COMPUTER VISION BASED TRAFFIC SIGNS
RECOGNITION SYSTEM

EDWIND LIAW YEE KANG

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

COMPUTER VISION-BASED TRAFFIC SIGNS
RECOGNITION SYSTEM

EDWIND LIAW YEE KANG

RESEARCH PROJECT SUBMITTED IN PARTIAL
FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF MECHATRONICS
ENGINEERING

FACULTY OF ENGINEERING
UNIVERSITY OF MALAYA
KUALA LUMPUR

2017

UNIVERSITY OF MALAYA
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: EDWIND LIAW YEE KANG

Matric

No: KQF160002

Name of Degree: Master Degree of Mechatronics Engineering

Title of Research Report: Computer Vision-Based Traffic Signs Recognition System

Field of Study: Computer Vision

I do solemnly and sincerely declare that:

(1)
(2)
3)

(4)
()

(6)

I am the sole author/writer of this Work;

This Work is original;

Any use of any work in which copyright exists was done by way of fair
dealing and for permitted purposes and any excerpt or extract from, or
reference to or reproduction of any copyright work has been disclosed
expressly and sufficiently and the title of the Work and its authorship have
been acknowledged in this Work;

I do not have any actual knowledge nor do | ought reasonably to know that
the making of this work constitutes an infringement of any copyright work;

I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the
copyright in this Work and that any reproduction or use in any form or by any
means whatsoever is prohibited without the written consent of UM having
been first had and obtained,

I am fully aware that if in the course of making this Work | have infringed
any copyright whether intentionally or otherwise, | may be subject to legal
action or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Name:

Witness’s Signature Date:

Designation:

ABSTRACT

Nowadays, the number of moving vehicles and road users have been increasing
very rapidly. Subsequently, more road safety issues have been raised up. Traffic signs
on road play a very big role for road safety because it carries important message for the
road users especially the drivers. Hence, it is essential that the drivers can notice the
traffic signs so that appropriate decision and response during can be made. However,
the chances of the drivers overlook some signs are still very high. In order to minimize
the said chances, a computer vision based traffic signs detection and recognition system
is proposed and developed. The machine learning algorithm, cascaded classifier based
on Haar-like features is adopted to develop the traffic signs detection and recognition
system. By adopting Haar-like features cascaded classifiers, the traffic signs detection

and recognition system with high accuracy is developed.

ABSTRAK

Pada masa kini, bilangan kenderaan bergerak dan pengguna jalan raya
semakin meningkat. Oleh itu, semakin banyak isu tentang keselamatan jalan raya telah
dipuncakan. Tanda-tanda lalu lintas di jalan raya memainkan peranan yang sangat besar
untuk keselamatan jalan raya kerana ia membawa mesej penting bagi pengguna jalan
raya terutamanya pemandu. Maka, adalah penting bahawa pemandu dapat melihat
tanda-tanda lalu lintas agar keputusan dan tindak balas yang sewajarnya dapat dibuat.
Bagaimanapun, kemungkinan pemandu tidak melihat beberapa tanda masih tinggi.
Untuk meminimumkan kemungkinan tersebut, sistem pengesanan dan pengiktirafan lalu
lintas berasaskan penglihatan komputer dikemukakan dalam kajian ini. Algoritma
pembelajaran mesin, pengelasan pengelas berdasarkan ciri-ciri seperti Haar digunakan
untuk mengemukankan tanda-tanda lalu lintas dan pengiktirafan sistem. Dengan
mengamalkan ciri-ciri seperti Haar mengecil pengelas, tanda-tanda lalu lintas
pengesanan dan pengiktirafan sistem dengan ketepatan yang tinggi telah berjaya

dikemukankan.

ACKNOWLEDGEMENT

First and foremost, | would like to extend my highest gratitude towards the my
advisor, Ir. Dr. Chuah Joon Huang who has given me a golden opportunity to do the
research project, study and exploration under his supervision. Dr Chuah has also given
numerous valuable comments, suggestions, constructive criticisms and these have
certainly helped to improve the quality of this study. His sharing and guidance did not
only help me in overcoming the difficulties throughout in this study but also widen my
perspective and knowledge in this field.

Secondly, appreciations are to the family members for their understanding and
patience without which the efforts are impossible. | acknowledge my sincere
indebtedness and gratitude exclusively to my parents for their love, dream, and sacrifice
throughout my life.

Lastly, I would like to express my gratitude and appreciations to everyone

who has helped me directly or indirectly throughout the study.

TABLE OF CONTENTS

AB ST R A CT et ettt b et e et he et e are e e ii
ABSTRAK e iv
ACKNOWLEDGEMENT ...t v
TABLE OF CONTENTS ...t vi
LIST OF FIGURES ...ttt IX
LIST OF TABLESottt st ne e Xii
LIST OF SYMBOLS AND ABBREVIATIONS ... xiii
LIST OF APPENDICES ...t Xiv
CHAPTER 1: INTRODUCTIONooiiiiiiiieeer e 1
1.1 INErOUUCTION. ...ttt 1
1.2 Problem STateMENT.........ccooiiieie e 2
1.3 RESEArCh ODJECLIVES.ccieieiiecieie ettt nae e 2
1.4 RESEAICH SCOPEottt bttt ettt bbb nne s 3
1.5 ThesSiS OrganiZationccoeoieiriiriiiiiiiereeeie e 3
CHAPTER 2: LITERATURE REVIEWooi e 4
2.1 INEFOAUCTION. ...ttt ettt 4
2.2 ODJECT DELECHIONc.veeii ettt et s ste e raesre e e 4

2.2.1 Coarse-to-Fine and Boosted ClasSifier..........c.ccooviiiiiiiiiiiiic s 5

2.2.2 Dictionary Learning Basedccueiriiiiiiieiiniseseeee i 6

2.2.3 Deformable Part-Based MOGEL............ccceriiiiiiiiiiiieiccccc e 7

2.2.4 DEEP LBAIMINGciiiiiieiiieitie sttt sttt re e sbe et ra e be et eene e 8

2.2.5 Trainable Image Processing ArchiteCtures..........couvveevieienenesene s 11
2.3 Traffic SigNS DEECTION.ccuiiiiiieieeiee e 12

Vi

CHAPTER 3: METHODOLOGY ..ottt 18

3L INErOAUCTION. ...ttt eneas 18
3.2 Research Methodologycoeiiiiiiiiiieccc e 18
3.3 RESEAICH FIOW ...t 20
3.4 RESEAICH TOO! ... 22

3.4.1 Python 22

4.2 OPENCV L. 22
3.5 Data SampPIes Preperation..........cccccceiieiieiieieeie e s se et se e sreesaesnae e e e 23
3.5.1 Negative SAMPIES.......cc.coveiiiieiiece et 23
3.5.2 POSItIVE SAMPIES ... 25
3.6 CaSCAUL TTAINMING ...eveiueeiieieiet ettt se bt sb bbbt b bbb b b eneas 28
K A O 1107 To LT =T [o OSSOSO 31
3.7.1 Test Data Preparation..........ccccceiveiiiieeiieiie e se e 32
3.7.2 IMAQGE TESHING....veiveeiieiecie et sttt be e sbeenesreesreenae s 34
3.8 PYLNON SCIIPL .ttt 36
CHAPTER 4: RESULTS AND DISCUSSIONS ..o 37
A1 INTOAUCTION. ...ttt bbbttt ne e bbb eneas 37

4.2 Results37

4.2.1 Image Testing RESUILSccveeieiiiicc e 37

4.2.2 Video TeStiNg RESUILSoiviiiiiiiiiiiieee e 42
4.3 Performance ANAIYSIS ... 51
CHAPTER 5: CONCLUSIONottt 52
5.1 INrOGUCTION.couiiiiiiii bbb 52
5.2 ReSArCh CONCIUSIONScciiiiiiiieiiic e 52
5.3 Recommendations for FUtUre WOIKS...........cccoiiiiiiiiniiiiccceeee e 53

Vii

REFERENCES ... s 54
APPENDDX A oo 57

viii

LIST OF FIGURES

Figure 2.1: Block Diagram of the Unified Learning Framework for Face Detection [15]

... 6
Figure 2.2: Detection of a single person and representation of single person in parts

DASEd MOTEIS [L8] ... 7
Figure 2.3: Detection of a bicycle and representation of single person in parts based

MOTEIS [L8] ...ttt bbbt ene s 8
Figure 2.4: Deep learning is a sub set of machine learning [21].....c.ccccoccvvvevviieiiieinenns 9
Figure 2.5: Schematic Levels of Each Learning [21]ccooovviiiiiiniiniiieieesesee 10
Figure 2.6: Overview of deep model proposed by [22]ccccoevviieiiieiieicceceee e 11
Figure 2.7: Architecture of proposed by Leitner et al. [23]ccoovviiiiiieniiiieee 12
Figure 2.8: Overview of algorithm proposed by Shi and Lin. [24]ccccccvvviveieieenee. 13
Figure 2.9: Right: HOG+SVM Left: Detection using colour information [24].............. 14
Figure 2.10: Results of proposed system by [25].......ccccciiveiiiiiiiiieceeee e 15
Figure 2.11: Model of cascade SVM proposed by [26]cccovveririiiiienenenisesee 16
Figure 2.12: CNN model proposed bY [27]cccoveieiie e 16
Figure 3.1: Traffic signs samples used for this Study..........c.ccoovvriiiiiiienie 19
Figure 3.2: Research FIOW Chartcccoovoiiiiiie e 20
Figure 3.3: Path for OpenCV utility tOO]ccoiiiiii e 23
Figure 3.4: Python Script for images download and resizecccceeveevieiiecvie e, 24
Figure 3.5: NEgatiVe IMAGEScciveieieiieitiiie st 24
Figure 3.6: Directories of 12 traffiC SIgNScccovviiiiiiie e 25
Figure 3.7: Images in €ach FOIAEr ..o 25
Figure 3.8: Command in batch file to create more positive samples............cccceeveeevrennen. 26
Figure 3.9: Group of newly generated poSitive IMAagesScccevverieriiereeresieseese e 27
Figure 3.10: Sample of generated poSItiVe IMAJESccoververirrenieiie e 27

Figure 3.11: Command in batch file to create vec filesccoovviiiiiiiiiieieee 28
Figure 3.12: Command in batch file for haar cascade training..........ccc.cccccevvvevveieseenne. 28
Figure 3.13: An example of Completed Training Stagecoovrvrieiieieneneneseseees 30
Figure 3.14: Batch file for test sample cOlleCtioncccccevvvevieie i 32
Figure 3.15: Created teSt SAMPIESooiiiiiieiieeee e 32
Figure 3.16: An example of created SamPple...........cocevieiiiiiiiese e 33
Figure 3.17: An example of .dat file ... 33
Figure 3.18: Work folder for teStiNgcccveveiiiiice e 34
Figure 3.19: Testing batCh FIleoooiiiii e 34
Figure 3.20: Newly generated log file for testing resultsS...........cccocovvveeveeiciicieece e 35
Figure 3.21: TESHING MESUITSc.veeeieieieeeecee e 35
Figure 4.1: Upper part Results Log for One Way (left) Classifier............ccccoevvivernnnne. 38
Figure 4.2: Last Part of Results Log for One Way (left) Classifierc.ccocoonvnnnnnnn 39
Figure 4.3: SUCCESSTUl dEtECLIONecvviiicecc e 41
Figure 4.4: MiSSEd AeLECTIONoiuiiiiie et 41
Figure 4.5: False deteCtIONcceeiiieiecee et 42
Figure 4.6: Successful detection of 60km/h speed limit sign at nightc..ccoenee. 44
Figure 4.7: Successful detection of traffic light sign at nightc..ccooiiiiienin. 44
Figure 4.8: Successful detection of traffic light sign in day timeccccccoeiiiinnnnne 44
Figure 4.9: Successful detection of one way (right) in day timecccccoceevvevie e, 45
Figure 4.10: Successful detection of bump sign in day timecccooeveiiieniinnnen 45
Figure 4.11: Successful detection of No U-turn sign in day time...........cccccoevevieeiveennen. 45
Figure 4.12: Successful detection of No U-turn sign in rainy day.........ccccceveenenerennnne 46
Figure 4.13: Successful detection of One Way (Left)........ccccvviiiiiiiiiiiiiice e, 46
Figure 4.14: Successful detection of NO ENtry Sign.........ccoocviiiiiiniinienene e 46
Figure 4.15: Successful detection of Bump Ahead and Stop Signcccceeeveeieniieieenne. 47
Figure 4.16: Successful detection of Bump Ahead at Night..........c..cccovveiiiiiincniee. 47

Figure 4.17: Successful detection of two traffic light ahead Signsccccooevvnieieennn. 47
Figure 4.18: Successful detection of N0 StOPPING SIGN......ccovviieiiireiieieee e 48
Figure 4.19: Successful detection 60km/h speed limit sign and no stopping sign.......... 48
Figure 4.20: Successful detection N0 parking SIGNccceveveereere s 48
Figure 4.21: Wrong detection at night time part L..........ccocoviiiininiiieeeee e 49
Figure 4.22: Wrong detection at night time part 2...........cccccvvveveeieiiese e 49
Figure 4.23: Miss Detection 0f StOP SIgNoiviiiiiiiiiiese e 50
Figure 4.24: False detection and wrong detectioncccccevvveveereiiieiiecc e 50

Xi

LIST OF TABLES

Table 2.1: Comparison of Traffic Signs Detection Based on Different Features

= Tod 1 o o PSP 17
Table 3.1: Training summary for each classifiercccooevviiiiieici e 31
Table 4.1: Results for Classifier Testing by ‘opencv_performance.exe’..........c.ccevennnne 40
Table 4.2: Accuracy of classifier for on the road testingccccccevcviveiieiiveie e 43

Xii

CNN

HOG

IDE

SIFT

SVM

XML

LIST OF SYMBOLS AND ABBREVIATIONS

Convolutional Neural Network
Histogram of Oriented Gradient
Integrated Development Environment
Scale Invariant Feature Transform
Support Vector Machine

Extensible Markup Language

Xiii

LIST OF APPENDICES

Appendix A Python Script

Xiv

CHAPTER 1: INTRODUCTION

1.1 Introduction

Nowadays, the number of people driving is getting has been increasing.
Subsequently, more safety issues have been raised up. Various types of sensing
technologies such as GPS, laser rangefinder and even computer vision have been
implemented in driving assistance system in order to improve the safety features. One of
the most important key to drive safely is being able to notice and watch out the traffic
signs on the road which served as warning or awareness to the driver. Even though
different kind of colour and shape have been adopted in the design of the traffic sign,
the chances of driver overlooking the sign is still high. In this case, it is very essential to
have a driver assistance system which can automatically detect and identify different
types of traffic signs. By having this, driver can be warned by sounding an audio
reminder or giving a warning signals. Moreover, autonomous driving vehicles will be
one of the beneficiary from road sign recognition and this is very essential in
autonomous navigation.

There are few aspects that making the automatic detection and recognition of
traffic signs challenging. Firstly, the types and designs of traffic signs. It is known that
traffic signs come with various design and colour. Each type of traffic signs carries its
own message. For example, the stop sign at the junction serves the purpose to tell the
driver that he should stop his car first before making turn to the left or right. The
pedestrian sign is to give alert to the driver that there will be pedestrian crossing the
road ahead and there are a lot more. Secondly, the environment surrounding the signs is
also an important aspect that has to be considered. The weather conditions and
illumination are changing from time to time. Thereby, computer vision has been

adopted to address these problems [24, 25, 26, 27, 28, and 29].

Humans use eyes to sense the surrounding world and use brain to compute the
information received from the eyes. The science or research that brings the purpose to
give a similar or even better ability to a computer or a machine is known as computer
vision. Computer vision is often revolving around the topic how a computer or a
machine can be made in order to extract and analyze the information from an image or
video automatically. Computer vision usually includes development of a theoretical and

algorithmic basis to attain automatically extraction and analysis of visual information.

1.2 Problem Statement

In general, traffic signs recognition system is essential for driving assistance
system as well as autonomous driving vehicles. However, there are many types of
traffic signs, each bringing different information. Hence, traffic signs recognition
systems is not only required to detect the presence of traffic signs but to determine what
traffic sign it is. A high accuracy traffic sign detection system that can detect and

recognize different traffic signs is to be developed.

1.3 Research Objectives

The objectives of this research are addressed as below:

1. To develop traffic recognition system by cascade classifier based on Haar
features.
2. To study the accuracy and performance of Haar-based features traffic

recognition system.

1.4 Research Scope

The scope of this research project focuses on designing and training a cascade
detector for different traffic signs based on Haar features using OpenCV. After training
stage, accuracy of trained classifier will be tested. Python Script will also be written and

employ the trained classifier to do detection of traffic signs in video feed.

1.5 Thesis Organization

The rest of the thesis is organised as follows:

Chapter 2: Literature Review, presents the background study and review of algorithms

for object detection system as well as past research work done on traffic sign

recognition system

Chapter 3: Methodology, describes how each step of the research is carried out.

Chapter 4: Results & Discussion, discuss the results obtained and analysis of the results.

The strength and weakness of this project are also discussed in this chapter.

Chapter 5: Conclusion, concludes the research findings and states recommendation for

future work

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter presents the background study and review of algorithms for object

detection system as well as past research work done on traffic sign recognition system.

2.2 Object Detection

Computer vision has been expanding in a very fast pace. Part of the reason is
because of the adoption of machine learning approach in this field. Object detection is
one of the sub classes of computer vision that has gained a lot of benefits and

advancement from the adoption of machine learning methods [2].

Obiject detection refers to the technique of determining the presence, location and scale
of certain object in an image. In other words, the objective of object detection is to
determine the presence or absence of a certain class of objects [15]. In many of
computer vision application, object detection is first routine to be performed. This is
because only after the target object is detected, the following information can be further
extracted from the image [2]. For example, in the application of facial recognition, the
first detection task must be the task of detecting the presence of human faces. In the
review done by reference [2], it also pointed out that object detection has been widely
used in different fields, such as human-machine interface (HMI), robotics system,
consumer products, security systems, search engines and even transportations.

In the early days, the object detection was done by adopting the techniques of
template matching and single part-based models [3]. Later, statistical classifiers or
machine learning approach were introduced to object detection. For example, support
vector machine (SVM) has been studied and implemented in developing a face
detection system in [4]. Other than that, face detection based on neural-network has also

been developed in [5]. An example-based learning approach for tracing upright fore

4

views of human faces in complicated scenes is proposed and presented in [6]. 3D object
detection has also been proposed in [7]. In reference [7], histogram is adopted to
represent various visual attributes and histogram is used as the data set. Reference [8]
presented a coarse-to-fine face detection based on SVM. Unlike [3], [8] used coarse-to-
fine method to look for faces in image, the processing only concentrates on images
containing the positive target object (faces). Face detection based on non-linear SVM is
also proposed and presented in [9]. Boosted cascade classifier is implemented in face

detection in [1].

Object detection techniques can be grouped into five major types, namely
coarse-to-fine and boosted classifier, dictionary based, deformable part-based model,
deep learning and Trainable Image Processing Architectures. Each of the types has their

strength and weaknesses [2].

2.2.1 Coarse-to-Fine and Boosted Classifier

One of the very famous works in this category is the boosted cascade classifier
of proposed in [1]. There are two important keys of the work proposed by [1]. Haar
based features were extracted. The second key point of this work is that a classifier of
selecting a small number of important features using AdaBoost [11] is constructed. This
is because within any image, the total number of Haar-like features is very large, even a
lot more than the number of pixels. In order to shorten the time of the classification and
make it less computationally expensive, a large majority of the available features needs
to be excluded, and emphasize on a small set of critical features. Therefore, if efficiency
is the key, coarse-to-fine cascade classifier is the first choice. Another example of the
work in this category is the work proposed in [10]. A little modification was done on the
traditional Adaboost. In comparison to Adaboost, a backtrack mechanism is used after

each iteration of AdaBoost learning in order to reduce the error. Another example of the

work is presented in [12] which utilizes boosted classifier to extract haar based features
in face detection. Verschae and Ruiz proposed a unified learning framework for detection
and classification using a nested cascade of boosted classifier [12]. Figure below shows the

block diagram of the unified learning framework that was done by Verschae and Ruiz [12].

Multi-resolution R - ﬁ Window |] -+ [—]
> Analysis > Extraction
Inputimage Image pyramid A Windows to be
iR e oo s3m tem : processed
: <
I
i i N
- 1 : Face + Overlapping
Pre-Processing o Cascade |ccecsscss < Detection
8 7| Classification d Processing
E Non-face S

Figure 2.1: Block Diagram of the Unified Learning Framework for Face Detection
[15]

2.2.2 Dictionary Learning Based

Dictionary learning based is a technique where elements and features from a
dictionary is used to represent objects [16]. One of the drawback of this approach is
that it is not suitable to detect multiple object classes in a single image [2]. It means that
when more than one object class appear in an image, the classifier can only detect one
object class. After removing that object class, the remaining can be determined [17]. An
example of this work was the study that done by Mutch and Lowe using this concept for

class recognition with limited receptive fields [14].

2.2.3 Deformable Part-Based Model

This technique does not only take object into the consideration but it also
considers part models and their relative positions. This approach has higher accuracy in
comparison to other approaches but it is more computationally expensive and consumes
more time. In reference [18], Felzenszwalb et al. have adopted this approach in
developing object recognition system for generic objects such as cars and people. The
main challenge they have mentioned is that the objects in such categories can vary
greatly in appearance. Variations in illumination and viewpoint may lead to great
variation in appearance. In order to solve this problems, the objects to be detected are

represented by few parts-based model, as shown in figures below.

Figure 2.2: Detection of a single person and representation of single person in
parts based models [18]

I e o

R s I 2

Figure 2.3: Detection of a bicycle and representation of single person in parts
based models [18]

2.2.4 Deep Learning

Deep learning is a sub class of machine learning or also known as artificial
intelligence [19]. If a well-suited model is designed, this model will be able to solve a
complex problem with good accuracy. In accordance to Deng and Yu, deep learning or
hierarchy learning is machine learning algorithm that performs the learning task in
numerous stages of representation and abstraction [20]. Figure below is the Venn

diagram that shows the deep learning in the family of machine learning.

Deep learning Example:

Shallow 5 '
- . Example:
Example: autoencoders

MLPs

Knowledge

bases

Representation learning

Machine learning

Figure 2.4: Deep learning is a sub set of machine learning [21]

Goodfellow et al has pointed out that Deep learning has relatively higher reliability
than other approaches as a machine learning system in real-world condition [21]. Besides,
deep learning is representation learning type and it is more flexible in terms of learning

because of its higher level of process schematics, which is represented by the figures below.

Oatput
A g fr
Ouitput Output apping fram
[bnres
Additional
i Mapping from Mapping from layers of more
) feabures fsatuiriss abgtract
Teatures
Hand- Hand-
; i : Simple
designed clesigned Features nl
o Teatures
Progran feabures
||-||||| ||||:-||I 1|||\|:I Tragauat
Deep
Classic .
Rule-based . learning
|||ii|'| 111
Eysheins lesarin Reprosentation
learning

Figure 2.5: Schematic Levels of Each Learning [21]

In comparison with the approaches which have been discussed earlier, the feature
representation of deep learning is learned but not designed by the users. The accuracy
and reliability of this approach is much higher but the flaw is that it is computationally
expensive and requires huge number of training samples [2]. Another example of deep
learning is the work presented by Ouyang et al in [22]. A deep model has been proposed.
Firstly, the image data was convolved by first filter data map to output features map.
Then, the output feature maps were processed by the second layer and the deformation
layer. 20 part scores were then output from the results of deformation layer. The deep

model is shown in figure below.
10

Visibility

Convolutional Average Convolutional Deformation reasoning and
layer 1 pooling layer 2 layer classification
\ Y
WA
— O O-0 0O
[L L
o T EE 4\;1* Gi: e “-O
II - - @500 00
- - - :
B4 28—\@ ‘ (O 00 O
A o - L
—|ﬁ4 20
20 Extracted Part Part
feature detection
score
= map map
3 64 '
Image data ! Filtered data map

Figure 2.6: Overview of deep model proposed by [22]

2.2.5 Trainable Image Processing Architectures

For this technique, the parameters of predefined operators and amalgamation of
operators must be learned first before execution. This approach is a general purpose
architecture so it can be used as part of larger system. One good example of this work is
the work of Leitner et al. They have designed a humanoid robot by implementing both
computer vision and machine learning for the purpose of object [23]. The purpose of
implementing this architecture is object identification in 2D plane and further localizing
the objects in 3D space plane. Thereby, it requires a few modules to build up this system.

Figure below shows the architecture model that proposed by Leitner et al.

11

__

User Defined Modules i

: L i
i icVision Filter :
2 derived i

icVision Filter
Modules

core modules
e.g. Lacalization

icVision Core

O
=
o
O
o]
S
=< =
>
22
“m
S8
ag
5
-
5
I
o
@

Figure 2.7: Architecture of proposed by Leitner et al. [23]

2.3 Traffic Signs Detection

Shi and Lin have pointed out traffic signs detection rely a lot on colour
information [24]. In their opinion, it is not robust to use colour information to detect
traffic signs. This is because weather condition, output from different camera, light
intensity may result in big variation of colour of the sign. Hence, Shi and Lin have
proposed traffic sign detection which does not solely rely on colour information but also
the geometry shape of the sign. Their work consists of few steps. Step 1 is to use
Histogram of Oriented Gradient (HOG) and linear SVM to determine the regions which
have traffic signs. Then, neural network is used to classify the results. Figures below

shows the overview of the algorithm proposed by Shi and Lin [24].

12

e

\ 4

Recognization by
Neural Network

Binarization

Figure 2.8: Overview of algorithm proposed by Shi and Lin. [24]

As mentioned earlier, Shi and Lin has pointed out the weakness of using colour
information alone in doing detection. Figure below shows the comparison of detection

between using SVM+HOG and using colour information.

13

(a)

(b)

(c)

Figure 2.9: Right: HOG+SVM Left: Detection using colour information [24]

From the figure above, it can be clearly seen that in comparison of (a), there are
misclassification of signs happened on the right. While traffic signs can be successfully
detected in image on the left in (a). From here, it can be concluded that by using colour

information alone, it is not robust especially in different weather condition.

Zabihi et al has also proposed the traffic sign detection system. Their detection
system is similar to one proposed by Shi and Lin. They also used linear SVM and HOG
features in detection stage. For recognition stage, they used colour information and

Scale Invariant Feature Transform (SIFT) matching. During recognition stage, the

14

detected images are scaled to same size with template signs. SIFT is then used to do the

matching with template signs [25].

Figure 2.10: Results of proposed system by [25]

Another example of work is presented and described in [26]. In [26], the
proposed algorithm has four steps. The first step is candidate regions segmentation. In
this step, traffic sign regions are extracted from the environment. The extraction is to
ensure the system does not waste time and resource in computing the region that does
not contain traffic signs. As traffic signs has different shapes, so the next step is shape
classification. Then, feature extraction is the next step. To extract the features, HOG is
adopted. Lastly, cascade liner SVM is used in classification and normalization for the

purpose of recognizing. The model of cascade SVM is illustrated in figure below.

15

Class 1 Class 1

Class 2 Class 2 Class 2 T

Class 3 Class 3 Class 3 o 1 Class 4
Class 4 Class 4 Class 4 Class 4

Class 5 Class 5 Clise5 Class 5 Class 5

Figure 2.11: Model of cascade SVM proposed by [26]

Karaduman and Eren have proposed deep learning algorithm in determining few
traffic signs in [27]. The motivation of the detection and recognition is to determine the
driving style of driver. The proposed algorithm is to detect four signs, namely, left and
right dangerous curve as well as left and right curve. The convolutional neural network
(CNN) has been used to detect the traffic signs. The model of the proposed algorithm is

illustrated in figure below.

?. I_’LDL
F;H ?1 sl & RDC
Input i 1 ol '
Image ’ I_. : LC
Convolution Pooling : RC |
I-"u]]}lfnnnectai

CNM

Figure 2.12: CNN model proposed by [27]

Another work of traffic sign detection is presented and described in [29]. The
algorithm proposed in [29] consists of 2 main steps. Traffic signs are firstly detected by
a set of Haar wavelet features. These features were attained from AdaBoost training
beforehand. Second step is to use Bayesian generative modelling for classification.

Reference [29] proposed algorithm for traffic signs detection that based on HOG. The

16

colour space adopted are CIELab and YCbCr color spaces. Comparison on the detection
of traffic signs based on different type of feature extractions have been done in [27].
The table summarizes the accuracy of traffic signs detection based on different feature

extraction method.

Table 2.1: Comparison of Traffic Signs Detection Based on Different Features

Extraction
Reference Method Accuracy (%)
[28] Haar Wavelet 85.00
[29] HOG 85.00
[27] CNN 88.02

17

CHAPTER 3: METHODOLOGY

3.1 Introduction

This chapter covers the discussion of the algorithm adopted to develop traffic
sign detection and recognition. The development stage including the training and testing
of classifier is covered in this chapter. The development of Python Script is also

presented.

3.2 Research Methodology

As per discussed in previous chapter, it is noticeable that most of the traffic sign
detection and recognition systems are based on HOG. However, from the comparison
that summarized in table 2.1, it is found that Haar like features has similar efficiency
compared to HOG and it will take shorter time. For classification, Adaboost cascaded
training will be adopted as it takes shorter time to train. In short, it has better efficiency.
Unlike what has been done in the pass research work discussed in chapter 2, the method
of research that will be adopted in this study is each traffic signs will have its own
dependant classifier. For example, stop sign will have its own classifier which can only
be used to detect stop signs. After the classifier has been trained, testing will be
performed. Once all the classifiers have been trained and tested, a python script will be
used to run all these trained classifiers to do detection in video feed from webcam. More
details about every step will discussed in following sections of this chapter. The sample
signs that chosen are common traffic signs in Malaysia. The signs which will be used

for this study are illustrated in figures below.

18

&

DILARANG
MEMOTONG

—

@S
®
®

LALUAN SEHALA JALAN SEHALA

@

Figure 3.1: Traffic signs samples used for this study

19

3.3

Research Flow

Literature Study

|

Prepare data zamples }‘—

|

Classifier traming

+

Classifier testing

)

Prepare data samples for [
next classifier

!

All claz=ifiers

completed?

Figure 3.2: Research Flow Chart

20

Run with Python Script
for on road testing

v

Results analysis

!

Conclude Research

Figure 3.2, Continued: Research Flow Chart

The research flow of this study is presented in figure above. The study was
started with literature study in order to make sure the whole research would be carried
out in proper track and correct research methods are adopted. Then, it followed by
sample data preparation, classifier testing. After all classifier have been trained, the next
step is to compose a python script in order to run all the classifier for detection in
webcam feed. This testing is to analyse and evaluate the performance when it goes to

road condition.

21

3.4 Research Tool
In this section, the tool used to conduct the research will be discussed in details.
Since all the works associated with this research are programming, so the tools for the

research are merely few software which have been adopted.

3.4.1 Python
Python IDE (Version 3.5) has been used as an IDE (integrated development
environment). The reason of using Python is to have an IDE to develop a script that can

integrate the trained classifier into with the real time video feed detection.

3.4.2 OpenCV

OpenCV stands for Open Computer Vision Library. It is released under a BSD
license and hence it’s free for both academic and commercial use. It has C++, C, Python
and Java interfaces. It is compatible to run in different operation system, namely
Windows, Linux, Mac OS or even phone OS such as iOS and Android. It emphasizes

on computational efficiency and real-time applications.

In this research, the version used is OpenCV 3.0.0 and it is used in Windows

environment. It was available for download at https://opencv.org/releases.html. Upon

finished extracting and installing, the utilities and other tools will be available at the
path that it is extracted to. In this research, it is extracted to C drive. All the necessary
tools which will be used can be found in the path: opencv-> build-> x64 -> vc12 -> bin.

The work folder is shown in figure below.

22

https://opencv.org/releases.html

v

& Pictures

| Videos
5. 08(C)
eSupport
laragon
apency
Perflogs

Program Files

Program Files (;

Users
vel2
Windows

Windows.old

earch Tools bin

> ThisPC > OS(C) » opencv > opency » build > x64 > vc12 > bin

opency_contrib249.dll
opencv_contrib249d.dil

es2d249.d1l
opencv_features2d249d.dll
opencv_ffmpeg249_64.dl
apency_flann249.dll
nv_flann249d.di

- Local Disk (E:)

& Network

41 items =

Figure 3.3: Path for OpenCV utility tool

3.5 Data Samples Preperation

To ensure that the accuracy of the trained classifier is high, a large number of
data sets must be collected and prepared. The training of the cascade classifiers requires
both positive and negative data samples. In this case, positive samples refer to the
images containing object that the classifier is required to detect. While negative samples

are simply some random images that do not contain any objects to be detected.

3.5.1 Negative Samples

Negative samples are some random images which do not contain object to be
detected. A total number of 4,395 images were collected. All these images are converted
to grayscale and are resized to the scale of 1000 x 1000 pixels. All the images are
sourced from an image database called ImageNet. A Python script in cooperate with

OpenCV is adopted to perform this task. Python Script is shown in figure below.

23

*ImageDownload.py - C:/U

File Edit Format Run Options Window Help

urllib.request
cva

numpy 23 np

o3

f store_raw_images|():
neg_images link = '//image-net.org/api/text/imagenet.synset.geturls?wnid=n00
neg image urls = urllib.request.urlopen(neg_images link).read() .decode ()
pic num = 1

if not os.path.exists('neg'):
os.makedirs('n=g")

in neg_image urls.split| "\n'):

print (i)

urllib.request.urlretrieve (i, "neg/"+str(pic_num)+".jpg")

img = cv2.imread("neg/"+str(pic_num)+".Jjpg",cv2 . IMREAD GRAYSCALE)

should be larger than samples / pos pic (so we can place our image
resized image = cv2.resize (img, (1000, 1000))

cv2.imwrite ("neg/"+str(pic_num)+".jpg", resized_image)

pic num += 1

except Exception as e:
print(str(e))

Figure 3.4: Python Script for images download and resize

Once the script is executed, the images will be downloaded into specific directory and
images downloaded will be converted to grayscale. On top of that, the images will be

resized to scale of 1000 x 1000 pixels. Results are shown in figures below.

Organize v Include in library v Share with v Slide show New folder

¢ Favorites
B Desktop
18 Downloads

% Recent Places

A Libraries
| Documents
& Music
=) Pictures
B Videos

1% Computer
& osc)

(s New Volume (D)

€ Network

Figure 3.5: Negative Images

24

3.5.2 Positive Samples

As per discussed, positive samples are the images containing objects to be
detected. There are few ways to collect positive samples. For example, to collect the
positive images of 60km/h speed limit road sign, one can always go and take pictures of
the traffic signs on the road. However, a large number of positive samples are required,
so this method will not be considered. To collect and prepare a large number of positive
images easily, one of the OpenCV utility is adopted and below steps are taken. In this
study, 1 total of 12 traffic signs are to be detected. Thereby, there shall by 12 groups of
positive samples. Each group required averagely 4000 images for training purpose. The

first step is to collect a few images for respective sign, as shown in figures below.

Share with v Slide show New folder

ﬁl%ﬂﬂfﬁﬁ%@ébll@

60km LS Left LS _Right No_Entry NoLeftTun NoOvertaking NoParking NoStopping

stop T_Light

Figure 3.6: Directories of 12 traffic signs

» Computer » New Volume (D:) » ResearchProject » positive » stop 2
Organize v Include in library Share with v Slide show New folder
¢ Favorites g
B Desktop
18 Downloads ‘ i
%] Recent Places h 4
s —
L ljpg 2199 3iry 4ipg 54pg
4 Libraries
| Documents
& Music
&) Pictures
B Videos
1% Computer
& os(
a New Volume (D:)
€ Network

Figure 3.7: Images in each folder

25

From figure above, images of 12 traffic signs are taken and kept in respective
folder. Figure 3.6 shows an example of the images contained in each folder. For
example shown in figure 3.6, the stop sign with different background, orientation,
illumination are kept in same folder directory. From these images, one of the OpenCV
tool, ‘createsample.exe’ is being called. This tool is to create more samples from the
original images. What it does is actually randomly infuse the images into the negative
Images, creating more positive samples. To call and utilize this tool, a batch file is

composed, as shown in figure below.

createsanples\opency createsamples.exe -img positive\Stop 2\1.jpg -bg NewNegative.txt -info Data Sample\stop 2\2\samples2.lst
-pngoutput info -bgeolor 0 -bgthresh 0 -maxxangle 1.1 -maxyangle 1.1 -maxzangle 0.5 -maxidev 100 -num GOOd

Figure 3.8: Command in batch file to create more positive samples

The batch file will be executed in command prompt. The batch file and each command

has the following meaning.

e img: Source object image directory and name (e.g., a company logo).

e bg: Background description file; contains directory of a list of negative images
« num: Number of positive samples to generate.

o maxidev: Maximum intensity deviation of pixels in foreground samples.

o maxxangle: Maximum rotation angle towards x-axis, must be given in radians.
e maxyangle: Maximum rotation angle towards y-axis, must be given in radians.

e maxzangle: Maximum rotation angle towards z-axis, must be given in radians.

Maximum deviation of pixels is set at 100 and maximum allowed rotation angle
towards X, y and z axis of the source object are set at maximum, which are 1.1, 1.1 and
0.5 respectively. These variation in deviation and orientation of angle ensures better
accuracy for different scene. Once it is executed, the images will be generated and the

results are shown in figures below.

26

» Computer » New Volume (D) » ResearchProject » Data_Sample » stop2 » 1

Organize v Includeinlibrary v Sharewith v Slideshow New folder =5~ 0 @

Wualll Catvd i
0001.0051.0220_0639_ 00010094 0226 0514_ 0001_0166_0404_0488_ _ 0001.0421.0167.0240_ 0002.0070_0441 0414_ 0002.0144 0297 0447 0002_0206_0217 0073
39,ipg 0514jpg 0488.jpg 0593,pg 0260jpg 041jpg 0447 jpg 0073jpg

—
i o “ o

0002_0360_0294_0100_ 00020484 0237 0334_ 00030132 0542 0043_ 000301630346 0209_ 00030229 0219 0631 0003_0394 0541 0295_ 0003_0470_0426_0407_ 0004_0059_0230_0467_
0100jpg 0334jpg 0043jpg 0209,pg 0631jpg 0295jpg 0407 jpg 0467.jpg

i 1 =T

0004 0106 0428 0413_ 0004 01550268 0700_ 0004 0184 05450349 0004 0367 0491 0196_ 0005_0076 0231 0683_ 00050116 0617 0308_ 00050202 0678 0213, 0005_0546_0520_0315,

0413jpg 0700pg 0349,jpg 019.jpg 0683.jpg 0308pg
- 7 | “ v @

f
Ol

0213jpg 0315,pg

]

Figure 3.9: Group of newly generated positive images

J 5,005 items

FLICKR.COM/PHOTOS/EXOTHERMIC

Figure 3.10: Sample of generated positive images

On top of that, a text file will be generated. This text file contains the name of the
generated image and the pixel location of the positive image in that image. This text file
will be further resized to 25 x 25 and processed in order to become input for the

classifier training, known as vector file. It is known as vector file because it contains the
27

vector of the positive object to be detected by the classifier. The same tool of OpenCV,
createsamples.exe is again utilized to process and generate the vector file. To execute
the OpenCV createsamples.exe, another batch file is made. The command in the batch

file is as follows:

createsamples\opencv createsamples.exe -info Data_Sample\Stop_2\1l\samples.lst —num
4000 -w 25 —h 25 —vec positives Stop 2.ved

Figure 3.11: Command in batch file to create vec files

3.6 Cascade Training

‘opencv_haartraining.exe’ has been adopted to perform the training for the
classifier. Similar to the way calling createsamples.exe utility tool, a batch file is first
created in order to execute ‘opencv_haartraining.exe’. The input for the training are the
vector file created earlier and the negative samples. In this study, 4500 positive samples
are used and must be in the form of .vec file. For negative samples, 1500 negative
samples are used. The command in the batch file to execute ‘opencv_haartraining.exe’

is shown below.

haar\opencv_haartraining.exe -data Train l\data stop 2\1\stop -vec
positives stop2.vec -bg NewNegative.txt -npos 4500 -nneg 1500 -mem 4000 -w 25 -h 25
-nstages 15 -nsplits 30 -mode ALL -nonsyn

Figure 3.12: Command in batch file for haar cascade training
Each command has the following definition.

- data: Output directory of the .xml file when the training is done
- vec: Vector file that containing all the input file

- bg: Directory pointing the negative images list

- npos: Number of positive samples

28

nneg: Number of negative samples

mem: RAM memory that will be used for training

w: Width

h: Height

nstages: Number of stages

Once the training is started, it cannot be stopped or paused. During the training,
the training samples will undergo few stages of training. At each stage, the input will be
taken from the output of the previous stage for the training, therefore the number of
stages indicating the number of hidden layers in the training stages. Once the training is
done, an Extensible Markup Language (XML) file will be created. This file is used as
the library sources for the detection system. The training stages of one classifier is

shown in the figures below.

29

Parent node: NULL
Chosen number of splits: @

Total number of splits: @

Tree Classifier
Stage
F———
HE % &

F——

a

Parent node: @

e 1 cluster 2»ex

POS: 45068 4513 6.997119

NEG: 1568 6.137526

BACKGROUND PROCESSING TIME: 6.11

Precalculation time: 3.20
B St e e ——

i N i#zSMPIF! ST.THR ! HR EXP. ERR!

s S Fm Fm Fm +

11188 -B8.924879: B.9997781 6.9893331 8.851167!
-8.2615711 B.9957781 0.064667! B.825667!

s e e e ——— e ————— e ———— +
Stage training time: 3201.92
Number of used features: 60

Parent node: @
Chosen number of splits: @

Total number of splits: @

Figure 3.13: An example of Completed Training Stage

Based on Figure 3.7, the data display that 0.261571 of threshold stages have
been done at the end of this stage with 0.025667 of strong classification error. The time
taken for this stage is 3201.92 seconds and the number of features used is 60. The more
features it uses, the longer time it takes. Too few of features may lead to failure in
training due to inability of the training result to converge. The results of training is

summarized in table below.

30

Table 3.1: Training summary for each classifier

Traffic Data size Number of Average Number of
signs Positive | Negative stages training time features
(Epoch) (minutes) used
Stop 4500 1500 11 583 60
One way | 4000 2000 340 35
(left)
One way | 4000 2000 5 280 40
(right)
Bump 4000 2000 6 200 40
ahead
Traffic 4000 2000 5 350 50
light ahead
No 4000 2000 6 375 40
Overtaking
No 4000 2000 6 310 60
Stopping
No U-turn | 4500 1500 9 487.4 60
No 4000 2000 4 245 40
Parking
No Entry | 4000 2000 5 275 40
No Left | 4800 1500 6 315.50 30
Turn
60km/h 4500 1500 5 295 60
speed limit

3.7 Cascade Testing

Classifier must be tested before it can proceed to next step. This stage consists of

2 main steps. Firstly, to prepare and collect for test samples. This is done by utilizing

the ‘opencv_createsamples.exe’ tool. The next step is to do the testing. To test the

performance or accuracy of the classifier, another utility tool from OpenCV,

‘opencv_performance.exe’ is used. Details of each step will be discussed in following

section.

31

3.7.1 Test Data Preparation

Similar to previous step, a batch file is created as shown in figure below. The
example shown in batch file below is to prepare the test samples for the testing of one

way (left) traffic sign.

createsamples\opencv createsamples.exe -img positive\LS5S Left\2.jpg -num 1000 -bg
ewNegative.txt -info Testing\LS Left\TestSamples\test.dat -maxxangle 0.6
-maxyangle 0 -maxzangle 0.3 -maxidev 100 -bgcolor 0 -bgthresh 0

Figure 3.14: Batch file for test sample collection

The batch file above is to create samples to test the performance of one of the
traffic sign classifier. The number of the test samples is set at 1000, meaning that 1000
images with that particular sign will be created. Furthermore, a dat file will be created.
This dat file containing the pixel location of the object to be detected in each created

images. Figure below illustrates the results of the execution of above batch file.

ieg ieg ieg
s New Volume (D)
. Gataxy Noted

0004.0542_0673.0200.0200. 0005.0225 0137.0634 0634. 0005 0850_0515.0027.0027. 0006_0241 0415 05150515, 0006_0565 0443 0361 0361 0007_0077_0236_0574_0574.

€ Network

0008_0077_0265 03550355, 0008 0111 0223 0118 0118. 0009_0138 04260201 001. 0009 0344 0578.0338 0338. 0010, 0154 0249 0635 0635. 00100371 0316.0578 0578. 0011 0078 0543.0306_0306.

"] 4 lohmn B R N B

Figure 3.15: Created test samples

32

Figure 3.16: An example of created sample

IEtesx dat E3 |

fpoo1 0153 0252 0616 0616.3pg
0002_0189_0189 0633_0623.3pg
0003_0202_0188 0193_0193.3pg
0004 0332_0260 0627 _0627.3pg

oW N

= 0005_0850_0515_0027_0027.3jpg 850 515 27 27

6 0006_0565_0443 0361_0361.Jjpg 565 443 361 361
7 0007_0160 0106 0214 0214.Jjpg 160 106 214 214
8 0008_0111_ 0223 0118 _0118.3jpg 111 223 118 118
5 0009_0138_0426_0201_0201.jpg 138 426 201 201

1
1
1
1
1
1
1
1
_0138_0426_ 1
10 0010 0154 0249 0635 _0635.3jpg 1
0011_0353_0225_0116_0116.3pg 1
0012_0520_0643_0136_0136.3pg 1
0013_0315_0269_0151 0151.3pg 1
0014_0437_0450_0184_0184.3pg 1
0015_0515_0170_0033_0033.jpg 1
0016_0775_0671_0121 0121.3pg 1

0017_0263_0067_0604_0604.pg 1 263 67 604 604

0018_0072_0176_0383_0383.jpg 1 72 176 383 383

0019 0344 0800_0080_0080.jpg 1 344 800 80 &0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

437 450 184 184
515 170 33 33
775 €71 121 121

0020_0446 0237 0488_0488.jpg 446 237 488 488
0021 _0404_0056_0535_0535.jpg 404 56 535 535
0022_0385_0294_0494_0494.jpg 385 294 494 494
0023_0628_0437_0269_0269.jpg 628 437 263 269
0024_0257_0323 0510_0510.3jpg 257 323 510 510
0025_0065_0344_0462_0462.jpg 65 344 462 462
0026_0466 0250 0289_0289.Jpg 466 250 283 289
0027_0231_0237_0419_0419.3pg 231 237 413 419
0028_0102_0247_0264_0264.jpg 102 247 264 264
0029_0250_0086_0333_0333.Jpg 250 88 333 333
0030_0175_0225_0637_0637.jpg 175 225 637 837
0031_0706_0773_00B0_0080.Jjpg 706 773 80 80O
0032_0296 0241 0549_054%9.Jpg 296 241 549 549
0033_0270_0384_ 0121 0121.jpg 270 384 121 121
0034_0497_0410_ 0046_0046.jpg 497 410 46 46
0035_0116 0117 0470_0470.Jpg 116 117 470 470
0036_0694_0244 0094_0094.3jpg 694 244 94 94
0037_0244_0205_0411_0411.jpg 244 205 411 411
0038 0049 0252 0656 0656.Jpg 49 252 656 656 S

[

Figure 3.17: An example of .dat file

33

3.7.2 Image Testing

After the test samples have been created, another batch file to call
‘opencv_performance.exe’ is composed. This batch file is to run the utility in command
prompt and execute the testing based on the testing samples which have been created.
Refer to figure below, note that the test samples created are saved in the ‘TestSamples’
folder. The trained classifier is now in .xml file. While the batch file in .bat format is to
execute the OpenCV utility, ‘opencv_performance.exe’. The work folder of testing and

command in batch file are illustrated in figures below.

» Computer » NewVolume (D) » ResearchProject b Testing » PASS b LS Left »

Organize ¥ Include in library v Share with ¥ New folder
Name

B Desktop TestSamples
8 Downloads = OneWey_leftaml
| Recent Places] Testing.bat

% Computer
& os(c)
s New Volume (D)
5. Galaxy Noted

i Network

Figure 3.18: Work folder for testing

C:\opencvibuild\x64\vcl2\bin\opencv performance.exe -data OneWay left.xml -info
TestSamples\test.dat -sf 1.2 —w 15 -h 20 > TestResult.log

Figure 3.19: Testing batch file

From the command shown in figure 3.19, a log file with the name of ‘TestResult’

will be generated once the testing is completed, as shown in figure below.

34

» Computer + NewVolume (D) » ResearchProject » Testing » PASS » LSLeft »

Organize Includeiinlibrary v Sharewith v Newfolder
i Name : Date modified Type Size
B Desktop TestSamples. 8/11/2017 8:18 AM File folder
1§ Downloads (=] oneWay_teftam I120175:23PM__ XML Document
T Recent Places [Testing.bat 5/12/2017 2:48 PM__ Windows Batch File
I | TestResult.log 3/11/2017 5:32 PM Text Document:
4 Libraries
[Z Documents
& Music
(=] Pictures
B# Videos

/% Computer
& o5
a New Volume (Dz)
[, Galaxy Note3

€ Network

Figure 3.20: Newly generated log file for testing results

Besides, the output images will also be generated. These images have the
rectangular marking. These markings indicate that the classifier have identified the

positive objects appeared on the image, as shown below.

det-0001 0284 0040 det-0002 0469 0294 det-0003_0281 0464 det-0004 0542 0673 det-00050225 0137 det-0006_0241 0415 det-0007_0077 0236

det-0009_0344 0578
0622 0622,jpg _0150_0150,jpg _0408_0408 jpg _0200_0200,jpg 0634 0634,jpg 0515 0515,jpg _0574 0574 jpg

0338 0338,pg

|
det-0010.0371 0316 det-0011 00780543 det-0012.0075.0248 det-0013 0464 0368 det-0014 0484 0086 det-0015.0212 0078 det-0016 0222 0261 dlet-0017.0096 0344 det-0018_0447_0497
0578 0578,jpg _0306_0306,jpg 0589 0589,jpg _0315_0315,pg _0432.0432jpg _0616_0616,jpg _0613 0613 ,pg _0551 0551 jpg _0311 0311 jpg

det-0019_0416 0098 det-00200407 0711 det-0021.0083 0037 det-0022 05800292 dlet-0023.0328 0408 det-0024 0568 0508 det-00250499_0146 et-0026.0271 0250 det-0027_0249 0117
0358 0358,jpg _0068_0068jpg _0690_0690,jpg _0173.0173pg _0536_0536,jpg _0136_0136,pg _0287_0287jpg 0625 0625,jpg _0503_0503,pg

£
|
=

det-0029 0450 0231 det-0030_.0221 0066 det-0031 0584 0295 det-0032 0104 0227 det-0033_0308 0242 det-0034 0121 0453 det-00350274 0040 det-0036_0218 0393
0415 0415.ipg 0477 0477.ing 0241 ipg 92 0492.ipg 0 og 06 g ing

det-0028_0332 0329

Figure 3.21: Testing results

The details of the results will be discussed in the following chapter.

35

3.8 Python Script

Python script is needed in order to run the trained classifier in real life detection
or also known as video testing. All .xml files corresponding to classifier of each sign
will be loaded into the script. The python script will use these .xml files as library and
run the detection through the live feed from webcam. The complete script is attached in

appendix.

The reason of running detection through the live feed from webcam is to analyze
the performance of the trained classifiers in real life. To carry out the testing, the
webcam is mounted on the dashboard of the car and it is connected to the laptop. Then
the testing was conducted while the car is moving. Testing for each classifiers were

conducted about 10 times, in day and night time respectively.

36

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter presents the results obtained. On top of that, the analysis and the

discussion of the results are covered in this chapter too.

4.2 Results

The results can be divided into two sections. Section 1 presents and discusses
about the testing results generated by the ‘opencv_performance.exe’. Section 2 presents

and discusses about on-the-road testing results.

4.2.1 Image Testing Results

In this section, the results generated by the ‘opencv_ performance.exe’ are
presented. As mentioned in previous chapter, results log will be generated once the
testing is done. Figures below show the result logs generated for classifier of one way

(left) road sign.

37

| File MName | Hits |Missed| False]
| 0001 _00&4_0204 05327 _0537_jpgl 1] al gl
t————— e tm————— t————— +————— +
| 0002 _0330_0145% 0311 0311.jpgl 1] al 3]
+-————————————————— +————— +————— +-—— +
| 0002 _0155_0288_0801_0801_jpgl 1] al 3
t————— e tm————— t————— +————— +
| 0004 0351 _0578_0342 0342 _jpgl 1] al 13
+-————————————————— +————— +————— +-—— +
| 0005 0121 02320_0382 02B3_jpgl 1] al 4|
t————— e tm————— t————— +————— +
| 000& 0697 _0281_0151 0131 ._jpgl 1] al TI
+-————————————————— +————— +————— +-—— +
| 0007_0348_0532 0335 _0335_jpgl 1] al 12|
t————— e tm————— t————— +————— +
| 0008 0811 0296 0223 0223 ._jpgl 1] al 10]
+-————————————————— +————— +————— +-——— +
| 0005 0183 03232 0570_0570.jpgl 1] al 3
t————— e tm————— t————— e +
| 0010_0722 05%6_0081_0081.jpgl al 1] 101
+-————————————————— +————— +———— +——— +
| 0011 0177_025%1 04ls 0416 jpgl 1] al 47|
t————— e t————— — +————— +
| 0012 0107 _0142_0545_ 0545.jpgl 1] al 4|
+-——————————————— +————— +————— +-—— +
| 0012 0552 015&_ 0082 00BZ.jpgl 1] al 13]
t—————— e ~ t————— +————— +
| 0014 0444 0120_0386_0386.jpgl 1] al 171
+-———————————————— +————— +————— +-—— +
| 0015 0470_0126 03753 0273 _jpgl 1] al 9]
t——————— e tm————— t————— +————— +
| 001&e 0485 0617_02594 02354 _jpgl 1] al 101
+-———————————————— +————— +————— +-—— +
| 0017 _00B2_0352 0504 0504_jpgl 1] al 4|
. tm————— t————— +————— +
| 0018 0247 _0207_04593 0433 _jpgl 1] al 21
+ +————— +————— +-—— +
| 0015 0236 _0278_0827_0827._jpgl 1] al 1]
I — e tm————— t————— +————— +
| 0020 _03858_0135%_0253 0233 _jpgl 1] al 13
4 __ 4 4 — 4 4

Figure 4.1: Upper part Results Log for One Way (left) Classifier

38

370 | 0984 0266 0281 0643 0842 ipgl 1] o] 4|
57 o e tmm e tmm e +
57z | 0985_02Z&0_0445_0274_0274.jpgl 1] ol z|
5 o o fomm o oo +
3 [0986 0453 0143 0140 0140.jpgl 1] ol 23|
3 o e tmm e tmm e +

[1000_0512_0175_0336_0336.3pgl 1] ol 1]
T - fomm - fomm - +
[Total| 955 45| 11335|

HNumber of stages: 7
Humber of weak classifiers: 12
Total time: 127_.581000

R I I I I ST T e T X T T T T T T T Ty S iy i Sy S S Sy Sy S Sy Sy Sy S S S S S S Sy Y

Figure 4.2: Last Part of Results Log for One Way (left) Classifier

39

Table below summarizes the results for all classifiers.

Table 4.1: Results for Classifier Testing by ‘opencv_performance.exe’

Classifier Total Hits Missed False Accuracy
number of (%)
test samples
Stop 1000 998 2 922 99.8
One way (left) 1000 952 48 1043 95.2
One way (right) 1000 944 56 2812 94 .4
Bump ahead 1000 998 2 4336 99.8
Traffic light 1000 919 81 3798 91.9
ahead
No Overtaking 1000 978 22 4178 97.8
No Stopping 1000 981 19 6918 98.1
No U-turn 2000 1934 66 579 96.7
No Parking 1000 998 2 300 99.8
No Entry 1000 952 48 1043 95.2
No Left Turn 2000 1960 40 895 98.0
60km/h speed 1000 998 2 802 99.8
limit

From the table above and figure 4.1, it is noticeable that there are hits, missed
and false. The ‘hit’ means that the classifier has successfully located the object to be
detected in the image. Each test sample carries only one particular sign in the image.
Thereby, if the object can be detected by the classifier, the hit in that particular image
will be mark as 1, or else it will be categorized as missed. So, the accuracy is calculated

as follows:

Accuracy = Hits X 100%

Number of testing samples

One of the output images from the testing for one way (left) classifier is shown in figure

below.

40

Figure 4.3: Successful detection

Figure above shows that the testing result of one way (left) classifier on this
image is hit = 1, missed = 0 and false = 0. It means in this testing, the classifier has
successfully detect the object correctly. Another example where the classifier has

missed the detection of the sign is illustrated in figure below.

"

Figure 4.4: Missed detection

41

Figure 4.4 is an example of missed detection. In this image, the classifier could
not detect the presence of the sign. So in this case, this picture will have 1 in missed
column and 0 in hits column. Figure below shows another example of false detection.

Figure 4.5: False detection

In figure 4.5 above, it can be seen that the classifier can detect the correct sign
but at the same time, there were two other detections. The two detections were false
positive detections because there are no signs in the highlighted region. While the
middle highlighted region is correction detection. In this case, the hit is 1 while the

other two detections belong in false column.

4.2.2 Video Testing Results

The testing results are summarized in the table below. Each testing were carried
out in a way that the webcam is mounted on dashboard of the car and the script is run
when the car is moving. The script has compiled all the 12 classifiers and when it runs,

it runs all the 12 classifiers concurrently. Car has been driven on some specific routes.
42

These routes contain the signs to be detected. Classifiers for each signs have been tested
averagely 20 times, 10 times in day time and 10 times at night. The accuracy of the
classifiers are calculated by calculating how many times the classifier can detect the
traffic signs on the road, dividing by how many times they are tested. Results are

summarized in table below.

Table 4.2: Accuracy of classifier for on the video feed testing

Classifier Successful detection Accuracy

Night Morning (%)
Stop 9 7 80
One way (left) 8 8 80
One way (right) 9 8 85
Bump ahead 10 9 95
Traffic light 9 9 85
ahead
No Overtaking 9 7 80
No Stopping 9 8 85
No U-turn 9 8 85
No Parking 10 7 85
No Entry 9 8 85
No Left Turn 9 7 80
60km/h speed 9 7 80
limit

Average Accuracy 83.33

43

Examples of successful detections are illustrated in the figures below:

Figure 4.6: Successful detection of 60km/h speed limit sign at night

Figure 4.8: Successful detection of traffic light sign in day time

44

Figure 4.10: Successful detection of bump sign in day time

Figure 4.11: Successful detection of No U-turn sign in day time

45

Figure 4.14: Successful detection of No Entry sign

46

Figure 4.15: Successful detection of Bump Ahead and Stop sign

Figure 4.16: Successful detection of Bump Ahead at Night

Figure 4.17: Successful detection of two traffic light ahead signs

47

Figure 4.20: Successful detection no parking sign

48

Misclassification or wrong detection happened as well. However, most of the wrong
detection happened at night time. Figures below showed the example of wrong

detection.

Figure 4.22: Wrong detection at night time part 2

Figures above show the system mistakenly classified 50km/h speed limit sign as
60km/h. The system could only detect it was not the correct sign when the car moved

closer to the sign.

49

Figure 4.23: Miss Detection of Stop Sign

Figure above shows that the system was unable to detect the stop sign. This is
because part of the sign was covered by the tree leaves. That resulted in failure of

detection.

Figure 4.24: False detection and wrong detection

False positive detection happened in few times during testing at night. The
example can be seen from figure above. Figure above shows wrong detection, which is
the stop sign. The system has wrongly detected the sign to be a stop sign. While the
system has also detected a bump sign in the image which is not existing. Thereby, it is

classified as false positive detection.

50

4.3 Performance Analysis

From the results obtained in the testing carried out by ‘opencv_performace.exe’
utility, the classifiers have shown average accuracy higher than 90%. The trained
classifiers have also achieved average accuracy of 83.33% when they were tested to
detect the traffic signs on the road via webcam feed. It is noticeable that in day time, the
accuracy of all classifiers are averagely higher. It is believed that because the variation
in illumination is relatively smaller compared to night time. At night, the complexity of
the environment and illumination becomes much higher due to different light sources on
the street. Besides of the illumination condition, the classifiers encounter problem in
recognizing the signs which have vandalized and covered by tree leaves and
advertisement poster. The vandalism have caused the outlook of the signs to be very
badly altered and the advertisement posters cover some of the important features that

can be recognized by computer.

51

CHAPTER 5: CONCLUSION

51 Introduction

In this chapter, research conclusions and future works recommendations are
discussed. Initially, research summaries in relations to the research objectives are given
followed by research conclusions. Finally, several recommendations for further research

works are presented.

5.2 Research Conclusions

Cascade training for traffic signs detection based on Haar-like features have
been proposed in this study. The reason cascaded training based on Haar-like features is
proposed is because of shorter training time. Furthermore, it is also proven that
classifier based on Haar-features is sufficient to create classifiers for traffic signs with

high accuracy based on the testing conducted.

In relation to the study objectives:

1. This research has successfully developed traffic signs detection system based on
Haar-like features cascade classifier.
2. The performance and accuracy of proposed system has been studied and

analysed.

52

5.3 Recommendations for Future Works

As mentioned in previous chapters, the performance of trained classifier will be
affected by environment factors such as illumination condition. Development of the
classifier that can work independently without being affected by external environment
factors should be considered in the future work. This is because the safety will be

greatly affected by the robustness of the system.

Furthermore, there is still a big room of improvement for the accuracy of the
detection system. One of the suggestion to improve the accuracy is to increase the
number of dataset. However, this will also increase training time. Other training

methods or statistical models should be considered too.

Lastly, the detection and recognition system is recommended and suggested to
have self-learning and self-testing algorithm. This suggestion is made because the signs
in every country vary with each other. Thereby, self-learning in classifying sign with

different outlook but carrying same message should is essential.

53

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

Viola, P., & Jones, M. (n.d.). Robust real-time face detection. Proceedings
Eighth IEEE International Conference on Computer Vision. ICCV 2001.
d0i:10.1109/iccv.2001.937709

Verschae, R., & Ruiz-Del-Solar, J. (2015). Object Detection: Current and Future
Directions. Frontiers in Robotics and Al, 2. doi:10.3389/frobht.2015.00029

M. A. Fischler and R. A. Elschlager, "The Representation and Matching of
Pictorial Structures,” in IEEE Transactions on Computers, vol. C-22, no. 1, pp.
67-92, Jan. 1973. doi: 10.1109/T-C.1973.223602

E. Osuna, R. Freund and F. Girosit, "Training support vector machines: an
application to face detection,” Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, San Juan, 1997, pp.
130-136.

doi: 10.1109/CVPR.1997.609310

H. A. Rowley, S. Baluja and T. Kanade, "Neural network-based face detection,"
in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no.
1, pp. 23-38, Jan 1998. : 10.1109/34.655647

K. K. Sung and T. Poggio, "Example-based learning for view-based human face
detection,” in IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 1, pp. 39-51, Jan 1998. doi: 10.1109/34.655648

H. Schneiderman and T. Kanade, "A statistical method for 3D object detection
applied to faces and cars," Proceedings IEEE Conference on Computer Vision
and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), Hilton Head Island,
SC, 2000, pp. 746-751 vol.1. doi: 10.1109/CVPR.2000.855895

H. Sahbi, D. Geman and N. Boujemaa, "Face detection using coarse-to-fine
support vector classifiers,” Proceedings. International Conference on Image
Processing, 2002, pp. 925-928 vol.3. doi: 10.1109/1CIP.2002.1039124

S. Romdhani, P. Torr, B. Scholkopf and A. Blake, "Computationally efficient
face detection,” Proceedings Eighth IEEE International Conference on
Computer Vision. ICCV 2001, Vancouver, BC, 2001, pp. 695-700 vol.2.
doi: 10.1109/ICCV.2001.937694

S. Z. Li and Zhengiu Zhang, "FloatBoost learning and statistical face detection,"
in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no.
9, pp. 1112-1123, Sept. 2004. doi: 10.1109/TPAMI.2004.68

54

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Freund, Y. and Schapire, R. (1997). A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. Journal of Computer and System
Sciences, 55(1), pp.119-139.

Chang Huang, Haizhou Ai, Yuan Li and Shihong Lao, "Vector boosting for
rotation invariant multi-view face detection,” Tenth IEEE International
Conference on Computer Vision (ICCV'05) Volume 1, 2005, pp. 446-453 Vol. 1.
doi: 10.1109/ICCV.2005.246

Verschae, R., Ruiz-Del-Solar, J., & Correa, M. (2007). A unified learning
framework for object detection and classification using nested cascades of
boosted classifiers. Machine Vision and Applications, 19(2), 85-103.
doi:10.1007/s00138-007-0084-0

Mutch, J., & Lowe, D. G. (2008). Object Class Recognition and Localization
Using Sparse Features with Limited Receptive Fields. International Journal of
Computer Vision, 80(1), 45-57. doi:10.1007/s11263-007-0118-0

R. Sivalingam, G. Somasundaram, V. Morellas, N. Papanikolopoulos, O.
Lotfallah, and Y. Park, “Dictionary learning based object detection and counting
in traffic scenes,” Proceedings of the Fourth ACM/IEEE International
Conference on Distributed Smart Cameras - ICDSC 10, 2010.

A. Jain, L. Zappella, P. Mcclure, and R. Vidal, “Visual Dictionary Learning for
Joint Object Categorization and Segmentation,” Computer Vision — ECCV 2012
Lecture Notes in Computer Science, pp. 718-731, 2012.

C. H. Lampert, M. B. Blaschko and T. Hofmann, "Efficient Subwindow Search:
A Branch and Bound Framework for Object Localization,” inIEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pp.
2129-2142, Dec. 2009. doi: 10.1109/TPAMI.2009.144

P. F. Felzenszwalb, R. B. Girshick, D. McAllester and D. Ramanan, "Object
Detection with Discriminatively Trained Part-Based Models," in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp.
1627-1645, Sept. 2010. doi: 10.1109/TPAMI.2009.167

Buduma, N. (2016). Fundamentals of Deep Learning: Designing Next-
Generation Artificial Intelligence Algorithms. Sebastopol: OReilly Media.

Deng, L., & Yu, D. (2014). Deep Learning: Methods and Applications.
Foundations and Trends® in Signal Processing, 7(3-4), 197-387.
doi:10.1561/2000000039

Goodfellow, 1., Bengio, Y., & Courville, A. (2017). Deep learning. Cambridge,
MA: The MIT Press.
55

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

W. Ouyang and X. Wang, "Joint Deep Learning for Pedestrian Detection,” 2013
IEEE International Conference on Computer Vision, Sydney, VIC, 2013, pp.
2056-2063. doi: 10.1109/1CCV.2013.257

Leitner, J., Harding, S., Chandrashekhariah, P., Frank, M., Forster, A., Triesch,
J., & Schmidhuber, J. (2013). Learning visual object detection and localisation
using icVision. Biologically Inspired Cognitive Architectures, 5, 29-41.
d0i:10.1016/j.bica.2013.05.009

J. H. Shi and H. Y. Lin, "A vision system for traffic sign detection and
recognition,” 2017 IEEE 26th International Symposium on Industrial
Electronics (ISIE), Edinburgh, 2017, pp. 1596-1601.
doi: 10.1109/IS1E.2017.8001485

S. J. Zabihi, S. M. Zabihi, S. S. Beauchemin and M. A. Bauer, "Detection and
recognition of traffic signs inside the attentional visual field of drivers,” 2017
IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, 2017, pp. 583-588.
doi: 10.1109/1VS.2017.7995781

Wahyono, L. Kurnianggoro, J. Hariyono and K. H. Jo, "Traffic sign recognition
system for autonomous vehicle using cascade SVM classifier,” IECON 2014 -
40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX,
2014, pp. 4081-4086. doi: 10.1109/IECON.2014.7049114

M. Karaduman and H. Eren, "Deep learning based traffic direction sign
detection and determining driving style,” 2017 International Conference on
Computer Science and Engineering (UBMK), Antalya, 2017, pp. 1046-1050. doi:
10.1109/UBMK.2017.8093453

C. Bahlmann, Y. Zhu, V. Ramesh, M. Pellkofer, and T. Koehler, “A system for
traffic sign detection, tracking, and recognition using color, shape, and motion
information,” In Intelligent Vehicles Symposium, pp. 255-260, 2005.

I. M. Creusen, R. G. Wijnhoven, E. Herbschleb, and P. H. N. de With, “Color
exploitation in hog-based traffic sign detection,” In Image Processing (ICIP), pp.
2669-2672, 2010.

56

APPENDIX A

Python Script
import numpy as np

import cv2

No U-TURN Cascade
NoUturn_cascade_1 = cv2.CascadeClassifier('NoUturn_1.xml")

No STOPPING Cascade
NoStopping_cascade_1 = cv2.CascadeClassifier('NoStopping_1.xml")

STOP Cascade
Stop_cascade_2 = cv2.CascadeClassifier('Stop_2.xml")

No LEFT TURN Cascade
NoLeftTurn_cascade 1 = cv2.CascadeClassifier('NoLeftTurn_1.xml")

60km/h SPEED LIMIT Cascade
_60kmph_cascade 1 = cv2.CascadeClassifier('60km_1.xml")

Laluan Sehala Cascade
LS Right cascade 1 = cv2.CascadeClassifier('LS_Right.xml")

Laluan Sehala Cascade
LS Left cascade 1 = cv2.CascadeClassifier('LS_Left_1.xml")

Bump Ahead Cascade
Bump_Ahead 1 = cv2.CascadeClassifier('Bump_1.xml")

Traffic Light Ahead Cascade
Traffic_light_Ahead_1 = cv2.CascadeClassifier('TL_1.xml")

No overtaking Cascade
No_Overtaking_1 = cv2.CascadeClassifier(NO_1.xml")

No Parking Cascade
No_Parking = cv2.CascadeClassifier('NP_2.xml")

No Entry Cascade
No_Entry = cv2.CascadeClassifier('NE_1.xml")

57

cap = cv2.VideoCapture(0)

while 1:

ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

image, reject levels level weights.
NoUturn_1 = NoUturn_cascade_1.detectMultiScale(gray, 2.5, 5)

NoStopping_1 = NoStopping_cascade_1.detectMultiScale(gray, 2.5, 5)

Stop_2 = Stop_cascade_2.detectMultiScale(gray, 2.2, 5)

NoLeftTurn_1 = NoLeftTurn_cascade_1.detectMultiScale(gray, 1.78, 5) #Need retrain

_60kmph_1 =_60kmph_cascade_1.detectMultiScale(gray, 2.5, 5)

LS Right = LS_Right cascade_1.detectMultiScale(gray, 1.5, 5)

LS Left=LS_Left cascade 1.detectMultiScale(gray, 1.3, 5)

Bump_Ahead = Bump_Ahead_1.detectMultiScale(gray, 2.2, 5)

Traffic_Light Ahead = Traffic_light Ahead_1.detectMultiScale(gray, 1.43, 5)
No_Overtaking = No_Overtaking_1.detectMultiScale(gray, 1.9, 5)
No_Parking_1 = No_Parking.detectMultiScale(gray, 1.9, 5)

No_Entry_1 = No_Entry.detectMultiScale(gray, 1.9, 5)

add this

for (x,y,w,h) in NoUturn_1:

cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)
font = cv2.FONT_HERSHEY_SIMPLEX

cv2.putText(img,'No U-TURN',(x,y), font, 0.5, (0,0,255), 1, cv2.LINE_AA)

For No Stopping Road Sign
for (x,y,w,h) in NoStopping_1:

58

cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'No Entry',(x,y), font, 0.5, (0,0,255), 1, cv2.LINE_AA)

For Stop Road Sign

for (x,y,w,h) in Stop_2:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'STOP',(x,y), font, 0.5, (0,0,255), 1, cv2.LINE_AA)

For No left turn road sign
for (x,y,w,h) in NoLeftTurn_1:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,255),2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'No LEFT TURN',(x,y), font, 0.5, (255,0,255), 1,
cV2.LINE_AA)

For One Way Right road sign
for (x,y,w,h) in LS_Right:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'One Way Left',(x,y), font, 0.5, (0,0,255), 1, cv2.LINE_AA)

For One Way Left road sign
for (x,y,w,h) in LS_Left:
cv2.rectangle(img,(x,y),(x+w,y+h),(128,128,128),2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'One Way Left',(x,y), font, 0.5, (0,0,255), 1, cv2.LINE_AA)

For 60km/h speed limit road sign

for (x,y,w,h) in _60kmph_1:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'60km/h’,(x,y), font, 0.5, (255,255,0), 1, cv2.LINE_AA)

59

For Bump Ahead road sign
for (x,y,w,h) in Bump_Ahead:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,140,225),2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'Bump Ahead',(x,y), font, 0.5, (0,140,255), 1, cv2.LINE_AA)

For Traffic Light Ahead road sign
for (x,y,w,h) in Traffic_Light Ahead:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,128,225),2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, Traffic Light Ahead',(x,y), font, 0.5, (0,128,255), 1,
cV2.LINE_AA)

For No Overtaking road sign
for (x,y,w,h) in No_Overtaking:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,100,225),2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'Overtaking not allowed',(x,y), font, 0.5, (255,100,255), 1,
cV2.LINE_AA)

For No Parking road sign

for (x,y,w,h) in No_Parking_1:
cv2.rectangle(img,(x,y),(x+w,y+h),(255,100,225),2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'No Parking',(x,y), font, 0.5, (1,1,255), 1, cv2.LINE_AA)

For No Entry Sign
for (x,y,w,h) in No_Entry 1:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,'No Entry',(x,y), font, 0.5, (255,0,0), 1, cv2.LINE_AA)

cv2.imshow('img',img)
k = cv2.waitKey(30) & Oxff
if k ==27:

break

cap.release()
cv2.destroyAllWindows()

60

