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Abstract  

The pH neutralization is regarded as one of the fundamental parts of industrial chemical 

process. In electrochemical industry for example, heavy metals must be recovered (by 

reducing the solubility of the metals) from waste streams by controlling the pH value to 

prevent polluting the environment. 

The pH neutralization shows strong nonlinear characteristics because of feed condition. 

Theoretically, the nonlinear effects for this process come from negative logarithm of  

ionic hydrogen, where process dynamic occurs when the hydrogen ions increase or 

decrease during neutralization process and because of dynamic nonlinearity called the  

‘‘S-shape’’ curve which consists of extreme sensitivity and insensitivity regions. 

 

This study proposes a hybrid model and a Fuzzy Logic controller for an on-line pH 

neutralization pilot plant. The model is used to identify the on-line pH neutralization 

plant’s characteristics and to improve the Fuzzy Logic controller decision output. The 

hybrid model is between neuro-fuzzy (ANFIS) identification technique and first 

principle model. The identification technique uses training dataset from experimental 

data to map the neutralization response curve from pH equal to 3 to 11. The first 

principle model is based on material balances and chemical equilibrium equation.  

 

The objective of the proposed model is to extend the robustness effect in the Fuzzy 

Logic controller by predicting the control action based on on-line titrations 

characteristics without having to re-design the model if plant undergoes different 

conditions. The on-line model validation and controller performance analysis for hybrid 
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model and Fuzzy Logic controller was conducted and compared. The lowest values of 

RMSE (Root Mean Square of Error) and ISE (Integral Square of Error) are desired to 

justify the goodness of proposed model and controller respectively.  

 

In the experiment, the hybrid model (in nominal plant condition, RSME = 0.1013 and in 

altered plant condition, RMSE = 0.5616) gives best of fit for the on-line neutralization 

process. The proposed Fuzzy Logic controller with inverse hybrid model is able to 

handle the nonlinearity and robustness issues for the on-line pH neutralization. In set 

point tracking analysis, it shows best performance (ISE = 35.032) compared to normal 

Fuzzy Logic controller (ISE = 157.652) and PID controller (ISE =195.365). Thus, the 

proposed hybrid model and the proposed Fuzzy Logic controller can be used effectively 

in on-line/off-line studies of the dynamic behaviour of the pH neutralization pilot plant.  
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Abstrak  

 

Peneutralan pH dianggap sebagai salah satu daripada bahagian-bahagian asas proses 

kimia di industri. Dalam industri elektrokimia sebagai contoh, logam berat mesti 

dipisahkan (dengan mengurangkan keterlarutan logam) dari aliran sisa dengan 

mengawal nilai pH bagi mencegah pencemaran alam sekitar. Peneutralan pH 

menunjukkan ciri-ciri tak linear yang kuat adalah kerana kadar keadaan aliran masukan. 

Secara teori, kesan tak linear bagi proses ini datang daripada logaritma negatif ion 

Hidrogen, di mana dinamik proses berlaku apabila ion Hidrogen peningkatan atau 

penurunan semasa proses peneutralan. Proses ketaklelurusan dinamik ini dipanggil 

"bentuk-S" terdiri daripada rantau sensitiviti melampau dan kekurang sensitiv.  

 

Kajian ini mencadangkan satu model hibrid dan pengawal Fuzzy Logic untuk  

peneutralan pH secara on-line pada loji perintis. Hybrid model ini digunakan untuk 

mengenal pasti ciri-ciri peneutralan pH secara on-linedan model ini dapat meningkatkan 

keputusan keluaran pengawal Fuzzy Logic. Model hibrid adalah kombinasi  antara 

neuro-fuzzy (ANFIS) dan model prinsip pertama.Teknik pengenalan yang 

menggunakan dataset latihan daripada data eksperimen adalah bagi tujuan pememetaan 

keluk tindak-balas peneutralan pH daripada ph 3 hingga pH 11. Model prinsip yang 

pertama adalah berdasarkan persamaan keseimbangan bahan dan persamaan 

keseimbangan kimia.  

 

Objektif model yang dicadangkan bertujuan untuk melanjutkan kesan kekukuhan dalam 

pengawal Fuzzy Logic. Hal ini dapat dijayakan dengan meramalkan tindakan kawalan 

yang bersesuaian berdasarkan ciri-ciri titratan dalam talian tanpa perlu mereka-bentuk 

semula model atau pengawal jika loji perintis berubah keadaan yang berbeza. 
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Pengesahan model dalam talian dan analisis prestasi pengawal bagi model hibrid dan 

pengawal Fuzzy Logic telah dijalankan dan dibandingkan. Nilai terendah bagi  RMSE 

(Root Mean Square Error) dan ISE (Integral of Square Error) adalah dikehendaki untuk 

menunjukkan kebaikan model yang dicadangkan dan pengawal masing-masing.  

 

Dalam eksperimen, model hibrid (pada keadaan logi nominal, RSME = 0.1013 dan 

dalam keadaan logi yang diubah, RMSE = 0.5616) memberikan yang  

terbaik yang layak untuk proses peneutralan on-line. Pengawal fuzzy logic dengan  

model hibrid songsang yang dicadangkan adalah mampu menangani isu-isu  

ketaklelurusan dan kekukuhan bagi peneutralan pH on-line. Dalam analisis pengesanan  

titik set, ia menunjukkan prestasi yang terbaik (ISE = 35.032) berbanding pengawal  

fuzzy logic yang biasa (ISE = 157.652) dan pengawal PID (ISE = 195.365). Oleh itu,  

model hibriddan pengawal fuzzy logic yang dicadangkan boleh digunakan secara  

berkesan dalam kajian kelakuan dinamik bagi logi perintis peneutralan pH secara on- 

line /off-line.  
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[H+]            Concentration of ion hydrogen  
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 Greek letters:  
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Chapter 1 : Introduction 

1.1  Research background 

The need for control in chemical plant is to ensure the production floor performs 

smoothly. The concern of control is to ensure that process-variables like temperature, 

pressure and flows are performing at nominal state. The plant behaviours are dynamic in 

nature, they can affect other factors such as safety, environmental, and production costs, 

if they are not properly controlled. 

1.2  Problem statement 

The pH neutralization process is widely applied in Chemical Engineering such as in 

coagulation-flocculation, oxidation-reduction, solvent extraction, hydrolysis and 

electrolysis reaction, power generation, and so on. 

 

In pH neutralization plant, the need for a good controller is of the upmost important. 

The pH neutralization is hard to control and model. There are various difficulties when 

controlling pH in on-line chemical plants. The difficulties are high nonlinearity effect, 

large time delay, unknown composition of mixture, uncertainty conditions, sensitive 

control-action at neutralization point and many more. 

 

The pH neutralization shows strong nonlinear characteristics because of feed 

components. It is because of ion interactions in mixing tank reactor. In theory, the 

nonlinear effects for this process come from negative logarithm of ionic hydrogen. The 

process dynamic occurs when the hydrogen ion increases or decreases during 

neutralization process. 
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Large time delay is another problem in controlling pH value. This effect is caused when 

the mixing vessel for neutralization process is too large. The reaction between acid and 

base would take some time before it reaches the desired state. Therefore, the time delay 

plays an important role for the success in model design. The proper selection of input-

delay at empirical model design can overcome this problem. 

 

The pH neutralization characteristic responses vary with the ionic strength in acid and 

base solution. In general, strong acid and strong base would give different 

characteristics compared with weak acid and weak base reaction. In practice, pH plants 

are easily exposed to many variations since the compositions in supply solution are not 

standard. For instance, in effluent water treatment, treated stream contain inconsistence 

ionic strength which gives difficulty to design a general model and control. As a result, 

the model and the controller have to be redesigned to fit with the new condition. 

 

The described problems in modelling and control of pH neutralization above would 

make developing general model and control impossible. However, many researchers 

identified this problem and proposed advanced solutions that improved the control 

performance and robustness issue related to on-line pH neutralization. The findings are 

mainly on solving robustness issue and eliminate nonlinear barrier in designing 

advanced controller (Details on recent study on model and control of pH neutralization 

are in “Literature Review” chapter). 
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1.2.1  Hybrid modelling and control 

The study examined several models related with pH neutralization characteristics. The 

designed models are not necessarily in mathematical equation or single type model. It 

can be in graphical block presentation, parametric equations, a combination of different 

model techniques or many more. The aim is to design a good model that is used to 

improve the advanced controller quality to solve the problem as mentioned before. 

 

A hybrid model is a combination technique between two different methods. In general, 

it is like marriage affiliation that cooperates to cover-up the disadvantages between two 

models. Thus, we designed a hybrid model, which produced great prediction of pH 

value (as shown in “Research Methodology” and “Result” chapters). 

 

The control system used in this study is from a feedback-loop that drives the error of 

set-point and process-variable to zero. The important part in this loop is the controller-

element since other elements (final-control-element, measuring-element and process) 

are already considered in preliminary pilot plant design. It is the focus of the research 

besides model development and on-line implementation. 

 

This study selected a Fuzzy Logic controller as the controller-element in the loop. It is 

selected because Fuzzy Logic has the capacity in handling nonlinear issues The 

challenge of this controller is that the Fuzzy Logic needed “direct” knowledge about the 

controlled plant. Except for this challenge, Fuzzy Logic is a universal controller, which 

can be expanded by using other controller mechanics very-well, for instance PID. In this 

study, we designed a controller based on Mamdani and Sugeno type fuzzy inference and 

the control performances were observed. After comparing the performances, we select 

Sugeno type fuzzy inference since it shows a good performance and it has the capacity 
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to combine with the designed hybrid model above (which is described in “Research 

Methodology” chapter). As a result, a novel hybrid Fuzzy Logic is proposed with great 

extent of controller quality for on-line pH neutralization. 

 

1.2.2  On-line pH neutralization control 

The study used a pilot plant to study the pH neutralization process. It consists of a 

continuous stirred tank reactor (CSTR) with recycle stream, feed tank for acid and base, 

acid and base pipeline, and many more (which is discussed in “Research Methodology” 

chapter). 

 

This study carried out on-line control based on feedback loop mentioned before. A 

computer managed the complete feedback loop by receiving the process-variable (in 

voltage signal) from Measuring Element (pH transmitter), compute the control-action 

based on the designed controller, and sends the control-action (in voltage signal) to 

Final Element (control-valve) by data acquisition hardware. This cycle is repeated 

continuously until the control system stops. 

 

The on-line investigation is far different from the simulation study. It is a real test to 

prove the designed controller works and performs in real condition. Not many-advanced 

controllers succeed in real implementation. It is because of over specification or under 

specification of the control requirements. 

 

In model design, an open loop experiment is carried out. The open loop control is the 

same as in feedback loop but the control-action is coming from human command 

instead of controller. The acid and base flow rate (input) and pH response (output) are 

observed. The dataset for on-line pH neutralization is collected from several input-
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output variations. This dataset is called training and checking dataset, which is used to 

design an empirical model by identification technique as in “Research Methodology” 

chapter. The designed model holds if and only if the prediction fits with on-line 

validation of pH at pilot plant (with or without disturbance). 

 

1.3  The research objectives 

This study is about model and controller design for on-line pH neutralization. 

 

The objectives are: 

 

(1) To design a hybrid pH neutralization model and validate on-line, 

 

The purpose of designing the hybrid model and Fuzzy Logic controller is to get a robust 

and a good fit of model that holds the on-line characteristic of pH neutralization. As this 

model holds, an advanced controller as well as control-strategies could perform better 

compared with inaccurate and un-robust pH neutralization model. 

 

(2) To improve a Fuzzy Logic controller by modified Fuzzy Inference System using 

Model Identification technique for on-line pH neutralization. 

 

The design involves a standard Fuzzy Logic control structure and System Identification 

by ANFIS method. 
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1.4  Research scope 

This study needed fundamentals on process control, Fuzzy Logic and Model 

Identification theory. The ideas of fuzzy set theory and Fuzzy Logic are discussed and 

detailed discussion on Process Control theory, pH Neutralization, Fuzzy Logic and 

Model Identification could be referred to establish literatures (McMillan & Cameron, 

2005), (Shinskey, 1997), (Zadeh, 1994), and (Lennart, 2010). 

This research focused on the following motives: (1) pH neutralization modelling, (2) 

analysis and controller design, (3) and on-line implementation. 

Modelling is a technique to design a model that represents ideal conditions of a physical 

plant. It describes the physical interactions of model parameters used in the plant. In this 

study, the first principle of mass and energy balance from conservation law is used to 

get the physical model. The study also examines the other modelling technique, 

covering the empirical modelling techniques for pH neutralization, which is neural-

fuzzy model (ANFIS). From these techniques, we designed a hybrid model for on-line 

pH neutralization. The selections, justification, and model development is discussed in 

several chapters in this dissertation. As the outcome, the hybrid model is obtained and 

analysed for controller design purposes. 

This study conducted a qualitative and quantitative analysis for Fuzzy Logic controller. 

In the quantitative point of view, the analysis covered performance controller for set-

point tracking and load rejection. While for the qualitative measure, offset, overshoot, 

and time response is typical criteria for a good quality controller. In general, good 

quality controllers could give process-variable response with less overshoot, fast time 

response, minimum offset and able to keep the performance for any variation of 

disturbance. As this standard follows, the designed controller should perform at the 

desire state and within allowable limit without any problem. 
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In overall outline, the dissertation is organized as follows; 

Chapter 1 describes an introduction to the study background, problem statement, 

hybrid modelling and Fuzzy Logic controller, and on-line implementation of pH 

neutralization. This chapter states the objectives and highlights the novelty of the study. 

Chapter 2 is dedicated to literature review, which looks at of related work by other 

researchers in pH neutralization modelling and control. It starts with reviewing a basic 

concept of process control system in pH neutralization. This is followed by recent pH 

neutralization study based on ideas, problems, and hybrid mechanic, which have been 

successfully implemented in literature. This chapter ends with analysis used by other 

researchers on model and controller performances. 

Chapter 3 gives a detailed work method of our study. It consists of the models, hybrid 

model, and Fuzzy Logic controller design development. Neural fuzzy modelling 

(ANFIS) is described in detail. This chapter starts with models and controller design 

consideration. Then, it provided the design of a conventional PID (Proportional-

Integral-Derivative) controller, Fuzzy Logic controller, and the proposed hybrid Fuzzy 

Logic controller. This chapter also describes the method for conducting analysis for 

model and controller performances. The specifications of instrumentation and hardware, 

and on-line experimental setup are provided at the end of the chapter. 

Chapter 4 caters for model and controller performance results, which are obtained from 

simulation and on-line study. The results are mainly on controllability for set-point 

tracking and disturbance rejection. The robustness issues are discussed in last 

subsection in this chapter. 

Chapter 5 discussed the observations of results taken from the previous Result chapter. 

The discussion focused on controllability, and observation of quality for the designed 

models and controller. 

Chapter 6 is to conclude the study objectives, novelty and possible future work.  
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Chapter 2 : Literature Review 

This chapter describes relevant issues to achieve research objectives in pH 

neutralization. It includes the process introduction, type of controller used, modelling 

and controller technique used and analysis method. It covers the pH neutralization 

model and control development from simulation to on-line basis. 

2.1  Introduction to process control system 

Process control terms only apply to chemical engineering automation as in petro-

chemical and others continuous chemical processes (Chu et al., 1998),  It differs from 

other control engineering applications and yet shares the same theory. In general, 

process control is different from other engineering applications because it deals with 

process time delays, large time constants, uncertainty, nonlinearity, and un-model 

behaviour. Hopgood et al. (2002) has classified process control into three types: 

1. Open loop control  

2. Feed forward control  

3. Feedback (closed loop) control  

 

Before process control and automation, plant operator adjusts the plant parameters 

manually (open loop process control, see Figure 2.1a). It may be a straightforward and 

easy to use manual control but it becomes problematic for complex unit operations. 

Furthermore, its limitation is due to human error and quality of the control action. 

Feed forward is a corrective action that gave control action for future response (see 

Figure 2.1b).  

  



24 

However, process control system in closed loop, promises an automatic control strategy 

with less human effort for the plant operator. 

 
Figure 2.1: Process Control System type  

(a) Open loop (b) Feed-forward (c) Feedback 

 

Process control system as shown in Figure 2.1c is a feedback closed loop process 

control. It has process as unit operation to be controlled, measurements such as 

transmitter (process variable) in unit operation, reference, controller, and manipulative 

variable (final element) such as opening valve, heating element and so on. The main 

objective in process control is to bring the process variable to reference point by tuning 

manipulative variable. In many cases, control system has plant output y(t) which 

measure in measurement block and compared to reference block as an error e(t). Then, 

e(t) is fed into controller block so that controller can calculate control output, u(t), 

before final element block decide how much of the manipulated variable should be 

used. These processes will continue until the desired reference value is obtained. 
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In theory, process control must have four components to complete close-loop. It is a 

process (model or real physical plant), controller, actuator, and sensor. Figure 2.2 shows 

a typical block diagram for the close-loop. 

 
Figure 2.2: Typical process close-loop in process-control system  

(Coughanowr & LeBlanc, 2008 )  

 

2.1.1  Model and physical process 

Model is relatively describing the physical process dynamic behaviour. The depth of 

considerations in modelling could present better plant characteristic. In some cases, 

good model would make the engineer or researcher more comfortable in implementing 

real process plant. However, models are difficult to obtain and normally have limitation 

on present the plant characteristic due to unknown relationship, complex system or 

hardware limitation. In literature, there are several methods to model the process 

system. There are; 

1. Physical relationship by considering the conservation of law  

2. Empirical relationship by utilizing the heuristically data  

3. Parameters approximation from physical relationship and heuristic data  

Mathematical derivations of following application are based on physical relationship of 

first principle of mass and energy balance. The model represents the process dynamic as 

pre attempt to design the controller and implements to online applications. Dynamic 

behaviour, can be used to perform a performance analysis for selected plant beforehand 

for instance, stability analysis. 
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2.1.2  Controller and advanced controller 

Controller is the brain of the process control system. It should have an adequate control 

action to maintain and kept the desired process value at the plant. 

 

Controller study in process control engineering has become more attractive topic as 

computing technology evolved. Many techniques have been found in literature regard to 

process control. This field never becomes saturated topic since there is no absolute 

method in control problem and in addition, difference plants have different control 

solution. Researcher has disclosed many suggestions, improvement, and finding in 

classical to modern method in process control engineering. 

 

Any control system utilizes an advanced controller in control strategy, which above a 

classical Proportional, Integral, and Derivative (PID) controller can be classified as 

advanced control system. In this study, Fuzzy Logic (FL) is selected as advanced 

controller since it inherit classical and modern method in it framework. Fuzzy Logic has 

been studied for decade in various fields of studies. In process control, Fuzzy Logic 

promises a good solution for modelling and control a chemical process plant. While, the 

Fuzzy Logic framework is a linguistic based, make it closed to human knowledge 

compared to others control strategy available in literature. In this study, basic Fuzzy 

Logic system has been carried out and a novel control strategy used Fuzzy Logic is 

proposed. Nevertheless, PID controller is designed for comparing control performance 

and effectiveness to propose control system. 
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2.2  Current study of pH neutralization process 

In the past decades, several models for pH neutralization were developed from lab to 

industrial scale. A rigorous approach to model the pH neutralization has been studied in 

controlled stirred tank reactors, by assuming well-mixed tank, isothermal and 

electrically neutral solution (McAvoy, 1972) . The model is gained from mass balances 

and chemical equilibrium. The modelling approach offered in their work is strong acid 

and strong base. Later, the developed model is extended from modelling to control 

purposes by Wright and Kravaris (1995). Their work simplified the model derivation by 

taking the overall ionic activity in aqueous mixture as a linear first-order equation. 

While the logarithm of remain concentration of hydrogen ion (nonlinear affect) is 

treated after the linear equation. This approach is valid because Bronsted’s acid-base 

idea is followed. 

 

Gustafsson et al. (1995)  used Bronsted’s acid-base idea to obtain the pH neutralization 

model. Their research encompassed the chemistry of acid-base neutralization model to 

be used in control applications. The effects of dissociation constant, ionic strength and 

temperature have been considered in their developed model. Additionally, their study is 

useful to build nonlinear pH models regardless of acidity-alkalinity level or acid-base 

solution consisting of metal complexes and solid. However, in real implementation, pH 

neutralization plants are subjected to many unknown ionic activities and compositions, 

which may increase the model complexity. On the contrary, the mathematical model 

alone is not enough to reproduce real plant performance of certain processes and it is 

not accurate for online applications. 
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Recently, many researchers identified pH neutralization model  by using advanced 

modelling techniques (Akesson et al., 2005; Altinten, 2007; Chaudhuri, 2001; Tan et 

al., 2005; Wang & Zhang, 2011). The advanced modelling approach is used to reduce 

model development, to include the un-model parameters and to study its complex 

behaviour. In addition, the empirical model held by this technique can give an exact 

characteristic of modelled process and solve the robustness issue related to on-line pH 

neutralization. With evolution of computing technology, achieving the best fit of 

empirical model is not impossible. 

 

Many tools can be cooperated using computational algorithm to gain the best empirical 

model. For instance, Mwembeshi et al. (2001, 2004) introduced ‘Global First 

Principles’ of pH neutralization model which was embedded with feed forward Neural 

Networks arrangement intended for networks testing and training .The networks were 

trained (Levenberg-Marquardt and heuristic gradient optimization) by using past input-

output in the dataset to emulate the titration characteristic. Apart from that, their Neural 

Network models demanded the reaction invariant species, chemical equilibrium, and 

electro-neutrality as identical with research by McAvoy (1972). Unfortunately, the 

network strategies are usually different for each types of acid-base neutralization 

process. Thus, the system will not be robust, as the network has to be redesigned 

according to the system being modelled. 

 

On the other hand, Fuzzy Neural approaches were used to model the pH neutralization 

characteristic (Nie et al., 1996). Three techniques in fuzzy neural model were proposed. 

It included the unsupervised self-organizing counter propagation algorithm, the 

supervised self-organizing counter propagation algorithm, and the self-growing adaptive 

vector quantization algorithm. The model of two-output variables employed reaction 
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invariant ideas where the prediction represented in the study are the liquid level and pH. 

The approaches appear effectively compared with the others especially in modelling 

accuracy and it is suitable for real-time applications. However, the fuzzy neural 

modelling has certain limit, as it requires personal with expertise in specific computing 

skills, knowledge, and capable of developing and regulating the complex model. 

 

Genetic Algorithm approaches have also been used to search for optimized 

configuration of Takagi-Sugenno Fuzzy model which is optimized by hybrid learning of 

Genetic Algorithm to produce a good model (Tan, et al., 2005). The pH model designed 

by Genetic Algorithm optimization which correlates the titration between weak acid and 

strong base has numerous advantages (Wang & Zhang, 2011). This Algorithm was used 

to get the transposed model (Weiner’s configuration) of the neutralization equation for 

titration process. The purpose is to find the nonlinear equation parameter, which 

represents the ionic base concentration. However, in the pH neutralization plant, the 

base flow rate is typically analogous to the acid flow rate, and may reduce the Genetic 

Algorithm ability to fix the estimate parameters in titration curve. Therefore, it may give 

interference to the developed model. 

 

Another method to model the pH neutralization is by using Wiener arrangement 

(Figueroa et al., 2007; Gomez et al., 2004; Kalafatis et al., 1995).Their models were 

structured by designed dynamic linear subsystem in Wiener model and combined the 

subsystem with static nonlinear block. The least squares method was used to find the 

characteristic for static nonlinear block. The empirical model is characterized by the 

acid and base streams as input variables and pH value (denotes in acid and base molar 

concentration) as the output variable. 

 



30 

In general, artificial intelligent methods are applicable to replicate for ill-defined, 

unknown and complex systems (Hussain, 1999). In modelling, this technique is a useful 

tool in order to study the characteristic of unknown plant with high degree of model fit 

with unpromising robust frameworks. However, a mathematical model is more robust 

than empirical model if enough correlation is used, but it is difficult to gain because of 

several reasons (Kuttisupakorn et al., 2001). 

 

While in the pH neutralization control, there are many literatures had been established 

in implementing advance controller (Goodwin et al., 1982; Graebe et al., 1996), 

(Gustafsson, 1984), (Henson & Seborg, 1994; Lu & Tsai, 2007), (Narayanan et al., 

1997), (Sung et al., 1998), (Lee et al., 2001), (Boling et al., 2007), (Figueroa, et al., 

2007) and (Salehi et al., 2009). Apparently, most of them have taken pH neutralization 

process as a benchmark to feature those criteria. 

 

Yi and Chung (1995) has introduced systematically design fuzzy controller. This 

method is robust compares to design and proven stable since it treat controller as a 

universal gain that drive process-variable converge to reference value [1] . It could be 

extended to an advance fuzzy logic controller which adapting controller output with 

advance method. Like Lyapunov analysis, sliding gain technique in (Saji & Sasi Kumar, 

2010), self-tuning gain method in (Meech & Jordon, 1993) and many more. 

 

Galan et al. (2000) have implemented pH neutralization control in real time by using 

multi linear model-based control strategies. His succeed to control pH process according 

to several linear regions in the pH process with PI controller with scheduling parameter. 

It has shown that the conventional PI controller is capable to give a good performance 

either in set point tracking or disturbance rejections. The drawback in their method is 
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obtaining the scheduled parameters. These parameters are according to regions and the 

conventional PI parameter itself. Usually experience operator easily obtains all of this 

parameter. 

Min et al. (2006) have expressed their idea by proposing universal learning network 

(ULN) algorithm into model predictive controller (MPC) to stabilize pH control scheme 

with long time delay.  Apart from that, Figueroa et al. (2007) studied on adaptive 

controller based on Laguerre-PWL Wiener model. In their research, Laguerre model 

was used to represent linear dynamic model while PWL model was implied to describe 

non-linear dynamic model. However, throughout their research, they just emphasized on 

the system’s stability instead of adaptive controller robustness. Salehi et al. (2009) have 

presented a simple fuzzy adaptive controller where the control law was conducted based 

on dynamic equations of input-output. In their paper, they also focus on the 

performance of set-point tracking and load rejection in the pH neutralization system. 

Since they compared proposed fuzzy adaptive controller with conventional PI 

controller, their system appeared to be more outperformed compared with PI controller 

like previous research. Vale et al. (2010) proposed Model Reference Adaptive 

Controller (MRAC) consists of fixed and variable adaptive gain embedded with 

Hammerstein-Wiener model. Their MRAC was introduced to improve the effect of dead 

zone on actuator by evaluating the process performance via overshoot, settling time, and 

Good-chart metric. Despite, some advances, their proposed controller yet had few 

weaknesses since they just emphasized on the instrumentation errors instead of 

assessing controller’s capability towards servo and regulator problems regardless of the 

involvement of process and instrumentation deficiencies. 
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As an alternative control, Wang and Zhang (2011) developed Laguerre-LSSVM Wiener 

model which Nonlinear Model Predictive Controller (NMPC) based on strong acid-base 

equivalent technique. As referred to identify Laguerre-LSSVM Wiener model, the 

performance of set-point tracking was monitored. Mismatch correction term was 

embedded in their controller to compensate with the plant-model incompatibility and 

unknown disturbances. In their study, they used value of mean absolute errors, mean 

squared errors, and sum squared errors to depict the set point tracking errors. Since the 

analysis of robustness properties is still be considered as an unsolved problem, therefore 

it application on the certain processes in order to maintain the system at a desired steady 

state point may not be succeeded. 

 

2.3  Controller for pH neutralization 

2.3.1  PID controller 

A conventional controller is commonly found in chemical plants and had made great 

contributions in process control applications. This controller is based on mathematical 

framework with combination of 3 functions: gain error, integral error and derivative 

error. The beauty of this controller is that it can be implemented independently of 

proportional gain, P controller, gain-integral, PI controller, gain-derivative, PD 

controller, or gain-integral-derivative, PID controller. For example, the mathematical 

framework of PID controller is derived as: 

 

(2.1) 

Where Kp, Ki and Kd are PID constant parameters. In theory, Kp is proportional gain is 

meant for lifting process variable value, Ki is integral gain to reduce oscillation effect 

and Kd is derivative gain used to eliminate offset between process variable and 



33 

reference parameter. This combination is one of the earliest control strategy in process 

control. It has been tested in many applications and still maintains a good reputation 

compared to other controller in literature. A PID controller is commonly used in many 

industries nowadays and over 90% of the controllers in chemical industries today are 

PID controllers (or at least some form of PID controller like a P or PI controller) .This 

approach is often viewed as simple, reliable, and easy to understand. A standard design 

method for PID controller can be found in many literatures either from mathematical 

formulation or from empirical technique. Establish empirical method like Ziegler-

Nichole can be used to design this controller perfectly. Tuning formulation for PID 

parameter also can be found in Cohen-Coon theory. 

However, these kinds of controllers have difficulty in handling complex process plant. 

This framework is only capable of handling linear process plants, while for nonlinear 

system, only at certain region, which has been linearized, could be implemented. 

Furthermore, other data except error are ignored because they do not fit into the 

mathematical framework in the controller and this valuable information is wasted. 

Therefore, the study used advanced controller such as Fuzzy Logic system to control 

nonlinear and complex process. Next section described a Fuzzy Logic Controller that 

utilizes historical data from the plant and conventional controller it will performs better 

control action as in objective control plant. 

2.3.2  Fuzzy Logic controller 

“As complexity rises, precise statements lose meaning and meaningful statement loses 

precision” – Zadeh (1965). 

Fuzzy logic controller is widely known among researchers and a lot of findings have 

been made in process control applications. The implementation of linguistic variables 

like “low” or “high” make fuzzy system favour in many applications either in household 

appliances or industrial practice. This controller is used in many ways in control 
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application from simple to complex control system. For instance, Fuzzy Logic was 

established ages ago in a washing machine produced by LG, Electrolux and many more. 

This application is used to monitor conditions inside the washing machine by using 

sensors. By implementing this controller, a machine can adjust setting parameter to 

ensure the best performance is achieved. As a result, user can save money by reducing 

water and energy as low as possible. 

Fuzzy control is established and well documented by Zadeh (1965). Fuzzy Logic system 

has inspired researchers and engineers until today. His work is based on formulating a 

human language command to a standard set of knowledge based. At initial step, this 

fuzzy system requires a set of input and output variables based on the requirement of the 

process system known as a membership function. In general, the more variables taken 

into the system more precise the controller will be. In contrast, more rules should be 

supplied to system and sometime it makes fuzzy system with an abundant of 

unnecessary rule. The next step is to determine the type of membership function like 

triangular, trapezoidal and many more (see Table 2.1 below for some examples of the 

membership function). For example, by using triangular form we can represent large 

bounded values normally 0 and 1. 

This study designed two types of Fuzzy Logic controller which based on Sugeno and 

Mamdani inferences system. 

2.3.3  Mamdani type fuzzy logic controller 

Mamdani’s type fuzzy inference is the first fuzzy methodology systems establish using 

fuzzy set theory. King and Mamdani (1977) has proposed Fuzzy Logic inference to 

control steam engine. It has an easy approach to utilize linguistic knowledge in 

designing Fuzzy Logic controller. The reasons are that no mathematical equation is 

required and it straightforward procedure in mapping knowledge information into a 

fuzzy set. 
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2.3.4  Sugeno type fuzzy logic controller 

On the other hand, Takagi and Sugeno (1985) , and Sugeno and Kang (1986) proposed a 

Sugeno’s fuzzy inference. It’s an equation based and has systematic procedure in fuzzy 

design. 

Many researchers preferred this fuzzy inference since it can cooperate with 

mathematical analysis, adaptive technique, and it is a computational load effectives. 

Fuzzy inferences have three similar components between both types above. They are: 

1. Membership functions and linguistic variables,  

2. Logical operations  and  

3. Fuzzy rule base, “if-then”.  

Membership function (MF) is a linguistic set represented by geometric shape and is 

used for a conversion between crisp value and linguistic value. MF is an item inside 

input-output variables and it holds properties like name, range, and type. Both type 

either Mamdani or Sugeno, used same approaches in defining membership functions 

(Emami et al., 2000). 

 

In Fuzzy Logic controller, we can specify as many as membership function in input 

variables. However, it will be a burden on controller performance since possible unique 

rule is power of number membership function to input variable. Membership functions 

for input variables can be selected as in Table 2.1 (Tanaka & Wang, 2002) as shown 

below. 
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Table 2.1: Membership functions 

Membership Functions Graphical Illustrations 

  

  

  

  

 

Although there is a lot of membership function types in literature, Table 2.1 shows, the 

most commonly found in Fuzzy Logic controller membership functions. 

However, Sugeno’s defined fuzzy output variable in mathematical equation form is 

different from Mamdani’s approach. In Sugeno’s method, f(x,y) is a polynomial 

function in the input variables x and y or constant value. While, Mamdani used same 

approaches in defining membership function as in input variables. 

Fuzzy logic is known for logical operator like AND, OR and NOT. These operators 

actually describe Fuzzy Logic reasoning in general. In Fuzzy Logic controller, this 

operator is used as a connector between input and output membership functions. The 

purpose of logical expression is to evaluate each membership functions value either 1 

(completely true) or 0 (completely false) or range between 0 and 1. For simplicity, 
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standard logical expression is used and is defined as in Table 2.2. 

Table 2.2: Logical expression used in Fuzzy Logic controller 

Method Operation 

AND min 

OR max 

 

Operator AND and OR method is used for input variables relationship reasoning. AND 

method is evaluated using “min” operation while OR used “max” operation. For 

instance, crisp value for input fuzzy variables, “error” is -0.1 in “midHigh” MF range 

and “rate” is 0.0 in “noChange” MF range, then this situation can be constructed as: 

µerror (xerror) × µArate (xrate) = µerror(-0.1) × µrate(0.0) 

if “error” is midHigh AND “rate” is noChange 

where “midHigh” and “noChange” is one of label name for membership function in 

fuzzy input variables for “error” and “rate” respectively. 

Membership functions and operators designed above are subjected to linguistic 

commands (fuzzy rules) to produce conclusions. A Fuzzy rule base consists of 

antecedent and consequent as human interpretation of event and action. There are many 

options to write fuzzy rule in Fuzzy Logic controller. For example, heuristic information 

from established controller like PID controller could be used. The useful information 

like opening a control action at saturation conditions at a certain set point, error from set 

point and process variable and so on.  A complete Mamdani’s fuzzy rule for “error” 

input (3 MF), “rate” (3 MF) and “valve” output (5 MF) is written as follows: 

Rule 1: If “error” is -veHigh AND “rate” is increase then “valve” is fullClose 

Rule 2: If “error” is zero AND “rate” is increase then “valve” is halfOpen 

Rule 3: If “error” is +veHigh AND “rate” is increase then “valve” is fullOpen 

Rule 4: If “error” is -veHigh AND “rate” is decrease then “valve” is fullClose 

Rule 5: If “error” is zero AND “rate” is decrease then “valve” is halfOpen  

Rule 6: If “error” is +veHigh AND “rate” is decrease then “valve” is fullOpen 

Rule 7: If “error” is -veHigh AND “rate” is noChange then “valve” is fullClose 

Rule 8: If “error” is zero AND “rate” is noChange then “valve” is halfOpen  

Rule 9: If “error” is +veHigh AND “rate” is noChange then “valve” is fullOpen 
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However, Sugeno’s fuzzy rule can be written as 

Rule 1: If “error” is -veHigh AND “rate” is increase then “valve” is f1(x1,x2) 

Rule 2: If “error” is zero AND “rate” is increase then “valve” is f2(x 1,x2) 

Rule 3: If “error” is +veHigh AND “rate” is increase then “valve” is f3(x 1,x2) 

Rule 4: If “error” is -veHigh AND “rate” is decrease then “valve” is f4(x1,x2) 

Rule 5: If “error” is zero AND “rate” is decrease then “valve” is f5(x 1,x2)  

Rule 6: If “error” is +veHigh AND “rate” is decrease then “valve” is f6(x 1,x2) 

Rule 7: If “error” is -veHigh AND “rate” is noChange then “valve” is f7(x1,x2) 

Rule 8: If “error” is zero AND “rate” is noChange then “valve” is f8(x 1,x2) 

Rule 9: If “error” is +veHigh AND “rate” is noChange then “valve” is f9(x 1,x2) 

 

Where fi(x1,x2) = Ai*x1  + Bi*x2  + Ci      and A, B and C are constant parameter in output 

functions, fi for i = 1 to 9, while, x1 and x2 is crisp value for error and rate respectively 

(Gürocak & de Sam Lazaro, 1994). Unique possible rules that can be generated in both 

fuzzy rules are nine since membership functions power to number of inputs. 

In process control, Fuzzy Logic system can be used either in process modelling or 

process control. In controller perspective, Fuzzy Logic controller is a universal 

controller that can be implemented in linear to nonlinear systems. In standard form, 

Fuzzy Logic system has four elements as shown in Figure 2.3. 

They are: 

i. Fuzzification – a process for converting crisp inputs into membership labels in 

fuzzy set.  

ii. Rule-Base – stored fuzzy rule knowledge in fuzzy set  

iii. Inference mechanism – a mapping mechanism for active membership functions 

between input, output, and fuzzy rule to produce several conclusions.  

iv. Defuzzification – a compilation of active conclusions given by fuzzy inference 

system into a single crisp control action.  
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Figure 2.3: Fuzzy Logic controller 

In Figure 2.3, a typical Fuzzy Logic controller used in many process control literature is 

presented (Filev & Yager, 1994; Maeda & Murakami, 1988; Obut & Ozgen, 2008). In 

this study, two inputs and one output are used in our Fuzzy Logic controller and for this 

reason; it will be described later in Fuzzy Logic controller design section. Actually, the 

number of input and output can be as much as possible depends on control system 

requirement. Meanwhile, the Fuzzy Logic controller operation for 
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Mamdani’s type is as follows: 

 
Figure 2.4: Fuzzy Logic controller operation procedure 

 

As seen in Figure 2.4, Fuzzy Logic controller processes the crisp input into control 

action as output depending on fuzzy inference defined earlier. The crisp input (x1 and 

x2) could trigger any number of rules and gives several conclusions associated with the 

membership functions range. Then Fuzzy Logic controller concludes only single crisp 

value by defuzzification method. This method indicates a numeric value resulting from 

condition in fuzzy inference mechanism and conclusion in rule-base. Defuzzification 

represents action taken by controller in individual control loop cycle. Based on 
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Mamdani’s type, there are several defuzzification methods as shown in Table 2.3 

(Tanaka & Wang, 2002). 

Table 2.3: Mamdani defuzzification method type 

Type Mathematical form Graphical form 

Centre of 

Area 

                       

Modified 

Centre of 

Area 

                       

Centre of 

Sums  

   

Centre of 

Maximum 

          

  
 

In Sugeno’s defuzzification method, control action is computed as; 

  

where fi  is the output function and wi  is the fuzzy rule firing strength for fi  that is being 

triggered (Tanaka & Wang, 2002).  Fuzzy  rule  firing  strength,  wi,   can  be  defined  as  a  

combination  of  fuzzy operator (AND/OR) and input membership functions, µA  (A is 

error and rate) , and can be written as 

wi = AndMethod(µerror(x1), µrate(x2)) 
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The motivation on developing the Fuzzy logic controller is because the technique can 

give a good performance in controlling complex chemical plant such as fermentation 

process, neutralization process and many more. Furthermore, it utilizes human 

knowledge rather than mathematical methods, which makes it more close to the system 

problem. For this reason, a conventional controller is less attractive than Fuzzy logic 

controller because it only satisfies linear process systems and simple plants. 

 

As conclusion, Fuzzy logic control provides a formal methodology for representing, 

manipulating, and implementing human’s heuristic knowledge. By implementing this 

controller into a process control system, it will minimize error in feedback closed-loop 

control system with less overshoot, eliminate offset and reduce oscillation effect. 

 

2.3.5  Neural-Network 

Neural network (NN) is an artificial intelligent system replicated from the human brain 

neuron concept. McCulloch and Pitts (1943) found neural network concept by 

performing mathematical processing of neuron like brain activity. Their concept 

represented the activity of individual neurons using simple threshold logic elements, and 

showed how interconnected network units could perform the logical operations. Then 

Rosenblatt (1962) make a generalization in neuron connection called preceptor, which is 

a binary classifier, which map input, x into output, f(x) in artificial neural network 

system. 

a) Neural network structure 

Neural network system consists of several nodes in input layer, hidden layers and 

output layer as shown in Figure 2.5 (Nrgaard et al., 2000). 
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Figure 2.5: Architecture of neural network 

An input node with several variations of delay is link together to form a hidden layer to 

generate output value based on assigned weights (see Figure 2.6) in training dataset. 

The determination of input delay is one of key factor to achieve a good system. While, 

additional hidden layer would cost computational burden to increase, increasing 

perceptron relation as number of node increase in power to number of layer. 

b) Neural network mechanism 

The operation of neural network to produces an output is as follows: 

Let us consider only one node in hidden layer for the mathematical operational purposes 

as in Figure 2.6 (Nrgaard, et al., 2000). 

 
Figure 2.6: Synapse operational in single node in hidden layer 

Input signals are combined into a summing junction according to establish synapse 

weight value wk to produce interval activity value νk as 
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Finally, the output, g[k] is evaluated by some activation function, φ with value of  νk 

and bias, bk as shows 

 

A  threshold  function  θk   could  be  introduced  as  an  enhancement  to  the  activation 

function. The resulting value, g[k] is an input to the output layer to produce final output, 

of neural network system and the mathematical operation repeat as explained ĝ[k] 

before. 

As seen above, every neuron (node) consists of established weight like biological 

neuron in human brain. This weight is the so called information of action in the input 

system. Thus, training neural network system using input-output dataset is required to 

establish weight values to match process system. Additional parameters like desired 

output dj and error ej are required to be implemented inside neural network architecture 

as shown in Figure 2.7 (Nrgaard, et al., 2000). 

 
Figure 2.7: Neural network learning architecture 

Learning operation is to determine wk at every synaptic weight and it can be described 

as follows 
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Where, w’jk  is previous synapse weight, learning rate (LR), ej  is an error between 

desired and output value and Xi  is input data into neural network.  The mechanism of 

neural network learning is known as back propagation method and it is the simplest 

among available methods in the literature. Detailed information regarding to operational 

neural network and training, can be found in open neural network literature. 

 

c) Neural network in control system 

Neural network has a great influence in the process control field. Like Fuzzy Logic 

system, the framework does not require mathematical representation on process system 

as described above. The capability of neural network has excited many researchers in 

especially in nonlinear behaviour, time variant problem, and noisy conditions. A 

promising performance of accuracy is the key factor why network is most favoured 

among other AI systems. A lot of literature can be found regarding neural network 

either in process modelling or in control engineering. This technique has benefited 

many applications especially in Chemical Engineering field. Hussain (1999) provided 

an extensive review of the various applications utilizing neural network technique. In 

that article, neural networks are categorized under three major control schemes; inverse 

model based control, predictive control and adaptive control methods. 

Hussain and Kershenbaum (1999) have succeeded in implementing a neural network 

control system for a chemical reactor both in simulation and experiment based. In their 

finding, neural network give outstanding performances compared to conventional 

control system. 
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2.4  Hybrid system 

The hybrid system is a combination of more than one technology used to obtain a 

problem solution. It designed to reduce a particular technology limitation and inherit its 

advantages. In theory, the hybrid maybe classified into several categories as sequential, 

auxiliary, and embedded hybrids (Rajasekaran & Pai, 2004). These classified hybrids 

are described based on the interaction of technologies. 

The most common interaction between the technologies is using sequential hybrid. The 

interaction between first and second technology is a queue-based solution as shown in 

Figure 2.8 below. The sub-solution from first technology is transferred to the second 

technology, which produces the final solution to the problem. 

 
Figure 2.8: Typical sequential hybrid of two methods 

Auxiliary hybrid as in Figure 2.9 is another way to combine two technologies. The 

interaction is divided into two parts, which is primary and secondary technology. The 

secondary (technology B) is providing an additional sub-solution while a primary 

technology is working to produce the final output. This hybrid technique is used 

commonly for adaptive control strategy. The controller is being supported by an 

approximate algorithm to produce a sub-solution that gives suggestion, while the 

controller produces final output for control action. 
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Figure 2.9: Typical auxiliary hybrid of two methods 

 

While, embedded hybrid simultaneously produces sub-solution and the final solution is 

managed by technology desired most. This mechanism can be found in the most soft-

computing method where in the method structure is composed of many sub-methods 

that gave sub-solution before the final output is compute. Neural-Network, Fuzzy Logic 

is one of the soft-computing tools used hardly in this hybrid. The perceptron (for 

Neural-Network) or the fuzzy inference (for Fuzzy Logic) is a sub-method which 

produces the sub-solution while the fuzzy inference compute the final output by 

considering the neuron weight (for Neural-Network) and fuzziness input (for Fuzzy 

Logic) in to the summation equation. 

 
Figure 2.10: Typical embedded hybrid of two methods 
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2.4.1  Adaptive Neural Fuzzy Inference System (ANFIS) 

ANFIS is a mixture of soft-computing tool between Neural-Network and Fuzzy Logic. 

The technology behind this controller is mainly from the Fuzzy Logic system and the 

Neural-Network tools for optimizing the configuration of the fuzzy inference system. 

ANFIS can be classified as auxiliary hybrid since it uses primary and secondary hybrid. 

ANFIS technique has been introduced by Jang (1993) by using Sugeno’s fuzzy system 

with neural network method. 

 

Sugeno’s Fuzzy Logic system has the ability to implement mathematical equations in 

output function while it embraces all Fuzzy Logic system ability like mapping 

nonlinearity, uncertainty and variation over time in complex plant behaviour and fuzzy 

knowledge can be obtained from human experience. However, Fuzzy Logic controller 

has it drawback. For instance, it is difficult to determine the exact fuzzy rule 

relationship and membership functions as complexities of the plant increased. 

Furthermore, an extensive effort is needed in describing system behaviour since more 

rules are needed to tune accordingly for a good Fuzzy Logic controller. 

 

For neural networks, to find appropriate input and output relationship (perceptron) of 

the process is difficult since neural network inner framework is a “black-box” in nature. 

In online implementation, neural network is the most expensive cost solution compared 

to other technologies. It requires many data in regard to the process, and data used must 

represent plant dynamics, and if not, this technique will have trouble in predicting 

output. Besides, effective neural network structure is sometime hard to construct when 

dealing with a complex system. 
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Thus, a combination of fuzzy system and neural network can improved the problems 

related in each technology. Although the main framework of ANFIS is Fuzzy Logic, but 

the configuration of Sugeno’s fuzzy inference is prepared by neural network technique. 

The neural network technique can be used as a learning mechanism in input and output 

dataset. The learning knowledge could be utilized to generate a Fuzzy Logic rules and 

membership functions, which conventional Fuzzy Logic may took extra work. 

Indirectly, development activity of Fuzzy Logic controller for complex is reduced 

significantly. 

2.4.2  ANFIS architecture 

In general ANFIS architecture has the same components as Sugeno’ type Fuzzy Logic 

system with polynomial output function fi(x,y) of input variables, x, y where i is the 

number of fuzzy rules used as shown in Figure 2.11 (André Jones et al., 1986). 

 
Figure 2.11: Sugeno’s type Fuzzy Logic system with polynomial output function 

 
Figure 2.12: Equivalent ANFIS architecture to Sugeno’s type Fuzzy Logic system 
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The ANFIS architecture follows the feed forward neural network and is trained using a 

supervised learning mechanism. The learning objective is to find the consequent 

equation parameters that fit input-output dataset. As shown in Figure 2.16, fis structure 

has 5 working layers as briefly described below: 

1. Input layer  

2. “Inputmf” layer  

3. Rule layer  

4. “Outputmf” layer  

5. Output layer  

Layer 1: Input layer – is used to convert crisp value of x and y to label as used in input 

membership function. The output of this node, O1 is 

O1,I = µAi(x) for i = 1,2 and O1,j = µBj-2 (y) for j =3,4 

As described in Chapter 3, input membership function can be selected from several 

types (Refer to Table 4.2). 

Layer 2: “Inputmf” layer – is used to calculate the weight, wi of relationship 

membership functions. The output of this node is relationship weight between input x 

and y. 

 

Layer 3: Rule layer – is used to combine consequent action with input relationship. As 

from previous layer, this layer works to combine several active rules in fuzzy inference 

system and gives output, O3, as total average weight. 
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Layer 4: “Outputmf” layer – is used as an adaptive platform to adjust consequent output 

parameter in ANFIS framework. The output, O4, from this node performs consequent 

action in each active fuzzy rule. 

 

Layer 5: is used to compute overall output function to final output in ANFIS system 

 

As described above, layer in ANFIS has similar working structure as neural network in 

designing fuzzy inference system. The adaptive mechanism works to adjust consequent 

constant parameter within several iterations by reducing error between overall ANFIS 

output and supplied output data set. Thus, any fitting mechanism can be used to find 

consequence parameters, for instance, gradient descent, least squares method, genetic 

algorithm, particle swarm or hybrid between those techniques. 

2.4.3  Inverse ANFIS model 

An accurate technique in connecting the input and output for a process plant is a major 

attraction in the ANFIS research. ANFIS is an attractive solution where it allows human 

knowledge to be used automatically to determine the control action, u for conventional 

Fuzzy Logic controllers. ANFIS provides satisfactory results in dynamic mapping 

process plant and this technology can be used in the control plants at any desired set 

point. In this study, the ANFIS model is designed to give appropriate control action for 

fuzzy logic controller based on the inverse model response where the input and output 

relations at online dataset is reversed. 
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Initially, input and output dataset are prepared in open loop plant. In process plant 

model identification using ANFIS, input data is a manipulating variable, u and the 

output is process variable, y. ANFIS model then is validated in real time to guarantee 

the trained model could predict the process variable, y for any given inputs, u. In order 

to design an inverse model controller, the dataset is inversed by changing the input 

output orientation, for instance, input dataset for ANFIS controller is taken from output 

dataset of model, and output dataset for ANFIS controller is from input model dataset. 

By doing this inversed dataset, the controller would predict control action, u for any 

desired process variable in process control system. 
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Chapter 3 : Modelling of pH 

Neutralization process 

3.1  Model and controller designs considerations 

It is important to specifying control objectives and design considerations beforehand 

because it would give a systematic optimized design approach. 

 

The interested parameters are like rise-time, overshoot, and tracking specifications. In 

this study, the controller objectives are to achieve less overshoot, fastest rise time, less 

oscillation, and reduced robustness affects. To achieve the objectives, several technical 

ideas are considered. 

 

First, designed controller must be able to operate for nonlinear process behaviour. This 

is very crucial consideration for selected a nonlinear controller. In “Literature review” 

chapter, we listed several recent controllers that were used in pH neutralization control-

system. Fuzzy Logic controller is selected since it has the capacity to deal with 

nonlinear process behaviour. Detailed description will be given in the next section of 

this chapter. The concerned of nonlinearity for pH neutralization is at the set point of 

interchange regions. This is because the need of the control action is different. In 

neutralization region, a very small control action is required while requiring a large 

control action at acid and base regions. This need will give a problem to linear 

controllers like PID controller but not for Fuzzy Logic controller. 
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Second, the designed controller must be able to reduce the un-design factor due to aged 

plants or altered parameters. This consideration is an optional for many controlled plant 

engineers since the controller could be redesigned according to new working 

parameters. However, it will be non-economic for the production floor to shut-down and 

redesign the controller. Therefore, the designed controller must be able to increase 

robustness due to un-design factors as mentions above. 

The success of a robust controller is related to the plant dynamic accuracy. Next, model 

accuracy is another aspect to achieve in the controller objectives. The designed model 

must be able to give accurate prediction of on-line pH value during control system 

implementation (at nominal or different working conditions). The robust controller 

depends on the accuracy of this model. It is importance to improve the robustness in 

Fuzzy Logic controller. Hence, hybrid model is introduced to give accurate model for 

on-line prediction. 

Other considerations will be discussed in the following sections. 

3.2  pH neutralization model designs 

This study developed a hybrid model from first principle mathematical model and 

Fuzzy Logic model with Neural Network mechanism. The study propose a hybrid 

mechanic, which managing the models contribution to achieve best agreement in 

dataset. The study designed a pH neutralization model based on Figure 3.1. In the 

mixing tank, strong acid (HCl) flow rate and strong base (NaOH) flow rate are mixed 

which produced a dynamic behaviour in pH characteristic. The study is to predict the 

pH value for this problem by using hybrid modelling. 
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Figure 3.1: Basic design of studied pilot plant 

3.2.1  Mathematical model 

The mathematical model for pH neutralization process is based on material balances 

and chemical equilibrium equation. The model follows McAvoy (1972) and Wright et 

al. (1991) works. The mathematical model based is obtained from strong acid 

(Hydrochloric) and strong base (Sodium Hydroxide) reaction according to Figure 3.1. 

Assumptions for the model are instantaneous reaction, well-mixed, constant-density 

mixture, and no formation of solids during experiment. Unsteady-state kinetic model 

for pH neutralization is written as in Eq.3.1 below. Where Vr is tank volume, Fa is acid 

flow  rate,  Fb   is  base  flow  rate,  CA0   and  CB0  is  a  concentration  for  acid  and  

base respectively. 

       (3.1) 

        (3.2) 

Gustafsson and Waller (1983) define Eq.3.2 as the overall-total-ionic-concentration in 

mixed tank.  The  ai(pH)  is  identified  for  strong  acid  as  -1,  and  strong  base  as  +1 

(Wright et al., 1991). Thus, x is the remained ionic concentration in the mixture when 

acid and base is neutralized where xi is an ionic concentration of reactants. 
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In aqueous solution, mixture of ion hydrogen and Hydroxide is electrically neutral. 

Therefore, electro-neutrality and water-equilibrium theories is used to express 

electrolyte disassociations (Eq. 3.3) by considering the system is in aqueous solution, 

isothermal reaction at temperature 27 
o
C, and water equilibrium constant, Kw  at  

1×10
-14

 

         (3.3) 

Then, kinetic model from Eq. 3.1 can be updated based on hydrogen concentration as 

in Eq.3.4. 

  (3.4) 

Eq. 3.4 is a nonhomogeneous and nonlinear differential equation. A numerical tool like 

Eular or Runge-Kutta method can be used to solve this equation. The complete pH 

neutralization model is gained after solving Eq.3.4 and used that solved value at time, t 

into Eq.3.5 in which pH value is calculated by taking the logarithm of hydrogen 

concentration, as below: 

pHm(t;Fa,Fb) = - log10([H
+
]) (3.5) 

The inputs force that is affecting the pH characteristic is mainly because of the inlet 

flow rate. Therefore, in this model, acid (Fa) and base (Fb) flow rates are inputs-signal, 

and pH value is the output-signal for the model while the rest are constants. The 

nominal operating parameters are referred to in Table 3.1 (Ishak et al., 2001).  

Table 3.1: Nominal operating conditions of pH neutralization 

 

 

 

 

 

Parameter Symbol Value Unit 

Acid flow rate Fa 3.5 ± 0.1 litre/min 

Base flow rate Fb (5 to 13) ±0.1 litre/min 

Initial condition of HCl CAo 0.003 mol/litre 

Initial condition of NaOH CBo 0.003 mol/litre 

Volume of mixing tank Vr 100 litre 
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3.2.2  ANFIS model 

Fuzzy Logic is an attractive technique for pH neutralization modelling. The study used 

Fuzzy Logic to gain empirical model of pH neutralization. It provided a multi-model 

frame for nonlinear behaviour modelling. The model is gained by assigns three crisp-

inputs and one crisp-output with respect to the Eq. 3.6. The Fuzzy Logic has four parts: 

fuzzification, fuzzy inference, rule-base, and defuzzification (Zadeh, 1996). 

 

In model identification, the input-crisp value can be in many forms, like flow rate, 

concentrations, speed of agitator, volume, and more. The possible input-output 

candidates for the empirical model are flow rate and pH value (see Figure 3.1). In this 

study, three inputs (from acid-base flow rates) and one output (from pH value) is used 

respectively. These inputs-output have crisp values. The input-crisp values are 

converted input into fuzzy-input values. The fuzzy-inputs are designed by using two 

generalized bell-shaped curve membership-functions, which are represented, by 

Eq.3.6, Eq.3.7, and Eq.3.8 while the output is referred to Eq.3.9. The inputs range is 

between minimum and maximum inputs in the dataset as referred to Figure 3.2 below. 

 

(3.6) 

 

(3.7) 

 

(3.8) 

Figure 3.2 below shows the plotted input-output dataset from on-line open loop 

investigation. The experiment was conducted by using nominal operating conditions as 

in Table 3.1. The data are collected by using NI-6221 multichannel data-acquisition 

hardware at sampling time of 1-second. 
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Figure 3.2: Input-output dataset for online pH neutralization 

 

The  inputs  are  the  flow  rate  at  different  time-delay (τd)  from  the  dataset  (on-line 

measured data). The time-delay selection for flow rate can be chosen at any delayed 

time in dataset. For example, the acid and base flow rates can be selected at any time-

delay which is from -1 to -N (N is the total row in dataset). Therefore, the output 

membership function is written as in Eq. 3.9 below. The optimized time-delay selection 

is the key to gain best fit of model besides adjusting constant coefficient (A, B, C, and 

D) in Eq. 3.9. 

(3.9) 

In inputs selection, constant coefficients (A, B, C and D) are initialized as one, while 

time-delay is obtained from viewing open loop response (Fig.3.2). According to Figure 

3.2, the effective time-delay is between -1 to -80 seconds. Root Mean Square Error 
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(RMSE) is used as objective function (Eq.3.10 below) to compare the predicted pH 

value for ten different time-delay candidates for three inputs. 

 

(3.10) 

Where  pHr(k)  is  on-line  pH  value  in  dataset  from  k  =  1,2,3  to  N,  which  N  is  total 

number in dataset. The chosen time-delay for τ1 and τ2 (as in Eq. 3.9) is at -72
th

 and - 

73
th

 seconds respectively for Fb, and for τ3 is at -40
th

 seconds for Fa. These three inputs 

combination gives the lowest value (RMSE = 0.2459) according to Figure 3.3, which 

gives the best fit of real data in dataset. 

 
Figure 3.3: Sequential input selection for three inputs from 10 candidates 

 

The rule-base for the model is composed by taking maximum relationship among three 

inputs. The rule-base is eight unique logical combinations that are from 3 inputs and 

two membership functions (2
3
). The rules are listed as in Table 3.2. 
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Table 3.2: Eight unique combinations among inputs and output for fuzzy rule-base 

  AND Input2 is f2,min(FB-72) AND Input2 is f2,max  (FB-72) 

  AND Input3 is f3,min(FB-73) AND Input3 is f3,min(FB-73) 

If Input1 is f1,min(FA-40) Rule#1 : then output is pH1(k) Rule#2 : then output is pH2(k) 

If Input1is f1,max(FA-40) Rule#3 : then output is pH3(k) Rule#4 : then output is pH4(k) 

  AND Input2 is f2,min  (FB-72) AND Input2 is f2,max  (FB-72) 

  AND Input3 is f3,max(FB-73) AND Input3 is f3,max(FB-73) 

If Input1is f1,min(FA-40) Rule#5 : then output is pH5(k) Rule#6 : then output is pH6(k) 

If Input1is f1,max(FA-40) Rule#7 : then output is pH7(k) Rule#8 : then output is pH8(k) 

 

The fuzzy-output is linear functions consisting of fuzzy-input membership function. 

Eq.13 can be elaborated to eight different cases as Eq.3.11 

 

(3.11) 

where i = 1,2 to 8 

The coefficient function (Ai, Bi, Ci and Di) are the gains that are needed to be optimized for 

best fit of pH neutralization dataset. The complete construction of fuzzy model can be 

seen at Figure 3.4, which have three parts (input, rule, and output) as describes in Fuzzy 

Logic. 

 
Figure 3.4: ANFIS model structure 
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Figure 3.4 shows likeness to ideas in Neural-Network (N-N) architecture (see Section 

2.3.4). In N-N, input-signals are combined at summing junction and the node output 

(internal-activity value) is calculated by multiplying the synapse weight value for each 

signal respectively. In neuro-fuzzy case, synapse weight is the coefficient (Ai, Bi, Ci, 

and Di) while the summing junction is at Eq.15 which combines the active rule-base 

with the synapse weight at each fuzzy-inputs to produce a crisp output-value (pHp(k)).  

 

As in Neural-Network identification, neuro-fuzzy have to train the synapse weight 

with the on-line dataset (Figure 3.2). Least-square method (learning algorithm) is used 

to get the optimized synapse weight (Ai, Bi, Ci, and Di) by iteratively reducing the 

cost of objective function (Eq.14) for entire fuzzy-structure (Table 3.3Table 3.3) 

 

Table 3.3: Optimized coefficients of ANFIS output-function 

i Ai Bi Ci Di 

1 0.3524 0.5574 0.03086 0.167 

2 1.073 0.06756 -0.006016 -0.1915 

3 -0.05421 1.057 -0.5296 0.9288 

4 1.337 0.4237 0.3674 -9.853 

5 0.8138 -0.4955 0.4823 4.041 

6 1.255 0.1555 -0.2992 0.7469 

7 0.7408 0.2627 0.0578 0.1502 

8 0.1921 0.7397 0.05951 -0.2554 

 

The  final  layer  (control  output)  gives  a  value  by  summing  all  conclusion  values.  It 

is described as 

 

(3.12) 
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3.2.3  Hybrid ANFIS and mathematical model 

A hybrid is also known as a combination of several techniques.   This study used two 

different  techniques,  which  is  a  combination  of  mathematical  model  and  empirical 

model. Lennart (2010) classified the hybrid model as in “slated  grey” colour analogy, 

with a combination of first principle model (“pure white”) and soft computing model 

(“black”). 

Let us consider the dynamic continuous time mathematical model and empirical model 

as in Eq.3.5 and Eq.3.12 respectively as below. 

 

 

 

(3.13) 

 

(3.14) 

The  mathematical  model  (Eq.3.13)  is  a  typical  physical  first  order  continuous  time 

domain   model   which   presenting   Eq.3.5.   Next,   Eq.3.14   is   an   empirical   model 

constructed  by  historical  dataset  based  on  a  modelled  plant  that  present  3.12.  Both 

models have different mechanics in predicting the response of the plant. Mostly, 

Eq.3.13 represents a theoretical formulation and Eq.3.14 is on identification from best 

fit of dataset. This study proposes a hybrid mechanic that can combine both methods 

and give better dataset agreement compared to standalone model. This study proposes a 

two hybrid mechanics which suitable for combining the mathematical and empirical 

model. 

First is a parallel hybrid that is managed by hybrid weight, α as in Eq.3. The 

summation of output weight is always equal to one if and only if α is in range of zero 

to one. 

 
(3.15) 
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The yh1(t) is output for hybrid model from combination of Eq.3.13 and Eq.3.14. The 

structure is simple and fast. The hybrid weight (α) can be a constant or function, which 

the value, leading the prediction toward the theoretical idea or training model. Thus, it 

has a capacity of predicting the process-output value within its robustness limitation. 

Second, the proposed hybrid structure is constructed by using model performance 

weight of individual model. The hybrid model output is calculated as in Eq.3.16 where 

the individual output is evaluated according to their performance weight, ω. 

 

(3.16) 

The structure above is for combining several models. Every i
th

 model has been 

assigned to a performance weight (ωi) that can be a constant or a function. Eq.3.16 is 

more flexible in managing the output contribution because the summation of weight 

can be greater that one. 

 

The proposed hybrid structures above can be treated as a static or dynamic equation 

depending on its weight. Static equation is from a constant weight while, the dynamic 

equation is depended on the functions used. The function can be implemented from on 

dynamic equation. Furthermore, proposed hybrid structure can used as on-line adapting 

gain for adaptive controller studies. However, the adapting mechanism requires 

additional algorithms to perform a dynamic adjustment in on-line basis. 

 

The individual models have several advantages and disadvantages. The ANFIS model 

is used to predict the pH value based on the real plant characteristics, while the 

mathematical pH model is used to calculate the theoretical pH values. ANFIS duplicate 

the dynamics of a pH plant, which depends on training dataset (Figure 3.2). The motive 

of introducing the mathematical and ANFIS model is to give better pH value 
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prediction. Subsequently, the hybrid model would extent the robust properties from 

nominal working condition. The variations are acid and base concentrations, reactor 

volume, mixing agitator speed, unknown compositions, and many more during on-line 

implementation. 

 

The hybrid models (Eq.3.17 and Eq.3.18) for pH neutralization are designed by 

combining Eq.3.5 and Eq.3.12. Both models are considered in discreet time domain 

which sampling time (h) is one second as in dataset (Figure 3.2). 

 
(3.17) 

or 

 

(3.18) 

 

Where, for two models, the weight can be written as 

 
and 

 

Thus, the hybrid model design can be seen as 

 

(3.18) 

                      

Weight (α) is proportion to each model to predict the output. As mention, the weight can 

be selected from a constant number or function. Figure 5 indicates the influence strength 

between mathematical and neuro-fuzzy model. The RMSE for hybrid model increased 

with increments of the weight (α). This correlation shows that the hybrid model is 

influenced by both models, which at nominal condition, neuro-fuzzy model gives better 

prediction (less RMSE), compared with the mathematical model (high RMSE). 
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Figure 3.5: Hybrid model RMSE values with different weight selection 

 

The weight (α) equal to zero means that the hybrid model is completely influenced by 

neuro-fuzzy model, while the weight when  

is equal to one means that the hybrid model is totally influenced by the mathematical 

model. These two cases give a correlation to decide the best weight at a particular time 

for hybrid model to achieve lowest RMSE. Thus, the weight is selected from time to 

time resulting in a dynamic weight profile. Eq. 3.19 is used to assign the dynamic 

weight as a function of absolute error from two models (Math and Neuro-fuzzy) since 

absolute error shows the magnitude of error deviated from the on-line dataset. 

 

As conclusion, the hybrid model predicts pH value based on performance of 

mathematical and neuro-fuzzy model. Selecting best weight from each model will give 

good prediction of hybrid model with lowest RMSE. In nominal working condition, the 

lowest weight is preferred since neuro-fuzzy model predicts better than mathematical 

model. However, when working at new condition, neuro-fuzzy may not perform well. 

(3.19) 
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Then, a right weight,  is used to compensate for the neuro-fuzzy limitation. 

Therefore, the dynamic weight (Eq.19) could select the appropriate weight, which 

calculates by deviation magnitude from on-line dataset with models output. 
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Chapter 4 : Controllers design for pH 

neutralization process 

4.1  Conventional PID controller design 

Conventional PID controller has standard mathematical expression. It is a combination 

of Proportional action, Integral action and Derivative action as in Eq. 4.1. As describe in 

Literature Review section as, 

 
(4.1) 

The PID controller design has many methods to follow. This study used industrial 

practical method for controlling pH at 7. Since PID controller is only for linear 

processes, therefore the design configuration only works around pH 7. 
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The design is follows; 

 
Figure 4.1: PID controller tuning 
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The PID controller has been tuned according to on-line control performance by using 

step in Figure 4.1. The tuning parameter can be obtained as in Table 4.1. The 

methodologies of conducting those controllers tuning are not described in details. One 

can found in many literatures about those tuning method. 

Table 4.1: PID tuning parameters 

PID controller P I D 

Try and error tuning 0.002 12 5 

Ziegler-Nichole Tuning    

Cohen-coon Tuning    

 

4.2  Fuzzy logic controller design 

Fuzzy Logic (Fuzzy Logic) controller design and analysis is discussed in this section. 

Fuzzy Logic Controller is described as a decision-making system that works in the 

linguistics framework. Fuzzy Logic was been introduced by (Zadeh, 1965), a founder of 

fuzzy set theory. In daily activities, fuzzy logic has been practised idea without realizing 

it. In conventional fuzzy system, fuzziness has average of 0 to 1. However, in Fuzzy 

Logic controller, it has ranges from 0 to 1 and it has systematic approaches that different 

from conventional fuzzy idea. 

 

Fuzzy Logic system has a framework called fuzzy inference system (fis) based on 

Zadeh fuzzy set. It is a fuzzy methodology for mapping linguistic knowledge into fuzzy 

set systems. In Fuzzy Logic controller, fis framework is used to map input signal into 

linguistic labels such as “error”, “rate” etc. and evaluate output label depend to 

consequent action into crisp value know as control action. Fuzzy Logic system used 

human experience information, as knowledge regarding open loop characteristic on pH 

modelling from previous section. 
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4.2.1  Fuzzy Logic control strategy 

Feedback control strategy is desired for all applications control system in this study. In 

feedback loop control (in Figure 4.2), error variable is normally used as a Fuzzy Logic 

input. This variable is an essential parameter for guiding the controller to achieve the 

desired set point. In theory, “error” is defined as difference between reference value, r(t) 

to process variable value, e(t) = r(t) – y(t). 

 
Figure 4.2: Feedback closed loop system with Fuzzy controller. 

In addition, error could be extended into rate of error. Since human understand literally 

how fast error changes from certain point to another point, rate of error (“rate”) is 

another state of Fuzzy Logic input that is interesting to study in the feedback control 

system. Label “rate” is defined as change of error in time, rate (t) = d/dt [e(t)]. It is also 

known as a gradient of error; either error is increasing or decreasing from previous 

state. Thus, these terminologies like “error “and “rate” are used in this strategy. Then, 

input label for the Fuzzy Logic controller is chosen as “error” and “rate”. 

 

While Fuzzy Logic controller output (u) can be from any state variables like current, 

voltage, flow rate, heat supplied and many more, but it should be related to manipulated 

variable in control system. The opening-valve as controller output (manipulated 

variables) is used since the opening is a function of flow rate in pH neutralization 

control system. In the pilot plant, opening-valve depends on voltage supplied into a 

valve transducer. It will convert the voltage to air pressure in psi. Range o to 10miliVolt 

is applied for 0% open to 100% open respectively. Therefore, voltage is selected as 

output state in Fuzzy Logic controller by using “valve” label. 
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4.2.2  Selection of input and output membership functions 

Feedback control system is applied in this study, then “error” is the first item in Fuzzy 

Logic controller. The error signal is the same as input in PID controller and for Fuzzy 

Logic controller; error is mapped into linguistic variables like “zero”, “negative” and 

“positive” for minimal number of fuzzy membership. Three labels are sufficient to map 

all bounded error signal from control system. While second input is “rate”. It could be 

label as “increased”, “noChange” and “decreased” minimally. However, number of 

label (membership) in first input (error) and second input (rate) could be more that 

suggested number. It could give more computational load but smooth controller 

performance. 

The output from Fuzzy Logic controller (“valve”) is divided into 5 labels (membership) 

which is “closed”, “smallOpen”, “midOpen”, “largeOpen”and “FullOpen”. It is because 

flow rate value (litre/min) between each labels (example: “closed” and “smallOpen”) 

has almost no significant difference. 

Design of Fuzzy Logic controller is begun by letting data set, Ai and crisp value, xi 

(“error”, “rate” and “valve”) into control system. In classical mathematical form, it 

might be expressed as: 

A
error 

= (x
error

| -1< x
error 

< 1) , A
rate 

= (x
rate

| -1< x
rate 

< 1) and A
valve 

= (x
valve

| 0< x
valve 

< 10).
 

However, in fuzzy inference system, data set Ai has an extension to classical data set 

which includes each crisp value xi into MF equations for all elements in Ai. This 

membership function equations map each element in Xi (Xi is crisp value for all ranges 

in MF) into membership value between 0 and 1 as shown below: 

Aerror = (xerror, µAerror (xerror) | xerror ∈ Xerror) 

Arate = (xrate, µArate (xrate) | xrate ∈ Xrate) and 

Avalve 
= 

(xvalve, µAvalve (xvalve) | xvalve ∈ Xvalve). 
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where µAi is MF equation of label represented by a geometrical shape. As initial design, 

triangular shape as input MF is used to convert crisp input value by using function 

below (µAerror (xerror),µArate (xrate)): 

 

Where a, b, c is triangular shape parameters and i denote as “error” and “rate”. All 

graphical MF shape and parameter for inputs variable can be obtained below (Figure 4.3 

and Table 4.2) respectively. Triangular shape is favoured initially, because it easy to 

construct and gives good performance. 

 

(a) 

 

(b) 

Figure 4.3: Graphical illustration of inputs membership function; 

(a) input variable “error” (b) input variable “rate” 
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Table 4.2: MF input variables parameter and values. 

Name  i  = “error”   i  = “rate”  

Range Min: -0.5; Max: 0.5  Min: -0.1; Max: 0.1  

No Name  a b  c Name  a b  c 

1 -veHigh  -0.8 -0.5  -0.1 increase  -0.18 -0.1  -0.02 

2 -veMid  -0.2 -0.1  0 noChange  -0.08 0  0.08 

3 Zero  -0.01 0  0.01 decrease  0.02 0.1  0.18 

4 +veMid  0 0.1  0.2     

5 +veHigh  0.2 0.5  0.8       

 

Input “error” contains 5 MF functions where “-veHigh” and “+veHigh” are catered to 

cover up error value if pH values reference change from 6 to 8 or vice versa. “-veMid” 

and “+veMid” is for converting error value in small scale. While at “Zero” label, the 

controller output value should be maintained because the crisp value at moment shows 

that the Fuzzy Logic controller has achieved the control objective. On the other hand, 

only 3 MF are required for input “rate”. It is minimal number of action since basic rate 

can be either increase, decrease or no change. 

Figure 4.4 shows the procedure to design the MF as described above. 

 
Figure 4.4: Membership function design procedure 
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4.2.3  Mamdani’s fuzzy inference system design 

As described previously (Section 4.2.2), Mamdani’s output membership function is 

different compared to Sugeno’s type. As a starting point, Gaussian shape is chosen as output 

membership function, µAvalve(xvalve) for Fuzzy Logic controller because Gaussian shape 

inherits nonlinear behaviour compared to triangular shape. It can be described as 

follows: 

 

Where σ and ζ are Gaussian shape constant, which can be found in Table 4.3, and is 

illustrated as in Figure 4.5. Gaussian shape is selected because this equation provides 

smooth transition response to control valve. 

 
Figure 4.5: Graphical illustration of output membership function “valve”  

 

Table 4.3: Mamdani’s output MF: variables parameter and values. 

Name “valve”  

Range Min: 0; Max: 10 

No Name σ ζ 

1 fullClose 0.7 0 

2 littleOpen 0.7 2.5 

3 halfOpen 0.7 5.0 

4 largeOpen 0.7 7.5 

5 fullOpen 0.7 10 
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In pH neutralization control case study, the final element of the control system is control 

valve and it ranges between 0 to 10 millivolt crisp inputs value. As in a real-plant, 

interval of 2 millivolt is significant opening different for base flow rate to take action. 

For  instance,  2.1milivolt  has  no  significant  change  in  base  flow  rate  compared  to 

4milivolt. The next step for Fuzzy Logic controller design is to construct the control 

command rules based on input and output MF defined earlier. Fuzzy rules for 

Mamdani’s inference system are: 

Rule 1: If “error” is -veHigh AND “rate” is increase then “valve” is fullClose 

Rule 2: If “error” is zero AND “rate” is increase then “valve” is halfOpen  

Rule 3: If “error” is +veHigh AND “rate” is increase then “valve” is fullOpen 

Rule 4: If “error” is -veHigh AND “rate” is decrease then “valve” is fullClose 

Rule 5: If “error” is zero AND “rate” is decrease then “valve” is halfOpen  

Rule 6: If “error” is +veHigh AND “rate” is decrease then “valve” is fullOpen 

Rule 7: If “error” is -veHigh AND “rate” is noChange then “valve” is fullClose 

Rule 8: If “error” is zero AND “rate” is noChange then “valve” is halfOpen  

Rule 9: If “error” is +veHigh AND “rate” is noChange then “valve” is fullOpen 

 

In the list of fuzzy rules above, Rule #8 is the most important since it guaranties the 

Fuzzy Logic controller to meet the desired control objective. Determination of the fuzzy 

rules can be hard for a new plant but it is easy for an established plant since stationary 

state and dynamic response of the plant are available during plant operation. At the pilot 

plant, to achieve stationary state (error is zero and rate in not change), flow rate of 

NaOH must be the same as HCl flow rate, since both concentration is the same at feed 

storage tank. Rule #8 only caters at stationary state with maintain reference and process 

variable value. 

The rest of fuzzy rules listed above is to drive the process variable (pH) to the desired 

reference point. It has two conditions when process variable is below (error is positive) 

and above (error is negative) reference value. When error is positive, the mixing tank 

requires more NaOH so the action is to increase the opening valve. Another case when 

error is negative, the valve opening has to reduce in order to lessen the pH value in tank. 
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4.2.4  Sugeno’s fuzzy inference system design 

The designed fuzzy inference system for Sugenno’s method is described in this sub-

section. As continuity from the previous Fuzzy Logic controller design, there are no 

changes in input and output definition. As mentioned (Section 4.2.2), Sugenno’s fuzzy 

inference for output membership functions has a different approached.  Recall  that, 

Fuzzy  Logic  controller  has  five  output  labels,  “closed”,  “smallOpen”,  “midOpen”, 

“largeOpen”and “FullOpen”. In Mamdani’s fuzzy inference, those labels are 

represented by geometrical functions.  For  simplicity,  a  constant  value  is  used  for  

Sugeno’s  fuzzy  inference  instead  of mathematical equations. In this study, the 

designed parameter for Sugenno’s type fuzzy inference can be found in Table 4.4 

below. 

Table 4.4: Sugeno’s output MF: variable parameters and values. 

Name “valve”  

Range Min: 0; Max: 10  

No Name  Value 

1 fullClose  0 

2 littleOpen  2.5 

3 halfOpen  5.0 

4 largeOpen  7.5 

5 fullOpen  10 

 

Next step after membership design is constructing the fuzzy rule base. Since Mamdani’s 

inference has been designed earlier and the process is same, thus the relation for rule 

before can be used to complete the fuzzy inference design for Sugenno’s type. The rules 

are: 

Rule 1: If “error” is -veHigh AND “rate” is increase then “valve” is 0.0 

Rule 2: If “error” is zero AND “rate” is increase then “valve” is 5.0  

Rule 3: If “error” is +veHigh AND “rate” is increase then “valve” is 7.5 

Rule 4: If “error” is -veHigh AND “rate” is decrease then “valve” is 0.0 

Rule 5: If “error” is zero AND “rate” is decrease then “valve” is 5.0  

Rule 6: If “error” is +veHigh AND “rate” is decrease then “valve” is 10.0 

Rule 7: If “error” is -veHigh AND “rate” is noChange then “valve” is 0.0 

Rule 8: If “error” is zero AND “rate” is noChange then “valve” is 5.0 

Rule 9:   If “error” is +veHigh AND “rate” is noChange then “valve” is 10.0 
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4.3  Fuzzy Logic controller with ANFIS Model 

4.3.1  ANFIS model design consideration 

The motive to implement ANFIS in control system is to increase the quality of Fuzzy 

Logic controller. 

 

It can be achieved by using a hybrid technique between model identification and Fuzzy 

Logic controller. The inverse mathematical model and inverse ANFIS model is used. 

 

The interaction between these two techniques is auxiliary hybrid (as in Literature 

review chapter Section 2.3.4). In this hybrid, the primary technique (Fuzzy Logic 

controller) works to produce control-action by using sub-solution from secondary 

technique (inverse ANFIS model). The Fuzzy Logic controller is extended by adjusting 

the output membership function with sub-solution from inverse ANFIS model. Figure 

4.6 shows the close-loop block diagram where inversed hybrid model is supplying the 

suggested control action to the Fuzzy Logic controller. 

 
Figure 4.6: Proposed controller in feedback control of pH neutralization plant 
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4.3.2  Inverse ANFIS model design 

Fuzzy Logic with combination of ANFIS is an attractive technique to model pH 

neutralization. It is because it provides a multi-model framework for modelling 

nonlinear behaviour at different pH neutralization regions. 

 

This subsection is an extended step after ANFIS model identification as described at 

previous sub-section. The inverse ANFIS model is designed by using same input-output 

dataset as in model identification. However, input and output orientation in the dataset 

is inversed where the input is pH value and the output is control action. As a result, 

ANFIS produces an inverse behaviour of titration curve. 

 

ANFIS training procedure is carried out as usual in ANFIS model identification. The 

ANFIS architecture with three inputs and one output is desired to cover control action 

dynamics during process control. The inputs are pH values at two different delays and 

previous control action at time b is another input variable. While, the output of this 

inversed ANFIS model is a predicted control action in millivolt. 

 

Three input groups are chosen for ANFIS model which group no. 1 and 2 are for 

previous output value, y(t-1), y(t-2),y(t-3) and y(t-4) and input no 3 is for control valve 

input signal u(t-1), u(t-2), u(t-3) to u(t-6). After input is identified, 10 input candidates 

are trained and checked by comparing selected delays with input-output dataset for 

three iterations and best-fit RMSE for three inputs are known. Delay selection of inputs 

is based on lowest root mean square error (RMSE) within three input groups as shown 

in Figure 4.7. 
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Figure 4.7: Sequential input selection 

Selected inputs are y(t-1), y(t-3), u(t-1) with RMSE training = 0.2255 and RMSE 

checking = 0.2729. Inversed ANFIS model as shown in Figure 4.8 has five components 

consisting of three input variables, two membership functions in each variable, and 

eight unique possible combinations of fuzzy rules, consequent output equation, and 

output variable. 

 
Figure 4.8: inverse ANFIS model structure 
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4.3.3  Inverse hybrid model design 

The design used a combination of inversed model from first principle and ANFIS. 

Hybrid structure below is in a parallel configuration which is known as embedded 

hybrid as shown in Figure 4.9. The inversed ANFIS model is used to estimate control 

action for a pH value of real plant and inversed pH model is for calculation of control 

action of pH value as theoretical basis. ANFIS has capabilities to replicate the dynamics 

of inverse pH plant. By introducing mathematical model parallel to the ANFIS, the 

inversed model will be more robust in choosing different acid flow rate during 

offline/online process control investigation. Furthermore, additional variations like 

concentration of acid/base and reactor volume could be captured in the proposed 

controller.  

On the other hand, hybrid weight α is introduced for managing output contribution of 

each model. The range of 0 to 1 for α is used to determine which model contributes 

more to the hybrid model. A key success to this model depends on ANFIS prediction 

value and hybrid weight, α, parameter as described. 

 
Figure 4.9: Inversed hybrid model structure 
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4.3.4  Hybrid Fuzzy Logic Controller design 

Intelligent controller that is being proposed in this study composed of hybrid inversed 

model and Sugeno’s Fuzzy Logic controller as shown in Figure 4.10. Auxiliary hybrid 

is used to combine both techniques to produce a hybrid intelligent controller that has 

ability to adapt and react within allowable plant modification and disturbance. 

 
Figure 4.10: Proposed hybrid controller block diagram 

Sugeno’s Fuzzy Logic controller used in this study consists of one input and one output 

system. Input membership has three membership functions, which is a minimum 

membership function that can be used for feedback loop control strategy. 

 
Figure 4.11: FLC Input membership functions 
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Figure 4.11 shows the input MF (error) label and value used in Sugeno’s Fuzzy Logic 

controller while, output variable is a constant value and is labelled as “open”, “good” 

and “close” respectively. Open and close can easily be selected since it a boundary of 

control action. However, “good” condition depends on steady state of the process when 

error is zero. Hybrid inversed model is acted would give a prediction of “good” value at 

particular time within a specific control system conditions. 
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Chapter 5 : The pH neutralization 

experimental setup 

5.1  Control System Setup 

5.1.1  Pilot plant design consideration 

A good pilot plant design is important to achieve good control performance. In pH 

neutralization, to reduce time delay is important since this would create instability in 

model and control system. The time delay may be present at process time delay (tank 

size), delivery of reagent (acid and base), and measurement device (at pH electrode). 

These delays can be minimized if pilot plant is designed properly. 

 

Another importance issue is sensitivity of the final-element (control valve). This is 

because at neutralization region it needs a very small control action that require small 

amount of reagent to pass through control valve. The proper control valve selection 

during pilot plant design could give better quality of control performance. 

 

Next, the environmental issue regarding the pilot plant effluent. The effluent from this 

plant must be treated before it passes through to public drain.  
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5.1.2  pH neutralization pilot plant 

The neutralization pilot plant is located at Chemical Engineering Department, 

University of Malaya. Figure 5.1, show process, and instrument diagram which 

illustrate the experimental setup. 

 
Figure 5.1: Process and instrumentation diagram for pH neutralization 

It has 500-liter holdup capacity in mixing a rector and 200-liter initial feed supply for 

acid and base (Figure 5.2). 

 
Figure 5.2: Pilot plant for pH neutralization 
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The mixing tank design and layout is important as described in Figure 5.1. Our tank has 

two inlets flow and four outlets located in the tank. The mixing tank has a recycle 

stream which provides a well-mix solution. The outlets stream is mainly to the 

discharge the mixture in the tank. One located at the bottom of the tank for 

maintenances purpose while the rest located at the side of the reactor vertically. The 

height of holdup volume in the reactor is depending on the vertical outlet. The outlets 

diameter is much bigger than the inlet diameter so it can guaranty that the height is 

always constant at desired level. 

The experiment used 100-liter as a holdup volume. It is desired at this level since the 

recommendation to have a good mixing condition is when liquid depth is equal to tank 

diameter. The reason is to minimize the traveling distant for reagents from the inlet. The 

retention time for 100-liter is 7 min that is calculated from volume divided by the flow 

rate. In normal practice for liquid-liquid reaction without solid formation, the retention 

time (dead time) is from 5 to 20 minutes (McMillan & Cameron, 2005). 

The high-speed axial mixing propeller is used at 25 rads per minute (rpm). It is to 

reduce the dead time effect and enough to break the fluid inside the tank. So that the 

reagent goes to the bottom of the tank since the pH electrode is located at the bottom of 

the tank. The dead time td, is 0.32min gained from holdup volume divided by the 

summation of inlet flow rate and agitator pumping capacity as shown below. 

Table 5.1: Mixing tank details 

Parameter Value Unit 

Diameter 100 cm 

Height 500 cm 

Impeller speed 25 RPM 

Impeller diameter 9 cm 

Baffle 4  

Impeller 3 blades butterfly type  

Flow rate 9 - 14 Litre/min 
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At the tank, static mixer (Figure 5.3) is installed. The purpose of this mixer is to reduce 

dead time delay caused resident time distribution. In literature, the static mixture 

reduces 80% of resident time (McMillan & Cameron, 2005). 

 
Figure 5.3: Static mixture for acid and base before entering the reactor 

 

5.1.3  pH sensor 

The pH value is measured by pH electrode. The pH value is obtained when pH-sensitive 

glass having contact with the aqueous solution. Nerst equation is used to calculate the 

potential energy generated from the exchange of hydrogen ion (proton) between 

hydronium ions in aqueous solutions. 

 

The pH electrode used is from EUTECH instrument hardware. It is located at the 

bottom of the reactor tank. As in Figure 5.4, pH value is obtained inside the mixing 

solution, which reduced transportation lag. 

 
Figure 5.4: pH transmitter used in the pilot plant 
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The sensor location is important for pH neutralization control system. It should be 

located at most representative, reliable, and fastest measurement. In our experimental 

setup, it is located at close to the exit pipe line of the mixing reactor. In this case, the pH 

electrode can measure the pH value and the reagent has sufficient time to completely 

mix before discharge so that it will increase the controller and model performance. 

 

5.1.4 Control valve 

The range-ability for final element is most importance. It determines the controller 

performance since pH neutralization has non-sensitive and sensitive control action. In 

literature for normal strong acid and base, metering pump should in ratio 20:1 to 200:1 

for control action over flow rate (McMillan & Cameron, 2005). In addition, linear valve 

characteristic is preferred and using smart digital positioner is recommended. 

 
Figure 5.5: Control valves (acid and base) used in the pilot plant 

In the experiment, two units of control valve are used as in Figure 5.5. Both control 

valves used is pneumatic type, which require air to open and to close. The transducer is 

located near the control valve to convert the control action from millivolt to psig. 
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5.1.4  Control system 

The set point change is important. The pH response depends on the regions in titration 

curve. Local linear behaviour would be expected if the set point at the flat portion of the 

regions. However, the nonlinear controller must be used if the set point is located at two 

different regions due to sensitive and non-sensitive control action. 

 
Figure 5.6: Closed-loop structure for on-line study 

 

The tracking specifications depend on process plant requirement as in Table 5.2.  

 

Table 5.2: Control objectives for set-point tracking regions 

pH neutralization region Process variable Tracking range 

Acid pH 4.5 to 6.5 

Neutralization pH 6.5 to 7.5 

Base pH 7.5 to 10.5 

 

As in Table 5.2 above, pH neutralization control system, range between 6.5 and 7.5 is 

desired since neutralization point is within this range. 

 

The controller in feedback control system is to reduce error between plant and reference 

value. Figure 5.7 below shows a control system strategy used in this study. 
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Figure 5.7: Structure of closed-loop block diagram for on-line pH neutralization system 
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5.2  Experimental work procedures 

5.2.1  Open loop study 

The focus of this section is to describe the steps that being carried out in open loop 

experiment. The dynamic profile of neutralization can be obtained through these steps. 

The experiment starts with preparing the feed tank as in nominal operating condition 

(Refer Table 3.1). At this step, there are no flows for both input streams. It can be done 

by sending 0 milivolt to the control valves through control system user interface. On the 

other hand, the mixing reactor has to be maintained at 25 rpm agitation speed and 

recycle pump is switching on. The open loop study should begin with pH value of 3 

(same pH value as in HCL feed tank) and it end at pH of 11 (same pH value as in NaOH 

feed tank). 

 

Next, open the HCL stream line control valve about 10% opening. This valve will give 

the mixing reactor in acid condition. After sometime, gives step change input of 0 to 

100% opening to NaOH stream line control valve. This step will increase the pH value 

in mixing reactor. Observe and monitor the pH changes by plotting a real time signal by 

using software interface in computer. The open loop study finish when pH value in 

reactor saturated. 

This open loop procedure has to be repeated at different input step change according to 

objective of the investigation. The need to repeat this procedure is must if the data is 

used as a training dataset in modelling identification.  
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5.2.2  Closed loop study 

As discussed previously, closed loop study is a feedback control system. It has a 

complete control system block and it objective is to bring the present value to a desire 

set-point value. The objective can be achieved by design the controller appropriately 

according to the pH neutralization plant condition and control strategy used. 

The procedure in this section can be used for a several closed loop control system 

investigations which is carried out in this research. At preliminary step, the plant should 

be in a close loop mode and plant condition should be at nominal condition (refer Table 

3.1). This step can be checked by verifying the signal at the control panel with the 

computer interface. Firstly, bring the mixing reactor at saturation pH value by setting a 

set-point block at user interface. Next, the study performs a controller investigation like 

servo (set-point change) and regulatory (disturbance rejection) case study. 

For servo case, acid stream line control valve should be maintained as in Table 3.1. The 

reason is because, for a servo case, we need to see the effect of set-point change only 

and by maintaining the flow rate of acid, the deviation of disturbance is equal to zero. 

The servo case starts with several set-point changes as described earlier.  

For regulatory case, it start when pH value for the mixing reactor at saturation. The 

disturbance should be introduced at this state. In this study, the disturbance can be 

introduced by changing the acid flow rates differ from the nominal condition.  

This study ended by obtains the real-time profiles. 
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Chapter 6 : Result and Discussion 

6.1  Models validation 

6.1.1  Mathematical model 

The mathematical model derived gives “s-shape” curve, which is determined by 

logarithm function. In Figure 6.1, the designed mathematical model produced a 

characteristic of pH neutralization. It shows the model is nonlinear with several 

dynamic regions. At first region (pH < 6), slow response is observed while very fast 

response at second region (6<pH<8). At third region, slow response is detected and the 

pH is saturated at pH 9.6. 

 
Figure 6.1: Mathematical model profile of pH neutralization (RMSE = 0.7365) 

The profile draws a theoretical boundary along the titration curve (same dataset as in 

neuro-fuzzy model). Figure 6.1 shows that the mathematical model is able to give pH 

value with RMSE = 0.7365. The model using on-line data (signal from acid-base flow 

rate) is fed into the model equation. The deviation of theoretical profile with real 

experimental profile maybe cause of the assumption made in theory development. It 
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shows an offset but it enough to show the profile is in sigmoidal curve which is basic 

theory of strong acid and strong base neutralization. 

6.1.2  ANFIS model 

The on-line dataset was obtained by fixing the acid flow rate at (5.0 ± 0.1) litre/min and 

introducing a step change from (0 to 13.0±0.1) litre/min flow rate for the base in input 

flow rate. The signal was channelled to the fuzzy logic block, which contained the 

ANFIS configuration, and the pH profile was recorded. At nominal working condition, 

neuro-fuzzy model gives best prediction for on-line dataset with RMSE = 0.0833. It 

indicates that the model is capable to predict the pH value if same condition is used as 

in ANFIS training. Figure 6.2 shows that the neuro-fuzzy model is held at trained 

condition. 

 
Figure 6.2: Comparison Training Dataset with ANFIS prediction (RMSE = 0.0833) 

6.1.3  Hybrid model and comparative analysis 

By using both model output predictions, the hybrid model is implemented by taking the 

weight with an initial value of 0.6. This shows that the hybrid model has a 40% 

influence from neuro-fuzzy model and 60% from mathematical model and gives a 
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RMSE of 0.4446 (Figure 6.3). 

 
Figure 6.3: Dynamic model profiles of pH neutralization at nominal working condition 

 

However, the hybrid model with dynamic weight is the best model, which produced a 

RMSE of 0.1013 as in Figure 6.4. The weight is always changing depending on 

magnitude of models error. The on-line data signal was channelled to mathematical 

model equation and neuro-fuzzy model framework. The profile was observed and at 

normal working condition, neuro-fuzzy model is accurate compared to mathematical 

model. Thus, the dynamic weight value is always less than 50%, which showed that the 

hybrid model was influenced by the neuro-fuzzy model. 
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Figure 6.4: Nominal working condition profiles for Mathematical, ANFIS, and Hybrid 

model 
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6.2  Controller Tests 

The controllability is the most common criteria for analysis of controller performance. 

In continuous time application, controllability is known as the capability for a designed 

controller to reach a reference point from one point to another and hold the point when 

disturbance occur. Thus, it is necessary to conclude that designed controller is able to 

drive (Set point Tracking) and maintain (Disturbance rejection) process variable in 

control system at desired point. 

6.2.1  Set-point tracking: PID controller 

The result in Figure 6.5 shows that PID controller is able to track the pH value at pH 6 

and 7 but not at pH 8. Large overshoot occurred in the system before system reached 

steady state. Time response for pH to settle down from step change of 6 to 7 is around 

150 seconds. 

 
Figure 6.5: Set point tracking by using PID controller 
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In Figure 6.5 above, the control action value is stable at neutralization region (pH = 7) 

and acid region (pH = 6) but not at base region (pH = 8). At base region, controller is 

not stable since it varies from minimum to maximum. At this region process variable 

produces continuous oscillation with increment decay ratio. Acid flow rate is remaining 

constant with small magnitude of noise. According to Figure 6.5, the control action at 

steady state is 5 millivolt. 

6.2.2  Set-point tracking: Fuzzy Logic controller 

The controllability for set point tracking of controller is tested in pH neutralization 

range 6.5 to 7.5. Pilot plant is maintained at pH before applying a unit step 7.5, 6.5 and 

7.0 for reference value. As shown in Figure 6.6, Fuzzy Logic controller can track the 

step change of pH from 7 to 7.5. The medium overshoot occurs and decay ratio is 

reduced until process-variable (pH) reaches steady state. 

 
Figure 6.6: Set point tracking by using Fuzzy logic controller 
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The set point tracking study is continued at acid region (pH = 6.5). The result shows, at 

this region Fuzzy logic controller can perform well. The same performance has been 

recorded at neutralization region (pH = 7). It shows medium overshoot and reduced 

decay ratio. The time response for Fuzzy Logic controller is 150 seconds. The control 

action in Figure 6.6 above is populated at range 2 to 5 millivolt for steady state. 

6.2.3  Set-point tracking: Hybrid Fuzzy Logic controller 

In Figure 6.7, Hybrid Fuzzy Logic controller successfully in tracking the set point at 

several changes. The set point step is used at time 10
th

,190
th

,420
th

, and 700
th

 seconds. 

From pH profile, there are no overshoots in base and neutralization regions. The 

response time is 90 seconds for step change from 7.2 to 8, while there is a large 

response time at second step change. At 420
th

 seconds, a little overshoot is observed 

and time response is 90 seconds. 

 

Figure 6.7: Set point tracking by using Hybrid Fuzzy Logic controller 
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6.2.4  Disturbance rejection: PID controller 

In Figure 6.8, the disturbance occurs at time 1480 seconds following increment in step 

change for acid flow rate. The increment is from 5.7 to 8.3 litre/min. This disturbance 

produces a change in process-variable (pH). At this time pH value drops by 0.1. The 

PID controller gives the corrective action to compensate for the disturbance by 

increasing the flow rate of base from 2.8 to 4.6 litre/min. 

 
Figure 6.8: Disturbance rejection by using PID controller 

The corrective action is carried out but it fail to bring the pH at 7 until the acid flow rate 

returned at initial condition (5.7 litre/min). 
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6.2.5  Disturbance rejection: Fuzzy Logic controller 

In Figure 6.9, the disturbance has occurred at several time span. First, the disturbance at 

time 150
th

, 240
th

,300
th

, 360
th

, and 540
th

 seconds. The disturbance changes are in range 

of 1.5 to 6 litre/min. The process variable is maintained by Fuzzy Logic controller, 

which gives immediate corrective action. There is no change in the pH profile after 

disturbance is introduced. 

 
Figure 6.9: Disturbance rejection by using Fuzzy Logic controller 

In Figure 6.9, Fuzzy Logic generates more frequent control action to reject the 

disturbance. It gives the flow rate not stable and keeps changing from time to time. The 

control action produce flow rates in range of 1.5 to 5.8 litre/min while the flow rate of 

base at 0.5 to 3.8 litre/min. 
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6.2.6  Disturbance rejection: Hybrid Fuzzy Logic controller 

 

Figure 6.10 shows, disturbance occurred once at time 40
th

 second. The large step 

change disturbance from 5.7 to 11 litre/min is observed. The process-variable show 

decrease oscillation which lead the system to steady state. 

 
Figure 6.10: Disturbance rejection by using Hybrid Fuzzy Logic controller 

In Figure 6.10, the flow rate of base is in range 4.7 litre/min. The large response time is 

detected for Hybrid Fuzzy Logic controller to reject the disturbance affect. 
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6.2.7 Set-point tracking comparison 

 

The controllability for set point tracking of controller is tested in pH neutralization 

range 6.5 to 7. This range is identified as the most challenging in pH neutralization 

process. As shown in Figure 6.11, all controllers succeed to reach desired set point. PID 

controller has largest overshoot and fastest time response compared to others controller 

followed by Fuzzy Logic and Hybrid Fuzzy Logic controller. 

 
Figure 6.11: Set point tracking result of on-line pH neutralization 

Integral Square Error (ISE) is used to find the goodness of the controllers above. The 

lower the ISE number shows that controller is better compared to other controllers. 

Table 6.1 shows that Hybrid Fuzzy Logic Controller has lowest ISE number which 

mean it this controller produces less error at achieving the set point 7. 

Table 6.1: ISE comparison for set point analysis among the controllers 

Controller ISE 

PID Controller 195.365 

Fuzzy Logic Controller 157.652 

Hybrid Fuzzy Logic Controller 35.032 
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6.3  Controller performances on Robustness issues 

In Figure 6.12 below, the process-variable drops drastically after adding 1M HCl into 

the reacting tank at time 1710
th

 seconds. The pH value drops from steady state (pH = 7) 

to pH 6.3. The Hybrid Fuzzy Logic controller is able to give the corrective action to 

compensate for the sudden change in the reactor. 

 
Figure 6.12: Robustness study by using Hybrid Fuzzy Logic controller  

(Altered effect in mixing reactor by adding 5ml HCL 1M) 

 

In Figure 6.12, shows the increments of control action due to a sudden drop of reactor 

concentration. It goes back to 5 millivolt which a previous steady state control action. In 

Figure 6.13, the problem happens when the controlled stream became clogged. At the 

first attempt, the clog start at 10% and the Hybrid Fuzzy Logic controller give 

maximum control action to control valve but it fails to bring up the process-variable. It 

is because the amount of NaOH entering the mixing reactor is not enough to 
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compensate for the HCl composition in the tank. The second attempt is to open at 50% 

of the NaOH pipeline. At this time, the Hybrid Fuzzy Logic controller succeeds to bring 

the pH value up to the desired set point with little overshoots. However, there is a delay 

detected at initial corrective action at time 2465
th

 to 2472th seconds. It is due to the 

large amount of HCL composition that populated the mixing tank due to the previous 

attempt. 

 
Figure 6.13: Robustness study by using Hybrid Fuzzy Logic controller 

(Equipment failure at controlled stream) 
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Chapter 7 : Conclusion 

7.1  The research novelty 

The research novelties that this study proposed are: 

  

(1) Hybrid technique of physical and empirical model 

First, the proposed model of pH neutralization has been produced from first principle 

and Adaptive Neural Fuzzy Inference System (ANFIS). The mechanic behind this 

hybrid is in “Research Methodology” chapter. In general, this hybrid is a combination 

of two output-models, which predicts the pH value. The novelty is mainly to manage the 

individual output-model. The hybrid model has been validated with on-line pH 

neutralization experiment and has shown a good fit (at nominal or altered conditions). 

 

(2) The adjustment at output membership-function for Sugenno’s fuzzy inference by 

introducing inverse hybrid model in Fuzzy Logic controller. 

Second, this study proposed the improvement on robustness issues (in altered plant 

condition) in Fuzzy Logic controller. The study improved Sugenno’s fuzzy inference 

arrangement, which changed the output membership-function. The adjustment has been 

made by substituting the normal output (constant or linear-function) with inverse model 

prediction (model is from previous finding above). The details of the adjustment are 

described in the “Research Methodology” chapter. By performing this adjustment, the 

Fuzzy Logic controller is more robust when carrying out the on-line control for pH 

neutralization plant. The adjusted Fuzzy Logic controller performed well compared 

with conventional and Fuzzy Logic controller (with or without robustness variations). 
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7.2  Achievement of research objectives 

1.   The hybrid model has been obtained in this study. 

The hybrid model was applied to full-scale reaction of strong acid and strong base in a 

pH neutralization plant. Parallel type was the selected hybrid model structure. Online 

performance analysis was conducted and compared. A mathematical model pH system 

was compared with an ANFIS model pH system. A hybrid model was investigated 

through several hybrid weight values α. ANFIS model alone is an insufficient 

representation of pH dynamics if plant parameters is altered. Mathematical model alone 

cannot best predict real pH value. The hybrid model, which combines the advantages of 

the two models and meets the study objectives, is proposed. With dynamic weight 

algorithm, it gives the best fit and can be used effectively in online/offline studies of 

dynamic behaviour of plant pH neutralization system. 

 

2.   The Fuzzy Logic controller has been improved by inverse hybrid model. 

A novel Hybrid Fuzzy Logic controller is proposed as the best advanced controller for a 

nonlinear pH neutralization process control system. It is a blending between empirical 

method and mathematical algorithm and this mechanism improved Sugeno type Fuzzy 

Logic for robustness problem. The results have shown that it is more superior to the 

other controllers (PID and Fuzzy Logic controller) in handling set point tracking and 

disturbance rejection. The proposed controller has promising potential for other 

nonlinear control system applications like polymerization, fermentation and many more. 
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7.3  Future work 

The study can be extended for 

1. Model and controller stability analysis  

2. Apply proposed hybrid model and fuzzy logic controller to other nonlinear 

processes  

3. Improve the pilot plant design and instrument so that more advanced controllers 

could be investigated  

4. Implement the control system for real applications, for example, use real 

wastewater instead of using standard acid and base.  

5. Software interface since the control system is depended solely on 

MATLAB/Simulink.  
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Appendix A: Programming Code 

File  Name:  ANFISMethod.m 
 
%%  ANFIS  method  for  pH  model  identification 
 

%% Load traning 

Dataset run 

'PrepTrnDataset'  
 
trn_data = trndata(:,:); %from load 

'PrepChkDataSet.m' chk_data = trn_data;  

%% Select  proper  inputs  to  the  model  
 
run  'InputSelection' 
 
%% Generate training ANFIS 

Matrix %to prediction pH  
ss = 0.01; 

ss_dec_rate = 

0.5; 

ss_inc_rate = 

1.5; 
 
%Final  dataset  for  training  data 
 
trn_data = trndata(:, [input_index, 

size(trndata,2)]); chk_data = trndata(:, 

[input_index, size(trndata,2)]); 
 
% generate FIS matrix 

in_fismat = 

genfis1(trn_data); 
 
[trn_out_fismat  trn_error  step_size  chk_out_fismat  chk_error]  =  

... 
 

anfis(trn_data,  in_fismat,  [1  nan  ss  ss_dec_rate  

ss_inc_rate],  
... 

nan,  chk_data,  1); 
 
%%  Show  result 
 
outTrn_pH = evalfis(trndata(:,input_index), 

trn_out_fismat); index = 1:length(outTrn_pH); 
plot(index, trndata(:, size(trndata,2)), '-', index, 

outTrn_pH, '.');  
rmse  =  norm(outTrn_pH(index)-

trndata(index,size(trndata,2)))/... 
sqrt(length(index)); 

title(['Training Data (Solid Line) & ANFIS Prediction (Dots) 

with RMSE = '... 
 

num2str(rmse)]); 

xlabel('Time Index'); 
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ylabel(''); 
 
File  Name:  PrepTrnDataSet.m 
 

%% ANFIS method for pH model 

identification %PART I: 

TrnDataset  

%%   
load  TrnDataSet  

%% Check  Time  delay  
trndata_n = length(TrnDataSet); 

subplot(3,1,1);plot(TrnDataSet(1:trndata_n

,1)) 

subplot(3,1,2);plot(TrnDataSet(1:trndata_n

,2)) 

subplot(3,1,3);plot(TrnDataSet(1:trndata_n

,3)) 
 
%% 
 
%1  output  :  pH 
pH = 

TrnDataSet(:,3); 

output = pH;  
%10 inputs : Fa(k-a),Fa(k-b),Fa(k-c),Fa(k-d),Fa(k-

e), & % Fb(k-m),Fa(k-n),Fa(k-p),Fa(k-q),Fa(k-r) 
 
input1  =  [0;  ... 
 

TrnDataSet(1:trndata_n-1,1)]; 
input2  =  [0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 

0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;...  
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
TrnDataSet(1:trndata_n-40,1)]; 

input3  =  [0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
TrnDataSet(1:trndata_n-50,1)]; 

input4  =  [0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;...  
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
TrnDataSet(1:trndata_n-60,1)]; 

input5  =[0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
TrnDataSet(1:trndata_n-70,1)]; 

input6  =  [0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ...  
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
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0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
 
 

TrnDataSet(1:trndata_n-60,2)]; 
 
input7  =  [0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 

0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
TrnDataSet(1:trndata_n-70,2)]; 

input8  =  [0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ...  
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  TrnDataSet(1:trndata_n-73,2)]; 

input9  =  [0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;  ... 
0;  0;  TrnDataSet(1:trndata_n-82,2)];  

input10  =  [0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;  0;  0;  0;  0;  0;  0;  0;  0;  0;... 
0;0;TrnDataSet(1:trndata_n-102,2)]; 

 
input  =  [input1  input2  input3  input4  input5... 
 

input6  input7  input8  input9  input10]; 
 
trndata = [input 

output]; trndata(1:6, 

:) = []; 
 
input_name1 = 'Fa(k-1)'; 

input_name2 = 'Fa(k-

40)'; input_name3 = 

'Fa(k-50)'; input_name4 

= 'Fa(k-60)'; 

input_name5 = 'Fa(k-

70)'; input_name6 = 

'Fb(k-72)'; input_name7 

= 'Fb(k-73)'; 
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input_name8 = 'Fb(k-

74)'; input_name9 = 

'Fb(k-82)'; input_name10 

= 'Fb(k-102)'; 
 
File  Name:  InputSelection.m 
 
%%  To  use  ANFIS  we  need  to  select  the  input. 

% That is, to determine which variables should be the 

input to the model.  

% We  used  10  inputs  candidate;  and  the  output  is  pH(k)  
% Input  selection  is  selected  by  sequential  forward  

search  

% to  optimize  the  Root  Mean  Square  Error  (RMSE).  
 
%NOTE: we can use other method like Exhaustive search, GA, PSO, 

and % other optimization tools 

input_name  =  str2mat(input_name1,input_name2,input_name3,... 
 
input_name4,input_name5,input_name6,input_name7,... 
 

input_name8,input_name9,input_name10); 
 
[input_index, elapsed_time] = seqsrch(3, trn_data, 

chk_data, input_name);  
fprintf('\nElapsed time = %f\n', 

elapsed_time); winH1 = gcf; 
 
%  Group  the  selected  input  
group1  =  [1  2  3 4]; %  y(k-a),  y(k-b),  y(k-c),  y(k-d) 
group2  =  [1 2  3 4]; %  y(k-m),  y(k-n),  y(k-p),  y(k-q) 

group3  =  [5 6  7 8  9 10]; %  u(k-1)  through  y(k-6) 
 
anfis_n = 6*length(group3); 

index = zeros(anfis_n, 3); 

trn_error = zeros(anfis_n, 

1); chk_error = 

zeros(anfis_n, 1); 
 

% ======= Training 

options mf_n = 

3;  
 
mf_type = 

'gbellmf';% 

epoch_n = 1;   
ss = 0.1; 

ss_dec_rate = 

0.5; 

ss_inc_rate = 

1.5;  
 

% ====== Train ANFIS with different input variables 

fprintf('\nTrain %d ANFIS models, each with 3 inputs 

selected from 10 candidates...\n\n',...   
anfis

_n); 

model = 

1;  
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for  i=1:length(group1), 
for 

j=i+1:length(group2

), for 

k=1:length(group3),  
in1 = deblank(input_name(group1(i), 

:)); in2 = 

deblank(input_name(group2(j), :)); 

in3 = deblank(input_name(group3(k), 

:)); 

 
index(model, :) = [group1(i) group2(j) group3(k)]; 

trn_data = trndata(:, [group1(i) group2(j) group3(k) 

...  
size(trndata,2)]); 

chk_data  =  trndata(:,  [group1(i)  group2(j)  group3(k)  

...  
size(trndata,2)]);  

in_fismat = genfis1(trn_data, mf_n, mf_type); 

[trn_out_fismat t_err step_size chk_out_fismat c_err] 

=  
... 

anfis(trn_data,  in_fismat,  ... 
[epoch_n  nan  ss  ss_dec_rate  ss_inc_rate],  

... 
[0 0 0 0], chk_data, 

1); trn_error(model) = 

min(t_err); 

chk_error(model) = 

min(c_err); 
fprintf('ANFIS  model  =  %d:  %s  %s  %s',  model,  in1,  

in2,  
in3); 

fprintf(' --> trn=%.4f,', 

trn_error(model)); fprintf(' chk=%.4f', 

chk_error(model)); fprintf('\n');  
model  =  model+1; 

end 
end 

end 
 

% ====== Reordering according to 

training error [a b] = 

sort(trn_error);  

b = flipud(b); % List according to decreasing trn error 

trn_error = trn_error(b);  

chk_error = 

chk_error(b); index = 

index(b, :);  
 
% ======  Display  training  and  checking  errors  
 
x = 

(1:anfis_n)'; 

subplot(2,1,1

);  
plot(x,  trn_error,  '-',  x,  chk_error,  '-',  ... 

x, trn_error, 'o', x, chk_error, 
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'*'); tmp = x(:, ones(1, 3))'; 
X  =  tmp(:); 
tmp = [zeros(anfis_n, 1) max(trn_error, chk_error) 

nan*ones(anfis_n, 1)]';  
Y = tmp(:); 

hold on; 

plot(X, Y, 

'g'); hold 

off; 
 
axis([1 anfis_n -inf 

inf]); set(gca, 

'xticklabel', []); 
 
% ====== Add text of input 

variables for k = 1:anfis_n, 

text(x(k),  0,  ... 
[input_name(index(k,1),  :)  '  '  ... 

input_name(index(k,2),  :)  '  '  ... 
input_name(index(k,3),  :)]);  

end 
h  =  findobj(gcf,  'type',  'text'); 
set(h,  'rot',  90,  'fontsize',  11,  'hori',  'right'); 
 
 
drawnow 
 
% ====== Generate 

input_index [a b] = 

min(trn_error); 

input_index = index(b,:); 

title('Training (Circles) and Checking (Asterisks) 

Errors'); ylabel('RMSE'); 
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Appendix B: MATLAB/Simulink  

1. Pilot Plant Data Acquisition Block Diagram 

 

 

2. Collecting Online Dataset  

sizeFb = size(Fb.signals.values(:,:,:),3); 

for i = 1:sizeFb 

time(i) = i;   

CVa(i) = Cv_acid.signals.values(i);      

CVb(i) = Cv_base.signals.values(i);  

FaData(i) = Fa.signals.values(:,:,i); 

FbData(i) = Fb.signals.values(:,:,i);           

pHData(i) = pH1.signals.values(:,:,i); 

end 

 

Dataset = horzcat(FaData',FbData',pHData'); 
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