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ABSTRACT 

Ilmenite is a tin mining byproduct that contains the radioactive element Uranium (U) and 

Thorium (Th). Although present in minute amounts (300-400 ppm), Malaysian law (Act 

304) stipulates that it is radioactive, and is therefore a schedule waste, and need to be dealt 

with accordingly. The disposal cost is too high, prompting the companies involved to 

reprocessed ilmenite into synthetic rutile via hydrometallurgy, a low grade TiO2 

intermediate compound. Synthetic rutile contains mostly TiO2 in the rutile phase, iron, 

silicon and other impurities, making it highly impractical for any high-end usage. Due to 

this fact, its cost is quite low. 

TiO2 is a common compound that is most famous for use as white pigmentation in paints, 

due to its whitish colour. In the nanosize region, its applications are much more diverse, 

including self-cleaning coatings, electrochromism, and photocatalytic applications. It also 

comes in many forms such as tubes, particles, and spheres. TiO2’s flexibility allows it to be 

processed from many methods, such as solgel, hydrothermal, solvothermal and 

sonochemical method, with each method producing unique products that is suitable for 

differing applications. 

There are two objectives to this work, the first objective is utilize a tin mining byproduct 

(ilmenite) to produce anatase nano-TiO2 particles, and the second objective is to use these 

particles to produce nano-TiO2 thin films. The processing methods to produce both the 

particles and thin films will be modified from conventional methods in order to suit the 

nature of the intended precursors. 

We intend to use low grade synthetic rutile, derived from ilmenite, as a precursor to 

produce anatase nano-TiO2 particles. The method that is going to be utilized is the 
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hydrothermal method, although, due to the nature of the precursor, the method needs to be 

modified. The product from this process will in turn be used as a precursor to produce 

nano-TiO2 thin film, utilizing the solgel method. This solgel method also needs to be 

slightly modified due to the presence of impurities in the sample. 

The properties that needs to be analyzed is the chemical composition of the samples, the 

crystallite size of the particles, its surface area, morphology for the nanoparticles, and the 

film thickness, transparency, morphology, topography, and phases for the thin film. To this 

end, characterization methods such as the XRD, SEM, BET, AFM, UV-Vis, and the surface 

profiler will be used. A control nanoparticle sample, purchased from American Elements, 

will be compared to our nanoparticles, for the thin films, data from literature will be used as 

comparison. 

The proposed methods manage to produce both the nanoparticles and thin films 

successfully. We also discovered that in some aspects, such the crystallite size and surface 

area, it is better than the commercial product. 

The thin film’s morphology and surface profile (rough), low thickness and relatively high 

transmission indicates its suitability for photocatalytic and self-cleaning applications. The 

films are also relatively pure, with TiO2 dominating the content of the films. 

The results indicate that it is possible to convert a low quality waste product into a high 

quality usable nanomaterial with a multitude of potential applications. The resulting 

product is in some ways superior to commercial products, and the processing method is 

cheap, environmentally friendly and easily customizable. 
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ABSTRAK 

Ilmenite ialah bahan sampingan perlombongan bijih timah yang mengandungi elemen 

radioaktif Uranium (U) dan Thorium (Th). Sungguhpun elemen-elemen radioaktif ini 

merupakan hanya sebahagian kecil (300-400 ppm) dari bahan sampingan perlombongan, 

undang-undang Malaysia (Akta 304) menganggap bahan sampingan ini bahan radioaktif, 

dan merupakan bahan buangan terkawal, danperlu diuruskan mengikut prosedur-prosedur 

yang terkandung di dalam akta tersebut. Kos pemprosesan dan pembuangan bahan 

sampingan perlombongan ini agak tinggi, dan ini menyebabkan syarikat perlombongan 

yang terlibat memproses ilmenite kepada bahan yang dikenali sebagai rutile sintetik, 

menggunakan kaedah yang dikenali sebagai hidrometalurgi. Rutile sintetik ini merupakan 

titanium dioksida bergred rendah. Ia juga mengandungi elemen-elemen lain seperti Ferum, 

Silikon dan elemen-elemen lain yang menyebabkan ia tidak boleh digunakan untuk 

penggunaan berkualiti tinggi. Ini meyebabkan kos rutile sintetik menjadi agak rendah 

berbanding dengan bahan titanium dioksida yang lain. 

Titanium Dioksida (TiO2) merupakan bahan yang agak meluas penggunaannya, contohnya, 

ia digunakan sebagai pemutih di dalam cat. Apabila saiz partikelnya mencapai tahap nano, 

applikasinya dalam bidang sains dan teknologi menjadi lebih meluas, dan contoh applikasi 

menggunakan bahan ini merangkumi bidang-bidang seperti salutan mudah bersih, peralatan 

elektrokromik, dan applikasi fotokatalitik. TiO2 juga boleh dihasilkan dalma pelbagai 

bentuk contohnya tiub, partikel dan sfera. Sifatnya yang agak fleksibel juga membolehkan 

TiO2 dihasilkan dari pelbagai kaedah pemprosesan, contohnya kaedah solgel, hidroterma, 

solvoterma, dan teknik kimia sono. Setiap kaedah ini menghasilkan produk-produk yang 

unik, yang boleh diguna pakai untuk applikasi yang berlainan. 
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Kajian ini mempunyai dua objektif, iaitu menggunakan bahan sampinga perlombongan 

bijih timah untuk menghasilkan partikel anatase nano-TiO2, dan objektif kedua ialah 

menggunakan partikel-partikel nano ini untuk menghasilkan fuilem nipis TiO2. Kaedah 

pemprosesan untuk menghasilkan partikel nano dan filem nipis perlu diubahsuai dari 

kaedah yang biasa digunakan kerana sifat bahan permulaan proses ini agak unik dan 

berlainan dari bahan yang selalu digunakan. 

Bahan permulaan yang akan digunakan merupakan rutile sintetik yang dihasilkan dari 

ilmenite melalui kaedah hidrometalurgi, untuk menghasilkan partikel nano-TiO2 anatase. 

Kaedah yang akan digunakan merupakan kaedah hidroterma. Walaubagaimanapun, kaedah 

ini harus diubahsuai kerana rutile sintetik mengandungi elemen-elemen lain yang mungkin 

akan memudaratkan sifat-sifat partikel nano yang akan dihasilkan. Partikel-partikel nano ini 

pula akan digunakan untuk menghasilkan filem nipis, menggunakan kaedah solgel. Kaedah 

solgel ini juga mungkin perlu diubahsuai, bergantung kepada partikel nano yang akan 

digunakan.  

Sifat-sifat yang akan dikaji termasuk komposisi kimia sampel, saiz Kristal partikel nano, 

luas permukaannya, morfologi, ketebalan filem, sifat lutsinar filem, topografi, dan fasa 

sampel. Kaedah-kaedah yang akan digunakan bagi kajian termasuklah teknik XRD, SEM, 

BET, AFM, UV-Vis, dan profil permukaan. Sampel kawalan, merupakan partikel nano 

yang dibeli dari syarikat American Elements, akan digunakan untuk perbandingan dalam 

kajian ini.  

Kaedah yang dicadangkan berjaya menghasilkan partikel nano dan filme nipis. Kajian ini 

juga menunjukkan yang dari beberapa aspek, seperti luas permukaan dan saiz kristal, 

produk yang dihasilkan dalam kajian ini adalah lebih baik dan sempurna lagi.  
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Morfologi filem nipis dan profil permukaan (kasar), ketebalan yang rendah dan tranmissi 

yang tinggi menunjukkan kesesuaiannya untuk applikasi fotokatalitik dan alatan 

elektrokromik. Filem nipis yang dihasilkan juga mempunyai ketulenan yang tinggi. 

Keputusan kajian menunjukkan yang bahan sampingan yang berkualiti rendah boleh 

ditukarkan kepada bahan nano berkualiti tinggi yang boleh digunakan untuk pelbagai 

applikasi bertahap tinggi. Produk yang dihasilkan dari bahan sampingan ini adalah lebih 

baik dari bahan komersial dari beberapa segi, dan proses yang digunakan juga merupakan 

proses yang berkos rendah, fleksibel, dan kurang pencemaran alam sekitar. 
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CHAPTER 1: INTRODUCTION 

1.1 Research Background 

Malaysia is a country that is blessed with a variety of natural resources, whether in the form 

of minerals, oil and gas, or even flora and fauna. Various industries set up shop in Malaysia 

in order to exploit this opportunity, and since its independence, we literally see thousands 

of companies dealing with mining, deforestation, manufacturing and other lucrative 

business venture. What all these venture have in common is the generation of waste. 

Malaysia generates many forms of waste from its various industries, and currently, only a 

few companies are equipped to deal with waste collection, management, recycling and 

reprocessing. From time to time, we hear about various wastes being dumped with 

impunity in rivers, unauthorized landfills, and other sensitive sites that is hazardous to the 

population. The government has launched a campaign promoting awareness among the 

Malaysian public regarding recycling and reuse of waste products; however, these calls are 

largely unsuccessful due to the enormous effort and costs required in these ventures. 

Tin mining is a major industry in Malaysia. The mining industry is what industrialized 

Malaysia, turning this sleepy former British colony into an Asian economic powerhouse. 

The salient nature of this industry encourages the starting of many companies that deal with 

this venture at many levels, whether the mining itself, the separation and purification of the 

mining product, or the packaging and distribution of its end product. However, many 

byproducts are produced from tin mining, primarily among these is ilmenite, a low-grade 

iron based minerals, rife with impurities. 

Ilmenite is a mildly magnetic mineral, consisting of a variety of transition metals, usually in 

the form of metal, intermetallic compounds, or oxides. Its content is location dependant 
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(Pownceby et al 2008,Li et al 2006) and its high level of impurities marks it as a low-grade 

mineral. Its abundance in certain locations, coupled with its relatively low grade and cost, 

makes it a potential viable source for metals and oxides. However, the extraction and 

purification processes involving ilmenite are numerous and complex, as detailed by various 

researchers (Li et al 2006;Yuan et al 2006;Kumari et al 2001). The processing of ilmenite 

produces many intermediate compounds, which, with further refinement, are equally useful, 

such as pseudorutile and synthetic rutile. Examples of these processing methods include 

acid leaching, carbothermic reduction, pyrometallurgy and hydrometallurgy, as detailed by 

Akhgar et al (2010), Mambote et al (2000), and Kucukkaragoz et al (2006). What these 

methods have in common is that it enables the modification of the product’s properties by 

careful manipulation of the processing parameters. This facilitates the production of high 

quality products, almost equal to the ones in the market. 

Synthetic rutile produced from ilmenite by Tor Minerals Sdn. Bhd is considered a low 

quality product; it contains 93% titania in the rutile phase, with various impurities such as 

silicon, manganese, zirconium, niobium and sulfur. The low quality nature of this product 

significantly reduces it cost, and it currently sells for MYR4.5/kg.  

Titania (TiO2) is a compound that is both familiar and abundant, having seen many 

applications in diverse areas such as cosmetics, coatings and water purification. This 

attribute is mainly due to the flexibility of titania as a compound, where it comprises of 

many unique phases and crystal systems that is responsible for its behavior in certain 

conditions. Titania comprises of eleven phases (some only exist in high pressure states), 

and four crystal systems (orthorhombic, monoclinic, tetragonal and cubic). Some common 

phases of titania are anatase (tetragonal), brookite (orthorhombic) and rutile (tetragonal). 

These phases occur naturally in minerals, and are regularly extracted and separated from 
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said ores in industrial settings. Sources of titania includes, but is not limited to, ilmenite 

(FeTiO3), leucoxene ores, or rutile beach sand. Titania, as seen in its commercial form, is 

manufactured or processed from these sources using a myriad of methods, which includes 

the more common methods such as sol-gel method (widely used commercially), the 

hydrothermal and solvothermal methods, to the specialized and seldom used 

electrodeposition and the sonochemical method. The uniqueness of titania’s attribute 

depends partly on its fabrication route, where we can see titania produced in different forms 

and shapes such as tubes (solvothermal) or rods (hydrothermal), segregated spheres (sol-

gel), and smooth coatings (electrodeposition). These different forms of titania is crucial as 

its tailors to specific applications, for example, titania being applied for self cleaning 

applications needs to be coated on a surface/substrate, to allow a large surface area for it to 

act upon, whereas titania being used for photocatalytic applications needs to be in particle 

form, in order for it to be dispersed evenly in a medium (usually liquid), without upsetting 

the balance of the medium or introducing impurities that will contaminate the medium itself 

(Chen et al 2007). 

The size of titania particles are also paramount in determining its characteristics and 

potential application. Due to its whitish color, titania is commonly used as white 

pigmentation in paints, with its own industrial code (E171), and this pigments are 1-10 µm 

in size. The smaller the particle gets, the more diverse its potential application can be. With 

today’s focus on nanotechnology, interest in how titania can play a role in this field is being 

pursued by many scientist and researchers. As a result of this fervor, we see nanosized 

titania being used in areas previously thought unfeasible, such as electrochromic devices, 

electronic sensors and photovoltaic cells. The inclusion of titania into these devices 

produces effects such as lengthening of process cycles and increased efficiency. The 
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flexibility of titania as a compound also allows its fabrication method to be routinely 

modified to produce products that are deemed to be ‘nano’ in size, with determining factors 

such as crystallite/particle size and thickness being given special attention. 

1.2 Problem Statement 

Tor Minerals Sdn. Bhd. is a tin mining company based in Lahat, Perak. Their mining 

operation produces an abundance of ilmenite, and as ilmenite contains 300-400 ppm of 

Uranium and Thorium, it is classified as a radioactive material under Malaysian law (Act 

304), which stipulates that any radioactive materials disposal be handled by the Atomic 

Energy Licensing Board (AELB), and certain waste management company that are licensed 

by the government to deal with this matter, along with licensed private contractors. 

Currently, Tor Minerals Sdn. Bhd. is sitting on 600,000 metric tons of ilmenite, and the cost 

of disposal is quite high, because it involves licensing and various other enforcement 

bureaucracies. This caused the company to reconsider, and using hydrometallurgy, they 

processed this ilmenite into synthetic rutile. 

In short, the problems faced by the current tin mining process are listed below. 

• Tin mining produces ilmenite, considered a scheduled waste due to its content of 

uranium and thorium 

• The disposal cost is quite high and involves complex bureaucratic dealings, driving 

Tor Minerals to process it into synthetic rutile using hydrometallurgy 

• Synthetic rutile caters to a niche market, making it difficult to sell 

Even as a low quality mineral byproduct, synthetic rutile contains almost 90% TiO2, which 

is quite a substantial percentage. However, the presence of impurities renders it unusable 
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for many applications involving TiO2, although further processing will be able to rid it of 

its impurities and make it usable. Unfortunately, not many industries express interest in 

reprocessing these waste materials further due to its niche market potential and the need to 

channel more funds to make it viable. The successful reprocessing of this waste material 

into TiO2 will however, transform this niche market with low commercialization potential, 

into a multipurpose material that caters to almost every industry ranging from academia to 

manufacturing.  

 

1.3 Scope of Research 

 

For the purpose of this research, the attention will be devoted to the production, and 

features of nanotitania, in line with current research interest. A significant number of 

methods to produce titania is mentioned in literature involves production of nanotitania, 

such as hydrothermal (Chen et al 2009; Sivaraju 2010;Sayilkan et al 2006), solvothermal ( 

Supphasrirongjaroen 2008; Shen 2011; Wahi 2006) electrodeposition (Karuppuchamy et al 

2002; Karuppuchamy et al 2006), and sonochemical methods (Guo et al 2003; Arami 

2007). These methods are dominated by certain parameters, which makes it a relatively 

simple affair to manipulate the process to produced customized nanotitania. The research 

aims to produce two forms of titania, therefore, focus will be on two methods, 

hydrothermal (nanoparticles), and solgel (thin films). These two methods are established 

methods, with a body of research involving them published in literature (Hidalgo et al 

2007;Oh et al 2006;Akarsu et al 2006; Ou et al 2007;Suciu et al 2009; Gaur et 

al2011;Valtierra et al 2006). However, room for improvement still exists, as some 
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cumbersome technique embedded in the method can be simplified or eliminated altogether, 

but still produce products that are similar in features and properties. Similarly, certain 

precursor chemicals and equipments are deemed expensive and its elimination or 

replacement can significantly curtail production costs. 

The strong interest in the hydrothermal method is mainly due to its relative simplicity for 

large-scale synthesis of titania in a single reaction process. The process is efficient in terms 

of productivity and cost, and produces high quality titania particles and nanoparticles. This 

is iterated by various researchers such as Ou et al (2007) and Lasheen (2008). Basically, the 

hydrothermal method begins with fusing a precursor with a solvent at a set amount of time, 

temperature and pressure. Precursors to the process are usually Titanium Butoxide, TTiP or 

Titanium Butoxyl, and the chemical solvents are usually acid such as sulfuric or 

hydrochloric acids, or other organic solvents such as ethanol or methanol. The next step 

involves placing this mixture in an autoclave, set at a high temperature and pressure 

environment to facilitate the fusion of the chemicals and the precursor and the precipitation 

of particles/nanoparticles. The settings of the autoclave varies, but literature points to an 

average temperature of about 200-500°C, with the variation of time and pressure too large 

to draw an average. After this process, the mixture is removed and cleaned with a 

neutralizing agent, and dried either in air or in a furnace, usually at temperatures such as 

70-150°C. Further processing might be needed, with milling of the product common in 

order to achieve uniformity. This summarizes the hydrothermal process conducted by Chen 

et al (2009), Sivaraju (2010), Sayilkan et al (2006), Liu et al (2005), Zárate et al (2008), 

and most, if not all, researches follow this standard rule when using the hydrothermal 

method, although some researchers will vary parameters such as time, temperature and 

pressure to study the effect it has on the titania nanoparticles. For comparison purposes, 



 

Kim et al (2007) conducted hydrothermal treatment at 300°C, and studied the effect it has 

on the surface area/crystallin

al (2005) used Titanium Isopropoxide and Titanium Oxide Degussa P25 respectively to 

synthesize TiO2 nanoparticles

of the formed nanostructures. Below are some SEM images of titania nanoparticles 

produced by the hydrothermal method.

Figure 1.1 Example of Nano

As can be seen from Fig. 1

small in size. Products from the hydrothermal process are used for phot

a) 

b) 

(2007) conducted hydrothermal treatment at 300°C, and studied the effect it has 

on the surface area/crystallinity of the particles, while Sayilkan et al (2006) and 

(2005) used Titanium Isopropoxide and Titanium Oxide Degussa P25 respectively to 

nanoparticles to study the changes in the physical and chemical properties 

of the formed nanostructures. Below are some SEM images of titania nanoparticles 

produced by the hydrothermal method. 

Example of Nano-TiO2 particles synthesized via the hydrothermal method 

from a) Hussein (2008) and b) Seo (2008) 

 

As can be seen from Fig. 1.1, the product of the hydrothermal process is uniform, and quite 

small in size. Products from the hydrothermal process are used for phot

7 

(2007) conducted hydrothermal treatment at 300°C, and studied the effect it has 

(2006) and Kontos et 

(2005) used Titanium Isopropoxide and Titanium Oxide Degussa P25 respectively to 

to study the changes in the physical and chemical properties 

of the formed nanostructures. Below are some SEM images of titania nanoparticles 

 

particles synthesized via the hydrothermal method 

, the product of the hydrothermal process is uniform, and quite 

small in size. Products from the hydrothermal process are used for photocatalytic 
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applications, where nanoparticles are dispersed in liquid medium to act as purifiers (due to 

their detoxifying capabilities).  

The hydrothermal method of producing nanotitania, although effective, suffers from several 

issues. Firstly, the cost of the process is quite high, especially considering the precursors, 

chemical solvents, the use of autoclave, and the time devoted to the process. It is mainly a 

batch process, and produces only a small amount of product per cycle, typically in grams. 

The parameters also need to be tightly controlled, as variations in parameters will alter the 

physical and chemical properties of the product, requiring a repeat of the process. The table 

below summarizes the benefits and disadvantages of the hydrothermal process of producing 

nanotitania. 

 

Table 1.1 Benefits and disadvantages of Hydrothermal Synthesis in nano-TiO2 

particle production 

 

Hydrothermal Process/Treatment to produce nano-TiO2 particles 

 

 

Benefits 

 

Disadvantages 

 

 

Simple 

 

The use of autoclave drives up the cost 

 

Parameters easily adjusted and tailored The use of synthetic and toxic chemicals 

greatly hamper the process 

 

Low chance of failure due to seal nature of 

process 

It is a slow process, taking time to 

precipitate nano-TiO2 particles 

 
 

This work will attempt to address these issues and modify the hydrothermal method to 

make it simpler, easy to control and cost effective. 
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The next method that will be addressed is the solgel method to produce thin film titania. 

The solgel method is widely used commercially, due to its simplicity and high quality 

products. Researchers such as Kajitvichyanukul et al (2005), Ahn et al (2003) and 

Mechiakh et al (2011),utilized the solgel method to produce thin film titania from various 

sources for various applications. The solgel method involves the fabrication of a titania 

containing precursor from any viable sources, and this solution is then deposited on a 

substrate using a variety of method such as spin or dip coating, or thermal evaporation. The 

films produced by this method are relatively thin/thick, opaque, and consist of particles on a 

substrate. The figure below show some example of thin film nanotitania coated on a 

substrate using the solgel method.  

 

 

 

 

 

 

 



 

Figure 1.2Examples of 

Fig. 1.2 clearly shows the existence of particles on the surface, with its grain clearly 

defined, with uniform size throughout the substrate. Depending on the deposition method 

(whether spin coat, dip coat, electrodeposition or thermal evaporation)

films will vary.  

The disadvantages of this method include expensive precursors, certain parameters that are 

difficult to control and predict such as aging time and coating speed and frequency, and the 

general rough nature of the films, making it uns

transmission of light. Table 1.2

Examples of Nano-TiO2 thin films fabricated via the solgel method using 

titania rich precursors 

 

2 clearly shows the existence of particles on the surface, with its grain clearly 

defined, with uniform size throughout the substrate. Depending on the deposition method 

(whether spin coat, dip coat, electrodeposition or thermal evaporation)

The disadvantages of this method include expensive precursors, certain parameters that are 

difficult to control and predict such as aging time and coating speed and frequency, and the 

general rough nature of the films, making it unsuitable for applications that require high 

Table 1.2 summarizes its benefit and disadvantages.

10 

 

fabricated via the solgel method using 

2 clearly shows the existence of particles on the surface, with its grain clearly 

defined, with uniform size throughout the substrate. Depending on the deposition method 

(whether spin coat, dip coat, electrodeposition or thermal evaporation), the quality of the 

The disadvantages of this method include expensive precursors, certain parameters that are 

difficult to control and predict such as aging time and coating speed and frequency, and the 

uitable for applications that require high 

summarizes its benefit and disadvantages. 
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Table 1.2 Benefits and disadvantages of Solgel Synthesis in nano-TiO2 particle 

production 

Solgel to produce nano-TiO2thin films 

 

 

Benefits 

 

Disadvantages 

 

 

Simple and uses commercially available 

chemicals 

 

Takes a significant amount of time and trial-

and-error to discover the suitable 

combination of precursor and chemical 

reagants 

 

Parameters are limited, and therefore easily 

controlled 

 

High cost of precursors 

Various deposition method available The films are generally opaque and its 

surface rough, making it unsuitable for 

certain applications 

 
 

This work will attempt to address these issues by modifying the method in a way that 

produces products that are similar, but far easier to control and manipulate. 

 

1.4 Research Objectives  

 

In short, the objective of this work is as follows 

• Utilize synthetic rutile as a precursor to produce high quality anatase nano-TiO2 

particles  
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• Utilize a new hydrothermal method to suit our current resources and equipments to 

produce anatase nano-TiO2 nanoparticles 

• Characterize and compare this nano-TiO2 particles with its commercial counterpart 

• Use the nano-TiO2 particles to produce thin films using a modified solgel method 

that addresses its disadvantages 

The goal of this work is to use synthetic rutile, derived from ilmenite, as a precursor to 

produce nano-TiO2 particles and nano-TiO2 thin films. The success of this work will 

provide a viable alternative to the current abundance of ilmenite, as a high quality end 

product (whether nano-TiO2 particle or nano-TiO2 thin films) that is on par with 

commercial product will allow us to adapt it for mass production and enable this precursor 

to replace its more expensive counterpart in the nano-TiO2 production scene. 

 

1.5 Research Methodology 

 

The block diagram shown in Fig. 1.3 outlines the methodology used in this work. It is 

divided into three stages; the preliminary stage involves the identification of precursors, 

nanoparticle synthesis methods, and thin film fabrication methods. The feasibility of a few 

conventional methods will be thoroughly researched and the most suitable method in 

accordance with the chosen precursor will be selected.  

The next step is the experimental work and setup involving both the nanoparticle and thin 

film fabrication. The selected method will be employed, and the product will be visually 



13 

 

inspected and characterized to determine whether the product is feasible, if it is not, the 

method will be repeated with varying parameter to produce a good product. 

The third stage is the results collection and analysis. Both the nanoparticles and thin films 

will be characterized, and the results will be compared with commercial products and 

published results to determine applicability. At the end of the analysis, the potential 

applications for the thin films will be discussed. 
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Figure 1.3. Methodology 
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1.6 Thesis Organization 

This thesis is divided into sevenchapters; each chapter will deal with issues that are 

pertinent to this work in great detail. The first chapter, the introduction, will introduce the 

subject matter; discuss related work, and outline objectives and hypothesis of this work. 

The second chapter, the literature review, will discuss in great length previous work by 

various researchers, discuss their findings, and the methods that they employ to obtain their 

results. Comparisons will be drawn between these works, and their benefits and 

shortcomings will be highlighted in detail. The third chapter, the experimental method, will 

detail the proposed method in our work, the materials and equipment used, and the 

characterization methods employed and the underlying reason for each characterization 

method used. The fourth chapter, aptly called the results and discussion (Nano-TiO2 

particles), will attempt to analyze our proposed method, its similarity and differences with 

conventional method, the product produced form the proposed method, the comparison 

with commercial products, the benefits of our method over conventional ones, of the nano-

TiO2 particles. The next chapter will discuss the same aspects, but relating to the nano-TiO2 

thin films instead of the nano-TiO2 particles. The sixth chapter discusses the potential 

application of both products, and comparisons are drawn with literature in order to justify 

our arguments. The final chapter, chapter seven, will conclude this work, and recommend 

some further studies involving the products. A list of references, appendix, awards and 

publications pertinent to this work will be showcased at the end of this thesis.  
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CHAPTER 2: LITERATURE REVIEW 

 

 

2.1 Introduction 

 

This chapter will outline the two forms of nano-TiO2 that will be fabricated during the 

course of this work, nanoparticles and thin films, along with describing both the 

established method for producing nano-TiO2 and nano-TiO2 thin films from various 

precursors. The method that will be discussed in detail will be the hydrothermal method 

of synthesizing nano-TiO2 particles, and the solgel method and spin coating deposition 

technique for nano-TiO2 thin film fabrication. The intricacies of both techniques will be 

detailed, along with the various parameters involved. The end product of both methods 

will be shown here for future comparison purposes.  

 

2.2 Nanotitania 

 

The previous section describes titania in terms of its shape and sizes, synthesis method, 

and common applications. This section aims to delve deeper, and more specific aspects 

of nanotitania will be explored, in the form of particles and thin films. 

 

Nanotitania is nanosized titania in any form. The definition of sizes vary according to 

the nature of the titania itself; particulates are considered 1-D nanostructures if it is less 

than 100 nm in size, while thin films are considered 2-D nanostructures. 

 

Nanotitania is unique in many senses, in that it opens up a wide array of potential 

applications for this previously underutilized oxide. We now see nanotitania being used 

as water splitting agents and electrochemical electrodes. The evolution of this material 
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into something extraordinary is only made possible with the scaling down of its size to 

the nano-region.  

 

In order to demonstrate this point, we will be discussing nano-TiO2 particles and nano-

TiO2 thin films. Nano-TiO2 is considered as such if its primary particle size (crystallite 

size) is less than 100 nm. This definition is explained in length in ISO CPD 10678. This 

small size is indicative of a large reactive surface area, with improved structural, 

chemical, and optical properties.  Nano-TiO2 particles are usually homogenous and 

uniform in distribution. Literature reports various particle size of nano-TiO2, from an 

average of 10 nm (Akarsu et al 2006; Rao et al 2007) to 100 nm (Nguyen et al 2006). 

Fig. 2.1 shows examples of nano-TiO2 particles that are produced by various 

researchers (Lu et al 2008; Arami et al 2007; Morgado et al 2006). 

 

 
 

Figure 2.1. Nano-TiO2 particles produced by previous researchers 

 
 



 

Figure 2.2 Potential 
 
 

Methods that are capable of producing nano

common in literature, such as hydrothermal, solvothermal, solgel and sonochemical

These methods are usually slightly modified in order to accommodate the production 

nano-TiO2 particles. Due to the intricate nature of the product from these processes, the 

parameters need to be carefully controlled and monitored

of the processes. This is due to the fact that the structural and chemica

nano-TiO2 are very much dependent on its processing parameters.

elaborated upon in various published work

and Ou et al 2007.  

 

TiO2 also exist as thin film

film TiO2 is fabricated

butoxide, titanium alkoxide and Degussa P25

et al 1999). These thin films are considered nanostructures due to its thickness and 

nanosized grains and particles that form the coating itself. Again, the nature of TiO

films is outlined in ISO CPD 10678. Fig. 2.3 shows some examples of TiO

fabricated via various routes

 

Figure 2.2 Potential applications of nano-TiO2 particles

Methods that are capable of producing nano-TiO2 particles are usually methods that are 

common in literature, such as hydrothermal, solvothermal, solgel and sonochemical

These methods are usually slightly modified in order to accommodate the production 

particles. Due to the intricate nature of the product from these processes, the 

parameters need to be carefully controlled and monitored in order to ensure the integrity 

of the processes. This is due to the fact that the structural and chemica

are very much dependent on its processing parameters. The methods are 

elaborated upon in various published works such as Shen et al 2011, Wahi 

thin films, commonly being applied as sensors and 

fabricated from various TiO2 containing precursors such as titanium 

butoxide, titanium alkoxide and Degussa P25 (Karuppuchamy et al 2002;

These thin films are considered nanostructures due to its thickness and 

nanosized grains and particles that form the coating itself. Again, the nature of TiO

films is outlined in ISO CPD 10678. Fig. 2.3 shows some examples of TiO

d via various routes. 
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particles 

particles are usually methods that are 

common in literature, such as hydrothermal, solvothermal, solgel and sonochemical. 

These methods are usually slightly modified in order to accommodate the production of 

particles. Due to the intricate nature of the product from these processes, the 

to ensure the integrity 

of the processes. This is due to the fact that the structural and chemical properties of 

The methods are 

2011, Wahi et al 2006, 

 electrodes. Thin 

containing precursors such as titanium 

2002; 2005; Wang 

These thin films are considered nanostructures due to its thickness and 

nanosized grains and particles that form the coating itself. Again, the nature of TiO2 thin 

films is outlined in ISO CPD 10678. Fig. 2.3 shows some examples of TiO2 thin film 
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Figure 2.3. TiO2 thin films from the works of a) Kajitvichyanukul et al 2005; b) 

Jazra et al 2004; and c) Okimura 2001   

 
 
 

 
 

Figure 2.4. Potential Applications of TiO2 thin films 
 

 

Similar to nano-TiO2 particles, TiO2 thin films can be fabricated using a variety of 

methods such as solgel, the hydrothermal method, or electrodeposition. Due to the 

sensitive nature of the final product, the process needs to be tightly controlled in order 

to ensure that the films are not deformed in any way. 

Nano-TiO2

thin film

Dye 
synthetized 
solar cells

Water 
Splitting 

Electrodes

Electrochro
mic Devices
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b) 
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2.3 Hydrothermal Method for nanoparticle synthesis 

 

 

This section is devoted to exploring the hydrothermal synthesis to produce nano-TiO2 

particles conducted by previous researchers. As mentioned in the previous chapter, the 

hydrothermal synthesis is an established method, especially when it comes to producing 

nano-TiO2 particles (Malinger 2011; Castro 2008), nano-TiO2 thin films (Zhao 2007) 

and titania nanotubes (Morgado 2006). The reason of its popularity is mostly due to its 

simplicity, and its capability in producing large amounts of product per cycle of process. 

The hydrothermal method involves the crystallization of particles from an aqueous 

solution in high pressure and high temperature environments. In order to create this 

extreme environment, this method requires an autoclave, which is an inert chamber 

lined with structurally stable materials such as steel or Teflon. The hydrothermal 

method is especially suitable in producing crystallographic materials, especially 

nanomaterials and nano-oxides. Due to its nature, it is also suitable in the production of 

nano-TiO2 particles, due to its crystalline nature and its small sizes. Fig. 2.5 summarizes 

the approach of the hydrothermal method for producing nano-TiO2 particles. 

 

 
 
 
 

 
 
 

Figure 2.5 Nano-TiO2 particles production via hydrothermal treatment 

 

 
 

2.3.1. Fusion 
 

 

The first step in this method is the selection and mixing of a precursor and its chemical 

solvent. In the hydrothermal method, the precursors are usually compounds that have a 

Fusion Autoclave Precipitation Collection 
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significant amount of TiO2, and the solvent(s) are mostly water-based chemical 

solvents. The mixing can be done physically using a glass rod, or mechanically using an 

overhead stirrer, depending on the medium of the precursors and solvents. The mixing 

is done to ensure that the surface of both the precursors and solvents are in maximum 

contact with each other, in order to ensure a complete and smooth reaction during the 

next step. The mixing is done at ambient temperatures, although it might be conducted 

under more extreme settings. The solution is either left to settle or used immediately, 

again, depending on the approach favored by individual researchers. This stage is 

crucial, as it plays a significant role in the determination of the physical and chemical 

properties of the final product. Researchers, such as as Hidalgo et al (2007), uses TTiP 

mixed with Isopropanol, and HCl with distilled water, Oh et al (2006), uses titanium 

butoxide mixed with 2-butoxyethanol and acetic acid, and Akarsu et al (2006) uses 

tetrabutylorthotitanate (Ti(OBu
n
)4) mixed with HCl, while Sayilkan et al (2006) uses 

Ti(OPr
i
)4,dissolved in n-propanol as a precursor, with this solution was added to HCl 

(aq) and an alkoxide solution. Most of the mixing in these cases was done physically, 

using a glass rod.  

 

2.3.2. Autoclave 
 

 

After the mixture is primed and deemed ready, the next step is placing it in the 

autoclave to initiate and complete the chemical reactions that will precipitate 

nanoparticles. The parameters involved at this stage of the process are the temperature, 

time and pressure in the autoclave, which are all automated. To accelerate the rate of 

reactions, the temperatures are increased, although in some cases, a lower temperature is 

preferred in order to preserve certain structural characteristics of the precipitate. Chen et 

al (2009) uses a Teflon lined autoclave to perform hydrothermal treatment at 200°C 

from 3-36 hours to produce nano-TiO2 particles, Sivaraju et al (2010) uses a stainless 
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steel Teflon line autoclave for the hydrothermal treatment at 150ºC – 200°C, at 12-48 

hours, and similarly, Akarsu et al (2006) used Stainless Steel Teflon lined autoclave 

preheated at 200°C for 1 hour. The methods are similar, but as shown by these three 

researchers, even though their products are nanoparticles, there are some variations in 

their physical/structural properties. 

 
 

2.3.3. Precipitation & Collection 
 

 

There are various ways to collect the precipitate formed in the previous step of the 

process, Mu et al (2010) recovered the nano-TiO2 particles from the hydrothermal 

treatment via filtration and repeated washing with deionized water, Malinger et al 

(2011) used centrifuging to recover their nanoparticles, and Kim et al (2007) used 

filtration and washing with water and ethanol to obtain their nanoparticles. Another 

viable method of precipitation and collection of the precipitates is centrifuging, where it 

involves placing the solid-liquid mixture containing the nanoparticles in a centrifuge, 

and spinning the solution at high frequencies to induce phase separation. The liquid 

portion is then removed. Filtration is also common, and can be done a number of ways, 

but mostly involves a vacuum pump and a fine sieve to separate the solids from the 

liquid. The washing is optional, and is done after filtration/centrifuging in order to 

ensure that no impurities or ions remain on the surface of the nanoparticles. 

 
 

2.3.4. Characterization and examples from previous research (nano-TiO2 particles) 

 

In order to verify that the final product of the hydrothermal treatment is indeed 

nanoparticles, most researchers employ characterization techniques such as the XRD, 

EDXRF, SEM, and PSA. These techniques provide details such as particle size, 

crystallite size, homogeneity, and particle distribution in the sample, allowing to 
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researcher to confirm the actual status of their nanoparticle. As an example, Jonville 

(2004) compiled a report regarding the usage of TEM and image processing analysis to 

characterize TiO2 nanoparticles.  

 

Researchers frequently conduct XRD analyses on nanoparticles. Mostly, their findings 

focus on the crystallite sizes of the sample, with crystallite sizes of less than 100 nm 

sufficient to prove that their samples are actually nanoparticles. The phases of the 

nanoparticles are equally important, and this is evident in the work of Kim et al (2007), 

Sivaraju et al (2010), and Oh et al (2006). 

 

SEM and TEM analyses are also capable of determining particle size, and again, the 

criteria that is looked for is that the particle size is less than 100 nm. Using built in 

software applications, researchers such as Hidalgo et al (2007), succeeded in 

determining the size of their particles. Their analysis showed a sufficiently small 

particle size, distributed uniformly throughout the sample, with its homogeneity intact.  
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Figure 2.6 XRD of nano-TiO2 particles synthesized from the hydrothermal method 

from the works of a) Jonville 2004; b) Mu et al 2010; and c) Chen et al 2009 

 

 

 

 

 

 

 

 
 
 

a) 

b) 

c) 
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Figure 2.7 SEM/TEM of nano-TiO2 particles from hydrothermal synthesis from 

the work of a) He et al 2011; b) Zhao et al 2007; and c) Hidalgo et al 2007 

 
 
 

2.4. Solgel Method of nano-TiO2 thin film fabrication 

 

 

The subject of nano-TiO2 thin films is especially abundant in literature due to its 

applicability in many fields. Some detailed work on nano-TiO2 thin film synthesis using 

the solgel method includes the work of Suciu et al (2009), Valtierra et al (2006), and 

Ahn et al (2003). The approach by these researchers might be slightly different, but 

generally, they follow the same set formula. The first step of the solgel method is the 

sol-solution synthesis. This involves dissolving a titania rich precursor in a liquid 

medium such as acid, alkali, water or alcohol. The dissolving method include aging at 

room temperature, using an autoclave or high temperature stirring in a sealed case. The 

solution will then be deposited using a variety of methods such as spin coating and dip 

coating onto a substrate, which might be glass/ITO, stainless steel or any other viable 

a) b) 

c) 
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material, and it might also be annealed for structural integrity, depending on its intended 

application. Fig. 2.8 summarizes the solgel synthesis of nano-TiO2 thin films. 

 

 

 

Figure 2.8. Solgel Synthesis of nano-TiO2 thin films 

 

 

2.4.1 Sol-Solution synthesis 
 

 

Sol creation in the solgel method involves fusing precursors with chemical reagants to 

create new compound that are more susceptible manipulation using other methods. 

Some example of precursors include Titanium Butoxide, Titanium Alkoxide, TTiP, 

while some common chemical reagants include mild acids, alcohol, and hydrocarbons 

(Kajitvichyanukula et al (2005); Yu et al (2001); Sonawane et al (2002); Garzella et al 

(2000); Blount et al (2001); Francioso et al (2003)). The precursors and chemical 

reagants are mixed and sealed under various conditions to ensure maximum reaction 

rates between them. In contrast with the hydrothermal synthesis, this method actually 

dissolves the titania rich precursor in the solution, which will produce a solution rich in 

titania, instead of precipitating titania solids. 

 

 

2.4.2. Deposition 
 

 

The deposition process is a process where the sol-solution is deposited onto a cleaned 

and prepared substrate. The substrate needs adequate cleaning and preparation to ensure 

that no impurities, dust or water molecules are on its surface, that will affect the 

adhesion of the sol-solution on the substrate. There are various ways of depositing sol-

Sol-Solution 
Synthesis 

Substrate 
Preparation 

Deposition Post Process 
Annealing 
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solution onto a substrate; among them spin coating (Lin et al 2012), dip coating 

(Strawbridge et al 1986), doctor’s blade (Lee et al 2010), printing (Ito et al 2007) and 

capillary coating (Weill et al 1986). Each method has their advantages and 

disadvantages, and the application of each method depends on the final product a user is 

trying to make. However, for the purpose of this work, the spin coating technique will 

be discussed in detail. 

 

 

2.4.2.1 Spin coating 
 

 

The spin coating method is quite popular in literature, and its details are outlined in 

various works by Meyerhofer (1978), Saleema (2009), Kitsuka (2009) and Lin (2012). 

It involves spinning a substrate on an axis perpendicular to the coated surface area. A 

schematic of this process is shown below. 

 

 

 

 
 
 
 
 

Figure 2.9. Schematics of the spin coating deposition process 
 

 

The solution is carefully dripped onto a substrate in a spin-coater, and the substrate is 

spun on an axis, and the centrifugal force generated will spread the liquid around the 

substrate into a uniform coating. The quality of the coating depends on rheological 

parameters of the solution, and operates within the Newtonian context. Other variables 

include the Reynolds Number of the surrounding atmosphere, with a high Reynolds 
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number indicating turbulences in the atmosphere inside the spin-coater, which will 

affect the optical quality of the coating on the substrate. Spin coating is a fully 

automated process, and the speed and rate of deposition can be fully controlled using 

programmable controllers attached to the spin coaters. The thickness of coating from 

this technique varies, but thicknesses from 100 nm to 10 um have been reported in 

literature. The coating’s thickness is governed by equation 2.2. 

 

ℎ = �1 −	 ����	
 . �

��

���	���
�/


                                                                                               (2.2)                                                                                        

 
                                                                                   
 
 

where h is the thickness, ρA is the mass of volatile solvent per unit volume, ρAo is the 

initial value of ρA, m is the evaporation rate of the solvent, and ω is the angular speed of 

the axis, η is the viscosity of the solvent. 

 

This method is favored as it can be automated, produces a highly homogenous coating, 

and conducted using a spin coater in a controlled environment, therefore minimizing the 

possibility of errors. The solution prepared by the solgel method is deposited onto the 

spin coater, and a centrifugal force generated by the spin coater at high speeds will coat 

the substrate with the solution. 

 

 

2.4.3 Characterization and examples from previous research (nano-TiO2 thin 

films) 
 

 

Due to its delicate nature, the characterization of nano-TiO2 thin films is a tedious 

affair. Most works in literature (Kajitvichyanukula et al 2005; Yu et al 2001; Sonawane 

2002) details the synthesis and characterization of nano-TiO2 thin films, and the 
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methods used are seldom conventional, in a sense that certain alterations is needed in 

order to accommodate the samples. For example, due to the low thickness of nano-TiO2 

thin films, when characterizing using the XRD method, the low grazing angle method is 

required to be used instead of powder diffraction analysis. This is similar in AFM 

analysis of nano-TiO2 thin films, where a contact mode analysis of the nano-TiO2 thin 

film is not feasible, due to its delicate and sometime structurally flimsy nature. 

Therefore, the non-contact mode is preferred.  

 

 
 

Figure 2.10 XRD of nano-TiO2 thin films via the solgel spin coating deposition 

from the works of a) Martyanov et al 2004; b) Wen et al 2001; and c) Wang et al 

1999 
 

 
 
 
 
 
 

a) 
b) 

c) 
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Figure 2.11 SEM of nano-TiO2 thin films spin coated onto various substrates taken 

from the works of a) Ahn et al 2003; b) Ogden et al 2008; and c) Suciu et al 2009 

 

 

 

2.5. Chapter Summary 

 

This chapter attempts to familiarize the reader with previous works in regards to 

nanotitania in the form of particles and thin films, the hydrothermal method of 

producing nano-TiO2 particles, and the solgel method of producing nano-TiO2 thin 

films. Multiple published works was used to form a basis that explains the nature of 

nanotitania, along with the processing method. This chapter serves as a platform to the 

next chapter, where we will discuss the method we developed to produce nano-TiO2 

from local mineral precursors using slightly modified version of the methods, described 

above. 

a) b) 

c) 
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3. EXPERIMENTAL METHODS 

 

 

3.1 Introduction 

 

This section will explain the methods used in this work to produce nano-TiO2 particles 

and nano-TiO2 thin films from local mineral precursors. The previous section explained 

in details previous work regarding both materials, and using these works as a basis, we 

will adapt and develop new methods to suit our precursors, which are synthetic rutile, 

derived from ilmenite. Many factors need to be taken into consideration, such as 

chemical reagants, the total cost of the whole process, the relative purity of the product, 

and its potential application with regards to structural and chemical properties. Fig. 3.1 

summarizes our route in obtaining nano-TiO2 thin films. 

 

 

 

 

 

 

 

Figure 3.1. The development of nano-TiO2 particles and thin films from precursor 

derived from local minerals 
 

 

 

3.2. Nano-TiO2 particles (modified hydrothermal method) 

 

Due to the nature of our precursor (synthetic rutile), it is imperative that we find a 

suitable method that can effectively produce anatase nano-TiO2 particles. The 

conventional hydrothermal treatment (Malinger 2011; Castro 2008), although effective, 

requires extensive modifications in our case, due to the unique nature of synthetic rutile 

compared to other common TiO2 precursors. In effect, problems with the conventional 

hydrothermal method involving synthetic rutile are: 
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• The highly impure nature of synthetic rutile, which might react with chemical 

reagents and form compounds that embed themselves into the nano-TiO2 

particles 

• Usage of the autoclave, which significantly drives up the cost of the operation 

and will also drive up the cost of the product 

• The usage of highly toxic chemicals, such as TTiP, that necessitates the process 

being done in a controlled environment, unnecessarily complicating this lab 

scale process 

The aim, with regards to this process is to eliminate the use of an autoclave and costly 

toxic chemicals, and lower the processing temperature as much as possible, in other 

words, make it green and as environmentally friendly as possible. A new process, 

outlined in Fig. 3.2, is proposed, which is a modification to the conventional 

hydrothermal synthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

33

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Modified hydrothermal treatment for nano-TiO2 particle 
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Fig. 3.2 details our proposed method in producing nano-TiO2 particles. This method is 

modified from the conventional hydrothermal method, shown in Fig. 2.5. We chose to 

keep the fusion step; however, the precursor used was synthetic rutile, instead of costly 

synthetic chemical used by other researchers mentioned in the previous chapter. This 

precursor is derived from a low-grade mineral, ilmenite, and has a significant amount of 

impurities (~8%). Therefore, the autoclave hydrothermal treatment was eliminated, and 

washing and filtration of the fused product was used instead, in order to remove these 

impurities. The autoclave treatment would have irrevocably fused the TiO2 with the 

impurities, contaminating the product. In order to produce nano-TiO2 particles, we 

decided to uses mild acid leaching, as the method is effective, efficient and 

environmentally friendly, while being cost effective. The implications of these steps are 

that instead of using an autoclave for hydrothermal treatment, the process is divided into 

two steps, the washing and filtration, and the acid leaching. These relatively inexpensive 

techniques significantly reduces the processing cost of nano-TiO2 particles, and is easily 

monitored and controlled, as it is conducted in the open, without requiring the 

construction of a deliberate control chamber. One of the weakness of autoclave usage in 

the hydrothermal method is the inability for the researcher to observe the reactions 

when it is happening, which will allow them to stop the process or alter the parameters 

if it is not turning out as it should be. This modified hydrothermal method allows us to 

do just that, as mild acid leaching takes place in a reactor round flask, which is 

transparent.  Each step will be explained in detail in the following subsections. 

 

3.2.1 Alkaline Fusion 

 

The first step in the modified hydrothermal method is alkaline fusion. This fuses an 

alkaline based chemical compound with our precursors via heat treatment. The ratio of 



 

 

35

the mixture varies, but for the purpose of this work, we chose a 1:2 ratio, where 1 part 

of synthetic rutile is matched by 2 parts of NaOH pellets. The product from this process 

is a sodium titanate compound, which makes it easier to process into other forms of 

TiO2, such as nanotubes and nanoparticles. There is precedent for this in literature, such 

as the work of Mazzocchitti et al (2009), and Manhique et al (2011). However, there is 

a marked difference between the work by these researchers, and our proposed method. 

For example, the work of Manhique et al (2011) involves extracting TiO2 from ilmenite 

concentrates using alkaline fusion and heat treatment, with the products of the process 

being micron-sized TiO2 particles, in excess of 1-10 um, while the work of Mazzocchitti 

et al (2009) uses hydrometallurgy to remove silicon and aluminium from ilmenite 

concentrates to obtain ferrotitanium, and an intermediate TiO2 precursor. Our work will 

use synthetic rutile as a precursor to produce nano-TiO2, surpassing the intermediate 

compounds formed in both process mentioned previously, to directly forming anatase 

nano-TiO2 particles. 

 

The weighed synthetic rutile and NaOH pellets will be thoroughly mixed using a glass 

rod, and each pellet of NaOH needs to be coated with synthetic rutile. The mixture will 

then be loaded into an alumina crucible, and placed in a furnace, set at 550ºC for 3 

hours. Repeated experiments have shown that this parameter is the best, and how we 

arrived at this conclusion will be further discussed in Chapter 4. 
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Figure 3.3 Sodium Titanate compound from alkaline fusion of synthetic rutile and 

NaOH pellets (scale: 1 mm : 5 mm) 

 

 

 
 

As can be seen in Fig. 3.3, the sodium titanate compound is brownish-blue, but the clear 

indication of the success of this process is the thorough dissolving of synthetic rutile 

and NaOH pellets in each other. Anything less indicates an incomplete process, and the 

step needs to be repeated, either by increasing the processing temperature, or heating 

time. 

 

3.2.2 Washing and filtration 

 

This step involves washing and filtering the fusion product produced from the previous 

step using deionized water and an overhead stirrer. The washing and filtration process is 

quite common, and is present in virtually every form of TiO2 processing, usually as an 

intermediate step. This step is crucial as it washes away the impurities in the fusion 

product, along with excessive sodium ions from the NaOH in the previous step. The 

elimination of these elements will ensure the maximum purity of the end product, and 

will also ensure that these impurities will not embed themselves in the nano-TiO2 that 

will be formed during the next step. The impurities will be washed into the liquid 

Alumina Crucible 
Fusion Product 
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medium of deionized water, and the filtration and separation of this liquid medium from 

the solid precipitate will ensure that these impurities are eliminated.  

 

This step starts by placing the fusion product into a 10 L beaker, and filling it to its 

capacity with deionized water. An overhead stirrer, set at 450 rpm, is positioned on the 

top, and ran for 3 hours, as shown in Fig. 3.4 (a). After that time, the solution is allowed 

to settle, which will allow us to see two distinct layers, a solid precipitate and its liquid 

byproduct. The liquid is carefully filtered for removal using a filtration setup shown in 

Fig. 3.4 (b), which consists of a ceramic funnel, conical flask and a vacuum pump. This 

step needs to be repeated at least once, in order to ensure that all the impurities that are 

present are eliminated from the fusion product. In our case, we conduct this process for 

a minimum of two times before using this washed and filtered product for the next step, 

acid leaching. 
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Figure 3.4 Setup for a) Washing and b) Filtration of the alkaline fusion product 
 

 

 

3.2.3 Leaching 

 

Leaching is basically a separation process that serves to isolate useful compounds from 

undesirable elements that constitutes the whole ore/mineral/element. This process is 

widespread in the mining and metallurgical industries, where the mined ore or metals 

are riddled with impurities and other undesirable elements/compound that makes up the 

whole material. Usually, a chemical solvent, such as an acid or alkali is used. The 

concentrations of these solvents are usually strong, and they serve as a medium that 

collects all these impurities in liquid form. The solution containing the impurities will 

then be filtered away and washed, leaving the precipitate that will be used. 

 

The work of Sayan et al (2000, 2001) deals with leaching TiO2 from clays and titania-

containing ore using sulfuric acid. However, the product from this process is not nano-

TiO2 particles, but intermediate TiO2 compounds that need further refinement for it to 

be of any practical use. Taking a page from his work, we use sulfuric acid (H2SO4) as a 

leaching agent to leach nano-TiO2 particles from the sodium titanate compound formed 

during the fusion process. The sulfuric acid leaching agent will provide protons and 

a) b) 

Overhead Stirrer 

Fusion Product 

Washed Impurities 

Filtered Fusion Product 

Filtered Impurities 
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sulfate ions that interact with the sodium titanate compound, and these ions will serve to 

separate the sodium from the sodium titanate compounds, leaving TiO2. This will leave 

the TiO2 compound in an unstable state, and in order to achieve energy stability, the Ti-

O matrix will reorient itself by shortening bond lengths and while keeping its tetragonal 

configuration in order to achieve the lowest and most stable energy configuration. This 

process is aided by the presence of the sulfate ions, which acts as a catalyst in the 

process, encouraging new crystallite formation. Once the sulfate ion is depleted, the 

formation of new crystallites ceases, and these crystallites are what make up the nano-

TiO2 particles in the form of a solid precipitate. The impurities, sodium and other 

undesirable elements are trapped in the liquid layer, making filtration a necessity in 

order to remove elements that might affect structural and chemical properties of the 

newly formed nano-TiO2 particles. This mechanism is analogous to the ones presented 

in the work of Ou et al (2007), where the author(s) reviewed various mechanisms that 

produce titania nanotubes and nanoparticles, with methods such as the solgel method 

and the hydrothermal method being discussed extensively. 

 

The parameter used in this leaching process to produce nano-TiO2 particles are T=80ºC, 

t=4 hours and H2SO4 (aq) = 2 M. These parameters are determined to be the most 

suitable through extensive literature review and trial and error experimentation. 

Processing temperatures below 100ºC will minimize agglomeration of the particles, 

allowing it to retain its nano sizes, and remain in the anatase phase, without the risk of 

forming large particles or converting to the rutile phase. High temperatures will also 

destroy the nanostructures formed during the process, and might also integrate 

impurities into the nano-TiO2 particles, as the extra energy introduced into the process 

might encourage the amalgation of impurities into the Ti-O matrices. A highly acidic 

leaching agent will also introduce too much protons and sulfate ion, where the sulfate 
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ion acts as a catalyst encouraging crystal growth to the point where it surpasses the 

nano-region. Also, the excess sulfate and protons will integrate themselves into the Ti-O 

matrix, forming compounds that might affect the structural and chemical properties of 

the nano-TiO2 particles. Finally, the leaching time of 4 hours seems ideal, since 

surpassing this time will destroy the nanostructures and form agglomerates of TiO2, due 

to prolonged exposure to heat and leaching agents, while shorter leaching time will not 

drve the process to completion, in that we will see rutile and anatase phases in the nano-

TiO2 particles. Fig. 3.5 shows the setup of the leaching process in detail. 

 

 
 

Figure 3.5 Leaching of sodium titanate complex using sulfuric acid 
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3.2.4. Post processing of nano-TiO2 particles 

 

After the leaching and filtration process that removes impurities and collect the nano-

TiO2 precipitate, post processing in the form oven drying, milling or mortar and pestle 

needs to be conducted. This is done in order to dry the precipitate and get nano-TiO2 

particles in powder form, and to remove any excess moisture and making sure that the 

nano-TiO2 particles has a uniform distribution. In this work, we use the mortar and 

pestle to grind the nano-TiO2 precipitate to form nano-TiO2 particles. The final product 

is shown in Fig. 3.6. 

 

 
 

Figure 3.6 Nano-TiO2 particles 
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3.3. Thin Film nano-TiO2 (Solgel) 

 

Section 3.2 deals with the formation of nano-TiO2 particles from synthetic rutile. This 

section, in turn, will explain how these nano-TiO2 particles are used to form nano-TiO2 

thin films using the solgel process. Nano-TiO2 particles will serve as the precursor to 

the process. For details regarding the solgel process, please refer to section 2.4. 

 

In this work, we will use the solgel method to produce nano-TiO2 thin films. The goal 

of this process is to utilize the nano-TiO2 particles as precursors, avoid the use of toxic 

chemical reagants to ensure that the process remains environmentally friendly, and keep 

the overall processing cost low and simple. To this end, we have developed a method, 

outlined in the block diagram of Fig. 3.7. 
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Figure 3.7. Modified Solgel method to produce nano-TiO2 thin film 
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The steps presented in Fig. 3.7 are fairly analogous to the ones in literature, the only 

difference being the precursor. However, a trial and error approach is required to 

determine the best deposition speed and time, due to the fact that the precursor contains 

impurities, and is much smaller in terms of size than the usual precursors used in this 

process. The details of each step will be explained in the proceeding subsections. 

 

 

3.3.1. Solution Creation 

 

Solution creation is the staple of any solgel process. A solution is created by mixing a 

TiO2 rich precursor with chemical reagants to form a TiO2 rich solution. Details of 

previous work, along with the chemicals used in this process are available in section 

2.4.1, along with a short summary of various previous researches. 

 

In this work, nano-TiO2 particles are mixed with 6 ml of acetic acid, and 30 ml of 

ethanol, in a sealed bottle. The mass of the nano-TiO2 particles used were varied, from 

0.01 g to 2 g. Table 3.1 summarizes the parameters of the sol-solution preparation. 

 

Table 3.1. Sol-solution preparation parameters 

 

 

Mass of nano-TiO2 

particles (g) 

 

 

Volume of acetic acid (ml) 

 

Volume of ethanol (ml) 

 

2 

 

 

6 

 

 

30 1 

0.4 

0.1 

0.05 

0.01 
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 A magnetic stirrer was introduced into the bottle and solution mixture, and it was 

stirred, without heating, for 20 hours. This will result in a TiO2 rich solution, which is 

milky white in color. The time determination is done through trial and error, where 20 

hours seem to be best, due to the fact that shorter times will result in the nano-TiO2 

particles not being dissolved in the solution, while stirring for more than 20 hours will 

destroy the uniformity and nano size of the particles. Fig 3.8 (b) shows the nano-TiO2 

sol-solution formed in this work. 

 

                              
 

 

 

 

Figure 3.8. The steps in sol-solution preparation with a) the constituent chemicals 

and b) Mixing and spinning in a sealed bottle 
 

 

 

 

 

 

3.3.2 Substrate Preparation 

 

In this work, we are depositing the nano-TiO2 sol-solution onto a glass/ITO substrate. 

The reason for us using this substrate is its relative inertness and its smooth and 

relatively flat surface. The substrate needs to be prepared and freed from any moisture 

or dust particles that might affect the adhesiveness of the film to the substrate, or might 

contaminate our thin films. Cleaning agents for substrates are acetone and deionized 

water, as these agents are relatively inert and easy to remove after washing.  

a) 
b) 

Nano-TiO2 particles CH3COOH  C2H5OH  Sol-Solution containing 

Nano-TiO2 particles 
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We first place the substrate in a small beaker and sonicate it in a small sonicator for five 

minutes. After that, it is thoroughly cleaned using a soft cloth, dipped in acetone, to 

remove any dust or moisture that might be trapped on the glass/ITO surface due to 

surface tension or electrostatic bonds. In order to ensure maximum cleanliness of the 

surface, this step is repeated thrice. After the ethanol cleaning process, it is allowed to 

settle for less than a minute and air dried to ensure that the acetone is completely 

evaporated from its surface. Once the substrate seems clean and dry, it is immediately 

washed with deionized water and air dried by softly waving it in air until all the 

moisture disappears from its surface. Again, to ensure maximum cleanliness, this is 

repeated thrice. At the end of the washing and drying, a multimeter is used to determine 

the identity of each layer of the substrate. The deposition is to be done on the glass 

layer; hence, the layer, which shows a resistance value of infinite, will be the layer that 

the sol-solution deposition will be done on. This layer is marked with a small strip of 

color tape, in order to indicate the deposition layer. At this point, the substrate is ready 

for solution deposition. Fig. 3.9 summarizes the substrate preparation for nano-TiO2 

thin film deposition. 
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Figure 3.9. Substrate preparation for nano-TiO2 thin film deposition with a) 

Glass/ITO substrate, b) washing and cleaning the substrate, c) determining which 

layer is glass or ITO and d) glass is the chosen deposition surface, with it being 

marked with colored tape 
   

 

 

3.3.4 Spin Coating  

 

Spin coating is a popular method for the deposition of sol-solution in the solgel process, 

and details of the process, as well as previous work(s) regarding this method are 

explained in detail in section 2.4.2.1. We will also use this method to deposit our 

solution onto the glass/ITO substrate.  

 

We used a spin coater (Model WS-400B-6NPP Lite) for this process. This spin coater is 

equipped with a vacuum chamber, and the process is fully automated using a 

programmable controller (Laurell Tech Corp). The cleaned substrate is place at the 

center of the spin coater, and it is spun on its axis for 30 seconds at 1000 rpm. During 

this initial spinning phase, using a pipette (5 ml), the solution is carefully dripped onto 

a) b) 

c) d) 
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the substrate through an opening at the top of the spin coater, for a total amount of two 

drops.  After the initial spinning phase, the speed is increased to 3000 rpm, and it is 

spun for a total of 1 minute. During this phase, three more drops are added to the 

substrate. At the end of the spin coating, the substrate is removed and placed in an 

incubator for five minutes at a constant temperature of 70ºC to enhance the integrity of 

the film. After this period, it is again spin coated using the same parameters for a total 

of ten times, or until the thickness and film is deemed sufficient enough via visual 

inspection. Once it is determined that the film is structurally sufficient, it is removed 

from the spin coater and again placed in the incubator at 70ºC for a total of 20 minutes. 

A pictorial representation of this process is shown in Fig. 3.10. 

 

 

 

 

 

Figure 3.10. Spin Coating nano-TiO2 thin film, with a) dripping the sol-solution 

during spinning onto the substrate and b) a single layer of deposited sol-solution 

 

 

 

3.3.5. Post processing annealing 

 

Once the deposition is completed, the thin films need to be annealed. The annealing of 

thin films are a matter of choice for the researchers, as some researchers eschew 

annealing, deeming their film uniform and strong enough, while other anneal their 

a) 

b) 
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films. Annealing serves to strengthen the adhesiveness between the substrate and 

coating, and also evaporates the extra solutions that skew the uniformity of the coating 

on the substrate. However, the annealing temperature needs to be carefully selected in 

order for it to just serve those two purposes without fundamentally altering any other 

properties or feature of the films. 

 

In this work, we chose to anneal the films at 500ºC for 1.5 hours, using a furnace. The 

reason we chose these parameters is that TiO2 change phases from anatase to rutile at 

600ºC. The change of phase also indicates extensive agglomeration and the enlargement 

of crystallite sizes of the nano-TiO2 particles, essentially destroying the very nature of 

the nanostructure. Keeping it below 600ºC will ensure that this does not occur. Also, 

this temperature completely vaporizes any remaining acetic acid or ethanol that might 

still be in the thin film, preserving the purity of the coating itself. Fig. 3.11 shows the 

furnace used for annealing. 

 

 
 

Figure 3.11. Post processing annealing of Nano-TiO2 thin films 
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Figure 3.12. Thin Films TiO2, post annealing 
 

 

 

3.4. Characterization 

 

 

Since the objective of this work is to determine the viability of derivatives of ilmenite as 

precursor to produce nano-TiO2 particles and nano-TiO2 thin films, extensive 

characterization of both products need to be carried out. Table 3.2 summarizes these 

characterization methods for both products. 

 

 

Table 3.2 Characterization Method for nanoparticles and nano-TiO2 thin films 

 
 

 

Sample 

 

Characterization Method 

 

Properties 

 

 

Nano-TiO2 particles 

XRD (PanAnalytical) 

 

Crystallinity, Crystallite size 

EDXRF 

 

Chemical composition 

BET/PSA (Quantachrome) 

 

Surface Area/Particle Size 

SEM (FEI Quanta) 

 

UV-Vis (UV3600 Shimadzu) 

 

Morphology 

 

Optical Properties 

 

Nano-TiO2 Thin Film 

XRD (Bruker) 

 

Phases, Crystallinity 

UV-Vis  

 

Optical Transmission 

AFM (XE-100 Park Systems) 

 

Surface Profile, thickness 

SEM/EDX (FEI Quanta) 

 

UV-Vis (UV3600 Shimadzu) 

 

Morphology, chemical content 

 

Optical Properties 
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The results from these characterization methods will be compared to data from 

commercial products, or published results in literature, to determine whether it is viable 

as nano-TiO2 particles and thin films. The viability of these products will enable us to 

identify its potential applications. 

 

3.5. Chapter Summary 

 

This chapter details the processing method used to produce both the nano-TiO2 particles 

and nano-TiO2 thin films. The methods used in this work are the amalgation of many 

established works and techniques, with slight modifications in some steps, and this is 

done to accommodate our unique precursors.  The products are characterized for a 

variety of properties such as crystallite sizes, morphology, surface profile, film 

thickness, and optical properties in order to determine its viability as nanoparticles and 

thin films. The next chapter will discuss in detail the results of these characterization 

techniques, and any other anomalies or advantages that are the result of this process. 
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CHAPTER 4: RESULTS AND DISCUSSION (NANO-TiO2 PARTICLES) 

 

4.1 Introduction 

 

This chapter will extensively discuss the characterization results of the nano-TiO2 particles 

synthesized from the modified hydrothermal method. The characterization techniques used 

are outlined in Table 3.2, in the previous chapter. This work focuses on the structural 

properties such as the particle’s crystallinity and crystallite size, its surface area and particle 

size, its morphology and surface profile, and its chemical composition, and its optical 

properties, such as absorbance and transmission. These properties are given special 

attention due to the fact that the criteria that determine whether the product is considered 

nano-TiO2 hinges on these properties, as outlined in ISO CPD 10678. At the end of this 

chapter, with our results and analysis, we will establish our product as nano-TiO2 particles, 

and its potential impact on the formation of nano-TiO2 thin films.  

4.2 X-Ray Diffraction (XRD) 

 

We used the XRD technique to analyze our nano-TiO2 particles, and the nano-TiO2 

particles purchased from American Elements, as a control sample. The X-Ray Diffraction 

(XRD) analysis was performed using a PANalytical PW3040/60 X’Pert PRO apparatus. 

The voltage and anode current used were 40 kV and 30 mA, respectively. The CuKα = 

0.15406 nm and the scanning range was from 20o to 80o. The reason we used the XRD 

technique to analyze our samples is listed below. 
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• To identify the elements present in our samples, ensuring that TiO2 forms the 

majority, if not all, of our samples, and 

• To determine the crystallite size (Scherrer Equation) and crsytallinity (Full Width 

Half Maximum) of the TiO2 peak in our samples 

 

 

Figure 4.1. XRD Diffraction Peaks of ilmenite synthetic rutile and nano-TiO2 particles 

 

Fig. 4.1 outlines the evolution of the TiO2 phase from ilmenite, a low-grade mineral, to 

synthetic rutile, the hydrometallurgically synthesized product, to nano-TiO2 particles 

produced by our modified hydrothermal method. Ilmenite showed many peaks, which 

consist of Iron, Silicon, magnetite and other compounds. After ilmenite is processed via 

hydrometallurgy, we see TiO2 peaks in the rutile phase emerging prominently among the 

many peaks present, although some other peaks, such as silicon, is still present, although 

2θ (Deg) 
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barely perceptible. Using this synthetic rutile as a precursor, the modified hydrothermal 

method is used to synthesize nano-TiO2 particle, and in the XRD diffraction peaks of Fig 

4.1, we see that only the TiO2 phase remains, with remnants of sulfur, although the 

presence is quite small to warrant any significant effect on the structural properties of nano-

TiO2. Overall, casual visual inspection of the peaks, especially in the region of 26-30°, 

shows that the Full Width Half maximum value of the TiO2 peaks also increases from 

ilmenite, to synthetic rutile, to nano-TiO2 particles, indicating a significant decrease in the 

crystallite sizes of the TiO2 peaks from one process to another. This is also indicative of 

another structural property of the samples, which is its crystallinity. The crystallinity of the 

sample is determined by the sharpness of the peaks, with sharper peaks representing more 

crystalline samples. This is also the case shown in the works of Oh et al (2007), where they 

used the hydrothermal method to synthesize nanosized TiO2 powders, and analyzed it using 

the XRD technique. Their XRD peaks are present in four positions, at (101), (004), and 

(200) and (105), and are broad, indicating small crystallites, with it determined to be 11.2 

nm. Table 4.1 outlines the crystallite size evolution from ilmenite to nano-TiO2 particles, 

with the Scherrer Equation (Equation 4.1) used to calculate the crystallite size from the 

XRD diffractogram. 
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                                                                                                                 (4.1)                                                                                    

 

where K* is a constant (ca. 0.9), λ the X-ray wavelength (1.5418 Å), θB the Bragg angle 

and θ1/2 the pure diffraction broadening of a peak at half height, due to crystallite 

dimensions. 
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Table 4.1. The evolution of crystallite size of TiO2 phase from ilmenite to nano-TiO2 

particles 

 

TiO2 peak of (at 

crystallographic orientation 

of (101)) 

 

 

Crystallite sizes (nm) 

 

FWHM (a.u.) 

 
Ilmenite 

 
29.5 

 
0.3897 

 
Synthetic Rutile 

 
41.6 

 
0.2922 

 
Nano-TiO2 particles 

 
15.6 

 
0.4546 
 

 

The comparison between the peaks are only done at the (101) crystallographic orientation 

due to the fact that it is only at this crystallographic orientation where all three elements 

show a clear TiO2 peak, allowing us to compare and draw conclusions from them. If it were 

taken from any other crystallographic orientation, the comparison would be one sided and 

inconclusive, because it may be present in one element but not the other. For example, at 2θ 

= 41°, there is an anatase peak and rutile peak at both the nano-TiO2 particle and synthetic 

rutile respectively, but no such peak is present in ilmenite, not allowing us to compare all 

three samples at this position. 

Ilmenite contains a substantial, although minority amount of TiO2, and according to 

literature, depending on its location, it is a more iron rich mineral (Pownceby et al 2008; Li 

et al 2006). The low TiO2 presence accounts for the small crystallite size of the particles, 

due to the limited sensitivity of the XRD machine in detecting the small amounts of TiO2. 

The smaller the weight percent of TiO2 in the sample, the more difficult it would be to 

detect during XRD scans. 



 

 

56

The hydrometallurgy process expels the majority iron and its derivatives from ilmenite and 

collects all the TiO2 present in the sample, encouraging agglomeration and particle fusing 

between the TiO2 particles. This inadvertently results in larger crystallites of TiO2, as seen 

in Table 4.1, growing in size from 29.5 nm to 41.6 nm. However, the modified 

hydrothermal method on synthetic rutile significantly decreased the crystallite size of TiO2 

at the (101) crystallographic orientation, to a point where it is even smaller than the 

crystallite size of TiO2 in ilmenite, while also forming the clear majority of the elements 

present. The modified hydrothermal method produces nano-TiO2 particles that are smaller 

in crystallite size, and managed to remove residual impurity present in ilmenite, as shown 

in this XRD analysis. 

Fig. 4.2 compares our nano-TiO2 particles with commercial nano-TiO2 particles purchased 

from American Elements. 
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Figure 4.2. XRD Diffraction Peaks of commercial nano-TiO2 and nano-TiO2 particles, 

with * indicating the presence of sulfur 

Fig. 4.2 clearly shows that our product is similar to the commercial product, the only 

difference being its crystallite size and the crystallinity. First, all the peaks present are 

identified as anatase TiO2, indicating that the rutile phase has been successfully converted 

to anatase. This is also confirmed by the presence of anatase phase in the commercial 

samples, as the company (American Elements) indicated that their product is 100% anatase 

TiO2. The crystallite size of our product is also clearly much smaller than the commercial 

product’s, while our crystallinity is also much lower than the commercial product. Table 

4.2 compares the value of our crystallite size and the FWHM of our sample, and the 

commercial sample.  

2θ (Deg) 
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Table 4.2. Comparison of crystallite size and crsytallinity of commercial and nano-

TiO2 particles produced by the modified hydrothermal method 

 

Samples (at 101) 

 

 

Crystallite size (nm) 

 

FWHM (a.u.) 

 
Nano-TiO2 particles 

 
15.6 

 
0.4546 

 
Nano-TiO2 particles 

(American Elements) 
 

 
40.0 

 
0.2273 

 

The structural feature of our product is clearly superior in terms of crystallite size and 

crsytallinity compared to the commercial product, although the determination of superiority 

or inferiority of a certain feature is largely dependent on the intended application. Various 

works reported small crystallites of TiO2 produced from the hydrothermal method, such as 

Byrappa et al (2000), Watanabe et al (2010) and Chen et al (1995). 

 

4.3. Energy Dispersive X-Ray Fluorescence (EDXRF) 

 

The EDXRF is a method commonly used to determine the chemical composition of an 

unknown sample in terms of weight or atomic percent, depending on the setting and brand 

of the machine. This method is beneficial, as it requires minimal sample preparation, is 

relatively easy to use, and it also provides a rapid and non-destructive method for the 

analysis of trace and major elements in a sample. In short, in this work, EDXRF is used to 

• Identify the elements present in the nano-TiO2 particles 
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• Determine the weight percent of each element that is present in the nano-TiO2 

particles 

All measurements were carried out under vacuum conditions, using an EDAX International 

DX-95 EDXRF spectrometer with a Mo target, equipped with a liquid- nitrogen-cooled 

Si(Li) detector. The incident and take-off angles were 451, with a Be window thickness of 

12.5 mm. The distance between the sample (exposed diameter of 22 mm) and the detector 

was 4.5 cm. The energy resolution was 0.16 keV. The concentrations of elements from 

Sodium to Uranium were measured, although, lighter elements such as O and F will be 

virtually undetectable due to its light weight and bond with metals, therefore, in this 

analysis, the metals that are detected are assumed to be bonded with oxygen, forming 

oxides.  

 

Most of the work in literature depended on the Energy Dispersive X-Rays attached to 

Scanning Electron Microscopes for chemical composition analysis, as seen in the work of 

Balachandra (2011) and Alexandrescu et al (2004), however, we opted for EDXRF, as the 

EDAX technique only scans a small area, and the samples involved were too little, whereas 

EDXRF involves a large amount of samples, and is more inclusive of the whole compound. 

 

Table 4.3 summarizes the results from our EDXRF analysis of ilmenite, synthetic rutile, 

and nano-TiO2 particles. 
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Table 4.3 EDXRF results of ilmenite, synthetic rutile and nano-TiO2 

 

 

The results of EDXRF is supported by the XRD analysis from section 4.2, where the 

evolution from ilmenite to nano-TiO2 shows the gradual removal of impurities, and the 

increase in terms of weight percent of TiO2 phase in the samples. Ilmenite had only 67.94% 

of Ti/TiO2, while synthetic rutile, after undergoing hydrometallurgy, increased to 93.8% 

TiO2. After the synthetic rutile undergoes modified hydrothermal method, the TiO2 phase 

increased to 96%. Major impurities that were present in the sample such as iron (29%), 

after undergoing two processes, were nearly negligible in the nano-TiO2 particles stage. 

However, metals such as Zirconium and Niobium, is present at all stages of the process. Its 

amount is just below 1%, making it a viable dopant; however, the scope of this work does 

not cover the dopant effect in the structural and optical properties of the nano-TiO2 

particles. However, one anomaly that is worth mentioning is the emergence of sulfur in the 

nano-TiO2 particles. It is surmised that the sulfur was a residual from the leaching process, 

where the reaction was saturated before the sulfate ions were depleted, allowing them to be 

  

Elements (in wt %) 

 

 

Sample 

 

Ti 

 

Zr 

 

Nb 

 

S 

 

Fe 

 

Si 

 

 
Ilmenite 

 
67.94 

 
NA 

 
0.92 

 
NA 

 
29.00 

 
NA 

 
Synthetic 

Rutile 

 
93.80 

 
0.34 

 
1.05 

 
0.08 

 
2.32 

 
2.09 

 
Nano-TiO2 

particles 
 

 
95.07 

 
0.49 

 
0.36 

 
2.83 

 
0.09 

 
NA 
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present in the sample in the form of ions or compounds. Its percentage is about 3%, and it is 

significant enough to be detected by the XRD and EDXRF analysis. In this work, we 

attempt to remove sulfur by washing and filtration of the leached product; however, 

repeated washing and filtration might destroy the integrity of the nanostructure, and 

encourage aggolomeration. Therefore, we limited washing and filtration of the leached 

product to twice, at the very most. However, it is worth noting that despite the presence of 

sulfur in the nano-TiO2 particle, its structural properties seems unaffected, as clearly shown 

in the XRD analysis of the samples. It is also worth noting that despite the presence of 

metallic impurities in the form of Zirconium, Niobium and Iron, the structural properties of 

nano-TiO2 particles produced by the modified hydrothermal method is still significantly 

better than the commercial product, especially in terms of crystallite sizes. 

 

4.4. N2 Adsorption-Desorption (BET) and Particle Size Analyzer (PSA) 

 

The N2 Adsorption-Desorption Surface Analysis (BET) and Particle Size Analyzer (PSA) 

are used to measure the surface area of the samples and its average particle size, 

respectively. These methods are chosen due to its non-destructive nature, its simplicity, and 

the accuracy of its results. The BET analysis was conducted using Quantachrome 1.2 

apparatus. Prior to each absorption-desorption measurements, the samples were degassed at 

373 K, under P = 0.35509 mm Hg for 24 hours. The specific surface areas were determined 

using the linearized BET equation at 0 < P/Po < 0.30. 

The Particle Size Analyzer used is Microtac X100 (USA). It determines particle sizes using 

the laser diffraction method, and the samples are mixed in deionized water for analysis.The 
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results are statistical, with a bell curve representing the size distribution of the sample. The 

measurement range of the analyzer is between 0.02 to 704 µm. In this work, the median 

value of the particle size is taken as the average particle size of the sample, as it is 

established that the median value represents the sample as a whole. Both the BET and the 

PSA method are used in this work in order to: 

• Determine the reactive surface area of the nano-TiO2 particles 

• Determine the average particle size of the nano-TiO2 particles 

• Compare both values and the correlation between these two structural properties 

 Table 4.4 summarizes the results from these two techniques. 

Table 4.4. Summary of Physical between ilmenite, synthetic rutile, nano-TiO2 and 

Commercial nano-TiO2 

 

 

Samples 

 

 

SBET (m
2
/g) 

 

Particle Size (µm) 

 
Ilmenite 

 
5.9 

 
232.5 

 
Synthetic Rutile 

 
3.9 

 
298.2 

 
Nano-TiO2 particles 

 
186.8 

 
4.1 

 
Commercial nano-

TiO2 

 

 
41.9 

 
27.9 

 

 

As seen in Table 4.4, the evolution of surface area from one phase to another is almost 

exponential. Ilmenite has a surface area of 5.9 m2/g, although this surface area is not TiO2 

exclusive, as it includes impurities such as iron. After undergoing hydrometallurgy and 
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converting to synthetic rutile, the surface area decreases to 3.9 m2/g, and at this point, the 

sample is almost TiO2 exclusive, with 93.78% Ti/TiO2, as shown in Table 4.3. However, 

undergoing the modified hydrothermal method, the surface area became 186.8 m2/g, an 

increase in surface area of about 46,897.8%, which is unprecedented, even in literature. 

Chen et al (2007) used the hydrothermal method to synthesize nanoparticles for dye-

synthesized solar cells, with titanium (IV) n-butoxide as its precursor, and the surface area 

of these nanoparticles turned out to be 255 m2/g. The difference with our work is that the 

precursor he used was highly pure, and their hydrothermal method involved autoclave 

usage, while we managed to produce nano-TiO2 particles with a surface area of 186.8 m2/g 

using precursors that is a fraction of their precursors in terms of price and purity. Also, the 

work of Akarsu et al (2006) produces nano-TiO2 particles with a surface area of 40 m2/g, 

using Tetrabutylorthotitanate as its precursor, and in this case, it is clear that the nano-TiO2 

particles produced by our work is superior, even though it is a much cheaper and simpler 

process. Our work proved that high surface area is achievable using mineral byproduct 

derivatives, which is cheap and readily available in Malaysia. Even the commercial nano-

TiO2 particles’ surface area is at least seven times smaller than our samples, as shown in 

Table 4.4. Large surface area is one of the structural properties that are highly sought after 

in the field of nanomaterials, as it requires smaller amount of per weight materials that can 

work better than conventional materials. The potential implications of this is further 

discussed in Chapter 6.  

The particle size analysis shows a tremendous reduction in particle size, from ilmenite to 

nano-TiO2 particle. Processing of ilmenite into synthetic rutile increased the average 

particle size from 232.5 to 298.2 µm. In turn, the processing of synthetic rutile into nano-

TiO2 brought down the average particle size from 298.2 µm to 4.1 µm, a reduction of 
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71,731%. The average particle size of commercial nano-TiO2 particles is 41.9 µm, which is 

ten times larger than our samples. 

Both analysis techniques proved that nano-TiO2 particles from synthetic rutile as its 

precursor produced by the modified hydrothermal method is superior to the commercial 

product in terms of crystallite size and surface area, and the improvement is not slight, but 

rather quite profound, making it viable for a multitude of applications which will be further 

discussed in chapter 6.  

 

4.5. Scanning Electron Microscope (SEM) 

 

The Scanning Electron Microscope is used due to its ability to obtain clear images of our 

samples, which is an an inorganic oxide, and the rather simple sample preparation, thus 

minimizing chances for error. It is also a staple in literature, especially when dealing with 

nanomaterials, as it is capable of showing the nanomaterials’ details and features quite 

accurately. Quite a few works are present in this regard, as seen in the works of Hussain et 

al (2010) and Kang et al (2001), where the SEM technique is used to show the result of 

their studies. In short, the SEM technique is utilized in order to: 

• Determine the morphology of the nano-TiO2 particles 

• Visually compare our product with the commercial product 

The SEM used in this work is the FEI Quanta Scanning Electron Microscope (SEM). The 

power and working distance was varied to accommodate different samples, but generally, it 
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was set at 30 kV and 8.0 mm respectively. The samples were coated with gold in a thermal 

evaporator, a process that takes about an hour.  

 

We analyzed our nano-TiO2 particles and the commercial nano-TiO2 particles. Various 

images were taken, but we chose only a few images in order to best demonstrate the 

features that we are trying to show in this work. Fig. 4.3 shows the SEM of both samples.  

 

 

Figure 4.3. SEM of the a) commercial nano-TiO2 and b), c) and d) nano-TiO2 particles 

produced by modified hydrothermal method taken at 40kx magnification 

 

a) b) 

c) d) 
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As seen in the figure above, the morphology and the features of both samples differ in quite 

a few aspects. The most obvious difference is the rather uniform shape and distribution of 

the commercial sample, compared to our nano-TiO2 particles. Another prominent 

difference is the size of the particles, where average size of the crystallite of the commercial 

sample is clearly larger than the majority of the crystallites that form our nano-TiO2 

particles. Another feature is the agglomeration in our nano-TiO2 particles, whereas its 

existence in the commercial sample is negligible.  

All of these features seen in our sample can be explained rather simply by its processing 

route and the parameters involved during processing. The distribution and uniformity of our 

nano-TiO2 particles are rather skewed, due to the fact that its precursor, synthetic rutile, is 

rather uneven in size and distribution, and although the modified hydrothermal processing 

greatly improved this flaw, it is not capable of fully eliminating this anomaly, as it is still 

somewhat noticeable in nano-TiO2 particles. The small crystallite sizes of our nano-TiO2 

particles is due to the reaction of the sodium titanate compound with the protons and sulfate 

ions during leaching, where the reorientation of bonds during leaching recreates smaller 

crystallites in order to minimize the total energy during processing. In a sense, the smaller 

crystallite sizes is a product of a system trying to stabilize itself by channeling the extra 

energy produced by the interaction of protons, sulfate, sodium titanate, and the extra heat 

during leaching into the titanate compounds that forces it to miniaturize itself. This 

mechanism is explained in detail in the works of Byrappa and Adschirri (2007).  This 

phenomenon is also related to agglomeration, where agglomeration is the reaction of 

nanoparticles when it is provided with extra energy in the form of heat and chemical 

reactions. The excess heat and chemical reactions will bond the particles to each other to 

eliminate grain boundaries, as grain boundaries are where it is energetically most unstable. 
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The elimination of grain boundaries will merge these multiple nanoparticles into one large 

particle. This is clearly seen in our samples, where to a certain extent; agglomeration is 

quite visible, whereas the commercial sample shows little to no sign of agglomeration. The 

existence of excess energy in the system is also proven largely by the presence of sulfur in 

our nano-TiO2 particles, as shown in Figs. 4.2 and 4.3. These excess sulfur showed that the 

system had more than enough sulfate ions to react with the sodium titanate compound to 

form nano-TiO2 particles, with some left over, due to the amount left still being significant 

enough to be present in XRD scans. 

 

4.6 UV-Visible-Near Infrared Analysis (UV-Vis-NIR) 

 

The UV-Vis-NIR method is mainly utilized to determine the optical properties of the nano-

TiO2 particles. This method is nondestructive, highly accurate, inexpensive, and requires 

minimal sample preparation. It utilizes many modes such as reflectance and transmittance 

to determine the many optical properties inherent in the samples, by passing high intensity 

light through the samples, and gathering the feedback in the form of plots. In this work, the 

UV-Vis-NIR method is going to be used to: 

• Determine the absorbance and the optical bandgap of the nano-TiO2 particles and 

the commercial sample 

• Determine the optical transmittance of the nano-TiO2 particles and the commercial 

sample 
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The UV-Vis-NIR analysis in this work is carried out using Shimadzu UV3600 UV-Vis-NIR 

Spectrophotometer. The light source used in the scan has a scanning wavelength of 340 nm, 

and the scan range was from 200-800 nm, in 0.5 nm intervals. Two measurement modes 

were used in this study, which are the reflectance mode and the transmission mode. The 

results of the reflectance mode were converted to absorbance coefficient using the internal 

software supplied by Shimadzu, by utilizing the Kubelka-Munk equation. 

The absorbances of the samples were first measured, and the results are shown in Fig. 4.4, 

while its transmission spectrum is shown in Fig. 4.5. 

 

Figure 4.4. Absorbance Spectrum of nano-TiO2 particles and the commercial sample 
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Figure 4.5. Transmission Spectrum of nano-TiO2 particles and the commercial sample 

The samples are prepared via packing it into a sample holder using a compressor to ensure 

highest packing density and even distribution of powdered sample. Hence, the chances of 

error or of skewed readings are extremely small, and these results are deemed as accurate 

with minimal error in this case. 

The previous section discusses the structural properties of the nano-TiO2 particles 

extensively. It is also well established in literature (Mu et al 2010; Fen et al 2011) that the 

structural properties have a tremendous influence on the optical properties of nanoparticles. 

Structural properties that affect the optical properties of the sample include 

crystallite/particle sizes, porosity, packing density and crystallinity. As established 

previously, our samples have smaller crystallite sizes, lower crystallinity, and higher 

packing density than the commercial sample. It is expected that the absorbance and optical 

transmission of nano-TiO2 particles would be higher than its commercial counterpart, and 
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this is proven in Figs. 4.4 and 4.5. The most prominent absorption edge in the nano-particle 

absorption spectrum is shifting closer to the visible spectrum, nearing 400 nm, whereas the 

commercial sample’s absorption edge is closer to 350 nm, still in the UV region.  Table 4.5 

summarizes the optical bandgap of both samples, calculated by extrapolating the absorption 

edges, and plugging the intercept into equation 4.2. 

E� 	= 	
����

�
 

where Eg is the optical bandgap, and λ is the wavelength corresponding to the relevant 

absorbance/transmission. 

Table 4.5. The optical bandgap of nano-TiO2 particles and its commercial counterpart 

Sample Optical bandgap (eV) 

 

Nano-TiO2 particles 

 

3.23 

Nano-TiO2 particles (commercial) 3.30 

 

The optical bandgap of the nano-TiO2 particles are clearly smaller than the commercial 

sample, although by a small margin. The smaller nanoparticles, with its higher packing 

density and high specific surface area, as outlined in section 4.2 and 4.4, makes these 

particles absorb the passing UV radiation, and continue absorbing visible radiation close to 

the 400 nm region. In contrast, the absorbance displayed by the commercial sample is low 

due to its generally lower packing density, dispersed and larger nanoparticles.  

The transmission spectrum is inversely proportional to the absorbance spectrum; where 

transmission is high, the absorbance is low, due to the fact that radiation that is transmitted 

4.2 
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through the sample is not being absorbed. This is clearly evident in Fig. 4.5, where the 

transmission is lowest in the UV region (300-400 nm), and it rises up and stabilizes in the 

visible region (400-700 nm). The NIR region is beyond the scope of this work, and it shall 

not be elaborated upon here. The transmission of commercial sample is on average 78% 

between 400-600 nm, and the transmission of nano-TiO2 particles is 68% in the same 

range. Due to its inverse relationship with absorbance, transmission is also affected by the 

same structural factors as absorbance, only differently. The smaller particles and high 

packing density of nano-TiO2 particles generally prevents visible light radiation from 

passing through it, lowering its transmission. Instead, it encourages either absorption, as 

seen in Fig. 4.4, where the absorption of nano-TiO2 particles is clearly higher, or it might be 

due to light scattering. XRD and EDXRF analysis in sections 4.2 and 4.3 respectively 

showed the presence of metallic and nonmetallic impurities. These impurities are 

detrimental to the optical transmission, as it scatters or reflect the incident light. The 

transmission of the commercial sample is almost 10% higher, and this is accounted for 

mostly by the less dense packing factor, the more homogenous and separated particles, and 

the absence of impurities. As a side note, larger particles also tend to scatter incident light, 

and this might account for the relatively low transmission of the commercial sample. 

However, the disadvantage of large particles is offset by its purity, which our sample 

clearly lacks. 
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4.7 Chapter Summary 

 

This chapter presents and analyzes the results from various characterization techniques 

such as the XRD, EDXRF, BET, PSA, SEM and UV-Vis-NIR. All of these techniques are 

used to quantify and qualify the structural and optical properties of the nano-TiO2 particles 

that were produced using the modified hydrothermal method. In short, it was found that the 

particles are indeed nano in size, as proven by the XRD and SEM, is crystalline instead of 

amorphous, as proven by the relatively sharp peaks in XRD analysis, contains in excess of 

96% TiO2 in the anatase phase, albeit with a few impurities such as iron, zirconium and 

niobium, as confirmed by the EDXRF and XRD, has an average particle size of well below 

10 µm, and a reactive surface area of 186.8 m2/g. The optical bandgap was determined to be 

3.23 eV, and its optical transmission was 68%. It was noted that even with the presence of 

impurities, the structural property of the nano-TiO2 particles is comparatively superior to 

the commercial nano-TiO2 particles in almost all aspects, although these impurities seem to 

somewhat effect the optical properties, although not by a large margin. The optical and 

structural properties of nano-TiO2 particles are heavily intertwined, and changing one will 

change the other. It is concluded at this point that the modified hydrothermal using 

synthetic rutile as its precursor is a viable method of producing high quality anatase nano-

TiO2 particles. These marvelous structural properties pave the way for many potential 

applications of these nano-TiO2 particles, which will be further discussed in Chapter 6.  
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CHAPTER 5: RESULTS AND DISCUSSION (NANO-TiO2 THIN FILMS) 

 

5.1 Introduction 

 

The previous chapter discussed the characterization results of nano-TiO2 particles. In 

this chapter, we will discuss the results from characterizing the nano-TiO2 thin films 

fabricated using the nano-TiO2 particles as its precursor. The deposition method used to 

deposit the sol-solution onto the glass/ITO substrate was the spin coating method, 

detailed in section 3.2.4. In this work, many samples were prepared and analyzed; 

however, only three samples were selected to represent the nano-TiO2 thin films in this 

thesis, due to the fact that other samples (2g, 01.g and 0.01 g) failed to adequately 

adhere to the substrate. At the end of the chapter, we will summarize the features, 

advantages and disadvantages of the thin films produced by this method. 

 

5.2 Grazing Angle X-Ray Diffraction (GAXRD) 

 

The thin films were analyzed using a specialized XRD technique, called the Grazing 

Angle XRD (GAXRD). This is due to the fact that powder diffraction XRD scans of a 

thin film deposited on a substrate will produce the diffraction peaks of the substrate, or 

even if the diffraction pattern of the thin film is actually present, it will be 

overshadowed by the much stronger peaks of the substrate, making it virtually 

undetectable, or at best, inconclusive. GAXRD allows the scanning of thin films with 

minimal contribution from its substrate in the diffraction peaks. Fig. 5.1 shows the basic 

schematic of a thin film analysis using the GAXRD technique, taken from Tanner et al 

(2004). The works of Lin et al (2012), Martyanov et al (2005) and Wen et al (2001) 
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showed usage of the GAXRD technique to analyze TiO2 thin films fabricated by the 

solgel method and deposited by spin coating. 

 

 

 

Figure 5.1. Setup for GAXRD analysis of thin film samples 

 

The GAXRD analysis was performed using a Bruker D8 Advance XRD Diffractometer. 

The CuKα = 1.54 Ǻ, with a scanning range was from 20º to 80º. The scan setting was 

customized to the thin film setting with a step-mode of 0.5º.Within the scope of this 

work, the usage of the GAXRD technique is: 

 

• To confirm the existence of TiO2 in the thin film 

• To determine the phase of the TiO2 in the thin film 

 

Fig. 5.2-5.4 details the XRD Diffraction peak of the nano-TiO2 thin films deposited via 

the spin coating technique. 
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Figure 5.2. XRD Diffraction peaks for mTiO2 = 0.05 g thin films 

 

 

Figure 5.3. XRD Diffraction peaks for mTiO2 = 0.4g thin films 

 

2θ 

2θ 
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Figure 5.4. XRD Diffraction peaks for mTiO2 = 1 g thin films 

 

All of the samples showed the presence of the anatase phase of TiO2, with the mTiO2 = 

0.05 g having rutile as its majority phase, although a small amount of anatase is still 

present, with varying degrees of intensity. The difference is attributed to the difference 

in concentration of nano-TiO2 particles used during the preparation of the sol-solution 

before deposition. This is probably due to the concentration of the nano-TiO2 particles 

used during the solution preparation, and the resulting thin films from the deposition. 

Visual inspection reveal that the mTiO2= 1 g sample was nearly opaque, while the mTiO2 

= 0.05 g was nearly transparent, and this corresponds to the concentration of the nano-

TiO2 particles used; the higher concentration of nano-TiO2 particles used, the higher is 

its likelihood to be detected by GAXRD scans. The concentration also affects the 

sample’s thickness and surface roughness, which will be discussed in subsequent 

sections. The substrate’s presence in the mTiO2 = 0.05 g sample was stronger compared 

to the other two samples, as expected.  

 

2θ 
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The presence of the rutile phase in the mTiO2 = 0.05 g sample is due to the fact that the 

low concentration of nano-TiO2 particles in the deposited thin film allows the individual 

particles to absorb more energy during the annealing process of the fabrication 

(annealed at 500ºC). The same amount of energy that is supplied to a much larger 

concentration would be evenly distributed among the particles in order to ensure 

uniform recrystallization and particle growth. However, smaller concentrations of nano-

TiO2 particles will ensure that each particle gets a higher amount of energy, ensuring 

processes like recrystallization and particle growth takes place a lot faster than usual. 

However, the majority of the nano-TiO2 particles remain in the anatase phase, with only 

a very small percentage of it converting into the rutile phase. Moreover, the presence of 

rutile does not seem to drastically affect the structural or optical properties of the thin 

films, which will be shown in subsequent sections. 

 

The FWHM values for the peaks indicate the samples’ crystallinity, with a smaller 

value indicating higher crystallinity. The anatase peaks of both the mTiO2 = 0.05 g and 

0.4 g have rather small FWHM values at position of 2θ = 35.61º, with both FWHM 

equaling to 0.2952. At the same position, the FWHM value for the mTiO2 = 1 g sample is 

0.5904, which indicates a less crystalline sample. As the concentration of nano-TiO2 in 

the solution decreases; it is much easier for the samples to reach thermodynamic 

stability with the same amount of energy during annealing. As shown in literature, 

annealing improves structural properties such as crystallinity (Ahnet al 2003). Keeping 

the annealing temperature constant at 500ºC, while varying the concentration of nano-

TiO2particles, will provide more energy per particle for the sample with smaller 

concentrations of nano-TiO2 particles, allowing it to stabilize itself and at improve its 

structural, and subsequently, optical properties (Vishwas et al 2010). 
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The next section will discuss the analysis of the samples using the SEM/EDX 

technique. This will provide a clear visual representation of the samples at a 

microscopic level, and EDX will confirm the presence of TiO2 in samples. 

 

 

5.3 Scanning Electron Microscope/Energy Dispersive X-Rays (SEM/EDAX) 

Analysis 

 

 
The Scanning Electron Microscope (SEM) and Energy Dispersive X-rays (EDX)are 

used in this work due to its ability to obtain clear images of our samples, and also for its 

ability for elemental analysis.It is quite a common analysis method, especially in 

literature, when it comes to detailing the morphology of samples such as particles, 

pellets and thin films, due to its simplicity of operations, ease of sample preparations, 

and the clarity of its images. Images of thin film TiO2 thin film in literature is quite 

abundant, and can be seen in the works of Lin et al (2012) and Nam et al (2011), among 

others. In the scope of this work, the SEM/EDX is used in order to: 

• Determine the morphological analysis of nano-TiO2 thin films 

• Determine the elemental analysis of nano-TiO2 thin films 

The reason we avoided using the EDXRF for elemental analysis in this case is the 

difficulty of sample preparation, where the readings from EDXRF will show prominent 

readings from the substrate instead of the nano-TiO2 thin film, as it is more partial to the 

samples. EDX is a much more discrete method, and is capable of elemental analysis of 

thin films, making it quite suitable in this case. The SEM used in this work is the FEI 

Quanta Scanning Electron Microscope (SEM). The power and working distance was 

varied to accommodate different samples, but generally, it was set at 30 kV and 8.0 mm 

respectively. The samples were coated with gold in a thermal evaporator, a process 

which takes about an hour. Fig. 5.5shows the SEM micrographs of the nano-TiO2 thin 

films, while Fig. 5.6 shows the EDX analysis of each sample.  
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Figure 5.5. SEM Micrograph of nano-TiO2 thin films at a) mTiO2 = 1 g, b) mTiO2 = 

0.4 g and c) mTiO2 = 0.05 g at 40KX magnification 

 

a) 

b) 

c) 

a) 
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Figure 5.6. EDX analysis of nano-TiO2 thin films at a) mTiO2 = 1 g, b) mTiO2 = 0.4 g 

and c) mTiO2 = 0.05 g  

 

 

 

 

 

 

a) 

b) 

c) 
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The thin films, with the exception of the mTiO2 = 1 g sample, showed rather good 

distribution and uniformity, with a few agglomerates remaining on the surface. The 

agglomeration shown in Fig. 5.5 (a), however, is indicative of the high concentration of 

the nano-TiO2 particles. During spin coating deposition, the high angular velocity of the 

spin coater that rotates the substrate will forcefully separate the larger agglomerated 

particles from the smaller crystallites. These larger particles, gathering momentum from 

the anglular velocity of the spin coater, is then expelled from the surface of the substrate 

altogether during the deposition. However, the sample in Fig. 5.5(a) still showed 

extensive agglomeration among the nano-TiO2 particles, proving that at this rotation 

speed (1000-3000 rpm) and deposition time (30s – 1 minute), it is still insufficient for 

the mTiO2 = 1 g sample. However, it is adequate for smaller concentrations of mTiO2 = 

0.4 g and mTiO2 = 0.05 g, where it is observed the deposition is uniform, tightly packed, 

and almost free from agglomeration.  

 

The EDX analysis showed that the samples are 100% TiO2, confirming the XRD 

analysis conducted in the previous section for all samples, although it is markedly 

difficult to detect TiO2 at low mTiO2concentrations. 

 

The next section will discuss the results obtained from the AFM analysis, and how does 

the SEM results correlate to the AFM results in terms of morphology and surface 

profile. 

 

 

5.4Atomic Force Microscope (AFM) 

 

The Atomic Force Microscope (AFM)is a method employed to analyze the topography 

of a surface. This is achieved via the interaction of a cantilever (made from Silicon or 



 

 

82

other sensitive materials) interacting with a surface. It is capable of providing a 2-

dimensional (2-D) and 3-dimensional (3-D) representation of the sample’s surface. It is 

capable of operating in two modes, contact and non contact. The selection of the 

analysis mode depends largely on the samples itself; however, in order to minimize 

surface damage or scratching, the non-contact mode is preferred. The analysis is 

entirely non-destructive, and the sample preparation is relatively simple and 

straightforward. The works of Nam et al (2011) and Jahromi et al (2009) details 

analysis of solgel spin coating TiO2 thin films using AFM.  By using the AFM, we hope 

to: 

 

• Determine the topographical feature of the samples  

• Determine the relationship between surface roughness, thickness and 

concentration of nano-TiO2 particles deposited by spin coating 

 

The AFM used in this work is the XE100 Park systems (Jeol). Preliminary analyses in 

contact mode damaged the sample’s surface and render the results unusable. Largely in 

part to this, the non-contact mode was chosen instead for subsequent analysis. Each 

sample were analyzed at three different points on the samples in order to obtain an 

average profile of the samples, however, only the best images were selected to be 

shown here. The data collected from the AFM analysis is the sample’s thickness and 

roughness, along with its general topographical profile.In order to confirm the thickness 

of the samples, the thickness of the films were also measured using a surface profiler at 

many points on the samples (Alpha Step IQ Surface Profiler with Tencor). An average 

of the thickness will be taken, and this value will be used for any subsequent calculation 

or determination of film’s thickness in this work. 
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Figure 5.7 2D and 3D–AFM images (scanned area 1 µm x 1 µm) for nano-TiO2 thin 

films deposited by spin coating at mTiO2 = 1 g 

 

 

Fig 5.7 shows the 2-D and 3-D image of nano-TiO2 thin films deposited by spin coating 

technique with mTiO2 = 1 g. As shown in the Fig. 5.7, the sample is on average 500 nm 

thick, and the value of thickness from the surface profiler is 459.08 nm, a 10% error 

margin between both samples. The sample has a rather prominent surface, with many 

prominent peaks perpendicular to the surface. This is consistent with Fig. 5.5 (a), where 

agglomeration of the nano-TiO2 particles on the surface produces a second layer of 

uneven surface on the coating. 

 

 

 

 

 

Figure 5.8 2D and 3D –AFM images (scanned area 1 µm x 1 µm) for nano-TiO2 

thin films deposited by spin coating at mTiO2 = 0.4 g 
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Fig. 5.8 shows the 2D and 3D image of nano-TiO2 thin film deposited with mTiO2 = 0.4 

g. In contrast to the previous sample, this surface is somewhat more even, with a lower 

average thickness of nearing 200 nm; however, the thickness for this sample obtained 

from the surface profiler is 61.64 nm, quite a large error margin. As seen in the Fig. 

above, the thin film is sloped, with one end of the sample thinner than the other. The 

thickness gradient is quite high, with one point having a thickness of below 100 nm, and 

the other point have a thickness nearing 200 nm. The surface profiler, takes an average 

reading from one end of the sample, and is more representative of the sample as a 

whole. In this case, the thickness value obtained by using the surface profiler will be 

used. A cursory visual inspection reveals a rather flat surface with no perpendicular 

peaks on the surface. It is speculated that the annealing merged the nano-TiO2 particles 

in the sol-solution to form larger, more combined grains without converting into rutile, 

as shown in Fig. 5.3. It also seems to agree with Fig 5.5 (b), as the distribution of the 

nano-TiO2 particles seems to be quite uniform with minimal agglomeration on the 

surface of the coating, creating a rather homogenous surface profile. 

 

Fig 5.9 2D and 3D –AFM images (scanned area 1 µm x 1 µm) for nano-TiO2 thin 

films deposited by spin coating at mTiO2 = 0.05 g 

 

Fig. 5.9 shows the 2D and 3D image of nano-TiO2 thin film deposited with mTiO2 = 0.05 

g. Overall, this sample is even thinner, averaging out at 20 nm thickness measured by 
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the AFM and 19.2961 nm on the surface profiler, which is a very small error margin 

(>1%).The surface’s thickness is small, and there are prominent peaks that are 

perpendicular to the surface, similar to the mTiO2 = 1 g samples, indicating that the 

annealing did not merge the nano-TiO2 particles into larger grains but instead converted 

it into rutile, as shown in Fig. 5.2. Again, it agrees with Fig. 5.5 (c), where minimal 

agglomeration on the surface is observed. Also, it is noticed that the coating is form by 

smaller crystallites than the previous sample, accounting for the fine perpendicular 

grains seen in Fig. 5.9. 

 

 

Figs. 5.7-5.9provide an overall picture of a rough surface with a thickness dependant on 

the concentration of nano-TiO2 particles in the sol. The image of the roughness of the 

samples is also shown in the 3D image of the samples, namely, the mTiO2 = 1 g sample 

has a roughness of 270.4 nm, the mTiO2 = 0.4 g sample has a roughness of 84.3 nm, and 

the mTiO2 = 0.05 g has a surface roughness of 16.9 nm. The roughness is calculated from 

equation 5.1  

 

�� � ��
� � �	�


 ��
��                                                                                                  (5.1) 

 

 

where L is the evaluation length, z is the height and x is the distance along the 

measurement.  

 

Fig. 5.10 outlines the relationship between the thickness of the thin films, the 

concentration of nano-TiO2 particles in the sol, and the surface roughness (Rq) of the 

thin films. Both thickness and Rq have a linear relationship with the concentration of 

nano-TiO2 particles in the sol. This relationship can be used to predict the roughness 

and thickness of the deposited thin films based on the concentration of the nano-TiO2 
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particles in the sol, provided the volume of the chemical reagants are kept constant. For 

example, if we were to use mTiO2 = 0.5 g, the thickness of the thin films will be 110 nm 

and the Rq will be 90 nm, provided that the volume of acetic acid and ethanol is kept 

constant at 6 ml and 30 ml, respectively, and the spin coating deposition speed and time 

is similar to the ones used in this work. Works by other researchers showed an inverse 

relationship between the spin coating speed and the thickness, however, literature on the 

relationship between the concentration of precursors with the thickness and roughness is 

rather scarce. 

 

 
 

 

Figure 5.10 Relationship between concentration, thickness and surface roughness 

of nano-TiO2 thin film deposited by spin coating 

 

One more point that is left unexplained in this section is the nature of the thin films. 2 

out of 3 samples showed prominent peaks that are perpendicular to the surface, 

indicating an upward oriented nano-TiO2 particle. It is speculated that this happens due 
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to the spin coating deposition technique. The substrate is spun on an axis; with the sol-

solutionpipetted slowly as it spins. The nano-TiO2 particles are in the form of 

agglomerates, as shown in the previous chapter, and when pipetted onto a spinning 

substrate, the larger particles are prone to be expelled due to the momentum and 

centrifugal force generated by the spinning. This will forcefully rip the agglomerated 

nanoparticles apart, and the surface profile will be slightly stilted at an angle. 

Subsequent annealing will stabilize these tilted particles, orienting them in the most 

energy efficient orientation, which is clearly shown in the AFM figures above. In some 

cases, the annealing will merge the nanoparticles to the point that grows without 

changing phases, thus losing the evident jagged surface, as seen in Fig. 5.7-5.9. Due to 

the many surfaces that are exposed to its surroundings, these thin films are highly 

reactive and are suitable for a multitude of applications such as sensors and 

photocatalysis, which will be discussed in detail in Chapter 6.  

 

 

5.5 UV-Visible-Near Infrared Spectroscopy (UV-Vis-NIR) Analysis 

 

This section aims to discuss the optical properties of nano-TiO2 thin films, and analyze 

the effect of structural properties on the optical properties. A comprehensive summary 

regarding the optical property of thin films are detailed in the work of Flory and 

Escoubas (2004).Previous work conducted by researchers such as Bouabid et al (2008), 

Hasan et al (2010) and Tanemura et al (2003) showed that the best approach in this 

aspect would be to utilize the UV-Vis-NIR spectrum analysis, regardless of the 

deposition method of the thin films. 
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The analysis is conducted using a Shimadzu UV3600UV-Vis-NIR Spectrophotometer. 

The light source used in the scan has a scanning wavelength of 340 nm.Our scan range 

was from 200-800 nm, covering the UV and Visible light region. In this work, two 

modes of operation were used, which are the reflectance mode and the transmission 

mode. The results of the reflectance mode were converted to absorbance coefficient 

using the internal software supplied by Shimadzu, via the Kubelka-Munk equation. 

 

Basically, the purpose of the UV-Vis-NIR analysis is to: 

 

• Determine the optical bandgap of nano-TiO2 thin films  

• Determine the optical transmission of the nano-TiO2 thin films  

• Determine the effect of structural properties on the optical properties 

 

Fig. 5.11 shows the absorbance spectrum for the nano-TiO2 thin films. Generally, all the 

samples showed absorption edges in the near UV-Vis region of 300-400 nm, although 

the 1 g sample is red-shifted towards visible light. The absorption edge of samples mTiO2 

= 1 g and mTiO2 = 0.4 g are closer to the visible light region, >380 nm, whereas the 

mTiO2 = 0.05 g is nearer towards the UV region, showing a strong absorption edge at 

350 nm. 
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Figure 5.11 Absorbance Spectrum of spin coated nano-TiO2 thin films 

 

 

Generally, it is observed that the absorption edge shifted towards lower wavelengths as 

the concentration of nano-TiO2 particles is decreased in the sol-solution, decreasing 

radiation absorption of the samples. Literature points out various factors that might 

cause absorption edge shifts, such as doping (Lin et al 2012) and annealing (Vishwas et 

al 2010). However, studies regarding the effect of precursor concentration on the optical 

properties of nano-TiO2 thin films are almost non-existent. The mTiO2 = 1 g sample has a 

very high absorption rates due to the fact that its sol-solution’s concentration is higher, 

and when deposited onto the substrate, forms a network of dense nanoparticles that 

absorbs a large percentage of light that passes through it. The rougher surface also 

increases the chance for light scattering, and this also increases the chance for 

absorption when the light is scattered from one point of the surface to another. A drop in 

the concentration of nano-TiO2 particles lowers the absorption rate in the visible region, 

as seen in both the mTiO2 = 0.05 g and mTiO2 = 0.4 g. Analogous to the previous sample, 
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the smaller concentration of nano-TiO2 particles will form a less dense network of 

nanoparticles, and the relatively smaller samples is not conducive for high absorption 

rates due to the fact that the incident light easily passes through the thin films. 

Decreased surface roughness also decreases light scattering, decreasing the chance for 

absorption (Ryu et al 2004). The transmission of radiation through the samples is also 

affected by these same structural properties. 

 

Fig. 5.12 shows the optical transmission of UV-Visible light through the nano-TiO2 thin 

films. Literature review shows previous work involving optical transmission are the 

work of Bouabid et al (2008), where they studied the effect of the concentration of 

chemical reagants (HCl) on transmissions, and the work of Janibatar-Darzi et al (2009), 

which studied the effect of calcinations on the transmission of TiO2 thin 

films.Generally, the transmission is highest in the UV-Vis region of 400-500 nm for all 

samples, and lowest in the region of 300-350 nm. The low transmission in these regions 

is due to the fact that light in this wavelength are being absorbed for the excitation and 

migration of electron form the valence band to the conduction band of TiO2. As the 

energy decrease when the wavelength of incident light increases, absorption ceases, 

allowing higher percentage of the incident light to pass through the samples. This is 

clearly evident in Fig. 5.12, as transmission is clearly higher in the visible light region 

(400-700 nm) and stabilizes at 500-700 nm.Table 5.1 summarizes the average 

transmission of UV-Visible light through the samples in the range of 400-500 nm. 
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Figure 5.12 Transmission Spectrum of Spin Coated nano-TiO2 thin films  

 

Table 5.1 Optical Transmission of UV-Visible light through nano-TiO2 thin film 

deposited by the spin coating technique 

 

 

Samples (g) 

 

 

Transmission (%) 

 

  
1 ~61 

 

0.4 ~87 

 

0.05 ~95 

 

 

 

 

Fig. 5.12 shows the optical transmittance increasing as the mTiO2 increases, from ~ 60% 

at 550 nm in the mTiO2 = 1 g samples, followed by a 90% transmittance in the mTiO2 = 

0.4 g sample, and finally, an almost 100% transmittance in the mTiO2 = 0.05 g sample. 

Previously, Fig. 5.11 shows a shifting of the absorption edges towards visible light by 

the mTiO2 = 1 g and mTiO2 = 0.4 g sample. The absorption of visible light is strongest in 
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the mTiO2 = 1 g sample, and it decreases as the concentration of nano-TiO2 particles in 

the sol-solution decreases. When this happens, the absorption edge shifts towards lower 

wavelengths. The absorption edge is where the excitation and migration of electron 

from the valence band to the conduction band happens, and this is the region where 

transmission is the lowest due to the fact that any incident radiation gets absorbed. As 

the wavelength of the incident light increases and its energy decreases to a level below 

the required level for TiO2, the incident radiation will pass through the samples with 

fewer obstacles. Fig. 5.12 visually depicts this, as the transmission increases with 

increasing wavelengths. The concentration of nano-TiO2 particles in the sol-solution 

also greatly effects the transmission. It is previously established that the higher the 

concentration of nano-TiO2 particles is in the sol-solution, the thicker and rougher the 

films will be. A thicker and rougher film will result in decreased transmission, as shown 

in Fig. 5.12, where the mTiO2 = 1 g have an optical transmission of below 70%, while 

the mTiO2 = 0.05 g has almost 100% transmission. These films, as shown in the previous 

sections, differ significantly in terms of roughness and thickness, with the mTiO2 = 1 g 

sample being thicker and rougher. Thick and rough films increase the chance of light 

scattering, and light scattering decreases incident radiation transmission through a 

sample.  From these results, it is surmised that structural properties such as surface 

roughness, film thickness and precursor concentration directly affects optical 

transmission.In order to better demonstrate this, the optical bandgap of the samples will 

be determined using Tauc’s Plot.  

 

The Tauc Plot is fitted by plotting (αhv)
 2

against hv, with the linear region extrapolated 

to intercept the x-axis, and this intercept is the bandgap of the sample. An optical 

bandgap is the difference of energy between the bottom of the conduction band and the 

top of the valence band of a material. Generally, conductors have small to no bandgaps, 
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while insulators have large bandgaps (> 4eV), and semiconductors have bandgaps that 

are somewhere in between (1.1 eV< x < 4.0 eV). The bandgap is a region where no 

electron state can be present, and plays a major role in the electrical conductivity of a 

solid material.   

 

Common phases of TiO2 has a bandgap of 3.2 eV(anatase) and 3.0eV(rutile) 

respectively, making it a wide bandgap semiconductor. Wide bandgap semiconductors 

are material with bandgaps are more than 1.7 eV, examples being AlN (6.3 eV) and 

ZnO (3.3 eV). They are especially suitable for optoelectronic and power device 

applications, as well as materials in devices operating at high temperatures. There are 

also two types of bandgap; direct and indirect. Direct bandgaps are where electrons in 

the material can emit a photon when excited due to the similarities between the electron 

and holes in the valence and conduction bands, respectively, while an indirect bandgap 

cannot do so and must enter an intermediate state before it can emit a photon when 

excited. Figs. 5.13-5.15show the Tauc Plot for the samples, its optical bandgaps, and the 

type of bandgaps of each sample. 
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Figure 5.13Tauc Plot for mTiO2 = 1 g sample for determination of optical bandgap 

 

 

 

 

 

Figure 5.14Tauc Plot for mTiO2 = 0.4 g sample for determination of opticalbandgap 

 

(αhv)
2
 

(αhv)
2
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Figure 5.15Tauc Plot for mTiO2 = 0.05 g sample for determination of optical 

bandgap 

 

 

 

 

The optical bandgap of mTiO2 = 1 g and mTiO2 = 0.4 g is similar (3.18 eV), while the 

bandgap of the mTiO2 = 0.05 g is slightly larger (3.29 eV). Exactly similar work is not 

found in literature, however, analogous work are available, such as the work of Lin et al 

(2012), that studies the effect of Fe dopant concentration on the optical properties of 

nanostructured TiO2 thin films, and the work of Vishwas et al (2010), that studied the 

effect of annealing and surfactant addition to the optical transmittance and reflectance. 

Boh studies aim to establish a trend with the introduction of external variables that will 

invariably alter the transmission of the thin films. Similarly, the work here aims to study 

the effect of nano-TiO2 particles’ concentration on the optical transmittance of the thin 

films.The optical bandgap gleamed from this study showed that a concentration within 

0.1 – 1 g of nano-TiO2 particles is best when used as thin film sol-solution precursors, 

due to the fact that it reduces the optical bandgap to a level below what is reported in 

the literature (3.2 eV), and according to literature, further annealing the samples might 

(αhv)
2
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decrease the optical bandgap. Using a smaller amount, as shown by mTiO2 = 0.05 g, will 

increase the optical bandgap, thus affecting the various optical and electrical properties 

that is inherent in the thin films. This value is very close to the optical bandgap of bulk 

anatase TiO2, which is 3.2 eV. 

 

The optical bandgaps of the samples are directly related to the transmission and 

absorption of the samples. From the explanation in the previous section, it is deduced 

that transmission is inversely related to absorbance in the case of UV-Vis analysis. The 

term (αhv)
 2

 is derived from transmission, and is therefore directly proportional to 

transmission. This means that samples with lower transmission will have lower 

bandgaps, while samples with higher transmission will have higher optical bandgaps, 

and this is proven in Figs. 5.13 – 5.15. The only anomaly is the similarities between the 

optical bandgap of the mTiO2 = 1 g and mTiO2 = 0.4 g sample, which can be attributed to 

mathematical error margins. During the linearization of the region in the Tauc Plot, the 

straight line equation of y = mx+ c gave values with error margins, in both cases, quite 

large due to the fact that the region is not as linear, especially in the case of mTiO2 = 0.4 

g, thus, resulting in a near similar value of optical bandgap with mTiO2 = 1 g. The 

difference, however, is not major, and the subsequent rounding up of the values to two 

significant figures will put forth similar values of optical bandgaps (3.18 eV). 

 

5.6. Chapter Summary 

 

This chapter discusses the characterization of the thin film nano-TiO2 using the XRD, 

SEM/EDX, AFM and UV-Vis techniques. It is established that the thin films were of 

the anatase phase of TiO2, with no impurities, except the mTiO2 = 0.05 g sample having a 

mixture of anatase and rutile, the films thickness and roughness vary with the 
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concentration of the nano-TiO2 particles in the sol-solution, and the optical properties 

such as the absorbance, transmittance and bandgaps are very much influenced by the 

structural properties of the nano-TiO2 thin films. The surfaces are generally uniform 

although with particles perpendicular to the surface being clearly visible, and the 

thickness is still well below 1 µm. The properties that is determined during the course of 

this study gives rise to some interesting potential applications for the nano-TiO2 thin 

films, which will be discussed in detail in chapter 6.  
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CHAPTER 6: POTENTIAL APPLICATIONS  

6.1 Introduction 

The previous chapter discusses the characteristic of nano-TiO2 thin films fabricated using 

nano-TiO2 particles synthesized from low grade mineral precursors. The results showed 

considerable improvement of the structural and optical properties of both the thin films and 

nanoparticles, based on comparison with literature. This chapter aims to explore potential 

applications of both the nano-TiO2 thin films and nano-TiO2 particles. Three potential 

applications have been identified based on the structural and optical properties; 

electrochromic devices, photovoltaic cells/DSSC, and photocatalysis.  The potential role of 

nano-TiO2 particles of nano-TiO2 thin films in these deveices/systems will be discussed and 

explained in depth. We hope to establish the viability of the nanoparticles and thin films to 

be used in these devices, by comparing our structural and optical properties to the ones used 

in these devices/systems.  

 

6.2 Photocatalysis 

 

Photocatalysis essentially means a reaction that is induced by the introduction of light. 

Photocatalysis is commonly seen in literature dealing with the decomposition of hazardous 

gases and compounds, and TiO2, in many forms, have been identified as one of the most 

viable photocatalyst due to its environmentally friendly nature and efficiency.  Numerous 

studies, conducted by Kang et al (2001), Wu et al (2005), and Lee et al (2004) studied the 

effect of structural and optical properties on the photocatalytic rate of TiO2, and its relation 
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to the decomposition and elimination of bacteria and hazardous compounds such as E. Coli 

and CHCl3. 

The mechanism of photocatalysis is relatively simple, and is explained in depth in the work 

of Fujishima et al (2000) and Chen and Mao (2007). Basically,  a photocatalyst that is 

exposed to photons with higher energies than its bandgap energywill cause excitation of its 

electron and induce migration of the electron from the valence band to the conduction band, 

creating electron-hole pairs that travels through the optical bandgap energy region in order 

to reach the surface of the material. These electron-hole pair creates radicals, which will be 

released upon its arrival at the surface of the materials, to its surroundings. Common 

radicals include   OH
-
 and O

2-
. Due to its instability, these radicals will seek out other 

unstable molecules in order to stabilize itself, and most of the time, toxic and hazardous 

molecules are unstable, prompting the radicals produced from a photocatalyst to 

specifically seek out them out and neutralize them. The neutralization will render these 

formerly toxic and hazardous molecules inert. 

 

Figure 6.1 The mechanism of photocatalysis of TiO2 (taken from 

www.airrevolution.co.za/research) 
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Two properties play a crucial role in ensuring an efficient and successful photocatalytic 

process, which are the optical bandgap energy and the specific surface area of the 

photocatalyst. In order for photocatalysis to be initiated, the absorption of photons with 

energy higher than the optical band gap energy needs to occur. Any energy that is lower 

than the optical bandgap is insufficient to initiate photocatalysis. The works of Khan et al 

(2010) and Rizzo et al (2009) points out UV rays is the most effective stimulant to induce 

photocataysis in TiO2, due to the fact that the optical bandgap energy of anatase is 3.2 eV 

and rutile 3.0 eV, which corresponds to the wavelengths of 387.5 nm and 413.3 nm, 

respectively. This puts the energy it is able to absorb to initiate photocataylsis squarely in 

the UV-region of the electromagnetic spectrum (300-400 nm), with the rutile phase slightly 

passing this region and venturing into the visible light region. Basically, the lower the 

bandgap energy is, the wider the range of energy it can absorb to initiate photocatalysis, 

which makes it viable for activation using visible light, as sunlight, the main source of 

radiation on earth, consist of only 3-5% of UV light, which makes the probability of 

activation and photocatalytic efficiency quite low, compared to if the process is initiate by 

visible light, which constitute of about 95% of the sunlight on earth.  

This work has managed to produce nano-TiO2 particles that has an optical bandgap energy 

of 3.23 eV, which corresponds to a wavelength of 383.9 nm, making it viable for initiation 

by UV-Vis light sources for photocatalytic applications. The energy activation range is on 

the borderline of the visible region, which makes activation viable with visible light in 

certain conditions. The nano-TiO2 thin films has smaller average bandgap, with two 

samples having a bandgap of 3.18 eV, corresponding to a wavelength of 389.9 nm, and is 

closer to the visible light region compared to the nanoparticles, which also makes it a viable 

photocatalysis.  
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Another factor that plays a major role in photocatalysis is the specific surface area of TiO2. 

As explained previously, the electron-hole pair will travel to the surface in order to release 

radicals into the surroundings which will neutralize hazardous compounds. This means that 

the larger the specific surface area, the more radicals that are released, thus increasing the 

reaction rate and the efficiency of the photocatalyst. The nano-TiO2 particles produced in 

this work has a specific surface area of 186.8 m
2
/g, which is comparatively large to the 

nano-TiO2 particles produced in the works of He et al (2007), and Choi et al (2007), which 

were 90 m
2
/g and 146 m

2
/g, respectively. Their work aims to degrade methylene blue (He 

et al 2007), and wastewater treatment (Choi et al 2007). Even at their relatively smaller 

surface areas, the decomposition and neutralization results of their product are quite 

promising. Following this line of reasoning, if we were to use our nano-TiO2 particles as 

photocatalyst, in will most definitely outperform the nano-TiO2 particles described in those 

works. 

Although it would seem that the properties are almost similar, it should be noted that the 

nano-TiO2 particles and thin films are synthesized from low grade local mineral precursors, 

and is less than pure, in the case of the nano-TiO2 particles. In contrast, the nano-TiO2 

particles and nano-TiO2 thin films described in literature (Ye et al 2010; He et al 2007), are 

prepared from highly pure and expensive TiO2 precursors such as Potassium Titanium 

Oxalate (PTO), and tetrabutyl titanate (Ti(OBu)4) . To be able to produce nano-TiO2 that is 

on par or superior to the products described in literature is an achievement in itself, due to 

the fact that this has not been attempted elsewhere.  
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6.3 Electrochromic Devices 

Electrochromism is defined as the ability of a material to undergo color changes when it is 

being simultaneously oxidized or reduced. Its application is widespread, and is especially 

prominent is display devices and smart window. Electrochromism allow the external 

control of absorbance and transmission, making these intrinsic optical properties extrinsic 

via the introduction of external factors, such as electrical current or high energy incident 

light (Chen and Mao, 2007).  

A basic schematic of an electrochromic device is shown in Fig. 6.2. A very basic design 

will have two electrodes separated by an electrolyte. Passing an electrical current through 

an electrochromic device will induce electrochromism, where one electrode will be colored 

and the other bleached. Usually, the electrode that is less reactive will be bleached while 

the more reactive ones are colored. The determination of reactivity of electrodes depends 

primarily on electrochemical potential of each material. 

According to literature, TiO2 thin films display electrochromic tendencies in two forms, 

highly crystalline TiO2 thin films (Hagfeldt et al 1994), and viologen-modified 

nanocrystalline TiO2 (Campus et al 1999). The first type is far more common than the 

second type, and is usually separated by a Li
+
 ion containing electrolyte such as LiOCl4. 

When activated by current or light, these Li
+
 ions will move pass its barriers into the TiO2 

lattices for reduction or oxidation, and will return to its original location once the external 

activation is deactivated. Two factors are highly critical in the determination of the 

efficiency of the first type of electrochromic device employing TiO2, which is the freedom 

of movement of the Li
+
 ions between the lattice of TiO2 electrodes (Ottaviani et al 1986), 

and the specific surface area of the electrodes (Bonhote et al 1999).   
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Figure 6.2. The working mechanism of an Electrochromic Device using TiO2 electrode 

(from Chen and Mao, 2007) 

Having small crystallites and high crystallinity is important due to the fact that the Li
+
 ions 

that is responsible for lattice intercalation needs to move across the boundaries between the 

electrolyte and electrode with minimal interference in order for it to embed itself in the 

anatase TiO2 lattices. Any large, uneven crystallites will impede the movement of Li
+
, and 

slows its rate of intercalation into the TiO2 lattice. Worse, it might also block the Li
+
 when 

it tries to return to the electrolyte, once the external activation is stopped. If this happens, 

the efficiency of the device will be severely affected, and in the latter case, the whole 

system will fail. This work deposited crystallites that are less than 20 nm in size as thin 

films onto Glass/ITO substrate, and these small crystallites, as shown in the SEM 

micrographs in Fig. 4.3 and Fig. 5.5, and these small crystallites will in no way impede the 

movement of Li
+
 ions in and out of the lattice of anatase TiO2. Literature also shows that 

the anatase phase of TiO2 is preferred for electrochromic applications, due to the fact that is 

far more reactive than rutile, and our XRD analysis of the thin film samples showed that it 



 

 

103

is 100% anatase, which is a good indicator of its suitability as electrochromic device’s 

electrode(s). 

Another structural property that is mentioned in literature regarding TiO2 as electrochromic 

device is specific surface area. A high specific surface area is required in order to increase 

the points of interaction between the electrolyte and electrode. Higher points of contact 

mean that a higher number of Li
+
 ions will be able to interact with the TiO2 lattice, 

increasing the electrochromic efficiency of the device. This work manage to produce nano-

TiO2 particles that have a specific surface area of 186.8 m
2
/g, which is very high compared 

to its counterpart in literature, as described in chapter 4. These nanoparticles are then 

deposited as thin films onto a glass/ITO substrate, and it is assumed that these particles, 

even as thin films, still maintain its high specific surface area. This makes it highly 

favorable to be used as electrochrmic device, due to the reasons explained above. 

Another factor that is frequently mentioned in works involving electrochromic devices is 

the absorption of the thin films as electrodes in electrochromic devices (Bonhote et al 

1999). In order to lower the energy requirement for the activation of the electrochromic 

device, it is favorable is the absorbance is quite high, and especially into the visible light 

region, as its corresponding optical bandgap energy is quite low, thus requiring less power 

to activate. The thin films produced in this work have high absorption rates in the UV-Vis 

region (300-450 nm), requiring lower energies for electrochromic activation if it is used as 

one. 
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6.4. Photovoltaic Applications 

 

TiO2 thin films are viable as electrodes in photovoltaic systems such as dye-synthesizes 

solar cells (DSSC), and other organic solar cells. Solar cells are basically devices that 

convert photons into electrical energy via the excitation of electrons in the semiconducting 

materials that makes up the device. Generally, its efficiency is quite low (2-50%, depending 

on the type of solar cell), but its potential is enormous, in a sense that it is a clean, 

renewable source of energy that does not emit any pollutants. However, problems such as 

chemical stability and low efficiency continue to plague the widespread commercialization 

and applications of solar cells (Gratzel, 2001). 

Extensively studied since the 1960s, literature on the subject is abundant, and some 

researchers such as Gratzel (2000; 2001; 2005) devoted much of their career to the 

advancement of solar cells technology.  Common material for solar cells are Si, and group 

III and V materials that makes up its dopant, however, recently, oxides and organic dyes are 

being studied for its feasibility in applications of solar cells, giving way to Dye-Synthesized 

Solar Cells and Organic Solar Cells. These types of solar cells are cheap, easy to produce, 

has high mechanical integrity, however, it still has issues regarding efficiency, which is 

quite low (usually below 10%). However, its potential benefits far outweigh the 

disadvantages, and extensive studies are currently being conducted on its applications. 

Works of Pichot and Gregg (2000) and Cahen et al (2000), reflects the renewed fervor in 

this field.  

This work produced nano-TiO2 thin films, and as such, the scope of this work will be the 

study of DSSC using nanocrystalline TiO2 thin films as its electrodes. A basic structure and 
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operating principles of DSSC is shown in Fig. 6.3. Nanocrystalline TiO2 immersed in a 

charge transfer dye makes up the core of the system. Photoexcitation of the dye will 

produce electrons that will be injected into the conduction band of TiO2; this electron can 

be conducted to the outer circuit to generate electricity. This is a reversible process, where 

the electron lost from the dye is replenished by an electron donated from the conducting 

electrolyte, ensuring that the process is continuous and electricity generation steady. This 

ensures that no chemical transformation of any part of the DSSC occurs.  

 

 

 

Figure 6.3. DSSC schematics and working mechanisms (from Chen and Mao, 2007) 

 

As such, the electricity generation in a DSSC is controlled by factors such as transport of 

electronic charges across membranes, and electron-hole recombination rates. As such, the 

same structural and optical properties that govern the efficiency of electrochromism apply 

here, such as specific surface area and crystallite sizes. 
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For DSSC applications, the crystallites need to be small enough so that it would not 

interfere with the transport of electrons across membranes of DSSCs. The small size and 

uniformity of distribution will ensure a network of similar sized pores that will allow the 

electron generated by photoexcitation to be transported across the dye and TiO2 thin films 

without being impeded by large crystallites and dense pores. The impediment of movement 

of these electrons will decrease the efficiency of the DSSC, and it might also degrade the 

DSSC by chemically changing the nature of the electrodes, as the system depends on the 

transport of electrons from dye to TiO2, and from electrolyte to dye to maintain the 

chemical character of the materials. In this work, the nano-TiO2 particles produced are 

crystalline, have crystallites that are smaller than 10 nm, and form a network of pores that is 

uniform in character, as seen in the SEM micrographs of both the thin films and the 

nanoparticles. This makes both viable as electrodes in DSSC, although simulations and 

actual experimentations is the only way to verify this feasibility. 

Since the transport of electrons across boundaries is deemed critical to the efficiency of the 

DSSC, is it important the specific surface area of the TiO2 is large enough the increase the 

point of contact between the dye and thin film TiO2. Higher point of contact between these 

two surfaces will allow more electrons to be injected into the TiO2, substantially increasing 

the efficiency of the DSSC. As mentioned previously, the nano-TiO2 particles produced in 

this work has a specific surface area of 186.8 m
2
/g, making it viable as an electrode in 

DSSC applications.  

Another factor that is vital in the applications of nano-TiO2 particles of thin films in DSSC 

applications is the surface roughness of the thin films. The efficiency of the thin films as 

electrodes in DSSC depends on the incident light initiating photoexcitation and the 

electrons getting through to the TiO2 thin films to drive the load and generate electricity. A 
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surface with high roughness values will impede the movement of electrons from the dye to 

the electrodes, thus reducing efficiencies. A rough surface will also have difficulty bonding 

with the dye, creating a porous, weakly bonded interface between the electrode and dye will 

cause many of the electrons generated by photoexcitation to be stuck in the dye without 

being able to cross boundaries in order to generate electricity in DSSC. 

The surface roughness of nano-TiO2 thin films produced in this work is quite small, in the 

scale of nanometers (15-300 nm). With such low surface roughness, the thin films can be 

deposited onto the dye with minimal bonding problems, and annealing will increase the 

integrity of the bonds between the interfaces. The relatively low values of roughness of the 

nano-TiO2 thin films will also allow minimal impediment of the transport of charges 

between the interfaces, increasing the efficiency of the DSSC. Further experimental work 

needs to be conducted to ensure the viability of the nano-TiO2 thin films as electrodes in 

DSSC. 

 

6.5 Chapter Summary 

This chapter analyzes and attempts to correlate the structural and optical properties of the 

nano-TiO2 particles and nano-TiO2 thin films for various contemporary applications such as 

photocatalysis, electrochromic devices and photovoltaic applications. Through literature 

review it was determined that the products from this work is viable as 

electrodes/components in these applications, due to the fact that the products are superior in 

terms such as surface area, crystallite sizes, and optical bandgap energies. Further studies, 

simulations and experimentation are required in order to determine the actual viability, but 
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from this preliminary analysis, the application of nano-TiO2 thin films and nano-TiO2 

particles for these purposes seems very promising. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter concludes this work and gives a few recommendations with regards to issues 

that surfaced potential future work. It will highlight important findings and insight gleamed 

throughout the completion of this work, and how these facts can be useful in future 

applications of TiO2 in the various recommended fields. 

The objective and hypothesis of this work outlined and detailed in Chapter 1 has been 

successfully achieved. Using synthetic rutile, which is a low grade mineral derived 

precursor, we have managed to produce high quality anatase nano-TiO2 particles and nano-

TiO2 thin films, using processes modified from conventional means to do so. These 

precursors and the chemical reagants used in this work are cheap and readily available, 

mildly toxic, thus requiring no special setup to carry out the experiments, and the process 

are simple and easy to replicate. The production cost of the nanoparticles and thin films are 

rather low, which makes it viable for mass production due to the fact that commercial nano-

TiO2 particles and commercial precursors that is used to fabricate TiO2 thin films are very 

expensive, and runs into thousands of dollars per kg. In contrast, synthetic rutile only cost 

RM4.5 per kg, and added up, the whole process to produce 1 kg of nano-TiO2 particles 

which serves as a precursor to nano-TiO2 thin films are less than RM200, which is almost 

an 80% price reduction. Also, it helps alleviate the problem of ilmenite waste that is 

generated by the mining industry by converting this waste into high grade materials. 

The structural and optical properties of the nano-TiO2 particles and nano-TiO2 thin films 

produced in this work is superior to the commercial products, and certainly superior to 

certain products that is mentioned in literature, in terms of crystallite size, surface area, 

crystallinity, optical bandgap energies and absorbance/transmission. The superiority of 
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these products makes it viable for a number of high end applications such as photovoltaics, 

electrochromism and photocatalysis.  

It is recommended that the next phase of this work involve the extensive study of the 

viability of these products to be used in high end applications mentioned above. Study in 

the form of simulation, or actual experimentation is vital in ensuring that these products are 

actually viable, and will also help us narrow down the kinks and problems that are inherent 

in their products in order to enable us to rectify it.  

Another issue that should be looked into but is outside the scope of this work is the nature 

of the impurities that is present in the nano-TiO2 particles. These impurities, although 

present in significant numbers and showing up in EDXRF and XRD analysis, does not 

seem to be a detriment to the structural and optical properties of the nanoparticles, and by 

extension, the thin films. The exact nature of these impurities is still uncertain, and it might 

be bonded to the Ti-O matrix, or it might just be incorporated into the compound without 

being actually bonded to the matrix. Either way, if it is actually bonded to the compound, 

this would present a unique phenomenon because the modified hydrothermal method seems 

to naturally doped TiO2, instead of requiring a second process to dope the metallic and 

nonmetallic impurities to the sample.   



 

 

109

REFERENCES 

A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photoch. 

Photobio. C, 2000, 1, 1–21 
 
 
A.Hagfledt, N. Vlachoupoulos, M. Gratzel, Fast Electrochemical Switching with 
nanocrystalline oxide semiconductor films, J. Electrochem Soc. 1994, 141, L82 
 
 
A.I. Kontos, I.M. Arabatzis, D.S. Tsoukleris, A.G. Kontos, M.C. Bernard, D.E. Petrakis, P. 
Falaras, Efficient photocatalysts by hydrothermal treatment of TiO2, Catal. Today, 2005, 
101, 275–281 
 
 
A.J. Manhique, Walter W. Focke, Carvalho Madivate, Titania recovery from low-grade 
titanoferrous minerals, Hydrometallurgy, 2011,  109, 230–236 
 
 
A.L. Castro, M.R. Nunes, A.P. Carvalho, F.M. Costa, M.H. Florencio, Synthesis of anatase 
TiO2 nanoparticles with high temperature stability and photocatalytic activity. Solid State 

Sci., 2008, 10, 602-606 
 
 
A.M Gaur, R.Joshi, M.Kumar, Deposition of Doped TiO2 Thin Film by Sol Gel Technique 
and its Characterization: A Review. Proceedings of the World Congress on Engineering 

2011, Vol II, July 6 - 8, 2011, London, U.K. 
 
 
A. Ogden, J.A. Corno, J.-I. Hong, A.Fedorov, J.L.Gole, Maintaining particle size in the 
transformation of anatase to rutile titania nanostructures, J. Phys. Chem. Solids, 2008, 69, 
2898–2906 
 
 
B. K. Tanner, T. P. A. Hase, T. A. Lafford and M. S. Goorsky, JCPDS - International 
Centre for Diffraction Data 2004, Advances in X-ray Analysis, 47 
 
 
B.N. Akhgar, M. Pazouki, M. Ranjbar, A. Hosseinnia, M. Keyanpour-Rad, Preparation of 
nanosized synthetic rutile from ilmenite concentrate, Miner. Eng., 2010, 23, 587–589 
 
 
C. Garzella, E. Comini, E.Tempesti, C.Frigeri, G.Sberveglieri, TiO2 thin films by a novel 
sol–gel processing for gas sensor applications. Sensor Actuat. B-Chem, 2000, 68, 189–196 
 
 
C. Jonville, Characterisation OF TiO2Nanoparticles Involving TEM and Image processing 
analysis. Projet de Fin d’Etudes for ENSPG (France) spent at PUC Rio and CBPF (Brazil) 



 

 

110

from 19/04/2004 to 12/09/04 
 
 
C. Li, B. Liang, L.-h. Guo, Z.-B. Wu, Effect of mechanical activation on the dissolution of 
Panzhihua ilmenite. Miner. Eng., 2006, 19, 1430–1438 
 
 
C.-H. Lu, W.-H. Wu, R. B. Kale, Microemulsion-mediated hydrothermal synthesis of 
photocatalytic TiO2 powders, J. Hazard. Mater., 2008, 154, 649–654 
 
 
C.S. Kucukkaragoz, R.H. Eric, Solid state reduction of a natural ilmenite. Miner. Eng., 
2006, 19, 334–337 
 
 
C.Y.W. Lin, D. Channei, P. Koshy, A. Nakaruk, C.C.Sorrell, Effect of Fe Doping on TiO2 
Films Prepared by Spin Coating. Thin Solid Films, In Press 2012 
 
 
D. Cahen, G. Hodes, M. Gratzel, J.F. Guillemoles, I. Riess, Nature of photovoltaic action in 
dye-synthesized solar cells, J. Phys. Chem. B., 1999, 104, 2053 
 
 
D. S. Kim, S.-Y. Kwak, The hydrothermal synthesis of mesoporous TiO2 with high 
crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. 
Appl. Catal. A-Gen, 2007, 323, 110-118 
 
 
D. Lee, Y. Choi, K. Yong, Morphology and crystal phase evolution of doctor-blade coated 
CuInSe2 thin films, J. Cryst. Growth, 2010, 312, 3665–3669 
 
 
E.J. Kumari, K.H. Bhat, S. Sasibhushanan and P.N. M. DAS, Catalytic Removal of Iron 
from Reduced Ilmenite, Miner. Eng., 2001, 14, 365-368 
 
 
E. Morgado Jr., M.A.S. de Abreu, O.R.C. Pravia, B. A. Marinkovic, P. M. Jardim, F. C. 
Rizzo, A. S. Araújo, A study on the structure and thermal stability of titanate nanotubes as a 
function of sodium content. Solid State Sci., 2006, 8, 888–900 
 
 
E. Şayan, M. Bayramoğlu, Statistical modeling of sulfuric acid leaching of TiO2 from red 
mud. Hydrometallurgy., 2000, 57, 181-186. 
 
 
E. Şayan, M. Bayramoğlu, Statistical modeling of sulphuric acid leaching of TiO2, Fe2O3, 
and Al2O3 from red mud. Trans.IChemE., 2001, 79(b), 291-296 
 



 

 

111

F. Campus, P. Bonhote, M. Gratzel, S. Heinen, L. Walder, Sol. Energy Mater. Sol. Cells, 
1999, 56, 281 
 
 
F. Flory, L. Escoubas, Optical properties of nanostructured thin films, Prog. Quant. 

Electron., 2004, 28, 89–112 
 
 
F. Pichot, B. Gregg, The Photovoltage Determining Mechanism in Dye-Synthesized Solar 
Cells, J. Phys. Chem. B, 2000, 104, 6 - 10 
 
 
F. Sayilkan, M. Asiltürk, S. Erdemoğlu, M. Akarsu, H. Sayilkan,M. Erdemoğlu, E. Arpac, 
Characterization and photocatalytic properties of TiO2-nanosols synthesized by 
hydrothermal process at low temperature. Mater. Lett., 2006, 60, 230 – 235 
 
 
G. Mazzocchitti, I. Giannopoulou, D. Panias, Silicon and aluminum removal from ilmenite 
concentrates by alkaline leaching, Hydrometallurgy, 2009, 96, 327–332 
 
 
H. Arami, M. Mazloumi, R. Khalifehzadeh, S.K. Sadrnezhaad. Sonochemical preparation 
of TiO2 nanoparticles. Mater. Lett., 2007, 61, 4559–4561 
 
 
H. Choi, E. Stathatos, D. D. Dionysiou, Photocatalytic TiO2 films and membranes for the 
development of efficient wastewater treatment and reuse systems, Desalination, 2007, 202, 
199–206 
 
 
H.-S. Chen, C. Su, C.-K. Lin, Y-F. Hsieh, C.-K. Yang, W.-R. Li, Hydrothermal Preparation 
of Anatase TiO2 Nanoparticles for Dye-Sensitized Solar Cells. J. Chem. Eng. Jpn, 2009, 42, 
36–42 
 
 
H. S. Jahromi, H. Taghdisian, S. Afshar, S. Tasharrofi, Effects of pH and polyethylene 
glycol on surface morphology of TiO2 thin film, Surf. & Coat. Tech., 2009, 203, 1991–
1996 
 
 
H.-H. Ou, S.-L. Lo, Review of titania nanotubes synthesized via the hydrothermal 
treatment: Fabrication, Modification, and Application. Sep. Purif. Technol., 2007, 58, 179–
191 
 
 
H. P. Shivaraju, K. Byrappa, T. M. S. Vijay Kumar and C. Ranganathaiah, Hydrothermal 
Synthesis and Characterization of TiO2 Nanostructures on the Ceramic Support and their 
Photo-catalysis Performance. Bulletin of the Catalysis Society of India, 2010, 9, 37-50 



 

 

112

H.-K. Seo, G.-S. Kim, S.G. Ansari, Y.-S. Kim, H.-S. Shin, K.-H. Shim, E.-K.Suh, A study 
on the structure/phase transformation of titanate nanotubes synthesized at various 
hydrothermal temperatures. Sol. Energ. Mat. Sol. C., 2008, 92, 1533–1539 
 
 
I. N. Martyanov and K. J. Klabunde, Comparative study of TiO2 particles in powder form 
and as a thin nanostructured film on quartz, J. Catal., 2004, 225, 408–416 
 
 
I. Strawbridge, P. F. James, Thin Silica Films prepared by Dip Coating, J. Non-Cryst. 

Solids, 1986, 82, 366 - 372 
 
 
J. H. Lee, M. Kang, S.-J. Choung, K. Ogino, S. Miyata, M.-S. Kim, J.-Y. Park, J.-B. Kim, 
The preparation of TiO2 nanometer photocatalyst film by a hydrothermal method and its 
sterilization performance for Giardia lamblia, Water Res., 2004, 38, 713–719 
 
 
J. M.-Valtierra, M. S.-Cárdenas, C. Fr.-Reyes, S. Calixto, Formation of smooth and rough 
TiO2 thin films on fiberglass by sol-gel method. J. Mex. Chem. Soc., 2006, 50(1), 8-13 
 
 
J. Yu, X. Zhao, Q. Zhao, Photocatalytic activity of nanometer TiO2 thin films prepared by 
the sol–gel method. Mater. Chem. Phys., 2001, 69, 25–29 
 
 
K. Balachandran, Synthesis and characterization of nano TiO2–peg composite, 
International Journal of Engineering Science and Technology (IJEST), Vol. 3 No. 5 May 
2011, pp.4200-4203 
 
 
K. Bouabid, A. Ihlal, Y. Amira, A. Sdaq, A. Assabbane, Y. A.-Ichou, A. Outzourhit, E. L. 
Ameziane, AND G. Nouet, Optical Study of TiO2 Thin Films Prepared by Sol-Gel, 
Ferroelectrics, 2008,  372, 69–75, 2008 
 

K. Byrappa, K.M. Lokanatharai, M. Yoshimura, Hydrothermal Preparation of TiO2 and 
photocatalytic degradation of hexacyclohexane and dichlorophenyltrichloromethane, 
Environ. Technol., 2000, 21, 1085-1090  
 

 

K. Byrappa, T. Adschiri, Hydrothermal technology for nanotechnology, Prog. Cryst. 

Growth Ch., 2007, 53, 117-166  
 
 
K. Kitsuka, K. Kaneda, M. Ikematsu, M. Iseki,K. Mushiake, T. Ohsaka, Ex situ and in situ 
characterization studies of spin-coated TiO2film electrodes for the electrochemical ozone 
production process. Electrochim. Acta, 2009, 55, 31-36 
 



 

 

113

K. A. Malinger, Aude Maguer, Alain Thorel, Alain Gaunand, Jean-Franc¸ O. Hochepieda 
Crystallization of anatase nanoparticles from amorphous precipitate by a continuous 
hydrothermal process. Chem. Eng. J., 2011, 174, 445– 451 
 
 
K. Okimura, Low temperature growth of rutile TiO films in modified RF magnetron 
sputtering, Surf. Coat. Tech., 2001, 135, 286-290 
 
 
L. Francioso, D.S. Presicce,A.M. Taurino, R. Rella, P. Siciliano, A. Ficarella, Automotive 
application of sol–gel TiO2 thin film-based sensor for lambda measurement. Sensor Actuat. 

B-Chem, 2003, 95, 66-72 
 
 
L. Rizzo, S. Meric, D. Kassinos, M. Guida, F. Russo, V. Belgiorno, Degradation of 
diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through 
a set of toxicity bioassays, Water Res., 2009, 43, 979-988  
 
 
L. Wu, J. C. Yu_, X. Wang, L. Zhang, J. Yu, Characterization of mesoporous 
nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low 
temperature, J. Solid State Chem., 2005, 178,  321–328 
 
 
M. Akarsu, M.Asilturk, F. Sayilkan,N. Kiraz, E. Arpac,and H.Sayilkan, A Novel Approach 
to the Hydrothermal Synthesis of Anatase Titania Nanoparticles and the Photocatalytic 
Degradation of Rhodamine B. Turk. J. Chem., 2006, 30, 333-343 
 

M. C. Blount, D. H. Kim, J. L. Falconer, Transparent Thin-Film TiO2 Photocatalysts with 
High Activity. Environ. Sci. Technol., 2001, 35 (14), 2988–2994 

 
M. Gratzel, Photoelectrochemical Cells, Nature, 2001, 414, 338 
 
 
M. Gratzel, Perspective for Dye-Synthesized nanocrystalline solar cells,  Prog. Photovolt. 
2000, 8, 171 
 
 
M. Gratzel, Dye-Synthesized Solid State Hetereojunction Solar Cell, MRS Bull., 2005, 30, 
23 
 
 
M. Hussain, R. Ceccarelli, D.L. Marchisio, D. Fino, N. Russo, F. Geobaldo, Synthesis, 
characterization, and photocatalytic application of novel TiO2 Nanoparticles. Chem. Eng. J., 
2010, 157, 45–51 
 



 

 

114

M.C. Hidalgo, M. Aguilar, M. Maicu, J.A. Navío, G. Colón, Hydrothermal preparation of 
highly photoactive TiO2 nanoparticles. Catal. Today, 2007, 129, 50–58 
 
 
M.M. Hasan, A.S.M.A. Haseeb, R. Saidur, H.H. Masjuki, M. Hamdi, Influence of substrate 
and annealing temperatures on optical properties of RF-sputtered TiO2 thin films, Opt. 

Mater., 2010, 32, 690–695 
 
 
M. Kang, S.-Y. Lee, C.-H. Chung, S. M. Cho, G. Y. Han, B.-W. Kim, K. J. Yoon, 
Characterization of a TiO2 photocatalyst synthesized by the solvothermal method and its 
catalytic performance for CHCl3 decomposition, J. Photoch Photobio A, 2001, 144, 185–
191 
 
 
M. Ottaviani, S. Panero, S. Morzilli, B. Scrosati, M. Lazzari, The Electrochromic 
Characteristic of Titanium Oxide Thin Film Electrodes, Solid State Ionics, 1986, 20, 197 
 
 
M. I. Pownceby, G. J. Sparrow, M.J. Fisher-White, Mineralogical Characterisation of Eucla 
Basin ilmenite concentrates – First results from a new global resource. Miner. Eng., 2008, 
21, 587–597 
 
 
M. Vishwas, Sudhir Kumar Sharma, K. Narasimha Rao, S. Mohan,K.V. Arjuna Gowda, 
R.P.S. Chakradhar, Influence of surfactant and annealing temperature on optical properties 
of sol–gel derived nano-crystalline TiO2 thin films, Spectrochim. Acta A., 2010, 75, 1073-
1077  
 
 
M. Ye, Z. Chen, W. Wang, J. Shen, J. Ma, Hydrothermal synthesis of TiO2 hollow 
microspheres for the photocatalytic degradation of 4-chloronitrobenzene, J. Hazard. 

Mater., 2010, 184, 612-619  
 
 
N. J. Kim, Y. H. La, S. H. Im, B. K. Ryu, Optical and structural properties of Fe–TiO2 thin 
films prepared by sol–gel dip coating, Thin Solid Films, 2010, 518, 156-160 
 
 
N. Saleema, M. Farzaneh, R.W. Paynter, Fabrication of TiO2 µ-donuts by sol–gel spin 
coating using a polymer mask, Appl. Surf. Sci., 2009, 255, 5837–5842 
 
 
P. Bonhote, E. Gogniat, F. Campus, L. Walder, M. Gratzel, Nanocrystalline Electrochromic 
Diplays, Displays, 1999, 20, 137 
 
 
P. Kajitvichyanukula, J. Ananpattarachaia, S. Pongpom, Sol–gel preparation and properties 



 

 

115

study of TiO2 thin film forphotocatalytic reduction of chromium(VI) in photocatalysis 
process, Sci. Technol. Adv. Mat., 2005, 6, 352–358 
 
 
P. Supphasrirongjaroen, P. Praserthdam, J. Panpranot, D.N-Ranong, O. 
Mekasuwandumrong, Effect of quenching medium on photocatalytic activity of nano-TiO2 

prepared by solvothermal method, Chem.Eng. J., 2008, 138, 622–627 
 
 
Q. Chen, Y.Qian, Z. Chen, G. Zhou, Y. Zhang,Preparation of TiO2 powders with different 
morphologies by an oxidation-hydrothermal combination method, Mater. Lett., 1995, 22(1-

2), 77-80  
 
 
R.Alexandrescu, F.Dumitrache, I.Morjan, I.Sandu, M.Savoiu, I.Voicu, C.Fleaca, TiO2 

nanosized powders by TiCl4 laser pyrolysis, Nanotechnology, 15, 537 
 
 
R.C.M. Mambote, M.A. Reuter, P. Krijgsman, R.D. Schuiling, Hydrothermal Metallurgy: 
An Overview of Basic Concepts and Applications. Miner. Eng., 2000, 13, 803-822 
 
 
R. Mechiakh, N. Ben Sedrine, R. Chtourou, R. Bensaha, Correlation between 
microstructure and optical properties of nano-crystalline TiO2 thin films prepared by sol–
gel dip coating, Appl.Surf. Sci., 2010, 257, 670–676 
 
 
R. Mechiakh, N. Ben Sedrine, R. Chtourou, Sol–gel synthesis, characterization and optical 
properties of mercury-doped TiO2 thin films deposited on ITO glass substrates. Appl. Surf. 

Sci., 2011, 257, 9103– 9109 
 
 
R. Mu, Z. Xu, L. Li, Y. Shao, H. Wan, S. Zheng, On the photocatalytic properties of 
elongated TiO2 nanoparticles for phenoldegradation and Cr(VI) reduction, J. Hazard. 

Mater., 2010, 176, 495–502 
 
 
R.S. Sonawane, S.G. Hegde, M.K. Dongare, Preparation of titanium (IV) oxide thin film 
photocatalyst by sol–gel dip coating. Mater. Chem. Phys., 2002, 77, 744–750 
 
 
R.S. Sonawane, B.B. Kale, M.K. Dongare, Preparation and photo-catalytic activity of Fe–
TiO2 thin films prepared by sol–gel dip coating. Mater. Chem. Phys., 2004, 85, 52–57 
 
 
R. C. Suciu, E. Indrea, T. D. Silipas, S. Dreve, M. C. Rosu, V. Popescu, G. Popescu, H. I. 
Nascu, TiO2 thin films prepared by sol - gel method, J. Phys. Conf. Ser., 2009,182, 012080 
 



 

 

116

R. K. Wahi, Y. Liu, J. C. Falkner, V. L. Colvin, Solvothermal synthesis and 
characterization of anatase TiO2 nanocrystals with ultrahigh surface area, J. Colloid Interf. 

Sci., 2006, 302, 530–536 
 
 
R.A. Zárate, S. Fuentes a, A.L. Cabrera b, V.M. Fuenzalida, Structural characterization of 
single crystals of sodium titanate nanowires prepared by hydrothermal process. J.Cryst. 

Growth, 2008, 310, 3630– 3637 
 
 
S.K. Hazra, S. Roy, S. Basu, Growth of titanium dioxide thin films via a metallurgical route 
and characterizations for chemical gas sensors, Mater Sci. Eng. B. Adv., 2004, 110, 195-201  
 
 
S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P.Pe´chy and M. Gra¨tzel, 
Fabrication of Screen-Printing Pastes From TiO2 Powders for Dye-Sensitised Solar Cells, 
Prog. Photovolt: Res. Appl. (in press) 
 
 
S. Janitabar-Darzi, A.R.Mahjoub, A.Nilchi, Investigation of structural, optical and 
photocatalytic properties of mesoporous TiO2 thin film synthesized by sol–gel templating 
technique, Physica E 2009, 42, 176–181 
 
 
S. Karuppuchamy, J-M. Jeong, D.P. Amalnerkar, H. Minoura, Photoinduced hydrophilicity 
of titanium dioxide thin films prepared by cathodic electrodeposition. Vacuum 2006, 80, 
494–498 
 
 
S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, H. Minoura, Cathodic 
electrodeposition of oxide semiconductor thin filmsand their application to dye-sensitized 
solar cells, Solid State Ionics, 2002, 151, 19– 27 
 
 
S.-H. Nam, S.-J. Cho, C.-K. Jung, J.-H. Boo, J. Šícha, D. Heřman, J. Musil, J. Vlček, 
Comparison of hydrophilic properties of TiO2 thin films prepared by sol–gel method and 
reactive magnetron sputtering system, Thin Solid Films, 2011, 519, 6944–6950 
 
 
S. W. Oh, S.-H. Park, Y.-K. Sun, Hydrothermal synthesis of nano-sized anatase TiO2 
powders forlithium secondary anode materials. J.Power Sources, 2006, 161, 1314–1318 
 
 
S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabai, Optical properties 
of polycrystalline and epitaxial anatase and rutile TiO2 thin films by RF magnetron 
sputtering, Appl. Surf. Sci., 2003, 212–213, 654–660 
 



 

 

117

S. Watanabe, S.Nakagima, K.Uematsu, T.Ishigaki, K. Toda, M. Sato, Low Temperature 
Synthesis of TiO2 from acid solutions, Key Eng. Mat., 2010, 421-422, 498-501 
 
 
T.A. Lasheen, Soda ash roasting of titania slag product from Rosetta ilmenite, 
Hydrometallurgy, 2008, 93, 124-128 
 
 
T. Wen, J. Gao, J. SHEN, Preparation and characterization of TiO2 thin films by the sol-gel 
process, J. Mater. Sci., 2001, 36, 5923 – 5926 
 
 
U. Khan, N. Benabderrazik, A. J. Bourdelais, D. G. Baden, K. Rein, P. R. Gardinali, 
L.Arroyo, K. E. O’Shea, UV and solar TiO2 photocatalysis of brevetoxins (PbTxs), 
Toxicon, 2010, 55, 1008–1016 
 
 
Weill, in The Physics and Fabrication of Microstructures and Microdevices, Ed.: Kelly M.J. 
and C. Weisbuch, Heidelberg 1986 
 
 
W. Guo, Z. Lin, X. Wanga, G. Song, Sonochemical synthesis of nanocrystalline TiO2 by 
hydrolysis of titanium alkoxides, Microelectron. Eng., 2003, 66, 95–101 
 
 
X. Chen, S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications 
and Applications, Chem. Rev., 2007, 107, 2891-2959 
 
 
X. Shen, J. Zhang, B. Tian, Microemulsion-mediated solvothermal synthesis and 
photocatalytic properties of crystalline titania with controllable phases of anatase and rutile, 
J. Hazard. Mater., 2011, 192, 651– 657 
 
 
X. Zhao, M. Liu, Y. Zhu, Fabrication of porous TiO2 films via hydrothermal method and its 
photocatalytic performances, Thin Solid Films, 2007, 515, 7127–7134 
 
 
Y. U. Ahn, E. J. Kim, H. T. Kim, S. H. Hahn, Variation of structural and optical properties 
of sol-gel TiO2 thin films with catalyst concentration and calcination temperature, Mater. 

Lett., 2003, 57, 4660–4666 
 
 
Z. He, Z. Zhu, J. Li, J. Zhou, N. Wei, Characterization and activity of mesoporous titanium 
dioxide beads with high surface areas and controllable pore sizes, J. Hazard. Mater., 2011, 
190,133–139 
 
 



 

 

118

Z. Liu, B. Guo, L. Hong, H. Jiang, Preparation and characterization of cerium oxide doped 
TiO2 nanoparticles, J. Phys. Chem. Solids, 2005, 66, 161–167 
 
 
Z. Wang, X. Hu, Fabrication and electrochromic properties of spin-coated TiO2 thin films 
from peroxo-polytitanic acid, Thin Solid Films, 1999, 352, 62-65 
 
 
Z. Yuan, X. Wang, C. Xu, W. Li, M. Kwauk, A new process for comprehensive utilization 
of complex titania ore, Miner. Eng., 2006, 19, 975–978 
 
 
 



119 

 

PUBLICATIONS 

 

ISI Publications 

• Mahdi E. M. M. Hamdi, Meor Yusoff M. S., The effect of sintering on the physical 

and optical properties nano-tio2 synthesized via a modified hydrothermal route, 

Arabian Journal of Science and Engineering, Major Revision, Resubmitted 

26/3/2012 (Q4) 

 

• Mahdi E. M., M. Hamdi, Meor Yusoff M.S., Growth of sodium titanate nanobelt 

from rutile mineral via hydrothermal method, submitted to Journal of Nano 

Research-SW (Jan 2012), currently under review (Q4) 

 

 

SCOPUS Indexed publications 

• Meor Yusoff M.S., Masliana M., Wilfred P., Parimala D. and Mahdi M., 

Fabrication of titania Nanotubes by a modified hydrothermal method, Journal 

of Science and Technology, ISSN: 2229-8460, vol. 2, no.2, Dec. 2010, pp. 15-

24 (published in 2011)   

 

 

• Meor Yusoff, M.S., Mahmoud, M.E., Paulus, W., Annealing of bimetal doped 

and pure nanotitania: A comparative analysis, IEEE Xplore, ISBN: 978-1-

4244-8853-7, 2011   

 

Conference Proceedings 

• Mahdi E. Mahmoud, Meor Yusoff M. S., Wilfred Paulus, ‘The Effect of 

Annealing and Acid Molarity on the Properties of Bimetal Doped Titania’, 

International Conference of Nanotechnology-Research and Commercialization, 

6-9 June 2011, Grand Borneo Hotel, Kota Kinabalu, Sabah. 

 

• Meor Yusoff M.S., Mahdi Mahmoud, Masliana M., Wilfred P., Devi P., 2011, 

A comparative study of fabrication sodium titanate nanowire from commercial 

chemical and rutile mineral precursors, International Conference of 

Nanotechnology-Research and Commercialization, 6-9 June 2011, Grand 

Borneo Hotel, Kota Kinabalu, Sabah. 

 



120 

 

 

 

• Meor Yusoff M.S., Mahdi Mahmoud, Masliana M., Wilfred P., Devi P., 2011, 

‘A comparative study of fabrication sodium titanate nanowire from commercial 

chemical and rutile mineral precursors’ International Conference of 

Nanotechnology-Research and Commercialization, 6-9 June 2011, Grand 

Borneo Hotel, Kota Kinabalu, Sabah. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



121 

 

AWARDS 

New Formulated Nano Paint for Day and Night Removal of Cigarette Smoke and Odour 

(Malaysian Technology Expo 2011, Silver Medal, Advance Material category)   

 

 

 

 



122 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 

 

APPENDIX  I: BET Raw Data Readings 

                           

Quantachrome Corporation 
Quantachrome Autosorb Automated Gas Sorption System Report 

Autosorb for Windows®  Version 1.20 
 

Sample ID        2M TiO2 
Description      MTec 
Comments          
Sample Weight    0.5750 g 
Adsorbate        NITROGEN        
Outgas Temp   300 °C    
Operator        mhd        
Cross-Sec Area   16.2  Å²/molec  
Outgas Time   18.0 hrs  
Analysis Time   520.8   min 
NonIdeality      6.580E-05       
P/Po Toler    0         
Molecular Wt     28.0134 g/mol   
Equil Time    3         
File Name       200410.RAW   
Station #        1               
Bath Temp.    77.40    
 

                         AREA-VOLUME-PORE SIZE SUMMARY 

 

                                SURFACE AREA DATA 

 

Multipoint BET..............................................  1.868E+02 m²/g 
Langmuir Surface Area.......................................  3.095E+02 m²/g 
t-Method External Surface Area..............................  1.508E+02  m²/g 
t-Method Micro Pore Surface Area............................  3.591E+01  m²/g 
DR Method Micro Pore Area...................................  2.711E+02 m²/g 
 

                                PORE VOLUME DATA 

 

Total Pore Volume for pores with Diameter 
less than 3422.1 Å at P/Po = 0.99437........................  1.645E-01 cc/g 
t-Method Micro Pore Volume..................................  1.969E-02  cc/g 
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DR Method Micro Pore Volume.................................  9.635E-02 cc/g 
HK Method Cumulative Pore Volume............................  8.112E-02 cc/g 
SF Method Cumulative Pore Volume............................  8.272E-02 cc/g 
 

                                 PORE SIZE DATA 

Average Pore Diameter.......................................  3.523E+01 Å 
DR  Method Micro Pore Width   ..............................  1.044E+02  Å 
DA  Method Pore Diameter (Mode).............................  1.760E+01 Å 
HK  Method Pore Width    (Mode).............................  1.477E+01 Å 
SF  Method Pore Diameter (Mode).............................  2.777E+01 Å 
 

                           DATA REDUCTION PARAMETERS 

 

                          Thermal Transpiration: OFF 
                         Last Po Acquired 757.41 mm Hg 
                                 MaxiDose: OFF 
                               Initial Fill: OFF 
                                DoseWizard: OFF 
 
                         BJH/DH Moving Average Size: 1 
 
                 Interaction Constant (K) 2.9600 nm3 x kJ/mol 
 

 

Sample ID        ilmenite 
Description      NA 
Comments          
Sample Weight    2.6070  g 
Adsorbate        NITROGEN        
Outgas Temp   100 °C    
Operator        mhd        
Cross-Sec Area   16.2  Å²/molec  
Outgas Time   20.5 hrs  
Analysis Time   264.1   min 
NonIdeality      6.580E-05       
P/Po Toler    0         
Molecular Wt     28.0134 g/mol   
Equil Time    1         
File Name       250811.RAW   
Station #        1               
Bath Temp.    77.40    
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                         AREA-VOLUME-PORE SIZE SUMMARY 

 

                                SURFACE AREA DATA 

 

Multipoint BET..............................................  5.938E+00 m²/g 
Langmuir Surface Area.......................................  1.017E+01 m²/g 
t-Method External Surface Area..............................  5.849E+00  m²/g 
t-Method Micro Pore Surface Area............................  8.957E-02  m²/g 
DR Method Micro Pore Area...................................  8.346E+00 m²/g 
 

                                PORE VOLUME DATA 

 

Total Pore Volume for pores with Diameter 
less than 3261.8 Å at P/Po = 0.99409........................  1.505E-02 cc/g 
t-Method Micro Pore Volume..................................  1.877E-05  cc/g 
DR Method Micro Pore Volume.................................  2.966E-03 cc/g 
HK Method Cumulative Pore Volume............................  2.388E-03 cc/g 
SF Method Cumulative Pore Volume............................  2.448E-03 cc/g 
 

                                 PORE SIZE DATA 

 

Average Pore Diameter.......................................  1.014E+02 Å 
DR  Method Micro Pore Width   ..............................  1.157E+02  Å 
DA  Method Pore Diameter (Mode).............................  1.780E+01 Å 
HK  Method Pore Width    (Mode).............................  1.483E+01 Å 
SF  Method Pore Diameter (Mode).............................  2.796E+01 Å 
 

                           DATA REDUCTION PARAMETERS 

 

                          Thermal Transpiration: OFF 
                         Last Po Acquired 767.58 mm Hg 
                                 MaxiDose: ON 
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                               Initial Fill: OFF 
                                DoseWizard: OFF 
 
                         BJH/DH Moving Average Size: 1 
 
                 Interaction Constant (K) 2.9600 nm3 x kJ/mol 
 

 

Sample ID        Synthetic Rutile 
Description      MTEC 
Comments          
Sample Weight    0.3390  g 
Adsorbate        NITROGEN        
Outgas Temp   300 °C    
Operator        MHD        
Cross-Sec Area   16.2  Å²/molec  
Outgas Time   2.0  hrs  
Analysis Time   236.3   min 
NonIdeality      6.580E-05       
P/Po Toler    0         
Molecular Wt     28.0134 g/mol   
Equil Time    3         
File Name       030310.RAW   
Station #        1               
Bath Temp.    77.40    
 

                         AREA-VOLUME-PORE SIZE SUMMARY 

 

                                SURFACE AREA DATA 

 

Multipoint BET..............................................  3.932E+00 m²/g 
Langmuir Surface Area.......................................  1.977E+02 m²/g 
BJH Method Cumulative Adsorption Surface Area...............  1.064E+01 m²/g 
BJH Method Cumulative Desorption Surface Area...............  1.532E+01 m²/g 
DH Method Cumulative Adsorption Surface Area................  1.087E+01 m²/g 
DH Method Cumulative Desorption Surface Area................  1.587E+01 m²/g 
t-Method External Surface Area..............................  3.932E+00  m²/g 
t-Method Micro Pore Surface Area............................  0.000E+00  m²/g 
DR Method Micro Pore Area...................................  1.549E+01 m²/g 
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                                PORE VOLUME DATA 

 

BJH Method Cumulative Adsorption Pore Volume................  9.883E-02 cc/g 
BJH Method Cumulative Desorption Pore Volume................  9.937E-02 cc/g 
DH Method Cumulative Adsorption Pore Volume.................  9.614E-02 cc/g 
DH Method Cumulative Desorption Pore Volume.................  9.707E-02 cc/g 
t-Method Micro Pore Volume..................................  0.000E+00  cc/g 
DR Method Micro Pore Volume.................................  5.505E-03 cc/g 
HK Method Cumulative Pore Volume............................  3.788E-03 cc/g 
SF Method Cumulative Pore Volume............................  3.922E-03 cc/g 
 
 

                                 PORE SIZE DATA 

 

BJH Method Adsorption Pore Diameter (Mode)..................  1.948E+01 Å 
BJH Method Desorption Pore Diameter (Mode)..................  2.312E+01 Å 
DH Method Adsorption Pore Diameter (Mode)..................  1.948E+01  Å 
DH Method Desorption Pore Diameter (Mode)..................  2.312E+01  Å 
DR Method Micro Pore Width   ..............................  1.551E+02  Å 
DA Method Pore Diameter (Mode).............................  1.780E+01 Å 
HK Method Pore Width    (Mode).............................  1.933E+01 Å 
SF Method Pore Diameter (Mode).............................  3.866E+01 Å 
 

                           DATA REDUCTION PARAMETERS 

                          Thermal Transpiration: OFF 
                         Last Po Acquired 757.66 mm Hg 
              Additional Initialization Information Not Recorded. 
 
                         BJH/DH Moving Average Size: 1 
 
                 Interaction Constant (K) 2.9600 nm3 x kJ/mol 
 

 

 

 

 

 



128 

 

 

APPENDIX II: PSA RAW DATA 

 

PSA analysis of Ilmenite 
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PSA Analysis of Synthetic rutile 
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PSA analysis of nano-TiO2 particles 
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PSA Analysis of Commercial nano-TiO2 particles 
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APPENDIX III: EDXRF Results 

 

Quick Report (EDXRF of Nano-TiO2 particles) 

[Sample Image]

No Sample Image
 

[Sample Information] 

Sample : Nano-TiO2 

Operator : shimadzu 

Comment : 1ch,100sec 

Group : easy-100 

Meas. Date : 2011-10-12 15:59:08 

Meas. Position(mm) : ( 64.800, 67.638,33.94) 

Meas. Diameter : 50um 
 

 
[Profile] 
 

 

[Meas. Condition] 

------------------------------------------------------------------------ 

Instrument :microEDX-1400[SDD:L]     Meas. Diameter:50um 

  

------------------------------------------------------------------------ 

Channel               TG kV uA       Fl Acq.  Anal.(keV) Time(sec) DT% 

------------------------------------------------------------------------ 

Na-U                  Rh 50 900      -- 0-40 0.00-40.00 RT:   100   2 

 

[Peak List] 

------------------------------------------------------------ 

Channel               Line       keV     Net (cps/uA) 

------------------------------------------------------------ 

Na-U                  S Ka       2.31      0.021         QF 
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                      TiKaESC    2.76      0.060            

                      ArKa       2.97      0.026            

                      TiKbESC    3.17      0.010            

                      ----       4.17      0.015            

                      TiKa       4.50      9.057         QF 

                      TiKb       4.92      1.428            

                      FeKa       6.37      0.218         QF 

                      FeKb       7.02      0.035            

                      ----      15.68      0.027            

                      NbKa      16.51      0.043         QF 

                      NbKb      18.60      0.009            

                      RhKa      20.09      0.023            

------------------------------------------------------------ 

 
 

[Quantitative Result] 

---------------------------------------------------------------------------------

--- 

Analyte                 Result              Error Proc-Calc  Line     

Int.(cps/uA) 

---------------------------------------------------------------------------------

--- 

Ti                      91.8634 %           0.1022 Quant.-FP TiKa          9.057 

S                        5.2606 %           0.1568 Quant.-FP S Ka          0.021 

Fe                       2.2458 %           0.0164 Quant.-FP FeKa          0.218 

Nb                       0.6301 %           0.0116 Quant.-FP NbKa          0.043 
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Quick Report (EDXRF of Ilmenite) 

[Sample Image] 

No Sample Image
 

[Sample Information] 

Sample : Ilmenite_P004 
Operator : shimadzu 
Comment : 1ch,100sec 
Group : easy-100 
Meas. Date : 2011-10-12 16:30:04 
Meas. Position(mm) : ( 13.044, 67.988,36.75) 
Meas. Diameter : 50um 

 

 
 

 
 

[Meas. Condition] 

------------------------------------------------------------------------ 
Instrument: microEDX-1400[SDD:L]     Meas. Diameter:50um 
  
------------------------------------------------------------------------ 
Channel               TG kV  uA       Fl Acq.  Anal.(keV) Time(sec) DT% 
------------------------------------------------------------------------ 
Na-U                  Rh 50  900      -- 0-40  0.00-40.00 RT:   100   2 
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[Peak List] 

------------------------------------------------------------ 
Channel               Line       keV     Net(cps/uA) 
------------------------------------------------------------ 
Na-U                  TiKaESC    2.76      0.037            
                      ArKa       2.95      0.028            
                      TiKa       4.50      5.622         QF 
                      TiKb       4.92      0.871            
                      CrKa       5.39      0.013         QF 
                      MnKa       5.88      0.269         QF 
                      CrKb       5.95      0.002            
                      FeKa       6.38      3.817         QF 
                      MnKb       6.49      0.043            
                      FeKb       7.03      0.573            
                      ----       8.39      0.019            
                      ----       8.61      0.064            
                      ----      12.39      0.014            
                      NbKa      16.49      0.018         QF 
                      NbKb      18.70      0.004            
                      RhKa      20.12      0.012            
------------------------------------------------------------ 
 
 
 

[Quantitative Result] 

------------------------------------------------------------------------------------ 
Analyte                 Result              Error  Proc-Calc  Line     Int.(cps/uA) 
------------------------------------------------------------------------------------ 
Ti                      58.6037 %           0.0830 Quant.-FP  TiKa          5.622 
Fe                      37.5794 %           0.0645 Quant.-FP  FeKa          3.817 
Mn                       3.2524 %           0.0220 Quant.-FP  MnKa          0.269 
Nb                       0.3758 %           0.0111 Quant.-FP  NbKa          0.018 
Cr                       0.1886 %           0.0078 Quant.-FP  CrKa          0.013 
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APPENDIX IV: Sample Raw Data UV-Vis 

Wavelength Reflectance Absorbance Transmission 

280.5 30.166 0.808 30.245 
281 32.031 0.721 31.602 

281.5 33.084 0.677 29.547 
282 35.208 0.596 30.64 

282.5 34.113 0.636 27.98 
283 33.145 0.674 27.786 

283.5 32.736 0.691 27.778 
284 33.601 0.656 28.979 

284.5 30.797 0.777 26.404 
285 28.229 0.912 25.382 

285.5 26.472 1.021 24.775 
286 26.742 1.003 26.302 

286.5 24.432 1.169 24.427 
287 24.468 1.166 24.505 

287.5 24.495 1.164 24.269 
288 23.649 1.233 22.617 

288.5 21.964 1.386 20.141 
289 21.748 1.408 19.155 

289.5 21.15 1.47 19.093 
290 19.928 1.609 17.332 

290.5 18.304 1.823 16.366 
291 18.352 1.816 15.277 

291.5 16.438 2.124 14.203 
292 15.322 2.34 13.803 

292.5 14.359 2.554 13.582 
293 14.158 2.602 12.58 

293.5 13.048 2.897 11.684 
294 12.753 2.984 11.152 

294.5 11.913 3.257 10.535 
295 11.319 3.474 10.244 

295.5 10.897 3.643 10.507 
296 10.209 3.949 9.938 

296.5 9.679 4.214 9.315 
297 9.718 4.194 9.126 

297.5 9.114 4.532 9.317 
298 9.04 4.576 9.337 

298.5 8.926 4.646 8.808 
299 8.946 4.634 8.801 

 

Sample Raw Data from UV-Vis analysis of mTiO2 = 1 g nano-TiO2 thin films 




