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MODIFIED ANT COLONY OPTIMIZATION ALGORITHMS FOR 

DETERMINISTIC AND STOCHASTIC INVENTORY ROUTING 

PROBLEMS 

 

ABSTRACT 

Inventory routing problem (IRP) integrates two important components of supply chain 

management: routing and inventory management. In this study, a one-to-many IRP 

network comprises of a single depot (warehouse) and geographically dispersed 

customers in a finite planning horizon is presented. Multi products are transported from 

the warehouse by using a fleet of a homogeneous vehicle which located at the ware 

house to meet customer’s demand on time. The customers are allowed to be visited 

more than once in a given period and the demand for each product is deterministic and 

time varying. The problem is formulated as a mixed integer programming problem and 

is solved using CPLEX to obtain the lower and upper bound (the best integer solution) 

for each instance considered. The classical Ant Colony Optimization (ACO) is modified 

by including the inventory cost in the global pheromones updating is proposed in this 

study. The sensitivity analysis on important parameters that influence decision policy in 

ACO in order to choose the appropriate parameter settings is carried out. Among the 

two proposed algorithms, that is, ACO and ACO2, ACO2 outperform than ACO. Both 

ACO and ACO2 perform better on large instances compared to the upper bound and 

perform equally well for small and medium instances. In order to improve the proposed 

algorithms, population based ACO where the ants are subdivided into subpopulations 

and each subpopulation represents one inventory level is proposed. In addition, a new 

formulation for customer’s inventory pheromones is proposed and the selection of 

inventory updating mechanism is based on these pheromone values. The computational 

results show that the algorithms which implement this new formulation are able to 
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produce better solutions. The computational results also show that the algorithms of 

population based ACO performs better than the algorithms of non-population based 

ACO. The deterministic IRP model is then extended to solve the Stochastic Inventory 

Routing Problem (SIRP). The demands in SIRP are modeled by some probability 

functions and due to the stochastic nature of customer demands, the service levels 

constraint where it limits the stock out probability at each customer and the probability 

of overfilling the stock of each customer is introduced in this study. A two phase 

algorithm named SIRPACO1 is proposed to solve the SIRP. Phase I solved the 

inventory sub problem to determine the quantity to be delivered to each customer as 

well as inventory level at each customer while Phase II employs the population based 

ACO to determine the routes for each period. The algorithm was further enhanced by 

incorporating the inventory updating mechanism into Phase II with the aim of obtaining 

a set of inventory level which will give minimum overall cost and named as 

SIRPACO2. The computational experiments are tested on different combinations of two 

important parameters that are standard deviation and service level. The computational 

results showed that the enhanced SIRPACO2 gave better performance compared to 

SIRPACO1. 

Keywords: ant colony optimization, inventory routing problem 
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ALGORITMA PENGOPTIMUMAN KOLONI SEMUT TERUBAH SUAI 

UNTUK MASALAH LALUAN INVENTORI BERKETENTUAN DAN 

STOKASTIK  

 

ABSTRAK 

Masalah laluan inventori (Inventori Routing Problem (IRP)) mengintegrasikan dua 

komponen yang penting dalam pengurusan rantaian bekalan iaitu masalah laluan dan 

pengurusan inventori. Dalam kajian ini, satu masalah IRP rangkaian satu-ke-banyak 

yang terdiri daripada depot (gudang) tunggal dan pelanggan-pelanggan berserakan 

secara geografi dalam satu perancangan ufuk yang terhingga dikaji. Pelbagai produk 

akan dihantar dari gudang dengan menggunakan sejumlah kenderaan homogen yang 

berpusat di depot bagi memenuhi permintaan pelanggan dalam setiap tempoh masa. 

Pelanggan boleh dikunjungi lebih daripada satu kali dalam masa yang ditertukan dan 

permintaan bagi setiap produk adalah tetap dan tempoh masa adalah berbeza-beza. 

Masalah ini dirumuskan sebagai masalah pengaturcaraan integer campuran dan 

diselesaikan dengan menggunakan CPLEX bagi mendapatkan batas bawah dan atas 

(penyelesaian integer terbaik) bagi setiap kes yang dipertimbangkan. Kaedah klasik 

pengoptimuman koloni semut (Ant Colony Optimisation (ACO)) diubahsuai dengan 

mengambil kira kos inventori semasa mengemaskini feromon global dicadangkan dalam 

kajian ini. Analisis sensitiviti dijalankan untuk menentukan nilai parameter penting 

yang mempengaruhi ACO dalam membuat keputusan. Antara dua algoritma yang 

dibangunkan, ACO2 adalah lebih baik berbanding ACO. Kedua-dua algoritma ACO 

dan ACO2 memberi keputusan yang lebih baik jika dibandingkan dengan batas atas 

untuk kes besar dan keputusan yang setara bagi kes kecil dan sederhana. 

Penambahbaikan algoritma ACO dicadangkan iaitu ACO populasi di mana semut-semut 

dibahagikan kepada sub-populasi dan setiap sub-populasi mewakili satu tahap inventori. 
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Di samping itu, satu formula baru yang dikenali sebagai feromon inventori pelanggan 

telah dicadangkan dan juga pemilihan mekanisme mengemaskini inventori adalah 

berdasarkan kepada nilai-nilai feromon. Keputusan pengiraan menunjukkan bahawa 

algoritma yang menggunakan formula baru ini mampu menghasilkan keputusan yang 

lebih baik. Keputusan mengiraan juga menunjukkan algoritma ACO populasi memberi 

keputusan yang lebih baik jika dibandingkan dengan algoritma bukan ACO populasi. . 

Model IRP yang berketentuan kemudiannya dilanjutkan  kepada masalah laluan 

inventori stokastik (Stochastic Inventory Routing Problem (SIRP)). Permintaan 

pelanggan dalam SIRP dimodelkan oleh beberapa fungsi kebarangkalian dan 

disebabkan permintaan pelanggan bersifat stokastik, kekangan aras perkhidmatan telah 

diperkenalkan di mana kekangan tersebut akan menghadkan kebarangkalian kehabisan 

stok pada setiap pelanggan dan juga kebarangkalian penambahan stok yang berlebihan 

bagi setiap pelanggan. Satu algoritma dua fasa yang dinamakan SIRPACO1 telah 

dicadangkan untuk menyelesaikan SIRP. Fasa I menyelesaikan sub masalah inventori 

untuk menentukan kuantiti penghantaran serta tahap inventori pada setiap pelanggan 

manakala Fasa II menggunakan ACO populasi untuk menentukan laluan  kenderaan 

bagi setiap tempoh masa. Algoritma yang dicadangkan kemudiannya di tambah baik 

dengan memasukkan mekanisme mengemaskini inventori ke Fasa II dengan tujuan 

untuk mendapatkan satu set aras inventori yang akan memberikan minimum kos 

keseluruhan dan algoritma ini diberi nama SIRPACO2. Eksperimen komputasi 

dijalankan untuk kombinasi dua parameter yang penting iaitu sisihan piawai dan aras 

perkhidmatan. Keputusan pengiraan menunjukkan bahawa SIRPACO2 memberi 

keputusan yang lebih baik berbanding SIRPACO1. 

Kata kunci: pengoptimuman koloni semut, masalah laluan inventori   
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CHAPTER 1: INTRODUCTION 

 

This chapter briefly gives the introduction to Inventory Routing Problem (IRP). The 

chapter starts by introducing the inventory routing problem (IRP), describing its 

importance and its relevance to the current economic situations. This is followed by a 

discussion on the problem statements of the study. The objectives of this study are 

outlined in the following section and finally, this chapter concludes by giving the 

organization of the thesis. 

 

1.1 Introduction 

Customers play important roles in logistics management as more companies are 

competing to improve their services including quality, on time delivery, warranty and 

repair services, pricing contracts, and remanufacturing. The timeliness and consistency 

of delivery are two aspects which are desired to be improved by many companies as it 

will offer greater values to their customers. The integration of different components of 

supply chain such as production, inventory and distribution yields new benefits to 

balance the setup, holding, inventory and delivery costs while tightly managing 

available resources. Moreover, the integration can have a significant impact on overall 

system performance. 

 

Vendor Managed Inventory (VMI) is one of good examples of the type of integration 

which mentioned above. In VMI model, the supplier or manufacturer observes and 

controls the inventory levels of its customers or retailers. This is different from the 

conventional approach where the customers monitor their own inventory and decide the 

time and amount of products to reorder. One of the most important benefits of VMI is 

that it allows a more uniform utilization of transportation resources. This leads to a 
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higher level of efficiency and a much lower distribution cost that often constitutes the 

largest part of the overall cost. VMI created a win–win situation for both suppliers and 

customers where the vendors can have the savings in terms of distribution costs by 

being able to coordinate the deliveries to different customers in more efficient way 

while customers do not have to dedicate resources to inventory management. 

 

Inventory management and transportation are two of the important components in 

Supply Chain Management (SCM). The coordination of these two components is often 

recognized as the Inventory Routing Problems (IRP). In addition, the other components 

such as production, location, marketing and purchasing (see Moin and Salhi, 2007 and 

Coelho et al., 2013a for an overview) can also be taken into account but it depends on 

the model of the IRP considered.  

 

IRP is a challenging NP-hard problem that combines the vehicle routing problem (VRP) 

and inventory management. The VRP, itself is NP-hard (Cordeau et. al. (2007) that 

determines a set of routes to visit the customers and the inventory management which 

concerns the amount to be delivered to the customers.There are three simultaneous 

decisions that have to be made by the supplier: when to serve a given set of customers, 

the amount to deliver to the customer when it is served and how to combine the 

customers into the vehicle routes. The main objective of IRP is to minimize both the 

total transportation that consists of fixed and variable costs and inventory cost over the 

planning horizon. IRP arises in many distribution systems, especially in Vendor 

Managed Inventory (VMI). In general, applications of IRP arise in large variety of 

industries including liquefied natural gas and ship routing problems, distribution of 

automobile components and perishable items, groceries distribution, transportation for 

cement, blood as well as the waste organic oil. 
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IRP has been the focus of many researches and since it is NP-hard the exact algorithms 

proposed are able to solve relatively small instances. Hence many metaheuristic 

methods have been developed, such as genetic algorithms and tabu search to suit the 

problems that lead to optimal or near optimal solutions. We propose a modified and 

enhanced ant colony optimization (ACO) to solve our models. ACO is initially 

proposed by Dorigo and coworkers (Dorigo, 1992, Dorigo and Blum, 2005, and Di Caro 

and Dorigo, 1999) and also the first algorithm which targeting to find for an optimal 

path in a graph based on the nature behavior of ants to seek for a path between the 

source of food and their colonies. Further discussions on ACO are presented in Chapter 

2. 

 

1.2 Problem Statements 

The integration of various aspects of supply chain management is an important 

component for companies to remain competitive. Since the IRP is known to be NP-hard, 

developing metaheuristic algorithms have been crucial and these have motivated us to 

seek good and efficient methods / algorithms to achieve the objective of the IRP 

problem. Several variants of IRP have been studied in the past literature, ranging from 

deterministic demand cases to stochastic models. Most models considered in vendor 

managed resupply require accurate and timely information about the inventory status of 

customers and often the customers’ demands are considered to be deterministic where 

the demand is known in advance. The model considers deterministic customer’s demand 

where consumption rate is fixed and known in advance. The main concern of the 

researchers who studied deterministic demand is to find the solution of which customer 

to be visited in each period, how much to deliver to each customer and also the delivery 

routes based on the known demand. However, in real world, there are many industries / 
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companies where their  customer’s consumption rate are difficult to predict with 

certainty and can only be represented at best by a random variable with known 

probability distribution. This problem is modeled as stochastic. The natural objective of 

stochastic model is to minimize the total expected costs. The scope of this study covers 

both deterministic and stochastic IRP. 

 

1.3 Objective of this study 

The objective of this study is stated as below: 

1. To modify the conventional Ant Colony Optimization (ACO) to solve our 

proposed model of Deterministic Inventory Routing Problem (DIRP). 

 propose a new modified model of DIRP which considers multi products 

in the model and also allows the customers to be served by more than 

one vehicle (i.e. split delivery), 

 modify conventional ACO by incorporating the inventory component in 

the local and global pheromone to reflect the importance of the inventory 

component, and  

 perform the sensitivity analysis in order to obtain the appropriate 

parameter which gives better solution to our proposed model. 

 

2. To enhance the modification of ACO by proposing the population based ACO to 

solve our proposed model of DIRP, 

 develop the population based ACO which is different from the 

conventional ACO that only have one population to construct the 

solutions, and 
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 develop a new mathematical formulation which can incorporate the 

information of transportation into the inventory management in order to 

attain the best set of inventory with minimum transportation costs.   

 

3. To extend our study to cater for Stochastic Inventory Routing Problem (SIRP).  

 extend our DIRP model to SIRP in which the demand of customer is 

only known in probabilistic sense, 

 embed the service level constraint which prevent the stock out cost and also 

overloading at the customer’s warehouse, and 

 Propose a population based ACO to construct the solution. 

 

1.4 Contribution to Scientific Knowledge 

There are several scientific contributions that this thesis proposes to the literature of IRP, 

mainly consisting of the development of new models and algorithms. The specific 

contributions are outlined as follows: 

 

 Nowadays, many companies supply not only a single product to their customers 

but multi products, thus, in this study, we propose a one-to-many network of 

IRP that supplies multi products. We also allow split delivery in which each 

customer is allowed to be served by more than one vehicle. The aim of 

implementing the split delivery in our model is to increase vehicle utilization, 

thus reducing the number of vehicles. The details of the model are discussed in 

Chapter 3. 

 In literature, the conventional ACO only consists of one population to construct 

the solutions. In our study, we propose a new algorithm of ACO, in which we 

subdivide the ants into subpopulation to build the solution and this is discussed 

Univ
ers

ity
 of

 M
ala

ya



6 
 

in Chapter 4. By implementing this, we give the ants more exploration in order 

to obtain better results. A new mathematical formulation is introduced in the 

global updating scheme which carries the information on inventory in order to 

build a set of inventory level that can balance between the inventory and 

transportation cost.  

 The final contribution of this thesis is that we extend our DIRP model to solve 

SIRP (Chapter 5). We embed the constraint of service level which avoids 

excessive the stock out cost and overfilling at the customer’s warehouse in our 

model. In this study, we modify our population based ACO where each 

subpopulation starts with different initial solution (differentiated by level of 

inventory) instead of starting with the same initial solution for all the 

subpopulations. Different heuristics are employed to generate different initial 

solutions. 

 

1.5 Thesis Outlines 

The thesis consists of six chapters and the organization of the thesis is discussed below. 

In Chapter 2, a literature review on the variants of IRP model is discussed in details. 

The literature review is grouped based on the type of the demand which we consider in 

this study (i.e. deterministic and stochastic). In addition, a review regarding Ant Colony 

Optimization (ACO) for which our algorithm is based on is given in this chapter as well. 

The aim of this chapter is to identify the motivation that leads to the objectives behind 

the thesis. 

 

Chapter 3 presents our proposed model of Deterministic Inventory Routing Problem 

(DIRP) where the demand of customer is known in advance. In this study, we focus on 

modifying ACO for solving the DIRP model and the details of the algorithms are 
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discussed in this chapter. The related computational results and the discussion are 

presented in the later part of this chapter.  

 

Chapter 4 presents the population based ACO which subdivides the population into 

several number of population to build the solutions. This is different from the 

conventional ACO which only have one population to build the solution. Apart from 

proposing population based ACO, another objective of this enhancement algorithm in 

this chapter is to integrate the information of the transportation into the inventory 

updating mechanism in order to construct a set of customers’ inventory which can 

balance between the inventory and transportation cost. The corresponding results and 

discussion are given in the later part of this chapter. 

 

Meanwhile, Chapter 5 presents the extension of our DIRP model to cater the problem 

where the customer demand is unknown in advance which is called stochastic inventory 

routing problem (SIRP). In this study, we modify our population based ACO such that it 

can be incorporated into our proposed algorithms for solving our SIRP model. The 

proposed algorithms are presented in details in this chapter. The computational results 

as well as the related discussion are explained in details in Chapter 5.  

 

Finally, the last chapter (i.e. Chapter 6) gives the summary about the main findings of 

the thesis and concludes with the potential research directions for future research. 
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CHAPTER 2: LITERATURE REVIEW 

 

This chapter presents the literature review of Inventory Routing Problem (IRP). The 

chapter starts with the introduction and followed by the discussion on the classification 

of different types of inventory routing problems. Then, the next two sections discuss the 

literature review on Deterministic Inventory Routing Problem (DIRP) and Stochastic 

Inventory Routing Problem (SIRP) respectively. Meanwhile, discussion of the literature 

review pertaining Ant Colony Optimization (ACO) is discussed in this chapter as well. 

Finally, the chapter concludes with a summary.  

 

2.1 Introduction 

Supply Chain Management (SCM) is the control of supply chain to manage the flow of 

commodity both within and among the companies. In order to remain competitive, 

companies are proposing innovative ways of optimizing their supply chain by 

integrating certain parts of the supply chain (see for example Moon et al. (2006) which 

coordinates the planning and scheduling of the supply chain and Yang and Liu (2013) 

when the coordination involves some uncertainties). Inventory Routing Problem (IRP) 

involves the integration and coordination of inventory management and transportation, 

where the customers rely on a central supplier to deliver the commodity on a repeated 

basis. The main objective of this problem is to minimize the corresponding costs (fixed 

and variable costs) under the constraint that the deliveries to customers are on time.  

 

The IRP is relevant in the Vendor Managed Inventory (VMI) strategy. Under this 

strategy, the supplier or manufacturer decides when to visit their customers, the quantity 

of delivery and how to combine them into vehicle routes. VMI is argued to be beneficial 

to both the customer and the supplier although the supplier may take a longer period of 
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adjustment and reconfiguration before the benefits of VMI can be realized (Dong and 

Xu, 2002). Applications include the distribution of liquefied natural gas and ship 

routing problems, distribution of raw material to the paper industry, and food 

distribution to supermarket chains, among others. The literature on IRP has received 

considerable attention in the last decade. Methods of solving IRP can be divided into 

two categories: the exact methods and heuristics or metaheuristics approaches. The 

classification of IRP is presented next. 

 

2.2  Classification of Different Types of Inventory Routing Problems 

In the past researches, many different varieties of IRP have been developed and solved. 

Bell et al. (1983) first investigated the integration between inventory management and 

vehicle scheduling. There are various versions of IRP that have been studied extensively. 

IRP indeed can be modeled in different ways depending on its characteristic. In fact, 

there is no standard version of the problem. In paper by Coelho et al. (2013a), the 

authors cited that most of the research efforts have been concentrated on  ‘basic versions’ 

while the study on extended models, denoted as ‘extension of the basic version’ are 

relatively new. The basic version of IRP is shown in Table 2.1. Generally, the basic 

version can be classified into seven different criteria; time horizon, structure, routing, 

inventory policy, inventory decisions, fleet composition and fleet size. 

 

From Table 2.1, the criteria of time horizon is divided into finite and infinite. Most of 

the earlier works concentrates on an infinite planning horizon (see for example Anily 

and Fedegruen, 1990, Anily and Bramel, 2004 and Campbell and Savelsbergh, 2004). 

The number of customers and suppliers may vary, thus the structure can be one-to-one 

when only one supplier serves one customer, and one-to-many is the most common case 

where one supplier serves several customers while many-to-many is when several 
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suppliers serve several customers. However, in the recent literature, the structure of 

many-to-one having several suppliers serving one customer also has been proposed. 

Routing component can be categorized into direct when only one customer per route is 

allowed. Meanwhile multiple refer to the case in which several customers are on the 

same route, while continuous is the case without central depot, like some of the 

maritime applications such as ship routing and inventory management problem. 

 

Inventory policies establish the rules on how to replenish customers. There are two 

common policies that are applied in most of the literature: Maximum Level (ML) and 

Order-up-to-level (OU). Under the policy of ML, the replenishment level is flexible but 

limited to the capacity available at the customer site. Under the policy of OU, the 

replenishment level is triggered when the inventory level on hand falls below specified 

minimum level and then the quantity delivered is that to fill its inventory capacity. 

Meanwhile, inventory decisions determine how the inventory management is modeled. 

If the inventory is allowed to become negative, then backordering occurs and the 

corresponding demand is delivered to customers at a later stage. However if backorder 

is not allowed, the corresponding demand will be considered as lost sales. For both 

cases, the penalty may be applied for the stockout. In most cases the inventory is not 

allowed to be negative especially for the deterministic model. 

 

Fleet composition and fleet size are the two additional criteria considered. The 

composition can be divided either homogeneous or heterogeneous while the number of 

vehicles available can be fixed or unconstrained. 
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Criteria Possible options 
Time horizon Finite Infinite  
Structure One-to-one One-to-many Many-to-

many 
Routing Direct Multiple Continuous 

Inventory policy Maximum level 
(ML) 

Order-up-to-level 
(OU)  

Inventory 
decisions Lost sales Back-order Non-negative 

Fleet composition Homogeneous Heterogeneous  
Fleet size Single Multiple Unconstrained 

Source: Adapted from Andersson et. al. (2010) 

 

The time at which the demand is known can be classified into several categories. If the 

demand of customers is known at the beginning of the planning horizon, the problem is 

deterministic. However, if the demand is unknown and based on some probability 

functions, it yields the Stochastic Inventory Routing Problem (SIRP). Dynamic SIRP 

arises when demand is not fully known in advance, but is gradually revealed over time, 

as opposed to what happens in a static context. In this case, one can still exploit its 

statistical distribution in the solution process, then yielding a Dynamic and Stochastic 

Inventory Routing Problem (DSIRP). Although both demand of SIRP and DSIRP are 

known in probabilistic sense, however in DSIRP, the customer’s demand is gradually 

revealed over time, for an instance, at the end of each period, one must solve the 

problem repeatedly when the information becomes available. 

  

Table 2.1: Classification on IRP  
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2.3  Deterministic Inventory Routing Problem 

Deterministic Inventory Routing Problem (DIRP), in which the customer’s demand is 

known in advance, is discussed. The initial studies published on IRP were mostly 

extended from the standard Vehicle Routing Problem (VRP) in which the heuristics 

developed are extended to take inventory costs into consideration. As discussed in 

Section 2.2, IRP can be modelled in different ways based on the assumptions that are 

taken into account in the model. The discussion of the literature review in this section is 

focused on exact and heuristic algorithm respectively. 

 

2.3.1  Exact Algorithm 

In this subsection, we present a literature review emphasizing those studies that 

implemented the exact algorithms to solve their proposed model. Several exact 

algorithms such as Branch-and Cut, Branch-and-Price and Lagrangian Relaxation 

algorithms have been implemented.   

 

Archetti et al. (2007) were the first proposed branch-and-cut algorithms for a single 

product and single vehicle IRP. They have introduced a special formulation for 

maximum order policy. The instances solved are 30 customers and 6-period horizon and 

50 customers with 3-period horizon. The formulation was improved by Solyali and 

Sural (2008, 2011) who introduced customer replenishment strategy by incorporating 

shortest path network and uses a heuristic approach to get initial bound to branch-and-

cut algorithm. This new formulation enables the authors to solve 15 customers with 12 

periods, 25 customers with 9 periods and 60 customers with 3 periods. 

 

Recently, Coelho and Laporte (2013c) extended the formulation proposed by Archetti et 

al. (2007) by including the multiple vehicles known as Multi-vehicle IRP (MIRP). The 
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authors proposed a branch-and-cut algorithm for the exact solution of several classes of 

IRP. Several cases have been considered in their computational experiment namely 

MIRP solutions under the maximum level (ML) replenishment policy, MIRP solution 

with a homogeneous and heterogeneous fleet of vehicles, IRP with transshipment 

options and MIRP with additional consistency features. The computational experiments 

done on the benchmark instances and the computational results confirm the success of 

the proposed algorithm. 

 

Coelho and Laporte (2013b) extended their work to propose branch-and-cut algorithm 

for solving multi product multi vehicle IRP (MMIRP) with deterministic demand and 

stockout cost is not allowed. In this paper, Coelho and Laporte (2013b)  have 

implemented a solution of improvement algorithm after branch-and-cut identifies a new 

best solution. The purpose of solution improvement algorithm is to approximate the cost 

of a new solution resulting from the vertex removal and reinsertions.  In this paper, the 

authors considered additional of two features namely the driver partial consistency and 

visiting space consistency. The driver partial consistency plays the role of increasing the 

quality of the solution provided by the IRP both to customers and suppliers in a multi-

product environment. The results show that the visiting space helps in reducing the 

search space while providing meaningful solution. The computational experiments to 

test the efficiency of the algorithm for their proposed MMIRP model and MMIRP with 

the additional two consistency features are presented in this paper. The authors have 

proposed larger instances where the number of customers has increased to 50 and up to 

seven time periods. 

 

In the most recent work, Desaulniers et al. (2015) works on a single supplier who 

produces a single product at each period over a finite horizon to fulfill the demand of a 
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set of customers by using a fleet of homogeneous capacitated vehicles. Each customer 

has their inventory capacity and initial inventory. The authors introduced an innovative 

formulation for the IRP and developed a state-of-the-art branch-price-and-cut algorithm 

for solving their proposed IRP model. The developed algorithm integrated known and 

new families of valid inequalities, appending an adaptation of the well-known capacity 

inequalities, as well as an ad hoc labeling algorithm in order to solve the column 

generation subproblems. The computational results showed that their algorithm 

outperforms existing exact algorithms for instances with more than three vehicles. The 

authors proved that the proposed valid inequalities, branching decisions, and other 

speed up strategies are effective. 

 

Chien et al. (1989) is amongst the first to simulate a multiple period planning model 

where the model is based on a single period approach. This is achieved by passing some 

information from one period to the next through inter-period inventory flow. The 

authors have formulated their problem as a mixed integer program and developed a 

Lagrangian based procedure to generate both good upper bounds and heuristic solutions. 

Since then many researchers have focused their modeling on a finite planning horizon. 

 

Yu et al. (2008) solved a large-scale IRP that delivers a single product with split 

delivery and vehicle fleet size constraint. The problem is solved by using a Lagrangian 

relaxation method and it combines with the surrogate subgradient method. The solution 

of the model obtained by the Lagrangian relaxation method is used to construct a near-

optimal solution of the IRP by solving a series of assignment problems. Numerical 

experiments show that the proposed hybrid approach can find a high quality near-

optimal solution for the IRP with up to 200 customers and 10 periods in a reasonable 

computation time. 

Univ
ers

ity
 of

 M
ala

ya



15 
 

Bard and Nananukul (2010) proposed a branch-and-price (B&P) algorithm for solving 

the production, inventory, distribution, routing problem (PIDRP), a variant of IRP. The 

model of this problem had included a single production facility, a set of customers with 

time varying demand, a finite planning horizon, and a fleet of homogeneous vehicles. 

The aim of this study is to construct a production plan and delivery schedule that 

minimizes the total cost while ensuring that each customer’s demand is met over the 

planning horizon. In this study, a new branching rule for dealing with an unstudied form 

of master problem degeneracy is introduced, while reducing the effects of symmetry 

and obtaining feasible solutions by combining a rounding heuristics and tabu search 

within B&P, and the use of column generation heuristics. The computational results 

indicated that the PIDRP instances with up to 50 customers and 8 time periods can be 

solved within 1 hour. The hybrid scheme performed better than CPLEX and standard 

branch and price alone. 

 

2.3.2  Heuristic Algorithms 

IRP is known to be  NP-hard because the VRP reduces to TSP where the time horizon is 

one, the inventory costs are zero, the capacity of the vehicle is infinite, and all the 

retailers need to be served; hence it is unlikely that a polynomial time algorithm will be 

developed for its optimal solution. The largest instance that can be solved by exact 

algorithms consist of 50 customers with 7 periods (see Coelho and Laporte (2013b) and 

most researchers resort to heuristic or metaheuristic algorithm to solve large instances, 

which represents the real world problems. There are several heuristic / metaheuristic 

algorithms such as Tabu Search, Genetic Algorithm, Variable Neighborhood Search, 

Ant Colony Optimization (ACO) et cetera that have been developed widely to solve IRP. 

In this subsection, we present a literature review of those algorithms that implemented 

the heuristic / metaheuristic algorithms to solve their proposed IRP model. 

Univ
ers

ity
 of

 M
ala

ya



16 
 

Bertazzi et al. (1997) proposed a set of decomposition heuristics for the transportation 

of multi-product in multi-period with constant demand. In the first of phase of the 

algorithm, each destination is considered independently and direct shipping is solved 

using the algorithm of Speranza and Ukovich (1996).  The second phase aggregates 

customers visited at the same frequency on the same route. Meanwhile, each set is 

considered separately and a heuristic procedure is used to determine an estimation of the 

minimum transportation cost to deliver the products to all the destinations of the given 

set in the third phase. Inventory cost will remain unchanged but reduction of the 

transportation may occur in third phase of the algorithm. The authors introduce the 

concept of split deliveries where the quantity of a product required at a destination can 

be served in different shipments, possibly with different frequencies. For simplicity, 

most multi-product models assume that each retailer requires only one type of product. 

The authors tested their proposed algorithms on a set of randomly generated problem 

instances. The computational results indicate the algorithms perform well on the 

instances but required more computational time.  

 

Bertazzi et al. (2002) considered a multi-period distribution problem in which a set of 

products has to be delivered from a supplier to several retailers in a given time horizon 

and the demand of the retailers is known in advance (deterministic). The authors 

adopted the order up to a level inventory policy (S, s), where each retailer determines 

the maximum(S) and the minimum(s) levels of inventory of each product and the 

products have to be replenished before the minimum level is attained. The quantity of 

the product delivered is the amount such that the maximum level is reached at the 

retailer. The authors proposed a two-step heuristic algorithm. The first stage focuses on 

route construction algorithms. Meanwhile, the second stage attempts to improve the 

existing solution iteratively by performing simple swap operators that aim to remove or 
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insert customers at different positions on the route. The authors compared the cost of the 

solution generated by the heuristic algorithm with the optimal cost of two intuitive 

policies. The first policy, referred to the case that visit all the retailers in each discrete 

time instant on the basis of an optimal route while the second policy referred to the case 

that visit the set of retailer in each delivery time instant on the basis of an optimal route 

and stockout is occurred if not served at given time. The obtained results showed that 

the heuristic algorithm always outperforms the optimal solution of the two intuitive 

policies 

 

Since split delivery is one of the important components, in our model thus, in this 

subsection some of the papers that include the split delivery into their DIRP model are 

reviewed. Dror and Trudeau (1989) first introduced the split delivery VRP (SDVRP) by 

relaxing the constraint of the VRP that requires every customer to be served by only one 

vehicle. The authors showed that the relaxation increased the flexibility of distribution 

and could lead to important savings, both in the total distance traveled and in the 

number of vehicles used. The SDVRP remains NP hard despite this relaxation (Dror and 

Trudeau, 1990). Several authors (see for example Mjirda et al., 2014, Moin et al., (2011) 

and Yu et al., 2008) have extended the concept of split delivery in the multi-period IRP.   

 

Moin et al. (2011) proposed an efficient hybrid genetic algorithm to solve the IRP in a 

many-to-one network which involves multi products where each supplier supplies 

different products in multi period scenario. The problem is to find the minimum cost to 

pick up the products from a set of geographically dispersed suppliers over a finite 

planning horizon to the assembly plant by using a fleet of capacitated homogeneous 

vehicles which are housed at a depot and the split pick-ups are allowed. The proposed 

hybrid genetic algorithm is based on the allocation-first-route-second strategy and takes 
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both the inventory and the transportation costs (fixed and variable) into consideration. 

The computational experiments have been done on the data sets which were extended 

from the existing data sets to show the effectiveness of the proposed approach. Small, 

medium and large size problems are added to the existing data sets. With the increase of 

problem size, GA based algorithms performed relatively much better.  

 

Mjirda et al. (2014) improved the results obtained by Moin et al. (2011) by proposing a 

two-phase Variable Neighborhood Search (VNS). The first phase develops an initial 

solution without considering the inventory but only focuses on minimizing the 

transportation cost by using VNS. While in the second phase the initial solution is 

iteratively improved to minimize both the inventory and transportation costs using 

Variable Neighborhood Descent (VND) and a VNS algorithm. For the part of inventory 

management in the second phase, Linear Programming (LP) formulations and a 

heuristic method (i.e. backward method to define the amount of products to deliver by 

each vehicle at each period in order to satisfy the demands of the preceding periods) 

which consider the priority of rules on suppliers and vehicles are developed to calculate 

the amount of products to collect from each supplier at each period during the planning 

horizon. The computational results showed that the proposed methods had given better 

results than the existing methods from the literature for both solution quality and the 

running time. Both Moin et al. (2011) and Mjirda et al. (2014) considered the many-to-

one network, which is equivalent to one-to-many network under certain assumption. 

 

Heuristic / metaheuristic algorithms have been widely used to solve different variants of 

IRP. Abdelmaguid (2004) studied the integrated inventory distribution problem (IIDP) 

in which they considered an environment such that the demand of each customer is 

relatively small compared to the vehicle capacity, and the customers are located closely 
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such that a consolidated shipping strategy is appropriate. In their model, they take into 

consideration the components of inventory holding, backorder, and transportation costs. 

The author proposed a construction heuristic for the IIDP, called the approximate 

transportation costs heuristic (ATCH). However, this strategy can give poor solutions if 

the order quantities of the customer are not significantly less than the vehicle capacity. 

To alleviate this, Abdelmaguid and Dessouky (2006) introduced a genetic algorithm 

(GA) approach for improving the constructed solution that allows partial deliveries. In 

their GA construction phase, they implemented a randomized version of their previously 

developed construction heuristic to generate the initial random population. Then, two 

random neighbourhood search mechanisms, the crossover and mutation operations are 

developed in their GA improvement phase. The main concern in designing the mutation 

operator was to develop a suitable mechanism that allows for deliveries to customers to 

cover part of their demand requirements, which is referred as partial deliveries. The 

computational results show that GA outperform the results produced in their earlier 

paper, Abdelmaguid (2004). 

 

Abdelmaguid et al. (2009) improved the results of Abdelmaguid and Dessouky (2006) 

by introducing a constructive improvement heuristic which is based on the idea of 

allocating single transportation cost estimates for each customer. Two subproblems, 

comparing inventory holding and backlogging decisions with these transportation cost 

estimates, are formulated and their solution methods are incorporated in the developed 

heuristic. An improvement heuristic is developed to overcome some of the limitations 

of the constructive heuristic. This improvement heuristic is based on the idea of 

exchanging delivery amounts in between periods to allow for partial fulfilments of 

demands and exploit associated reductions in costs. 
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Bard and Nananukul (2009) developed reactive tabu search to solve Production 

Inventory Distribution Routing Problem (PIDRP) which involved the integration of 

both production and distribution decision. In this paper, the authors considered a single 

production facility, a set of customers with time varying demand, limited capacity of 

inventory at customer’s site, a finite horizon and a fleet of homogeneous vehicles for 

making the deliveries. The authors developed reactive tabu search to solve their 

proposed model. The authors applied the allocation model in the form of mixed integer 

program to find good feasible solutions as the starting points of tabu search. The 

allocation model is modified to attain lower bounds on the optimum. Computational 

experiments are tested on 90 benchmark instances with up to 200 customers and 20 

periods and the results showed the improvements in all cases if compared with the 

existing greedy randomized adaptive search procedure (GRASP).  In our algorithm of 

Stochastic Inventory Routing Problem (SIRP), we are inspired by the concept of the 

allocation model which was presented in this paper and modified it in order to solve our 

problem. 
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2.4  Stochastic Inventory Routing Problem 

Stochastic Inventory Routing Problem (SIRP) is the problem in which the customer’s 

demand is only known in probabilistic sense. Since the demand is uncertain, shortages 

may occur and normally a penalty is imposed whenever a customer runs out of stock. 

The penalty is usually modelled as a proportion of the unsatisfied demand. Unsatisfied 

demand is typically considered to be lost, that is, there is no backlogging. The main 

objective of SIRP is similar to DIRP where the total of inventory and transportation cost 

are the main concerns to be minimized but is written to embed the stochastic and 

unknown future parameters: the supplier must determine a distribution policy that 

maximizes its expected discounted value (revenue minus costs) over the planning 

horizon, which can be finite or infinite. The discussion in this section is based on the 

studies that consider their model in infinite and finite horizon. 

 

First, we discuss some of the literature that considers their model over an infinite 

planning horizon. Kleywegt et al. (2002) tackled the problem in which a supplier 

supplied a single product to serve a set of customers using a fleet of capacitated 

homogeneous vehicles. In the paper, the authors considered each vehicle route served 

one customer only (i.e. direct deliveries). The customer’s demand is uncertain and a 

penalty cost is taken into account if the stock out occurred. Backlogged is not allowed. 

The authors formulated the SIRP as a Markov decision problem (MDP) over an infinite 

horizon. They proposed approximate methods based on the dynamic programming in 

order to find good quality solutions with a reasonable computational effort. Kleywegt et 

al. (2004) extended the work where each vehicle services up to three customers. 

However, in the paper of Adelman (2004) there is no limit on the number of customers 

to be served in a route but restricted by maximal route duration and vehicle capacity. 
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The author studied the case in which the number of customers visited in every route is 

unbounded and a fleet of vehicles with an unlimited number of vehicles is available. 

 

Qu et al. (1999) addressed a periodic policy for a multi-item joint replenishment 

problem in a stochastic setting with simultaneous decisions made on inventory and 

transportation policies. The authors proposed a heuristic decomposition method which 

applied a property of the combined problem to divide the model into subproblems, 

namely inventory and vehicle routing models. Each of the subproblems is solved using 

the methods from existing literature. The computational experiments were done on the 

divided groups that are based on the problem sizes of 15–50 items and the results 

showed that their method performed satisfactory on solving the problem. 

 

Based on the literatures available, there are quite a number of articles that considered 

SIRP model with finite time horizon and this is closely related to our study. Federgruen 

and Zipkin (1984) are among the first who studied IRP by modifying the Vehicle 

Routing Problem of Fisher and Jaikumar (1981) to accommodate inventory and 

shortage costs where the customers’ demands are assumed to be random variables.  The 

problem decomposes into a nonlinear inventory allocation problem which determines 

the inventory and shortage costs and a Travelling Salesman Problem (TSP) for each 

vehicle considered to represent the transportation costs.   

 

Federgruen et al. (1986) considered the problem in which each product have a fixed 

lifetime (perishable items) during which it can be consumed, otherwise if the period is 

exceeded then the product has to be discarded. Computational experiments are done on 

two approaches, namely combined approach and separate approach. In the combined 

approach, the authors adopted the solution approach of Federgruen and Zipkin (1984) 
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but implemented a more complex subproblem by imposing extra constraints. The 

separate approach solved the allocations and routing decisions separately in the 

conventional way. The computational results showed that the combined approach 

produced less total costs compared to separate approach. However, the combined 

approach required more computational time. 

 

Minkoff (1993) considered a dynamic and stochastic vehicle dispatching problem called 

the delivery dispatching problem. The author modeled the problem as a Markov 

decision process and adopted a decomposition heuristic approach to solve the problem. 

The heuristic solves a linear program to allocate joint transportation costs to individual 

customers and solves a dynamic program for each customer locally. In this paper, the 

author described how to compute bounds on the algorithm’s performance, and several 

examples is applied on the algorithm with good results. However, algorithm is applied 

for relatively small problem instances only (up to 6-customers).  

 

Bertazzi et al. (2013) studied the IRP in which a supplier has to serve a set of retailers 

and the maximum inventory level is defined for each retailer. The demand of the retailer 

is stochastic and has to be satisfied over a given time horizon. The inventory policy of 

this study is order-up-to-level where the quantity delivery to each retailer is such that its 

inventory level reaches the maximum level whenever the retailer is served. Inventory 

holding cost is applied whenever the inventory level is positive while the penalty cost is 

imposed when the inventory level is negative. Backlogged is not allowed in their 

problem. The objective of the study is to minimize the expected total cost which is 

given by the sum of the expected total inventory both at the supplier and retailers and 

penalty cost at the retailers as well as the expected routing cost. The authors proposed a 

hybrid rollout algorithm to solve their problem. The computational results showed that 
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the proposed rollout algorithm provided significantly better solution than the one that 

obtained from the benchmark algorithm. The authors also implemented a branch-and-

cut algorithm to solve their proposed mixed-integer linear programming model which is 

the deterministic counterpart of their problem (set the future demand equal to the 

average demand). The proposed approach was able to determine the optimal solution in 

reasonable time limit (within a time limit of 7000 seconds) in the majority of the 

considered instances otherwise the best obtained feasible solution is used. 

 

Recently, Yu et al. (2012) presented a stochastic IRP with split delivery (SIRPSD), 

which implemented the service level to satisfy each customer’s demand by limiting the 

possibility of the stockout within a given value and also the service level to each 

customer’s warehouse measured in its overfilling probability. This paper studied the 

stochastic version of the deterministic one proposed by Yu et al. (2008). The authors 

proposed the transformation of stochastic components of a model of the SIRPSD into 

deterministic ones and used the Lagrangian relaxation to decompose the model into sub 

problem of inventory and routing. The partial linearization approach for the subproblem 

of inventory, the minimum cost flow for the subproblem of routing and the local search 

improvement of feasible solutions of the studied SIRPSD are proposed in this paper to 

solve their proposed model. The computational results showed that their proposed 

approach can obtain high quality solutions in a reasonable computational time. 
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2.5  Ant Colony Optimization 

Swarm Intelligence (SI) is the discipline that manages the natural and artificial systems 

consist of many individuals that coordinate using decentralized control and self-

organization. The properties of the typical swarm intelligence system are shown below 

(see Dorigo and Birattari, 2007): 

 Consists of many individuals; 

 The individuals are relatively homogeneous (i.e., they are either all identical or they 

belong to a few typologies); 

 The interactions among the individuals are based on simple behavioral pattern that 

exploit only local information that the individuals exchange directly or via the 

environment (stigmergy); 

 The interactions between individuals and with their environment will give the 

overall behavior of the system, (i.e. the group behavior self-organizes). 

 

Swarm-based algorithms have recently arisen as a family of nature-inspired, population-

based algorithms which are able to produce low cost, fast, and robust solutions to 

several complex problems (see Panigrahi et al., 2011). SI can therefore be defined as a 

relatively new branch of Artificial Intelligence that is used to model the collective 

behavior of social swarms in nature. Examples of systems that are represented by SI are 

ant colonies, honey bees, bird flocking, animal herding, bacteria growth, fish schooling 

and microbial intelligence. These agents (insects or swarm individuals) are interacting 

together with certain behavioral patterns in order to carry out the necessary task for their 

survival. Through the study on the behavioral pattern of those agents, it leads the 

researchers to develop the nature-inspired metaheuristics for solving their problems. 

Since the computational modeling of swarms was proposed, the number of research 

papers reporting the successful application of SI algorithms in several optimization 
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tasks and research problems is increasing rapidly. SI principles have been implemented 

successfully in a variety of problem domains including function optimization problems, 

vehicle routings, scheduling, structural optimization, and image and data analysis (see 

Lim et al., 2009). 

 

In this study, we modifying Ant Colony Optimization (ACO) which was initially 

proposed by Dorigo and coworkers (Dorigo(1992), Dorigo and Blum (2005), and Di 

Caro and Dorigo (1999)) to solve our proposed model. ACO is a metaheuristic method 

which implements artificial ants to find the solutions to combinatorial optimization. 

ACO is based on the behavior of ants and possesses enhanced abilities such as storing 

the memory regarding the past actions and passing the information to other ants. In fact, 

ants cannot hunt for food effectively if they work individually but in a group, ants 

possess the ability to solve complex problems and successfully obtain the food for their 

colony. Ants make use of chemical substances named pheromones to share the 

information regarding the distance of the path which they share with other ants. When 

an ant passes by a location, it will deposit the pheromones on that trail in order to allow 

other ants to follow. Each ant moves in a random pattern, but when the ant faces the 

pheromone trail then it has to decide whether to follow or not. If the ant chooses to 

follow the trails, then the ant’s own pheromone reinforces the existing trail. Therefore, it 

will increase the probability of the next ant to follow the same path. Consequently, the 

more ants use that path, the more pheromones will be deposited and that path becomes 

more attractive for the subsequent ants. In addition, ants which use shorter route will 

return to their colonies sooner before other ants reach. This indeed will influence the 

selection probability for the next ant leaving the nest. Over time, as more ants 

completed the shorter route, it increases the pheromone accumulation on shorter path 

but longer path will be less reinforced. The natural evaporation of the pheromones also 
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makes less attractive routes more difficult to detect and further decreases their use. 

However, the continued random selection of paths by individual ants helps the colony 

discover alternative routes and ensure successful navigation around obstacles that 

interrupt a route. Trail selection by ants is a pseudo-random proportional process and is 

an important element of the simulation algorithm of ACO (Dorigo and Gambardella, 

1997).   

 

Metaheuristic algorithms such as genetic algorithm (Sin et al, 2013), scatter search 

(Huacuja et al., 2012) and variable neighborhood search (Rasheed et al., 2014) have 

been applied to different type of combinatorial problems. ACO algorithms have been 

applied to many combinatorial optimization problems, and the first ACO algorithm was 

called the ant system (Dorigo et al. (1996)), which aimed to solve the Travelling 

Salesman Problem (TSP) with the goal to search the shortest round-trip to link a series 

of cities. In the later literature, more researches have the interest on applying ACO in 

solving their TSP model (see Dorigo and Gambardella (1997), Hlaing and Khine (2011) 

and Brezina and Čičková (2011)). The application of ACO included solving Vehicle 

Routing Problem (VRP), which aimed to build the routes by using a fleet of vehicles to 

deliver the products to a set of customers (see Bullnheimer et al. (1999), Bell and 

McMullen (2004), Chen and Ting (2006) and Yu et al. (2009)). However, recently 

several researchers have applied ACO to solve their proposed IRP model. In fact, those 

papers inspired us to modify classical ACO to solve our proposed IRP model that 

integrates both transportation and inventory. We modify ACO in term of not only 

focusing on solving the routing part but also can give beneficial information to the 

inventory updating mechanism to build better set of inventory. We present some 

literatures that employed ACO to solve their IRP model. 
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Huang and Lin (2010) proposed a modified ACO for solving the multi-item inventory 

routing problems in which the demand is stochastic and by choosing a delivery policy 

that minimizes the total costs. The algorithm was developed for the replenishment of the 

vending machine and the authors modified ACO algorithm which incorporates the stock 

out cost in the calculation of the pheromone values, which is not included in the 

conventional ACO. The nodes with high stock out costs are given higher priority even 

though the total transportation costs are higher than the other nodes. The test instances 

were constructed using the Solomon’s (1987) 56 benchmark problems created for the 

vehicle routing problem with time windows. The results show that the modified ACO 

algorithm achieves highly significant improvements compared to the conventional ACO.  

 

Calvete et al. (2011) is the first to study a bilevel model in the context of hierarchical 

production-distribution (PD) planning. In this problem, a distribution company, which is 

the leader of the hierarchical process, controls the allocation of retailers to each depot 

and the routes which serve them. The manufacturing company, the follower of the 

hierarchical process will decide which manufacturing plants will produce the orders 

received by the depot. The authors developed ACO algorithm to solve the bilevel model 

in which ants are used to construct the routes of feasible solutions for the associated 

multi-depot vehicle routing problem (MDVRP). The computational experiment is 

carried out to analyze the performance of the algorithm. Since the bilevel model is first 

time proposed, there is no data for comparison purposes. The computational time is 

reasonable, taking into account the problem sizes.  

 

In the most recent work of Tatsis et al. (2013), they developed a mixed integer 

mathematical model in which a fleet of capacitated homogeneous vehicle is used to 

deliver distinct products from multi suppliers to a retailer to meet the demand in each 
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period over the planning horizon. However, backlogging is allowed in this study. The 

ant based optimization algorithm is applied to solve the corresponding vehicle routing 

problem. The objective of this study is to find the best compromise between the 

transportation, inventory and backlogging cost. Preliminary results show that the 

solution gaps between the algorithm and CPLEX solutions is kept reasonably low 

values and offered prospective for further improvement. 

 

2.6  Summary of the chapter 

This chapter has reviewed the existing works in the literature on several variants of 

inventory routing problem and discussed the literature review regarding ACO. In this 

section, the review summarized and the research’s direction of this study is presented. 

 

2.6.1  Summary of literature review 

The literature reviews in this chapter are focused on the variation of IRP problems 

which have been studied as well as important findings and well-known methods that 

have been implemented to solve their proposed problem. The IRP model can be variants 

based on the classification which have been mentioned in Section 2.2. However, the 

type of the demand for the customers can be a crucial factor to decide the model of IRP 

which we desire to explore. As mentioned in ection 2.2, the customer’s demand 

generally can be divided into deterministic and stochastic. In this study, we tackle both 

types of customer’s demand. ACO is a well-known metaheuristic which has been used 

widely to solve variants of combinatorial problems and also those research related to 

vehicle routing. Initially, ACO is developed to solve TSP problem, and then later many 

of the researchers have the interest to apply ACO to solve for their model of VRP or the 

research related to vehicle routing. In the most recent work, few researchers also have 

interested to use ACO to solve for their IRP model. Through the body of literature 
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reviewed above, it can be concluded that there are more researches to be done in order 

to find a good mechanism which can integrate both inventory and transportation well in 

order to attain the minimum cost. 

 

2.6.2  Research Direction 

To the best of our knowledge, majority of the IRP problems which had been studied in 

the literature are focused on non-split delivery. However, split delivery can be beneficial 

in term of transportation savings as the utilization of the vehicles can be maximized and 

hence the vehicle cost can be reduced. This drives us to model our IRP problem which 

allows for the split delivery. 

 

Based on the literature many ACO algorithms have been applied to solve the vehicles 

routing problem and only a handful of researchers are working on IRP model. This 

inspires us to modify ACO algorithms which are able to balance between the inventory 

and transportation to solve our proposed IRP model. We enhance the algorithm further 

by incorporating some information regarding the level of inventory and this information 

is useful for the inventory updating mechanism so as to build better set of inventories. 
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CHAPTER 3: MODIFIED ANT COLONY OPTIMIZATION 
 

This chapter presents the newly modified Ant Colony Optimization (ACO) to solve 

multi products multi periods Inventory Routing Problem (IRP) in which split delivery is 

allowed. The chapter begins with the introduction and followed by the mathematical 

formulation. Meanwhile, the description of the developed algorithm and the improved 

version of the developed algorithm will be discussed in this chapter as well. The chapter 

also discusses the characteristics of the data sets and the related computational results as 

well as the discussion of the obtained results. The sensitivity of the parameters α and β 

which control the influence of the pheromone value allocated on arc (i, j) is also 

presented. Finally, the chapter ends with the summary of the chapter. 

 

3.1 Introduction 

In the literature of the previous chapter, various models of IRPs have been proposed and 

solved by their respective developed methods. In this study, one of the objectives is to 

develop a new metaheuristic method to solve IRP. The main aim of inventory routing 

problem is to minimize the corresponding related costs by balancing between inventory 

and transportation costs. 

 

The model that is considered in this study is extended from the formulation proposed by 

Yu et al. (2008) to incorporate multi products. We consider a network consisting of a 

warehouse that supplies multi products to a geographically dispersed customers and the 

product are transported by a fleet of homogeneous vehicles. We assumed that the 

customer’s demand must be met on time and we allow the customers to be served by 

more than one vehicle (split delivery). Figure 3.1 illustrated inventory routing problem 

with split delivery.  

  

Univ
ers

ity
 of

 M
ala

ya



32 
 

 

 

  
Vehicle capacity is 50 

Route 
cost is 
135 

Route 
cost is 
115 

Route 
cost is 50 

12 

6 1 0 0 4 

20 10 20 
Delivery 
quantity 

Vehicle 
1 

5 2 0 3 

12 20 
Delivery 
quantity 

Vehicle 
2 

3 0 0 

13 
Delivery 
quantity 

Vehicle 
3 

0 

18 

12 

1 4 0 0 6 

25 10 15 
Route 
cost  is 
150 

Delivery 
quantity 

Vehicle 
1 

2 6 0 3 

15 27 
Route 
cost  is 
125 

Delivery 
quantity 

Vehicle 
2 

5 3 0 0 

5 
Route 
cost is 80 

Delivery 
quantity 

Vehicle 
3 

0 

8 

Period 2 

Period 1 

Customer 6 and 3 are 
served by two vehicles. 
This is due to the 
preceding vehicle is 
fully loaded, thus, the 
remaining quantity 
delivery of the 
customers will be 
served by another 
vehicle. 
 

Customer 3 is the split 
customer. 

 

Figure 3.1: Inventory routing problem with split delivery 
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In this study, we focus on modifying ACO to solve our proposed model. ACO was 

initially proposed by Dorigo and co-workers (Dorigo, 1992, Dorigo and Blum, 2005, 

and Di Caro and Dorigo, 1999) and was inspired by the food-foraging behavior of ant 

which tends to find the minimum path between the food source and the colony by 

storing the information in the pheromones trails in order to lead more ants to use the 

minimum path.  

 

The main contribution of this chapter can be summarized as follows: 

1. We modify the algorithm by incorporating the inventory component in the 

global updating scheme that not only calculates the pheromone along the trail 

but identifies a set of feasible neighbors making use of the attractions on the 

nodes which differs from the classical ACO.  

2. We develop a new heuristic called swap which aiming of merging the split 

customers in order to obtain the savings in term of transportation cost. 

3. The sensitivity analysis is done on the parameters in order to choose the best 

combination of α and β which give better results for the proposed model. The 

sensitivity analysis is important as the parameter of α and β will influence the 

pheromone value allocated on arc (i, j) and these parameters will affect the 

selection of the next arc (customer). 

 

3.2  Model Formulation 

In this study, we consider a one-to-many network in which a fleet of homogeneous 

vehicle transports multi products from a warehouse or depot to a set of geographically 

dispersed customers in a finite planning horizon. The following assumptions are made 

in this model:  

Univ
ers

ity
 of

 M
ala

ya



34 
 

 The fleet of homogenous vehicles with limited capacity is available at the 

warehouse.  

 Customers can be served by more than one vehicle (split delivery is allowed). 

 Each customer requests a distinct product and the demand for the product is 

known in advance but may vary between different periods.  

 The holding cost per unit item per unit time is incurred at the customer sites but 

not incurred at the warehouse. The holding cost does not vary throughout the 

planning horizon.   

 The demand must be met on time and backordering or backlogging is not 

allowed. 

The problem is modelled as a mixed integer programming problem and the following 

notation is used in the model: 

Indices 

ݐ =  1, 2, … , ܶ   period index 

ܹ =  0   warehouse/depot 

ܵ =  1, 2, … , ܰ  a set of customers where customer i demands product i only 

Parameters 

C vehicles capacity (assumed to be equal for all the vehicles). 

F fixed vehicle cost per trip (assumed to be the same for all periods) 

V  travel cost per unit distance 

M the number of vehicles and it is assumed to be ∞ (unlimited) 

ܿ       travel distance between customer i and j where ܿ = ܿ and the triangle 

inequality,  ܿ + ܿ ≥ ܿ, holds for any different i, j, and k with ݅ ≠ ݆, ݇ ≠ ݅ 

and ݇ ≠ ݆  

ℎ   inventory carrying cost at the customer for product i per unit product per unit  

      time 
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݀௧ demand of customer i in period t 

Variables 

ܽ௧ delivery quantity to customer i in period t 

 ௧ inventory level of product i at the customer i at the end of period tܫ

௧ݍ  quantity transported through the directed arc (݅, ݆) in period t 

,݅) ௧ number of times that the directed arcݔ ݆) is visited by vehicles in period t 

 

The model for our inventory routing problem is given as below:  
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The objective function (3.1) includes the inventory costs (I), the transportation costs (II) 

and vehicle fixed cost (III). Constraint (3.2) is the inventory balance equation for each 

product at the warehouse while constraint (3.3) is the product flow conservation 

equations, to ensure that the flow balance at each customer and eliminating all subtours. 

Constraint (3.4) assures the collection of accumulative delivery quantity at the 

warehouse (split delivery). Constraint (3.5) ensures that the number of vehicles leaving 

the warehouse equals to the number of vehicles returning to warehouse. Constraint (3.6) 

assures that the demand at the warehouse is completely fulfilled without backorder. 

Constraint (3.9) guarantees that the vehicle capacity and gives the logical relationship 

between  ݍ௧  and ݔ௧ which allows split delivery. This formulation is used to determine 

the lower and upper bounds for each data set using CPLEX 12.4. 

 

3.3  Modified Ant Colony Optimization (ACO) 

Ant Colony Optimization inspired by the nature behavior of ants finding the shortest 

path between their colony and a source of food is modified to solve the proposed model 

of IRP. The information collected by ants during the searching process is stored in 

pheromone trails. Hence, when an ant has built a solution, the ant deposits a certain 

amount of pheromone proportionally (the information about the goodness of the 

solution) on the pheromone trails of the connection it used. The pheromone information 

directs search of the following ants while exploring the different path. The higher 

density of pheromones on an arc leads to attracting more ants to the arc. Therefore, 

appropriate formulation associated to the model for updating pheromones trail (equation 

3.15 and 3.16) are very crucial. This is due to the reason that the greater amounts of 

pheromone it deposits on the arcs tend to provide a shorter path (the minimum cost).  

In the conventional ACO, only the transportation cost is taken into account for the 

global pheromones updating. In IRP, the inventory cost as well as the transportation 
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cost are equally important components and thus the two components are added in the 

global updating in order to balance the transportation and inventory cost. The details of 

global pheromone updating are discussed in subsection 3.3.4. The procedure for ACO 

can be divided into three main steps: the route construction, a local pheromone-update 

rule and a global pheromone-update rule. These steps are described in detail in the 

following subsections and Figure 3.2 outlines the algorithm. 

 

3.3.1  Initial solution 

We construct the initial solution by having all the demands met in every period. In this 

study we adopt a simple Nearest Neighbor algorithm (NN) and the algorithm is 

modified to allow split delivery. The vehicle starts at the depot and repeatedly assigns 

the nearest customer (in terms of distance) until the capacity of the vehicle is fully 

occupied. Then, a new vehicle is initiated and the process continues until all customers 

have been assigned or visited. The total distance obtained by NN is embedded to 

initialize the ߬, the initial pheromone in the local pheromone updating.  
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Figure 3.2: Algorithm of the developed method 

Updating inventory level Nearest Neighbor Algorithm (NN) 

Set the value of parameters 
,ߙ ,ߚ and ߩ. Set intial pheromones 

for all arcs to be equal to  
1

(ܰ × ேே)ൗܮ  

Obtain the total distance, ܮேே 

Start with zero inventory and 
iteration start with iter = 1 

END 

START 

NO 

YES 

YES 

NO 
NO 

Set ant=1 

Ant Colony Optimization 
(ACO) –route construction 

ant> m 

Best solution (best ant) 

Local pheromones updating 

Choose the best solution 

Route improvement 
strategies 

Global pheromones 
updating 

YES 

YES 

NO 

iter  modulo N_GL = 0 

ant+=1 

iter+=1 

iter modulo 
N_DEM = 0 

iter > 
MaxiITER 

Univ
ers

ity
 of

 M
ala

ya



39 
 

3.3.2  Route construction for ACO 

The route construction begins by setting the value of all the parameters ߙ, ,ߚ ߬, ݍ and 

 control the influence of the pheromone value allocated on arc (i, j) ߚ and ߙ Parameters .ߩ

and the desirability of arc (i, j) respectively whilst ݍ is a predefined real number where 

0 ≤ ݍ ≤ 1 and ߩ is the rate of pheromone evaporations. Note that the value of ߬, the 

initial value of pheromones for each arc is obtained from the total distance of the initial 

solution. Starting from the depot (warehouse) each ant utilizes equation (3.12) to select 

the next customer to be visited. Ants tend to be attracted to the arc which consists of 

higher density of pheromones. From equation (3.12), if ݍ is less than the predefined 

parameter ݍ, then the next arc chosen is the arc with the highest attraction. Otherwise, 

the next arc is chosen using the biased Roulette Method with the state transition 

probability   given by equation (3.14). 

 

 




 

 

otherwise             

ifmax 0,

ij

jij

p

qqAtt
j i

 
(3.12) 

where      ijijijAtt    ,                                                                                           (3.13) 

   
   













 



i

i

k
ikik

ijij

ij

j

j
p

i

                         0









, 

(3.14) 

߬ is the amount of pheromone deposited on arc(i, j) and ߟ  is inversely proportional to 

the length of arc (i, j), ܿ. The set of unvisited customers for ant i is denoted by Ω. 

 

3.3.3  The local pheromone-updating rule 

Local updating is used to reduce the amount of pheromone on all the visited arcs in 

order to simulate the natural evaporation of pheromone and it is intended to avoid a very 
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strong arc being chosen by all ants. After a predefined number of ants, m had completed 

their solutions, the best among the built solutions is chosen and the pheromone on each 

arc is updated using 

߬ = (1 − ߬(ߩ +   (3.15)߬ߩ

where ߩ represents the rate of pheromone evaporation. 

 

3.3.4  The global pheromone-updating rule 

After a predefined number of iterations, the ACO updates the pheromone allocation on 

the arcs of the current optimum route ߛ. The global pheromone-updating rule resets 

the ant colony’s situation to a better starting point and encourages the use of shorter 

routes. It also increases the probability that future routes make use the arcs contained in 

the best solutions. In the classical ACO only the transportation cost is taken into account 

in the global updating. Since the IRP tries to find a balance between the transportation 

and inventory cost, it is natural to incorporate the inventory holding cost in the 

formulation. The global update rule is enhanced as follows: 

߬ = (1 − ߬(ߩ + ఘ
ം

,      (݅, ݆) ∈ ߛ  (3.16) 

where ܬఊ  is the weight of the best solution found where it incorporates the inventory 

element as well as the variable transportation costs. The term  ܬఊ  is given by 

ఊܬ =  
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where the first component defines the total inventory costs whilst the second component 

gives the total transportation cost. 
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3.3.5 Route improvement strategies 

The routes can be further improved by adding route improvement strategies in the route 

construction procedure. In this study, we implement two local searches consisting of 

inter route swap and intra route 2–opt in order to improve the solution built by ACO.  

 

3.3.5.1 Swap for split customer 

The first local search is the swap algorithm focusing on the split customers and they 

comprise of a transfer to the selected vehicle or a swap between different vehicles. 

Starting from the last vehicle, the split customer is identified and we try to merge to the 

current selected vehicle if the respective vehicle capacity is not violated. If this fails, 

then the swap with the other customers from the preceding vehicle or to the current 

selected vehicle that results in the least transportation cost is carried out. If none of the 

swap provides an improvement in the objective value than the solution built by ACO, 

the route remains unchanged. The process continues until all vehicles in every period 

have been examined. The aim of this method is to eliminate the split customers (merge 

as many as possible) if the merge improves the objective value. Figure 3.3 and Figure 

3.4 illustrated the procedure of swap. 
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Vehicle capacity is 50 

Note: Distance savings on 
vehicle 2 is 25 after merging 
the split customer 3 to vehicle 
3 
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1 4 0 0 6 

25 10 15 
Route 
cost  is 
150 

Delivery 
quantity 

Vehicle 
1 

2 6 0 3 

15 27 
Route 
cost  is 
125 

Delivery 
quantity 

Vehicle 
2 

5 3 0 0 

5 
Route 
cost is 80 

Delivery 
quantity 

Vehicle 
3 

0 

8 

Route 
cost is 
150 

Route 
cost is 
100 

Route 
cost is 80 
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1 4 0 0 6 

25 10 15 
Delivery 
quantity 

Vehicle 
1 

2 6 0 0 

15 27 
Delivery 
quantity 
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13 
Delivery 
quantity 

Vehicle 
3 

Figure 3.3: Swap procedure if the split customer is able to merge directly to the 
selected vehicle 
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Continue to (b) 

(a)  Forward swap possibility - If the split customer cannot merge 
directly to the selected vehicle Vehicle 

capacity is 50 
 

Note: Distance Savings on vehicle 
2 is 25 after merge the split 
customer 3 to vehicle 3 

Vehicle 2 

Route 
cost is 
150 

Route 
cost is 
100 

Route 
cost is 
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Delivery 
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Delivery 
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Forward swap 
possibility: try to merge 
the identified split 
customer to current 
vehicle and swap / split 
the other customer to 
preceding vehicle with 
the condition that the 
resulting solution does 
not violate the 
constraints of vehicle 
capacity. 

Figure 3.4: Swap procedure if the split customer cannot be merged directly: (a) Forward     
Possibility, (b) Backward Possibility 
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Figure 3.4: continued 

Since selection III gives the largest distance savings, the Selection III is chosen to 
replace the original solution. 

 

Note: Distance Savings on vehicle 
2 is 25 after merge the split 
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(b)  Backward swap possibility - If the split customer cannot merge 
directly to the selected vehicle 
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3.3.5.2 2-opt 

2-opt (Lin, 1965) heuristic is an intra-route optimization procedure. This heuristic is 

testing on all possible pairwise exchange within a vehicle instead of between vehicles to 

see if an overall improvement in the objective function can be obtained. The current 

solution is replaced if the improved solution is better. 

 

3.3.6  Updating the inventory level 

The inventory updating mechanism is applied after certain predefined number of 

iterations has been completed. Figure 3.5 illustrates the process of the inventory 

updating. First we randomly select the period to be moved. The number of customers to 

be moved is limited by some predefined maximum number of moves allowed, 

N_moveTime. The available customers on a selected period p are those with positive 

delivery quantities ( 0ijpq ) and the inventory has not been updated yet (has not 

received from period 1p ). This extra constraint is to ensure that the inventory holding 

cost is not excessive. Additional criterion imposed is that the inventory of the preceding 

period ( 1p ) has not been updated in the present iteration. The customers who will be 

selected to update the inventory are those with the least inventory cost. We note that 

when updating the inventory, there is no restriction imposed except for the vehicle 

capacity constraint and may result in an increase in the number of vehicles. Figure 3.5 

shows the algorithm of updating the inventory level for customers. 

 

The following definitions are introduced for the procedure of updating inventory level: 

N_moveData the maximum number of moves to be allowed for each data 
 

N_moveTime the maximum number of moves to be allowed per time 
 

temp_move the current number of moves 
 

sum_move the current accumulative moves that have been done 
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cur_move the number of moves generated by random number which is no more 
than N_moveTime per time. 
 

 

Step 1: Check the availability of customers on all period. If none of the period consists 
of available customers, go to Step 9. Otherwise, go to Step 2. 

Step 2: Randomly select a period, p, with the condition that there is at least one 
available customer. Go to Step 3. 

Step 3: Randomly select the number of moves (cannot exceed N_moveTime), 
cur_move: 

 If (cur_move +  sum_move) <= N_moveData 
  real_move = cur_move 
 else 
  real_move = N_moveData – sum_move 
 Set temp_move = 0. 
 Go to Step 4. 
Step 4: Select an available customer from period p, who will give the least inventory 

cost. 
 Move all the delivery quantity on period p to period p – 1.  

temp_move++. 
Go to Step 5. 

Step 5: Update the availability of the customer on period p.  
 If (temp_move < real_move) 
  Go to Step 6. 
 Else 
  Go to Step 7. 
Step 6: Check if there is any available customer on period p. 
 If yes, go to Step 4. Otherwise, go to Step 7.  
Step 7: sum_move += temp_move. Go to Step 8. 
Step 8: Update the inventory level and inventory cost for each customer on each period. 
Step 9: Select the set of inventory level that had been built for the current best solution 
to continue with the routing. 
 

 

3.4  Enhanced Modified Ant Colony Optimization (ACO2) 

In ACO, the route improvement strategies are focused only on merging/swapping the 

split customer between the selected vehicles and then 2 −  is applied as (Lin, 1965) ݐ

intra route optimization. Hence, we found out that we need to enhance the algorithm by 

adding  2- ∗ݐ  (Potvin and Rousseau, 1995) heuristic as inter route optimization 

procedure in the route improvement strategies. This improvement strategies; 2-

 is applied after the swap for split customer have been (Potvin and Rousseau, 1995)∗ݐ

done. The purpose of this strategy is to test on all possible pairwise exchange between 

Figure 3.5: Algorithm of updating inventory level 
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vehicles to see if an overall improvement in the objective function can be attained. The 

heuristic calculates the distances for all pairwise permutations and compared those 

distance with the current solution. If any of these solutions is found to improve the 

objective function, then it replaces the current solution. Hence, ACO2 is not only tried 

to improve the route within vehicle but also between vehicles. 

 

3.5  Data sets 

In this section, we will explain the experimental design used for evaluating the 

efficiency of the developed algorithm. The algorithm is tested on 12, 20, 50 and 100 

customers, and combination with different number of periods, 5, 10, 14 and 21. The 

coordinates for each customer is generated randomly in the square of 100 × 100. The 

coordinates of each customer for the 20 customer instance comprises the existing 12 

customer instance with additional 8 newly randomly generated coordinates. The same 

procedure is used to create the 50 and 100 customer instances. Figure 3.6 illustrates the 

distribution of the data sets. The holding cost for each customer lies between 0 and 10 

while the demand for each customer is generated randomly between 0 and 50. The 

vehicle capacity is fixed at 100.  

 

3.6    Results and discussion 

The problem is formulated as a mixed integer programming problem and we let CPLEX 

12.4 run for a limited time 9000 seconds (reached the limitation of memory) to get the 

lower bound and upper bound (the best integer solution) for each instance considered. 

All problem instances do not reach the optimal solution since the upper bound is 

different from the lower bound. The algorithms were written in C++ language by using 

Microsoft Visual studio 2008. The results of this study are compared with the upper 
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bound (UB) which is generated from CPLEX 12.4. All the computations were 

performed on a 3.10 GHz processor with 8 GB of RAM. 

 

3.6.1 Sensitivity Analysis 

Since the two most important parameters in any ACO are ߙ  and ߚ  that control the 

decision policy in the selection of customers (see equation 3.13), we conduct the 

computational experiments to test on the different combination of parameters ߙ =

[1, 2, 3] and ߚ = [1, 2, 3, 4, 5] in order to determine the appropriate values of ߙ and ߚ. 

The performance of the modified ACO is measured for each data set, and averaged over 

5 runs. Table 3.1 shows the mean and standard deviation over 5 runs of the different 

combinations of parameters ߙ and ߚ and parameter ߙ is represented by alphabet A (A1, 

A2 and A3) while B (B1, B2, B3, B4 and B5) refers to parameter ߚ. The results show 

that the combination of (ߙ, (ߚ =  (1,5) gives the best average in the larger data set. 

However, the best combination of ߙ  and ߚ  for S12 and S20 are (ߙ, (ߚ =  (2,1) and 

,ߙ) (ߚ =  (2,3) respectively. Extra computations are done to compare between using 

existing parameters (ߙ, (ߚ =  (1,5) and the best parameter settings for instances of S12 

and S20 and the results are tabulated in Table 3.2 (S12) and Table 3.3 (S20). The 

improvement in the mean between (ߙ, (ߚ =  (1,5)  and (ߙ, (ߚ =  (2,1)  of S12 and 

,ߙ) (ߚ =  (2,3)  of S20 are small which is less than 1.7%. Therefore we set the 

parameter values for (ߙ, (ߚ =  (1,5) for all data sets and the results are tabulated in 

Table 3.4. 

 

3.6.2  Comparison of Modified ACO and Enhanced Modified ACO 

The parameters for both versions of ACO (ACO and ACO2) are set as follows: 

ߙ = 1.0, ߚ = 5.0, ݍ = 0.9, ߩ = 0.1, ߬ = 1/(ܰ × ,(ܮ  where ܮ is the total 

distance obtained from nearest neighbor algorithm. The algorithm is ran for 5000 
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iterations and each of the iterations consists of 25 ants to build a solution. N_moveData 

is determined by { ଵ
ଵଶ

× ܶ × ܰ} while N_moveTime is set to be equal to 3.  

 

We performed 10 runs for each data set. Table 3.4 shows the results of ACO which only 

applies Swap and 2-opt as local search and ACO2 which includes 2-opt* as inter route 

optimization procedure. Table 3.4 presents the best total costs, the number of vehicles, 

the CPU time, the lower bound and the upper bound (best integer solutions) which are 

obtained from CPLEX. From Table 3.4, we observed that the gaps which are calculated 

as the ratio of the difference between the lower bound and the upper bound to the lower 

bound, for all the solutions are greater than 10%. This ratio increases as the periods and 

the number of customers increase. Thus, it is hard to justify the quality of the lower 

bound obtained by CPLEX. This may be due to the lower bound is really loose or the 

upper bound is rather poor. 

 

From the results shown in Table 3.4 for ACO as well as ACO2, we note that the total 

costs of the data sets with 50 and 100 customers are less than the upper bound which 

means the algorithm is able to obtain better results when compared with the upper 

bound. However, ACO gives less than 9 percent gaps for the small and medium 

instances with 12 customers and 20 customers. Meanwhile, ACO2 performs equally 

well for both small and medium instances and produced the gaps between the results 

and the best integer solutions with less than 5 percent. If comparing both ACO and 

ACO2, we found out that ACO2 perform better than ACO. Table 3.5 presents the best 

total costs, the distance cost, the number of vehicles and the inventory cost of the best 

solution between ACO and ACO2. 
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Table 3.6 show the average and standard deviation of the total costs and CPU running 

time over 10 runs for both ACO and ACO2. From Table 3.6, we note that ACO2 gives 

less standard deviation than ACO, which means that ACO2 gives better results in terms 

of solution quality when compared with ACO. 
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Figure 3.6: Distribution of the data sets 
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Combination of 
parameters 

MEAN STDEV 

S12T14 S20T21 S50T21 S100T14 S12T14 S20T21 S50T21 S100T14 

A1B1 6501.44 14397.58 37401.46 45549.38 4.880 49.947 214.086 198.486 
A1B2 6480.71 14477.42 36978.60 44780.64 23.131 38.739 76.765 81.299 
A1B3 6494.63 14534.18 36825.98 44494.96 26.374 46.013 48.109 57.527 
A1B4 6509.66 14545.96 36788.92 44314.14 9.268 20.261 125.782 72.611 
A1B5 6502.01 14554.66 36729.76 44216.72 22.996 45.268 77.270 43.506 
A2B1 6394.06 14383.48 37162.56 45341.20 20.631 85.372 225.680 341.760 
A2B2 6502.29 14336.86 37038.28 45032.00 16.981 46.222 89.375 224.243 
A2B3 6505.26 14309.66 36789.50 44693.04 12.281 56.123 180.622 110.700 
A2B4 6503.11 14372.46 36919.64 44400.80 13.745 51.106 109.498 155.846 
A2B5 6506.18 14545.30 36820.14 44282.44 5.637 70.642 60.905 100.351 
A3B1 6410.164 14437.34 37369.62 45386.00 15.728 96.595 139.770 289.770 
A3B2 6461.848 14349.34 37116.32 45304.10 42.698 58.585 117.479 117.729 
A3B3 6489.428 14357.42 37050.30 44631.50 24.138 96.583 83.243 317.133 
A3B4 6502.286 14315.22 36930.08 44531.80 9.043 26.120 106.103 186.044 
A3B5 6500.422 14411.86 36842.48 44561.46 30.014 52.133 70.393 47.792 

 

Note: Alphabet A refers to the parameter of alpha while alphabet B refers to the parameter of beta for the equation (3.13). 

  

Table 3.1: The results of mean and standard deviation for different parameters settings over 5 
runs.   
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Data Sets UB 
(Best Integer) 

A1B5 A2B1 
Best costs Gaps ** (%) Mean STDEV Best costs Gaps ** (%) Mean STDEV 

S12T5 2231.96 2290.38 2.62 2296.98 7.682 2254.04 0.99 2272.04 9.976 
S12T10 4305.33 4453.58 3.44 4512.78 30.855 4409.91 2.43 4459.50 24.550 
S12T14 6196.35 6462.09 4.29 6505.47 17.702 6361.24 2.66 6403.95 17.333 

 Gaps** refers to the difference between the obtained results and the CPLEX Upper Bound 

Data Sets UB 
(Best Integer) 

A1B5 A2B3 
Best costs **Gaps (%) Mean STDEV Best costs **Gaps (%) Mean STDEV 

S20T5 3394.78 3527.00 3.89 3551.21 11.566 3431.84 1.09 3456.66 16.788 
S20T10 6759.71 7046.34 4.24 7114.85 36.759 6924.58 2.44 6946.81 25.406 
S20T14 9368.08 9707.08 3.62 9783.33 52.582 9609.24 2.57 9678.84 39.873 
S20T21 13929.21 14514.10 4.20 14598.30 82.124 14262.00 2.39 14325.30 53.532 

Table 3.2: Comparison of the results for S12 with two different parameters 

Table 3.3: Comparison of the results for S20 with two different parameters 
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Data LB 
(Objective) 

UB (Best Integer) 
Gap* 

ACO ACO2 

Costs # veh Best 
Costs #veh Time 

(secs) 
Gap** 

(%) 
Best 
Costs #veh Time 

(secs) 
Gap** 

(%) 

S12T5 2033.00 2231.96 19 12.08 2353.04 19 16 5.42 2290.38 19 15 2.62 

S12T10 4047.64 4305.33 36 13.49 4604.56 37 30 6.95 4453.58 36 30 3.44 

S12T14 5329.58 6196.35 52 14.92 6665.05 52 42 7.56 6462.09 52 41 4.29 
S20T5 3208.35 3394.78 28 10.06 3617.39 28 47 6.56 3527.00 28 47 3.89 

S20T10 6330.97 6759.71 56 11.00 7293.06 56 90 7.89 7046.34 56 91 4.24 

S20T14 8769.73 9368.08 77 11.78 9982.36 77 126 6.56 9707.08 77 128 3.62 

S20T21 12407.58 13929.21 115 14.25 15093.50 113 184 8.36 14514.10 113 188 4.20 

S50T5 7614.43 8213.22 64 18.81 8176.18 59 317 -0.45 8115.38 61 324 -1.19 
S50T10 13913.84 17359.20 135 22.03 17205.70 124 653 -0.88 16935.40 124 664 -2.44 

S50T14 19300.45 25181.61 197 24.36 24357.10 176 942 -3.27 23969.10 178 941 -4.82 

S50T21 29418.86 38626.96 311 25.01 37485.60 272 1438 -2.95 36620.40 273 1432 -5.19 

S100T5 13208.54 16130.13 134 22.39 15247.60 122 1709 -5.47 15117.00 122 1734 -6.28 

S100T10 25601.69 34388.15 293 26.74 31407.60 249 3527 -8.67 30963.90 249 3517 -9.96 
S100T14 - - - - 44610.50 355 4960 - 44155.00 355 4956 - 

 

 

  

Table 3.4: Results for both ACO and ACO2 

Gaps* refers to the gap between lower and upper bounds which obtained from CPLEX. 

Gaps** refers to the difference between the obtained results and the CPLEX Upper Bound 
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Data Algorithms Results  Distance 
Cost #Vec  Inventory 

Cost 

S12T5 ACO2 2290.38 1910.38 19 0 
S12T10 ACO2 4453.58 3721.58 36 12 
S12T14 ACO2 6462.09 5359.09 52 63 
S20T5 ACO2 3527.00 2967.00 28 0 

S20T10 ACO2 7046.34 5926.34 56 0 
S20T14 ACO2 9707.08 8140.08 77 27 
S20T21 ACO2 14514.10 12254.10 113 0 
S50T5 ACO2 8115.38 6863.38 61 32 

S50T10 ACO2 16935.40 14418.40 124 37 
S50T14 ACO2 23969.10 20395.10 178 14 
S50T21 ACO2 36620.40 30957.40 273 203 
S100T5 ACO2 15117.00 12636.00 122 41 
S100T10 ACO2 30963.90 25983.90 249 0 
S100T14 ACO2 44155.00 37043.00 355 12 

 

 

  

Table 3.5: The details of the best solution between ACO and ACO2 
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Data 

ACO ACO2 

Average 
(results) 

STDEV 
(results) 

Average 
(Time) 

STDEV 
(Time) 

Average 
(results) 

STDEV 
(results) 

Average 
(Time) 

STDEV 
(Time) 

S12T5 2398.75 47.34 15.60 0.52 2296.98 7.68 15.20 0.42 

S12T10 4640.84 25.12 30.30 0.67 4512.78 30.86 29.40 0.52 
S12T14 6718.46 32.53 41.50 0.53 6505.47 17.70 41.40 0.52 

S20T5 3633.42 20.66 46.40 0.52 3551.21 11.57 46.80 0.42 

S20T10 7320.39 19.11 90.20 0.63 7114.85 36.76 90.60 0.52 

S20T14 10233.19 92.74 126.20 2.44 9783.33 52.58 127.90 4.43 

S20T21 15250.71 76.43 185.80 0.92 14598.30 82.12 188.10 1.45 
S50T5 8275.94 69.60 322.70 2.58 8180.07 46.66 326.90 4.23 

S50T10 17290.91 65.23 657.50 4.33 16981.35 26.48 657.30 4.40 

S50T14 24500.48 78.38 940.70 4.45 24034.87 42.56 936.50 6.77 

S50T21 37601.92 100.29 1434.70 10.13 36804.87 99.54 1442.20 9.22 
S100T5 15371.85 72.61 1703.00 17.16 15177.12 39.62 1705.50 13.91 

S100T10 31523.81 87.42 3520.10 18.27 31099.62 67.01 3511.40 12.98 

S100T14 44754.70 88.05 4961.80 10.53 44204.10 50.15 4956.60 10.31 

Table 3.6: The average and standard deviation of total costs and CPU running time over 
10 runs 
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3.7  Summary of the chapter 

In this chapter, the explanation of the developed algorithm and the computational results 

are shown for both ACO and ACO2. Both of the algorithms are modified by adding the 

inventory cost in the global pheromones updating to solve for routing part while the 

procedure of updating inventory level is to determine the inventory for customers. A 

new transfer/swap aimed at combining split customers is also developed. This is carried 

out in order to obtain the improvement in term of the transportation costs. ACO 

embedded swap and 2-opt which is the intra route optimization procedure in the route 

improvement strategies. However, despite of swap and 2-opt, ACO2 also included 2-

opt* which is the inter route optimization procedure in the route improvement strategies. 

Thus, ACO2 is not only improving in term of transportation cost within the vehicles but 

also between the vehicles. 

 

In this study, the computational experiments are done on different combination of the 

number of customers, 12, 20, 50 and 100 with the number of periods, 5, 10, 14 and 21. 

The overall results for both ACO and ACO2 showed that the algorithm performs better 

in larger instances if compared with small and medium instances as the obtained results 

for larger instances are better than the upper bound which generated from CPLEX 12.4. 

Meanwhile, we can also observe that ACO2 gives better results if compared with ACO 

for all the problem instances. From the standard deviation of the total costs, we can see 

that ACO2 gives better solution quality as well.  
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CHAPTER 4: POPULATION BASED ANT COLONY OPTIMIZATION 

 

This chapter proposes the enhanced version of the previous modification on ACO to 

solve the same model of IRP which discussed in section 3.2. The chapter begins with 

the introduction. Next, the description of the developed algorithms is presented. There 

are 3 algorithms to be discussed in this chapter. The corresponding computational 

experiments are done and the results as well as the discussion of the obtained results 

will be presented. Moreover, this chapter also gives the statistical analysis on the 

computational results. Finally, the chapter ends with a summary. 

 

4.1 Introduction 

As mentioned in the previous chapter, the aim of IRP is to determine the schedule of 

deliveries, delivery amount, and how to route vehicles while minimizing the total cost 

that consists of inventory and transportation costs. The IRP is especially relevant in the 

vendor managed inventory strategy. Under this strategy, the supplier or manufacturer 

decides when to visit its customer, how much to deliver to each of them and how to 

combine them into vehicle routes. In the Chapter 3, we presented the model formulation 

which we intended to solve. In this chapter, we still tackle the same problem which is 

one-to-many network where a fleet of homogeneous vehicle transports multi products 

from a warehouse or depot to a set of geographically dispersed customers in a finite 

planning horizon and split delivery is allowed in our study. However, we will enhance 

the ACO with different modification with the aim to obtain more efficient results. Here, 

we introduce population based ACO. 
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In Chapter 3, we have discussed about the modification on ACO which includes the 

inventory cost in the global pheromones updating to solve our proposed model. 

However, we observed that the developed algorithm is not performing well as the 

algorithms only consist of one population to explore different set of inventory level in 

order to obtain the minimum cost. Therefore, in this chapter we will enhance the 

algorithm in order to improve the solution and hence give better results for our proposed 

model.  

 

In the previous chapter, we can see that all the ants for both ACO and ACO2 share the 

same set of the inventory to build the routing part. We started all the solutions with zero 

inventory and inventory changes very slowly with inventory updating that we have 

applied. As a result, the algorithm requires many iterations in building different set of 

inventory to get a better solution. With the aim to improve this problem, we introduce 

the subpopulation of ants to build different set of inventory and then implement ACO to 

build for the routing part.  

 

The contributions of this chapter are as follows: 

1. The first proposed modification is done by dividing the ants into subpopulation 

and each subpopulation represents different set of inventory level. In addition, 

the inventory updating mechanism includes both forward and backward transfer. 

2. The second proposed modification of algorithm is done by proposing the new 

formulation of pheromones values on customer’s inventory which with the aim 

to store the information of the best inventory level for the customer. This lead to 

obtain the best set of inventory level which can also minimize the transportation 

cost as well. 
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3. Statistical analysis is done in order to obtain the significant difference between 

the proposed algorithms. 

 

4.2  Population Based Ant Colony Optimization  

In the typical ACO, only one population of ant is involved in building the solution. In 

this study, we propose dividing the ants into subpopulations to solve the problem 

instead of having one population (where the ants all have the same inventory). Each 

subpopulation represents one inventory level and the pheromones values will be 

different between the subpopulation but shares the same values within the 

subpopulation. Figure 4.1 outlines the algorithm of the population based ACO. In this 

chapter, we will implement three different approaches on updating inventory 

mechanism in order to improve the solution. The detail of the proposed algorithm will 

be presented in the following subsection. 

 

Step1: Start the algorithm with Nearest Neighbour Algorithm and obtain the total 
distance and inventory cost. 
Do the following steps from i =1 to i= MaxiITER, 
Step 2: Do the route construction by using the ACO for all the ants in each 
subpopulation. 

Step 2.1: Local pheromones updating 
Choose the best solution among all the ants in each subpopulation to do the local 
pheromones updating. 

Step 2.2: Route improvement strategies 
Choose the best solution among all the subpopulations to do the route improvement 
strategies. 

Step 2.3: Global pheromones Updating 
IF (i modulo PredefinedIterationForGL)= 0,  

Choose the current best built solution to do the global pheromones updating. 
Then, go to Step 3. 

Else, go to Step 3. 
Step 3: Update inventory level mechanism 
IF (i modulo predefinedIterInvUpt) = 0 

Update the inventory for all subpopulations except the subpopulation containing 
the current best solution. 
Go to Step 2. 

Else, go to Step 2. 

  Figure 4.1: Algorithm of the population based ACO 
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4.2.1  First modification of population based ACO (ACOBF) 

In this subsection, we discuss the first modification on population based ACO and the 

method is named ACOBF. ACOBF divides the population of ants into subpopulation 

and each of the subpopulation will consist of different set of inventory level. The 

pheromones values of the ants within the subpopulation are the same. 

 

ACOBF starts the algorithm by considering all the demands are met on time. In another 

word, ACOBF starts with zero inventories for all subpopulation. Although we started 

with the same inventory level for all the subpopulations, we observe that the inventory 

for each subpopulation will be different with each other after updating the inventory for 

a few times. Consequently the pheromone value differs between subpopulation as we 

select the best solution according to the subpopulation to generate the pheromone value.  

 

In addition, ACOBF implements both forward and backward transfer mechanism in the 

updating inventory process for the customers. The details of ACOBF are discussed in 

the following sub-subsection. 

 

4.2.1.1 Initial Solution 

Similar to ACO2, Nearest Neighbor algorithm (NN) is applied in order to obtain the 

total distance. We construct the initial solution by having all the demand met in every 

period. In this study we adopt a simple Nearest Neighbour algorithm (NN) and the 

algorithm is modified to allow for split delivery. The vehicle starts at the depot and 

repeatedly visits the nearest customer (in terms of distance) until the capacity of the 

vehicle is fully occupied. Then, a new vehicle is initiated and the process continues until 

all customers have been assigned or visited. The total distance obtained by NN plus the 
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inventory cost are embedded to initialize the ߬ , the initial pheromone in the local 

pheromone updating.  

 

4.2.1.2 Route Construction 

As mentioned above, ACOBF starts with the predefined number of subpopulation of 

ants and each subpopulation consists of predefined number of ants to build the solution.  

Similar to ACO2, each ant of the subpopulation in ACOBF will also implement the 

same mechanism to select the customer to be visited (discussed in subsection 3.3.2). 

 

4.2.1.3 The local pheromone-updating rule 

As discussed in the previous chapter, local updating is used to prevent a very strong arc 

being chosen by all the ants. After each of the ants in every subpopulation has built the 

solution, the best solution from each subpopulation will be selected. Then, the local 

updating will be done on each arc of the best solution from each subpopulation by using 

equation (3.15).  

 

4.2.1.4 The global pheromone-updating rule 

As mentioned in the previous chapter, global pheromones updating is done so that the 

ants will have a better starting point in searching for shorter path. After a predefined 

number of iterations, the current best solution ߛ  among all the subpopulations is 

selected and its routes are used as a reference for the global pheromones-updating for all 

subpopulation. Hence, the pheromones value for each arc of the best solution is updated 

by using the equation (3.16) for all the subpopulations.     
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4.2.1.5 Route improvement strategies 

After the predefined number of iterations, the current best solution among the 

subpopulations will be selected and the routes will be further improved by adding route 

improvement strategies in the route construction procedure which is similar to ACO2.  

Three local searches; namely swap, 2-opt* (Potvin and Rousseau, 1995) and 2-opt (Lin, 

1965), are applied to improve the solution built by ACO.  

 

4.2.1.6 Updating inventory level 

We have done modification on the inventory updating mechanism for ACOBF. In ACO 

and ACO2 we only consider the backward transfer (where the periods to be transferred 

are selected randomly and inventory of the customer with the lowest inventory holding 

cost (subject to certain feasibility conditions which have been discussed in subsection 

3.3.6) are transferred to the period ( ݐ − 1) . However, we modified the inventory 

updating mechanism for ACOBF by including the forward transfer as well.  

 

The inventory updating mechanism will be initiated after the predefined number of 

iterations. As mentioned above, we proposed two types of transfers, the forward and the 

backward transfers to update the inventory level. The selection of the forward and 

backward transfer is controlled by a random number and biasing towards the forward 

transfer. The selection of period is done randomly but we experiment two ways of 

selecting the customer to transfer their quantity of delivery based on the predefined 

number. If the current number of iteration is less than the predefined number, then the 

customer will be selected randomly. Otherwise, the customer who fulfilled the 

conditions (highest and lowest inventory holding cost for the forward and backward 

transfer respectively) will be selected. We observed that implementing a combination of 

randomly generated and deterministically generated customers allow the ants to have 
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more explorations at the beginning of the iterations. The number of transfers for each 

updating mechanism after the predefined number of iterations is limited to the 

predefined number of transfers. 

 

The updating mechanism will be implemented until the predefined number of iterations 

is reached. After the predefined number of iterations, the set of amount delivery which 

produced the best solution is determined and the routing part is executed continued. 

Figure 4.2 illustrated the algorithm of updating inventory for ACOBF. 
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Figure 4.2: Algorithm of updating inventory for ACOBF 

 cur_iter < 
PredefinedIterChgInvMeth 

START  

Generate random number, 
prob_rand 

prob_rand  <  
predefinedprob 

Randomly select a period, p with the 
condition there is / are available 

customer to do backward transferring 
(where quantity delivery is equal to 

the original demand) 

YES 

NO 

Randomly select a customer on 
period p whose quantity of 

delivery is greater than original 
demand 

Transfer the remaining quantity after deducting 
the original demand to the succeeding period, p+1 

Randomly select a period, p with the condition 
there is / are available customer to do forward 

transferring (whose quantity of delivery is 
equal to the original demand) 

Randomly select 
a customer at 

period p whose 
delivery quantity 

is equal to the 
original demand 

Transfer the quantity delivery to the 
preceeding period, p-1 

Select a customer on period p 
with the highest inventory cost 
among those whose quantity of 
delivery is greater than original 

demand 

Select a customer 
at period p with 

the least inventory 
costs among that 
delivery quantity 

is equal to the 
original demand 

NO YES 

NO 

YES 

cur_move = 0 

cur_move ++ 

 cur_move < 
PredefinedMove 

Update the inventory level and 
inventory cost for each 

customer on each period 

NO 
YES 

END  

 cur_iter < 
PredefinedIterChgInvMeth 

Univ
ers

ity
 of

 M
ala

ya



65 
 

4.2.2  Second modification on population based ACO (ACOPher) 

In the previous discussion on the three algorithms, ACO and ACO2 as well as ACOBF, 

we mentioned that the inventory cost is added at the global pheromones updating. 

However, the emphasis is still more on the routing part rather than inventory.  We 

observed that, those proposed algorithms are more likely to give savings in term of 

transportation costs instead of inventory. Therefore, we will discuss an improved 

version of the algorithm in order to balance between inventory and transportation costs 

in this subsection and we called this proposed algorithm ACOPher. 

 

We modify the algorithm such that the inventory updating is based on the pheromone 

value of each customer. The following equation is used to update the pheromones of 

customer’s inventory for customer j in period p, ݅݊ݒℎ݁ݎ: 

ݎℎ݁ݒ݊݅ = (1 − (ߩ ∗ ൫݅݊ݒℎ݁ݎ൯ + ߩ ∗ ೕ

ೕ
     (4.1) 

where ܽ is the delivery quantity of customer j in period p while ܿ  is the distance 

between the customer i and j for the routing of the current best solution and ߩ represents 

the rate of pheromone evaporation as defined earlier. The second element of equation 

(4.1) specifies that if the ratio of the delivery quantity of the respective customer to its 

distance is higher, then higher pheromone value will be allocated, emphasizing 

favorably towards customer with higher ratio. The selection of ܿ for local and global 

inventory is discussed in more details in the following subsections. 

 

4.2.2.1 Local pheromones updating of customer’s inventory 

For the local inventory updating, the ܿ value is taken from the best solution after some 

predefined number of iterations. Note that the predefined number of iterations is smaller 

than the predefined value of the overall inventory updating. The purpose of selecting the 

current best solution after a few iterations instead of selecting the best from all the 
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current built solutions is to avoid the customer with strong customer’s inventory 

pheromones being chosen all the time by all the subpopulations. 

 

4.2.2.2 Global pheromones updating of customer’s inventory 

A slightly different mechanism is used in selecting the value of ܿ  for the global 

inventory updating. The value of ܿ  is selected from the current best solution among all 

the current built solution. The aim of this step is to lead the ants to select the best 

amount of delivery quantity to be carried for the customer. Figure 4.3 illustrates the 

algorithm for the process of inventory updating. Note that PredefinedIterationForGLp,< 

PredefinedIterationForGL < predefinedIterInvUpt < predefinedIterInvUptGL and 

ܮܩݎܨ݊݅ݐܽݎ݁ݐܫ݂݀݁݊݅݁݀݁ݎܲ =
ݐܷݒ݊ܫݎ݁ݐܫ݂݀݁݊݅݁݀݁ݎ

 ܮܩݎܨ݊݅ݐܽݎ݁ݐܫ݂݀݁݊݅݁݀݁ݎܲ

For i =1 to i= MaxiITER 
Do the following steps after the route construction of ACO. 
IF݅ modulo predefinedIterInvUpt = 0, then 

IF݅ modulo predefinedIterInvUptGL = 0, then 
Choose the current best solution among all the built solutions. 
Use the routing part of the best solution to update the customer’s inventory 
pheromones (Global pheromones updating of customer’s inventory) 
Then, continue with the updating inventory mechanism. 

Else 
Choose the best solution from PredefinedIterationForGLp solutions that have 
been built. 
Use the routing part of the best solution to update the customer’s inventory 
pheromones (Local pheromones updating of customer’s inventory) 
Then, continue with the updating inventory mechanism. 

Else 
Continue with the route construction part. 

Figure 4.3: Algorithm of updating customer’s inventory pheromones for the second 
modified algorithm of ACO 

 

Procedure for updating inventory level for each subpopulation 

After the customer’s inventory pheromones have been updated, the algorithm proceeds 

to select the customer to undergo the transfer. As mentioned earlier, the mechanism of 

selecting customer is based on the random number that has been generated but the 
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priority is given to the customer based on the attraction value. If random value is less 

than certain predefined parameter, the customer with the highest attraction value of 

inventory pheromones is selected to undergo the transfer.  The attraction of customer’s 

inventory pheromones for customer j in period p, ݒ݊ܫݐݐܣ in each subpopulation is 

calculated using the equation  

ݒ݊ܫݐݐܣ = ൫݅݊ܲݒℎ݁ݎ൯ఓ
∗ (1

ܽൗ )ఠ     (4.2) 

Note that ߤ  and  ߱  are the parameters that control the influence of the inventory 

pheromone value and the desirability of delivery quantity for customer j in period p, 

respectively. The value of ߤ is set to be greater than ߱ as we want the pheromones 

values to influence more on the values of attraction. However, the value of ߤ should not 

be set to be too large as the ratio part of ೕ

ೕ
 in the pheromone values will increase 

rapidly if the value of ܽ > ܿ. This is done to avoid a very strong customer to be 

chosen all of the time. Otherwise, the deterministic backward / forward transferring 

mechanism (highest and lowest inventory holding cost for the forward and backward 

transfer respectively) will be used to select the customer to update the inventory.  

 

Similar to ACOBF, the updating mechanism will be implemented until the predefined 

number of iterations. After the predefined number of iterations, the set of delivery 

amount which produced the best solution will be determined and continue to let ACO to 

build the routing part.  Figure 4.4 illustrates the algorithm of updating inventory for 

ACOPher. 
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START  

Generate random number, 
prob_rand 

prob_rand  <  N_prob 

Select the customer based on the 
deterministic backward and forward 
mechanism with more emphasis on 

forward transfer. 

YES 

NO 

Select the customer based on the attraction of 
customer’s inventory. Priority goes to the 

customer with higher attaraction. 

cur_move = 0 

cur_move ++ 

 cur_move < 
PredefinedMove 

Update the inventory level and 
inventory cost for each 
customer at each period 

NO 

YES 

END  

Figure 4.4: Algorithm of updating inventory for ACOPher 
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4.2.3 Enhanced version of second modification population based ACO (ACOPher2) 

In the previous subsection, we discussed the modification on population based ACO by 

proposing the pheromones values on the customer’s inventory. However, the algorithm 

is started with the same set of inventory for each subpopulation. This may cause more 

iterations needed to obtain the best set of inventory while balancing the transportation 

cost.  

 

Therefore, in this subsection, we present the improved algorithm of the population 

based ACO where each subpopulation starts with the different sets of inventory level 

which include the set of zero inventory cost (all the demands are met on time), the set of 

inventory which is generated from the allocation model (the model is shown as below) 

and a set of randomly generated set of inventory.  

 

The randomly generated set of inventory is obtained by randomly selecting the customer 

and the period to transfer the whole amount of demand to the preceding period to create 

different sets of inventory with the limited number of transfer is allowed for each set of 

inventory.  With this strategy of starting with the different sets of inventory, it provides 

the ants to have more explorations at the beginning of the iterations and we hope it will 

converge to better solutions in less number of iteration. 

 

Allocation Model: 
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subject to constraint (3.2), (3.6), (3.7) and  
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4.3 Computational Results and discussion  
 
The algorithms were written in C++ language by using Microsoft Visual studio 2008. 

The results of this study is compared with the lower bound (LB) and the upper bound 

(UB) generated by solving the formulation presented in Section 3 using CPLEX 12.4. 

All the computations were performed on 3.10 GHz processor with 8 GB of RAM. 

 

4.3.1  Data sets 

The algorithm is tested by using the same set of data sets that were discussed in the 

previous chapter, which consists of 12, 20, 50 and 100 customers, and combination with 

different number of periods, 5, 10, 14 and 21.  

 

4.3.2   Results and Discussion 

As mentioned in Section 3.6, we let CPLEX 12.4 run for a limited time 9000s (2.5 

hours) in order to obtain the lower and upper bound (best integer solutions) for all the 

instances. The results of ACOBF which implemented the forward as well as backward 

transferring in the mechanism of updating inventory level and the results of ACOPher 

as well as ACOPher2 which implemented the customer’s inventory pheromones are 

shown in Table 4.1. The parameters for ACOBF and ACOPher as well as ACOPher2 

are set as follows: ߙ = 1.0, ߚ = 5.0, ݍ = 0.9, ߩ = 0.1, ߤ = 1.0, ߱ = 0.5, ߬ =

1/(ܰ ×   comprises of the total distance obtained from nearest neighbourܮ ) whereܮ

algorithm and the inventory holding cost. The values of ߙ and ߚ  are obtained from the 

sensitivity analysis which have been done in Chapter 3 while the value of ݍ is taken 

from Dorigo et al. (1996). The pheromones on customers’ inventory in ACOPher is 

initially set as 1 ݀
ൗ  if ݀ is not equal to 0, otherwise set as 0. In both ACOBF and 

ACOPher, there are 5 subpopulations and each subpopulation consists of 5 ants to build 

solution.  
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Table 4.1 tabulates the results of the algorithms of the population based ACO, ACOBF 

and ACOPher as well as ACOPher2. It presents the best total costs, the number of 

vehicles, lower and the upper bound (best integer solutions) obtained from CPLEX 

while Table 4.2 shows the CPU time.  

 

From the results shown in Table 4.1 for all of the three algorithms of population based 

ACO, we note that the total costs of the data sets with 50 and 100 customers are less 

than the upper bound, which means that the algorithm is able to obtain better results 

when compared with the upper bound for 50 and 100 customer instances. However, 

ACOBF and ACOPher as well as ACOPher2 perform equally well for the small and 

medium instances and produced the gaps between the results and the best integer 

solutions that are less than 4.5 percent. In the same table, we can observe that ACOPher 

and ACOPher2 which implemented the new formulation of the customer’s inventory 

pheromones to select the customer for updating the inventory level give better solution 

in most of the instances (12 out of 14 problem instances) if compared with ACOBF. We 

can expect the new mechanism of selecting the customer based on the customer’s 

inventory pheromones is potential to produce the set of inventory which can balance 

between the inventory and transportation cost and hence give minimum of the total cost. 

Among the three algorithms of population based ACO, ACOPher2 perform better in 7 

out of 14 instances.  

 

Table 4.2 gives the results of non-population and population based ACO. In this table, 

we can see that the algorithms of population based ACO outperform than non-

population based ACO in all of the problem instances. We can conjecture that dividing 

the ants into subpopulation in order to give more chance to the ants to explore more set 

of inventory level in less iteration which can balance with the transportation cost is 
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potential to produce better solution. The details including the distance cost, number of 

vehicles as well as the inventory cost of the best solution among the 5 algorithms are 

presented in Table 4.3. 

 

Table 4.4 gives the computational time of ACOBF, ACOPher and ACOPher2. In this 

table, we can observe that the computational time of the three algorithms is not much 

different in all instances as they required almost the same computational time to 

produce the results. Table 4.5 presents the average and standard deviation of the total 

cost and computational time over 10 runs for the population based ACO. In this Table 

4.5, we can see that the algorithms including the pheromones values on the customer’s 

inventory, ACOPher and ACOPher2 gives better in term of quality solution than 

ACOBF. This is because of the both algorithms; ACOPher and ACOPher2 give less 

standard deviation in terms of the best obtained solution if compared with ACOBF in 

most of the problem instances (11 out of 14 problem instances). 
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Table 4.1: Results of the algorithms of population based ACO 

 

Data 
LB 

(Objective) 
  

UB (Best Integer) ACOBF ACOPher ACOPher2 

Costs # veh Best 
Costs #veh Gap* 

(%) 
Best 
Costs #veh Gap* 

(%) 
Best 
Costs #veh Gap* 

(%) 
S12T5 2033 2231.96 19 2285.94 19 2.42 2279.62 19 2.14 2278.79 19 2.1 

S12T10 4047.64 4305.33 36 4441.23 36 3.16 4436.01 36 3.04 4427.11 36 2.83 

S12T14 5329.58 6196.35 52 6422.24 52 3.99 6421.95 52 3.98 6388.74 51 3.1 
S20T5 3208.35 3394.78 28 3522.65 28 3.77 3527.8 28 3.92 3507.07 28 3.31 

S20T10 6330.97 6759.71 56 7046.23 56 4.24 7037.72 56 4.11 7042.96 56 4.19 

S20T14 8769.73 9368.08 77 9697.48 77 3.52 9689.11 77 3.43 9662.48 77 3.14 

S20T21 12407.58 13929.21 115 14487.1 113 4.01 14481.1 113 3.96 14476.3 113 3.93 

S50T5 7614.43 8213.22 64 8110.05 60 -1.26 8134.02 60 -0.96 8121.4 59 -1.12 
S50T10 13913.84 17359.2 135 16871.2 124 -2.81 16852.7 125 -2.92 16862.3 125 -2.86 

S50T14 19300.45 25181.61 197 23886.3 178 -5.14 23939.8 178 -4.93 23930 178 -4.97 

S50T21 29418.86 38626.96 311 36715.1 273 -4.95 36572 274 -5.32 36644.1 274 -5.13 

S100T5 13208.54 16130.13 134 15080.2 122 -6.51 15108.9 122 -6.33 15009.2 122 -6.95 

S100T10 25601.69 34388.15 293 30960.4 249 -9.97 30857.2 249 -10.27 30897.4 249 -10.15 
S100T14 - - - 43997.5 355   43934.6 355 - 44043.9 355 - 

 
Gaps* refers to the difference between the obtained results and the CPLEX Upper Bound 
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Table 4.2: Results of the algorithms of non-population and population based ACO 
 

Data 

UB 
(Best 

Integer) 

Non-population based ACO Population based ACO 

ACO ACO2 ACOBF ACOPher ACOPher2 

Costs 
Best 
Costs 

Gap* 
(%) 

Best 
Costs 

Gap* 
(%) 

Best 
Costs 

Gap* 
(%) 

Best 
Costs 

Gap* 
(%) 

Best 
Costs 

Gap* 
(%) 

S12T5 2231.96 2353.04 5.42 2290.38 2.62 2285.94 2.42 2279.62 2.14 2278.79 2.1 
S12T10 4305.33 4604.56 6.95 4453.58 3.44 4441.23 3.16 4436.01 3.04 4427.11 2.83 

S12T14 6196.35 6665.05 7.56 6462.09 4.29 6422.24 3.99 6421.95 3.98 6388.74 3.1 

S20T5 3394.78 3617.39 6.56 3527 3.89 3522.65 3.77 3527.8 3.92 3507.07 3.31 

S20T10 6759.71 7293.06 7.89 7046.34 4.24 7046.23 4.24 7037.72 4.11 7042.96 4.19 

S20T14 9368.08 9982.36 6.56 9707.08 3.62 9697.48 3.52 9689.11 3.43 9662.48 3.14 
S20T21 13929.21 15093.5 8.36 14514.1 4.2 14487.1 4.01 14481.1 3.96 14476.3 3.93 

S50T5 8213.22 8176.18 -0.45 8115.38 -1.19 8110.05 -1.26 8134.02 -0.96 8121.4 -1.12 

S50T10 17359.2 17205.7 -0.88 16935.4 -2.44 16871.2 -2.81 16852.7 -2.92 16862.3 -2.86 

S50T14 25181.61 24357.1 -3.27 23969.1 -4.82 23886.3 -5.14 23939.8 -4.93 23930 -4.97 

S50T21 38626.96 37485.6 -2.95 36620.4 -5.19 36715.1 -4.95 36572 -5.32 36644.1 -5.13 
S100T5 16130.13 15247.6 -5.47 15117 -6.28 15080.2 -6.51 15108.9 -6.33 15009.2 -6.95 

S100T10 34388.15 31407.6 -8.67 30963.9 -9.96 30960.4 -9.97 30857.2 -10.27 30897.4 -10.15 

S100T14 - 44610.5 - 44155 - 43997.5 - 43934.6 - 44043.9 - 
 

Gaps* refers to the difference between the obtained results and the CPLEX Upper Bound 
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Data Algorithms Results  Distance 
Cost #Vec  Inventory 

Cost 
S12T5 ACOPher2 2278.79 1857.79 19 41 

S12T10 ACOPher2 4427.11 3695.11 36 12 
S12T14 ACOPher2 6388.74 5308.74 51 60 
S20T5 ACOPher2 3507.07 2941.07 28 6 

S20T10 ACOPher 7037.72 5917.72 56 0 
S20T14 ACOPher2 9662.48 8092.48 77 30 
S20T21 ACOPher2 14476.30 12189.30 113 27 
S50T5 ACOBF 8110.05 6904.05 60 6 

S50T10 ACOPher 16852.70 14350.70 125 2 
S50T14 ACOBF 23886.30 20326.30 178 0 
S50T21 ACOPher 36572.00 31084.00 274 8 
S100T5 ACOPher2 15009.20 12569.20 122 0 
S100T10 ACOPher 30857.20 25877.20 249 0 
S100T14 ACOPher 43934.60 36833.60 355 1 

  

Table 4.3: The details of the best solution  among the 5 algorithms; ACO, ACO2, 
ACOBF, ACOher, and ACOPher2 
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Table 4.4: Computational time of the algorithms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Data ACOBF ACOPher ACOPher2 
Time (secs) Time (secs) Time (secs) 

S12T5 21 21 21 
S12T10 38 38 39 
S12T14 51 51 51 
S20T5 54 55 55 
S20T10 102 103 102 
S20T14 140 140 139 
S20T21 207 207 208 
S50T5 348 354 347 
S50T10 712 721 708 
S50T14 994 1013 1004 
S50T21 1509 1544 1524 
S100T5 1844 1892 1873 

S100T10 3698 3789 3646 
S100T14 5175 5294 5082 
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Data 
ACOBF ACOPher ACOPher2 

Average 
(results) 

STDEV 
(results) 

Average 
(Time) 

STDEV 
(Time) 

Average 
(results) 

STDEV 
(results) 

Average 
(Time) 

STDEV 
(Time) 

Average 
(results) 

STDEV 
(results) 

Average 
(Time) 

STDEV 
(Time) 

S12T5 2302.38 9.03 21.50 0.53 2295.46 9.25 21.00 0.00 2295.57 8.97 21.30 0.48 
S12T10 4458.82 18.07 38.10 0.32 4453.49 11.34 38.10 0.32 4460.70 24.50 38.20 0.42 
S12T14 6453.36 16.68 50.60 0.52 6444.12 24.88 51.10 0.32 6430.83 24.14 50.80 0.63 
S20T5 3544.60 20.61 55.20 0.79 3557.85 18.25 55.20 0.63 3532.75 13.80 55.00 0.47 

S20T10 7090.80 50.00 102.60 0.70 7074.03 16.76 102.60 0.52 7065.40 13.99 102.00 0.67 
S20T14 9720.30 15.74 140.20 0.79 9704.23 11.28 140.30 0.67 9709.10 22.25 139.80 0.63 
S20T21 14499.68 12.04 205.30 1.06 14499.05 9.27 207.20 1.14 14492.47 12.82 207.60 2.46 
S50T5 8151.60 29.75 348.90 1.52 8156.95 15.33 355.50 1.65 8156.44 19.89 351.40 2.07 

S50T10 16940.68 52.65 710.80 3.97 16936.59 39.75 722.00 3.62 16927.49 34.74 710.40 2.76 
S50T14 23991.73 60.69 1001.00 4.35 24002.73 56.42 1018.70 5.06 24002.17 38.71 998.30 6.11 
S50T21 36759.41 29.66 1514.40 4.88 36748.35 74.84 1543.20 4.16 36769.03 68.72 1501.50 19.20 
S100T5 15136.59 31.91 1848.10 9.86 15143.22 19.92 1897.50 4.12 15116.49 45.14 1860.60 8.44 
S100T10 31069.68 53.81 3693.30 11.55 31037.96 81.26 3786.60 4.67 31050.97 59.72 3645.40 17.38 
S100T14 44128.40 70.62 5172.20 13.36 44075.46 88.62 5293.60 10.44 44114.38 43.89 5065.40 31.05 

  

Table 4.5: The average and standard deviation of total costs and CPU running time over 10 runs (Population Based ACO) 
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4.4  Statistical Analysis Results 
 
In this study, we performed a nonparametric statistical analysis for multiple 

comparisons to determine whether there is a significant difference between the five 

algorithms which are ACO, ACO2, ACOBF, ACOPher and ACOPher2. The Friedman 

test, Iman and Davenport and Friedman Aligned Rank test are often employed inside the 

framework of experimental analysis to decide when one algorithm is considered better 

than another (Derrac et al, 2011).  

 

The Iman and Davenport and Friedman Aligned Rank tests are to alleviate the weakness 

of the Friedman test. Iman and Davenport proposed a less conservative test to improve 

on the Friedman test which is conservative. The ranking scheme adopted in the 

Friedman test has a weakness in which it allows for intra-set comparison only. It is 

based on ݊ sets of ranks, one set for each data set in this case the performances of the 

algorithms analysed are ranked separately for each data set. Hence the intra-set 

comparisons are not meaningful. When the number of algorithms is small (in this study 

is only five), this may pose a disadvantage. We propose Friedman Aligned Rank test, 

where the observation is aligned with respect to the problems (datasets) as well as with 

respect to the algorithms. The alignment is carried out by subtracting the mean of each 

dataset in each algorithm. The details of each test will be discussed in the following 

subsections. 

 

4.4.1  Friedman Test 

Friedman test gives the multiple comparisons test with the aim to detect significant 

differences between behaviors of two or more algorithms. The null hypothesis for 

Friedman’s test states the equality of medians between the populations while the 

alternative hypothesis gives the negation of the null hypothesis. Firstly, each of the 
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problem, i, in the original results is ranked from 1 (best result) to k (worst result), and 

each ranks is denoted by ݎ
(1 ≤ ݆ ≤ ݇). Meanwhile, the average of the ranks obtained 

in all problems is calculated by using the equation (4.5) for each algorithm j. 

      
i

j
ij r

n
R 1 .                                                      (4.5) 

The Friedman statistic Ff  can be calculated as follows: 
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Friedman test is distributed according to Chi-Square distribution with ݇ − 1 degree of 

freedom.  

 

4.4.2  Iman and Davenport 

Iman and Davenport is derived from the Friedman statistic and is distributed according 

to an F distribution with ݇ − 1 and (݇ − 1)(ܰ − 1) degrees of freedom. The statistic of 

Iman and Davenport is calculated by using the equation (4.7) as follows: 
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4.4.3  Friedman Aligned Ranks test 

In the method of Friedman Aligned Ranks test, the average performance achieved by all 

algorithms in each problem is computed. Then, the difference between the performance 

obtained by an algorithm and the calculated average is obtained. These steps are 

repeated for each combination of algorithms and problems. The resulting differences 

(aligned observations) for each combination of the problems and algorithms are then 
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ranked from 1 to ݇ ∙ ݊. The ranks assigned to the aligned observations are called aligned 

ranks. The statistic values for Friedman Aligned Rank test is calculated as follows: 
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(4.8) 

where 
2^
iR  and 

2^
jR  is equal to the rank total of the ith problem and jth algorithm 

respectively. The test statistic is then compared with Chi-Square distribution in which 

the degree of freedom is ݇ − 1. 

 

4.4.4  Results of non-parametric tests 

The statistical value of Ff, FID and FAR are compared with the critical values of the 

respective distribution at significance level, ߙ equal to 0.05. From Table 4.4, we can 

observe that all the statistical values of Ff , FID and FAR are greater than the critical 

values. It means that the null hypothesis is rejected and shows that there are significant 

differences among all the algorithms. 

 

 

Test Critical values on alpha = 0.05 Statistical Values 
Friedman test [1,2] 9.488 39.829 
Iman and Davenport test[3] 2.550 32.018 
Friedman Aligned Ranks test 9.488 39.461 
 

  

Table 4.6: Statistical Analysis on results of ACO, ACO2, ACOBF, ACOPher 
and ACOPher2 
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4.4.5  Post-hoc test 

The results of the statistical analysis of Friedman, Iman-Davenport and Friedman 

Aligned Rank tests show that there are significant differences over the whole multiple 

comparisons but unable to give the proper comparisons between some of the algorithms 

considered. In this subsection, we apply Bonferroni-Dunn procedure (see Derrac et al., 

2011) to do the comparison by considering a control method and a set of algorithms 

with a family of hypotheses is defined. Application of the post-hoc test can lead to give 

the p-value which is used to determine the degree of rejection of each hypothesis.  

 

The p-value can be attained via the conversion of the rankings which is computed from 

the main nonparametric procedure by using normal approximation. In this subsection, 

we selected Friedman test as the main nonparametric procedure to compare the ith 

algorithm with the selected control method and then used the equation (4.9) in order to 

obtain the z value. In this study, we take ACOPher2 as the control method. 

 

   
n

kkRRz ii 6
1/0


  (4.9) 

where iR and 0R  refer to the average rankings by the Friedman test of the ith algorithms 

and the average ranking of the control method. Then, k and n refer to the number of 

algorithms and number of problems, respectively. 

 

On the basis of these iz values, the corresponding cumulative normal distribution values, 

ip  can be calculated. The values of ip  are compared with i  that are calculated based 

on the selected significance level ߙ (set to 0.05 in our study), since  1/  ki  . If 

iip  , it means that the corresponding null hypothesis which gives the assumption 

that there is no significant difference between the two compared algorithms is rejected 
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and denoted as 1h . Otherwise, the null hypothesis is accepted which means that there 

is no significant difference between the two algorithms, denoted as 0h . 

 

From the ranking results based on the Bonferroni-Dunn procedure shown in Table 4.5, 

we can conclude that ACOPher2 is significantly different with ACO and ACO2 but not 

with ACOBF and ACOPher.  

 

 

Rank Algorithms z p h ࣂ 
1 ACOPher2 - - - 

0.0125 
2 ACOPher 0.5976 0.5501 0 
3 ACOBF 1.4343 0.1515 0 
4 ACO2 3.2271 0.0013 1 
5 ACO 5.4981 0.0000 1 
 

 

4.5  Summary of the chapter 

The integration of inventory and transportation plays an important role in supply chain 

management. In this study we solved the model that consists of multi-products and 

multi-periods IRP with split delivery being allowed by using our developed algorithms. 

The development of a modified ACO in which the ants are divided into subpopulation 

in order to solve the problem are discussed in this chapter. Therefore, we discussed on 

several developed algorithms on the population based ACO. We design a population 

based ACO by segregating each subpopulation by the inventory level. We have 

constructed a modified global routing updating for routes that includes some 

information on inventory. 

 

In this study, we proposed several different algorithms for the population-based ACO. 

The first, ACOBF incorporates the random and deterministic inventory updating 

Table 4.7: Ranking results based on Bonferroni-Dunn Procedure for the 
compared algorithms. 
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mechanism where the forward and backward inventory updating biasing towards the 

forward inventory updating. Secondly, the new inventory updating mechanism where it 

takes into account the customers inventory in the local and global pheromone updating 

is also explained in this chapter and the algorithms are called ACOPher as well as 

ACOPher2. The selection of customers for the transfer is based on the attraction for 

both algorithms, ACOPher and ACOPher2. Both ACOBF and ACOPher start with 

initial population of zero inventories. However in ACOPher2, each subpopulation starts 

with different set of inventory level. The combination comprises of zero inventory, 

inventory level generated using the allocation model and randomly generated inventory 

levels.  

 

All the algorithms developed in this chapter are tested on the data with different 

combinations of the number of customers, 12, 20, 50 and 100 with the number of 

periods, 5, 10, 14 and 21. The computational results for the algorithms ACOBF, 

ACOPher and ACOPher2 are presented in this chapter. The overall results for the 

algorithms ACOBF, ACOPher and ACOPher2 show that the algorithms performed 

better in larger instances if compared with small and medium instances as the obtained 

results for larger instances are better than the upper bound which generated from 

CPLEX 12.4. Meanwhile, we can also conclude that ACOPher2 gave better results if 

compared with ACOBF as well as ACOPher in most of the instances. As the conclusion, 

we can say that the results are better in most of the instances by including the selection 

of customer for transferring based on the attraction. From the standard deviation of the 

total costs, we can observe that the algorithms including the pheromones values at 

customer’s inventory, ACOPher as well as ACOPher2 give better performance in terms 

of solution quality if compared with ACOBF. 
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CHAPTER 5: STOCHASTIC INVENTORY ROUTING PROBLEM 

 

This chapter focuses on Stochastic Inventory Routing Problem (SIRP) in which the 

demand is not known in advance but given in probabilistic sense. The chapter starts 

with the introduction and followed by the mathematical formulation of SIRP. A two 

phase algorithm is proposed to solve our model and the details on these two phases are 

discussed in the following subsections respectively. An enhanced version of the two 

phase algorithm will be discussed in the following section. The computational 

experiments on a set of randomly generated data set are carried out and the results as 

well as the discussion of the algorithms obtained are discussed. Finally, the chapter ends 

with a summary. 

 

5.1 Introduction 

In the previous two chapters, we are concerned in solving the problem of IRP in which 

the customer’s demand is deterministic and time varying in each period. In this chapter, 

we extended our work to tackle the problem of SIRP in which the demand is stochastic 

and expressed as some probability functions. This chapter introduces a multi-period 

SIRP with split delivery (SIRPSD) where the depot / warehouse housed a fleet of 

homogeneous capacitated vehicles for transportation of products to customers to fulfill 

their demand and the demands are stochastic in each period.  The total transportation 

and expected inventory costs are considered as the main objective of the problem to be 

minimized while the service level of the customers are satisfied by imposing some 

constraints and they can be adjusted according to practical applications.  
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In this study, we implemented two-phase algorithms to solve our proposed model on 

SIRP where Phase I solves the inventory subproblem while Phase II build the routes and 

obtains the transportation costs. 

 

The contributions of this chapter are as follows: 

1. The Lagrangian relaxation problem in Yu et al. (2012) can be decomposed into 

the inventory and routing sub problem. In phase I, we modified the inventory 

sub problem of Yu et al. (2012) to solve our own inventory sub problem. The 

distance cost in their inventory sub problem is different from our model.  

Inspired by the allocation model of Bard and Nananukul (2009), we modified 

our inventory sub problem by replacing the distance costs in Yu et al. (2012) 

with the approximated cost which is modified from the cost presented in Bard 

and Nananukul (2009). The details are presented in subsection 5.3.1. 

2. In phase II of routing subproblem, we proposed population based ACO 

described in Chapter 4, but has been modified accordingly. The inventory in the 

local and global pheromones updating has been removed and the initial 

pheromone depends only on the total distance of the route. Instead of depending 

on different inventory levels to create the subpopulations, we employ different 

routing heuristics to differentiate between each subpopulation. The quantity of 

deliveries obtained from Phase I is used to build routes using different heuristics 

and  the purpose of implementing this is to give the subpopulation of ants more 

chances to explore the solution, hence obtaining better results. The details are 

presented in subsection 5.3.2. 

3. The two-phase algorithm is then enhanced by adding the mechanism of updating 

inventory. The updating inventory mechanism is focused on backward transfer 

(i.e. transfer the quantity delivery to the preceding period) and the customers are 
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selected based on the new formulation of savings that was proposed in this 

study. The customer with the highest savings is selected to undergo the 

backward transfer and the details are discussed in Section 5.4. 

 

5.2  Mathematical Formulation 

We consider a one-to-many network, as in Chapter 4, where a fleet of homogeneous 

vehicles transports multi products from a warehouse or depot to a set of geographically 

dispersed customers in a finite planning horizon. The following assumptions are made 

in this model.  

 The fleet of homogenous vehicles with limited capacity is available at the 

warehouse.  

 Customers can be served by more than one vehicle (split delivery is allowed). 

 Each customer’s demand is stochastic in each period, and the customers require the 

depot/warehouse to satisfy their demands with a certain service level by limiting 

the possibility of stockout within a given range. The demand in each period is 

stochastic and obeys a given probability distribution. In this study, we assume that 

the stochastic demand is subject to normal distribution which is discussed later in 

this subsection. The exact demand is only known after its realization. 

 The holding cost per unit item per unit time is constant for each product and 

incurred at the customer sites but not at the warehouse. The holding cost does not 

vary throughout the planning horizon.   

 A multi-period horizon is considered. 
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The SIRP model is modified from Yu et al. (2012) by replacing ݍ௧ , the quantity 

delivered through the arc (ij), withݔ௧  the distance through directed arc (ij) in the 

objective function.  

The problem is modeled as mixed integer programming and the following notations are 

used: 

 

Indices 

ݐ = 1, 2, … , ܶ  period index 

ܹ =  0  warehouse/depot 

ܵ =  1, 2, … , ܰ  a set of customers where customer i demands product i only 

Parameters 

C vehicles capacity (assume to be equal for all the vehicles). 

F fixed vehicle cost per trip (assumed to be the same for all periods) 

V travel cost per unit distance 

M size of the vehicle fleet and it is assumed to be ∞ (unlimited) 

ܿ travel distance between customer i and j where ܿ = ܿ and the triangle  

 inequality, ܿ + ܿ ≥ ܿholds for any i, j, and k with ݅ ≠ ݆, ݇ ≠ ݅ and 

݇ ≠ ݆ 

ℎ  inventory carrying cost at the customer for product i per unit product 

per unit time 

݀௧ stochastic demand of customer i in period t 

݀,(ଵ,௧)                 =∑ ݀௧
௧
ୀଵ cumulative stochastic demand from period 1 to t 

ܹ  the inventory capacity for customer site. 
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Variables 

ܽ௧ delivery quantity to customer i in period t 

 ௧ inventory level of product i at the customer i at the end of period tܫ

௧ܫ = max (0,  ௧) On-hand inventory of customer iat the end of period t, which excludesܫ

the stock-out (ܫ௧ < 0). 

௧ݍ  quantity transported through the directed arc (݆݅) in period t 

 ௧ number of times that the directed arc (݆݅) is visited by vehicles in periodݔ

t 

)( 
itIE  
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The model for our inventory routing problem is given as below:  
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subject to 

௧ܫ = ,ܫ + ∑ ܽ
௧
ୀଵ − ∑ ݀

௧
ୀଵ , ݅ =  1, 2, … , ܰ, ݐ = 1, 2, … , ܶ (5.2) 

௧ܫ)ܾݎܲ ≥ 0) ≥ ߙ , ݅ =  1, 2, … , ܰ, ݐ = 1, 2, … , ܶ (5.3) 

,௧ିଵܫ൫ܾݎܲ + ܽ௧ ≤ ܹ ൯ ≥ ,ߚ ݅ =  1, 2, … , ܰ, ݐ = 1, 2, … , ܶ (5.4) 

,10, iii WaI   ݅ =  1, 2, … , ܰ (5.5) 
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ܽ௧ ≥ 0, ݅ =  1, 2, … , ܰ, ݐ = 1, 2, … , ܶ (5.9) 

௧ݍ ≥ 0,  ݅ = 0, 1, 2, … , ܰ, ݆ = 0, 1, 2, … , ܰ, ݆ ≠ ݅, ݐ =  1, 2, … , ܶ (5.10) 

௧ݍ ≤ ݅ ,௧ݔܥ = 0, 1, 2, … , ܰ, ݆ = 0, 1, 2, … , ܰ, ݆ ≠ ݅, ݐ =  1, 2, … , ܶ (5.11) 

 1,0ijtx  , ݅ = 1, 2, … , ܰ, ݆ =  1, 2, … , ܰ, ݐ =  1, 2, … , ܶ (5.12) 

00 jtx , and integer,  ݆ =  1, 2, … , ܰ, ݐ =  1, 2, … , ܶ (5.13) 

 

The objective function (5.1) includes the inventory costs (I), the transportation costs (II) 

and the vehicle fixed cost (III). (5.2) is the inventory balance equation for each product 

at the warehouse whilst (5.3) ensures that the probability for customer i’s demand 

satisfied in period t is no less thanߙ while (5.4) describes the service levels related to 

the customers’ warehouses and guarantee that the probability of customer i’s warehouse 

capacity being able to accommodate its maximum inventory level is not less than ߚ at 

period ݐ = 2, … , ܶ . (5.5) ensure that every customer’s warehouse inventory capacity 

should be no less than its maximum level in period 1. 

 

The product flow balance at each customer is ensured by the flow conservation 

equations (5.6) whilst eliminating all possible subtours. (5.7) assures the collection of 

accumulative delivery quantity at the warehouse (split delivery). (5.8) ensures that the 

number of vehicles leaving the warehouse equals to the number of vehicles returning to 

warehouse. Meanwhile, (5.11) guarantees that the vehicle capacity is respected and 

gives the logical relationship between  ݍ௧  and ݔ௧ which allows for split delivery.  
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Normal distribution for stochastic demands 

Supposing that the demand for customer ݅ in period ݐ,݀௧ is a random variable subject to 

a normal distribution with mean, ߤ and standard deviation, ߪ. That is 

 2,~ iiit Nd           (5.14) 

We define the probability density function: 
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which is accumulative probability distribution function of stochastic demand ݀௧. 

 

Transformation from stochastic constraints into deterministic ones 

In Yu et al (2012), the authors mentioned that the stochastic terms in (5.1), (5.2), (5.3) 

and (5.4) can be transformed into a simplified deterministic model which is easier to 

solve. After substituted the term of (5.2) into the objective function (5.1), the objective 

function (5.1) can be reformulated as
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By substituting (5.2) into the terms of (5.3) as well as (5.4), the authors stated that the 

terms of (5.3) and (5.4) can be reformulated as the term of (5.3’) and (5.4’) respectively. 
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We considered our stochastic demand obeyed Normal Distribution like in Yu et al. 

(2012), in the later part of the paper indeed indicated that both constraints term of (5.3’) 

and (5.4’) can be reformulated again into a more practical way after take into account 

the normal distribution condition (i.e. equation (5.15)). Hence, the constraints term of 

(5.3’’) and (5.4’’) are obtained.  
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The details for the derivation of all the transformation / reformulation can be referred to 

the paper of Yu et al (2012). 

 

5.3  Two-Phase Algorithm of SIRP (SIRPACO1) 

We proposed two-phase algorithm to solve our proposed model of SIRP. Phase I solved 

the sub problem of inventory in order to get the expected inventory cost and quantity 

delivery for each customer in each period. Meanwhile, Phase II implements ACO to 

build the routes based on the quantity delivery obtained from Phase I in order to get the 

transportation costs.  Further details of Phase I and II is discussed in subsection 5.3.1 

and 5.3.2 respectively. 
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5.3.1  Determination of Inventory Level for SIRPCO1 (Phase I) 

 

As the result of the transformation, the SIRP problem is decomposed into two 

subproblems: inventory subproblem where the expected inventory cost and the quantity 

to deliver to each customer are determined, and the routing subproblem which builds the 

routes and calculates the overall transportation cost. 

 

As discussed in section 5.2, the transportation cost in our model depends on ݔ௧ instead 

of ݍ௧  , therefore we modify the distance cost (the term of    
  


T

t

N

ijj

N

i
ijtijijt qc

1 ,1 0

 where 

ijt  is the Lagrange multipliers) of inventory subproblem in Yu et al. (2012).  In order to 

modify this, we get the inspiration from the allocation model in Bard and Nananukul 

(2009). The variable cost term 
  

T

t

N

j

N

i
ijtij xc

1 1 0  
is replaced by

 

T

t

N

i
it

c
it ar

1 1
 where c

itr  is the 

approximated cost which takes into account the cost of making a delivery to customer i 

directly from the depot divided by the expected demand of customer i on period t, that is 

i

ic
it t

cr


02
 . We adopted this concept to our subproblem INV and the model s shown 

below. The model is used to determine the quantity delivery, ܽ௧and can be formulated 

as follows: 
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1 11 1
)(min)(  (5.16)

 

subject to constraints (5.3), (5.4), (5.5) and (5.9).  

 

However, inspired by Yu et al. (2012), the linearization of ܼ(ܽ), denoted by ܼ̅(ܽ, ܽ), is 

thus 
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 (5.17)
 

 

We note that Part I and II of equation (5.17) are taken from linearization of Yu et al. 

(2012) while Part III is modified from Bard and Nananukul (2009) which I mentioned in 

above. The partial linearization method solves a linear programming problem and 

performs a line search at each iteration. For our problem, at each iteration, ݇ , the 

method solves the following linear programming problem (denoted by ܲܮ): 

 : ܲܮ

min ܼ̅(ܽ, ܽ) 

subject to the constraints (5.3), (5.4), (5.5) and (5.9). A line search is then performed to 

minimizeܼ(ܽ)for subproblem INV, 

  10,1|)(min  


kk aaaaZ
      (5.18)

 

where തܽ  is an optimal solution of ܲܮ. 

The model of subproblem INV is solved using Mathematica 7.0. Figure 5.1 illustrates 

the flow of Phase I. 
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Figure 5.1: Flow chart of  Phase I of SIRP algorithm 

Randomly generate the initial quantity 
delivery, ak which satisfies all 
constraints. 

Solve the linear programming ܼ̅(ܽ, ܽ), 
to obtain തܽ. 

START 

  kkk aaa   11  

Get the quantity delivery, ak+1, inventory 
level and inventory costs. 

k++; 

Yes 

NO 

Set k =0. 

Solve the line search  
  10,1|)(min  



kk aaaaZ , to 

obtain ߩ. 

END 

ak+1= തܽ  
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5.3.2 Determination of Transportation Cost for SIRPACO1 (Phase II) 

Population Based ACO is implemented in Phase II in order to build the routes and then 

obtains the transportation cost. The difference between the previous population based 

ACO which were discussed in Chapter 4 and the population based ACO in Phase II is 

that the pheromone values for all arcs in each subpopulation is initialized differently 

based on the several routing heuristics which we apply. With different initial starting 

pheromone values for each subpopulation, it gives more chances for the ants to explore 

in order to attain better results. The detail of Phase II is discussed in the following 

subsection and Figure 5.2 gives the illustration of the algorithm.  

 

5.3.2.1 Initial Solution  

The following algorithms are utilized to create a subpopulation and the total distance 

obtained by each algorithm is embedded to initialize߬, the initial pheromone in the 

local pheromone updating for each subpopulation. We note that all the algorithms are 

modified to allow for split delivery. 

 

Nearest Neighbor Algorithm (NN) 

In Nearest Neighbor algorithm (NN) the vehicle starts at the depot and repeatedly visits 

the nearest customer (in terms of distance) until the capacity of the vehicle is fully 

occupied. Then, a new vehicle is initiated and the process continues until all customers 

have been assigned or visited.  
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Sweep Algorithm(Gillett and Miller (1974)) 

The sweep algorithm which was proposed by Gillett and Miller (1974) requires the 

transformation from Cartesian coordinates to polar angles in order to determine the 

direction of sweep, either in clockwise or anti-clockwise. In this study, both directions 

are considered to form two different subpopulations. The feasible routes are created by 

rotating a ray centered at the depot and gradually including customers in a vehicle route 

until the capacity constraint is attained. A new route is then initiated and the process is 

repeated until the entire plane has been swept (all customers have been visited). 

 

Savings algorithm (Clark and Wright, 1964)  

The Clarke and Wright (1964) heuristic is one of the best known and remains widely 

used in practice in these days. This algorithm is based on the notion of savings. The 

savings is obtained if two customers are merged on a route with the condition that it 

does not violate the vehicle capacity constraints. The savings is calculated according to 

the following equation: 

ijjiij cccs  00  (5.19) 

The savings are arranged in descending order and starting from the top of the list, the 

algorithm builds a route and the route is expanded by selecting the customer with the 

most savings to the last node added to the route. The customer which forms a loop is 

omitted. This selection process is continued until the capacity of the vehicle is fully 

loaded. Then, a new vehicle is initiated and the process continues until all customers 

have been assigned or visited.  
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Savings algorithm (Paessen, 1988) 

Paessen (1988) proposed a modification to equation (5.14) which incorporates the 

customer distance from the depot as follows: 

jiijjiij cccccs 002100    (5.20) 

where  3,11   and  1,02  . This ensures that the radial distance, the distance between 

the customers and the depot, is also taken into account. Generally, taking ߠଵ = 1.5 and 

ଶߠ = 0.5 give better results. Note that if  ߠଵ = 1.0 and ߠଶ = 0.0 give exactly the savings 

of Clarke and Wright (1964). 

 

5.3.2.2 Route Construction 

The algorithm starts with the predefined number of subpopulation of ants and each 

subpopulation consists of predefined number of ants to build the solution.  Each ant in 

the subpopulation implements the same mechanism to select the customer to be visited 

(discussed in subsection 3.3.2). The pheromone values for all arcs in each subpopulation 

are initialized based on ߬  generated from five different algorithms (each form a 

subpopulation). 

 

5.3.2.3 The local pheromone-updating rule 

As discussed in the previous chapter, local updating is used to prevent a very strong arc 

being chosen by all the ants. After each of the ants in every subpopulation has built the 

solution, the best built solution from each subpopulation is selected. Then, the local 

updating is done on each arc of the best solution from each subpopulation by using 

equation (3.15). The different from the previous modification is each subpopulation will 

have its own value of ߬  and we set as ߬ =   is the total of distanceܮ   whereܮ/1

obtained from the five algorithms. 
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5.3.2.4 The global pheromone-updating rule 

As mentioned in the previous chapter, global pheromones updating is done so that the 

ants will have a better starting point in searching for shorter path. After a predefined 

number of iterations, the current best solution ߛ  among all the subpopulations is 

selected and its routes are used as a reference for the global pheromones-updating for all 

subpopulation. Hence, the pheromones value for each arc of the best solution is updated 

by using the equation (3.16) for all the subpopulations.  

 

5.3.2.5 Route improvement strategies 

After a predefined number of iterations, the current best solution among the 

subpopulations is selected and the routes are further improved by adding route 

improvement strategies in the route construction procedure which is similar to the 

previous modification on ACO.  Three local searches; namely swap, 2 - opt* (Potvin 

and Rousseau, 1995) and 2 – opt (Lin, 1965), are applied to improve the solution built 

by ACO.  
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Nearest Neighbor Algorithm (NN), 
Sweep algorithm (anti clockwise and 
clockwise), Savings algorithm (Clark 
and Wright, 1964) and  Savings 
algorithm (Paessen, 1988) to obtain the 
total distance, LNN to initialise the 
pheromones values of all arcs =  1 ேேܮ

ൗ  

for the five subpopulation respectively . 
 

Set the value of parameters ߙ, ,ߚ andߩ. 
Iteration start with iter = 1 
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Ant Colony Optimization 
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5.4  Enhanced Version for the First Algorithm Of SIRP (SIRPACO2) 

In our first algorithm of SIRP (i.e. SIRPACO1), Phase II is to determine the 

transportation cost only. There is no any inventory updating mechanism being included 

in the phase II. Thus, in this section, the algorithm is enhanced by adding the inventory 

updating mechanism after every predefined number of iterations in order to produce a 

set of inventory level that can also minimize the transportation cost and hence reduce 

the total cost.  

 

The enhanced version of SIRPACO1 is referring to SIRPACO2. Similar to SIRPACO1, 

SIRPACO2 also consists of two phases where the algorithms of Phase I as well as the 

routing part in phase II still remain the same algorithm of SIRPACO1. However, we 

added the inventory updating mechanism in Phase II after every predefined number of 

iterations in SIRPACO2 in order to obtain the new set of inventory level. After that, the 

same algorithm of routing part in SIRPACO1 as mentioned above (i.e. population based 

ACO) is applied to build the routes.  

 

5.4.1  Updating Inventory Mechanism of SIRPACO2 

This updating mechanism is focused on backward transfer (i.e. transfer the quantity 

delivery from period t to t – 1) based on the savings of the customers. In this mechanism, 

we proposed a new formulation to calculate the savings of the customers. The savings 

of the available customers are calculated based on the ratio given below: 

TtNi
ha

c
g

iit

i
i ...,,1 ,...,,1,

2 0         (5.21) 

The purpose of we formulate our savings of the available customer like shown in 

equation (5.21) is we want to obtain the largest savings in term of transportation cost 

without huge increasing in inventory cost if the backward transfer is performed to the 

customer. Therefore, we tend to choose the available customer who gives the highest 
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savings in this mechanism. The available (feasible) customers are those who do not 

violet the service level constraint as well as not exceeding the storage capacity at the 

customers site in period t – 1. The updating mechanism is applied in order to produce 

new set of inventory level after some predefined number of iterations. The savings are 

sorted in descending order and customer with the highest savings is selected and the 

quantity delivery of the selected customer is transferred to period t – 1. 

 

5.5 Computational Results 

The Phase I of the algorithm is solved using Mathematica 7.0 while Phase II was written 

in C++ language using Microsoft Visual studio 2008. All the computations were 

performed on 3.10 GHz processor with 8GB of RAM. 

 

5.5.1  Data sets 

Similar to the previous two chapters, Chapter 3 and 4, the algorithm is tested on 12, 20, 

50 and 100 customers, and combination with number of periods, 5, 10, 14 and 21. The 

coordinates for each customer is same with the previous two chapters. The mean and 

holding costs of the customers are generated randomly from the interval [10, 100] and 

[0.02, 0.10] respectively. We set the inventory capacity of customers’ warehouse is two 

times of the summation of mean and standard deviation of the customer. Meanwhile, the 

initial inventory of customer is set as 0.2 of the inventory capacity of customers’ 

warehouse. The vehicle capacity is fixed at 250.0.  
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5.5.2  Results 

In this study, the experiment is carried out using two different parameters for standard 

deviations which are 0.05ߤ and 0.10ߤ. We also consider the service level (ߙ and ߚ) 

in different cases at 95% and 99%. As the simplification, our computational 

experiments are done in the following combination of parameters: 

Set A: Standard deviation is 0.05ߤ and service level (ߙ and ߚ) is 95% 

Set B: Standard deviation is 0.05ߤ and service level (ߙ and ߚ) is 99% 

Set C: Standard deviation is 0.10ߤ and service level (ߙ and ߚ) is 95% 

Set D: Standard deviation is 0.10ߤ and service level (ߙ and ߚ) is 99% 

 

The algorithm in Phase II of SIRPACO1 and SIRPACO2 are run for 1000 iterations and 

we performed 10 runs for each instance. The algorithm comprises of 5 subpopulations 

of ants and each subpopulation consists of 5 ants to build a solution. As mentioned in 

the subsection 5.4.3, the values of ߬ for each of the subpopulation is different and is set 

as ߬ = 1/(ܰ ×  ). The parameters are set similar as the previous chapter whichܮ

is ߙ = 1.0, ߚ = 5.0, ݍ = 0.9, ߩ = 0.1 where the values of ߙ and ߚ are obtained from 

the sensitivity analysis which have been done in Chapter 3 while the value of ݍ is taken 

from Dorigo et al. (1996). 

 

Table 5.1 gives the inventory costs produced by the Phase I of the algorithms (discussed 

in subsection 5.3.1) which is solved using Mathematica 7.0. Table 5.2 and Table 5.3 

present the comparison of the best cost under different scenario of parameters for both 

SIRPACO1 and SIRPACO2 respectively. Meanwhile, Table 5.4 to Table 5.6 give 

comparisons of the best costs, number of vehicles and CPU time of both algorithms 

SIRPACO1 and SIRPACO2 respectively. Figure 5.3 presented the line chart for the 

comparison of the best cost between SIRPACO1 and SIRPACO2. 
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Table 5.1: Results for the Phase I of the algorithms 

Data 

Set A Set B Set C Set D 

Inventory 
Cost 

CPU 
Time 

(seconds) 

Inventory 
Cost 

CPU 
Time 

(seconds) 

Inventory 
Cost 

CPU 
Time 

(seconds) 

Inventory 
Cost 

CPU 
Time 

(seconds) 
S12T5 31.47 11.65 43.98 11.59 62.81 11.59 87.91 11.58 

S12T10 84.26 25.21 117.87 25.15 168.43 25.15 235.61 25.15 
S12T14 137.19 37.41 191.97 37.42 274.34 37.33 383.75 37.22 
S20T5 46.61 19.42 65.12 19.42 93.01 19.48 130.17 19.34 

S20T10 124.81 41.96 174.53 41.95 249.38 41.82 348.86 41.87 
S20T14 203.22 62.23 284.23 62.15 406.2 62.23 568.17 61.92 
S20T21 367.84 104.85 514.46 102.68 735.33 102.99 1028.52 102.59 
S50T5 104.05 48.89 145.51 48.34 207.93 48.27 291 48.20 

S50T10 278.8 104.91 390.05 104.64 557.57 104.44 779.95 104.21 
S50T14 454.09 156.27 635.19 156.13 908.14 155.98 1270.29 155.27 
S50T21 821.91 258.09 1149.8 258.32 1644.05 257.38 2299.39 256.73 
S100T5 208.91 96.77 292.15 96.86 417.74 96.52 584.4 96.24 
S100T10 559.86 210.94 783.22 209.99 1119.92 209.41 1566.41 209.34 
S100T14 912.01 313.33 1275.61 311.84 1824.06 310.35 2551.32 310.97 
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Table 5.2: Comparison the best cost under different scenario of parameter for SIRPACO1 

Data 
Set A Set B Set C Set D 

Comparison 
between different 

service level  under 
same standard 
deviation (%) 

Comparison 
between different 

standard deviation 
under same service 

level (%) 

SIRPACO1 SIRPACO1 SIRPACO1 SIRPACO1 Set A vs 
Set B 

Set C vs 
Set D 

Set A vs 
Set C 

Set B vs 
Set D 

S12T5 2229.85 2246.89 2291.32 2387.03 0.76 4.18 2.76 6.24 
S12T10 4621.42 4664.41 4765.89 4915.43 0.93 3.14 3.13 5.38 
S12T14 6545.03 6622.38 6733.05 6977.28 1.18 3.63 2.87 5.36 
S20T5 3033.89 3066.08 3111.72 3220.28 1.06 3.49 2.57 5.03 

S20T10 6261.35 6364.12 6436.38 6637.74 1.64 3.13 2.80 4.30 
S20T14 8863.66 8952.32 9153.10 9403.55 1.00 2.74 3.27 5.04 
S20T21 13475.06 13606.34 13845.14 14327.33 0.97 3.48 2.75 5.30 
S50T5 7025.83 7236.82 7427.21 7781.55 3.00 4.77 5.71 7.53 

S50T10 14463.84 14863.14 15244.53 15875.23 2.76 4.14 5.40 6.81 
S50T14 20473.01 20853.28 21585.60 22307.15 1.86 3.34 5.43 6.97 
S50T21 31316.83 31719.25 32420.72 33767.77 1.28 4.15 3.52 6.46 
S100T5 13311.80 13613.71 13929.96 14414.11 2.27 3.48 4.64 5.88 
S100T10 27690.33 28215.16 28879.97 29744.56 1.90 2.99 4.30 5.42 
S100T14 39228.36 40102.88 40968.12 42101.16 2.23 2.77 4.43 4.98 
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Table 5.3: Comparison the best cost under different scenario of parameter for SIRPACO2 

Data 
Set A Set B Set C Set D 

Comparison 
between different 

service level  under 
same standard 
deviation (%) 

Comparison 
between different 

standard deviation 
under same service 

level (%) 

SIRPACO2 SIRPACO2 SIRPACO2 SIRPACO2 Set A vs 
Set B 

Set C vs 
Set D 

Set A vs 
Set C 

Set B vs 
Set D 

S12T5 2134.98 2107.68 2127.49 2270.81 -1.28 6.74 -0.35 7.74 
S12T10 4410.72 4341.61 4463.43 4606.11 -1.57 3.20 1.19 6.09 
S12T14 6200.64 6274.23 6298.93 6528.91 1.19 3.65 1.59 4.06 
S20T5 3030.00 3050.20 3091.16 3216.32 0.67 4.05 2.02 5.45 

S20T10 6267.12 6341.67 6409.16 6608.25 1.19 3.11 2.27 4.20 
S20T14 8891.56 9005.57 9115.88 9391.38 1.28 3.02 2.52 4.28 
S20T21 13493.10 13575.07 13893.74 14347.32 0.61 3.26 2.97 5.69 
S50T5 7096.07 7243.89 7500.81 7693.11 2.08 2.56 5.70 6.20 

S50T10 14656.73 14903.18 15312.57 15915.06 1.68 3.93 4.47 6.79 
S50T14 20675.90 20853.62 21623.14 22434.00 0.86 3.75 4.58 7.58 
S50T21 31400.10 31967.82 32789.14 34031.33 1.81 3.79 4.42 6.45 
S100T5 13348.97 13610.98 13900.83 14427.04 1.96 3.79 4.13 6.00 
S100T10 27937.11 28104.59 28918.76 29661.09 0.60 2.57 3.51 5.54 
S100T14 39246.50 40072.23 40965.92 42153.10 2.10 2.90 4.38 5.19 
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Note: Gaps refers to the difference between the obtained results for SIRPACO1 and SIRPACO2 

  

Data 
Set A Set B Set C Set D 

SIRPACO1 SIRPACO2 Gaps 
(%) SIRPACO1 SIRPACO2 Gaps 

(%) SIRPACO1 SIRPACO2 Gaps 
(%) SIRPACO1 SIRPACO2 Gaps 

(%) 

S12T5 2229.85 2134.98 -4.25 2246.89 2107.68 -6.20 2291.32 2127.49 -7.15 2387.03 2270.81 -4.87 
S12T10 4621.42 4410.72 -4.56 4664.41 4341.61 -6.92 4765.89 4463.43 -6.35 4915.43 4606.11 -6.29 
S12T14 6545.03 6200.64 -5.26 6622.38 6274.23 -5.26 6733.05 6298.93 -6.45 6977.28 6528.91 -6.43 
S20T5 3033.89 3030.00 -0.13 3066.08 3050.20 -0.52 3111.72 3091.16 -0.66 3220.28 3216.32 -0.12 

S20T10 6261.35 6267.12 0.09 6364.12 6341.67 -0.35 6436.38 6409.16 -0.42 6637.74 6608.25 -0.44 
S20T14 8863.66 8891.56 0.31 8952.32 9005.57 0.59 9153.10 9115.88 -0.41 9403.55 9391.38 -0.13 
S20T21 13475.06 13493.10 0.13 13606.34 13575.07 -0.23 13845.14 13893.74 0.35 14327.33 14347.32 0.14 
S50T5 7025.83 7096.07 1.00 7236.82 7243.89 0.10 7427.21 7500.81 0.99 7781.55 7693.11 -1.14 

S50T10 14463.84 14656.73 1.33 14863.14 14903.18 0.27 15244.53 15312.57 0.45 15875.23 15915.06 0.25 
S50T14 20473.01 20675.90 0.99 20853.28 20853.62 0.00 21585.60 21623.14 0.17 22307.15 22434.00 0.57 
S50T21 31316.83 31400.10 0.27 31719.25 31967.82 0.78 32420.72 32789.14 1.14 33767.77 34031.33 0.78 
S100T5 13311.80 13348.97 0.28 13613.71 13610.98 -0.02 13929.96 13900.83 -0.21 14414.11 14427.04 0.09 
S100T10 27690.33 27937.11 0.89 28215.16 28104.59 -0.39 28879.97 28918.76 0.13 29744.56 29661.09 -0.28 
S100T14 39228.36 39246.50 0.05 40102.88 40072.23 -0.08 40968.12 40965.92 -0.01 42101.16 42153.10 0.12 

Table 5.4: Comparison of the best costs of SIRPACO1 and SIRPACO2 
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Figure 5.3: Line chart for comparison the best cost between SIRPACO1 and SIRPACO2 in percentage.  
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Data Set A Set B Set C Set D 
SIRPACO1 SIRPACO2 SIRPACO1 SIRPACO2 SIRPACO1 SIRPACO2 SIRPACO1 SIRPACO2 

S12T5 18 16 18 16 18 16 19 17 
S12T10 38 33 38 34 38 35 39 35 
S12T14 54 47 54 48 54 48 55 49 
S20T5 23 23 23 23 23 23 24 24 

S20T10 48 48 48 48 48 48 49 49 
S20T14 68 68 68 68 68 68 69 69 
S20T21 103 103 103 103 103 103 104 104 
S50T5 50 50 51 51 52 52 56 54 

S50T10 105 105 106 106 107 108 111 111 
S50T14 149 149 150 150 151 151 155 155 
S50T21 226 226 227 227 228 228 232 232 
S100T5 100 99 101 101 103 103 106 106 
S100T10 210 209 211 211 213 213 216 216 
S100T14 295 295 299 299 301 301 304 303 

 

  

Table 5.5: Comparison of the number of vehicles of SIRPACO1 and SIRPACO2 
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Data Set A Set B Set C Set D 
SIRPACO1 SIRPACO2 SIRPACO1 SIRPACO2 SIRPACO1 SIRPACO2 SIRPACO1 SIRPACO2 

S12T5 15.65 15.65 15.59 15.59 15.59 15.59 15.58 15.58 
S12T10 32.21 32.21 32.15 32.15 32.15 32.15 32.15 32.15 
S12T14 47.41 47.41 47.42 47.42 47.33 47.33 47.22 47.22 
S20T5 29.42 29.42 29.42 29.42 29.48 29.48 29.34 29.34 

S20T10 62.96 61.96 61.95 60.95 61.82 61.82 61.87 61.87 
S20T14 89.23 89.23 91.15 89.15 89.23 89.23 88.92 88.92 
S20T21 145.85 144.85 143.68 142.68 143.99 143.99 143.59 142.59 
S50T5 125.89 122.89 125.34 124.34 124.27 123.27 125.20 124.20 

S50T10 256.91 253.91 256.64 253.64 255.44 253.44 255.21 253.21 
S50T14 368.27 369.27 368.13 371.13 366.98 364.98 366.27 368.27 
S50T21 574.09 575.09 575.32 575.32 572.38 573.38 571.73 573.73 
S100T5 472.77 467.77 475.86 466.86 473.52 466.52 473.24 466.24 
S100T10 957.94 954.94 963.99 950.99 959.41 954.41 960.34 956.34 
S100T14 1361.33 1355.33 1355.84 1349.84 1356.35 1348.35 1356.97 1352.97 

  

Table 5.6: Comparison of the CPU Time of SIRPACO1 and SIRPACO2 
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5.5.3  Discussion 

From the results shown in Table 5.1, we observe that the inventory cost increases when 

increasing either the standard deviation or service level (ߙ and ߚ).The comparison of 

the best cost (in percentage) under different scenario of the parameters for both 

SIRPACO1 and SIRPACO2 are given in Table 5.2 and Table 5.3 respectively. Table 

5.2 and Table 5.3 tabulate the results for different scenarios of service level (ߙ and ߚ) 

when the standard deviation is fixed. The results indicate that as the values of ߙ and ߚ 

the total cost increases as well. Similar trend is observed when we vary the standard 

deviations keeping the service level constraint constant. However, the percentage 

increase is observed to be more when the standard deviation is increased compared to 

the increase of the service level constraints. Based on the results which we obtained, we 

can concluded that the data set with less standard deviation and service level (ߙ and ߚ) 

is 95% will give less total cost (best cost). Therefore, we can expect that the algorithms 

perform better if the standard deviation is small and also in order to obtain better results 

we have to set the service level constraints to 95%.   

 

Table 5.4 gives the comparison of the best cost between the two methods, SIRPACO1 

and SIRPACO2.  It is observed that SIRPACO2 outperformed in most instances when 

compared with SIRPACO1 i.e. 9 out of 14 problem instances in Set B, 8 out of 14 

problem instances in Set C and D. Although SIRPACO2 did not performed better in 

medium and larger problem instances in Set A, however the gaps between the two 

methods are small which are less than 1.5%.  The gaps are illustrated in Figure 5.3. In 

addition, for sets B, C and D it is also observed that for those instances which 

SIRPACO1 outperformed SIRPACO2, the gaps are also comparatively small that is less 

than 2%. As a conclusion, the overall performance of SIRPACO2 is better than 

SIRPACO1.  
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Table 5.5 showed the number of vehicles utilized for both methods, SIRPACO1 and 

SIRPACO2 of all 4 different scenarios. From the results, we can notice that SIRPACO2 

is able to reduce the number of vehicles for small instances, S12. Meanwhile, the 

remaining instances (i.e. S20, S50 and S100) utilized the same number of vehicles to 

produce the solution as in Table 5.5. It may due to higher quantity delivery of the 

customers (i.e. S20, S50 and S100) and subsequently maximum utilization of the 

vehicles, thus causing more challenges in collapsing the number of vehicles. Therefore, 

there is no improvement in term of the utilization number of vehicles for the instances; 

S20, S50 and S100 even though SIRPACO2 are able to produce better results (i.e. 

minimum cost) in most of the instances. Table 5.6 gave the CPU time for both 

SIRPACO1 and SIRPACO2. From the results, we can notice that both methods require 

relatively short time to obtain the results.   

 

5.6 Summary of the Chapter 

In this chapter, we extended our model to tackle the stochastic inventory routing 

problem (SIRP). Different from the previous two chapters where the customer’s demand 

is deterministic and time varying, the demand of customer in SIRP is only known in a 

probabilistic sense. We consider a multi-period SIRP with split delivery (SIRPSD) 

where a fleet of homogeneous capacitated vehicles housed at a depot/warehouse 

transport the multi-product to geographically dispersed customers to fulfill their demand. 

The total inventory and transportation cost are the two main components to be 

minimized. In this study, we implement service level constraints to ensure that the stock 

out cost is not too excessive and also to prevent overloading at the customer’s 

warehouse. 
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We developed two-phase algorithms, SIRPACO1 to solve the proposed SIRP model 

where phase I solved the inventory sub problem to give inventory costs and quantity 

delivery while phase II played the role of building routes from the input attained from 

phase I in order to obtain the transportation costs. In addition, we also developed 

enhanced version of SIRPACO1, which is referred to SIRPACO2 by incorporating the 

inventory element in the updating mechanism in Phase II to obtain better results. In this 

updating mechanism, we proposed a new formulation to calculate the savings for each 

feasible customer and the selection of the customer is based on the highest savings the 

backward transfer. 

 

We test the algorithm using different combinations of the service level and standard 

deviation parameters for the computational experiments. It is observed that the results 

are affected by the variation in the standard deviation rather than the service level 

parameters. The overall results show that we can conclude that SIRPACO2 

outperformed SIRPACO1 in most of the instances. Moreover, SIRPACO2 also have the 

potential of reducing the utilization of number of vehicles. Both SIRPACO1 and 

SIRPACO2 required relatively small CPU time. 
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CHAPTER 6: CONCLUSION AND FUTURE RESEARCH 

 

This chapter will conclude our findings in this study. The chapter starts with the 

discussion regarding the conclusion of this study. This chapter will also present the 

related future research pertaining enhancement of the algorithms in order to get better 

results or the potential extension of the model in order to tackle another IRP problem of 

the industries.  

 

6.1  Summary of thesis 

Supply chain management (SCM) plays the role of managing the flow of goods and 

services that takes into consideration the movement and storage of raw materials, work-

in-process inventory, and finished goods from point of origin to point of consumption. 

Inventory management and transportation are two important components in supply 

chain management.  

 

We considered one-to-many network for a finite planning horizon which consists of a 

manufacturer that produces multi-products to be delivered by a fleet of capacitated 

homogeneous vehicles, housed at a depot/warehouseto a set of geographically dispersed 

customers. The demand for each product is deterministic and time varying and each 

customer requests a distinct product. Split delivery is allowed in our model. 

 

In this study, we modified the conventional Ant Colony Optimization (ACO)by adding 

the inventory cost in the global pheromones updating to build the routes. Meanwhile, 

the procedure of updating inventory level is done by implementing the deterministic 

backward transfer to determine the inventory for customers. In addition, we also 

developed a new transfer/swap aimed at combining split customers in order to attain the 
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improvement in term of the transportation costs. The computational experiments are 

done and the overall results showed that our developed algorithms performed better in 

larger instances if compared with small and medium instances. The results obtained for 

larger instances are better than the upper bound which was generated from CPLEX 12.4. 

Meanwhile, from the two algorithms that we developed namely, ACO and ACO2, we 

found out that ACO2 gives better results than ACO for all the problem instances. We 

can also observe that ACO2 gives better solution quality through the standard deviation 

of the total costs that we obtained. Sensitivity analyses on various parameters were also 

performed with the aim to attain appropriate parameter settings which can give better 

results. 

 

In the conventional ACO, only one population of ants is used to build the solution. In 

this study, we enhanced ACO by dividing the ants into subpopulations in order to solve 

the problem and this is referred to as Population Based ACO. We design a population 

based ACO by segregating each subpopulation using the inventory level. We proposed 

several different algorithms for the population-based ACO. We called our first proposed 

algorithm of population based ACO as ACOBF which incorporates the random and 

deterministic inventory updating mechanism where the forward and backward inventory 

updating, biasing towards the forward inventory updating. ACOBF starts with initial 

population of zero inventories. However, the emphasis in ACOBF is still more on 

routing part than inventory. Thus, we proposed our second algorithms of population 

based ACO where new formulation called pheromones of customer’s inventory is 

developed. The new inventory updating mechanism where it takes into account the local 

and global pheromone of customer’s inventory updating is also proposed in this study. 

The selection of customers for the transfer is based on the attraction. We called this 

algorithm as ACOPher. Similar to ACOBF, ACOPher starts with initial population of 
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zero inventories. We propose an enhancement to the algorithm where we let each 

subpopulation starts with different set of inventory level including zero inventory, 

inventory level generated using the allocation model and randomly generated inventory 

levels. We called the enhanced algorithms as ACOPher2.  

 

Similar to ACO and ACO2, all the algorithms developed for population based ACO are 

tested on the data with different combinations of the number of customers, 12, 20, 50 

and 100 with the number of periods, 5, 10, 14 and 21. The overall results for the 

algorithms ACOBF, ACOPher and ACOPher2 show that the algorithms performed 

better in larger instances if compared with small and medium instances. Moreover, we 

also can observe that ACOPher2 gave better results if compared with ACOBF as well as 

ACOPher in most of the instances. ACOPher as well as ACOPher2 give better in term 

of quality solution if compared with ACOBF based on the obtained standard deviation 

of the total costs. From the observation of the obtained result, we can conclude that to 

implement the selection of customer for transferring based on the attraction are efficient 

of getting minimum costs.  

 

In this study, we also extended our deterministic model to tackle the stochastic 

inventory routing problem (SIRP) where the demand of customer is unknown in 

advance but known in a probabilistic sense. We considered a multi-period SIRP with 

split delivery (SIRPSD) comprising of a depot/warehouse where a fleet of homogeneous 

capacitated vehicles to transport the products to a set of customers is located. We implemented 

service level constraints to prevent stock out cost and overloading at the customer’s 

storage. We developed two-phase algorithms, SIRPACO1 to solve our proposed SIRP 

model where phase I solved the inventory sub problem to produce inventory costs and 

quantity delivery. Meanwhile, phase II built routes for the quantity delivery obtained 
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from phase I in order to calculate the transportation costs. The proposed SIRPACO1 

was further enhanced by incorporating inventory updating mechanism into Phase II with 

the aim of producing a good set of inventory level which will give minimum overall 

cost. In the updating mechanism, a new formulation was proposed to calculate the 

savings for each customer and the selection of a customer is biased towards customers 

with higher savings in the backward transfer. In order to test the efficiency of our 

algorithms, combinations of different parameters were carried out for the service level 

and standard deviation. It was observed that increasing the standard deviation is more 

likely to produce higher cost when compared with increasing service level (ߙ and ߚ) 

parameters. In addition, we found out that SIRPACO2 performed better than 

SIRPACO1 in most of the instances and also have the potential to decrease the number 

of vehicles. Based on CPU time that we attained, we also note that both algorithms 

SIRPACO1 and SIRPACO2 required relatively short time to build the solution.  

  

6.2  Future Research 

In this study, our proposed model on deterministic IRP considered that the customers' 

demand can be met on time and backordering / backlogging is not allowed. However, 

there are the possibilities that the demand of the customers cannot be fulfilled on time. 

This may due either to the overall demand of the customers are beyond the production 

capacity of the company or it may be cheaper to serve the customers in the next period 

(due to the limited capacity of the vehicles). This is called backordering. Generally, the 

penalties fees will be charged for those demands that cannot be fulfilled on time. 

Normally the backordering is limited to several period only. An increasing in 

backlogged order of the products can show the rising in sales but also may indicate the 

inefficiency of the production management. Therefore, the goal of balancing between 

the inventory management and backordering / backlogging is the challenge problem in 
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IRP. In future research, we can extend our proposed model to tackle the problem to 

include backordering / backlogging and/or lost sales. In addition we also can add the 

production components into our model with the aim of balancing between the inventory 

and production management. 

 

Similar to our proposed model of SIRP, we can also extend it to tackle the problem 

which appending backordering. We also can enhance our developed SIRP algorithm by 

selecting appropriate weights or incorporating more powerful algorithm into our 

proposed ACO for solving SIRP to balance between transportation and inventory costs. 

However selecting appropriate weights is very complex. 
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