
COMPUTER VISION BASED TRAFFIC SIGNS
RECOGNITION SYSTEM

EDWIND LIAW YEE KANG

FACULTY OF ENGINEERING

UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

Univ
ers

ity
 of

 M
ala

ya

COMPUTER VISION-BASED TRAFFIC SIGNS

RECOGNITION SYSTEM

EDWIND LIAW YEE KANG

RESEARCH PROJECT SUBMITTED IN PARTIAL

FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF MECHATRONICS

ENGINEERING

FACULTY OF ENGINEERING

UNIVERSITY OF MALAYA

KUALA LUMPUR

2017

 Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: EDWIND LIAW YEE KANG

Matric No: KQF160002

Name of Degree: Master Degree of Mechatronics Engineering

Title of Research Report: Computer Vision-Based Traffic Signs Recognition System

Field of Study: Computer Vision

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or

reference to or reproduction of any copyright work has been disclosed

expressly and sufficiently and the title of the Work and its authorship have

been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that

the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the

University of Malaya (“UM”), who henceforth shall be owner of the

copyright in this Work and that any reproduction or use in any form or by any

means whatsoever is prohibited without the written consent of UM having

been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed

any copyright whether intentionally or otherwise, I may be subject to legal

action or any other action as may be determined by UM.

Candidate‟s Signature Date:

Subscribed and solemnly declared before,

Witness‟s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

ABSTRACT

Nowadays, the number of moving vehicles and road users have been increasing

very rapidly. Subsequently, more road safety issues have been raised up. Traffic signs

on road play a very big role for road safety because it carries important message for the

road users especially the drivers. Hence, it is essential that the drivers can notice the

traffic signs so that appropriate decision and response during can be made. However,

the chances of the drivers overlook some signs are still very high. In order to minimize

the said chances, a computer vision based traffic signs detection and recognition system

is proposed and developed. The machine learning algorithm, cascaded classifier based

on Haar-like features is adopted to develop the traffic signs detection and recognition

system. By adopting Haar-like features cascaded classifiers, the traffic signs detection

and recognition system with high accuracy is developed.

Univ
ers

ity
 of

 M
ala

ya

iv

ABSTRAK

 Pada masa kini, bilangan kenderaan bergerak dan pengguna jalan raya

semakin meningkat. Oleh itu, semakin banyak isu tentang keselamatan jalan raya telah

dipuncakan. Tanda-tanda lalu lintas di jalan raya memainkan peranan yang sangat besar

untuk keselamatan jalan raya kerana ia membawa mesej penting bagi pengguna jalan

raya terutamanya pemandu. Maka, adalah penting bahawa pemandu dapat melihat

tanda-tanda lalu lintas agar keputusan dan tindak balas yang sewajarnya dapat dibuat.

Bagaimanapun, kemungkinan pemandu tidak melihat beberapa tanda masih tinggi.

Untuk meminimumkan kemungkinan tersebut, sistem pengesanan dan pengiktirafan lalu

lintas berasaskan penglihatan komputer dikemukakan dalam kajian ini. Algoritma

pembelajaran mesin, pengelasan pengelas berdasarkan ciri-ciri seperti Haar digunakan

untuk mengemukankan tanda-tanda lalu lintas dan pengiktirafan sistem. Dengan

mengamalkan ciri-ciri seperti Haar mengecil pengelas, tanda-tanda lalu lintas

pengesanan dan pengiktirafan sistem dengan ketepatan yang tinggi telah berjaya

dikemukankan.

Univ
ers

ity
 of

 M
ala

ya

v

ACKNOWLEDGEMENT

 First and foremost, I would like to extend my highest gratitude towards the my

advisor, Ir. Dr. Chuah Joon Huang who has given me a golden opportunity to do the

research project, study and exploration under his supervision. Dr Chuah has also given

numerous valuable comments, suggestions, constructive criticisms and these have

certainly helped to improve the quality of this study. His sharing and guidance did not

only help me in overcoming the difficulties throughout in this study but also widen my

perspective and knowledge in this field.

 Secondly, appreciations are to the family members for their understanding and

patience without which the efforts are impossible. I acknowledge my sincere

indebtedness and gratitude exclusively to my parents for their love, dream, and sacrifice

throughout my life.

 Lastly, I would like to express my gratitude and appreciations to everyone

who has helped me directly or indirectly throughout the study.

Univ
ers

ity
 of

 M
ala

ya

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ABSTRAK .. iv

ACKNOWLEDGEMENT .. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES ... ix

LIST OF TABLES .. xii

LIST OF SYMBOLS AND ABBREVIATIONS ... xiii

LIST OF APPENDICES ... xiv

CHAPTER 1: INTRODUCTION ... 1

1.1 Introduction.. 1

1.2 Problem Statement ... 2

1.3 Research Objectives... 2

1.4 Research Scope .. 3

1.5 Thesis Organization ... 3

CHAPTER 2: LITERATURE REVIEW ... 4

2.1 Introduction.. 4

2.2 Object Detection .. 4

2.2.1 Coarse-to-Fine and Boosted Classifier.. 5

2.2.2 Dictionary Learning Based ... 6

2.2.3 Deformable Part-Based Model .. 7

2.2.4 Deep Learning ... 8

2.2.5 Trainable Image Processing Architectures.. 11

2.3 Traffic Signs Detection .. 12

Univ
ers

ity
 of

 M
ala

ya

vii

CHAPTER 3: METHODOLOGY .. 18

3.1 Introduction.. 18

3.2 Research Methodology .. 18

3.3 Research Flow ... 20

3.4 Research Tool .. 22

3.4.1 Python 22

3.4.2 OpenCV ... 22

3.5 Data Samples Preperation .. 23

3.5.1 Negative Samples .. 23

3.5.2 Positive Samples ... 25

3.6 Cascade Training ... 28

3.7 Cascade Testing ... 31

3.7.1 Test Data Preparation .. 32

3.7.2 Image Testing .. 34

3.8 Python Script ... 36

CHAPTER 4: RESULTS AND DISCUSSIONS ... 37

4.1 Introduction.. 37

4.2 Results 37

4.2.1 Image Testing Results ... 37

4.2.2 Video Testing Results ... 42

4.3 Performance Analysis .. 51

CHAPTER 5: CONCLUSION .. 52

5.1 Introduction.. 52

5.2 Research Conclusions .. 52

5.3 Recommendations for Future Works ... 53

Univ
ers

ity
 of

 M
ala

ya

viii

REFERENCES .. 54

APPENDIX A .. 57

Univ
ers

ity
 of

 M
ala

ya

ix

LIST OF FIGURES

Figure 2.1: Block Diagram of the Unified Learning Framework for Face Detection [15]

 ... 6

Figure 2.2: Detection of a single person and representation of single person in parts

based models [18] ... 7

Figure 2.3: Detection of a bicycle and representation of single person in parts based

models [18] ... 8

Figure 2.4: Deep learning is a sub set of machine learning [21]....................................... 9

Figure 2.5: Schematic Levels of Each Learning [21] ... 10

Figure 2.6: Overview of deep model proposed by [22] .. 11

Figure 2.7: Architecture of proposed by Leitner et al. [23] .. 12

Figure 2.8: Overview of algorithm proposed by Shi and Lin. [24] 13

Figure 2.9: Right: HOG+SVM Left: Detection using colour information [24] 14

Figure 2.10: Results of proposed system by [25] .. 15

Figure 2.11: Model of cascade SVM proposed by [26] .. 16

Figure 2.12: CNN model proposed by [27] .. 16

Figure 3.1: Traffic signs samples used for this study.. 19

Figure 3.2: Research Flow Chart .. 20

Figure 3.3: Path for OpenCV utility tool .. 23

Figure 3.4: Python Script for images download and resize .. 24

Figure 3.5: Negative Images ... 24

Figure 3.6: Directories of 12 traffic signs ... 25

Figure 3.7: Images in each folder .. 25

Figure 3.8: Command in batch file to create more positive samples 26

Figure 3.9: Group of newly generated positive images .. 27

Figure 3.10: Sample of generated positive images ... 27

Univ
ers

ity
 of

 M
ala

ya

x

Figure 3.11: Command in batch file to create vec files .. 28

Figure 3.12: Command in batch file for haar cascade training 28

Figure 3.13: An example of Completed Training Stage ... 30

Figure 3.14: Batch file for test sample collection ... 32

Figure 3.15: Created test samples ... 32

Figure 3.16: An example of created sample.. 33

Figure 3.17: An example of .dat file ... 33

Figure 3.18: Work folder for testing ... 34

Figure 3.19: Testing batch file .. 34

Figure 3.20: Newly generated log file for testing results .. 35

Figure 3.21: Testing results ... 35

Figure 4.1: Upper part Results Log for One Way (left) Classifier.................................. 38

Figure 4.2: Last Part of Results Log for One Way (left) Classifier 39

Figure 4.3: Successful detection ... 41

Figure 4.4: Missed detection ... 41

Figure 4.5: False detection .. 42

Figure 4.6: Successful detection of 60km/h speed limit sign at night 44

Figure 4.7: Successful detection of traffic light sign at night ... 44

Figure 4.8: Successful detection of traffic light sign in day time 44

Figure 4.9: Successful detection of one way (right) in day time 45

Figure 4.10: Successful detection of bump sign in day time .. 45

Figure 4.11: Successful detection of No U-turn sign in day time 45

Figure 4.12: Successful detection of No U-turn sign in rainy day 46

Figure 4.13: Successful detection of One Way (Left)... 46

Figure 4.14: Successful detection of No Entry sign .. 46

Figure 4.15: Successful detection of Bump Ahead and Stop sign 47

Figure 4.16: Successful detection of Bump Ahead at Night ... 47

Univ
ers

ity
 of

 M
ala

ya

xi

Figure 4.17: Successful detection of two traffic light ahead signs 47

Figure 4.18: Successful detection of no stopping sign .. 48

Figure 4.19: Successful detection 60km/h speed limit sign and no stopping sign 48

Figure 4.20: Successful detection no parking sign ... 48

Figure 4.21: Wrong detection at night time part 1 .. 49

Figure 4.22: Wrong detection at night time part 2 .. 49

Figure 4.23: Miss Detection of Stop Sign ... 50

Figure 4.24: False detection and wrong detection .. 50

Univ
ers

ity
 of

 M
ala

ya

xii

LIST OF TABLES

Table 2.1: Comparison of Traffic Signs Detection Based on Different Features

Extraction .. 17

Table 3.1: Training summary for each classifier .. 31

Table 4.1: Results for Classifier Testing by „opencv_performance.exe‟ 40

Table 4.2: Accuracy of classifier for on the road testing .. 43

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

CNN : Convolutional Neural Network

HOG : Histogram of Oriented Gradient

IDE : Integrated Development Environment

SIFT : Scale Invariant Feature Transform

SVM : Support Vector Machine

XML : Extensible Markup Language

Univ
ers

ity
 of

 M
ala

ya

xiv

LIST OF APPENDICES

Appendix A : Python Script

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

Nowadays, the number of people driving is getting has been increasing.

Subsequently, more safety issues have been raised up. Various types of sensing

technologies such as GPS, laser rangefinder and even computer vision have been

implemented in driving assistance system in order to improve the safety features. One of

the most important key to drive safely is being able to notice and watch out the traffic

signs on the road which served as warning or awareness to the driver. Even though

different kind of colour and shape have been adopted in the design of the traffic sign,

the chances of driver overlooking the sign is still high. In this case, it is very essential to

have a driver assistance system which can automatically detect and identify different

types of traffic signs. By having this, driver can be warned by sounding an audio

reminder or giving a warning signals. Moreover, autonomous driving vehicles will be

one of the beneficiary from road sign recognition and this is very essential in

autonomous navigation.

There are few aspects that making the automatic detection and recognition of

traffic signs challenging. Firstly, the types and designs of traffic signs. It is known that

traffic signs come with various design and colour. Each type of traffic signs carries its

own message. For example, the stop sign at the junction serves the purpose to tell the

driver that he should stop his car first before making turn to the left or right. The

pedestrian sign is to give alert to the driver that there will be pedestrian crossing the

road ahead and there are a lot more. Secondly, the environment surrounding the signs is

also an important aspect that has to be considered. The weather conditions and

illumination are changing from time to time. Thereby, computer vision has been

adopted to address these problems [24, 25, 26, 27, 28, and 29].

Univ
ers

ity
 of

 M
ala

ya

2

 Humans use eyes to sense the surrounding world and use brain to compute the

information received from the eyes. The science or research that brings the purpose to

give a similar or even better ability to a computer or a machine is known as computer

vision. Computer vision is often revolving around the topic how a computer or a

machine can be made in order to extract and analyze the information from an image or

video automatically. Computer vision usually includes development of a theoretical and

algorithmic basis to attain automatically extraction and analysis of visual information.

1.2 Problem Statement

In general, traffic signs recognition system is essential for driving assistance

system as well as autonomous driving vehicles. However, there are many types of

traffic signs, each bringing different information. Hence, traffic signs recognition

systems is not only required to detect the presence of traffic signs but to determine what

traffic sign it is. A high accuracy traffic sign detection system that can detect and

recognize different traffic signs is to be developed.

1.3 Research Objectives

The objectives of this research are addressed as below:

1. To develop traffic recognition system by cascade classifier based on Haar

features.

2. To study the accuracy and performance of Haar-based features traffic

recognition system.

Univ
ers

ity
 of

 M
ala

ya

3

1.4 Research Scope

 The scope of this research project focuses on designing and training a cascade

detector for different traffic signs based on Haar features using OpenCV. After training

stage, accuracy of trained classifier will be tested. Python Script will also be written and

employ the trained classifier to do detection of traffic signs in video feed.

1.5 Thesis Organization

The rest of the thesis is organised as follows:

Chapter 2: Literature Review, presents the background study and review of algorithms

for object detection system as well as past research work done on traffic sign

recognition system

Chapter 3: Methodology, describes how each step of the research is carried out.

Chapter 4: Results & Discussion, discuss the results obtained and analysis of the results.

The strength and weakness of this project are also discussed in this chapter.

Chapter 5: Conclusion, concludes the research findings and states recommendation for

future work

 Univ
ers

ity
 of

 M
ala

ya

4

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

 This chapter presents the background study and review of algorithms for object

detection system as well as past research work done on traffic sign recognition system.

2.2 Object Detection

 Computer vision has been expanding in a very fast pace. Part of the reason is

because of the adoption of machine learning approach in this field. Object detection is

one of the sub classes of computer vision that has gained a lot of benefits and

advancement from the adoption of machine learning methods [2].

Object detection refers to the technique of determining the presence, location and scale

of certain object in an image. In other words, the objective of object detection is to

determine the presence or absence of a certain class of objects [15]. In many of

computer vision application, object detection is first routine to be performed. This is

because only after the target object is detected, the following information can be further

extracted from the image [2]. For example, in the application of facial recognition, the

first detection task must be the task of detecting the presence of human faces. In the

review done by reference [2], it also pointed out that object detection has been widely

used in different fields, such as human-machine interface (HMI), robotics system,

consumer products, security systems, search engines and even transportations.

In the early days, the object detection was done by adopting the techniques of

template matching and single part-based models [3]. Later, statistical classifiers or

machine learning approach were introduced to object detection. For example, support

vector machine (SVM) has been studied and implemented in developing a face

detection system in [4]. Other than that, face detection based on neural-network has also

been developed in [5]. An example-based learning approach for tracing upright fore

Univ
ers

ity
 of

 M
ala

ya

5

views of human faces in complicated scenes is proposed and presented in [6]. 3D object

detection has also been proposed in [7]. In reference [7], histogram is adopted to

represent various visual attributes and histogram is used as the data set. Reference [8]

presented a coarse-to-fine face detection based on SVM. Unlike [3], [8] used coarse-to-

fine method to look for faces in image, the processing only concentrates on images

containing the positive target object (faces). Face detection based on non-linear SVM is

also proposed and presented in [9]. Boosted cascade classifier is implemented in face

detection in [1].

Object detection techniques can be grouped into five major types, namely

coarse-to-fine and boosted classifier, dictionary based, deformable part-based model,

deep learning and Trainable Image Processing Architectures. Each of the types has their

strength and weaknesses [2].

2.2.1 Coarse-to-Fine and Boosted Classifier

 One of the very famous works in this category is the boosted cascade classifier

of proposed in [1]. There are two important keys of the work proposed by [1]. Haar

based features were extracted. The second key point of this work is that a classifier of

selecting a small number of important features using AdaBoost [11] is constructed. This

is because within any image, the total number of Haar-like features is very large, even a

lot more than the number of pixels. In order to shorten the time of the classification and

make it less computationally expensive, a large majority of the available features needs

to be excluded, and emphasize on a small set of critical features. Therefore, if efficiency

is the key, coarse-to-fine cascade classifier is the first choice. Another example of the

work in this category is the work proposed in [10]. A little modification was done on the

traditional Adaboost. In comparison to Adaboost, a backtrack mechanism is used after

each iteration of AdaBoost learning in order to reduce the error. Another example of the

Univ
ers

ity
 of

 M
ala

ya

6

work is presented in [12] which utilizes boosted classifier to extract haar based features

in face detection. Verschae and Ruiz proposed a unified learning framework for detection

and classification using a nested cascade of boosted classifier [12]. Figure below shows the

block diagram of the unified learning framework that was done by Verschae and Ruiz [12].

Figure 2.1: Block Diagram of the Unified Learning Framework for Face Detection

[15]

2.2.2 Dictionary Learning Based

Dictionary learning based is a technique where elements and features from a

dictionary is used to represent objects [16]. One of the drawback of this approach is

that it is not suitable to detect multiple object classes in a single image [2]. It means that

when more than one object class appear in an image, the classifier can only detect one

object class. After removing that object class, the remaining can be determined [17]. An

example of this work was the study that done by Mutch and Lowe using this concept for

class recognition with limited receptive fields [14].

Univ
ers

ity
 of

 M
ala

ya

7

2.2.3 Deformable Part-Based Model

This technique does not only take object into the consideration but it also

considers part models and their relative positions. This approach has higher accuracy in

comparison to other approaches but it is more computationally expensive and consumes

more time. In reference [18], Felzenszwalb et al. have adopted this approach in

developing object recognition system for generic objects such as cars and people. The

main challenge they have mentioned is that the objects in such categories can vary

greatly in appearance. Variations in illumination and viewpoint may lead to great

variation in appearance. In order to solve this problems, the objects to be detected are

represented by few parts-based model, as shown in figures below.

Figure 2.2: Detection of a single person and representation of single person in

parts based models [18]

Univ
ers

ity
 of

 M
ala

ya

8

Figure 2.3: Detection of a bicycle and representation of single person in parts

based models [18]

2.2.4 Deep Learning

Deep learning is a sub class of machine learning or also known as artificial

intelligence [19]. If a well-suited model is designed, this model will be able to solve a

complex problem with good accuracy. In accordance to Deng and Yu, deep learning or

hierarchy learning is machine learning algorithm that performs the learning task in

numerous stages of representation and abstraction [20]. Figure below is the Venn

diagram that shows the deep learning in the family of machine learning.

Univ
ers

ity
 of

 M
ala

ya

9

Figure 2.4: Deep learning is a sub set of machine learning [21]

Goodfellow et al has pointed out that Deep learning has relatively higher reliability

than other approaches as a machine learning system in real-world condition [21]. Besides,

deep learning is representation learning type and it is more flexible in terms of learning

because of its higher level of process schematics, which is represented by the figures below.

Univ
ers

ity
 of

 M
ala

ya

10

Figure 2.5: Schematic Levels of Each Learning [21]

In comparison with the approaches which have been discussed earlier, the feature

representation of deep learning is learned but not designed by the users. The accuracy

and reliability of this approach is much higher but the flaw is that it is computationally

expensive and requires huge number of training samples [2]. Another example of deep

learning is the work presented by Ouyang et al in [22]. A deep model has been proposed.

Firstly, the image data was convolved by first filter data map to output features map.

Then, the output feature maps were processed by the second layer and the deformation

layer. 20 part scores were then output from the results of deformation layer. The deep

model is shown in figure below.

Univ
ers

ity
 of

 M
ala

ya

11

Figure 2.6: Overview of deep model proposed by [22]

2.2.5 Trainable Image Processing Architectures

For this technique, the parameters of predefined operators and amalgamation of

operators must be learned first before execution. This approach is a general purpose

architecture so it can be used as part of larger system. One good example of this work is

the work of Leitner et al. They have designed a humanoid robot by implementing both

computer vision and machine learning for the purpose of object [23]. The purpose of

implementing this architecture is object identification in 2D plane and further localizing

the objects in 3D space plane. Thereby, it requires a few modules to build up this system.

Figure below shows the architecture model that proposed by Leitner et al.

Univ
ers

ity
 of

 M
ala

ya

12

Figure 2.7: Architecture of proposed by Leitner et al. [23]

2.3 Traffic Signs Detection

 Shi and Lin have pointed out traffic signs detection rely a lot on colour

information [24]. In their opinion, it is not robust to use colour information to detect

traffic signs. This is because weather condition, output from different camera, light

intensity may result in big variation of colour of the sign. Hence, Shi and Lin have

proposed traffic sign detection which does not solely rely on colour information but also

the geometry shape of the sign. Their work consists of few steps. Step 1 is to use

Histogram of Oriented Gradient (HOG) and linear SVM to determine the regions which

have traffic signs. Then, neural network is used to classify the results. Figures below

shows the overview of the algorithm proposed by Shi and Lin [24].

Univ
ers

ity
 of

 M
ala

ya

13

Figure 2.8: Overview of algorithm proposed by Shi and Lin. [24]

As mentioned earlier, Shi and Lin has pointed out the weakness of using colour

information alone in doing detection. Figure below shows the comparison of detection

between using SVM+HOG and using colour information. Univ
ers

ity
 of

 M
ala

ya

14

Figure 2.9: Right: HOG+SVM Left: Detection using colour information [24]

 From the figure above, it can be clearly seen that in comparison of (a), there are

misclassification of signs happened on the right. While traffic signs can be successfully

detected in image on the left in (a). From here, it can be concluded that by using colour

information alone, it is not robust especially in different weather condition.

 Zabihi et al has also proposed the traffic sign detection system. Their detection

system is similar to one proposed by Shi and Lin. They also used linear SVM and HOG

features in detection stage. For recognition stage, they used colour information and

Scale Invariant Feature Transform (SIFT) matching. During recognition stage, the

Univ
ers

ity
 of

 M
ala

ya

15

detected images are scaled to same size with template signs. SIFT is then used to do the

matching with template signs [25].

Figure 2.10: Results of proposed system by [25]

 Another example of work is presented and described in [26]. In [26], the

proposed algorithm has four steps. The first step is candidate regions segmentation. In

this step, traffic sign regions are extracted from the environment. The extraction is to

ensure the system does not waste time and resource in computing the region that does

not contain traffic signs. As traffic signs has different shapes, so the next step is shape

classification. Then, feature extraction is the next step. To extract the features, HOG is

adopted. Lastly, cascade liner SVM is used in classification and normalization for the

purpose of recognizing. The model of cascade SVM is illustrated in figure below.

Univ
ers

ity
 of

 M
ala

ya

16

Figure 2.11: Model of cascade SVM proposed by [26]

 Karaduman and Eren have proposed deep learning algorithm in determining few

traffic signs in [27]. The motivation of the detection and recognition is to determine the

driving style of driver. The proposed algorithm is to detect four signs, namely, left and

right dangerous curve as well as left and right curve. The convolutional neural network

(CNN) has been used to detect the traffic signs. The model of the proposed algorithm is

illustrated in figure below.

Figure 2.12: CNN model proposed by [27]

 Another work of traffic sign detection is presented and described in [29]. The

algorithm proposed in [29] consists of 2 main steps. Traffic signs are firstly detected by

a set of Haar wavelet features. These features were attained from AdaBoost training

beforehand. Second step is to use Bayesian generative modelling for classification.

Reference [29] proposed algorithm for traffic signs detection that based on HOG. The

Univ
ers

ity
 of

 M
ala

ya

17

colour space adopted are CIELab and YCbCr color spaces. Comparison on the detection

of traffic signs based on different type of feature extractions have been done in [27].

The table summarizes the accuracy of traffic signs detection based on different feature

extraction method.

Table 2.1: Comparison of Traffic Signs Detection Based on Different Features

Extraction

Reference Method Accuracy (%)

[28] Haar Wavelet 85.00

[29] HOG 85.00

[27] CNN 88.02

Univ
ers

ity
 of

 M
ala

ya

18

CHAPTER 3: METHODOLOGY

3.1 Introduction

 This chapter covers the discussion of the algorithm adopted to develop traffic

sign detection and recognition. The development stage including the training and testing

of classifier is covered in this chapter. The development of Python Script is also

presented.

3.2 Research Methodology

 As per discussed in previous chapter, it is noticeable that most of the traffic sign

detection and recognition systems are based on HOG. However, from the comparison

that summarized in table 2.1, it is found that Haar like features has similar efficiency

compared to HOG and it will take shorter time. For classification, Adaboost cascaded

training will be adopted as it takes shorter time to train. In short, it has better efficiency.

Unlike what has been done in the pass research work discussed in chapter 2, the method

of research that will be adopted in this study is each traffic signs will have its own

dependant classifier. For example, stop sign will have its own classifier which can only

be used to detect stop signs. After the classifier has been trained, testing will be

performed. Once all the classifiers have been trained and tested, a python script will be

used to run all these trained classifiers to do detection in video feed from webcam. More

details about every step will discussed in following sections of this chapter. The sample

signs that chosen are common traffic signs in Malaysia. The signs which will be used

for this study are illustrated in figures below.

Univ
ers

ity
 of

 M
ala

ya

19

Figure 3.1: Traffic signs samples used for this study

Univ
ers

ity
 of

 M
ala

ya

20

3.3 Research Flow

Figure 3.2: Research Flow Chart

Univ
ers

ity
 of

 M
ala

ya

21

Figure 3.2, Continued: Research Flow Chart

 The research flow of this study is presented in figure above. The study was

started with literature study in order to make sure the whole research would be carried

out in proper track and correct research methods are adopted. Then, it followed by

sample data preparation, classifier testing. After all classifier have been trained, the next

step is to compose a python script in order to run all the classifier for detection in

webcam feed. This testing is to analyse and evaluate the performance when it goes to

road condition.

Univ
ers

ity
 of

 M
ala

ya

22

3.4 Research Tool

 In this section, the tool used to conduct the research will be discussed in details.

Since all the works associated with this research are programming, so the tools for the

research are merely few software which have been adopted.

 3.4.1 Python

 Python IDE (Version 3.5) has been used as an IDE (integrated development

environment). The reason of using Python is to have an IDE to develop a script that can

integrate the trained classifier into with the real time video feed detection.

3.4.2 OpenCV

 OpenCV stands for Open Computer Vision Library. It is released under a BSD

license and hence it‟s free for both academic and commercial use. It has C++, C, Python

and Java interfaces. It is compatible to run in different operation system, namely

Windows, Linux, Mac OS or even phone OS such as iOS and Android. It emphasizes

on computational efficiency and real-time applications.

In this research, the version used is OpenCV 3.0.0 and it is used in Windows

environment. It was available for download at https://opencv.org/releases.html. Upon

finished extracting and installing, the utilities and other tools will be available at the

path that it is extracted to. In this research, it is extracted to C drive. All the necessary

tools which will be used can be found in the path: opencv-> build-> x64 -> vc12 -> bin.

The work folder is shown in figure below.

Univ
ers

ity
 of

 M
ala

ya

https://opencv.org/releases.html

23

Figure 3.3: Path for OpenCV utility tool

3.5 Data Samples Preperation

 To ensure that the accuracy of the trained classifier is high, a large number of

data sets must be collected and prepared. The training of the cascade classifiers requires

both positive and negative data samples. In this case, positive samples refer to the

images containing object that the classifier is required to detect. While negative samples

are simply some random images that do not contain any objects to be detected.

3.5.1 Negative Samples

 Negative samples are some random images which do not contain object to be

detected. A total number of 4,395 images were collected. All these images are converted

to grayscale and are resized to the scale of 1000 x 1000 pixels. All the images are

sourced from an image database called ImageNet. A Python script in cooperate with

OpenCV is adopted to perform this task. Python Script is shown in figure below.

Univ
ers

ity
 of

 M
ala

ya

24

Figure 3.4: Python Script for images download and resize

Once the script is executed, the images will be downloaded into specific directory and

images downloaded will be converted to grayscale. On top of that, the images will be

resized to scale of 1000 x 1000 pixels. Results are shown in figures below.

Figure 3.5: Negative Images

Univ
ers

ity
 of

 M
ala

ya

25

3.5.2 Positive Samples

 As per discussed, positive samples are the images containing objects to be

detected. There are few ways to collect positive samples. For example, to collect the

positive images of 60km/h speed limit road sign, one can always go and take pictures of

the traffic signs on the road. However, a large number of positive samples are required,

so this method will not be considered. To collect and prepare a large number of positive

images easily, one of the OpenCV utility is adopted and below steps are taken. In this

study, 1 total of 12 traffic signs are to be detected. Thereby, there shall by 12 groups of

positive samples. Each group required averagely 4000 images for training purpose. The

first step is to collect a few images for respective sign, as shown in figures below.

Figure 3.6: Directories of 12 traffic signs

Figure 3.7: Images in each folder

Univ
ers

ity
 of

 M
ala

ya

26

 From figure above, images of 12 traffic signs are taken and kept in respective

folder. Figure 3.6 shows an example of the images contained in each folder. For

example shown in figure 3.6, the stop sign with different background, orientation,

illumination are kept in same folder directory. From these images, one of the OpenCV

tool, „createsample.exe‟ is being called. This tool is to create more samples from the

original images. What it does is actually randomly infuse the images into the negative

images, creating more positive samples. To call and utilize this tool, a batch file is

composed, as shown in figure below.

Figure 3.8: Command in batch file to create more positive samples

The batch file will be executed in command prompt. The batch file and each command

has the following meaning.

 img: Source object image directory and name (e.g., a company logo).

 bg: Background description file; contains directory of a list of negative images

 num: Number of positive samples to generate.

 maxidev: Maximum intensity deviation of pixels in foreground samples.

 maxxangle: Maximum rotation angle towards x-axis, must be given in radians.

 maxyangle: Maximum rotation angle towards y-axis, must be given in radians.

 maxzangle: Maximum rotation angle towards z-axis, must be given in radians.

Maximum deviation of pixels is set at 100 and maximum allowed rotation angle

towards x, y and z axis of the source object are set at maximum, which are 1.1, 1.1 and

0.5 respectively. These variation in deviation and orientation of angle ensures better

accuracy for different scene. Once it is executed, the images will be generated and the

results are shown in figures below.

Univ
ers

ity
 of

 M
ala

ya

27

Figure 3.9: Group of newly generated positive images

Figure 3.10: Sample of generated positive images

On top of that, a text file will be generated. This text file contains the name of the

generated image and the pixel location of the positive image in that image. This text file

will be further resized to 25 x 25 and processed in order to become input for the

classifier training, known as vector file. It is known as vector file because it contains the

Univ
ers

ity
 of

 M
ala

ya

28

vector of the positive object to be detected by the classifier. The same tool of OpenCV,

createsamples.exe is again utilized to process and generate the vector file. To execute

the OpenCV createsamples.exe, another batch file is made. The command in the batch

file is as follows:

Figure 3.11: Command in batch file to create vec files

3.6 Cascade Training

 „opencv_haartraining.exe‟ has been adopted to perform the training for the

classifier. Similar to the way calling createsamples.exe utility tool, a batch file is first

created in order to execute „opencv_haartraining.exe‟. The input for the training are the

vector file created earlier and the negative samples. In this study, 4500 positive samples

are used and must be in the form of .vec file. For negative samples, 1500 negative

samples are used. The command in the batch file to execute „opencv_haartraining.exe‟

is shown below.

Figure 3.12: Command in batch file for haar cascade training

Each command has the following definition.

- data: Output directory of the .xml file when the training is done

- vec: Vector file that containing all the input file

- bg: Directory pointing the negative images list

- npos: Number of positive samples

Univ
ers

ity
 of

 M
ala

ya

29

- nneg: Number of negative samples

- mem: RAM memory that will be used for training

- w: Width

- h: Height

- nstages: Number of stages

 Once the training is started, it cannot be stopped or paused. During the training,

the training samples will undergo few stages of training. At each stage, the input will be

taken from the output of the previous stage for the training, therefore the number of

stages indicating the number of hidden layers in the training stages. Once the training is

done, an Extensible Markup Language (XML) file will be created. This file is used as

the library sources for the detection system. The training stages of one classifier is

shown in the figures below.

Univ
ers

ity
 of

 M
ala

ya

30

Figure 3.13: An example of Completed Training Stage

Based on Figure 3.7, the data display that 0.261571 of threshold stages have

been done at the end of this stage with 0.025667 of strong classification error. The time

taken for this stage is 3201.92 seconds and the number of features used is 60. The more

features it uses, the longer time it takes. Too few of features may lead to failure in

training due to inability of the training result to converge. The results of training is

summarized in table below.

Univ
ers

ity
 of

 M
ala

ya

31

Table 3.1: Training summary for each classifier

Traffic

signs

Data size Number of

stages

(Epoch)

Average

training time

(minutes)

Number of

features

used

Positive Negative

Stop 4500 1500 11 583 60

One way

(left)

4000 2000 6 340 35

One way

(right)

4000 2000 5 280 40

Bump

ahead

4000 2000 6 200 40

Traffic

light ahead

4000 2000 5 350 50

No

Overtaking

4000 2000 6 375 40

No

Stopping

4000 2000 6 310 60

No U-turn 4500 1500 9 487.4 60

No

Parking

4000 2000 4 245 40

No Entry 4000 2000 5 275 40

No Left

Turn

4800 1500 6 315.50 30

60km/h

speed limit

4500 1500 5 295 60

3.7 Cascade Testing

 Classifier must be tested before it can proceed to next step. This stage consists of

2 main steps. Firstly, to prepare and collect for test samples. This is done by utilizing

the „opencv_createsamples.exe‟ tool. The next step is to do the testing. To test the

performance or accuracy of the classifier, another utility tool from OpenCV,

„opencv_performance.exe‟ is used. Details of each step will be discussed in following

section.

Univ
ers

ity
 of

 M
ala

ya

32

3.7.1 Test Data Preparation

 Similar to previous step, a batch file is created as shown in figure below. The

example shown in batch file below is to prepare the test samples for the testing of one

way (left) traffic sign.

Figure 3.14: Batch file for test sample collection

 The batch file above is to create samples to test the performance of one of the

traffic sign classifier. The number of the test samples is set at 1000, meaning that 1000

images with that particular sign will be created. Furthermore, a dat file will be created.

This dat file containing the pixel location of the object to be detected in each created

images. Figure below illustrates the results of the execution of above batch file.

Figure 3.15: Created test samples

Univ
ers

ity
 of

 M
ala

ya

33

Figure 3.16: An example of created sample

Figure 3.17: An example of .dat file

Univ
ers

ity
 of

 M
ala

ya

34

3.7.2 Image Testing

 After the test samples have been created, another batch file to call

„opencv_performance.exe‟ is composed. This batch file is to run the utility in command

prompt and execute the testing based on the testing samples which have been created.

Refer to figure below, note that the test samples created are saved in the „TestSamples‟

folder. The trained classifier is now in .xml file. While the batch file in .bat format is to

execute the OpenCV utility, „opencv_performance.exe‟. The work folder of testing and

command in batch file are illustrated in figures below.

Figure 3.18: Work folder for testing

Figure 3.19: Testing batch file

 From the command shown in figure 3.19, a log file with the name of „TestResult‟

will be generated once the testing is completed, as shown in figure below.

Univ
ers

ity
 of

 M
ala

ya

35

Figure 3.20: Newly generated log file for testing results

 Besides, the output images will also be generated. These images have the

rectangular marking. These markings indicate that the classifier have identified the

positive objects appeared on the image, as shown below.

Figure 3.21: Testing results

 The details of the results will be discussed in the following chapter.

Univ
ers

ity
 of

 M
ala

ya

36

3.8 Python Script

 Python script is needed in order to run the trained classifier in real life detection

or also known as video testing. All .xml files corresponding to classifier of each sign

will be loaded into the script. The python script will use these .xml files as library and

run the detection through the live feed from webcam. The complete script is attached in

appendix.

 The reason of running detection through the live feed from webcam is to analyze

the performance of the trained classifiers in real life. To carry out the testing, the

webcam is mounted on the dashboard of the car and it is connected to the laptop. Then

the testing was conducted while the car is moving. Testing for each classifiers were

conducted about 10 times, in day and night time respectively.

Univ
ers

ity
 of

 M
ala

ya

37

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1 Introduction

 This chapter presents the results obtained. On top of that, the analysis and the

discussion of the results are covered in this chapter too.

4.2 Results

 The results can be divided into two sections. Section 1 presents and discusses

about the testing results generated by the „opencv_performance.exe‟. Section 2 presents

and discusses about on-the-road testing results.

4.2.1 Image Testing Results

 In this section, the results generated by the „opencv_performance.exe‟ are

presented. As mentioned in previous chapter, results log will be generated once the

testing is done. Figures below show the result logs generated for classifier of one way

(left) road sign.

Univ
ers

ity
 of

 M
ala

ya

38

Figure 4.1: Upper part Results Log for One Way (left) Classifier

Univ
ers

ity
 of

 M
ala

ya

39

Figure 4.2: Last Part of Results Log for One Way (left) Classifier

Univ
ers

ity
 of

 M
ala

ya

40

Table below summarizes the results for all classifiers.

Table 4.1: Results for Classifier Testing by ‘opencv_performance.exe’

Classifier Total

number of

test samples

Hits Missed False Accuracy

(%)

Stop 1000 998 2 922 99.8

One way (left) 1000 952 48 1043 95.2

One way (right) 1000 944 56 2812 94.4

Bump ahead 1000 998 2 4336 99.8

Traffic light

ahead

1000 919 81 3798 91.9

No Overtaking 1000 978 22 4178 97.8

No Stopping 1000 981 19 6918 98.1

No U-turn 2000 1934 66 579 96.7

No Parking 1000 998 2 300 99.8

No Entry 1000 952 48 1043 95.2

No Left Turn 2000 1960 40 895 98.0

60km/h speed

limit

1000 998 2 802 99.8

 From the table above and figure 4.1, it is noticeable that there are hits, missed

and false. The „hit‟ means that the classifier has successfully located the object to be

detected in the image. Each test sample carries only one particular sign in the image.

Thereby, if the object can be detected by the classifier, the hit in that particular image

will be mark as 1, or else it will be categorized as missed. So, the accuracy is calculated

as follows:

Accuracy =

One of the output images from the testing for one way (left) classifier is shown in figure

below.

Univ
ers

ity
 of

 M
ala

ya

41

Figure 4.3: Successful detection

 Figure above shows that the testing result of one way (left) classifier on this

image is hit = 1, missed = 0 and false = 0. It means in this testing, the classifier has

successfully detect the object correctly. Another example where the classifier has

missed the detection of the sign is illustrated in figure below.

Figure 4.4: Missed detection

Univ
ers

ity
 of

 M
ala

ya

42

 Figure 4.4 is an example of missed detection. In this image, the classifier could

not detect the presence of the sign. So in this case, this picture will have 1 in missed

column and 0 in hits column. Figure below shows another example of false detection.

Figure 4.5: False detection

 In figure 4.5 above, it can be seen that the classifier can detect the correct sign

but at the same time, there were two other detections. The two detections were false

positive detections because there are no signs in the highlighted region. While the

middle highlighted region is correction detection. In this case, the hit is 1 while the

other two detections belong in false column.

4.2.2 Video Testing Results

 The testing results are summarized in the table below. Each testing were carried

out in a way that the webcam is mounted on dashboard of the car and the script is run

when the car is moving. The script has compiled all the 12 classifiers and when it runs,

it runs all the 12 classifiers concurrently. Car has been driven on some specific routes.

Univ
ers

ity
 of

 M
ala

ya

43

These routes contain the signs to be detected. Classifiers for each signs have been tested

averagely 20 times, 10 times in day time and 10 times at night. The accuracy of the

classifiers are calculated by calculating how many times the classifier can detect the

traffic signs on the road, dividing by how many times they are tested. Results are

summarized in table below.

Table 4.2: Accuracy of classifier for on the video feed testing

Classifier Successful detection Accuracy

(%) Night Morning

Stop 9 7 80

One way (left) 8 8 80

One way (right) 9 8 85

Bump ahead 10 9 95

Traffic light

ahead

9 9 85

No Overtaking 9 7 80

No Stopping 9 8 85

No U-turn 9 8 85

No Parking 10 7 85

No Entry 9 8 85

No Left Turn 9 7 80

60km/h speed

limit

9 7 80

Average Accuracy 83.33

 Univ
ers

ity
 of

 M
ala

ya

44

Examples of successful detections are illustrated in the figures below:

Figure 4.6: Successful detection of 60km/h speed limit sign at night

 Figure 4.7: Successful detection of traffic light sign at night

Figure 4.8: Successful detection of traffic light sign in day time

Univ
ers

ity
 of

 M
ala

ya

45

Figure 4.9: Successful detection of one way (right) in day time

Figure 4.10: Successful detection of bump sign in day time

Figure 4.11: Successful detection of No U-turn sign in day time

Univ
ers

ity
 of

 M
ala

ya

46

Figure 4.12: Successful detection of No U-turn sign in rainy day

Figure 4.13: Successful detection of One Way (Left)

Figure 4.14: Successful detection of No Entry sign

Univ
ers

ity
 of

 M
ala

ya

47

Figure 4.15: Successful detection of Bump Ahead and Stop sign

Figure 4.16: Successful detection of Bump Ahead at Night

Figure 4.17: Successful detection of two traffic light ahead signs

Univ
ers

ity
 of

 M
ala

ya

48

Figure 4.18: Successful detection of no stopping sign

Figure 4.19: Successful detection 60km/h speed limit sign and no stopping sign

Figure 4.20: Successful detection no parking sign

Univ
ers

ity
 of

 M
ala

ya

49

Misclassification or wrong detection happened as well. However, most of the wrong

detection happened at night time. Figures below showed the example of wrong

detection.

Figure 4.21: Wrong detection at night time part 1

Figure 4.22: Wrong detection at night time part 2

 Figures above show the system mistakenly classified 50km/h speed limit sign as

60km/h. The system could only detect it was not the correct sign when the car moved

closer to the sign.

Univ
ers

ity
 of

 M
ala

ya

50

Figure 4.23: Miss Detection of Stop Sign

 Figure above shows that the system was unable to detect the stop sign. This is

because part of the sign was covered by the tree leaves. That resulted in failure of

detection.

Figure 4.24: False detection and wrong detection

 False positive detection happened in few times during testing at night. The

example can be seen from figure above. Figure above shows wrong detection, which is

the stop sign. The system has wrongly detected the sign to be a stop sign. While the

system has also detected a bump sign in the image which is not existing. Thereby, it is

classified as false positive detection.

Univ
ers

ity
 of

 M
ala

ya

51

4.3 Performance Analysis

 From the results obtained in the testing carried out by „opencv_performace.exe‟

utility, the classifiers have shown average accuracy higher than 90%. The trained

classifiers have also achieved average accuracy of 83.33% when they were tested to

detect the traffic signs on the road via webcam feed. It is noticeable that in day time, the

accuracy of all classifiers are averagely higher. It is believed that because the variation

in illumination is relatively smaller compared to night time. At night, the complexity of

the environment and illumination becomes much higher due to different light sources on

the street. Besides of the illumination condition, the classifiers encounter problem in

recognizing the signs which have vandalized and covered by tree leaves and

advertisement poster. The vandalism have caused the outlook of the signs to be very

badly altered and the advertisement posters cover some of the important features that

can be recognized by computer.

Univ
ers

ity
 of

 M
ala

ya

52

CHAPTER 5: CONCLUSION

5.1 Introduction

In this chapter, research conclusions and future works recommendations are

discussed. Initially, research summaries in relations to the research objectives are given

followed by research conclusions. Finally, several recommendations for further research

works are presented.

5.2 Research Conclusions

 Cascade training for traffic signs detection based on Haar-like features have

been proposed in this study. The reason cascaded training based on Haar-like features is

proposed is because of shorter training time. Furthermore, it is also proven that

classifier based on Haar-features is sufficient to create classifiers for traffic signs with

high accuracy based on the testing conducted.

In relation to the study objectives:

1. This research has successfully developed traffic signs detection system based on

Haar-like features cascade classifier.

2. The performance and accuracy of proposed system has been studied and

analysed.

 Univ
ers

ity
 of

 M
ala

ya

53

5.3 Recommendations for Future Works

 As mentioned in previous chapters, the performance of trained classifier will be

affected by environment factors such as illumination condition. Development of the

classifier that can work independently without being affected by external environment

factors should be considered in the future work. This is because the safety will be

greatly affected by the robustness of the system.

 Furthermore, there is still a big room of improvement for the accuracy of the

detection system. One of the suggestion to improve the accuracy is to increase the

number of dataset. However, this will also increase training time. Other training

methods or statistical models should be considered too.

 Lastly, the detection and recognition system is recommended and suggested to

have self-learning and self-testing algorithm. This suggestion is made because the signs

in every country vary with each other. Thereby, self-learning in classifying sign with

different outlook but carrying same message should is essential.

Univ
ers

ity
 of

 M
ala

ya

54

REFERENCES

[1] Viola, P., & Jones, M. (n.d.). Robust real-time face detection. Proceedings

Eighth IEEE International Conference on Computer Vision. ICCV 2001.

doi:10.1109/iccv.2001.937709

[2] Verschae, R., & Ruiz-Del-Solar, J. (2015). Object Detection: Current and Future

Directions. Frontiers in Robotics and AI, 2. doi:10.3389/frobt.2015.00029

[3] M. A. Fischler and R. A. Elschlager, "The Representation and Matching of

Pictorial Structures," in IEEE Transactions on Computers, vol. C-22, no. 1, pp.

67-92, Jan. 1973. doi: 10.1109/T-C.1973.223602

[4] E. Osuna, R. Freund and F. Girosit, "Training support vector machines: an

application to face detection," Proceedings of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, San Juan, 1997, pp.

130-136.

doi: 10.1109/CVPR.1997.609310

[5] H. A. Rowley, S. Baluja and T. Kanade, "Neural network-based face detection,"

in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no.

1, pp. 23-38, Jan 1998. : 10.1109/34.655647

[6] K. K. Sung and T. Poggio, "Example-based learning for view-based human face

detection," in IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 20, no. 1, pp. 39-51, Jan 1998. doi: 10.1109/34.655648

[7] H. Schneiderman and T. Kanade, "A statistical method for 3D object detection

applied to faces and cars," Proceedings IEEE Conference on Computer Vision

and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), Hilton Head Island,

SC, 2000, pp. 746-751 vol.1. doi: 10.1109/CVPR.2000.855895

[8] H. Sahbi, D. Geman and N. Boujemaa, "Face detection using coarse-to-fine

support vector classifiers," Proceedings. International Conference on Image

Processing, 2002, pp. 925-928 vol.3. doi: 10.1109/ICIP.2002.1039124

[9] S. Romdhani, P. Torr, B. Scholkopf and A. Blake, "Computationally efficient

face detection," Proceedings Eighth IEEE International Conference on

Computer Vision. ICCV 2001, Vancouver, BC, 2001, pp. 695-700 vol.2.

doi: 10.1109/ICCV.2001.937694

[10] S. Z. Li and Zhenqiu Zhang, "FloatBoost learning and statistical face detection,"

in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no.

9, pp. 1112-1123, Sept. 2004. doi: 10.1109/TPAMI.2004.68

Univ
ers

ity
 of

 M
ala

ya

55

[11] Freund, Y. and Schapire, R. (1997). A Decision-Theoretic Generalization of On-

Line Learning and an Application to Boosting. Journal of Computer and System

Sciences, 55(1), pp.119-139.

[12] Chang Huang, Haizhou Ai, Yuan Li and Shihong Lao, "Vector boosting for

rotation invariant multi-view face detection," Tenth IEEE International

Conference on Computer Vision (ICCV'05) Volume 1, 2005, pp. 446-453 Vol. 1.

doi: 10.1109/ICCV.2005.246

[13] Verschae, R., Ruiz-Del-Solar, J., & Correa, M. (2007). A unified learning

framework for object detection and classification using nested cascades of

boosted classifiers. Machine Vision and Applications, 19(2), 85-103.

doi:10.1007/s00138-007-0084-0

[14] Mutch, J., & Lowe, D. G. (2008). Object Class Recognition and Localization

Using Sparse Features with Limited Receptive Fields. International Journal of

Computer Vision, 80(1), 45-57. doi:10.1007/s11263-007-0118-0

[15] R. Sivalingam, G. Somasundaram, V. Morellas, N. Papanikolopoulos, O.

Lotfallah, and Y. Park, “Dictionary learning based object detection and counting

in traffic scenes,” Proceedings of the Fourth ACM/IEEE International

Conference on Distributed Smart Cameras - ICDSC 10, 2010.

[16] A. Jain, L. Zappella, P. Mcclure, and R. Vidal, “Visual Dictionary Learning for

Joint Object Categorization and Segmentation,” Computer Vision – ECCV 2012

Lecture Notes in Computer Science, pp. 718–731, 2012.

[17] C. H. Lampert, M. B. Blaschko and T. Hofmann, "Efficient Subwindow Search:

A Branch and Bound Framework for Object Localization," in IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pp.

2129-2142, Dec. 2009. doi: 10.1109/TPAMI.2009.144

[18] P. F. Felzenszwalb, R. B. Girshick, D. McAllester and D. Ramanan, "Object

Detection with Discriminatively Trained Part-Based Models," in IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp.

1627-1645, Sept. 2010. doi: 10.1109/TPAMI.2009.167

[19] Buduma, N. (2016). Fundamentals of Deep Learning: Designing Next-

Generation Artificial Intelligence Algorithms. Sebastopol: OReilly Media.

[20] Deng, L., & Yu, D. (2014). Deep Learning: Methods and Applications.

Foundations and Trends® in Signal Processing, 7(3-4), 197-387.

doi:10.1561/2000000039

[21] Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep learning. Cambridge,

MA: The MIT Press.

Univ
ers

ity
 of

 M
ala

ya

56

[22] W. Ouyang and X. Wang, "Joint Deep Learning for Pedestrian Detection," 2013

IEEE International Conference on Computer Vision, Sydney, VIC, 2013, pp.

2056-2063. doi: 10.1109/ICCV.2013.257

[23] Leitner, J., Harding, S., Chandrashekhariah, P., Frank, M., Förster, A., Triesch,

J., & Schmidhuber, J. (2013). Learning visual object detection and localisation

using icVision. Biologically Inspired Cognitive Architectures, 5, 29-41.

doi:10.1016/j.bica.2013.05.009

[24] J. H. Shi and H. Y. Lin, "A vision system for traffic sign detection and

recognition," 2017 IEEE 26th International Symposium on Industrial

Electronics (ISIE), Edinburgh, 2017, pp. 1596-1601.

doi: 10.1109/ISIE.2017.8001485

[25] S. J. Zabihi, S. M. Zabihi, S. S. Beauchemin and M. A. Bauer, "Detection and

recognition of traffic signs inside the attentional visual field of drivers," 2017

IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, 2017, pp. 583-588.

doi: 10.1109/IVS.2017.7995781

[26] Wahyono, L. Kurnianggoro, J. Hariyono and K. H. Jo, "Traffic sign recognition

system for autonomous vehicle using cascade SVM classifier," IECON 2014 -

40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX,

2014, pp. 4081-4086. doi: 10.1109/IECON.2014.7049114

[27] M. Karaduman and H. Eren, "Deep learning based traffic direction sign

detection and determining driving style," 2017 International Conference on

Computer Science and Engineering (UBMK), Antalya, 2017, pp. 1046-1050. doi:

10.1109/UBMK.2017.8093453

[28] C. Bahlmann, Y. Zhu, V. Ramesh, M. Pellkofer, and T. Koehler, “A system for

traffic sign detection, tracking, and recognition using color, shape, and motion

information,” In Intelligent Vehicles Symposium, pp. 255-260, 2005.

[29] I. M. Creusen, R. G. Wijnhoven, E. Herbschleb, and P. H. N. de With, “Color

exploitation in hog-based traffic sign detection,” In Image Processing (ICIP), pp.

2669-2672, 2010.

Univ
ers

ity
 of

 M
ala

ya

57

APPENDIX A

Python Script

import numpy as np

import cv2

No U-TURN Cascade

NoUturn_cascade_1 = cv2.CascadeClassifier('NoUturn_1.xml')

No STOPPING Cascade

NoStopping_cascade_1 = cv2.CascadeClassifier('NoStopping_1.xml')

STOP Cascade

Stop_cascade_2 = cv2.CascadeClassifier('Stop_2.xml')

No LEFT TURN Cascade

NoLeftTurn_cascade_1 = cv2.CascadeClassifier('NoLeftTurn_1.xml')

60km/h SPEED LIMIT Cascade

_60kmph_cascade_1 = cv2.CascadeClassifier('60km_1.xml')

Laluan Sehala Cascade

LS_Right_cascade_1 = cv2.CascadeClassifier('LS_Right.xml')

Laluan Sehala Cascade

LS_Left_cascade_1 = cv2.CascadeClassifier('LS_Left_1.xml')

Bump Ahead Cascade

Bump_Ahead_1 = cv2.CascadeClassifier('Bump_1.xml')

Traffic Light Ahead Cascade

Traffic_light_Ahead_1 = cv2.CascadeClassifier('TL_1.xml')

No overtaking Cascade

No_Overtaking_1 = cv2.CascadeClassifier('NO_1.xml')

No Parking Cascade

No_Parking = cv2.CascadeClassifier('NP_2.xml')

No Entry Cascade

No_Entry = cv2.CascadeClassifier('NE_1.xml')

Univ
ers

ity
 of

 M
ala

ya

58

cap = cv2.VideoCapture(0)

while 1:

 ret, img = cap.read()

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 # image, reject levels level weights.

 NoUturn_1 = NoUturn_cascade_1.detectMultiScale(gray, 2.5, 5)

 NoStopping_1 = NoStopping_cascade_1.detectMultiScale(gray, 2.5, 5)

 Stop_2 = Stop_cascade_2.detectMultiScale(gray, 2.2, 5)

 NoLeftTurn_1 = NoLeftTurn_cascade_1.detectMultiScale(gray, 1.78, 5) #Need retrain

 _60kmph_1 = _60kmph_cascade_1.detectMultiScale(gray, 2.5, 5)

 LS_Right = LS_Right_cascade_1.detectMultiScale(gray, 1.5, 5)

 LS_Left = LS_Left_cascade_1.detectMultiScale(gray, 1.3, 5)

 Bump_Ahead = Bump_Ahead_1.detectMultiScale(gray, 2.2, 5)

 Traffic_Light_Ahead = Traffic_light_Ahead_1.detectMultiScale(gray, 1.43, 5)

 No_Overtaking = No_Overtaking_1.detectMultiScale(gray, 1.9, 5)

 No_Parking_1 = No_Parking.detectMultiScale(gray, 1.9, 5)

 No_Entry_1 = No_Entry.detectMultiScale(gray, 1.9, 5)

 # add this

 for (x,y,w,h) in NoUturn_1:

 cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'No U-TURN',(x,y), font, 0.5, (0,0,255), 1, cv2.LINE_AA)

 # For No Stopping Road Sign

 for (x,y,w,h) in NoStopping_1:

Univ
ers

ity
 of

 M
ala

ya

59

 cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'No Entry',(x,y), font, 0.5, (0,0,255), 1, cv2.LINE_AA)

 # For Stop Road Sign

 for (x,y,w,h) in Stop_2:

 cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'STOP',(x,y), font, 0.5, (0,0,255), 1, cv2.LINE_AA)

 # For No left turn road sign

 for (x,y,w,h) in NoLeftTurn_1:

 cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,255),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'No LEFT TURN',(x,y), font, 0.5, (255,0,255), 1,

cv2.LINE_AA)

 # For One Way Right road sign

 for (x,y,w,h) in LS_Right:

 cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'One Way Left',(x,y), font, 0.5, (0,0,255), 1, cv2.LINE_AA)

 # For One Way Left road sign

 for (x,y,w,h) in LS_Left:

 cv2.rectangle(img,(x,y),(x+w,y+h),(128,128,128),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'One Way Left',(x,y), font, 0.5, (0,0,255), 1, cv2.LINE_AA)

 # For 60km/h speed limit road sign

 for (x,y,w,h) in _60kmph_1:

 cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'60km/h',(x,y), font, 0.5, (255,255,0), 1, cv2.LINE_AA)

Univ
ers

ity
 of

 M
ala

ya

60

For Bump Ahead road sign

 for (x,y,w,h) in Bump_Ahead:

 cv2.rectangle(img,(x,y),(x+w,y+h),(0,140,225),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'Bump Ahead',(x,y), font, 0.5, (0,140,255), 1, cv2.LINE_AA)

 # For Traffic Light Ahead road sign

 for (x,y,w,h) in Traffic_Light_Ahead:

 cv2.rectangle(img,(x,y),(x+w,y+h),(0,128,225),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'Traffic Light Ahead',(x,y), font, 0.5, (0,128,255), 1,

cv2.LINE_AA)

 # For No Overtaking road sign

 for (x,y,w,h) in No_Overtaking:

 cv2.rectangle(img,(x,y),(x+w,y+h),(255,100,225),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'Overtaking not allowed',(x,y), font, 0.5, (255,100,255), 1,

cv2.LINE_AA)

 # For No Parking road sign

 for (x,y,w,h) in No_Parking_1:

 cv2.rectangle(img,(x,y),(x+w,y+h),(255,100,225),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'No Parking',(x,y), font, 0.5, (1,1,255), 1, cv2.LINE_AA)

 # For No Entry Sign

 for (x,y,w,h) in No_Entry_1:

 cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv2.putText(img,'No Entry',(x,y), font, 0.5, (255,0,0), 1, cv2.LINE_AA)

 cv2.imshow('img',img)

 k = cv2.waitKey(30) & 0xff

 if k == 27:

 break

cap.release()

cv2.destroyAllWindows()

Univ
ers

ity
 of

 M
ala

ya

