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ABSTRACT 

 This project is about VLSI floorplanning optimization. Floorplanning 

optimization is used to minimize the deadspace of the floorplan. This is to reduce cost 

for die fabrication, minimize resistance in the circuit and also reduce heat produced. 

Hence, VLSI floorplanning is important in IC design. Floorplanning optimization 

consists of representation and optimization algorithm. In present work, Dot Model 

(DM) and Corner Bottom Left List (CBLL) were developed as floorplan representation. 

These two models are based on topological placement method. DM is optimized using 

genetic algorithm (GA). GA is a widely used optimization algorithm based on the 

concept of survival of the fittest. This means that a population with random generated 

sequence will be generated and the fitness of the population will be evaluated. The best 

quantile of the population will be maintained and genetic operations will be performed 

on these chromosomes. The selected best quantile population will be brought to the next 

generation. GA is able use the representation for DM by modifying the chromosomes to 

match the tuples for DM for optimization. Two methods of optimization are used for 

CBLL. They are Cross Entropy and also Genetic Algorithm. CE is a new algorithm that 

was recently developed using probability. This method consists of 2 phases which are 

the random data generation and then update of the probabilities based on the 

performance of the data generated. This method is used to reduce the stochastic of data 

generation as the second iteration will have influence of the first iteration data. The 

generation of strings are based on three dimensional matrices to obtain the probability 

between each block to another block.  These algorithms are tested on MCNC 

benchmarks which are apte, xerox, hp, ami33 and ami49. DM-GA gives fair results of 

deadspace for the benchmarks tested. However, DM uses a long runtime to decode the 

floorplan. CBLL- GA has shorter optimization runtime compared to DM-GA because 

CBLL can decode the string much faster.  Both methods give almost similar deadspace 
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area.  CBLL-CE gives the least deadspace area. CE is able to calculate and give the 

relationship of the local deadspace area during placement and determine the best 

combination between the adjacent blocks. However, CE requires longer run time 

compared to GA because the parameters of the random mechanism need to be updated 

in each iteration. 
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ABSTRAK 

Projek ini adalah mengenai pengoptimuman pelan lantai VLSI. Pengoptimuman pelan 

lantai VLSI adalah untuk meminimumkan ruang kosong kawasan pelan lantai VLSI. Ini 

adalah untuk menurunkan kos untuk memfabrikkan die, mengurangkan kerintangan 

dalam litar dan juga mengurangkan penghasilan haba. Ini menunjukkan kepentingan 

dalam mengoptimumkan pelan lantai VLSI. Pengoptimuman pelan lantai VLSI 

terbahagi kepada dua bahagian iaitu perwakilan modal dan juga pengoptimuman. Dalam 

kajian ini, Modal Bintik (Dot Model – DM) dan Senarai Bahagian Bawah Kiri(Corner 

Bottom Left List – CBLL) digunakan untuk perwakilan modal. Kedua-dua kaedah ini 

mengunakan kaedah perletakkan topologi. Kaedah pengoptimuman yang digunakan 

bersama DM adalah Algorithma Genetik (Genetic Algorithm – GA). GA digunakan 

secara meluas sebagai kaedah optimum dengan mengunakan populasi kromosom dan 

mengunakan konsep penyesuaian hidup yang terbaik. Satu populasi akan dijanakan 

secara rawak. Kemampuan setiap gen dalam populasi tersebut akan dinilaikan. Selepas 

itu, 20% yang terbaik akan disimpan di dalam populasi tersebut dan yang selainnya 

akan diabaikan. Selepas itu, operasi mutasi dan penyilangan akan dibuat kepada 

populasi tersebut. Sekiranya anak gen adalah lebih lemah daripada ibu gen, gen tersebut 

akan dibuang. Kromosom GA diubahsuai mengikut perwakilan DM agar optimasi dapat 

dibuat. Dua kaeadah optimasi digunakan untuk CBLL iaitu GA dan entropi persilangan 

(Cross Entropy – CE). CE merupakan algoritma yang baru dihasilkan mengunakan 

kaedah kebarangkalian. Kaedah ini terdiri daripada dua fasa iaitu penjanaan data secara 

rawak dan kemaskini kebarangkalian berdasarkan prestasi data yang dijanakan. 

Kemaskini kebarangkalian adalah untuk mengurangkan data dan data dalam iterasi 

pertama akan mempengaruhi data iterasi kedua. Penjanaan data dibuat menggunakan 

matriks tiga dimensi untuk memperolehi perkaitan antara modal-modal. Semua 

algoritma ini diuji dengan tanda MCNC iaitu apte, xerox, hp, ami33 dan ami49. DM 



v 

 

dan GA memberi keputusan ruang kosong yang serdahana baik. Akan tetapi, DM 

mengunakan masa yang lebih panjang untuk dinyakod berbanding dengan CBLL. Oleh 

itu, CBLL dan GA mengambil masa yang lebih pendek berbanding dengan DM dan 

GA. Kedua-dua kaedah ini memperolehi ruang mati yang lebih kurang sama. CBLL dan 

CE memberi ruang mati yang lebih kurang kerana kaedah CE adalah sepadan dengan 

CBLL. Ini bermakna kebarangkalian dalam CE adalah sama dengan ruang mati antara 

modal-modal. Akan tetapi, CE mengambil masa yang lebih panjang dibandingkan 

dengan GA kerana memerlukan lebih penjanaan rawak solusi pembolehubah iaitu 10n
2
 

di mana n mewakili bilangan modal. 
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CHAPTER 1.  INTRODUCTION 

1.1 VLSI Design 

Since 1960’s, ICs were simple and consist of a few gates of flip-flop. Some of the 

ICs only perform logic function and use a single transistor with a resistor. Today’s ICs 

expanded from a few transistors in a single chip to over more than 20 million transistors 

in a single chip and can run at the speed of GHz frequency. Besides that, MEM chips 

are also built to use for millions of electrical and mechanical devices. These chips bring 

a new era where exotic applications become reality such as tele-presence, augmented 

reality and implantable and wearable computer possible. This also gives a cost effective 

communication system to the whole wide world. (Sherwani, Naveed A., 2002) 

 Initially, the task of laying the gates and interconnects were done manually by 

drawing on graph papers and using layout editors. As the semiconductor fabrication 

processes improved, the number of transistors in a single chip increases and hence 

automation is needed to solve this addressing problem of increasing in transistor scales. 

Improvement in the computer speed enable to facilitate automation and it can be used 

for the next generation of computer chips to replace the current ones. (Alpert, 

Mehta, & Sapatnekar, 2009) 

 Initially, interconnect delays were not a factor and hence physical design is a 

simple process. The designer can place the blocks by floorplanning and then followed 

by placement to handle the rest of the logic. If the timing constraint of the design is met 

before placement, the timing constraints also will be met after placement. The increase 

in number of transistors causes more complications for designers as floorplanning 

becomes more complicated. Hence, algorithms and innovations are needed to aid in 

automated floorplanning. Floorplanning enables the designers to plan the input and 

outputs of the chip and also the global interconnect which is restricted to a given area 
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with the number of blocks in the circuit. This process needs to be done in a short time 

frame to determine the area for the chip that needs to be implemented physically. The 

process of determining the floorplan is important and hence automation for 

floorplanning optimization is introduced. (Alpert, Mehta, & Sapatnekar, 2009) 

 VLSI Physical Design Automation involves researching, developing and also 

producing algorithms and data structures to aid the physical design process. The main 

objective of this field is to arrange the devices in the circuit at an optimal arrangement 

on a plane. This is to achieve optimal interconnections between devices and obtain the 

best performance and the best functionality. Space on wafer is expensive, hence 

algorithm is to be developed to minimize space to reduce cost and to increase yield.  

 The arrangement of devices is important when determining the chip 

performance. Hence, algorithms for physical layout need to abide the rules required by 

the fabrication process. Fabrication rules are important to tolerate fabrication process. 

Algorithm must be efficient and able to handle very large designs. The efficiency of 

algorithm allows designers to save time and also enable designers to make iterative 

improvements to the layouts. The VLSI physical design process uses simple geometric 

objects to represent chips such as rectangle blocks. The physical design algorithm is 

similar to graph algorithms and hence combinational optimization algorithms can be 

used. Therefore, physical design automation can be studied from graph theory and also 

combinational algorithms that manipulate the geometric objects whether in two or three 

dimensions. However, geometric point of view will ignore the electrical aspect and 

design rules for physical design problems. Then, constraints must be implemented to 

suit the physical design problems. 

 Polygons and lines have inter-related electrical properties in VLSI circuit. This 

shows the complicated behaviour of VLSI design which also need to depend on various 
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variables which are required for IC design. It is necessary to keep both electrical aspects 

in taking geometric objects during the development of algorithms for VLSI physical 

design automation. (Sherwani, Naveed A., 2002)  

1.2 Physical Design Cycle 

Input for physical design cycle is a circuit diagram and the output is the layout of 

a circuit. This cycle consists of a few stages which are partitioning, floorplanning, 

placement, routing and compaction. Figure 1.3 shows the stages of a physical design 

cycle followed by the explanations. Below are the explanations on the physical design 

cycle. 

1.2.1 Partitioning 

Usually chips have many transistors. Because of the limitations in memory and 

computational power, it is difficult to plan the layout of the entire chip. Hence, chip is 

partitioned into sub-circuits. These sub-partitions are known as blocks. Partitioning 

process considers many factors such as the blocks size, the number of blocks and the 

number of interconnects between the blocks. Partitioning gives a set of blocks and 

interconnects between the blocks. Figure 1.1 (a) shows a circuit which has been 

partitioned into three blocks. Usually in large circuits, the process of partitioning is 

hierarchical and the topmost level of a chip may have 5 to 25 blocks. 

1.2.2 Floorplanning and Placement 

In this step, good layout is selected for each block as well as the entire chip. The block 

area can be estimated after partitioning. Besides that, interconnect area within the block 

must also be taken into account. Rectangular shape that is determined by aspect ratio 

may vary within a pre-specified range.  Generally, blocks usually have rectilinear 

shapes. Floorplanning is important to set up the ground work for a good layout. This 

step is computationally difficult and usually is done by design engineer rather than a 
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CAD tool. Usually human is better in observing the entire floorplan and analyse the 

information than a CAD tool. Sometimes manual floorplanning is needed for major 

component of an IC as the chip needs to be placed according to the signal flow of the 

chip. Moreover, some components need to be located at a specific location on the chip. 

Placement is when blocks are positioned on the chip. The aim of placement is to obtain 

the minimum area of the arrangement of blocks and also the complete interconnects 

between the blocks and meeting the constraints of the performance. Placement should 

be routable and meet their timing goals. There are two phases in placement which create 

initial placements and evaluate them and execute iterative improvements to obtain the 

minimum area and best performance according to the design specifications. Figure 1.1 

(b) shows the placement of three blocks. Some spaces were left intentionally for 

interconnect between the blocks. The placement quality is analysed only after routing. 

Some placement may give unroutable design. Hence, another iteration of placement is 

needed. An estimation of a routing space is needed to limit the number of placement 

iterations. A good placement algorithm is important to obtain good routing and circuit 

performance. Little can be done to routing and the circuit performance once the position 

of the blocks is fixed. 

1.2.3 Routing 

Routing is to do interconnect between blocks according to netlist. Firstly, the spaces 

which are not occupied by blocks are partitioned into rectangular regions which are 

called channels and switchboxes. The spaces between blocks and on top of the blocks 

are also included. The objective of routing is to connect all the blocks in the shortest 

wire length and only uses channels and switch boxes. There are two phases which are 

Global Routing and Detailed Routing. Global routing connects between proper blocks 

of the circuit disregarding the exact geometric details of each wire and pin. Global 

router will find a list of channels and switchboxes for every wire and uses it as a 



5 

 

passageway for the wire. Global routing specifies the routing spaces when a wire is 

routed. After global routing, detailed routing is done to complete the point-to-point 

connections between pins on the blocks. Global routing will be converted into exact 

routing according to the geometric information such as the location and space of wires 

and their layer of assignments. Detailed routing involves channel routing and also 

switches routing. Routing problems are computationally difficult. Hence, many 

researches have been done to solve routing problems which used heuristic algorithms. 

Several benchmarks have been standardized to evaluate the experiments using the 

algorithms. Sometimes, complete routing cannot be guaranteed. Hence, rip-up and re-

route were sometimes used to remove some connections and reroutes them in a different 

order. Figure 1.1(c) shows the routing phase of all the interconnections between three 

blocks that have been implemented.  

1.2.4 Compaction 

Compaction is the task of compressing the layout in all directions to reduce the total 

area. Making the chip smaller will reduce wire lengths and reduce delay in signal 

between the circuits. Besides that, smaller area can produce more chips in a wafer and 

reduce manufacturing cost. However, computing compaction uses a lot of time and 

hence is only used for large volume applications such as microprocessors. It is 

important to ensure that compaction does not violate any design or fabrication rules. 

Figure 1.1 (d) shows a compacted layout.  

1.2.5 Extraction and Verifiation 

It is important to have Design Rule Checking (DRC) to verify that all the geometric 

patterns follow the design rules for fabrication process. One of the rules that needed to 

be followed is the wire separation rule. Fabrication process requires a minimum specific 

separation between two adjacent wires. Hence, DRC needs to check that all the wires in 

the chip follow this rule. There are many other design rules and some of the rules are 
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difficult to check. After complete checking the design rules, the functionality of the 

layout needs to be verified by Circuit Extraction. This generates the circuit 

representation from the layout and is a reverse engineering process. The generated 

circuit is compared with the circuit description to check its correctness. This is known 

as Layout Versus Schematics (LVS) verification. The geometric information is 

extracted to compute Resistance and Capacitance. Hence, calculation for timing of each 

component and interconnect can be obtained and is known as Performance Verification. 

The information extracted is used to check the reliability aspects of the layout which is 

known as Reliability Verification. This is to ensure that the layout will not fail because 

of electro-migration, self-heat and other effects. 

Same as VLSI design, physical design is also iterative and needs many steps and 

repeat many times to obtain better layout. Besides this, the quality of the solution is 

obtained from earlier steps. Early step such as placement will affect the routing. Hence, 

partitioning, floorplanning and placement are important to determine the chip area and 

performance compared to routing and compaction. This is because placements may give 

layout that cannot be routed. Hence, the chip needs to be repartitioned before routing 

again. Design cycle needs to be repeated several times in order to achieve design 

objectives.  

The complexity of the design cycle depends heavily on the design constraints and 

also the design style used. This thesis is focused on floorplanning optimization where 

heuristic methods for floorplanning optimization will be analysed in order achieve the 

minimum floorplan area for physical design. (Sherwani, Naveed A., 2002) 
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1.3 Automation in Floorplanning Optimization 

Block arrangement is done in two phases which are floorplanning phase and the 

placement phase. Floorplanning is planning and sizing the blocks and interconnect 

whereas placement assigns a specific location of the blocks. For placement phase, it is 

important that the blocks are positioned on the surface of the layout so that no two 

blocks overlapping one another and there must be enough space for the interconnection. 

The blocks must be arranged so that the minimal total area of the layout is obtained.    

The input for floorplanning phase is the set of blocks, area of each block, the 

shapes of blocks and the number of terminals for each block and the netlist. If the 

dimensions of the blocks are known, they are called fixed blocks and if the dimensions 

are not fixed, they are called flexible blocks. Floorplanning is usually generalized as the 

placement problem as the floorplanning involves flexible blocks whereas placement 

involves only fixed blocks. 

There are a few factors needed to be considered during placements which are the 

shape of the blocks, the wire routing, the performance of the circuit for that 

floorplanning and placement, the packaging considerations and also the pre-placed 

blocks. (Sherwani, Naveed A., 2002) 

Algorithms for VLSI floorplanning optimization are usually divided into 2 

sections, the representation of the model and also the algorithm for optimization. There 

are various types of representations which can be used to represent floorplanning such 

as the floorplan tree and also the graph representations of floorplans. There are various 

algorithms such as the constructive method, iterative method and knowledge based 

method that can be used in order to optimize the floorplan through the use of the 

floorplanning representations. (Sait & Youssef, 1999) 
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1.4 Objectives and Goals 

The main objective of this research is on floorplan optimization. This research 

consists of floorplanning optimization using computational methods which consist of 

heuristic optimization algorithms and modelling floorplan representations. The 

objectives of this research are: 

1) To analyse the type of methods that can be used to represent the floorplan. 

2) To analyse the type of optimization method that can be used such as simulated 

annealing, genetic algorithm etc. 

3) To introduce a representation for the floorplan to aid optimization. 

4) To introduce a new algorithm that can be used to optimize the floorplan. 

5) To obtain the minimum area of a given floorplan 

1.5 Research Outline 

The outlines of this research consist of the following: 

1) Obtain the different types of benchmarks that were used in previous research 

such as APTE, HP, AMI33 and AMI49. 

2) Analyse methods of representing the floorplan such as sequence pair, graph 

theory and tree representation. 

3) Analyse the different heuristic methods that are used to optimize the floorplan 

such as simulated annealing, genetic algorithm and particle swarm optimization. 

4) Modelling the floorplan using sequence pair, corner sequence and also left 

bottom corner. 

5) Optimizing the floorplan using genetic algorithm and cross entropy method by 

referring to the model of the floorplan. 
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1.6 Importance of Research 

Optimal automated floorplanning optimization is important to improve the layout 

in a floorplan so that the chips will be at their best performances and also reduces the 

costs of manufacturing and man power. This is because less design engineers will be 

needed as automated algorithm is able to aid IC design. 

1.7 Organization of Thesis 

This thesis is divided into six main chapters. The first chapter gives a brief 

introduction on VLSI design and also the importance of automation for VLSI design. 

The second chapter discusses on floorplanning in a more detailed way and also reviews 

about previous work done in order to solve the floorplanning optimization problem. The 

third chapter of this thesis discusses on the approaches taken for this project which are 

Genetic Algorithm (GA), Cross Entropy Method (CE), Dot Model (DM) and Corner 

Bottom Left List (CBLL). The fourth chapter discusses on the results obtained in this 

work compared with results obtained by previous researches.  The fifth chapter are the 

results and discussions of this research work. The final chapter concludes about this 

project and also the future work that can be carried out in order to improve this project.  
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CHAPTER 2.  LITERATURE REVIEW 

2.1  Concepts of Floorplanning and Approaches to Problem 

Floorplanning is important in VLSI physical design automation. Floorplanning 

arranges a set of rectangular modules of different sizes and find the placement of these 

modules in a way where no module overlaps each other and is arranged in a minimum 

area and minimum wire length. The abstract formulation involves rectangular blocks 

with arbitrary dimensions. 

The main objective of floorplanning is to obtain the minimum space of layout in 

order to save cost and also helps to reduce wire routing and reduce circuit resistance. 

Reduction in resistance will lead to less heat generated. This can further improve the 

performance of the VLSI chip. In order to optimize floorplanning, coding the floorplan 

is important to use optimization algorithm. There are several floorplanning methods 

which were used as follows: 

1) Constraint based methods 

2) Integer programming based methods 

3) Rectangular dualization based methods 

4) Hierarchical tree based methods 

5) Simulated Evolution algorithms 

6) Timing Driven Floorplanning Algorithms 

Besides the methods mentioned above, there are many other methods either 

simple or more complicated which can be used for floorplan optimization. In this 

project, a stochastic method is used for optimization. (Sherwani, Naveed A., 2002) To 

optimize a floorplan, it is essential to have a good representation code. This is important 

so that the optimization algorithm can use the string based representation in order to 
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obtain optimum arrangement of the layout. This shows that floorplanning consists of 2 

main sections which are floorplan modelling and floorplan optimization. 

 In the recent years, many researches have been carried out and developed for 

floorplanning optimization. There are various floorplan representations that have been 

developed which are non-topological, room-based and also block-based. Generally, 

floorplan can be catagorized into two main types which are the slicing and non-slicing 

floorplan. In this chapter, previous methods of floorplanning representations and 

optimization methods will be discussed. 

2.2 Floorplanning Representation 

In this section, the various types of floorplan representations will be discussed in 

detail. Slicing floorplan representations are represented by Polish expression and slicing 

tree. Non-slicing floorplan representations are corner block list (CBL), Sequence Pair 

(SP), Bounded Slice-line Grid (BSG), O-tree, B*-tree, Transitive Closure Graph (TCG), 

Transitive Closure Graph with a Sequence (TCG-S) and Adjacent Constraint Graph 

(ACG).  

2.2.1 Slicing Floorplans 

Slicing floorplan can be partitioned into at least 2 different blocks. Slicing 

floorplans are hierarchical floorplans of order 5. A floorplan is hierarchical of order 5 

only if it can be recursively subdivided into rectangle either   two parts by a horizontal 

or into 4 parts by a wheel.  
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2.2.1.1 Slicing Tree 

A slicing tree is a binary tree that has n leaves and n-1 nodes, where each of the 

nodes represents a vertical or horizontal cut line and each of the leaves represents a 

block. Slicing tree is also known as slicing floorplan tree. Figure 2.1 shows the slicing 

floorplan and Figure 2.2 shows the tree representation for the slicing floorplan of Figure 

2.1. In the slicing tree, the internal nodes are labelled with either V or H which means 

vertical or horizontal cut. Every leaf is labelled by the module number. A slicing tree is 

skewed if only it has no node and the right child has the same label. Figure 2.2a shows a 

skewed slicing tree and Figure 2.2b shows non-skewed slicing tree. Slicing floorplan 

can be represented by more than one slicing trees. The order of horizontal and vertical 

cuts makes up the slicing tree. Skewed slicing tree is unique for a slicing floorplan. 

 

 

 

 

Figure 2.1 Slicing Floor plan 

          
   (a)     (b) 

Figure 2.2 Slicing tree  
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Slicing tree is a top-down description of the type of cut which is horizontal or 

vertical of a slicing floorplan. Slicing tree does not give dimensional information. 

Hence, a slicing tree may represent more than a slicing floorplan. General slicing 

floorplan is known as hierarchical floorplan of order 5. An order 5 floorplan can be 

recursively subdividing 2 parts by a horizontal or vertical segment or into 4 parts by a 

wheel. Hence, Figure 2.1 is known as hierarchy of order 5. (Sait & Youssef, 1999) 

According to (Lai & Wong, 2001), slicing tree can be an effective tool for VLSI 

floorplan design where it can take full advantage of shape and orientation flexibility of 

circuit modules to find highly compact slicing floorplan. They mentioned that using 

slicing tree representation and compaction, all maximally compact placements of 

modules can be generated and it becomes a complete floorplan representation for all 

non-slicing floorplans. 

2.2.1.2 Normalized Polish Expression 

Normalized Polish Expression uses rectangle dissection where a rectangle is 

subdivided by horizontal and vertical line segments into more than one non-overlapping 

rectangle. This can be represented in slicing tree. The normalized Polish expression of 

length 2n-1 has a 1-1 corresponding with the slicing trees with n leaves. A polish 

expression also is a top down description. The symbols for H (horizontal) and V 

(vertical) are the operands for the slicing structures. Hence, if A and B are slicing 

structures, it can be represented with and “arithmetic expression” with AHB or AVB 

which are the representation for Polish expression. Figure 2.3 shows the slicing 

structure, binary tree and the arithemetic expression of a floorplan.  

A skewed slicing tree is a slicing tree where no node and its right child has the 

same label. A Polish expression a1,a2,…a2n-1 is normalized if and only if there is no 

consecutive H or V in the sequence. Polish expression corresponds to the slicing 
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structure and also slicing tree. This causes a slicing structure can be represented by 

more than two Polish expressions.  

 

 

 

 

  

 ((4H(5V6))V7)H(1V(2V3)) - “Arithmetic Expression” 

Figure 2.3 Slicing structure, binary tree and the arithemetic expression of a floorplan 

 

Normalized polish expression has three properties which are  

1. each block appears only once in a string 

2. the balloting  sequence property 

3. no two consecutive operators are the same in a string 

These properties of normalized polish expression will give a unique slicing 

floorplan for a normalized polish expression. Normalized polish expression enables us 

to perturb the slicing floorplan solution in order to obtain a new neighboring solution. 

Polish expression can be evaluated with a O(n log n) bottom-up traversal with the 

corresponding slicing tree. Hence, both area and wirelength of the floorplan can be 

obtained. This is important for evaluation to reduce optimization time. (Wong & Liu, 

1986) 

For VLSI floorplanning, some placement constraints are specified in packing. One 

type of placement constraint is to pack some modules on one of the four sides: on the 

5 6 

4 
7 

1 2 3 
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left, on the right, at the bottom, or at the top of the final floorplan. These are called 

boundary constraints. Young, Wong, & Yang, 1999 enhanced a well-known slicing 

floorplan algorithm which is the Polish expression that represents the intermediate 

solutions in the simulated annealing process, so that constraints can be checked and 

fixed efficiently. (Young, Wong, & Yang, 1999) 

Another paper (Lin, Chen, & Wang, 2002)  proposed generalization of Polish 

expression where the representation can efficiently reuse some area that cannot be 

utilized if only have vertical and horizontal operators defined in Polish expression and 

hence Polish expression can represent non-slicing floorplans. 

This paper (Chen, Lin, & Wang, 2003) addresses the problem of VLSI 

floorplanning with boundary constraints consideration. They use generalized Polish 

Expression which uses both Polish Expression and also the boundary constraints for 

non-slicing floorplan. Besides that, a fixing heuristic based on modular similarity is 

presented to effectively fit the generated infeasible floorplans during the process. 

Hence, this new Polish Expression is modified from Polish Expression so that non-

slicing floorplan can be represented. 

2.2.2 Non-slicing floorplans 

Non-slicing floorplan are floorplans that cannot be divided by horizontal or 

vertical cuts. Hence, the smallest nonslicing floorplan is a wheel. Non-slicing floorplans 

can give more optimum area as it does not need to be arranged in a way that it needs to 

be divided into smaller rectangular. Below are the non-slicing floorplans and their 

description. 
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2.2.2.1 Corner Block List 

Corner block list is a topological representation for non-slicing floorplan. Corner 

block list takes linear time to construct the floorplan. It defines the floorplan 

independent of the block sizes and is able to optimize various size configurations of 

block. Corner block list time complexity to convert into floorplan is O(n). Corner block 

list takes n(3+[lg n]) bits to describe where [lg n] denotes the minimum integral number 

which is not less than lg n.  Besides that, corner block list represents the floorplan 

independent of the block sizes and hence this can optimize blocks with different widths 

and heights.  

Corner block list is constructed based on the recursive corner block deletion. 

Every block deletion is kept according to the block name, corner block orientation and 

number of T-junctions uncovered. Upon completion of the deletion iterations, the data 

of these three items are concatenated in a reverse order. The sequence of the block 

names S, the list of orientations  L and the list of T-junction  T information is then 

obtained. At the nth deletion, only one block is left in the floorplan. Hence, the 

orientation and the number of T-junction can be ignored and were not included in the 

lists of L and T.   

A constraint graph for a floorplan is represented as G = (V, E), where the nodes 

in V are segments which slice the space and form rooms for the floorplan with nodes 

used for the placement boundaries and E are the edges of the room of placement blocks. 

There are two types of edges where one direction is from left node to right node and 

another direction is from bottom to top node. Source node of an edge is the outgoing 

edge and destination node of and edge is incoming edge.  

There are two constraint graphs which are the horizontal constraint graph (HCG) 

and vertical constraint graph (VCG). For HCG, “W” represents west pole and “E” 
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represents east pole. These edges represent the direction related horizontally from left to 

right. For VCG, “S” represents south pole and “N” represents north pole. The edges 

represent the direction related vertically from bottom to top. Figure 2.4 shows the 

floorplan and Figure 2.5 shows the constraint graphs related to Figure 2.4. Edge that 

points to east or north pole is known as corner edge. A block that is at the corner edges 

of both HCG and VCG is corner block. Hence, only block “d” in Figure 2.4 is corner 

block. Orientation of corner block is defined according to the joint in left and bottom 

segment and T-junction. T-junction has 2 orientations which are rotated by 90 degrees 

and 180 degrees counterclockwise. The corner block is vertical oriented if T is rotated 

by 90
o
 and is denoted by “0”. The corner block is horizontal oriented if is rotated by 

180
o
 and is denoted by “1”. Figure 2.4 shows that the corner block, d is vertical oriented 

and is denoted as “0”. 

 

 

 

 

 

 

Figure 2.4 Floorplan 

 

 

 

 

  Horizontal 

     Vertical 

Figure 2.5 Constraint Graphs 
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 Corner Block Deletion is deleting the right top corner block. For horizontal 

oriented corner block, when the corner block is deleted, the left segment is shifted to the 

right boundary of the chip and the attached T-junction is pulled along with the segment. 

For vertical oriented corner block, when the corner block is deleted, the bottom segment 

is shifted to the top boundary of the chip and the attached T-junction is pulled along 

with the segment.  Figure 2.6 shows corner block deletion for horizontal oriented corner 

block. Hence the corresponding constraint graphs can perform deletion directly. The 

constraint graph will be modified as shown in Figure 2.7. This will modify the 

constraint graph and block “a” becomes the corner block. 

 

Figure 2.6 Deletion of Corner Block in a Floorplan Structure 

 

Figure 2.7 Deletion of Corner Block in constraint graph 

 Corner block insertion is inserting block into the right top corner. When the 

corner block to be inserted is vertical oriented, the horizontal segment at the top side of 

the chip is pushed down to cover the designated set of T-junctions and to obtain room to 

insert the corner block as shown in Figure 2.8. When the corner block to be inserted is 

horizontal oriented, the left vertical segment is pushed at the right side of the chip and 

then the corner block is inserted. The floorplan still remains mosaic after deletion and 

insertion. 
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Figure 2.8 Insertion of Corner Block 

 Corner Block List has three tuples which is (S,L,T). For Figure 2.3 floorplan, the 

corner block, d is deleted. Since d is a vertical oriented block and there is one T-junction 

attached to it, the record obtained is (d,0,10). Hence, the block a,b,g,e,c and f are deleted 

successively. Hence, the concatenate record derive a corner block list of (S,L,T) where 

S = (fcegbad), L=(001100), and T = (001010010).  

 Below is the algorithm that transforms from floorplan to corner block list: 

When corner block exist, repeat 

1. Delete corner block 

2. If not the last corner block, record the block name, orientation and T-

subsequence. 

  Add the last block to the list and concatenate the records in a reverse order of the 

deletion sequence to construct the corner block list. 

 Below is the algorithm that transforms from corner block list to floorplan: 

1. Initialize the floorplan with block S[1] 

2. For i=2 to n, insert block S[i] with orientation L[i] and T-junctions from the 

corner block list. If the number is more than the T-junctions available, exist 

and report error, 

A corner block list may not correspond to floorplan because of the constraints of 

list T. Hence, the number of erased T-junction cannot be more than the T-junctions 

available for insertion. (Hong, et al., 2000) 
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This paper (Dhamdhere, Zhou, & Wang , 2002) uses CBL representation for 

module placement with pre-placed modules. They use two methods. First method, only 

free modules included in the corner block list. The free module from the CBL is placed 

and check overlaps for the pre-placed modules and removes the overlaps by shifting the 

free module to the right or top. The second method uses all modules in the corner block 

list. If a new module inserted is found to be overlapping with pre-placed module, it is 

instead swapped with the pre-placed module in the CBL. If a new module inserted is a 

pre-placed module but not in the pre-placed location, the placement of the pre-placed 

module will be deferred and is swapped with the next free module in the CBL to place 

at the current location. These algorithms are combined with simulated annealing 

technique. 

Another paper by (Hong, Dong, Huang, Cai, Cheng, & Gu, 2004) uses CBL to 

represent mosaic floorplans. In mosaic floorplan, each room has only one block 

assigned to it. Hence, a unique corner room is available on the top right corner of the 

chip. The corner block deletion and corner block insertion will be used to keep the 

floorplan mosaic. Recursive deletion process can convert the mosaic floorplan to a 

representation named CBL. This CBL uses linear time to construct the floorplan. 

Simulated annealing is used for optimization. 

According to (Chen, Dong, Hong, Ma, & Cheng, 2006), CBL is a room-based 

floorplan representation. This paper identifies the topological relation between two 

blocks in CBL. Using the topological relation between the blocks, CBL is feasible under 

alignment constraints. Hence, the block placement can be done using CBL with 

alignment constraints. 
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2.2.2.2 O-Tree 

O-tree is an ordered tree that represents non-slicing floorplans. O-tree model is 

used for admissible placement. An admissible placement is a placement where the 

modules can only be compacted in both x- and y- directions. This means that the 

module cannot shift left or down with other modules were being fixed. Figure 2.9 shows 

an admissible placement. 

A tree has a finite set of T or more nodes. It has a specially designated node 

which is the root of the tree. The root has zero or more branches that are pointing from 

the root children. O-tree has two types which are horizontal O-tree and vertical O-tree.  

To construct O-tree, admissible placement is needed. A horizontal O-tree (T,π)  is 

constructed as follows. Left boundary of the placement is represented as root and the x-

coordinate is set as xroot = 0 and width wroot = 0. The children are placed on the right side 

of their parent with zero separation distance in x direction. Figure 2.10 shows a 

horizontal O-tree for the floorplan structure of Figure 2.9. (Takahashi, Guo, Cheng, & 

Yoshimura, 2003) 

 

 

 

 

 

Figure 2.9 Admissible Placement   

Figure 2.10 Horizontal O-tree 

A vertical O-tree is constructed by having the bottom boundary of the placement 

as the root and the edge gives the direction relationship between the modules. An O-tree 

is represented by two-tuple (T,π) . In order to encode a rooted ordered tree with n nodes, 
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a 2(n-1)-bit string, T branching structure needs to be identified and the permutation, π to 

label the n nodes. The bit string, T realizes the tree structure. “0” stands for traversal 

descends edge and “1” stands for traversal ascends edge in the tree. The permutation, π 

labels the sequence to traverse the tree in depth-first search order. The root of the tree is 

represented by the first element in the permutation, π. Figure 2.10 shows the encoding 

of 8-node rooted ordered tree.  The root node has three subtrees which are a, b and c. 

The O-tree can be represented as (00110100011011,adbcegf).  

 The left boundary of the floorplan is set as the root of a horizontal O-tree and the 

coordinate is set (xroot, yroot) = (0, 0). Node ni is the parent of node nj. Hence, xj = xi + wi. 

For each block bi, let L(i) be the set of block bk’s on the left of bi in permutation π, and 

interval (xk , xk +wk) overlaps the interval (xi, xi + wi) by a nonzero length. If L(i) is non-

empty, we have 

   {
         {     }           

                                                     
 

Horizontal O-tree can give placement by visiting the tree in DFS order. This is 

shown in Figure 2.10. Y-coordinate can be computed from horizontal O-tree by using 

contour structure to reduce the run time to find y-coordinate of a block. Without contour 

structure, the run time is linear to the number of blocks without contour structure. 

Contour structure can find the y-coordinate in a constant time. Contour structure is 

double linked list of blocks that describe the contour line in the current compact 

direction. Figure 2.11 shows the contour structure is updated when new block is placed 

into the floorplan and the y-coordinate of the block is determined. (Guo, Cheng, & 

Yoshimura, 1999) 
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Figure 2.11 When module is added on top, horizontal contour is searched from left to 

right and the top boundary of the new module is updated 

According to Sitzmann & Stuckey, 2000, constraint search trees is used to 

search trees where the operations are defined in term of constraints. Hence, the  

fundamental operations of search trees and the immediate points to new possibilities for 

search trees are made clear. A height-balanced constraint search tree which builds a 

height-balanced index structure which is O-tree. N object in an O-tree is represented by 

constraints of the form axi  + bxi ≤ d where {a,b} ⊆ {-1,0,1} and x1,…,xn are the 

dimension of the spatial data. Hence, the basic operations to build and search the height-

balanced constraint search tree and constraint joins are defined by (Sitzmann & 

Stuckey, 2000). Hence, accurate information in the O-tree nodes can be obtained. 

A modified O-Tree based packing algorithm is also proposed. (Yan, Li, Yang, & 

Yu, 2004) This can reduce the time cost of turning an O-Tree into an admissible O-Tree 

and decoding it into a placement. This is done by introducing a vertical contour into the 

algorithm by replacing the O-Tree orthogonal constraint graph and constraint graph to 

O-Tree procedures to a single O-Tree to floorplan. This algorithm applied to various 

problems such as placement with boundary constraint and rectilinear blocks. Genetic 

Algorithm is used to solve the problem and an additional block is inserted as internal 

node without increasing the time complexity when perturbation of O-Tree. 

There is a paper (Ninomiya, Numayama, & Asai, 2006) which also uses O-tree 

for floorplan optimization. This work shows a two-staged Tabu search for non-slicing 
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floorplan problem using O-tree. This combines the simulated annealing into the two-

staged Tabu search and a hybrid algorithm which is the O-tree representation. This 

paper combines both the optimization algorithms with O-tree for floorplan optimization. 

2.2.2.3 B*-Tree 

B*-trees are based on ordered binary trees and the admissible placement. Inheriting the 

properties of ordered binary trees, B*-trees can be implemented easily and can perform 

respective primitive tree operation search, insertion and deletion in only constant, and 

linear time.  

The correspondence between an admissible placement and induced B*-tree is 

direct and only takes linear time. The evaluation for B*-tree and placement can be done 

directly and incrementally. This reduces the search spaces and avoids redundant 

solutions. (Chang, Chang, Wu, & Wu, 2000) 

An admissible placement, P can be represented by a unique (horizontal) B*-Tree 

T.  Figure 2.12 shows the B*-tree of a floorplan of Figure 2.13. A B*-tree is an ordered 

binary tree where the root is directly related to the module of the bottom-left corner. B*-

tree is constructed in a recursive way.  

Initially, the left subtree is constructed recursively to the right subtree from the 

root. Let Ri denote the set of modules located on the right-hand side and adjacent to bi. 

The left child of the node ni corresponds to the lowest module in Ri that is unvisited. The 

right child of the node ni represents the lowest module located above and with its x-

coordinate equal to that of bi. The y-coordinate is less than half the top boundary of the 

module on the left hand side and adjacent to bi. This display the corresponding 

relationship between the admissible placement and B*-tree. 
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Referring to Figure 2.12 and Figure 2.13, module a is the root because it is on 

the bottom-left corner. The left subtree of na is constructed recursively making nb the left 

child of na. The procedure is repeated for the right subtree of na once the left subtree of 

na is completed. This construction only needs linear time. 

A B*-tree can be computed into the x-coordinate and y-coordinate for each 

module according to the node in the tree. The root (xroot, yroot) = (0, 0) for the x- and y-

coordinates of the module because the root of T is the bottom-left module.  

 B*-tree keeps the geometric relationship between two modules. If node nj is the 

left child of node ni, module bj will be located on the right-hand side and adjacent to 

module bi in the admissible placement; i.e., xj = xi + wi. Whereas, if node nj is the right 

child of ni, module bj will be located above and adjacent to module bi with the x-

coordinate of bj equal to that of bi; i.e., xj = xi. 

 The construction is recursively performed in depth-first search order. A B*-tree 

can determine the x-coordinates of all the modules by traversing the tree completely 

once. The contour data structure can also be adopted to compute the y-coordinate of a 

B*-tree as mentioned in the O-tree. (Chang, Chang, Wu, & Wu, 2000) 

Figure 2.13 B*- tree 
Figure 2.12 An admissible placement 
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 A paper by Jiang, Lai, & Wang studied the problem of module placement with 

pre-placed modules and it extends the B*-tree representation to solve problem. This 

paper suggests that each pre-placed modules to be placed at a pre-specified location all 

the time and uses the B*-tree representation to generate the locations for the remaining 

modules. A repositioning techniques is added in order to eliminate any overlapping 

between modules. This paper added simulated annealing to optimize the placement. 

(Jiang, Lai, & Wang, 2001) 

 Wu & Chang used B*-tree representation for placement with alignment and 

performance constraint. The aim is to align circuit blocks one by one and constrain the 

blocks within a certain bounding box.  The feasibility conditions is explored with the 

alignment and performance constraints and then an algorithm is used to guarantee a 

feasible placement with alignment constraints and generate a good placement with 

performances constraints during each operation. (Wu & Chang, 2004) 

B*-tree representation can also incorporate with particle swarm optimization 

(PSO) for floorplanning. The B*-tree floorplan structure is used to generate an initial 

stage with overlap free for placement and PSO to find potential optimal placement 

solution. This method can avoid solution from falling into the local minimal and able to 

explore good solutions for floorplan optimization. (Sun, Hsieh, Wang, & Lin, 2006) 

Mao, Xu and Ma used hybrid algorithm which incorporate B*-tree 

representation for floorplanning. This is to improve the area optimization of the 

floorplan. This uses simulated annealing embedding a tabu search for the floorplan. The 

purpose of this hybrid algorithm is to improve area utilization and obtain the optimal 

results in a short run time.  (Mao, Xu, & Ma, 2009) 
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2.2.2.4 Bounded-Sliceline Grid 

A bounded-sliceline grid (BSG) dissects a plane into rooms what are associated 

with binary relations of “right to” and “above” where any two rooms are in this unique 

relation. This can be obtained through an assignment of modules on the BSG followed 

by the physical realization of the BSG-PACK. 

 BSG is a metagrid where it means that it does not contain physical dimension 

but is a topological grid of plane that has orthogonal unit lines which are called BSG-

units. BSG dissects plane into rectangular zone which are known as rooms. Hence, BSG 

structure has rooms, horizontal unit segments and vertical unit segments. Figure 2.15 

shows the a BSG of dimension p × q, BSGp×q. To use BSG structure to represent a 

floorplan, p x q must be equal or larger than the number of modules. A rectangular 

space which is surrounded by an adjacent pair of vertical and horizontal units will form 

a room. The vertical unit segment gives the vertical relations and the horizontal unit 

segment gives the horizontal relations. The placement for modules, m is arranged as the 

room assignment of modules, m by placing the modules, m into different rooms. Given 

a set of modules, M where |M | = n. Making an assumption that p × q ≥ n, an assignment 

of M is a one-to-one mapping of modules into the rooms of BSGp×q. A room that does 

not have module assigned is called an empty room.  

 

Figure 2.14 BSG with dimension p × q, BSGp×q 
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 Figure 2.14, Figure 2.15, Figure 2.16 and Figure 2.17 show the process of 

transforming from BSG to placement. Four modules were given as shown in Figure 

2.16. The modules were assigned as shown in Figure 2.16. The horizontal unit 

adjacency graph Gh(Vh,Eh) is formed as shown in Figure 2.18 and the vertical unit 

adjacency graph Gv(Vv,Ev) is formed as shown in Figure 2.17. The weights of the 

edges are assigned in the unit adjacency graphs. If e   Eh and e goes across a non-empty 

room, w(e) = width of the module that is assigned there. If e goes across an empty room 

or to the source or sink, then w(e) = 0. (Nakatake, Fujiyoshi, Murata, & Kajiyana, 1996) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19 The corresponding placement 

  

Figure 2.15 Input modules 

 

Figure 2.16 BSG assignment 

Figure 2.17 Horizontal unit adjacency 

graph Gh(Vh,Eh) 

Figure 2.18 Vertical unit adjacency 

graph Gv(Vv,Ev) 
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The horizontal unit adjacency graph is represented by Gh(Vh,Eh). For each vertex 

u   Vh , lh(u) is denoted as the length of the longest path from the source sh to u. For the 

vertical unit adjacency graph, Gv(Vv, Ev), each vertex u   Vv, lv(u) denotes the length of 

the longest path from the source sv to u.The longest path,G is used to determine the 

positions of the modules.  This longest path algorithm works in linear time with the 

number of edges when the input G is a directed acyclic graph. The total number of 

edges of the unit adjacency graphs are between 2(pq + p + q) and 2(pq + p + q)-4. The 

time complexity of the longest path length,G where G is Gh(Vh,Eh) or Gv(Vv,Ev) is 

O(pq). 

 According to the BSG to placement theorem, the following procedure is done 

according the the procedure of BSG-PACK as follows when given an assignment of M 

to BSGpxq. Let the module, m is assigned to a room where the boundary of the left 

vertical unit is Vm and the bottom horizontal unit is Hm. Then, module, m is placed at 

the left bottom which is at (lv (uVm ), lh (uHm )) where uVm and uHm are the vertices that 

corresponding to the units Vm and Hm where Vm is the vertical unit and Hm is the 

horizontal unit adjacency graph.  

It is important to ensure that no two modules are overlapped by noticing the 

right to and above relation in the output of the procedure. From there, we can obtain the 

area which is the minimum bounding box of the chip by using the BSG-PACK 

assignment which is (lv(tv) x lh(th)). The procedure of BSG-PACK gives the physical 

dimension to the meta-grid. The output of BSG-PACK can be further compacted to 

reduce area if the modules are allowed to penetrate the peripheral BSG-units. BSG can 

be perturbed by choosing two different rooms and interchange the contents in them to 

generate a new BSG assignment. 
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2.2.2.5 Sequence Pair 

Sequence Pair encodes non-slicing floorplans. When n modules of a non-slicing 

floorplan are given, the sequence pair, which is a pair of module name sequences will 

provide the information regarding the position of the modules relatively whether it is 

above, to the right of and to the left of a given module. The correspondence between 

sequence pair and placement is 1-to-1 and hence a sequence pair gives a unique 

floorplan.  

In order to obtain a floorplan from the sequence pair, first draw an ‘up-right 

step-line’ for each module. Vertical lines and horizontal lines were drawn from the 

upper right corner of a module until the upper right corner of the floorplan. The down-

left step-lines are also drawn in a similar way. A pair of up-right step-line and down-left 

step-line for a given module forms the ‘positive step-line’ and a pair of left-up and 

right-down step-line for a given module forms the ‘negative step-line.’ Positive step-

lines of the modules and negative step-lines of the modules do not cross each other. The 

order among the positive step-lines from the left to right forms the first sequence in a 

sequence pair and the order among the negative step-lines from the bottom to top gives 

the second sequence in the sequence pair. 

 In order to obtain sequence pair to placement, the following steps are taken. 

Given a module x in a sequence pair SP (S1, S2), the list of modules that appear before x 

in both S1 and S2 is obtained. These modules are located on the left of x in the floorplan. 

The set of modules that appear after x in both S1 and S2 are located to the right of x in 

the floorplan. The set of modules that appear after x in S1 and before x in S2 are located 

above x in the floorplan. Then a directed graph, Horizontal Constraint Graph (HCG) is 

built based on the ‘right-of’ and ‘left-of’ relation, where a directed edge e(a,b) shows 

that module a is to the left of b. Then, source node is added and is connected to all the 
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nodes in HCG. A sink node is also added to HCG and is connected to all nodes to this 

sink. A longest path length from source to each node in HCG denotes the x coordinate 

of the module in the floorplan. The longest source-sink path length gives the width of 

the floorplan. To construct a Vertical Constraint Graph (VCG) also is the same as HCG 

but it uses the ‘above’ and ‘below’ relation and computes the y coordinates of the 

modules and gives the height of the floorplan. (Murata, Fujiyoshi, Nakatake, & Kajitani, 

1995) 

According to Tang, Tian and Wong, a fast evaluation of a large number of 

sequence pairs is required in order to evaluate each generated sequence pair into 

corresponding block placement. Hence, they suggest that a new approach to evaluate a 

sequence pair based on computing longest common subsequence in a pair of weighted 

sequences. This is to improve the efficiency of sequence pair to O(n
2
) algorithm. The 

aim is to reduce the runtime for floorplan optimization. (Tang, Tian, & Wong, 2001) 

According to Kodama and Fujiyoshi, sequence-pair can be used as a 

representation of block placement to determine the densest possible placement of 

rectangular modules in VLSI layout design. They suggested that a method of obtaining 

packing via the Q-sequence (Representation of rectangular dissection) in O(n+k) time 

from a given sequence pair of n rectangles with k subsequences called adjacent crosses, 

given the position of adjacent crosses and the insertion order of dummy modules in 

adjacent courses. This method keeps the k not more than n-3. (Kodama & Fujiyoshi, An 

Efficient Decoding Method of Sequence Pair, 2002) 

Another method of sequence pair which is proposed is selected sequence-pair 

(SSP), a sequence pair with limited number of subsequences called adjacent crosses. 

This is a modification made from sequence pair. This method has smallest packing 

based on a given SSP can be obtained in O(n) time, where n is the number of rectangles 
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and can represent arbitrary packing. The total representation number of SSP of size n is 

not more than the rectangular dissection of the same size. SSP is incorporated with an 

algorithm in order to enumerate all the adjacent crosses on a sequence pair in linear 

time. Besides that, they convert a sequence pair without adjacent crosses to an 

equivalent Q-sequence, representation of rectangular dissection as mentioned in the 

previous method. (Kodama & Fujiyoshi, Selected Sequence-Pair: An Efficient 

Decodable Packing Representation in Linear Time using Sequence Pair, 2003) 

There is a suggestion where floorplanning optimization using sequence pair as 

representation is incorporated with genetic algorithm. The sequence-pair is a data 

structure with applications in packing-based VLSI module placement. This paper uses 

genetic algorithm for rectangle packing. There is an extent to handle symmetry 

constraints which is a requirement for analog circuits. There are genetic operators which 

were developed to accommodate the specific properties of the sequence pair. (Drakidis, 

Mack, & Massara, 2006) 

2.2.2.6 Corner Sequence 

Corner Sequence is also used to represent non-slicing floorplan and is a P-

admissible representation. Corner Sequence consists of two tuples that represent the 

packing sequence of the blocks and the corners which the block will be placed. Corner 

Sequence (CS) =< (S1, D1) (S2, D2) … (Sm, Dm) > uses a packing sequence S of the 

modules well as the corresponding bends D formed by the modules to describe a 

compacted placement. Each two-tuple (Si, Di), 1≤ i ≤ m, is referred as a term of the CS.  

A module bi is said to cover another module bj if bi is higher than bj and their 

projections in the x-axis overlap, or bi is right to bj and their projections in the y-axis 

overlap (i.e., yj ≤ yi , xj > xi and xj < xi , or if xj ≤ xi , yj > yi and yj < yi ). Here, xi = xi + 

wi and yi = yi + hi. Given an admissible placement (a left and bottom compacted 
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placement), firstly, pick the dummy modules bs and bt, and make R =< st > for the two 

chosen modules. The module bi on the bottom-left corner of P is picked (i.e., S1 = bi and 

D1 = [s, t]) since it is the unique module at the bend of R, and the new R becomes <sit>. 

When there is more than one module at bends, the left-most module that does not cover 

other unvisited modules is picked at the bends. Therefore, the module bj at the bend [s, 

i] is picked if bj exists and bj does not cover the other unvisited module bk at the bend [i, 

t]; otherwise, bk is picked. This process continues until no module is available. Based on 

the above procedure, there exists at least one module at a bend of the current R before 

all modules are chosen since the placement is compacted. Therefore, there exists a 

unique CS corresponding to a compacted placement. 

 Figures 2.20(a)–(h) show the process to build a CS from the placement P of 

Figure 2.20(a). R initially consists of s and t. Module a, at bottom-left corner is chosen 

first since it is the unique module at the bend of R (S1 = a, and D1 = [s, t]). Figure 

2.21(a) shows the resulting R (denoted by heavily shaded areas). Similarly, module b is 

chosen (S2 = b and D2 = [a, t]) and the new R is shown in Figure 2.21(b). After module 

bd in Figure 2.21(b) is chosen, a and b are removed from R since ba ≤x bd and bb≤ y bd 

(see Figure 2.21(c) for the new R). As shown in Figure 2.21(d), there exist two modules 

bf and bc at bends. Although bf is left to bc, we pick bc first since bf covers bc. This 

process repeats until no module is available, and the resulting CS is shown in Figures 

2.21(i). (Lin, Chang, & Lin, Corner sequence - a P-admissible floorplan representation 

with a worst case linear-time packing scheme, 2003) 
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Figure 2.20(a) Placement, P (b) Contour R of P 

The dynamic sequence packing (DSP) scheme is used to transform a CS into a 

placement. For DSP, a contour structure is maintained to place a new module. Let L be 

a doubly linked list that keeps modules in a contour. Given a CS, we can obtain the 

corresponding placement in O(m) time by inserting a node into L for each term in the 

CS, where m is the number of modules. L initially consists of ns and nt that denote 

dummy modules s and t, respectively. For each term (i, [j, k]) in a CS, we insert a node 

ni between nj and nk in L for module bi, and assign the x (y) coordinate of module bi as 

xj' (yk'). This corresponds to placing module bi at the bend [j, k]. Then, those modules 

that are dominated by bi in the x (y) direction should be removed from R. This can be 

done by deleting the predecessor (successor) np’s of ni in L if yp'’s (xp'’s) are smaller 

than yi' (xi'). The process repeats until no term in the CS is available. Let W (H) denote 

the width (height) of a chip. W = xu' (H = yv' ) if nu (nv) is the node right before (behind) 

nt(ns) in the final L. 

Figure 2.22 gives an example of the packing scheme for the CS shown in Figure 

2.22(a). L initially consists of ns and nt. We first insert a node na between ns and nt since 

S1 = a and D1 = [s, t]. The x (y) coordinate of ba is xs' (yt'). Figure 2.22(b) shows the 

resulting placement and L. Similarly, nb is inserted between na and nt in L of Figure 

2.22(b) since S2 = b and D2 = [a, t] (see Figure 2.33(c) for the resulting placement and 

L). After we insert a node nd between the two nodes na and nb in L of Figure 7(c) for the 

third term (d, [a, b]) in the CS, the predecessor na (successor nb) of nd is deleted because 
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ya' ≤ yd' (xb' ≤ xd') (see Figure 2.22(d)). The process repeats for all terms in the CS, and 

the resulting placement and L are shown in Figure 2.22(i). The width (height) of a chip 

is W = xh' (H = ye') since the node right before (behind) nt (ns) is nh (ne) in L. The DSP 

packing scheme packs modules correctly in O(m) time, where m is the number of 

modules. 

 

Figure 2.21 (a) – (h) The process to build a CS from placement (i) CS representation 

The solution space of CS is bounded by (m!)
2
, where m is the number of 

modules. It should be noted that, in addition to the number of modules, the solution 

space of CS also depends on the dimensions of the modules. The above theorem 

considers the worst case for CS—all modules appear in the contour all the time during 

packing. It is quite often that only part of the modules is in the contour. Hence, practical 

solution space of CS is smaller than (m!)
2
. 
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Figure 2.22 (b) – (i) DSP packing scheme for CS in (a), where CS = 

{(a,[s,t])(b,[a,t])(d,[a,b])(e[s,d])(c,[d,t])(f[e,c])(g[c,t])(h,[f,c])} 
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2.3 Optimization Algorithms 

Several approaches have been used to for the floorplanning problem such as 

constructive, iterative and knowledge based. Constructive algorithms attempt to build a 

feasible solution by starting from a seed module. After that, the modules are selected 

one at a time and added to the partial floorplan. This process continues until all modules 

have been selected. This type of algorithm includes cluster growth, partitioning and 

slicing, connectivity clustering, mathematical programming, and rectangular 

dualization. 

Iterative techniques start from an initial floorplan. Then this floorplan undergoes a 

series of perturbations until a feasible floorplan is obtained or no more improvements 

can be achieved. Typical iterative techniques which have been successfully applied to 

floorplanning are simulated annealing, force directed interchange/relaxation, and 

genetic algorithm.  

The knowledge-based approach has been applied to several design automation 

problems including cell generation and layout, circuit extraction, routing, and 

floorplanning. In this approach, a knowledge expert system is implemented which 

consists of three basic elements:  

1. Knowledge base that describes floorplan problem and its current state 

2. Rules for data manipulation to progress toward a solution  

3. An inference engine controlling the application of the rules  

The type of approach for optimization that will be discussed in the following will be 

the iterative technique. Hence, more iterative techniques are reviewed before the project 

is being done. (Sait & Youssef, 1999) 
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2.3.1 Simulated Annealing 

Simulated annealing algorithm is starting with an initial solution and armed with 

adequate perturbation and evaluation functions. The algorithm performs a stochastic 

local search of the state space. The parameter that controls the accepted rate is 

controlled by temperature (T). The probability of acceptance of decreases as 

temperature decreases.  

The core of this algorithm is the Metropolis procedure, which simulates the 

metal's annealing process at a given temperature T. The Metropolis procedure receives 

as input the current temperature T, and the current solution CurS. Metropolis procedure 

must also be provided with the value M, which is the amount of time for which 

annealing must be applied at temperature T. Temperature is initialized to T0 at the 

beginning, and is slowly reduced to achieve cooling. It uses a procedure perturb to 

generate a new solution NewS. If the cost of the NewS is better than the cost of the 

CurS, then the NewS is accepted, and we do so by setting CurS =NewS. If the cost of the 

NewS is better than the best solution BestS, then we will replace BestS with News. If the 

NewS has a lower cost in comparison to the CurS, Metropolis will accept the NewS on a 

probabilistic basis. If a random number, which is generated range from 0 to 1, is smaller 

than ∆costlT, where ∆cosP=cost(NewS) - cost(CurS), and T is the current temperature, 

the inferior solution is accepted. The simulated annealing algorithm needs to start from 

a high temperature. However, if this initial value of T is too high, it will take a long 

processing time. The initial temperature is usually set as To=avg/log(P). The stopping 

criterion is when 0.1 or reject ratio T> 0.95. (Xu & Li, 2008) 

Chen and Chang suggest a study on two types of modern floorplanning 

problems, which are fixed-outline floorplanning and bus driven floorplanning. In their 

paper, they use B*-tree floorplan representation based on fast three-stage simulated 
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annealing scheme called Fast-SA.  Fast-SA can dynamically change the weights in the 

cost function to optimize the area and also wirelength with various aspect ratios. Both 

soft block and hard block can be optimized using Fast-SA. This method is an 

improvement from SA which can increase the speed for optimization. (Chen & Chang, 

2006) 

 Chen, Zhu and Ali suggested a hybrid simulated annealing (HSA) for non-

slicing floorplan. HSA uses a new greedy method to construct an initial B*-tree which 

is a new operation on the B*-tree to explore the search space and a novel bias search 

strategy to balance global exploration and local exploitation. Hence, HSA can give 

quicker optimal or nearly optimal solutions compared to SA.  (Chen, Zhu, & Ali, A 

Hybrid Simulated Annealing Algorithm for Nonslicing VLSI Floorplanning, 2010) 

2.3.2 Genetic Algorithm 

GA was first proposed by Holland in 1975. In nature only fittest individuals 

survive and reproduce, a natural phenomenon known as “the survival of the fittest”. Gas 

mimics the natural evolution process by suppressing inferior genotypes and breeding 

offspring from superior population members. The cyclic process is continued for several 

generations and the best member is selected. The performance of a GA can be 

drastically improved by using elitism, which ensures that best-known solution is 

preserved and passed on to future generations.  

 The algorithm randomly generates a set of population, which is called the first 

generation. The population will consist of various set of strings which are known as 

genes. These strings of genes make up chromosomes. The chromosomes represent the 

solution of the optimization problem. Each chromosome will be evaluated at every 

iteration or generation. The evaluation will determine the fitness of the gene. Basing on 

the fitness, individuals called parents are selected from the population. The individual 
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with higher fitness has more probability of being selected. After that, some genetic 

operators will be done and the output will be called offsprings. The genetic operator 

combines both the parents’ features. The more common operators are such as cross over 

and mutation. Then the offspring will then be the second generation and another set of 

generation will be randomly produced including the offspring from the parents. This 

will go on until the optimization is being stopped. (Debarshi & Manikas, 2007)  

A pseudo code for our elitist GA is given below: 

 

 Nakaya proposed to use an adaptive genetic algorithm to solve floorplanning 

problem in VLSI layout design. They used the sequence pair as representation and is 

adopted the coding scheme of each chromosome. Analysis of new operator for GA is 

explored to improve results. The proposed GA has an adaptive strategy which 

dynamically selects an appropriate genetic operator during the GA execution depending 

on the state of an individual. (Nakaya, Koide, & Wakabayashi, 2000) 

 Chen and Zhu suggest a hybrid genetic algorithm (HGA) which is modified 

from GA to solve the non-slicing and hard-module of VLSI floorplanning problem in 

Begin 

input: Block Dimensions, w h ii i /*MCNC 

Benchmark files*/ 

output: Block Coordinates, x y ii i /*Layout 

Files*/ 

1: Initialize population by assigning random pair of permutations. 

2: Create empty external population Pext with max. size Next to store the best 

members. 

3: if number of members in P ext N 

4: Delete the worst member in Pext 

5: Select members from the current population 

6: Apply crossover 

7: Apply mutation 

8: Replace a small proportion of the new population by random members of Pext. 

9: if (no of generations < constant1 or fitness of best member in Pext < constant2) 

10: Go to step 3. 

end 
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order to improve the optimization results for floorplanning optimization. HGA uses an 

effective genetic search method to exploit information in the search region. (Chen & 

Zhu, A hybrid Genetic Algorithm for VLSI Floorplanning, 2010) 

2.3.3 Cross Entropy Method 

The Cross Entropy (CE) method is developed based on the cross entropy 

distance or also known as the Kullback-Leibler) distance. This is a fundamental concept 

of modern information theory. This method is motivated by an adaptive algorithm to 

estimate probabilities in rare events which involve minimization. CE can be used for in 

estimating probabilities of rare events in a complex stochastic network that needs 

minimization. Besides that, it can also be used to solve difficult combinatorial 

optimization and continuous multi-extremal problems. This could be done by translating 

deterministic optimization into stochastic estimation. CE involves iterative procedure 

which can be divided into two phases which are: 

1. Generation of random data such as trajectories and vectors from a specific 

mechanism. 

2. Updating the parameters of the random mechanism based on the performance of 

the data in order to obtain better samples in the next iteration. 

The iteration for CE will stop once it reaches the stopping criteria. The stopping 

criterion is selected depending on the noise of the results obtained. (Rubinstein & 

Kroese, The Cross-Entropy Method: A unified approach to Combinatorial Optimization, 

Monte-Carlo Simulation and Machine Learning, 2004) 
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CHAPTER 3.  METHODOLOGY 

This chapter discusses the method developed in this project. There were 3 different 

methods of floorplanning optimization used. The first method uses Dot Model as 

representation and Genetic Algorithm for optimization. The second method uses Corner 

Bottom Left List as representation and Genetic Algorithm for optimization. The third 

method uses Corner Bottom Left List as representation which is developed for this 

project together with a modified Cross Entropy method for optimization. All these 

methods are focused on optimizing the floorplan area to achieve the minimum 

deadspace. 

3.1 Dot Model as Representation and Genetic Algorithm as Optimization 

Algorithm 

This method uses the Dot Model to represent the floorplan and Genetic Algorithm 

as the optimization algorithm. Dot Model (DM) is a topological representation where it 

uses the relative position with reference to x-axis and y-axis in order to place the 

rectangle block position in the floorplan. Dot Model is developed based on the position 

where rectangle blocks are placed from the left bottom corner till all the blocks are 

exhausted. This is done based on selecting the block and placing the block according to 

the position and orientation that is given with reference to the previous block number. 

DM consists of three tuples that denote the packing sequence of modules, the 

reference block number and the orientation of the block for the module. There are 4 

orientations which were used which are right, right with rotation, top and top with 

rotation. The rotation is 90
o
 for both right with rotation and top with rotation. 

Genetic Algorithm has been widely used for optimization for floorplan. In this 

work, we try to combine dot model with Genetic Algorithm. Genetic Algorithm is 
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used global search for optimization. The GA that is used in this method uses the 

representation of DM to optimize the floorplan. The representation of DM can be used 

in GA by modifying the chromosomes of the parents and child so that it can optimize 

the encoded DM to obtain optimum results. 

3.1.1 Dot Model 

Dot Model is developed by referring to topological representation and then is 

encoded in to numerical representation. DM has 3 tuples (Bi,Ri,Pi). The first tuple, Bi, 

represents the block number which will be taken to be placed into the floorplan. The 

second tuple, Ri, represents the block number which is referred to place the block. The 

third tuple, Pi represents the orientation and rotation of the position of the block number, 

Bi that is placed with reference to the second tuple, Ri. 

This part will discuss on the representation of DM. DM = {(B1,R1,P1) (B2,R2,P2) 

… (Bn,Rn,Pn) }. B represents the sequence of the block number of m blocks that is 

selected to be placed on the floorplan according to the R and P. The three tuples are 

referred as (Bi,Ri,Pi), 1≤i≤m as the term for DM. Next, we will discuss on how the DM 

is placed into placement. 

3.1.1.1 DM to placement 

First of all, a string of solution, (Bi,Ri,Pi) is checked and analysed. We need to 

check  whether the DM solution is valid or not. This means that the reference block 

number, Ri must come after the block sequence, Bi. If the reference block number, Ri 

comes before the block sequence, Bi, then (Bi,Ri,Pi) must be pushed down to 

(Bi+a,Ri+a,Pi+a) where a represents the number of times it must be pushed down until the 

block Ri is found at Bi+a-1. This step must be done until all the reference block numbers, 

Ri appears after the block sequence, Bi so that the DM solution string is valid. If after 
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completing checking the solution string of DM and there are still invalid DM solutions, 

the block will be placed automatically using deterministic method in order to obtain the 

minimum dead space area for that particular block. Figure 3.1 is an example of a 

solution string that is randomly generated by GA, DM = (B,R,P) and how it is shifted in 

order to make (B2,R2,P2) to be valid. This shifting will be taken place until all the 

reference block, R appears after the sequence block and the end solution that will be 

used for placement in DM is shown in Figure 3.2. The circled tuples at Figure 3.2 shows 

that the tuples that is not valid and needs to use deterministic method in order to obtain 

the minimum deadspace area for the blocks where it does not depend on GA for 

optimization. 

 

Figure 3.1 DM solution string and shifting of the solution string 

 

 

 

 

 

 

After validating the solution string, the placement can be done according to the 

solution string. First of all, the first block is placed on the bottom left corner of a plane 

(B,R,P) = [ 3 1 3 

  4 7 2 

 5 1 2 

 2 3 4 

 7 3 2 

 1 5 2 

 6 2 4 

 8 8 2 

 9 6 2] 

 

(B,R,P) = [ 3 1 3 

 5 1 2 

 2 3 4 

 7 3 2 

  4 7 2 

 1 5 2 

 6 2 4 

 8 8 2 

 9 6 2] 

 

(B,R,P) = [ 3 1 3 

 2 3 4 

 7 3 2 

  4 7 2 

 1 5 2 

 5 1 2 

 6 2 4 

 8 8 2 

 9 6 2] 

 

Figure 3.2 Solution string that is used for 

placement 

b 

a 
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with axis x and axis y. R1 can be ignored as the first block does not require any 

reference block. P1 will be used to check the rotation of the first block. Generally, there 

are four types of position that are used for DM for P. The positions that are used are: 

 1 – Place block, B on the right of the reference block, R without rotation 

 2 – Place block, B on the right of the reference block, R with 90
O

 rotation 

 3 – Place block, B on top of the reference block, R without rotation 

 4 – Place block, B on top of the reference block, R with 90
O

 rotation 

However, the first row of the solution string does not need the reference block 

and hence 1 and 3 will represent that block, B1 does not have rotation and 2 and 4 will 

represent that block, B1 needs to be rotated 90
O

. 

 For the following rows, (B2,R2,P2),…, (Bn,Rn,Pn), the positions for P needs to be 

used. After placing the first block, the subsequent block number will be placed with 

reference to R according to the position of P. The placement will be shifted so that no 

two blocks will overlap one another. If there is an invalid row, the block will be placed 

at the origin position and it will be placed again in another part of the floorplan to give 

the minimum dead space area so that there will be no overlapping that will happen in 

the floorplan. The placement of the blocks corresponds to one another and depends on 

the previous block which has been placed into the placement. It is important to shift and 

place the block so that it will give a more compacted floorplan. Figure 3.3 will show 

how the placement of the blocks according to the DM solution from figure 3.1 that is 

generated by GA. 
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i) Placement of first block   ii) Placement of second block 

   

     iii) Placement of third block  iv) Placement of fourth block 

   

   v) Placement of fifth block   vi) Placement of sixth block 

   

vii) Placement of seventh block  viii) Placement of eigth block 
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ix) Placement of ninth block 

Figure 3.3 Placement from DM to floorplan 

 According to the given example, we can observe that the DM is not suitable to 

do direct placement. Hence, it is needed to shift the sequences of the tuples so that the 

DM can be used for placement. After shifting, we get the solution string as shown in 

Figure3.1. The first row of DM = (3,1,3). Hence, block 3 is placed at the bottom corner 

left of the plane and no rotation is done for block 3. This is shown in Figure 3.3(i). After 

that, the we get the second row of DM = (2,3,4) From here, we place block 2 with 

reference to block 3 according to the orientation stated which is 4, meaning that we 

place block 2 on top of block 3 and make a rotation of 90
O

 for block 2. This is shown in 

Figure 3.3(ii). Next, we check the third row of DM = (7,3,2). This means that we will 

place block 7 with reference to block 3. We then place block 7 on the right of block 3 

and rotate block 7. This is shown in Figure 3.3(iii). After that, we check the fourth row 

of DM = (4,7,2). This means that we need to place block 4 with reference to block 7. 

The P is 2, meaning that block 4 is placed on the right of block 7 and block 4 is rotated. 

This is shown in Figure 3.3(iv). Then, we check the fifth row, DM = (1,5,2). It is 

observed that this row is not a valid placement as there is no block 5 placed on the 

plane. Hence, block 1 is first placed on the origin and then is shifted so that it will give a 

minimum dead space area and does not overlap with other block. As we can see in 

Figure 3.3(v), block 1 is placed at the origin of the plane as this row is not a valid 

placement. Hence, it needs to be shifted. Block 1 is shifted to the right and placed on 
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top of block 4. This can be seen in Figure 3.3(v). Next, we check the sixth row, DM = 

(5,1,2). We will place the block 5 referring to block 1. Hence, block 5 is placed on the 

right of block 1 and is rotated 90
o
. This can be seen in Figure 3.3(vi). After this, we 

check the seventh row, DM = (6,2,4). Hence, we will place block 6 referring to block 4. 

Block 6 will be placed on the top of block 2 and is rotated 90
o
. This can be seen in 

Figure 3.3(vii). Then, we check the eigth row, DM = (8,8,2). This is also not a valid row 

as block 8 cannot be referred to block 8. Hence, block 8 is placed at the origin as shown 

in Figure 3.3(viii). Then it is shifted to the right and placed on top of block 1. This is 

determined by the minimum deadspace that is placed on that location. This can be seen 

in Figure 3.3(ix). Finally the last row, DM = (9,6,2). This shows that block 9 is placed 

with reference to block 6 and is placed on the right of block 6 by rotating 90
o
. This can 

be seen in Figure 3.3(ix). 

 Through DM, we are able to calculate the deadspace area of the floorplan. The 

area is calculated in terms of percentage. This is calculated by using the upper boundary 

of the floorplan for both x and y axis and minus the total area of the blocks. Below show 

the equation that is used to calculate the deadspace area. 

   
                      ∑      

 
   

∑      
 
   

  (1) 

Where           = right most block boundary of x-axis,           = top most 

block boundary of y-axis,    = width of i-th block,    = height of i-th block. The 

example above shows the concept of dot model which is used to represent a floorplan. 

In order to optimize the floorplan, we need to use the representation of DM and placed 

into GA so that optimization can be done to obtain optimum placement. The next 

section will discuss about GA and how GA is used together with DM in order to 

optimize a floorplan. 
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3.1.2 Genetic Algorithm 

Genetic algorithm or also known as GA is a heuristic search technique which is 

adapted from the natural process of evolution so that an optimum gene can be obtained 

in order to achieve survival of the fittest. GA utilizes the theory of evolution according 

to the biological way by using methods like ‘crossover’, ‘mutation’ and selection in 

order to obtain better children in the next generation. (Sait & Youssef, 1999) 

In order to use GA for optimization, we need to have two requirements which are 

the chromosomes and also the fitness function. A string of chromosome representation 

shows the characteristics of the gene. These chromosomes usually formed by bit string 

where they represent the characteristics of the solution in the chromosomes. In 

optimization of floorplan, the chromosome used represents the encoded DM where the 

DM can be decoded and form the floorplan which shows the packing and placement of 

the floorplan. This shows that each chromosome holds information of the floorplan that 

is needed for the placement. The fitness function measures the quality of the 

chromosome. Fitness function is important to determine that the solution fits the 

criterion and constraint of the situation. This is important to optimize the GA as GA 

process is based on the fitness of the chromosome which will be brought to the next 

generation. According to GA theory, evolution can give better generation. Hence we 

should obtain better solution from every subsequent generation as the best selected 

solution will be used for the next generation. Those that do not meet the fitness criterion 

will be eliminated. (Mitchell, 1999) 

GA consists of 3 operators which are selection, crossover and mutation. For the 

selection operator, this is done by selecting the top fittest chromosomes which will be 

used for the next generation and the other chromosomes that do not fit the criterion will 

be eliminated.  Hence, only the fitter chromosomes will be able to survive in the next 
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generation. For the crossover operator, a random selected locus will be chosen and the 

sub-sequence before and after the locus will be exchanged between two chromosomes 

to produce two new children. Usually, the fitter chromosomes are chosen to do the 

crossover operations so that better children will be produced in the next generation. For 

the mutation operator, one of the chromosomes will be chosen and one of the bits in the 

chromosome will be flipped or will be randomly located inside the chromosomes to 

change the characteristics of the chromosome and hence changes the fitness of the 

chromosomes. Figure 3.4 will show the crossover operator and Figure 3.5 will show the 

Mutation operator. 

Figure 3.4 Crossover Operator 

Figure 3.5 Mutation Operator 

 Allowing genetic operations increase the solution space of the generation and 

chances are performing this operator can improve the fitness of the chromosomes. 

However, the pool of solution will become closer to the real solution as the less fit 

chromosomes are discarded and the more fit solutions are maintained until the end of 

the GA optimized solution. 

Parent 1:  1 1 0 1 1 0 1 0 0 0 1 1 

Parent 2:  1 0 0 0 1 1 0 1 1 0 0 0 

    Crossover Point 

Child 1:  1 1 0 1 1 1 0 1 1 0 0 0 

Child 2:  1 0 0 0 1 0 1 0 0 0 1 1 

Parent:   1 1 0 0 0 1 1 1 0 1 0 1 

    Mutation Point 

Child:   1 1 0 0 0 0 1 1 0 1 0 1 
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 Figure 3.6 is the general pseudocode of a genetic algorithm and Figure 3.7 is the 

general flow chart of a genetic algorithm. The implementation of the GA will be 

discussed in the following section. 

 

Figure 3.6 GA pseudocode 

 

Start 

1. Initialize population by assigning random population,P. 

2. set gen = 0 

3. While gen < genMaxDO 

4.  Calculate the fitness of the members. 

5.  Select members which are more fit according to criterion 

6.  Produce children from GA operators 

7.  Produce children from GA operators 

8.  Discard children that has low fitness value from the population 

9  set gen = gen +1. 

10.  End 

11.End 
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Figure 3.7 GA flowchart 

START 

Set gen = 0 

Initialize population 

 

Fitness of every chromosome is 

calculated for current generation. 

To perform crossover, 2 individuals are 

selected from the current generation and 

perform crossover. 

To perform mutation, 1 chromosome is 

selected from the current generation and 

perform crossover. 

 

Individual with higher fitness is kept and 

parents or children with lower fitness is 

disposed. 

Check solution 

achieve? 

Set gen = gen+1 

END 

YES 

NO 
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3.1.2.1 Implementation of GA with DM 

This GA source code is an open source code was developed by C. R. Houck, J. 

Joines, and M. Kay distributed under GNU General Public License as published by the 

Free Software Foundation and is available at 

http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/gaotindex.html. From this source 

code, a slight modification is done in order to use for DM. (Houck, Joines, & Kay) 

DM consists of three tuples which gives (Bi,Ri,Pi). First of all, to use GA, we 

need to model the chromosomes so that optimization using GA can be done. Hence, the 

chromosome for DM is modelled as in Figure 3.8. 

Figure 3.8 Chromosome Model 

B represents the block number. These numbers must be permutated numbers as 

one block can only be placed once in the floorplan. This is obtained by using random 

permutation in the matlab function. R represents the reference block. This block can be 

repeated and is replaceable. This means that we can refer to the same block more than 

once. In order to generate these random variables, the formula in Figure 3.9 is used. 

Figure 3.9 Random Variables generation with repeated numbers 

 Finally, P represents the position and orientation of the block B with reference to 

block R. This representation needs to be generated from 1 to 4 randomly. In order to 

generate these random variables, the formula in Figure 3.10 is used. 

Chromosome = {(B1,B2, …, Bn) (R1,R2, …, Rn) (P1,P2, …, Pn)} 

R = round( rand(b1,…bn) * (n-1) +1) 
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Figure 3.10 Random Variables from 1 to 4 is generated 

After modelling the chromosomes, the initialization of population according is 

carried out as the random generation stated earlier. The size of population used are 

determined by the number of blocks in the floorplan. When the number of blocks to be 

placed in floorplan increases, the number of population needs to be increased. Next after 

the initializing the initial population, the population is evaluated to obtain the fitness of 

the chromosomes in the population. The chromosomes are then arranged based on their 

fitness where the top being the fittest and the bottom is the worst. The fitness of the 

chromosomes are determined through DM where DM gives the deadspace area of the 

floorplan for every solution string. After arranging the population, the top quantile is 

selected to be brought to the next population. In this new population, a few 

chromosomes are selected to do the GA operators such as Crossover and also Mutation. 

There are many types of crossover operators. But the crossover operators that are 

used in this work are arithmetic crossover, heuristic crossover and also simple crossover 

for the non-order based representation. The crossovers that are used for the ordered 

based representations are the cyclic crossover, order-based crossover, single point 

crossover and partial mapping crossover.Below are the explanations for the ordered 

based crossover function that are used in this work: 

a) Cyclic crossover 

Cyclic crossover uses two parents, P1 and P2 to perform the crossover to 

produce 2 children. The cyclic crossover copies the genes from the parent 

chromosome to the child chromosome in a cyclic manner as shown in Figure 

3.11 

R = round( rand(b1,…bn) * 3 +1) 
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Figure 3.11 Cyclic crossover 

b) Uniform crossover 

Uniform crossover uses two parents, P1 and P2 to perform uniform crossover for 

a permutated string. The genes are treated independently and is randomly 

decided from which parent that the child will inherit the gene. For uniform 

crossover, a mask usually is generated and the crossover is based on the mask. 

This can reduce the bias which happens in single point crossover. Figure 3.12 

shows how a uniform crossover operation is taken place. 

Figure 3.12 Uniform crossover 

 

P1 : a b c d e f g h i 

P2 : i c g h b f e a d 

P1 : ab c d e f g h i   C1 : a c g d b f e h i  

P2 : i c g h b f e a d 

P1 : a b c d e f g h i   C2 : i b c h e f g a d 

P2 : i c g h b f e a d 

 

Consider two parents with 9 binary variables each: 

P1   0 1 1 1 1 1 0 1 0 

P2  1 0 1 0 0 0 1 0 1 

A random mask is generated for the crossover 

Mask  0 1 0 0 1 1 0 1 0 

Crossover is based on the mask. If mask is ‘1’ then P1 is copied to C1. If mask is 

‘0’ copy to P2, same goes for P2 and C2. Below are the children after crossover: 

C1   1 1 1 0 1 1 1 1 1 

C2   0 0 1 1 0 0 0 0 0 

cyclicXover 
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c) Partial mapping crossover 

This crossover function also uses 2 parents, P1 and P2 and perform partial 

mapping on the chromosome. The steps for partial mapping crossover are shown 

in Figure 3.13. 

 

Figure 3.13 Partially mapped crossover 

 

a) 2 random points are chosen for crossover. The segment between the two 

points is copied from P1 to C1 

P1 a b c d e f g h i   C1 _ _ _ d e f g _ _  

P2 i c g h b f e a d  

b) The segment in P2 is scan for the elements that is not copied to C1. Check 

the position(j) and the element(i) that is not copied.    

i = {h,b} j = {4,5} 

c) The i is placed into C1 at the position of j at P2. If position of j at P2 is 

occupied in C1 by an element k, then i is placed at the position occupied by k 

at P2. 

P1 a b c d e f g h i 

     C1 _ _ b d e f g _ d 

P2 i c g h b f e a d 

d) Then, elements in P2 are copied to their respective empty space in C1. 

Except exchanging the role of P1 and P2, the steps for C2 and C1 are the 

same. 

P2 i c g h b f e a d 

 

C1  i c b d e f g a d 
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d) order-based crossover 

This crossover operator uses 2 parents, P1 and P2 and is the same as partialmap 

crossover at the initial approach where it copies a segment from 1 parent. 

However, the following step differs in a way that the rest of the unused element 

in P2 is copied into C1 in the order as in P2. This will enable information from 

the relative sequence of element is transferred to the child. Figure 3.14 shows 

how an order-based crossover is done. 

 

 

 

 

 

 

 

 

Figure 3.14 Order-based crossover 

e) single point crossover 

Single point crossover will select a random point and copy the segment from 

beginning to the point from the parent to the child. The remaining segment of 

the child will be taken from another parent except for the elements that has been 

copied. Figure 3.15 shows how a single point crossover is done 

 

 

 

 

Figure 3.15 Single point crossover 

 

 

P1 a b c d e f g h i 

P2 i c g h b f e a d    C1 _ _ _ d e f g _ _ 

 

P2 i c g h b f e a d 

 

C1 c h b d e f g a i 

P1 a b c d e f g h i 

C1 a b c i g h f e d 

P2 i c g h b f e a d 
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f) linear order crossover 

Linear order crossover is modified from order crossover. Linear order crossover 

gives the absolute position of the order for the elements in the chromosome. 

Figure 3.16 shows how linear order crossover taken place.  

 

 

 

 

Figure 3.16 Linear order crossover 

Besides order-based sequence, we also need to use the floating point representation 

for DM. Hence, we need to use the crossover operators for floating point representation. 

The crossovers that are used in this project are arithmetic crossover, heuristic crossover 

and simple crossover. Below are the explanations on the floating point representation 

crossover. 

a) Arithmetic crossover 

Arithmetic crossover uses two parents P1, P2 to perform an interpolation along 

the line formed by the two parents. This will form a mix of the 2 parents at a 

certain ratio. Figure 3.17 shows how the arithmetic crossover is formed. 

 

Figure 3.17 Arithmetic Crossover equation 

b) Heuristic crossover 

Heuristic crossover uses two parents P1, P2 to perform an extrapolation along 

the line formed by the two parents in the outward direction of the better parent. 

Heuristic crossover uses the fitness function of the parent chromosome to 

C1 = P1*a + P2*(1-a); 

C2 = P1*(1-a) + P2*a; 

P1 a b c d e f g h i 

C1  a c d h b f e g i 

P2  i c g h b f e a d 
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determine the direction of search. Figure 3.183 shows the heuristic crossover 

equation. 

 

Figure 3.18 Heuristic crossover 

c) simpleXover 

Simple crossover uses two parents P1, P2 to perform a simple single point 

crossover at a random point. Figure 3.19 shows the simple crossover function. 

 

Figure 3.19 Simple crossover 

 After the crossover operator, a few of the chromosomes from the population is 

picked to do mutation operator. There are 5 types of mutation operator for order based 

part of the chromosomes which are used in this project. Below are the explanations for 

the mutation operator: 

a) inversion Mutation 

Inversion mutation select two random points between the chromosome string 

and the selected points are cut and inverts the bits or permutation of a 

chromosome string. Figure 3.20 shows how inversion mutation is done. 

 

 

Figure 3.20 Inversion mutation 

 

C1 = BestParent + r  (BestParent −WorstParent) 

C2 = BestParent 

P1 

P2 C2 

C1 

Parent  a b c d e f g h i  Child a b c g f e d h i 
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b) swap Mutation 

Swap mutation chose two random genes in a permutation string and the two 

genes will exchange positions. This is shown in Figure 3.21. 

 

 

 

Figure 3.21 Swap mutation 

c) adjswapMutation 

Adjacent swap mutation swap two adjacent genes in a permutation string at a 

random selected point. This is shown in Figure 3.22 

 

 

 

Figure 3.22 adjacent swap mutation 

d) threeswapMutation 

Three-swap mutation performs a three way swap of three randomly chosen 

genes in a permutation string. This is shown in Figure 3.23 

 

 

   

Figure 3.23 three swap mutation 

 

 

 

Parent a b c d e f g h i                  Child a b g d e f c h i 

 

Parent a b c d e f g h i                 Child a b d c e f g h i 

 

Parent a b c d e f g h i            Child a d c f e b g h i 
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e) shiftMutation 

Shift mutation displaces one random gene in a permutation string to another 

position. This is shown in Figure 3.24. 

 

 

 

Figure 3.24 Shift mutation 

 Besides mutation for order-based number, mutation also is done for the floating 

point representation. There are four types of mutation which are used in this project for 

the floating point mutation which are the boundary mutation, multi non-uniform 

mutation and also the uniform mutation. Below are the explanations for these mutations 

that are used in this project. 

a) Boundary Mutation 

Boundary Mutation will change one of the parameters of the parents by 

randomly changing it to upper or lower boundary. 

b) Multi non-uniform Mutation 

Multi non-uniform mutation will change all the parameters in the parents based 

on a non-uniform probability distribution. This uses the Gaussian distribution 

that starts wide and is narrowed down in to a point distribution as the current 

generation approaches maximum generation. 

c) Non uniform Mutation 

Non uniform mutation changes one of the parameters of the parent according to 

a non-uniform probability distribution.  This Gaussian distribution starts wide, 

and narrows to a point distribution as the current generation approaches the 

maximum generation. 

 

Parent a b c d e f g h  i                 Child a b d e f g c h i 
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d) Uniform Mutation 

Uniform mutation changes one of the parameters of the parent based on a 

uniform probability distribution. 

 Crossover and mutation are used in order to increase the solution space. Besides 

that, these operators are also used so that a better gene can be formed to get better 

results for the floorplan.  

 The GA algorithm that is used for this project is maximization. Hence, the 

fitness fuction is negted to obtain the minimum deadspace. The deadspace of the 

floorplan is calculated by using the DM. DM will form the placement of the floorplan of 

the given blocks by referring to the randomly generated string of solutions from GA. 

The fitness of the random generated population will then be calculated based on the 

deadspace area. After the crossover and mutation functions are used, the children also 

need to be evaluated to determine the fitness of the functions. Only those with the 

fitness match to the required criterion will be kept to be brought to the next generation. 

The selection of the chromosome is based on the normalized geometric selection in this 

project.   

In normal geometric selection, the population is ranked according to the fitness 

and also the probability of selecting the individuals which are fit instead of depending 

just on their fitness value. Hence, the probability for selection is given as in Figure 3.25.  

1' (1 )

'
1 (1 )

where,

p = probability of selecting the individual

q = probability of selecting the best individual

r = rank of the individual (best is 1)

n = population size

r

i

n

P q q

q
q

q

  


 

 

Figure 3.25 Selection Probability 
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In this selection, the chromosomes that have higher fitness value will be ranked to 

the top and will have a higher probability of being selected compared to the 

chromosomes that have a lower fitness. 

To terminate the GA algorithm, a termination criterion needs to be satisfied. GA 

will not obtain the optimal best solution. Hence, GA is usually terminated when it 

reaches the maximum number of generations. For this case, a maximum generation term 

is used to determine termination. 

By using GA for optimization with DM as representation, we can optimize the 

floorplan using deadspace area as function. This algorithm is referred as DMGA (Dot 

Model Genetic Algorithm). The results of DMGA will be discussed in chapter 4.  
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3.2 Floorplan Optimization using Corner Bottom Left List with Genetic 

Algorithm 

This section uses the Corner Bottom Left List to represent the floorplan and 

Genetic Algorithm as the optimization algorithm. Corner Bottom Left List (CBLL) is 

developed based on topological method.  This model is a partially deterministic model 

where the model will place the block in a way that it has a minimum local deadspace 

area. After that, a modified cross entropy method is used with CBLL. CBLL uses three 

tuples which are represented as CBLL = (Bi,Pi,Ri). Similar to DM, Bi also represents the 

block number, Pi represents the position that is placed whether is placed on the right or 

top of the shape of the boundary and also Ri represents the orientation of the block Bi. 

Genetic Algorithm is used for this work as a global search method for 

optimization. GA is used to generate the representation for CBLL. GA chromosomes 

are modified according to the CBLL representation so that it can be used to encode 

CBLL to obtain optimum results. 

3.2.1 Corner Bottom Left List 

Corner Bottom Left List (CBLL) is a floorplan representation which has three 

tuples, (Bi,Pi,Ri), 1 ≤ i ≤ m where m represents the modules. This CBLL representation 

will model the floorplan according to the tuples and also gives the geometric 

relationship between the blocks in the floorplan. A deterministic algorithm is added in 

this representation to minimize the local deadspace area to reduce solution space for the 

heuristic optimization algorithm. This also can reduce the number of solution space that 

is needed for the optimization algorithm. CBLL is a compacted non-slicing floorplan 

representation. This means that the placement of the modules or blocks is placed in 

sequence in a compacted manner. CBLL uses a sequence of module names, a sequence 

of relationship of the next module and also a sequence of the module rotation. 
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3.2.1.1 Preliminaries 

Let B = {b1,b2,…,bm} be a set of m modules with the width and height denoted 

as Wi and Hi respectively. The area of the module Ai, can be calculated as below: 

 

Ai= Wi*Hi (2) 

 

where, 1≤i≤m. Let (xi,yi) denote the coordinates of the bottom right of the module and 

(xi’,yi’) denote the coordinate of the top left of the module. A placement, namely PL, is 

assigned for (xi,yi) where no two modules are allowed to overlap for each of the bi, 1≤i

≤m.  

The aim of this placement is to minimize the cost metric, area. The modules are 

placed one at a time according to the predefined order based on the sequence of the 

block number.  When a module is placed, a contour is formed according to the shapes of 

CBLL which have been fixed. The notations that are used for further description are 

given below.  

 

1) Bi denotes the module sequence that is to be placed at a time with the left top 

represented by (xi’,yi’) and the bottom right represented by (xi,yi). 

2) Pi denotes the position of the module that is placed with reference to the contour. 

There are two positions that are used; one is on right of the contour where the block 

is placed in x-direction and the other is on top of the contour where the block is 

placed in y-direction. 

3) Ri denotes the rotation of the module; which is no rotation or 90
o
 rotation. 

4) C denotes the contour, where (x
j
,y

j
) represents the corner of the contour where, 1 ≤ j

≤ 4. A maximum of only four corners will be used for the different shapes of the 

boundary.  

5) Wi denotes the width of the selected modules for placements (w1,w2,…,wm)  

6) Hi denotes the width of the selected modules for placements (h1,h2,…,hm) 
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3.2.1.2 From CBLL to Placement 

CBLL has three tuple, (Bi,Pi,Ri), 1 ≤ i ≤ m where m represents the modules. Bi = 

(b1,b2,…,bn) is the module sequence where Wi = (w1,w2,…,wm)and Hi =(h1,h2,…,hm) 

denote the width and height of the modules. The first block will be placed according to 

b1 on the plane and the rotation of the block will be referred to Ri. P1 is ignored for the 

first block as the first block will always be placed on the left bottom corner of the plane. 

Figure 3.26 shows how the first block is placed. The corner of the contour is denoted as 

Point 1 =         and Point 2 =        . The shape of this contour that is formed by 

the first block is known as rectangle. There are 12 shapes of the contour that are 

considered for the model of CBLL. The shapes that are used are rectangle, L-shape, 

stairs, N-shape, Sleep-T, T-shape, P-shape, U-stairs, B-stairs, d-shape, C-shape and U-

shape. The contour shapes are shown in Figure 3.27. The corners of the contour are also 

shown in Figure 3.27. The maximum number of corners which is used for CBLL is 4 

corners, which are Point 1 =        , Point 2 =        , Point 3 =         and Point 

4=        . 
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Figure 3.26 Placement of the first block with shape rectangle 
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Figure 3.27 Contour shape and their corners 
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 In order to place the next block, b2, we need to check the shape of the contour. 

The second block that is to be placed always has a previous contour of rectangle. Hence, 

we can place it either on the right of the contour or on top of the contour according to 

the position given in the representation, P2 of the CBLL.  The rotation of b2 depends on 

R2. After placing the module, b2, we need to get the new contour shapes and 

coordinates.   

 

Figure 3.28 Placing of block and updating the contour 

Given that the rectangle contour has the corners, C1 = (x
1
,y

1
) and C2 = (x

2
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2
) as 

shown in Figure 3.28(i).  If the block, b2 is placed on the right of the contour, we will 

get L-shape if the current block height, h2 < y
2

 as shown in Figure 3.28(ii). Hence, the 

contour corners will changed to C1 = (x
1
+w1,y

1
) , C2 = (x

2
,y

2
) and C3 = (x
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block height h2 = y
2
 as shown in Figure 3.28(iii), we will get back the rectangle contour 

and the contour corners will become C1 = (x
1
+w1,y

1
) and C2 = (x

2
,y

2
). If the current 

block height, h2<y
2
 as shown in Figure 3.28(iv), we will get d-shape. Hence, the contour 

corners will become C1 = (x
1
+w1,y

1
) , C2 = (x

2
,y

2
) and C3 = (x

1
,h1). We can observe 

that the contour for L-shape and also d-shape have three points. The packing of the 

floorplan for the above situation is shown in Figure 3.28. This packing will show how 

the contour shape changes depending on the block that is placed during the packing 

process. 

Here, we will discuss about how the placement is done together with some 

deterministic algorithm that calculates the minimum local deadspace area that is to be 

locked during placement in order for the contour to return to the 12 shapes. It is 

important to return the contour to one of the 12 shapes as CBLL uses these shapes to 

form placement. The locked areas will be taken as deadspace area as CBLL is done 

based on the shape of the contours. Besides that, CBLL also will move the blocks 

according to the size of the contour and the blocks given so that no two blocks overlaps 

one another. This is an important criterion for floorplanning optimization. 

Given CBLL = {(b1b2b3b4b5b6b7b8b9b10b11b12)(000011010111)(110010110000)} 

where the packing and placement of the modules are shown in Table 3.1. The first tuple 

of CBLL represents the block sequence being selected. The second tuple of CBLL 

represents the position that will be placed based on the contour where 0 means on the 

right of the contour and 1 means on the top of the contour. This position is also partially 

determined by the deterministic algorithm in the CBLL depending on the shapes of the 

contour. Table 3.1 also shows how the deterministic algorithm functions during 

placement. The third tuple represents the orientation of the block where 1 gives a 90
0

 

rotation to the block and 0 means no rotation is done. 
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Table 1: Packing and Placement 

 CBLL1 = (b1,0,1) 

The plane is empty. Hence, block b1 is 

placed on the left bottom of the plane and is 

rotated 90
0
. The shape of the contour is 

rectangle. This can be seen in the figure 

beside. 

 CBLL2 = (b2,0,1) 

The previous contour is rectangle. Hence, 

block, b2 is placed on the right of the 

rectangle contour and is rotated 90
0
. The 

shape of the contour becomes L-shape. This 

can be seen in the figure beside. 

 CBLL3 = (b3,0,0) 

The previous contour is L-shape. Hence, 

block, b3 is placed on the L-shape without 

referring to the position as the focus is to 

pack to the left corner instead of growing 

the placement horizontally or vertically. 

This is part of the deterministic algorithm 

instead of depending fully on the 

representation. This only happens in L-

shape. Hence, the contour shaped produced 

is stairs as shown in the figure beside. 

b1 

b2 

b2 

b3 b1 

b1 
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 CBLL4 = (b4,0,0) 

The previous contour shape is stairs. The 

block, b4 should be placed on the right of 

the contour. There are 2 locations which can 

be placed as shown in the figure beside. 

Hence, the area,a and b are calculated. Area 

a and b are areas that are locked after the 

contour is formed. Hence, the placement 

with lower locked area will be used. In this 

sample, area a is selected. Then, the contour 

shape now becomes U-shape  

 CBLL5 = (b5,1,1) 

The previous contour is U-shape. As the 

height of b5 is smaller than the width of b2, 

b5 is placed inside the U-shape on the top 

and is rotated 90
O
. Then, the contour shape 

becomes T-shape. 

 

 CBLL6 = (b6,1,0) 

The previous contour is T-shape. Block b6 is 

placed on top of the contour as shown in the 

figure beside to form C-shape contour.  

 

b 

a 

b2 

b3 b1 

b2 

b3 b1 b4 

b4 

b2 

b3 b1 b4 

b5 

b2 

b3 b1 b4 

b5 

b6 
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 CBLL7 = (b7,0,1) 

The shape of the previous contour is C-

shape. The module, b7 is rotated 90
O
 and is 

placed beside the contour as shown in the 

figure beside. Then the new contour shape 

is sleep-T. 

 

 CBLL9 = (b9,0,0) 

The previous contour is N-shape. The block 

b9 is placed beside the contour as shown in 

the figure beside and a new contour with the 

shape d-shape is formed. 

 

 CBLL10 = (b10,1,0) 

The previous contour is d-shape. The block, 

b10 is placed on top of the contour as shown 

in the figure beside. Hence, the new contour 

has the shape of b-stairs. 

 

b2 

b3 b1 b4 

b5 

b6 

 b7 

 

b2 

b3 b1 b4 

b5 

b6 

 b7 

b8 

b9 

b9 

 

b2 

b3 b1 b4 

b5 

b6 

 b7 

b8  
b10 
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 CBLL11 = (b11,1,0) 

The previous contour is b-stairs. The block 

b11 is placed on top of the contour as shown 

in the figure beside. Hence, the new contour 

formed has the shape of P-shape. 

 CBLL12 = (b12,1,0) 

The previous contour is P-shape. The block 

b12 is placed on top of the contour as shown 

in the figure beside. Hence, the new contour 

formed has the shape of U-stairs. 

  

From table 1, we can conclude that CBLL is a partially deterministic 

representation where there are certain conditions where the algorithm needs to calculate 

to determine which location the block is to be placed based on the shape of the contour. 

In order to calculate the total deadspace area, D, we get the height of the boundary, H 

and the width of the boundary, W to get the area of the placement minus the total area 

of the modules given. The percentage of the deadspace area is as the following formula: 

   
    ∑      

 
   

∑      
 
   

 1     (3) 

 

 

b2 

b3 b1 b4 

b5 

b6 

 b7 

b8  
b10 

b9 

b11 

b11 

 

b2 

b3 b1 b4 

b5 

b6 

 b7 

b8  
b10 

b9 

b12 
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3.2.2 Implementation of GA and CBLL 

This GA also uses the same source code as the previous method. From this 

source code, a slight modification is done in order to use for CBLL. CBLL consists of 

three tuples which gives (Bi, Pi, Ri). In order to use GA, we need to model the 

chromosomes so that it matches both CBLL and also GA in order to do optimization. 

Hence, the chromosome for CBLL is modelled as in Figure 3.29. 

 

Figure 3.29 Chromosome Model 

B represents the block number. This number must be permutated numbers as one 

block can only be placed once in the floorplan. This is obtained by using random 

permutation in matlab function. P represents the position of the block. The position of 

the block can be either right or top of the block. Hence, only 0s and 1s are used where 0 

represents right and 1 represents top. In order to generate these random variables, 

formula in Figure 3.30 is used. 

Figure 3.30 Random Binary Variables 

 Finally, R represents the orientation of the block . This representation is also 0s 

and 1s. In order to generate these random variables, the formula in Figure 3.31 is used. 

Figure 3.31 Random Binary Variables 

After modelling the chromosomes, then we need to initialize the initial population 

according to the random generation as stated earlier. Same as method 1, the number of 

populations used is determined by the number of blocks that are needed for 

optimization. When the number of blocks to be placed in floorplan increases, the 

number of population needs to be increased.  

Chromosome = {(B1,B2, …, Bn) (P1,P2, …, Pn) (R1,R2, …, Rn) } 

R = round( rand(b1,…bn) ) 

R = round( rand(b1,…bn)) 
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After initializing the population, all chromosomes are evaluated using CBLL in 

order to obtain the fitness of the chromosomes. Then the population is arranged 

according to the fitness of the chromosomes where the fittest chromosome will be on 

the top and the worst chromosome will be at the bottom. The fitness of the 

chromosomes depends on the deadspace area of the floorplan. The lower the deadspace 

area, the fitter the chromosome and vice versa. CBLL is used to calculate the deadspace 

area of the floorplan of the chromosomes or also are known as the solution strings. 

After arranging the population, the top quantile is selected and will be brought to the 

next population. In this new population, a few chromosomes are selected to do the GA 

operators such as Crossover and also Mutation. 

There are many types of crossover operations. But the crossover operators that are 

used in this work are simple crossover for the binary representation. The crossovers that 

are used for the ordered based representations are the cyclic crossover, order-based 

crossover, single point crossover and partial mapping crossover. The crossover methods 

were described in the first section. 

Besides crossover operator, a few of the chromosomes from the population is 

selected to do mutation operations. There are 5 types of mutation operator for order 

based part of the chromosomes which are used in this section. They are inversion 

mutation, swap mutation, adjacent swap mutation, three swap mutation and shift 

mutation.  Besides mutation for order-based number, mutation also is done for the 

binary representation. There are two types of mutation operations which are used in this 

work which are the inversion mutation and binary mutation. Crossover and mutation are 

used so that more solutions can be produced. Besides that, these can give better gene to 

get better results for floorplan.  
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 The GA algorithm that is used for this project is for maximization same as in the 

previous section. Hence, negative is added to the deadspace area to get the fitness of the 

solution string to minimize the deadspace. In this section, the deadspace will be 

calculated using CBLL. CBLL will also give the placement of the blocks according to 

the solution strings generated by GA. Hence, the fitness of the solution string can be 

determined. After doing some operator functions, the fitness of the children needs to be 

evaluated before inserting them in to the population again. Only those with the fitness 

match to the required criterion will be kept to be brought into the next generation. The 

selection of the chromosome is based on the normalized geometric selection in this 

project as in the first method.   

To terminate the GA algorithm, a termination criterion needs to be met. Since GA 

is an optimization algorithm, it will not able to obtain the ideal solution. Hence, GA is 

usually terminated when it reaches the maximum number of generation. For this case, a 

maximum generation term function is used to determine when to end the GA algorithm. 

Usually the GA algorithm is terminated by selecting the number of generations of GA. 

Hence, by using GA for optimization with the use of CBLL as representation, we 

can optimize the floorplan based on the area of the deadspace. It will be referred as 

CBLL-GA (Corner Bottom Left List Genetic Algorithm) in the rest of the thesis. The 

results for CBLL-GA will be shown in chapter 4.  

 

3.3 Floorplan Optimization using Corner Bottom Left List with modified Cross 

Entropy Method 

In this section, the method that is used for representation is Corner Bottom Left 

List (CBLL) which is developed based on topological method as discussed previously. 
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A modified cross entropy method is used to for optimization with CBLL as the 

representation. CBLL uses three tuples which are represented as CBLL = (Bi,Pi,Ri) 

where Bi represents the block number, Pi represents the position that is placed whether 

is placed on the right or top of the shape of the boundary and also Ri represents the 

orientation of the block Bi. The CBLL method will not be discussed in this section as it 

is already discussed in 3.2.1. 

The CE method is modified to suit the representation of CBLL. The CE equation 

that has been modified to 3 dimension to form 2 sequences reflects the relationship 

between the blocks and the probability of the most matching pair of the CBLL 

representation and reduces both the local deadspace area and also the global deadspace 

area by using the optimal value,  . CE is extended into 3 dimensional matrixes instead 

of the original TSP method which uses 2 matrixes for optimization. Hence, the CE 

method can be fully utilized based on the CBLL representation. The solution string for 

CBLL representation is also modified to accommodate both CE and also for the 

probability matrix. 

3.3.1 Modified Cross Entropy Method 

In this section, the modified CE method will be discussed and also how the CBLL is 

implemented on the modified CE method. The original CE only produces a single string 

of permutated numbers. However, to generate the CBLL representation and also to 

optimize the floorplan, modifications need to be done to suit this application. The CE 

method is adapted from the TSP method. However, instead of maintaining the form, we 

change the original CE two dimension probability transition matrixes into three 

dimensions matrixes. The basic concept of CE is still retained as it still consists of two 

iterative phases which are: 

1) Generating a random data according to the CBL representation for this project. 
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2) Updating the parameters of the random mechanism which is the parameters of 

the pdfs (probability density function) on the data based on the sample results so 

that better samples can be produced in the next iteration and the iteration stops 

when the samples reaches the required criteria. 

3.3.1.1 Cross Entropy Method 

The method CE employed to do optimization is as follows. As floorplanning is a 

minimization problem, hence we need to define a function, S(x) that needs to be 

minimized for some set X. The minimum is denoted with optimal value   *, as shown in 

the equation below: 

     
   

   
 S(x)     (4) 

To optimize the floorplan through the CBLL representation, the minimum of the 

cost function S(x) is given by: 

           {        ∑        
 
   }       (5) 

where    is the height of the floorplan boundary,    is the width of the floorplan 

boundary,  hi is the height of the module and wi is the width of the module where 

1≤i≤m. Next, the deterministic problem is randomized by defining a family of pdfs 

{f(·;v), vϵ Ѵ} for the set of X. The estimation value   is a value estimated by the CE 

method so that floorplanning optimization can be done. The estimation value is 

determined as below: 

                 {      }    (5) 

where   is the probability measure under which the random state X has pdf f(·;v) where 

X represents the solution strings that will be formed to get the CBLL sequence and     

denotes the corresponding expectation operation. 
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 This estimation problem will be called as associated stochastic problem. The 

random vector obtained is required to be converted to CBLL form. Hence, estimation   

and the root of the equation  , can be calculated.        is a rare event and the 

estimation of   is nontrivial. The CE formulas shown in equations 6,7,8,9 and 10 are 

used to solve the floorplanning problem effectively by making adaptive changes to the 

probability density function according to the Kullback-Leibler cross entropy. This will 

create a sequence of f(·;u), f(·;v1), f(·;v2),… pdfs in order to achieve the optimal 

floorplan area. Let   be a value lying between l0
-2

 and 10
-1

. Below is the fundamental of 

cross entropy method. 

1. Adaptive updating of    where t represents the iteration number. For a fixed vt-1, 

let    be a  1    -quantile of S(X) under vt-1, so that    satisfies 

     
                    (7) 

     
                    (8) 

where X ~ f(·;vt-1). A simple estimator  ̂   of    is the order statistic  

 ̂    ⌈      ⌉            (9) 

where N is the total number of samples in the data. 

2. Adaptive updating of vt. For a fixed    and vt-1 derive vt from the solution of the 

CE program: 

                   
 {       

                      (10) 

The stochastic counterpart of (6) is as follows: for the fixed  ̂  and  ̂   derives  ̂  for 

the following program: 

     ̂              
 {       

        ̂               (11) 

Proposition 1: Let  * be a minimum value for the deadspace area according to the set 

of X.  Suppose that the corresponding minimizer is unique x* and that the class 
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densities {f(·;v)} used in the CE program contains the degenerate density with mass at 

x*: 

     {
1        

           
     (12) 

Hence, the solutions for the random generation and CE program in 

estimating          ) coincide and will respond to    . From this, better solutions 

for X can be obtained in the next iteration. This enables an estimation of the true 

optimal solution which is the minimum deadspace area of a floorplan as it can converge 

to a smaller neighbourhood for the next iteration. Instead of updating the parameter 

vector v, directly via the (10), the following smoothed version is used: 

 ̂     ̂   1      ̂              (13) 

where  ̂  is the parameter vector obtained from (10) and   is the smoothing parameter 

with 0.7 <   < 1. When   1, the original updating rule is maintained. Smoothing is 

done to values of  ̂  in order to prevent the probability that some component  ̂    of  ̂  

will be 0s or 1s in the first few iterations. This is important when  ̂  is a vector or a 

matrix of probabilities. Note that for 0 <   < 1,  ̂   >0 while for   1 the first few 

iterations will cause  ̂   =0 or  ̂   =1 for some indices i and this might cause 

convergence to undesired solutions. (Rubinstein & Kroese, 2008) 

3.3.1.2 Random Generation of CBLL 

CBLL consists of three tuples, (Bi,Pi,Ri), 1 ≤ i ≤ m where m represents the total 

number of modules. The probability transition matrix p is a three dimensions matrices 

that randomly generate the representation for the CBLL, which is X. The component of 

probability  ̂ for the stochastic case is as follows: 

 ̂           
∑  {      ̂ }

 {       }
 
   

∑  {      ̂ }
 
   

       (14) 
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This means that p(i,j,z) corresponds to the probability of the block i, being chosen 

at j-th and z-th place. i represents the block number and j and z represent the sequence of 

the module i, being placed. The algorithm generation of random representation for 

CBLL is shown in the following: 

  

A generated random permutation value x = (x1k,x2k,…,xnk) corresponds to a 

unique block sequence and placement accordingly. This means that the selection of the 

module is done as the sequence x1k → x2k→…→xnk where 1 ≤ k ≤ 4.  

k P R 

1 0 0 

2 0 1 

3 1 0 

4 1 1 

Let   be the set of possible placement for the floorplan where the deadspace area 

is calculated through CBLLcalculations. The goal of floorplanning is to minimize S 

over the set of   using the CE method. In order to minimize S, a specific mechanism is 

needed to generate the random representation for CBLL.  

To generate a random CBLL representation x = (x1k,x2k,…,xnk), a transition 

probability matrix p is used in an algorithm of trajectory generation using node 

placement. This algorithm is crucial to generate the CBLL representation for the 

1: Let t = 1, b = 0, for all j≠1, i = 1 

2: Generate U ~ U(0, l), and 

 let R = U* ∑  𝟏  𝒃𝒋 𝒑𝒊𝒋𝒛  𝑹𝒏
𝒋 𝟏  

3: Let sum = 0 and j = 0 

4: while sum < R do 
5: j = j + 1 

6: if j > n 

7:  z = z+1 
8:  j = 1 

9: end 

10: if bj = 0 

11:  sum = sum + pijz 

12: end 
13: end 

14: set row P(:,j) = 0 

15: normalize the row Pj to sum up to 1 
16: Set t = t + 1, Xt = j, bj = 1 and i = j 

17: if t = n 

18: stop 

19: else return to 2 

20: end 
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optimization of CE to generate a stochastic process {X1k,X2k,…,Xnk} according to the 

conditional distribution of Markov chain where each module can only be chosen once 

and placed at one location and orientation. The transition matrix for the stochastic case 

is shown in (14) and the transition matrix for the deterministic component is shown 

below: 

       
      {        

       

      {        
         (15) 

where      denotes the set of tours from the placement of block i being chosen at 

position j and orientation z of the block being placed relative to the contour.  

According to the trajectory generation using node placement algorithm, consider 

the corresponding optimal degenerate transition matrix, p*. If  * is the optimal 

deadspace area, the corresponding sequence is x*.  For any pt-1 solution for CE, the 

optimal degenerate transition matrix p* = (    
 ) is given by the following equation: 

    
   {

1            

            
     (16) 

Example of a CBLL sequence is as follows: 

b1,2 →b2,2 →b3,1 →b4,1 →b5,4 →b6,3 →b7,2 →b8,4 →b9,1 →b10,3 →b11,3 →b12,3 

The corresponding P* is as follow: 
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3.3.1.3 Implementing Cross Entropy Algorithm 

The CE method uses the probability from the trajectory generation using node 

placements in order to optimize the floorplan according to CBLL. Below is the CE 

algorithm that is used for optimizing the floorplanning: 

1) Choose an initial reference transition matrix  ̂   where all the off-diagonal elements 

in the matrix will give a sum equal to 1/n where n is the number of modules. Set t = 

1 where t represents the number of iteration in the CE algorithm. 
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2) A random permutation x = (x1k,x2k,…,xnk)  is generated according to the trajectory 

generation using node placement and converted to CBLL representation to evaluate 

the deadspace area in order to obtain the requisite quality of the randomly 

permutated sequence.     ̂    is the probability that is generated and is computed 

according to the sample  1     -quantile  ̂t, of the performance, 

 ̂     ⌈       ⌉         (17) 

3) After updating the transition matrix  ̂ , the matrix is smoothed out based on the 

equation below: 

 ̂     ̂   1      ̂           (18) 

where   is chosen based on the percentage of  ̂ .  ̂  is calculated and retained as  

 ̂    in the next iteration.  

4) If for some  t = t+1, say d = 5, 

 ̂    ̂         ̂                 (19) 

then the algorithm will terminate. If not, set   t = t+1 and reiterate from Step 2.   

Next, the best  1      -quantile will be brought forward by increasing the probability 

of the node in the specific sequence of the results obtained. When it reaches the 

stopping criterion as described in step 4, the algorithm should converge and gives the 

minimum deadspace area of the given block for a floorplan. This study will be referred 

as CBLL-CE. The results will be discussed in chapter 4.  
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CHAPTER 4.  RESULTS, DATA ANALYSIS AND DISCUSSION 

4.1 DMGA 

In the first part of this section, the effects of mutation operators and crossover 

operators are discussed for both floating point representation and also ordered base 

sequence. This is to select the optimal frequency for mutation and crossover operators. 

The final section discusses on the optimal results obtained using DMGA. 

4.1.1 Effects of mutation operators on floating point representation 

In this section, the effects of mutation operations frequency for floating point 

representation is studied using population size of 100 for 100 generations. Benchmark 

hp is used for this purpose. The floating point representation consists of 2 strings which 

are relative block number and position of the reference block that is used in DM. The 

frequencies of mutation operations are varied from low value (5) to high value (30) for 

each mutation operator. The mutation operators that were used are boundary mutation, 

multi non-uniform mutation, non-uniform mutation and uniform mutation. The mutation 

operation frequency for each operator is varied according to the sequence mentioned. 

Table 2 and Figure 4.1 show the optimization results for deadspace area and time when 

the frequency of mutation operations are varied for floating point representation. 

Table 2: Study on the Frequency of Mutation Operators 

Mutations Frequency Deadspace(%) Time (s) 

Boundary Multi Non-Uniform Non-uniform Uniform 

5 5 5 5 12.92 383.25 

30 5 5 5 8.79 475.24 

5 30 5 5 11.41 473.25 

5 5 30 5 11.77 385.04 

5 5 5 30 9.47 683.64 

30 30 30 30 9.71 1193.52 
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Figure 4.1 Study on Number of Mutation Operators for floating point representation  

The result obtained is based on average results of 30 simulations for each case. 

From the results, we can observe that when all types of mutation operations frequencies 

are low (5), the deadspace area obtained is higher. The time consumed to complete each 

optimization process is the shortest compared to the others.  

When boundary mutation frequency is high (30) and the rest are retained low 

(5), the deadspace obtained is the lowest in comparison with others but the time taken is 

longer compared to running the optimization when all mutation operations frequencies 

are retained low (5). However, when the mutation operation frequency for multi non-

uniform mutation or non-uniform mutation is high (30), only marginal reduction in 

deadspace area and a slight increase in time for each optimization are observed. When 

the uniform mutation operation frequency is high (30), the deadspace area obtained is 

low compared to when all the mutation operations frequency are low. However, it is 

observed that an increase of 78% in optimization time compared to when all types of 

mutation operations frequency is low (5). When all the mutation operations frequencies 

are high, the deadspace area is also low though it is not as low as when only boundary 
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mutation operation frequency is allowed to be high (30). However, the time taken is 

considerably long. Hence, in order to select mutation operations frequencies for 

optimum outcome, we need to consider the time and also deadspace area results. The 

runtime taken and the deadspace area obtained must be as minimal as possible for 

efficient floorplanning optimization.  Hence, the optimum frequencies of mutation 

operators selected are as follow:  

a. Boundary mutation – 30 

b. Multi Non-uniform Mutation – 5 

c. Non-uniform Mutation – 5 

d. Uniform Mutation – 5 

4.1.2 Effects of crossover operators for floating point representation 

In this section, the effect of crossover operations frequencies for floating point 

representation is studied with a population size of 100 for 100 generations. The 

benchmark used for this study is hp. The floating point representation consists of 2 

different strings which are relative block number string and position of the reference 

block string that is used in DM. The crossover operations frequencies are varied from 

low value (5) to high value (30) for each crossover operator. The crossover operators 

that were used are arithmetic crossover, heuristic crossover and simple crossover. The 

crossover operations frequencies are varied according to the sequence mentioned. Table 

3 and Figure 4.2 show the optimization results for deadspace area and time when the 

frequency of crossover operations are varied for floating point representation. 

 The result obtained is based on the average results of 30 simulations for each 

case study. From the results, we can observe that when all crossover operations 

frequencies are low (5) for each crossover operator, the deadspace area obtained is the 

highest in comparison with other crossover operations frequencies combination. 
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However, the time taken to complete each optimization is the shortest compared to the 

others. 

Table 3: Study on the Frequency of Crossover 

Crossover Frequency Deadspace(%) Time (s) 

Arithmetic Heuristic Simple 

5 5 5 12.92 383.25 

30 5 5 12.04 503.44 

5 30 5 10.28 432.94 

5 5 30 12.08 429.75 

30 30 30 12.26 874.51 

 

 

Figure 4.2 Study on the Number of Crossover for Floating Point Representation 

When the simple crossover operator is high (30) and the other crossover 

operators are retained low, the deadspace obtained is the lowest compared. However, 

the time taken is 12% longer that when all the frequencies of crossover operations are 

low. There is no significant difference in the deadspace area when the frequency of 

crossover operator for arithmetic crossover or heuristic crossover or when all crossover 

operations frequencies are high (30). The runtime for high frequency of arithmetic 
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crossover or heuristic crossover are slightly longer compared to when all the crossover 

operations frequencies are low (5). However, when all the crossover operations 

frequencies are high (30), the time taken to complete an optimization is considerably 

long. Hence, similar to selection of mutation operations frequencies, selecting the 

crossover operations frequencies also involves both time and deadspace area. Hence, the 

optimum frequencies of crossover operators are as follow:  

a. Arithmetic Crossover – 5 

b. Heuristic Crossover – 30 

c. Simple Crossover – 5 

4.1.3 Effects of mutation operators for ordered based sequence 

In this section, the effects of mutation operators for ordered based sequence is 

studied with a population size of 100 for 100 generations. The benchmark used for this 

study is hp. The ordered based sequence used is for the current block placement that is 

used in DM. Hence this will affect the sequence where the blocks are chosen. The 

effects of the mutation operators which are studied are in the sequence of inversion 

mutation, adjacent swap mutation, shift mutation, swap mutation and threeswap 

mutation. The mutation operations frequencies are varied from low value (5) to high 

value (30). Table 4 and Figure 4.3 show the optimization results for deadspace area and 

time when the frequency of mutation operators are varied for ordered based sequence. 
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Table 4: Study on the Frequency of Mutation 

Mutations Frequency Deadspace 

(%) 

Time 

(s) 
Inversion Adjacenet Swap Shift Swap Threeswap 

5 5 5 5 5 12.92 383.25 

30 5 5 5 5 10.74 473.53 

5 30 5 5 5 12.44 497.63 

5 5 30 5 5 10.12 435.98 

5 5 5 30 5 12.74 478.83 

5 5 5 5 30 11.69 489.54 

30 30 30 30 30 14.26 987.43 

 

 

Figure 4.3 Study on the Frequency of Mutation for ordered based number 

 

 The result obtained is based on average results of 30 simulations for each case 

study. From the results, we can observe that when all the crossover operations 

frequencies are high (30), the deadspace is highest in comparison with other mutation 

parameter combinations and the time taken to complete the optimization is considerably 

long. When the inversion mutation frequency or the shift mutation operator frequency is 

high (30), the deadspace area is the lowest compared to frequency combinations.  
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However, the time taken is 15% longer compared to when all the mutation 

operations frequency is retained low. There is only marginal decrease in deadspace area 

when the mutation operations frequency for adjacent swap mutation, swap mutation or 

threeswap mutation is high (30).  It can be concluded that operator frequency for 

inversion mutation and shift mutation should be high (30) as this will reduce the 

deadspace area and while causing minimal increase in the time taken to complete the 

simulation. Having all high (30) for the different types of mutation operations 

frequencies is definitely a bad choice as it does not only worsen the deadspace area but 

also uses more time to complete a simulation. Hence, the optimal frequency of 

crossover operator that is selected is as follow:  

a. Inversion Mutation – 5 

b. Adjacent Swap Mutation – 5 

c. Shift Mutation – 30 

d. Swap Mutation – 5 

e. Threeswap Mutation – 5 

4.1.4 Effects of crossover operators for ordered based numbers number 

In this section, the effects of crossover operators for ordered based numbers is 

studied with population size of 100 for 100 generations. The benchmark used for this 

study is hp. Ordered based sequences are used for the current block placement. Hence, 

this will affect the sequence where the blocks are chosen. The effects of the crossover 

operators that are studied are cyclic crossover, single point crossover, order-based 

crossover, uniform crossover and partial mapping crossover. The frequency of crossover 

operations is varied from low value (5) to high value (30). Table 5 and Figure 4.4 show 

the effects in the optimization results for deadspace area and time when the frequency of 

crossover operators are varied for ordered based sequence. 
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Table 5: Study on the Frequency of Crossover 

Crossover Frequency 

Deadspace 

(%) 

Time 

(s) 
Cyclic Single 

Point 

Order-

based 
Uniform Partial 

Mapping 

5 5 5 5 5 12.92 383.25 

30 5 5 5 5 11.23 368.44 

5 30 5 5 5 12.61 365.90 

5 5 30 5 5 10.64 367.29 

5 5 5 30 5 10.89 367.08 

5 5 5 5 30 11.46 376.09 

30 30 30 30 30 7.88 423.84 

 

 

Figure 4.4 Study on the Frequency of Crossover for ordered based number 

 The result obtained is based on average results of 30 simulations for each case. 

From the results, we can observe that when all the crossover operators frequencies are 

high (30), we obtain the lowest deadspace area. The time taken is only slightly longer 

compared to when all the crossover operators frequency are low (5).  

Introducing single point crossover frequency at 30 hardly brings any changes to 

the deadspace area though the time taken is marginally smaller in comparison with the 
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simulation that involves all crossover operations frequencies low. When the frequency 

for cyclic crossover, order-based crossover, uniform crossover or partial mapping 

crossover is high (30), the deadspace area is relatively lower compared to when all are 

low (5) but higher compared to when all are high (30). Hence, when all the crossover 

operator frequencies are high will give a better result of deadspace area and does not 

affect the time taken to complete the crossover. Hence, the optimal frequency of 

crossover operators that is selected is as follow:  

a. Cyclic Crossover – 30 

b. Single Point Crossover – 30 

c. Order-based Crossover – 30 

d. Uniform Crossover – 30  

e. Partial Mapping Crossover - 30 

4.1.5 Optimal Results and Data Analysis 

For DMGA, a few analyses had been done in order to test validity of the work. 

Table 6 and Figure 4.5 summarises the results of the benchmark for apte, hp, xerox, 

ami33 and ami49.   

Table 6: Optimal Results for DMGA 

Benchmark  Apte xerox hp ami33 ami49 

Number of blocks, n 9 10 11 33 49 

Minimum 

deadspace, (%) 1.5887 5.2593 6.7784 12.3747 16.0801 

Standard 

deviation(σ) 0.5029 1.8515 0.9072 1.0867 2.3154 

Mean deadspace, μ  

(%) 2.0715 7.1286 7.6889 12.674 18.496 

Average Time,t (s) 425.64 457.35 502.53 1719.07 3267.45 

Number of 

Generations, Gen 100 100 100 130 150 

Number of 

Populations, Pop 100 100 100 200 250 

 



96 

 

 

Figure 4.5 Graph showing the optimal results for DMGA 

 As the number of block increases, the deadspace percentage and time taken for 

optimization increases. This is because it is more cumbersome to achieve compact block 

placement based on the complexity of the sequence. Hence the probability to obtain the 

ideal answer reduces. Besides that, it is observed that the standard deviation increases as 

the number of blocks increases. As the number of blocks increases, wider range of 

optimization results will be obtained as there is a wider range of solution strings.  

The population size and number of generation are selected based on the number 

of blocks. As the number of blocks increases, the generation and also population should 

be increased to produce more random generated strings so that higher chances to obtain 

better solution strings. Increase in number of blocks also will increase the time required 

to optimize the floorplan.  From the table and graph, we can see that longer time is 

taken to optimize ami49 because more blocks are needed for placement and also the 

number of generation and population size for GA need to be increased. Below are the 

best results obtained for the benchmarks: 
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1. Apte – The minimum deadspace area obtained is 1.5887%. Figure 4.6 shows the 

most optimum placement for apte which has 9 blocks using GA as optimization 

with DM as representation. 

 

Figure 4.6 Placement for Apte 

2. Xerox – The minimum deadspace area obtained is 5.2598%. Figure 4.7 shows 

the most optimum placement for xerox which has 10 blocks using GA as 

optimization with DM as representation. 

 

Figure 4.7 Placement for Xerox 

3. Hp – The minimum deadspace area obtained is 7.9102%. Figure 4.8 shows the 

most optimum placement for hp which has 11 blocks using GA as optimization 

with DM as representation. 
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Figure 4.8 Placement for hp 

 

4. Ami33 - The minimum deadspace area obtained is 12.3747%. Figure 4.9 shows 

the most optimum placement for ami33 which has 33 blocks using GA as 

optimization with DM as representation. 

 

Figure 4.9 Placement for ami33 

 

5. Ami49 - The minimum deadspace area obtained is 16.0801%. Figure 4.10 shows 

the most optimum placement for ami49 which has 49 blocks using GA as 

optimization with DM as representation. 
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Figure 4.10 Placement for ami49 

4.2 CBLL-GA 

In the initial part of this section, discussion on the effects of mutation operators 

and crossover operators are discussed for binary representation and also ordered base 

sequence. This is to select the optimal frequency for mutation and crossover operators. 

The final section discuss on the optimal results for CBLL-GA. 

4.2.1 Effects of mutation operators on binary sequence 

In this section, the effects of mutation operators frequency for floating point 

representation is studied using population size of 100 for 100 generations. Benchmark 

xerox is used for this purpose. The floating point representation consists of 2 strings 

which are block position and the rotation of the block. The frequency of mutation is 

varied from low value (5) to high value (30) for each type of mutation operator. The 

mutation operators that were used are inversion mutation and binary mutation. Table 7 

and Figure 4.11 show the optimization results for deadspace area and time when the 

frequency of mutation operators are varied for floating point representation. 
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Table 7: Study on the Frequency of Mutation Operators 

Mutations 

Frequency Deadspace(%) 
Time 

(s) 
Inversion Binary 

5 5 2.93 4.2081 

30 5 2.85 5.7212 

5 30 2.95 6.4825 

30 30 2.34 8.1587 

 

 

Figure 4.11 Study on Number of Mutation Operators for floating point representation  

The result obtained is based on average results of 30 simulations for each case. 

From the results, we can observe that when all the mutation operations frequencies are 

high (30) for each mutation, the deadspace area obtained is the lowest. However, a 

longer time is needed to accommodate higher frequency of mutation operation. 

Nevertheless, the simulation takes less time as there are only two types of mutation 

involves in this optimization.  

When the inversion mutation frequency is high (30), the deadspace area is 

slightly lower than when all the mutation frequency is low (5) and the time taken is 
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slightly longer in comparison to condition where all the mutation operations frequencies 

are low. When the binary mutation frequency is high (30), there is no significant 

difference in the deadspace area but the time taken is longer. However, when both 

mutation frequencies are high, the lowest deadspace area is obtained. From the 

observation, the frequency of the mutation operators that are selected is as follows: 

a) Inversion Mutation - 30 

b) Binary Mutation - 30 

4.2.2 Effects of crossover operator for binary representation 

In this section, the effect of crossover operator frequency for binary 

representation is studied with a population size of 100 for 100 generations. The 

benchmark used for this study is xerox. The binary representation consists of 2 different 

strings which are block position and rotation of the block. The frequencies of crossover 

operators are varied from low value (5) to high value (30). The crossover operators used 

is called simple crossover. Table 8 and Figure 4.12 show the optimization results for 

deadspace area and time when the frequency of crossover operators are varied for 

binary representation. 

Table 8: Study on the Frequency of Crossover  

Simple Crossover Frequency Deadspace(%) Time (s) 

5 4.5189 4.2181 

30 4.2181 4.2181 
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Figure 4.12 Study on the Number of Crossover for Floating Point Representation 

 The result obtained is based on mean results of 30 simulations for each case 

study. From the results, it can be observed that there is no significant difference in the 

deadspace area when the frequency for simple crossover is high (30) or low (5). Besides 

that, there is not much difference in the time taken to complete a simulation. It can be 

concluded that simple crossover frequency for binary representation does not have any 

significant effects on the deadspace area as well as time needed to complete a 

simulation. 

4.2.3 Effects of mutation operators for ordered based sequence 

In this section, the effects of mutation operators for ordered based sequence is 

studied with a population size of 100 for 100 generations. The benchmark used for this 

study is xerox. The ordered based sequence used is for the current block placement. 

Hence this will affect the sequence where the blocks are chosen. The effects of the 

mutation operators which are studied are inversion mutation, adjacent swap mutation, 

shift mutation, swap mutation and threeswap mutation. The mutation operations 

frequencies are varied from low value (5) to high value (30). Table 10 and Figure 4.13 
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show the optimization results for deadspace area and time when the frequency of 

mutation operators are varied for ordered based sequence. 

Table 9: Study on the Frequency of Mutation 

Mutations Frequency Deadspace 

(%) 

Time 

(s) 
Inversion Adjacenet Swap Shift Swap Threeswap 

5 5 5 5 5 2.93 4.0542 

30 5 5 5 5 2.95 4.9214 

5 30 5 5 5 3.04 5.0185 

5 5 30 5 5 2.51 4.2401 

5 5 5 30 5 2.97 5.2618 

5 5 5 5 30 2.39 5.2751 

30 30 30 30 30 2.89 8.5187 

 

 

Figure 4.13 Study on the Frequency of Mutation for ordered based number 

 The result obtained is based on average results of 30 simulations for each case 

study. From the results, it can be observed that when the frequency for shift mutation or 

threeswap mutation is high (30), the deadspace area is the lowest. Time taken is only 

slightly longer than when all the frequencies of the mutation operations are low (5). 

When the frequency of mutation operation for inversion mutation, adjacent swap 

mutation or swap mutation is high (30), there is not much change in the deadspace area 
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and only a slight increase in the time taken to complete one simulation. When all the 

frequencies of mutation operations are high, there is not much difference in the 

deadspace area and the time taken to complete a simulation is twice compared to the 

time taken when all the mutation operations frequencies are low. It can be concluded 

that only threeswap mutation should have higher frequency. Hence, the optimal 

frequency of crossover operator that is selected is as follow:  

a. Inversion Mutation – 5 

b. Adjacent Swap Mutation – 5 

c. Shift Mutation – 5 

d. Swap Mutation – 5 

e. Threeswap Mutation – 30 

4.2.4 Effects of crossover operators for ordered based number 

In this section, the effects of crossover operations for ordered based numbers is 

studied with population size of 100 for 100 generations. The benchmark used for this 

study is xerox. Ordered based sequences are used for the current block placement. 

Hence, this will affect the sequence where the blocks are chosen. The effects of the 

crossover operators that are studied are cyclic crossover, single point crossover, order-

based crossover, uniform crossover and partial mapping crossover. The frequencies of 

crossover operations are varied from low value (5) to high value (30). Table 10 and 

Figure 4.14 show the effects in the optimization results for deadspace area and time 

when the frequency of crossover operators are varied for ordered based sequence. 
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Table 10: Study on the Frequency of Crossover 

Crossover Frequency 

Deadspace 

(%) 

Time 

(s) 
Cyclic Single 

Point 

Order-

based 
Uniform Partial 

Mapping 

5 5 5 5 5 2.93 4.1054 

30 5 5 5 5 2.67 4.0021 

5 30 5 5 5 3.15 4.2105 

5 5 30 5 5 2.88 4.5617 

5 5 5 30 5 2.47 3.9897 

5 5 5 5 30 3.14 4.0158 

30 30 30 30 30 2.93 5.0464 

 

 

Figure 4.14 Study on the Frequency of Crossover for ordered based number   

 

The result obtained is based on the average results of 30 simulations for each 

case. From the results, when only uniform crossover frequency is high (30) and the rest 

are retained low (5), the deadspace area obtained is the smallest. The time taken is also 

shorter compared to the time taken when all the crossover frequency are low. 
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When only cyclic crossover frequency is high (30), the deadspace area is second 

most minimum though the time taken is slightly lower than when only the uniform 

crossover frequency is high (30). The deadspace area and the time taken are almost the 

same when order based crossover and partial mapping crossover is high. However, 

when single point crossover frequency is set as high (30), the deadspace area increases 

although the time taken to complete the simulation is about the same as when all the 

crossover frequency is retained low. There is  hardly any difference in the deadspace 

area when all the frequency of the crossover operations are retained high (30) or low (5) 

but the time taken to complete a simulation is the longest when all the crossover 

operators frequencies are high (30). It can be concluded that uniform crossover and 

cyclic crossover can have higher frequency in order to reduce the deadspace area 

without prolonging time taken to complete a simulation. Hence, the optimal frequency 

of crossover operator that is selected is as follow:  

a. Cyclic Crossover – 5 

b. Single Point Crossover – 5 

c. Order-based Crossover – 5 

d. Uniform Crossover – 30  

e. Partial Mapping Crossover - 5 

4.2.5 Optimal Results and Data Analysis 

For CBLL-GA, analyses had been carried out to test validity of the work. Table 11 and 

Figure 15 summarises the results of the benchmark for apte, hp, xerox, ami33 and 

ami49.   
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Table 11: Optimal Results for CBLL-GA 

Benchmark  apte xerox hp ami33 ami49 

Number of blocks, n 9 10 11 33 49 

Minimum deadspace, 

(%) 0.7697 2.479 1.318 2.201 2.690 

Standard deviation(σ) 0 0.3396 0 0.4114 0.5446 

Mean deadspace, μ  

(%) 0.7697 2.479 1.318 2.448 3.555 

Average Time,t (s) 1.0231 4.2451 5.1520 10.3215 18.4271 

Number of 

Generations, Gen 100 100 100 130 150 

Number of 

Populations, Pop 100 100 100 200 250 

 

 

Figure 4.15 Graph showing the optimal results for CBLL-GA 

 As the number of block increases, the deadspace percentage and time taken for 

optimization increases. This is because it is more cumbersome to achieve compact block 

placement based on the complexity of the sequence and therefore increases the range of 

solution strings.  Hence, the probability to obtain the optimum deadspace area reduces. 

The population size and number of generation are selected based on the number 

of blocks. As the number of blocks increases, the generation and also population should 
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be increased to produce more random generated strings so that higher chances to obtain 

better solution strings. Increase in number of blocks also will increase the time required 

to optimize the floorplan.  From the table and graph, the shortest time taken for a 

complete simulation is apte and the longest time taken to complete a simultation is 

ami49 because more blocks are needed for placement and also the number of generation 

and population size for GA needs to be increased. Following are the best results 

obtained for the benchmarks: 

1.  Apte – The minimum deadspace area obtained is 0.7697%. Figure 4.16 shows  

 the most optimum placement for apte which has 9 blocks using GA as  

optimization with CBLL as representation. 

 

Figure 4.16 Placement for Apte 

 

2. Xerox – The minimum deadspace area obtained is 2.479%. Figure 4.17 shows 

the most optimum placement for xerox which has 10 blocks using GA as 

optimization with CBLL as representation. 
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Figure 4.17 Placement for Xerox 

 

3. Hp – The minimum deadspace area obtained is 1.318%. Figure 4.18 shows the 

most optimum placement for hp which has 11 blocks using GA as optimization 

with CBLL as representation. 

 

Figure 4.18 Placement for hp 

 

4. Ami33 - The minimum deadspace area obtained is 2.201%. Figure 4.19 shows 

the most optimum placement for ami33 which has 33 blocks using GA as 

optimization with CBLL as representation. 
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Figure 4.19 Placement for ami33 

 

5. Ami49 - The minimum deadspace area obtained is 2.690%. Figure 4.20 shows 

the most optimum placement for ami49 which has 49 blocks using GA as 

optimization with CBLL as representation. 

 

Figure 4.20 Placement for ami49 

4.3 CBLL-CE 

For CBLL and CE, a few analyses had been done in order to test validity of the work. 

Table 12 and Figure 4.21 summarises the results of the benchmark for apte, hp, xerox, 

ami33 and ami49.   
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Table 12: Optimal Results for CBLL and CE 

Benchmark  apte xerox hp ami33 ami49 

Number of blocks, n 9 10 11 33 49 

Minimum deadspace, 

(%) 0.7697 2.479 1.318 1.838 2.617 

Standard deviation(σ) 0 0.2159 0 0.2115 0.5422 

Mean deadspace, μ  

(%) 0.7697 2.778 1.318 2.057 3.337 

Average Time,t (s) 1.3057 10.247 24.957 204.521 375.275 

Number of Sample, N 810 1000 1210 10890 24010 

 

 

Figure 4.21 Graph showing the optimal results for CBLL and CE 

 The more number of block increases, time taken increases because more samples 

needed to be decoded in order to obtain the deadspace area of each sequence generated. 

Therefore, the time taken to complete an optimization increases exponentially when the 

number of block is increased by an exponential number. The reason to increase the 

representation string is so that more probability relationship can be generated in order to 

obtain the best deadspace between two blocks of the sample of the blocks to be 

optimized.  This is because CE uses local deadspace probability in order to choose the 

placement of the blocks. Below are the best results obtained for the benchmarks: 
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1. Apte – The minimum deadspace area obtained is 0.7697%. Figure 4.22 shows 

the most optimum placement for apte which has 9 blocks using CE as 

optimization with CBLL as representation. 

 

Figure 4.22 Placement for Apte 

2. Xerox – The minimum deadspace area obtained is 2.479%. Figure 4.23 shows 

the most optimum placement for xerox which has 10 blocks using CE as 

optimization with CBLL as representation. 

 

Figure 4.23 Placement for Xerox 

3. Hp – The minimum deadspace area obtained is 1.318%. Figure 4.24 shows the 

most optimum placement for hp which has 11 blocks using CE as optimization 

with CBLL as representation. 
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Figure 4.24 Placement for hp 

4. Ami33 - The minimum deadspace area obtained is 1.838%. Figure 4.25 shows 

the most optimum placement for ami33 which has 33 blocks using CE as 

optimization with CBLL as representation. 

 

Figure 4.25 Placement for ami33 

 

5. Ami49 - The minimum deadspace area obtained is 2.617%. Figure 4.26 shows 

the most optimum placement for ami49 which has 49 blocks using CE as 

optimization with CBLL as representation. 
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Figure 4.26 Placement for ami49 

4.4 Discussion 

Comparing the three methods that were developed, it can be observed that DM 

takes a longer runtime to decode the representation into placement. DM is a more 

complicated representation and depends more on the optimization algorithm 

representation. In floorplanning optimization, we need to consider both time taken for 

decoding and also time taken to complete an optimization to obtain optimal results. 

Hence, CBLL is developed in order to reduce the time taken for decoding the 

representation.  

Decoding time is important because we will need to decode the representation in 

order to obtain the deadspace area for a particular representation generated by the 

optimization algorithm. Hence, many deadspace area computation are needed from the 

floorplans representation strings in order to find the minimal deadspace area. 

In CBLL representation, local deadspace area is determined according to the 

shapes determined by the contour which were chosen. The minimum space will be 

closed and void from other blocks to be placed in order to determine the shape of the 

contour. This is to minimize the space lost. Due to the limitations of the contour shape 

used in this present work, there is a limited placement combination that reduces search 
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space. This encourages very fast optimization but prevents the search for minimal 

deadspace area placement. The current work consists of 12 contour shapes and 4 points 

reference points are used for block placement.  

 The deterministic section of CBLL is where the least minimal space is being 

locked to determine the contour after placing the block so that the next block can be 

placed referring to the previous contour shape and points. This enables the reduction in 

local deadspace area before determining the deadspace area of the whole placement.  

 GA is a global search optimization technique. Hence, only the best solution 

strings are kept without considering the local deadspace area between two blocks. GA is 

a faster optimization technique compared to CE. However, the search for optimum point 

in GA is very random. This is because GA commences with a randomized population of 

placement. From this population, the best quantile will be selected to be bought to the 

next generation. Hence, the results of the optimization depend strongly on the first 

generation. This results in a very wide range of placements outcome for every 

optimization runs. This will cause higher standard deviation in the deadspace area 

results for GA compared to CE.  

Mutation and crossover are randomly executed chromosomes to obtain fitter 

genes for the next generation. Mutation and crossover have very little impact on the 

local deadspace area unlike in CE. According to the GA, better parents will produce 

better child in next generation by undergoing crossover or mutation. This causes the 

optimization to rely on directed randomness. 

GA is used to optimize the floorplanning representation of DM and CBLL 

because of its flexibility that can be easily modified. The genes in GA are easily 

modified so that it can represent for both DM and also CBLL. GA solution string, which 

is also the gene, can be represented either as order-based gene, floating point gene and 
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also binary gene. A gene can also be modified to have the combination of these different 

types of representation. For DM, the gene consists of a string of order-based 

representation and 2 strings of floating point representations. For CBLL, the gene 

consists of a string of order-based representation and 2 strings of binary representations. 

 CE is a local search optimization technique where it uses probability to obtain an 

optimal solution. After exhaustive search in literature, CE is nowhere found to be used 

in floorplanning optimization previously. This encourages the present study to attempt 

the capability of this new optimization algorithm on floorplanning. Similar to GA, CE is 

initialized with random generated variables. From these random generated variables, we 

are able to obtain the relationship between 2 different blocks during placement. This is 

because CE is able to measure the probability of adjacent block placement based on 

deadspace. The lower the deadspace area between the two blocks, the higher the 

probability of choosing this relationship between the two blocks. These probabilities are 

obtained during the updating of the transition matrix in the probability density function 

to determine the relationship between the blocks. 

 As CE strongly depends on the relationship between the blocks, the 

representation that can be used in CE is limited. Due to the complexity of DM 

representation, it will be complicated to modify the representation to suit CE and will 

take a longer time for optimization. Hence, only CBLL is used as a representation when 

using CE as optimization tool. This is because CBLL is a simpler representation and 

therefore it is easily modified to match CE algorithm. The CBLL is modified so that it 

can be placed in a three dimension matrix for CE transition matrix. The modification of 

the representation for CBLL to incorporate with CE is shown in chapter 3.3.1.2. 

 CE optimization algorithm gives better result compared to GA as it strongly 

depends on the relationship between two different blocks. Many representation strings 
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were initiated in algorithm. This is to increase the number of solution strings to obtain 

more accurate results. Hence, more accurate probability to obtain the best placement 

between two blocks is computed. Minimizing the local deadspace area will indirectly 

reduce the deadspace area of the total placement. Hence, CE gives better results for 

deadspace area. However, CE consumes long runtime to complete the simulation. This 

is because of the updating process of the transition matrix which consumed considerable 

amount of runtime. 

 In floorplan optimization, both runtime and deadspace area are considered when 

selecting the best optimization method. The target of floorplan optimization is to be able 

to obtain an optimal result in a short time. Hence, more work need to be done to 

improve the runtime of CE algorithm used for floorplanning optimization.s  

Table 13 shows the MCNC Benchmarks which were used to compare and verify 

the results of DMGA, CBLL-GA and CBLL-CE and other methods which were 

developed previously. 

Table 13: MCNC Benchmark Comparison 

 apte xerox hp ami33 ami49 

Deadspace 

Area (%) 

Time 

(s) 

Deadspace 

Area (%) 

Time 

(s) 

Deadspace 

Area (%) 

Time 

(s) 

Deadspace 

Area (%) 

Time 

(s) 

Deadspace 

Area (%) 

Time 

(s) 

O-Tree 1.156 38 3.874 118 4.297 57 9.090 1430 6.079 7428 

B*-Tree 0.7697 7 2.479 25 1.318 55 9.819 3417 3.822 4752 

CS 0.7697 1 2.479 54 1.318 6 2.036 530 2.355 851 

FAST-SP 0.7697 1 2.324 14 1.318 6 4.198 20 2.975 31 

DMGA 1.589 425 5.259 457 6.778 503 12.375 1719 16.080 3267 

CBLL-GA 0.7697 1 2.479 4 1.318 5 2.201 10 2.690 18 

CBLL-CE 0.7697 1 2.479 10 1.318 25 1.838 204 2.617 375 

 

Table 13 compares our results with other floorplan representations (O-Tree [1], B*-

Tree[2], CBL[3], CS[5] and also Fast-SP[4]) which were modelled by previous 

researchers using hard block MCNC benchmark circuits. The results show that DMGA 

does not give an optimal result compared to the other two methods which has been 

developed which are CBLL-GA and CBLL-CE. The results show that the deadspace 



118 

 

obtained from CBLL-GA is acceptable compared to existing algorithms. More 

significantly, CBLL-GA runtime is much shorter compared to others. The improved 

performance of the proposed CBLL representation is due to the introduction of multiple 

contour shapes for placement. CBLL-GA gives marginally larger deadspace area as 

compared to CS. CBLL has a limited number of reference points which reduces the 

solution space complexity. Thus CBLL-GA could generate compact floorplans in much 

shorter runtime.  

 From the results, the deadspace area obtained using CBLL-CE for ami33 

benchmark is lower compared to previously developed algorithms. The improved 

results are due to the fact that CE can be used to calculate the probabilities of the blocks 

relationships which enables the selection of the best pair of relationship between the 

blocks. 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Floorplanning optimization consists of two sections namely the representation 

section and also the optimization algorithm section. Hence, the study was carried out on 

these two sections. The floorplan representation models developed are DM and CBLL. 

DM was combined with GA to execute floorplanning optimization whereas CBLL is 

embedded in both GA and CE to perform floorplanning optimization. 

DM representation can represent many different shapes and therefore cover larger 

search space in comparison to CBLL. However, DM uses longer runtime to decode 

from representation strings to floorplan as compared to CBLL. CBLL is a representation 

where it has a limited number of shapes of contour which will reduce the search space 

compared to DM. However, CBLL has an embedded deterministic algorithm which will 

calculate and choose the smallest local deadspace area during placement compared to 

DM which solely depends on optimization tool as in this case, GA.  

 GA was used in many previous floorplanning studies. GA is much more flexible 

compared to CE. This is because the chromosomes in GA can be modified easily to suit 

the representation used. GA takes a shorter runtime for optimization as it uses mutation 

and crossover operations on some of the best quantile population to be brought to the 

next generation. Not all the chromosomes are involved in the mutation and crossover 

operations. CE takes a much longer time to complete a simulation as it considers all the 

solution strings which were generated and is used for the transition matrix in order to 

obtain better results in the subsequent iteration.   

 CE optimization algorithm gives better results comparatively to GA. CE 

advantage relies on detailed relationship between two adjacent blocks. Hence, CE gives 
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smaller deadspace area. However, CE requires a longer runtime to complete the 

simulation as the updating process of the transition matrix consumes considerable time. 

 In floorplan optimization, both time and deadspace area need to be considered. 

The target of floorplan optimization is to be able to obtain an optimal result in a short 

time. Hence, more work need to be done in order to improve the CE algorithm so that to 

complete a simulation completes in a shorter time.  

CBLL reduces the time taken for decoding from representation to floorplan. This 

greatly simplifies and reduces the runtime of the optimization. This is because CBLL 

reduces the complexity space of floorplan placement due to the limited number of 

contour shapes in the CBLL representation. In the present work, the time taken for 

optimization is reduced and also at the same time sustaining the deadspace area 

obtained. Substantial improvement in the runtime ratios compared to other models is 

observed as the number of blocks increases. 

CBLL-CE, a new algorithm, is proposed in this research to incorporate CE to 

optimize floorplanning problems. The CE method is developed using cross entropy 

distance which is known as the Kullback-Leibler distance. This method is motivated by 

an adaptive algorithm to estimate probabilities in rare events involving minimization. 

CBLL-CE gives a better result in terms of deadspace area for floorplan optimization as 

compared to the method we have used previously which is CBLL representation 

involving GA. Also CBLL-CE gives improved performance for previously developed 

floorplan representations using both EA and SA. The improved performance of using 

CE is based on the detailed relationship between two adjacent blocks and this will give 

a better deadspace area when optimization is performed. It is concluded that the 

proposed CE method can be used to implement VLSI floorplan optimization with 

reduction in the deadspace area of the floorplan when the number of modules increases. 
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 In conclusion, two floorplanning representation models and two optimization 

algorithm were reviewed and were compared with the other methods which were used 

previously. We can conclude that CE-CBLL gives minimum deadspace area for 

floorplanning optimization compared to previously developed method and GA-CBLL 

gives a substantial improvement in the optimization runtime without affecting the 

deadspace area.  

5.2 Future Work 

To improve the floorplan optimization, more detailed work needs to be done. In 

order to improve the results for DM and CBLL, GA algorithm needs to be modified so 

that the mutation and crossover operations can be used effectively to execute the 

placement of the blocks instead of entirely random operation. This is to enable GA to 

optimize according to DM and CBLL representations. Since CBLL is faster compared 

to DM, more improvements should be worked on to improve the results for CBLL-GA. 

In order to improve the results for CBLL-CE, we need to improve the CBLL 

representation so that more contour shapes will be taken into consideration to reduce the 

amount of local space during packing according to the algorithm. This is to reduce the 

final deadspace area of the placement. A better programming needs to be implemented 

to improve the time taken for a complete simulation using CE method. This is because 

CE uses a long runtime especially during updating of the transition matrix. Perhaps 

parallel computation programming needs to be implemented in order to speed up the 

simulation time for CBLL-CE. 

 In conclusion, the present study lays a foundation for new floorplanning 

representation such as DM and CBLL. Besides that, the present work explores the 

possibility of CE as optimization tool in floorplanning which had not been implemented 

in floorplanning optimization previously. 



122 

 

REFERENCES 

 

Alpert, C. J., Mehta, D. P., & Sapatnekar, S. S. (2009). Handbook of Algorithms for 

Physical Design Automation. Boca Raton: Taylor & Francis Group. 

Chang, Y.-C., Chang, Y.-W., Wu, G.-M., & Wu, S.-W. (2000). B*-trees: A New 

Representation for Non-slicing Floorplans. Annual ACM IEEE Design 

Automation Conference (pp. 458-463). Los Angeles: ACM. 

Chen, D.-S., Lin, C.-T., & Wang, T.-W. (2003). Non-slicing floorplans with boundary 

constrqints using generalized Polish expression. Design Automation Conference 

2003. Proceedings of the ASP-DAC 2003, (pp. 342-345). 

Chen, J., & Zhu, W. (2010). A hybrid Genetic Algorithm for VLSI Floorplanning. 

Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International 

Conference on, (pp. 128-132). 

Chen, J., Zhu, W., & Ali, M. (2010). A Hybrid Simulated Annealing Algorithm for 

Nonslicing VLSI Floorplanning. Systems, Man and Cybernetics, Part C: 

Applications and Reviews, IEEE Transactions on. 

Chen, S., Dong, S., Hong, X., Ma, Y., & Cheng, C. (2006). VLSI Block Placement with 

Allignment Constraints. Circuits and System-IIL Express Briefs, IEEE 

Transaction on, 622-626. 

Chen, T.-C., & Chang, Y.-W. (2006). Modern Floorplanning Based on B*-Tree and 

Fast Simulated Annealing. Computer-Aided Design of Integrated Circuits and 

Systems, IEEE Transactions on. 

Debarshi, C., & Manikas, T. W. (2007). A Genetic Algorithm for Non-Slicing Floorplan 

Representation. National Conference on Intelligent Systems. Hyderabad. 



123 

 

Dhamdhere, S., Zhou, N., & Wang , T.-C. (2002). Modules Placement with Pre-Placed 

Modules using the Corner Block List Representation. Circuit and Systems, 2002. 

ISCAS 2002. IEEE International Symposium on, (pp. I-349 - I-352). 

Drakidis, A., Mack, R. J., & Massara, R. (2006). Packing-based VLSI module 

placement using genetic algorithm with sequence-pair representation. Circuits, 

Devices and Systems, IEEE Proceedings, 545-551. 

Guo, P.-N., Cheng, C.-K., & Yoshimura, T. (1999). An O-tree Representation of Non-

slicing Floorplan and its Applications. Annual ACM IEEE Design Automation 

Conference (pp. 268-273). New Orleans: ACM. 

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory 

Analysis with Applications to Biology, Control and Artificial Intelligence. 

Cambridge: MIT Press. 

Hong, X., Dong, S., Huang, G., Cai, Y., Cheng, C.-K., & Gu, J. (2004). Corner Block 

List Representation and Its Application to Floorplan Optimization. Circuits and 

Systems II: Express Briefs, IEEE Transactions on, 228-233. 

Hong, X., Huang, G., Cai, Y., Gu, J., Dong, S., Cheng, C.-K., et al. (2000). Corner 

block list: and effective and efficient topological representation of non-slicing 

floorplan. Computer Aided Design, 2000. ICCAD-2000. IEEE/ACM 

International Conference on, (pp. 8-12). 

Houck, C. R., Joines, J., & Kay, M. (n.d.). GA source code. Retrieved January 15, 2010, 

from GNU General Public License: 

http://www.ise.ncsu.edu/mirage/GAToolBos/gaot/gaotindex.html 

Jiang, Y.-H., Lai, J., & Wang, T.-C. (2001). Module Placement with Pre-placed 

Modules using the B*-Tree Representation. Circuits and Systems, 2001. ISCAS 

2001. The 2001 IEEE International Symposium on, vol 5, (pp. 347-350). 



124 

 

Kodama, C., & Fujiyoshi, K. (2002). An Efficient Decoding Method of Sequence Pair. 

Circuits and Systems, 2002. APCCAS '02. 2002 Asia Pacific Conference on, (pp. 

131-136). 

Kodama, C., & Fujiyoshi, K. (2003). Selected Sequence-Pair: An Efficient Decodable 

Packing Representation in Linear Time using Sequence Pair. Design Automation 

Conference, 2003. Proceedings of the ASP-SAC 2003. Asia and South Pacific, 

(pp. 331-337). 

Lai, M., & Wong, D. (2001). Slicing Tree is a Complete Floorplan Representation. 

Design, Automation and Test in Europe 2001. Proceedings, (pp. 228-232). 

Lin, C.-T., Chen, D.-S., & Wang, Y.-W. (2002). GPE: A New Representation for VLSI 

Floorplan Problem. Computer Design: VLSI in Computers and Processrors, 

2002. Proceedings. 2002 IEEE International Congerence on, (pp. 42-44). 

Lin, J.-M., & Chang, Y.-W. (2001). TCG: A Transitive Closure Graph-Based 

Representation for Non-slicing Floorplans. Design Automation Conference, 

2001, Proceedings, (pp. 764 - 769). 

Lin, J.-M., & Chang, Y.-W. (2002). TCG-S: orthogonal coupling of P*-admissible 

representations for general floorplans. Design Automation Conference, 2002. 

Proceedings. 39th, (pp. 842-847). 

Lin, J.-M., & Chang, Y.-W. (2004). TCG-S: orthogonal coupling of P*-admissible 

representations for general floorplans. Computer-Aided Design of Integrated 

Circuits and Systems, IEEE Transactions on, (pp. 968-980). 

Lin, J.-M., & Chang, Y.-W. (2005). TCG: A Transitive Closure Graph-Based 

Representation for General Floorplans. IEEE Transaction on Very Large Scale 

Integration (VLSI) system, Vol 13, No. 2, (pp. 288-292). 



125 

 

Lin, J.-M., Chang, Y.-W., & Lin, S.-P. (2003). Corner sequence - a P-admissible 

floorplan representation with a worst case linear-time packing scheme. Very 

Large Scale Integration (VLSI) Systems, IEEE Transactions on, (pp. 679-686). 

Mao, F., Xu, N., & Ma, Y. (2009). Hybrid Algorithm for Floorplanning Using B*-tree 

Representation. Interlligent Information Technology Application, 2009. IITA 

2009. Third International Symposium on, (pp. 228-231). 

Mitchell, M. (1999). An Introduction to Genetic Algorithms. The MIT Press. 

Murata, H., Fujiyoshi, K., Nakatake, S., & Kajitani, Y. (1995). Rectangle-Packing-

Based Module Placement. Computer-Aided Design, 1995. ICCAD-95. Digest of 

Technical Papers., 1995 IEEE/ACM International Conference on, (pp. 472-

479). 

Nakatake, S., Fujiyoshi, K., Murata, H., & Kajiyana, Y. (1996). Module Placement on 

BSG-Structure and IC Layout Applications. Computer-Aided Design, 1996. 

ICCAD-96. Digest of Technical Papers., 1996 IEEE/ACM International 

Conference, (pp. 484-491). 

Nakaya, S., Koide, T., & Wakabayashi, S. (2000). An Adaptive Genetic Algorithm For 

VLSI Floorplanning Based on Sequence-Pair. Circuits and Systems, 2000. 

ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, (pp. 65-68). 

Ninomiya, H., Numayama, K., & Asai, H. (2006). Two-staged Tabu Search for 

Floorplan Porblem Using O-Tree Representation. Evolutionary Computation 

2006. CEC 2006. IEEE Congress on, (pp. 718-724). 

Rubinstein, R. Y., & Kroese, D. P. (2004). The Cross-Entropy Method: A unified 

approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine 

Learning. New York: Springer Science + Business Media, Inc. 

Rubinstein, R. Y., & Kroese, D. P. (2008). Simulation and the monte carlo method. 

New Jersey: John Wiley & Sons, inc. 



126 

 

Sait, S. M., & Youssef, H. (1999). VLSI Physical Design Automation: Theory and 

Practice. Singapore: World Scientific Publishing Co. Pte. Ltd. 

Sherwani, Naveed A. (2002). Algorithms for VLSI Physical Design Automation. 

Dordrecht: Kluwer Academic Publishers. 

Sitzmann, I., & Stuckey, P. (2000). O-Trees: a Constraint-based Index Structure. 

Database Conference, 2000. ADC 2000 Proceedings, 11th Australasian, (pp. 

127-134). 

Sun, T.-Y., Hsieh, S.-T., Wang, H.-M., & Lin, C.-W. (2006). Floorplanning based on 

particle swarm optimization. Emerging VLSI Technologies and Architectures, 

2006. IEEE COmputer Society Annual Symposium on.  

Takahashi, T., Guo, P., Cheng, C., & Yoshimura, T. (2003). Floorplanning Using a Tree 

Representation: A Summary. Circuit and Systems Magazine, IEEE, 26-29. 

Tang, X., Tian, T., & Wong, D. (2001). Fast evaluation of sequence pair in block 

placement by longest common subsequence computation. Computer-Aided 

Design of Integrated Circuits and Systems, IEEE Transactions on, 1406-1413. 

Wong, D. F., & Liu, C. L. (1986). A New Algorithm For Floorplan Design. In 

Procceding ACM Design Automation Conference, (pp. 101-107). 

Wu, M.-C., & Chang, Y.-W. (2004). Placement with Alignment and Performance 

Constraints Using the B*-tree Representation. Computer Design: VLSI in 

Computers and Processors, 2004. Proceeding. IEEE International Conference 

on, (pp. 568-571). 

Xu, N., & Li, L. (2008). Hybrid Algorithm for Non-slicing Floorplans Optimization. 

IEEE. 

Yan, T., Li, J., Yang, B., & Yu, J. (2004). A Modified O-Tree Based Packing Algorithm 

and its Applications. Communications, Circuits and Systems, 2004. ICCCAS 

2004. 2004 International Conference on, (pp. 1266-1270). 



127 

 

Young, F., Wong, D., & Yang, H. (1999). Slicing Floorplan with Boundary Constraints. 

IEEE Transaction on Computer-Aided Design of Integrated Circuits and 

Systems, Vol 18, No 9, 1385-1389. 

Zhou, H., & Wang, J. (2004). ACG-adjacent constraint graph for general floorplans. 

Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. 

Proceedings. IEEE Conference On, (pp. 572-575). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 

 

APPENDIX A 

Matlab code for Genetic Algorithm function: 

function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,termOps,termFN,mutFNs,mutOps,xOverFNs,xOverOps,... 
                                        xOverFNsO,xOverOpsO,mutFNsO,mutOpsO,selectFN,selectOps,... 
                                        evalOps) 
 
 
 
n=nargin; 
if n<2 
  disp('Insufficient arguements')  
end 
 
    epsilon = 1e-6;    %Threshold for two fittness to differ 
    e1str=['[c1(1:var) c1(xZomeLength)]=' evalFN '(c1(1:var),numVars ,[gen evalOps]);'];   
    e2str=['[c2(1:var) c2(xZomeLength)]=' evalFN '(c2(1:var),numVars ,[gen evalOps]);'];   
%     termOps=[100]; 
%     termFN=['maxGenTerm']; 
%     mutFNs=['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']; 
%     mutOps=[4 0 0;4 termOps(1) 3;4 termOps(1) 3;4 0 0]; 
%     xOverFNs=['arithXover heuristicXover simpleXover']; 
%     xOverOps=[2 0;2 3;2 0]; 
%     xOverFNsO = ['cyclicXover linerorderXover singleptXover '... 
%                'orderbasedXover partmapXover uniformXover']; 
%     xOverOpsO = [2;2;2;2;2;2;2]; 
%     mutFNsO = ['inversionMutation adjswapMutation shiftMutation swapMutation threeswapMutation']; 
%     mutOpsO = [2;2;2;2;2]; 
%     selectFN=['normGeomSelect']; 
%     selectOps=[0.08]; 
%     termOps=[100]; 
%     termFN='maxGenTerm'; 
%     evalOps = [0 150]; 
 
% if isempty(startPop) %Generate a population at random 
  %startPop=zeros(80,size(bounds,1)+1); 
  startPop=initializegenone(evalOps,bounds,evalFN); 
% end 
 
 xOverFNs=parse(xOverFNs); 
 mutFNs=parse(mutFNs); 
 xOverFNsO=parse(xOverFNsO); 
 mutFNsO=parse(mutFNsO); 
  
 
xZomeLength  = size(startPop,2);  %Length of the xzome=numVars+fittness 
var          = xZomeLength-1;   %Number of variables\ 
numVars      = bounds; 
variable     = var/3; 
var1         = variable;             %Block Number 
var2         = 2*variable;           %relative block number 
var3         = 3*variable;           %position of block 
popSize      = size(startPop,1);  %Number of individuals in the pop 
endPop       = zeros(popSize,xZomeLength); %A secondary population matrix 
c1           = zeros(1,xZomeLength);  %An individual 
c2           = zeros(1,xZomeLength);  %An individual 
numXOvers    = size(xOverFNs,1);  %Number of Crossover operators 
numMuts      = size(mutFNs,1);   %Number of Mutation operators 
numXOversO   = size(xOverFNsO,1);   %Number of Crossover operators order based 
numMutsO     = size(mutFNsO,1);     %Number of Mutation operators order based 
oval         = max(startPop(:,xZomeLength)); %Best value in start pop 
bFoundIn     = 1;    %Number of times best has changed 
done         = 0;                       %Done with simulated evolution 
gen          = 1;    %Current Generation Number 
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collectTrace = (nargout>3);   %Should we collect info every gen 
% floatGA      = opts(2)==1;              %Probabilistic application of ops 
% display      = opts(3);                 %Display progress  
 
while(~done) 
  %Elitist Model 
  [bval,bindx] = max(startPop(:,xZomeLength)); %Best of current pop 
  best =  startPop(bindx,:); 
 
  if collectTrace 
    traceInfo(gen,1)=gen;             %current generation 
    traceInfo(gen,2)=startPop(bindx,xZomeLength);       %Best fittness 
    traceInfo(gen,3)=mean(startPop(:,xZomeLength));    %Avg fittness 
    traceInfo(gen,4)=std(startPop(:,xZomeLength)); 
  end 
   
  if ( (abs(bval - oval)>epsilon) | (gen==1)) %If we have a new best sol 
      fprintf(1,'\n%d %f\n',gen,bval)          %Update the display 
      bPop(bFoundIn,:)=[gen startPop(bindx,:)]; %Update bPop Matrix 
      bFoundIn=bFoundIn+1;                      %Update number of changes 
      oval=bval;                                %Update the best val  
  else 
      fprintf(1,'%d ',gen)               %Otherwise just update num gen 
  end 
   
  endPop = feval(selectFN,startPop,[gen selectOps]); %Select 
  
   
%for block number crossover 
    for i = 1:numXOversO, 
        for j = 1:xOverOpsO(i,1), 
            a = round(rand*(popSize-1)+1);  %Pick a parent 
            b = round(rand*(popSize-1)+1); %Pick another parent 
            xN=deblank(xOverFNsO(i,:));  %Get the name of crossover function 
            p1 = [endPop(a,1:var1),endPop(a,xZomeLength)]; 
            p2 = [endPop(b,1:var1),endPop(b,xZomeLength)];          
            [C1 C2] = feval(xN,p1,p2,bounds,[gen xOverOpsO(i,:)]); 
            c1(1:var1) = C1(1:variable); 
            c1(var1+1:var3) = endPop(a,var1+1:var3); 
            c2(1:var1) = C2(1:variable); 
            c2(var1+1:var3) = endPop(b,var1+1:var3); 
             
            if c1(1:var)==endPop(a,(1:var)) 
                c1(xZomeLength)=endPop(a,xZomeLength); 
            elseif c1(1:var)==endPop(b,(1:var)) 
                c1(xZomeLength)=endPop(b,xZomeLength); 
            else 
                eval(e1str); 
            end 
            if c2(1:var)==endPop(a,(1:var)) 
                c2(xZomeLength)=endPop(a,xZomeLength); 
            elseif c2(1:var)==endPop(b,(1:var)) 
                c2(xZomeLength)=endPop(b,xZomeLength); 
            else 
                eval(e2str); 
            end 
        end 
    endPop(a,:)=c1; 
 endPop(b,:)=c2; 
    end 
   
%   for relative block crossover 
    for i=1:numXOvers, 
      for j=1:xOverOps(i,1), 
 a = round(rand*(popSize-1)+1);  %Pick a parent 
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 b = round(rand*(popSize-1)+1);  %Pick another parent 
 xN=deblank(xOverFNs(i,:));  %Get the name of crossover function 
    p1 = [endPop(a,var1+1:var2),endPop(a,xZomeLength)]; 
    p2 = [endPop(b,var1+1:var2),endPop(b,xZomeLength)];  
 [C1 C2] = feval(xN,p1,p2,bounds,[gen xOverOps(i,:)]); 
    c1(var1+1:var2) = round(C1(1:variable)); 
    c1(1:var1) = endPop(a,1:var1); 
    c1(var2+1:var3) = endPop(a,var2+1:var3); 
    c2(var1+1:var2) = round(C2(1:variable)); 
    c2(1:var1) = endPop(a,1:var1); 
    c2(var2+1:var3) = endPop(a,var2+1:var3); 
 
 if c1(1:var)==endPop(a,(1:var)) %Make sure we created a new  
   c1(xZomeLength)=endPop(a,xZomeLength); %solution before evaluating 
 elseif c1(1:var)==endPop(b,(1:var)) 
   c1(xZomeLength)=endPop(b,xZomeLength); 
 else  
   %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]); 
   eval(e1str); 
 end 
 if c2(1:var)==endPop(a,(1:var)) 
   c2(xZomeLength)=endPop(a,xZomeLength); 
 elseif c2(1:var)==endPop(b,(1:var)) 
   c2(xZomeLength)=endPop(b,xZomeLength); 
 else  
   %[c2(xZomeLength) c2] = feval(evalFN,c2,[gen evalOps]); 
   eval(e2str); 
 end       
 
 endPop(a,:)=c1; 
 endPop(b,:)=c2; 
      end 
    end 
 
  % for position crossover 
    for i=1:numXOvers, 
      for j=1:xOverOps(i,1), 
 a = round(rand*(popSize-1)+1);  %Pick a parent 
 b = round(rand*(popSize-1)+1);  %Pick another parent 
 xN=deblank(xOverFNs(i,:));  %Get the name of crossover function 
    p1 = [endPop(a,var2+1:var3),endPop(a,xZomeLength)]; 
    p2 = [endPop(b,var2+1:var3),endPop(b,xZomeLength)]; 
 [C1 C2] = feval(xN,p1,p2,4,[gen xOverOps(i,:)]); 
    c1(var2+1:var3) = round(C1(1:variable)); 
    c1(1:var1) = endPop(a,1:var1); 
    c1(var1+1:var2) = endPop(a,var1+1:var2); 
    c2(var2+1:var3) = round(C2(1:variable)); 
    c2(1:var1) = endPop(a,1:var1); 
    c2(var1+1:var2) = endPop(a,var1+1:var2); 
 
 if c1(1:var)==endPop(a,(1:var)) %Make sure we created a new  
   c1(xZomeLength)=endPop(a,xZomeLength); %solution before evaluating 
 elseif c1(1:var)==endPop(b,(1:var)) 
   c1(xZomeLength)=endPop(b,xZomeLength); 
 else  
   %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]); 
   eval(e1str); 
 end 
 if c2(1:var)==endPop(a,(1:var)) 
   c2(xZomeLength)=endPop(a,xZomeLength); 
 elseif c2(1:var)==endPop(b,(1:var)) 
   c2(xZomeLength)=endPop(b,xZomeLength); 
 else  
   %[c2(xZomeLength) c2] = feval(evalFN,c2,[gen evalOps]); 
   eval(e2str); 
 end       
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 endPop(a,:)=c1; 
 endPop(b,:)=c2; 
      end 
    end 
   
     
    %for block number mutation 
    for i = 1:numMutsO, 
        for j = 1:mutOpsO(i,1), 
            a = round(rand*(popSize-1)+1);  %Pick a parent 
            xN=deblank(mutFNsO(i,:));  %Get the name of crossover function 
            p1 = [endPop(a,1:var1),endPop(a,xZomeLength)];        
            C1 = feval(xN,p1,bounds,[gen mutOpsO(i,:)]); 
            c1(1:var1) = C1(1:variable); 
            c1(var1+1:var3) = endPop(a,var1+1:var3);           
            if c1(1:var)==endPop(a,(1:var)) 
                c1(xZomeLength)=endPop(a,xZomeLength); 
            else 
                eval(e1str); 
            end 
        end 
    endPop(a,:)=c1; 
    end 
        
     
    %for relative block mutation 
    for i=1:numMuts, 
      for j=1:mutOps(i,1), 
 a = round(rand*(popSize-1)+1); 
    p1 = [endPop(a,var1+1:var2),endPop(a,xZomeLength)]; 
 c1 = feval(deblank(mutFNs(i,:)),p1,bounds,[gen mutOps(i,:)]); 
    c1 = round(c1(1:variable)); 
    c1 = [endPop(a,(1:var1)), c1,endPop(a,(var2+1:var3))]; 
 if c1(1:var)==endPop(a,(1:var)); 
   c1(xZomeLength)=endPop(a,xZomeLength); 
 else 
   %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]); 
   eval(e1str); 
 end 
 endPop(a,:)=c1; 
      end 
    end 
   
%   end 
 
%for blocks position 
    for i=1:numMuts, 
      for j=1:mutOps(i,1), 
 a = round(rand*(popSize-1)+1); 
    p1 = [endPop(a,var2+1:var3),endPop(a,xZomeLength)]; 
 c1 = feval(deblank(mutFNs(i,:)),p1,4,[gen mutOps(i,:)]); 
    c1 = round(c1(1:variable)); 
    c1 = [endPop(a,(1:var2)), c1]; 
 if c1(1:var)==endPop(a,(1:var))  
   c1(xZomeLength)=endPop(a,xZomeLength); 
 else 
   %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]); 
   eval(e1str); 
 end 
 endPop(a,:)=c1; 
      end 
    end 
   
   
  gen=gen+1 
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  done=feval(termFN,[gen termOps],bPop,endPop); %See if the ga is done 
  startPop=endPop;    %Swap the populations 
   
  [~,bindx] = min(startPop(:,xZomeLength)); %Keep the best solution 
  startPop(bindx,:) = best;   %replace it with the worst 
end 
 
[bval,bindx] = max(startPop(:,xZomeLength)); 
fprintf(1,'\n%d %f\n',gen,bval);    
 
  x=startPop(bindx,:); 
  x(1:var) 
  [~,~,xframe,yframe]=fitness(x(1:var),variable) 
  plotgraph(xframe,yframe,bounds) 
  bPop(bFoundIn,:)=[gen startPop(bindx,:)]; 
  traceInfo(gen,1)=gen;   %current generation 
  traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness 
  traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness 
 
 
%% ---------------Initialize first generation----------------------------%% 
function pop = initializegenone(option,bounds,evalFN) 
 
% option = [ gen num_pop num_blocks] 
%evalFN is fitness for this project 
  num = option(2); 
  numVars = bounds; 
  xZomeLength = 3*numVars+1;   %Length of string is numVar + fit  
  var = xZomeLength - 1;  
  estr=['[pop(i,1:var) pop(i,xZomeLength) xframe yframe]=' evalFN '(pop(i,1:var),numVars)'];  
  pop= zeros(num,xZomeLength); 
 
  for i = 1:num 
      pop(i,1:3*numVars)=[randperm(numVars) (round(rand(1,numVars)*(numVars-1))+1) 
(round(rand(1,numVars)*3)+1)]; 
      eval(estr) 
      pause 
  end 
 
 
%% --------------- Fitness----------------------%% 
function [string1,fit,xframe,yframe] = fitness(string,numVars,option) 
 
string1 = string; 
String = reshape(string,numVars,3); 
[dead_space,xframe,yframe]=dot_model(String); 
fit = -dead_space; 
 
%% ------------ 
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APPENDIX B 

 

Matlab code for Cross Entropy Method: 

 
function [sol1,bestdead_space,store_result,P] = crossentropy(filename,setmod) 
t = 1; 
% comp_num(1:n) = 1:n;  
NoI = nargin; 
if NoI < 2 
    [comp_num,ModDim,prop]=read_yal(filename); 
else 
    [comp_num,ModDim] = modprop(setmod); 
end 
n = comp_num; 
% comp_num(1:n) = 1:n; 
P = ones(n,n,4)*1/(4*n); 
N = 4000; 
X = zeros(N,n); 
Y = zeros(N,n); 
rho = 0.075; 
Q_tile = round(rho*N); 
Pt_hat_previous = P; 
alpha = 0.75; 
gamma_previous = 1000; 
store_result = 100; 
 
 
while (t < 5) 
     
    for a = 1:N 
clf 
        [X(a,:) , Y(a,:)] = nodeplacement(P); 
        state = zeros(n,1); 
        phi = zeros(n,1); 
        for b = 1:n 
            Y_rep = Y(a,b); 
            if Y_rep == 1 
                state(b) = 0; 
                phi(b) = 0; 
            elseif Y_rep == 2 
                state(b) = 0; 
                phi(b) = 1; 
            elseif Y_rep == 3 
                state(b) = 1; 
                phi(b) = 0; 
            elseif Y_rep == 4 
                state(b) =1; 
                phi(b) = 1; 
            else  
                display('error in calculation') 
                t = 10; 
            end 
        end 
        X_rep = X(a,:)'; 
        sol = [X_rep state phi]; 
        [xy_ctr rtt] = Decodestack(sol,ModDim); 
        dead_space(a,1) = deadspace_cal(xy_ctr,rtt,ModDim); 
 
    end 
        [deadarea,idex] = sort(dead_space); 
        areaknown = deadarea(1:Q_tile); 
        gamma = deadarea(Q_tile); 
        bestdead_space = deadarea(1); 
    if gamma <= (gamma_previous+0.05)|| bestdead_space < previous_deadspace 
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        bestmodseq = X(idex(1),:)'; 
        bestposphi = Y(idex(1),:); 
        state1 = zeros(n,1); 
        phi1 = zeros(n,1); 
        for c = 1:n 
            Y_rep = bestposphi(c); 
            if Y_rep == 1 
                state1(c) = 0; 
                phi1(c) = 0; 
            elseif Y_rep == 2 
                state1(c) = 0; 
                phi1(c) = 1; 
            elseif Y_rep == 3 
                state1(c) = 1; 
                phi1(c) = 0; 
            elseif Y_rep == 4 
                state1(c) =1; 
                phi1(c) = 1; 
            else  
                display('error in calculation') 
                t = 10; 
            end 
        end 
        sol1 = [bestmodseq state1 phi1] 
        [xy_ctr rtt] = Decodestack(sol1,ModDim); 
        bestdead_space = deadarea(1) 
        LcornerLayout(xy_ctr,rtt,ModDim,bestdead_space); 
         
        Pt_hat = zeros(n,n,4); 
        Is_sum =0; 
        for j = 1:Q_tile 
            X_sequence = X(idex(j),:); 
            Y_sequence = Y(idex(j),:); 
            Pt = zeros(n,n,4); 
            
            for i = 1:n 
                Pty = X_sequence(i); 
                Ptx = i; 
                Ptz = Y_sequence(i); 
                Pt(Ptx,Pty,Ptz) = 1; 
            end 
            S = deadarea(j); 
            if S <= gamma 
                Is = 1; 
            else 
                Is = 0; 
            end 
            Pt_hat = Pt*Is + Pt_hat; 
            Is_sum = Is + Is_sum; 
        end 
         
            Pt_hat = Pt_hat/Is_sum; 
            Pt_hat = alpha*Pt_hat + (1-alpha)*Pt_hat_previous; 
            Pt_hat_previous = Pt_hat; 
            P = Pt_hat; 
            if gamma == gamma_previous 
                t = t+1; 
            else 
                t = 1; 
            end 
             
            gamma_previous = gamma; 
 
            if bestdead_space < store_result 
                store_result = bestdead_space; 
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                str = date; 
                img = getframe(gcf); 
                imwrite(img.cdata, ['D:\Angel\CELcorner_result\' str filename num2str(store_result) '.jpg']); 
                pause(0.5);  
                sol_final = sol1; 
                [xy_ctr rtt] = Decodestack(sol_final,ModDim); 
                ID = sol_final(:,1)'; 
                Frame = getframeshape(xy_ctr,rtt,ModDim); 
            end 
             
            previous_deadspace = bestdead_space; 
    end 
 
end 
%                 [Compacted_Percent]=SimpleShift(Frame,ID,comp_num,ModDim) 
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APPENDIX C 

Matlab Code for Random Data Generation based on Node Placement: 

function [x, y] = nodeplacement(P) 
 
 [n,m,p] = size(P); 
 i = 1; 
 t = 0; 
 b = zeros(1,n); 
  
while (t <n) 
 U = rand; 
 R = 0; 
 Q = 0; 
 S = rand;    
   
    for j = 1:n 
        for k = 1:p 
            R = U*(1 - b(j))*P(i,j,k) + R; %add row 
        end 
    end 
 
    sum1 = 0; 
    j = 0; 
    k = 1; 
    while (sum1 <=R) 
        j = j+1; 
        if j > n 
            k = k+1; 
            j = 1; 
        end 
        if b(j) == 0 
            sum1 = sum1 + P(i,j,k); 
        end 
    end 
     
    P(:,j,:) = 0; 
 
    for l = 1:n 
        if sum(P(l,:)) ~= 0 
            P(l,:) = P(l,:)/sum(P(l,:)); 
        end 
    end 
 
    t = t+1; 
    i = i+1; 
    x(t) = j; 
    y(t) = k; 
    b(j) = 1; 
 
 end 


