DESIGN AND ANALYSIS OF FRAME SCAFFOLDING CAPACITY USING THICKNESS AND MATERIAL AS VARIABLES

JEGATHIS A/L MURUGESU

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR

2017

i

DESIGN AND ANALYSIS OF FRAME SCAFFOLDING CAPACITY USING THICKNESS AND MATERIAL AS VARIABLES

JEGATHIS A/L MURUGESU

RESEARCH REPORT SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER ENGINEERING

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR

2017

i

UNIVERSITY OF MALAYA ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Jegathis A/L Murugesu (I.C/PassportNo:

Matric No: KQK160004

Name of Degree: Master Mechanical Engineering

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"): Master of

Mechanical Engineering

Field of Study: Design and analysis of frame scaffolding capacity using thickness and material as variables

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date:

Subscribed and solemnly declared before,

Witness's Signature

Date:

Name:

Designation

DESIGN AND ANALYSIS OF FRAME SCAFFOLDING CAPACITY USING THICKNESS AND MATERIAL AS VARIABLES

ABSTRACT

This thesis presents a comprehensive investigation of the design and analysis, based by variable thickness and material of steel frame scaffolding systems. Support scaffolding systems are used to provide temporary support to timber formwork systems, reinforcement, concrete, workmen and equipment, during the construction of permanent structures such as buildings and bridges. Conventional steel frame or called as a frame scaffold steel are the focus of the thesis. This thesis includes the collection and statistical analysis on thickness and material especially on material of JIS 3444 STK 500 and JIS 3444 STK 400 of load effects occurring as a result of after load test on steel frame scaffolding. A comprehensive series data based have been collected before test and purely test hand on tests, three major consideration have been taken which is tensile strength, yield strength and elongation based on chosen material.. This load capacity test exercise also provides statistical data for modelling error. The higher tensile strength analysis to determine the suitable material with right thickness for steel frame scaffolding. The research showed that strength of scaffolding is not just depends on steel frame but also depends on thickness which in this case we use 2.3mm and 2.5mm of the scaffolding system.

DESIGN AND ANALYSIS CAPACITY OF FRAME SCAFFOLDING USING

VARIABE THICKNESS AND MATERIAL

ABSTRAK

Tesis ini membentangkan penyiasatan komprehensif mengenai reka bentuk dan analysis, berdasarkan ketebalan dan material perancah rangka besi. Sistem sokongan perancah digunakan untuk memberi sokongan sementara kepada sistem kerja kayu, tetulang, konkrit, pekerja dan peralatan kayu, semasa pembinaan struktur tetap seperti bangunan dan jambatan. Bingkai keluli konvensional atau dipanggil sebagai bingkai perancah rangka adalah tumpuan tesis. Tesis ini merangkumi pengumpulan dan analisis statistik mengenai ketebalan dan material dari JIS 3444 STK 500 dan JIS 3444 STK 400 kesan beban yang berlaku akibat daripada ujian beban pada rangka rangka besi. Data berasaskan siri komprehensif telah digabungkan sebelum ujian danbeberapa ujian ke atas perancah, tiga pertimbangan utama telah diambil iaitu kekuatan tegangan, tegangan kasar dan eleogasi berdasarkan bahan yang dipilih. Latihan kapasiti beban ini juga menyediakan data statistik untuk kesalahan pemodelan. Analisis kekuatan tegangan yang lebih tinggi untuk menentukan bahan yang boleh digunakan dengan ketebalan yang tepat untuk perancah bingkai baja. Kajian ini menunjukkan bahawa kekuatan perancah tidak hanya bergantung kepada bingkai keluli tetapi juga bergantung kepada ketebalan yang dalam kes ini kita menggunakan 2.3mm dan 2.5mm sistem perancah.

ACKNOWLEDGEMENTS

As I hereby want to say thanks to University of Malaya for giving an opportunity to do a research which can improvise my technical career in future.

Therefore I also thank to my supervisor Ir.Dr. Wong Yew Hoong who provides great supervise work and give lots of useful feedback during progression of my project. His advice, guidance and supports I deepest appreciated. I would not have successfully completed this project without his help.

Next I would like to express sincere gratitude to my friends and engineers for helping and guiding me in the process of getting a better understanding of my project requirements and also getting basic information of my project.

For more, thanks to my family member and friends as well who directly or indirectly help me to complete the report.

TABLE OF CONTENTS

Abstract	iii
Abstrak	iiiv
Acknowledgements	v
Table of Contents	vi
List of Figures	
List of Tables	
List of Charts	
List of Appendices	xii

CHA	PTER 1: : INTRODUCTION	.1
1.0	Introduction on Scaffold and Problem Statement	.1
1.1	Falsework and Formwork	3
1.2	Frame Scaffolding Material	4
1.3	Objectives	5

2.0	Introd	uction	.6
2.1	Frame	Scaffold System	8
	2.1.1	Steel Scaffolding Classification	9
2.2	Scaffo	ld configurations1	0
2.3	Main	Causes of Scaffolding Failure1	1
2.4	Materi	al1	3
	2.4.1	Steel Tubes1	3
	2.4.2	Aluminium tubes1	3
	2.4.3	Grades and Symbol1	.4

	2.4.4 Japan Industry standard (JIS)	15
	2.4.4.1 JIS 3444 STK 500	15
	2.4.4.2 JIS 3444 STK 400	16
2.5	Deterministic Method of design	17
2.6	Effevtive length	18
2.7	Bracing Systems	18
2.8	Ultimate Load of Scaffolding systems	19
2.9	Safety maximum load	20
СНА	PTER 3: METHODOLOGY	
3.1	Introduction	21
3.2	Thesis flow chart	.22
3.3	Research objective and content	23
3.4	Modeling of Steel Frame Scaffolding with 2.3mm thickness	23
3.5	Material and tools selection	25
3.6	Prefabricated scaffold- specification for steel frame scaffolding	26
3.7	Specification of scaffolding Component	27.
	3.7.1 Tolerance of tube affolding systems	28
3.8	Manufacturing Process of Steel Pipe	28
3.9	Comparison between STK500 AND STK400	29
3.10	Chemical composition between STK 500 and STK 400	30
3.11	Test Planning	31
	3.11.1 One Bay Steel Frame Scaffold	31
3.12	Graphical Results	32

CHA	PTER	4: RESULTS AND DISCUSSION	33
4.1	Model	ing for Load test	33
4.2	Chemi	cal Properties on STK 500 and STK 400 with various thickness	34
	4.2.1	Chemical properties for JIG 3444 STK 500 thickness 2.5mm	34
		4.2.1.1 Summary of chemical composition	35
	4.2.2	Chemical properties for JIG 3444 STK 400 thickness 2.5mm	36
		4.2.2.1 Summary of chemical composition	37
	4.2.3	Chemical properties for JIG 3444 STK 500 thickness 2.3mm	38
		4.2.3.1 Summary of chemical composition	39
4.3	Comp	arison test report	40
	4.3.1 J	IS 344 STK 500 ø42.7mm X 2.5mm	40
		4.3.1.1 Summary of Tensile Test	41
	4.3.2 J	IS 344 STK 400 ø42.7mm X 2.5mm	42
		4.3.2.1 Summary of Tensile Test	43
	4.3.3 J	IS 344 STK 500 ø42.7mm X 2.3mm	44
		4.3.3.1 Summary of Tensile Test	45
4.4	Comp	arison test results	46
4.5	Sum	mary	48
CHA	APTER	4: CONCLUSION AND RECOMMENDATION	49
5.1	Conclu	usion	49
5.2	Reco	ommendation	50
Dofo	rancas		51
Appe	endix		53

LIST OF FIGURES

Figure 1.1: Typical scaffold system	2
Figure 1.2: Conventional Frames with various dimensional	3
Figure 1.3: Conventional Frames Scaffold Dimension	4
Figure 2.1: Scaffolding collapse at Jalan Barat, Petaling Jaya	7
Figure 2.2:Steel Frame Scaffolding with Dimensions	8
Figure 2.3: Falsework and Formwork Components	9
Figure 2.4: Typical component and configuration of a single scaffolding system layout	10
Figure 2.5: Predicted Buckled Shape for Steel frame	12
Figure 2.6: Steel Frame installation with bracings	19
Figure 3.1: End View of scaffolding testing assembly	24
Figure 3.2: Steel frame scaffold dimension with other member parts	25
Figure 3.3: Hot finished tubes production	28
Figure 4.1: Results of laod test STK 500 with thickness of 2.5mm	40
Figure 4.2: Results of laod test STK 400 with thickness of 2.5mm.	42
Figure 4.3: Results of laod test STK 400 with thickness of 2.3mm.	44

LIST OF TABLES

Table 2.1: Grades and Symbol	14
Table 2.2: World Standard Comparative Table	14
Table 2.3: JIG G3444 STK 500 stell pipeline chemical composition	15
Table 2.4: Mechanical properties for STK 500	15
Table 2.5: JIG G3444 STK 400 stell pipeline chemical composition	16
Table 2.6: Mechanical properties for STK 400	16
Table 3.1: Inspection and testing with clauses	26
Table 3.2: Dimensional and performance requirement	27
Table 3.3: Diameter, thickness and dimensional tolerance of tubes	28
Table 4.1: Chemical properties for JIG 3444 STK 500 thickness 2.5mm	34
Table 4.2: Chemical properties for JIG 3444 STK 400 thickness 2.5mm	36
Table 4.3: Chemical properties for JIG 3444 STK 500 thickness 2.3mm	38

LIST OF CHARTS

Chart 3.1: Inspection and testing with Clauses	26
Chart 3.1: Radar Chart Comparison between STK 500 and STK 400	29
Chart 3.1: Radar Chart Chemical Comparison between STK 500 and STK 400	30

university

LIST OF APPENDICES

Appendix A: Material Quantity	.52
Appendix B: Material Quantity with dimension	.53
Appendix C: Material properties	.54
Appendix D: Material properties	55
Appendix E: Technical specification Reference	.56
Appendix F: Carbon Steel Tubes For General Structural Purpose	.57
Appendix G: Carbon Steel Tubes For General Structural Purpose	.58

PRINCIPAL NOTATIONS

- *A* cross-sectional area
- *d* distance between objects
- d_e external diameter of the tube
- d_i internal diameter of the tube
- *d*_o outside diameter
- *E* Young's modulus
- *E_o* initial Young's modulus
- f_y yield strength
- *h* height of the scaffold unit
- h_e effective height of the scaffold
- *H* height of the scaffold system
- *L* one-storey height of the scaffold unit; member length
- L_h lift height
- *N* number of storeys
- p_c compressive strength of the column
- p_c elastic buckling strength of the column
- p_y yield strength of the steel tube
- *P* vertical load
- P_{cr} critical load
- *Q* total load effect
- t wall thickness
- α_a compression member factor
- γ_i load factors
- δ deflection

CHAPTER 1: INTRODUCTION

1.0 Introduction on Scaffold and Problem Statement

Scaffolds are temporary structures generally used in construction to support various types of loads. The vertical loads on scaffold can be from laborers, construction equipment, formworks, and construction materials. Commonly, scaffolds must also be designed to withstand lateral loads, including wind loads, impact loads, and earthquake loads. Depending on the use of the scaffolds, they may be categorized as the access scaffolds or the support scaffolds. The access scaffolds are used to support light to moderate loads from laborers, small construction material and equipment for safe working space. They are usually attached to buildings with ties and only one bay wide. Support scaffolds, or sometimes called falsework, are subjected to heavy loads, for example, concrete weight in the formwork. Both types of scaffolds can be seen in everyday construction as shown in Figure 1.1. Current scaffolding frame with thickness of 1.9mm occurring major safety issue such as framework collapse, buckling and easily damage during erecting, dismantling and transferring. Major failure been identify due to material and thickness of current scaffolding frame. Due to this failure, many major companies facing property damage, injuries and financial losses.

(a)

(b)

Figure 1.1: Typical scaffold systems: (a) access scaffold; and (b) support scaffold

This report presents a review of scaffold research in the analysis and modelling, including the design of scaffold systems. In addition, it covers a brief description of scaffold systems, types of connections, and construction recommendations. In terms of modelling, it focuses on how complex joints and boundary conditions have been modelled and how geometric imperfections have been taken into account. For the design of scaffold systems, it summarizes the current procedure based on the standards of practice.

With such a tremendous investment in the form of lives and property resting on the scaffolding system, it is imperative for all involved to know with a high degree of certainty the load carrying capacity. However, construction practice today relies primarily on experience and tradition in setting the amount of load that a particular scaffolding arrangement can safely carry. Although many manufacturers have recently begun to accumulate load test data on components of their systems, such information alone does not provide a direct means of predicting the ultimate carrying capacity of a complete system on the job site.

1.1 Formwork and Falsework

Formwork means the surface of the form and framing used to contain and shape wet concrete until it is self-supporting. Formwork includes the forms on or within which the concrete is poured and the frames and bracing which provide stability. Although commonly referred to as part of the formwork assembly, the joists, bearers, bracing, foundations and footings are technically referred to as falsework. Falsework means the temporary structure used to support a permanent structure, material, plant, equipment and people until the construction of the permanent structure has advanced to the stage where it is self-supporting. Falsework includes the foundations, footings and all structural members supporting the permanent structural elements. Falsework can be used to support formwork of concrete, prefabricated concrete elements, steel sections or stone arches, for example during bridge construction.

Figure 1.2: Conventional Frames with various dimensional

Figure 1.3: Conventional Frame Scaffold Dimension

1.2 Frame Scaffolding Material

The basic lightweight tube scaffolding that became the standard and revolutionised scaffolding becoming the baseline for decades. With one basic 13kg unit a scaffold of various sizes and heights could be assembled easily by a couple of labourers without the nuts or bolts previously needed. Tubes are usually made either of steel or aluminium, although there is composite scaffolding, which uses filament wound tubes of glass fibre in a nylon or polyester matrix, because of the high cost of composite tube, it is usually only used when there is a risk from overhead electric cables that cannot be isolated. If steel, they are either coloured or galvanised. The main difference between the two types of metal tubes is the lower weight of aluminium tubes. However they are more flexible and have a lower resistance to stress. Tubes are generally bought in 6.3 m lengths and can then be cut down to certain typical sizes.

1.3 Objective

- 1 Study the ultimate load capacity and buckling action on frame scaffolding of 2.5mm and 2.3mm thickness using two materials JIS 3444 STK 500 and JIS 3444 STK 400.
- 2 Analytical capacity and compare load test with current existing frame scaffolding.

university

CHAPTER 2: LITARATURE REVIEW

2.0 Introduction

Over the past several years, different scaffolding systems have been designed to support permanent and temporary works during different stages of construction all over the world. With such a tremendous investment in the form of lives and property resting on the scaffolding system, it is imperative for all involved to know with a high degree of certainty the load carrying capacity. However, construction practice today relies primarily on experience and tradition in setting the amount of load that a particular scaffolding arrangement can safely carry. The consequences of overloading scaffoldings are evident in the recent accidents. In this chapter, it will be continue more on detail information of suitable Conventional frame scaffolding materials and dimension. The material justification will be proven based on load test done on particular material chosen for this conventional scaffolding system.

The industry has experienced a gigantic growth in this century, the market appeared to be leading to the development of improvement at a very large scale process. The great need for scaffolding has also increased the importance at utilizes scaffolding systems in order to support men, materials and structural elements. There is no doubt that material and properties has made significant contribution on scaffolding material selection and design in the industrialized countries.

On the other hand it has become clear that selection of material for scaffolding is based on usage and application of industries. Although many manufacturers have recently begun to accumulate load test data on components of their systems, such information alone does not provide a direct means of predicting the ultimate carrying capacity of a complete system on the job site. The recent scaffolding collapses at Persiaran Barat in Petaling Jaya cause three foreign workers injured, while three others trapped when temporary structure of an under construction collapse demonstrate the potentially fatal consequences of overloading scaffolding systems and failure due to material and design (Jui-LinPeng, 2017).

Figure 2.1: Scaffolding collapse at Jalan barat, Petaling jaya.

The question is which suitable material and design of scaffolding is suitable for Conventional Scaffolding. The basic lightweight tube scaffolding that became the standard, tubes are usually made either of steel or aluminum, although there is composite scaffolding, which uses filament wound tubes of glass fiber in a nylon or polyester matrix, because of the high cost of composite tube, it is usually only used when there is a risk from overhead electric cables that cannot be isolated. If steel, they are either colored or galvanized. The tubes come in a variety of lengths and a standard diameter of 42.7 mm.

2.1 Frame Scaffold Systems

Scaffolding systems are used as temporary support for structures under construction or needing repair. Their primary function is to support various types of loads such as vertical loads imposed by workmen, construction equipment, and construction materials. Scaffolds must also be designed to withstand lateral loads such as wind loads, impact loads, and earthquake loads (Brand, R.E MacGrew Hill).

Figure 2.2: Steel Frame Scaffolding with Dimensions

2.1.1 Steel Scaffolding Classification

Scaffolding is classified as either access or support, depending on its application. Access scaffolds are typically used around the perimeter of buildings and provide vertical access on a construction site. Access scaffolds are designed to support small loads such as workers and their equipment. They are usually configured as a single bay that is tied to a building for lateral stability, as seen in Figure 6. Support scaffolds are typically referred to as 'false work' and are used as platforms to support timber formwork for reinforced concrete slab construction. They are typically heavily loaded under the weight of formwork, newly poured concrete, stacked materials, as well as construction workers and their equipment. Support scaffolding systems are used to support timber bearers which pass through the top "U-head" connection. These bearers are orientated along their strong axis and typically span between three or four U-head connections. Wet concrete is then poured onto this timber deck to form a slab. This entire timber system is known as the 'formwork system' refer to Figure 6, and is subsequently supported by the scaffolding system or 'false work system' (Robert G.Beale, 2014)

Figure 2.3: Falsework and Formwork Component

2.2 Scaffold Configurations

Support scaffolding systems are common forms of temporary support within the Malaysia construction industry and their configuration and component usage have remained the same for many years due to the high cost of replacing inventory. Support scaffold systems are typically constructed from a Steel Frame system of circular hollow steel tubes and feature joints which allow the system to be easily assembled for quick erection, dismantling, and transportation. Frame scaffolding systems vary in height from ground level to the top of the building and consist of a number of lifts that are constructed using vertical Steel Frames connected with bracing and ladder frames, as seen in Figure 2.3. The common configurations of steel support scaffolds includes standard door type, knee braced door type, construct staircase and stick type. Each of these configurations can be seen in Figure 2.4.

Figure 2.4: Typical components and configuration of a single scaffolding system

layout

Scaffold systems can be adapted to a particular job so their height can increase from one storey to top of the building as well as having many horizontal rows, depending on the type of construction. Being a temporary structure, scaffold members are reused from one job to another, and geometric imperfections, particularly in highly loaded standards are typical (Chung-WeiWu, 2013).

2.3 Main Causes of Scaffolding Failures

There are very significant findings from the forensic investigations of each scaffolding failure from which clear evidence exists that amongst other causes the main reasons for scaffolding collapses are:

1. Overloading of scaffolding systems

- 2. Material Failure
- 3. Insufficient strength

Furthermore, it was determined that 74 percent of scaffolding collapses occurred during the pouring of concrete, and the main cause was material and its strength. Errors related to reinforcement cover and concrete workmanship contributes to overall system risk. Although this data is arguably out of date, more recent incidents have confirmed these results. The possible causes of collapses were identified as material failure of the scaffold systems, instability of shoring components, partial loading of wet concrete whilst in the formwork, the placement pattern of concrete, and a concentration of load due to placement (Wei TongChena, 2009).

Since steel scaffolding is a temporary structure the serviceability limit states do not generally govern design, so the yield stress should be greater than 235 N/mm² state design is critically important. Due to the slender form of scaffolding, ultimate failure generally

occurs because of buckling. The two most common types of buckling are out of plane and in plane buckling (as seen in Figure 7), with standards buckling in a single or double curvature depending on the boundary support conditions and the system. Metal scaffolding equivalent uniformly distributed load is between 0.75 kN/m² for class 1 and 6.0 kN/m^2 for class 6. In MS 1462 the maximum design wind pressure is 770 N/m² and the working wind is 200 N/m².

Figure 2.5: Predicted Buckled Shape for Steel Frame

A factor of safety 2.0 is used to give the allowable axial load on frames. For 42.7mm outer diameter and 2.3 mm thickness tubular steel, the safe load effective length is equal to 40 kn. three dimensional analysis determined that if the cross braces offered more lateral support the scaffold units would deform in plane (EwaBłazik-Borowa, 2013)

2.4.1 Steel Tubes

Steel tubes shall comply with AS 1576.3 or BS 1139 and meet the following requirements:

Minimum yield strength 200 MPa

Outside diameter 48.3 mm

Minimum wall thickness 4.0 mm

Steel tubes must complying BS 6323 from parts 1 to 4, and with a minimum outside diameter and wall thickness 48.3 mm and 3.2 mm respectively are used for scaffolding, such tubes shall be galvanized in accordance with Annex A of BS 1139 section.

2.4.2 Aluminum Tubes

Aluminum tubes must comply with AS 1576.3 or BS 1139 from part 1 to 2 and meet the following requirements:

Minimum yield strength 241 MPa

Outside diameter 48.4 mm

Minimum wall thickness 4.47 mm

All scaffolding accessories shall be manufactured from material in accordance equivalent material with performance test requirements. Where the design call for the use of material strictly in accordance with manufacturer's recommendation and shall me performance test requirements.

2.4.3 Grades and Symbol

i. Symbol Of Class	ii. Former Symbol
iii. STK 290	iv. STK 30
v. STK 400	vi. STK 41
vii. STK 500	viii. STK 51
ix. STK 490	x. STK 50
xi. STK 540	xii. STK 55

Table 2.1: Grades and Symbol

Table 2.2: World Standard Comparative Table

KS		AS	ГМ	J	JIS DIN		В	BS	
Number	Grades	Number	Grades	Number	Grades	Number	Grades	Number	Grades
	SPS 290 (new) SPS 30 (old)	A 500	Gr A		STK290 (STK30)			6323	HFW2
	SPS 400 (new)	A252	Gr 2		STK400				HFW4
D 3566	SPS 41 (old)	A500	Gr A	G -3444	(STK41)			6323	RAW4
		A501							HFS4
	SPS 500 (new) SPS 51 (old)	A500	Gr C		STK500 (STK51)				

2.4.4 Japan Industry standard (JIS)

2.4.4.1 JIS G3444 STK500

JIS G3444 is the standard of carbon steel tubes for general structural purposes. JIS G3444 STK500 steel tube minimum tensile strength of 500 MPa, yield strength of 355 MPa. The minimum elongation of JIS G3444 STK500 seamless steel pipelines 25%.STK500 steel tubing has excellent welding performance and toughness.

- I. Steel Grade: STK500
- II. Standard: JIS G3444
- III. Brand Name: Upworld Industrial
- IV. Out diameter 6-1000mm
- V. Wall thickness 1-70mm

Table 2.3: JIS G3444 STK500 steel pipeline chemical composition

Symbol of class	С	Si	Mn	Р	S
STK 500	0.24 max	0.35 max	0.30 to 1.30	0.040 max	0.040 max

Table 2.4: Mechanical properties for STK 500

			Elongation %				
			No.11 & No.	No. 5 Test			
Mechanical properties	Tensile strength	Yield point of	12 Test pieces	pieces			
	N/mm ²	proof stress N/mm ²	Longitudinal	Transverse			
		r	direction	direction			
Method of							
manufacture	Seamless, butt-welding, electric resistance welding and arc welding process						
Outside diameter	Full range	Full range	Over 40 min				
STK 500	500 min	355 min	15 min`	10 min			

2.4.4.2 JIS G3444 STK400

JIS G3444 is the standard of carbon steel tubes for general structural purposes. JIS G3444 STK400 steel tube minimum tensile strength of 400MPa, yield strength of 235 MPa. The minimum elongation of JIS G3444 STK400 seamless steel pipelines 23%.STK 400 steel tubing has excellent welding performance and toughness.

- I. Steel Grade: STK400
- II. Steel Grade: STK400
- III. Standard: JIS G3444
- IV. Brand Name: Upworld Industrial
- V. Out diameter 6-1000mm
- VI. Wall thickness 1-70mm

Table 2.5: JIS G3444 STK400 steel pipeline chemical composition

Symbol of	С	Si	Mn	Р	S
class					
STK 500	0.24 max		-	0.040 max	0.040 max

Table 2.6: Mechanical properties for STK 400

			Elongation %			
Mechanical	Tensile strength N/mm ²	Yield point of	No.11 & No.	No. 5 Test		
		proof stress	12 Test pieces	pieces		
properties		N/mm ²	Longitudinal	Transverse		
			direction	direction		
Method of	Seamless, butt-welding, electric resistance welding and arc welding					
manufacture	process					
Outside	Eull ronge	Eull ronge	Over 40 min			
diameter	Full range	Full range				
STK 500	400 min	235 min	23 min`	18 min		

2.5 Deterministic Methods of Design

The development of current reliability based load and resistance factor design (LRFD) has its origins rooted in allowable stress design which requires that the stresses resulting from loads are less than a working stress level, based on successful similar past experiences. The design standard committee typically specified the value of allowable stress as some fraction of the mechanical properties of the material (for example, the ultimate tensile strength). A permissible safety level was assumed to exist if the elastically determined stresses did not exceed the allowable working stresses, which were a fraction of the yield strength (H.Zhang, 2010).

Where σ ui accounts for the permissible stresses derived from the strength of the material and are σ 1 the expected applied stresses. The safety factor existed to reduce the material strength or the resistance properties and was traditionally selected on past experience, experimental observations, accepted practices, and even using a 'professionals feelings about the relative variability of various materials' (Ellingwood, 1980). However, the allowable stress design did not guarantee a constant level of safety for all structures, nor did it account for the effect that different types of loads had on each

other, for example, when one load counteracts the effects of another. Load factor theory was deterministic and used factors to increase the expected loads on a structure in order to ensure that the resistance was satisfactory. A structure will collapse if the factored sum of loads (γQ) are greater than the resistance (R_{ul}) of the structure or member. That is, $R_{ul} \leq \gamma Q$. In contrast to the allowable stress design which analyses a structure at a member level, the load factor method is applied to the structure in its entirety and took into account the consequences of failure and the possibility of unknown loadings.

2.6 Effective Lengths

Identification of the effective length of a column is critical to the design processes. Researchers have suggested values for the effective length of a column based on buckling analysis models because the amount of end restraints in the vertical standards of scaffold systems is difficult to determine. The effective length coefficients of steel scaffold systems were conservatively assumed to be for idealized boundary conditions. The effective lengths for steel scaffolds were back calculated from finite element models with the various boundary conditions and were found to be in the range of 1.06 to 1.40. An effective length of 1.2 times the height of each storey (L.B.Weesner, 2001)

2.7 Bracing Systems

Diagonal cross bracing is a critical factor in the stability of a system, because it can also increase the load carrying capacity and reduce the effective lengths of scaffold. In a study of Cross bracing (as seen in Figure 2.16) in single storey scaffold systems, Peng (2004) identified that cross bracing was twice as stiff as other bracing. Furthermore, the diagonal bracing is an efficient restraint to the system because small lateral displacements were calculated as opposed to scaffold systems without bracing (TayakornChandrangsu, 2011)

Figure 2.6: Steel Frame installation with bracings

2.8 Ultimate load of scaffolding system

The load carrying capacity was affected by the length of horizontal stringers, vertical shores, and the stiffness of stringers and the position of strong shores. The load carrying capacity of a system could be increased by adding strong shores. The length of the horizontal stringer increased or the stiffness of the horizontal stringer decreased, the ultimate load carrying capacity of the system was reduced. However, in a symmetrical arrangement of strong shores, the ultimate loads were not affected by an increase in the stiffness of stringers. Varying the lengths of the vertical bracing had different effects on the system depending on the arrangement.

2.9 Safety maximum load

Safety is a function of the maximum load imposed on a structure throughout its design life. On the other side of the design equation, safety is also a function of the strength or resistance capacity of the structure. Safety is therefore a function of how much greater the Resistance is to the amount of Load applied to a structure. That is, the lifetime maximum load and actual resistance of a structure is difficult to predict because any prediction is subject to uncertainty so having no risk of failure is not economically justifiable. Furthermore, safety may only be assured in terms of the probability that the available resistance will withstand a maximum load or load combination. Limit State Design involves the consideration of different scenarios under which a structure will cease to fulfil its intended function. The two limit states most commonly designed for are:

Serviceability Limit State: failure from normal operations which causes deterioration of routine functionality. This includes unacceptable deformations, excess vibrations, and structural defects.

Ultimate Limit State: failure and collapse of structure as a result of catastrophic losses of structural strength and stiffness. This includes loss of structural equilibrium, achievement of maximum resistance, and collapse due to buckling.

CHAPTER 3: METHODOLOGY

3.1 Introduction

This chapter describes the methodology and design used to reach the objective. A configuration has been chosen which is similar to steel frame used in other field. Atmospheric influences are especially important for containment applications. For initial stage, the idea and concept of the title is studied and chosen. Information, data or other sources that related to the load test of steel frame system is found out. The information is collected by research method and experimental works while the work is done by method of research and experimental works. The load test of steel frame itself provides some resistance to the

3.2 Thesis flow chart

3.2 Research objective and contents

This study explores the structural behaviors of single row steel frame scaffolds by conducting loading tests based on various material of steel frame scaffold we commonly used in construction sites. In addition to providing the dimensions and elastic modulus of the steel scaffolds, test results of this study provide a valuable reference for determining related parameters in follow up numerical analyses, including the bending moment stiffness's of scaffold joints, U-shaped screw jacks and base screw jacks. Hopefully, results of this study can facilitate efforts to improve the material selection and I design of steel frame steel scaffolds. In particular, this this study focuses on the following objectives:

- determine the load carrying capacities and failure steel frame scaffolds with various material setups to function as the basis for strength comparison;
- Compare existing Frame scaffolding with load test and analytical capacity

3.4 Modelling of Steel Frame Scaffolding with 2.3mm thickness

The design of Conventional Frame Scaffolding is been sketch and drawn referring to the original scale set by Malaysia Standard (MS 1462) Metal scaffolding – Prefabricated scaffolds guides. The given data and dimension are based by clauses and standards from CIDB. Four different varieties of frame scaffolding were tested in the work reported herein. Frames A through C were manufactured by various Scaffolding company. All test assemblies were formed from components selected base by material from manufacture on hand. The dimensions and properties of each are given from two common material used for manufacture Frame scaffold which is JIS 3444 STK 500 AND JIS 3444 STK 400. In each of the load tests, six frames were used to erect a three high stack with tubular cross bracing at each of the three levels, as shown in Figs 7. The overall height of the tested assembly was approximately 5.1 m. Each frame assembly was erected by company crews using procedures for squaring and alignment of the system followed on commercial installations.

Figure 3.1: End view of scaffold testing assembly.

3.5 Material and tool selection

In order to fabricate this steel frame scaffolding, the material needed as below.

Figure 3.2: Steel frame scaffold dimension with other member parts

- 1. Part A Ø42.7,2.3mm x 1700mm
- 2. Part B Ø42,2.0mm x 1219mm
- 3. Part C Ø20,1.6mm x 1170mm
- 4. Part D Ø20,1.6mm x 140mm
- 5. Part E Ø21.7,1.6mm x 655mm
- 6. Part F Ø21.7,1.6mm x 55mm

All parts is welded together according to Clause 7 & Clause 8 of CIDB inspection and testing, protection (Clause 7) and welding (Clause 8).

Chart 3.1: Inspection and Testing with clauses

3.7 Specification of Scaffolding Components

The national standard specification of steel frame scaffolding is drafted by Standard Industries and Research Institute of Malaysia (SIRIM). Dimension and performance requirement of frame scaffold components is given in the standards shown in table 1. The term used is illustrated in figure 1 which is not regarded as part of the specification. The frame scaffolding and its components shall meet the performance requirement of the table when tested with the standard.

Component	Dimensions	Constitutional part	Load test Requirement
	42.7 x 2.5	Standard and horizontal member	Deflection under 9.81kN = 10mm max
Vertical Frames	27.2 x 2.0 14.0	Reinforment member Cross brace pin	Compressive strength = 73kN min for 1.8m and 68kN higher than 1.8m height
Cross Brace	21.7 x 2.0 7.5	Brace member Hinge pin	Compressive strength = 7.3kN min Strength of hinge pin = 5.88kN min
Horizontal frame	42.7 x 2.5 34.0 x 2.3 8.0	Tube member Transverse member hook	Deflection = 10mm max Bending strength 4.9kN
Adjustable jacks	35 140 x 140	Shank baseplate	Compressive strength = 59.8kN min

Table 3.2: Dimensional and performance requirement

3.7.1 Tolerances of tube

MS 1462-2-1 for steel tube and MS 1462-2-2 for aluminum tube covers tube size and thickness as follows.

		Steel	Aluminium
Diameter	Size	48.30mm	48.30mm
	Tolerance	±0.5mm	±0.5mm
Thickness	Size	3.2mm,	4.47mm
		4.0mm	
	Tolerance	10%	±0.56mm

 Table 3.3. Diameter, thickness and dimensional tolerance of tubes

3.8 Manufacturing Process of Steel Pipe

Figure 3.3: Hot finished tubes production

3.9 Comparison between STK 500 and STK 400

Chart 3.2: Radar chart comparison between STK500 AND STK 400

The tensile strength, yield strength and elongation are determined from standard test pieces, which may be the full section of the product or longitudinal or transverse strip specimen. The location of strip test pieces should be away from the weld, for circular hollow section and midway between corners on the side not effected by the weld for square and rectangular hollow sections.

3.10 Chemical composition between STK 500 and STK 400

Chart 3.3: Radar chart chemical comparison between STK500 AND STK 400

It's been notice that, there are 5 different element which is similar for both material which is Carbon, Silicon, Manganese, Phosphorus and Sulphur. The content of chemical composition changes the characteristic of the material itself. It believe STK500 contain high Manganese compare to STK 400 but STK 400 contains highest number chemical of Silicon compare to STK 500.

3.11 Test Planning

The accurate reflection the conditions on construction sites by using three setups of single row of steel frame scaffolds, one bay steel frame scaffold with various thickness and material. The first loading is applied to obtain load carrying capacity of each setups of steel frame scaffold. After unloading, each setup of steel scaffold is reset and then, the load carrying capacity of steel frame scaffold in the worst condition on the construction site is determine using the second loading.

3.11.1 One bay Steel Frame Scaffold

Test are performed on one bay steel scaffold to provide a reference for test on single row steel frame scaffold. These tests are conduct on various thickness and material of one bay steel frame scaffold with height of 3 story which is 5.1m. The steel scaffold used in this test are same in dimension and design but only various by thickness and material. The top of each steel frame is attach together with join pin in the mid-section. The top and bottom steel frame scaffold structure are attach with 650mm jack base and u-head. The scaffolding structure is reinforced with cross brace on both side of frames. Figure 44 shows the setup of entire scaffold. Unless otherwise specified, the top and bottom arrangement as well as the cross brace. Also the setup of their storey scaffolding structure is similar to that of another side of the frame. The Dimensional of each member of frame is similar to another.

3.12 Graphical Results

The tests performed at Huatraco Sdn Bhd Laboratory measured the material characteristics of the conventional frame with material of JIS 344 STK 500 and JIS 344 STK 400. 3 tests were performed with two different material and two different thickness of vertical member of selected frame scaffold. The results will produce from a software of load test equipment. The results showed a relationship between the force (axial load) and buckling action which react with stroke length which will appear when the load is applied. The force-stroke relationship and then plotted for each test and the results are shown in Figure 4.1 to Figure 4.3. More information regarding each test, including observations and photographic evidence, can be seen in the clear and distinct pattern of buckling occurred during the test.

This was confirmed through an analysis of the experimental data, which showed a point of instability (Figure 4.1 to figure 4.3). The load generated by the hydraulic ram caused a linear increase in the load recorded by the load cells and this was combined with a secondary application of load from steel blocks that became more and more eccentric as rotation continued. Other critical findings from the experiment related to the results attained from the three different frames with same storey height.

CHAPTER 4: RESULTS AND DISCUSSION

As mentioned in the second chapter, the design and material is heart of Steel Frame scaffolding system. I must make sure that the material selection suites my design of steel frame scaffolding. Based on previous design, the thickness of the vertical member is major concern because the load will be distribute through the vertical member of the frames I choose two type of nozzle suitable for my design.

4.1 Modeling for Load test

In order to fully capture the behavior of the scaffolding system, there model was chosen based by thickness and material.

1st Model

Product	: Frame (STK 500)
Product size	: 1219mm X 1700mm X 2.5mm
Model	: SM 101
Method of Test	: Specification for Steel Frame Scaffoldings

2nd Model

Product	: Frame (STK 500)
Product size	: 1219mm X 1700mm X 2.3mm
Model	: SM 101
Method of Test	: Specification For Steel Frame Scaffoldings

3rd Model

Product	: Frame (STK 400)
Product size	:1219mm X 1700mm X 2.5mm
Model Method of Test	: SM 101 : Specification for Steel Frame Scaffoldings

4.2 Chemical properties on STK 500 and STK 400 with Various Thickness

4.2.1 Chemical properties for JIG 3444 STK 500 thickness 2.5mm

Sample Name: X-2/8/STK 500/ø42.7 X 2.5Material: JIG 3444Specification: STK 500Method name: Fe-10-MSize: Ø42.7 X 2.5

Table 4.1: Chemical properties for JIG 3444 STK 500 thickness 2.5mm

Meas.	1	2	3	< <i>x</i> >
	%	%	%	%
	Conc.	Conc.	Conc.	Conc.
С	0.161	0.163	0.163	0.162
Si	0.162	0.167	0.166	0.165
Mn	1.01	1.01	1.00	1.01
Р	0.0262	0.0234	0.0232	0.0234
S	0.0209	0.0205	0.0208	0.0207
Cr	0.0156	0.0156	0.0156	0.0156
Мо	<0.00100	<0.00100	<0.00100	<0.00100
Ni 0.0064		0.0059	0.0068	0.0064
Al	0.00055	0.00013	0.00082	0.00090
Nb	<0.00100	<0.00100	0.0014	0.0011
U	0.0093	0.0091	0.0092	0.0092
Ti	<0.00020	0.00036	0.00032	0.00029
V	0.0292	0.0296	0.0299	0.0296
Ν	0.0050	0.0042	0.0035	0.0042
В	<0.00020	<0.00020	<0.00020	< 0.00020

4.2.1.1 Summary of chemical composition

Kinetics of inclusion transformations are controlled by mass of chemical composition in each metal type. All chemical composition and slag changes contributes changes of characteristic and strength of the particular material. There is a strong relation between metal and nonmetal substance in which consider as main substance for metal forming. Carbon (C) and Manganese (Mn), For JIG 3444 STK 500 thickness 2.5mm the Carbon contain is 0.162% while Manganese is 1.01%, the highest value of chemical composition in this metal. This ratio is the highest substance in other two metal and at the same time STK 500 with thickness 2.5mm having the highest rate. Other substance are consider equally same with other two metal compositions. This test has be done three times to get average value of chemical composition for this particular metal. This chemical composition results is collected from lab report produced by company called Huatraco Sdn Bhd. As part of the test design, we set out with the goal to understand the chemical composition which could related to strength would important criteria to choose perfect material.

4.2.2 Chemical properties for JIG 3444 STK 400 thickness 2.5mm

Sample Name	: X-2/8/STK 400/ø42.7 X 2.5
Material	: JIG 3444
Specification	: STK 400
Method name	: Fe-10-M
Size	: Ø42.7 X 2.5

Table 4.1: Chemical properties for JIG 3444 STK 400 thickness 2.5mm

Meas.	1	2	3	< <i>x</i> >
	%	%	%	%
	Conc.	Conc.	Conc.	Conc.
С	0.174	0.172	0.173	0.173
Si	0.0975	0.0969	0.0994	0.0980
Mn	0.447	0.442	0.441	0.443
Р	0.0210	0.0199	0.0204	0.0204
S	0.0342	0.0320	0.0360	0.0341
Cr	0.0153	0.0153	0.0155	0.0154
Мо	<0.00100	<0.00100	<0.00100	< 0.00100
Ni	0.0078	0.0078	0.0081	0.0079
Al	0.0065	0.0089	0.0065	0.0070
Nb	<0.00100	0.0012	<0.00100	0.0011
U	0.0121	0.0121	0.0122	0.0121
Ti	0.00023	0.00032	0.00020	0.00025
V	0.0023	0.0023	0.0022	0.0023
Ν	0.0079	<0.00100	0.0041	0.0023
В	<0.00200	< 0.00200	<0.00200	< 0.00200

4.2.2.1 Summary of chemical composition

For JIG 3444 STK 400 thickness 2.5mm the Carbon contain is 0.173% while Manganese is 0.443%, the highest value of chemical composition in this metal. This ratio is the highest substance in other two metal and at the same time STK 400 with thickness 2.5mm having the highest rate. The value of Carbon contain is higher than STK500 WITH THICKNESS OF 2.5MM, instead of that the composition of Manganese is very low compare to STK 500 thickness 2.5mm.Other substance are consider equally same with other two metal compositions. This test has be done three times to get average value of chemical composition for this particular metal. The carbon contain in this metal is higher compare to other two metal, while manganese contain is the lowest among the two metal.

4.2.3 Chemical properties for JIG 3444 STK 500 thickness 2.3mm

Sample Name	: X-2/8/STK 500/ø42.7 X 2.3
Material	: JIG 3444
Specification	: STK 500
Method name	: Fe-10-M
Size	: Ø42.7 X 2.3

Table 4.3: Chemical properties for JIG 3444 STK 500 thickness 2.3mm

Meas.	1	2	3	<x></x>
	%	%	%	%
	Conc.	Conc.	Conc.	Conc.
С	0.159	0.159	0.157	0.158
Si	0.210	0.212	0.215	0.212
Mn	1.37	1.39	1.38	1.38
Р	0.0392	0.0377	0.0401	0.0390
S	0.0226	0.0219	0.0253	0.0233
Cr	0.0226	0.0227	0.0225	0.0227
Мо	<0.00100	<0.00100	<0.00100	<0.00100
Ni	0.0070	0.0071	0.0073	0.0071
Al	0.0015	0.0034	0.0020	0.0020
Nb	< 0.00100	<0.00100	0.0011	0.0010
U	0.0083	0.0083	0.0083	0.0083
Ti	0.00023	0.00062	0.00044	0.00043
V	0.0047	0.0051	0.0049	0.0049
N	0.0035	0.0029	0.0021	0.0049
В	<00020	<00020	<00020	<00020

4.2.3.1 Summary of chemical composition

For JIG 3444 STK 500 thickness 2.3mm the Carbon contain is 0.158% while Manganese is 1.38%, the highest value of chemical composition in this metal. This ratio is the highest substance in other two metal and at the same time STK 500 with thickness 2.3mm having the highest rate. The value of Carbon contain is lowest among the three material tested on lab, the composition of Manganese is Highest compare to other two material 2.5mm. High contain of manganese consider as easiest to be rusted. Other substance are consider equally same with other two metal compositions. This test has be done three times to get average value of chemical composition for this particular metal.

4.3 Compression test report

4.3.1 JIS 344 STK 500 ø42.7mm X 2.5mm

Material : ø42.7mm X 2.5mm JIS 3444 – STK 500

Temperature :22.5 °C - 22.7 °C

Test type : Tensile

	Outer Diameter	Thickness	Gauge length
Units	mm	mm	mm
x-2/8	42.6200	2.3900	50.00

Name	Elastic	YS	TS	ELONGATION	Final Gauge length
Parameter	40.120 kN	0.2%			
units	N/mm ²	N/mm ²	N/mm ²	%	mm
X-2/8	3841.58	397.268	462.652	18.1200	59.0600

Figure 4.1: Results of load test for STK 500 with thickness of 2.5mm

4.3.1.1 Summary of Tensile Test

The test device mainly consists of a basic frame and the load cross vertical frame members. The steel frame contains the bottom join with Jack base and U-Head at the top, consisting of a force measuring device for measuring the testing Tensile strength. The height of the frame is 5.1m and this allows rod specimens with buckling occur to be examined. In order to standardize the results, a comparison of the compressive tensile strength and yield strength was performed. The percentage of Elongation and Elasticity of the collagen based scaffolds were differ when tested in compression compared with in tension whereas the produced results is Tensile strength =462.652 N/mm² and Yield strength =397.268 N/mm² with percentage of Elongation of 18.12%. In contrast, those properties of the based on the material and thickness of the steel frame scaffolding. In addition the Gauge length produce in the test is 59.06mm, this resulted show the maximum stroke length for this material is resulting at 140kN of force (Fig.4.1).

4.3.2 JIS 344 STK 400 ø42.7mm X 2.5mm

Material : Ø42.7mm X 2.5mm JIS 3444 – STK 400

Temperature : 22.5 °C - 22.7 °C

Test type : Tensile

	Outer Diameter	Thickness	Gauge length
Units	mm	mm	mm
x-3/8	42.7900	2.1800	50.00

Name	Elastic	YS	TS	ELONGATION	Final Gauge length
Parameter	35.100kN	0.2%			
units	N/mm ²	N/mm ²	N/mm ²	%	mm
X-3/8	3680.94	402.697	478.147	17.6000	58.8000

Figure 4.2: Results of load test for STK 400 with thickness of 2.5mm

4.3.2.1 Summary of Tensile Test

Second material is tested with the same height of 5.1m and examine the buckling effect after apply load on the steel Frame. A comparison of the compressive tensile strength and yield strength was resulted. The percentage of Elongation and Elasticity of the collagen based scaffolds were differ when tested in compression compared with in tension whereas the produced results is Tensile strength = 478.1472 N/mm² and Yield strength = 402.697N/mm² with percentage of Elongation of 17.60%. In contrast, those properties of the based on the material and thickness of the steel frame scaffolding. In addition the Gauge length produce in the test is 58.80 mm, this resulted show the maximum stroke length for this material is resulting at 132kN of force (Fig.4.2).

4.3.3 JIS 344 STK 500 ø42.7mm X 2.3mm

Material : ø42.7mm X 2.3mm JIS 3444 – STK 500

Temperature : 22.5 °C - 22.7 °C

Test type : Tensile

	Outer Diameter	Thickness	Gauge length
Units	mm	mm	mm
x-4/8	42.7900	2.2100	50.00

Name	Elastic	YS	TS	ELONGATION	Final Gaug length
Parameter	35.100kN	0.2%			
units	N/mm ²	N/mm ²	N/mm ²	%	mm
X-4/8	12443.9	466.676	508.876	15.9329	112.646

Figure 4.3: Results of load test for STK 500 with thickness 2.3mm

4.3.3.1 Summary of Tensile Test

Third and final material is tested with the same height of 5.1m and examine the buckling effect after apply load on the steel Frame. A comparison of the compressive tensile strength and yield strength was resulted. The percentage of Elongation and Elasticity of the collagen based scaffolds were differ when tested in compression compared with in tension whereas the produced results is Tensile strength =508.876N/mm² and Yield strength =466.676 N/mm² with percentage of Elongation of 15.93%. In contrast, those properties of the based on the material and thickness of the steel frame scaffolding. In addition the Gauge length produce in the test is 112.646 mm, this resulted show the maximum stroke length for this material is resulting at 140kN of force (Fig.4.3).

4.4 Compression test results

<u>1st Model</u>

Product	: Frame (STK 500)
Product size	: 1219mm X 1700mm X 2.5mm

Model : SM 101

Method of Test : Specification for Steel Frame Scaffoldings

Specification	Test results	Remarks
<u>Compressive Strength of</u> <u>vertical tube</u>		
Average value	Average : 15 100kg	Tensile – Passed
Indivudial value	1) 15100kg	Yield strength – Passes
		% elongation - Passed

2nd Model

Product	: Frame (STK 500)
Product size	: 1219mm X 1700mm X 2.3mm
Model	: SM 101

Method of Test : Specification for Steel Frame Scaffoldings

Specification	Test results	Remarks
<u>Compressive</u> Strength of <u>vertical tube</u>		
Average value	Average : 12 200kg	Tensile – Failed Yield strength – Passes
Indivudial value	1) 12200kg	% eleongation - Passed

<u>3rd Model</u>

Product	: Frame (STK 400)
Product size	: 1219mm X 1700mm X 2.5mm
Model	: SM 101

Method of Test : Specification for Steel Frame Scaffoldings

Specification	Test results	Remarks
Compressive Strength of		
<u>vertical tube</u>		
	Average : 12 150kg	Tensile – Passed
Average value		(\land)
	1) 12150kg	Yield strength – Passes
Indivudial value	, i i i i i i i i i i i i i i i i i i i	
		% eleongation - Failed

4.5 Summary

A conclusion is been done based on the conducted test upon three selected material with various thickness and material. This test is been done to prove highest force and longest stroke, it means the force applied can go further before buckling occur. From the results its proven that 2nd material which is JIG 3444 STK 400 with thickness of 2.5mm is totally differ in results where the buckling happen sooner at the Force of 132 kN with the length of stroke of 17.45 mm. This results is shows that STK 400 is not suitable material for steel frame scaffolding. Meanwhile, there are another two material which shows good results as per targeted results. From the results we obtain two material with similar force but slightly different in stroke length. JIG 3444 STK 500 is proven as suitable material, in the conducted test STK 500 with thickness of 2.5mm have reach maximum stroke length at the force of 140kN and thickness 2.3mm reach the same amount of force but differ in the stroke length. STK 500 with thickness of 2.3mm has produce buckling at the length of 19.5 mm while STK 500 with thickness reach the highest with 20.15mm. From this results its shown that, JIG 3444 STK 500 with thickness of 2.5mm can carry more load capacity compare with other two material. As a conclusion, the chosen and recommend steel frame scaffolding is from material JIG 3444 STK 500 thickness 2.5mm. Other critical findings from the experiment related to the results attained from the three different test configurations shows there was major change in stroke length between all three tested frames. The only significant change in stroke length was associated with the buckling point amount of load on the system which shows the maximum load taken for the particular tested frames, which is possibly could occur on site. This phenomenon could be attributed to the durability and superior structural capacity of the steel frame scaffolding.

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1 Conclusion

In conclusion, some basic considerations for the design of steel frame scaffold have been presented. Although steel frame scaffold is wide use in construction field, the basic principles of design and material selection should be considered. From the test, STK 500 with diameter of 2.5mm have better tensile strength, yield strength and percentage of elongation compare to other two frames.

Load carrying capacity is also depends on storey heights and bay, the more higher we will get lower loading capacity. This loading capacity can be used for endorsement of calculation for used for steel frame scaffold with selected formwork.

In the study, second loading are regards as the worst condition for reused steel frame scaffold. The average ratio of dividing the load capacity of second loading by those first loading is 0.63 compare to first loading is 0.13.Additionaly, when under a maximum load, the vertical displacement all setups of multi bay should be less than 20mm.Designers can select appropriate strength reduction factor of reused steel frame scaffolding, based on design requirements. These models can be designed with a load and resistance factor design formula for checking the system's capacity, substantially reducing the need for full scale load tests. Load eccentricity is known to affect the stability and strength of steel scaffolding and for the system being investigated, it was possible that a bearer could cause a load eccentricity. A survey of technical design engineers suggested that it was better to brace the bottom lift first and then the middle lift because the top lift was generally used by workmen to access the timber formwork. Finally, an optimisation process was undertaken to determine the most efficient bracing configurations, and it utilised every component of the research.

5.2 Recommendation

5.2.1 Recommendation based on material selection and design

1. Use timber based or concrete blinding for both is preferred to ensure overall bearing

2 . More diagonal bracing can give more load capacity on site usage.

5.2.2 Recommendation to improve load capacity

1. Other vertical member of frames can be improvise with higher thickness, this can give move load capacity and reduce buckling in short period.

REFERENCES

Chung-WeiWu. (2013, December). Retrieved from Experimental and numerical studies of practical system scaffolds: https://www.sciencedirect.com/science/article/pii/S0143974X13002216

EwaBłazik-Borowa. (2013, March). Retrieved from Numerical analysis of load-bearing capacity of modular scaffolding nodes: https://www.sciencedirect.com/science/article/pii/S0141029612004701

H.Zhang. (2010, November). Retrieved from Probabilistic study of the strength of steel scaffold systems:

https://www.sciencedirect.com/science/article/pii/S0167473010000196

Jui-LinPeng. (2017, october). Retrieved from Stability study on structural systems assembled by system scaffolds: https://www.sciencedirect.com/science/article/pii/S0143974X16306964

L.B.Weesner. (2001, June). Retrieved from Experimental and analytical capacity of frame scaffolding: https://www.sciencedirect.com/science/article/pii/S0141029600000870

51

Robert G.Beale. (2014, July). Retrieved from Scaffold research — A review: https://www.sciencedirect.com/science/article/pii/S0143974X14000388

TayakornChandrangsu. (2011, May). Retrieved from Structural modelling of supportscaffoldsystems:

https://www.sciencedirect.com/science/article/pii/S0143974X10002786

Wei TongChena. (2009, February). Retrieved from Experimental and analytical studiesonsteelscaffoldsundereccentricloads:https://www.sciencedirect.com/science/article/pii/S0143974X08001090

1000				Dimensions (mm)	ta (mm)	Tolai	Tolerances
Nenter	Component	crent	Material quality	Outor diamatar	Thickness	Cutor	Thiohness
(Accelerated)	Varitical post and hose	rizontal mamber	STK 500 specified in JIS G3444 or equivalent	42.7	26	±0.26	±0.3
Variace	Reinforcement mamber	tor	STK 400 specified in JIS G3444 or equivalent	27.2	2.0	2000	
emei	Cross brace pin	×	SS 400 toeoffed in JIS G3101 or equivalent	14.0		41.0	
-	Brate member		STK 400 specified in JIS G3444 or equivalent	21.7	20	10.25	80.3
proce	Hinge pin		SWRM 20 specified in JIS G3665 (Low carbon shell wire note) or eauhelent	7.6		±0.7	
	Tube member		STK 500 apeolled in JIS G3444 or equivalent	42.7	25	#0.25	103
Since of	Arm or traverse member	where	STK 400 specified in JIS 03444 or equivalent	34.0	23		
AURI	Clamp or hook		SS 400 specified in JIS G310fi or equivalent		8.0		±0.8
Cathalkor	Cebwelk member	Steel plate	SPHC spectled in JIS 63131 or equivalent	502	12		20.1
hand board	Clamp or hook		SS 400 specified in JIS C3101 or equivalent		60		80.8
	Threaded ber		SS 230 specified in JIS CB101 or application	32"	1.4		
Adjustable	Plate for adjustable base	bose plate	85 830 speefled in JIS G3101 or equivalent	120 × 120***	6.4	-	-
base pictor	-		SS 330 specified in JIS G3101 or equivalent	100 × 120***	8.A***		
Uhaad	Adjusting nut		FCMB 310 specified in JIS G6702 (Netscheart mulleeble incn catifings) or equivalent				÷
	Vartical, lateral & diagonal members	agonal members	SGP specified in JIS GMS2 or SS 330 specified in JIS GS101 or acuivalant			•	•
Bracket	Motal ftifings	Bolt, nut & pin	BS 330 specified in JIS G3101 or equivalent				
		Parts other than bolt, nut & pin		5	•	*	•
	Principal mamber		SGP specified in JIS G3452 or SS 330 specified in JIS G3101 or equivilent		+	+	8 12
1777	Gripper metal	Bolt, nut & pin	SS 330 specified in JIS G3101 or equivalent			•	•
Will be	spinn	Parts other then bolt, mut & ph	SCHD specified in JIS 03131 or equivalent				•
	Metsi Hinos		SS 400 specified in JIS C3101 or equivalent				

Material quality, dimensions and talacances for communits of frame

APPENDIX A

1000				Dirrensions (mm)	ris (mm)	Tolor	Tolerances
Member	Con	Component	Meterie quality	Outer diameter	Thickness	Outer	Thickness
the state	Tenon		SGP specified in JIS G3452 rr equivalent	951	22	-	•
noutron	Collar			251			•
Am lock			SS 330 specified in JIS C3111 or equivalent	38 (plate width)	3.1 (plate thickness)		±0.3
Global	Disgonal and horizontal trace	contal brace	STK 500 specified in JIS G3-44 or equivalent	986	2.6	±0.25	±0.3
bracing	Clamp or fiting	Body and cover	SPHD specified in JIS G 313	42.7-48.8	31	±1.0	-
system		Bolt, nut and pin	SS330 specified in JIS G 3111	17.		1.0	
Side	Tube member		STK 500 specified in JIS G3444 or equivalent	48.6	2.5	±0.25	±0.3
protection	Clamp or Ming	Body and cover	SPHD specified in JIS G 313	42.7-48.8		#1.0	
Guard rail	10000	Bolt, nut and pin	SS330 specified in JIS G 3111	121			•
Toe board	Board Member	lipped channel	SPHC spectrad in J/S G 3121 or equivalent	100.	12	•	ģ
Mhimum vidh Mhimum daner Mhimum dinere	Mhimum vidth Mhimum dianatar Mhimum dimension Mhimum langth			So			

APPENDIX B

APPENDIX C

O ASTM	-					ASTM Å&TD	8					0	O KS (JIS)					Scacification	ģ				
	_					ANI M M	_											specifica	_ [
Oesification	¥	S 80	ŝ	8	8	2	8	8	8	8	8		Clessification	NS 0 350 (US 6 3453)	IS 03537 015 63442)	S	CSD 3965	ISO 3883 (IS 6 3457)	83 KSD3562 510 015634640		IS 0 3889 (15 6 3460)	0.5634540	
uncernolity		1	1											8		US OR MUS	CONVERSION STANADO	00 M-S 00	0 SPPS 38	CPS and Bit Seeds		PHT 38 SHT 42	91.42
CNNO 6	011	0.22	078	8	0.24	8	5	8	0.21	0.24	0.27	1		669	M-dos)	SOAteker) (50	SOMINAM CONTAINS (SONDANS STPY 400)	dow) STPY40	00 (SP6 300	(STP6.410 6	61H 300 6	TPT 3700 (STR	1400
Crewis	'	1	1	0.05-04	015-040 0.15-040	0 0.15 - 0.40	0 015-0.0	0 0.05 - 0.40		015-0.40 0.15 -0.40	0 015-0.0		Monte of concilication	Other Steel New York	Contractioned Science projects	from and a	Control and show for many project	Accession of the	0		Stat thes for the	Carbon Steel pipes for high	Ar Nu
Compose	8	030	60	80	80	60	120	060-090		021-030 0.0 -030	0.065-1.0			o dang	for multin service			- 1				economic a	aşı
Code Policy	0.035	5 0035	0.035	0.035	0.035	0.035	9800	9035	50032	0.035	\$200	Drent	CNw.)	÷	•			-		8	1		ŧ
S(Max.)	0.04	0.04	0.04	0.035	0.035	0.035	0035	0.035	56.00	0,035	0.035	adeo	(Model	·	·		· · . .	•	00-00	0.00-100		0.10-0.5 0.5	0.0 - 0.9
Others	'	1	4	1	1	1	1	1	1		•	mpod	FOMax.)	83	800			•	i i	900	i i		100
8	'	1	1	1	1	ŀ	1	ŀ	D			tion ((Max)	80	000	_	-	•	Ŭ	000	¥00		60 je
z strength MPa	35-450	60 36-465	32 300 - 515	25-000 5	415-550	0 450-585	5 485-620	0 300-515	415-30	60-585 0	602-020	No.	Texte lg/hnm ²				• =	- =	*				
	1 32.2-459		352-49.5 398-526		642.4-56	20.8 - S.6 42.4 - 561 45.9 - 597	7 85-63	3.388-526	6 422-56.1	1 45.9 - 59.7	85-63		21	R	NI.				£ :	ų	¥ :		2
Sc at p	'	1	•	•	1	ŀ	•	•	ŀ	ŀ.	•		Point (min.) Namen	·	ŀ			8	n %	n #	a A	R Z	n ž
Vek point MPa	19	10	8	8	82	240	8	10	82	92	8	i kalps	No.11 stadman								İ.		
Con Strange	169	6.81	21.0	21.0	22	R	9W	21.0	22	306	9W		Bongation No.12 (min.) No.12		8		*	1	2	R	*	*	R
Elongation (min.)	8	7 5	2	2	ĸ	8	12	2	10	8	~				1			:	-		į,	Ł	
Rattering text						÷							gedmen U - Networkstrees	•	•	•	•		•	•	•	•	
Bending test						1						Plat	Furthering						The law (part	×	(9 -9)	H=H	-1
		Cless 10										tanling	D: Curside damater	08/12= H	H= 100	Hardely and	H=2/32 Decelor accidence on white of pipel	1	Diff I H	83	ţ	ee0	
		Cless 11											of the pipelment t : Wall thickness of						BIA TH		\$0'0= *	10 U 10	
		Cless 12	F	TEST								Ĭ	the pipe(mm)		Ì						er ver		T
		Cless 13	-	TEST								Berk		NX XED					34		The d	30, X 6D	
Hydrostelic test		Class 20						P=2500				ding te	. 3	and a second	100.00			1	Plyes of 40A or below, substream with Amount could			Pleased Stem of bit substitution to furnishing to	Į.,
		Cless 21										8	of the pipe)	1							(introduce) and		,
		Class 22	F	TEST								ну				Latter spector of prote	d Tech		Stadte Ro	70 Mar		Schwitch Ted. Ho.	-1
		1400.00		ā								iro st	Test pressure			SC AND	+	-	P 8	R 10	R 80		
		Cless 10										atik te	(fugl(cm ²)	9	0	and sends	+	•	9 9	9 B	9 9 2 9	8 8 2 9	
		Cless 11	β <u>μ</u>	TES T(RT)												STANTS.	0 A		8	8	8		П
		Class 12	E C	TES T(RT)								I NC					417		•	8	8		ı
NDT		Class 13										we dest	and the second second second	shifted a	and the	Science w	Munitive Calify Decit				sols that		
Non-Destructive Test)		Class 20										autive	eddy as next test		Notes and	(Selection of one addy context to:	(Sill action of one Porn otherscole, les), with context less, radingraphic less	ty hydrodate	See hydrostatic tast			Indicate to State	. 2
		Cless 21	TE	TES T(RT)								Test		1				i.		j	i		
		Class 22	E C	TES T(RT)										Galandard	Majle of Ball								
	-	Class 23											Others	Altophat	(and a	Tersil e-Strengt	Te relit is 20% registrices Universities (part) (Arccreation of S to all physics)	A Strength text for maland	,		Cherry Impact test	•	
Others						1								and a linear	Unificating test is frees			ž					

55

APPENDIX D

	KS F 4602 (JIS A 5523) KS D 3780 (JIS G 3474)	51X 540 555 400 555 400 51X7 540 (51X 540 (50X 400) (50X7 540)		Seel pipe piles stell for tow erstructural purposes	0.23 0.25 0.18 0.23	- 0.55	1.00 - 1.00	0040 0040	0.040 0.040 0.040 0.040	•	8	400	м	30 235 315 30	20 23 23 20	16 18 16	CB/L=H CB/L=H CB/L=H CB/L=H	Electric redistan ca Lectric redistan ca weided pipe weided pipe	30, X 6D		By agreement	By agreement By agreement	Thers of the strength test Thers are accessed pert Thers are strength test There are strength test There are strength test There are accessed pert There are strengthered There are strengthered There are strengthered	carbon unit quantity
	0.14	STK490 ST (STK490) (ST		nuctural purp coles	0.18		81 E		0.040					315	R	12	H= 7/80 H=	ed p (be	30, X (0) 30,	Pipes of Sümm or below, sub stitute with faithering test		.0	eid edpart m or above)	
	KS D 3566 (JIS G 3444)	00 STK 500 201 (STK 500		Carbon shell to bes for general structural purposes	0.24	0.35	071-070	4	0'040					392	2	2	08/L=H 00	Electric resistance welded pipe	00, X 80	orbeiow, substitute	By agreement	By agreement	Teosle strength tost for weld ed per t part welded 5 ee jalpes 300m or above)	
	×	STK 290 STK 400 (STK 290) (STK 400		Carbon shell	- 0.25	1	1 1		0.050 0.040			009 062	- 24	- 28	22 02	81 22	H=2/3D H=2/3D	e	30, X (D) 30, X (D)	Pipes of 50mm o))	Tensile Pluc weld	
O KS (JIS)	Specification	Classification	tions of modeling	Name of specification	Codec)	(WW)S	E MiCMax)		()MMC)	8	Tensile kg/mm2 strength		Yreld polit	Cuito	-	8 (MrO) Specimen (N) No. 5 Specimen	H: Ostanoja between	Rateving photocom) DI: Oneolo diameter of the piperom) DI: T: Wall thickness of	Audite galante	D : Cutside radius D : Cutside damater of the pipel	Hydros	pay your to the test	Othes	
	15 G 3443)	AND	Net Structured purposes	0.8 0.8-0.45 0.45 0.18 0.15 0.15	0.40 0.40 0.55 0.55	100 040-100 040-100 150 150 150	DAD DAD DAD DAD	AND AND AN AN			100 A		560 510 620 550 650 440 450 510 650 540 540		312 4 0 36 480 315 35 3	13 26 13 16 26 28 28 28 28 28		7 6 7 15 5 20 16 16 8 10 18	CALL BH SH		26. 26. 26. 26. 26. - X - X - X - X - X - X - X - X - X - X	96	od.	
	KS D 1817 (US G 3443)	AND	Cartino street fuses for multitive structural purposes	0.45-0.55 0.18 0.25	0.40 0.55 0.55	040-100 150 150	0.0 0.0 0.00	Active and the state and active activ	1000 000 000 000	•	·	* * * 7 1 1 2 2 4 3 3 5 5 7 8 9 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	330 440 510 410 500 50 430 580 510 60 580 650 440 450 510 450 50			20 20 13 20 13 13 14 20 15 13 20 20 13		15 5 10 10 17 7 5 1 5 16 8 8 10	H = H = H = H = H = H = H = H = H = H =		ж. 30' ж. ж. ж. ж. х. х. ж. б. б. б. 6	frequences	by synemical	
	K5 D 3517 (05 G 3443)	NAS INCLAIRES INCLAIRES INCLAINES INCLAIRES INCLAINES IN	Curbins Steef Usins for exactive structural purpose	0.00 0.05-0.05 0.05-0.55 0.18 0.25	0.55 0.36 0.35 0.40 0.40 0.55 0.55	030-100 030-100 040-100 040-100 150 150	0.40 0.40 0.40 0.40	1,0000 1,0000 1,0000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1000 0000 0000 0000 0000 0000 0000	•		8 X X X X X X X X X X X X X X X X X X X	440 910 410 500 50 420 580 510 60 59 550 440 480 510 450 50		3 3 3 4	20 13 26 13 13 20 13 10 10 13 28 28 13		% 10 10 11 1 % 1 5 5 10 18 % 10	H= 340 740 - 340 740 - 340 740 - 340 740 - 340 740 - 3		 第一次、約、約、約、約、約、約、 第一次、約、約、約、約、%、 1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、	by agreened	by agreement	

56

APPENDIX E

Technical Specification References

1			inipatra .		Machae	Rul Property					12+	enal De		180			and the	in the second	Paugeption -
4		41	Cooline -	- Ipraile	Skangth	THE	B-0-40760	por kin	5	de.	ine!		58	.440		ar	01	anterine.	Wannes
1			1000	B/r	and and a	Max.	06	36	100								G	0	The section of the se
1000				1-500	1400-01	West			ine	Mer	.they	-	diar	Ales	Mer	dias.	12	20	
10			1211311	965.535	80,415	205	1.3	38	3.17	1.1	1.62	1343	2.015	+		10	1	14	27
11.1			5275301	400.580	110.965	275	1.5		0.20	1	1.55	8,840	0.840	1.00		14	1	8	27
Cold Remark and both Research inclues anothers of networking		41000 10110	527104	100.060	(10.500	225		W	0.28	1.4	1.0	1038	1.117	-	~	20) .0	- #S
100		2	httiine	\$10.680	410-830	500			0.22	1.51	1.88	0.540	3.940	8 m.)	10	2.41	2		22
°§ '	1		шин	(10.60)	10.410	101	10		0.22	111	1.88	1.003	1.011		1	20	DY	30	27.
8			6.280		211	2000	.11	18	8.12	120	0.01	1.96	Ares	-	8.70	in	P.	243	
the state			0.000	1.1	20	200	(#)	- 18	613	101	440	haft	8.844	/Epo	8.10	de la	1		<i>1</i> 7.
and a		1	1.580	4	58	550	.8	-16	0.24	4.25	140	1940	-106	len	14	2m		11	- 11
Instituti Suci Refere Sectors In Australian Sandard		W.	0.1591.0	4	10	359	.01	18	0.38	425	hege	- Real	1.834	re.	py	8.39	100		10
10			< 400		10	40	-18	- 14	0.28	1.26	lim	1140	jam.	10	de to	8.88	-	- 12	
			2 480 18		00	14.0	10	14	0.00	-4.41	M	day	4,880	44	10	8.81	100	0	22
And and a	8	11	57108-400		08	246	1	35.64	0.24	1	1	TH.	140	10	141	~	1.61	100	
122	8	100.000	1781-650		90.	58	1.0	25	by	-121	135	- Dr.	10	-			-		
			STR.me	1	98.	1	til yr Silan	X	4	1	1.	5,058	Yest				12	1	10
Continue Street Franker		-	578.400			65	20 m	(\mathcal{I})	à	R.	2	1.949	3.347	1	3	1.	10	1.21	25
10		111 1911	376 (00)		00	200	14.96	1	A	12.800	p m	1.040	4240		1-1	-	1.4.1	1.0	- 12
34		1					110	2	19/10	1	2				-			_	
			11116			196	1 star	K	100	2%	6.100	LM	1.010	1			2		
	~		Gasty A	100	14	100	-	-	104.		140	1041	608	-	-	-	0.18 801	-	-
8	SHE IS MHS	1	-Enalty 8		00	19	NI		-0.56-	2.	1.45	0.045	0.045	1.00	-	-	2.18 (0)		. w.
d	8	.1	1mirt	1.18	15	M	13	~	8.27		1.85	8.045	000	-		-	E 18 min	1.00	
23 I I	8	MTH A 100	Ginter/G		00	- 70-	La hold	8	10.54	1	1.40	4048	cioiet				8.16 min		1.0
100		1	-Caste L		wIn	1 An	13	3	16.94	1	1.40	6.648	0.041	-		-	A 16 min	1	
Steel Structured		2	Sum 8		11	200	1 0	D	11.38	1	1.40	0.048	0.045				ii 14 min		
1	f		Endel.		R C	151	1		8.22		1.11	0.045	504		-	-	E 18 eiu's		+ -
3			Godeit-		10	100	1		10.00	-	145	6.040	0.040	-	-	-	E 18 miles	-	
-		-				1	-								-				
Period Server		ana too	32.00	01	1st	5	0 .	_	8.29	â	1	1.11	1.00					12	
Intrest Chan		Extended to U.S.		V	T	2 86		4	u	140			6.30	138				-	je)

MOTES:

The impact properties of statel qualities. If and 30 are remtified by laboratory limiting only when specified at at the limit of the inquiry and order.
 The topological qualities at and 32 are to produced upon request with entire cell.
 Top topological at all and 12
 solar Test place list. 11 and 12
 solar Test place list. 12
 solar test place
 solar test place list. 12
 solar test place list. 1

APPENDIX F

Carbon Steel Tubes For General Structural Purposes

Outside Diameter	Wall Thickness	Calculated Weight	Cross-Gectional Area	Georestical Moreent of Inertia	Hodelus of Section	tillingt Gyrator
(8.0)	Febr	lig/mre	(10)	£99A	0111	1 m 12
21.7	2.0	0.972	1,238	0.607	1998.9)dide
27.2	2.0 2.1	1.30 1.41	1.585 1.759	1.29 1.41	ANN -	6460 0405
34.0	2.3	1.80	2.291	2.89	120	112
42.7	73 25 28	2.29 2.40 2.76	2.919 3.157 3.516	3.57 640 780	S.B.S.	10
48.6	23 15 28 82	243 284 3.16 3.58	1.345 3.621 4.029 4.564	285 104 1/8	SE46	1.64 1.65 1.62 1.61
41.5	23 32 40	3.30 4.52 5.57	4305 1765 7.100	A REAL	5.90 7.84 9.41	2.06 2.03 2.00
76.5	2.8 1.2 4.0	5.08 5.77 7.13	245 200 200	437 443 393	11.5 12.9 15.0	2.60 2.59 2.56
81	28 33 40	5,56 6,78 8,39	(140) 8638 1190	70.7 70.8 97.0	15.9 17.9 21.8	3 05 1 04 1 01
1014	13 45 5.0	736 968 11,8	Vago Nation	120 146 177	23.4 26.8 34.9	3.48 3.45 3.42
1143	11 16 45 56	15 15 15 15 15 15 15 15 15 15 15 15 15 1	11200	173 190 234 281	30.3 33.6 41.0 49.6	135 142 3.89 145
130.3	15 42 43 60 (C-11-22	15.40 17.07 19.13 35.22	317 304 438 566	51.1 56.3 62.7 60.9	4.82 4.80 4.79 4.74
165.2	the second	100 100 236 273	22.372 25.16 30.01 14.79	734 808 953 1090	88.90 97.8 115 112	148 5.47 5.63 5.60

JIS G 3444 - 1988 - STK 290 JIS G 3444 - 1988 - STK 500 JIS G 3444 - 1988 - STK 400 JIS G 3444 - 1988 - STK 540

APPENDIX G

Carbon Steel Tubes For General Structural Purposes

			Statement of the local division of the local	988 - STK 290 988 - STK 400		- 1988 - STK 500 - 1988 - STK 540
Outside Diameter	Wall Trickness	Cekulated Weight	Cross-Sectional Area	Georeristal Moment of Intertia	Modulus of Section	Tackus of Oyration
inim.	ntrii.	kg/mm	cm/	cm*	cmi	(Can)
190.7	45 50 60 70	20.7 12.9 17.3 51.7	26.32 29.17 34.82 40.40	1140 1280 1490 1710	120 133 156 179	(22) (22) 22)
2163	45 60 7.0	23.5 31.1 36.1	29.94 39.34 46.00	1680 2190 2520	15 CE AL	7.44
267.4	60 66 70 80 90 91	38.7 42.4 45.0 51.2 57.3 39.2	40.27 54.08 57.26 65.19 73.06 73.41	421x10 460x10 4860x10 560910 614x30 p260x10	3 \$ FEE	9,24 9,22 9,21 9,18 9,18 9,14 9,13
355.6	64 7.9 9.0 9.5 12.0 12.7	35.1 67.7 76.9 81.1 102.0 107.0	70.21 80.29 96.00 1055.00 1029.50 136.40	101210 130310 (47510 191410 191410 201410	902 754 828 871 108x10 113x10	12.30 12.30 12.30 12.30 12.30 12.30 12.30 12.31
406.4	70 90 95 120 12.7 160	77.6 88.2 95.0 117.0 123.0 154.0	96.50 112.40 198.50 946.70 197.10 197.10	196210 222510 222510 225507 225507 225507 225507 2256210 2256210	967 109x10 115x10 142x10 150x10 150x10 184x10	14.10 14.10 14.00 14.00 13.90 13.80
457.2	\$0 95 110 117 160	96.5 105.0 132.0 133.0 139.0	05022 08429 08739 08779 08771 18142	118x10F 335x10F 416x10F 458x10F 540x10F 540x10F	140x10 147x10 182x10 192x10 236x10	15.80 15.80 15.70 15.70 15.60

erances	Description	11-	fakungii .
	Thickness (t)	antes singer	+ 0.3mm ± 10% ± 10% - 1.2mm
	Outside Diaryliter	00 350mm Simn 200	±0.25mm ±0.5%