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ABSTRACT
The volume of fluid with the continuum surface force (VOF-CSF) method has been
used in the current numerical work to investigate the bubble formation and the bubble
shape in a bubble column. The shape of the bubble has been tracked by using the
piecewise linear interface calculation (PLIC). The effect of orifice sizes ranging from
0.5 mm to 1.5 mm on the bubble formation stages (i.e., expansion, elongation and pinch
off), bubble contact angle, departure diameter, time and shape of bubble was
investigated under a constant inlet velocity (0.2 m/s) boundary condition. It was found
that a leading bubble required a longer time to detach from an orifice in comparison to
the following bubbles, but interestingly the third bubble took quite longer time than the
second bubbles. This model has also been used to study the effect of Bond number and
Reynolds number on bubble formation. The velocity field around the bubble has a
significant effect on bubble formation, when the Bond number and Reynolds numbers
are changed. Moreover, the effect of trapezoidal type columns to the rise velocity of a
single bubble was simulated using a couple level set volume of fluid (CLSVOF)
method. The bubble rise velocity reduced with the increase of trapezoidal angle or with
the decrease of the top column width. Subsequently, the bubble rising distance for a
given particular total time reduced with the increase of the trapezoidal angle. The
trapezoidal cavity enhanced the spatial or lateral distribution of a bubble to left and right
of the column. The trapezoidal column also enhanced the change of bubble shape from
elliptic to circle and vice versa with the increase of the time or the vertical height.
Finally, the VOF-CSF method was applied to investigate the effect of non-dimensional
liquid viscosity and the effect of non-dimensional surface tension coefficient on co-axial
and parallel bubble coalescence as well as rise trajectories in stagnant liquid. It was
found that the coalescence time of two co-axial bubbles decreased with the reducing

surface tension coefficient and reducing liquid viscosity. For the parallel bubbles



coalescence, non-dimensional critical flat gap of bubble coalescence (Sc) decreased
with the increase of bubble diameter under reduction of surface tension coefficient. But
Sc increased with reduction of liquid viscosity. When the initial flat gaps of bubble are
larger from Sc; the parallel bubbles enchanted by its repulsive effect. The findings from
these works may be able to provide a fundamental knowledge and also be useful for

designing a sparger for bubble column reactors.



ABSTRAK
Isipadu cecair dengan kekerasan permukaan kontinum (VOF-CSF) kaedah telah
digunakan dalam Kkerja-kerja berangka semasa untuk menyiasat pembentukan
gelembung dan bentuk gelembung dalam lajur gelembung. Bentuk gelembung telah
dikesan dengan menggunakan pengiraan muka piecewise linear (PLIC). Kesan saiz
lubang antara 0.5 mm hingga 1.5 mm pada peringkat pembentukan gelembung (iaitu,
pengembangan, pemanjangan dan picit off), sudut sentuh gelembung, diameter berlepas,
masa dan bentuk gelembung telah disiasat di bawah halaju masuk malar (0.2 m/s)
keadaan sempadan. la telah mendapati bahawa gelembung terkemuka diperlukan masa
yang lebih lama untuk menanggalkan daripada orifis berbanding dengan buih berikut,
tetapi menarik gelembung ketiga mengambil masa agak lama daripada buih kedua.
Model ini juga telah digunakan untuk mengkaji kesan jumlah Bon dan nombor
Reynolds pada pembentukan gelembung. Bidang halaju sekitar gelembung mempunyai
kesan yang besar ke atas pembentukan gelembung, apabila bilangan Bon dan nombor
Reynolds diubah. Selain itu, kesan ruangan Jenis trapezoid dengan halaju kenaikan
gelembung tunggal telah disimulasi menggunakan menetapkan kelantangan beberapa
tahap cecair (CLSVOF) kaedah. Halaju kenaikan gelembung dikurangkan dengan
peningkatan sudut trapezoid atau dengan penurunan sebanyak lajur lebar atas. Selepas
itu, jarak gelembung yang semakin meningkat untuk jumlah masa tertentu yang
diberikan dikurangkan dengan peningkatan sudut trapezoid. Rongga trapezoid
dipertingkatkan taburan ruang atau sisi buih ke kiri dan kanan tiang. Lajur trapezoid
juga meningkatkan perubahan bentuk gelembung dari elips kepada bulatan dan
sebaliknya dengan peningkatan masa atau ketinggian menegak. Akhir sekali, VOF-CSF
telah digunakan untuk mengkaji kesan kelikatan cecair tanpa dimensi dan kesan bukan
dimensi pekali tegangan permukaan pada bersama-paksi dan tautan gelembung selari

serta trajektori kenaikan cecair bertakung. la telah mendapati bahawa masa yang tautan



dua buih bersama paksi menurun dengan kelikatan cecair yang mengurangkan pekali
tegangan permukaan dan mengurangkan. Untuk buih tautan yang selari, tanpa dimensi
jurang rata kritikal gelembung tautan (Sc) menurun dengan peningkatan diameter
gelembung di bawah pengurangan pekali tegangan permukaan. Tetapi Sc meningkat
dengan pengurangan kelikatan cecair. Apabila jurang rata awal gelembung yang lebih
besar dari Sc; gelembung selari terpesona dengan kesan yang menjijikkan. Hasil
daripada kerja-kerja ini mungkin boleh menyediakan pengetahuan asas dan juga
berguna untuk mereka bentuk satu penyembur untuk gelembung ruangan reaktor yang

sangat sukar untuk didapati daripada kajian eksperimen.
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