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ABSTRACT 

Due to global energy demand, offshore industries are moving towards deep and ultra-

deep waters for oil and gas exploration in ocean environment. Floating offshore 

structures such as spar platform is considered to be the most economic and suitable 

offshore structure in deep water regions. During oil and gas exploration, floating 

offshore structures may sometimes be affected by critical environmental forces. Quick 

decision must be taken either to continue or to stop production, on the basis of response 

prediction of offshore structures under forecasted environmental conditions. Finite 

Element Method (FEM) is an important technique to predict the response of offshore 

structures considering all nonlinearities. However, FEM is a highly time-consuming 

process for predicting the response of platforms and usually used as a final analysis tool. 

On the other hand, Artificial Neural Networks (ANN) can predict response in rapid 

mode. ANNs are also capable of providing efficient solutions to problems such as 

damage detection, time series prediction and control where formal analysis is highly 

complex. 

This study presents nonlinear response prediction of spar platform for various 

environmental forces using ANN. The neural network has three layers, namely the 

input, output, and hidden layer. A hyperbolic tangent function is considered in the 

present study as an activation function. Environmental forces and structural parameters 

are used as inputs and FEM-based time history of spar platform responses are used as 

targets. Feed-forward neural networks with back-propagation algorithm are used to train 

the network. After training the network, the response of the spar platform is obtained 

promptly for newly selected environmental forces. 
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The response obtained using ANN is validated by conventional FEM analysis. It has 

been observed that using completely new environmental forces as input to ANN, the 

time history response of spar platform can be very accurately predicted. Results show 

that the ANN approach is very efficient and significantly reduces the time for predicting 

response time histories. 
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ABSTRAK 

Memandangkan permintaan untuk sumber tenaga dunia semakin meningkat, industri di 

luar rantau telah menuju kearah menyelami dasar laut pada peringkat yang lebih 

mendalam untuk tujuan carigali minyak dan gas dalam persekitaran laut. Struktur-

struktur apungan di luar rantau yang seperti pelantar terapung (spar platform) dikatakan 

sebagai struktur luar rantau laut dalam yang paling ekonomik dan sesuai. Semasa 

mengkaji carigali minyak, pelantar apungan rantau jauh kadangkala boleh mengalami 

gangguan alam sekitar. Keputusan yang cepat harus dibuat samada untuk berhenti atau 

menyambung pengeluaran, berdasarkan tindakbalas struktur apungan tersebut di bawah 

keadaan persekitaran yang diramal. Kaedah Elemen Kecilan atau lebih dikenali dengan 

nama kacdah unsur terhingga adalah suatu teknik yang digunakan untuk meramal 

tindakbalas struktur rantau jauh tersebut, dengan mengambil kira semua ketidaklinearan 

data yang diperoleh. Walaupun begitu, FEM adalah kaedah yang mengambil masa yang 

lama untuk menjalankan perkiraan tersebut. Tetapi, Jaringan Saraf Buatan atau lebih 

dikenali dengan nama “Artificial Neural Networks” (ANN) boleh digunakan pada kadar 

yang lebih cepat. ANN juga boleh digunakan untuk menyelesaikan permasalahan 

sekitar pengesanan kerosakan, ramalan siri masa dan system kawalan dimana teknik 

analisa yang formal adalah terlalu rumit. 

Kajian ini mempersembahkan ramalan ketidaklinearan tindakbalas terhadap medan 

pelantar yang disebabkan oleh alam sekitar menggunakan ANN. Rangkaian saraf buatan 

(ANN) akan mempunyai tiga peringkat, iaitu peringkat kemasukan (input), keluaran 

(output) dan peringkat yang tersirat. Fungsi tangen hiperbolaan telah dipilih untuk 

kajian ini sebagai fungsi pembukaan. Kesan persekitaran dan parameter struktur 

digunakan sebagai input dan latarbelakang masa FEM medan pelantat tersebut 

digunakan sebagai sasaran. Algoritma rangkaian saraf suap depan digunakan dengan 
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teknik penyebaran songsang digunakan untuk melatih rangkaian ini. Selepas selesainya 

latihan ini, rangkaian tindakbalas medan pelantar ini diperoleh untuk sebarang daya 

persekitaran. 

Tindakbalas yang diperoleh dengan ANN ini disahkan dengan analisa FEM yang 

konvensional. Penggunaan daya persekitaran sebagai sebahagian daripada input 

pembolehubah kepada ANN tersebut telah berjaya menunjukkan bahawa tindakbalas 

berkalaan medan pelantar tersebut boleh diramal dengan tahap kepersisan yang tinggi. 

Kajian ini menunjukkan bahawa kaedah ANN ini adalah kaedah yang mempunyai tahap 

kecekapan yang tinggi dan mengambil masa yang lebih singkat untuk memperoleh 

tindakbalas masa. 
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CHAPTER 1.0 INTRODUCTION 

 

1.1 Background 

Offshore structures provide great possibilities for the development and utilization of 

oceanic resources and energy. These structures are usually subjected to more severe 

load conditions than those on the land. There are two types of offshore structures on the 

basis of mobility, such as: fixed offshore structure and compliant floating offshore 

structures. Fixed types (jacket and gravity platforms) of offshore structures are 

economically viable for shallow-water region. The use of fixed platforms in deep water 

(approximately > 300 m) is hindered by technical difficulties coupled with economic 

factors that grow dramatically with increased water depth. On the other hand, compliant 

floating structures (e. g. spar platforms, tension leg platforms, etc.) provide economic 

solution for deep-and ultra-deep water exploration and production facilities (Ng et al., 

2010). In any case, floating offshore structures are extensively affected by the 

uncertainties associated with steep nonlinear waves, currents, and wind leading to 

springing and ringing of Tension Leg Platforms (TLPs), slow drift yaw motion of 

Floating Production, Storage and Offloading (FPSOs), as well as large oscillations of 

spar platforms as a result of vortex shedding (Kim, 2008).  

Analyses of floating offshore structures, like spar platforms, considering environmental 

loads are complex due to various nonlinearities such as geometric, variable 

submergence, varying pretention, etc. Finite Element Method (FEM) is an important 

technique to cope with this kind of analysis. A number of studies have recently been 

performed in order to predict response of spar platforms with different types of 

conventional methods (Liu et al., 2011; Montasir et al., 2008; Prislin et al., 2001; Steen 
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et al., 2004). However response analyses of spar platforms by these methods are very 

complicated and time-consuming process. 

Artificial neural networks (ANNs) are very sophisticated modeling techniques capable 

of providing extremely rapid and efficient solution modes where formal analyses are 

highly complex. ANNs are conducive to manage problems related to offshore 

engineering for damage detection, time series prediction, and controlling in cases where 

formal analysis is time consuming or unfeasible. Therefore, Simoes et al. (2002) 

developed a neural network for prediction of mooring forces and analysis of the 

dynamic behaviour of FPSO and a shuttle ship in tandem configuration. This approach 

was suitable for preventing collisions of the ships and maintenance of mooring line. For 

prediction of extreme excursion and mooring force of FPSO over an N-year life period, 

response-based hydrodynamic models (SAMRES) have been proposed by Mazaheri et 

al. (2006; 2005). They calculated responses of a floating offshore platform subjected to 

arbitrary wind, wave, and current loads. Hybrid ANN–FEM approach has been adopted 

by Guarize et al. (2007) for long time history response prediction of FPSO, for random 

dynamic response of mooring lines and risers. Pina et al. (2010) developed a model with 

application of surrogate models, on the basis of ANN, to predict response of offshore 

structures; replacing dynamic analyses with FEM. For the testing model, they used 

mooring line tension of FPSO, and results have shown that ANNs are very efficient in 

predicting responses accurately and in considerably less time. Moghim et al. (2007); 

Shafiefar et al. (2011); Shafiefar and Moghim (2005); Zhou and Luan (2009) used 

ANNs to predict hydrodynamic forces, generated by waves, and current forces on 

slender cylinders.  

This study presents nonlinear response prediction of spar platform under environmental 

forces like wave height and wave period using ANN. It has been observed that using 
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completely new environmental forces as inputs to ANN, the time history response of 

spar platform can be very accurately predicted. Results show that the ANN approach is 

very efficient and significantly reduces the time for predicting response time histories. 

 

1.2 Malaysian Offshore Structures 

In the year 1957, the first offshore platform was installed in Malaysia both off Sabah 

and Sarawak for the purpose of oil and gas exploration, but it was not momentous. 

Following this, in 1960, massive explorations were started around Temana, offshore of 

Bintulu (Chai, 2005). Today, the total number of offshore platforms in the waters of 

Malaysia is 200. The Malaysian government is focused on efforts to enhance output 

from existing oil and gas explorations and developing new fields in deep-water areas. 

For this reason, oil and gas explorations by industries have been extended to the deep 

water regions. The first deep water floating offshore structure spar platform was 

installed in 1330 m of water at Kikeh field, near Sabah in 2007 (Tuhaijan et al., 2011).  

Malaysian acreage of oil and gas comprises 494,183 km
2
, including 337,167 km

2
 in the 

offshore continental shelf area, and 63,968 km
2
 in deep-waters. The acreage is divided 

into 54 blocks, among them 28 blocks (a total of 205,500 km
2
) are presently operated by 

Petronas and other seven offshore oil companies (Razalli, 2005). Nearly all of 

Malaysia's oil comes from offshore fields. The sedimentary basins of Malaysia are a 

great resource of energy beneath the seabed (EIA, 2011). Most of the country's oil 

reserves are to be found in the Malay basin and tend to be of high quality.  

 

1.3 Problem Statement 

Spar platform is a modern floating offshore platform for oil and gas exploration in deep 

sea. It has a huge potential in future and is expected to greatly encourage operations in 
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deep sea explorations. During oil and gas exploration, spar platforms may sometimes be 

affected by critical environmental forces like extreme storm, cyclone etc. Considering 

safety of life, quick decisions must be taken either to continue or to stop production, 

based on the response predictions for the offshore structure under forecasted 

environmental conditions. Meteorological department usually forecasts wind forces not 

waves. The prediction of wave height and wave period from forecasted wind forces can 

be used in FEM and ANN. Response analysis of spar platform by FEM is very 

complicated and time-consuming process. To this end, this study presents response 

prediction of spar platform applying ANNs that can predict response under critical 

circumstances very fast. Methodical response prediction through factual analysis is 

required for the development of better and safer construction guidelines for spar 

platform. This study also emphasizes the need for extensive study on the response 

prediction model of spar platforms using ANN. 

 

1.4 Research Objective 

1. To create a neural network for predicting wave height and wave period using 

wind speed in Malaysian sea.  

2. To carry out nonlinear finite element analysis of spar platform. 

3. To generate a Resp-Pred approach adopting ANN for predicting the response of 

spar platform under wave loads. 

4. To predict maximum mooring tension response of spar platform subjected to 

several sea states using ANN.  

5. To generate hybrid FEM-ANN based time-domain nonlinear dynamic network 

for predicting long time history response using short time history response of 

spar platform.  
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1.5 Scope of Study 

The scope of this study is focused on the response prediction of spar platform under 

environmental loading conditions. This study is carried out to predict the extreme 

condition of the ocean environments based on the met-ocean data obtained from 

Malaysian waters.  

A finite element model is used to implement the fully coupled integrated spar platform. 

The analysis of spar platform, considering actual physical coupling between the rigid 

vertical floating hull and mooring lines is carried out using FEM. In actual field 

problems hydrodynamic loads due to wave height, wave period, and current are 

operated simultaneously on spar platform and mooring lines. This model can handle 

such nonlinearities, loading, and boundary conditions associated with these extreme 

situations. The finite element code ABAQUS/AQUA is used to obtain the response of 

the spar platform.  

Environmental forces and structural parameters are used as inputs and FEM-based time 

history of spar platform responses are used as targets in ANN for training the network. 

This study is also carried out in the non-linear dynamic, time domain analysis by taking 

into account ANN in MATLAB toolbox. The network consists of a Multilayer 

Perceptron which takes input of past input and output values and computes the current 

output. The resulting network has purely feed-forward architecture, and static back-

propagation can be used for training.  
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1.6 Outline of the Thesis 

Chapter 1 provides a brief background and discusses Malaysian offshore structure, 

objectives of present study, scope of work, and the problem statement. 

Chapter 2 presents different types of offshore structures and technical description of 

spar platform. Theoretical approaches related to the Artificial Neural Network (ANN) 

are also briefly introduced in this chapter. A detail literature review of the existing 

research works as well as identification of research gaps related to the current work are 

described in this chapter.  

Chapter 3 describes the Finite Element Method related to the spar platform. This 

chapter is concerned with describing and developing methods of ANN approach for 

predicting environmental forces and response of spar platform. 

Chapter 4 reports the results and discussion of the study, the response prediction of 

spar platform by Finite Element Method (FEM) and ANN. FEM results and ANN 

predicted results are also compared in this chapter. 

Chapter 5 presents the conclusions and recommendations for future works.  
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CHAPTER 2.0 LITERATURE REVIEW 

 

2.1 Introduction  

In 1947, the first offshore platform was installed in 6m depth of water off the coast of 

Lousiana. Due to global energy demands, offshore industries are moving towards deep 

and ultra-deep waters. Several types of offshore structures have been installed for oil 

and gas extraction in ocean environment. Currently, approximately 7000 offshore 

structures are established across the world in water depths of up to 2000m (King, 2012). 

The selection of offshore structure depends on the purpose (drilling, production, utility 

etc.), the lateral and vertica1 loads which are influenced by the environmental forces 

(wind, wave, current, earthquake etc.), the water depth, and the lateral and vertical 

resistance of the fluid-structure-soil system (restoring forces, soil resistance) (DNV, 

1996).  

An extensive background and literature review has been presented to justify the research 

gaps found for the research work in this thesis. The significance of this research as well 

as the literature review on the response of ANN found in existing researches is analyzed 

briefly in this chapter. 

 

2.2 Typical Offshore Structures 

Offshore structures can be broadly divided into two groups; e.g. fixed and floating 

structures. Oil and gas extraction offshore structures have been divided into following 

categories on the basis of mobility. 
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              Figure 2.1: Fixed offshore platform (MOG, 2010)  

2.2.1 Fixed Offshore Structures  

Fixed offshore structures are the most popular offshore structures for drilling and 

production of oil and gas in ocean environment. It is suitable in shallow water as it is 

extended to the seabed. It is economical for a water depth up to 400 m (King, 2012), and 

generally have good performance in harsh oceanic environment. Usually fixed offshore 

structure poses high stiffness and experiences relatively small displacement. 

 

2.2.1.1 Steel Jacket Platform 

The jacket or template structures are the most common type of fixed offshore structures 

used in offshore industry today (Figure 2.1). Around the world, about 95% offshore 

structures have installed jacket support (Twomey, 2010). Fixed jacket platform is a 

space truss consisting of tubular steel members with a deck and fastened to the seabed 

with piles driven through the legs. The number of legs vary from 4 to 16 and are 

stiffened by bracings that carry the horizontal forces (Chai, 2005). Topsides and 

environmental loads are transferred to the foundation through the legs. Some platforms 

may contain enlarged legs to provide self-buoyancy during installation.  
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             Figure 2.2: Concrete gravity structure (MOG, 2010) 

 

2.2.1.2 Concrete Gravity Structure 

Gravity platform is usually constructed where pile driving is difficult due to hard soil 

conditions. It is kept in position by its own weight against the large lateral loads from 

wind, waves, and currents; it is usually made of reinforced concrete. Usually gravity 

platforms contain a large base which has the capacity for significant oil storage and 

which supports a few columns to house the deck as shown in Figure 2.2. Concrete 

gravity platforms have been constructed in water depths as much as 350m (Nallayarasu, 

2009). 

 

 

 

 

 

 

 

 

 

 

2.2.1.3 Compliant Tower 

Compliant towers are relatively slender, flexible framed structures and are supported by 

piled foundations. They have conventional deck for drilling and production operations. 

Unlike the fixed platform, the compliant tower (Figure 2.3) survives large lateral forces 
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         Figure 2.3: Compliant tower (MOG, 2010) 

 

by tolerating significant lateral defections, and is usually used in water depths up to 

approximately 914 m (Weggel, 1997). It involves high financial risk and cannot be 

relocated due to its heavy and expensive structure.  

 

 

 

 

 

 

 

 

 

2.2.2 Floating Offshore Structures 

With the preference for increased water depths in oil and gas exploration, fixed offshore 

structures are becoming uneconomical and unstable. Floating offshore structures are 

most suitable for deep and ultra-deep water oil and gas exploration. These structures are 

usually anchored to the sea-bed with wires, chains, or cables, so that, the anchoring 

system provides the necessary restoring forces. Wang et al. (2011) introduced an 

efficient approach for choosing floating platforms for specific oil/gas field in deep-

water floating platforms all around the world (including Spar, TLP, SEMI and FPSO) 

using ANN.  
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Figure 2.4: Semi-submersible offshore platform (Blushoes, 2010) 

2.2.2.1 Semi-submersible  

Semi-submersible platforms contain hulls (column and pontoons) which have sufficient 

buoyancy to help the structure to float (Figure 2.4). These platforms are generally 

anchored by combinations of cable and tendon during drilling or production operations 

to keep it in place by the use of dynamic positioning (Sadeghi, 2007). These platforms 

can be moved from place to place. Semi-submersibles can be used in water depths from 

60 m to 3,000 m (Marshall, 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2.2 Tension Leg Platform 

A Tension-leg platform (TLP) is a vertically moored floating structure usually used for 

oil, gas extraction and wind turbines (Figure 2.5).  TLP is compatible for water depths 

greater than 300 m and less than 1500 m (D'Souza et al., 1993). The mooring system is 

a set of tension legs or tendons attached to the platform and connected to a template or 

foundation on the seafloor (Blog, 2011).  
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   Figure 2.5: Tension leg platform (TLP) (Nallayarasu, 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2.3 Floating Production, Storage and Offloading (FPSO) 

An FPSO system is one of the deep water offshore structures. The FPSO system is 

widely used for the purpose of processing and storage of oil and gas. FPSO is a suitable 

mobile offshore structure that can easily be shifted to a new location (Figure 2.6). 

FPSOs are easy to install at the desired location and do not need a local extra pipeline to 

export oil. FPSO generally consist of a floating hull combined with  pontoons and 

columns which support a large working deck with drilling and production systems 

(Weggel, 1997). The station is held in place by catenary mooring systems or by 

dynamic positioning. 
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Figure 2.6: Floating production storage and offloading (FPSO) (MacGregor et al., 

2000) 

  

2.2.2.4 Spar Platform 

Spar platform is one of the floating structures used for deep and ultra-deep water 

applications of drilling, production, storage, and offloading of ocean deposits by GOM 

(2000). The spar is the latest among this new generation of floating offshore structures 

suitable for ocean drilling, production, and storage of oil in deep water (Glanville et al., 

1991; Horton and Halkyard, 1992).  

 

2.3 Components of Spar Platform 

The central concept behind the spar platform is a cylindrical deep draft floating hull, 

which allows the structure to buoy and be held in place by mooring lines. The classic 

spar (Figure 2.7) configuration consists of a deep draft cylindrical hull that provides 

excellent motion characteristic even in rough seas. This favorable motion characteristic 

reduces the cost for the mooring system, which is an important factor in deep water 

installations. 
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                     Figure 2.7: Classic spar platform (QLEE, 2011) 

 

 

 

 

 

 

 

 

 

 

 

The classical spar, as the ones described above, consists of a large circular steel hull, 

stiffened plate with longitudinal stringers, and deep frames. About 90% of the structure 

is under-water. The upper part of the hull is responsible for the buoyancy and the 

midsection contains ample room for oil storage. The lower compartments hold the 

ballast, which controls the trim for the spar. Spiral strakes are fitted to the underwater 

part of the hull to prevent vortex induced vibrations. To reduce the wave induced 

motion, these offshore structures are so designed that their natural frequencies are far 

away from the peak frequencies of the force spectra. The structure is made stable by 

maintaining the center bouncy above the center of gravity. Station keeping in position is 

done by catenary mooring lines which are attached to the hull near the center of pitch.  
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2.3.1 Hull 

Normal marine and shipyard fabrication methods are used for fabricating the hull. The 

center well size and the hull diameter are considered on the basis of the number of well, 

surface wellhead spacing, and facilities weight. Different types of risers are attached 

with top section of a flooded center-well of the cylindrical spar hull. This portion 

provides the bouncy for the spar. The bottom portion of the hull, named the keel, 

participates in buoyancy during transport, field installed, and fixed ballast. 

 

2.3.2 Topsides 

The topsides of the spar platform are designed comparable to the typical fixed offshore 

structural concept. This component of spar platform houses a full drilling rig or a work 

over rig desirable full production equipment. The oil and gas exploration operations 

directly influence the basis of deck size. The bigger topsides provide drilling, 

production, and processing quarter’s facilities.  

 

2.3.3 Risers 

There are mainly two types of risers, such as production and drilling.  

Production- Vertical riser participates to explore the oil and gas from seabed to flooded 

center-well. Vertical production riser is tensioned with floating cylinder which is 

connected to one or two springs of center-well. 

Drilling- The drilling riser participate to drill in to the seabed. The drilling riser is also a 

top-tensioned casing with a surface drilling, which allows a platform-type rig to be 

used. 
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2.3.4 Mooring Lines 

A catenary mooring system of 4 to 16 lines holds onto the spar at the designated 

location. The mooring line is made up of chains in the top and bottom segment and 

spiral strand wire or polyester rope in the intermediate portion. Each mooring line is 

anchored to the seafloor with a driven or suction pile. The hull bottom level of the line 

passes through a fairlead fixed on the hull below the water surface, then extends up the 

outside of the hull to chain jacks at the top. 

 

2.4 Response Analysis of Spar Platform 

Spar platform is a very compliant floating structure used for deep water applications of 

drilling, production, processing, storage, and off-loading of ocean deposits. Analysis of 

spar platform is complex due to various nonlinearities such as geometric, variable 

submergence, varying pretention etc. FEM is an important technique to cope with this 

kind of analysis. A number of studies have recently been performed in spar platform 

analysis employing FEM, such: as prediction of extreme response (Low, 2008), 

nonlinear coupled analysis (Ma et al., 2000), nonlinear coupled dynamic response under 

regular wave (Agarwal and Jain, 2003), dynamic analysis of spar (Sarkar and Roesset, 

2004), coupling effect between spar and mooring (Chen et al., 2001), and time-domain 

and frequency-domain analysis of spar (Anam et al., 2003; Chen et al., 1999; Low and 

Langley, 2008). However, response analysis of spar platform by these methods is time-

consuming.  

The use of ANNs has been established as an alternative approach of FEM (Boom et al., 

2009; Cardozo et al., 2011; Javadi et al., 2003; Mingui et al., 2003; Umbrello et al., 

2008) to solve various types of engineering problems.  ANN exhibits good performance 

in offshore engineering for damage detection, time series prediction, and controlling in 
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cases where formal analysis is time consuming. The FEM-ANN based approaches have 

been studied by a number of other researchers (Fedi et al., 2002; Ji and Zhou, 2011; 

Kadi, 2006; Lefik and Schrefler, 2003). It is observed that ANNs provide fairly accurate 

results compared to the FEM. As per the literature reviews on spar platforms, a 

considerable amount of research and analysis has been done by FEM unlike ANN.  

 

2.5 Artificial Neural Network  

Artificial neural networks (ANNs) are an information-processing system encouraged by 

biological nervous systems, such as the human brain. ANNs are able to learn from 

experience just like people. An ANN is a combination of artificial neurons namely 

processing elements, nodes, or units. Each processing element is fully interconnected to 

the other processing elements by its connection weights. Processing element accepts its 

weighted inputs, which are summed with adjustable unit bias. The bias unit is utilized to 

scale up the input to develop the convergence properties of the neural network. The 

result of this combined summation is passed through the transfer function to produce the 

output of the processing element.  

 

2.5.1 Artificial Neuron Model 

The artificial neurons may have single input or multiple inputs as described below. 

Single Input Neuron- Figure 2.8 shows  a single input artificial neuron model in its 

simplified mathematical model from, which has been extracted with some modification 

from Shahin et al. (2008). 
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                               Figure 2.8: Single Input Artificial Neuron Model 

 

WXI           (2.1) 

where  

X=the input; 

W= the connection weight; 

θ = the bias;  

I = the produced response; 

f(.) = the transfer function; and 

O = the output. 

 

As Figure 2.8 shows, the input neuron X is multiplied by connection weight W to form 

WX. The bias  is passed into the summing junction and the produced response I which 

is shown in Equation 2.1. The produced response I goes into the transfer function f (I) 

and produces an output O. 

Multiple Input Neuron- A typical multiple input neuron with a transfer (activation) 

function which has been extracted with some modification from Shahin et al. (2008) is 

shown in Figure 2.9. Neurons usually have more than one input which is multiplied 

with its own weight. The adjustable unit bias is passed into the summing junction and 
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produce response which is shown in Equation 2.2. The produced response transfers 

through the activation function and produces outputs. 

 

                

                   

 

       

 

        

 

                        Figure 2.9: Multiple Inputs Artificial Neuron Model 
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ijijj XWθI

                                                                                          (2.2) 

where, 

Xi = the input from node i, i = 0, 1, …, n; 

Wij= the connection weight between nodes j and i; 

θj = the bias for node j; 

I = the produced response; 

f(.) = the transfer function; and 

Oj = the output. 

 

2.5.2 Transfer (Activation) Function 

Activation function is contained in hidden layer in between inputs and outputs. This 

function is also called transfer function. Finally, an activation function controls the 

amplitude of the output. Needless to say, each transfer function has its own formula 

which is shown in Table 2.1.   
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                     Table 2.1: Different types of transfer (activation) function 

Here α is the slope parameter also called shape parameter; v is also used for the same 

representation.  

 

2.5.3 Classification of ANNs 

ANNs can roughly be divided into the following three categories, based on the 

arrangement of neurons and the connection patterns of the layers: Feed-forward neural 

networks, Feed-back neural networks, and Self-organizing maps. 

 

2.5.3.1 Feed-forward Neural Network 

A feed-forward neural network is a standard type of neural network that might be used 

for such applications as prediction, control, and monitoring. Feed-forward neural 

networks are one-way connections (weights) from input to output layers through the 

hidden layer (Beale et al., 2010). Feed-forward networks often have one or more hidden 

layers followed by an output layer. This network propagates in a forward direction; it 

never goes in backward direction. In a feed-forward neural network, the input numbers 

are served to input nodes, after multiplying by a weight it’s in go pass them on the 
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hidden layer nodes. A hidden layer node receives the weighted input from each input 

node and bias connection with it. Then the result passes through the nonlinear transfer 

function. The output nodes come from the hidden layer node. The network is trained by 

trial and error, the target output at each output node is compared with the network 

output and the difference (error) is minimized by adjusting the weights and biases 

though training algorithms. The optimum network can be  applied for a multitude of 

problem solving purposes (Rai and Mathur, 2008). 

Multilayer Perceptron-Multilayer perceptron (MLP) is a feed-forward artificial neural 

network model that transforms sets of input signals into sets of output signals through 

hidden layer (Manik et al., 2008). The hidden layer and nodes play significant roles in 

many successful applications of neural networks (Zhang and Eddy Patuwo, 1998). In 

MLP, the input signal on a layer-by-layer basis propagates in a forward direction 

through the network. The network is trained in supervised learning method with error 

back propagation algorithm.  

 

2.5.3.2 Feed-back Neural Network 

A feed-back network is a network with connections from the output of a layer to its 

input. The feed-back connection can be direct or can pass through several layers. In 

feed-back networks, the output information defines the initial activity state of a feed-

back system, and after the state transitions to the asymptote, final state is identified as 

the outcome of the computation. The networks known as recurrent networks are also 

feed-back networks.  
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2.5.3.3 Self-Organising Maps 

The self-organising map describes a mapping from a high dimensional input space to a 

low dimensional map space and is trained using unsupervised learning. Self-organising 

maps are different from other artificial neural networks in the sense that they use a 

neighborhood function to preserve the topological properties of the input space. An 

ANN can also be self-organising which means that it can create its own organisation or 

representation of the information it receives during learning time without any 

intervention from the outside world. 

 

2.5.4 Learning Algorithm 

The neural network is trained to adjust the values of the connections (weights) to 

execute a particular function between an exact input response and a precise target 

output. This process is known as learning. There are three basic types of learning 

methods in neural networks, such as supervised, unsupervised, and reinforced learning, 

which are shown in Figure 2.10. Among them supervised and unsupervised learning 

algorithm are most popular.  

In supervised learning, the target response of the network is compared to a desired 

output response. If the real target response differs from the desired output response, the 

network generates an error. This error is utilized to adjust the connection weights 

between the model target response and output response due to matches with actual 

outputs, and those predicted by the ANN (Lefik and Schrefler, 2003). 
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                Figure 2.10: Classification of learning algorithms (Chakraborty, 2010) 

 

Unsupervised learning does not require desired target response. The connection weights 

are adjusted with network according to the input values. In reinforced learning, the 

target response of the network is not compared to a desired output response. It only 

indicates whether the computed output is correct or incorrect. The information provided 

helps the network in its learning process.  

 

2.5.5 Back-propagation Algorithm 

Back-propagation algorithm is most popular for training neural networks. It requires 

lower memory than other algorithms and commonly makes acceptable error levels. This 

algorithm could be used in various types of networks even though it is usually suitable 

for training MLPs (Dikmen and Sonmez, 2011). It was developed by simplifying the 

Widrow-Hoff learning rule to multiple-layer networks and nonlinear differentiate 

transfer functions (Ruck et al., 1990). Input and the corresponding target are used to 

train the network until it can function fairly accurately. The back-propagation algorithm 
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from the details that results are passed forward from input nodes to output nodes. 

Calculated errors are passed forward from input nodes to output nodes. 

 

2.5.6 Performance Functions 

The performance function is used to compute network performance in training. This is 

useful for many algorithms, such as back-propagation, which operates by adjusting 

network weights and biases to improve performance. The following functions are 

conventional performance functions: 

MAE:   mean absolute error 

MSE:   mean of squared errors 

SSE:   sum of squared errors 

 

2.6 Environmental Force on Offshore Structures 

Human activities are increasing gradually in offshore environment due to exploration of 

oil and gas. Sometimes unexpected situations may occur due to environmental 

phenomena during offshore activities. Considering safety of life and prevention of 

economic losses, the prediction of wave parameters is an important prerequisite for oil 

and gas explorations associated with offshore engineering. Waves are generally 

generated by wind forces in oceanic environment. Meteorological departments usually 

forecast wind forces and not waves. There are lots of empirical methods today for 

predicting wave height and wave period from wind force (Günther et al., 1997; 

Krogstad and F. Barstow, 1999; Muzathik et al., 2011; Tolman et al., 2005; Tolman et 

al., 2002). ANN can predict waves more accurately than the existing empirical 

formulae. Several studies have been done for predicting significant wave height and 
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mean-zero-up-crossing wave period time history for various seas using ANN. Two 

different neural network approaches have been used by Makarynskyy et al. (2004; 

2005) to predict significant wave heights and zero-up-crossing wave periods 3, 6, 12, 

and 24 h in advance. The simulations have been evaluated for the time histories of these 

wave parameters in the region off the west coast of Portugal. The main time histories of 

significant wave height have been disintegrated to multi resolution time histories using 

wavelet transformation which is hybridized with ANN and wavelet transforms (Deka 

and Prahlada, 2012). The multi resolution time histories have been used as input of the 

ANN to predict the significant wave height at unlike multistep lead time near 

Mangalore, west coast of India. Mandal et al. (2006) predicted significant wave heights 

from measured ocean waves off Marmugao, west coast of India. Recurrent neural 

networks with Rprop update algorithm have been applied for prediction of wave height.   

The significant wave height and mean-zero-up-crossing wave period time histories have 

been predicted using locally available wind data. Improvement of the prediction 

accuracy has been tried by applying various types of neural network models. Paplińska-

Swerpel (2006) predicted significant wave height from wind speed using ANN at 10 

selected location in the Baltic Sea.. The time history of hindcast wave data originated 

from the WAM4 wave model. On the basis of Radial Basis Function (RBF), and Feed-

forward Back-propagation (FFBP) neural network approach has been developed for 

predicting significant wave heights at a specified coastal sites in deeper offshore 

locations (Kalra et al., 2005). Significant wave height, average wave period, and wind 

speed data have been collected from satellite-sensed data at the west coast of India. The 

ANN  with back-propagation algorithm has been used for prediction of wave height and 

wave periods from the wind information based on wind-wave relationship (Londhe and 

Panchang, 2006) which is reported by Tsai et al. (2002). Time histories of waves at any 
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station can be anticipated on the basis of neighbourhood station’s data. Deo et al. (2001) 

developed a variety of deterministic neural network models to predict significant wave 

height and wave periods from generating wind speeds. The network could provide 

satisfactory results in deep water and in open wider areas, and prediction intervals are 

large, such as one week. The response prediction of spar hull and mooring line, by FEM 

and ANN, requires maximum wave height and wave period.  

For this purpose, the study is carried out to predict maximum wave height and wave 

period from wind force of Malaysian sea that can be used for predicting response of 

offshore platform for both cases. Recurrent neural networks and back-propagation 

neural network have been used in the present study for prediction of wave parameter 

with the goal of getting more accurate results.  

 

2.7 Finite Element Analysis of Offshore Structures 

Spar platform is a compliant floating structure which is used for exploration of oil and 

gas from deep and ultra-deep water. Spar platform is a cost effective solution to counter 

lateral and vertical forces while fulfilling the basic oil field requirements like drilling, 

production support, storage etc., and without any operational limitations posed by water 

depth. Spars are found to be an economical and efficient type of offshore platform. It is 

a neutrally-buoyant, fully compliant, floating system of large cylindrical shape, with six 

degrees of freedom, moored by a semi-taut spread mooring system. The superstructure 

comprises of derrick and other drilling and production facilities with the provision for a 

helipad. On the basis of popularity of spar platform, several researchers have studied it 

to make cost effective and reliable design and installation guide line as well as to ensure 

safety from catastrophic failure.  



 

 

 

27 

 

Tahar and Kim (2008) have developed a theory and numerical tool for coupled dynamic 

analysis of deep-water structure like spar and buoy with polyester mooring lines. The 

static and dynamic behaviour of a buoy and spar were studied. The time domain and 

frequency domain analyses of mooring line and riser of cell truss spar platform in deep-

water have been studied (Zhang et al., 2008). The experimental results were compared 

with three methods namely quasi-static, semi-coupled, and fully-coupled. The response 

characteristics of a slack-mooring spar platform were investigated by Ran et al. (1996) 

under regular waves, unidirectional irregular waves and bichromatic waves with or 

without currents. Again, Ran et al. (1999) investigated in both time domain and 

frequency domain analysis of nonlinear coupled response of spar mooring in random 

waves with and without currents. The difference between time domain and frequency 

domain analysis of spar platform using Morison’s equation were investigated by Anam, 

et al. (2003). Chen et al. (2001; 1999) studied the response of a slack-mooring line of 

spar platform subjected to steep ocean waves by a quasi-static and a coupled dynamic 

method to reveal coupling effect between spar hull and mooring lines. Consistent 

analytical methods have been presented (Ma et al., 2000) for the prediction of 

nonlinear-coupled effects among hull, mooring lines, and risers. This method was 

applied to spar and TLP for different depths up to ultra-deep water. Low and Langley 

(2008) developed hybrid method for efficient fully coupled analysis of floating structure 

like vessel, mooring, and risers. The method was found to be in good performance with 

fully coupled frequency domain analysis for ultra-deep water and time domain analysis 

for intermediate water depths. The same hybrid method was used to predict extreme 

response of platform and moorings/risers (Low, 2008). Agarwal and Jain (2003) studied 

nonlinear coupled dynamic analysis of spar platforms subjected to regular waves. The 

spar hull was modeled as a rigid body with six-degrees-of-freedom which is attached at 

the fairlead position and anchored to the seabed with catenary mooring lines. The time 
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domain response analysis was performed under unidirectional wave by Newmark’s Beta 

approach. The wave forces were estimated by Morison’s equation using Airy’s wave 

theory. The Mathieu instability for the spar platform was investigated by Koo et al. 

(2004) for long period regular wave environment and swell condition. The damping 

effects of spar hull, mooring lines, and risers were evaluated. Jameel et al. (2011) 

studied nonlinear fully coupled analysis of integrated spar and mooring lines. The 

behaviour of spar platform after long period of wave hitting was assessed.  

The analysis of conventional processes states that, the force and displacement of 

mooring heads and vessel fairleads are iteratively matched at every instant of time 

marching scheme while solving the equilibrium equations. In this process the major 

contribution of moorings in terms of drag, inertia, and damping due to their longer 

lengths, larger sizes, and heavier weights are not fully incorporated. This effect is more 

prominent in deep water conditions. The conduct at longer time state on spar-mooring 

system may be severe. Hence, the objective of present study is the prediction of 

nonlinear fully coupled analysis of spar hull and mooring line response subjected to 

waves with or without current. The present study is also observed the damping effects 

on mooring lines and the importance of coupling effect on spar platform during long 

period of wave hitting. 

 

2.8 Artificial Neural Network in Offshore Structure  

Artificial Neural Networks (ANNs) are widely used across all disciplines of coastal, 

ocean, marine, and offshore engineering. Several researchers who did their work using 

ANN, such as Mahfouz (2007), presented a method of predicting the capability-polar-

plots for dynamic positioning systems for offshore platforms, stability analysis of the 

rubble mound breakwater (Mandal et al., 2007), estimating the cost, uncertainties and 
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risk analysis of floating structures (Cocodia, 2008), identifying the crack extent and 

location of damage on the longitudinal faceplate of ship’s structure (Zubaydi et al., 

2002). ANN was also used to predict the risk of different pipe sticking in the Iranian 

offshore oil field (Miri et al., 2007). The researchers used neural network for offshore 

structures to solve their problems during 1996-2012 (Table 2.2). 

                 Table 2.2 Summary of offshore structural research using ANN 

Researchers Types of 

work 

Types of 

offshore 

structure 

Input 

variable 

No. of 

hidden 

layer/ 

neuron 

Transfer fun. 

hidden: output 

Training 

Algorithm 

Outputs 

Mangal et 

al. (1996) 

Damage 

Detection 

Jacket  

platform 

Varies on 

 networks 
3/NA 

hard limiters, 

sigmoid: 

hyperbolic tan 

BPN and 

ART 
1 

Lopes and 

Ebecken 

(1997) 

Fatigue 

monitoring  

Jacket  

platform 
14  2/8 

Sigmoid: 

sigmoid 

FFBPN 

 
1 

Diao et al. 

(2005) 

Damage 

localiza-

tion 

Jacket  

platform 
3  3/NA 

Sigmoid: 

sigmoid 

BPN and 

PNN 
1 

Elshafey et 

al. (2010) 

Damage 

detection 

Jacket  

platform 
2  1/NA 

Sigmoid: 

sigmoid 
BPN 1 

Chang et al. 

(2009) 

Response 

control 

Jacket  

platform 
2 1/ 5 NA MLPBPN 1 

Yan-jun et 

al. (2010) 

Vibration 

control 

Jacket  

platform 
3 NA NA FFOC 1 

Ma et al. 

(2006) 

Optimal 

control 

Jacket  

platform 
1 NA NA FFOC 1 

Elshafey et 

al. (2011) 

Prediction 

of force 

and 

moment 

Jacket  

platform 
3 1/50 

hyperbolic 

tangent: 

sigmoid, linear  

FFN 2 

Mazaheri et 

al. (2005) 

Prediction 

of response 
FPSO 6  1/10 

Sigmoid: 

sigmoid 
MLFFN 3 

Mazaheri 

(2006) 

Prediction 

of response 
FPSO 6  1/10 

Sigmoid: 

sigmoid 
MLFFN 3 

Haddara et Response Ship 4  1/5 Sigmoid: MLPNN 1 
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al. (1999) prediction sigmoid 

Xu and 

Haddara 

(2001) 

Estimating 

bending 

moment  

Ship  6 1/24 
Sigmoid: 

linear 

MLPNN,  

BP 
1 

Guarize et 

al. (2007) 

Response 

prediction 
FPSO 3  

1/ 2,  3, 

10 

hyperbolic 

tangent: linear 

Non-linear 

differential 

equation 

1 

Simoes et 

al. (2002) 

Response 

prediction 
FPSO 6  

1/4, 6, 

9 
NA MLPBPN  3 

Pina et al. 

(2010) 

Response 

prediction 
 FPSO  3  1/10 

hyperbolic 

tangent 

 

FFMLP, 

LMBP  

 

1 

NA-Not Available, ART-Adaptive resonance theory; BPN-Back-propagation network; FFBPN-Feed-

forward back-propagation network; FFN-Feed-forward network; FFMLP-Feed-forward multilayer 

perceptron; FFOC-Feed-forward and feedback optimal control; LMBP-Levenberg-Marquardt back-

propagation; MLFFN-Multilayer feed-forward network; MLPBPN-Multilayer perceptron back-

propagation network; MLPNN-Multilayer perceptron neural network; PNN-Probabilistic neural network;  

 

In the field of offshore engineering, ANN is used for damage detection, time series 

prediction, and controlling in cases where formal analysis is tough or impossible. ANNs 

have been used to solve these types of offshore engineering problems which are 

categorically reviewed below.  

 

2.8.1 Controlling 

The safety of offshore structures is of significant concern under the oceanic 

environmental load. The reduction of the dynamic response of offshore structures 

subjected to random ocean waves has been a critical issue in terms of serviceability, 

fatigue life, and safety of the structure. Chang et al. (2009) used modified probabilistic 

neural network (MPNN) for controlling the response of fixed offshore structures 

subjected to random ocean waves. Linear quadratic regulator algorithm was used to 

calculate the control forces and to verify the proposed offshore structural control 
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method under random ocean wave. Significant decreasing rates for the structural 

responses proved that the MPNN control algorithm is an effective vibration control 

technique. 

Hong-nan and Lin-sheng (2003) presented the control method for fixed offshore 

platforms using semi-active tuned liquid column damper (TLCD). Back-propagation 

neural network (BPNN) was used to adjust the orifice opening of TLCD because of the 

nonlinear motion of liquid in TLCD. The control method was verified by numerical 

examples efficiently. 

Ya-jun and De-you (2003) proposed a new active control scheme on the basis of neural 

network for the suppression of oscillation in multiple-degree-of-freedom offshore 

platforms. After that, Ya-jun et al. (2003) presented classical optimal control using 

ANN for  active structural control of offshore platforms under random waves.  BPN 

algorithm was used for active control according to the robustness, fault tolerance, and 

generalized capability of ANN. The result shows that active control was feasible, 

effective, and overcame time delay of classical algorithms. 

Wei and Gong-you (2004) investigated the optimal control for linear systems affected 

by external harmonic disturbance and applied it to vibration control systems of offshore 

steel jacket platforms using ANN. It was established that the control scheme was useful 

in reducing the displacement response of these platforms. 

Ma et al. (2006); Ma et al. (2009) studied the vibration control with an active mass 

damper of a jacket-type offshore platform and presented a feed-forward and feed-back 

optimal control (FFOC) law under irregular waves. The reductions of the lateral deck 

motion under different control laws were compared. The simulation shows that the 
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FFOC law was more efficient and robust than the classical-state feed-back optimal 

control (CFOC) law. 

Cui and Zhao (2007) proposed a rough neural network, as an adaptive predictive inverse 

controller, for active control of offshore platform under the combined action of random 

waves and winds. The result showed that the proposed networks had high training speed 

and enhanced robustness. The displacement response of top platform was effectively 

controlled and the time delay was sufficiently suppressed. This method also possesses 

strong anti-disturbance capability. 

Hong-yu et al. (2009) proposed an adaptive inverse control method on the basis of novel 

rough neural networks (RNN) to control the harmful vibration of the jacket platform. 

The jacket platform model was established by dynamic stiffness matrix method. The 

constructed novel RNN has advantages such as clear structure, fast training speed, and 

strong error-tolerance ability.  

Kim et al. (2009) applied a new neuro-control scheme to the vibration control of a fixed 

offshore platform under random wave loads to examine the applicability of the Lattice 

Probabilistic Neural Network (LPNN). The results of LPNN showed better performance 

in effectively suppressing the structural responses in a shorter computational time.  

According to Yan-Jun et al. (2010), the nonlinear pile-soil interactions were strongly 

influenced by the wave load disturbances of jacket platform. The Morison equation was 

used to estimate the wave load disturbances. Results of feed-forward and feed-back 

vibration control for a 7 lumped masses jacket-type offshore platform was significantly 

effective.  

Hong-yu and De-you (2010) proposed a grey neural network and its application, as an 

adaptive predictive inverse controller, which was implemented to vibration control of 
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jacket offshore platform. The simulation results show that the grey neural network has 

strong robustness and can effectively control the displacement of jacket offshore 

platform under the random loads.  

Lin (2010), Ma et al. (2009a; 2009b) utilized the neural network to identify the loads 

and measure the vibration of WZ12-1 offshore platform. A three-layer BP network has 

been trained up to the state when the data obtained from ANSYS were converged. The 

result shows that the neural network method could gain a great advantage over the 

traditional techniques in these large and complex problems. 

 

2.8.2 Prediction 

Offshore structures are subjected to environmental loads such as wind loads, wind 

generated wave excitations, and current forces. The dynamic response prediction of 

offshore structures in a random environment is a significant aspect of design.  

Yun and Bahng (1997) presented a method for sub-structural identification of offshore 

structure using ANN. BPNN was used to estimate the number of unknown parameters 

of jacket platform. The result shows that the proposed method effectively demonstrated 

the identification of the sub-structure.  

Mandal et al. (2004) addressed the prediction of stress resultant deflection of fixed 

offshore platform under varying sea environment using neural networks. With the data 

of deck displacements at various loading state, a BPNN was first trained and later 

prediction of the deck displacements were obtained for any loading condition. The 

result showed that prediction of deck displacement was significantly accurate. 
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Yasseri et al. (2010) proposed a predictive method for identifying the range of sea-states 

considered safe for the installation of offshore structures using FEM and ANN. A finite 

element dynamic analysis on a table of some safe and unsafe sea-states has been 

prepared based on the pile allowable stress. MLFFNNs were used to determine whether 

the predicted sea-state is safe or not.  

Simoes et al. (2002) developed a neural network for prediction of mooring forces and 

analysis of the dynamic behaviour of FPSO and a shuttle ship in tandem configuration. 

MLPBP algorithm was used for developing the neural network.  This approach was 

suitable for preventing collisions of the ships and maintenance of mooring line. 

Mazaheri et al. (2005; 2003) proposed the response-based hydrodynamic model named 

SAMRES to calculate responses of a floating offshore platform subjected to arbitrary 

wind, wave, and current loads. SAMRES model was written in MATLAB to determine 

the loads and motions of a turret-moored FPSO over a reasonable period of 

environmental data (e.g. 5 years). Multilayer feed-forward algorithm was used in ANN 

model to predict the platform’s responses subjected to metocean parameters. The 

resulting vessel response predicts the extreme excursion and mooring force over an N-

year life period. After that, Mazaheri (2006) applied mooring force of floating offshore 

structures on his SAMRES model as an example.  

Guarize et al. (2007) proposed hybrid ANN – Finite Element Method (FEM) approach 

for the prediction response (top tension) of mooring line and risers of FPSO.  A quite 

short FEM-based time domain response of slender marine structure was trained by 

ANN.  Hyperbolic tangent function was used for non-linear dynamic response 

prediction of mooring line and riser for long time. It was observed that the proposed 

ANN–FEM methodology was about 20 times faster than a full FEM-based analysis for 

a 3 h long dynamic response simulation.  
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Pina et al. (2010) developed a model with application of surrogate models on the basis 

of ANN to predict response of offshore structures, replacing dynamic analyses with 

FEM. FEM analysis time series data were used in nonlinear autoregressive model 

(NARX) and prescribed motion inputs (PMI). For the testing model, the authors used 

mooring line of FPSO. Results have shown that ANNs are very efficient in predicting 

response accurately in considerably less time. 

Elshafey et al. (2011) provided a deck acceleration measurement tool to predict the 

value of the force and moment acting on the offshore structure’s foundation subjected to 

wind generated wave excitations. Neural networks and Fokker-Planck formulation 

methods were used to determine the relationship between the force and moment acting 

on the foundation and deck acceleration. The total virtual mass of the equivalent single 

degree of freedom formulation of the structure was determined at different deck masses. 

 

2.8.3 Damage Detection 

Offshore structures subjected to hostile environmental loads can experience critical 

damage due to fatigue and ship collision. All kinds of damage should be identified 

quickly so that corrective actions can be taken to overcome disastrous failures. As a 

result, it is customary to ensure reliable monitoring and competent system for such 

structures.  

Wu et al. (1992) developed automatic monitoring methods using neural network for the 

detection of structural damage. BPNN was used to recognize the behaviour of an 

undamaged structure and observed the behaviour of the structure with different probable 

damage states. It was found that the network had the potential to detect any existing 

damage.  
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Mangal et al. (1996) proposed a theory named Adaptive resonance theory (ART) for 

online monitoring of damage detection and its location for jacket platforms. BPN and 

ART networks were used for comparison of damage detection. ART networks work on 

the principle of pattern recognition. It has the ability to be trained with new data or to 

adapt itself to new conditions. Speech recognition and object identification problems 

can be easily explained with BPN. It was suitable to use both BPNs and ART 

simultaneously for good results.  

Banerji and Datta (1997); Idichandy and Mangal (2001) used ANN for monitoring the 

integrity of an offshore structure. Feed forward neural network algorithm was used for 

pattern recognition and comparing RMS displacement responses at different elevations 

of the structure for various sea states.   

Lopes and Ebecken (1997) proposed a method using neural network for fatigue 

monitoring of jacket platform. Automatic fatigue data is being gained on board and 

performed in-time on the actual loading condition. Finite element method and stochastic 

fatigue analysis were used for fatigue damage calculation. The results clearly indicated 

that the fully connected network produced smaller errors and better performance.  

Mangal et al. (2001) investigated a laboratory jacket platform model to access the 

feasibility of adapting vibration responses due to impulse and relaxation for on-line 

structural monitoring. Effects of damage in six members of the platform and changes in 

deck masses were studied. A finite-element model of the structure was used to analyze 

all the cases for comparison of the results and system identification.  

Fathi and Aghakouchak (2007) developed four MLP networks to predict weld 

magnification factor for weld toe cracks in T-butt joints under membrane and bending 

loading for offshore structure. The training data for these networks were obtained from 
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results of finite element modeling. The comparison between network results and fatigue 

life was reported in experiments, which shows that neural network is a successful 

prediction technique if properly used in this area. 

Moghim et al. (2007); Shafiefar et al. (2011); Shafiefar and Moghim (2005); Zhou and 

Luan (2009) used ANNs to predict hydrodynamic forces generated by waves and 

current forces on slender cylinders. The laboratory experimental data was used to train 

and evaluate the prediction performance of the ANNs. Results indicated that ANN is 

able to efficiently predict the waves and current forces on slender cylinders after 

performing proper training. 

Zeng et al. (2001); Diao et al. (2005); Diao and Li (2006) proposed a method named 

probabilistic neural networks (PNN) for the damage localization of fixed platform. The 

members of offshore platform structure were classified and separated into several 

layers. And the decision system for the type and layer of damaged members was 

established using the BPN. The experimental results show that the trained neural 

networks are able to detect the damages with reasonable accuracy. 

Elshafey (2009, 2010) evaluated the behaviours of damage detection in random loading 

by the combined method of random decrement signature and neural networks. The 

random decrement technique was used to extract the free decay of the structure from its 

online response while the structure was in service. The free decay and its time 

derivative were used as inputs for a neural network. The output of the neural network 

was used as an index for damage detection. It has been shown that function N (number 

of segments) was effective in damage detection in the members of an offshore structure. 

Zhen and Zhigao (2010) proposed the time-domain response data with noise 

measurement, under random loading, for detecting damage of offshore platforms. A 
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sensitivity matrix consisting of the first differential of the autoregressive coefficients of 

the time-series models with respect to the stiffness of the structural elements was then 

obtained based on-time domain response data. Numerical simulation showed that with 

only a handful of sensors, acceleration time history data with a certain level 

measurement noises is capable of detecting damages efficiently, and that an increase in 

the number of sensors helped in improving the diagnosis success rate. 

 

2.8.4 Other Application 

ANNs can provide meaningful solutions and can process information in extremely rapid 

mode ensure high accuracy of prediction. A great deal of research has been carried out 

using ANN to solve offshore Engineering problem.  

Xu and Haddara (2001) developed the time-domain technique for estimating the wave-

induced vertical bending moment from coupled heave and pitch motions of ship hull. A 

MLPNN was employed and a back-propagation learning algorithm was used for the 

network training. The training results show that the computational time was 

significantly reduced and the accuracy was improved. 

Haddara et al. (1999) studied the derivation of partial differential equations describing 

the free response of a heaving and pitching ship from its stationary response to random 

ocean waves. The coupled heave–pitch motion of a ship in random seas was modeled as 

a multi-dimensional Markov process. The method has shown good results when the 

system is lightly damped. 

Yamamoto et al. (2002) described new dynamic positioning technology for a tandem 

type floating offloading system using a neural network.  The effects on total operation 
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performance resulting from this technology were evaluated by simulation for the 

northern area of the North Sea, i.e. the area offshore of Borneo and Pearl River Basin. 

Cepowski (2010); Islam et al. (2001) used artifical intelligence techniques for automatic 

hull form generation of ships with some desired performances. Genetic Algorithm is 

one of the important elements for design and implementation of hull. Neural network is 

a very good tool for readjusting the dimensions of hull. In this process hull form was 

generated automatically and accurately.  

A dynamic position controller was designed using a neural network, and several model 

experiments under beam sea conditions were carried out to verify its ability (Nakamura 

et al., 2003). The calculated results were in good agreement with experimental results. 
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CHAPTER 3.0 RESEARCH METHODOLOGY 

 

3.1 Introduction 

This chapter discusses environmental force prediction by neural network and the use of 

the predicted values for response prediction of spar platform using FEM and ANN. The 

fully coupled dynamic analysis of spar platform subjected to regular wave has been 

discussed in this chapter. These FEM results are used to train the Resp-Pred network 

and then to predict the response of spar platform to environmental forces. 

 

3.2 Environmental Forces 

Environmental force is a natural phenomenon, which may lead to structural damage, 

operation disturbance and loss of life. The important phenomena for offshore structures 

are wind, wave, and currents. The large waves are usually generated by winds 

associated with storms passing over the surface of the sea. However, the complexity and 

uncertainty of the wave generation phenomenon is such that even with significant 

advances in computational methods, the solutions obtained are neither exact nor 

uniformly applicable. Prediction of wave height and period from wind is basically an 

unreliable and random practice and hence difficult to model by using deterministic 

equations. Neural networks are suitable to model a random input with the corresponding 

random output and their application does not require knowledge of the underlying 

physical process as a necessity. This attainment of reliable wave height and wave period 

is used for the purpose of response prediction of offshore structures by FEM and ANN. 
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3.2.1 Data Collection  

The location of offshore Sarawak (longitude 111°E, latitude 6°N) (Jameel et al., 2012), 

Malaysia is selected on the basis of possible existing as well as future oil and gas 

exploration and production activities. The locations of these data are illustrated in 

Figure 3.1. The environmental data is collected from this location due to monitor of 

existing offshore structures and possible future installation of offshore structure for the 

purpose of oil and gas exploration.  

In this study, high quality met-ocean data have been collected from WAM data from 

ECMWF which is calibrated against satellite data. These data have been acquired at 6-

hour intervals for the period of January 1997 to December 1997. The wind force at 10 m 

height of sea surface and wave height, as well as wave period, have been collected from 

the South China Sea which is around Malaysia.   

 

Figure 3.1: Data collection location of the South China Sea, Projecting Malaysia 

(WAM data from ECMWF) 

 

 

Offshore Sarawak. 

Longitude 111°E,  

Latitude 6°N 
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3.2.2 ANN Architecture for Environmental Forces 

This study is carried out to predict maximum wave height and period from wind force 

of Malaysian sea using ANN. There are three layers of the ANN architecture, namely 

input, output, and hidden layer. The wind force is used as input and the wave height as 

well as wave period are used as output for training the network. The total number of 

data set is 1460, among them 992 number of data are used for training, 234 number of 

data are used for validation and 234 number of data are used for testing. This approach 

is schematically shown in Figure 3.2.  

 

 

 

 

 

 

 

Two models are considered for achieving better performance of the network. The first 

one uses a neural network as a nonlinear auto regressive network model (NARX) which 

has exogenous input. The network consists of a Multilayer Perceptron which takes input 

of past input and output values and computes the current output. The input to the feed-

forward network is more accurate. In this network 5 neurons are used in hidden layer 

with sigmoidal activation function and 2 steps delay are used. The network weights and 

bias are randomly adjusted and the training algorithm used is the Levenberg-Marquardt 
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                      Figure 3.2: ANN architecture for environmental force.   
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back-propagation (Hagan et al., 1996; Hagan and Menhaj, 1994). The resulting network 

has purely feed-forward architecture, and static back-propagation can be used for 

training. 

The second one uses a neural network as a feed-forward back-propagation neural 

network model (NEWFF) which is most widely used in offshore engineering problems. 

In this network, 30 neurons are used in the hidden layer with tangent sigmoid activation 

function, and pure linear activation function is used in the output layer. The network 

weight and bias values are randomly initialized and the training algorithm used is the 

Levenberg-Marquardt back-propagation. This algorithm is considered the fastest for 

training feed-forward neural networks and it does not require more memory.  

The expected outputs are in difference with the network output and generate error which 

is minimized by adjusting the weights and biases though training algorithms. The 

network is found by trial and error method. After training the network, ANN is used to 

predict wave height and wave period from randomly selected wind force.  

The validation of the ANNs is performed in terms of the root mean square error RMSE, 

scatter index SI, and correlation coefficient R, computed as follows: 
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where xi is the value observed at the i
th

 step, yi is the value simulated at the same point, 

N is the number of increments, x  is the mean value of observations, and y  is the mean 

value of simulations. 

 

3.3 Finite Element Method 

3.3.1 Model of Spar Platform 

 For this study, a spar platform is selected in 1018 m deep water. Spar platform consist 

of three major parts, i.e.  spar hull, mooring line, and riser. The mechanical and 

geometrical properties of the spar mooring system are given in Table 3.1.  Table 3.2 

illustrates the hydrodynamic characteristics of the sea environment.  

The spar hull is modeled as rigid beam which is anchored at fair lead position and 

seabed by mooring lines. The rigid Spar platform has been connected to the elastic 

mooring lines by means of six springs (three for translations like surge, sway, heave, 

and three for rotations such as roll, pitch, yaw). The individual stiffness of the 

translation springs is very high, whereas those of the rotational springs are very low, 

simulating a hinge connection. 

The mooring lines are modeled such that they can incorporate all types of significant 

nonlinearities. It includes the nonlinearities due to low strain large deformation and 

fluctuating pretension. Hybrid beam element is used to model the mooring lines. It is 

hybrid because it employs two shape functions one for simulating elastic behaviour 

while the other for simulating  the axial tension to maintain the catenary shape of 

mooring line. The hybrid beam element is selected for easy convergence, other elements 

such as linear or nonlinear truss elements can also be considered. 
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Seabed is modeled as a rigid plate. The contact between mooring lines and seabed is 

such that, the mooring lines will not penetrate the seabed. The contact is modeled as 

surface to surface and friction-less. Circumferential surface of mooring line and surface 

of seabed are selected for contact interaction. The integrated spar hull and mooring line 

have been modeled in finite element code ABAQUS (Figure 3.3). 

 

Table 3.1:  Mechanical and geometrical properties of spar and moorings (Jameel et al., 

2011) 

 

 

Description Unit Value 

Sea-bed size m
2
 5000   5000  

 

 

Spar  

(Classic JIP Spar) 

 

Length m 213.044  

Diameter m 40.54  

Draft m 198.12  

Mass kg 2.515276E8  

Mooring Point m 106.62  

No. of Nodes  17 

No. of Elements  16 

Type of Element  Rigid beam element  

Water Depth m 1018  

Mooring 

 

No. of Moorings  4 

Stiffness (EA) N 1.50E9  

Length m 2000.0  

Mass Kg/m 1100  

Mooring line pretension N 1.625E7  

No. of Nodes  101 

Element Type  Hybrid beam element 
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                    Table 3.2:  Hydrodynamic properties (Jameel et al., 2011) 

 

  

                     Figure 3.3: Finite element model of Spar platform in ABAQUS 

 

3.3.2 Finite Element Analysis 

The finite element model is used to implement the fully coupled integrated spar hull and 

mooring line under regular waves and current forces. The analysis of spar platform is 

considered actual physical coupling between the rigid vertical floating hull and mooring 

lines. This model can handle all nonlinearities, loading, and boundary conditions 

(Jameel, 2008). The effect of integrated coupling, employed in the present study is 

investigated to show the importance of drag damping of mooring systems in deep-sea 

Description Coefficient Value 

Spar 

Drag  0.6 

Inertia 2.0 

Added mass  1.0 

Mooring line 

Drag  1.0 

Inertia  2.2 

Added mass   1.2 
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conditions. The finite element code ABAQUS/AQUA is used to obtain the response of 

spar platform. 

The basic aim of this analysis is to obtain the proper catenary shape of mooring line 

under self-weight, axial tension, and stiffness associated with its mean curvature. The 

state of equilibrium is finally achieved when spar cylinder is slowly released under 

buoyancy. The dynamic analysis is carried out under regular sea. The most common 

approach for solving the dynamics of spar platform is to employ a decoupled quasi-

static method, which ignores all or part of the interaction effects between the platform 

and mooring lines. To obtain the mooring line responses, the motions of the platform 

are applied as external loading in terms of forced boundary conditions in a separate 

detailed finite element model of catenary mooring line. Therefore, the dynamic 

interaction among platform and mooring lines are not properly modeled in the 

conventional uncoupled analysis. For platform in deeper waters, mooring lines generally 

contribute significant inertia and damping due to their longer lengths, larger sizes, and 

heavier weights. Accurate motion analysis of platform in deep waters requires that these 

damping values be included.  

Coupling analysis, which includes the mooring lines and platform in a single integrated 

model, is a realistic way to capture the damping due to mooring lines in a consistent 

manner. This approach yields dynamic equilibrium between the forces acting on the 

platform and the mooring line at every time station. The outputs from such analyses will 

be platform motions as well as a detailed mooring line response. The computational 

efforts required for the coupled system analysis considering a complete model including 

all mooring lines are substantial and should, therefore, be considered as a tool for final 

verification purposes. The ability for more accurate prediction of platform motions by 

coupled analysis approach may consequently contribute to a smaller and less expensive 
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mooring and riser system, and hence, a lighter spar platform through a reduction in 

payload requirements. 

The static and dynamic loads are applied, as required by the analysis. This technique is 

more accurate because the stress and stiffness associated with the mean curvature are 

automatically included in the model. Wave and current loads on the mooring lines are 

completed at each time step. The wave height and wave period are specified in the 

numerical data of published literature (Jameel and Ahmad, 2011).  

 

3.3.3 Nonlinearities 

The analysis of spar platform turns out to be a complex procedure, primarily because of 

the uncertainties associated with the environmental loads and system configuration. The 

problem is further compounded by the nonlinearities in the system, leading in some 

cases, to resonant slow drift and high frequency responses. The non-linear behaviour is 

due to the variable submergence, added mass variation, damping, geometric non-

linearity, interaction of mooring line with seabed, and forces acting on the structure. 

 

3.3.4 Mathematical Formulation 

In this section, the dynamic equations for catenary mooring lines and spar hull have 

been derived. Combined equations of motion of spar hull and mooring lines have been 

generated accordingly. Three dimensional models of spar-mooring line system have 

been considered.  

The formation of a nonlinear deterministic model for coupled dynamic analysis includes 

the formulation of a nonlinear stiffness matrix allowing for mooring line tension 

fluctuations subjected to variable buoyancy as well as structural and environmental 
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nonlinearities. The model involves selection and solution of Airy wave theory that 

reasonably represents the water particle kinematics to estimate the drag and inertia for 

all the six degrees of freedom. The static coupled problem is solved by Newton’s 

method. In order to incorporate high degrees of nonlinearities, an iterative time domain 

numerical integration is required to solve the equation of motion and to obtain the 

response time histories. The Newmark- time integration scheme with iterative 

convergence has been adopted for solving the coupled dynamic model. The equation of 

motion describing the spar hull- catenary mooring lines equilibrium between inertia, 

damping, restoring, and exciting forces can be assembled as follows:                                             

                      tFXKXCXM  
                    (3.5) 

Where 

         = 6 DOF structural displacements at each node 

         = Structural velocity vector 

         =Structural acceleration vector 

[M] =Total mass matrix= [M] Spar+ Mooring lines + [M] Added mass 

[C] = Damping Matrix= [C] Structural damping+[C] Hydrodynamic damping 

[K] =Stiffness matrix= [K] Elastic+ [K] Geometric 

Total force on the spar hull and mooring lines is denoted by   tF . The dot symbolizes 

differentiation with respect to time. The total spar platform mass matrix of the system 

consists of structural mass and added mass components. The structural mass of the spar 

platform is made up of elemental consistent mass matrices of the moorings and lumped 

mass properties of the rigid spar hull. The lumped mass properties are assumed to be 

}{X  

 X  

 X
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concentrated at the Center of Gravity (CG) of spar hull. The added mass of the structure 

occurs due to the water surrounding the entire structure. Considering the oscillation of 

the free surface, this effect of variable submergence is simulated as per Wheeler’s 

approach.  

The total stiffness matrix element [K] consists of two parts, the elastic stiffness matrix 

[KE] and the geometrical stiffness matrix [KG]. The major damping is induced due to 

the hydrodynamic effects. It may be obtained if the structure velocity term in the 

Morison equation is transferred from the force vector on right hand side to the damping 

term on the left hand side in the governing equation of motion. The structural damping 

is simulated by Rayleigh damping. It follows the following equation (3.6) in which ξ is 

the structural damping ratio, Φ is modal matrix, ωi is natural frequency, and mi is 

generalized mass. 

     ii

StructuralT mC 2            (3.6) 

Morison’s equation is considered to be adequate in calculating hydrodynamic forces. 

For mooring line element, the ratio of the structure dimension to peak wave length is 

small. The wave loads on a structure are computed by integrating forces along the free 

surface centerline from the bottom to the instant free surface at the displaced position. 

As the diameter of the mooring line is small in comparison to the length of the wave 

encountered, the distortion of the waves by the structure is negligible. 

 

3.4 Resp-Pred ANN Approach 

The main idea is to generate a Resp-Pred approach using ANN to predict response of 

the spar platform. This approach predicts surge, heave, and pitch responses of spar hull 

and top tension of mooring line from environmental and structural parameters. The 
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network is created separately for each response. The response network architecture and 

activation function is same. There are 10-18 sets of data train in these networks. Each 

set of input data having 22 numbers of environmental and structural parameters (Table 

3.1 and Table 3.2). The wave height and wave period of environmental force are 

variable, structural parameters are kept unchanged. The responses of surge, heave, pitch 

and top tension are used as target which is obtained from FEM. Each set of target data 

contains 3000 sec time histories of response that are used for training the network. The 

data is randomly divided, 70% for training, 15% for validation, and 15% for testing. It is 

noted that the input and target data are normalized within the range -1 to 1 by the 

function mapminmax, before training the network. The equation is as follows:  

min

minmax

minminmax )).((
y

xx

xxyy
y 




           (3.7) 

where y is the normalized value, x is the measured value, ymax, ymin, xmax, xmin are 

the maximum and the minimum values of environmental and structural parameters. 

Finally, input and target data are arranged for the neural network by the following 

format: 
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where x is the input matrix, and w is the weight matrix, and y is the target matrix. 

A feed-forward back-propagation neural network with an input layer, one hidden layer 

having 20 neurons with hyperbolic tangent sigmoid activation function, and output layer 

with pure linear activation function, is used. The network weight and bias values are 

randomly initialized and the training algorithm used is the Levenberg-Marquardt back-
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propagation. If the ANN result differs from the desired output response, the network 

generates an error. This error is utilized to adjust the connection weights between the 

target response and output response. The network is developed by trial and error method 

and the weights are calculated on the basis of gradient optimization method. 

Subsequently, the network performance is measured by the mean square error (MSE).  

 

3.5 Hybrid FEM-ANN Approach 

This study  predicts mooring line response long time history from hull response short 

time history of spar platform using hybrid FEM-ANN approach, which was used by 

Guarize, et al. (2007) and Pina, et al. (2010). There are three layers of neural network 

having input, hidden layer with hyperbolic tangent function, and output using pure 

linear function, which is considered in the present study (Figure 3.4).  
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                           Figure 3.4: Neural Network Architecture 
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The responses such as surge, heave, and pitch of spar hull are obtained from FEM. Non-

linear dynamic response time histories are used as input in ANN for training the 

network. Mooring line top tension time history is used in ANN as target for training, 

which is obtained from FEM. In this study FEM based response is trained by ANN for 

short simulation length. The ANN is capable of predicting long response time histories 

in dynamic analysis of spar mooring lines. The hybrid approach is schematically shown 

in Figure 3.5. 

                                    Figure 3.5: Hybrid FEM-ANN approach 

 

In a dynamic analysis, output response depends not only upon their current values but 

also on their previous values. The input for the ANN is formed as follows: 

),(),.......(),(()( tNtxttxtxftr x  

),(),........(),( tNtyttyty y  

)(),........(),( tNtzttztz z                                                                  (3.9) 

where r(.) is the top tension response estimated by ANN; x(t), y(t), and z(t) are surge, 

heave and pitch response time histories, t is the time step, and xN , yN , and zN are the 

number of delays for surge, heave, and pitch.  
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Nonlinear auto regressive network model algorithm (NARX) is used to train ANN 

architecture. If the response of top tension differs from the desired output response, the 

network generates an error. This error is utilized to adjust the connection weights 

between the target response and the output response. The network is developed by trial 

and error method and the weights are calculated on the basis of gradient optimization 

method.  
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CHAPTER 4.0 RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

This chapter presents the technique of how ANN is applied to predict environmental 

forces like maximum wave heights and wave periods from wind speeds of Malaysian 

sea. The environmental forces are used to analyze of spar platform by using FEM 

commercial software ABAQUS/AQUA. For this analysis, a classical spar platform is 

considered in 1018 m water depth. Response time history of spar and mooring lines 

under regular waves as well as with currents are obtained by FEM. The obtained results 

of spar platform responses are used to train the network and predict responses from new 

environmental forces. Also, presented in this chapter is long time history response 

prediction of spar mooring line from short time history response of spar hull using 

ANN.  

 

4.2 Prediction of Environmental Forces by ANN 

The present study involves the prediction of wave parameters from randomly selected 

wind force using ANN. The wind force at 10 m height of sea surface and wave height as 

well as wave period are collected from the South China Sea which is projecting 

Malaysia (WAM data from ECMWF). Maximum wave height and wave period are 

predicted using ANN and wind force is used as input. The training data set consists of 

approximately 1460 samples. Two types of algorithms of ANN are used to create 

network, there are nonlinear autoregressive network with exogenous inputs (NARX) 

and feed-forward back-propagation network (NEWFF). The wave parameters of ocean 

and wind force are used to train NARX and NEWFF networks with 3 and 30 neurons in 
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hidden layer respectively. The number of hidden neurons is obtained by trials and it is 

expected to get a minimum value of means square error (MSE) at the end of a 

sufficiently large number of training iterations.  

 

Figure 4.2: Maximum observed and predicted wave period by NARX network, from 

training data.  

 

Figure 4.1: Maximum observed and predicted wave height by NARX network, from 

training data. 
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An NARX network employed in this study is trained in 436 training epochs. The 

gradient of the performance function is close to 0 after 436 training epochs. Figures 4.1 

and 4.2 shows that well convergence of observed maximum wave height and wave 

period with respect to the predicted wave height and wave period by using NARX 

network respectively. It may be seen that the network’s predictions are close to their 

observed values. In order for the parallel response (iterated prediction) to be accurate, it 

is important that the network be trained so that the errors in the series-parallel 

configuration are very small. Average prediction error is less than ±1% and this model 

can also predict wave parameters with reference to randomly selected wind forces.  

Figure 4.3: Comparison between the observed and NARX network predicted wave 

height, from training data. 

 

A comparison between the observed and nonlinear dynamic network predicted wave 

height and wave period are shown in Figure 4.3 and 4.4, respectively. In these figures, 

training data is plotted for the network outputs and the expected outputs of wave 
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parameters. In Figures 4.3 and 4.4, the results of Y factors predicted by this NARX 

network versus observed values and the corresponding trend lines are shown. 

 

Figure 4.4: Comparison between observed and NARX network predicted wave period 

from training data. 

 

Figure 4.5: Maximum observed and NEWFF network predicted wave height from 

training data. 
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In the current research, a feed-forward back-propagation neural network is introduced, 

which is trained in 364 training epochs. After 364 training epochs, gradient of the 

performance function is adjacent to 0. The convergence of observed maximum wave 

height and wave period with respect to the predicted wave height and wave period by 

using NEWFF network is shown in Figure 4.5 and 4.6, respectively. For this case, 

NEWFF network predicted results are close to observed wave height and wave period, 

although the precision obtained is a little bit poorer than NARX network predicted 

results. This model is able to predict wave parameters with reference to randomly 

selected wind forces.  

Figure 4.6: Maximum observed and predicted wave period by NEWFF network, from 

training data. 

 

The comparison between the observed and NEWFF network predicted wave height and 

wave period is explained in Figure 4.7 and 4.8 respectively. In these figures, training 

data is plotted for the network outputs and the expected outputs of wave parameters. 

The results of Y factors predicted by this NEWFF network versus observed values and 

the corresponding trend lines are plotted in Figure 4.7 and 4.8. 
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Figure 4.7: Comparison between observed and NEWFF network predicted wave height, 

from training data. 

 

Figure 4.8: Comparison between observed and NEWFF network predicted wave period 

from training data. 
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The overall accuracies of the predictions are found to be good both cases, NARX and 

NEWFF networks. Error criteria are evaluated which are shown in Table 4.1 as 

statistical parameters of the network outputs and the expected outputs, from the training 

data. The NARX network results are better compared to the NEWFF network 

predictions of wave height and wave period as revealed in the higher value of the 

correlation coefficient 0.996 and 0.989, respectively. Correlation coefficient of NEWFF 

network predicted wave height and wave period is 0.741 and 0.731, respectively.  

Table 4.1 Statistical Comparison between predicted and observed wave parameters 

incorporating different algorithms 

Algorithm Parameter MaxE MinE StdevE RMSE Bias SI R 

NARX Wave 

Height  

(m) 

0.3368 -0.4832 0.0662 0.0673 0.0123 0.052 0.996 

Wave 

Period  

 (sec) 

0.6969 -2.1046 0.2078 0.2106 0.0344 0.032 0.989 

NEWFF Wave 

Height  

(m) 

2.403 -1.3215 0.5058 0.5057 0.0009 0.393 0.741 

Wave 

Period  

 (sec) 

5.6458 -2.5775 0.8469 0.8466 0.0024 0.127 0.731 

Here RMSE is root mean square error, SI is scatter index, R is correlation coefficient. 

Table 4.2 shows that prediction of wave parameter from randomly selected wind force 

in different algorithms. From Table 4.1, and Figures 4.9 and 4.10 display that 

predictions of wave height and wave period for NARX network showed good statistical 

performance, despite some discrepancies between the predicted and observed wave 

height and wave period from new randomly selected wind force. On the other hand, a 

NEWFF network result of statistical performance is not good, but prediction of wave 

height and wave period from new randomly selected wind force is show good 

performance.  
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Table 4.2: Prediction of wave parameters from randomly selected wind force by 

incorporating different algorithms 

 

 

Wind 

Force 

(m/sec) 

Wave 

Height  

(m) 

(NEWFF) 

Wave Height 

(m) (NARX) 

Wave 

Height  

(m) 

(Observe) 

Wave Period  

(sec) 

(NEWFF) 

Wave Period  

(sec) 

(NARX) 

Wave 

Period  

(sec) 

(Observe) 

11.25 1.977 2.746 1.89 5.549 6.008 5.53 

10.57 2.230 2.872 1.86 6.215 6.591 5.67 

10.04 2.234 2.865 2 6.406 6.250 5.83 

14.43 3.766 2.875 3.8 7.689 8.094 7.58 

13.86 3.633 2.790 4.17 7.456 7.431 7.96 

12.52 2.619 2.689 2.5 6.267 7.030 6.2 

11.73 2.502 2.590 2.69 6.289 6.791 6.55 

10.98 2.400 2.610 2.55 6.378 6.962 6.62 

13.93 3.653 2.643 3.7 7.469 7.194 7.38 

13.47 3.623 2.570 3 7.450 6.843 6.19 

9.86 2.194 2.475 2.47 6.337 6.568 7.5 

8.03 3.482 3.584 3.63 9.109 9.852 9.95 

9.79 2.107 2.518 2.23 6.193 7.201 6.46 

5.04 1.146 2.609 1.63 6.235 7.490 7.01 

8.7 1.899 1.642 1.74 6.143 6.826 6.23 

14.22 4.097 3.744 4.14 8.149 8.045 8.26 

10.27 2.736 2.675 2.95 7.354 7.387 7.34 

10.51 3.231 2.979 3.02 7.218 7.466 7.49 

11.23 3.008 2.704 3.15 7.597 7.511 7.37 

13.8 3.627 3.735 3.66 7.452 7.532 7.62 
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Figure 4.9: Variation of observed and predicted wave height from randomly selected 

wind force. 
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Figure 4.10: Variation of observed and predicted wave period from randomly 

selected wind force. 
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4.3 Finite Element Analysis of Spar Platform 

In this part of the study, a fully coupled analysis of spar hull and mooring line as a 

single integrated model is performed. This approach carries dynamic equilibrium 

between the forces acting on the spar hull and the mooring line at every time step. It 

gives true behaviour of spar hull and mooring line system and an accurate way to 

capture the damping. The ability for more accurate prediction of spar platform motions 

can be obtained by fully coupled analysis approach. The selected configuration of the 

spar platform is analysed under loading by regular wave as well as regular wave plus 

current and its structural response behaviour is studied. Integrated fully coupled analysis 

of spar hull and mooring line system is performed for 1018 m water depth. The 

application example is associated with the prediction of response of spar hull and 

mooring line, wave height 7.0 m and wave period 12.5 sec is considered for both cases 

and current speed is 0.9 m/sec. The wave data is considered for the response analysis in 

the Morison’s regime and the small time step is considered to ensure  statistical stability 

of the structure and accuracy of the solution (Jameel et al., 2011). 

 

4.3.1 Dynamic Response in Regular Wave  

The response analysis of spar hull and mooring lines subjected to regular wave in deep 

water conditions have been performed by FEM. The results are obtained at deck level 

which is plotted at both the time history 5000 to 6000 sec and up to 12000 sec. Relative 

valuation for surge, heave, pitch motion responses as well as top tension are carried out 

in terms of time history and spectral density. Statistical analysis results in terms of max, 

min, mean and standard deviation are given in Table 4.3.  
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                           Figure 4.11: Surge response time history (5000-6000 sec) 
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                      Table 4.3: Statistical response of spar hull and mooring lines 

 

4.3.1.1 Surge Response 

The surge response of spar platform under regular waves is intensely influenced at the 

deck level. The surge response time history at the deck level is shown in Figures 4.11 

and 4.13. The peak of surge response ranges from +18.09 m to -17.25 m for wave 

height 7.0 m and wave period 12.5 m which is shown in Table 4.3.  

Wave Ht.=7.0 m 

Wave Pr.=12.50 sec 
Max Min Mean 

Standard 

deviation 

Surge (m) +18.09 -17.25 0.41 4.66 

Heave (m) +1.56 -1.87 0.03 0.38 

Pitch (rad) +0.12 -0.11 -0.00004 0.04 

Mooring line Tension (N) 1.70E+07 1.12E+07 1.62E+07 3.08E+05 
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                      Figure 4.12: Surge spectral density for 5000-6000 sec 
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At the deck level, the behaviour of surge is found to be mostly periodic. Hence a single 

dominant peak arises in surge response at pitching frequency which can be observed 

from Figure 4.12. The surge and pitch response occur simultaneously and attracts wave 

energy similar to the pitch frequency. The surge response at the deck level is principally 

controlled by the pitching motion of the hull with insignificant excitation of surge mode. 

It is mainly due to coupling of surge and pitch.  

 

 

 

 

 

 

 

The spectral density as shown in Figure 4.12 shows the contribution of two frequencies. 

At a frequency of 0.01 rad/sec, the small oscillation of the harmonic response takes 

place due to the natural frequency. The spectral density shows clearly peak frequency at 

0.14 rad/sec. It is clear that effect of non-linearity is not so strong on surge response. 

Figure 4.13 shows that 0 to 12000 sec time history of surge response behaviour is 

typically regular. At the end of 9000 sec of surge response time history, the platform 

oscillations takes place in regular intervals with maximum and minimum values of 

+5.09 and -4.84 m, respectively.  
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                        Figure 4.13: Surge response time history (0-12000 sec) 

-20

-15

-10

-5

0

5

10

15

20

0 2000 4000 6000 8000 10000 12000

S
u
rg

e 
R

es
p

o
n
se

 (
m

) 

Time (sec) 

Wave height 7.0 m, Wave period 12.5 sec 

 
                   Figure 4.14: Surge spectral density for 9000-10000 sec 
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The spectral density of the surge time history from 9000 to 10000 sec shows one peak 

(Figure 4.14) at 0.128 rad/sec. This peak frequency occurred due to natural frequency of 

surge. While the spar hull undergoes a static off-set at time state 9000 sec, the coupled 

stiffness matrix of the spar mooring system significantly changes. The forces in the 

mooring lines and their geometry changes substantially. It does happen so that the 

mooring lines become taut, when the system oscillates about the static off-set position. 

As a result nonlinearities and regularity are more appreciable. 
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                          Figure 4.15: Heave response time history (5000-6000 sec) 
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4.3.1.2 Heave Response 

The spar mooring lines are directly affected by heave (vertical motion) response. Figure 

4.15 shows the heave responses time history (5000-6000 sec) under regular wave. The 

time history shows a regular phenomenon with the cluster of reversals occurring at 

fluctuating time intervals. The statistical summary of heave response, which is shown in 

Table 4.3, illustrates that the maximum and minimum responses are 1.56 m and –1.87 

m, whereas the mean value is 0.03 and standard deviation is 0.38. Fluctuation of heave 

response from small to large amplitude with respect to the mean position and iteration 

of the similar trend forwards all through the time history is shown in Figure 4.15. The 

fluctuations in amplitude of the heave response gradually increases and decreases from 

tapered to wider shape by 30 % and vice versa.  

Figure 4.16 shows the spectral density of the coupled heave from 5000-6000 sec time 

history under regular wave. The spectral density of heave response shows a peak at 

0.262 rad/sec and the natural frequency of heave at 0.384 rad/sec.  
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                         Figure 4.17: Heave response time history (0-12000 sec) 
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                    Figure 4.16: Heave spectral density for 5000-6000 sec 
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Figure 4.17 shows the entire time history of heave response under unidirectional regular 

waves. According to the figure, the platform oscillation occurs in regular intervals and 

from the qualitative diagram it is seen that the time histories of heave response 

gradually increase and decrease until 5000 sec. After this time period, the values 

significantly decrease due to damping of mooring lines. From 8500 sec onward the time 
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                   Figure 4.18: Heave spectral density for 9000-10000 sec 
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history goes to steady state condition, where the maximum and minimum values are of 

+0.19 and -0.15 m, respectively.  

The spectral density of heave response from 9000-10000 sec time history is shown in 

Figure 4.18. It is noted that there is a solitary peak at the system’s natural frequency. 

The peak occurs at 0.25 rad/sec which is close to another peak at 0.205 rad/sec and the 

natural frequency at 0.384 rad/sec.  

 

4.3.1.3 Pitch Response 

The pitch (rotational) response of coupled spar platform under regular wave is shown in 

Figure 4.19. The time history from 5000-6000 sec shows regular oscillations ranging 

from  0.09 rad and reducing to small ordinates of  0.06 rad. The pitch response is 

less sensitive to the form of damping as shown in the figure 4.19. The statistical 

summary of pitch response is shown in Table 4.3. The maximum and minimum values 

are +0.12 and -0.11 rad respectively. The mean value is almost zero and the standard 

deviation is 0.04 rad. The value of mean close to zero indicates the spar platforms 
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                        Figure 4.19: Pitch response time history (5000-6000 sec) 
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                     Figure 4.20: Pitch spectral density for 5000-6000 sec 
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regular fluctuations about the middle position. The surge and pitch response are 

significantly affected at the deck level.  

Figure 4.20 shows the spectral density of pitch response 5000-6000 sec time history at 

deck level. The pitch response behaviour is similar to the surge response time history. 
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                      Figure 4.21: Pitch response time history (0-12000 sec) 
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                     Figure 4.22: Pitch spectral density for 9000-10000 sec 
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The spectral density of pitch response shows a peak at 0.121 rad/sec, which is the same 

for surge response caused by wave force on the spar platform.  
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Figure 4.21 shows the total time history of pitch response under regular wave. 

Fluctuation of the pitch response is in regular amplitude about the mean position and 

iterating the same trends. On the view of schematic, fluctuating response increases until 

6000 sec due to wave loading. After the time stated, the values significantly reduce due 

to damping of the mooring lines. The damping variations produce changes in the pitch 

response similar to those in the surge response predictions. From 9000 sec onwards, the 

time history moves to the steady state condition, where the maximum and minimum 

pitch responses are +0.04 and -0.04 respectively. The spectral density of pitch response 

time history under regular wave from 9000-10000 sec is shown in Figure 4.22. The peak 

arises at 0.128 rad/sec which is similar to the surge response spectral density as shown 

in figure 4.14.  

 

4.3.1.4 Top Tension Response 

The spar mooring lines have a significant function in the nonlinear coupled dynamic 

analysis. In the finite element model, 4 catenary mooring lines are connected at the 

fairlead position of the spar hull and attached to the seabed. The spar hull and mooring 

lines are significantly affected due to the regular wave loads. Table 4.3 shows statistical 

responses where it is seen that the maximum and minimum tensions on the mooring 

lines are 1.70E07 N and 1.12E07 N, respectively. The top tension time history of 

mooring line 1 under regular waves is influenced by surge and heave response, (Figure 

4.23). Mooring line 1 and 3 are located opposite to the direction of wave propagation. 

Mooring line 1 potentials the maximum tension to tolerate surge response in the onward 

direction, while mooring line 3 releases pretension. For both of these mooring lines 

under the regular wave, periodic behaviour is dominates. The spectral density of tension 

5000-6000 sec time history is shown in Figure 4.24. The peak frequency occurs at 0.128 
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Figure 4.24: Maximum tension spectral density of mooring line-1 for 5000-

6000 sec 
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         Figure 4.23: Maximum tension time history of mooring line-1 (5000-6000 sec) 
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rad/sec, which is close to the natural frequency at 0.24 rad/sec. It is anticipated that 

heave may considerably influence the mooring tension response. Surge response also 

causes increase in tension.  
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          Figure 4.25: Maximum tension time history of mooring line-1 (0-12000 sec) 
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Figure 4.26: Maximum tension spectral density of mooring line-1 for 9000-10000 sec 
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Figure 4.25 shows the maximum tension of mooring line-1 (0-12000 sec) time history 

under unidirectional regular waves. According to figure, the mooring line oscillation 

occurs in regular intervals and on the view of qualitative diagram the time histories of 

mooring tension high fluctuating occurs up to 7500 sec. 
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After the time state, the values fluctuations in the value of tension are regular due to 

damping provided by the mooring lines. The spectral density of mooring tension 9000-

10000 sec time history is shown in Figure 4.26. The peak frequency occurs at 0.128 

rad/sec but absence of natural frequency.  

 

4.3.2 Dynamic Response in Regular Wave and Current 

The fully coupled dynamic response analysis of spar hull and mooring lines under 

regular wave and current in deep water conditions have been performed by FEM. 

Maximum response of the spar platform occurs at the deck level. The obtained results 

are plotted at both the time histories, i.e.  5000 to 6000 sec and up to 12000 sec, at the 

same level. Relative valuation for surge, heave, pitch motion responses as well as top 

tension is carried out in terms of time history and spectral density. Statistical analysis 

results of spar hull and mooring lines in terms of max, min, mean, and standard 

deviation are given in Table 4.4. 

                    Table 4.4: Statistical response of spar hull and mooring lines 

 

 

Wave Ht.=7.0 m 

Wave Pr.=12.50 sec 

Current speed =0.9 m/sec 

Max Min Mean Standard deviation 

Surge (m) 13.85 -9.49 1.36 3.61 

Heave (m) 1.48 -0.77 0.04 0.18 

Pitch (rad) 0.08 -0.08 -0.001 0.03 

Mooring line Tension (N) 1.70E+07 1.12E+07 1.63E+07 3.10E+05 



 

 

 

77 

 

 

                       Figure 4.27: Surge response time history (5000-6000 sec) 
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                     Figure 4.28: Surge spectral density for 5000-6000 sec 
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4.3.2.1 Surge Response  

The wave loads along with current loads have been considered in the analysis of spar 

hull and mooring lines. In the Figure 4.27, the surge response (5000-6000 sec) time 

history is obtained at the deck level. The maximum and minimum surge responses are 

+13.85 and -9.49 m respectively, as shown in Table 4.4. 
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                        Figure 4.29: Surge response time history (0-12000 sec) 
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The surge response at the deck level is found to be mostly periodic. Hence, a single 

dominant peak arises in surge response at pitching frequency which can be observed 

from Figure 4.28. The surge and pitch responses occur simultaneously and attracts wave 

and current energy similar to the pitch frequency. The surge response at the deck level is 

principally controlled by the pitching motion of the hull with insignificant excitation of 

surge mode. It is mainly due to coupling of surge and pitch. Figure 4.28 shows the 

spectral density of surge response for 5000-6000 sec time history. The spectral density 

shows clearly peak frequency at 0.128 rad/sec. It is clear that the effect of non-linearity 

is not so strong on surge response. Figure 4.29 shows that from 0 to 12000 sec time 

history of surge response, oscillation is regular. The static effect of current diminishes 

the dynamic fluctuations significantly. This adverse fluctuation continues throughout 

the time history with mild fluctuations in the mean value. At the end of 12000 sec of 

surge response time history, the platform oscillations take place in steady state condition 

due to damping of the mooring line. The spectral density of the surge time history from 

9000 to 10000 sec shows one peak (Figure 4.30) at 0.128 rad/sec. The surge response 

oscillates at frequency equal to that of the wave force. In case of current, mooring lines 
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                   Figure 4.30: Surge spectral density for 9000-10000 sec 
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get taut and accordingly the stiffness matrix gets modified leading to large number of 

stress reversals. This is mainly due to the high frequency in surge response.  

 

4.3.2.2 Heave Response 

The heave response shows a significant change in behaviour as compared to the case 

where current is not considered. Figure 4.31 shows the heave responses time history 

(5000-6000 sec) under regular wave and current loads. The time history shows regular 

phenomenon with the cluster of reversals occurring at fluctuating time intervals. The 

statistical summary of heave response which is shown in Table 4.4 shows that the 

maximum and minimum responses are 1.48 m and –0.77 m, whereas the mean value is 

0.04 and standard deviation is 0.18. Fluctuation of heave response from small to large 

amplitude with respect to the mean position, and iteration of the similar trend forwards 

all through the time history is shown in Figure 4.31. The fluctuations of heave response 

gradually increase and decrease from taper to widen by 30 % and vice versa. 
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                   Figure 4.32: Heave spectral density for 5000-6000 sec 
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                       Figure 4.31: Heave response time history (5000-6000 sec) 
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Figure 4.32 shows the spectral density of the coupled heave for 5000-6000 sec time 

history under regular waves and current loads. There are several peaks shown but the 

maximum peak occurs at 0.24 rad/sec which is close to the other frequency of heave at 

0.22 rad/sec. Another small peak occurs at 0.383 rad/sec as a natural frequency. Figure 

4.33 shows the entire time history of heave response under unidirectional regular waves. 

According to the figure, the platform’s dynamic oscillation occurs in regular intervals. 
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                         Figure 4.33: Heave response time history (0-12000 sec) 
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                   Figure 4.34: Heave spectral density for 9000-10000 sec 
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After 12000 sec of heave response, the time history moves to steady state condition due 

to damping provided by the mooring lines. The spectral density of heave response from 

9000-10000 sec time history is shown in Figure 4.34. The frequency peak position is 

same as previous Figure 4.32 but unlike magnitude of spectrum.  
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                      Figure 4.35: Pitch response time history (5000-6000 sec) 
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4.3.2.3 Pitch Response  

The rotational response pitch of spar hull subjected to sea waves and current are 

illustrated in Figure 4.35. The time history 5000-6000 sec shows regular oscillations 

ranging from  0.07 rad and reducing to small ordinates of  0.03 rad. The pitch 

response is less sensitive to the form of damping as shown in the figure. The statistical 

summary of pitch response is shown in Table 4.4 with maximum and minimum values 

of +0.08 and -0.08 rad respectively. The mean value is -0.001 rad and the standard 

deviation is 0.03 rad. The surge and pitch responses are significantly affected duly at 

deck level of spar hull, as expected. 

  

Figure 4.36 shows the spectral density of pitch response 5000-6000 sec time history at 

deck level. The pitch response behaviour is similar to the surge response time history. 

The spectral density of pitch response shows a peak at 0.128 rad/sec which is the same 

position of surge response caused by wave and current force on the spar platform. 

Figure 4.37 shows the total time history of pitch response subjected to wave and current 
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                      Figure 4.36: Pitch spectral density for 5000-6000 sec 
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                         Figure 4.37: Pitch response time history (0-12000 sec) 
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loads. Fluctuation of the pitch response is irregular in amplitude about the mean position 

but iterates the same trend. 

The damping variations produce changes in the pitch response similar to those in the 

surge response predictions. Onwards of 12000 sec, forwards the time history moves to 

the steady state condition due to the damping of the mooring lines. 
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                    Figure 4.38: Pitch spectral density for 9000-10000 sec 
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The spectral density of pitch response time history subjected to wave and current for 

9000-10000 sec is shown in Figure 4.38. The peak arises at 0.128 rad/sec which is 

similar to the surge response spectral density. 

 

 

 

 

 

 

 

 

4.3.2.4 Top Tension Response  

In the finite element model, 4 numbers of catenary mooring lines are connected at the 

fairlead position of the spar hull and attached at the seabed. The spar hull and mooring 

lines are significantly affected by the regular wave and current loads. Table 4.4 shows 

statistical responses; the maximum and minimum tension of mooring lines are 1.70E07 

N and 1.12E07 N respectively. The top tension time history of mooring line 1 under 

regular waves and current is influenced by surge and heave responses (Figure 4.39). 

Mooring line 1 and 3 are located opposite the direction of wave propagation. Mooring 

line 1 potentials the maximum tension to tolerate surge response in the onward 

direction, while mooring line 3 releases pretension. For both of these mooring lines 

under the regular wave with current periodic behaviour is dominates. 
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Figure 4.40: Maximum tension spectral density of mooring line-1 for 

5000-6000 sec 
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          Figure 4.39: Maximum tension time history of mooring line-1 (5000-6000 sec) 
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The spectral density of tension 5000-6000 sec time history is shown in Figure 4.40. The 

peak frequency occurs at 0.134 rad/sec but absence of the natural frequency. It is 

anticipated that heave may considerably influence the mooring tension response. Surge 

response also causes increase in tension. 
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    Figure 4.41: Maximum tension time history of mooring line-1 (0-12000 sec) 
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Figure 4.42: Maximum tension spectral density of mooring line-1 for 9000-10000 sec. 
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Figure 4.41 shows the maximum tension of mooring line-1 (0-12000 sec) time history 

under unidirectional regular waves and current loads. According to the figure, the 

mooring line oscillations occur in dynamic in regular intervals due to wave and current 

loads. At the end of 10000 sec, tension time history oscillation moves to steady state 

condition due to damping by mooring lines. The spectral density of mooring tension 

9000-10000 sec time history is shown in Figure 4.42. The peak frequency occurs at 

0.128 rad/sec but absence of natural frequency.  



 

 

 

87 

 

4.4 Resp-Pred ANN Approach for Response Prediction of Spar Platform 

The present study involves the response prediction of the spar platform from newly 

selected environmental forces like wave height and wave period is obtained using 

ANN. The obtained finite element results are used as target and maximum 

environmental forces and mechanical parameters are used as inputs in training the 

network. Different networks are created according to the response of spar platform 

such as surge, heave, pitch, and top tension response. 10-18 sets of data are used for 

training the network and each set consists of approximately 3000 sec time history as 

target as well as 22 mechanical and environmental parameters as inputs. There are 

three layers of all neural networks consisting of input, target, and hidden layer. In this 

study, the optimum neurons (3 to 20) in hidden layer of the network are obtained by 

trial and error method. Feed-forward back-propagation algorithm is used for creating 

each network and hyperbolic-tangent function is used as activation function in hidden 

layers. The root mean square error (RMSE) and correlation coefficient (R) are used as 

error function and predictive ability of the network respectively, which is shown in 

Table 4.5.   

Table 4.5: Statistical comparison between predicted and FEM results of Spar mooring 

responses 

Parameter MaxE MinE StdevE RMSE Bias R 

Surge response (m) 2.564 -2.749 0.750 0.757 0.1005 0.9819 

Heave response (m) 0.119 -0.128 0.041 0.041 -0.0002 0.9919 

Pitch response (rad) 0.004 -0.003 0.001 0.001 0.0001 0.999 

Top tension (N) 116230 -88155 35704 35839 3307.5 0.997 
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4.4.1 Spar Hull Responses 

4.4.1.1 Surge Response 

 The surge response prediction of spar hull to12.65 m wave height and 11.39 sec wave 

period is considered for validating the network in this study. Figure 4.43 shows that the 

convergence of the prediction by Resp-Pred approach with respect to FEM results of the 

surge response of spar hull. It may be seen that prediction response by the Resp-Pred 

approach is close to the FEM results. A comparison between the FEM and ANN 

predicted surge response is shown in Figure 4.44. In this figure, the FEM and the 

predicted results are plotted as scatter plot for 12.65 m wave height and 11.39 sec wave 

period. The overall Resp-Pred approach performance is found to be good for predicting 

response. The results of Y factors predicted by the approach versus FEM results and the 

corresponding trend lines are shown in figure 4.44.  

Figure 4.43: Predicted surge response and FEM results time history for 12.65 m wave 

height and 11.39 sec wave period. 
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Figure 4.44: Comparison between predicted and FEM results of surge response for 

12.65 m wave height and 11.39 sec wave period  

 

Table 4.6 shows the statistical predicted surge response and FEM results for 12.65 m 

wave height and 11.39 sec wave period. The Resp-Pred approach results are better for 

predicting surge response as revealed in the higher value of the correlation coefficient 

0.9819.  This model can also predict surge response from newly selected environmental 

force and mechanical parameter which is shown in Figure 4.45. Predicted surge 

response 3000 sec time history by Resp-Pred approach for 9.65 m wave height and 

10.10 sec wave period.  

Table 4.6: Statistical surge response of ANN and FEM results for 12.65 m wave height 

and 11.39 sec wave period. 

Surge 

Response (m) 
Max Min Mean 

Standard 

deviation 

FEM 11.279 -9.497 1.017 3.741 

Resp-Pred  11.311 -10.154 0.916 3.917 

Difference (%) 0.29 6.478 9.93 4.477 
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Figure 4.45: Surge response predicted time history for 9.65 m wave height and 10.10 

sec wave period. 

 

4.4.1.2 Heave Response 

In this study, environmental force like wave height and wave period as well as 

mechanical parameters are considered to predict heave response of spar hull. Figure 

4.46 shows the comparison between heave responses predicted and FEM results for 9.65 

m wave height and 9.94 sec wave period. According to the figure it can be explained 

that the Resp-Pred approach predicted results which are close to the FEM results. Figure 

4.47 shows that the scatters plot of heave response for 9.65 m wave height and 9.94 sec 

wave. Along the horizontal axis FEM results are plotted and the predicted heave 

response is shown along the vertical axis.  

-15

-10

-5

0

5

10

15

20

0 500 1000 1500 2000 2500 3000

S
u
rg

e 
R

es
p

o
n
se

 (
m

) 

Time (sec) 

ANN FEM



 

 

 

91 

 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

2500 2600 2700 2800 2900 3000

H
ea

v
e 

R
es

p
o

n
se

 (
m

) 

Time (sec) 

ANN FEM

y = 0.9979x - 1E-04 

R² = 0.9998 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

H
ea

v
e 

R
es

p
o

n
se

A
N

N
 (

m
) 

Heave ResponseFEM (m) 

Figure 4.46: Heave response of predicted and FEM time history for 9.65 m wave height 

and 9.94 sec wave period. 

 

The overall performance of the Resp-Pred approach is found to be good for predicting 

the response. The results of Y factors predicted by the Resp-Pred approach versus FEM 

results and the corresponding trend line are shown in figure 4.47.  

Figure 4.47: Comparison between heave response of predicted and FEM for 9.65 m 

wave height and 9.94 sec wave period 
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The statistical heave response for 9.65 m wave height and 9.94 sec wave period is 

shown in table 4.7, which was predicted by Resp-Pred approach as well as FEM. The 

Resp-Pred approach results are better for predicting heave response as revealed in the 

higher value of the correlation coefficient (0.9919). RMSE are used to evaluate 

performance of this approach and the approach can predict heave response from newly 

selected environmental force and mechanical parameter as shown in Figure 4.48. The 

heave response 3000 sec time history is predicted for 6.65 m wave height and 8.25 sec 

wave period. The heave response fluctuates about the mean position oscillating from 

smaller to larger amplitudes and repeating the same trend onwards all through the time 

series. The fluctuations gradually decrease from broad to narrow by 20 %. 

 

Table 4.7: Statistical heave response of ANN and FEM for 9.65 m wave height and 9.94 

sec wave period 

Heave Response (m) Max Min Mean 
Standard 

deviation 

FEM 0.675 -0.668 0.033 0.250 

Resp-Pred 0.574 -0.575 0.033 0.222 

Difference (%) 14.96 13.92 0.480 11.2 
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Figure 4.48: Heave response of predicted time history for 6.65 m wave height and 8.25 

sec wave period 

  

4.4.1.3 Pitch Response 

The Resp-Pred approach is used for validating the pitch response results for 9.65 m 

wave height and 9.94 sec wave period in this study. Figure 4.49 shows that the 

convergence of the predicted values by Resp-Pred approach and those by the FEM 

results of the pitch response of spar hull.  As can be observed, the results predicted by 

Resp-Pred approach converge very well with those obtained from FEM results that are 

almost unseen in the figure. Figure 4.50 shows that the comparison between predicted 

and FEM results of pitch response. Along the horizontal axis FEM results are plotted 

and the predicted pitch response is shown along the vertical axis which is predicted for 

9.65 m wave height and 9.94 sec wave period. The overall pitch response network’s 

performance is found to be good for prediction. The results of Y factors predicted by 

this pitch-network versus FEM results and the corresponding trend line are shown in 

figure 4.49. 
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Table 4.8 shows the statistical pitch responses of Resp-Prop approach and FEM results 

for 9.65 m wave height and 9.94 sec wave period. The Resp-Prop approach results are 

better for predicting pitch response as revealed in the higher value of the correlation 

coefficient of 0.999.  Average prediction error is less than ±1% and this approach can 

predict pitch response for newly selected environmental force and mechanical 

Figure 4.49: Pitch response of predicted and FEM time history for 9.65 m wave 

height and 9.94 sec wave period 

Figure 4.50: Comparison between pitch response of predicted and FEM for 9.65 

m wave height and 9.94 sec wave period 
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parameter, which is shown in Figure 4.51. The pitch response 3000 sec time history is 

predicted for 12.65 m wave height and 11.39 sec wave period. The response shows peak 

value of 0.9 rad. 

Table 4.8: Statistical pitch response of ANN and FEM for 9.65 m wave height and 9.94 

sec wave period 

 

 

Figure 4.51: Pitch response of predicted time history for 12.65 m wave height and 11.39 

sec wave period 
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Max Min Mean 

Standard 

deviation 

FEM 0.055 -0.057 0.00026 0.021 

Resp-Pred 0.057 -0.057 0.00019 0.021 

Difference (%) 3.56 0.287 24.038 0.173 
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4.4.2 Spar Mooring Response 

4.4.2.1 Maximum Top Tension 

Figure 4.52 shows that top tension predicted response and obtained FEM results are 

converged. The top tension response prediction of spar hull for validating the network 

12.65 m wave height and 11.39 sec wave period is considered in this study. As can be 

observed, the results predicted by Resp-Pred approach converge very well with those 

obtained from FEM results. A comparison between the FEM and ANN predicted top 

tension response is shown in Figure 4.53. In this figure, the FEM and ANN predicted 

results are plotted for 12.65 m wave height and 11.39 sec wave. The results of Y factors 

predicted by the Resp-Pred approach versus FEM results and the corresponding trend 

line are shown in figure 4.53. 

  

 

 

Figure 4.52: Mooring line top tension response of predicted and FEM time history for 

12.65 m wave height and 11.39 sec wave period 
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Table 4.9 shows the statistical top tension response of ANN and FEM results for 12.65 

m wave height and 11.39 sec wave period. The Resp-Pred approach results are better for 

predicting top tension response as revealed in the higher value of the correlation 

coefficient of 0.997. The Resp-Pred approach can predict top tension response from 

newly selected environmental force and mechanical parameter, which is shown in 

Figure 4.54. The top tension response 3000 sec time history is predicted for 11.30 m 

wave height and 14.15 sec wave period. 

Table 4.9: Statistical mooring line top tension response of ANN and FEM for 12.65 m 

wave height and 11.39 sec wave period 

Mooring line 

Tension (N) 
Max Min Mean 

Standard 

deviation 

FEM 17062834.5 11182200 16266318 463666.5 

Resp-Pred 17085820.59 11182323.9 16263011 463165.8 

Difference (%) 0.13 0.001 0.020 0.108 

Figure 4.53: Comparison between top tension response of predicted and FEM for 12.65 

m wave height and 11.39 sec wave period 
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Figure 4.54: Top tension response of predicted time history for 11.30 m wave height 

and 14.15 sec wave period 

 

4.5 Hybrid FEM-ANN Approach for Response Prediction  

In finite element analysis, 6m wave height and 14 sec wave period have been 

considered as sea-state. These results have been used to train the network. An MLP 

network having 3-5-1 neurons i.e. 3 neurons in the input layer, 5 neurons in the hidden 

layer, and 1 neuron in the output layer. Non-linear time histories of 3000 sec for surge, 

heave, and pitch are used as input in ANN for training the network. Top tension time 

histories are used in ANN as target for training. After training the network response of 

mooring line top tension can predict long time history. The ability for more accurate 

prediction of platform motions by hybrid FEM-ANN approach consequently contribute 

to a smaller and less expensive spar-mooring system.  
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Figure 4.55: Maximum Tension time history of mooring line, FEM vs ANN 

 

 

3000 sec time history is used to train the neural network in the hidden layer. Three kinds 

of time steps have been randomly divided up to 3000 sec time series data. Time series 

2100 sec (70%) is used for training, 450 sec (15%) for validation, and 450 sec for 

testing (15%). Training set of data is used to adjust the network according to means 

square error. The validation set is used to minimize the data over fitting and testing set 

is used for measuring the network performance during and after the training. 

Consequently response/output of mooring line top tension is predicted after completing 

the training from 3001 sec to 14000 sec, which is more than 3 hours. Maximum top 

tension predict by ANN is 1.544E7 N, whereas FEM predicted value is 1.625E7 N. 

Figure 4.55 shows the comparison between predicted ANN results and the time 

consuming FEM results for 10300 to 10600 sec. The results of ANN converge well with 

the FEM outputs. The error in prediction of response histories for floating spar platform 

is presented in Figure 4.56. 

Figure 4.55: Maximum Tension time history of mooring line, FEM vs ANN 
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        Table 4.10: Statistical mooring line top tension response of ANN and FEM  

 

The back propagation neural network minimizes the error by trial and error process. It is 

observed that the combination between 4 sec delay for surge, heave, and pitch motions 

and 10-5 neurons in the hidden layer quickly minimize the mean square error. From the 

analysis it is clear that the error is insignificant for the structural solution of floating 

spar platform.  

 

 

 

 

 

 

 

Numerical 

Approach 

Mean Value Standard 

Deviation 

Maximum Minimum 

FEM 1.625E+07 2.406E+05 1.684E+07 1.567E+07 

Hybrid  FEM-

ANN  

1.626E+07 2.845E+05 1.710E+07 1.544E+07 

Difference (%) 0.071 15.45 1.52 -1.44 

Figure 4.56: Error of ANN results and FEM 
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Response calculation of spar mooring line for 3000 sec using FEM requires minimum 

time of 15 hours on Dell Workstation Precision T7500. The computational efforts 

needed to predict spar platform response using ANN is very small compared to a 

complete finite element-based simulation. It takes just 20 min on Pentium (R) 4 CPU 

3.0 GHz computer.  
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CHAPTER 5.0 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Introduction 

This chapter concludes the prediction of waves and response of spar platform using 

neural networks. It also includes conclusions from coupled finite element analysis of 

spar platform under waves, current forces, considering various nonlinearities. The 

integrated coupled analysis considered the mooring lines and hull as a single system. 

Future research is also suggested for through behaviour understanding of floating spar 

platform.   

 

5.2 Conclusions 

The following outcomes are concluded from this study: 

1) The neural network approach is applied to predict maximum wave height and wave 

period from randomly selected wind forces of Malaysian sea. There are two 

different models considered for predicting waves, namely nonlinear auto regressive 

network model (NARX) and feed-forward back-propagation neural network model 

(NEWFF). The comparison between observed and predicted wave height and wave 

period are investigated incorporating NARX and NEWFF models. Different levels 

of accuracy in terms of the root mean square error, correlation coefficient and scatter 

index are achieved.  

 

a) The NARX network model’s performance is significantly better than those of 

the NEWFF network model, when wave prediction is made within the range of 

training data. The NARX network results are better compared to the NEWFF 
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network in predicting wave height and wave period as revealed in the higher 

value of the correlation coefficient 0.996 and 0.989, respectively. For NEWFF 

network the correlation coefficient of wave height and wave period is 0.741 and 

0.731, respectively. 

b) For predicting waves outside the range of training data, NEWFF network 

performance is better than NARX network model.  

c) The overall network performance is found to be good for predicting waves, 

which is also used for predicting response of spar platform by FEM and ANN.  

 

2) The effects of coupling on spar hull with mooring lines are precisely investigated 

using time domain coupled dynamic analysis program.  

a) The integrated coupled model clearly shows its significance in terms of 

hydrodynamic damping on mooring lines.  

b) There is a major difference in responses obtained with and without current 

forces on mooring lines.  

c) The mooring tensions decreases after certain wave duration mainly due to the 

damping of mooring lines in the integrated coupled spar mooring system.  

d) In deep sea condition, the spar shows the dominant response of surge near 

frequency of pitch. It is because surge response at deck level is strongly 

influenced by pitching motion.  

 

3) Resp-Pred approach by ANN is used for response prediction of spar platform from 

newly selected environmental forces like wave height and wave period. This 

approach predicts surge, heave, and pitch response of spar hull and top tension of 

mooring lines from environmental and structural parameters.  



 

 

 

104 

 

a) The Resp-Pred approach is found to be efficient and it significantly reduces the 

time for predicting response time-histories of spar hull and mooring lines.  

b) The responses of spar platform predicted by Resp-Pred approach are in good 

agreement with FEM results.  

c) The time required to predict response of spar platform using Resp-Pred approach 

on i3-2100 CPU @ 3.10 GHz and RAM 4.0 GB (normal desktop pc) is 10 sec, 

whereas finite element analysis requires 23 hours on Dell Workstation Precision 

T7500 (Intel Xeon E5620 @ 2.40 GHz with 4 processor and RAM 8 GB high 

computational server).  

d) Unlike FEM, ANN approach doesn't require technically skill persons and high 

performance computing setup to predict the platform response.  

e) Therefore the developed method can be used onsite to make quick decisions, 

whether to continue or stop the production of oil and gas in case of a forecasted 

storm. 

 

4) The responses (3000 sec time history) of surge, heave, and pitch obtained from FEM 

are used in hybrid FEM-ANN approach for predicting 14000 sec time history of 

mooring line top tension.  

a) The time needed to train an ANN is very small compared to a complete finite 

element analysis of spar platform. The ANN approach fairly matches with the 

time consuming FEM solution and give a long duration prediction in simple 

manner.  

b) The hybrid FEM-ANN approach can deal with more data and requires less 

computing time for training.  
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c) The trained architecture will help in designing more efficient and economical 

configuration of mooring systems during preliminary design stages. 

The study reveals that an ANN can provide highly accurate prediction of spar platform 

responses using NEWFF and NARX network. The research findings have potential 

significance for oil and gas industry.  

 

5.3 Recommendations for Future Work 

Spar platform is an innovative and stable offshore platform for oil and gas exploration 

in deep sea. The study indicates that spar platform has a huge potential in the future, and 

is expected to greatly promote operations on the deep sea exploration. In particular, the 

response prediction of spar platforms using ANN is needed to be explored exhaustively. 

The following recommendations are made: 

1. Malaysian sedimentary basin holds great promise for future oil and gas 

exploration. ANN can help in selecting a suitable platform on the basis of 

various conditions. 

2. The wave induced vortex shedding causes large oscillations of spar platforms 

that can be controlled by ANN. ANN controlling tools can be used for 

controlling the response of offshore structures subjected to random ocean waves.  

3. ANN can be used for monitoring spar platform responses which may overcome 

unprecedented severe storms, accidental collisions with supply vessels etc. 

4. ANN-based reliability study of spar platform can be used for safety analysis and 

design.  

5. A close form equation can be developed based on Resp-pred approach. This will 

help practicing engineers to conveniently predict the response of spar platform.   
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APPENDIX 

 

The code used for predicting response of spar platform and wave forces with Artificial 

Neural Network 

*********************************************************************************** 

Nonlinear Response Prediction of Spar Platform using Artificial Neural 

Network. Structural and Environmental data is used as input and Finite 

Element Method (FEM) results used as target. 

Copyright (c) 2011-12, Department of Civil Engineering, Faculty of 

Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia. 

  

%% 1. Clean Up 

clc; clear all; close all; 

  

%% 2. Import input data from Excel file  

x=zeros(12); 

for i=1:12 

    x =  xlsread('D:\My Work\ANN\Spar_Platform\FEMInput.xls',i); 

    [inputn,inputns] = mapminmax(x); 

    input{i}=inputn(:); 

end 

  

%% 3. Import target data from Excel file  

 y=zeros(12); 

for i=1:12 

    y =  xlsread('D:\My Work\ANN\Spar_Platform\FEMOutput.xls',i); 

    [targetn,targetns] = mapminmax(y); 

    target{i}=targetn(:,2); 

end 

  

%% 4. Create the response prediction network 

 hiddenlayer = 20; 

  

 net = newff(input,target,hiddenlayer,{'tansig','purelin'},'trainlm'); 

  

% Network setup  

  

 net.trainParam.lr=0.3;%(learning rate) 

  

 net.trainParam.mc=0.6;%(momentum) 

  

 net.performFcn = 'mse'; 

  

 net.trainParam.goal = 1e-4; 

  

 net.trainParam.min_grad = 1e-20; 

  

 net.trainParam.epochs = 5000; %(number of epochs) 

  

%% 5. Setup Division of Data for Training, Validation, Testing 

 net.divideParam.trainRatio = 70/100; 

 net.divideParam.valRatio = 15/100; 

 net.divideParam.testRatio = 15/100; 
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%% 6. Train the Network 

 surge_net = train(net,input,target); 

  

% View the Network 

 view(surge_net) 

  

%% 7. Simulation the network 

expected_output = sim(surge_net,input); 

  

Error = expected_output- target; 

  

%% 8. Import data from Excel file for prediction 

  

x_Test =  xlsread('D:\My Work\ANN\Spar_Platform\FEMInput.xls',13); 

  

%% 9. Normalize new values  

  

predict_inputn = mapminmax('apply', x_Test, inputns); 

  

%% 9. Convert data to standard neural network cell array form for 

prediction 

  

predict_inputc = con2seq (predict_inputn); 

  

%% 10. Simulation the network for new environmental data 

  

ANN_result = sim(surge_net,predict_inputc); 

  

%% 11. Reverse data to cell array to standard neural network 

ANN_result_stm = cell2mat(ANN_result); 

  

%% Reverse the normalize process 

ANN_surge = mapminmax('reverse',ANN_result_stm,targetns); 

  

%% 12. Export output data to Excel sheet 

xlswrite('ANN_Predt_sur', ANN_surge, 1, 'C2'); 

  

%% 13. Performance of the network  

error = y13-ANN_surge; 

perf = mse(error); 

  

 

*********************************************************************************** 

The data is provided only for no-commercial research use and the data 

should be credited in reports as WorldWaves data and that it originate 

from the ECMWF WAM model archive and are calibrated and corrected (by 

Fugro OCEANOR) against satellite altimeter data. 

Copyright (c) 2011, Department of Civil Engineering, University of 

Malaya, Kuala Lumpur, Malaysia. 

  

%% 1. Clean up 

clc; clear all; close all; 

  

%% 2. Import data from Excel file for Training 

  

import = xlsread('C:\Users\user\Documents\MATLAB\Final work\Wave\Wave 

data.xls'); 

data = import'; 
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%% 3. Input/Target format data  

input = data(5,:); 

  

target = data(6:7,:); 

  

%% 4. Process matrices by mapping row minimum and maximum values to [-

1 1] 

X = con2seq(input); 

T = con2seq(target); 

  

%% 5. Create a Nonlinear Autoregressive Neural Network Architecture 

Time delay 

delay = 2; 

  

% Neuron in hidden layer 

neuronsHiddenLayer = 5; 

  

% Network Creation 

net = narxnet(1:delay,1:delay,neuronsHiddenLayer); 

  

%% 6. Prepare the data for Training and Simulation 

 

The function PREPARETS prepares time series data for a particular 

network, shifting time by the minimum amount to fill input states and 

layer states. Using PREPARETS allows you to keep your original time 

series data unchanged, while easily customizing it for networks with 

differing numbers of delays, with open loop or closed loop feedback 

modes. 

 

[p,Pi,Ai,t] = preparets(net,X,{},T); 

  

%% 7. Setup division of data for Training, Validation, Testing 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

  

%% 8. Train the network 

[net,tr] = train(net,p,t,Pi,Ai); 

  

% View the Network 

view(net) 

  

%% 9. Plot performance 

plotperform(tr); 

  

%% 10. Simulation the network 

wave_Tr = sim(net,p,Pi,Ai); 

  

%% 11. Reverse the processing element of training data 

ANN_wave_Pre = cell2mat(wave_Tr); 

  

exp_output = target(:,1:end-delay);  

 

%% Performance check the network 

error = gsubtract(ANN_wave_Pre,exp_output); 

 

wave_ht_error = error(1,:)'; 

 

wave_period_error = error(2,:)'; 

  

perf_avg = mse(error); 

  

perf_ht = mse(wave_ht_error); 
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perf_t = mse(wave_period_error); 

wave_ht_exp = exp_output(1,:)'; 

 

wave_ht_pred = ANN_wave_Pre(1,:)'; 

 

wave_period_exp = exp_output(2,:)'; 

 

wave_period_pred = ANN_wave_Pre(2,:)'; 

 

ny = length(wave_period_error); 

 

RMSE = sqrt(perf_t); 

 

BIAS = sum(wave_period_error)/ny; 

 

R = corrcoef(wave_period_exp,wave_period_pred); 

  

 

*********************************************************************************** 

%% Finite Element Method (FEM) data is used to train for response 

prediction of Spar Platform 3000 sec motion data such as surge, heave 

and pitch uses as input and 3000 sec top tension uses as target. 

Training the network and predict top tension for 14000 sec.   

% Copyright (c) 2011, Department of Civil Engineering, University of 

Malaya, Kuala Lumpur, Malaysia. 

  

%% 1. Clean Up 

clc; clear all; close all; 

  

%% 2. Importing data from Excel file 

  

S = xlsread('E:\My Work\Mooring Tension\train_data_mooring1.xls'); 

S=S'; 

  

%% 3. Input/Target format data  

X = con2seq(S(1:4,:)); 

T = con2seq(S(5,:)); 

  

% Input and target series are divided in two groups of data: 

% 1st group: used to train the network 

% 2nd group: this is the new data used for simulation R will be used 

for predicting new targets S will be used for network validation after 

prediction 

  

%% 4. Input/Output for training  

N = 3000; % Multi-step ahead prediction 

  

P = X(1:end-N); 

Q = T(1:end-N); 

G = Q; 

%% 5. Input/Output for Prediction 

R  = X(end-N+1:end); 

Z = T(end-N+1:end);  

W = Z; 

%% 6. Process matrices by mapping row minimum and maximum values to [-

1 1] 

  

%Input/Output for training 

[P,Ps] = mapminmax(P); 

[Q,Qs] = mapminmax(Q); 



 

 

 

125 

 

 %Input/Output for prediction 

[R,Rs] = mapminmax(R);  

[Z,Zs] = mapminmax(Z); 

  

%% 7. Neural Network Architecture 

% Time delay 

delay = 5; 

  

% Neuron in hidden layer 

neuronsHiddenLayer = 15; 

  

% Network Creation 

net = narxnet(1:delay,1:delay,neuronsHiddenLayer); 

  

%% 8. Training the network 

  

[Xs,Xi,Ai,Ts] = preparets(net,P,{},Q);  

  

% Train the network 

net = train(net,Xs,Ts,Xi,Ai); 

  

% View the Network 

view(net) 

  

%% 9. Prediction of training output 

% Performance for the series-parallel implementation, only  

% Multi-step-ahead prediction 

Y = net(Xs,Xi,Ai);  

  

perf = perform(net,Ts,Y); 

  

%% 10. Data preperation for N-step ahead prediction 

  

inputSeriesPred = [P(end-delay+1:end),R]; 

  

targetSeriesPred = [Q(end-delay+1:end), con2seq(nan(1,N))]; 

  

%% 11. Convert neural network open-loop feedback to closed loop 

  

netc = closeloop(net); 

  

view(netc) 

  

[Xs,Xi,Ai,Ts] = preparets(netc,inputSeriesPred,{},targetSeriesPred); 

  

yPred = netc(Xs,Xi,Ai); 

  

perf = perform(net,yPred,Z); 

  

%% 12. Reverse the processing element 

  

Output = mapminmax('reverse',yPred,Zs); 

  

errors = cell2mat(Output)-cell2mat(Z); 
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