 

kesan pemanasan gas neutral adalah penting untuk memberikan pemahaman yang lebih 

baik tentang pembentukan dan pengekalan nyahcas plasma. 
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CHAPTER 1: INTRODUCTION 

 

1.0. Introduction and Motivation of Study 

Radio frequency or r.f. inductively coupled plasmas (ICPs) have been extensively 

used for the past two decades for various semiconductor processes including plasma 

enhanced chemical vapor deposition (PECVD) and reactive ion etching (RIE). These 

processes demand for high purity and high density plasmas which are able to give the 

precise substrate modification required for fabricating present day electronic devices 

(Hopwood, 1992). ICPs are induced mainly by the magnetic fields of a non-contact, 

externally positioned source coil and are typically referred to as "electrodeless". The 

nature of this "electrodeless" configuration allows for reduced impurities in generation 

of plasma; especially in comparison to other plasmas with internal electrodes (Chen, 

2008). 

 

ICPs in practice have both capacitive and inductive means of power coupling which 

together contribute towards the overall plasma.  The primary mode of the plasma, 

known as the H mode, is generated via predominant inductive coupling of the axial and 

radial magnetic fields of the r.f. coil.  The secondary mode of the plasma, known as the 

E mode, is generated via capacitive axial and radial electric fields formed by the 

potential difference across the coil. The E mode is usually found at lower input powers 

where ionization from the potential difference of the coil is insufficient to ignite the 

inductive discharge and power coupling from the electromagnetic fields of the coil is 

low (Lieberman & Lichtenberg, 2005). An ICP at H mode and at E mode can be 

differentiated by distinct features in electron density and luminosity (Figure 1.1).  At H 

mode, the plasma is highly luminous and has a high electron density (1016-1018 m3) 
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whereas, at E mode, the plasma is at low luminosity and has an electron density of about 

one to two orders lower (Chabert & Braithwaite, 2011).  

 

 

Figure 1.1: Laboratory 13.56 MHz r.f. argon ICP operating at (a) E mode and (b) H 
mode at 0.1 mbar. 
 
 
Transitions between E mode and H mode occur in sudden „jumps‟ of luminosity when a 

threshold input power is applied. The threshold current which triggers these jumps 

depends not only on external parameters (i.e., gas pressure, coil size, impedance 

matching and gas type) but also on whether the input current is incremented or 

decremented (Figure 1.2).  

 

 

Figure 1.2: The measured effects of hysteresis in the planar coil ICP reactor at 0.1 mbar 
argon pressure. The power required to cause a transition from E to H mode is higher 
(~82 W) than the power required for maintaining H mode (~ 66 W) (Lim, 2010).  

(a) (b) 
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This hysteresis phenomenon has become a point of interest for many researchers in this 

field of study and is well documented (Cunge, et al., 1999, Daltrini et al., 2008, El-

Fayoumi, Jones & Turner, 1998, and Xu, et al., 2000). 

 

The magnetic fields required for formation of an ICP can be generated from either 

one of two types of source coil configurations, i.e., the helical coil configuration or the 

planar coil configuration (Figure 1.3).  

     

Figure 1.3: The two types of coil configurations used in ICP design: (a) helical and (b) 
planar (Lieberman & Lichtenberg, 2005). 

 

For industrial ICPs, the planar coil configuration is preferred due to the distribution of 

the induced fields which results in higher uniformity in power deposition and plasma 

density (Steward, et al., 1995 and Xu, et al., 2001). In material processing applications 

such as PECVD and RIE, a silicon substrate is typically placed in the vicinity of the 

plasma to be treated by ion bombardment. With a higher uniformity in plasma density, 

better process control is achieved in terms of reproducibility and evenness of substrate 

treatment (Ogle, 1990). The optimization and simulation of the source magnetic fields 

for control of plasma uniformity has been a frequent subject of applied ICP research 

(Cuomo et al., 1994, Hopwood et al., 1993, Patrick et al., 1995, Paranjpe, 1994, and El-

Fayoumi & Jones, 1998). 

Helical Coil 

      Planar Coil (a) (b) 
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In recent years, spectroscopic measurement techniques have revealed that ICP 

neutral gas temperatures are much higher than the previously stipulated near-room 

temperatures commonly associated with low temperature discharges. Measurements 

made by Li et al. (2011) for argon ICPs have shown neutral gas temperatures of up to 

1750 K for the r.f. input power 200 W. In simulation, intrinsic ICP parameters such as 

electron density and electron temperature have been reported to be influenced by 

elevated neutral gas temperatures; with comparison of measured results and simulation 

giving better agreement (Hash et al., 2001 and Ostrikov, et al., 2002). Temperature 

effects on extrinsic ICP parameters, such as magnetic field distribution and discharge 

mode transitions, however, have yet to be explicitly characterized. Thus, in this work, 

the effects of neutral gas temperature on these parameters will be experimentally and 

theoretically studied.  

 

1.1. Objectives of Study  

This study aims to experimentally and theoretically characterize the effects of neutral 

gas heating on key ICP parameters; with focus on predictive simulation of the discharge 

magnetic fields and E-H mode transition currents at elevated temperature. The study is 

divided into two parts: 

 

1.1.1. Experiment 

For experiment, the following plasma parameters will be measured with several 

diagnostic probes and techniques: 

 

(a) Electron density, ne and electron temperature, Te  

A laboratory Langmuir probe will be used to measure the radially resolved electron 

density, ne and electron temperature, Te at 0.032, 0.060 and 0.114 m axial distances 
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above the dielectric plate for 0.03, 0.07 and 0.2 mbar argon pressures. R.f. power is set 

at 180 W. The electron energy density distribution (EEDF) is also measured at the 

chamber center for all cases. 

 

(b) Absolute axial magnetic field, |Bz| and radial magnetic field, |Br|  

Two electrostatically compensated magnetic probes will be used to measure the 

absolute axial magnetic field, |Bz| and radial magnetic field |Br| magnitudes at 0.032 and 

0.060 m axial distances above the dielectric plate for 0.03, 0.07 and 0.2 mbar argon 

pressures. R.f. power is set at 180 W. 

 

(c) H mode transition current, Itr and H mode maintenance current, Imt 

A current probe will be used to measure the H mode transition current, Itr and H 

mode maintenance current, Imt at the argon pressure range of 0.02-0.3 mbar.  

 

(d) Neutral gas temperature, Tn 

An optical fiber probe will be used to measure the neutral gas temperature, Tn via 

actinometry optical emission spectroscopy (AOES) technique. Measurements will be 

made at 0.03, 0.05, 0.07, 0.1 and 0.2 mbar Ar/N2 pressures for 0.032 m and 0.060 m 

axial distances above the dielectric plate and for increasing and decreasing steps of r.f. 

power, i.e., 100-200 W and 200-100 W. 

 

1.1.2. Simulation 

For simulation, two models will be developed based on existing derivations, i.e., the 

electromagnetic model (El-Fayoumi & Jones, 1998) and the power balance model (El-

Fayoumi, Jones & Turner, 1998): 
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(a) Electromagnetic model 

The absolute axial magnetic field |Bz| and radial magnetic field |Br| magnitudes will 

be simulated for argon pressures of 0.03, 0.07, and 0.2 mbar. The required spatially 

resolved electron density distribution, ne (r, z) and electron temperature distribution, Te 

(r, z) are empirically fitted whereas, the required neutral gas temperature distribution, Tn 

(r, z) is heuristically fitted (i.e., with modeled distributions).  The neutral gas 

temperature is also set at average measured and room temperature (300 K) distributions 

for comparison. 

 

(b) Power balance model 

The H mode transition current, Itr and H mode maintenance current, Imt will be 

simulated for the argon pressure range of 0.02-0.3 mbar. Calculations are made to take 

into account the power contributions of H mode, E mode and stochastic heating of 

plasma electrons via capacitive sheath, the non-linear effects of electron energy 

distribution towards power balance and the effects of neutral gas heating. The simulated 

results are compared with measured values. Hysteresis in the system (from differences 

in transition currents) is also demonstrated. 

 

1.2. Layout of Thesis 

This thesis is divided into seven chapters. The present chapter, “Chapter 1: 

Introduction” covers the introduction, motivation, objectives and layout of the thesis 

study.  “Chapter 2: Literature Review” comprises of a chronological review of research 

on ICPs, including ICP history and origins, ICP modes and hysteresis, theoretical 

development and simulation of ICPs and neutral gas heating and depletion in ICPs. 

“Chapter 3: Experiment” covers the experimental setup, methodology and plasma 

diagnostic probes (theory and analysis) used in measurement of ICP parameters. 
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“Chapter 4: Results and Discussion - Experiment” discusses the immediate results and 

findings obtained from measurement. Derivations of equations for electromagnetic and 

power balance models along with methodology for numerical simulation are covered in 

“Chapter 5: Simulation”.  “Chapter 6: Results and Discussion - Simulation” discusses 

the key results and findings of predictive simulation using measured and empirically 

fitted parameters from Chapter 4 and the derived models from Chapter 5. The thesis is 

concluded with “Chapter 7: Summary and Conclusion” which gives the summaries and 

conclusions drawn from the results obtained in Chapters 4 and 6.  
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CHAPTER 2: LITERATURE REVIEW 

 
2.0. History and Origins 

 
The advent of research in inductively coupled discharges began with the discovery of 

the ‘electrodeless ring discharge’ by Johann Wilhelm Hittorf (Hittorf, 1884).  In 

Hittorf’s experiment, a Leyden jar and spark gap was used to send sparks (or damped 

oscillating pulses) at high frequency through a wire which was coiled helically around a 

vacuum tube; resulting in a bright ring shaped discharge. Hittorf attributed the 

formation of the discharge to the excitation of electrons by the electromagnetic fields of 

the coil. More detailed experimentation and explanation towards this phenomenon was 

later done by Sir J. J. Thomson (Thomson, 1927).  Sir Thomson’s work included the 

effects of light and gas impurities towards discharge maintenance and the development 

of a theory which describes the discharge’s electromagnetic characteristics. His 

derivations also highlighted the dependence of the discharge ignition on input spark 

frequency and tube gas pressure.  His theoretical work, however, was disputed the 

following year by Townsend and Donaldson (1928). They argued that the calculated 

electrostatic field intensity between the ends of a typical solenoid was more than 30 

times larger than its electromagnetic field intensity and thus, the cause of the discharge 

was predominantly electrostatic. This notion was also demonstrated experimentally by 

using a continuous wave (c.w.) oscillator (i.e., replacing the previous Leyden jar and 

spark gap) which was connected to a cross-wound solenoid. The solenoid was wound in 

a manner that cancels out much of the electrostatic field (Figure 2.1); leaving only 

electromagnetic fields within the coil. The upper end of the coil which was unwound 

however, still had electrostatic fields.  
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Figure 2.1: Cross-wound solenoid as demonstrated by Townsend and Donaldson 
(1928) which effectively cancels most of the electrostatic fields within the solenoid. The 
winding at the upper ends (A2C2-5 and B2D2-1) still carry an electrostatic field. 
 
 
When a bulb of low pressure gas was inserted into the coil, only the upper end of the 

bulb produced a discharge. This led to the presumption that the coil’s electromagnetic 

field alone was insufficient to sustain the discharge and that electrodeless discharges 

were mainly electrostatic in origin.  

 

It was subsequently in November 1929, that MacKinnon (1929) accurately described 

the properties of the inductive discharge. He found that both the electrostatic and 

electromagnetic properties of the discharge were coincident and that the predominance 

of either state was dependent on the level of excitation of the electrons (i.e., at lower 

electron excitation the discharge would be predominantly electrostatic and at higher 

electron excitation the discharge would be predominantly electromagnetic). Using 

iodine as the discharge gas, a pancake (flat spiral) coil and a discharge circuit with both 

damped and c.w. oscillation capability (Figure 2.2), he observed that with damped 

oscillation, the discharge formed into a bright ring with the same electromagnetic 

characteristics reported by Thomson (1927).   
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Figure 2.2: The combination circuit used in MacKinnon’s experiment with both 
damped and c.w. oscillation capability. A Hartley oscillator (labeled Hartley Helix) was 
used for c.w. operation of the pancake coil, whereas, a Leyden jar, spark gap and X-ray 
transformer was used for damped operation (MacKinnon, 1929).  
 

With c.w. oscillation however, the discharge was a diffused glow similar to that 

obtained by Townsend and Donaldson (1928) and had electrostatic characteristics. The 

ring discharge did not occur for c.w. oscillation despite being set at a much higher 

current than the damped oscillation. Yet, by replacing iodine with mercury vapor and by 

heating the discharge bulb, MacKinnon was able to reproduce the ring discharge with 

c.w. oscillation. He subsequently concluded that the discrepancies between Townsend et 

al. and Thomson’s findings were mainly due to the limitations of the c.w. oscillator used 

by the former, which was unable to produce the high amplitude necessary to create 

sufficient excitation for a ring discharge (Figure 2.3).  

 

Figure 2.3:  Current amplitude differences between (a) damped oscillation generated by 
a spark gap and (b) c.w. oscillation produced by an oscillator. The much higher 
amplitude of current in damped oscillation provides the energy required for excitation of 
a ring discharge (MacKinnon, 1929). 

Pancake Coil 

(a) (b) 

Hartley 

Helix 

Leyden Jar 

Gap shorted 

for c.w. 

X-ray Transformer 
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MacKinnon’s observations were later confirmed by several other researchers (Stuhlman 

& Whitaker, 1930, Smith, Lynch & Hilberry, 1931 and Knipp & Knipp, 1931). 

 

2.1. E Mode, H Mode and Hysteresis 

In 1947, George I. Babat classified the electromagnetic and electrostatic phenomena 

in electrodeless discharges based on the nature of their elementary conductance currents 

(Babat, 1947).  Taking from the terminology commonly used to identify electric wave 

(E-) and magnetic wave (H-) propagation in hollow metal waveguides, Babat referred to 

the electrostatic phenomenon as E-discharge and the electromagnetic phenomenon as H-

discharge. According to Babat, in an E-discharge, the plasma conductance currents were 

divergent and were continued by dielectric currents, whereas in an H-discharge the 

plasma conductance currents were in a closed loop. Subsequently, the terms E-discharge 

and H-discharge were formalized into E mode and H mode (Amorim, Maciel & Sudano, 

1991). 

 

Though transitions between modes were well documented throughout the years 

(MacKinnon, 1929, Knipp & Knipp, 1931, Babat, 1947, Jones, 1953 and Amorim, 

Maciel & Sudano, 1991), research interest towards its mechanism only peaked during 

the 1990s. In 1996, Kortshagen, Gibson & Lawler (1996) investigated light emission 

from the E to H and H to E mode transition cycle of a 0.1 Torr discharge using a 0.5 m 

monochromator and a photomultiplier tube (PMT). The trace obtained from the 

experiment (i.e., PMT signal vs. coil current) showed that the emitted light was 

discontinuous (to about 2 orders of magnitude) at the points of transition and followed 

different working paths when transiting between E to H and H to E mode; indicating 

hysteresis. In their work, Kortshagen et al. also developed an analytical model to 
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estimate the minimum currents required for maintaining an E mode and H mode 

discharge.  

 

El Fayoumi, Jones and Turner (1998) published a detailed experimental and 

theoretical report on hysteresis and modes transitions in a 0.56 MHz, planar coil, argon 

ICP system. In their experiment, the electrical operating points of the plasma were 

altered by mismatching the system impedance. The corresponding changes in peak coil 

current, plasma resistance and dissipated power were then recorded.  Hysteresis 

between mode transitions in the system was confirmed when the impedance mismatch 

required to transit from E to H mode was smaller than the mismatch required to transit 

back. The theoretical model developed by El-Fayoumi et al. for the simulation of 

hysteresis used a combination of electromagnetic theory and circuit analysis to solve the 

power balance equation. In this model, the intersections between the absorbed electron 

power curve (i.e., comprising of the sum of H-mode power, E-mode power and 

stochastic power) and the electron power loss curve denoted the possible operating 

points of the system at a given input coil current and electron density. This was further 

visualized by El Fayoumi et al. into a 3 dimensional plot (electron power vs. coil current 

vs. electron density) which showed the branching E mode and H mode paths taken by 

the discharge during its transition cycle (Figure 2.4). 
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Figure 2.4: A 3 dimensional plot visualizing the possible operating points and 
branching paths taken by a modeled ICP system. Hysteresis of E to H mode ((2)-(3)) 
and H to E mode ((5)-(6)) transitions is also shown (El Fayoumi, Jones & Turner, 
1998). 
 
 

In the following year, workers Turner and Lieberman (1999) extended the model 

presented by El-Fayoumi, Jones and Turner (1998) by taking into account the additional 

effects of non-linearities into the power balance equation of the discharge.  These 

include the effects of sheath capacitance and sheath thickness towards absorbed electron 

power and multistep ionization and electron-electron collisions towards electron power 

loss.  Multistep ionization via metastable levels was attributed as one of the causes that 

contributed to hysteresis due to the non-linearity (reduction of electron power loss at 

higher plasma densities) of the total energy required to sustain an ion-electron pair.  

 

Czerwiec and Graves (2004) studied hysteresis and mode transitions for the rare 

gases (argon, krypton and xenon) at low pressures using optical emission spectroscopy. 

Argon gas measurements at different modes showed differences in the peak intensities 

of argon I transitions with the 2p1 → 1s2 transition at 750.4 nm being highest in E mode 
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and the 2p3 → 1s5 transition at 763.51 nm and the 2p9 → 1s5 transition at 811.53 nm 

being highest in H-mode.  The shift in peak intensities of the argon emission lines were 

linked to the added role of metastable excitation states. The hysteresis loop (E to H 

mode and H to E mode) of argon and krypton were also demonstrated.  

 

Also in 2004, the temporal dynamics of E to H mode transition for argon plasma at 

atmospheric pressure were examined by researchers Razzak et al. (2004) using a 4500 

f/s high speed camera (FASTCAM-ultima SE) and CCD camera. From experimental 

investigation, they found that on E to H mode transition, the E mode plasma develops 

multiple streamer-like discharges of axial direction which were subsequently, 

transformed into a bright ring which forms the H mode plasma. Transition dynamics 

was also seen in the behavior of the plasma loading impedance, whereby an almost 

linear increase in loading impedance was observed during E to H mode transition. In 

this study, Razzak et al. also developed a theoretical model to estimate transition time 

(400-900 ms) which showed good agreement with the experimentally measured range 

(500-1000 ms). 

 

Daltrini et al. (2008) discovered that hysteresis in inductively coupled plasmas was 

mostly due to power losses in the system’s impedance matching network. It was found 

that when plasma parameters (i.e., electron density, electron temperature, argon 

metastable density and ion density) were plotted against plasma power (corrected for 

coil and hardware losses) instead of input r.f. power, no hysteresis was observed. It was 

also seen that when plotting against corrected plasma power, an inaccessible region was 

formed between modes at which no stable discharge was produced.  
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The influence of impedance matching on hysteresis and mode transitions was also 

shown by workers Gao et al. (2010) in their report which demonstrated the relationship 

between matching network capacitance and plasma parameters. In their experiment at 

30 mTorr and 100 mTorr argon pressure, the capacitance of a  -type matching network 

capacitor was varied between 114-127 pF and the corresponding changes of input 

current, input voltage, forward power, phase angle and plasma density were recorded. It 

was found that the increase in matching capacitance expanded the hysteresis loop of 

circuit parameters and plasma density (versus applied power).  Also, at higher matching 

capacitances (120.0 pF, 121.2 pF and 123.3 pF), the hysteresis loop for input current 

was found to be inverse, i.e., E to H mode transition caused a jump from lower to higher 

input current instead of the expected higher to lower jump.  

 

Lee, Kim and Chung (2013) demonstrated the absence of hysteresis between mode 

transitions when using an automated matching network (which removes system 

impedance matching discrepancies) at 13.56 MHz r.f. frequency and 100 mTorr argon 

pressure. However, when the same experiment was run at 350 mTorr argon pressure, 

hysteresis was still observed. Lee et al. attributed this to the effects of non-linear power 

balance which occurs more distinctly at higher pressures. It was thus, concluded that 

both impedance matching and non-linear power balance play a part in contributing to 

the hysteresis phenomenon. 

 

2.2. Theoretical Development and Simulation of Electrodeless Discharges and ICPs 

The first theoretical treatment for the electromagnetic fields of an electrodeless 

discharge was given by Thomson (1927).  Sir Thomson correlated the peak cyclotron 

velocity of a single plasma electron with the ionization potential of the discharge, 

stating that the discharge will only be initiated if the electron reaches the minimum 
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kinetic velocity given by the ionization potential. He further concluded that in order to 

obtain this velocity, the initiating electron must not encounter collisions from other 

particles; thus, deriving the threshold pressure required to initiate the discharge from the 

free mean path of the electron. Thomson (1930), derived from the input oscillating 

electric fields, the conditions of electron ionization energy, discharge tube length, 

pressure and ion recombination rate required to maintain an electrodeless discharge. 

These maintenance conditions were shown to hold good approximation with available 

experimental data (Kirchner, 1925). 

 

Townsend (1932) developed a parallel plate model describing the electrostatically 

driven electrodeless discharge. The discharge was assumed to occur in a quartz chamber 

midway between two parallel plate electrodes with a high frequency oscillating electric 

field. Townsend derived the analytical approximations for electron density and electron 

excitation energy in terms of the mean electrostatic force between particles and electron 

diffusion and ionization coefficients. The expansion to Thomson’s (1927) 

electromagnetic theory for electrodeless discharges was later done by Kunz (1932). 

Kunz derived the electromagnetically induced ring current of the discharge and also 

circuit parameters such as self inductance, mutual inductance, oscillation frequency 

difference (with and without plasma) and discharge conductivity. He also included the 

derivations of discharge conductivity and self inductance for the electrostatic case. 

Kunz’s circuit theory of the electrodeless discharge can be said to be the precursor of 

modern day circuit theory for ICPs. 

 

Eckert (1962) published a paper detailing a plasma diffusion theory for electrodeless 

discharges based on Schottky’s (1924) electron balance solution for the positive plasma 

column. The experimental parameters for hydrogen were used to illustrate the theory. 



17 

From the model, Eckert deduced that the maximum obtainable electron density for an 

electrodeless discharge was strongly dependent on the product of discharge frequency 

and magnetic field, moderately dependent on gas pressure and independent of chamber 

radius. Henriksen, Keefer and Clarkson (1971) derived a closed form solution of the 

electromagnetic fields for a low pressure electrodeless discharge using non-uniform 

complex plasma conductivity with a parabolic distribution. The magnitude of field 

variations within the discharge were found to be qualitatively similar to previous studies 

which generally assumed uniform and weakly reactive (real) plasma conductivity 

(Thomson, 1927 and Eckert, 1962).  Two years later, Keefer, Sprouse and Loper (1973) 

solved the 1D cylindrical energy balance equation for a confined, inductive 

electrodeless arc with the consideration of convective energy transport due to radial 

inflow of gas. Using experimental values of electrical and thermal conductivity and 

specific radiation for argon at atmospheric pressure, the arc temperature profile 

calculated by Keefer’s model (i.e., with convection) showed better agreement with 

experimental results compared to a reference model without convection. 

 

Boulos (1976) presented a model which calculates the 2D flow and temperature 

fields of an atmospheric, argon inductive plasma torch at 3 MHz r.f. frequency and 3.77 

kW power. The simulated coil was helical and of radius, 2.4 cm. The corresponding 

momentum, continuity and energy equations were solved simultaneously using 1D 

magnetic and electric field equations. Results demonstrated the existence of a magnetic 

pumping effect (via recirculation eddy currents) which was responsible for radial inflow 

at the center of the coil. Back flow at the upstream end of the coil was of the order of 20 

ms-1 and was responsible for particle repulsion in the area. Significant reduction of heat 

flux to the plasma tube was also seen when gas flow rate was increased. The model was 

further expanded by Mostaghimi and Boulos (1989) to include 2D electromagnetic 
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fields which enabled the prediction of coil geometry effects on the flow and temperature 

fields of the discharge. 

 

Vahedi et al. (1995) derived a simple analytical model to describe power deposition 

in a cylindrical inductively coupled plasma source with a planar coil. The model was 

valid of all collisionality regimes of the plasma, i.e., with both ohmic (collisional) 

heating and stochastic (collisionless) heating components considered. An effective 

electron collision frequency with contributions from both components was devised for 

this purpose. From the model, it was concluded that stochastic heating had a dominant 

influence in power deposition for ICPs at low pressure.  

 

In the same year, Li, Wu and Chen (1995) developed a time averaged two- 

dimensional fluid model for a planar coil inductive plasma source which included an 

electromagnetic module with self-consistent power deposition to calculate transport 

parameters. Some of the assumptions made for the model were negligible gas flow, 

Maxwellian electron energy density function (EEDF), equal ion and neutral temperature 

and spatially uniform neutral gas temperature and distribution. The planar spiral coil 

was simulated as three co-axial flat circular coils. Li et al. simulated the plasma density, 

electron temperature, azimuthal electric field intensity, plasma potential and ionization 

rate spatial profiles for the case of 500 W r.f power and 10 mTorr neutral gas pressure.  

The effects of gas pressure and plasma power on electron temperature and electron 

density were also demonstrated i.e., with the electron temperature increasing slightly 

with plasma power and decreasing slightly with pressure and the electron density 

increasing linearly with both parameters. These simulated trends were in accordance to 

experimentally measured results by Hopwood et al. (1993). 
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Gudmundsson and Lieberman (1998) calculated the effective electron collision 

frequency, electron density and electron temperature of planar coil argon plasma using 

an axis symmetric, global volume-averaged discharge model. In a global model, 

spatially varying experimental parameters, such as electron density and electron 

temperature were assumed to be of a predefined value or distribution (i.e., for 

simplicity). In this model, the electron density was assumed to be the average value 

across the chamber radius, with exception of the boundaries whereby the density values 

fall sharply. Three component collision frequencies, i.e., electron-neutral, electron-ion 

and stochastic collision frequency were used to calculate the effective electron collision 

frequency. Using the electron power balance equation and calculated plasma 

parameters, Gudmundsson et al. determined the mutual inductance, self inductance, 

plasma resistance and inertia inductance of the discharge as a function of skin depth and 

absorbed plasma power. Calculated values of induced plasma current (derived from 

plasma resistance) provided a reasonable estimate to experimental values measured by 

El-Fayoumi and Jones (1997).  

 

El-Fayoumi and Jones (1998), also presented a comprehensive theoretical treatment 

of the spatial distribution of the H mode fields within a 0.56 MHz, planar coil, ICP 

source. The azimuthal electric, radial magnetic and axial magnetic fields were solved 

analytically for the cases of evacuated and plasma filled chamber with constant electron 

density. The case of a spatially varying electron density was also solved using the 

method of finite difference. Temporo-spatial magnetic field lines were visualized and 

compared for both measured (Figure 2.5 (a)) and simulated (Figure 2.5 (b)) fields. El-

Fayoumi et al. also compared the measured and simulated phase variations at different 

radial distances from the chamber center. From comparisons, it was concluded that 
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within a factor of two, meaningful information of plasma properties can be deduced by 

the analysis of magnetic field data. 

 

    
 
Figure 2.5: The (a) measured and (b) simulated magnetic field lines for an evacuated, 
planar coil, ICP source at 0.56 MHz (El Fayoumi & Jones, 1998). 
 
 

Nanbu (2000) compiled a review article on kinetic particle simulation of low 

pressure, high density plasma sources which included ICPs. In the simulation, Nanbu 

solved the kinetic Boltzmann transport equation using the method of particle-in-cell 

(PIC) (Birdsall, 1991), i.e., a method in which 1000s of representative particles were 

generated and moved within predetermined spatial grids at discrete time steps. 

Displacement and velocity of the particles (by influence of the electromagnetic fields of 

the source) were determined using the Lorentz force equation. Collisional processes 

which occur during particle movement were treated using Monte Carlo (Birdsall, 1991) 

and direct simulation Monte Carlo schemes (Serikov, Kawamoto & Nanbu 1999); both 

of which were probabilistic methods of determining the type of collision (Figure 2.6).  

(a) (b) 
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Figure 2.6: Example of a basic Particle in Cell-Monte Carlo Collision (PIC-MCC) 
algorithm. Representative particles are updated for changes in their spatial properties 
under the influence of an electromagnetic field and by randomized collisions at discrete 
time steps (Birdsall, 1991). 
 
 

Collisional processes considered in Nanbu’s simulation were extensive, included 

were electron-molecule and ion-molecule collisions (which include elastic collisions, 

excitation and ionization), molecule-molecule hard sphere collisions and Coulomb 

collisions (electron-electron, ion-ion and ion-electron charge based influence on particle 

movement). Trajectory and velocity of particles were adjusted according to the 

collisional influences of each time step. In these simulations, were illustrated the 

influence of the different types of collisions on the statistical distribution of electron 

energy of argon plasma via electron energy distribution function (EEDF). The number 

density distributions of CF3
+, CF3

-, F- and electrons of a simulated CF3 discharge were 

also shown.  

 

Panagopoulos et al. (2002) developed a 3D cylindrical, finite element fluid model 

(MPRES-3D) to study azimuthal asymmetries in inductively coupled plasmas and its 

effects on ion etch uniformity in etching applications. The model was made up of 

several iteration modules that repeatedly compute the electromagnetic, electron energy, 
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particle transport, particle flux and sheath equations in a cyclical fashion till a 

convergence was reached. The power deposition, electrostatic potential, electron 

temperature, particle densities, etch rate and etch uniformity was calculable from the 

converged solution. Silicon wafer etching with chlorine in a planar coil reactor was 

simulated for four different cases, i.e., azimuthally uniform power deposition without a 

focus ring, azimuthally uniform power deposition with a focus ring, non-uniform power 

deposition without a focus ring and non-uniform power deposition with a focus ring. 

The power deposition profiles, Cl+ densities and Cl densities were compared at 14 cm 

from the wafer plane and at the wafer plane. The etch rate distributions were also 

compared. It was found that when the etching was ion driven, etch uniformity was 

strongly dependent on the power deposition profile. For the cases with uniform power 

deposition, however, asymmetric pumping (of discharge gas) became a more prominent 

factor for etch uniformity. The cases simulated with a focus ring had significantly 

reduced azimuthal non-uniformities compared to the cases without. 

 

Nam and Economou (2004) developed a two dimensional self consistent fluid model 

for the miniaturized inductively coupled plasma (mICP) presented by Hopwood, 

Minayeva and Yin (2000). The chamber was 5 mm in radius and 6 mm in length with a 

planar coil of diameter of 5 mm. The equations of plasma power deposition, electron 

temperature and particle species were solved for 370-770 mTorr argon pressure and 0-

1.3 W r.f. power at 450 MHz. The plasma electrons in the model were assumed to be 

Maxwellian and the plasma sheath was not taken into consideration. The simulated 

electron temperature distribution was found to peak at the power deposition region near 

the coil. Warm electrons were also observed to persist outside the deposition region due 

to the high thermal conductivity of the plasma area. Nam et al. also noted that Langmuir 

probe measurements would be challenging due to the strong ion density gradients seen 
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in the simulation. Comparisons between experimental and theoretical results for ion and 

electron density and temperature were of reasonable agreement. 

 

Takao et al. (2010) developed a two-dimensional axis-symmetric PIC-MCC model to 

simulate the same mICP source developed by Hopwood, Minayeva and Yin (2000). 

Two types of power deposition schemes (i.e., collisional and kinetic) were used to 

simulate coupling between the r.f. fields and the plasma. The collisional scheme used 

the cold electron approximation and the electron velocity distribution to solve plasma 

power deposition whereas the kinetic scheme used the current density calculated 

directly from particle trajectories to solve plasma power deposition.  Calculations were 

performed at 370-770 mTorr pressure at the rf frequency of 450 MHz for powers below 

3.5 W. Results were compared to the experimental data measured by Hopwood et al. 

and the fluid model developed by Nam and Economou (2004).  The spatial plasma 

density distribution of the simulation was found to be close to the Nam and Economou 

fluid model in which steep gradient densities were obtained. Takao et al. also found that 

the plasma sheath was non-negligible in simulation and sheath thickness was almost 

10% of the simulated reactor length. The electron energy density distribution of the 

plasma was non-Maxwellian throughout the entire plasma region with depletion at 

higher electron energies due to inelastic collisions. Non-consideration of the sheath and 

assumption of Maxwellian electrons in the Nam and Economou fluid model showed 

electron temperature distribution that was different from the Takao et al.’s PIC-MCC 

model. Pressure dependence of the plasma density also showed different tendency 

between the collisional and kinetic schemes in the PIC-MCC model with the collisional 

scheme showing decrease of plasma density and the kinetic scheme showing increase of 

plasma density with increasing pressure. The collisional scheme did not reflect the trend 

shown in experiment and this was attributed by Takao et al. to be due to the inadequacy 
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of the collisional model which did not consider the effects of non-collisional heating 

processes. 

 

The chronological development of ICP simulation and theory (as detailed in this 

section) is summarized in Table 2.1. 
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2.3. Measurement of Neutral Gas Heating and the Effects of Neutral Gas Depletion  

The heating of neutrals in non-thermal plasmas is a recognized and well documented 

phenomenon especially in high density discharges such as ICPs. In plasma applications 

for material processing, the knowledge of neutral heating effects on plasma dynamics is 

essential for process control and reproducibility. A particularly non-negligible effect of 

neutral gas heating is the phenomenon of neutral gas depletion, in which the neutral 

density at the most intensely hot region of the discharge is lower compared to the 

surrounding region (O’Connell et al., 2008 and Shimada, Tynan & Cattolica, 2007);  

producing a well-type profile across the chamber radius (Figure 2.7). 

 

 

Figure 2.7: Measured neutral gas density, nn (m-3) (black circles) versus radius, r (m) of 
an ICP reactor operating at 10 mTorr argon pressure and 2000 W power. Neutral gas 
depletion was seen nearing the discharge center at r = 0 m. Grey line shows the initial 
neutral gas density before discharge ignition (Shimada, Tynan & Cattolica, 2007). 
 

Various techniques have been used to measure neutral gas heating in plasmas. Davis 

and Gottscho (1983) measured the temperatures of radicals, ions and neutrals in CCl4, 

98% CCl4/2% N2 and N2 capacitive discharges. Through the CCl4 discharge, the 

rotational and vibrational temperatures of CCl radicals were measured using laser 

induced fluorescence (LIF). The rotational temperature distribution of the CCl radicals 

was found to be always 400 K colder than the vibrational temperature distribution.  

Davis et al. also measured the rotational temperature of the CCl radicals (through the 
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98% CCl4/2% N2 discharge) and N2 ions and neutrals (through the N2 discharge) using 

the then novel technique of actinometry optical emission spectroscopy (AOES). 

Comparisons between measured rotational temperatures for LIF and AOES were of 

general agreement, however, AOES was found to be less viable when measurements 

were made close to surfaces. At 19 mm axial distance from the lower chamber 

electrode, the measured rotational temperatures for CCl radicals were 535 ± 25 K and 

570 ± 30 K for LIF and AOES techniques, respectively 

 

In 1987, Wormhoudt, Stanton, Richards and Sawin (1987) first introduced the use of 

a tunable diode laser technique, i.e., tunable diode laser absorption spectroscopy  

(TDLAS), to measure the neutral gas temperatures and atomic chlorine concentrations 

in a chlorine (Cl2) glow discharge. The infrared transition used for measurement was 

between the 2P1/2←2P3/2 spin orbit levels and occurred at 11.33 m wavelength. The 

measured atomic chlorine translational temperature was 770 ± 100 K and was consistent 

with measured rotational temperature found via AOES with nitrogen seed gas (95% 

chlorine/5% nitrogen). Atomic chlorine concentration was shown to increase with 

power (0-100 W) and pressure (200-800 mTorr) with the measured chlorine fractions in 

the discharge being between 3-8% or (1.8-6.6)×1014 cm-3.  

 

Hopwood and Asmussen (1991) measured the neutral gas temperatures in a 2.45 

GHz, multipolar electron cyclotron resonance plasma source seeded with argon and 

helium gases. Spectroscopic equipment which included an optical fiber probe, a Fabry-

Perot interferometer, a ramp generator, a photomultiplier tube and a monochromator 

were used for this purpose. The argon and helium emission line profiles at 549.6 nm and 

501.6 nm, respectively were measured and deconvolved with instrumental broadening 

which was determined using the 480.7 nm emission of a 150 W, 0.67 mTorr and 10 
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sccm xenon ECR discharge.  The effects of Zeeman splitting were also compensated in 

the calculation to reveal constant Doppler broadening (widths) across the radius of the 

plasma. Neutral gas heating of argon at 0.77 mTorr was found to increase from 300 K to 

500 K when microwave power was increased from 80 to 330 W. Both helium and argon 

neutral gas temperatures were shown to decrease as the neutral mean path increases 

which, according to Hopwood et al. indicates that the gases may be heated by ion-

neutral collisional processes.  

 

In a theoretical study, Fruchtman et al. (2005) investigated the impact of neutral gas 

depletion in the enhancement of plasma transport by self-consistently solving the 

pressure balance equations of plasma and neutral gas. Several parameters, including 

electron temperature, rate of ionization and plasma density were also derived 

analytically and visualized. It was found that the occurrence of neutral depletion in 

simulation also lead to non-linear enhancement of plasma transport. This was attributed 

to increased ionization and energy coupling in the region of interest. The enhancement 

of plasma transport also lead to unexpected decrease in plasma density despite increase 

in plasma power. In 2007, Liard et al. (2007) further extended the 2005 Fruchtman 

model by self consistently incorporating the effects of neutral gas heating. With neutral 

gas heating, stronger depletion was observed due to enhanced plasma transport to the 

walls, i.e., larger plasma flux leaving the discharge at a given plasma density.  

 

Also in 2005, Abdel-Rahman et al. used the Abel inversion of Fulcher line intensities 

from OES to measure the phase and space resolved rotational temperatures of a 

hydrogen, planar coil RF ICP with the consideration of cascading effects of higher level 

molecular transitions. The rotational temperatures for different input powers and 

operational modes of the discharge were characterized and compared at the pressure of 
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15 Pa. Cross-checking with linewidth measurements of translational (i.e., neutral gas) 

temperature showed agreement. With the inclusion of cascading, it was found that 

neutral gas temperatures within the coil axis could reach up to 650 K for the input 

power of 350 W. Changes in these elevated temperatures were small throughout the r.f. 

cycle; especially in comparison to an r.f. capacitively coupled plasma.   

 

Shimada, Tynan and Cattolica (2007) measured the radial neutral gas temperature, 

electron density, neutral gas pressure and total gas pressure profiles for pure N2, 

He/5%N2 and Ar/5%N2 plasmas in an ICP reactor at ≤10 mTorr pressure. A radial 

optical probe with a small light dump was used to measure the radial neutral gas 

temperature via AOES.  From measurements, a significant rise of neutral gas 

temperature from room temperature, i.e., 600-900 K was observed for the three cases. 

Neutral gas density at the central region of the chamber was found to be reduced by the 

factor of 2-4 in the presence of the plasma (Figure 2.7). This depletion of neutrals was 

attributed by Shimada et al. to the electron pressure in high density plasma which was 

comparable to neutral gas pressure. Also in high density plasmas, the effects of neutral 

gas heating become significant and affect neutral gas density. By correcting the effects 

of thermal transpiration (which was neglected in previously published results, i.e., 

Tynan, 1999 and Yun, Taylor and Tynan, 2000)  Shimada et al. found that the measured 

total gas pressure remained uniform across the chamber radius despite variations in 

neutral gas pressure.  

 

O’Connell et al. (2008) investigated the neutral gas depletion mechanism in an 

inductively coupled, magnetic neutral loop argon plasma at different pressure regimes. 

In a magnetic neutral loop configuration, the inductive coil is designed to create a 

neutral field region in which the plasma is generated; providing higher plasma 
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ionization and uniformity for material processing purposes (Gans et al., 2007 and 

Uchida & Hamaguchi, 2008). Using the method of laser induced fluorescence (LIF), O’ 

Connell et al. deduced the gas temperature of the argon plasma from the Doppler profile 

of the 772.38 nm line absorbed by argon metastable atoms (Figure 2.8 (a)).  

 
 

   
 
Figure 2.8: Graphs show (a) measured neutral gas temperature with increasing power at 
0.05, 0.5 and 5 Pa and (b) measured contribution of electron pressure and gas 
temperature towards neutral gas depletion with increasing chamber pressure at 1000 W. 
Depletion of neutrals due to gas temperature becomes increasingly important as 
chamber pressure was increased (O’Connell et al., 2008). 
 

Measurement of radially resolved electron density and temperature were done via 

Langmuir probe in the neutral loop plane.  From measurements, it was observed that at 

pressures below 0.1 Pa, a relatively high degree of plasma ionization (above 1%) 

resulted in electron pressures exceeding neutral gas pressure, i.e., neutral gas depletion 

(Figure 2.8 (b)). This non-uniformity in plasma ionization rates produced a neutral 

depletion profile which peaked in the neutral loop region. At higher pressures (above 10 

Pa) ionization rates were relatively low (<10-3), however, neutral gas depletion was still 

observed due to neutral gas heating i.e., with gas temperatures in the neutral loop region 

reaching close to 1500 K (Figure 2.8 (a)). 

 

Crintea et al. (2009) introduced a novel optical emission spectroscopy (OES) 

technique for determination of electron temperature and plasma densities in low 

(a) (b) 
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pressure argon discharges. The technique was based on measurement of line ratios in 

argon and a collisional-radiative model (CRM) which includes metastable transport.  

Validation of the technique was made by comparison via simultaneous measurement 

obtained with Thomson scattering. Investigations were made using a 13.56 MHz, planar 

coil, inductively coupled neutral loop discharge (NLD) over the argon pressure range of 

0.05-5 Pa and r.f. power was varied between 1-2kW. At low pressures, the EEDFs 

obtained by Thomson scattering were clearly Maxwellian. However, as pressure was 

increased, an enhancement of the energetic electron tail of the EEDF was observed.  

When compared to the OES measurement, electron temperature and plasma densities 

were in excellent agreement particularly if neutral gas depletion was included in the 

CRM, i.e., via increased neutral gas temperature and electron pressure in simulation. At 

pressures below 1 Pa and r.f. powers above 1 kW, electron pressure was the dominant 

depletion mechanism, whereby, electron pressure exceeded over 3 times the neutral gas 

pressure and the ionization degree approached 7%. At pressure above 1 Pa, neutral gas 

depletion was dominated by gas heating.  

 

Fruchtman and Rax (2010) showed in their theoretical study that at plasma 

conditions where thermalized neutral atoms were in a sufficiently collisionless 

environment, an alternative phenomenon known as neutral gas repletion occurs instead 

of the expected neutral gas depletion. In neutral gas repletion, the neutral gas density 

increases instead of decreasing in the region where plasma ionization was highest. The 

phenomenon was attributed to the higher neutral gas inertia which dominates over 

collisional drag in a collisionless environment. In more typical cases where collisional 

drag was higher than neutral gas inertia, neutral gas depletion was observed. Fruchtman 

et al. in their work also identified a dimensionless parameter (i.e., proportional to the 
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ratio of plasma density and neutral gas density) that if larger or smaller than a critical 

value was able to predict the occurrence of neutral repletion or depletion. 

 

Song, Lee and Chung (2011) characterized the properties of a low pressure, 

inductively coupled nitrogen-argon plasma using a combination of Langmuir probe and 

AOES. The plasma was characterized at the pressure range of 1-30 mTorr and applied 

r.f. power of 200-600 W. The actinometer used for AOES measurements was argon gas. 

Electron energy probability function, electron density and electron temperature were 

measured using an r.f. compensated Langmuir probe. The percentage of argon gas was 

varied between 5%-80% and its effects on plasma density, electron temperature and the 

dissociation fraction of nitrogen were observed. From experiments, it was found that as 

the percentage of argon increased, the dissociation fraction of nitrogen also increased. 

This was attributed to the increase in Penning excitation of the nitrogen atoms and the 

Penning dissociation of nitrogen molecules due to increased presence of argon 

metastables. Also, with increased argon percentage, the electron density was found to 

increase and electron temperature to slightly decrease.  Song et al. further calculated the 

rotational and vibrational temperatures of +
2N and N2 using the +

2N first negative system 

2 2( ') ( ")u gB v X v     and N2 second positive system 3 3( ') ( ")u gC v B v    from 

the molecular optical emission spectrum wavelength of 300-400 nm. The rotational 

temperatures and vibrational temperatures at 1.4 mTorr pressure were derived to be 

between 300-500 K and 8500-16500 K, respectively; with both values increasing with 

argon percentage.  

 

Li et al. (2011) investigated the dependence of neutral gas temperature on gas 

pressure and r.f. power for argon and nitrogen inductively coupled plasmas using 

actinometry optical emission spectroscopy (AOES). For the argon plasma, 5% nitrogen 
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gas was added to the total gas flow as an actinometer. The highest neutral gas 

temperature measured for argon plasma was 1850 K at 1 Torr pressure and 600 W r.f. 

power (Figure 2.9 (a)). 

     

Figure 2.9: Measured neutral gas temperature versus (a) discharge power and (b) 
logarithm of pressure for an argon discharge using AOES. The highest neutral gas 
temperature obtained was 1850 K at 600 W and 1 Torr (Li et al., 2011).  

 

The measured neutral gas temperature for argon (at H mode) was observed to vary 

almost linearly with the logarithm of gas pressure (2 mTorr-1 Torr) but vary only 

slightly within the r.f. power range (100-600 W) (Figure 2.9 (b)). E to H mode transition 

occurred during the increase of gas pressure for the nitrogen plasma which resulted in 

the sudden increase of measured values of neutral gas temperature. However, once in H 

mode, neutral gas temperatures for nitrogen plasma varied linearly with pressure as seen 

in argon plasma.  

 

 

 

 

 

(a) (b) 
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CHAPTER 3: METHODOLOGY 

 

3.0. Experimental Setup 

A cylindrical stainless steel chamber of 0.29 m diameter and 0.30 m height was used 

to generate the plasma for experiments (Figure 3.1).  A 0.20 m diameter and 0.01 m 

thick quartz dielectric plate is placed at the bottom of the chamber to allow transmission 

of the fields from the source. A total of twelve NW50 ports (four ports at each of the 

three levels) are located at the sides of the chamber for insertion of probes, vacuum 

pump fittings and gas inlet fittings.  The chamber was pumped down using a KYKY 

FB450A turbo-molecular pump backed with an Edwards E2M18 rotary pump. A 6 turn 

planar coil of 0.09 m diameter is connected to a T&C Power Conversion AG0613 13.56 

MHz 600 W r.f. power supply and is used to generate the plasma. A 7:1 step-down 

transformer was used to reduce the 50 source impedance to the range of the plasma 

impedance (~1 ) which was fine tuned using a variable air capacitor to match the 

plasma impedance. The primary discharge gas for the experiments, i.e., pure argon 

(99.999%) was seeded through a molecular sieve (to remove moisture) before being 

introduced into the system. The gas flow is controlled by two Dwyer GFC-2014 mass 

flow controllers. Gas pressure measurements are made using an APG100-XLC Pirani 

gauge. Chamber pressure was set by adjusting the flow rate of the mass flow controllers. 

For actinometrical measurement of neutral gas temperature, a secondary gas, nitrogen is 

added to the plasma in minuscule amounts (<5%). This gas is also flowed through an 

additional direct reading flow meter (Gilmont, EW-03232-23) and a series of needle 

valves for finer adjustment of the amount required.  
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3.1. Langmuir Probe Setup 

A laboratory r.f. compensated Langmuir probe (Figure 3.2(a)) based on the design by 

Chen (Chen, 2009) is used to measure the electrical characteristics of the plasma. The 

probe tip comprises of a tungsten wire of 0.5 mm diameter and 2.90 mm exposed length 

with a cylindrical collection area of 4.76 mm2 (Figure 3.2 (b)). The tungsten wire is 

housed in a thin walled alumina tube of 0.7 mm diameter and is spaced with a wire 

spacer to ensure minimal electrical contact between the exposed probe tip and any 

conductive coatings that may deposit on the outer alumina tubing. (Lim, 2010). The 

probe tip was attached (via copper joint) to an LC resonant filtering circuit (Gagné & 

Cantin, 1972, Chabert & Braithwaite, 2011) which was used for r.f. noise compensation. 

The LC filter is designed to filter out signals at the self-resonant frequencies of 13.58 

MHz and 27.04 MHz which are the fundamental and second harmonics of the applied 

drive frequency. An RG402 coaxial microwave cable is then used to transmit the 

filtered signal to the other end of the probe which was soldered to a BNC connector. 

The entire probe is sheathed by an outer alumina tubing; with the end near the probe tip 

covered with a Teflon insert. R.f. shielded coaxial cables were used to transmit the 

probe signals to the diagnostic setup for analysis. The probe's ground reference point for 

measurement of plasma parameters was taken to be the chamber ground. The probe was 

mounted into a specifically made probe housing and holder which is attached to a 

Huntington L-2111-6-SF vernier linear positioner to enable radially resolved 

measurements at millimeter precision.1 

 
 
 
 
 
 
 
 
1 Constraints by the positions of the available chamber diagnostic ports and by the Langmuir probe holder only allows for 
measurement at specific axial distances, i.e., 0.032 m, 0.060 cm and 0.114 m from the dielectric plate. For correlation in simulation, 
these axial distances will also be used for measurement with other probes.   
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3.1.1. Langmuir Probe Diagnostics Setup 

 
To obtain the probe's current signal, a triangular bias voltage of 60 to 60 V at 16.1 

Hz frequency was swept into the probe using a Kepco BOP 100-1M, 100 W bipolar 

operational amplifier/power supply (Figure 3.3). The bias frequency and voltage profile 

was set using an Aim-TTi TG120 20 MHz function generator connected to the 

programmable inputs of the Kepco unit. The probe bias frequency is typically set at a 

low frequency to avoid errors from probe heating and stray capacitances from the probe 

circuit (Chen, 2003). Current signal from the probe is calculated from the current 

feedback voltage across a current monitoring resistor, RI of suitable value (10, 100 or 

1000 ). The value of the resistor is selected such that the probe bias voltage remains 

stiff, i.e., minimal loading effect (Lim, 2010). For the measured discharges, RI was set at 

10 The feedback voltage is passed through a unity gain isolation amplifier to isolate 

the diagnostic equipment from damaging electrical static and signal noise by the 

discharge. Both probe voltage and current signals are filtered by two RC low pass filters 

before being measured by a Tektronix TDS-2014 oscilloscope. Measurements were 

made for 3 axial distances above the dielectric plate, i.e., at 0.032 m, 0.060 m and 0.114 

m at 180 W r.f. power and 0.03, 0.07 and 0.2 mbar argon pressure. 

 
 

Figure 3.3: Langmuir probe diagnostics setup. 
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3.1.2. Langmuir Probe Theory and Analysis  

A measured Langmuir probe I-V signal is shown in Figure 3.4. 

 

Figure 3.4: Measured Langmuir probe I-V signal and differential curve (d2Iprobe/dV2
probe) 

at 0.032 m axial distance for 0.2 mbar pressure and 180 W r.f. power. I represents the 
ion saturation region, II represents the electron retardation region and III represents the 
electron saturation region. Measurement was taken at the plasma center (R = 0 m). 
 

The curve can be divided to three regions of interest namely the ion saturation region 

(I), the electron retardation region (II) and the electron saturation region (III) (Chen, 

1965). In the ion saturation region (I), the probe bias voltage is highly negative such 

that it attracts only ions to its surface and thus, the resultant current is mainly due to 

ions. The limiting probe ion current or ion saturation current, Iion,sat can be estimated 

from this region. In the electron retardation region (II), the electrons begin to be 

attracted and contribute to the probe current. The region starts with the floating 

potential, Vfloat or the potential at which the ion and electron fluxes are equal and the 

resultant probe current is zero (Iprobe = 0). As the probe bias voltage is increased from 

Vfloat, more electrons are attracted to the probe surface starting from highly energetic 
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electrons to lower energy electrons. The resultant probe current is an increasing 

contribution of electron current and reduced contribution of ion current. The region ends 

at the plasma potential, Vplasma, which is the potential at which the lowest energy 

electrons are not repelled from the probe. From the values of Vfloat and Vplasma, electron 

parameters such as electron density, ne, electron temperature, Te, Debye length, D and 

electron energy distribution function (EEDF) can be can be derived. Past the electron 

retardation region is the electron saturation region (III). At this region the bias voltage 

of the probe attracts only electrons and even low energy ions are repelled from the 

probe surface. Here, the current is mainly the result of electrons and the electron 

limiting current or electron saturation current, Ielec,sat can be determined.  

 

There are several theories available for calculation of plasma parameters. These 

include the orbital motion limited (OML) theory (Mott-Smith & Langmuir, 1926), the 

Allen-Boyd-Reynolds (ABR) theory (Allen, Boyd & Reynolds, 1957 and Chen, 1965) 

and the Bernstein-Rabinowitz-Laframboise (BRL) theory (Laframboise, 1966). 

Differences between these theories lie mainly in the derivation of the ion current based 

on assumptions made on ion and sheath properties. Since the I-V signal of the probe is a 

combination of both electron and ion currents, proper treatment of the ion current is 

important to avoid over or under estimation of plasma parameters (Chen, 2003).   

 

Selection of the appropriate theory can be done by estimating the current collection 

regime of the Langmuir probe during discharge conditions used in experiment (Maurice, 

2003, Behlman, 2009 and Conde, 2011). The current collection regime is determined by 

the collisionality and relative thickness of the probe sheath and is defined using three 

parameters, i.e., probe radius, Rprobe, sheath width, ls and particle mean free path, mfp 

(Figure 3.5). 
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Figure 3.5: The four different current collection regimes for a Langmuir probe 
(Maurice, 2003). 
 

A thin or thick probe sheath regime is deduced by comparing the probe sheath 

thickness, ls with the probe radius, Rprobe, i.e., ls << Rprobe and ls >> Rprobe for thin and 

thick sheath, respectively. On the other hand, sheath collisionality in experiment 

conditions can be determined by comparing ls to the mean free path, mfp of important 

particle interactions near the probe sheath including electron-neutral mean free path, en 

ion-neutral mean free path, in and ion-ion mean free path, ii. If ls < mfp, the sheath is 

considered to be collisonless, else if ls > mfp, the sheath is seen as collisional. The probe 

sheath thickness, ls for regime determination can be generally approximated by using 

Child-Langmuir relation (Lieberman & Lichtenberg, 2005 and Chabert & Braithwaite, 

2011), i.e.,  
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Here, Vs is the potential difference of the plasma sheath in V and Te is the electron 

temperature in eV. The Debye length,D (in m) is given by, 
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where, ne, cm is the electron density in cm-3. To estimate the mean free paths en, in and 

ii, the following equations were used (Lieberman & Lichtenberg, 2005 and Maurice, 

2003), 
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where, ng is the neutral gas density in m-3, en and in are the electron-neutral total 

collision cross section and ion-neutral scattering cross section, respectively in m2, Ti is 

the ion temperature in eV, ne is the electron density in m-3 and ln  is the Coulomb 

logarithm. ng is calculated by using ideal gas law, i.e.,  

   .
nB

g Tk
Pn     (3.1.6) 
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where, P is the filling pressure in Pa, Tn is the neutral gas temperature in K and kB is 

Boltzmann's constant in JK-1. The Coulomb logarithm is given by (Book, 1990), 

 

1/2 3/2
eln 23 ln .
100

en T 

    (3.1.7) 

 

For the present experimental setup, the current collection regime was determined by 

using the values in Table 3.1. The ions were assumed to be at low energy with the ion 

temperature, Ti = 0.1 eV and the corresponding ion-neutral collision cross section, in = 

1.57 × 10-18 (Phelps, 1991). The electron-neutral total collision cross section, en is 

taken as ~10-19 m-2 (Hayashi, 1981). The electron density, ne and electron temperature, 

Te were taken to be ~1017 m-3 and ~2.5 eV based on values reported by previous works 

and texts (Hopwood et al., 1992, Ostrikov et al. 2002, Godyak, Piejak & Alexandrovich, 

2002, Lieberman & Lichtenberg, 2005, Chabert & Braitewaite, 2011). Plasma sheath 

potential, Vs is estimated by taking the sum of the measured bias potential at which the 

ion current saturates, Vion,sat and the plasma potential, Vplasma, i.e., Vs = Vion,sat + Vplasma. 

The neutral gas temperature, Tn was taken from measurement by AOES technique 

detailed in Section 3.4.  

 
Table 3.1: List of parameters used to determine the probe collection regime. 

Argon Pressure, P (mbar) 0.03 0.07 0.2 
Neutral Gas Temperature, Tn (K) 380 630 800 
Plasma Sheath Potential, Vs, V 35 45 50 
Probe Radius, Rprobe (m) 250 250 250 
Plasma Sheath Width, ls, (m) 269 325 351 
Electron-neutral Mean Free Path, en (m) 17480 12420 5520 
Ion-neutral Mean Free Path, in (m) 1113 791 352 
Ion-ion Mean Free Path, ii (m) 2976 2976 2976 

 



45 

For the range of pressures used in experiment, the probe sheath was found to be thick 

(ls > Rprobe) and collisionless (ls < mfp). Based on the probe collection regime, the orbital 

motion limited (OML) theory was found to be most suitable for calculation of plasma 

parameters. The plasma potential, Vp is first determined by taking the crossing point of 

the second derivative of the probe I-V curve with zero, i.e. d2I/dV2 = 0. This technique 

allows for more accurate determination of Vp without the ambiguity of approximate 

methods. The floating potential, Vf is determined by taking the potential at which I = 0. 

As previously mentioned, probe current, Iprobe, is the sum of the ion current, Iion and the 

electron current, Ielec, i.e., Iprobe = Iion + Ielec. Thus, before calculation of electron 

parameters, Iion has to be first subtracted from Iprobe to obtain Ielec across the signal range. 

A linear extrapolation from the ion saturation region is used as the estimation of Iion for 

subtraction (Chen, 2003).  

 

The electron temperature, Te and electron density, ne is subsequently calculated using 

the following equations (Maurice, 2003 and Chen, 2009): 
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Here, Ie(V) and Ie(Vp) are the electron current and the electron current at the plasma 

potential, respectively, in A. Ap is the probe collection area in m2, me is the mass of 

electrons in kg, Te is the electron temperature in K and e is the electronic charge in C. 

The electron energy distribution function, f () or EEDF provides important information 
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of the energy distribution of electrons at a particular position from which the collisional 

processes involving the particles can be deduced.  is the electron energy between V = 0 

to V = Vp, in eV. Assuming that in the electron retardation region, the second derivative 

of the I-V curve is equal to the second derivative of the electron current (i.e., the second 

derivative of the ion current is negligible), the EEDF can be calculated by using the 

Druyvesteyn expression (Godyak, Piejak & Alexandrovich, 2002 and Magnus & 

Gudmundsson, 2008), 
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The EEDF can also alternately be used to calculate the electron density, ne (m-3) and 

effective electron temperature, Te,eff (eV) using, 
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Here, <> is the average electron energy in eV which can be found by using, 
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To calculate plasma parameters from the current-voltage characteristics a MATLAB 

code was written (see Appendix A). The electron density and electron temperature were 

calculated using both Maxwellian distribution assumption and EEDF methods.  

 

3.2. Magnetic Probe Setup 

Electrostatic noise compensated, center-tapped, axial and radial magnetic probes 

(Chakrabarty, 2006) were constructed to measure the radially resolved magnetic field 

distributions in the plasma (Figure 3.6(a)). Each probe (pick-up coil) was made using 

two 0.25 mm diameter copper wires which were wound together and grounded at 

opposing ends (Figure 3.6 (b)) on a small quartz tube of 2 mm in diameter and 5 mm 

length. The ends of the windings are twisted and the wires are run through a 48 cm long 

copper tube of 3.3 mm diameter which is attached to a cylindrical copper housing that 

holds two BNC connectors. The copper housing and tubing are ensured to be properly 

sealed together with copper foil tape to minimize pickup of stray r.f. signals. The ends 

of the wires were soldered to two BNC connectors. The axial probe solenoid is 

perpendicular to the copper tube (z-direction), whereas the radial probe solenoid is 

parallel (r-direction), i.e., (Figure 3.6 (c)). A port attachment with two fixed Pyrex tubes 

was fitted to the chamber for shielding of the magnetic probe during radially resolved 

measurements of the plasma.  Measurements were made at 0.032 m and 0.060 m axial 

distances above the dielectric plate for 180 W r.f. power and 0.03, 0.07 and 0.2 mbar 

argon pressures. Simultaneous measurements of coil current and voltage were also made 

during the measurement of the fields with the respective probes (probe details in Section 

3.3). Results were collected via Tektronix TDS-2014 oscilloscope. 
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3.2.1. Probe Theory and Analysis 

The typical voltage signals measured from the two coil windings (i.e., VCOIL1 and 

VCOIL2 in Figure 3.6 (b), via the oscilloscope channels CH3 and CH4 would be 

sinusoidal and at opposing polarities (Figure 3.7). Random and non-periodic 

electrostatic noise, VNOISE, from the acquired coil signals are compensated by taking the 

difference of VCOIL1 and VCOIL2. The oscilloscope MATH function was used to calculate 

the difference, i.e., VMATH = VCH3 VCH4 = VCOIL1 VCOIL2 from which the average 

magnetic field voltage, VFIELD, AVE can be obtained. 

 

 

Figure 3.7: Oscilloscope screen capture for the axial magnetic probe at 0.032 m axial 
distance, 0.07 mbar argon pressure and 180 W r.f. power.  Measurement was taken at 
the plasma center (R = 0 m). 
 

Before use in experiment, the probes are calibrated against a standard device, i..e., a 

laboratory Helmholtz coil, of radius, RH = 0.046 m and coil windings, NH = 2. In a 

separate setup, the Helmholtz coil is connected to the AG0613 r.f. source and input 

power is varied from 0-50 W at 5 W intervals. The current through the device is 

measured using a Pearson 4100 current probe. The peak magnetic field through the 

Hemholtz coil, BH, PEAK is given by, 
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where, IH, PEAK is the peak Hemholtz coil current in A. For direct determination of the 

axial and radial magnetic fields from the measured peak differential voltage VMATH, 

PEAK, the linear fitting, 

 

H, PEAK H MATH, PEAK HB m V C     (3.2.2) 

 

is used, yielding the calibration curves shown in Figure 3.8. Here, mH and CH are the 

probe calibration constants in TV-1 and V, respectively. The fitted calibration constants 

are mH = (4.53 ± 0.04) × 105 TV1 and CH = (4 ± 2) × 107 V for the axial probe and   

mH = (6.27 ± 0.04) × 105 TV1 and CH = (1.0 ± 0.1) × 106  V for the radial probe.  

 

 

Figure 3.8: Axial and radial magnetic probe calibration curves.  
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3.3. Current and Voltage Probes 

R.f. current passing through the planar coil was measured using a Pearson model 

6595 (0.5 V/A, 100 Hz-150 MHz) current probe. Voltage is measured using a Tektronix 

model P6015A (1000X, 3.0 pF, 100 M voltage probe. The average inductance of the 

coil was calculated from the measured values (Figure 3.9) using (El-Fayoumi, Jones & 

Turner 1998),  

 

p,evac p,evac/L I V    (3.3.1) 

 

whereby,  is the drive frequency and Ip,evac and Vp,evac are the measured peak coil 

current and Vp,evac is the measured peak coil voltage for an evacuated chamber. The 

average inductance was found to be (1.201 ± 0.006) × 106 H.  

 

 

Figure 3.9: Measured peak planar coil voltage, Vp,evac (V) versus peak planar coil 
current, Ip,evac (A) at evacuated condition.  
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Using the current probe, measurement of the peak E to H mode transition coil currents 

(H mode transition current), Itr and the peak H to E mode transition coil currents (H 

mode maintenance current), Imt were made for the discharge at the argon pressures of 

0.02-0.2 mbar. Itr is measured at the threshold point before the discharge transition from 

E to H mode, when power is gradually increased; whereas, Imt is measured at the 

threshold point before the transition from H to E mode, when power is gradually 

decreased.  

 

3.4. Actinometry Optical Emission Spectroscopy (AOES) Setup 

For actinometry measurement of neutral gas temperature an Ocean Optics HR4000 

spectrometer was used. The unit consists of a collimating lens (Figure 3.10 (b)), a 

multimode fiber optic cable (400 m, UV/SR-VIS, High OH content optimized for 200-

1100 nm range), a spectrometer with 10 m slit aperture and an USB interface cable. 

The spectrometer has a resolution of 0.5 nm and measures a range of 200-660 nm at 

0.13 nm intervals. Spectral measurement was obtained using the SpectraSuite software. 

The fiber optic cable was mounted onto a modified travelling microscope stand and was 

aligned using an alignment laser such that the collected column of light is parallel to the 

radial plane of the chamber (Figure 3.10(a)). The level and adjustment knobs on the 

microscope (for radial-axial-depth translation) were used to adjust the fiber to the 

required position. Once the microscope was positioned, metal blocks were affixed 

around the setup to keep it in place during handling. For actinometric studies, nitrogen 

gas was seeded into the background argon gas at ≤5% total gas pressure. The emission 

spectra was measured at 0.032 m and 0.060 m axial distances above the dielectric plate 

for 0-200 W r.f. power and 0.03, 0.05, 0.07, 0.1 and 0.2 mbar total pressure (Ar/N2 

admixture).1  An average of 20 data sets is taken for each pressure and power.  

1 Measurements using the AOES technique in this work would be mainly used as a reference to determine the range of neutral gas 
temperatures that would be suitable for simulation; without direct comparison to the measured properties of pure argon discharge by 
other probes. 
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Figure 3.10: AOES probe and mount schematics. 

 

3.4.1. AOES Theory and Analysis  

Actinometric optical emission spectroscopy (AOES) is a method used to measure 

plasma parameters by studying the emission properties of a seeded probe gas, i.e., an 

actinometer. The actinometer is seeded in miniscule amounts (<5%) to minimize 

interaction with the measured discharge properties (Davis & Gottscho, 1983, 

(a) 

(b) 
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Wormhoudt et al., 1987, Donnelly & Malyshev, 2000, Shimada, Tynan & Cattolica, 

2007, Li et al., 2011).  

 

A widely measured parameter via this technique is the neutral gas temperature of the 

plasma. In the present experiment, the argon plasma is seeded with nitrogen gas 

(actinometer) at less than 5% of the total pressure and the nitrogen emission peaks are 

obtained (Donelly & Malyshev, 2000). Neutral gas temperature for the discharge is 

calculated based on the following assumptions (Cruden et al., 2002 and Shimada, 2006): 

i. The vibro-rotational ground state temperature of the nitrogen emission peaks, 

TN2,rot is  analogous (or equilibrated) to the translational temperature of the 

nitrogen neutrals, TN2, i.e., TN2,rot ≡ TN2. 

ii. The population of the vibro-rotational ground state species for the nitrogen 

emission peaks is in thermal equilibrium. 

iii. The nitrogen neutral gas temperature, TN2 is equal and representative of the 

plasma neutral gas temperature, Tn.  

 

The vibro-rotational ground state temperature of nitrogen is calculated by taking an 

appropriate nitrogen emission peak from the measured spectra and retrofitting it with a 

synthetic spectrum obtained from theory. Criteria for selection of an emission peak are 

as follows: 

i. The peak should involve a ground state transitions that would represent the 

ground state temperature of nitrogen molecules. 

ii. The peak should be of resolvable intensity and free from peak impurities due to 

overlapping emissions that would affect the accuracy of the fit (Li, 2006). 
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In this study, the 0-2 vibrational emission peak from the nitrogen second positive 

system was used (Donelly & Malyshev, 2000, Shimada, Tynan & Cattolica, 2007, Li et 

al., 2011), i.e., 

 

1 3
2 g 2 uN Ne X C        (3.4.1) 

3 3
2 u 2 gN  ( 0) N ( 2)C v' B v'' hv         (3.4.2) 

 

The emission peaks for the nitrogen second positive system are the result of excitation 

of neutral nitrogen molecules by low energy thermal electrons (2-3 eV) from the 

N2X1


+
g ground state to the N2C3

u state and subsequent photon emission during de-

excitation to the N2B3
g state. Thus, the emission peaks in the second positive system 

would give direct representation of the ground state vibro-rotational temperature of the 

molecules. The 0-2 vibrational emission peak was chosen due to not having any overlap 

impurities and being of resolvable intensity (Fig 3.11). 

 

Figure 3.11: Measured H mode Ar/N2 emission spectra showing the nitrogen second 
positive system (N2C3

u-N2B3
g) at 0.05 mbar pressure (~95% Ar/~5% N2) and 200 W 

r.f. power.  The chosen peak for simulation (0-2) is indicated. 
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To calculate the neutral gas temperature, the theoretical vibro-rotational spectral lines 

have to be determined and matched with experimental measurement. There are 3 steps 

involved (Shimada, 2006 and Li, 2006): 

i.      To calculate all possible quantum spectral line positions and intensities as 

prescribed by atomic/molecular physics theory. 

ii. To convolve the discrete spectral lines with instrumental broadening to form a 

continuous spectrum similar to that of experimental measurement. 

iii. To retrofit the continuous theoretical spectrum with measured experimental 

spectrum using minimum chi squared (2) analysis by varying rotational 

temperature (higher rotational temperature results in overall increased spectral 

broadening) and finding the minimum 2 value. 

 

The synthetic vibro-rotational nitrogen emission peak for fitting with experiment is 

calculated using the atomic and molecular quantum theory found in Herzberg (1950), 

Kovac (1969) and Hollas (2004). A vibrational emission peak for an electronic state 

transition (e.g., 3 3
2 u 2 gN NC B   ) is made up of many discretized rotational 

emissions of which its line positions can be expressed as, 

 

air

1( ,  ,  ,  ) ,
( ,  ,  ,  )i

i

v v ' J J '
v v ' J J ' n




    
   

   (3.4.3) 

 

where, nair is the refractive index of air, i is the transitional vibro-rotational 

wavenumber of the spectral line in cm-1, v is the vibrational quantum number and J is 

the rotational quantum number. The notations  ' and '' represent the upper and lower 

transition states, respectively, i.e., for the 0-2 vibrational emission peak, the upper state 

(N2C3
u) vibrational quantum number, v' = 0 and the lower state (N2B3

g) vibrational 
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quantum number, v'' = 2. The transitional vibro-rotational wavenumber i is derived 

from the total internal energy of a molecule and can be written as, 

 

   elec elec ( ) ( )  i v vT' T" G v G' v ' F J' F J '                  (3.4.4) 

 

where, Telec, G(v) and Fv(J) are the electronic, vibrational and rotational terms 

respectively. G(v) and Fv(J) are given by a series, 

 

2 3
e e e e e

1 1 1( ) ( ) ( ) ( ) ... 
2 2 2

G v v x v y v            (3.4.5) 

 

and 

 

2 2( ) ( 1) ( 1) ... v v vF J B J J D J J       (3.4.6) 

 

with, 

e e
1( )... ,
2vB B v      (3.4.7) 

 

e e
1( )... ,
2vD D v    

   

(3.4.8) 

and 

 

3
e

e 2
e

4  .BD




 
  (3.4.9) 
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e, exe and eye, Be, e and e are the vibrational and rotational constants in cm-1 for 

the N2C3
u and N2B3

g states. A list of measured values for the required terms and 

constants is given in Table 3.2. 

 
Table 3.2: List of rotational constants required for simulation of N2C3

u-N2B3
g state 

transition (Huber & Herzberg, 1979, pp. 418-420). 

   N2 Transition States Telec e exe eye Be e e

N2C3
u (Upper, ') 89136.88 2047.17 28.445 2.0883 1.8247 0.01868 3.2×10-7 

N2B3
g (Lower, '') 59619.35 1733.39 14.122 -0.0569 1.6374 0.0179 3.0×10-8 

 
 
For a single vibrational emission peak, elec elec ( ) ( )T T ' G v G' v '          is constant and can 

be represented as, 

 

( ) ( ) ,v v elec elecT T ' G v G' v '                (3.4.10) 

 

thus, 

 

      .i v v v vF J F ' J '               (3.4.11) 

 

In quantum theory, the selection rules for rotational transitions would only allow for the 

difference between upper and lower rotational quantum numbers, i.e., ΔJ = J'J'' to be 

+1, 0 or 1. This would result in 3 transition branches for,i which are noted as i = R 

(J'J'' = +1), Q (J'J'' = 0) and P (J'J'' = 1) transitions, i.e.,  

 

 
               1 ,   0,  1,  2...R v v v vF J F ' J J               (3.4.12) 
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               ,     1,  2,  3...Q v v v vF J F ' J J            (3.4.13) 

  

         
     1 ,     1,  2,  3...P v v v vF J F ' J J             

   

(3.4.14) 

 

An important consideration for better fitting of the synthetic spectra with the 

measured spectra is the rotational emissions from transitions between degenerate states. 

The 3
 state applying Hund's case (a) can be split into three degenerate states from 

which the rotational terms are expressed as,   

 

3 2 2
0 : ( ) [ ( 1)] ( 1) ... ,      0,1,2,...v v vF J B J J D J J J          (3.4.15) 

 

  
3 2 2

1 : ( ) [ ( 1) 1] ( 1) ... ( ) ,      1,2,3,...v v vF J B J J D J J A J          

  

 (3.4.16) 

 

3 2 2
2 : ( ) [ ( 1) 4] ( 1) ... ( 4 ) ,      2,3,4,...v v vF J B J J D J J A J          

   

(3.4.17) 

 

whereby, A = 42.24 cm-1 (Herzberg, 1950) is a rotational constant. In the simulation of 

the 3 3
2 u 2 gN NC B   synthetic spectra, the major 3


3


3


3
and 3


3
 

degenerate transitions were considered. 

 

For each rotational line position, the corresponding line intensity was calculated using 

the following equation, 

 

2

2

N ,rot spec
B N ,rot

( ')( ', ) ( ')exp  ,v
J

hcF JI J T C S J
k T

 
  

 
 

   (3.4.18) 
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where, Cspec is a constant dependent on spectroscopic parameters, SJ is the line strength, 

h is Planck's constant in Js-1, c is the speed of light in cms-1, Fv (J') is the upper state 

rotational term in cm-1,  kB is the Boltzmann constant in JK-1 and TN2,rot is the rotational 

temperature of nitrogen in K. The exact value of constant Cspec is not important for this 

analysis as only the relative normalized intensities are used for comparison (i.e., Cspec is 

taken as 1). The line strength SJ is calculated for the three rotational branches i = R, P, Q 

and the corresponding 3
 degenerate state transitions using the Honl-London formulae 

for Hund's case (a) in Table 3.3. 

 
Table 3.3: Lists the line strength equations of the 3 degenerate state transitions for the 
rotational branches R, Q and P (Kovac, 1969).            
 

Rotational 
Branches 

3
 Degenerate State Transitions 3


3
 

3


3
 

3


3
 

R (J' J'' = +1) 'JS J  
2' 1

'J
JS

J


  

2' 4
'J

JS
J


  

Q (J' J'' = 0) 0JS   
(2 ' 1)

'( ' 1)J
JS

J J



  

4(2 ' 1)
'( ' 1)J

JS
J J




  

P (J' J'' = 1) ' 1JS J   
2( ' 1) 1

' 1J
JS

J
 


  

2( ' 1) 4
' 1J

JS
J
 


  

 

Line positions and intensities were calculated for J = 0-50. A total of 328 rotational 

transition lines were calculated including degenerate transitions and branch transitions 

(i.e., R0, R1, R2, Q0, Q1, Q2, P0, P1, P2) to form the discrete synthetic spectrum for the 0-

2 vibrational emission peak (Figure 3.12).  
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Figure 3.12: Discrete synthetic spectrum for the 0-2 vibrational emission peak of the 
nitrogen second positive system 

3 3
2 u 2 gN NC B   at Tn = 550 K. 

 
  

Before measurement of the discharge emission spectrum, the spectrometer was 

calibrated with a mercury-vapour lamp to account for systematic errors. Wavelengths of 

the emission peaks measured from the lamp,exp were plotted with the wavelengths of 

the standard Hg lines, calib (Sansonetti & Martin, 2005) and were linearly fitted, i.e. 

calib = mOESexp + COES as shown in Figure 3.13. 

 

 
 

Figure 3.13: Calibration curve for the HR4000 spectrometer. 
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From the linear fit, exp deviates from calib by COES = (5.59 ± 0.03) nm. The calibrated 

wavelength is used in place of measured wavelength values in subsequent fittings and 

analysis. 

 

The ability of the spectrometer to resolve different wavelengths of emission is 

limited by several mechanical factors, namely, diffraction by the spectrometer grating, 

dispersion by mirrors, CCD resolution, alignment and refractive errors etc. Thus, 

measurement of emissions (especially standard lamp emissions) is not perfectly discrete 

and typically includes a certain degree of spectral broadening known as instrumental 

broadening. For our analysis, instrumental broadening must be added to the theoretical 

(discrete) spectrum to properly emulate the measured spectra. To simulate instrumental 

broadening at the wavelength of interest, the nearest wavelength emission (435.8 nm) 

from a standard mercury lamp is fitted with a Voigt profile. The Voigt profile is a 

composite function that features both Lorentzian and Gaussian broadening mechanisms 

and is widely used for spectral fitting analysis. In normalized form, it is given by 

(Whiting, 1968), 

                                                                                     

22
peak ave ave

2
peak g

v 2
peak l ave

peak peak2
l

exp[ 2.772 ]
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 

  
     

  

    (3.4.19) 

 

Here, I(peak) is the peak intensity at peak wavelength, peak, I() is the intensity at 

wavelength , wl is the Lorentzian full width half maximum (FWHM), wg is the 

Gaussian FWHM, vave is the average velocity of molecules contributing to the peak in 

ms-1 and c is the speed of light in ms-1. Units for  wl and wg are in nm. Adjustment of 
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the Lorentzian and Gaussian FWHMs broadens the Voigt profile according to the 

respective functions. Due to the numerous fittings at various wavelengths required for 

simulation, computation of the exact Voigt profile would be time consuming. Thus an 

approximation (Whiting, 1968) with less than 5% error was used, i.e., 

 

peak 2l l

peak 2peak v v v

peak 2.25l l

peak 2.25v v v
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(3.4.20) 

whereby, wv is the Voigt FWHM given by, 

 

2
2l l

v g(  )
2 4
w ww w      (3.4.21) 

 

An example of a Voigt profile fitted to the Hg peak at 435.8 nm is given in Figure 3.14. 

 

 

Figure 3.14: Voigt profile fitted to the measured Hg peak at 435.8 nm. 
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From the fitting of measured data, wl, wg and wv were found to be 0.5 nm, 0.6 nm and 

0.9 nm, respectively. These values were used to simulate instrumental broadening for all 

the discrete rotational emissions of the synthetic spectra. To incorporate the broadening, 

the method of convolution was used, i.e.,  

 

     conv    ·   I I f d    



        (3.4.22) 

 

Here, Iconv () is the convoluted intensity at wavelength , I (') is the intensity at the 

integration wavelength'and f (') is the Voigt profile with peak wavelength at 

displacement '. The result of convolution on the synthetic spectra is demonstrated in 

Figure 3.15. 
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Figure 3.15: The discrete synthetic spectra (a) is convolved with instrumental 
broadening (c) via Voigt function resulting in the convolved synthetic spectrum (b). The 
convolved synthetic spectrum takes the shape of the experimentally measured 0-2 vibro-
rotational peak seen in Figure 3.11. 
 

The convolved synthetic spectrum is calculated for the rotational temperatures 

between 250-1500 K at 50 K intervals and statistically fitted with the measured spectra 

using the following steps: 

i.  Background emission (vertical displacement) from the measured spectra is first 

removed to avoid overestimation of the neutral gas temperature. 

ii. The spectrum wavelength range was next divided into equally spaced bins of size 

of 4×Measured Interval = 4 × 0.13 nm = 0.52 nm. This roughly corresponds to 

the spectrometer resolution of 0.5 nm. A total number of 10 bins were obtained. 

 
Convolution I(') Iconv() 

f(') 
 

(a) (b) 

(c) 
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iii. The data points for the convolved and measured spectrum were then interpolated 

so that the new point values coincide with the center wavelength of the selected 

bins, i.e., Figure 3.16. 

 

 
 

Figure 3.16: Demonstration of the measured spectrum intensity, x and convolved 
spectrum intensity, xo; interpolated to coincide with the central bin wavelength. 

 

iv. The neutral gas temperature is next estimated using the minimum 2 squared 

technique, i.e. (Li, 2006), 
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   (3.4.23) 

 

Here, N is the total number of bins, x is the measured spectrum intensity and xo is 

the synthetic spectrum intensity at the same wavelength as x. Pline is the 

probability (weight) of discrete lines in each bin which is given by,  
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line

Number of Discrete Lines in Bin
Total Number of Discrete Lines in Spectra (328)

P     (3.4.24) 

 

The vibro-rotational temperature at which the 2 value is minimum, is taken as the 

estimated neutral gas temperature of the plasma. Example of a fitted spectrum and 2 

plot are shown in Figure 3.17. 

 

  

Figure 3.17: (a) χ2 plot showing minimum fitting value at 550 K (b) Experimental 0-2 
vibro-rotational peak at 0.05 mbar Ar/N2 pressure and 200 W r.f. power fitted with the 
convolved synthetic spectrum at 550 K. 
 

In this case, the minimum χ2 value was found when the experimental spectrum was 

fitted with the convolved synthetic spectrum at the vibro-rotational temperature of 550 

K. Thus, the neutral gas temperature, Tn of the Ar/N2 discharge at 0.05 mbar pressure 

and 200 W and r.f. power using the actinometric technique is estimated to be 550 K.  

 

Two MATLAB codes (see Appendix B) were written to process the measured data. 

The first code calculates the discrete synthetic spectrum for the vibro-rotational 

temperatures for 250-1500 K at 50 K intervals and convolves the spectrum with 

instrumental broadening. The second code fits the convolved spectrum with the 

measured data using minimum statistical analysis. 

a) b) 
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CHAPTER 4: RESULTS AND DISCUSSION - EXPERIMENT 

 

4.0. Measurement of Discharge Electrical Characteristics  

Measurement of discharge electrical characteristics is divided to two parts. The first 

part shows the measured radial distributions of electron density and electron 

temperature at different pressures and axial distances above the dielectric plate. These 

measurements are fitted into 2D Gaussian based distributions and subsequently used in 

predictive electromagnetic simulation (Chapter 6, Section 6.0.1). The second part shows 

the measured electron probability distribution function (EEPF) which is parametrically 

fitted with Maxwellian and Druyvestyen distributions to provide a guided assumption of 

the distribution to be used for simulation.       

 

4.0.1. Electron Density, ne and Electron Temperature, Te 

Figures 4.1, 4.2 and 4.3 show the radial distributions of the (i) electron densities, ne 

and (ii) electron temperatures, Te for three argon pressures (0.03 mbar, 0.07 mbar and 

0.2 mbar) measured at 0.032 m, 0.060 m and 0.114 m axial distances above the 

dielectric plate, respectively. R.f. power was set at 180 W. The label suffixes 'a' and 'b' 

(e.g. Figure 4.1a) denote the Maxwellian and EEDF calculation methods, respectively.  
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      (i) 

 

(ii) 

Figure 4.1a: Maxwellian (i) electron density, ne and (ii) electron temperature, Te 
measured at 0.032 m distance above the dielectric plate for 0.03, 0.07 and 0.2 mbar 
argon pressures. R.f. power was set at 180 W.  
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      (i) 

 

(ii) 

Figure 4.1b: EEDF (i) electron density, ne and (ii) electron temperature, Te measured at 
0.032 m distance above the dielectric plate for 0.03, 0.07 and 0.2 mbar argon pressures. 
R.f. power was set at 180 W.   
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      (i) 

 

(ii) 

Figure 4.2a: Maxwellian (i) electron density, ne and (ii) electron temperature, Te 
measured at 0.060 m distance above the dielectric plate for 0.03, 0.07 and 0.2 mbar 
argon pressures. R.f. power was set at 180 W.   
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      (i) 

 

(ii) 

Figure 4.2b: EEDF (i) electron density, ne and (ii) electron temperature, Te measured at 
0.060 m distance above the dielectric plate for 0.03, 0.07 and 0.2 mbar argon pressures. 
R.f. power was set at 180 W.   
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      (i) 

 

(ii) 

Figure 4.3a: Maxwellian (i) electron density, ne and (ii) electron temperature, Te 
measured at 0.114 m distance above the dielectric plate for 0.03, 0.07 and 0.2 mbar 
argon pressures. R.f. power was set at 180 W.   
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      (i) 

 

(ii) 

Figure 4.3b: EEDF (i) electron density, ne and (ii) electron temperature, Te measured at 
0.114 m distance above the dielectric plate for 0.03, 0.07 and 0.2 mbar argon pressures. 
R.f. power was set at 180 W.   
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Higher values of ne and lower values of Te were obtained using the Maxwellian 

method in comparison to the EEDF method; with discrepancies between calculated 

values for both methods within the error bar limits. At 0.2 mbar argon pressure, the 

measured deviation for ne is seen to be larger in comparison to 0.07 mbar and 0.03 

mbar. This can be attributed to probe signal fluctuations caused by the gradual increase 

of neutral gas temperature during the course of measurement. It was found that for 

higher pressures, it takes longer time for the neutrals at H mode to thermally equilibrate. 

 

An increase in ne was observed for all radial positions with the increase of pressure 

from 0.03 mbar to 0.2 mbar; with marked increase of ne seen near the coil region (R < 

0.05 m) for 0.2 mbar argon pressure. The maximum Maxwellian and EEDF electron 

densities obtained were (4.0 ± 0.6) × 1017 m-3 and (3.5 ± 0.5) × 1017 m-3, respectively for 

0.02 mbar pressure at 0.060 m axial distance above the dielectric plate. The range of 

electron densities obtained were (0.065 ± 0.004)-(4.0 ± 0.6) × 1017 m-3 for the Maxwellian 

method and (0.052 ± 0.004)-(3.5 ± 0.5) × 1017 m-3 for the EEDF method. There are 

several interesting observations that were made for the measured ne distributions with 

axial distance: 

i. At increasing pressure (for the same r.f. power), the discharge becomes 

increasingly denser, especially near the coil region.  When pressure is increased, 

more argon particles enter the chamber and interact with (absorb) the source 

field. This increases the number of ionizing collisions in the discharge and 

increases the plasma collision frequency; which is important for sustaining the 

discharge at higher densities. The resulting increase in electron density occurs 

mostly at the region where the r.f. field is strongest, forming the observed 

distributions. Further validation can be made by the simulation results for the 

total absorbed electron power, Pabs (Chapter 6, Section 6.0.2, Table 6.2); whereby, 
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for measured parameters at 180 W input r.f. power, Pabs increases with argon 

pressure.  

 

ii. The electron density of the discharge is typically expected to decrease with 

reduced proximity from the source magnetic field. However, for the pressure of 

0.2 mbar, ne at 0.060 m from the dielectric plate is higher than ne at 0.032 m from 

the dielectric plate; which is especially prominent near the coil region. This 

phenomenon has been reported in El-Fayoumi and Jones (1998) and Stittsworth 

and Wendt (1996), whereby, there is a displacement between the power 

deposition of the source field (which is near the dielectric plate) and toroidal 

region of maximum electron density (which forms at a higher axial plane). El-

Fayoumi and Jones has explained this as being due to the mean free path of the 

ionized electrons being sufficiently long (~5 cm for Te ≈ 3 eV) which allows for 

travel to the region of maximum electron density. However, it is also possible 

that neutral gas heating in the discharge would contribute to the displacement of 

the electrons.  According to Liard et al. (2007), heating of the neutral gas at the 

high density regions of the discharge would cause an enhancement in transport of 

plasma particles via temperature gradient; pushing the particles away from the 

discharge source (hotter region) towards the chamber walls (colder region).  The 

resulting steady state flux of the moving particles and background heating would 

together form the observed displacement of the region of maximum electron 

density. This is further confirmed by the fact that the displacement only occurs at 

the pressure in which the measured neutral gas temperature is highest (~ 800 K 

for 0.2 mbar as compared to ~350 K and ~600 K for 0.03 mbar and 0.07 mbar, 

respectively; Section 4.3).  
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iii. The radial distribution of ne (i) near the coil region for 0.2 mbar at 0.032 m 

distance above dielectric plate (Figures 4.1a nd 4.1b) does not follow the other 

distribution trends (maximum ne at R = 0); ne increases from the chamber center 

to the coil edge.  This (as in (ii)) can be explained by the effect of neutral gas 

heating which causes a temperature gradient that pushes the plasma particles 

away from the discharge center and towards the edge of the coil.  

 

The measured Te of the discharge generally decreases with increasing pressure for all 

radial and axial positions and has a tapered distribution across the chamber radius, with 

an increased number of higher energy electrons occurring near the coil region; 

especially at 0.2 mbar argon pressure. This can be attributed to the increase in electron 

collision frequency with pressure which reduces the free mean path of the electrons and 

thus, reduces the kinetic energy accumulated by the electrons (≡Te). Due to the added 

effect of neutral gas heating, the collision frequency near the discharge center would be 

comparatively lower than the collision frequency at the coil edge, which results in the 

observed increase in higher energy electrons in the coil region. The range of values 

measured for Te were (1.38 ± 0.08)-(3.8 ± 0.2) eV using the Maxwellian method and     

(1.78 ± 0.05)-(4.8 ± 0.3) eV using the EEDF method. 

 

4.0.2. Electron Energy Probability Function (EEPF) 

It is typical that the EEDF of the discharge, f (), be parametrically fitted with known 

distribution trends, i.e., Maxwellian and Druyvestyen, to determine a suitable 

approximation for use in predictive simulation. For this purpose, the EEDF is converted 

to a convenient form which is the electron energy probability function, g() or EEPF, 

i.e.,  
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1/2( ) ( )g f    (4.0.1) 

 

Using the EEPF, the semi-logarithmic plots of the Maxwellian and Druyvestyen 

distributions with energy,  are reduced to linear and quadratic functions, respectively; 

thus, simplifying the fitting process (Godyak, Piejak & Alexandrovich, 2002). These 

two distributions, after reduction, can be expressed as, 

 

ln(EEPF) y
P P     (4.0.2) 

 

Here, PandP are the fitting constants for the argon pressure, P. The constant, y = 1 

for the Maxwellian distribution and y = 2 for the Druyvestyen distribution.  

 

Figures 4.4, 4.5 and 4.6 show the measured electron energy probability functions 

(EEPF) at the discharge center (R = 0) for 0.03, 0.07 and 0.2 mbar argon pressure at 

0.032 m, 0.060 m and 0.114 m distance above the dielectric plate, respectively. R.f. 

power was set to 180 W. The values used for PandP fitting parameters given in the 

figures.   

 



79 

 

Figure 4.4: Electron energy probability function (EEPF) at 0.032 m distance above the 
dielectric plate for 0.03, 0.07 and 0.2 mbar argon pressures with corresponding 
parametric fit. R. f. power was at 180 W. 
 
 

 

Figure 4.5: Electron energy probability function (EEPF) at 0.060 m distance above the 
dielectric plate for 0.03, 0.07 and 0.2 mbar argon pressures with corresponding 
parametric fit. R. f. power was at 180 W. 
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Figure 4.6: Electron energy probability function (EEPF) at 0.114 m distance above the 
dielectric plate for 0.03, 0.07 and 0.2 mbar argon pressures with corresponding 
parametric fit. R. f. power was at 180 W. 
 
 

The measured EEPF distributions are similar to those reported by Lim (2010) for the 

same system; with most probable electron energy occurring within the range of 2-4 eV 

for all axial distances from the coil. Attempts of parametric fitting of the EEPFs with 

Maxwellian and Druyvestyen functions indicated Maxwellian-like trends; although the 

exact measured EEPFs have more complex distributions. For simplicity of the 

simulations presented in Chapter 5 and 6, the EEDFs used in calculation of effective 

collision frequency, eff were approximated as Maxwellian. 
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4.1. Measurement of Discharge Magnetic Fields 

The absolute magnitudes of the axial and radial magnetic fields were measured at 

different pressures and distances above the dielectric plate; with and without the 

presence of the plasma. Results for the fields in the presence of the plasma were used 

for comparison with the fields calculated by predictive electromagnetic simulation 

(Chapter 6, Section 6.0.4).  

 

4.1.1. Absolute Axial, |Bz| and Radial, |Br| Magnetic Fields  

Figures 4.7 and 4.8 depict the measured absolute magnitudes of the (i) axial, |Bz|  and 

(ii) radial, |Br|  magnetic fields at evacuated condition (without plasma) (P<10-3 mbar) 

and at 0.03 mbar, 0.07 mbar and 0.2 mbar argon pressure for 0.032 m and 0.060 m axial 

distances above the dielectric plate, respectively. R.f. power was set at 180 W. 
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      (i) 

 

(ii) 

Figure 4.7: Measured absolute magnitudes of the (i) axial and (ii) radial magnetic fields 
at 0.032 m distance above the dielectric plate for evacuated, 0.03 mbar, 0.07 mbar and 
0.2 mbar argon pressures. R.f. power was set at 180 W.  
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      (i) 

 

(ii) 

Figure 4.8: Measured absolute magnitudes of the (i) axial and (ii) radial magnetic fields 
at 0.060 m distance above the dielectric plate for evacuated, 0.03 mbar, 0.07 mbar and 
0.2 mbar argon pressures. R.f. power was set at 180 W.  
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When the chamber is evacuated (without plasma), the measured axial and radial 

magnetic fields gave the highest magnitudes with (1.507 ± 0.005) × 10-4 T and (7.67 ± 

0.01) × 10 -5 T, respectively for 0.032 m and (3.90 ± 0.02) × 10-5 T and (2.30 ± 0.03) × 

10-5 T, respectively for 0.060 m. The peak coil current, Ip obtained when measuring the 

magnetic fields were (19.2 ± 0.2) A at evacuated condition, (14.4 ± 0.2) A at 0.03 mbar, 

(14.2 ± 0.2) A at 0.07 mbar and (13.4 ± 0.2) at 0.2 mbar. 

 

Increased suppression of the magnetic field magnitudes was seen as pressure was 

increased for both the axial and radial magnetic fields at both distances above the 

dielectric plate; indicating increased utilization of the magnetic fields by the plasma. 

With increase of pressure, it is also noted that a trough is formed in both the axial and 

radial magnetic field magnitudes within the coil region (R < 0.05 m), whereby the 

magnetic fields near the center of the chamber is more highly utilized.  This is 

consistent with the trends seen in the electron density in Figures 4.1 and 4.2 at which the 

discharge becomes more confined to the coil region and less diffused as pressure is 

increased. Beyond the coil region (R > 0.05 m), the field is to be out of phase and is 

negative (when plotted as absolute values, the field is positive and inverted). This is 

mainly due to the geometry of the chamber in which the coil, chamber and dielectric 

diameters are different. 

 

4.2. Measurement of Peak Coil Transition and Maintenance Currents 

The H mode peak coil transition and maintenance currents were measured for a range 

of argon pressures. These values were compared with predictive simulation of the 

currents using the power deposition model (Chapter 6, Section 6.1).  
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4.2.1. H Mode Peak Transition, Itr and Maintenance, Imt Currents 

Figure 4.9 shows the measured H mode peak coil transition current (E to H mode 

transition), Itr and H mode peak coil maintenance current (H to E mode transition), Imt 

for the argon pressure range of 0.02-0.3 mbar.  

 

 

Figure 4.9: Measured H mode peak coil transition current, Itr (E-H) and H mode peak 
coil maintenance current, Imt (H-E) for 0.02-0.2 mbar argon pressure.  

 

At lower pressures, higher coil current is required to initiate a transition from E mode 

to H mode discharge i.e., (16.4 ± 0.2) A at 0.02 mbar. As pressure is increased, Itr 

decreases to a minimum value of (13.5 ± 0.5) A at 0.08 mbar before increasing to    

(15.5 ± 0.2) A at 0.3 mbar. This is attributed to the power coupling of source fields 

which has been shown to be most efficient when the ratio of effective collision 

frequency to drive frequency, eff≈ 1 (Piejak, Godyak & Alexandrovich, 1992 and 

El-Fayoumi, Jones & Turner, 1998). From simulation of Itr with neutral gas heating  (i.e., 
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Section 6.1.2.), eff≈ 1 is found near the measured argon pressure range of 0.07-0.08 

mbar; at which least current is required to initiate a transition to H mode.   

 

In the case of Imt, higher values are also required to maintain the discharge in H mode 

operation at low pressures, i.e., (14.3 ± 0.2) A at 0.02 mbar. As pressure is increased, Imt 

decreases to (8.3 ± 0.1) A at 0.3 mbar. The increasing deviation between Itr and Imt with 

increasing pressure indicates the more prominent effect of hysteresis in the working 

path of the system. The effect of hysteresis is more thoroughly discussed in Chapter 6. 

Several factors can be attributed to the lower Imt requirement for the discharge at higher 

pressures: 

i. At higher pressures, the electron density of the H mode discharge is higher. 

Multi-step ionization (i.e., ionization of the neutrals through intermediate 

excitation states) becomes the primary process of conversion of absorbed excited 

state energy over radiative de-excitation processes (Turner and Lieberman, 1999). 

Thus, more energy from the excitation collisions that occur in the discharge 

contributes toward the ionization of particles, allowing for maintenance of the H 

mode discharge at lower currents. 

 

ii. At higher pressures, there are also more plasma particles that are present in the 

chamber. The increase in collision frequency of these particles would also result 

in more ionizing collisions, which allows for maintenance of the H mode 

discharge at lower currents. 

 

iii. The neutral gas temperature of the discharge is also seen to increase (in reference 

to Section 4.3) at higher pressure. This may result in the neutral particles being 

more readily ionized due to more of the background particles having higher 
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kinetic energies.  This may have some contribution in enabling the sustenance of 

the H mode discharge at lower currents for higher pressures.  

 

 4.3. Measurement of Discharge Neutral Gas Temperature via AOES 

Using the AOES technique, the neutral gas temperature of the discharge was 

measured at different pressures and distances above the dielectric plate for increasing 

and decreasing input r.f. powers.  Results from measurement were taken as reference for 

the predictive simulations found in Chapter 6. 

 

4.3.1. Measured Neutral Gas Temperature, Tn 

Figure 4.10 and 4.11 shows the measured neutral gas temperatures, Tn at 0.03, 0.05, 

0.07, 0.1 and 0.2 mbar Ar/N2 pressure for (i) increasing and (ii) decreasing r.f. power at 

0.032 m and 0.060 m axial distance above the dielectric plate, respectively.  
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      (i) 

 
(ii) 

Figure 4.10: Measured neutral gas temperature, Tn at 0.03, 0.05, 0.07, 0.1 and 0.2 mbar 
Ar/N2 pressures for (i) increasing and (ii) decreasing r.f. power. Measurement was made 
at 0.032 m distance above the dielectric plate. 
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      (i) 

 
(ii) 

Figure 4.11: Measured neutral gas temperature, Tn at 0.03, 0.05, 0.07, 0.1 and 0.2 mbar 
Ar/N2 pressures for (i) increasing and (ii) decreasing r.f. power. Measurement was made 
at 0.060 m distance above the dielectric plate. 
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The dashed lines on the plots represent the discharge at E mode state, whereas, the 

solid lines represent the discharge in H mode state. The mode transition point is the 

point between the dashed and solid lines. Tn measured in E mode state had higher errors 

on average (i.e., 10-20 % error for the discharge in E mode compared to 5-12 % error in 

H mode) due to the lower definitions of the fitted peak, especially for 0.060 m distance 

above the dielectric plate. At certain powers, Tn was not measured due to the reference 

peak being not of resolvable intensity. 

 

With r.f. power and distance above the dielectric plate, Tn is seen to have little 

variation; within the bounds of measured error. With increase in gas pressure, however, 

Tn becomes markedly increased. These observed trends are explained as follows: 

i. As Ar/N2 pressure is increased at a fixed input r.f. power, more energy is coupled 

into the plasma. This is demonstrated by calculations tabulated in Chapter 6, 

Section 6.0.2, Table 6.2, whereby, absorbed electron power, Pabs is higher at 

higher pressure, P for the same input r.f. power of 180 W. With increased power 

coupled into the discharge, electron density and ion density increases. Because of 

the presence of more charged and neutral particles within the same volume for 

higher pressure, the collision frequency of the plasma particles increases. 

Transfer of kinetic energy from charged particles to neutral particles is increased 

via charge transfer collision of energetic ions with neutrals and de-excitation 

collision of ions by electrons (Lieberman & Lichtenberg, 2005). This raises the 

number of thermalized neutrals within the plasma, thus, increasing Tn. 

 

ii. With collisional processes between charged and neutral particles limited by the 

collision frequency which is correlated with Ar/N2 pressure (as mentioned in the 
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previous point, i.), variation of r.f. power does not significantly affect Tn; due to 

the limited energy transfer from charged particles to the neutrals. 

 

iii. The convection of thermalized neutrals from "hotter" plasma regions (i.e., nearer 

to the source field, where the discharge is more intense) to colder regions (away 

from the source field) would mean that the particles would also be distributed to 

regions further from the source (noted in Section 4.0.1 for electron density). Thus, 

at the measured axial distances of 0.032 m and 0.060 m, Tn does not show 

significant variation beyond the discrepancy obtained in measurement. 

 

For increasing r.f. power at H mode and 0.032 m plate distance, values of Tn ranged 

from (350 ± 30) K at 0.03 mbar to (800 ± 20) K at 0.2 mbar. For decreasing r.f. power 

at H mode and 0.032 m plate distance, values of Tn were from (380 ± 10) K at 0.03 

mbar to (810 ± 20) K at 0.2 mbar. In the case of increasing r.f. power at H mode and 

0.060 m plate distance, values for Tn ranged from (430 ± 20) K at 0.03 mbar to         

(840 ± 30) K at 0.2 mbar. For decreasing r.f. power at H mode and 0.060 m plate 

distance, values for Tn were from (420 ± 20) K at 0.03 mbar to (830 ± 30) K at 0.2 

mbar. These values of Tn will be used as a reference range for the simulations shown in 

Chapter 6. 
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 CHAPTER 5: SIMULATION 

 

5.0. Electromagnetic Field Model 

Simulation of the E mode and H mode electromagnetic fields used in this work 

(Sections 5.1, 5.2, 5.3 and 5.4) is based on the field theory derived by El-Fayoumi et al. 

(El-Fayoumi, 1996; El-Fayoumi & Jones, 1998; El-Fayoumi, Jones & Turner, 1998). To 

obtain a more accurate representation of the laboratory ICP reactor fields, certain 

aspects of the original model were improved. These include:  

 

i. Modifications of the model field grid to more closely resemble the actual 

dimensions of the laboratory reactor. 

 

ii. Independent adjustment of radius of the planar coil source, quartz dielectric plate 

and chamber. 

 

iii. Extended calculation of the collision frequency parameter; accounting for the 

effects of important collisional processes.  

 

iv. Spatially resolved plasma parameters such as electron density, electron 

temperature and neutral gas temperature; which interact with the fields. 

 

The E mode and H mode electromagnetic fields in the laboratory ICP reactor are 

modeled in cylindrical coordinates (r, , z) with the following measured dimensions: 

radius of the 6-turn planar coil,  a = 0.045 m; radius of the 0.010 m thick quartz 

dielectric plate, d = 0.100 m; inner radius of chamber, b = 0.145 m; full inner height of 

chamber, H = 0.304 m; effective height of chamber, L = 0.218 m; height of indented 
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cylinder, M = 0.099 m; edge width of indented cylinder, W = 0.026 m; and total 

thickness of coil-chamber spacing, D = 0.024 m. The axial coordinate, z, begins (i.e.,     

z = 0) at the chamber lid and the radial coordinate, r, begins (i.e., r = 0) at the center 

axis of the chamber (Figure 5.1). 

 

 

Figure 5.1: Numerical model diagram of the laboratory ICP reactor.  
 

Starting from the standard Maxwell's equations (Sadiku, 2001, pp. 384-385), i.e., 

 

( , , , )( , , , )  ,r z tr z t
t





  



  (5.0.1) 
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
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and 

                                                  
( , , , ) 0 ,r z t   (5.0.4) 

 

the following assumptions were applied: 

 

i. The reactor is azimuthally symmetric, thus, the fields only vary in the -r and -z 

directions. 

  

ii. The plasma mainly consists of low energy electrons and the immobile ions thus, 

satisfying the local Ohm’s Law equation, 

 

  
e
2

e

( , , , )( , , , ) ( , , , )  ,m r z tr z t r z t
n e t


  

 
  

 


   (5.0.5) 

 

where, me is the electronic mass in kg, e is the electronic charge in C, ne is the 

electron density in m-3 and  is the electron collision frequency in s-1. 

 

iii. For free space, the charge density term,  , thus, reducing Eq. (5.0.2) to, 

 

( , , , ) 0 .r z t   (5.0.6) 

 

iv. The steady state temporal term of the r.f. field is represented by exp(jt), where 

 is the r.f. angular frequency (rad/s), i.e., 2× 13.56 MHz . 

 

Here, ,  and are the time varying electric field in Vm-1, magnetic field in T and 

current density in Am-2, respectively. ois the free space permeability in Hm-1 and o is 
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the free space permittivity in Fm-1. With these assumptions, Eqs. (5.0.1-5.0.5) can be 

subsequently simplified as, 

 

( , ) ( , ) ,r z j r z  E B  (5.0.7) 

 

( , ) 0 ,r z E  (5.0.8) 

  
 

o o o( , ) ( , ) ( , ) ,r z r z j r z     B J E  (5.0.9) 

  

( , ) 0 ,r z B  (5.0.10) 

and 

2
o p( , ) ( , ) ,r z r z

j
 

 



J E  (5.0.11) 



p is the plasma frequency in s-1 and is given by, 

 

1/22
e

p
o e

.n e
m




 
  
 

 (5.0.12) 

 

The equations were solved both analytically and numerically for the H mode fields 

with the initial field values for boundary convergence of the numerical solution being 

analytically derived. Analytical E mode fields were also derived for use in the power 

balance model in Section 5.4. Solutions for each of the fields are addressed separately in 

the following sections. 
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5.1. Analytical H mode fields 

To solve for the analytical H mode fields from Eqs. (5.0.7-5.0.12), further 

assumptions and boundary conditions were applied: 

 

a) The displacement current term in Eq. (5.0.9) is neglected (i.e., jooE(r,z) = 0). This 

is due to the higher free excitation wavelength (~22 m for 13.56 MHz) as 

compared to the chamber dimensions. Eq. (5.0.9) then reduces to, 

 

o( , ) ( , ) .r z r z B J  (5.1.1) 

 

b) The planar coil is assumed to be an infinitesimally thin disc of moving uniform 

charge and has a surface current density of, 

 

p ,
NI

K
a   (5.1.2) 

 

where Ip is the peak coil current in A, N is the number of turns in the coil and a is 

the coil radius in m. 

 

c) The chamber is a simple azimuthally symmetric cylinder of radius, b and 

effective height, L with a coil radius of a. The coil-chamber spacing is D (Figure 

5.2). 
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Figure 5.2: Analytical model diagram of the laboratory ICP reactor. 
 

d) The chamber (from boundaries –b < r < b and 0 < z < L) has a uniform electron 

density, ne, collision frequency,  and electron temperature, Te. Externally, these 

parameters are equal to zero. 

 

e) At the boundaries between the quartz plate and the plasma, the tangential electric 

fields and tangential and normal magnetic fields are continuous. 

 

f) At the boundaries between the chamber walls and the plasma, the tangential 

electric fields and normal magnetic fields are equal to zero. 

 

By taking the curl of Eq. (5.0.7) and by further substitutions of Eqs. (5.0.11) and (5.1.1), 

we arrive at the following key expressions, 

   

( , ) ( , )r z j r z  E B  (5.1.3) 
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and 

 

2
o o p( , ) ( , ) .

1
r z r z

j
  

 

 
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E E  (5.1.4) 

 

The term 2
o o p (1 )j      in Eq. (5.1.4) represents the quantified interaction between 

the electromagnetic fields and plasma and is more conveniently expressed as the spatial 

conductivity parameter, ,i.e.,



 

2
2 o e

e

 .
1

n e
m j




 



 (5.1.5) 

 

Calculation of 2 can be made by taking the average values of ne and . Details of 

finding i.e.,eff is discussed in the Section 5.2.1. With 2 defined as in Eq. (5.1.5), 

Eq. (5.1.4) can be simplified to, 

 

2( , ) ( , ) .r z r z  E E  (5.1.6) 

 

Due to azimuthal symmetry of the chamber, the solution to the H mode 

electromagnetic fields would only have the scalar azimuthal electric field, E  

component, i.e., E = [0, E, 0] and the scalar radial magnetic field, Br and axial 

magnetic field, Bz components, B = [Br, 0, Bz]. In component form, Eqs. (5.1.3) and 

(5.1.4) can be rewritten as, 
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2
2

2 2

1   ,E E Er E
r r r r z

  


   
   

   
 (5.1.7) 

 

  ,r
EjB
z





 


 (5.1.8) 

and 

 

( )1   .z
rEjB

r r




 
  

 
 (5.1.9) 

 

for 0 z L D   . 

 

5.1.1. Separation of Variables Method for the H mode Fields 

To solve the field Eqs. (5.1.7-5.1.9), the separation of variables method is used 

(Boas, 1983, pp. 558-562; Kreyszig, 2011, pp. 593-597; Sadiku, 2009). In this method, 

a multivariable function is split and solved as separate single variable functions which 

are bridged together using an introduced expression known as a separation constant. For 

the present case, the multivariable azimuthal electric field, Erz is defined to be the 

product of two single variable functions, R(r) and Z(z), i.e.,  

 

( ) ( ) .E Z z R r   (5.1.10) 

 

The defined Eq. (5.1.10) is next substituted into Eq. (5.1.7) yielding,  

 

2 2
2

2 2 2

1 1 ( ) ( ) ( ) 1 ( )( ) 0 .
( ) ( )

R r R r R r Z zR r
R r r r r r Z z z


   

     
   

 (5.1.11) 
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By introducing a separation constant, k2, Eq. (5.1.11) is separated into two equations, 

i.e., 

 

2
2 2

2 2

1 1 ( ) ( ) ( ) ( )
( )

R r R r R r R r k
R r r r r r


  

     
  

 (5.1.12) 

 

and 

2
2

2

1 ( )  .
( )

Z z k
Z z z





 (5.1.13) 

 

Rearranging Eqs. (5.1.12) and (5.1.13) to be representative of closed-form solutions, we 

arrive at, 

 

2
2 2 2

2

( ) ( ) [ 1] ( ) 0 ,R r R rr r r R r
r r


 

   
 

 (5.1.14) 

and 

 

2
2

2

( ) ( ) .Z z k Z z
z





 (5.1.15) 

 

Here, 2 and k2 are separation constants and are related by,  

 

2 2 2 = + .k    (5.1.16) 

 

Looking at the boundary conditions b) to f) in Section 5.1, we are able to deduce 

several important relations for the component fields: 
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i. At the plane of the coil (z = L + D), the total radial magnetic field emitted by an  

infinitesimally thin disc of surface current density, K is given by, 

 

o θ( , ) ( , )   ,r rB r L D B r L D K      (5.1.17) 

 

where, Br(r, L + D) and Br(r, L + D)+ are the radial magnetic field emissions 

below and above the plane of the coil. Taking point that                                   

Br(r, L + D) = Br(r, L + D)+, the radial magnetic field traversing into the 

plasma at the coil plane can be deduced as, 

 

o θ        0  
2

     0            

r

K r a
B

a r b


  


 

  

 (5.1.18) 

 

or in relation to Eq. (5.1.8) 

 

o θ

θ

       0  
2

  .

      0              
z L D

j K r a
E
z

a r b



 


   

 
 

  

 (5.1.19) 

 

Here, a is the radius of the coil and b is the radius of the chamber. 

 

ii. The tangential electric field and tangential and normal magnetic field components 

between the quartz plate and plasma would be continuous; giving the following 

relations: 
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( , ) ( , ) .E r L E r L    (5.1.20) 

( , ) ( , ) ,r rB r L B r L   (5.1.21) 

and 

( , ) ( , ) .z zB r L B r L   (5.1.22) 

 

In terms of the azimuthal electric field, Eqs. (5.1.21) and (5.1.22) are written, 

respectively as, 

 
 

                             
 

z L z L

E E
z z
 

  

 


 
 (5.1.23) 

and 

  

1 1  .
z L z L

rE rE
r r r r

 

  

 


 
 (5.1.24) 

 

iii. The tangential electric field and normal magnetic field components at the 

chamber walls are zero, yielding, 

 
 ( , ) 0 ,E b z   (5.1.25) 

 

( , ) 0 ,rB b z   (5.1.26) 

 

( ,0) 0  E r   

and 

(5.1.27) 

 

( ,0) 0 .zB r   (5.1.28) 

iv. The spatial conductivity parameter 2 = 0 for  L < z < L + D. 
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From the deduced field boundaries i.-iv., the general solutions for Eqs. (5.1.10), (5.1.14) 

and (5.1.15) are determined as, 

 

1 1( ) ( ) ,R r A J r  (5.1.29) 

 

1( ) sinh( ) ,Z z B kz  (5.1.30) 

and 

θ 1sinh( ) ( ) ,E A kz J r  (5.1.31) 

 

for 0 z L  , 

  

and  

2 1( ) ( ) ,  R r A J r  (5.1.32) 

  

2 2( ) exp( )  C exp( ) ,Z z B z z     (5.1.33) 

 

and 

 

θ 1[ exp( )  Cexp( ) ] ( ) ,E B z z J r      (5.1.34) 

 

for L z L D   .  

 

Here, A, B and C in Eqs. (5.1.31) and (5.1.34) are boundary constants to be defined 

and A = A1B1, B = A2B2 and C = A2C2. To obtain the radial magnetic field, Br and axial 



104 

magnetic field, Bz (as per Eqs. (5.1.8) and (5.1.9)), Eqs. (5.1.31) and (5.1.34) are 

differentiated, i.e., 

 

1

1

cosh( ) ( )                                 

( , )       

[ exp( ) exp( )] ( )          

r

j Ak kz J r

B r z
j C z B z J r




   






 

  


 

    

  0 z L   
   
 
 

L z L D    

(5.1.35) 
 

 

0

0

sinh( ) ( )                                  

( , )       

[ exp( ) exp( )] ( )          

z

j A kz J r

B r z
j B z C z J r

 


   






 

  


 

    

  0 z L   
   
 
 

L z L D    

(5.1.36) 
 

 

It is noted that in Eq. (5.1.25), θ ( , ) 0E b z 
 
at the radial boundaries of the chamber. 

Thus, in obtaining a valid solution for the value of , the Bessel function nth root, n 

(which forms a set of eigen values) has to be a multiple of the chamber radius, b, i.e., 

 

n nb   (5.1.37) 

or 

 .n
n b


   (5.1.38) 

Consequently, we get k as, 

 

2 2 = + .n nk    (5.1.39) 

 

The form of the differential Eqs. (5.1.14) and (5.1.15) is generally the form of the 

Sturm-Liouville problem in which the solution constitutes the sum of a set of orthogonal 
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eigen functions (Herman, 2008, Atkinson & Mingarelli, 2011). Hence, the full solution 

for the H mode fields can be appropriately written as the eigen function series, 

 

1
1

1
1

sinh( ) ( )                                                          

( , )       

 [ exp( ) exp( )] ( )                                  

n n n
n

n n n n n
n
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E r z

B z C z J r
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







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 
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  






 

 
   0 z L   
 
 
   
 

  L z L D    

(5.1.40) 
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1
1

cosh( ) ( )                                                           
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[ exp( ) exp( )] ( )                                  
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B r z
j C z B z J r
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   











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
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
  



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   0 z L   
 
 
   
 

  L z L D    

(5.1.41) 
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n n n n
n

z

n n n n n n
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j A k z J r

B r z
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 
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
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









 
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  
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   0 z L   
 
 
   
 

  L z L D    

(5.1.42) 
 

 

5.1.2. Solving for H mode Boundary Constants 

The next step is to derive closed form expressions for the boundary constants An, Bn 

and Cn. Using the boundary conditions at the coil-chamber boundary, L, as given by 

Eqs. (5.1.20) and (5.1.21), we are able to obtain the following simultaneous equations 

for derivation:  

 

sinh( )= exp( ) exp( ) ,n n n n n nA k L B L C L    (5.1.43) 
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and 

 

cosh( ) [ exp( ) exp( )] .n n n n n n n nA k k L B L C L       (5.1.44) 

 

For a more convenient solution, it would be apt to define an additional constant, 

 

exp( ( )) exp( ( )) .n n n n nv C L D B L D       (5.1.45) 

 

From simultaneous solving of Eqs. (5.1.43), (5.1.44) and (5.1.45) for An, Bn and Cn, we 

finally get, 

 

 ,
sinh( )sinh( ) cosh( )cosh( )

n n
n

n n n n n n

vA
D k L k D k L



  



 (5.1.46) 

 

[ sinh( ) cosh( )] ,
2

nLn
n n n n n

n

AB e k L k k L 


   (5.1.47) 

 

[ sinh( ) cosh( )] .
2

nLn
n n n n n

n

AC e k L k k L 



   (5.1.48) 

 

To complete the solution set for the H mode fields, an independent expression for the 

constant vn is required. By replacing the field boundary condition at (L + D) given in 

Eq. (5.1.19) and the constant vn defined in Eq. (5.1.45) into Eq. (5.1.41), we get the 

piecewise continuous relationship, 
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o

1
1

        0  
2

( )

      0               

n n n
n

j K r a
v J r

a r b



 





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

 

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  (5.1.49) 

 

Multiplying both sides of Eq. (5.1.49) with the eigen function 1( )nrJ r  and by 

integration across the chamber radius,  ≤ r ≤ b; due to orthogonality of the Sturm-

Liouville problem, we would subsequently get the equation, 

 

2 o
1 10 0

( ) ( )  ,
2

b a

n n n n
j Kv rJ r dr rJ r dr

      (5.1.50) 

 

and thus, the solution for vn, i.e., 

 

1o 0

2
10

( )
 .

2 ( )

a

n
n b

n n

rJ r drj Kv
rJ r dr




 
 




 (5.1.51) 

 

Using the Bessel function identity for orthogonality (Boas, 1983, pp. 522-524) in Eq. 

(5.1.48), i.e.,  

 

2 2 2
2 2 2

1 10
( ) ( ) ( ) ( ) ( ) ,

2 2 2
b

p n p n p n p n p n
b b brJ r J r dr J b J b J b     

    (5.1.52) 

 

in which, p is the Bessel function order; vn is then simplified to, 
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o 2 2

1
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 .
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n
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n n

rJ r dr
v j K

b J b




 
 



  (5.1.53) 
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The analytical solutions and corresponding derived constants for the H mode fields 

for the ICP chamber of height, L and radius, b with the coil radius, a and the coil-

chamber distance, D can be summarized as the following equation set: 
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(5.1.54a) 
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(5.1.54b) 
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(5.1.54c) 

 

2 2 = +n nk    (5.1.51d) ;  n
n b


   (5.1.54e) 
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n
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n n

rJ r dr
v j K

b J b


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 
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  (5.1.54f) 

     

sinh( )sinh( ) cosh( )cosh( )
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


 (5.1.54g) 
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exp( )[ sinh( ) cosh( )]
2

n
n n n n n n

n

AB L k L k k L 


   (5.1.54h) 

 

exp( )[ sinh( ) cosh( )]
2

n
n n n n n n

n

AC L k L k k L 


    (5.1.54i) 

 

A MATLAB code for solving the analytical H mode fields (equation set (5.1.54)) can be 

found in Appendix C. 

 

5.2. Numerical H mode fields 

The numerical H mode fields are solved using Eqs. (5.1.7-5.1.9) with the finite 

difference method (Sadiku, 2009; Zhou, 1993; Salon & Chari, 2000). One of the 

advantages of solving the fields numerically is the ability to input spatially resolved (-r 

and –z varying) plasma parameters such as electron density, ne (r, z), electron 

temperature, Te (r, z) and neutral gas temperature, Tn (r, z) which will give a better 

theoretical visualization of the electromagnetic fields in the laboratory reactor. The 

actual chamber dimensions can also be straightforwardly modeled by this method.  

 

In the finite difference method, the plasma chamber is divided into a 2 dimensional 

grid of equally spaced cells with a radial spacing, Δr and axial spacing, Δz. Δr and Δz 

are chosen to be small enough such that, 

 

, 1, , 1,  ,
2

n m n mE E E
r r

    


 
 (5.2.1) 

 

2
, 1, , , , 1,

2 2

2
 ,

( )
n m n m n mE E E E

r r
      


 

 (5.2.2) 
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, , 1 , , 1  ,
2

n m n mE E E
z z

    
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 
 (5.2.3) 

and 
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 (5.2.4) 

 

Here, the n and m subscripts represent the radial and axial positions of the calculated 

field points on the grid. Rewriting Eqs. (5.1.7-5.1.9) in finite difference notation, we 

get,  
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and 
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 (5.2.7) 

 

2
, ( , )n m r z  represents the radially and axially resolved spatial conductivity parameter for 

the grid position (n, m). To avoid singularity for Eqs. (5.2.5) and (5.2.7) as r approaches 

zero, i.e., r→0, L'Hôpital's rule was applied to Eqs. (5.1.7) and (5.1.9) for calculations 

at r 0, yielding the reduced finite difference solutions, 
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and 
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In a spatially resolved form, the spatial conductivity parameter is represented by a 

spatially varying electron density, ne (r, z) and effective collision frequency, eff (r, z) 

i.e., 

 

 
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2 o e

e eff

( , )( , )  .
1 ( , )

n r z er z
m j r z



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5.2.1 Calculation of Effective Collision Frequency, eff (r, z)   

The effective electron collision frequency, eff (r, z) consists of the sum of most 

frequent particle collisions occurring in the plasma. For the present setup, the sum of the 

three largest collision frequencies were used to estimate eff (r, z), i.e., the electron 

neutral collision frequency, en, electron ion collision frequency, ei, and stochastic 

collision frequency, st (Gudmundsson & Lieberman, 1998; Maurice, 2003, pp. 74-75). 

eff (r, z) is thus, denoted as, 

 
eff en ei st( , )r z       (5.2.11) 
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The electron-neutral collision frequency, en is obtained from the integral between the 

argon atom collision frequency and EEDF, i.e. (Lister, Li & Godyak, 1996), 

 

13 2

en eff 0
c

3 ( ) ,
2 ( )

dfj d
j d

 
  

   



 
    

 
  (5.2.12) 

 

with being the electron energy in J, eff being the effective drive frequency in Hz, ,c 

() is the collision frequency term for argon gas and f() is the EEDF. For simplicity of 

calculation, a Maxwellian EEDF is used and is defined as, 

 

  







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),(
exp

),(
12)(

e
23

e zrTzreT
f 


  (5.2.13) 

 

where, Te (r, z) is the electron temperature in eV. The collision frequency term,c () of 

argon gas is given by, 

e
cgc

2)(),()(
m
ezrn 

   (5.2.14) 

 

Here, ng (r, z) is the neutral gas density of the plasma in m3 and c () is the collision 

cross section of argon gas in m2 taken from Hayashi (1981); Appendix E, Table E.1.    

ng (r, z) for this model is deduced from the ideal gas law,  

 

     g e B ni B, / ,  /( , .) nn r z P p k T r z P k rp T z    (5.2.15) 

 

 P, pi and pe are the argon filling pressure, ion pressure and electron pressure, 

respectively in Pa, kB is the Boltzmann constant in JK1 and Tn (r, z) is the neutral gas 
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temperature in K. pi and pe have negligible effects at our range of interest (P >> pi,e) and 

ng (r, z) can be directly calculated from P. 

 

The electron-ion collision frequency, ei is calculated using the Coulomb logarithm 

and is expressed as (Gudmundsson & Lieberman, 1998), 

 
 

4
e

ei 2 1/2 3/2
o e e

( , ) ln ,
4 ( ( , ))

n r z e
m eT r z





  (5.2.16) 

 

with the Coulomb logarithm as defined in Chapter 3, Section 3.1.2, Eq. (3.1.7). 

 

To account for the anomalous skin effect of the spatially inhomogeneous r.f. field, 

the stochastic collision frequency, st is included. st is derived from the average thermal 

velocity of the electrons and the anomalous skin depth of the r.f. fields and is expressed 

as (Vahedi et al., 1995), 

 

e
st

1 ,
4

v



  (5.2.17) 



ev  denotes the average electron velocity, which in the Maxwellian case is,  

 

1/2

e
e

e

8 ( , ) ,eT r zv
m

 
  
 

 (5.2.18) 
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in ms-1. is the anomalous skin depth approximated by,  

 

1/3
e p

p

( , )
,

( , ) 2
v r zc

r z c



 

  
    

  

 (5.2.19) 

 

with p (r, z) being the plasma angular frequency given in Eq. (5.0.12) calculated with 

the spatially varying electron density, ne (r, z).  In the case of the analytical H mode 

fields, eff) is calculated using the measured spatially averaged values of ne, Te and 

Tn. 

 

5.2.2. Five Point Stencil Algorithm  

The spatially varying H mode electromagnetic fields were solved using a 5 point 

stencil algorithm (Sadiku, 2009, p. 123) with Δr and Δz equally spaced at 0.001 m. In a 

5 point stencil, the adjacent field values of grid position (m, n + 1), (m, n 1),             

(m + 1, n) and (m 1, n) are required to calculate a new updated field value for grid 

position (m, n) which will be used for the next iteration (Figure 5.3). 

 

 

Figure 5.3: The five point stencil algorithm illustrated. The field values at the four 
adjacent (blue) grid points are used to calculate the new field value for the center (red) 
grid point. 
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This cycle of calculations are repeated until the field values remain unchanged between 

successive iterations within an acceptable magnitude of error, i.e. convergence.  The 

calculations are bounded within the chamber dimensions using the following boundary 

conditions: 

i. The walls of the chamber are assumed to be infinitely conducting, such that all 

fields at the walls are equal to zero.  

ii. The radial magnetic fields at the coil surface (L + D) for the coil radius of           

–a ≤ r ≤ a is constant and is given by,  

 

o θ   .
2r
KB 

   (5.2.20) 

 

A flowchart of the program algorithm is shown in Figure 5.4.  
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Figure 5.4: Program flowchart for the numerical H mode fields. 
 
 

The initial field values used to start the simulation was calculated from the analytical 

H mode solutions in the equation set (5.1.54) using spatially averaged ne, Te and Tn 

within the range of measured values. The exact values ne, Te and Tn are not essential for 
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accuracy, however, closer estimates to expected values would yield faster convergence. 

The convergence point for the algorithm is set at a maximum deviation of 1010 T 

between successive iterations. 

 

5.3. Analytical E mode fields 

 

For deriving the analytical E mode fields, a similar set of assumptions and boundary 

conditions as the H mode fields were applied to Eqs. (5.0.7-5.0.12):  

 

a) The coil (at a ≤ r ≤ a) is assumed to be an infinitely thin disc with an uniform 

radial electric field, Eo of magnitude, 

 

p
o  .

V
E

a
  (5.3.1) 

 

where Vp is the peak coil current in V and a is the coil radius in m. 

 

b) The chamber is an azimuthally symmetric cylinder of radius, b and effective 

height, L with a coil radius of a. The coil-chamber spacing is D. 

 

c) The chamber (from boundaries –b < r < b and 0 < z < L) has a uniform electron 

density, ne, collision frequency,  and electron temperature, Te. Externally, these 

parameters are equal to zero. 

 

d) At the boundaries between the chamber walls and the plasma, the normal 

magnetic fields and tangential electric fields are equal to zero. 
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e) At the boundaries between the quartz plate and the plasma, the normal magnetic 

fields and tangential electric fields are continuous. 

 
 

Due to the assumption of azimuthal symmetry for the chamber, the solutions for the 

E mode fields would be limited to the radial and axial electric field components, i.e., E 

= [Er, 0, Ez] and azimuthal magnetic field component, i.e., B = [0, B, 0]. Thus, the 

displacement current term jooE(r,z) in Eq. (5.0.9) for the E mode fields is not 

ignored due to the presence of a time varying electric field through the dielectric plate. 

 

By substitution of Eq. (5.0.11) into Eq. (5.0.9), we get,   
 
  
 

 22
p

2( , ) 1 ( , ) ,
1

jr z r z
c j

 

 

 
 

  
  
 

B E  (5.3.2) 

 
 
in which the term    

22
p1 1 j      represents the permittivity of the plasma 

medium, p. Eq. (5.3.2) can be thus, simplified as, 
 
 
 

p2( , ) ( , ) ,jr z r z
c

 B E  (5.3.3) 

 
 
where, o o ( 1 )c    is the speed of light in ms-1. 

 

For the E mode fields inside the dielectric quartz plate (L < z ≤ L + D) the plasma 

permittivity term,p in Eq. (5.3.3) is replaced by the dielectric constant,r. This yields a 

field equation set for two boundaries, i.e.,  
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(5.3.4) 
 

 
 
For the quartz plate used in the laboratory reactor, the dielectric constant, r 3.8. Next, 

by taking the curl of the equation set (5.3.4) and substituting the field Eq. (5.0.7), we 

obtain the simplified single term magnetic field expressions, 
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(5.3.5) 
 

 
 

For solving Eqs. (5.3.4) and (5.3.5) for only the electromagnetic field components 

and taking into account the assumption of azimuthal symmetry (boundary condition b)), 

we subsequently arrive at the following set of scalar equations: 
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and 
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 (5.3.8) 

 
for 0 z L  ; 
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and 
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rBjcE
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for L z L D   . 
 
 

5.3.1. Separation of Variables Method for the E mode Fields 

As with the H mode fields in Section 5.1.1, the separation of variables method is 

used to solve field Eqs. (5.3.6-5.3.11). The boundary conditions a)-e) in Section 5.3 

would yield the following relations for the component E mode fields:  

 

i. At the plane of the coil (z = L + D), the radial electric field is given by, 

 

p
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r
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aE

a r b
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 (5.3.12) 

 

ii. The tangential electric field and normal magnetic field between the quartz plate 

and plasma would be continuous, thus, 
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( , ) ( , ) ,r rE r L E r L   (5.3.13) 

iii. At the chamber boundaries, applying boundary condition d), we get, 

 

( , ) 0 ,zE b z   (5.3.14) 

       and  

( ,0) 0 .rE r   (5.3.15) 

 

For the axial electric field at the boundary between the plasma and the dielectric  plate, 

Ez (r, L), an additional relationship, 

 

p r( , ) ( , ) ,z zE r L E r L    (5.3.16) 

  

is also introduced. The electric fields Ez (r, L+) and Ez (r, L) given in Eq. (5.3.16) are 

discontinuous. This accounts for the abrupt change between media (plasma-dielectric 

plate) of the traversing electric fields. 

 

Solving for the E mode fields with the same steps shown in Section 5.1.1, we get, 
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and 
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Here, , q and s are the separation constants related by, 
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and 
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D, E and F are constants to be defined. 

 

If applying the boundary condition for the radial walls of the chamber (Eq. (5.3.14)) 

to Eqs. (5.3.17-5.3.21), i.e., ( , ) 0zE b z  , a valid solution can only be obtained 

if 0( ) 0J b  . Thus, it can be deduced that the separation constant,  would be a solution 

set consisting of the ratios of the eigen Bessel function roots,n and the chamber radius, 

i.e., 

 

 .n
n b


   (5.3.22) 
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Rewriting Eqs. (5.3.17-5.3.19) as a sum of the set of orthogonal eigen functions with the 

deduction given in Eq. (5.3.22), we subsequently get,  
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with, 
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5.3.2. Solving for E mode Boundary Constants 

The expressions for the solution of boundary constants Dn, En and Fn are determined 

by taking the field relationships given in Eqs. (5.3.13) and (5.3.16), i.e., 

 

cosh( ) exp( ) exp( )n n n n nn q L E s L F s LD     (5.3.28) 

 

and 

 

 r psinh( ) exp( ) exp( )  .n n nn n n n nq L E s L F sq D s L     (5.3.29) 

 

For the convenience of solving Dn, En and Fn using simultaneous equations, an 

additional constant, un is introduced: 
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With subsequent replacement in Eqs. (5.3.28) and (5.3.29), yield the solutions, 
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and  
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At the plane of the coil (L + D), the radial electric field, Er (r, L + D) can be expressed 

in terms of un as,  
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Applying the boundary conditions given by the piecewise continuous Eq. (5.3.12) 

from the chamber center to the coil radius, a and chamber radius, b, to Eq. (5.3.34), we 

get, 
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To obtain a calculable expression for un, Eq. (5.3.35) is first multiplied with r and 

differentiated. This yields the following equation, 
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Next, by multiplying both sides of the equation with 0 ( ) nJ r and integrating across 

the chamber radius  ≤ r ≤ b (with the orthogonal properties Sturm-Liouville problem), 

we eventually get, 
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which can be rewritten as, 
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Eq. (5.3.38) can be further simplified with Bessel function identity given in Eq. (5.1.52), 

yielding, 
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The analytical solutions and corresponding derived constants for the E mode fields 

for the ICP chamber (height, L; radius, b; coil radius, a and the coil-chamber distance, 

D) can be summarized as the following equation set: 

 

1
1

1
1

cosh( ) ( )                                                          

( , )       

 [ exp( ) exp( s )] ( )                                  

n n n
n

n n n n n
n

D q z J r

B r z

E s z F z J r



















 

  






 

 
   0 z L   
 
 
   
 

  L z L D    

(5.3.40a) 

 
 



127 

2

1
1p

2

1
1r

sinh( ) ( )                                                           

( , )       

[ exp( ) exp( )] ( )                                  

n n n n
n

r

n n n n n n
n

jc D q q z J r

E r z

jc E s z F s z s J r




















 

  






 

 
   0 z L   
 
 
   
 

  L z L D    

(5.3.40b) 

2

0
1p

2

0
1r

cosh( ) ( )                                                           

( , )       

[ exp( ) exp( )] ( )                                  

n n n n
n

z

n n n n n n
n

jc D q z J r

E r z

jc E s z F s z J r

 


 















 

   






 

 
   0 z L   
 
 
   
 

  L z L D    

(5.3.40c) 

 

p

2
2 2 =n nq

c


 
 
 

  (5.3.40d) ; r

2
2 2 =   n n c

s 
 

 
 
 

  (5.3.40e) 

 

 n
n b


   

 
(5.3.40f) 

 
 
 
 
 
 

 

0o 0
2

1
22

( )   2
( ) 

r

n n n
n

a

nju
c

J r drE
b J bs



 


 

  (5.3.40g) 

 

p

p rcosh( )sinh( ) sinh( )cosh( )
n n

n
n n n n n n

u s
D

s q L s D q q L s D


 



 (5.3.40h) 

 

p r
p

exp( )[ cosh( ) sinh( )]
2

n
n n n n n n

n

DE s L s q L q q L
s

 


    (5.3.40i) 

 

p r
p

exp( )[ cosh( ) sinh( )]
2

n
n n n n n n

n

DF s L s q L q q L
s

 


   (5.3.40j) 

 

 

 



128 

5.4. Power Balance Model 

The power balance model simulates the operating conditions of the ICP system (as 

observed in experiments) as the function of input power, coil current and electron 

density. The power balance model enables better understanding of the effects of input 

parameters on plasma characteristics including the prediction of transition points 

between the E and H modes of the plasma and the hysteresis effect in mode transition.  

In a low temperature discharge, the stability of an operating condition is theorized to be 

the points of equilibrium between the total absorbed electron power, Pabs and the 

electron power loss, Ploss (Cunge et al., 1999; El-Fayoumi, Jones & Turner, 1998; 

Turner & Lieberman, 1999); with both being non-linear functions of electron density. 

 

5.4.1. Absorbed Electron Power, Pabs 

The total absorbed electron power, Pabs is defined as the sum of the component 

powers that contribute to the generation and heating of plasma electrons. In this model, 

the H mode field power, Ph, the E mode field power, Pe and power from stochastic 

heating of plasma capacitive sheath, Pstoc is considered for Pabs (El-Fayoumi, Jones & 

Turner, 1998), i.e., 

 

abs h e stoc   .PP P P    (5.4.1) 

 

To calculate the absorbed power contributions from the H mode (Ph) and E mode 

(Pe) fields, the time-averaged Poynting vector, Pave , given by (Sadiku, 2001, p. 438), 

 

*
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is integrated over the induction coil area, dS = 2rẑ)dr at the coil surface, z = L + D. 

Here, B* and ẑ are the complex conjugate of the magnetic field and the unit vector for 

the axial coordinate, respectively. For Ph, the derivation is as follows: 
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Recognizing that E(r, L + D) = E(r, L + D)+ for an infinitesimally thin disc of 

uniform K and by replacing the complex conjugate of the radial magnetic field, Br* 

with the boundary K relationship given in Eq. (5.1.17), the expression for Ph can be 

shortened to, 

 

0h Re( ( , ) )  .
a

K rE rP L D dr     (5.4.4) 

 

Using the steps shown in (5.4.2), Pe can be similarly derived as, 

 

*
e 0

o

2Re ( , ) ( , )   .
a

rP rE r L D B r L D dr





 
    

 
  (5.4.5) 

 



130 

Here, *B  is the complex conjugate of the azimuthal magnetic field. By replacing the 

radial electric field, Er with the given boundary value, Eo in Eq. (5.3.12), Pe can be 

simplified to, 
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a
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
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At lower r.f. powers (in which capacitive coupling is dominant), the plasma sheath 

formed near the dielectric quartz plate is large enough such that significant source 

power (i.e., especially that of the inductive fields) is damped from being absorbed by 

the plasma electrons. To simulate this sheathing effect, a simplified, time-averaged 

capacitive sheath thickness, S is added to the coil-chamber distance, D when calculating 

Ph and Pe; making the effective distance for field power as, (L + D + S).  S is derived 

from Child's Law for a collisonless capacitive sheath which is shown in detail by 

Lieberman and Lichtenberg (2005). It is expressed as:  

 

3
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Js is represents the first harmonic component of current density through the sheath and 

is defined by,  
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where, Vs (r) is the first harmonic component of voltage across the plasma sheath at the 

coil-dielectric interface.  The subsequent harmonics for the current density and voltage 

are not considered due to the negligible contribution in derivation.  For the planar coil,  

 

 

p
s ( )   .

V
V r r

a
  (5.4.9) 

 

In addition to the power absorbed from the H mode and E mode fields, incident 

electrons may also be heated (via acceleration) by the fields of the oscillating capacitive 

plasma sheath. Power gained by the plasma electrons in this manner is known as 

stochastic power. Pstoc. For a single capacitive sheath in which the motion of oscillation 

is slower than the thermal velocity of the electrons, Pstoc is approximated by, 
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5.4.2. Electron Power Loss, Ploss 

Electron power loss in an ICP is primarily due to the energy dissipated for the 

sustenance and creation of ion-electron pairs in the discharge. In simplified derivations, 

this power dissipation, Ploss is directly proportional to the electron density, ne (i.e.,    

Ploss ∝ ne). However, in order to successfully simulate the operating conditions seen in a 

laboratory plasma system, non-linearities in the power loss curve have to be taken into 

consideration. For this simulation, the contribution of electron-electron collisions or 

Coulomb collisions is considered; with the transition from Druyvestyen to Maxwellian 

electron energy density function (EEDF) being representative of the non-linearity in the 

electron power loss. This equation for Ploss can be written as (Turner & Lieberman, 

1999),  
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where, uB is the Bohm velocity in ms1; given by,  

  

 
1/2

e Ar /Bu eT M  (5.4.12) 

 

with, MAr being the argon ion mass in kg and Te the electron temperature in eV. Aeff is 

the effective surface area for particle loss in the reactor in m2 and 

is the total energy 

lost per electron-ion pair created by the discharge in J. Both equations and terms 

required for calculation of Aeff and 

are obtained from Lieberman and Lichtenberg 

(2005) (pp. 81, 330-336). Aeff for a simple cylindrical chamber defined as, 

 

 eff l r 2  .A b bh Lh   (5.4.13) 

 

Here, hl and hr are the radial and axial plasma diffusion terms when approaching the 

sheath edge, i.e., 
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L, b and in are the effective chamber height in m, chamber radius in m and ion-neutral 

mean free path (given by Chapter 3, Section 3.1.2, Eq. (3.1.4)) in m, respectively.  

 



(calculated in terms of eV) is defined the sum of the collisional energy loss per 

ion-electron pair, c, the mean kinetic energy lost per ion,i  and the mean kinetic 

energy lost per electron, e, i.e.,   

 

T c i e . (eV)        (5.4.16) 

 

For argon plasma, the kinetic energy lost per ion and per electron is approximated by, i 

≈ 5.2Te and e ≈ 2Te, respectively. The collisional energy loss per ion-electron pair, c, 

itself comprises of the total collisional losses due to ionization, excitation and elastic 

scattering of electrons with neutrals. It is expressed as, 
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Here, iz (eV) is the argon ionization threshold energy and ex (12.14 eV) is 

the argon excitation threshold energy. Kiz, Kex and Kel are the argon ionization, 

excitation and elastic scattering rate constants (m3s-1) given respectively by, 

 

14 0.59
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14 0.33
ex e e2.48 10 exp( 12.78 )   ,K T T    (5.4.19) 
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and 

 

14 1.609 2 3
el e e e2.336 10 exp(0.0618ln( ) 0.1171ln( ) )   .K T T T    (5.4.20) 

 

respectively. The term (cD/cM)1/(1 + CD-M ne/ng) in Eq. (5.4.11) accounts for the non-linear 

effect of transition in electron energy distribution function (EEDF) from Druyvesteyn to 

Maxwellian when approaching higher electron densities. The exponential factor CD-M, 

adjusts for the experimental discrepancy (due to random and systematic errors) of the 

transition point between Druyvesteyn and Maxwellian EEDFs; which is concurrent with 

the transition of the discharge from E mode to H mode (Cunge, et al., 1999).  ng is the 

neutral gas density and is determined from Eq. (5.2.15). cD/cM is the ratio of the 

Druyvesteyn and Maxwellian electron-electron collision energy loss factors which is 

approximated as, 

 

cD

cM e

9.731.27    .
T
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A MATLAB code for solving the power balance model can be found in Appendix D. 
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CHAPTER 6: RESULTS AND DISCUSSION - SIMULATION 

 

6.0. Predictive Simulation of the Discharge Magnetic Fields 

The absolute magnitudes of the axial, |Bz| and radial, |Br| magnetic fields at 0.032 m 

distance above the dielectric plate for 0.03, 0.07 and 0.2 mbar argon pressure were 

simulated using the numerical H mode model detailed in Chapter 5, Section 5.2. Initial 

values for the model were calculated from the analytical H mode model derived in 

Chapter 5, Section 5.1. The required spatially resolved electron density, ne (r, z) and 

electron temperature, Te (r, z) were empirically fitted. The spatially resolved neutral gas 

temperature Tn (r, z), on the other hand, was heuristically fitted in simulation to give the 

closest agreement with measured fields at 0.032 m distance above the dielectric plate 

and at 180 W r. f. power. For comparison, the magnetic fields were also simulated using 

two spatially averaged neutral gas temperatures, Tn,ave; one set at room temperature (300 

K) and the other from AOES measurement.1   

 

6.0.1. Empirical Fitting of the Spatially Resolved Electron Density, ne (r, z) and 

Spatially Resolved Electron Temperature, Te (r, z) 

The spatially resolved electron density, ne (r, z) and the spatially resolved electron 

temperature, Te (r, z) required for Eqs. (5.2.10-5.2.13) and Eqs. (5.2.15-5.2.19) were 

empirically fitted from the measured Maxwellian values at 0.032, 0.060 and 0.114 m 

axial distance above the dielectric plate and at 0.03, 0.07 and 0.2 mbar argon pressure 

(Chapter 4, Figures 4.1a, 4.2a and 4.3a) using the following modified Gaussian 

distributions: 

 

 

 

 

 

 

 

1 Results in this section comprises of edited and revised material that has been published in Jayapalan and Chin (2014). The thesis 
author is the primary author and investigator for the paper. 
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Here, ne,peak is the fitted peak electron density in m-3, Te,peak is the fitted peak electron 

temperature in eV, r,ne is the radial fitting parameter for electron density, z,ne is the 

axial fitting parameter for electron density,r,Te is the radial fitting parameter for 

electron temperature and z,Te is the axial fitting parameter for electron temperature. r is 

the radial coordinate in m, z is the axial coordinate in m and L is the effective chamber 

height in m. The term (L  z) denotes the distance above the dielectric plate. The values 

and equations for r,ne, r,Tez,ne and z,Te fitted at the different argon pressures are 

listed in Appendix F, Tables F.1 and F.2. 

 

The resultant (i) empirical fitment at 0.032 m, 0.060 m and 0.114 m above the 

dielectric plate and the corresponding spatially resolved (ii) modeled 2D contour plot 

are shown in Figures 6.1 for ne (r, z) and Figure 6.2 for Te (r, z). The suffixes a, b and c 

in the figure labels (e.g., Figure 6.1a) indicate the argon pressures at 0.03, 0.07 and 0.2 

mbar, respectively. The modeled 2D contour plots adequately represent the trends 

observed in experimental measurement; with the ne (r, z) plots showing increased 

density within the coil region as pressure is increased. The Te (r, z) plots, on the other 

hand, depict tapered distribution trends with higher electron temperature near the coil 

region and close to the dielectric plate. 
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(i) 
 

 
(ii) 

 
Figure 6.1a: Empirically fitted 2D Gaussian based distribution of electron density ne (r, 
z) used for the magnetic field simulation at 0.03 mbar argon pressure and 180 W r. f. 
power. (i) Fitment with measured values at 0.032 m, 0.060 m and 0.114 m distance 
above the dielectric plate. (ii) Modeled 2D contour plot (labels in m-3). 
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(i) 
 

 
(ii) 

 
Figure 6.1b: Empirically fitted 2D Gaussian based distribution of electron density ne (r, 
z) used for the magnetic field simulation at 0.07 mbar argon pressure and 180 W r. f. 
power. (i) Fitment with measured values at 0.032 m, 0.060 m and 0.114 m distance 
above the dielectric plate. (ii) Modeled 2D contour plot (labels in m-3). 
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(i) 
 

 
(ii) 

 
Figure 6.1c: Empirically fitted 2D Gaussian based distribution of electron density ne (r, 
z) used for the magnetic field simulation at 0.2 mbar argon pressure and 180 W r. f. 
power. (i) Fitment with measured values at 0.032 m, 0.060 m and 0.114 m distance 
above the dielectric plate. (ii) Modeled 2D contour plot (labels in m-3). 
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(i) 
 

 
(ii) 

 
Figure 6.2a: Empirically fitted 2D Gaussian based distribution of electron temperature 
Te (r, z) used for the magnetic field simulation at 0.03 mbar argon pressure and 180 W r. 
f. power. (i) Fitment with measured values at 0.032 m, 0.060 m and 0.114 m distance 
above the dielectric plate. (ii) Modeled 2D contour plot (labels in eV). 
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(i) 
 

 
 

(ii) 
 

Figure 6.2b: Empirically fitted 2D Gaussian based distribution of electron temperature 
Te (r, z) used for the magnetic field simulation at 0.07 mbar argon pressure and 180 W r. 
f. power. (i) Fitment with measured values at 0.032 m, 0.060 m and 0.114 m distance 
above the dielectric plate. (ii) Modeled 2D contour plot (labels in eV). 
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(i) 
 

 
(ii) 

 
Figure 6.2c: Empirically fitted 2D Gaussian based distribution of electron temperature 
Te (r, z) used for the magnetic field simulation at 0.2 mbar argon pressure and 180 W r. 
f. power. (i) Fitment with measured values at 0.032 m, 0.060 m and 0.114 m distance 
above the dielectric plate. (ii) Modeled 2D contour plot (labels in eV). 
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6.0.2. Heuristic fitting of the Spatially Resolved Neutral Gas Temperature, Tn (r, z) 

Using the similar modified Gaussian function in Section 6.0.1, the spatially resolved 

neutral gas temperature, Tn (r, z) was heuristically fitted in simulation to values that give 

the closest agreement to the measured magnetic fields at 0.032 m axial distance above 

the dielectric plate and 180 W r. f. power. The function can be written as, 
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where, Tn,peak is the fitted peak neutral gas temperature in K, r,Tn is the radial fitting 

parameter for neutral gas temperature and z,Tn is the axial fitting parameter for neutral 

gas temperature. Values for r,Tn and z,Tn for different argon pressures simulated are 

given in Appendix F, Table F.3. 

 

The 2D contour plots of the heuristic Tn (r, z) fitments that gave the best agreement 

with measured values for 0.03, 0.07 and 0.2 mbar argon pressures are shown in Figures 

6.3 (a), 6.3 (b) and 6.3 (c), respectively. The fitted peak temperatures, Tn,peak were in the 

range of 1800-2300 K; values which may be considered high if compared with other 

reported works (Table 6.1). The distribution of Tn (r, z) was observed to peak at the 

center of the chamber above the dielectric plate; tapering off gradually at the axial 

direction and rapidly towards the edge of the coil at all pressures.  Heating of the 

neutrals (i.e., Tn (r, z) > 300 K) for all pressures was mostly confined within the coil 

region, with increase in distribution temperature as argon pressure was increased.  
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(a) 
 

 
 

(b) 
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Figure 6.3, continued… 
 

 
 

(c) 
 

Figure 6.3: Heuristically fitted 2D contour plot for spatially resolved neutral gas 
temperature, Tn (r, z) at (a) 0.03 mbar (b) 0.07 mbar and (c) 0.2 mbar argon pressure. 
Labeled temperatures are in K.  
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Table 6.1: Comparison of parameters of present setup with other reported works of 
similar ICPs. 
 

Parameters Present 
Setup 

Ostrikov 
et al. 

(2002) 

Hebner 
(1996) 

Sadeghi 
et al, 

(1997) 

Shimada 
et al. 

(2007, 
2008) 

Li et al. 
(2011) 

Pressure P (mbar) 0.07 0.04 0.04 0.05 0.01 0.07 

ne (m3) 1017 1017 1017 - 1017 1017 

Te (eV) 2.0-3.1 2.0-2.1 - - 2.5 - 

Measured Tn (K) 630 543 1100 650 - 1200 
Radial range of Tn 

(K) 
300-
1900 - - - 600-900 - 

Coil radius, a (m) 
*helical coil 0.045 0.160 0.055 *0.050 *0.055 0.104 

Chamber inner 
radius, b (m) 0.145 0.160 0.065 0.075 0.175 0.104 

Axial distance from 
dielectric plate,      

(L  z) (m) 
0.032 0.060 0.016 - 0.160 - 

Power (W) 180 612.4 200 400 2000 200 

Surface power 
density, r. f. power / 

coil area (Wm2) 
2.82 0.76 2.10 - - 0.59 

r. f. Frequency 
(MHz) 13.56 0.46 13.56 13.56 13.56 13.56 

 

These observations can be justified by the following points: 

i. The surface power density (2.82 Wm-2) is higher for the present setup as 

compared to the other works due to smaller coil dimensions, i.e., coil radius ~ 

0.045 m whereas, chamber radius ~ 0.145 m. This translates to more 

concentrated heating of the plasma particles by the source power over a smaller 

chamber volume, which subsequently results in increased localized 

thermalization of the neutral particles. Other comparative systems have larger 

coils (at equal diameters with the chamber) which would attribute to a lower 

surface power density at the same power. Thus, the power deposited by the 
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inductive coils into these systems would be distributed in a wider area and the 

consequential effect of neutral gas heating would be less. 

 

ii. The trend of the spatial distributions obtained (i.e., in which the neutral gas is the 

hottest at the center above the dielectric plate and tapers off rapidly at the axial 

direction and towards the edge of the coil) is valid and has been reported in 

measurement by Shimada, Tynan and Cattolica, 2007. 

 

iii. The increase in neutral gas heating with argon pressure is attributed to increased 

r. f. power coupling from the source coil to the plasma particles with pressure. 

To demonstrate this, it would be convenient to first tabulate the relevant power 

balance parameters; derived from the theoretical equations in Chapter 5, 

Sections 5.2.1 and 5.4. The effective collision frequency, veff and the total 

absorbed electron power, Pabs were calculated for the fitted argon pressures, P 

using the measured peak coil current, Ip, the measured average electron density, 

ne,coil and electron temperature, Te,coil across the coil radius (for 180 W input r.f. 

power) and the set peak neutral gas temperature, Tn,peak   (Table 6.2). 

 

Table 6.2: Calculated values for effective collision frequency, veff and total 
absorbed electron power, Pabs with measured average coil electron density, ne,coil, 
average coil electron temperature, Te,coil and peak coil current, Ip (for 180 W 
input r.f. power) and set peak neutral gas temperature, Tn,peak at 0.03, 0.07 and 
0.2 mbar argon pressure. 
 

Argon 
Pressure,   
P (mbar) 

ne, coil (m-3) Te, coil (eV) Ip (A) Tn,peak (K) veff (s-1) Pabs (W) 

0.03 6.95 × 1016 3.68 14.8 1800 5.46 × 107 79.9 

0.07 2.15 × 1017 2.97 14.2 1900 8.35 × 107 118.2 

0.2 3.31 × 1017 2.78 13.8 2300 1.29 × 108 145.0 
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With the data presented in Table 6.2, the trends of Pabs, ne,coil and veffwith argon 

pressure are plotted and shown in Figure 6.4.  

 
 

 (a) 
 

 
 

     (b) 
 

Figure 6.4: Calculated absorbed electron power, Pabs with (a) average measured 
electron density within the coil radius, ne,coil (m-3) and (b) calculated effective 
collision frequency, veff  versus argon pressure. 
 
 

From Figure 6.4, it is observed that Pabs increases non-linearly with argon 

pressure, i.e., from 79.9 W at 0.03 mbar to 145.0 W at 0.2 mbar. With increase 
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in Pabs, ne,coil also becomes higher (Figure 6.4 (a)). Higher ne,coil at higher 

pressures would mean that there is higher number of ions available within the 

coil region for heating by the oscillating r. f. fields (Shimada, Tynan & Cattolica, 

2008). These accelerated ions are highly energized and can reach very high 

temperatures (Hebner, 1996). Since effective collision frequency also increases 

with pressure (Figure 6.4 (b)), more of these highly energized ions would be 

converted into thermalized neutrals via de-excitation with electrons and elastic 

or charge transfer collisions with other neutrals (Lieberman & Lichtenberg, 

2005). Hence, the increase in formation thermalized neutrals would contribute to 

the increase in neutral gas heating with pressure; as seen in fitment. 

 

6.0.3. Spatially averaged neutral gas temperatures, Tn,ave 

 
For comparison with simulations using Tn(r, z), the magnetic fields were also 

calculated with spatially averaged neutral gas temperature values, Tn,ave. Tn,ave was set at 

both room temperature (Tn,ave = 300 K) and measured temperature. The measured values 

used for simulation were 380, 630 and 800 K for 0.03, 0.07 and 0.2 mbar argon 

pressure, respectively; corresponding to the results at 0.032 m axial distance obtained 

from Chapter 4, Section 4.3.1, Figure 4.10. 

 

6.0.4. Comparison of Measured and Simulated Magnetic Fields 

 
Measured axial and radial magnetic fields are compared to simulated values for 0.03, 

0.07 and 0.2 mbar argon pressures at 0.032 m above the dielectric plate as shown in 

Figures 6.5a, 6.5b and 6.5c. At 180 W r. f. power, the measured peak coil currents, Ip 

were 14.4 A for 0.03 mbar, 14.2 A for 0.07 mbar and 13.4 A for 0.2 mbar; values 

that were used for simulation.  
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(i) 
 

 
 

(ii)  
 

Figure 6.5a: Measured and simulated (i) axial magnetic fields, |Re(Bz)| and (ii) radial 
magnetic fields, |Re(Br)| versus radial distance, R for 0.03 mbar argon pressure at 0.032 
m distance above the dielectric plate. R.f. input power was 180 W and Ip=14.4 A. 
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(i) 
 

 
 

(ii)  
 

Figure 6.5b: Measured and simulated (i) axial magnetic fields, |Re(Bz)| and (ii) radial 
magnetic fields, |Re(Br)| versus radial distance, R for 0.07 mbar argon pressure at 0.032 
m distance above the dielectric plate. R.f. input power was 180 W and Ip=14.2 A. 
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(i) 
 

 
 

(ii)  
 

Figure 6.5c: Measured and simulated (i) axial magnetic fields, |Re(Bz)| and (ii) radial 
magnetic fields, |Re(Br)| versus radial distance, R for 0.2 mbar argon pressure at 0.032 
m distance above the dielectric plate. R.f. input power was 180 W and Ip=13.4 A. 
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The simulated fields were computed using neutral gas temperature that was spatially 

resolved, Tn (r, z) and its spatially averaged values Tn,ave at room and measured 

temperature. Suppression of the magnetic fields (especially at the centre axis of the 

chamber, i.e., R 0 m) is seen to progressively increase with chamber pressure and is 

especially prominent at 0.07 mbar and 0.2 mbar. This suppression trend is only 

sufficiently matched by the simulation with the spatially resolved neutral gas 

temperature, Tn (r, z) and not the spatially averaged neutral temperatures, Tn,ave.  

 

The mechanism of the suppression of the magnetic fields can be explained as 

follows. When the discharge is initiated, inductive coupling would result in ionization of 

the argon neutrals to form ion-electron pairs. These ion-electron pairs move freely in the 

plasma region and may be thermalized under the influence of the bulk ambipolar 

electrostatic field (Shimada, Tynan & Cattolica, 2008). Further thermalization of the 

charged particles also occurs via Coulomb collisions and stochastic heating by the 

oscillating capacitive sheath (Gudmunsson & Lieberman, 1998). Ions thermalized by 

these interactions (reaching temperatures of 1000-4000 K as reported by Hebner, 1996) 

will subsequently undergo collisional processes with electrons via de-excitation and 

elastic or charge transfer collisions with other neutrals, forming thermalized neutrals 

that increase the neutral temperature in the vicinity. These thermalized neutrals, which 

at the beginning, are formed mostly at the center of the discharge region would create a 

pressure and temperature gradient across the coil radius that would lead to convection of 

these particles towards the edge of the coil.  

 
As a result of this convection, a depletion of neutral gas density will start to occur at 

the central region of the plasma. As this depletion profile grows, the mean free path of 

the plasma particles (including the neutrals) is increased, thus, allowing for more highly 

energetic particles to exist (Fruchtman et al., 2005). Heating of these background 
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particles would also generate a localized environment whereby less energy is required to 

sustain ion-electron pairs; increasing the utilization of the magnetic fields by the plasma 

(Turner & Lieberman, 1999). The depletion of neutrals at the centre of the plasma 

region would continue until an equilibrium state is formed between the number of 

available neutrals and ionization of new plasma electrons.  

 

At higher pressures, this equilibrium state occurs at higher electron densities due to 

the higher number of neutrals, thus, resulting in higher utilization of the incident fields  

with increased suppression (Figure 6.5c). Consequently, the increased utilization of the 

magnetic fields in the centre reduces the skin depth in the region of effect, i.e., the coil 

radius. The comparative effect of neutral gas heating on the magnetic fields can be seen 

in Figures 6.5 whereby in the case of 300 K, the simulated fields are much higher than 

the experimentally measured values. This suggests that part of the energy coupled into 

the plasma particles has been distributed to the neutrals and hence, it is inferred that 

neutral gas heating plays an important role in determining the skin depth of the 

magnetic fields. Knowledge of the non-uniform distribution of neutral gas temperature 

across the chamber radius is also essential for accurate deduction of field suppression 

trends.   
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6.1. Predictive Simulation of H mode Transition and Maintenance Currents 

The peak E to H mode transition current (H mode transition current), Itr and H to E 

mode transition current (H mode maintenance current), Imt were simulated with the 

power balance model detailed in Chapter 5, Section 5.4. A 3D power evolution plot 

detailing the effects of hysteresis in the discharge is also discussed.1  

 

6.1.1. E-H mode Transition Dynamics and Hysteresis Effects in Discharge 

When the absorbed electron power, Pabs and electron power loss, Ploss parameters are 

plotted against electron density, they intersect at certain points; in which both powers 

are at equilibrium (Pabs = Ploss). These intersecting points represent the plausible 

operating states of the system observable in experiments. At lower electron densities, 

the plasma is predominantly coupled by E mode power, Pe and is at E mode state, 

whereas, at higher electron densities, the plasma is predominantly coupled by H mode 

power, Ph and is at H mode state. Plausibility of these operating points also depends on 

the condition of stability in which the rate of change of absorbed power with electron 

density must be less than rate of change of power loss with electron density, i.e., 

Pabs/ne<Ploss/ne (Ostrikov et al., 2002 and Shamrai, Pavlenko & Taranov, 1997). An 

illustrative of this is seen in Figure 6.6, where points I and III represent the stable and 

observable H and E mode operations, respectively with Pabs/ne < Ploss/ne and       

Pabs = Ploss conditions fulfilled. Point II represents an unstable state which is not 

observable experimentally. 

 

 

 

 

 
1 Results in this section comprises of edited and revised material that has been published in Jayapalan and Chin (2012). The thesis 
author is the primary author and investigator for the paper. 
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Figure 6.6: Simulated electron absorbed power and electron power loss versus electron 
density for 15 A peak r.f. coil current at 0.02 mbar argon pressure. I, II, and III 
represent the E mode, unstable operation, and H mode, respectively. Electron 
temperature, Te, neutral gas temperature, Tn, and the factor CD-M were set at 4.2 eV,   
433 K and 6.6 × 104, respectively. 
 

In order to determine the H mode transition current and H mode maintenance 

current, it is important to have an understanding on the mechanism of hysteresis in the 

ICP system. Taking the experimentally fitted case of 0.02 mbar argon pressure as an 

example, a 3D plot of electron power (absorbed and loss) versus peak coil current and 

electron density is first visualized (Figure 6.7). 
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The magenta (lighter) surface of the 3D plot represents the evolution of absorbed 

electron power, Pabs whereas dark blue (darker) surface represents the evolution of 

electron power loss, Ploss. As aforementioned, the intersections between the two surfaces 

represent the working path of the system. In a typical experiment, the input coil current 

starts at zero. As the input coil current (or r.f. power) is increased, the operating point of 

the system moves to point 1 (Figures 6.7 and 6.8).  

 

 
  

Figure 6.8: The simulated absorbed electron power (solid line) and power loss (dashed 
line) curves depicting (a) the current at which either E mode (13 A) or H mode 
operation (18 A) alone occurs. 
 

 
At this point, the low density E mode plasma is observed (E mode was ignited before 

point 1 at input coil current of 5.2 ± 0.2 A). A further increase in current would shift the 

operating point of the system to point 2. Point 2 is the threshold at which any further 

increase in coil current would trigger a transition from E to H mode, marking the H 

mode transition current (Figures 6.7 and 6.9).  
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(b) 

 
Figure 6.9: The simulated absorbed electron power (solid line) and power loss (dashed 
line) curves depicting the threshold currents for E to H (16.41 A) and H to E (14.19 A) 
mode transitions. 
 
 
From point 2, the system jumps to point 3 which is in H mode. Point 3 is determined 

experimentally and is affected by the sensitivity and accuracy of the impedance 

matching circuit (El-Fayoumi, Jones & Turner, 1998, Cunge, et al., 1999 and Turner & 

Lieberman, 1999). Increase in coil current at point 3 would bring system operation to 

point 4 (Figures 6.7 and 6.8) which is higher density plasma in H mode. When coil 

current is decreased from point 4, the system follows the working H mode path until 

point 5. Point 5 is the threshold at which a further decrease would trigger a transition to 

E mode (Figures 6.7 and 6.9). This threshold point is measured as the minimum or 

maintenance current for H mode plasma. The disparity between transition and 

maintenance currents (as observed in the plot) denotes the effect of hysteresis in the 

working path of the system. From point 5, a decrease in coil current shifts the system 

operation to point 6 which is in E mode.  
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It is noted that the experimentally measured H mode transition and maintenance 

currents for 0.02 mbar argon pressure are 16.4 ± 0.1 A and 14.3 ± 0.3 A, respectively. 

These values are consistent with the simulated values (16.41 A and 14.19 A) presented 

in this example. 

 

6.1.2. Comparison of Measured H mode Transition Current, Itr and H mode 

Maintenance Current, Imt with Simulation 

The measured H mode transition current, Itr and H mode maintenance current, Imt for 

the argon pressure range of 0.02-0.3 mbar are compared with values calculated from the 

power balance model in Chapter 5, Section 5.4 (Figure 6.10). The plasma parameters 

used in simulation of the (a) Itr curve are Te = 4.0 eV, Tn = 583 K and CD-M = 8.8×104 

whereas, for the (b) Imt curve, the parameters are Te = 3.0 eV, Tn = 623 K and              

CD-M = 3.0 × 105. Values for electron temperature and neutral gas temperature for both 

curves were fitted in simulation within the range measured at 0.032 m (nearest 

measured axial distance above the coil); i.e., (1.7 ± 0.1)-(3.8 ± 0.2) eV for Te and     

(350 ± 30)-(810 ± 20) K for Tn. The values for CD-M, on the other hand, were 

heuristically chosen to be in the 104-105 range such that the EEDF transition occurs near 

the electron densities, ne ≈ 1015-1016 m-3; consistent with reported values of mode 

transition point for the same system (Lim, 2010). For further comparison, simulation at 

room temperature (Tn = 300 K) for both Itr and Imt curves are also shown. 
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(a) 
 

 

(b) 
 

Figure 6.10: Simulated (Sim.) and measured (Exp.) (a) H mode transition currents, Itr 
(b) H mode maintenance currents, Imt at 0.02-0.3 mbar argon pressure range.  
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In Figure 6.10 (a), it is observed that the simulated Itr curve is well matched to the 

measured values when neutral gas heating is considered. At room temperature, however, 

the Itr curve does not match. Measured Itr values are higher than simulated Itr values at 

room temperature at lower filling pressures of <0.06 mbar; whereas, at higher filling 

pressures of >0.06 mbar, the measured Itr, values are lower. At lower filling pressure, 

thermalization of the neutrals diffuses the particles in the plasma in accordance to ideal 

gas law (O' Connell et al., 2008, Shimada, Tynan & Cattolica, 2008). Since, the plasma 

is diffused, higher input current is required to generate sufficient plasma ionization and 

reach threshold electron density to attain H mode (Fruchtman, 2008). At higher filling 

pressures, the neutral gas density of the plasma has become high enough such that 

thermalization of the neutral particles increases the power transfer efficiency by 

assisting plasma collisional processes (Lieberman & Lichtenberg, 2005 and Suzuki et 

al., 1998). This reduces the input Itr required to sustain H mode. 

 

In Figure 6.10 (b), the simulated Imt curve with neutral gas heating is well matched to 

the measured values at the range of and 0.02-0.1 mbar. Discrepancy between the 

measured Imt and simulated Imt curves at room temperature can also be explained in the 

same way as the Itr curve; with thermalization of the neutrals in experiment diffusing the 

plasma at lower filling pressures (<0.09 mbar) and assisting in plasma collision 

processes at higher filling pressures (>0.09 mbar). The higher pressure region at which 

diffusion of the particles influence Imt (~0.09 mbar) as compared to Itr (~0.06 mbar) is 

due to the lower plasma density at which the H to E mode transition occurs. 

 

The increasing deviation at higher pressures of 0.2-0.3 mbar between the simulated 

and experimental Imt curves is suspected to be due to the non-linear effects of multistep 

ionization which is yet to be included in the simulation. At higher pressures, complex 
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ionization processes occurring from intermediary or metastable excitation states become 

more significant such that the total energy required to sustain the ion-electron pairs 

created in the discharge is further reduced, i.e., lower electron power loss (Turner & 

Lieberman, 1999). This effect, in part, explains the ability of the H mode discharge in 

experiment to be maintained at a much lower current than the values obtained by 

simulation. 
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CHAPTER 7: SUMMARY AND CONCLUSION 

 

7.0. Overview 

In this study, a 13.56 MHz, 6 turn planar coil, argon inductively coupled plasma 

(ICP) was characterized with a combination of experimental diagnostic techniques and 

predictive simulation; from which the effects of neutral gas heating was observed. 

Summary of the results obtained are given in following sections along with key findings 

and suggestions for future work. 

 

7.1. Experimental Characterization 

Experimental characterization was done using several diagnostic probes; with each 

measuring different properties of the plasma. Electrical properties such as the radially 

resolved electron density, ne, the radially resolved electron temperature, Te and the 

electron energy distribution function, EEDF at the chamber center (R = 0) were 

measured using a r.f. compensated Langmuir probe. The spatially resolved absolute 

axial magnetic fields, |Bz| and absolute radial magnetic fields, |Br| were measured using 

two electrostatically compensated magnetic probes at the respective orientations. The 

peak H mode transition current, Itr and peak H mode maintenance peak current, Imt were 

measured using a current probe attached to the source coil. The neutral gas temperature, 

Tn of the discharge was measured via the AOES technique. 

 

7.1.1. Measurement of Electron Density, ne and Electron Temperature, Te and 

Electron Energy Distribution Function (EEDF) 

The radially resolved electron density, ne and electron temperature, Te of the 

discharge were measured at 0.03, 0.07 and 0.2 mbar argon pressure for 0.032 m, 0.060 

and 0.114 axial distances above the dielectric plate and calculated using Maxwellian and 
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EEDF methods. R.f. power was set at 180 W.  Higher values of ne and lower values of Te 

were obtained using the Maxwellian method in comparison to the EEDF method. With 

increase in argon pressure for all measured radial positions, ne increases and Te decreases. 

The range of electron densities obtained were (0.065 ± 0.004)-(4.0 ± 0.6) × 1017 m-3 for the 

Maxwellian method and (0.052 ± 0.004)-(3.5 ± 0.5) × 1017 m-3 for the EEDF method. 

The range of values measured for Te, on the other hand, were (1.38 ± 0.08)-(3.8 ± 0.2) eV 

using the Maxwellian method and (1.78 ± 0.05)-(4.8 ± 0.3) eV using the EEDF method. 

Several important observations were made:  

 

i. As argon pressure was increased, the discharge becomes increasingly denser 

within the coil region (R < 0.05 m). This was attributed to the increase in plasma 

collision frequency with argon particles, producing more ionizing collisions in 

the region where the r.f. source field was the strongest. This was further validated 

by the simulation results for the total absorbed electron power, Pabs (Chapter 6, 

Section 6.0.2, Table 6.2); whereby, for measured parameters at 180 W input r.f. 

power, Pabs increases with argon pressure.  

 

ii. ne at 0.2 mbar did not decrease (as expected) with reduced proximity from the 

source r.f. field. Instead, ne within the coil region was highest at 0.060 m axial 

distance above the dielectric plate. The observed displacement between power 

deposition of the source r.f. field and region of maximum ne was likely to be from 

enhanced plasma transport due to neutral gas heating; with particles forming a 

steady state flux due to temperature gradient and travelling away from the source 

coil and towards the chamber walls.  
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iii. The radial distribution of ne at 0.2 mbar argon pressure for 0.032 m axial distance 

above the dielectric plate (close to the source) was higher at the edge of the coil 

region and did not follow the other distribution trends which peaked at R = 0. 

This was also attributed to enhanced plasma transport due to neutral gas heating; 

as plasma particles were pushed away from the discharge center towards the edge 

of the coil region due to temperature gradient. 

 

iv. Te distribution for 0.2 mbar argon pressure showed increased number of higher 

energy electrons near the coil region. This supports the notion of neutral gas 

heating, which would cause the plasma collision frequency in the vicinity of 

effect to be comparatively less than the plasma collision frequency of the 

surrounding area and thus, allow for higher accumulation of electron energy via 

increased free mean path. 

 

As with ne and Te, the EEDFs at the chamber center (R 0) at 0.03, 0.07 and 0.2 

mbar argon pressure for 0.032 m, 0.060 and 0.114 axial distances above the dielectric 

plate were also calculated and parametrically fitted (as the electron energy probability 

function or EEPF) with defined Maxwellian or Druyvestyen functions (Table 7.1). 
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Table 7.1: EEPF fitment trends at 0.03, 0.07 and 0.2 mbar argon pressure for 0.032 m, 
0.060 m and 0.114 m axial distances above the dielectric plate. 
 

EEPF Fitment Trend 
Argon Pressure, P (mbar) 

0.03 0.07 0.2 
A

xi
al

 D
is

ta
nc

e 
A

bo
ve

 
D

ie
le

ct
ric

 P
la

te
, (

L 

z)

 (m
) 

0.032 Maxwellian Maxwellian Maxwellian 

0.060 Druyvestyen Maxwellian Druyvestyen 

0.114 Maxwellian Maxwellian Druyvestyen 

 

Although the exact EEPFs had more complex distributions, fitment showed more 

Maxwellian-like trends. This supports the approximation of Maxwellian distribution for 

calculations in predictive simulation. 

 

7.1.2. Measurement of Absolute Axial Magnetic Field, |Bz| and Radial Magnetic 

Field, |Br|  

The radially resolved absolute magnitudes of the axial magnetic field, |Bz|  and radial 

magnetic field, |Br| were measured at evacuated condition (without plasma) (<10-3 mbar) 

and at 0.03 mbar, 0.07 mbar and 0.2 mbar argon pressure for 0.032 m and 0.060 m axial 

distances above the dielectric plate. R.f. power was set at 180 W. Measured axial and 

radial magnetic fields under evacuated condition exhibited the highest magnitudes with 

(1.507 ± 0.005) × 10-4 T and (7.67 ± 0.01) × 10-5 T, respectively for 0.032 m and     

(3.90 ± 0.02) × 10-5 T and (2.30 ± 0.03) × 10-5 T, respectively for 0.060 m.  

 

|Bz| and |Br| for both axial distances above the dielectric plate were increasingly 

suppressed as pressure was increased; indicating increased utilization of the magnetic 

fields by the plasma. Within the coil region (R < 0.05 m), where both |Bz| and |Br| were 
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most utilized, a trough was formed with increase in pressure. This observation was 

consistent with the distribution trends seen in ne.  

 

7.1.3. Measurement of Peak H Mode Transition, Itr and H Mode Maintenance 

Currents, Imt 

H mode transition current (E to H mode transition current), Itr and H mode 

maintenance current (H to E mode transition current), Imt was measured for the argon 

pressure range of 0.02-0.3 mbar. At 0.02 mbar, Itr = (16.4 ± 0.2) A was required to 

initiate a transition from E mode to H mode. As pressure was increased, Itr decreased to 

a minimum value of (13.5 ± 0.5) A at 0.08 mbar before subsequently increasing to  

(15.5 ± 0.2) A at 0.3 mbar. This is attributed to the power coupling of source fields 

which has been shown to be most efficient when eff≈ 1; found at the simulated 

pressures of 0.07-0.08 mbar. For Imt at 0.02 mbar, (14.3 ± 0.2) A was required to 

maintain the discharge. As pressure was increased, Imt decreases consistently to (8.3 ± 

0.1) A at 0.3 mbar. The effect of hysteresis in the working path of the system with 

pressure was seen from the increasing deviation between Itr and Imt values. The lower Imt 

requirement at higher pressures was explained by the following points:  

 

i. At higher discharge pressures (with higher electron densities), multi-step 

ionization becomes the primary process of conversion of absorbed excited state 

energy over radiative de-excitation processes. Thus, more energy from the 

excitation collisions that occur contributes toward the ionization of particles, i.e., 

lower Imt. 

 

ii. Increase in plasma collision frequency with pressure increases the number of 

ionizing collisions, allowing for lower Imt.  
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iii. From results in AOES measurement, the neutral gas temperature of the discharge 

was also seen to increase with pressure. With the background particles having 

higher kinetic energy, they were more readily ionized in collisional processes. 

This would result in lower Imt with pressure.  

 

7.1.4. Measurement of Neutral Gas Temperature, Tn 

The neutral gas temperature, Tn was measured at 0.03, 0.05, 0.07, 0.1 and 0.2 mbar 

Ar/N2 pressures for increasing and decreasing r.f. power steps at 0.032 m and 0.060 m 

axial distance above the dielectric plate. Changes in r.f. power and distances above the 

dielectric plate showed little variation in Tn. Significant increase in Tn, however, was 

observed when pressure was increased. These trends were explained by the following 

points: 

i. As Ar/N2 pressure is increased at a fixed input r.f. power, more energy is coupled 

into the plasma; thus, increasing electron density and ion density. With more 

charged and neutral particles within the same volume, the collision frequency of 

the plasma particles increases. Transfer of kinetic energy from charged particles 

to neutral particles is increased via charge transfer collision of energetic ions with 

neutrals and de-excitation collision of ions by electrons; raising the number of 

thermalized neutrals within the plasma and increasing Tn. 

 

ii. With collisional processes limited by collision frequency, variation of r.f. power 

does not significantly affect Tn; owing to the limited energy transfer from 

charged particles to the neutrals. 

 

iii. The convection of thermalized neutrals would mean that the particles would also 

be distributed to regions further from the source. Thus, at the measured axial 
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distances of 0.032 m and 0.060 m, Tn does not show significant variation beyond 

measurement discrepancy. 

 

Results for Tn are summarized in Table 7.2.  

 
Table 7.2: Measured maximum and minimum Tn for increasing and decreasing r.f. 
power steps and different axial distances above the dielectric plate.  
 

Axial Distance 
Above the 

Dielectric Plate,   
(L  z) (m) 

R.f.  Power Step 
During 

Measurement  

Neutral Gas Temperature (K), Tn @ Ar/N2 
Pressure (mbar) 

Minimum Maximum 

0.032 
Increasing (350 ± 30) @ 0.03 (800 ± 20) @ 0.2 

Decreasing (380 ± 10) @ 0.03 (810 ± 20) @ 0.2 

0.060 
Increasing (430 ± 10) @ 0.03 (840 ± 30) @ 0.2 

Decreasing (420 ± 20) @ 0.03 (830 ± 30) @ 0.2 
 

7.2. Theoretical Characterization 

For theoretical characterization, two predictive models (written in MATLAB) were 

used. The first predictive model was an electromagnetic field model that simulates the H 

mode wave magnetic fields of the coil at different discharge conditions. The spatially 

resolved electron density, ne (r, z) and electron temperature, Te (r, z) required for 

simulation were empirically fitted from experimental data. Simulations were run using 

various neutral gas temperature values including room temperature (300 K), uniform 

elevated temperatures (from measured results) and spatially resolved heuristically fitted 

temperature distributions. The second predictive model was a power deposition model 

that simulates the peak transition and maintenance H mode currents from the averaged 

electron density, electron temperature and neutral gas temperature near the plane of the 

coil. The H mode transition and maintenance currents were simulated at room 

temperature and at elevated neutral gas temperature. The effect of hysteresis in mode 
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transition of the discharge was also demonstrated using an experimentally fitted 3D 

power evolution plot.  

 

7.2.1. Predictive Simulation of the Discharge Magnetic Fields 

The axial and radial magnetic field distributions in a 13.56 MHz 6-turn planar coil 

ICP reactor were predictively simulated for 0.03, 0.07, and 0.2 mbar argon pressures 

with the consideration of the effect of neutral gas heating. The spatially resolved 

electron densities, ne (r, z) and electron temperatures, Te (r, z) required for simulation 

were empirically fitted using 2D Gaussian based distributions from experimental data. 

Neutral heating (and depletion) were simulated by using spatially resolved neutral gas 

temperatures, Tn (r, z) which were heuristically fitted, modified Gaussian distributions. 

As a reference, simulation with spatially averaged neutral gas temperature, Tn,ave 

(including room temperature at 300 K) was also done for each pressure. The 

experimental fields were more sufficiently matched with the simulation using spatially 

resolved Tn (r, z) as compared to the simulation using uniform Tn,ave. This shows that 

neutral gas heating (and in effect, neutral gas depletion) plays an important role in 

determining the skin depth of the magnetic fields. Heating of the neutrals via ion-

electron and ion-neutral collisional processes with the subsequent effect of neutral gas 

depletion results in a localized environment whereby less energy was required to sustain 

ion-electron pairs. This increases the utilization of the incident magnetic fields by the 

plasma (especially within the coil radius) and thus, reduces the skin depth of the fields. 

 

7.2.2. Predictive Simulation of H mode Transition and Maintenance Currents 

Hysteresis occurring in the ICP plasma system was visualized via an experimentally 

matched, 3D power evolution surface plotted at 0.02 mbar argon pressure. Also, the 

simulation of H mode transition and maintenance currents in a 13.56 MHz laboratory 6 
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turn planar coil ICP reactor was done at the low pressure argon discharge range of  

0.02-0.3 mbar for elevated and ambient neutral gas temperature. Experimental results 

were in good agreement for the range of 0.02-0.3 mbar for transition currents and 0.02-

0.1 mbar for maintenance currents for the simulation that included neutral gas heating. 

The mismatch of the maintenance currents at 0.2 and 0.3 mbar was likely to be due to 

the non-linear effects of multistep ionization. When using ambient temperature, the 

simulations were poorly matched. It can be thus concluded that neutral gas heating plays 

a non-negligible role in determining the E to H and H to E mode transition points (i.e., 

H mode transition and maintenance currents) in an r.f. ICP system. 

 

7.3. Suggestions for Future Work 

As the effects of neutral gas heating in an ICP discharge have been established, 

further improvements and follow-up studies can be made for better understanding of the 

discharge mechanism in theory and application: 

 

(a) Spatially resolved measurement of neutral gas temperature, Tn (r, z) 

In the present study, the AOES technique was applied to deduce the neutral gas 

temperature, Tn and the spatially resolved temperature, Tn (r, z) had to be 

heuristically deduced. In future works, more innovative measurement methods can 

be developed and utilized for in situ radial measurement of Tn, e.g., with the 

incorporation of appropriate lenses that focus emissions from only the point of 

measurement or the development of specialized, inert resistance thermometers with 

adequate protection from the discharge oxidation to make localized measurements.  
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(b) Theoretical calculation of spatially resolved neutral gas temperature, Tn (r, z) from 

the magnetic fields 

With established methods and probes for measuring the magnetic fields and phases 

in the discharge, a novel theoretical derivation can be developed to back-calculate in 

situ Tn values at different radial positions from measured magnetic fields with the 

existing field simulation code. 

 

(c) Improvement of power balance model by inclusion of multistep ionization 

The power balance model in Chapter 5, Section 5.4 can be improved by the 

inclusion of multistep ionization effect into the power loss equation. This may help 

improve predictive simulation of H mode maintenance current, Imt at higher argon 

pressures; which was deviated in the present model. 

 

(d) Particle in Cell-Monte Carlo collisions (PIC-MCC) modeling of ICP particles with 

elevated neutral gas temperature profiles 

Expansion of the present numerical field model into a self-contained PIC-MCC 

model would be the next step of development for simulation of ICP. The PIC-MCC 

model directly tracks the motion of a fixed amount of plasma particles in the reactor 

space for a set period of time. The particles are subject to interaction with the source 

field and from random (Monte Carlo) collision processes with other particles. The 

dynamics of the discharge particles with time at elevated neutral gas temperatures 

can be more thoroughly observed and may give interesting findings. 

  

(e) Development of material processing aspect in simulation for applications 

Another aspect of simulation that can be developed from the present model is 

discharge interaction with substrate surfaces for material deposition or etching 
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applications. Together with PIC-MCC, modeling of chemical and kinetic interaction 

of plasma particles with substrate structures at elevated temperatures would be the 

first initiative of incorporation of this study into applicative material fields. 
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APPENDIX A: LANGMUIR PROBE PARAMETRIC SOLVER 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                 Probe Parameters and Common Constants                   %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 

Aprobe=4.76E-6; % Probe Area (m-2) 

  

el=1.6E-19; % Electronic Charge (C) 

  

me=9.1E-31; % Electron Mass (kg) 

  

k=1.38E-23; % Boltzmann Constant (J K-1) 

  

Baseline=-2.6E-2; % Measured Baseline Without Signal 

 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                  Oscilloscope Data Extraction Code                      %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 

CSVCH2=dir('*CH2.csv'); 

CSVCH3=dir('*CH3.csv'); 

psize=size(CSVCH2,1); 

  

DPACK=[]; 

  

for p=1:psize 

  

    filenameCH2=CSVCH2(p).name; 

    filenameCH3=CSVCH3(p).name; 

  

    DSETCH2=csvread(filenameCH2,0,4); 

    DSETCH3=csvread(filenameCH3,0,4); 

    DSET=[DSETCH3(:,1) DSETCH2(:,1)]; 

    DPACK=cat(2,DPACK,DSET); 

  

end 

  

ParamMat=[]; 

  

EEDFMat=[]; 

  

msize=size(DPACK,2); 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                  Calculation Loop for Each I-V Data                     %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

y=1; n=2; 

 

for p=1:psize 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                  Current Monitoring Resistor Select                     %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

  

  

    q=2.*p-1; 

  

    filenameCH2=CSVCH2(p).name; 

  

    disp(filenameCH2); 

  

    Rinput=input('Choose Current Monitoring Resistance (1==>10 Ohm, 2==>100 Ohm 

 3==>1 kOhm (Default=100 Ohm))-->'); % Current Monitoring Resistance Select 

 (Ohm)  

  

    if Rinput==1 

  

        PrRes=10; 

  

        disp(PrRes); 

  

    elseif isempty(Rinput)==1 || Rinput==2 

  

        PrRes=100; 

  

        disp(PrRes); 

  

    elseif Rinput==3 

  

        PrRes=1000; 

  

        disp(PrRes); 

  

    else 

  

        disp('Input Error') 

  

        break 

  

    end 

  

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                       Data Smoothing Algorithm                          %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  

     

    inputtol=input('Input smoothing tolerance (default==1E-3)-->>'); 

  

  

    if isempty(inputtol)==1; 

  

        inputtol=1E-3; 

  

    end 

  

  

    DPACK(:,q)=10.*DPACK(:,q); 

  

    DPACK(:,q+1)=DPACK(:,q+1)./PrRes-Baseline./PrRes; 

  

    smoothplot=spaps(DPACK(:,q),DPACK(:,q+1),inputtol); 

  

    smoothplotvals=fnval(smoothplot,DPACK(:,q)); 
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    figure(1) 

 

    plot(DPACK(:,q),DPACK(:,q+1),'om'); 

    xlabel('Ramp Voltage (V/V)') 

    ylabel('Probe Current (I/A)') 

  

    hold on 

  

    fnplt(smoothplot,'k'); 

  

    hold off 

  

    Okay=input('Fit Okay? (y/n)-->>'); 

  

    if isempty(Okay)==1; 

  

        Okay=1; 

  

    end 

  

    Next=2; 

  

    while Next==2 

  

        while Okay==2 

  

            inputtol=input('Input smoothing tolerance (default==1E-3)-->>'); 

  

            if isempty(inputtol)==1; 

  

                inputtol=1E-3; 

  

            end 

  

            smoothplot=spaps(DPACK(:,q),DPACK(:,q+1),inputtol); 

  

            smoothplotvals=fnval(smoothplot,DPACK(:,q)); 

  

            figure(1); 

  

            plot(DPACK(:,q),DPACK(:,q+1),'om'); 

            xlabel('Ramp Voltage (V/V)') 

            ylabel('Probe Current (I/A)') 

  

            hold on 

  

            fnplt(smoothplot,'k'); 

  

            hold off 

  

            Okay=input('Fit Okay? (y/n)-->>'); 

  

            if isempty(Okay)==1; 

  

                Okay=1; 

  

            end 

  

        end 

         

         

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                Ion Current Calculation and Subtraction                  %  

   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

           

         

        if Okay==1 

  

            Good=2; 
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            while Good==2          

                 

            figure(1); 

  

            plot(DPACK(:,q),DPACK(:,q+1),'om'); 

            xlabel('Ramp Voltage (V/V)') 

            ylabel('Probe Current (I/A)') 

  

            hold on 

  

            fnplt(smoothplot,'k'); 

  

            hold off 

                

            disp('Choose Ion Saturation Current Region'); 

  

            [Vionpoints Iionpoints]=ginput(2); 

  

            Iionsat=fnmin(smoothplot,[Vionpoints(1,1) Vionpoints(2,1)]); % Ion    

               Saturation Current (A) 

             

            IonCurrentFit=polyfit(Vionpoints, Iionpoints,1); 

             

            IonCurrentVals=IonCurrentFit(1).*DPACK(:,q)+IonCurrentFit(2); 

             

            ElectronCurrent=smoothplotvals-IonCurrentVals; 

             

            figure(2) 

             

            fnplt(smoothplot,'b') 

             

            hold on 

             

            plot(DPACK(:,q),IonCurrentVals,'g'); 

             

            plot(DPACK(:,q),ElectronCurrent,'k'); 

             

            hold off 

             

            Good=input('Good Representation? (y/n)-->>'); 

             

            end 

                     

            smoothplotelec=spaps(DPACK(:,q),ElectronCurrent,0); 

            

            Good=2; 

                   

             

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                Electron Saturation Current Calculation                  %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  

 

            figure(2) 

  

            fnplt(smoothplotelec,'k'); 

  

            while Good==2 

  

                disp('Choose Electron Saturation Current Extrapolation Points'); 

  

                [Velecpoints Ielecpoints]=ginput(2); 

  

                [IelecCoeff IelecLin]=polyfit([Velecpoints(1,1)       

                   Velecpoints(2,1)],[fnval(smoothplotelec,Velecpoints(1,1))    

                      fnval(smoothplotelec,Velecpoints(2,1))],1); 

  

                IelecLinmin=polyval(IelecCoeff,DPACK(1,q)); 
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                IelecLinmax=polyval(IelecCoeff,DPACK(size(DPACK,1),q)); 

  

                fnplt(smoothplotelec,'k'); 

  

                hold on 

  

                plot([DPACK(1,q) Velecpoints(1,1) Velecpoints(2,1)    

                   DPACK(size(DPACK,1),q)],[IelecLinmin fnval(smoothplotelec,   

                      Velecpoints(1,1)) fnval(smoothplotelec,Velecpoints(2,          

                         1)) IelecLinmax],'--g') 

  

                hold off 

  

                Good=input('Good Representation? (y/n)-->>'); 

  

            end 

  

            Ielecsata=max(ElectronCurrent); % Electron Saturation Current by Max    

               Value (A) 

  

            hold on 

  

            line([min(DPACK(:,q)) max(DPACK(:,q))],[Ielecsata Ielecsata],   

               'LineStyle', '--','Color','b') 

  

            hold off 

  

                    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%              Plasma and Floating Potential Calculation                  %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%            

             

                         

            secondarydiff=fnder(smoothplot,2); 

  

            disp('Choose Zero Point Range (Plasma Potential)'); 

  

            figure(3); 

  

            fnplt(secondarydiff,'b'); 

            xlabel('Ramp Voltage (V/V)') 

            ylabel('d^2I/dV^2') 

  

            hold on 

  

            [Vplaspoints d2IdV2points]=ginput(2); 

  

            hold off 

  

            Vfloat=fnzeros(smoothplot); 

  

            Vfloat=Vfloat(1,1); % Floating Potential (V) 

  

            Vplasma=fnzeros(secondarydiff,[Vplaspoints(1,1),Vplaspoints(2,1)]); 

  

            Vplasma=Vplasma(1,1); % Plasma Potential (V) 

  

            Ilinrange=fnval(smoothplotelec,Vfloat:0.01:Vplasma); 

             

            Ielecsatb=polyval(IelecCoeff,Vplasma); % Electron Saturation Current at    

               Plasma Potential (A) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                   Plasma Parameters Calculation                         %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%              

                             

             

            TeM=trapz(Vfloat:0.01:Vplasma,Ilinrange)./(fnval(smoothplotelec, 

               Vplasma)); % Maxwellian Method Electron Temperature (eV) 

  

            neM=(fnval(smoothplotelec,Vplasma)./Aprobe).*(2.*pi.*me./(el.^2.*k.* 

               (TeM*11604.5))).^0.5; % Maxwellian Method Electron Density (m-3) 

  

            yDM=743.*(TeM./(neM.*1E-6)).^0.5; % Maxwellian Method Debye Length(m-3) 

  

            dEEDF=abs(min(DPACK(:,q)-Vplasma))/2500; 

  

            eV=permute(0:dEEDF:abs(min(DPACK(:,q)-Vplasma)),[2 1]); 

  

            d2IdV2=permute(fnval(secondarydiff,Vplasma:-dEEDF:min(DPACK(:,q))),[2 

               1]); 

  

            EEDF=(2.*me./(el.^2.*Aprobe)).*(2.*el.*eV./me).^0.5.*d2IdV2; % EEDF(m-3  

               eV-3/2)  

  

            ne=trapz(eV,EEDF); 

  

            Teff=2./3.*trapz(eV,eV.*EEDF); % EEDF Method Electron Temperature (eV) 

  

            yDeff=743.*(Teff./(ne.*1E-6)).^0.5; % EEDF Method Electron Density(m-3) 

  

            figure(4); 

            plot(eV,EEDF,'b') 

            xlabel('Electron Energy (E/eV)') 

            ylabel('EEDF (m-3 eV-3/2)') 

  

        else 

  

            disp('Input Error'); 

  

            return 

  

        end 

  

        Next=input('Next? (y/n)-->>'); 

  

        if Next==2 

  

            Okay=2; 

  

        elseif Next==1 

  

            ParamMat=cat(1,ParamMat,[p Iionsat Ielecsata Ielecsatb Vplasma Vfloat  

               neM ne TeM Teff yDM yDeff]); 

  

            EEDFMat=cat(2,EEDFMat,[eV EEDF]); 

  

            continue 

  

        else 

  

            disp('Input Error'); 

  

            return 

  

        end 

    end 

end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                         Save File Algorithm                             %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    

  

  

SaveParamID={'Set', 'Iionsat (A)', 'Ielecsata (A)','Ielecsatb (A)', 'Vplasma (V)',  

   'Vfloat (V)','neM (m^-3)', 'ne (m^-3)',... 

      'TeM (eV)', 'Teff (eV)', 'yDM (m)', 'yDeff (m)'}; 

  

SaveFile=input('Enter Save Filename -->>','s'); 

  

warning off MATLAB:xlswrite:AddSheet 

  

xlswrite([SaveFile,'.xls'],SaveParamID,[SaveFile,' cm'],'A1') 

  

xlswrite([SaveFile,'.xls'],ParamMat,[SaveFile,' cm'],'A2') 

  

xlswrite([SaveFile,'.xls'],{'Average'},[SaveFile,' cm'],['A',num2str(psize+2)]); 

  

xlswrite([SaveFile,'.xls'],{'Standard Deviation'},[SaveFile,'  

   cm'],['A',num2str(psize+3)]); 

  

xlswrite([SaveFile,'.xls'],mean(ParamMat(:,2:size(ParamMat,2)),1),[SaveFile,'  

   cm'],['B',num2str(psize+2)]); 

  

xlswrite([SaveFile,'.xls'],std(ParamMat(:,2:size(ParamMat,2)),0,1),[SaveFile,'  

   cm'],['B',num2str(psize+3)]); 

  

VIString=[]; 

  

SetString=[]; 

  

EEDFString=[]; 

  

for p=1:psize 

  

    SetString=cat(2,SetString,{['Set ',num2str(p)],' '}); 

  

    VIString=cat(2,VIString,{'Voltage,V(V)','Current,I(A)'}); 

  

    EEDFString=cat(2,EEDFString,{'Electron Energy(eV)','EEDF (m-3 eV-3/2)'}); 

  

end 

  

xlswrite([SaveFile,'.xls'],SetString,[SaveFile,' cm'],'O1') 

  

xlswrite([SaveFile,'.xls'],EEDFString,[SaveFile,' cm'],'O2') 

  

xlswrite([SaveFile,'.xls'],EEDFMat,[SaveFile,' cm'],'O3') 

  

xlswrite([SaveFile,'.xls'],SetString,['Raw Data ',SaveFile,' cm'],'A1') 

  

xlswrite([SaveFile,'.xls'],VIString,['Raw Data ',SaveFile,' cm'],'A2') 

  

xlswrite([SaveFile,'.xls'],DPACK,['Raw Data ',SaveFile,' cm'],'A3') 

  

deleteEmptyExcelSheets([cd,'/',SaveFile,'.xls']); % Empty Excel Sheet Delete Code  

   (Appendix E.3) 

  

disp('Done!') 
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APPENDIX B: AOES Tn SOLVER 

 

This solver is divided into two parts, i.e., B.1 and B.2. Code B.1 must be pre-loaded in 

MATLAB workspace before running code B.2. Code B.1 calculates the rotational line 

widths and positions for all tested rotational temperatures and convolves the discrete 

spectrum with instrumental broadening. Code B.2 extracts experimental data and uses 

the minimum 2
method to estimate the neutral gas temperature.

--------------------------------------------------------------------------- 
 

B.1. AOES Line Width and Line Position Convolution Solver 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                    Common Spectroscopy Constants                        %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 

h=6.62606957E-34; % Planck's Constant (m2kgs-1) 

  

c=299792458; % Speed of Light (ms-1) 

  

k=1.3806488E-23; % Boltzmann Constant (JK-1) 

  

nair=1.0003; % Refraction Index of Air 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%             Nitrogen Vibro-rotational Constants  and Terms              %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 

% 1 Denotes Upper State, 2 Denotes Lower State % 

  

we1=2047.17;  

  

we2=1733.39; 

  

wexe1=28.445; 

  

wexe2=14.122; 

  

weye1=2.0883; 

  

weye2=-0.0569; 

  

Be1=1.8247; 

  

Be2=1.6374; 

  

alphae1=0.01868; 

  

alphae2=0.0179; 

 

v1=0; % Upper State Vibrational Number  

  

v2=2; % Upper State Vibrational Number  
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A=42.24; 

 

De1=(4.*Be1.^3)/we1.^2; 

  

De2=(4.*Be2.^3)/we2.^2; 

  

betae1=De1.*(8.*wexe1./we1-5.*alphae1./Be1-alphae1.^2.*we1./(24.*Be1.^3)); 

  

betae2=De2.*(8.*wexe2./we2-5.*alphae2./Be2-alphae2.^2.*we2./(24.*Be2.^3)); 

  

Te1=89136.88; % Upper State Electronic Term (cm-1) 

  

Te2=59619.35; % Lower State Electronic Term (cm-1) 

  

Bv1=Be1-alphae1.*(v1+0.5); % Upper State Rotational Term 1 (cm-1) 

  

Bv2=Be2-alphae2.*(v2+0.5); % Upper State Rotational Term 1 (cm-1) 

  

Dv1=De1+betae1.*(v1+0.5); % Upper State Rotational Term 2 (cm-1) 

  

Dv2=De2+betae2.*(v2+0.5); % Upper State Rotational Term 2 (cm-1) 

  

Gv1=we1.*(v1+0.5)-wexe1.*(v1+0.5).^2+weye1.*(v1+0.5).^3; % Upper State Vibrational  

   Term (cm-1) 

  

Gv2=we2.*(v2+0.5)-wexe2.*(v2+0.5).^2+weye2.*(v2+0.5).^3; % Lower State Vibrational   

   Term (cm-1) 

  

Vv1v2=Te1-Te2+Gv1-Gv2; 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%          Rotational Line Position/Intensity Calculation Loop            %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 

ConvSpecGroupStack=[]; 

         

TempStart=250; % Starting Rotational Temperature (K) 

     

TempEnd=1500; % Ending Rotational Temperature (K) 

     

dTemp=50; % Spacing Between Temperature Iterations (K) 

  

CorrectedLambd=xlsread('CorrectedLambd.xls'); % Calibrated Spectrometer Wavelength  

   (Obtained in Calibration Experiment) (nm) 

  

DataSelect=CorrectedLambd(1380:1418); % Wavelength Range of Selected (0-2) Peak       

  

for Trot=TempStart:dTemp:TempEnd; 

                 

                disp(['Fit Calculation for Temperature =',num2str(Trot), ' K']) 

                 

                SynSpecMat=[]; 

                 

                for JR=0:50 % R Rotational Branch Calculations 

                     

                    FvR1D0=Bv1.*(JR+1).*(JR+2)-Dv1.*(JR+1).^2.*(JR+2).^2; 

                     

                    FvR2D0=Bv2.*JR.*(JR+1)-Dv2.*JR.^2.*(JR+1).^2; 

                     

                    VRD0=Vv1v2+FvR1D0-FvR2D0; 

                     

                    LRD0=1E-2./(VRD0.*nair); 

                     

                    SJRD0=JR+1; 

                     

                    IREmissD0=SJRD0.*exp(-100.*FvR1D0.*h.*c./(k.*Trot)); 
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                    if JR>=1 

                         

                        FvR1D1=Bv1.*((JR+1).*(JR+2)-1)-Dv1.*(JR+1).^2.*(JR+2).^2+A; 

                         

                        FvR2D1=Bv2.*(JR.*(JR+1)-1)-Dv2.*JR.^2.*(JR+1).^2+A; 

                         

                        VRD1=Vv1v2+FvR1D1-FvR2D1; 

                         

                        LRD1=1E-2./(VRD1.*nair); 

                         

                        SJRD1=((JR+1).^2-1)./(JR+1); 

                         

                        IREmissD1=SJRD1.*exp(-100.*FvR1D1.*h.*c./(k.*Trot)); 

                         

                    else 

                         

                        LRD1=[]; 

                         

                        SJRD1=[]; 

                         

                        IREmissD1=[]; 

                         

                    end 

                     

                    if JR>=2 

                         

                        FvR1D2=Bv1.*((JR+1).*(JR+2)-4)- Dv1.*(JR+1).^2.*(JR+2).^2+ 

          4.*A; 

                         

                        FvR2D2=Bv2.*(JR.*(JR+1)-4)-Dv2.*JR.^2.*(JR+1).^2+4.*A; 

                         

                        VRD2=Vv1v2+FvR1D2-FvR2D2; 

                         

                        LRD2=1E-2./(VRD2.*nair); 

                         

                        SJRD2=((JR+1).^2-4)./(JR+1); 

                         

                        IREmissD2=SJRD2.*exp(-100.*FvR1D2.*h.*c./(k.*Trot)); 

                         

                    else 

                         

                        LRD2=[]; 

                         

                        SJRD2=[]; 

                         

                        IREmissD2=[]; 

                         

                    end 

                     

SynSpecSeg=[LRD0 IREmissD0 SJRD0; LRD1 IREmissD1 SJRD1; LRD2   

   IREmissD2 SJRD2]; 

                     

                    SynSpecMat=cat(1, SynSpecMat,SynSpecSeg); 

                     

                end 

                 

                for JQ=1:50 % Q Rotational Branch Calculations 

                     

                    FvQ1D0=Bv1.*JQ.*(JQ+1)-Dv1.*JQ.^2.*(JQ+1).^2; 

 

                    FvQ2D0=Bv2.*JQ.*(JQ+1)-Dv2.*JQ.^2.*(JQ+1).^2; 

                     

                    VQD0=Vv1v2+FvQ1D0-FvQ2D0; 

                     

                    LQD0=[]; 

                     

                    SJQD0=[]; 

                     

                    IQEmissD0=[]; 

                     

                    FvQ1D1=Bv1.*(JQ.*(JQ+1)-1)-Dv1.*JQ.^2.*(JQ+1).^2+A; 
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                    FvQ2D1=Bv2.*(JQ.*(JQ+1)-1)-Dv2.*JQ.^2.*(JQ+1).^2+A; 

                     

                    VQD1=Vv1v2+FvQ1D1-FvQ2D1; 

                     

                    LQD1=1E-2./(VQD1.*nair); 

                     

                    SJQD1=(2.*JQ+1)./(JQ.*(JQ+1)); 

                     

                    IQEmissD1=SJQD1.*exp(-100.*FvQ1D1.*h.*c./(k.*Trot)); 

                     

                    if JQ>=2 

                         

                        FvQ1D2=Bv1.*(JQ.*(JQ+1)-4)-Dv1.*JQ.^2.*(JQ+1).^2+4.*A; 

                         

                        FvQ2D2=Bv2.*(JQ.*(JQ+1)-4)-Dv2.*JQ.^2.*(JQ+1).^2+4.*A; 

                         

                        VQD2=Vv1v2+FvQ1D2-FvQ2D2; 

                         

                        LQD2=1E-2./(VQD2.*nair); 

                         

                        SJQD2=4.*(2.*JQ+1)./(JQ.*(JQ+1)); 

                         

                        IQEmissD2=SJQD2.*exp(-100.*FvQ1D2.*h.*c./(k.*Trot)); 

                         

                    else 

                         

                        LQD2=[]; 

                         

                        SJQD2=[]; 

                         

                        IQEmissD2=[]; 

                         

                    end 

                     

                    SynSpecSeg=[LQD0 IQEmissD0 SJQD0; LQD1 IQEmissD1 SJQD1; LQD2  

                       IQEmissD2 SJQD2]; 

                     

                    SynSpecMat=cat(1, SynSpecMat,SynSpecSeg); 

                     

                end 

                 

                for JP=1:50 % P Rotational Branch Calculations 

                     

                    FvP1D0=Bv1.*JP.*(JP-1)-Dv1.*JP.^2.*(JP-1).^2; 

                     

                    FvP2D0=Bv2.*JP.*(JP+1)-Dv2.*JP.^2.*(JP+1).^2; 

                     

                    VPD0=Vv1v2+FvP1D0-FvP2D0; 

                     

                    LPD0=1E-2./(VPD0.*nair); 

                     

                    SJPD0=JP; 

                     

                    IPEmissD0=SJPD0.*exp(-100.*FvP1D0.*h.*c./(k.*Trot)); 

                     

                    if JP>=2 

                         

                        FvP1D1=Bv1.*(JP.*(JP-1)-1)-Dv1.*JP.^2.*(JP-1).^2+A; 

                         

                        FvP2D1=Bv2.*(JP.*(JP+1)-1)-Dv2.*JP.^2.*(JP+1).^2+A; 

                         

                        VPD1=Vv1v2+FvP1D1-FvP2D1; 

                         

                        LPD1=1E-2./(VPD1.*nair); 

                         

                        SJPD1=(JP+1).*(JP-1)./JP; 

                         

                        IPEmissD1=SJPD1.*exp(-100.*FvP1D1.*h.*c./(k.*Trot)); 
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                    else 

                         

                        LPD1=[]; 

                         

                        SJPD1=[]; 

                         

                        IPEmissD1=[]; 

                         

                    end 

                     

                    if JP>=3 

                         

                        FvP1D2=Bv1.*(JP.*(JP-1)-4)-Dv1.*JP.^2.*(JP-1).^2+4.*A; 

                         

                        FvP2D2=Bv2.*(JP.*(JP+1)-4)-Dv2.*JP.^2.*(JP+1).^2+4.*A; 

                         

                        VPD2=Vv1v2+FvP1D2-FvP2D2; 

                         

                        LPD2=1E-2./(VPD2.*nair); 

                         

                        SJPD2=(JP+2).*(JP-2)./JP; 

                         

                        IPEmissD2=SJPD2.*exp(-100.*FvP1D2.*h.*c./(k.*Trot)); 

                         

                    else 

                         

                        LPD2=[]; 

                         

                        SJPD2=[]; 

                         

                        IPEmissD2=[]; 

                         

                    end 

                     

SynSpecSeg=[LPD0 IPEmissD0 SJPD0; LPD1 IPEmissD1 SJPD1; LPD2      

   IPEmissD2 SJPD2]; 

                     

                    SynSpecMat=cat(1, SynSpecMat,SynSpecSeg); 

                     

                end 

                 

                SynSpecMat=sortrows(SynSpecMat,1); 

                       

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                      Voigt Profile Matrix Loop                         %  

   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                   

  

 

% Voigt Profile Broadening is Calculated for Wavelengths/Line Positions and Column-

stacked as a Matrix %  

  

                dDataSelect=abs(DataSelect(1,1)-DataSelect(2,1));  % Spectrometer 

        Pixel Resolution (nm) 

                 

                dLambd=4*dDataSelect; % Bin Size (nm) 

  

                LambdSynSpec=SynSpecMat(:,1)./1E-9; 

                 

LambdAdd=permute(max(LambdSynSpec)+0.01:0.01:round(max(LambdSynSpec)  

   )+1,[2 1]); 

                 

                LambdFullSynSpec=cat(1,LambdSynSpec,LambdAdd); 

                 

                IntSynSpec=SynSpecMat(:,2); 

                 

                IntAdd=zeros(numel(LambdAdd),1); 

                 

                IntFullSynSpec=cat(1,IntSynSpec,IntAdd); 
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                LambdGroup=min(DataSelect(:,1)):dLambd:max(DataSelect(:,1)); 

                 

                ConvSpecGroup=zeros(1,numel(LambdGroup)); 

                 

                VoiGroup=[]; 

                 

                FWHMLor=0.6; % Lorentz FWHM 

  

                FWHMGau=0.5; % Gaussian FWHM 

  

                for n=1:numel(LambdFullSynSpec) 

                     

                    FWHMVoi=FWHMLor./2+sqrt(FWHMLor.^2./4+FWHMGau.^2); % Voigt FWHM 

                     

VoiNorm=real((1-FWHMLor./FWHMVoi).*exp(- 

   4.*log(2).*((LambdFullSynSpec-LambdFullSynSpec(n)) 

      ./FWHMVoi).^2)+(FWHMLor./FWHMVoi).*(1./(1+4.* 

         ((LambdFullSynSpec-LambdFullSynSpec(n)) 

            ./FWHMVoi).^2))+0.016.*(1-FWHMLor./FWHMVoi) 

               .*(FWHMLor./FWHMVoi).*(exp(- 0.4 

                  .*((LambdFullSynSpec-LambdFullSynSpec(n)) 

                     ./FWHMVoi).^2.25)-10./(10+((LambdFullSyn    

                        Spec-LambdFullSynSpec(n))./FWHMVoi) 

                           .^2.25))); 

                     

                    VoiGroup=cat(2,VoiGroup,permute(VoiNorm,[1 2])); 

                     

                end 

                 

                 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%     Bin Probability Calculation for Minimum Chi-Squared Method (B.2)     %  

   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                   

             

  

                LineSum=zeros(numel(LambdGroup),1); 

                                        

                for n=1:numel(LambdFullSynSpec) 

                     

                    for p=1:numel(LambdGroup); 

                         

if LambdFullSynSpec(n)>=LambdGroup(p)-  

      dLambd/2&&LambdFullSynSpec(n) <LambdGroup(p)+dLambd/2 

                             

                            LineSum(p)=LineSum(p)+1; 

                             

                        else 

                             

                        end 

                         

                    end 

                     

                end 

                 

                LineProb=LineSum./sum(LineSum); % Line Probability for Bins 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                         Convolution Matrix Loop                         %  

   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

               

                 

                for m=1:numel(LambdFullSynSpec) 

                     

                    ConvSpecStack=[]; 
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                    ConvIntSpec=zeros(numel(LambdFullSynSpec),1); 

                     

                    ConvIntSpec(m)=IntFullSynSpec(m); 

                     

                    for n=1:numel(LambdFullSynSpec)                  

                 

   ConvSpec=trapz(LambdFullSynSpec,ConvIntSpec.*VoiGroup(:,n)); 

                         

                        ConvSpecStack=cat(1,ConvSpecStack, ConvSpec); 

                         

                        for p=1:numel(LambdGroup); 

                             

if LambdFullSynSpec(n)>=LambdGroup(p)-dLambd/2&& 

      LambdFullSynSpec(n)<LambdGroup(p)+dLambd/2 

                                 

                                ConvSpecGroup(p)=ConvSpecGroup(p)+ConvSpec; 

                                 

                            else 

                                 

                            end 

                             

                        end 

                         

                    end 

                     

                end 

                 

                ConvSpecGroupNorm=permute(ConvSpecGroup./max(ConvSpecGroup),[2 1]);  

                           

                

ConvSpecGroupStack=cat(2,ConvSpecGroupStack,permute(ConvSpecGroup 

   Norm, [1 2])); % Normalized Convolved Spectrum Stack for  

      Rotational Temperature Range 

  

end 

 

disp('Done!') 
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B.2. AOES Minimum 
2 

Neutral Gas Temperature Solver 
 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                 Definition of Set Plasma Parameters                     % 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

 

TempMatrix=[]; 

  

ArgPres=input('Input Argon Pressure ----->'); % Set Argon Pressure for Save File 

  

AxialH=input('Input Axial Height ----->'); % Set Axial Height for Save File 

  

DataCollect=dir('*.txt'); % Collection of ASCII (*.txt) Output Files from  

   SpectraSuite Software 

  

DataCollSize=size(DataCollect,1); 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                         Data Filename Sorter                            % 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

% This Code Extracts and Sorts Data Files According to Parameters Labeled in 

Filename. % 

  

% Filename Should Have the Following Format:'[R.f. Power][Plasma Mode]*.txt' for 

Code to Work, e.g. 180WHmode*.txt % 

  

% 20 Data Sets were Obtained for Each Measured Point. % 

  

PlasPowMat=[]; 

  

for dc=1:DataCollSize 

     

    DataCollName=DataCollect(dc).name; 

     

    PPVal1=num2str(str2num(DataCollName(1))); 

     

    PPVal2=num2str(str2num(DataCollName(2))); 

     

    PPVal3=num2str(str2num(DataCollName(3))); 

     

    PlasPowComp=str2num(strcat(PPVal1,PPVal2,PPVal3)); 

     

    PPMatSize=numel(PlasPowMat); 

     

    if isempty(PlasPowMat)==1; 

         

        PlasPowMat=cat(2,PlasPowMat,PlasPowComp); 

         

    elseif PlasPowComp==PlasPowMat(PPMatSize); 

         

    else 

         

        PlasPowMat=cat(2,PlasPowMat,PlasPowComp); 

         

    end 

     

end 

  

PlasPowMat=sort(PlasPowMat); 

  

  

for PlasmPower=PlasPowMat % Sorting by R.f. Power and Plasma Mode 
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    DataGroup=dir([num2str(PlasmPower),'W*.txt']); 

     

    DataSize=size(DataGroup,1); 

     

    DataSelect=CorrectedLambd(1380:1418); % 0-2) Peak Calibrated Wavelength Range                                                

       (nm) 

     

    for dt=1:DataSize 

         

        DataName=DataGroup(dt).name; 

         

        for dn=1:numel(DataName); 

             

            if DataName(dn)=='H' 

                 

                PlasmaType={'H'}; 

                 

                disp('H-mode'); 

                 

            elseif DataName(dn)=='E' 

                 

                PlasmaType={'E'}; 

                 

                disp('E-mode'); 

                 

            else 

                 

            end 

        end 

         

        disp(DataName); 

         

        DataAqui=dlmread(DataName,'\t',[17 1 3664 1]); 

         

        DataSet=DataAqui(1380:1418); % (0-2) Peak Intensity Data From File 

         

        DataSet=DataSet-min(DataSet); % Removal of Background Emission Noise 

         

        DataSet=DataSet./max(DataSet); % Normalizing of (0-2) Peak Intensity Data 

         

        DataSelect=cat(2,DataSelect,DataSet); % Stacking of Acquired and Processed   

           Data 

         

    end 

     

     

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

    %                       Minimum Chi-Squared Loop                          % 

     

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

 

    Chi2Stack=[]; 

     

    for Tmp=1:size(ConvSpecGroupStack,2); 

         

        DataNum=numel(LambdGroup); 

         

        Chi2StackH=[]; 

         

        for n=1:DataSize 

             

DataSelectChi=permute(interp1(DataSelect(:,1),  

   DataSelect(:,n+1),LambdGroup),[2 1]); 

             

Chi2Val=sum(LineProb.*(DataSelectChi- 

   ConvSpecGroupStack(:,Tmp)).^2)./(DataNum.*(DataNum-1)); 
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            Chi2StackH=cat(2,Chi2StackH,Chi2Val); 

             

        end 

        

        Chi2Stack=cat(1,Chi2Stack,Chi2StackH); 

         

    end 

     

    NeutralTemp=TempStart:dTemp:TempEnd; 

     

    TempDataSet=[]; 

     

    for n=1:DataSize 

         

        figure(1) % Chi-Squared Curve 

         

        plot(NeutralTemp, Chi2Stack(:,n), 'o'); 

        xlabel('Neutral Gas Temperature, T_n (K)') 

        ylabel('X^2 (arb. units)') 

         

        [MinChi2 MinChi2I]=min(Chi2Stack(:,n)); 

         

        MinFitTemp=NeutralTemp(MinChi2I); 

         

        TempDataSet=cat(1,TempDataSet,MinFitTemp); 

         

        disp(['Estimated Neutral Temperature = ',num2str(MinFitTemp), ' K']) 

         

        figure(2) % Measured and Convolved(0-2)Peaks at Best Fitted Temperature 

         

        plot(LambdGroup,ConvSpecGroupStack(:,MinChi2I),'k'); 

        xlabel('Wavelength (nm)') 

        ylabel('Intensity (arb. units)') 

         

        ylim([0 max(ConvSpecGroupStack(:,MinChi2I))]); 

         

        hold on 

         

        plot(DataSelect(:,1),DataSelect(:,n+1),'or'); 

         

        hold off 

         

    end 

     

     

    TempAve=mean(TempDataSet); % Mean Temerature for 20 Data Sets at Measured Point 

     

    TempStd=std(TempDataSet); % Standard Deviation for 20 Data Sets at Measured       

       Point 

     

    TempMatrix=cat(1,TempMatrix,[PlasmPower TempAve TempStd]); % Save File Matrix  

       Stack 

     

end 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                          Save File Algorithm                            % 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

warning off MATLAB:xlswrite:AddSheet 

  

TempID={'Plasma Power (W)','Average Neutral Temperature (K)', 'Standard Deviation    

   (K)'}; 

  

xlswrite([num2str(AxialH),' cm Neutral Gas Temperature Data.xls'],  

   TempID,[num2str(ArgPres), ' mbar '],'A1'); 
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xlswrite([num2str(AxialH),' cm Neutral Gas Temperature Data.xls'],  

   TempMatrix,[num2str(ArgPres), ' mbar '],'A2'); 

  

deleteEmptyExcelSheets([cd,'/',num2str(AxialH),' cm Neutral Gas Temperature  

   Data.xls']); % Empty Excel Sheet Delete Code (Appendix E.3) 

  

  

disp('Done!') 
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APPENDIX C: ANALYTICAL H MODE FIELD MODEL 
 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                      Chamber and Coil Dimensions                        %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

L=21.8E-2; % Effective Chamber Height (m) 

  

D=2.4E-2; % Chamber-Coil Spacing (m) 

  

b=14.5E-2; % Chamber Radius (m) 

  

a=4.5E-2; % Planar Coil Radius (m) 

  

N=6; % Number of Coil Turns 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%             Iteration Parameters and Boundary Conditions                %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

dr=0.5E-2; % Radial Iteration Spacing (m) 

  

dri=0.1E-2; % Interpolated Radial Spacing (m) 

  

dz=0.5E-2; % Axial Iteration Spacing (m) 

  

dzi=0.1E-2; % Interpolated Axial Spacing (m) 

  

[r,z]=meshgrid(-b:dr:b,0:dz:L+D); % Field Grid Allocation (m) 

  

[ri zi]=meshgrid(-b:dri:b,0:dzi:L+D); % Interpolated Field Grid (m) 

  

rlim=size(r,2); % Radial Limit       

  

zlimL=size(0:dz:L,2); % Reactor Axial Limit  

  

zlimLD=size(0:dz:L+D,2); % Reactor-Coil Axial Limit  

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                    R.f. Parameters and Constants                        %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

f=13.56E6; % RF Frequency (Hz) 

  

w=2.*pi.*f; % RF Angular Frequency (rad s-1) 

  

Irms=13.9; % RMS Coil Current (A) 

  

Ip=Irms.*(2.^0.5); % Peak Coil Current (A) 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%         Plasma and EM Field Physical Constants and Parameters           %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

ne=5E17; % Electron Density (m-3) 
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Te=3; % Electron Temperature (eV) 

  

TeK=Te.*11604.5; % Electron Temperature (K) 

  

pr=0.03; % Argon Pressure (mbar) 

  

Tn=800; % Neutral Gas Temperature (K) 

  

me=9.1E-31; % Electron Mass (kg) 

  

el=1.6E-19; % Electronic Charge (C) 

  

MAr=39.948.*1.661E-27; % Argon Ion Mass (kg) 

  

muo=4.*pi.*1E-7;  % Permeability of Vaccuum (N A-2)  

  

epso=8.85E-12;  % Permittivity of Vaccuum (C2 N-1 m-2) 

  

c=3E8; % Speed of Light (m s-1) 

  

k=1.38E-23; % Boltzmann Constant (J K-1) 

  

ng=pr*100./(k.*Tn); % Neutral Gas Density (m-3) 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                    Collision Frequency Parameters                       %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

vel=((8.*k.*TeK)./(pi.*me)).^0.5; % Maxwellian Mean Electron Velocity (m s-2) 

  

CollData=xlsread('ArgonCC.xls'); % Argon Collision Crosssection Data (Appendix E.1) 

  

sigH=CollData(:,2); % Argon Collision Cross-Section (m-2) 

  

EpsE=el.*CollData(:,1); % Electron Energies (J)  

  

vc=ng.*sigH.*(2.*EpsE./me).^0.5+1i*w; % Direct Electron-Neutral Collision Frequency  

   (Hz)     

     

dFedistdEpsEMax=-2./pi.^(1./2)./(el.*Te).^(3./2)./(el.*Te).*exp(-EpsE./(el.*Te)); %  

   Differential Maxwellian EEDF 

  

ven=real(-1.5.*(trapz(EpsE,EpsE.^1.5.*dFedistdEpsEMax./vc)).^-1); % Electron- 

   Neutral Collision Frequency (s-1) 

  

CA=23-log(((ne.^0.5).*(Te.^(-1.5)))./(10.^2)); % Coulomb Algorithm 

  

vei=(ne.*(el.^4).*CA)./(4.*pi.*(epso.^2).*(me.^0.5).*(el.*Te).^1.5); % Electron-Ion  

   Collision Frequency (s-1) 

  

wplasma=((el.^2.*ne)./(epso.*me)).^0.5; % Plasma Conductivity Parameter (s-1) 

  

dela=(c./wplasma).*((vel.*wplasma)./(2.*c.*w)).^(1./3); % Anomalous Skin Depth (m) 

  

vst=0.25.*vel./dela; % Stochastic Collision Frequency (s-1) 

  

veff=ven+vei+vst; % Effective Electron Collision Frequency (s-1) 

  

vperw=veff./w; % Effective Electron Collision Frequency per RF Angular Frequency  

   Ratio 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                    EM Field Initial Loop Parameters                     %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

Kthetha=N.*Ip./a; % Coil Current Density (A m-1) 

  

alpha2=(muo.*el.^2.*ne)./(me.*(1-1i.*vperw)); % Plasma Conductivity Parameter (m-2) 

  

yn=permute((besselzero(1,100,1))./b,[2 1]); % Bessel Roots (m-2) (Appendix E.2) 

  

kn=(alpha2+yn.^2).^0.5; % Eigenvalues for Bessel Functions (m-2) 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                               vn Solver                                 %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

IntMat=[]; 

  

da=a/1000; 

  

for n=1:100 

     

    rint=0:da:a; 

     

    Jint=rint.*besselj(1,yn(n).*rint); 

    

    Jtermint=trapz(rint,Jint); 

  

    IntMat=cat(1,IntMat,Jtermint); 

  

end 

  

IntJTerm=-(Kthetha./(1+betan)).*permute(IntMat, [2 1]); 

  

DiffJTerm=yn.*((b.^2)./2).*((besselj(0, yn.*b)-(1./(yn.*b)).*besselj(1,  

   yn.*b)).^2); 

  

vn=1i.*w.*muo.*(IntJTerm./DiffJTerm); 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                      EM Field Boundary Constants                        %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

An=vn.*yn./(yn.*sinh(yn.*D).*sinh(kn.*L)+kn.*cosh(kn.*L).*cosh(yn.*D)); 

  

Bn=(An./(2.*yn)).*exp(yn.*L).*(yn.*sinh(kn.*L)-kn.*cosh(kn.*L)); 

  

Cn=(An./(2.*yn)).*exp(-yn.*L).*(yn.*sinh(kn.*L)+kn.*cosh(kn.*L)); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                 Azimuthal Electric Field Iteration Loop                 %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

Ethethaz=[]; 

  

for m=1:zlimL 
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    Ethethar=[]; 

  

    for n=1:rlim 

     

        Ethethasumn=sum(An.*sinh(kn.*z(m,n)).*besselj(1,yn.*r(m,n))); 

  

        Ethethar=cat(2,Ethethar,Ethethasumn); 

  

    end 

  

    Ethethaz=cat(1,Ethethaz,Ethethar); 

  

end 

  

for m=zlimL+1:zlimLD 

     

    Ethethar=[]; 

  

    for n=1:rlim 

     

        Ethethasumn=sum((Bn.*exp(-yn.*z(m,n))+Cn.*exp(yn.*z(m,n))) 

           .*besselj(1,yn.*r(m,n))); 

  

        Ethethar=cat(2,Ethethar,Ethethasumn); 

  

    end 

  

    Ethethaz=cat(1,Ethethaz,Ethethar); 

  

end 

  

Ethetha=interp2(r,z,Ethethaz,ri,zi); % Azimuthal Electric Field (V m-1) 

  

PhasorEth=angle(Ethetha); % Azimuthal Electric Field Phase Angle (rad) 

  

EthethaReal=abs(Ethetha).*cos(PhasorEth); % Real Azimuthal Electric Field Component  

   (V m-1) 

  

EthethaImag=abs(Ethetha).*sin(PhasorEth); % Imaginary Azimuthal Electric Field  

   Component (V m-1) 

  

EthethaAbs=abs(Ethetha); % Absolute Azimuthal Electric Field (V m-1) 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                 Radial Magnetic Field Iteration Loop                    %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

Bradiusz=[]; 

  

for m=1:zlimL 

     

    Bradiusr=[]; 

  

    for n=1:rlim 

     

        Bradiussumn=-(1i./w).*sum(An.*kn.*cosh(kn.*z(m,n)).*besselj(1,yn.*r(m,n))); 

  

        Bradiusr=cat(2,Bradiusr,Bradiussumn); 

  

    end 

  

    Bradiusz=cat(1,Bradiusz,Bradiusr); 

  

end 
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for m=zlimL+1:zlimLD 

     

    Bradiusr=[]; 

  

    for n=1:rlim 

     

        Bradiussumn=-(1i./w).*sum(yn.*(-Bn.*exp(-yn.*z(m,n))+Cn.*exp(yn.*z(m,n))) 

           .*besselj(1,yn.*r(m,n))); 

  

        Bradiusr=cat(2,Bradiusr,Bradiussumn); 

  

    end 

  

    Bradiusz=cat(1,Bradiusz,Bradiusr); 

  

end 

  

Bradius=interp2(r,z,Bradiusz,ri,zi); % Radial Magnetic Field (T) 

  

PhasorBr=angle(Bradius); % Radial Magnetic Field Phase Angle (rad) 

  

BradiusReal=abs(Bradius).*cos(PhasorBr); % Real Radial Magnetic Field Component (T) 

  

BradiusImag=abs(Bradius).*sin(PhasorBr); % Imaginary Radial Magnetic Field  

   Component (T) 

  

BradiusAbs=abs(Bradius); % Absolute Radial Magnetic Field (T) 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                  Axial Magnetic Field Iteration Loop                    %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

Baxisz=[]; 

  

for m=1:zlimL 

     

    Baxisr=[]; 

  

    for n=1:rlim 

     

        Baxissumn=(1i./w).*sum(An.*yn.*sinh(kn.*z(m,n)).*besselj(0,yn.*r(m,n))); 

  

        Baxisr=cat(2,Baxisr,Baxissumn); 

  

    end 

  

    Baxisz=cat(1,Baxisz,Baxisr); 

  

end 

  

for m=zlimL+1:zlimLD 

     

    Baxisr=[]; 

  

    for n=1:rlim 

     

        Baxissumn=(1i./w).*sum(yn.*(Bn.*exp(-yn.*z(m,n))+Cn.*exp(yn.*z(m,n))) 

           .*besselj(0,yn.*r(m,n))); 

  

        Baxisr=cat(2,Baxisr,Baxissumn); 

  

    end 

  

    Baxisz=cat(1,Baxisz,Baxisr); 

  

end 
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Baxis=interp2(r,z,Baxisz,ri,zi); % Axial Magnetic Field (T)  

  

PhasorBz=angle(Baxis); % Axial Magnetic Field Phase Angle (rad) 

  

BaxisReal=abs(Baxis).*cos(PhasorBz); % Real Axial Magnetic Field Component (T) 

  

BaxisImag=abs(Baxis).*sin(PhasorBz); % Imaginary Axial Magnetic Field Component (T) 

  

BaxisAbs=abs(Baxis); % Absolute Axial Magnetic Field (T) 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                           Total Magnetic Field                          %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

Bfield=(Bradius.^2+Baxis.^2).^0.5; % Total Magnetic Field (T) 

  

PhasorBf=angle(Bfield); % Total Magnetic Field Phase Angle (rad) 

  

BfieldReal=abs(Bfield).*cos(PhasorBf); % Real Total Magnetic Field Component (T) 

  

BfieldImag=abs(Bfield).*sin(PhasorBf); % Imaginary Total Magnetic Field Component  

   (T) 

  

BfieldAbs=abs(Bfield); % Absolute Total Magnetic Field (T) 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%     Magnetic Vector Potential for Contour Plot (Additional Feature)     %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

rAthetha=(1i./w).*(ri.*Ethetha); % Azimuthal Magnetic Vector Potential (A) 

  

rAthethaAbs=abs(rAthetha); % Absolute Azimuthal Magnetic Vector Potential (A) 

  

PhasorrAth=angle(rAthetha); % Azimuthal Magnetic Vector Phase Angle (rad) 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                    Field Animation and Contour Plot                     %  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

T=(2.*pi)./w; % R.f. Oscillation Period (s) 

  

t=T/100; % Time Capture Interval (s) 

  

timeplot=0:t:2*T; 

  

timelim=size(timeplot,2); 

  

FieldType=input('Select Field Animation Plot: \n [1] Electric Field Distribution \n  

   [2] Magnetic Field Distribution \n [3] Magnetic Field Contour Plot \n \n --> '); 

  

if FieldType==1 

  

    PlotLimitE=max((max(EthethaAbs))); 

  

    for j=1:timelim 

      

        surf(ri,zi,EthethaAbs.*cos(w.*timeplot(j)+PhasorEth),'EdgeColor','none')  

        colormap(jet (256))   

        colorbar('EastOutside')  
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        caxis([-PlotLimitE PlotLimitE])  

        xlim([-b b])  

        ylim([0 L+D])  

        zlim([-1.2.*PlotLimitE 1.2.*PlotLimitE])   

        view(180,90)    

        F(j)=getframe; 

  

    end 

  

    movie(F,1,12) 

  

elseif FieldType==2 

  

    PlotLimitB=max((max(BfieldAbs))); 

  

    for j=1:timelim   

    

        surf(ri,zi,BfieldAbs.*cos(w.*timeplot(j)+PhasorBf),'EdgeColor','none')   

        colormap(jet (256))  

        colorbar('EastOutside')  

        caxis([0 PlotLimitB]) 

        xlim([-b b])   

        ylim([0 L+D])  

        zlim([-1.2.*PlotLimitB 1.2.*PlotLimitB])   

        view(180,90) 

        F(j)=getframe; 

  

    end 

  

    movie(F,1,12) 

  

elseif FieldType==3 

     

    PlotLimitA=max((max(rAthethaAbs))); 

  

    v=cat(2,-logspace(-9,-6,10),logspace(-9,-6,10)); 

  

    for j=1:timelim 

     

        contour(ri,zi,rAthethaAbs.*cos(w.*timeplot(j)+PhasorrAth),v,'k')  

        xlim([-b b])  

        ylim([0 L])  

        zlim([-1.2.*PlotLimitA 1.2.*PlotLimitA])   

        view(180,90) 

        F(j)=getframe; 

         

    end 

  

    movie(F,1,12) 

  

else 

  

    disp('Input Error') 

  

end 
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APPENDIX D: POWER BALANCE MODEL 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                      Chamber and Coil Dimensions                        % 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

L=21.8E-2; % Effective Chamber Height (m) 

  

D=2.4E-2; % Chamber-Coil Spacing (m) 

  

B=8.6E-2-D; % Bottom of Coil Spacing (m) 

  

M=9.9E-2; % Indented Cylinder Height (m) 

  

O=10.8E-2; % Indented Cylinder Outer Radius (m) 

  

b=14.5E-2; % Reactor Radius (m) 

  

a=4.5E-2; % Planar Coil Radius (m) 

  

rd=8E-2; % Effective Dielectric Plate Radius (m) 

  

rs=0:dr:rd; % Radial Dielectric Iteration Coordinate (m) 

  

N=6; % Number of Coil Turns 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%             Iteration Parameters and Boundary Conditions                % 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

dr=0.1E-2; % Radial Iteration Spacing (m) 

  

r=0:dr:a; % Radial Coil Iteration Coordinate (m) 

  

rlim=size(r,2); % Radial Iteration Limit 

  

z=L+D; % Axial Coordinate (m) 

  

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%                    RF Parameters and Constants                          % 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

f=13.56E6; % R.f. Frequency (Hz) 

  

w=2.*pi.*f; % R.f. Angular Frequency (rad s-1) 

  

pr=0.03; % Chamber Pressure (mbar) 

  

CollData=xlsread('ArgonCC.xls'); % Argon Collision Cross Section Data 

  

for Ip=15.0 % Peak Coil Current (A) 

     

    Tn=583; % Neutral Gas Temperature (K) 

     

    Te=4; % Electron Temperature (eV) 

     

    CDM=8.8E4; % Exponential Factor for Druyvestyen-Maxwellian Transition Point 

     

    me=9.1E-31; % Electron Mass (kg) 
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    miamu=39.948; % Argon Ion Mass (amu) 

     

    mi=miamu.*1.66E-27; % Argon ion Mass (kg) 

     

    EpsIz=15.76; % Ionization Energy (eV) 

     

    EpsEx=12.14; % Excitation Energy (eV) 

     

    Kel=2.336E-14.*Te.^1.609.*exp(0.0618.*log(Te).^2-0.1171.*log(Te).^3); % Elastic    

       Scattering Rate Constant (m3 s-1) 

     

    Kiz=2.34E-14.*Te.^0.59.*exp(-17.44./Te); % Ionization Scattering Rate  

       Constant (m3 s-1) 

     

    Kex=2.48E-14.*Te.^0.33.*exp(-12.78./Te); % Excitation Scattering Rate   

       Constant (m3 s-1) 

     

    EpsC=EpsIz+(Kex./Kiz).*EpsEx+(Kel./Kiz).*(3.*me./mi).*Te; % Collisional Energy    

       Lost Per Ion-Electron Pair (eV) 

     

    EpsT=EpsC+5.2.*Te+2.*Te; % Total Energy Lost Per Ion-Electron Pair (eV) 

     

    Lo=1.2E-6; % Coil Inductance (H) 

     

     

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

    %           Common EM Field Physical Constants and Parameters             % 

     

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     

 

    veffStack=[]; 

     

    PabsStack=[]; 

     

    PlossStack=[]; 

     

    PHMStack=[]; 

     

    PEMStack=[]; 

     

    PstocStack=[]; 

     

    for ne=logspace(15,17); % Electron Density (m-3) 

         

        Vp=Ip.*w.*Lo; % Peak Coil Voltage (V) 

         

        me=9.1E-31; % Electron Mass (kg) 

         

        miamu=39.948; % Argon Ion Mass (amu) 

         

        mi=miamu.*1.66E-27; % Argon ion Mass (kg) 

         

        muo=4.*pi.*1E-7;  % Permeability of Vaccuum (N A-2) 

         

        epso=8.85E-12;  % Permittivity of Vaccuum (C2 N-1 m-2) 

         

        c=3E8; % Speed of Light (m s-2) 

         

        el=1.6E-19; % Electronic Charge (C) 

         

        k=1.38E-23; % Boltzmann Constant (J K-1) 

         

        ng=pr*100./(k.*Tn); % Neutral Gas Density (m-3) 

         

        yi=1./(ng.*1E-18); % Ion-Neutral Mean Free Path (m) 

         

        hl=0.86.*(3+(L+B+D)./(2.*yi)).^-0.5; % Axial Sheath Diffusion 

         

        hr=0.80.*((4+b./yi)).^-0.5; % Radial Sheath Diffusion 
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        Aeff=2.*pi.*b.*(b.*hl+(L+B+D).*hr)+2.*pi.*O.*M.*hr+2.*pi.*rd.*(M-B+D).*hr;    

           % Effective Surface Area for Particle Loss (m 2) 

         

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %                    Collision Frequency Parameters                       % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        TeK=Te.*11604.5; % Electron Temperature (K) 

         

        vel=((8.*k.*TeK)./(pi.*me)).^0.5; % Maxwellian Mean Electron Velocity  

     (m s-2) 

         

        sigH=CollData(:,2); % Collision Cross-Section (m-2) 

         

        EpsE=el.*CollData(:,1); % Electron Energies (J) 

         

        vc=ng.*sigH.*(2.*EpsE./me).^0.5+1i*w; % Direct Electron-Neutral Collision 

     Frequency (Hz) 

         

        dFedistdEpsEMax=-2./pi.^(1./2)./(el.*Te).^(3./2)./(el.*Te).*exp(-EpsE./  

           (el.*Te)); % Differential Maxwellian EEDF 

         

        ColldistF=dFedistdEpsEMax; 

         

        ven=real(-1.5.*(trapz(EpsE,EpsE.^1.5.*dFedistdEpsEMax./vc).^-1)); 

         

        CA=23-log(((ne.^0.5).*(Te.^(-1.5)))./(10.^2)); % Coulomb Algorithm 

         

        vei=(ne.*(el.^4).*CA)./(4.*pi.*(epso.^2).*(me.^0.5).*(el.*Te).^1.5);  

     % Electron-Ion Collision Frequency (Hz) 

         

        wplasma=((el.^2.*ne)./(epso.*me)).^0.5; % Plasma Conductivity Parameter     

     (s-1) 

         

        dela=(c./wplasma).*((vel.*wplasma)./(2.*c.*w)).^(1./3); % Anomalous Skin 

     Depth (m) 

         

        vst=0.25.*vel./dela; % Stochastic Collision Frequency (Hz) 

         

        veff=ven+vei+vst; % Effective Electron Collision Frequency (Hz) 

         

        vperw=veff./w; % Effective Electron Collision Frequency per RF Angular  

     Frequency Ratio 

         

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %            H-Mode EM Field Physical Constants and Parameters            % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        Kthetha=N.*Ip./a; % Coil Current Density (A m-1) 

         

        alpha2=(muo.*el.^2.*ne)./(me.*(1-1i.*vperw)); % H-mode Plasma Conductivity 

     Parameter (m-2) 

         

        ynH=permute((besselzero(1,20,1))./b,[2 1]); % H-mode Bessel Solution  

     Roots (m-2) 

         

        kn=(alpha2+ynH.^2).^0.5; % Eigenvalues for H-Mode Bessel Functions (m-2) 
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %            E-Mode EM Field Physical Constants and Parameters            % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        epsr=3.8; % Dielectric Constant (C2 N-1 m-2) 

         

        Eo=Vp./a; % Peak Coil Field (V m-1) 

         

        epsp=1-(((wplasma./w).^2)./(1-1i.*(vperw))); % Permittivity of Plasma  

     (C2 N-1 m-2) 

         

        ynE=permute((besselzero(0,20,1))./b,[2 1]); % E-mode Bessel Solution Roots 

     (m-2) 

         

        qn=(ynE.^2-((w./c).^2.*epsp)).^0.5; % Eigenvalues for E-Mode Bessel  

     Functions (m-2) 

         

        sn=(ynE.^2-((w./c).^2.*epsr)).^0.5; % Eigenvalues for E-mode Bessel 

     Functions (m-2) 

         

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %                            Sheath Thickness                             % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        Cd=epso.*pi.*(rd.^2)./D; % Dielectric Capacitance (F) 

         

        ic=w.*Cd.*Vp; % Peak Capacitive Current (A) 

         

        Vc=((((9.*ic./(8.*pi.*rd.^2)).^2)./(1.73.*el.*epso.*w.^2.*ne)).^2)./Te; 

           % Peak Capacitive Voltage (V) 

         

        Vs=Vc.*(rs./rd); % Sheath Voltage (V) 

         

        Js2=1.73.*el.*epso.*w.^2.*ne.*(Te.*Vs).^0.5; 

         

        Sterm=(5.*Js2.^1.5)./(12.*el.^2.*w.^3.*epso.*ne.^2.*Te); 

         

        S=(1./rd).*trapz(rs,Sterm); % Sheath Thickness (m) 

         

        DS=D+S; % Dielectric + Sheath Thickness (m) 

         

        EpsM=3.*Te./2; % Mean Electron Energy 

         

        DruvMaxRatio=1.27+14.60./EpsM; % Druyvestyen Maxwellian Transition Change  

     Ratio 

         

        ubohm=(0.667.*el.*EpsM./mi).^0.5; % Bohm Velocity of Sheath Ions (ms-2) 

         

        LossTerm=ubohm.*Aeff.*EpsT.*el; % Loss Term for Loss Curve 

         

        Ploss=ne.*LossTerm.*(DruvMaxRatio.^(1./(1+(CDM.*ne./ng))));   

     % Electron Power Loss 

         

        PlossStack=cat(1,PlossStack,Ploss); 

         

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %                            vn Solver (H-mode)                           % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        IntMatH=[]; 
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        for n=1:20 

             

            Jint=r.*besselj(1,ynH(n).*r); 

             

            Jtermint=trapz(r,Jint); 

             

            IntMatH=cat(1,IntMatH,Jtermint); 

             

        end 

         

        betan=(1./(tanh(ynH.*L)).*((ynH.*tanh(kn.*L)+kn.*tanh(ynH.*DS))./              

           ((ynH.*tanh(kn.*L).*tanh(ynH.*DS))+kn))); % Beta-n 

         

        IntJHTerm=-(Kthetha./(1+betan)).*permute(IntMatH, [2 1]); 

         

        DiffJHTerm=ynH.*((b.^2)./2).*((besselj(0, ynH.*b)-(1./(ynH.*b)).*besselj(1, 

     ynH.*b)).^2); 

         

        vn=1i.*w.*muo.*(IntJHTerm./DiffJHTerm); 

         

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %                            un Solver (E-mode)                           % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        IntMatE=[]; 

         

        for n=1:20 

             

            Jint=besselj(0,ynE(n).*r); 

             

            Jtermint=trapz(r,Jint); 

             

            IntMatE=cat(1,IntMatE,Jtermint); 

             

        end 

         

        IntJETerm=2.*1i.*w.*epsr.*Eo.*permute(IntMatE, [2 1]); 

         

        DiffJETerm=c.^2.*ynE.*sn.*b.^2.*((besselj(1, ynE.*b)).^2); 

         

        un=-IntJETerm./DiffJETerm; 

         

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %                     H-Mode Field Boundary Constants                     % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        AnH=vn.*ynH./(ynH.*sinh(ynH.*DS).*sinh(kn.*L)+ 

           kn.*cosh(kn.*L).*cosh(ynH.*DS)); 

         

        BnH=(AnH./(2.*ynH)).*exp(ynH.*L).*(ynH.*sinh(kn.*L)-kn.*cosh(kn.*L)); 

         

        CnH=(AnH./(2.*ynH)).*exp(-ynH.*L).*(ynH.*sinh(kn.*L)+kn.*cosh(kn.*L)); 

         

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %                     E-Mode Field Boundary Constants                     % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

 

        AnE=(epsp.*sn.*un)./(epsp.*sn.*cosh(qn.*L).*sinh(sn.*DS)+epsr.*qn.*      

           sinh(qn.*L).*cosh(sn.*DS)); 
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        CnE=(AnE./(2.*epsp.*sn)).*exp(-sn.*L).*(epsp.*sn.*cosh(qn.*L)+    

           epsr.*qn.*sinh(qn.*L)); 

         

        DnE=(AnE./(2.*epsp.*sn)).*exp(sn.*L).*(epsp.*sn.*cosh(qn.*L)-epsr.*qn.*  

           sinh(qn.*L)); 

         

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %                       H-Mode Power Iteration Loop                       % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        Ethethar=[]; 

         

        for n=1:rlim 

             

            Ethethasum=sum((BnH.*exp(-ynH.*(L+D+S))+CnH.*exp(ynH.*(L+D+S))).*   

               besselj(1,ynH.*r(n))); 

             

            Ethethar=cat(2,Ethethar,Ethethasum); 

             

        end 

         

        Ethetha=Ethethar; 

         

        PHMode=-pi.*Kthetha.*trapz(r,r.*Ethetha); % Absorbed H-mode Power (W) 

         

        PHModeAbs=abs(PHMode); % Absolute Absorbed H-mode Power (W) 

         

        PHModeReal=real(PHMode); % Real Component of Absorbed H-mode Power (W) 

         

        if isnan(PHModeReal)==1 

             

            PHModeReal=0; 

             

        else 

             

        end 

         

        PHMStack=cat(1,PHMStack,PHModeReal); 

 

 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %                      E-Mode Power Iteration Loop                        % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        Bthethar=[]; 

         

        for n=1:rlim 

             

            Bthethasum=sum((CnE.*exp(sn.*(L+D+S))+DnE.*exp(-sn.*(L+D+S))).*   

               besselj(1,ynE.*r(n))); 

             

            Bthethar=cat(2,Bthethar,Bthethasum); 

             

        end 

         

        Bthetha=Bthethar; 

         

        Eradiusr=[]; 

         

        for n=1:rlim 

             

            Eradiussum=((1i.*c.^2)./(w.*epsr)).*sum(sn.*(CnE.*exp(sn.*(L+D+S))-  

               DnE.*exp(-sn.*(L+D+S))).*besselj(1,ynE.*r(n))); 
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            Eradiusr=cat(2,Eradiusr,Eradiussum); 

             

        end 

         

        Eradius=Eradiusr; 

         

        PEMode=-(2.*pi./muo).*trapz(r,r.*Eradius.*conj(Bthetha)); % Absorbed E-mode     

           Power (W) 

         

        PEModeAbs=abs(PEMode); % Absolute Absorbed E-mode Power (W) 

         

        PEModeReal=real(PEMode); % Real Component of Absorbed E-mode Power (W) 

         

        if isnan(PEModeReal)==1 

             

            PEModeReal=0; 

             

        else 

             

        end 

         

        PEMStack=cat(1,PEMStack,PEModeReal); 

         

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %                         Stochastic Sheath Power                         % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        Pstoc=0.61.*(me./el).^0.5.*epso.*w.^2.*Te.^0.5.*(trapz(rs,Vs.*2.*pi.*rs)); 

     % Absorbed Sheath Power (W) 

         

        PstocStack=cat(1,PstocStack,Pstoc); 

         

        

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %                  Total Absorbed and Reflected RF Power                  % 

         

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         

        Pabs=PHModeReal+PEModeReal+Pstoc; % Total Absorbed Power (W) 

         

        PabsStack=cat(1,PabsStack,Pabs); 

         

        veffStack=cat(1,veffStack,veff); 

         

    end 

     

    disp('Done'); 

     

end 

  

ne=logspace(15,17); 

  

loglog(ne,PabsStack) 

  

hold on 

  

loglog(ne, PlossStack) 

  

hold off 

  

PStack=[PabsStack PlossStack]; 
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APPENDIX E: AUXILLARY DATA AND RELATED PROGRAMS 

 

E.1. Argon Collision Cross Section Spreadsheet ('ArgonCC.xls') 

 
Table E.1: Electron energies (eV) and the corresponding argon collision cross sections  
(m-2) 
 

Electron Energy (eV) Argon Collision Cross Section (m-2) 
0 1E-19 

0.01 6.5E-20 
0.03 4.1E-20 
0.1 1.63E-20 
0.3 2.3E-21 

1 1.55E-20 
1.2 1.88E-20 
1.5 2.42E-20 

2 3.35E-20 
2.5 4.25E-20 

3 5.2E-20 
4 7.15E-20 
5 9.1E-20 
6 1.1E-19 
8 1.54E-19 

10 1.85E-19 
12 2.1E-19 
15 2.25E-19 
20 2.19E-19 
25 1.9E-19 
30 1.63E-19 
40 1.29E-19 
50 1.11E-19 
60 1.02E-19 
80 9E-20 

100 8.2E-20 
120 7.5E-20 
150 6.9E-20 
200 5.9E-20 
250 5.2E-20 
300 4.7E-20 
400 4E-20 
500 3.5E-20 
600 3.1E-20 
800 2.55E-20 

1000 2.23E-20 
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Table E.1, continued... 
 

1200 1.97E-20 
1500 1.69E-20 
2000 1.38E-20 
2500 1.2E-20 
3000 1.05E-20 
4000 8.4E-21 
5000 7.1E-21 
6000 6.2E-21 
8000 4.9E-21 

10000 4.1E-21 
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E.2. Bessel Zeros Function Code  

 

The Bessel zeros function code ('besselzero.m') is downloadable from MATLAB Central:   
 
http://www.mathworks.com/matlabcentral/fileexchange/6794-bessel-function-
zeros/content/besselzero.m 
 
--------------------------------------------------------------------------- 
 

function x=besselzero(n,k,kind) 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% besselzero.m 

% 

% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x)  

% using Halley's method. 

% 

% Written by: Greg von Winckel - 01/25/05 

% Contact: gregvw(at)chtm(dot)unm(dot)edu 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

k3=3*k; 

  

x=zeros(k3,1); 

  

for j=1:k3 

     

    % Initial guess of zeros  

    x0=1+sqrt(2)+(j-1)*pi+n+n^0.4; 

     

    % Do Halley's method 

    x(j)=findzero(n,x0,kind); 

  

    if x(j)==inf 

        error('Bad guess.'); 

    end 

     

end 

  

x=sort(x); 

dx=[1;abs(diff(x))]; 

x=x(dx>1e-8); 

  

x=x(1:k); 

  

function x=findzero(n,x0,kind) 

  

n1=n+1;     n2=n*n; 

  

% Tolerance 

tol=1e-12; 

  

 

% Maximum number of times to iterate 

MAXIT=100; 

  

% Initial error 

err=1; 

  

iter=0; 

  

while abs(err)>tol & iter<MAXIT 

     

    switch kind 

        case 1 

            a=besselj(n,x0);     
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            b=besselj(n1,x0);    

        case 2 

            a=bessely(n,x0); 

            b=bessely(n1,x0); 

    end 

             

    x02=x0*x0; 

     

    err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a); 

     

    x=x0-err; 

    x0=x; 

    iter=iter+1; 

     

end 

  

if iter>MAXIT-1 

    warning('Failed to converge to within tolerance. ',... 

            'Try a different initial guess'); 

    x=inf;     

end 
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E.3. Empty Excel Sheet Delete Code  

 

The empty Excel sheet delete code ('deleteEmptyExcelSheets.m') is downloadable from 
MATLAB Central:   
 
http://www.mathworks.com/matlabcentral/fileexchange/25389-synthetic-microstructure-
generator/content/deleteEmptyExcelSheets.m 
 
--------------------------------------------------------------------------- 
 
%created by: Quan Quach 

%date: 11/6/07 

%this function erases any empty sheets in an excel document 

  

function deleteEmptyExcelSheets(fileName) 

  

%the input fileName is the entire path of the file 

%for example, fileName = 'C:\Documents and Settings\matlab\myExcelFile.xls' 

  

  

excelObj = actxserver('Excel.Application'); 

%opens up an excel object  

excelWorkbook = excelObj.workbooks.Open(fileName); 

worksheets = excelObj.sheets; 

%total number of sheets in workbook 

numSheets = worksheets.Count; 

  

count=1; 

for x=1:numSheets 

    %stores the current number of sheets in the workbook 

    %this number will change if sheets are deleted 

    temp = worksheets.count; 

  

    %if there's only one sheet left, we must leave it or else  

    %there will be an error. 

    if (temp == 1)  

        break;  

    end 

  

    %this command will only delete the sheet if it is empty 

    worksheets.Item(count).Delete; 

  

    %if a sheet was not deleted, we move on to the next one  

    %by incrementing the count variable 

    if (temp == worksheets.count) 

        count = count + 1; 

    end 

end 

excelWorkbook.Save; 

excelWorkbook.Close(false); 

excelObj.Quit; 

delete(excelObj); 
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