
ii

ABSTRACT

 This project is about VLSI floorplanning optimization. Floorplanning

optimization is used to minimize the deadspace of the floorplan. This is to reduce cost

for die fabrication, minimize resistance in the circuit and also reduce heat produced.

Hence, VLSI floorplanning is important in IC design. Floorplanning optimization

consists of representation and optimization algorithm. In present work, Dot Model

(DM) and Corner Bottom Left List (CBLL) were developed as floorplan representation.

These two models are based on topological placement method. DM is optimized using

genetic algorithm (GA). GA is a widely used optimization algorithm based on the

concept of survival of the fittest. This means that a population with random generated

sequence will be generated and the fitness of the population will be evaluated. The best

quantile of the population will be maintained and genetic operations will be performed

on these chromosomes. The selected best quantile population will be brought to the next

generation. GA is able use the representation for DM by modifying the chromosomes to

match the tuples for DM for optimization. Two methods of optimization are used for

CBLL. They are Cross Entropy and also Genetic Algorithm. CE is a new algorithm that

was recently developed using probability. This method consists of 2 phases which are

the random data generation and then update of the probabilities based on the

performance of the data generated. This method is used to reduce the stochastic of data

generation as the second iteration will have influence of the first iteration data. The

generation of strings are based on three dimensional matrices to obtain the probability

between each block to another block. These algorithms are tested on MCNC

benchmarks which are apte, xerox, hp, ami33 and ami49. DM-GA gives fair results of

deadspace for the benchmarks tested. However, DM uses a long runtime to decode the

floorplan. CBLL- GA has shorter optimization runtime compared to DM-GA because

CBLL can decode the string much faster. Both methods give almost similar deadspace

iii

area. CBLL-CE gives the least deadspace area. CE is able to calculate and give the

relationship of the local deadspace area during placement and determine the best

combination between the adjacent blocks. However, CE requires longer run time

compared to GA because the parameters of the random mechanism need to be updated

in each iteration.

iv

ABSTRAK

Projek ini adalah mengenai pengoptimuman pelan lantai VLSI. Pengoptimuman pelan

lantai VLSI adalah untuk meminimumkan ruang kosong kawasan pelan lantai VLSI. Ini

adalah untuk menurunkan kos untuk memfabrikkan die, mengurangkan kerintangan

dalam litar dan juga mengurangkan penghasilan haba. Ini menunjukkan kepentingan

dalam mengoptimumkan pelan lantai VLSI. Pengoptimuman pelan lantai VLSI

terbahagi kepada dua bahagian iaitu perwakilan modal dan juga pengoptimuman. Dalam

kajian ini, Modal Bintik (Dot Model – DM) dan Senarai Bahagian Bawah Kiri(Corner

Bottom Left List – CBLL) digunakan untuk perwakilan modal. Kedua-dua kaedah ini

mengunakan kaedah perletakkan topologi. Kaedah pengoptimuman yang digunakan

bersama DM adalah Algorithma Genetik (Genetic Algorithm – GA). GA digunakan

secara meluas sebagai kaedah optimum dengan mengunakan populasi kromosom dan

mengunakan konsep penyesuaian hidup yang terbaik. Satu populasi akan dijanakan

secara rawak. Kemampuan setiap gen dalam populasi tersebut akan dinilaikan. Selepas

itu, 20% yang terbaik akan disimpan di dalam populasi tersebut dan yang selainnya

akan diabaikan. Selepas itu, operasi mutasi dan penyilangan akan dibuat kepada

populasi tersebut. Sekiranya anak gen adalah lebih lemah daripada ibu gen, gen tersebut

akan dibuang. Kromosom GA diubahsuai mengikut perwakilan DM agar optimasi dapat

dibuat. Dua kaeadah optimasi digunakan untuk CBLL iaitu GA dan entropi persilangan

(Cross Entropy – CE). CE merupakan algoritma yang baru dihasilkan mengunakan

kaedah kebarangkalian. Kaedah ini terdiri daripada dua fasa iaitu penjanaan data secara

rawak dan kemaskini kebarangkalian berdasarkan prestasi data yang dijanakan.

Kemaskini kebarangkalian adalah untuk mengurangkan data dan data dalam iterasi

pertama akan mempengaruhi data iterasi kedua. Penjanaan data dibuat menggunakan

matriks tiga dimensi untuk memperolehi perkaitan antara modal-modal. Semua

algoritma ini diuji dengan tanda MCNC iaitu apte, xerox, hp, ami33 dan ami49. DM

v

dan GA memberi keputusan ruang kosong yang serdahana baik. Akan tetapi, DM

mengunakan masa yang lebih panjang untuk dinyakod berbanding dengan CBLL. Oleh

itu, CBLL dan GA mengambil masa yang lebih pendek berbanding dengan DM dan

GA. Kedua-dua kaedah ini memperolehi ruang mati yang lebih kurang sama. CBLL dan

CE memberi ruang mati yang lebih kurang kerana kaedah CE adalah sepadan dengan

CBLL. Ini bermakna kebarangkalian dalam CE adalah sama dengan ruang mati antara

modal-modal. Akan tetapi, CE mengambil masa yang lebih panjang dibandingkan

dengan GA kerana memerlukan lebih penjanaan rawak solusi pembolehubah iaitu 10n
2

di mana n mewakili bilangan modal.

vi

TABLE OF CONTENTS

ABSTRACT ii

ABSTRAK iv

TABLE OF CONTENTS vi

TABLE OF FIGURE x

TABLE xiii

ACKNOWLEDGEMENTS xiv

LIST OF SYMBOLS AND ABBREVIATIONS xv

CHAPTER 1. INTRODUCTION 1

1.1 VLSI Design 1

1.2 Physical Design Cycle 3

1.2.1 Partitioning 3

1.2.2 Floorplanning and Placement 3

1.2.3 Routing 4

1.2.4 Compaction 5

1.2.5 Extraction and Verifiation 5

1.3 Automation in Floorplanning Optimization 8

1.4 Objectives and Goals 9

1.5 Research Outline 9

1.6 Importance of Research 10

1.7 Organization of Thesis 10

vii

CHAPTER 2. LITERATURE REVIEW 11

2.1 Concepts of Floorplanning and Approaches to Problem 11

2.2 Floorplanning Representation 12

2.2.1 Slicing Floorplans 12

2.2.1.1 Slicing Tree 13

2.2.1.2 Normalized Polish Expression 14

2.2.2 Non-slicing floorplans 16

2.2.2.1 Corner Block List 17

2.2.2.2 O-Tree 22

2.2.2.3 B*-Tree 25

2.2.2.4 Bounded-Sliceline Grid 28

2.2.2.5 Sequence Pair 31

2.2.2.6 Corner Sequence 33

2.3 Optimization Algorithms 38

2.3.1 Simulated Annealing 39

2.3.2 Genetic Algorithm 40

2.3.3 Cross Entropy Method 42

CHAPTER 3. METHODOLOGY 43

3.1 Dot Model as Representation and Genetic Algorithm as Optimization

Algorithm 43

3.1.1 Dot Model 44

3.1.1.1 DM to placement 44

3.1.2 Genetic Algorithm 50

viii

3.1.2.1 Implementation of GA with DM 54

3.2 Floorplan Optimization using Corner Bottom Left List with Genetic

Algorithm 65

3.2.1 Corner Bottom Left List 65

3.2.1.1 Preliminaries 66

3.2.1.2 From CBLL to Placement 67

3.2.2 Implementation of GA and CBLL 76

3.3 Floorplan Optimization using Corner Bottom Left List with modified

Cross Entropy Method 78

3.3.1 Modified Cross Entropy Method 79

3.3.1.1 Cross Entropy Method 80

3.3.1.2 Random Generation of CBLL 82

3.3.1.3 Implementing Cross Entropy Algorithm 85

CHAPTER 4. RESULTS, DATA ANALYSIS AND DISCUSSION 87

4.1 DMGA 87

4.1.1 Effects of mutation operators on floating point representation 87

4.1.2 Effects of crossover operators for floating point representation 89

4.1.3 Effects of mutation operators for ordered based sequence 91

4.1.4 Effects of crossover operators for ordered based numbers number

 93

4.1.5 Optimal Results and Data Analysis 95

4.2 CBLL-GA 99

4.2.1 Effects of mutation operators on binary sequence 99

ix

4.2.2 Effects of crossover operator for binary representation 101

4.2.3 Effects of mutation operators for ordered based sequence 102

4.2.4 Effects of crossover operators for ordered based numbers number

 104

4.2.5 Optimal Results and Data Analysis 106

4.3 CBLL-CE 110

4.4 Discussion 114

CHAPTER 5. CONCLUSION AND FUTURE WORK 119

5.1 Conclusion 119

5.2 Future Work 121

REFERENCES 122

APPENDIX A 128

APPENDIX B 133

APPENDIX C 136

x

TABLE OF FIGURES

Figure 1.1 Physical design cycle ... 7

Figure 2.1 Slicing Floor plan .. 13

Figure 2.2 Slicing tree ... 13

Figure 2.3 Slicing structure, binary tree and the arithemetic expression of a floorplan . 15

Figure 2.4 Floorplan .. 18

Figure 2.5 Constraint Graphs .. 18

Figure 2.6 Deletion of Corner Block in a Floorplan Structure 19

Figure 2.7 Deletion of Corner Block in constraint graph.. 19

Figure 2.8 Insertion of Corner Block .. 20

Figure 2.9 Admissible Placement ... 22

Figure 2.10 Horizontal O-tree ... 22

Figure 2.11 When module is added on top, horizontal contour is searched from left to

right and the top boundary of the new module is updated 24

Figure 2.14 BSG with dimension p × q, BSGp×q... 28

Figure 2.19 The corresponding placement .. 29

Figure 2.20(a) Placement, P (b) Contour R of P ... 35

Figure 2.21 (a) – (h) The process to build a CS from placement (i) CS representation . 36

Figure 2.22 (b) – (i) DSP packing scheme for CS in (a), where CS =

{(a,[s,t])(b,[a,t])(d,[a,b])(e[s,d])(c,[d,t])(f[e,c])(g[c,t])(h,[f,c])} 37

Figure 3.1 DM solution string and shifting of the solution string 45

Figure 3.3 Placement from DM to floorplan ... 48

Figure 3.4 Crossover Operator .. 51

Figure 3.5 Mutation Operator ... 51

Figure 3.6 GA pseudocode .. 52

Figure 3.7 GA flowchart ... 53

xi

Figure 3.8 Chromosome Model .. 54

Figure 3.9 Random Variables generation with repeated numbers 54

Figure 3.10 Random Variables from 1 to 4 is generated .. 55

Figure 3.11 Cyclic crossover .. 56

Figure 3.12 Uniform crossover ... 56

Figure 3.13 Partially mapped crossover .. 57

Figure 3.14 Order-based crossover ... 58

Figure 3.15 Single point crossover.. 58

Figure 3.16 Linear order crossover ... 59

Figure 3.17 Arithmetic Crossover equation .. 59

Figure 3.18 Heuristic crossover .. 60

Figure 3.19 Simple crossover .. 60

Figure 3.20 Inversion mutation ... 60

Figure 3.21 Swap mutation ... 61

Figure 3.22 adjacent swap mutation ... 61

Figure 3.23 three swap mutation ... 61

Figure 3.24 Shift mutation .. 62

Figure 3.25 Selection Probability .. 63

Figure 3.26 Placement of the first block with shape rectangle 68

Figure 3.27 Contour shape and their corners .. 69

Figure 3.28 Placing of block and updating the contour .. 70

Figure 3.29 Chromosome Model .. 76

Figure 3.30 Random Binary Variables ... 76

Figure 3.31 Random Binary Variables ... 76

Figure 4.1 Study on Number of Mutation Operators for floating point representation .. 88

Figure 4.2 Study on the Number of Crossover for Floating Point Representation 90

xii

Figure 4.3 Study on the Frequency of Mutation for ordered based number 92

Figure 4.4 Study on the Frequency of Crossover for ordered based number 94

Figure 4.5 Graph showing the optimal results for DMGA ... 96

Figure 4.6 Placement for Apte .. 97

Figure 4.7 Placement for Xerox .. 97

Figure 4.8 Placement for hp .. 98

Figure 4.9 Placement for ami33 .. 98

Figure 4.10 Placement for ami49 .. 99

Figure 4.11 Study on Number of Mutation Operators for floating point representation

 .. 100

Figure 4.12 Study on the Number of Crossover for Floating Point Representation 102

Figure 4.13 Study on the Frequency of Mutation for ordered based number 103

Figure 4.14 Study on the Frequency of Crossover for ordered based number 105

Figure 4.15 Graph showing the optimal results for CBLL-GA 107

Figure 4.16 Placement for Apte .. 108

Figure 4.17 Placement for Xerox .. 109

Figure 4.18 Placement for hp .. 109

Figure 4.19 Placement for ami33 .. 110

Figure 4.20 Placement for ami49 .. 110

Figure 4.21 Graph showing the optimal results for CBLL and CE 111

Figure 4.22 Placement for Apte .. 112

Figure 4.23 Placement for Xerox .. 112

Figure 4.24 Placement for hp .. 113

Figure 4.25 Placement for ami33 .. 113

Figure 4.26 Placement for ami49 .. 114

xiii

TABLE

Table 1: Packing and Placement ... 72

Table 2: Study on the Frequency of Mutation Operators .. 87

Table 3: Study on the Frequency of Crossover ... 90

Table 4: Study on the Frequency of Mutation .. 92

Table 5: Study on the Frequency of Crossover ... 94

Table 6: Optimal Results for DMGA .. 95

Table 7: Study on the Frequency of Mutation Operators .. 100

Table 8: Study on the Frequency of Crossover ... 101

Table 9: Study on the Frequency of Mutation .. 103

Table 10: Study on the Frequency of Crossover ... 105

Table 11: Optimal Results for CBLL-GA ... 107

Table 12: Optimal Results for CBLL and CE ... 111

Table 13: MCNC Benchmark Comparison ... 117

xiv

ACKNOWLEDGEMENTS

 I would like to express my gratitude and acknowledgement to Dr. Jeevan

Kanesan, my supervisor, for his guidance and supervision in helping and guiding me in

this project. With his advice, support and guidance, I am able to complete my research. I

would like to thank Prof Velappa Ganapathy for his kind help in guiding me in writing

papers for this research. I also want to thank Dr Harikrishnan Ramiah for his help when

I needed advices.

 I would also like to thank my mother, Tay Lee Lian and my father, Teoh Kim

Yew, for giving me endless support throughout my studies in this university. Besides

that, I would like to thank to my friends, Yeo Hock Chai, Hoo Chyi Shiang and Chong

Wei Keat for helping and guiding me whenever I need them.

xv

LIST OF SYMBOLS AND ABBREVIATIONS

BSG Bounded-Sliceline Grid

CBLL Corner Bottom Left List

CE Cross Entropy

CS Corner Sequence

DIP Dual In-Line Package

DFS Depth-First Search

DM Dot Model

GA Genetic Algorithm

SP Sequence Pair

VLSI Very Large Scale Integration

1

CHAPTER 1. INTRODUCTION

1.1 VLSI Design

Since 1960’s, ICs were simple and consist of a few gates of flip-flop. Some of the

ICs only perform logic function and use a single transistor with a resistor. Today’s ICs

expanded from a few transistors in a single chip to over more than 20 million transistors

in a single chip and can run at the speed of GHz frequency. Besides that, MEM chips

are also built to use for millions of electrical and mechanical devices. These chips bring

a new era where exotic applications become reality such as tele-presence, augmented

reality and implantable and wearable computer possible. This also gives a cost effective

communication system to the whole wide world. (Sherwani, Naveed A., 2002)

 Initially, the task of laying the gates and interconnects were done manually by

drawing on graph papers and using layout editors. As the semiconductor fabrication

processes improved, the number of transistors in a single chip increases and hence

automation is needed to solve this addressing problem of increasing in transistor scales.

Improvement in the computer speed enable to facilitate automation and it can be used

for the next generation of computer chips to replace the current ones. (Alpert,

Mehta, & Sapatnekar, 2009)

 Initially, interconnect delays were not a factor and hence physical design is a

simple process. The designer can place the blocks by floorplanning and then followed

by placement to handle the rest of the logic. If the timing constraint of the design is met

before placement, the timing constraints also will be met after placement. The increase

in number of transistors causes more complications for designers as floorplanning

becomes more complicated. Hence, algorithms and innovations are needed to aid in

automated floorplanning. Floorplanning enables the designers to plan the input and

outputs of the chip and also the global interconnect which is restricted to a given area

2

with the number of blocks in the circuit. This process needs to be done in a short time

frame to determine the area for the chip that needs to be implemented physically. The

process of determining the floorplan is important and hence automation for

floorplanning optimization is introduced. (Alpert, Mehta, & Sapatnekar, 2009)

 VLSI Physical Design Automation involves researching, developing and also

producing algorithms and data structures to aid the physical design process. The main

objective of this field is to arrange the devices in the circuit at an optimal arrangement

on a plane. This is to achieve optimal interconnections between devices and obtain the

best performance and the best functionality. Space on wafer is expensive, hence

algorithm is to be developed to minimize space to reduce cost and to increase yield.

 The arrangement of devices is important when determining the chip

performance. Hence, algorithms for physical layout need to abide the rules required by

the fabrication process. Fabrication rules are important to tolerate fabrication process.

Algorithm must be efficient and able to handle very large designs. The efficiency of

algorithm allows designers to save time and also enable designers to make iterative

improvements to the layouts. The VLSI physical design process uses simple geometric

objects to represent chips such as rectangle blocks. The physical design algorithm is

similar to graph algorithms and hence combinational optimization algorithms can be

used. Therefore, physical design automation can be studied from graph theory and also

combinational algorithms that manipulate the geometric objects whether in two or three

dimensions. However, geometric point of view will ignore the electrical aspect and

design rules for physical design problems. Then, constraints must be implemented to

suit the physical design problems.

 Polygons and lines have inter-related electrical properties in VLSI circuit. This

shows the complicated behaviour of VLSI design which also need to depend on various

3

variables which are required for IC design. It is necessary to keep both electrical aspects

in taking geometric objects during the development of algorithms for VLSI physical

design automation. (Sherwani, Naveed A., 2002)

1.2 Physical Design Cycle

Input for physical design cycle is a circuit diagram and the output is the layout of

a circuit. This cycle consists of a few stages which are partitioning, floorplanning,

placement, routing and compaction. Figure 1.3 shows the stages of a physical design

cycle followed by the explanations. Below are the explanations on the physical design

cycle.

1.2.1 Partitioning

Usually chips have many transistors. Because of the limitations in memory and

computational power, it is difficult to plan the layout of the entire chip. Hence, chip is

partitioned into sub-circuits. These sub-partitions are known as blocks. Partitioning

process considers many factors such as the blocks size, the number of blocks and the

number of interconnects between the blocks. Partitioning gives a set of blocks and

interconnects between the blocks. Figure 1.1 (a) shows a circuit which has been

partitioned into three blocks. Usually in large circuits, the process of partitioning is

hierarchical and the topmost level of a chip may have 5 to 25 blocks.

1.2.2 Floorplanning and Placement

In this step, good layout is selected for each block as well as the entire chip. The block

area can be estimated after partitioning. Besides that, interconnect area within the block

must also be taken into account. Rectangular shape that is determined by aspect ratio

may vary within a pre-specified range. Generally, blocks usually have rectilinear

shapes. Floorplanning is important to set up the ground work for a good layout. This

step is computationally difficult and usually is done by design engineer rather than a

4

CAD tool. Usually human is better in observing the entire floorplan and analyse the

information than a CAD tool. Sometimes manual floorplanning is needed for major

component of an IC as the chip needs to be placed according to the signal flow of the

chip. Moreover, some components need to be located at a specific location on the chip.

Placement is when blocks are positioned on the chip. The aim of placement is to obtain

the minimum area of the arrangement of blocks and also the complete interconnects

between the blocks and meeting the constraints of the performance. Placement should

be routable and meet their timing goals. There are two phases in placement which create

initial placements and evaluate them and execute iterative improvements to obtain the

minimum area and best performance according to the design specifications. Figure 1.1

(b) shows the placement of three blocks. Some spaces were left intentionally for

interconnect between the blocks. The placement quality is analysed only after routing.

Some placement may give unroutable design. Hence, another iteration of placement is

needed. An estimation of a routing space is needed to limit the number of placement

iterations. A good placement algorithm is important to obtain good routing and circuit

performance. Little can be done to routing and the circuit performance once the position

of the blocks is fixed.

1.2.3 Routing

Routing is to do interconnect between blocks according to netlist. Firstly, the spaces

which are not occupied by blocks are partitioned into rectangular regions which are

called channels and switchboxes. The spaces between blocks and on top of the blocks

are also included. The objective of routing is to connect all the blocks in the shortest

wire length and only uses channels and switch boxes. There are two phases which are

Global Routing and Detailed Routing. Global routing connects between proper blocks

of the circuit disregarding the exact geometric details of each wire and pin. Global

router will find a list of channels and switchboxes for every wire and uses it as a

5

passageway for the wire. Global routing specifies the routing spaces when a wire is

routed. After global routing, detailed routing is done to complete the point-to-point

connections between pins on the blocks. Global routing will be converted into exact

routing according to the geometric information such as the location and space of wires

and their layer of assignments. Detailed routing involves channel routing and also

switches routing. Routing problems are computationally difficult. Hence, many

researches have been done to solve routing problems which used heuristic algorithms.

Several benchmarks have been standardized to evaluate the experiments using the

algorithms. Sometimes, complete routing cannot be guaranteed. Hence, rip-up and re-

route were sometimes used to remove some connections and reroutes them in a different

order. Figure 1.1(c) shows the routing phase of all the interconnections between three

blocks that have been implemented.

1.2.4 Compaction

Compaction is the task of compressing the layout in all directions to reduce the total

area. Making the chip smaller will reduce wire lengths and reduce delay in signal

between the circuits. Besides that, smaller area can produce more chips in a wafer and

reduce manufacturing cost. However, computing compaction uses a lot of time and

hence is only used for large volume applications such as microprocessors. It is

important to ensure that compaction does not violate any design or fabrication rules.

Figure 1.1 (d) shows a compacted layout.

1.2.5 Extraction and Verifiation

It is important to have Design Rule Checking (DRC) to verify that all the geometric

patterns follow the design rules for fabrication process. One of the rules that needed to

be followed is the wire separation rule. Fabrication process requires a minimum specific

separation between two adjacent wires. Hence, DRC needs to check that all the wires in

the chip follow this rule. There are many other design rules and some of the rules are

6

difficult to check. After complete checking the design rules, the functionality of the

layout needs to be verified by Circuit Extraction. This generates the circuit

representation from the layout and is a reverse engineering process. The generated

circuit is compared with the circuit description to check its correctness. This is known

as Layout Versus Schematics (LVS) verification. The geometric information is

extracted to compute Resistance and Capacitance. Hence, calculation for timing of each

component and interconnect can be obtained and is known as Performance Verification.

The information extracted is used to check the reliability aspects of the layout which is

known as Reliability Verification. This is to ensure that the layout will not fail because

of electro-migration, self-heat and other effects.

Same as VLSI design, physical design is also iterative and needs many steps and

repeat many times to obtain better layout. Besides this, the quality of the solution is

obtained from earlier steps. Early step such as placement will affect the routing. Hence,

partitioning, floorplanning and placement are important to determine the chip area and

performance compared to routing and compaction. This is because placements may give

layout that cannot be routed. Hence, the chip needs to be repartitioned before routing

again. Design cycle needs to be repeated several times in order to achieve design

objectives.

The complexity of the design cycle depends heavily on the design constraints and

also the design style used. This thesis is focused on floorplanning optimization where

heuristic methods for floorplanning optimization will be analysed in order achieve the

minimum floorplan area for physical design. (Sherwani, Naveed A., 2002)

7

Physical Design

Figure 1.1 Physical design cycle

 (Sherwani, Naveed A., 2002)

Circuit

Design

(a) Partitioning

(b) Floorplanning

& Placement

(c) Routing

(d) Compaction

(d) Extraction and

Verification

Fabrication

8

1.3 Automation in Floorplanning Optimization

Block arrangement is done in two phases which are floorplanning phase and the

placement phase. Floorplanning is planning and sizing the blocks and interconnect

whereas placement assigns a specific location of the blocks. For placement phase, it is

important that the blocks are positioned on the surface of the layout so that no two

blocks overlapping one another and there must be enough space for the interconnection.

The blocks must be arranged so that the minimal total area of the layout is obtained.

The input for floorplanning phase is the set of blocks, area of each block, the

shapes of blocks and the number of terminals for each block and the netlist. If the

dimensions of the blocks are known, they are called fixed blocks and if the dimensions

are not fixed, they are called flexible blocks. Floorplanning is usually generalized as the

placement problem as the floorplanning involves flexible blocks whereas placement

involves only fixed blocks.

There are a few factors needed to be considered during placements which are the

shape of the blocks, the wire routing, the performance of the circuit for that

floorplanning and placement, the packaging considerations and also the pre-placed

blocks. (Sherwani, Naveed A., 2002)

Algorithms for VLSI floorplanning optimization are usually divided into 2

sections, the representation of the model and also the algorithm for optimization. There

are various types of representations which can be used to represent floorplanning such

as the floorplan tree and also the graph representations of floorplans. There are various

algorithms such as the constructive method, iterative method and knowledge based

method that can be used in order to optimize the floorplan through the use of the

floorplanning representations. (Sait & Youssef, 1999)

9

1.4 Objectives and Goals

The main objective of this research is on floorplan optimization. This research

consists of floorplanning optimization using computational methods which consist of

heuristic optimization algorithms and modelling floorplan representations. The

objectives of this research are:

1) To analyse the type of methods that can be used to represent the floorplan.

2) To analyse the type of optimization method that can be used such as simulated

annealing, genetic algorithm etc.

3) To introduce a representation for the floorplan to aid optimization.

4) To introduce a new algorithm that can be used to optimize the floorplan.

5) To obtain the minimum area of a given floorplan

1.5 Research Outline

The outlines of this research consist of the following:

1) Obtain the different types of benchmarks that were used in previous research

such as APTE, HP, AMI33 and AMI49.

2) Analyse methods of representing the floorplan such as sequence pair, graph

theory and tree representation.

3) Analyse the different heuristic methods that are used to optimize the floorplan

such as simulated annealing, genetic algorithm and particle swarm optimization.

4) Modelling the floorplan using sequence pair, corner sequence and also left

bottom corner.

5) Optimizing the floorplan using genetic algorithm and cross entropy method by

referring to the model of the floorplan.

10

1.6 Importance of Research

Optimal automated floorplanning optimization is important to improve the layout

in a floorplan so that the chips will be at their best performances and also reduces the

costs of manufacturing and man power. This is because less design engineers will be

needed as automated algorithm is able to aid IC design.

1.7 Organization of Thesis

This thesis is divided into six main chapters. The first chapter gives a brief

introduction on VLSI design and also the importance of automation for VLSI design.

The second chapter discusses on floorplanning in a more detailed way and also reviews

about previous work done in order to solve the floorplanning optimization problem. The

third chapter of this thesis discusses on the approaches taken for this project which are

Genetic Algorithm (GA), Cross Entropy Method (CE), Dot Model (DM) and Corner

Bottom Left List (CBLL). The fourth chapter discusses on the results obtained in this

work compared with results obtained by previous researches. The fifth chapter are the

results and discussions of this research work. The final chapter concludes about this

project and also the future work that can be carried out in order to improve this project.

11

CHAPTER 2. LITERATURE REVIEW

2.1 Concepts of Floorplanning and Approaches to Problem

Floorplanning is important in VLSI physical design automation. Floorplanning

arranges a set of rectangular modules of different sizes and find the placement of these

modules in a way where no module overlaps each other and is arranged in a minimum

area and minimum wire length. The abstract formulation involves rectangular blocks

with arbitrary dimensions.

The main objective of floorplanning is to obtain the minimum space of layout in

order to save cost and also helps to reduce wire routing and reduce circuit resistance.

Reduction in resistance will lead to less heat generated. This can further improve the

performance of the VLSI chip. In order to optimize floorplanning, coding the floorplan

is important to use optimization algorithm. There are several floorplanning methods

which were used as follows:

1) Constraint based methods

2) Integer programming based methods

3) Rectangular dualization based methods

4) Hierarchical tree based methods

5) Simulated Evolution algorithms

6) Timing Driven Floorplanning Algorithms

Besides the methods mentioned above, there are many other methods either

simple or more complicated which can be used for floorplan optimization. In this

project, a stochastic method is used for optimization. (Sherwani, Naveed A., 2002) To

optimize a floorplan, it is essential to have a good representation code. This is important

so that the optimization algorithm can use the string based representation in order to

12

obtain optimum arrangement of the layout. This shows that floorplanning consists of 2

main sections which are floorplan modelling and floorplan optimization.

 In the recent years, many researches have been carried out and developed for

floorplanning optimization. There are various floorplan representations that have been

developed which are non-topological, room-based and also block-based. Generally,

floorplan can be catagorized into two main types which are the slicing and non-slicing

floorplan. In this chapter, previous methods of floorplanning representations and

optimization methods will be discussed.

2.2 Floorplanning Representation

In this section, the various types of floorplan representations will be discussed in

detail. Slicing floorplan representations are represented by Polish expression and slicing

tree. Non-slicing floorplan representations are corner block list (CBL), Sequence Pair

(SP), Bounded Slice-line Grid (BSG), O-tree, B*-tree, Transitive Closure Graph (TCG),

Transitive Closure Graph with a Sequence (TCG-S) and Adjacent Constraint Graph

(ACG).

2.2.1 Slicing Floorplans

Slicing floorplan can be partitioned into at least 2 different blocks. Slicing

floorplans are hierarchical floorplans of order 5. A floorplan is hierarchical of order 5

only if it can be recursively subdivided into rectangle either two parts by a horizontal

or into 4 parts by a wheel.

13

2.2.1.1 Slicing Tree

A slicing tree is a binary tree that has n leaves and n-1 nodes, where each of the

nodes represents a vertical or horizontal cut line and each of the leaves represents a

block. Slicing tree is also known as slicing floorplan tree. Figure 2.1 shows the slicing

floorplan and Figure 2.2 shows the tree representation for the slicing floorplan of Figure

2.1. In the slicing tree, the internal nodes are labelled with either V or H which means

vertical or horizontal cut. Every leaf is labelled by the module number. A slicing tree is

skewed if only it has no node and the right child has the same label. Figure 2.2a shows a

skewed slicing tree and Figure 2.2b shows non-skewed slicing tree. Slicing floorplan

can be represented by more than one slicing trees. The order of horizontal and vertical

cuts makes up the slicing tree. Skewed slicing tree is unique for a slicing floorplan.

Figure 2.1 Slicing Floor plan

 (a) (b)

Figure 2.2 Slicing tree

E F

D
G

A B C

14

Slicing tree is a top-down description of the type of cut which is horizontal or

vertical of a slicing floorplan. Slicing tree does not give dimensional information.

Hence, a slicing tree may represent more than a slicing floorplan. General slicing

floorplan is known as hierarchical floorplan of order 5. An order 5 floorplan can be

recursively subdividing 2 parts by a horizontal or vertical segment or into 4 parts by a

wheel. Hence, Figure 2.1 is known as hierarchy of order 5. (Sait & Youssef, 1999)

According to (Lai & Wong, 2001), slicing tree can be an effective tool for VLSI

floorplan design where it can take full advantage of shape and orientation flexibility of

circuit modules to find highly compact slicing floorplan. They mentioned that using

slicing tree representation and compaction, all maximally compact placements of

modules can be generated and it becomes a complete floorplan representation for all

non-slicing floorplans.

2.2.1.2 Normalized Polish Expression

Normalized Polish Expression uses rectangle dissection where a rectangle is

subdivided by horizontal and vertical line segments into more than one non-overlapping

rectangle. This can be represented in slicing tree. The normalized Polish expression of

length 2n-1 has a 1-1 corresponding with the slicing trees with n leaves. A polish

expression also is a top down description. The symbols for H (horizontal) and V

(vertical) are the operands for the slicing structures. Hence, if A and B are slicing

structures, it can be represented with and “arithmetic expression” with AHB or AVB

which are the representation for Polish expression. Figure 2.3 shows the slicing

structure, binary tree and the arithemetic expression of a floorplan.

A skewed slicing tree is a slicing tree where no node and its right child has the

same label. A Polish expression a1,a2,…a2n-1 is normalized if and only if there is no

consecutive H or V in the sequence. Polish expression corresponds to the slicing

15

structure and also slicing tree. This causes a slicing structure can be represented by

more than two Polish expressions.

 ((4H(5V6))V7)H(1V(2V3)) - “Arithmetic Expression”

Figure 2.3 Slicing structure, binary tree and the arithemetic expression of a floorplan

Normalized polish expression has three properties which are

1. each block appears only once in a string

2. the balloting sequence property

3. no two consecutive operators are the same in a string

These properties of normalized polish expression will give a unique slicing

floorplan for a normalized polish expression. Normalized polish expression enables us

to perturb the slicing floorplan solution in order to obtain a new neighboring solution.

Polish expression can be evaluated with a O(n log n) bottom-up traversal with the

corresponding slicing tree. Hence, both area and wirelength of the floorplan can be

obtained. This is important for evaluation to reduce optimization time. (Wong & Liu,

1986)

For VLSI floorplanning, some placement constraints are specified in packing. One

type of placement constraint is to pack some modules on one of the four sides: on the

5 6

4
7

1 2 3

16

left, on the right, at the bottom, or at the top of the final floorplan. These are called

boundary constraints. Young, Wong, & Yang, 1999 enhanced a well-known slicing

floorplan algorithm which is the Polish expression that represents the intermediate

solutions in the simulated annealing process, so that constraints can be checked and

fixed efficiently. (Young, Wong, & Yang, 1999)

Another paper (Lin, Chen, & Wang, 2002) proposed generalization of Polish

expression where the representation can efficiently reuse some area that cannot be

utilized if only have vertical and horizontal operators defined in Polish expression and

hence Polish expression can represent non-slicing floorplans.

This paper (Chen, Lin, & Wang, 2003) addresses the problem of VLSI

floorplanning with boundary constraints consideration. They use generalized Polish

Expression which uses both Polish Expression and also the boundary constraints for

non-slicing floorplan. Besides that, a fixing heuristic based on modular similarity is

presented to effectively fit the generated infeasible floorplans during the process.

Hence, this new Polish Expression is modified from Polish Expression so that non-

slicing floorplan can be represented.

2.2.2 Non-slicing floorplans

Non-slicing floorplan are floorplans that cannot be divided by horizontal or

vertical cuts. Hence, the smallest nonslicing floorplan is a wheel. Non-slicing floorplans

can give more optimum area as it does not need to be arranged in a way that it needs to

be divided into smaller rectangular. Below are the non-slicing floorplans and their

description.

17

2.2.2.1 Corner Block List

Corner block list is a topological representation for non-slicing floorplan. Corner

block list takes linear time to construct the floorplan. It defines the floorplan

independent of the block sizes and is able to optimize various size configurations of

block. Corner block list time complexity to convert into floorplan is O(n). Corner block

list takes n(3+[lg n]) bits to describe where [lg n] denotes the minimum integral number

which is not less than lg n. Besides that, corner block list represents the floorplan

independent of the block sizes and hence this can optimize blocks with different widths

and heights.

Corner block list is constructed based on the recursive corner block deletion.

Every block deletion is kept according to the block name, corner block orientation and

number of T-junctions uncovered. Upon completion of the deletion iterations, the data

of these three items are concatenated in a reverse order. The sequence of the block

names S, the list of orientations L and the list of T-junction T information is then

obtained. At the nth deletion, only one block is left in the floorplan. Hence, the

orientation and the number of T-junction can be ignored and were not included in the

lists of L and T.

A constraint graph for a floorplan is represented as G = (V, E), where the nodes

in V are segments which slice the space and form rooms for the floorplan with nodes

used for the placement boundaries and E are the edges of the room of placement blocks.

There are two types of edges where one direction is from left node to right node and

another direction is from bottom to top node. Source node of an edge is the outgoing

edge and destination node of and edge is incoming edge.

There are two constraint graphs which are the horizontal constraint graph (HCG)

and vertical constraint graph (VCG). For HCG, “W” represents west pole and “E”

18

represents east pole. These edges represent the direction related horizontally from left to

right. For VCG, “S” represents south pole and “N” represents north pole. The edges

represent the direction related vertically from bottom to top. Figure 2.4 shows the

floorplan and Figure 2.5 shows the constraint graphs related to Figure 2.4. Edge that

points to east or north pole is known as corner edge. A block that is at the corner edges

of both HCG and VCG is corner block. Hence, only block “d” in Figure 2.4 is corner

block. Orientation of corner block is defined according to the joint in left and bottom

segment and T-junction. T-junction has 2 orientations which are rotated by 90 degrees

and 180 degrees counterclockwise. The corner block is vertical oriented if T is rotated

by 90
o
 and is denoted by “0”. The corner block is horizontal oriented if is rotated by

180
o
 and is denoted by “1”. Figure 2.4 shows that the corner block, d is vertical oriented

and is denoted as “0”.

Figure 2.4 Floorplan

 Horizontal

 Vertical

Figure 2.5 Constraint Graphs

19

 Corner Block Deletion is deleting the right top corner block. For horizontal

oriented corner block, when the corner block is deleted, the left segment is shifted to the

right boundary of the chip and the attached T-junction is pulled along with the segment.

For vertical oriented corner block, when the corner block is deleted, the bottom segment

is shifted to the top boundary of the chip and the attached T-junction is pulled along

with the segment. Figure 2.6 shows corner block deletion for horizontal oriented corner

block. Hence the corresponding constraint graphs can perform deletion directly. The

constraint graph will be modified as shown in Figure 2.7. This will modify the

constraint graph and block “a” becomes the corner block.

Figure 2.6 Deletion of Corner Block in a Floorplan Structure

Figure 2.7 Deletion of Corner Block in constraint graph

 Corner block insertion is inserting block into the right top corner. When the

corner block to be inserted is vertical oriented, the horizontal segment at the top side of

the chip is pushed down to cover the designated set of T-junctions and to obtain room to

insert the corner block as shown in Figure 2.8. When the corner block to be inserted is

horizontal oriented, the left vertical segment is pushed at the right side of the chip and

then the corner block is inserted. The floorplan still remains mosaic after deletion and

insertion.

20

Figure 2.8 Insertion of Corner Block

 Corner Block List has three tuples which is (S,L,T). For Figure 2.3 floorplan, the

corner block, d is deleted. Since d is a vertical oriented block and there is one T-junction

attached to it, the record obtained is (d,0,10). Hence, the block a,b,g,e,c and f are deleted

successively. Hence, the concatenate record derive a corner block list of (S,L,T) where

S = (fcegbad), L=(001100), and T = (001010010).

 Below is the algorithm that transforms from floorplan to corner block list:

When corner block exist, repeat

1. Delete corner block

2. If not the last corner block, record the block name, orientation and T-

subsequence.

 Add the last block to the list and concatenate the records in a reverse order of the

deletion sequence to construct the corner block list.

 Below is the algorithm that transforms from corner block list to floorplan:

1. Initialize the floorplan with block S[1]

2. For i=2 to n, insert block S[i] with orientation L[i] and T-junctions from the

corner block list. If the number is more than the T-junctions available, exist

and report error,

A corner block list may not correspond to floorplan because of the constraints of

list T. Hence, the number of erased T-junction cannot be more than the T-junctions

available for insertion. (Hong, et al., 2000)

21

This paper (Dhamdhere, Zhou, & Wang , 2002) uses CBL representation for

module placement with pre-placed modules. They use two methods. First method, only

free modules included in the corner block list. The free module from the CBL is placed

and check overlaps for the pre-placed modules and removes the overlaps by shifting the

free module to the right or top. The second method uses all modules in the corner block

list. If a new module inserted is found to be overlapping with pre-placed module, it is

instead swapped with the pre-placed module in the CBL. If a new module inserted is a

pre-placed module but not in the pre-placed location, the placement of the pre-placed

module will be deferred and is swapped with the next free module in the CBL to place

at the current location. These algorithms are combined with simulated annealing

technique.

Another paper by (Hong, Dong, Huang, Cai, Cheng, & Gu, 2004) uses CBL to

represent mosaic floorplans. In mosaic floorplan, each room has only one block

assigned to it. Hence, a unique corner room is available on the top right corner of the

chip. The corner block deletion and corner block insertion will be used to keep the

floorplan mosaic. Recursive deletion process can convert the mosaic floorplan to a

representation named CBL. This CBL uses linear time to construct the floorplan.

Simulated annealing is used for optimization.

According to (Chen, Dong, Hong, Ma, & Cheng, 2006), CBL is a room-based

floorplan representation. This paper identifies the topological relation between two

blocks in CBL. Using the topological relation between the blocks, CBL is feasible under

alignment constraints. Hence, the block placement can be done using CBL with

alignment constraints.

22

2.2.2.2 O-Tree

O-tree is an ordered tree that represents non-slicing floorplans. O-tree model is

used for admissible placement. An admissible placement is a placement where the

modules can only be compacted in both x- and y- directions. This means that the

module cannot shift left or down with other modules were being fixed. Figure 2.9 shows

an admissible placement.

A tree has a finite set of T or more nodes. It has a specially designated node

which is the root of the tree. The root has zero or more branches that are pointing from

the root children. O-tree has two types which are horizontal O-tree and vertical O-tree.

To construct O-tree, admissible placement is needed. A horizontal O-tree (T,π) is

constructed as follows. Left boundary of the placement is represented as root and the x-

coordinate is set as xroot = 0 and width wroot = 0. The children are placed on the right side

of their parent with zero separation distance in x direction. Figure 2.10 shows a

horizontal O-tree for the floorplan structure of Figure 2.9. (Takahashi, Guo, Cheng, &

Yoshimura, 2003)

Figure 2.9 Admissible Placement

Figure 2.10 Horizontal O-tree

A vertical O-tree is constructed by having the bottom boundary of the placement

as the root and the edge gives the direction relationship between the modules. An O-tree

is represented by two-tuple (T,π) . In order to encode a rooted ordered tree with n nodes,

23

a 2(n-1)-bit string, T branching structure needs to be identified and the permutation, π to

label the n nodes. The bit string, T realizes the tree structure. “0” stands for traversal

descends edge and “1” stands for traversal ascends edge in the tree. The permutation, π

labels the sequence to traverse the tree in depth-first search order. The root of the tree is

represented by the first element in the permutation, π. Figure 2.10 shows the encoding

of 8-node rooted ordered tree. The root node has three subtrees which are a, b and c.

The O-tree can be represented as (00110100011011,adbcegf).

 The left boundary of the floorplan is set as the root of a horizontal O-tree and the

coordinate is set (xroot, yroot) = (0, 0). Node ni is the parent of node nj. Hence, xj = xi + wi.

For each block bi, let L(i) be the set of block bk’s on the left of bi in permutation π, and

interval (xk , xk +wk) overlaps the interval (xi, xi + wi) by a nonzero length. If L(i) is non-

empty, we have

 {
 { }

Horizontal O-tree can give placement by visiting the tree in DFS order. This is

shown in Figure 2.10. Y-coordinate can be computed from horizontal O-tree by using

contour structure to reduce the run time to find y-coordinate of a block. Without contour

structure, the run time is linear to the number of blocks without contour structure.

Contour structure can find the y-coordinate in a constant time. Contour structure is

double linked list of blocks that describe the contour line in the current compact

direction. Figure 2.11 shows the contour structure is updated when new block is placed

into the floorplan and the y-coordinate of the block is determined. (Guo, Cheng, &

Yoshimura, 1999)

24

Figure 2.11 When module is added on top, horizontal contour is searched from left to

right and the top boundary of the new module is updated

According to Sitzmann & Stuckey, 2000, constraint search trees is used to

search trees where the operations are defined in term of constraints. Hence, the

fundamental operations of search trees and the immediate points to new possibilities for

search trees are made clear. A height-balanced constraint search tree which builds a

height-balanced index structure which is O-tree. N object in an O-tree is represented by

constraints of the form axi + bxi ≤ d where {a,b} ⊆ {-1,0,1} and x1,…,xn are the

dimension of the spatial data. Hence, the basic operations to build and search the height-

balanced constraint search tree and constraint joins are defined by (Sitzmann &

Stuckey, 2000). Hence, accurate information in the O-tree nodes can be obtained.

A modified O-Tree based packing algorithm is also proposed. (Yan, Li, Yang, &

Yu, 2004) This can reduce the time cost of turning an O-Tree into an admissible O-Tree

and decoding it into a placement. This is done by introducing a vertical contour into the

algorithm by replacing the O-Tree orthogonal constraint graph and constraint graph to

O-Tree procedures to a single O-Tree to floorplan. This algorithm applied to various

problems such as placement with boundary constraint and rectilinear blocks. Genetic

Algorithm is used to solve the problem and an additional block is inserted as internal

node without increasing the time complexity when perturbation of O-Tree.

There is a paper (Ninomiya, Numayama, & Asai, 2006) which also uses O-tree

for floorplan optimization. This work shows a two-staged Tabu search for non-slicing

25

floorplan problem using O-tree. This combines the simulated annealing into the two-

staged Tabu search and a hybrid algorithm which is the O-tree representation. This

paper combines both the optimization algorithms with O-tree for floorplan optimization.

2.2.2.3 B*-Tree

B*-trees are based on ordered binary trees and the admissible placement. Inheriting the

properties of ordered binary trees, B*-trees can be implemented easily and can perform

respective primitive tree operation search, insertion and deletion in only constant, and

linear time.

The correspondence between an admissible placement and induced B*-tree is

direct and only takes linear time. The evaluation for B*-tree and placement can be done

directly and incrementally. This reduces the search spaces and avoids redundant

solutions. (Chang, Chang, Wu, & Wu, 2000)

An admissible placement, P can be represented by a unique (horizontal) B*-Tree

T. Figure 2.12 shows the B*-tree of a floorplan of Figure 2.13. A B*-tree is an ordered

binary tree where the root is directly related to the module of the bottom-left corner. B*-

tree is constructed in a recursive way.

Initially, the left subtree is constructed recursively to the right subtree from the

root. Let Ri denote the set of modules located on the right-hand side and adjacent to bi.

The left child of the node ni corresponds to the lowest module in Ri that is unvisited. The

right child of the node ni represents the lowest module located above and with its x-

coordinate equal to that of bi. The y-coordinate is less than half the top boundary of the

module on the left hand side and adjacent to bi. This display the corresponding

relationship between the admissible placement and B*-tree.

26

Referring to Figure 2.12 and Figure 2.13, module a is the root because it is on

the bottom-left corner. The left subtree of na is constructed recursively making nb the left

child of na. The procedure is repeated for the right subtree of na once the left subtree of

na is completed. This construction only needs linear time.

A B*-tree can be computed into the x-coordinate and y-coordinate for each

module according to the node in the tree. The root (xroot, yroot) = (0, 0) for the x- and y-

coordinates of the module because the root of T is the bottom-left module.

 B*-tree keeps the geometric relationship between two modules. If node nj is the

left child of node ni, module bj will be located on the right-hand side and adjacent to

module bi in the admissible placement; i.e., xj = xi + wi. Whereas, if node nj is the right

child of ni, module bj will be located above and adjacent to module bi with the x-

coordinate of bj equal to that of bi; i.e., xj = xi.

 The construction is recursively performed in depth-first search order. A B*-tree

can determine the x-coordinates of all the modules by traversing the tree completely

once. The contour data structure can also be adopted to compute the y-coordinate of a

B*-tree as mentioned in the O-tree. (Chang, Chang, Wu, & Wu, 2000)

Figure 2.13 B*- tree
Figure 2.12 An admissible placement

27

 A paper by Jiang, Lai, & Wang studied the problem of module placement with

pre-placed modules and it extends the B*-tree representation to solve problem. This

paper suggests that each pre-placed modules to be placed at a pre-specified location all

the time and uses the B*-tree representation to generate the locations for the remaining

modules. A repositioning techniques is added in order to eliminate any overlapping

between modules. This paper added simulated annealing to optimize the placement.

(Jiang, Lai, & Wang, 2001)

 Wu & Chang used B*-tree representation for placement with alignment and

performance constraint. The aim is to align circuit blocks one by one and constrain the

blocks within a certain bounding box. The feasibility conditions is explored with the

alignment and performance constraints and then an algorithm is used to guarantee a

feasible placement with alignment constraints and generate a good placement with

performances constraints during each operation. (Wu & Chang, 2004)

B*-tree representation can also incorporate with particle swarm optimization

(PSO) for floorplanning. The B*-tree floorplan structure is used to generate an initial

stage with overlap free for placement and PSO to find potential optimal placement

solution. This method can avoid solution from falling into the local minimal and able to

explore good solutions for floorplan optimization. (Sun, Hsieh, Wang, & Lin, 2006)

Mao, Xu and Ma used hybrid algorithm which incorporate B*-tree

representation for floorplanning. This is to improve the area optimization of the

floorplan. This uses simulated annealing embedding a tabu search for the floorplan. The

purpose of this hybrid algorithm is to improve area utilization and obtain the optimal

results in a short run time. (Mao, Xu, & Ma, 2009)

28

2.2.2.4 Bounded-Sliceline Grid

A bounded-sliceline grid (BSG) dissects a plane into rooms what are associated

with binary relations of “right to” and “above” where any two rooms are in this unique

relation. This can be obtained through an assignment of modules on the BSG followed

by the physical realization of the BSG-PACK.

 BSG is a metagrid where it means that it does not contain physical dimension

but is a topological grid of plane that has orthogonal unit lines which are called BSG-

units. BSG dissects plane into rectangular zone which are known as rooms. Hence, BSG

structure has rooms, horizontal unit segments and vertical unit segments. Figure 2.15

shows the a BSG of dimension p × q, BSGp×q. To use BSG structure to represent a

floorplan, p x q must be equal or larger than the number of modules. A rectangular

space which is surrounded by an adjacent pair of vertical and horizontal units will form

a room. The vertical unit segment gives the vertical relations and the horizontal unit

segment gives the horizontal relations. The placement for modules, m is arranged as the

room assignment of modules, m by placing the modules, m into different rooms. Given

a set of modules, M where |M | = n. Making an assumption that p × q ≥ n, an assignment

of M is a one-to-one mapping of modules into the rooms of BSGp×q. A room that does

not have module assigned is called an empty room.

Figure 2.14 BSG with dimension p × q, BSGp×q

29

 Figure 2.14, Figure 2.15, Figure 2.16 and Figure 2.17 show the process of

transforming from BSG to placement. Four modules were given as shown in Figure

2.16. The modules were assigned as shown in Figure 2.16. The horizontal unit

adjacency graph Gh(Vh,Eh) is formed as shown in Figure 2.18 and the vertical unit

adjacency graph Gv(Vv,Ev) is formed as shown in Figure 2.17. The weights of the

edges are assigned in the unit adjacency graphs. If e Eh and e goes across a non-empty

room, w(e) = width of the module that is assigned there. If e goes across an empty room

or to the source or sink, then w(e) = 0. (Nakatake, Fujiyoshi, Murata, & Kajiyana, 1996)

Figure 2.19 The corresponding placement

Figure 2.15 Input modules

Figure 2.16 BSG assignment

Figure 2.17 Horizontal unit adjacency

graph Gh(Vh,Eh)

Figure 2.18 Vertical unit adjacency

graph Gv(Vv,Ev)

30

The horizontal unit adjacency graph is represented by Gh(Vh,Eh). For each vertex

u Vh , lh(u) is denoted as the length of the longest path from the source sh to u. For the

vertical unit adjacency graph, Gv(Vv, Ev), each vertex u Vv, lv(u) denotes the length of

the longest path from the source sv to u.The longest path,G is used to determine the

positions of the modules. This longest path algorithm works in linear time with the

number of edges when the input G is a directed acyclic graph. The total number of

edges of the unit adjacency graphs are between 2(pq + p + q) and 2(pq + p + q)-4. The

time complexity of the longest path length,G where G is Gh(Vh,Eh) or Gv(Vv,Ev) is

O(pq).

 According to the BSG to placement theorem, the following procedure is done

according the the procedure of BSG-PACK as follows when given an assignment of M

to BSGpxq. Let the module, m is assigned to a room where the boundary of the left

vertical unit is Vm and the bottom horizontal unit is Hm. Then, module, m is placed at

the left bottom which is at (lv (uVm), lh (uHm)) where uVm and uHm are the vertices that

corresponding to the units Vm and Hm where Vm is the vertical unit and Hm is the

horizontal unit adjacency graph.

It is important to ensure that no two modules are overlapped by noticing the

right to and above relation in the output of the procedure. From there, we can obtain the

area which is the minimum bounding box of the chip by using the BSG-PACK

assignment which is (lv(tv) x lh(th)). The procedure of BSG-PACK gives the physical

dimension to the meta-grid. The output of BSG-PACK can be further compacted to

reduce area if the modules are allowed to penetrate the peripheral BSG-units. BSG can

be perturbed by choosing two different rooms and interchange the contents in them to

generate a new BSG assignment.

31

2.2.2.5 Sequence Pair

Sequence Pair encodes non-slicing floorplans. When n modules of a non-slicing

floorplan are given, the sequence pair, which is a pair of module name sequences will

provide the information regarding the position of the modules relatively whether it is

above, to the right of and to the left of a given module. The correspondence between

sequence pair and placement is 1-to-1 and hence a sequence pair gives a unique

floorplan.

In order to obtain a floorplan from the sequence pair, first draw an ‘up-right

step-line’ for each module. Vertical lines and horizontal lines were drawn from the

upper right corner of a module until the upper right corner of the floorplan. The down-

left step-lines are also drawn in a similar way. A pair of up-right step-line and down-left

step-line for a given module forms the ‘positive step-line’ and a pair of left-up and

right-down step-line for a given module forms the ‘negative step-line.’ Positive step-

lines of the modules and negative step-lines of the modules do not cross each other. The

order among the positive step-lines from the left to right forms the first sequence in a

sequence pair and the order among the negative step-lines from the bottom to top gives

the second sequence in the sequence pair.

 In order to obtain sequence pair to placement, the following steps are taken.

Given a module x in a sequence pair SP (S1, S2), the list of modules that appear before x

in both S1 and S2 is obtained. These modules are located on the left of x in the floorplan.

The set of modules that appear after x in both S1 and S2 are located to the right of x in

the floorplan. The set of modules that appear after x in S1 and before x in S2 are located

above x in the floorplan. Then a directed graph, Horizontal Constraint Graph (HCG) is

built based on the ‘right-of’ and ‘left-of’ relation, where a directed edge e(a,b) shows

that module a is to the left of b. Then, source node is added and is connected to all the

32

nodes in HCG. A sink node is also added to HCG and is connected to all nodes to this

sink. A longest path length from source to each node in HCG denotes the x coordinate

of the module in the floorplan. The longest source-sink path length gives the width of

the floorplan. To construct a Vertical Constraint Graph (VCG) also is the same as HCG

but it uses the ‘above’ and ‘below’ relation and computes the y coordinates of the

modules and gives the height of the floorplan. (Murata, Fujiyoshi, Nakatake, & Kajitani,

1995)

According to Tang, Tian and Wong, a fast evaluation of a large number of

sequence pairs is required in order to evaluate each generated sequence pair into

corresponding block placement. Hence, they suggest that a new approach to evaluate a

sequence pair based on computing longest common subsequence in a pair of weighted

sequences. This is to improve the efficiency of sequence pair to O(n
2
) algorithm. The

aim is to reduce the runtime for floorplan optimization. (Tang, Tian, & Wong, 2001)

According to Kodama and Fujiyoshi, sequence-pair can be used as a

representation of block placement to determine the densest possible placement of

rectangular modules in VLSI layout design. They suggested that a method of obtaining

packing via the Q-sequence (Representation of rectangular dissection) in O(n+k) time

from a given sequence pair of n rectangles with k subsequences called adjacent crosses,

given the position of adjacent crosses and the insertion order of dummy modules in

adjacent courses. This method keeps the k not more than n-3. (Kodama & Fujiyoshi, An

Efficient Decoding Method of Sequence Pair, 2002)

Another method of sequence pair which is proposed is selected sequence-pair

(SSP), a sequence pair with limited number of subsequences called adjacent crosses.

This is a modification made from sequence pair. This method has smallest packing

based on a given SSP can be obtained in O(n) time, where n is the number of rectangles

33

and can represent arbitrary packing. The total representation number of SSP of size n is

not more than the rectangular dissection of the same size. SSP is incorporated with an

algorithm in order to enumerate all the adjacent crosses on a sequence pair in linear

time. Besides that, they convert a sequence pair without adjacent crosses to an

equivalent Q-sequence, representation of rectangular dissection as mentioned in the

previous method. (Kodama & Fujiyoshi, Selected Sequence-Pair: An Efficient

Decodable Packing Representation in Linear Time using Sequence Pair, 2003)

There is a suggestion where floorplanning optimization using sequence pair as

representation is incorporated with genetic algorithm. The sequence-pair is a data

structure with applications in packing-based VLSI module placement. This paper uses

genetic algorithm for rectangle packing. There is an extent to handle symmetry

constraints which is a requirement for analog circuits. There are genetic operators which

were developed to accommodate the specific properties of the sequence pair. (Drakidis,

Mack, & Massara, 2006)

2.2.2.6 Corner Sequence

Corner Sequence is also used to represent non-slicing floorplan and is a P-

admissible representation. Corner Sequence consists of two tuples that represent the

packing sequence of the blocks and the corners which the block will be placed. Corner

Sequence (CS) =< (S1, D1) (S2, D2) … (Sm, Dm) > uses a packing sequence S of the

modules well as the corresponding bends D formed by the modules to describe a

compacted placement. Each two-tuple (Si, Di), 1≤ i ≤ m, is referred as a term of the CS.

A module bi is said to cover another module bj if bi is higher than bj and their

projections in the x-axis overlap, or bi is right to bj and their projections in the y-axis

overlap (i.e., yj ≤ yi , xj > xi and xj < xi , or if xj ≤ xi , yj > yi and yj < yi). Here, xi = xi +

wi and yi = yi + hi. Given an admissible placement (a left and bottom compacted

34

placement), firstly, pick the dummy modules bs and bt, and make R =< st > for the two

chosen modules. The module bi on the bottom-left corner of P is picked (i.e., S1 = bi and

D1 = [s, t]) since it is the unique module at the bend of R, and the new R becomes <sit>.

When there is more than one module at bends, the left-most module that does not cover

other unvisited modules is picked at the bends. Therefore, the module bj at the bend [s,

i] is picked if bj exists and bj does not cover the other unvisited module bk at the bend [i,

t]; otherwise, bk is picked. This process continues until no module is available. Based on

the above procedure, there exists at least one module at a bend of the current R before

all modules are chosen since the placement is compacted. Therefore, there exists a

unique CS corresponding to a compacted placement.

 Figures 2.20(a)–(h) show the process to build a CS from the placement P of

Figure 2.20(a). R initially consists of s and t. Module a, at bottom-left corner is chosen

first since it is the unique module at the bend of R (S1 = a, and D1 = [s, t]). Figure

2.21(a) shows the resulting R (denoted by heavily shaded areas). Similarly, module b is

chosen (S2 = b and D2 = [a, t]) and the new R is shown in Figure 2.21(b). After module

bd in Figure 2.21(b) is chosen, a and b are removed from R since ba ≤x bd and bb≤ y bd

(see Figure 2.21(c) for the new R). As shown in Figure 2.21(d), there exist two modules

bf and bc at bends. Although bf is left to bc, we pick bc first since bf covers bc. This

process repeats until no module is available, and the resulting CS is shown in Figures

2.21(i). (Lin, Chang, & Lin, Corner sequence - a P-admissible floorplan representation

with a worst case linear-time packing scheme, 2003)

35

Figure 2.20(a) Placement, P (b) Contour R of P

The dynamic sequence packing (DSP) scheme is used to transform a CS into a

placement. For DSP, a contour structure is maintained to place a new module. Let L be

a doubly linked list that keeps modules in a contour. Given a CS, we can obtain the

corresponding placement in O(m) time by inserting a node into L for each term in the

CS, where m is the number of modules. L initially consists of ns and nt that denote

dummy modules s and t, respectively. For each term (i, [j, k]) in a CS, we insert a node

ni between nj and nk in L for module bi, and assign the x (y) coordinate of module bi as

xj' (yk'). This corresponds to placing module bi at the bend [j, k]. Then, those modules

that are dominated by bi in the x (y) direction should be removed from R. This can be

done by deleting the predecessor (successor) np’s of ni in L if yp'’s (xp'’s) are smaller

than yi' (xi'). The process repeats until no term in the CS is available. Let W (H) denote

the width (height) of a chip. W = xu' (H = yv') if nu (nv) is the node right before (behind)

nt(ns) in the final L.

Figure 2.22 gives an example of the packing scheme for the CS shown in Figure

2.22(a). L initially consists of ns and nt. We first insert a node na between ns and nt since

S1 = a and D1 = [s, t]. The x (y) coordinate of ba is xs' (yt'). Figure 2.22(b) shows the

resulting placement and L. Similarly, nb is inserted between na and nt in L of Figure

2.22(b) since S2 = b and D2 = [a, t] (see Figure 2.33(c) for the resulting placement and

L). After we insert a node nd between the two nodes na and nb in L of Figure 7(c) for the

third term (d, [a, b]) in the CS, the predecessor na (successor nb) of nd is deleted because

36

ya' ≤ yd' (xb' ≤ xd') (see Figure 2.22(d)). The process repeats for all terms in the CS, and

the resulting placement and L are shown in Figure 2.22(i). The width (height) of a chip

is W = xh' (H = ye') since the node right before (behind) nt (ns) is nh (ne) in L. The DSP

packing scheme packs modules correctly in O(m) time, where m is the number of

modules.

Figure 2.21 (a) – (h) The process to build a CS from placement (i) CS representation

The solution space of CS is bounded by (m!)
2
, where m is the number of

modules. It should be noted that, in addition to the number of modules, the solution

space of CS also depends on the dimensions of the modules. The above theorem

considers the worst case for CS—all modules appear in the contour all the time during

packing. It is quite often that only part of the modules is in the contour. Hence, practical

solution space of CS is smaller than (m!)
2
.

37

Figure 2.22 (b) – (i) DSP packing scheme for CS in (a), where CS =

{(a,[s,t])(b,[a,t])(d,[a,b])(e[s,d])(c,[d,t])(f[e,c])(g[c,t])(h,[f,c])}

38

2.3 Optimization Algorithms

Several approaches have been used to for the floorplanning problem such as

constructive, iterative and knowledge based. Constructive algorithms attempt to build a

feasible solution by starting from a seed module. After that, the modules are selected

one at a time and added to the partial floorplan. This process continues until all modules

have been selected. This type of algorithm includes cluster growth, partitioning and

slicing, connectivity clustering, mathematical programming, and rectangular

dualization.

Iterative techniques start from an initial floorplan. Then this floorplan undergoes a

series of perturbations until a feasible floorplan is obtained or no more improvements

can be achieved. Typical iterative techniques which have been successfully applied to

floorplanning are simulated annealing, force directed interchange/relaxation, and

genetic algorithm.

The knowledge-based approach has been applied to several design automation

problems including cell generation and layout, circuit extraction, routing, and

floorplanning. In this approach, a knowledge expert system is implemented which

consists of three basic elements:

1. Knowledge base that describes floorplan problem and its current state

2. Rules for data manipulation to progress toward a solution

3. An inference engine controlling the application of the rules

The type of approach for optimization that will be discussed in the following will be

the iterative technique. Hence, more iterative techniques are reviewed before the project

is being done. (Sait & Youssef, 1999)

39

2.3.1 Simulated Annealing

Simulated annealing algorithm is starting with an initial solution and armed with

adequate perturbation and evaluation functions. The algorithm performs a stochastic

local search of the state space. The parameter that controls the accepted rate is

controlled by temperature (T). The probability of acceptance of decreases as

temperature decreases.

The core of this algorithm is the Metropolis procedure, which simulates the

metal's annealing process at a given temperature T. The Metropolis procedure receives

as input the current temperature T, and the current solution CurS. Metropolis procedure

must also be provided with the value M, which is the amount of time for which

annealing must be applied at temperature T. Temperature is initialized to T0 at the

beginning, and is slowly reduced to achieve cooling. It uses a procedure perturb to

generate a new solution NewS. If the cost of the NewS is better than the cost of the

CurS, then the NewS is accepted, and we do so by setting CurS =NewS. If the cost of the

NewS is better than the best solution BestS, then we will replace BestS with News. If the

NewS has a lower cost in comparison to the CurS, Metropolis will accept the NewS on a

probabilistic basis. If a random number, which is generated range from 0 to 1, is smaller

than ∆costlT, where ∆cosP=cost(NewS) - cost(CurS), and T is the current temperature,

the inferior solution is accepted. The simulated annealing algorithm needs to start from

a high temperature. However, if this initial value of T is too high, it will take a long

processing time. The initial temperature is usually set as To=avg/log(P). The stopping

criterion is when 0.1 or reject ratio T> 0.95. (Xu & Li, 2008)

Chen and Chang suggest a study on two types of modern floorplanning

problems, which are fixed-outline floorplanning and bus driven floorplanning. In their

paper, they use B*-tree floorplan representation based on fast three-stage simulated

40

annealing scheme called Fast-SA. Fast-SA can dynamically change the weights in the

cost function to optimize the area and also wirelength with various aspect ratios. Both

soft block and hard block can be optimized using Fast-SA. This method is an

improvement from SA which can increase the speed for optimization. (Chen & Chang,

2006)

 Chen, Zhu and Ali suggested a hybrid simulated annealing (HSA) for non-

slicing floorplan. HSA uses a new greedy method to construct an initial B*-tree which

is a new operation on the B*-tree to explore the search space and a novel bias search

strategy to balance global exploration and local exploitation. Hence, HSA can give

quicker optimal or nearly optimal solutions compared to SA. (Chen, Zhu, & Ali, A

Hybrid Simulated Annealing Algorithm for Nonslicing VLSI Floorplanning, 2010)

2.3.2 Genetic Algorithm

GA was first proposed by Holland in 1975. In nature only fittest individuals

survive and reproduce, a natural phenomenon known as “the survival of the fittest”. Gas

mimics the natural evolution process by suppressing inferior genotypes and breeding

offspring from superior population members. The cyclic process is continued for several

generations and the best member is selected. The performance of a GA can be

drastically improved by using elitism, which ensures that best-known solution is

preserved and passed on to future generations.

 The algorithm randomly generates a set of population, which is called the first

generation. The population will consist of various set of strings which are known as

genes. These strings of genes make up chromosomes. The chromosomes represent the

solution of the optimization problem. Each chromosome will be evaluated at every

iteration or generation. The evaluation will determine the fitness of the gene. Basing on

the fitness, individuals called parents are selected from the population. The individual

41

with higher fitness has more probability of being selected. After that, some genetic

operators will be done and the output will be called offsprings. The genetic operator

combines both the parents’ features. The more common operators are such as cross over

and mutation. Then the offspring will then be the second generation and another set of

generation will be randomly produced including the offspring from the parents. This

will go on until the optimization is being stopped. (Debarshi & Manikas, 2007)

A pseudo code for our elitist GA is given below:

 Nakaya proposed to use an adaptive genetic algorithm to solve floorplanning

problem in VLSI layout design. They used the sequence pair as representation and is

adopted the coding scheme of each chromosome. Analysis of new operator for GA is

explored to improve results. The proposed GA has an adaptive strategy which

dynamically selects an appropriate genetic operator during the GA execution depending

on the state of an individual. (Nakaya, Koide, & Wakabayashi, 2000)

 Chen and Zhu suggest a hybrid genetic algorithm (HGA) which is modified

from GA to solve the non-slicing and hard-module of VLSI floorplanning problem in

Begin

input: Block Dimensions, w h ii i /*MCNC

Benchmark files*/

output: Block Coordinates, x y ii i /*Layout

Files*/

1: Initialize population by assigning random pair of permutations.

2: Create empty external population Pext with max. size Next to store the best

members.

3: if number of members in P ext N

4: Delete the worst member in Pext

5: Select members from the current population

6: Apply crossover

7: Apply mutation

8: Replace a small proportion of the new population by random members of Pext.

9: if (no of generations < constant1 or fitness of best member in Pext < constant2)

10: Go to step 3.

end

42

order to improve the optimization results for floorplanning optimization. HGA uses an

effective genetic search method to exploit information in the search region. (Chen &

Zhu, A hybrid Genetic Algorithm for VLSI Floorplanning, 2010)

2.3.3 Cross Entropy Method

The Cross Entropy (CE) method is developed based on the cross entropy

distance or also known as the Kullback-Leibler) distance. This is a fundamental concept

of modern information theory. This method is motivated by an adaptive algorithm to

estimate probabilities in rare events which involve minimization. CE can be used for in

estimating probabilities of rare events in a complex stochastic network that needs

minimization. Besides that, it can also be used to solve difficult combinatorial

optimization and continuous multi-extremal problems. This could be done by translating

deterministic optimization into stochastic estimation. CE involves iterative procedure

which can be divided into two phases which are:

1. Generation of random data such as trajectories and vectors from a specific

mechanism.

2. Updating the parameters of the random mechanism based on the performance of

the data in order to obtain better samples in the next iteration.

The iteration for CE will stop once it reaches the stopping criteria. The stopping

criterion is selected depending on the noise of the results obtained. (Rubinstein &

Kroese, The Cross-Entropy Method: A unified approach to Combinatorial Optimization,

Monte-Carlo Simulation and Machine Learning, 2004)

43

CHAPTER 3. METHODOLOGY

This chapter discusses the method developed in this project. There were 3 different

methods of floorplanning optimization used. The first method uses Dot Model as

representation and Genetic Algorithm for optimization. The second method uses Corner

Bottom Left List as representation and Genetic Algorithm for optimization. The third

method uses Corner Bottom Left List as representation which is developed for this

project together with a modified Cross Entropy method for optimization. All these

methods are focused on optimizing the floorplan area to achieve the minimum

deadspace.

3.1 Dot Model as Representation and Genetic Algorithm as Optimization

Algorithm

This method uses the Dot Model to represent the floorplan and Genetic Algorithm

as the optimization algorithm. Dot Model (DM) is a topological representation where it

uses the relative position with reference to x-axis and y-axis in order to place the

rectangle block position in the floorplan. Dot Model is developed based on the position

where rectangle blocks are placed from the left bottom corner till all the blocks are

exhausted. This is done based on selecting the block and placing the block according to

the position and orientation that is given with reference to the previous block number.

DM consists of three tuples that denote the packing sequence of modules, the

reference block number and the orientation of the block for the module. There are 4

orientations which were used which are right, right with rotation, top and top with

rotation. The rotation is 90
o
 for both right with rotation and top with rotation.

Genetic Algorithm has been widely used for optimization for floorplan. In this

work, we try to combine dot model with Genetic Algorithm. Genetic Algorithm is

44

used global search for optimization. The GA that is used in this method uses the

representation of DM to optimize the floorplan. The representation of DM can be used

in GA by modifying the chromosomes of the parents and child so that it can optimize

the encoded DM to obtain optimum results.

3.1.1 Dot Model

Dot Model is developed by referring to topological representation and then is

encoded in to numerical representation. DM has 3 tuples (Bi,Ri,Pi). The first tuple, Bi,

represents the block number which will be taken to be placed into the floorplan. The

second tuple, Ri, represents the block number which is referred to place the block. The

third tuple, Pi represents the orientation and rotation of the position of the block number,

Bi that is placed with reference to the second tuple, Ri.

This part will discuss on the representation of DM. DM = {(B1,R1,P1) (B2,R2,P2)

… (Bn,Rn,Pn) }. B represents the sequence of the block number of m blocks that is

selected to be placed on the floorplan according to the R and P. The three tuples are

referred as (Bi,Ri,Pi), 1≤i≤m as the term for DM. Next, we will discuss on how the DM

is placed into placement.

3.1.1.1 DM to placement

First of all, a string of solution, (Bi,Ri,Pi) is checked and analysed. We need to

check whether the DM solution is valid or not. This means that the reference block

number, Ri must come after the block sequence, Bi. If the reference block number, Ri

comes before the block sequence, Bi, then (Bi,Ri,Pi) must be pushed down to

(Bi+a,Ri+a,Pi+a) where a represents the number of times it must be pushed down until the

block Ri is found at Bi+a-1. This step must be done until all the reference block numbers,

Ri appears after the block sequence, Bi so that the DM solution string is valid. If after

45

completing checking the solution string of DM and there are still invalid DM solutions,

the block will be placed automatically using deterministic method in order to obtain the

minimum dead space area for that particular block. Figure 3.1 is an example of a

solution string that is randomly generated by GA, DM = (B,R,P) and how it is shifted in

order to make (B2,R2,P2) to be valid. This shifting will be taken place until all the

reference block, R appears after the sequence block and the end solution that will be

used for placement in DM is shown in Figure 3.2. The circled tuples at Figure 3.2 shows

that the tuples that is not valid and needs to use deterministic method in order to obtain

the minimum deadspace area for the blocks where it does not depend on GA for

optimization.

Figure 3.1 DM solution string and shifting of the solution string

After validating the solution string, the placement can be done according to the

solution string. First of all, the first block is placed on the bottom left corner of a plane

(B,R,P) = [3 1 3

 4 7 2

 5 1 2

 2 3 4

 7 3 2

 1 5 2

 6 2 4

 8 8 2

 9 6 2]

(B,R,P) = [3 1 3

 5 1 2

 2 3 4

 7 3 2

 4 7 2

 1 5 2

 6 2 4

 8 8 2

 9 6 2]

(B,R,P) = [3 1 3

 2 3 4

 7 3 2

 4 7 2

 1 5 2

 5 1 2

 6 2 4

 8 8 2

 9 6 2]

Figure 3.2 Solution string that is used for

placement

b

a

46

with axis x and axis y. R1 can be ignored as the first block does not require any

reference block. P1 will be used to check the rotation of the first block. Generally, there

are four types of position that are used for DM for P. The positions that are used are:

 1 – Place block, B on the right of the reference block, R without rotation

 2 – Place block, B on the right of the reference block, R with 90
O

 rotation

 3 – Place block, B on top of the reference block, R without rotation

 4 – Place block, B on top of the reference block, R with 90
O

 rotation

However, the first row of the solution string does not need the reference block

and hence 1 and 3 will represent that block, B1 does not have rotation and 2 and 4 will

represent that block, B1 needs to be rotated 90
O

.

 For the following rows, (B2,R2,P2),…, (Bn,Rn,Pn), the positions for P needs to be

used. After placing the first block, the subsequent block number will be placed with

reference to R according to the position of P. The placement will be shifted so that no

two blocks will overlap one another. If there is an invalid row, the block will be placed

at the origin position and it will be placed again in another part of the floorplan to give

the minimum dead space area so that there will be no overlapping that will happen in

the floorplan. The placement of the blocks corresponds to one another and depends on

the previous block which has been placed into the placement. It is important to shift and

place the block so that it will give a more compacted floorplan. Figure 3.3 will show

how the placement of the blocks according to the DM solution from figure 3.1 that is

generated by GA.

47

i) Placement of first block ii) Placement of second block

 iii) Placement of third block iv) Placement of fourth block

 v) Placement of fifth block vi) Placement of sixth block

vii) Placement of seventh block viii) Placement of eigth block

48

ix) Placement of ninth block

Figure 3.3 Placement from DM to floorplan

 According to the given example, we can observe that the DM is not suitable to

do direct placement. Hence, it is needed to shift the sequences of the tuples so that the

DM can be used for placement. After shifting, we get the solution string as shown in

Figure3.1. The first row of DM = (3,1,3). Hence, block 3 is placed at the bottom corner

left of the plane and no rotation is done for block 3. This is shown in Figure 3.3(i). After

that, the we get the second row of DM = (2,3,4) From here, we place block 2 with

reference to block 3 according to the orientation stated which is 4, meaning that we

place block 2 on top of block 3 and make a rotation of 90
O

 for block 2. This is shown in

Figure 3.3(ii). Next, we check the third row of DM = (7,3,2). This means that we will

place block 7 with reference to block 3. We then place block 7 on the right of block 3

and rotate block 7. This is shown in Figure 3.3(iii). After that, we check the fourth row

of DM = (4,7,2). This means that we need to place block 4 with reference to block 7.

The P is 2, meaning that block 4 is placed on the right of block 7 and block 4 is rotated.

This is shown in Figure 3.3(iv). Then, we check the fifth row, DM = (1,5,2). It is

observed that this row is not a valid placement as there is no block 5 placed on the

plane. Hence, block 1 is first placed on the origin and then is shifted so that it will give a

minimum dead space area and does not overlap with other block. As we can see in

Figure 3.3(v), block 1 is placed at the origin of the plane as this row is not a valid

placement. Hence, it needs to be shifted. Block 1 is shifted to the right and placed on

49

top of block 4. This can be seen in Figure 3.3(v). Next, we check the sixth row, DM =

(5,1,2). We will place the block 5 referring to block 1. Hence, block 5 is placed on the

right of block 1 and is rotated 90
o
. This can be seen in Figure 3.3(vi). After this, we

check the seventh row, DM = (6,2,4). Hence, we will place block 6 referring to block 4.

Block 6 will be placed on the top of block 2 and is rotated 90
o
. This can be seen in

Figure 3.3(vii). Then, we check the eigth row, DM = (8,8,2). This is also not a valid row

as block 8 cannot be referred to block 8. Hence, block 8 is placed at the origin as shown

in Figure 3.3(viii). Then it is shifted to the right and placed on top of block 1. This is

determined by the minimum deadspace that is placed on that location. This can be seen

in Figure 3.3(ix). Finally the last row, DM = (9,6,2). This shows that block 9 is placed

with reference to block 6 and is placed on the right of block 6 by rotating 90
o
. This can

be seen in Figure 3.3(ix).

 Through DM, we are able to calculate the deadspace area of the floorplan. The

area is calculated in terms of percentage. This is calculated by using the upper boundary

of the floorplan for both x and y axis and minus the total area of the blocks. Below show

the equation that is used to calculate the deadspace area.

 ∑

∑

 (1)

Where = right most block boundary of x-axis, = top most

block boundary of y-axis, = width of i-th block, = height of i-th block. The

example above shows the concept of dot model which is used to represent a floorplan.

In order to optimize the floorplan, we need to use the representation of DM and placed

into GA so that optimization can be done to obtain optimum placement. The next

section will discuss about GA and how GA is used together with DM in order to

optimize a floorplan.

50

3.1.2 Genetic Algorithm

Genetic algorithm or also known as GA is a heuristic search technique which is

adapted from the natural process of evolution so that an optimum gene can be obtained

in order to achieve survival of the fittest. GA utilizes the theory of evolution according

to the biological way by using methods like ‘crossover’, ‘mutation’ and selection in

order to obtain better children in the next generation. (Sait & Youssef, 1999)

In order to use GA for optimization, we need to have two requirements which are

the chromosomes and also the fitness function. A string of chromosome representation

shows the characteristics of the gene. These chromosomes usually formed by bit string

where they represent the characteristics of the solution in the chromosomes. In

optimization of floorplan, the chromosome used represents the encoded DM where the

DM can be decoded and form the floorplan which shows the packing and placement of

the floorplan. This shows that each chromosome holds information of the floorplan that

is needed for the placement. The fitness function measures the quality of the

chromosome. Fitness function is important to determine that the solution fits the

criterion and constraint of the situation. This is important to optimize the GA as GA

process is based on the fitness of the chromosome which will be brought to the next

generation. According to GA theory, evolution can give better generation. Hence we

should obtain better solution from every subsequent generation as the best selected

solution will be used for the next generation. Those that do not meet the fitness criterion

will be eliminated. (Mitchell, 1999)

GA consists of 3 operators which are selection, crossover and mutation. For the

selection operator, this is done by selecting the top fittest chromosomes which will be

used for the next generation and the other chromosomes that do not fit the criterion will

be eliminated. Hence, only the fitter chromosomes will be able to survive in the next

51

generation. For the crossover operator, a random selected locus will be chosen and the

sub-sequence before and after the locus will be exchanged between two chromosomes

to produce two new children. Usually, the fitter chromosomes are chosen to do the

crossover operations so that better children will be produced in the next generation. For

the mutation operator, one of the chromosomes will be chosen and one of the bits in the

chromosome will be flipped or will be randomly located inside the chromosomes to

change the characteristics of the chromosome and hence changes the fitness of the

chromosomes. Figure 3.4 will show the crossover operator and Figure 3.5 will show the

Mutation operator.

Figure 3.4 Crossover Operator

Figure 3.5 Mutation Operator

 Allowing genetic operations increase the solution space of the generation and

chances are performing this operator can improve the fitness of the chromosomes.

However, the pool of solution will become closer to the real solution as the less fit

chromosomes are discarded and the more fit solutions are maintained until the end of

the GA optimized solution.

Parent 1: 1 1 0 1 1 0 1 0 0 0 1 1

Parent 2: 1 0 0 0 1 1 0 1 1 0 0 0

 Crossover Point

Child 1: 1 1 0 1 1 1 0 1 1 0 0 0

Child 2: 1 0 0 0 1 0 1 0 0 0 1 1

Parent: 1 1 0 0 0 1 1 1 0 1 0 1

 Mutation Point

Child: 1 1 0 0 0 0 1 1 0 1 0 1

52

 Figure 3.6 is the general pseudocode of a genetic algorithm and Figure 3.7 is the

general flow chart of a genetic algorithm. The implementation of the GA will be

discussed in the following section.

Figure 3.6 GA pseudocode

Start

1. Initialize population by assigning random population,P.

2. set gen = 0

3. While gen < genMaxDO

4. Calculate the fitness of the members.

5. Select members which are more fit according to criterion

6. Produce children from GA operators

7. Produce children from GA operators

8. Discard children that has low fitness value from the population

9 set gen = gen +1.

10. End

11.End

53

Figure 3.7 GA flowchart

START

Set gen = 0

Initialize population

Fitness of every chromosome is

calculated for current generation.

To perform crossover, 2 individuals are

selected from the current generation and

perform crossover.

To perform mutation, 1 chromosome is

selected from the current generation and

perform crossover.

Individual with higher fitness is kept and

parents or children with lower fitness is

disposed.

Check solution

achieve?

Set gen = gen+1

END

YES

NO

54

3.1.2.1 Implementation of GA with DM

This GA source code is an open source code was developed by C. R. Houck, J.

Joines, and M. Kay distributed under GNU General Public License as published by the

Free Software Foundation and is available at

http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/gaotindex.html. From this source

code, a slight modification is done in order to use for DM. (Houck, Joines, & Kay)

DM consists of three tuples which gives (Bi,Ri,Pi). First of all, to use GA, we

need to model the chromosomes so that optimization using GA can be done. Hence, the

chromosome for DM is modelled as in Figure 3.8.

Figure 3.8 Chromosome Model

B represents the block number. These numbers must be permutated numbers as

one block can only be placed once in the floorplan. This is obtained by using random

permutation in the matlab function. R represents the reference block. This block can be

repeated and is replaceable. This means that we can refer to the same block more than

once. In order to generate these random variables, the formula in Figure 3.9 is used.

Figure 3.9 Random Variables generation with repeated numbers

 Finally, P represents the position and orientation of the block B with reference to

block R. This representation needs to be generated from 1 to 4 randomly. In order to

generate these random variables, the formula in Figure 3.10 is used.

Chromosome = {(B1,B2, …, Bn) (R1,R2, …, Rn) (P1,P2, …, Pn)}

R = round(rand(b1,…bn) * (n-1) +1)

55

Figure 3.10 Random Variables from 1 to 4 is generated

After modelling the chromosomes, the initialization of population according is

carried out as the random generation stated earlier. The size of population used are

determined by the number of blocks in the floorplan. When the number of blocks to be

placed in floorplan increases, the number of population needs to be increased. Next after

the initializing the initial population, the population is evaluated to obtain the fitness of

the chromosomes in the population. The chromosomes are then arranged based on their

fitness where the top being the fittest and the bottom is the worst. The fitness of the

chromosomes are determined through DM where DM gives the deadspace area of the

floorplan for every solution string. After arranging the population, the top quantile is

selected to be brought to the next population. In this new population, a few

chromosomes are selected to do the GA operators such as Crossover and also Mutation.

There are many types of crossover operators. But the crossover operators that are

used in this work are arithmetic crossover, heuristic crossover and also simple crossover

for the non-order based representation. The crossovers that are used for the ordered

based representations are the cyclic crossover, order-based crossover, single point

crossover and partial mapping crossover.Below are the explanations for the ordered

based crossover function that are used in this work:

a) Cyclic crossover

Cyclic crossover uses two parents, P1 and P2 to perform the crossover to

produce 2 children. The cyclic crossover copies the genes from the parent

chromosome to the child chromosome in a cyclic manner as shown in Figure

3.11

R = round(rand(b1,…bn) * 3 +1)

56

Figure 3.11 Cyclic crossover

b) Uniform crossover

Uniform crossover uses two parents, P1 and P2 to perform uniform crossover for

a permutated string. The genes are treated independently and is randomly

decided from which parent that the child will inherit the gene. For uniform

crossover, a mask usually is generated and the crossover is based on the mask.

This can reduce the bias which happens in single point crossover. Figure 3.12

shows how a uniform crossover operation is taken place.

Figure 3.12 Uniform crossover

P1 : a b c d e f g h i

P2 : i c g h b f e a d

P1 : ab c d e f g h i C1 : a c g d b f e h i

P2 : i c g h b f e a d

P1 : a b c d e f g h i C2 : i b c h e f g a d

P2 : i c g h b f e a d

Consider two parents with 9 binary variables each:

P1 0 1 1 1 1 1 0 1 0

P2 1 0 1 0 0 0 1 0 1

A random mask is generated for the crossover

Mask 0 1 0 0 1 1 0 1 0

Crossover is based on the mask. If mask is ‘1’ then P1 is copied to C1. If mask is

‘0’ copy to P2, same goes for P2 and C2. Below are the children after crossover:

C1 1 1 1 0 1 1 1 1 1

C2 0 0 1 1 0 0 0 0 0

cyclicXover

57

c) Partial mapping crossover

This crossover function also uses 2 parents, P1 and P2 and perform partial

mapping on the chromosome. The steps for partial mapping crossover are shown

in Figure 3.13.

Figure 3.13 Partially mapped crossover

a) 2 random points are chosen for crossover. The segment between the two

points is copied from P1 to C1

P1 a b c d e f g h i C1 _ _ _ d e f g _ _

P2 i c g h b f e a d

b) The segment in P2 is scan for the elements that is not copied to C1. Check

the position(j) and the element(i) that is not copied.

i = {h,b} j = {4,5}

c) The i is placed into C1 at the position of j at P2. If position of j at P2 is

occupied in C1 by an element k, then i is placed at the position occupied by k

at P2.

P1 a b c d e f g h i

 C1 _ _ b d e f g _ d

P2 i c g h b f e a d

d) Then, elements in P2 are copied to their respective empty space in C1.

Except exchanging the role of P1 and P2, the steps for C2 and C1 are the

same.

P2 i c g h b f e a d

C1 i c b d e f g a d

58

d) order-based crossover

This crossover operator uses 2 parents, P1 and P2 and is the same as partialmap

crossover at the initial approach where it copies a segment from 1 parent.

However, the following step differs in a way that the rest of the unused element

in P2 is copied into C1 in the order as in P2. This will enable information from

the relative sequence of element is transferred to the child. Figure 3.14 shows

how an order-based crossover is done.

Figure 3.14 Order-based crossover

e) single point crossover

Single point crossover will select a random point and copy the segment from

beginning to the point from the parent to the child. The remaining segment of

the child will be taken from another parent except for the elements that has been

copied. Figure 3.15 shows how a single point crossover is done

Figure 3.15 Single point crossover

P1 a b c d e f g h i

P2 i c g h b f e a d C1 _ _ _ d e f g _ _

P2 i c g h b f e a d

C1 c h b d e f g a i

P1 a b c d e f g h i

C1 a b c i g h f e d

P2 i c g h b f e a d

59

f) linear order crossover

Linear order crossover is modified from order crossover. Linear order crossover

gives the absolute position of the order for the elements in the chromosome.

Figure 3.16 shows how linear order crossover taken place.

Figure 3.16 Linear order crossover

Besides order-based sequence, we also need to use the floating point representation

for DM. Hence, we need to use the crossover operators for floating point representation.

The crossovers that are used in this project are arithmetic crossover, heuristic crossover

and simple crossover. Below are the explanations on the floating point representation

crossover.

a) Arithmetic crossover

Arithmetic crossover uses two parents P1, P2 to perform an interpolation along

the line formed by the two parents. This will form a mix of the 2 parents at a

certain ratio. Figure 3.17 shows how the arithmetic crossover is formed.

Figure 3.17 Arithmetic Crossover equation

b) Heuristic crossover

Heuristic crossover uses two parents P1, P2 to perform an extrapolation along

the line formed by the two parents in the outward direction of the better parent.

Heuristic crossover uses the fitness function of the parent chromosome to

C1 = P1*a + P2*(1-a);

C2 = P1*(1-a) + P2*a;

P1 a b c d e f g h i

C1 a c d h b f e g i

P2 i c g h b f e a d

60

determine the direction of search. Figure 3.183 shows the heuristic crossover

equation.

Figure 3.18 Heuristic crossover

c) simpleXover

Simple crossover uses two parents P1, P2 to perform a simple single point

crossover at a random point. Figure 3.19 shows the simple crossover function.

Figure 3.19 Simple crossover

 After the crossover operator, a few of the chromosomes from the population is

picked to do mutation operator. There are 5 types of mutation operator for order based

part of the chromosomes which are used in this project. Below are the explanations for

the mutation operator:

a) inversion Mutation

Inversion mutation select two random points between the chromosome string

and the selected points are cut and inverts the bits or permutation of a

chromosome string. Figure 3.20 shows how inversion mutation is done.

Figure 3.20 Inversion mutation

C1 = BestParent + r (BestParent −WorstParent)

C2 = BestParent

P1

P2 C2

C1

Parent a b c d e f g h i Child a b c g f e d h i

61

b) swap Mutation

Swap mutation chose two random genes in a permutation string and the two

genes will exchange positions. This is shown in Figure 3.21.

Figure 3.21 Swap mutation

c) adjswapMutation

Adjacent swap mutation swap two adjacent genes in a permutation string at a

random selected point. This is shown in Figure 3.22

Figure 3.22 adjacent swap mutation

d) threeswapMutation

Three-swap mutation performs a three way swap of three randomly chosen

genes in a permutation string. This is shown in Figure 3.23

Figure 3.23 three swap mutation

Parent a b c d e f g h i Child a b g d e f c h i

Parent a b c d e f g h i Child a b d c e f g h i

Parent a b c d e f g h i Child a d c f e b g h i

62

e) shiftMutation

Shift mutation displaces one random gene in a permutation string to another

position. This is shown in Figure 3.24.

Figure 3.24 Shift mutation

 Besides mutation for order-based number, mutation also is done for the floating

point representation. There are four types of mutation which are used in this project for

the floating point mutation which are the boundary mutation, multi non-uniform

mutation and also the uniform mutation. Below are the explanations for these mutations

that are used in this project.

a) Boundary Mutation

Boundary Mutation will change one of the parameters of the parents by

randomly changing it to upper or lower boundary.

b) Multi non-uniform Mutation

Multi non-uniform mutation will change all the parameters in the parents based

on a non-uniform probability distribution. This uses the Gaussian distribution

that starts wide and is narrowed down in to a point distribution as the current

generation approaches maximum generation.

c) Non uniform Mutation

Non uniform mutation changes one of the parameters of the parent according to

a non-uniform probability distribution. This Gaussian distribution starts wide,

and narrows to a point distribution as the current generation approaches the

maximum generation.

Parent a b c d e f g h i Child a b d e f g c h i

63

d) Uniform Mutation

Uniform mutation changes one of the parameters of the parent based on a

uniform probability distribution.

 Crossover and mutation are used in order to increase the solution space. Besides

that, these operators are also used so that a better gene can be formed to get better

results for the floorplan.

 The GA algorithm that is used for this project is maximization. Hence, the

fitness fuction is negted to obtain the minimum deadspace. The deadspace of the

floorplan is calculated by using the DM. DM will form the placement of the floorplan of

the given blocks by referring to the randomly generated string of solutions from GA.

The fitness of the random generated population will then be calculated based on the

deadspace area. After the crossover and mutation functions are used, the children also

need to be evaluated to determine the fitness of the functions. Only those with the

fitness match to the required criterion will be kept to be brought to the next generation.

The selection of the chromosome is based on the normalized geometric selection in this

project.

In normal geometric selection, the population is ranked according to the fitness

and also the probability of selecting the individuals which are fit instead of depending

just on their fitness value. Hence, the probability for selection is given as in Figure 3.25.

1' (1)

'
1 (1)

where,

p = probability of selecting the individual

q = probability of selecting the best individual

r = rank of the individual (best is 1)

n = population size

r

i

n

P q q

q
q

q

  


 

Figure 3.25 Selection Probability

64

In this selection, the chromosomes that have higher fitness value will be ranked to

the top and will have a higher probability of being selected compared to the

chromosomes that have a lower fitness.

To terminate the GA algorithm, a termination criterion needs to be satisfied. GA

will not obtain the optimal best solution. Hence, GA is usually terminated when it

reaches the maximum number of generations. For this case, a maximum generation term

is used to determine termination.

By using GA for optimization with DM as representation, we can optimize the

floorplan using deadspace area as function. This algorithm is referred as DMGA (Dot

Model Genetic Algorithm). The results of DMGA will be discussed in chapter 4.

65

3.2 Floorplan Optimization using Corner Bottom Left List with Genetic

Algorithm

This section uses the Corner Bottom Left List to represent the floorplan and

Genetic Algorithm as the optimization algorithm. Corner Bottom Left List (CBLL) is

developed based on topological method. This model is a partially deterministic model

where the model will place the block in a way that it has a minimum local deadspace

area. After that, a modified cross entropy method is used with CBLL. CBLL uses three

tuples which are represented as CBLL = (Bi,Pi,Ri). Similar to DM, Bi also represents the

block number, Pi represents the position that is placed whether is placed on the right or

top of the shape of the boundary and also Ri represents the orientation of the block Bi.

Genetic Algorithm is used for this work as a global search method for

optimization. GA is used to generate the representation for CBLL. GA chromosomes

are modified according to the CBLL representation so that it can be used to encode

CBLL to obtain optimum results.

3.2.1 Corner Bottom Left List

Corner Bottom Left List (CBLL) is a floorplan representation which has three

tuples, (Bi,Pi,Ri), 1 ≤ i ≤ m where m represents the modules. This CBLL representation

will model the floorplan according to the tuples and also gives the geometric

relationship between the blocks in the floorplan. A deterministic algorithm is added in

this representation to minimize the local deadspace area to reduce solution space for the

heuristic optimization algorithm. This also can reduce the number of solution space that

is needed for the optimization algorithm. CBLL is a compacted non-slicing floorplan

representation. This means that the placement of the modules or blocks is placed in

sequence in a compacted manner. CBLL uses a sequence of module names, a sequence

of relationship of the next module and also a sequence of the module rotation.

66

3.2.1.1 Preliminaries

Let B = {b1,b2,…,bm} be a set of m modules with the width and height denoted

as Wi and Hi respectively. The area of the module Ai, can be calculated as below:

Ai= Wi*Hi (2)

where, 1≤i≤m. Let (xi,yi) denote the coordinates of the bottom right of the module and

(xi’,yi’) denote the coordinate of the top left of the module. A placement, namely PL, is

assigned for (xi,yi) where no two modules are allowed to overlap for each of the bi, 1≤i

≤m.

The aim of this placement is to minimize the cost metric, area. The modules are

placed one at a time according to the predefined order based on the sequence of the

block number. When a module is placed, a contour is formed according to the shapes of

CBLL which have been fixed. The notations that are used for further description are

given below.

1) Bi denotes the module sequence that is to be placed at a time with the left top

represented by (xi’,yi’) and the bottom right represented by (xi,yi).

2) Pi denotes the position of the module that is placed with reference to the contour.

There are two positions that are used; one is on right of the contour where the block

is placed in x-direction and the other is on top of the contour where the block is

placed in y-direction.

3) Ri denotes the rotation of the module; which is no rotation or 90
o
 rotation.

4) C denotes the contour, where (x
j
,y

j
) represents the corner of the contour where, 1 ≤ j

≤ 4. A maximum of only four corners will be used for the different shapes of the

boundary.

5) Wi denotes the width of the selected modules for placements (w1,w2,…,wm)

6) Hi denotes the width of the selected modules for placements (h1,h2,…,hm)

67

3.2.1.2 From CBLL to Placement

CBLL has three tuple, (Bi,Pi,Ri), 1 ≤ i ≤ m where m represents the modules. Bi =

(b1,b2,…,bn) is the module sequence where Wi = (w1,w2,…,wm)and Hi =(h1,h2,…,hm)

denote the width and height of the modules. The first block will be placed according to

b1 on the plane and the rotation of the block will be referred to Ri. P1 is ignored for the

first block as the first block will always be placed on the left bottom corner of the plane.

Figure 3.26 shows how the first block is placed. The corner of the contour is denoted as

Point 1 = and Point 2 = . The shape of this contour that is formed by

the first block is known as rectangle. There are 12 shapes of the contour that are

considered for the model of CBLL. The shapes that are used are rectangle, L-shape,

stairs, N-shape, Sleep-T, T-shape, P-shape, U-stairs, B-stairs, d-shape, C-shape and U-

shape. The contour shapes are shown in Figure 3.27. The corners of the contour are also

shown in Figure 3.27. The maximum number of corners which is used for CBLL is 4

corners, which are Point 1 = , Point 2 = , Point 3 = and Point

4= .

68

Figure 3.26 Placement of the first block with shape rectangle

x-axis

b1

𝐶2 𝑥 𝑦

𝐶1 𝑥 𝑦

 𝑥2 𝑦2

 𝑥1 𝑦1

 𝑥3 𝑦3

y-

axi

x-axis

(a) L-shape

y-

axi

x-axis

(b) stairs

 𝑥1 𝑦1

 𝑥2 𝑦2

 𝑥3 𝑦3

 𝑥4 𝑦4

 y-

axi

x-axis

(d) N-shape

 𝑥1 𝑦1

 𝑥2 𝑦2

 𝑥3 𝑦3

 𝑥4 𝑦4

 y-

axi

x-axis

(d) sleep-T

 𝑥1 𝑦1

 𝑥2 𝑦2

 𝑥3 𝑦3

 𝑥4 𝑦4

y
-a

x
is

69

Figure 3.27 Contour shape and their corners

 𝑥2 𝑦2

 𝑥1 𝑦1

 𝑥3 𝑦3

y-

axi

x-axis

(e) T-shape

y-

axi

x-axis

(f) P-shape

 𝑥1 𝑦1

 𝑥2 𝑦2

 𝑥3 𝑦3

 y-

axi

x-axis

(g) U-stairs

 𝑥1 𝑦1

 𝑥2 𝑦2

 𝑥3 𝑦3

 𝑥4 𝑦4 y-

axi

x-axis

(h) d-shape

 𝑥1 𝑦1

 𝑥4 𝑦4

 𝑥2 𝑦2

 𝑥3 𝑦3

 𝑥4 𝑦4

 y-

axi

x-axis

(i) C-shape

 y-

axi

x-axis

(j) U-shape

 𝑥1 𝑦1

 𝑥2 𝑦2

 𝑥3 𝑦3 𝑥4 𝑦4

 𝑥3 𝑦3

 𝑥1 𝑦1

 𝑥2 𝑦2

 y-

axi

x-axis

(k) b-stairs

 𝑥4 𝑦4

 𝑥3 𝑦3

 𝑥2 𝑦2

 𝑥1 𝑦1

70

 In order to place the next block, b2, we need to check the shape of the contour.

The second block that is to be placed always has a previous contour of rectangle. Hence,

we can place it either on the right of the contour or on top of the contour according to

the position given in the representation, P2 of the CBLL. The rotation of b2 depends on

R2. After placing the module, b2, we need to get the new contour shapes and

coordinates.

Figure 3.28 Placing of block and updating the contour

Given that the rectangle contour has the corners, C1 = (x
1
,y

1
) and C2 = (x

2
,y

2
) as

shown in Figure 3.28(i). If the block, b2 is placed on the right of the contour, we will

get L-shape if the current block height, h2 < y
2

 as shown in Figure 3.28(ii). Hence, the

contour corners will changed to C1 = (x
1
+w1,y

1
) , C2 = (x

2
,y

2
) and C3 = (x

1
,h1). If the

y
-a

x
is

x-axis

b
1

y
-a

x
is

x-axis

b
1

y
-a

x
is

x-axis

b
1

y
-a

x
is

x-axis

b
1

b2

b2
b2

(i) Rectangular contour (ii) Add block, b2 for h2 < y
2

(iii) Add block, b
2
 for h

2
 > y

2

 (iv) Add block, b
2
 for h

2
 = y

2

71

block height h2 = y
2
 as shown in Figure 3.28(iii), we will get back the rectangle contour

and the contour corners will become C1 = (x
1
+w1,y

1
) and C2 = (x

2
,y

2
). If the current

block height, h2<y
2
 as shown in Figure 3.28(iv), we will get d-shape. Hence, the contour

corners will become C1 = (x
1
+w1,y

1
) , C2 = (x

2
,y

2
) and C3 = (x

1
,h1). We can observe

that the contour for L-shape and also d-shape have three points. The packing of the

floorplan for the above situation is shown in Figure 3.28. This packing will show how

the contour shape changes depending on the block that is placed during the packing

process.

Here, we will discuss about how the placement is done together with some

deterministic algorithm that calculates the minimum local deadspace area that is to be

locked during placement in order for the contour to return to the 12 shapes. It is

important to return the contour to one of the 12 shapes as CBLL uses these shapes to

form placement. The locked areas will be taken as deadspace area as CBLL is done

based on the shape of the contours. Besides that, CBLL also will move the blocks

according to the size of the contour and the blocks given so that no two blocks overlaps

one another. This is an important criterion for floorplanning optimization.

Given CBLL = {(b1b2b3b4b5b6b7b8b9b10b11b12)(000011010111)(110010110000)}

where the packing and placement of the modules are shown in Table 3.1. The first tuple

of CBLL represents the block sequence being selected. The second tuple of CBLL

represents the position that will be placed based on the contour where 0 means on the

right of the contour and 1 means on the top of the contour. This position is also partially

determined by the deterministic algorithm in the CBLL depending on the shapes of the

contour. Table 3.1 also shows how the deterministic algorithm functions during

placement. The third tuple represents the orientation of the block where 1 gives a 90
0

rotation to the block and 0 means no rotation is done.

72

Table 1: Packing and Placement

 CBLL1 = (b1,0,1)

The plane is empty. Hence, block b1 is

placed on the left bottom of the plane and is

rotated 90
0
. The shape of the contour is

rectangle. This can be seen in the figure

beside.

 CBLL2 = (b2,0,1)

The previous contour is rectangle. Hence,

block, b2 is placed on the right of the

rectangle contour and is rotated 90
0
. The

shape of the contour becomes L-shape. This

can be seen in the figure beside.

 CBLL3 = (b3,0,0)

The previous contour is L-shape. Hence,

block, b3 is placed on the L-shape without

referring to the position as the focus is to

pack to the left corner instead of growing

the placement horizontally or vertically.

This is part of the deterministic algorithm

instead of depending fully on the

representation. This only happens in L-

shape. Hence, the contour shaped produced

is stairs as shown in the figure beside.

b1

b2

b2

b3 b1

b1

73

 CBLL4 = (b4,0,0)

The previous contour shape is stairs. The

block, b4 should be placed on the right of

the contour. There are 2 locations which can

be placed as shown in the figure beside.

Hence, the area,a and b are calculated. Area

a and b are areas that are locked after the

contour is formed. Hence, the placement

with lower locked area will be used. In this

sample, area a is selected. Then, the contour

shape now becomes U-shape

 CBLL5 = (b5,1,1)

The previous contour is U-shape. As the

height of b5 is smaller than the width of b2,

b5 is placed inside the U-shape on the top

and is rotated 90
O
. Then, the contour shape

becomes T-shape.

 CBLL6 = (b6,1,0)

The previous contour is T-shape. Block b6 is

placed on top of the contour as shown in the

figure beside to form C-shape contour.

b

a

b2

b3 b1

b2

b3 b1 b4

b4

b2

b3 b1 b4

b5

b2

b3 b1 b4

b5

b6

74

 CBLL7 = (b7,0,1)

The shape of the previous contour is C-

shape. The module, b7 is rotated 90
O
 and is

placed beside the contour as shown in the

figure beside. Then the new contour shape

is sleep-T.

 CBLL9 = (b9,0,0)

The previous contour is N-shape. The block

b9 is placed beside the contour as shown in

the figure beside and a new contour with the

shape d-shape is formed.

 CBLL10 = (b10,1,0)

The previous contour is d-shape. The block,

b10 is placed on top of the contour as shown

in the figure beside. Hence, the new contour

has the shape of b-stairs.

b2

b3 b1 b4

b5

b6

 b7

b2

b3 b1 b4

b5

b6

 b7

b8

b9

b9

b2

b3 b1 b4

b5

b6

 b7

b8
b10

75

 CBLL11 = (b11,1,0)

The previous contour is b-stairs. The block

b11 is placed on top of the contour as shown

in the figure beside. Hence, the new contour

formed has the shape of P-shape.

 CBLL12 = (b12,1,0)

The previous contour is P-shape. The block

b12 is placed on top of the contour as shown

in the figure beside. Hence, the new contour

formed has the shape of U-stairs.

From table 1, we can conclude that CBLL is a partially deterministic

representation where there are certain conditions where the algorithm needs to calculate

to determine which location the block is to be placed based on the shape of the contour.

In order to calculate the total deadspace area, D, we get the height of the boundary, H

and the width of the boundary, W to get the area of the placement minus the total area

of the modules given. The percentage of the deadspace area is as the following formula:

 ∑

∑

 1 (3)

b2

b3 b1 b4

b5

b6

 b7

b8
b10

b9

b11

b11

b2

b3 b1 b4

b5

b6

 b7

b8
b10

b9

b12

76

3.2.2 Implementation of GA and CBLL

This GA also uses the same source code as the previous method. From this

source code, a slight modification is done in order to use for CBLL. CBLL consists of

three tuples which gives (Bi, Pi, Ri). In order to use GA, we need to model the

chromosomes so that it matches both CBLL and also GA in order to do optimization.

Hence, the chromosome for CBLL is modelled as in Figure 3.29.

Figure 3.29 Chromosome Model

B represents the block number. This number must be permutated numbers as one

block can only be placed once in the floorplan. This is obtained by using random

permutation in matlab function. P represents the position of the block. The position of

the block can be either right or top of the block. Hence, only 0s and 1s are used where 0

represents right and 1 represents top. In order to generate these random variables,

formula in Figure 3.30 is used.

Figure 3.30 Random Binary Variables

 Finally, R represents the orientation of the block . This representation is also 0s

and 1s. In order to generate these random variables, the formula in Figure 3.31 is used.

Figure 3.31 Random Binary Variables

After modelling the chromosomes, then we need to initialize the initial population

according to the random generation as stated earlier. Same as method 1, the number of

populations used is determined by the number of blocks that are needed for

optimization. When the number of blocks to be placed in floorplan increases, the

number of population needs to be increased.

Chromosome = {(B1,B2, …, Bn) (P1,P2, …, Pn) (R1,R2, …, Rn) }

R = round(rand(b1,…bn))

R = round(rand(b1,…bn))

77

After initializing the population, all chromosomes are evaluated using CBLL in

order to obtain the fitness of the chromosomes. Then the population is arranged

according to the fitness of the chromosomes where the fittest chromosome will be on

the top and the worst chromosome will be at the bottom. The fitness of the

chromosomes depends on the deadspace area of the floorplan. The lower the deadspace

area, the fitter the chromosome and vice versa. CBLL is used to calculate the deadspace

area of the floorplan of the chromosomes or also are known as the solution strings.

After arranging the population, the top quantile is selected and will be brought to the

next population. In this new population, a few chromosomes are selected to do the GA

operators such as Crossover and also Mutation.

There are many types of crossover operations. But the crossover operators that are

used in this work are simple crossover for the binary representation. The crossovers that

are used for the ordered based representations are the cyclic crossover, order-based

crossover, single point crossover and partial mapping crossover. The crossover methods

were described in the first section.

Besides crossover operator, a few of the chromosomes from the population is

selected to do mutation operations. There are 5 types of mutation operator for order

based part of the chromosomes which are used in this section. They are inversion

mutation, swap mutation, adjacent swap mutation, three swap mutation and shift

mutation. Besides mutation for order-based number, mutation also is done for the

binary representation. There are two types of mutation operations which are used in this

work which are the inversion mutation and binary mutation. Crossover and mutation are

used so that more solutions can be produced. Besides that, these can give better gene to

get better results for floorplan.

78

 The GA algorithm that is used for this project is for maximization same as in the

previous section. Hence, negative is added to the deadspace area to get the fitness of the

solution string to minimize the deadspace. In this section, the deadspace will be

calculated using CBLL. CBLL will also give the placement of the blocks according to

the solution strings generated by GA. Hence, the fitness of the solution string can be

determined. After doing some operator functions, the fitness of the children needs to be

evaluated before inserting them in to the population again. Only those with the fitness

match to the required criterion will be kept to be brought into the next generation. The

selection of the chromosome is based on the normalized geometric selection in this

project as in the first method.

To terminate the GA algorithm, a termination criterion needs to be met. Since GA

is an optimization algorithm, it will not able to obtain the ideal solution. Hence, GA is

usually terminated when it reaches the maximum number of generation. For this case, a

maximum generation term function is used to determine when to end the GA algorithm.

Usually the GA algorithm is terminated by selecting the number of generations of GA.

Hence, by using GA for optimization with the use of CBLL as representation, we

can optimize the floorplan based on the area of the deadspace. It will be referred as

CBLL-GA (Corner Bottom Left List Genetic Algorithm) in the rest of the thesis. The

results for CBLL-GA will be shown in chapter 4.

3.3 Floorplan Optimization using Corner Bottom Left List with modified Cross

Entropy Method

In this section, the method that is used for representation is Corner Bottom Left

List (CBLL) which is developed based on topological method as discussed previously.

79

A modified cross entropy method is used to for optimization with CBLL as the

representation. CBLL uses three tuples which are represented as CBLL = (Bi,Pi,Ri)

where Bi represents the block number, Pi represents the position that is placed whether

is placed on the right or top of the shape of the boundary and also Ri represents the

orientation of the block Bi. The CBLL method will not be discussed in this section as it

is already discussed in 3.2.1.

The CE method is modified to suit the representation of CBLL. The CE equation

that has been modified to 3 dimension to form 2 sequences reflects the relationship

between the blocks and the probability of the most matching pair of the CBLL

representation and reduces both the local deadspace area and also the global deadspace

area by using the optimal value, . CE is extended into 3 dimensional matrixes instead

of the original TSP method which uses 2 matrixes for optimization. Hence, the CE

method can be fully utilized based on the CBLL representation. The solution string for

CBLL representation is also modified to accommodate both CE and also for the

probability matrix.

3.3.1 Modified Cross Entropy Method

In this section, the modified CE method will be discussed and also how the CBLL is

implemented on the modified CE method. The original CE only produces a single string

of permutated numbers. However, to generate the CBLL representation and also to

optimize the floorplan, modifications need to be done to suit this application. The CE

method is adapted from the TSP method. However, instead of maintaining the form, we

change the original CE two dimension probability transition matrixes into three

dimensions matrixes. The basic concept of CE is still retained as it still consists of two

iterative phases which are:

1) Generating a random data according to the CBL representation for this project.

80

2) Updating the parameters of the random mechanism which is the parameters of

the pdfs (probability density function) on the data based on the sample results so

that better samples can be produced in the next iteration and the iteration stops

when the samples reaches the required criteria.

3.3.1.1 Cross Entropy Method

The method CE employed to do optimization is as follows. As floorplanning is a

minimization problem, hence we need to define a function, S(x) that needs to be

minimized for some set X. The minimum is denoted with optimal value *, as shown in

the equation below:

 S(x) (4)

To optimize the floorplan through the CBLL representation, the minimum of the

cost function S(x) is given by:

 { ∑

 } (5)

where is the height of the floorplan boundary, is the width of the floorplan

boundary, hi is the height of the module and wi is the width of the module where

1≤i≤m. Next, the deterministic problem is randomized by defining a family of pdfs

{f(·;v), vϵ Ѵ} for the set of X. The estimation value is a value estimated by the CE

method so that floorplanning optimization can be done. The estimation value is

determined as below:

 { } (5)

where is the probability measure under which the random state X has pdf f(·;v) where

X represents the solution strings that will be formed to get the CBLL sequence and

denotes the corresponding expectation operation.

81

 This estimation problem will be called as associated stochastic problem. The

random vector obtained is required to be converted to CBLL form. Hence, estimation

and the root of the equation , can be calculated. is a rare event and the

estimation of is nontrivial. The CE formulas shown in equations 6,7,8,9 and 10 are

used to solve the floorplanning problem effectively by making adaptive changes to the

probability density function according to the Kullback-Leibler cross entropy. This will

create a sequence of f(·;u), f(·;v1), f(·;v2),… pdfs in order to achieve the optimal

floorplan area. Let be a value lying between l0
-2

 and 10
-1

. Below is the fundamental of

cross entropy method.

1. Adaptive updating of where t represents the iteration number. For a fixed vt-1,

let be a 1 -quantile of S(X) under vt-1, so that satisfies

 (7)

 (8)

where X ~ f(·;vt-1). A simple estimator ̂ of is the order statistic

 ̂ ⌈ ⌉ (9)

where N is the total number of samples in the data.

2. Adaptive updating of vt. For a fixed and vt-1 derive vt from the solution of the

CE program:

 {

 (10)

The stochastic counterpart of (6) is as follows: for the fixed ̂ and ̂ derives ̂ for

the following program:

 ̂
 {

 ̂ (11)

Proposition 1: Let * be a minimum value for the deadspace area according to the set

of X. Suppose that the corresponding minimizer is unique x* and that the class

82

densities {f(·;v)} used in the CE program contains the degenerate density with mass at

x*:

 {
1

 (12)

Hence, the solutions for the random generation and CE program in

estimating) coincide and will respond to . From this, better solutions

for X can be obtained in the next iteration. This enables an estimation of the true

optimal solution which is the minimum deadspace area of a floorplan as it can converge

to a smaller neighbourhood for the next iteration. Instead of updating the parameter

vector v, directly via the (10), the following smoothed version is used:

 ̂ ̂ 1 ̂ (13)

where ̂ is the parameter vector obtained from (10) and is the smoothing parameter

with 0.7 < < 1. When 1, the original updating rule is maintained. Smoothing is

done to values of ̂ in order to prevent the probability that some component ̂ of ̂

will be 0s or 1s in the first few iterations. This is important when ̂ is a vector or a

matrix of probabilities. Note that for 0 < < 1, ̂ >0 while for 1 the first few

iterations will cause ̂ =0 or ̂ =1 for some indices i and this might cause

convergence to undesired solutions. (Rubinstein & Kroese, 2008)

3.3.1.2 Random Generation of CBLL

CBLL consists of three tuples, (Bi,Pi,Ri), 1 ≤ i ≤ m where m represents the total

number of modules. The probability transition matrix p is a three dimensions matrices

that randomly generate the representation for the CBLL, which is X. The component of

probability ̂ for the stochastic case is as follows:

 ̂
∑ { ̂ }

 { }

∑ { ̂ }

 (14)

83

This means that p(i,j,z) corresponds to the probability of the block i, being chosen

at j-th and z-th place. i represents the block number and j and z represent the sequence of

the module i, being placed. The algorithm generation of random representation for

CBLL is shown in the following:

A generated random permutation value x = (x1k,x2k,…,xnk) corresponds to a

unique block sequence and placement accordingly. This means that the selection of the

module is done as the sequence x1k → x2k→…→xnk where 1 ≤ k ≤ 4.

k P R

1 0 0

2 0 1

3 1 0

4 1 1

Let be the set of possible placement for the floorplan where the deadspace area

is calculated through CBLLcalculations. The goal of floorplanning is to minimize S

over the set of using the CE method. In order to minimize S, a specific mechanism is

needed to generate the random representation for CBLL.

To generate a random CBLL representation x = (x1k,x2k,…,xnk), a transition

probability matrix p is used in an algorithm of trajectory generation using node

placement. This algorithm is crucial to generate the CBLL representation for the

1: Let t = 1, b = 0, for all j≠1, i = 1

2: Generate U ~ U(0, l), and

 let R = U* ∑ 𝟏 𝒃𝒋 𝒑𝒊𝒋𝒛 𝑹𝒏
𝒋 𝟏

3: Let sum = 0 and j = 0

4: while sum < R do
5: j = j + 1

6: if j > n

7: z = z+1
8: j = 1

9: end

10: if bj = 0

11: sum = sum + pijz

12: end
13: end

14: set row P(:,j) = 0

15: normalize the row Pj to sum up to 1
16: Set t = t + 1, Xt = j, bj = 1 and i = j

17: if t = n

18: stop

19: else return to 2

20: end

84

optimization of CE to generate a stochastic process {X1k,X2k,…,Xnk} according to the

conditional distribution of Markov chain where each module can only be chosen once

and placed at one location and orientation. The transition matrix for the stochastic case

is shown in (14) and the transition matrix for the deterministic component is shown

below:

 {

 {
 (15)

where denotes the set of tours from the placement of block i being chosen at

position j and orientation z of the block being placed relative to the contour.

According to the trajectory generation using node placement algorithm, consider

the corresponding optimal degenerate transition matrix, p*. If * is the optimal

deadspace area, the corresponding sequence is x*. For any pt-1 solution for CE, the

optimal degenerate transition matrix p* = (
) is given by the following equation:

 {

1

 (16)

Example of a CBLL sequence is as follows:

b1,2 →b2,2 →b3,1 →b4,1 →b5,4 →b6,3 →b7,2 →b8,4 →b9,1 →b10,3 →b11,3 →b12,3

The corresponding P* is as follow:

(

1
 1

1

)

85

(

1
 1

1

)

(

 1

 1

1
 1)

(

1

 1

)

3.3.1.3 Implementing Cross Entropy Algorithm

The CE method uses the probability from the trajectory generation using node

placements in order to optimize the floorplan according to CBLL. Below is the CE

algorithm that is used for optimizing the floorplanning:

1) Choose an initial reference transition matrix ̂ where all the off-diagonal elements

in the matrix will give a sum equal to 1/n where n is the number of modules. Set t =

1 where t represents the number of iteration in the CE algorithm.

86

2) A random permutation x = (x1k,x2k,…,xnk) is generated according to the trajectory

generation using node placement and converted to CBLL representation to evaluate

the deadspace area in order to obtain the requisite quality of the randomly

permutated sequence. ̂ is the probability that is generated and is computed

according to the sample 1 -quantile ̂t, of the performance,

 ̂ ⌈ ⌉ (17)

3) After updating the transition matrix ̂ , the matrix is smoothed out based on the

equation below:

 ̂ ̂ 1 ̂ (18)

where is chosen based on the percentage of ̂ . ̂ is calculated and retained as

 ̂ in the next iteration.

4) If for some t = t+1, say d = 5,

 ̂ ̂ ̂ (19)

then the algorithm will terminate. If not, set t = t+1 and reiterate from Step 2.

Next, the best 1 -quantile will be brought forward by increasing the probability

of the node in the specific sequence of the results obtained. When it reaches the

stopping criterion as described in step 4, the algorithm should converge and gives the

minimum deadspace area of the given block for a floorplan. This study will be referred

as CBLL-CE. The results will be discussed in chapter 4.

87

CHAPTER 4. RESULTS, DATA ANALYSIS AND DISCUSSION

4.1 DMGA

In the first part of this section, the effects of mutation operators and crossover

operators are discussed for both floating point representation and also ordered base

sequence. This is to select the optimal frequency for mutation and crossover operators.

The final section discusses on the optimal results obtained using DMGA.

4.1.1 Effects of mutation operators on floating point representation

In this section, the effects of mutation operations frequency for floating point

representation is studied using population size of 100 for 100 generations. Benchmark

hp is used for this purpose. The floating point representation consists of 2 strings which

are relative block number and position of the reference block that is used in DM. The

frequencies of mutation operations are varied from low value (5) to high value (30) for

each mutation operator. The mutation operators that were used are boundary mutation,

multi non-uniform mutation, non-uniform mutation and uniform mutation. The mutation

operation frequency for each operator is varied according to the sequence mentioned.

Table 2 and Figure 4.1 show the optimization results for deadspace area and time when

the frequency of mutation operations are varied for floating point representation.

Table 2: Study on the Frequency of Mutation Operators

Mutations Frequency Deadspace(%) Time (s)

Boundary Multi Non-Uniform Non-uniform Uniform

5 5 5 5 12.92 383.25

30 5 5 5 8.79 475.24

5 30 5 5 11.41 473.25

5 5 30 5 11.77 385.04

5 5 5 30 9.47 683.64

30 30 30 30 9.71 1193.52

88

Figure 4.1 Study on Number of Mutation Operators for floating point representation

The result obtained is based on average results of 30 simulations for each case.

From the results, we can observe that when all types of mutation operations frequencies

are low (5), the deadspace area obtained is higher. The time consumed to complete each

optimization process is the shortest compared to the others.

When boundary mutation frequency is high (30) and the rest are retained low

(5), the deadspace obtained is the lowest in comparison with others but the time taken is

longer compared to running the optimization when all mutation operations frequencies

are retained low (5). However, when the mutation operation frequency for multi non-

uniform mutation or non-uniform mutation is high (30), only marginal reduction in

deadspace area and a slight increase in time for each optimization are observed. When

the uniform mutation operation frequency is high (30), the deadspace area obtained is

low compared to when all the mutation operations frequency are low. However, it is

observed that an increase of 78% in optimization time compared to when all types of

mutation operations frequency is low (5). When all the mutation operations frequencies

are high, the deadspace area is also low though it is not as low as when only boundary

0

200

400

600

800

1000

1200

1400

0

2

4

6

8

10

12

14

5-5-5-5 30-5-5-5 5-30-5-5 5-5-30-5 5-5-5-30 30-30-30-30

Ti
m

e
 (

s)

D
e

ad
sp

ac
e

 A
re

a
(%

)

Mutation Operators Frequency

Time and Deadspace vs Mutation Operators

Deadspace (%) Time (s)

89

mutation operation frequency is allowed to be high (30). However, the time taken is

considerably long. Hence, in order to select mutation operations frequencies for

optimum outcome, we need to consider the time and also deadspace area results. The

runtime taken and the deadspace area obtained must be as minimal as possible for

efficient floorplanning optimization. Hence, the optimum frequencies of mutation

operators selected are as follow:

a. Boundary mutation – 30

b. Multi Non-uniform Mutation – 5

c. Non-uniform Mutation – 5

d. Uniform Mutation – 5

4.1.2 Effects of crossover operators for floating point representation

In this section, the effect of crossover operations frequencies for floating point

representation is studied with a population size of 100 for 100 generations. The

benchmark used for this study is hp. The floating point representation consists of 2

different strings which are relative block number string and position of the reference

block string that is used in DM. The crossover operations frequencies are varied from

low value (5) to high value (30) for each crossover operator. The crossover operators

that were used are arithmetic crossover, heuristic crossover and simple crossover. The

crossover operations frequencies are varied according to the sequence mentioned. Table

3 and Figure 4.2 show the optimization results for deadspace area and time when the

frequency of crossover operations are varied for floating point representation.

 The result obtained is based on the average results of 30 simulations for each

case study. From the results, we can observe that when all crossover operations

frequencies are low (5) for each crossover operator, the deadspace area obtained is the

highest in comparison with other crossover operations frequencies combination.

90

However, the time taken to complete each optimization is the shortest compared to the

others.

Table 3: Study on the Frequency of Crossover

Crossover Frequency Deadspace(%) Time (s)

Arithmetic Heuristic Simple

5 5 5 12.92 383.25

30 5 5 12.04 503.44

5 30 5 10.28 432.94

5 5 30 12.08 429.75

30 30 30 12.26 874.51

Figure 4.2 Study on the Number of Crossover for Floating Point Representation

When the simple crossover operator is high (30) and the other crossover

operators are retained low, the deadspace obtained is the lowest compared. However,

the time taken is 12% longer that when all the frequencies of crossover operations are

low. There is no significant difference in the deadspace area when the frequency of

crossover operator for arithmetic crossover or heuristic crossover or when all crossover

operations frequencies are high (30). The runtime for high frequency of arithmetic

0

200

400

600

800

1000

0

2

4

6

8

10

12

14

5_5_5 30_5_5 5_30_5 5_5_30 30_30_30

Ti
m

e
 (

s)

D
e

ad
sp

ac
e

 A
re

a
(%

)

Crossover Operators Frequency

Time and Deadspace vs Crossover
Operators

Deadspace(%) Time (s)

91

crossover or heuristic crossover are slightly longer compared to when all the crossover

operations frequencies are low (5). However, when all the crossover operations

frequencies are high (30), the time taken to complete an optimization is considerably

long. Hence, similar to selection of mutation operations frequencies, selecting the

crossover operations frequencies also involves both time and deadspace area. Hence, the

optimum frequencies of crossover operators are as follow:

a. Arithmetic Crossover – 5

b. Heuristic Crossover – 30

c. Simple Crossover – 5

4.1.3 Effects of mutation operators for ordered based sequence

In this section, the effects of mutation operators for ordered based sequence is

studied with a population size of 100 for 100 generations. The benchmark used for this

study is hp. The ordered based sequence used is for the current block placement that is

used in DM. Hence this will affect the sequence where the blocks are chosen. The

effects of the mutation operators which are studied are in the sequence of inversion

mutation, adjacent swap mutation, shift mutation, swap mutation and threeswap

mutation. The mutation operations frequencies are varied from low value (5) to high

value (30). Table 4 and Figure 4.3 show the optimization results for deadspace area and

time when the frequency of mutation operators are varied for ordered based sequence.

92

Table 4: Study on the Frequency of Mutation

Mutations Frequency Deadspace

(%)

Time

(s)
Inversion Adjacenet Swap Shift Swap Threeswap

5 5 5 5 5 12.92 383.25

30 5 5 5 5 10.74 473.53

5 30 5 5 5 12.44 497.63

5 5 30 5 5 10.12 435.98

5 5 5 30 5 12.74 478.83

5 5 5 5 30 11.69 489.54

30 30 30 30 30 14.26 987.43

Figure 4.3 Study on the Frequency of Mutation for ordered based number

 The result obtained is based on average results of 30 simulations for each case

study. From the results, we can observe that when all the crossover operations

frequencies are high (30), the deadspace is highest in comparison with other mutation

parameter combinations and the time taken to complete the optimization is considerably

long. When the inversion mutation frequency or the shift mutation operator frequency is

high (30), the deadspace area is the lowest compared to frequency combinations.

0

200

400

600

800

1000

1200

0

2

4

6

8

10

12

14

16

Ti
m

e
 (

s)

D
e

ad
sp

ac
e

 a
re

a
(%

)

Mutation Operators Frequency

Time and Deadspace vs Mutation Operators

Deadspace(%) Time (s)

93

However, the time taken is 15% longer compared to when all the mutation

operations frequency is retained low. There is only marginal decrease in deadspace area

when the mutation operations frequency for adjacent swap mutation, swap mutation or

threeswap mutation is high (30). It can be concluded that operator frequency for

inversion mutation and shift mutation should be high (30) as this will reduce the

deadspace area and while causing minimal increase in the time taken to complete the

simulation. Having all high (30) for the different types of mutation operations

frequencies is definitely a bad choice as it does not only worsen the deadspace area but

also uses more time to complete a simulation. Hence, the optimal frequency of

crossover operator that is selected is as follow:

a. Inversion Mutation – 5

b. Adjacent Swap Mutation – 5

c. Shift Mutation – 30

d. Swap Mutation – 5

e. Threeswap Mutation – 5

4.1.4 Effects of crossover operators for ordered based numbers number

In this section, the effects of crossover operators for ordered based numbers is

studied with population size of 100 for 100 generations. The benchmark used for this

study is hp. Ordered based sequences are used for the current block placement. Hence,

this will affect the sequence where the blocks are chosen. The effects of the crossover

operators that are studied are cyclic crossover, single point crossover, order-based

crossover, uniform crossover and partial mapping crossover. The frequency of crossover

operations is varied from low value (5) to high value (30). Table 5 and Figure 4.4 show

the effects in the optimization results for deadspace area and time when the frequency of

crossover operators are varied for ordered based sequence.

94

Table 5: Study on the Frequency of Crossover

Crossover Frequency

Deadspace

(%)

Time

(s)
Cyclic Single

Point

Order-

based
Uniform Partial

Mapping

5 5 5 5 5 12.92 383.25

30 5 5 5 5 11.23 368.44

5 30 5 5 5 12.61 365.90

5 5 30 5 5 10.64 367.29

5 5 5 30 5 10.89 367.08

5 5 5 5 30 11.46 376.09

30 30 30 30 30 7.88 423.84

Figure 4.4 Study on the Frequency of Crossover for ordered based number

 The result obtained is based on average results of 30 simulations for each case.

From the results, we can observe that when all the crossover operators frequencies are

high (30), we obtain the lowest deadspace area. The time taken is only slightly longer

compared to when all the crossover operators frequency are low (5).

Introducing single point crossover frequency at 30 hardly brings any changes to

the deadspace area though the time taken is marginally smaller in comparison with the

330
340
350
360
370
380
390
400
410
420
430

0

2

4

6

8

10

12

14

Ti
m

e
 (

s)

D
e

ad
sp

ac
e

 a
re

a
(%

)

Crossover Operators Frequency

Time and Deadspace vs Crossover Operators

Deadspace(%) Time (s)

95

simulation that involves all crossover operations frequencies low. When the frequency

for cyclic crossover, order-based crossover, uniform crossover or partial mapping

crossover is high (30), the deadspace area is relatively lower compared to when all are

low (5) but higher compared to when all are high (30). Hence, when all the crossover

operator frequencies are high will give a better result of deadspace area and does not

affect the time taken to complete the crossover. Hence, the optimal frequency of

crossover operators that is selected is as follow:

a. Cyclic Crossover – 30

b. Single Point Crossover – 30

c. Order-based Crossover – 30

d. Uniform Crossover – 30

e. Partial Mapping Crossover - 30

4.1.5 Optimal Results and Data Analysis

For DMGA, a few analyses had been done in order to test validity of the work.

Table 6 and Figure 4.5 summarises the results of the benchmark for apte, hp, xerox,

ami33 and ami49.

Table 6: Optimal Results for DMGA

Benchmark Apte xerox hp ami33 ami49

Number of blocks, n 9 10 11 33 49

Minimum

deadspace, (%) 1.5887 5.2593 6.7784 12.3747 16.0801

Standard

deviation(σ) 0.5029 1.8515 0.9072 1.0867 2.3154

Mean deadspace, μ

(%) 2.0715 7.1286 7.6889 12.674 18.496

Average Time,t (s) 425.64 457.35 502.53 1719.07 3267.45

Number of

Generations, Gen 100 100 100 130 150

Number of

Populations, Pop 100 100 100 200 250

96

Figure 4.5 Graph showing the optimal results for DMGA

 As the number of block increases, the deadspace percentage and time taken for

optimization increases. This is because it is more cumbersome to achieve compact block

placement based on the complexity of the sequence. Hence the probability to obtain the

ideal answer reduces. Besides that, it is observed that the standard deviation increases as

the number of blocks increases. As the number of blocks increases, wider range of

optimization results will be obtained as there is a wider range of solution strings.

The population size and number of generation are selected based on the number

of blocks. As the number of blocks increases, the generation and also population should

be increased to produce more random generated strings so that higher chances to obtain

better solution strings. Increase in number of blocks also will increase the time required

to optimize the floorplan. From the table and graph, we can see that longer time is

taken to optimize ami49 because more blocks are needed for placement and also the

number of generation and population size for GA need to be increased. Below are the

best results obtained for the benchmarks:

425.64 457.35 502.53

1719.07

3267.45

0

500

1000

1500

2000

2500

3000

3500

0

2

4

6

8

10

12

14

16

18

20

apte xerox hp ami33 ami49

Ti
m

e
 (

s)

D
e

ad
sp

ac
e

 A
re

a
(%

)

Benchmark

Optimal Results for DMGA

Minimum deadspace (%) Mean deadspace (%) Standard deviation

Average Time, t(s) Number of Generations Number of populations

97

1. Apte – The minimum deadspace area obtained is 1.5887%. Figure 4.6 shows the

most optimum placement for apte which has 9 blocks using GA as optimization

with DM as representation.

Figure 4.6 Placement for Apte

2. Xerox – The minimum deadspace area obtained is 5.2598%. Figure 4.7 shows

the most optimum placement for xerox which has 10 blocks using GA as

optimization with DM as representation.

Figure 4.7 Placement for Xerox

3. Hp – The minimum deadspace area obtained is 7.9102%. Figure 4.8 shows the

most optimum placement for hp which has 11 blocks using GA as optimization

with DM as representation.

98

Figure 4.8 Placement for hp

4. Ami33 - The minimum deadspace area obtained is 12.3747%. Figure 4.9 shows

the most optimum placement for ami33 which has 33 blocks using GA as

optimization with DM as representation.

Figure 4.9 Placement for ami33

5. Ami49 - The minimum deadspace area obtained is 16.0801%. Figure 4.10 shows

the most optimum placement for ami49 which has 49 blocks using GA as

optimization with DM as representation.

99

Figure 4.10 Placement for ami49

4.2 CBLL-GA

In the initial part of this section, discussion on the effects of mutation operators

and crossover operators are discussed for binary representation and also ordered base

sequence. This is to select the optimal frequency for mutation and crossover operators.

The final section discuss on the optimal results for CBLL-GA.

4.2.1 Effects of mutation operators on binary sequence

In this section, the effects of mutation operators frequency for floating point

representation is studied using population size of 100 for 100 generations. Benchmark

xerox is used for this purpose. The floating point representation consists of 2 strings

which are block position and the rotation of the block. The frequency of mutation is

varied from low value (5) to high value (30) for each type of mutation operator. The

mutation operators that were used are inversion mutation and binary mutation. Table 7

and Figure 4.11 show the optimization results for deadspace area and time when the

frequency of mutation operators are varied for floating point representation.

100

Table 7: Study on the Frequency of Mutation Operators

Mutations

Frequency Deadspace(%)
Time

(s)
Inversion Binary

5 5 2.93 4.2081

30 5 2.85 5.7212

5 30 2.95 6.4825

30 30 2.34 8.1587

Figure 4.11 Study on Number of Mutation Operators for floating point representation

The result obtained is based on average results of 30 simulations for each case.

From the results, we can observe that when all the mutation operations frequencies are

high (30) for each mutation, the deadspace area obtained is the lowest. However, a

longer time is needed to accommodate higher frequency of mutation operation.

Nevertheless, the simulation takes less time as there are only two types of mutation

involves in this optimization.

When the inversion mutation frequency is high (30), the deadspace area is

slightly lower than when all the mutation frequency is low (5) and the time taken is

0
1
2
3
4
5
6
7
8
9

0

0.5

1

1.5

2

2.5

3

3.5

5_5 5_30 30_5 30_30

Ti
m

e
 (

s)

D
e

ad
sp

ac
e

 A
re

a

Mutation Operator Frequency

Time and Deadspace vs Mutation
Operators

Deadspace (%) Time (s)

101

slightly longer in comparison to condition where all the mutation operations frequencies

are low. When the binary mutation frequency is high (30), there is no significant

difference in the deadspace area but the time taken is longer. However, when both

mutation frequencies are high, the lowest deadspace area is obtained. From the

observation, the frequency of the mutation operators that are selected is as follows:

a) Inversion Mutation - 30

b) Binary Mutation - 30

4.2.2 Effects of crossover operator for binary representation

In this section, the effect of crossover operator frequency for binary

representation is studied with a population size of 100 for 100 generations. The

benchmark used for this study is xerox. The binary representation consists of 2 different

strings which are block position and rotation of the block. The frequencies of crossover

operators are varied from low value (5) to high value (30). The crossover operators used

is called simple crossover. Table 8 and Figure 4.12 show the optimization results for

deadspace area and time when the frequency of crossover operators are varied for

binary representation.

Table 8: Study on the Frequency of Crossover

Simple Crossover Frequency Deadspace(%) Time (s)

5 4.5189 4.2181

30 4.2181 4.2181

102

Figure 4.12 Study on the Number of Crossover for Floating Point Representation

 The result obtained is based on mean results of 30 simulations for each case

study. From the results, it can be observed that there is no significant difference in the

deadspace area when the frequency for simple crossover is high (30) or low (5). Besides

that, there is not much difference in the time taken to complete a simulation. It can be

concluded that simple crossover frequency for binary representation does not have any

significant effects on the deadspace area as well as time needed to complete a

simulation.

4.2.3 Effects of mutation operators for ordered based sequence

In this section, the effects of mutation operators for ordered based sequence is

studied with a population size of 100 for 100 generations. The benchmark used for this

study is xerox. The ordered based sequence used is for the current block placement.

Hence this will affect the sequence where the blocks are chosen. The effects of the

mutation operators which are studied are inversion mutation, adjacent swap mutation,

shift mutation, swap mutation and threeswap mutation. The mutation operations

frequencies are varied from low value (5) to high value (30). Table 10 and Figure 4.13

0

1

2

3

4

5

0

1

2

3

4

5

5 30

Ti
m

e
 (

s)

D
e

ad
sp

ac
e

 A
re

a
(%

)

Crossover Operator Frequency

Time and Deadspace vs Crossover
Operators

Deadspace(%) Time (s)

103

show the optimization results for deadspace area and time when the frequency of

mutation operators are varied for ordered based sequence.

Table 9: Study on the Frequency of Mutation

Mutations Frequency Deadspace

(%)

Time

(s)
Inversion Adjacenet Swap Shift Swap Threeswap

5 5 5 5 5 2.93 4.0542

30 5 5 5 5 2.95 4.9214

5 30 5 5 5 3.04 5.0185

5 5 30 5 5 2.51 4.2401

5 5 5 30 5 2.97 5.2618

5 5 5 5 30 2.39 5.2751

30 30 30 30 30 2.89 8.5187

Figure 4.13 Study on the Frequency of Mutation for ordered based number

 The result obtained is based on average results of 30 simulations for each case

study. From the results, it can be observed that when the frequency for shift mutation or

threeswap mutation is high (30), the deadspace area is the lowest. Time taken is only

slightly longer than when all the frequencies of the mutation operations are low (5).

When the frequency of mutation operation for inversion mutation, adjacent swap

mutation or swap mutation is high (30), there is not much change in the deadspace area

0

2

4

6

8

10

0

1

2

3

4

Ti
m

e
 (

s)

D
e

ad
sp

ac
e

 A
re

a
(%

)

Mutation Operator Frequency

Time and Deadspace vs Mutation
Operators

Deadspace(%) Time (s)

104

and only a slight increase in the time taken to complete one simulation. When all the

frequencies of mutation operations are high, there is not much difference in the

deadspace area and the time taken to complete a simulation is twice compared to the

time taken when all the mutation operations frequencies are low. It can be concluded

that only threeswap mutation should have higher frequency. Hence, the optimal

frequency of crossover operator that is selected is as follow:

a. Inversion Mutation – 5

b. Adjacent Swap Mutation – 5

c. Shift Mutation – 5

d. Swap Mutation – 5

e. Threeswap Mutation – 30

4.2.4 Effects of crossover operators for ordered based number

In this section, the effects of crossover operations for ordered based numbers is

studied with population size of 100 for 100 generations. The benchmark used for this

study is xerox. Ordered based sequences are used for the current block placement.

Hence, this will affect the sequence where the blocks are chosen. The effects of the

crossover operators that are studied are cyclic crossover, single point crossover, order-

based crossover, uniform crossover and partial mapping crossover. The frequencies of

crossover operations are varied from low value (5) to high value (30). Table 10 and

Figure 4.14 show the effects in the optimization results for deadspace area and time

when the frequency of crossover operators are varied for ordered based sequence.

105

Table 10: Study on the Frequency of Crossover

Crossover Frequency

Deadspace

(%)

Time

(s)
Cyclic Single

Point

Order-

based
Uniform Partial

Mapping

5 5 5 5 5 2.93 4.1054

30 5 5 5 5 2.67 4.0021

5 30 5 5 5 3.15 4.2105

5 5 30 5 5 2.88 4.5617

5 5 5 30 5 2.47 3.9897

5 5 5 5 30 3.14 4.0158

30 30 30 30 30 2.93 5.0464

Figure 4.14 Study on the Frequency of Crossover for ordered based number

The result obtained is based on the average results of 30 simulations for each

case. From the results, when only uniform crossover frequency is high (30) and the rest

are retained low (5), the deadspace area obtained is the smallest. The time taken is also

shorter compared to the time taken when all the crossover frequency are low.

0

1

2

3

4

5

6

0

0.5

1

1.5

2

2.5

3

3.5

Ti
m

e
 (

S)

D
e

ad
sp

ac
e

 A
re

a
(%

)

Crossover Operator Frequency

Time and Deadspace vs Crossover Operators

Deadspace(%) Time (s)

106

When only cyclic crossover frequency is high (30), the deadspace area is second

most minimum though the time taken is slightly lower than when only the uniform

crossover frequency is high (30). The deadspace area and the time taken are almost the

same when order based crossover and partial mapping crossover is high. However,

when single point crossover frequency is set as high (30), the deadspace area increases

although the time taken to complete the simulation is about the same as when all the

crossover frequency is retained low. There is hardly any difference in the deadspace

area when all the frequency of the crossover operations are retained high (30) or low (5)

but the time taken to complete a simulation is the longest when all the crossover

operators frequencies are high (30). It can be concluded that uniform crossover and

cyclic crossover can have higher frequency in order to reduce the deadspace area

without prolonging time taken to complete a simulation. Hence, the optimal frequency

of crossover operator that is selected is as follow:

a. Cyclic Crossover – 5

b. Single Point Crossover – 5

c. Order-based Crossover – 5

d. Uniform Crossover – 30

e. Partial Mapping Crossover - 5

4.2.5 Optimal Results and Data Analysis

For CBLL-GA, analyses had been carried out to test validity of the work. Table 11 and

Figure 15 summarises the results of the benchmark for apte, hp, xerox, ami33 and

ami49.

107

Table 11: Optimal Results for CBLL-GA

Benchmark apte xerox hp ami33 ami49

Number of blocks, n 9 10 11 33 49

Minimum deadspace,

(%) 0.7697 2.479 1.318 2.201 2.690

Standard deviation(σ) 0 0.3396 0 0.4114 0.5446

Mean deadspace, μ

(%) 0.7697 2.479 1.318 2.448 3.555

Average Time,t (s) 1.0231 4.2451 5.1520 10.3215 18.4271

Number of

Generations, Gen 100 100 100 130 150

Number of

Populations, Pop 100 100 100 200 250

Figure 4.15 Graph showing the optimal results for CBLL-GA

 As the number of block increases, the deadspace percentage and time taken for

optimization increases. This is because it is more cumbersome to achieve compact block

placement based on the complexity of the sequence and therefore increases the range of

solution strings. Hence, the probability to obtain the optimum deadspace area reduces.

The population size and number of generation are selected based on the number

of blocks. As the number of blocks increases, the generation and also population should

1.0231 4.2451 5.152 10.3215 18.4271
0

50

100

150

200

250

300

0

0.5

1

1.5

2

2.5

3

3.5

4

apte xerox hp ami33 ami49

Ti
m

e
 (

S)

D
e

ad
sp

ac
e

 A
re

a
(%

)

Benchmark

Optimal Results for CBLL-GA

Minimum deadspace (%) Mean deadspace (%) Standard deviation

Average Time, t(s) Number of Generations Number of populations

108

be increased to produce more random generated strings so that higher chances to obtain

better solution strings. Increase in number of blocks also will increase the time required

to optimize the floorplan. From the table and graph, the shortest time taken for a

complete simulation is apte and the longest time taken to complete a simultation is

ami49 because more blocks are needed for placement and also the number of generation

and population size for GA needs to be increased. Following are the best results

obtained for the benchmarks:

1. Apte – The minimum deadspace area obtained is 0.7697%. Figure 4.16 shows

 the most optimum placement for apte which has 9 blocks using GA as

optimization with CBLL as representation.

Figure 4.16 Placement for Apte

2. Xerox – The minimum deadspace area obtained is 2.479%. Figure 4.17 shows

the most optimum placement for xerox which has 10 blocks using GA as

optimization with CBLL as representation.

109

Figure 4.17 Placement for Xerox

3. Hp – The minimum deadspace area obtained is 1.318%. Figure 4.18 shows the

most optimum placement for hp which has 11 blocks using GA as optimization

with CBLL as representation.

Figure 4.18 Placement for hp

4. Ami33 - The minimum deadspace area obtained is 2.201%. Figure 4.19 shows

the most optimum placement for ami33 which has 33 blocks using GA as

optimization with CBLL as representation.

110

Figure 4.19 Placement for ami33

5. Ami49 - The minimum deadspace area obtained is 2.690%. Figure 4.20 shows

the most optimum placement for ami49 which has 49 blocks using GA as

optimization with CBLL as representation.

Figure 4.20 Placement for ami49

4.3 CBLL-CE

For CBLL and CE, a few analyses had been done in order to test validity of the work.

Table 12 and Figure 4.21 summarises the results of the benchmark for apte, hp, xerox,

ami33 and ami49.

111

Table 12: Optimal Results for CBLL and CE

Benchmark apte xerox hp ami33 ami49

Number of blocks, n 9 10 11 33 49

Minimum deadspace,

(%) 0.7697 2.479 1.318 1.838 2.617

Standard deviation(σ) 0 0.2159 0 0.2115 0.5422

Mean deadspace, μ

(%) 0.7697 2.778 1.318 2.057 3.337

Average Time,t (s) 1.3057 10.247 24.957 204.521 375.275

Number of Sample, N 810 1000 1210 10890 24010

Figure 4.21 Graph showing the optimal results for CBLL and CE

 The more number of block increases, time taken increases because more samples

needed to be decoded in order to obtain the deadspace area of each sequence generated.

Therefore, the time taken to complete an optimization increases exponentially when the

number of block is increased by an exponential number. The reason to increase the

representation string is so that more probability relationship can be generated in order to

obtain the best deadspace between two blocks of the sample of the blocks to be

optimized. This is because CE uses local deadspace probability in order to choose the

placement of the blocks. Below are the best results obtained for the benchmarks:

1.3057 10.247 24.957 204.521 375.275 0

5000

10000

15000

20000

25000

30000

0

0.5

1

1.5

2

2.5

3

3.5

4

apte xerox hp ami33 ami49

Ti
m

e
 (

s)

D
e

ad
sp

ac
e

 A
re

a
(%

)

Benchmark

Optimal Results for CE and CBLL

Minimum deadspace (%) Mean deadspace (%) Standard deviation

Average Time, t(s) Number of Sample, N

112

1. Apte – The minimum deadspace area obtained is 0.7697%. Figure 4.22 shows

the most optimum placement for apte which has 9 blocks using CE as

optimization with CBLL as representation.

Figure 4.22 Placement for Apte

2. Xerox – The minimum deadspace area obtained is 2.479%. Figure 4.23 shows

the most optimum placement for xerox which has 10 blocks using CE as

optimization with CBLL as representation.

Figure 4.23 Placement for Xerox

3. Hp – The minimum deadspace area obtained is 1.318%. Figure 4.24 shows the

most optimum placement for hp which has 11 blocks using CE as optimization

with CBLL as representation.

113

Figure 4.24 Placement for hp

4. Ami33 - The minimum deadspace area obtained is 1.838%. Figure 4.25 shows

the most optimum placement for ami33 which has 33 blocks using CE as

optimization with CBLL as representation.

Figure 4.25 Placement for ami33

5. Ami49 - The minimum deadspace area obtained is 2.617%. Figure 4.26 shows

the most optimum placement for ami49 which has 49 blocks using CE as

optimization with CBLL as representation.

114

Figure 4.26 Placement for ami49

4.4 Discussion

Comparing the three methods that were developed, it can be observed that DM

takes a longer runtime to decode the representation into placement. DM is a more

complicated representation and depends more on the optimization algorithm

representation. In floorplanning optimization, we need to consider both time taken for

decoding and also time taken to complete an optimization to obtain optimal results.

Hence, CBLL is developed in order to reduce the time taken for decoding the

representation.

Decoding time is important because we will need to decode the representation in

order to obtain the deadspace area for a particular representation generated by the

optimization algorithm. Hence, many deadspace area computation are needed from the

floorplans representation strings in order to find the minimal deadspace area.

In CBLL representation, local deadspace area is determined according to the

shapes determined by the contour which were chosen. The minimum space will be

closed and void from other blocks to be placed in order to determine the shape of the

contour. This is to minimize the space lost. Due to the limitations of the contour shape

used in this present work, there is a limited placement combination that reduces search

115

space. This encourages very fast optimization but prevents the search for minimal

deadspace area placement. The current work consists of 12 contour shapes and 4 points

reference points are used for block placement.

 The deterministic section of CBLL is where the least minimal space is being

locked to determine the contour after placing the block so that the next block can be

placed referring to the previous contour shape and points. This enables the reduction in

local deadspace area before determining the deadspace area of the whole placement.

 GA is a global search optimization technique. Hence, only the best solution

strings are kept without considering the local deadspace area between two blocks. GA is

a faster optimization technique compared to CE. However, the search for optimum point

in GA is very random. This is because GA commences with a randomized population of

placement. From this population, the best quantile will be selected to be bought to the

next generation. Hence, the results of the optimization depend strongly on the first

generation. This results in a very wide range of placements outcome for every

optimization runs. This will cause higher standard deviation in the deadspace area

results for GA compared to CE.

Mutation and crossover are randomly executed chromosomes to obtain fitter

genes for the next generation. Mutation and crossover have very little impact on the

local deadspace area unlike in CE. According to the GA, better parents will produce

better child in next generation by undergoing crossover or mutation. This causes the

optimization to rely on directed randomness.

GA is used to optimize the floorplanning representation of DM and CBLL

because of its flexibility that can be easily modified. The genes in GA are easily

modified so that it can represent for both DM and also CBLL. GA solution string, which

is also the gene, can be represented either as order-based gene, floating point gene and

116

also binary gene. A gene can also be modified to have the combination of these different

types of representation. For DM, the gene consists of a string of order-based

representation and 2 strings of floating point representations. For CBLL, the gene

consists of a string of order-based representation and 2 strings of binary representations.

 CE is a local search optimization technique where it uses probability to obtain an

optimal solution. After exhaustive search in literature, CE is nowhere found to be used

in floorplanning optimization previously. This encourages the present study to attempt

the capability of this new optimization algorithm on floorplanning. Similar to GA, CE is

initialized with random generated variables. From these random generated variables, we

are able to obtain the relationship between 2 different blocks during placement. This is

because CE is able to measure the probability of adjacent block placement based on

deadspace. The lower the deadspace area between the two blocks, the higher the

probability of choosing this relationship between the two blocks. These probabilities are

obtained during the updating of the transition matrix in the probability density function

to determine the relationship between the blocks.

 As CE strongly depends on the relationship between the blocks, the

representation that can be used in CE is limited. Due to the complexity of DM

representation, it will be complicated to modify the representation to suit CE and will

take a longer time for optimization. Hence, only CBLL is used as a representation when

using CE as optimization tool. This is because CBLL is a simpler representation and

therefore it is easily modified to match CE algorithm. The CBLL is modified so that it

can be placed in a three dimension matrix for CE transition matrix. The modification of

the representation for CBLL to incorporate with CE is shown in chapter 3.3.1.2.

 CE optimization algorithm gives better result compared to GA as it strongly

depends on the relationship between two different blocks. Many representation strings

117

were initiated in algorithm. This is to increase the number of solution strings to obtain

more accurate results. Hence, more accurate probability to obtain the best placement

between two blocks is computed. Minimizing the local deadspace area will indirectly

reduce the deadspace area of the total placement. Hence, CE gives better results for

deadspace area. However, CE consumes long runtime to complete the simulation. This

is because of the updating process of the transition matrix which consumed considerable

amount of runtime.

 In floorplan optimization, both runtime and deadspace area are considered when

selecting the best optimization method. The target of floorplan optimization is to be able

to obtain an optimal result in a short time. Hence, more work need to be done to

improve the runtime of CE algorithm used for floorplanning optimization.s

Table 13 shows the MCNC Benchmarks which were used to compare and verify

the results of DMGA, CBLL-GA and CBLL-CE and other methods which were

developed previously.

Table 13: MCNC Benchmark Comparison

 apte xerox hp ami33 ami49

Deadspace

Area (%)

Time

(s)

Deadspace

Area (%)

Time

(s)

Deadspace

Area (%)

Time

(s)

Deadspace

Area (%)

Time

(s)

Deadspace

Area (%)

Time

(s)

O-Tree 1.156 38 3.874 118 4.297 57 9.090 1430 6.079 7428

B*-Tree 0.7697 7 2.479 25 1.318 55 9.819 3417 3.822 4752

CS 0.7697 1 2.479 54 1.318 6 2.036 530 2.355 851

FAST-SP 0.7697 1 2.324 14 1.318 6 4.198 20 2.975 31

DMGA 1.589 425 5.259 457 6.778 503 12.375 1719 16.080 3267

CBLL-GA 0.7697 1 2.479 4 1.318 5 2.201 10 2.690 18

CBLL-CE 0.7697 1 2.479 10 1.318 25 1.838 204 2.617 375

Table 13 compares our results with other floorplan representations (O-Tree [1], B*-

Tree[2], CBL[3], CS[5] and also Fast-SP[4]) which were modelled by previous

researchers using hard block MCNC benchmark circuits. The results show that DMGA

does not give an optimal result compared to the other two methods which has been

developed which are CBLL-GA and CBLL-CE. The results show that the deadspace

118

obtained from CBLL-GA is acceptable compared to existing algorithms. More

significantly, CBLL-GA runtime is much shorter compared to others. The improved

performance of the proposed CBLL representation is due to the introduction of multiple

contour shapes for placement. CBLL-GA gives marginally larger deadspace area as

compared to CS. CBLL has a limited number of reference points which reduces the

solution space complexity. Thus CBLL-GA could generate compact floorplans in much

shorter runtime.

 From the results, the deadspace area obtained using CBLL-CE for ami33

benchmark is lower compared to previously developed algorithms. The improved

results are due to the fact that CE can be used to calculate the probabilities of the blocks

relationships which enables the selection of the best pair of relationship between the

blocks.

119

CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

Floorplanning optimization consists of two sections namely the representation

section and also the optimization algorithm section. Hence, the study was carried out on

these two sections. The floorplan representation models developed are DM and CBLL.

DM was combined with GA to execute floorplanning optimization whereas CBLL is

embedded in both GA and CE to perform floorplanning optimization.

DM representation can represent many different shapes and therefore cover larger

search space in comparison to CBLL. However, DM uses longer runtime to decode

from representation strings to floorplan as compared to CBLL. CBLL is a representation

where it has a limited number of shapes of contour which will reduce the search space

compared to DM. However, CBLL has an embedded deterministic algorithm which will

calculate and choose the smallest local deadspace area during placement compared to

DM which solely depends on optimization tool as in this case, GA.

 GA was used in many previous floorplanning studies. GA is much more flexible

compared to CE. This is because the chromosomes in GA can be modified easily to suit

the representation used. GA takes a shorter runtime for optimization as it uses mutation

and crossover operations on some of the best quantile population to be brought to the

next generation. Not all the chromosomes are involved in the mutation and crossover

operations. CE takes a much longer time to complete a simulation as it considers all the

solution strings which were generated and is used for the transition matrix in order to

obtain better results in the subsequent iteration.

 CE optimization algorithm gives better results comparatively to GA. CE

advantage relies on detailed relationship between two adjacent blocks. Hence, CE gives

120

smaller deadspace area. However, CE requires a longer runtime to complete the

simulation as the updating process of the transition matrix consumes considerable time.

 In floorplan optimization, both time and deadspace area need to be considered.

The target of floorplan optimization is to be able to obtain an optimal result in a short

time. Hence, more work need to be done in order to improve the CE algorithm so that to

complete a simulation completes in a shorter time.

CBLL reduces the time taken for decoding from representation to floorplan. This

greatly simplifies and reduces the runtime of the optimization. This is because CBLL

reduces the complexity space of floorplan placement due to the limited number of

contour shapes in the CBLL representation. In the present work, the time taken for

optimization is reduced and also at the same time sustaining the deadspace area

obtained. Substantial improvement in the runtime ratios compared to other models is

observed as the number of blocks increases.

CBLL-CE, a new algorithm, is proposed in this research to incorporate CE to

optimize floorplanning problems. The CE method is developed using cross entropy

distance which is known as the Kullback-Leibler distance. This method is motivated by

an adaptive algorithm to estimate probabilities in rare events involving minimization.

CBLL-CE gives a better result in terms of deadspace area for floorplan optimization as

compared to the method we have used previously which is CBLL representation

involving GA. Also CBLL-CE gives improved performance for previously developed

floorplan representations using both EA and SA. The improved performance of using

CE is based on the detailed relationship between two adjacent blocks and this will give

a better deadspace area when optimization is performed. It is concluded that the

proposed CE method can be used to implement VLSI floorplan optimization with

reduction in the deadspace area of the floorplan when the number of modules increases.

121

 In conclusion, two floorplanning representation models and two optimization

algorithm were reviewed and were compared with the other methods which were used

previously. We can conclude that CE-CBLL gives minimum deadspace area for

floorplanning optimization compared to previously developed method and GA-CBLL

gives a substantial improvement in the optimization runtime without affecting the

deadspace area.

5.2 Future Work

To improve the floorplan optimization, more detailed work needs to be done. In

order to improve the results for DM and CBLL, GA algorithm needs to be modified so

that the mutation and crossover operations can be used effectively to execute the

placement of the blocks instead of entirely random operation. This is to enable GA to

optimize according to DM and CBLL representations. Since CBLL is faster compared

to DM, more improvements should be worked on to improve the results for CBLL-GA.

In order to improve the results for CBLL-CE, we need to improve the CBLL

representation so that more contour shapes will be taken into consideration to reduce the

amount of local space during packing according to the algorithm. This is to reduce the

final deadspace area of the placement. A better programming needs to be implemented

to improve the time taken for a complete simulation using CE method. This is because

CE uses a long runtime especially during updating of the transition matrix. Perhaps

parallel computation programming needs to be implemented in order to speed up the

simulation time for CBLL-CE.

 In conclusion, the present study lays a foundation for new floorplanning

representation such as DM and CBLL. Besides that, the present work explores the

possibility of CE as optimization tool in floorplanning which had not been implemented

in floorplanning optimization previously.

122

REFERENCES

Alpert, C. J., Mehta, D. P., & Sapatnekar, S. S. (2009). Handbook of Algorithms for

Physical Design Automation. Boca Raton: Taylor & Francis Group.

Chang, Y.-C., Chang, Y.-W., Wu, G.-M., & Wu, S.-W. (2000). B*-trees: A New

Representation for Non-slicing Floorplans. Annual ACM IEEE Design

Automation Conference (pp. 458-463). Los Angeles: ACM.

Chen, D.-S., Lin, C.-T., & Wang, T.-W. (2003). Non-slicing floorplans with boundary

constrqints using generalized Polish expression. Design Automation Conference

2003. Proceedings of the ASP-DAC 2003, (pp. 342-345).

Chen, J., & Zhu, W. (2010). A hybrid Genetic Algorithm for VLSI Floorplanning.

Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International

Conference on, (pp. 128-132).

Chen, J., Zhu, W., & Ali, M. (2010). A Hybrid Simulated Annealing Algorithm for

Nonslicing VLSI Floorplanning. Systems, Man and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on.

Chen, S., Dong, S., Hong, X., Ma, Y., & Cheng, C. (2006). VLSI Block Placement with

Allignment Constraints. Circuits and System-IIL Express Briefs, IEEE

Transaction on, 622-626.

Chen, T.-C., & Chang, Y.-W. (2006). Modern Floorplanning Based on B*-Tree and

Fast Simulated Annealing. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on.

Debarshi, C., & Manikas, T. W. (2007). A Genetic Algorithm for Non-Slicing Floorplan

Representation. National Conference on Intelligent Systems. Hyderabad.

123

Dhamdhere, S., Zhou, N., & Wang , T.-C. (2002). Modules Placement with Pre-Placed

Modules using the Corner Block List Representation. Circuit and Systems, 2002.

ISCAS 2002. IEEE International Symposium on, (pp. I-349 - I-352).

Drakidis, A., Mack, R. J., & Massara, R. (2006). Packing-based VLSI module

placement using genetic algorithm with sequence-pair representation. Circuits,

Devices and Systems, IEEE Proceedings, 545-551.

Guo, P.-N., Cheng, C.-K., & Yoshimura, T. (1999). An O-tree Representation of Non-

slicing Floorplan and its Applications. Annual ACM IEEE Design Automation

Conference (pp. 268-273). New Orleans: ACM.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence.

Cambridge: MIT Press.

Hong, X., Dong, S., Huang, G., Cai, Y., Cheng, C.-K., & Gu, J. (2004). Corner Block

List Representation and Its Application to Floorplan Optimization. Circuits and

Systems II: Express Briefs, IEEE Transactions on, 228-233.

Hong, X., Huang, G., Cai, Y., Gu, J., Dong, S., Cheng, C.-K., et al. (2000). Corner

block list: and effective and efficient topological representation of non-slicing

floorplan. Computer Aided Design, 2000. ICCAD-2000. IEEE/ACM

International Conference on, (pp. 8-12).

Houck, C. R., Joines, J., & Kay, M. (n.d.). GA source code. Retrieved January 15, 2010,

from GNU General Public License:

http://www.ise.ncsu.edu/mirage/GAToolBos/gaot/gaotindex.html

Jiang, Y.-H., Lai, J., & Wang, T.-C. (2001). Module Placement with Pre-placed

Modules using the B*-Tree Representation. Circuits and Systems, 2001. ISCAS

2001. The 2001 IEEE International Symposium on, vol 5, (pp. 347-350).

124

Kodama, C., & Fujiyoshi, K. (2002). An Efficient Decoding Method of Sequence Pair.

Circuits and Systems, 2002. APCCAS '02. 2002 Asia Pacific Conference on, (pp.

131-136).

Kodama, C., & Fujiyoshi, K. (2003). Selected Sequence-Pair: An Efficient Decodable

Packing Representation in Linear Time using Sequence Pair. Design Automation

Conference, 2003. Proceedings of the ASP-SAC 2003. Asia and South Pacific,

(pp. 331-337).

Lai, M., & Wong, D. (2001). Slicing Tree is a Complete Floorplan Representation.

Design, Automation and Test in Europe 2001. Proceedings, (pp. 228-232).

Lin, C.-T., Chen, D.-S., & Wang, Y.-W. (2002). GPE: A New Representation for VLSI

Floorplan Problem. Computer Design: VLSI in Computers and Processrors,

2002. Proceedings. 2002 IEEE International Congerence on, (pp. 42-44).

Lin, J.-M., & Chang, Y.-W. (2001). TCG: A Transitive Closure Graph-Based

Representation for Non-slicing Floorplans. Design Automation Conference,

2001, Proceedings, (pp. 764 - 769).

Lin, J.-M., & Chang, Y.-W. (2002). TCG-S: orthogonal coupling of P*-admissible

representations for general floorplans. Design Automation Conference, 2002.

Proceedings. 39th, (pp. 842-847).

Lin, J.-M., & Chang, Y.-W. (2004). TCG-S: orthogonal coupling of P*-admissible

representations for general floorplans. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, (pp. 968-980).

Lin, J.-M., & Chang, Y.-W. (2005). TCG: A Transitive Closure Graph-Based

Representation for General Floorplans. IEEE Transaction on Very Large Scale

Integration (VLSI) system, Vol 13, No. 2, (pp. 288-292).

125

Lin, J.-M., Chang, Y.-W., & Lin, S.-P. (2003). Corner sequence - a P-admissible

floorplan representation with a worst case linear-time packing scheme. Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, (pp. 679-686).

Mao, F., Xu, N., & Ma, Y. (2009). Hybrid Algorithm for Floorplanning Using B*-tree

Representation. Interlligent Information Technology Application, 2009. IITA

2009. Third International Symposium on, (pp. 228-231).

Mitchell, M. (1999). An Introduction to Genetic Algorithms. The MIT Press.

Murata, H., Fujiyoshi, K., Nakatake, S., & Kajitani, Y. (1995). Rectangle-Packing-

Based Module Placement. Computer-Aided Design, 1995. ICCAD-95. Digest of

Technical Papers., 1995 IEEE/ACM International Conference on, (pp. 472-

479).

Nakatake, S., Fujiyoshi, K., Murata, H., & Kajiyana, Y. (1996). Module Placement on

BSG-Structure and IC Layout Applications. Computer-Aided Design, 1996.

ICCAD-96. Digest of Technical Papers., 1996 IEEE/ACM International

Conference, (pp. 484-491).

Nakaya, S., Koide, T., & Wakabayashi, S. (2000). An Adaptive Genetic Algorithm For

VLSI Floorplanning Based on Sequence-Pair. Circuits and Systems, 2000.

ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, (pp. 65-68).

Ninomiya, H., Numayama, K., & Asai, H. (2006). Two-staged Tabu Search for

Floorplan Porblem Using O-Tree Representation. Evolutionary Computation

2006. CEC 2006. IEEE Congress on, (pp. 718-724).

Rubinstein, R. Y., & Kroese, D. P. (2004). The Cross-Entropy Method: A unified

approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine

Learning. New York: Springer Science + Business Media, Inc.

Rubinstein, R. Y., & Kroese, D. P. (2008). Simulation and the monte carlo method.

New Jersey: John Wiley & Sons, inc.

126

Sait, S. M., & Youssef, H. (1999). VLSI Physical Design Automation: Theory and

Practice. Singapore: World Scientific Publishing Co. Pte. Ltd.

Sherwani, Naveed A. (2002). Algorithms for VLSI Physical Design Automation.

Dordrecht: Kluwer Academic Publishers.

Sitzmann, I., & Stuckey, P. (2000). O-Trees: a Constraint-based Index Structure.

Database Conference, 2000. ADC 2000 Proceedings, 11th Australasian, (pp.

127-134).

Sun, T.-Y., Hsieh, S.-T., Wang, H.-M., & Lin, C.-W. (2006). Floorplanning based on

particle swarm optimization. Emerging VLSI Technologies and Architectures,

2006. IEEE COmputer Society Annual Symposium on.

Takahashi, T., Guo, P., Cheng, C., & Yoshimura, T. (2003). Floorplanning Using a Tree

Representation: A Summary. Circuit and Systems Magazine, IEEE, 26-29.

Tang, X., Tian, T., & Wong, D. (2001). Fast evaluation of sequence pair in block

placement by longest common subsequence computation. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, 1406-1413.

Wong, D. F., & Liu, C. L. (1986). A New Algorithm For Floorplan Design. In

Procceding ACM Design Automation Conference, (pp. 101-107).

Wu, M.-C., & Chang, Y.-W. (2004). Placement with Alignment and Performance

Constraints Using the B*-tree Representation. Computer Design: VLSI in

Computers and Processors, 2004. Proceeding. IEEE International Conference

on, (pp. 568-571).

Xu, N., & Li, L. (2008). Hybrid Algorithm for Non-slicing Floorplans Optimization.

IEEE.

Yan, T., Li, J., Yang, B., & Yu, J. (2004). A Modified O-Tree Based Packing Algorithm

and its Applications. Communications, Circuits and Systems, 2004. ICCCAS

2004. 2004 International Conference on, (pp. 1266-1270).

127

Young, F., Wong, D., & Yang, H. (1999). Slicing Floorplan with Boundary Constraints.

IEEE Transaction on Computer-Aided Design of Integrated Circuits and

Systems, Vol 18, No 9, 1385-1389.

Zhou, H., & Wang, J. (2004). ACG-adjacent constraint graph for general floorplans.

Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004.

Proceedings. IEEE Conference On, (pp. 572-575).

128

APPENDIX A

Matlab code for Genetic Algorithm function:

function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,termOps,termFN,mutFNs,mutOps,xOverFNs,xOverOps,...
 xOverFNsO,xOverOpsO,mutFNsO,mutOpsO,selectFN,selectOps,...
 evalOps)

n=nargin;
if n<2
 disp('Insufficient arguements')
end

 epsilon = 1e-6; %Threshold for two fittness to differ
 e1str=['[c1(1:var) c1(xZomeLength)]=' evalFN '(c1(1:var),numVars ,[gen evalOps]);'];
 e2str=['[c2(1:var) c2(xZomeLength)]=' evalFN '(c2(1:var),numVars ,[gen evalOps]);'];
% termOps=[100];
% termFN=['maxGenTerm'];
% mutFNs=['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'];
% mutOps=[4 0 0;4 termOps(1) 3;4 termOps(1) 3;4 0 0];
% xOverFNs=['arithXover heuristicXover simpleXover'];
% xOverOps=[2 0;2 3;2 0];
% xOverFNsO = ['cyclicXover linerorderXover singleptXover '...
% 'orderbasedXover partmapXover uniformXover'];
% xOverOpsO = [2;2;2;2;2;2;2];
% mutFNsO = ['inversionMutation adjswapMutation shiftMutation swapMutation threeswapMutation'];
% mutOpsO = [2;2;2;2;2];
% selectFN=['normGeomSelect'];
% selectOps=[0.08];
% termOps=[100];
% termFN='maxGenTerm';
% evalOps = [0 150];

% if isempty(startPop) %Generate a population at random
 %startPop=zeros(80,size(bounds,1)+1);
 startPop=initializegenone(evalOps,bounds,evalFN);
% end

 xOverFNs=parse(xOverFNs);
 mutFNs=parse(mutFNs);
 xOverFNsO=parse(xOverFNsO);
 mutFNsO=parse(mutFNsO);

xZomeLength = size(startPop,2); %Length of the xzome=numVars+fittness
var = xZomeLength-1; %Number of variables\
numVars = bounds;
variable = var/3;
var1 = variable; %Block Number
var2 = 2*variable; %relative block number
var3 = 3*variable; %position of block
popSize = size(startPop,1); %Number of individuals in the pop
endPop = zeros(popSize,xZomeLength); %A secondary population matrix
c1 = zeros(1,xZomeLength); %An individual
c2 = zeros(1,xZomeLength); %An individual
numXOvers = size(xOverFNs,1); %Number of Crossover operators
numMuts = size(mutFNs,1); %Number of Mutation operators
numXOversO = size(xOverFNsO,1); %Number of Crossover operators order based
numMutsO = size(mutFNsO,1); %Number of Mutation operators order based
oval = max(startPop(:,xZomeLength)); %Best value in start pop
bFoundIn = 1; %Number of times best has changed
done = 0; %Done with simulated evolution
gen = 1; %Current Generation Number

129

collectTrace = (nargout>3); %Should we collect info every gen
% floatGA = opts(2)==1; %Probabilistic application of ops
% display = opts(3); %Display progress

while(~done)
 %Elitist Model
 [bval,bindx] = max(startPop(:,xZomeLength)); %Best of current pop
 best = startPop(bindx,:);

 if collectTrace
 traceInfo(gen,1)=gen; %current generation
 traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness
 traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness
 traceInfo(gen,4)=std(startPop(:,xZomeLength));
 end

 if ((abs(bval - oval)>epsilon) | (gen==1)) %If we have a new best sol
 fprintf(1,'\n%d %f\n',gen,bval) %Update the display
 bPop(bFoundIn,:)=[gen startPop(bindx,:)]; %Update bPop Matrix
 bFoundIn=bFoundIn+1; %Update number of changes
 oval=bval; %Update the best val
 else
 fprintf(1,'%d ',gen) %Otherwise just update num gen
 end

 endPop = feval(selectFN,startPop,[gen selectOps]); %Select

%for block number crossover
 for i = 1:numXOversO,
 for j = 1:xOverOpsO(i,1),
 a = round(rand*(popSize-1)+1); %Pick a parent
 b = round(rand*(popSize-1)+1); %Pick another parent
 xN=deblank(xOverFNsO(i,:)); %Get the name of crossover function
 p1 = [endPop(a,1:var1),endPop(a,xZomeLength)];
 p2 = [endPop(b,1:var1),endPop(b,xZomeLength)];
 [C1 C2] = feval(xN,p1,p2,bounds,[gen xOverOpsO(i,:)]);
 c1(1:var1) = C1(1:variable);
 c1(var1+1:var3) = endPop(a,var1+1:var3);
 c2(1:var1) = C2(1:variable);
 c2(var1+1:var3) = endPop(b,var1+1:var3);

 if c1(1:var)==endPop(a,(1:var))
 c1(xZomeLength)=endPop(a,xZomeLength);
 elseif c1(1:var)==endPop(b,(1:var))
 c1(xZomeLength)=endPop(b,xZomeLength);
 else
 eval(e1str);
 end
 if c2(1:var)==endPop(a,(1:var))
 c2(xZomeLength)=endPop(a,xZomeLength);
 elseif c2(1:var)==endPop(b,(1:var))
 c2(xZomeLength)=endPop(b,xZomeLength);
 else
 eval(e2str);
 end
 end
 endPop(a,:)=c1;
 endPop(b,:)=c2;
 end

% for relative block crossover
 for i=1:numXOvers,
 for j=1:xOverOps(i,1),
 a = round(rand*(popSize-1)+1); %Pick a parent

130

 b = round(rand*(popSize-1)+1); %Pick another parent
 xN=deblank(xOverFNs(i,:)); %Get the name of crossover function
 p1 = [endPop(a,var1+1:var2),endPop(a,xZomeLength)];
 p2 = [endPop(b,var1+1:var2),endPop(b,xZomeLength)];
 [C1 C2] = feval(xN,p1,p2,bounds,[gen xOverOps(i,:)]);
 c1(var1+1:var2) = round(C1(1:variable));
 c1(1:var1) = endPop(a,1:var1);
 c1(var2+1:var3) = endPop(a,var2+1:var3);
 c2(var1+1:var2) = round(C2(1:variable));
 c2(1:var1) = endPop(a,1:var1);
 c2(var2+1:var3) = endPop(a,var2+1:var3);

 if c1(1:var)==endPop(a,(1:var)) %Make sure we created a new
 c1(xZomeLength)=endPop(a,xZomeLength); %solution before evaluating
 elseif c1(1:var)==endPop(b,(1:var))
 c1(xZomeLength)=endPop(b,xZomeLength);
 else
 %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]);
 eval(e1str);
 end
 if c2(1:var)==endPop(a,(1:var))
 c2(xZomeLength)=endPop(a,xZomeLength);
 elseif c2(1:var)==endPop(b,(1:var))
 c2(xZomeLength)=endPop(b,xZomeLength);
 else
 %[c2(xZomeLength) c2] = feval(evalFN,c2,[gen evalOps]);
 eval(e2str);
 end

 endPop(a,:)=c1;
 endPop(b,:)=c2;
 end
 end

 % for position crossover
 for i=1:numXOvers,
 for j=1:xOverOps(i,1),
 a = round(rand*(popSize-1)+1); %Pick a parent
 b = round(rand*(popSize-1)+1); %Pick another parent
 xN=deblank(xOverFNs(i,:)); %Get the name of crossover function
 p1 = [endPop(a,var2+1:var3),endPop(a,xZomeLength)];
 p2 = [endPop(b,var2+1:var3),endPop(b,xZomeLength)];
 [C1 C2] = feval(xN,p1,p2,4,[gen xOverOps(i,:)]);
 c1(var2+1:var3) = round(C1(1:variable));
 c1(1:var1) = endPop(a,1:var1);
 c1(var1+1:var2) = endPop(a,var1+1:var2);
 c2(var2+1:var3) = round(C2(1:variable));
 c2(1:var1) = endPop(a,1:var1);
 c2(var1+1:var2) = endPop(a,var1+1:var2);

 if c1(1:var)==endPop(a,(1:var)) %Make sure we created a new
 c1(xZomeLength)=endPop(a,xZomeLength); %solution before evaluating
 elseif c1(1:var)==endPop(b,(1:var))
 c1(xZomeLength)=endPop(b,xZomeLength);
 else
 %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]);
 eval(e1str);
 end
 if c2(1:var)==endPop(a,(1:var))
 c2(xZomeLength)=endPop(a,xZomeLength);
 elseif c2(1:var)==endPop(b,(1:var))
 c2(xZomeLength)=endPop(b,xZomeLength);
 else
 %[c2(xZomeLength) c2] = feval(evalFN,c2,[gen evalOps]);
 eval(e2str);
 end

131

 endPop(a,:)=c1;
 endPop(b,:)=c2;
 end
 end

 %for block number mutation
 for i = 1:numMutsO,
 for j = 1:mutOpsO(i,1),
 a = round(rand*(popSize-1)+1); %Pick a parent
 xN=deblank(mutFNsO(i,:)); %Get the name of crossover function
 p1 = [endPop(a,1:var1),endPop(a,xZomeLength)];
 C1 = feval(xN,p1,bounds,[gen mutOpsO(i,:)]);
 c1(1:var1) = C1(1:variable);
 c1(var1+1:var3) = endPop(a,var1+1:var3);
 if c1(1:var)==endPop(a,(1:var))
 c1(xZomeLength)=endPop(a,xZomeLength);
 else
 eval(e1str);
 end
 end
 endPop(a,:)=c1;
 end

 %for relative block mutation
 for i=1:numMuts,
 for j=1:mutOps(i,1),
 a = round(rand*(popSize-1)+1);
 p1 = [endPop(a,var1+1:var2),endPop(a,xZomeLength)];
 c1 = feval(deblank(mutFNs(i,:)),p1,bounds,[gen mutOps(i,:)]);
 c1 = round(c1(1:variable));
 c1 = [endPop(a,(1:var1)), c1,endPop(a,(var2+1:var3))];
 if c1(1:var)==endPop(a,(1:var));
 c1(xZomeLength)=endPop(a,xZomeLength);
 else
 %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]);
 eval(e1str);
 end
 endPop(a,:)=c1;
 end
 end

% end

%for blocks position
 for i=1:numMuts,
 for j=1:mutOps(i,1),
 a = round(rand*(popSize-1)+1);
 p1 = [endPop(a,var2+1:var3),endPop(a,xZomeLength)];
 c1 = feval(deblank(mutFNs(i,:)),p1,4,[gen mutOps(i,:)]);
 c1 = round(c1(1:variable));
 c1 = [endPop(a,(1:var2)), c1];
 if c1(1:var)==endPop(a,(1:var))
 c1(xZomeLength)=endPop(a,xZomeLength);
 else
 %[c1(xZomeLength) c1] = feval(evalFN,c1,[gen evalOps]);
 eval(e1str);
 end
 endPop(a,:)=c1;
 end
 end

 gen=gen+1

132

 done=feval(termFN,[gen termOps],bPop,endPop); %See if the ga is done
 startPop=endPop; %Swap the populations

 [~,bindx] = min(startPop(:,xZomeLength)); %Keep the best solution
 startPop(bindx,:) = best; %replace it with the worst
end

[bval,bindx] = max(startPop(:,xZomeLength));
fprintf(1,'\n%d %f\n',gen,bval);

 x=startPop(bindx,:);
 x(1:var)
 [~,~,xframe,yframe]=fitness(x(1:var),variable)
 plotgraph(xframe,yframe,bounds)
 bPop(bFoundIn,:)=[gen startPop(bindx,:)];
 traceInfo(gen,1)=gen; %current generation
 traceInfo(gen,2)=startPop(bindx,xZomeLength); %Best fittness
 traceInfo(gen,3)=mean(startPop(:,xZomeLength)); %Avg fittness

%% ---------------Initialize first generation----------------------------%%
function pop = initializegenone(option,bounds,evalFN)

% option = [gen num_pop num_blocks]
%evalFN is fitness for this project
 num = option(2);
 numVars = bounds;
 xZomeLength = 3*numVars+1; %Length of string is numVar + fit
 var = xZomeLength - 1;
 estr=['[pop(i,1:var) pop(i,xZomeLength) xframe yframe]=' evalFN '(pop(i,1:var),numVars)'];
 pop= zeros(num,xZomeLength);

 for i = 1:num
 pop(i,1:3*numVars)=[randperm(numVars) (round(rand(1,numVars)*(numVars-1))+1)
(round(rand(1,numVars)*3)+1)];
 eval(estr)
 pause
 end

%% --------------- Fitness----------------------%%
function [string1,fit,xframe,yframe] = fitness(string,numVars,option)

string1 = string;
String = reshape(string,numVars,3);
[dead_space,xframe,yframe]=dot_model(String);
fit = -dead_space;

%% ------------

133

APPENDIX B

Matlab code for Cross Entropy Method:

function [sol1,bestdead_space,store_result,P] = crossentropy(filename,setmod)
t = 1;
% comp_num(1:n) = 1:n;
NoI = nargin;
if NoI < 2
 [comp_num,ModDim,prop]=read_yal(filename);
else
 [comp_num,ModDim] = modprop(setmod);
end
n = comp_num;
% comp_num(1:n) = 1:n;
P = ones(n,n,4)*1/(4*n);
N = 4000;
X = zeros(N,n);
Y = zeros(N,n);
rho = 0.075;
Q_tile = round(rho*N);
Pt_hat_previous = P;
alpha = 0.75;
gamma_previous = 1000;
store_result = 100;

while (t < 5)

 for a = 1:N
clf
 [X(a,:) , Y(a,:)] = nodeplacement(P);
 state = zeros(n,1);
 phi = zeros(n,1);
 for b = 1:n
 Y_rep = Y(a,b);
 if Y_rep == 1
 state(b) = 0;
 phi(b) = 0;
 elseif Y_rep == 2
 state(b) = 0;
 phi(b) = 1;
 elseif Y_rep == 3
 state(b) = 1;
 phi(b) = 0;
 elseif Y_rep == 4
 state(b) =1;
 phi(b) = 1;
 else
 display('error in calculation')
 t = 10;
 end
 end
 X_rep = X(a,:)';
 sol = [X_rep state phi];
 [xy_ctr rtt] = Decodestack(sol,ModDim);
 dead_space(a,1) = deadspace_cal(xy_ctr,rtt,ModDim);

 end
 [deadarea,idex] = sort(dead_space);
 areaknown = deadarea(1:Q_tile);
 gamma = deadarea(Q_tile);
 bestdead_space = deadarea(1);
 if gamma <= (gamma_previous+0.05)|| bestdead_space < previous_deadspace

134

 bestmodseq = X(idex(1),:)';
 bestposphi = Y(idex(1),:);
 state1 = zeros(n,1);
 phi1 = zeros(n,1);
 for c = 1:n
 Y_rep = bestposphi(c);
 if Y_rep == 1
 state1(c) = 0;
 phi1(c) = 0;
 elseif Y_rep == 2
 state1(c) = 0;
 phi1(c) = 1;
 elseif Y_rep == 3
 state1(c) = 1;
 phi1(c) = 0;
 elseif Y_rep == 4
 state1(c) =1;
 phi1(c) = 1;
 else
 display('error in calculation')
 t = 10;
 end
 end
 sol1 = [bestmodseq state1 phi1]
 [xy_ctr rtt] = Decodestack(sol1,ModDim);
 bestdead_space = deadarea(1)
 LcornerLayout(xy_ctr,rtt,ModDim,bestdead_space);

 Pt_hat = zeros(n,n,4);
 Is_sum =0;
 for j = 1:Q_tile
 X_sequence = X(idex(j),:);
 Y_sequence = Y(idex(j),:);
 Pt = zeros(n,n,4);

 for i = 1:n
 Pty = X_sequence(i);
 Ptx = i;
 Ptz = Y_sequence(i);
 Pt(Ptx,Pty,Ptz) = 1;
 end
 S = deadarea(j);
 if S <= gamma
 Is = 1;
 else
 Is = 0;
 end
 Pt_hat = Pt*Is + Pt_hat;
 Is_sum = Is + Is_sum;
 end

 Pt_hat = Pt_hat/Is_sum;
 Pt_hat = alpha*Pt_hat + (1-alpha)*Pt_hat_previous;
 Pt_hat_previous = Pt_hat;
 P = Pt_hat;
 if gamma == gamma_previous
 t = t+1;
 else
 t = 1;
 end

 gamma_previous = gamma;

 if bestdead_space < store_result
 store_result = bestdead_space;

135

 str = date;
 img = getframe(gcf);
 imwrite(img.cdata, ['D:\Angel\CELcorner_result\' str filename num2str(store_result) '.jpg']);
 pause(0.5);
 sol_final = sol1;
 [xy_ctr rtt] = Decodestack(sol_final,ModDim);
 ID = sol_final(:,1)';
 Frame = getframeshape(xy_ctr,rtt,ModDim);
 end

 previous_deadspace = bestdead_space;
 end

end
% [Compacted_Percent]=SimpleShift(Frame,ID,comp_num,ModDim)

136

APPENDIX C

Matlab Code for Random Data Generation based on Node Placement:

function [x, y] = nodeplacement(P)

 [n,m,p] = size(P);
 i = 1;
 t = 0;
 b = zeros(1,n);

while (t <n)
 U = rand;
 R = 0;
 Q = 0;
 S = rand;

 for j = 1:n
 for k = 1:p
 R = U*(1 - b(j))*P(i,j,k) + R; %add row
 end
 end

 sum1 = 0;
 j = 0;
 k = 1;
 while (sum1 <=R)
 j = j+1;
 if j > n
 k = k+1;
 j = 1;
 end
 if b(j) == 0
 sum1 = sum1 + P(i,j,k);
 end
 end

 P(:,j,:) = 0;

 for l = 1:n
 if sum(P(l,:)) ~= 0
 P(l,:) = P(l,:)/sum(P(l,:));
 end
 end

 t = t+1;
 i = i+1;
 x(t) = j;
 y(t) = k;
 b(j) = 1;

 end

