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ABSTRACT 

An improved version of Differential Evolution (DE) namely Backtracking Search 

Algorithm (BSA) is applied to several fed batch fermentation problems and its 

performance is compared with recent emerging metaheuristics such as Artificial Algae 

Algorithm (AAA), Artificial Bee Colony (ABC), Covariance Matrix Adaptation 

Evolution Strategy (CMAES) and DE. Also, fed batch fermentation problems in winery 

wastewater treatment and biogas generation from sewage sludge are developed for 

optimization. Though DE traditionally performs better than other evolutionary 

algorithms and swarm intelligence techniques in optimization of fed-batch fermentation, 

BSA edged DE and other recent metaheuristics to emerge as superior optimization 

method in this work. BSA gave the best overall performance by showing improved 

solutions and more robust convergence in comparison with various metaheuristics used 

in this work. Multi-objective optimization problems are also addressed by proposing a 

modified multi-criterion optimization algorithm based on a Pareto-based Particle Swarm 

Optimization (PSO) algorithm called Multi-Objective Particle Swarm Optimization 

(MOPSO). This modified algorithm called Modified Multi-Objective Particle Swarm 

Optimization (M-MOPSO) employs a fixed-sized external archive along with a dynamic 

boundary-based search mechanism to evolve the population. The proposed method is 

tested on 10 multi-objective benchmark problems of CEC 2009 and compared with four 

metaheuristics: Multi-Objective Grey Wolf Optimizer (MOGWO), Multi-Objective 

Evolutionary Algorithm Based on Decomposition (MOEA/D), Multi-Objective 

Differential Evolution (MODE) and MOPSO. Two multi-objective fed-batch models are 

also used as case studies to verify the performance of the proposed algorithm. Our 

method emerged highly competitive when compared with other algorithms based on 

their qualitative and quantitative results. 
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ABSTRAK 

Versi penambahbaikan Differential Evolution (DE) yang dipanggil sebagai 

Backtracking Search Algorithm (BSA) diaplikasikan kepada beberapa masalah 

penapaian fed batch dan prestasinya dibandingkan dengan  metaheuristic-metaheuristic 

terkini seperti Artificial Algae Algorithm (AAA), Artificial Bee Colony (ABC), 

Covariance Matrix Adaptation Evolution Strategy (CMAES) dan DE. Masalah-masalah 

penapaian fed batch di dalam rawatan sisa air wain dan penjanaan biogas daripada 

kumbahan enapcemar juga dibangunkan untuk pengoptimuman. Walaupun DE secara 

tradisinya mempunyai prestasi yang lebih baik daripada lain-lain algorithma evolusi dan 

teknik kecerdasan swarm dalam pengoptimuman penapaian fed batch, BSA telah 

mengatasi DE dan lain-lain metaheuristic untuk tampil sebagai kaedah pengoptimuman 

terbaik dalam kajian ini. BSA telah memberikan prestasi kesuluruhan terbaik dengan 

menunjukkan penyelesaian yang lebih baik dan penumpuan yang lebih teguh 

berbanding lain-lain metaheuristic yang digunakan dalam kajian ini. Masalah 

pengoptimuman pelbagai objektif juga telah ditumpukan dengan mencadangkan satu 

algoritma pengoptimuman pelbagai kriteria yang diubahsuai berdasarkan daripada 

Particle Swarm Optimization (PSO) algoritma yang berasaskan Pareto yang dipanggil 

sebagai Multi-Objective Particle Swarm Optimization (MOPSO). Algoritma yang 

diubahsuai ini yang dipanggil sebagai Modified Multi-Objective Particle Swarm 

Optimization (M-MOPSO) menggunakan arkib luaran bersaiz tetap disamping 

mekanisma carian berasaskan sempadan yang dinamik untuk mengevolusikan populasi. 

Kaedah yang dicadangkan diuji dengan 10 masalah penanda aras pelbagai objektif CEC 

2009 dan dibandingkan dengan empat metaheuristic: Multi-Objective Grey Wolf 

Optimizer (MOGWO), Multi-Objective Evolutionary Algorithm Based on 

Decomposition (MOEA/D) Multi-Objective Differential Evolution (MODE) dan 

MOPSO. Dua model fed-batch pelbagai objektif juga digunakan sebagai kes pengajian 
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untuk mengesahkan prestasi algoritma yang dicadangkan. Kaedah kami tampil berdaya 

saing tinggi apabila dibandingkan dengan algoritma-algoritma lain berdasarkan kepada 

keputusan kualitatif dan kuantitatif. 
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CHAPTER 1: INTRODUCTIONS 

Optimization is one of the most important research areas in applied mathematics. The 

diverse applications of optimization which range from manufacturing and engineering 

to business and medication have attracted many researchers to explore the field. The 

field of biotechnology contains many problems that can take advantage of the 

optimization process. One such problem is the fermentation problem. The crucial 

factors in the development and optimization of fermentation processes are the quality 

and quantity of the products, which can be improved at the cultivation levels. 

Traditionally, fermentation processes is done in batch mode, where an amount of 

substrate is fed only once at the beginning of the fermentation. This is in contrast to fed-

batch mode, where the substrate is fed in a controlled amount during a set interval of 

time. In fed-batch fermentation, nutrient feeding along the process enhances higher 

product concentrations. Controlled nutrient feeding increases biomass in controlled 

manner and this improves product concentrations with less impact of product and/or 

nutrient inhibition of biomass. This complex nature of fed-batch fermentation 

encourages optimization method development that predicts optimal feeding profile to 

enhance the process performance. In order to obtain proper simulation of the process, 

usually differential equations that model the mass balances of various state variables are 

developed. 

 Metaheuristic is one of the means to solve optimization problems. It is a process of 

trial and error to discover the solution of a problem and consists of certain trade-off of 

randomization and local search. One of the most appealing characteristic of 

metaheuristic is that it uses derivation-free mechanisms and is stochastic in nature. This 

enables faster convergence and less expensive computation as compared to 

deterministic method. In optimization, a problem may consist of either one objective or 
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more than one. For the problem with one objective, we call it single-objective problem. 

For the problem with two or three objectives, we call it multi-objective problem. For the 

problem with more than three objectives, we call it many-objective problem. 

Consequently, a metaheuristic is developed to solve a particular type of problem. A 

metaheuristic that is used to solve a single-objective problem is called single-objective 

metaheuristic (SOM) while a metaheuristic that is used to solve a multi-objective 

problem is called multi-objective metaheuristic (MOM). 

In fermentation or bioprocess problems, the input feeding profile or substrate feed 

rate is considered a key variable. Metaheuristic is considered as the most suitable 

optimization strategy to be used. This is because complexity involved in analytical 

approaches will increases with the increasing number of state and control variables. 

Deterministic algorithms also have a high computational overhead as well as have a 

tendency of premature convergence towards local optima. 

One of the attributes of most real-world engineering is that they often have multiple 

conflicting goals. These multiple objectives may provide certain trade-offs which result 

in numerous solutions to be chosen from. From these solutions, it is up to the decision 

makers to choose one of the solutions to suit their needs. In contrast to a single-

objective optimization problem where the optimal solution is clearly defined, there is no 

direct way to define the superiority of one solution compared to another in a multi-

objective problem. One of the ways to solve this type of problem is by using the 

concepts of Pareto dominance and Pareto-optimality where there exists more than one 

'optimal solutions'. 

To understand the concept of Pareto dominance, consider a multi-objective 

optimization in a problem with two or three objective functions below: 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐹(𝑋) = 𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝐺(𝑋),       (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 ≤ 𝑥𝑖 ≤ 𝑅𝑖

𝑢𝑝𝑝𝑒𝑟, 𝑖 = 1, 2, … , 𝑑     (2) 

where 𝑑 is the number of variables, 𝐺 is the number of objective functions, and 

[𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 , 𝑅𝑖

𝑢𝑝𝑝𝑒𝑟] are the boundaries of 𝑖th variables. In Pareto dominance, given that 

there are two candidate solutions: 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑑) and 𝑍 = (𝑧1, 𝑧2, … , 𝑧𝑑), vector 𝑌 

dominates vector 𝑍 (denote as 𝑌 ≻ 𝑍) if and only if, 

𝑓𝑔(𝑌) ≤ 𝑓𝑔(𝑍), ∀𝑔 ∈ {1, … , 𝐺}       (3) 

𝑓𝑔(𝑌) < 𝑓𝑔(𝑍), ∀𝑔∃{1, … , 𝐺}         (4) 

If solution 𝑌 is not dominated by any other solutions, then 𝑌 is declared as a 

nondominated or Pareto optimal solution. There are no superior solutions to the problem 

than 𝑌, although there may be other equally good solutions. On the other hand, a 

solution 𝑌 ∈ 𝑋 is called Pareto-optimal if and only if, 

∄𝑍 ∈ 𝑋|𝑓(𝑍) ≻ 𝑓(𝑌)        (5) 

The set of solutions that satisfy (5) is known as the Pareto optimal set and the fitness 

values corresponding to these solutions form the Pareto front or trade-off surface in 

objective space. 

 

1.1 Problem Statement 

Stochastic algorithms or metaheuristics have been previously applied on various 

bioprocess optimization problems. A recent study shows differential evolution (DE) 

(Storn & Price, 1997) is a better solution for bio-process applications (Banga et al., 
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2004). However, a new algorithm called the Backtracking Search Optimization 

Algorithm (BSA) was recently proposed by Civicioglu (2013). BSA was developed 

based on DE and has many elements similar to DE. However, it improved upon DE by 

incorporating new elements such as improved mutation and crossover operators and the 

utilization of a dual population. BSA also has only one control parameter compared to 

DE which requires two parameters for fine-tuning. With these improvements, it is 

expected that BSA will perform better than DE. Since DE is known to be efficient in 

solving fermentation problems (Banga et al., 2004; Da Ros et al., 2013; M. Rocha et al., 

2014), BSA as a recent DE-based metaheuristic is proposed in this paper and we 

investigate various fermentation problems. Our hypothesis is that it will perform better 

compared to other stochastic algorithms. BSA, being a powerful evolutionary algorithm, 

is a suitable algorithm to be used in searching for optimal control profiles for the 

complex bioreactor chemical process. 

In fermentation and bioprocess technology, the utilization of fed-batch operation is 

considered common. In biological wastewater treatment however, batch mode is still 

dominantly used and fed-batch is regarded as a relatively new technique (Montalvo et 

al., 2010). In a basic process of fed-batch wastewater treatment, the wastewater is fed 

slowly into the aerated bioreactor. During this process, the effluent is never removed 

until after the operating volume of the bioreactor is mostly filled. This enabled reduction 

of inhibitory or toxic effects through the dilution of highly concentrated toxic 

compounds in an aeration based large volume tank. This results in greater chemical 

oxygen demand (COD) removal rate and smaller required reactor volume. The aeration 

tank is emptied when it is almost full and the process is repeated. 

The disposal of sludge is one of the major problems in municipal wastewater 

treatment, and constitutes up to half of the operating costs of a Waste Water Treatment 
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Plant (WWTP) (J. Baeyens et al., 1997). Though different methods for sludge disposal 

exist, anaerobic digestion is one of the preferred routes as it is not limited to the 

production of biogas from waste, but also lower the amount of final sludge solids for 

disposal and curtailing odour problems (Appels et al., 2008), resulting in cost reduction. 

This justifies the importance of anaerobic sludge digestion process in a modern WWTP. 

Nowadays, the potential of biogas as an energy source has gained plenty of recognition, 

with the majority of biogas is currently generated by the digestion of sewage treatment 

sludge while the minority of it is produced through the fermentation or gasification of 

solid waste or of lignocellulosic material (Chandra et al., 2012). The anaerobic digestion 

kinetics for methane fermentation of sewage sludge was proposed by Sosnowski et al. 

(2008). However, the proposed model was only designed for batch mode operation. 

Considering the advantages of fed-batch process in various fermentation problems, it is 

appropriate to convert this model into fed-batch mode. The utilization of fed-batch 

technique can increase the output of desirable products such as protein and biofuel in 

various fields of biotechnology and hence contribute to the development of renewable 

energy production and sustainable science. 

In the past decade, several SOMs were converted to solve multi-objective problems. 

The conversions to MOMs were carried out by implementing some modification as well 

as introducing new concepts such as Pareto dominance and decomposition. However, 

due to increased search complexity in multi-objective optimization, premature 

convergence becomes a cumbersome problem (Marler & Arora 2004). Hence, the 

improvements in this research area remain open for developments. 

1.2 Objectives 

In order to investigate the effectiveness of metaheuristic in solving bioprocess 

problems, several goals need to be achieved: 
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1. Identify various single-objective and multi-objective real-world bioprocess 

problems. 

2. Apply recent metaheuristics to solve the problems. 

3. Propose modification of existing metaheuristic to improve its performance in 

solving multi-objective bioprocess problems. 

1.3 Scope  

This study applies the Backtracking Search Optimization Algorithm (BSA) 

(Civicioglu, 2013) to different bioprocess case studies and compares its performance 

with some well-known algorithms from the scientific literature. This is done by 

simulating the bioprocess through a set of differential equations that model the mass 

balances of various state variables. This study also introduces process optimization in 

the treatment of winery wastewater. Additionally, we also propose the modeling of fed-

batch methane fermentation of sewage sludge. This model is converted from the 

existing batch model. The bioprocess problems considered in this study cover various 

aspects of human life, ranging from biofuel production of ethanol and pharmaceutical 

synthesis of protein and penicillin to treatment of wastewater and sewage sludge. 

Finally the multi-objective optimization of bioprocess application is addressed using 

MOMs. 

• The bioprocess problems are selected from well-established bioprocess models 

drawn from the scientific literature which cover various aspects of human life. A 

problem with batch model will be converted into fed-batch model. 

• Recent SOMs are applied to the optimization problems and their performances 

in solving single-objective bioprocess problems are compared. The SOMs are 

population-based algorithms. 
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• A pareto-based MOMs is modified and its performance is compared with other 

pareto and decomposition techniques. The comparisons are made through 

benchmark problems and real-world bioprocess problems. 
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CHAPTER 2: LITERATURE REVIEW 

Biotechnology has been considered as one of the new knowledge-based economy 

and can provide advancements and growth for societies and economies while enabling 

better health care and sustainable transformation of raw materials and hazardous waste 

treatment in industries (Juma & Konde, 2001). Fermentation process is one of the 

fundamental elements in biotechnology. Stochastic algorithms or metaheuristics have 

been previously applied on various bioprocess optimization problems. Evolutionary 

algorithms (EA) have been utilized on the bioprocess of protein production with E. coli, 

and they have been compared with first order gradient algorithms and with dynamic 

programming by Roubos et al. (1999). According to I. Rocha (2003), health care is one 

of the most promising applications in biotechnology, with pharmaceutical recombinant 

DNA applications being the sector with the highest growth rate. Various valuable 

products such as antibiotics and recombinant protein have been produced using 

fermentation techniques. The optimization of feeding profile for ethanol and penicillin 

production was applied by Kookos (2004) using Simulated Annealing while the 

optimization of protein production in E. coli was applied using Ant Algorithms by 

Jayaraman et al. (2001). Chiou and Wang (1999) used Differential Evolution (DE) for 

the optimization of the Zymomous mobilis fed-batch fermentation while Wang and 

Cheng (1999) used the same algorithm for ethanol production in Saccharomyces 

cerevisiae. Sarkar and Modak (2004) used a genetic algorithm based technique to 

address fed-batch bioreactor application problems with single or multiple control 

variables. 

A recent study shows DE is a better solution for bio-process applications (Banga et 

al., 2004). Da Ros et al. (2013) have even suggested DE hybrids for these applications 

after showing DE as the better method in the estimation of the kinetic parameters of an 
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alcoholic fermentation model. M. Rocha et al. (2014) compared the performance of 

EAs, DE and Particle Swarm Optimization (PSO) on four different bioprocess case 

studies taken from the scientific literature and found that DE had better performance 

when compared to other algorithms. 

In recent years, many new nature-inspired algorithms have emerged such as Particle 

Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), Artificial Bee Colony 

Optimization (ABC) (Basturk, 2006), Cuckoo Search (CS) (X. S. Yang & Suash, 2009), 

Firefly Algorithm (FA) (Xin She Yang, 2010) and Artificial Algae Algorithm (AAA) 

(Uymaz et al., 2015). A detailed discussion on the proliferation of search algorithms can 

be seen in Sörensen (2015) and an overview of some of the most widely used can be 

seen in Burke and Kendall (2014). These algorithms were applied to various problems 

and have shown improved performance compared to classical algorithms. 

BSA was developed for solving real-valued numerical optimization problems based 

on the behaviour of living creatures in social groups revisiting at random intervals to 

preying areas enriched by food source. It has shown promising results in solving 

boundary-constrained benchmark problems. Due to its encouraging performance, 

several studies have been done to investigate BSA’s capabilities in solving various 

engineering problems (Askarzadeh & Coelho, 2014; Das et al., 2014; El-Fergany, 2015; 

Guney et al., 2014; Song et al., 2015). 

BSA uses a unique mechanism for generating trial individual by controlling the 

amplitude of the search direction through mutation parameter, F. This enables a 

balanced global and local search, thus enhances its problem solving ability. BSA also 

consults its historical population which is stored in its memory to generate more 

efficient trial population, resulting in improved searching ability. Other algorithms such 

as PSO, DE and Covariance Matrix Adaptation Evolution Strategy (CMAES) do not use 
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previous generation populations.  BSA employs advanced crossover strategy, which has 

a non-uniform and complex structure that guarantees the generation of new trial 

population in each generation. This strategy, which enhances BSA’s problem-solving 

capabilities, is different to those used in genetic algorithm and its variants. Also, its 

mutation strategy uses only one direction individual for each target individual as 

opposed to the strategy used in DE and its derivatives, where more than one individual 

can mutate in each generation. BSA also have only one control parameter in comparison 

to three used by DE for fine-tuning. Even though BSA is robust and less likely to be 

trapped in local optima, it has a weakness of poor convergence performance and 

accuracy.  

The algorithms that we use in this thesis to be compared with BSA are CMAES, 

ABC, AAA and DE. We chose these algorithms in our work for various reasons. 

CMAES is used because it is recent swarm intelligence metaheuristic with good global 

convergence. It is a highly competitive, quasi parameter free global optimization 

algorithm for non-separable objective functions. However, it has poor performance for 

separable objective functions. Also, its very algorithmic features are undermined by the 

presence of constraints 

ABC is chosen because it is a widely-used technique among swarm intelligence with 

promising performance on various problems. It has sufficiently strong local search 

ability for various types of problems. Its weakness is that it is sensitive to the control 

parameter used. It also has poor definition of search direction as it treats the signs of the 

fitness values equally. 

AAA is the latest algorithm used in this work and represents the evolution of modern 

swarm intelligence method. It is a robust and high-performance global optimization 

Univ
ers

ity
 of

 M
ala

ya



27 

algorithm. However, it has three control parameters and is sensitive to the initial value 

of these control parameters. 

Finally, DE is used as it is an established method in the field of fed-batch 

fermentation optimization and regarded as the best performing algorithm in the 

simulation of fed-batch fermentation problems. It is a very effective global search 

algorithm with a quite simple mathematical structure. The algorithm is also able to 

choose from up to ten different options for its combination of mutation and crossover 

schemes. However, it has three control parameters and the algorithm is sensitive to the 

initial value of these parameters. Also, the process of determining the optimum mutation 

and crossover strategies for the problem structure in the DE algorithm is time-

consuming. 

In the context of multi-objective optimization, several SOMs algorithms such as 

PSO, EA and grey wolf optimizer (GWO) (Mirjalili et al., 2014) have been converted 

into their multi-objective versions which are multi-objective particle swarm 

optimization (MOPSO) (Coello et al., 2004), multi-objective evolutionary algorithm 

based on decomposition (MOEA/D) (Q. Zhang & Li, 2007) and multi-objective grey 

wolf optimizer (MOGWO) (Mirjalili et al., 2016). There are also algorithms which are 

an improvements or modification of existing MOMs. One such example is the Non-

dominated Sorting Genetic Algorithm (NSGA) (Goldberg, 1989; Srinivas & Deb, 

1994), which was improved upon by NSGA-II (Deb et al., 2002). 

Researches on the area of multi-objective bioprocess optimization problems are not 

new. Polymerization systems have been numerously studied (Cawthon & Knaebel, 

1989; Silva & Biscaia Jr, 2003; Tsoukas et al., 1982). A detailed review on the 

application of multi-objective optimization in chemical engineering was presented by 
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Bhaskar et al. (2000). More recently, the multi-objective optimization of fed-batch 

bioreactors was addressed by Sarkar and Modak (2005) using NSGA-II. 

2.1 Backtracking Search Algorithm (BSA) 

BSA is an evolutionary algorithm based on DE (Civicioglu, 2013). It has advanced 

mutation and crossover operators for the generation of trial populations. It also has 

balanced exploration and exploitation abilities by generating parameter 𝐹. This 

parameter will control the range of the search direction by adjusting the size of the 

search amplitude (either large value for global search or low value for local search). The 

historical population, stored in its memory, promotes effective trial individuals 

generation and ensures high population diversity. BSA also has the advantage of having 

only one control parameter, the 𝑚𝑖𝑥𝑟𝑎𝑡𝑒. This parameter determines the number of 

elements of individuals that will mutate in a trial, thus facilitating ease of application by 

reducing the number of parameters that require fine-tuning.  

The procedures of BSA can be separated into five processes: initialization, selection-

I, mutation, crossover and selection-II. A general BSA structure is presented in Figure 

2.1. For details on the processes, refer to (Civicioglu, 2013). Overviews of the five 

processes are provided below: 

 

Figure 2.1: A general structure of BSA 
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2.1.1 Initialization 

The procedures of BSA begin by initializing the population P as follows: 

𝑃𝑖,𝑗 = 𝑙𝑜𝑤𝑒𝑟𝑗 + (𝑢𝑝𝑝𝑒𝑟𝑗 − 𝑙𝑜𝑤𝑒𝑟𝑗) × 𝑟𝑎𝑛𝑑𝑜𝑚, 𝑖 = (1,2, … , 𝑁𝑃), 𝑗 = (1,2, … , 𝐷𝑃) (6) 

where 𝑁𝑃 and 𝐷𝑃 are the size of the population and the number of dimension of the 

problem respectively. 𝑟𝑎𝑛𝑑𝑜𝑚 is a real value uniformly distributed between 0 and 1. 

𝑙𝑜𝑤𝑒𝑟𝑗 and 𝑢𝑝𝑝𝑒𝑟𝑗 represent the lower and upper bound in the 𝑗-th element of the 𝑖-th 

individual respectively. 

2.1.2 Selection-I 

In the Selection-I procedure, the historical population 𝑜𝑙𝑑𝑃 is generated to calculate 

the search direction. Initially, it is calculated as follow: 

𝑜𝑙𝑑𝑃𝑖,𝑗 = 𝑙𝑜𝑤𝑒𝑟𝑗 + (𝑢𝑝𝑝𝑒𝑟𝑗 − 𝑙𝑜𝑤𝑒𝑟𝑗) × 𝑟𝑎𝑛𝑑𝑜𝑚, 𝑖 = (1,2, … , 𝑁𝑃), 𝑗 =

(1,2, … , 𝐷𝑃)                  (7) 

In each iteration, 𝑜𝑙𝑑𝑃 is defined as follow: 

𝑖𝑓 𝑎 < 𝑏 𝑡ℎ𝑒𝑛 𝑜𝑙𝑑𝑃 ∶= 𝑃|𝑎, 𝑏 ∈ [0,1]                     (8) 

where : = is the update operation.  𝑎 and 𝑏 are two random numbers with uniform 

distribution between 0 to 1. The above equation ensures that the population in BSA can 

be randomly selected from historical population. This historical population is 

memorized by the algorithm until it is changed through a random permutation. 

2.1.3 Mutation 

The initial trial population is generated through mutation operation as follows: 

𝑇 = 𝑃 + (𝑜𝑙𝑑𝑃 − 𝑃) × 𝐹                        (9) 
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where 𝐹 is a scale factor which controls the amplitude of the search-direction matrix 

(𝑜𝑙𝑑𝑃 − 𝑃). In the original paper, 𝐹 = 3 ⋅ 𝑟𝑎𝑛𝑑𝑜𝑚, where 𝑟𝑎𝑛𝑑𝑜𝑚 is a random real 

number with uniform distribution between 0 to 1. By involving the historical population 

in the calculation of the search-direction matrix, BSA learns from its memory of 

previous generations to obtain a trial population. 

2.1.4 Crossover 

The final trial population 𝑇 is generated by crossover. The trial individuals with 

improved fitness values guide the search direction for the optimization problem. The 

crossover of the BSA works as follows. A binary integer-valued matrix (map) of size 

𝑁𝑃 ×  𝐷𝑃 is computed in the first step. The individuals of 𝑇 are generated by using the 

relevant individuals of 𝑃. If 𝑚𝑎𝑝𝑖,𝑗 =  1, 𝑇 is updated with 𝑇𝑖,𝑗 ∶= 𝑃𝑖,𝑗. 

2.1.5 Selection-II 

In the Selection-II phase, the 𝑇𝑖 that outperforms the corresponding 𝑃𝑖 in terms of 

fitness value is used to update the 𝑃𝑖. When the best solution 𝑃𝑏𝑒𝑠𝑡 dominates the 

previous global optimal value found by the BSA, the global optimal solution is replaced 

by 𝑃𝑏𝑒𝑠𝑡 and the global optimal value is also updated to be the fitness value of 𝑃𝑏𝑒𝑠𝑡.  

Eight fermentation models are as case studies in this work, six of which are single-

objective while the other two are multi-objectives. These cases are chosen based on the 

different nature of the bioprocesses. The fed batch fermentation case studies considered 

in this study cover various aspects of human life, ranging from biofuel production of 

ethanol, pharmaceutical synthesis of protein and penicillin, to treatment of wastewater 

and sewage sludge. The idea is to compare the performance of the algorithms in 

different fed batch fermentation systems. 
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2.2 Case study I 

The first case study in this paper is the fed-batch bioreactor process of ethanol by 

Saccharomyces cerevisiae. This problem was first proposed by Chen and Hwang 

(1990), with the goal of obtaining the substrate feed rate profile that maximizes the 

production of ethanol. The model equations are as follows: 

𝑑𝑥1

𝑑𝑡
= 𝑔1𝑥1 − 𝑢

𝑥1

𝑥4
                   (10) 

𝑑𝑥2

𝑑𝑡
= −10𝑔1𝑥1 + 𝑢

150−𝑥2

𝑥4
          (11) 

𝑑𝑥3

𝑑𝑡
= 𝑔1𝑥1 − 𝑢

𝑥3

𝑥4
            (12) 

𝑑𝑥4

𝑑𝑡
= 𝑢            (13) 

The kinetic variables 𝑔1 and 𝑔2 (h−1) are given by: 

𝑔1 =
0.408

(1+
𝑥3
16

)

𝑥2

(0.22+𝑥2)
           (14) 

𝑔2 =
1

(1+
𝑥3

71.5
)

𝑥2

(0.44+𝑥2)
          (15) 

The performance index (PI) is defined as: 

𝑃𝐼 = 𝑥3(𝑡𝑓)𝑥4(𝑡𝑓)            (16) 

The variables for case study I are defined in Table 2.1. The variable constraints are: 

0 ≤  𝑥4(𝑡)  ≤  200 and 0 ≤  𝑢(𝑡)  ≤  12. The final time, 𝑡𝑓 and the initial state 

conditions are given in Table 2.2. 
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Table 2.1: Variables definitions for case study I. 

State variables Definitions 

𝑥1 Cell mass (g/L) 

𝑥2 Substrate concentrations (g/L) 

𝑥3 Ethanol concentrations (g/L) 

𝑥4 Volume of the reactor (L) 

𝑢 Feeding rate (L/h) 

 

Table 2.2: Parameter values for case study I. 

Parameter Value 

𝑡𝑓 54 hours 

𝑥1(0) 1 g/L 

𝑥2(0) 150 g/L 

𝑥3(0) 0 g/L 

𝑥4(0) 10 L 

 

2.3 Case study II 

The second case study involves induced foreign protein production by recombinant 

bacteria, firstly proposed by Lee and Ramirez (1994). The problem was later modified 

by Tholudur and Ramirez (1997). The model equations (Tholudur & Ramirez, 1997) are 

as follows: 

𝑑𝑥1

𝑑𝑡
= 𝑢1 − 𝑢2           (17) 

𝑑𝑥2

𝑑𝑡
= 𝑔1𝑥2 −

𝑢1+𝑢2

𝑥1
𝑥2          (18) 

𝑑𝑥3

𝑑𝑡
=

100𝑢1

𝑥1
−

𝑢1+𝑢2

𝑥1
𝑥3 −

𝑔1

0.51
𝑥2       (19) 

𝑑𝑥4

𝑑𝑡
= 𝑅𝑓𝑝𝑥2 −

𝑢1+𝑢2

𝑥1
𝑥4        (20) 

𝑑𝑥5

𝑑𝑡
=

4𝑢2

𝑥1
−

𝑢1+𝑢2

𝑥1
𝑥5        (21) 
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𝑑𝑥6

𝑑𝑡
= −𝑘1𝑥6         (22) 

𝑑𝑥7

𝑑𝑡
= 𝑘2(1 − 𝑥7)         (23) 

The process kinetics are given by: 

𝑔1 = (
𝑥3

14.35+𝑥3(1+
𝑥3

111.5
)
) (𝑥6 +

0.22𝑥7 

0.22+𝑥5
)      (24) 

𝑅𝑓𝑝 = (
0.233𝑥3

14.35+𝑥3(1+
𝑥3

111.5
)
) (

0.005+𝑥5 

0.022+𝑥5
)      (25) 

𝑘1 = 𝑘2 =
0.09𝑥5 

0.034+𝑥5
         (26) 

The PI is defined as: 

𝑃𝐼 = 𝑥4(𝑡𝑓)𝑥1(𝑡𝑓) − 𝑄 ∫ 𝑢2(𝑡)𝑑𝑡
𝑡𝑓

0
      (27) 

The variables for case study II are defined in Table 2.3. The variable constraints are: 

0 ≤  𝑢1,2(𝑡)  ≤  1. The ratio of the cost of the inducer to the value of the protein 

product, 𝑄, the final time, 𝑡𝑓 and the initial state conditions are given in Table 2.4. 

Table 2.3: Variables definitions for case study II. 

State variables Definitions 

𝑥1 Reactor volume (L) 

𝑥2 Cell concentrations (g/L) 

𝑥3 Substrate concentrations (g/L) 

𝑥4 Foreign protein concentrations (g/L) 

𝑥5 Inducer concentrations (g/L) 

𝑥6 Inducer shock factors on the cell growth rate 

𝑥7 Recovery factors on the cell growth rate 

𝑢1 Glucose feed rates (L/h) 

𝑢2 Inducer feed rates (L/h) 
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Table 2.4: Parameter values for case study II. 

Parameter Value 

𝑄 5 

𝑡𝑓 10 hours 

𝑥1(0) 1 L 

𝑥2(0) 0.1 g/L 

𝑥3(0) 40 g/L 

𝑥4(0) 0 g/L 

𝑥5(0) 0 g/L 

𝑥6(0) 1 g/L 

𝑥7(0) 0 g/L 

 

2.4 Case study III 

The third case study is the fed-batch fermentation of penicillin which was presented 

by Banga et al. (2005).The model equations are as follows: 

𝑑𝑥1

𝑑𝑡
= 𝑔1𝑥1 − 𝑢 (

𝑥1

500𝑥4
)        (28) 

𝑑𝑥2

𝑑𝑡
= 𝑔1𝑥1 − 0.01𝑥2 − 𝑢 (

𝑥2

500𝑥4
)       (29) 

𝑑𝑥3

𝑑𝑡
= − (

𝑔1𝑥1

0.47
) − (

𝑔2𝑥2

1.2
) − 𝑥1 (

0.029𝑥3

0.0001+𝑥3
) +

𝑢

𝑥4
(1 −

𝑥3

500
)    (30) 

𝑑𝑥4

𝑑𝑡
=

𝑢

500
          (31) 

The process kinetics are given by: 

𝑔1 = 0.11 (
𝑥3

0.006𝑥1+𝑥3
)        (32) 

𝑔2 = 0.0055 (
𝑥3

0.0001+𝑥3(1+10𝑥3)
)       (33) 

The variable constraints are: 0 ≤  𝑥1(𝑡)  ≤  40, 0 ≤  𝑥3(𝑡)  ≤  25, 0 ≤  𝑥4(𝑡)  ≤

 10 and 0 ≤  𝑢(𝑡)  ≤  50. The PI is defined as: 
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𝑃𝐼 = 𝑥2(𝑡𝑓)𝑥4(𝑡𝑓)         (34) 

The variables for case study III are defined in Table 2.5. The final time, 𝑡𝑓 and the 

initial state conditions are given in Table 2.6. 

Table 2.5: Variables definitions for case study III. 

State variables Definitions 

𝑥1 Biomass concentrations (g/L) 

𝑥2 penicillin concentrations (g/L) 

𝑥3 substrate concentrations (g/L) 

𝑥4 Volume of the reactor (L) 

𝑢 Feeding rate (L/h) 

 

Table 2.6: Parameter values for case study III. 

Parameter Value 

𝑡𝑓 132 h 

𝑥1(0) 1.5 g/L 

𝑥2(0) 0 g/L 

𝑥3(0) 0 g/L 

𝑥4(0) 7 L 

 

The above case studies are well-established bioprocess models drawn from the 

scientific literature. We use these models to verify the robustness of recent 

metaheuristics. Montalvo et al. (2010) used fed-batch operation in biological wastewater 

treatment though wastewater treatment rarely employs fed-batch operation. Thus, in the 

following sections, we propose the applications of fed-batch process optimization using 

the same metaheuristics on the field of biology wastewater treatment for the purpose of 

detoxification and methane production and investigate its effectiveness. 
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2.5 Case study IV & V: Pilot-scale fed-batch aerated lagoons treating winery 

wastewaters 

Montalvo et al. (2010) proposed the treatment of winery wastewaters using two stage 

pilot-scale fed-batch aerated lagoons. The overall performance of this process can be 

evaluated by measuring the COD removal efficiency which is defined as the quotient 

between the difference of the initial COD and effluent COD concentrations and the 

initial COD concentration (Pelillo et al., 2006). The model equations (Montalvo et al., 

2010) are as follows: 

𝑑𝑉

𝑑𝑡
= 𝐹          (35) 

𝑑𝑆

𝑑𝑡
= (

𝐹

𝑉
) (𝑆0 − 𝑆) − [

𝜇𝑚(𝑆−𝑆𝑛𝑏)

𝐾𝑆+(𝑆−𝑆𝑛𝑏)
− 𝐾𝑑](

𝑋

𝑌
)     (36) 

𝑑𝑋

𝑑𝑡
= [[

𝜇𝑚(𝑆−𝑆𝑛𝑏)

𝐾𝑆+(𝑆−𝑆𝑛𝑏)
− 𝐾𝑑] − (

𝐹

𝑉
)] 𝑋       (37) 

The variables for case study IV and V are defined in Table 2.7. The values for the 

kinetic parameters are given in Table 2.8. 

Table 2.7: Variables definitions for case study IV and V. 

State variables Definitions 

𝑉 Lagoon volume (L or m3) 

𝐹 Volumetric flow-rate (L or m3/day), 

𝑡 Operation time (days) 

𝜇𝑚 Maximum specific microbial growth rate (1/days) 

𝑆0 Influent substrate concentrations (mg or g COD/L) 

𝑆 Effluent substrate concentrations (mg or g COD/L) 

𝑆𝑛𝑏 Non-biodegradable substrate concentration (mg or g COD/ L) 

𝑋 Cellular or biomass concentration (mg)  

𝑌 Cellular yield coefficient (g VSS/g COD) 

𝐾𝑆 Saturation constant (mg or g COD/L) 
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Table 2.8: Kinetic parameters for case study IV and V. 

Parameter Value 

 𝜇𝑚 0.28 1/days 

𝑌 0.26 g VSS/g COD 

𝐾𝑆 175 mg COD/L 

𝐾𝑑 0.12 1/days 

𝑆𝑛𝑏 790 mg COD/L 

 

The volume constraint is given as: 𝑉 ≤ 𝑉𝑚 where 𝑉𝑚 is the maximum operational 

lagoon volume.  The values for 𝑉𝑚 and the final time, 𝑡𝑓 along with the initial conditions 

for the two stages of operation is given in Table 2.9. 

Table 2.9: Parameter values for case study IV and V. 

Parameter First stage Second stage 

𝑉𝑚 27.20 m3 10.80 m3 

𝑡𝑓 30 days 24 days 

𝑉(0) 3.470 m3 5.10 m3 

𝑆0(0) 8700 mg/L 1980.33 mg/L 

𝑋(0) 900 mg VSS/L 21373 mg VSS/L 

 

The bounds on the decision variables are 𝐹 ∈  [0;  2] for the first stage and 𝐹 ∈

 [0;  1] for the second stage. The PI is defined as: 

𝑃𝐼 = (𝑆0 − 𝑆)/𝑆0 × 100 − (𝑉𝑚 − 𝑉) × 100     (38) 

In this study, we consider the first stage and the second stage of this model as case 

study IV and case study V respectively.  

2.6 Case study VI:  Methane production from sewage sludge fermentation 

The model for batch methane fermentation of Sewage Sludge (SS) was proposed 

by Sosnowski et al. (2008), where the carbon balance process was determined and the 

simple kinetic model of anaerobic digestion was developed. The batch experiment with 

the above mentioned feedstock was conducted in a large scale laboratory reactor of 
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working volume of 40.0 dm-3. In our study, we convert this batch model into a fed-batch 

model which will be discussed in Section 3.1.1 

2.7 Case study VII 

In this case study, we will address the lysine fermentation model proposed by Ohno 

et al. (1976). The model equations are as follow: 

𝑑𝑥1

𝑑𝑡
= 𝜇𝑥1          (39) 

𝑑𝑥2

𝑑𝑡
= 𝐹𝑆𝐹 − 𝜎𝑥1         (40) 

𝑑𝑥3

𝑑𝑡
= 𝜋𝑥1          (41) 

𝑑𝑥4

𝑑𝑡
= 𝐹          (42) 

where  

𝜇 = 0.125𝑥2         (43) 

𝜎 =
𝜇

0.135
          (44) 

𝜋 = −384𝜇2 + 134𝜇        (45) 

The variables for case study I are defined in Table 2.10. The variable constraints are: 

𝑥4(𝑡) ≤ 20 and 0 ≤ 𝐹(𝑡) ≤ 2. The initial state conditions and the value of 𝑆𝐹 are given 

in Table 2.11. 
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Table 2.10: Variables definitions for case study VII. 

State variables Definitions 

𝑥1 Cell mass (g/L) 

𝑥2 Substrate concentrations (g/L) 

𝑥3 Product (Lysine) concentrations (g/L) 

𝑥4 Fermenter volume (L) 

𝐹 Substrate volumetric feeding rate (L/h) 

𝑆𝐹 Substrate feed concentration (g/L) 

𝜇 Specific growth rates 

𝜎 Substrate consumption 

𝜋 Product formation 

 

Table 2.11: Parameter values for case study VII. 

Parameter Value 

𝑥1(0) 0.1 g/L 

𝑥2(0) 14 g/L 

𝑥3(0) 0 g/L 

𝑥4(0) 5 L 

𝑆𝐹 2.8 wt% 

 

There are two performance index (PI) which are needed to be maximized. The first 

PI is the productivity (𝐽𝑝)while the second PI is the yield (𝐽𝑦). These are defined as 

follows: 

𝐽𝑝 =
𝑥3(𝑡𝑓)

𝑡𝑓
          (46) 

𝐽𝑦 =
𝑥3(𝑡𝑓)

∫ 𝐹(𝑡)𝑆𝐹𝑑𝑡
𝑡𝑓

0

         (47) 

where the final time, 𝑡𝑓 is an additional variable to be found by the algorithm within 

the range of 30-40 h. The number of intervals for the feeding sequence is set as 20 

intervals. 
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2.8 Case study VIII 

This case study is the same as case study II except that in this case, there are two 

performance index (PI). In case study II, the PI is to maximize the amount of protein 

product while minimizing the amount of inducer by using the later term as a penalty. In 

case study VIII however, the two terms are separated into two different objectives as 

follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑢1(𝑡), 𝑢2(𝑡) 

 𝐽1 = 𝑥4(𝑡𝑓)𝑥1(𝑡𝑓).       (48) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑢1(𝑡), 𝑢2(𝑡) 

 𝐽2 = ∫ 𝑢2(𝑡)𝑑𝑡
𝑡𝑓

0
.       (49) 
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CHAPTER 3: METHODOLOGY 

The methodology of this study can be divided into two parts. The first part addresses 

the single-objective problems while the second part involves the multi-objective 

problems. 

3.1 Single-objective optimization problems 

Six case studies (case studies I-VI) which were discussed in Section 2 are used in our 

experiments. 

3.1.1 Conversion of case study VI from batch mode into fed-batch mode. 

The batch operation of methane fermentation can be converted into fed-batch by 

using the continuity equation: 

𝑚𝑖𝑛 − 𝑚𝑜𝑢𝑡 − 𝑚𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 =
𝑑𝑚

𝑑𝑡
       (50) 

Replace the formula with the rate of change of substrate: 

𝑆𝑖𝑛 − 𝑆𝑜𝑢𝑡 − 𝑆𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 =
𝑑𝑆

𝑑𝑡
       (51) 

In fed-batch, no substrate is taken out and the substrate is consumed at a constant 

rate: 

𝑆𝑖𝑛 − 𝑘𝑆 =
𝑑𝑆

𝑑𝑡
         (52) 

Where the substrate input is defined as follow: 

𝑆𝑖𝑛 =
𝑢∙(𝑆0−𝑆)

𝐿
         (53) 

where 𝑢 is the feed flow rate, 𝑆0 is the substrate concentration in the feed, 𝑆 is the 

substrate concentration in the fermentor and 𝐿 is the volume of the fermentor. When 
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converting a batch model into fed-batch, a diluting term is added into each element. The 

diluting term is added only to the elements which are either in solid or liquid state. 

Hence, the elements which are in gaseous state remain unchanged (del Rio-Chanona et 

al., 2016). 

In this study, the methane fermentation of sewage sludge in fed-batch mode was 

investigated and is considered as case study VI. The fed-batch operation of sewage 

sludge fermentation, which was converted from the batch model by Sosnowski et al. 

(2008), was modeled as follows: 

𝑑𝑆

𝑑𝑡
=

𝑢

𝐿
∗ (𝑆0 − 𝑆) − 𝑘 ∙ 𝑆        (54) 

𝑑𝑉

𝑑𝑡
= 𝑌𝑉/𝑆 ∙ 𝑘 ∙ 𝑆 − 𝑣𝑉 ∙

𝑉

𝐾𝑆+𝑉
∙ 𝑋0 − 𝑉 ∗

𝑢

𝐿
      (55) 

𝑑𝐶𝐻4

𝑑𝑡
= 𝑌𝐶𝐻4/𝑉 ∙ 𝑣𝑉 ∙

𝑉

𝐾𝑆+𝑉
∙ 𝑋0       (56) 

𝑑𝐶𝑂2

𝑑𝑡
= 𝑌𝐶𝑂2/𝑆 ∙ 𝑘 ∙ 𝑆 + 𝑌𝐶𝑂2/𝑉 ∙ 𝑣𝑉 ∙

𝑉

𝐾𝑆+𝑉
∙ 𝑋0     (57) 

𝑑𝐿

𝑑𝑡
= 𝑢          (58) 

The variables for case study VI are defined in Table 3.1. The constant parameter 

values, the final time, 𝑡𝑓  and the initial state conditions are given in Table 3.2. 
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Table 3.1: Variables definitions for case study VI. 

State variables Definitions 

𝑘 Constant of first-order reaction (𝑑−1) 

𝑆 Carbon content in TSS (𝑔 𝐶 𝑑𝑚−3) 

𝑉 Carbon content in VFA (𝑔 𝐶 𝑑𝑚−3) 

𝐾𝑆 Saturation constant  (𝑔 𝐶 𝑑𝑚−3) 

𝑋0 Biomass concentration  (𝑔 𝐶 𝑑𝑚−3) 

𝑣𝑉 Maximum specific utilization of VFA rate (𝑑−1) 

𝑌𝑉/𝑆 Yield factor of VFA from substrate 

𝑌𝐶𝐻4/𝑉 Yield factor of 𝐶𝐻4 from VFA 

𝑌𝐶𝑂2/𝑆 Yield factor of 𝐶𝑂2 from 𝑆 

𝑌𝐶𝑂2/𝑉 Yield factor of 𝐶𝑂2 from VFA 

 

Table 3.2: Parameter values for case study VI. 

Parameter Value 

𝑋0 5 𝑔 𝐶 𝑑𝑚−3 

𝑆0 20 𝑔 𝐶 𝑑𝑚−3 

𝑘 0.11 𝑑−1 

𝑌𝑉/𝑆 0.72 𝑑−1 

𝐾𝑆 11.24 𝑔 𝐶 𝑑𝑚−3 

𝑣𝑉 2.08 𝑑−1 

𝑌𝐶𝐻4/𝑉 0.71 𝑑−1 

𝑌𝐶𝑂2/𝑆 0.17 𝑑−1 

𝑌𝐶𝑂2/𝑉 0.22 𝑑−1 

𝑡𝑓 23 𝑑 

𝑆(0) 4.75 𝑔 𝐶 𝑑𝑚−3 

𝑉(0) 0 𝑔 𝐶 𝑑𝑚−3 

𝐶𝐻4(0) 0 𝑔 𝐶 𝑑𝑚−3 

𝐶𝑂2(0) 0 𝑔 𝐶 𝑑𝑚−3 

𝐿(0) 2.4 𝑑𝑚3 

 

The variable constraints are: 𝑢 ∈  [0;  1], 𝑆(𝑡) ≤ 5, 𝐿(𝑡) ≤ 40. The total mass of 

carbon in the fermentor is constrained as follow: 

[𝑆(𝑡) + 𝑉(𝑡) + 𝐶𝐻4(𝑡) + 𝐶𝑂2(𝑡)] ∙ 𝐿(𝑡) ≤ 12                      (59)  

The performance  index (PI) is given by: 

𝑃𝐼 = 𝐶𝐻4(𝑡𝑓)          (60) 
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3.1.2 Validation of batch results and improvement using fed batch for case 

study VI 

To show the improvements of fed-batch operation over batch in the methane 

production from sewage sludge fermentation, we ran a preliminary test for this model. 

Figure 3.1 shows the comparison of batch and fed-batch for sludge fermentation where 

FB stands for fed-batch while B stands for batch. The result for fed-batch was obtained 

from our preliminary simulation using the methodology described above and BSA as 

the optimization algorithm. We found that fed-batch produced 8.95% more methane 

compared to the conventional batch process. This improvement comes from the 

controlled feeding for each day during the fermentation process. The amount of 

methane produced by fed-batch starts to increase over batch after the ninth day. It is 

worth noting that fed-batch was able to produce more methane even when the initial 

substrate is less than the amount used in batch (4.75 g dm-3 for fed-batch compared to 5 

g dm-3 for batch). Figure 3.2 shows the best feeding rate obtained by BSA for case study 

VI. 
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Figure 3.1: Comparison of batch and fed-batch for sludge fermentation 

 

Figure 3.2: Control profile for the fed-batch sludge fermentation 
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3.1.3 Experimental setup 

In this experiment, BSA is compared with four different metaheuristics: Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen & Ostermeier, 1996), 

Differential Evolution (DE) (Storn & Price, 1997), Artificial Bee Colony (ABC) 

(Basturk, 2006) and Artificial Algae Algorithm (AAA) (Uymaz et al., 2015). All the 

algorithms are population-based algorithm. In the context of fed-batch fermentation 

processes optimization, the solutions found by the algorithms represent the trajectory of 

input variables. The solutions or input variables are represented by 𝑀 × (𝑁 + 1) real 

valued vectors. 𝑀 is the predetermined number of input variables. 𝑁 is the 

predetermined size of input variables or the number of feeding intervals. Each vector 

encodes an input variable as a temporal sequence of values, defined as a piecewise 

linear function, with 𝑁 equally spaced, linearly interpolated segments. For the cases 

where there are more than one input variables, all the 𝑀 vectors are joined sequentially 

to create a solution. In this experiment, all the case studies have only one input variable 

except for case study II which has two input variables. 

Each solution is evaluated by running a numerical simulation of the differential 

equation model defined in each case. This simulation is achieved using the Runge-Kutta 

method provided by Matlab ODE suite. After the simulation, the fitness value of the 

solution is calculated according to the PI of each case. Also, the relative and absolute 

error tolerances for integrations of the system dynamics were set to 10−8 in order to 

provide accurate and consistent results. The constraints for each case are handled by 

implementing constant penalty method. Figure 3.3 shows the flowchart of BSA 

implementation in the experiments. 

The means of 30 runs along with its 95% confidence intervals are presented as 

results in this paper. T-test (Goulden, 1956) for two-sample comparisons is 
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implemented in this work. We also employed the Holm correction for the p-values 

(Holm, 1979) for the multiple pairwise comparisons. For ease of presentation, we used a 

symbolic encoding for the p-values obtained from t-tests results. Different symbols are 

employed that give straightforward comparison between the algorithms and report 

whether the mean of algorithm 𝐴1 is greater than the mean of 𝐴2 or vice versa, as 

shown in Table 3.3. In the experiments, some algorithms may show insignificant 

difference between each other based on their statistical evaluation. However, our goal is 

to determine the algorithm that can provide consistent good results by having high 

average and narrow confidence interval for all cases. 

In our experiments, we use the standard parameters for each algorithm that were 

suggested by previous studies. The termination condition is set after 200,000 FEs 

(function evaluations) and the population size for all algorithms is 20. For DE in 

particular, the parameters are as follow: 𝐹 = 0.5 and 𝐶𝑅 = 0.6. The value of 𝑁 is equal 

to the value of 𝑡𝑓 in all single-objective cases except for case studies II and III (25 and 

10 respectively). 
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Figure 3.3: BSA flowchart. 

 

Table 3.3: Symbolic encoding for comparing t-tests results. 

p-Value Condition Symbol 

p ⩽ 0.001 mean(𝐴1) > mean(𝐴2) +++ 

p ⩽ 0.001 mean(𝐴1) < mean(𝐴2) - - - 

0.001 < p ⩽ 0.01 mean(𝐴1) > mean(𝐴2) ++ 

0.001 < p ⩽ 0.01 mean(𝐴1) < mean(𝐴2) - - 

0.01 < p ⩽ 0.05 mean(𝐴1) > mean(𝐴2) + 

0.01 < p ⩽ 0.05 mean(𝐴1) < mean(𝐴2) - 

p ⩾ 0.05   O 

 

Start 

Initialization 

Selection-I 

Mutation and crossover 

Simulation of ODE model  

and fitness (PI) evaluation 

Selection-II 

End criterion met? 

End 

No 

Yes 

Simulation of ODE model  

and fitness (PI) evaluation 
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3.2 Multi-objective optimization problems 

Two case studies (case studies VII and VIII), which was discussed in Section 2 will 

be used for our study in multi-objective bioprocess problems.  

3.2.1 Modified Multi Objective Particle Swarm Optimization (M-MOPSO) 

In the second part this study, we propose a modification of an existing MOM called 

multi-objective particle swarm optimization (MOPSO) (Coello et al., 2004). This 

modification, called modified MOPSO (M-MOPSO) retains some elements used in the 

original MOPSO but at the same time introduces new processes to either replace or 

combine with the original procedures.  

 

Figure 3.4: Fed-batch fermentation using M-MOPSO. 

 

Figure 3.4 shows the overall flowchart of the fed-batch fermentation optimization 

system using M-MOPSO. M-MOPSO generates solutions which represent the substrate 

feed rate for the bioprocess. The unit of substrate feed rate is defined as the volume per 

unit time (𝑉 𝑡⁄ ). This variable provides the feeding profile for the bioreactor to provide a 

certain amount of input at a certain time during the fermentation process. The 

bioprocess is simulated using mathematical model which is usually a set of ordinary 

differential equations (ODE). The ODE describe the relationship between operating 

parameters that includes inputs, intermediatory and outputs. The biomass is 

Biomass 

Substrate 

feed rate 

Product 

Performance 

index 
M-MOPSO Mathematical 

model 

Performance 

index evaluation 
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continuously used by the substrate to produce yield. The output information from the 

bioprocess, such as the volume of the product and biomass are used to calculate the 

performance index (PI) of the solutions. The PI values are given back to M-MOPSO to 

find better solutions and the cycle repeats until the end criterion is met. 

M-MOPSO shares many similarities with MOPSO. The biggest similarity is the 

utilization of external archive/repository (𝑅𝐸𝑃). In the original MOPSO, the repository 

is made up of two main elements: the archive controller and the grid. The archive 

controller governs the selection and removal of the repository members. The grid 

system used in MOPSO is in the form of adaptive hypercubes where the objective space 

is divided into several regions to store the solutions. This system is used to reduce the 

computational cost when the archive controller needs to add or remove the repository 

member. Though the same principle is used in M-MOPSO, the execution is different. 

While the M-MOPSO uses the same grid system, the procedure for its archive controller 

is modified in several ways. These modifications, along with the introduction of other 

new procedures are described in the following subsections.   

3.2.1.1 Population initialization 

M-MOPSO initialize by randomly generating 𝑛 number of population 𝑃𝑂𝑃 within 

the problem’s upper and lower boundary. The value of 𝑛 is predetermined by the user. 

𝑃𝑂𝑃 =  [
𝑥1

1 ⋯ 𝑥𝑑
1

⋮ ⋱ ⋮
𝑥1

𝑛 ⋯ 𝑥𝑑
𝑛

] or           

𝑃𝑂𝑃𝑗 = [𝑥1
𝑗
, 𝑥2

𝑗
, … , 𝑥𝑑

𝑗
]        (61) 

where 𝑥𝑖
𝑗
 is the variable in 𝑖th dimension of 𝑗th population. 
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3.2.1.2 Dynamic boundary control mechanism 

A new boundary control mechanism is introduced in this paper. This mechanism is 

the main evolutionary process of the population. In each iteration t, each individual in 

the population will produce a new population according to the current boundary of each 

individual. The boundary of each individual changes dynamically by taking into account 

the current position of the individual and the boundary factor, bf which is defined in 

section 3.2.1.3. This new procedure is implemented to overcome the weakness of the 

swarm intelligence used in MOPSO in its exploitation aspect. With this new technique, 

balanced exploration and exploitation can be achieved by intelligently expand or shrink 

the search boundary of each individual based on some set of conditions. This boundary 

is determined by calculating the initial value of 𝑄 as follow: 

𝑄𝑖 =
𝑅𝑖

𝑙𝑜𝑤𝑒𝑟−𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

2
,     𝑖 = 1, 2, … , 𝑑      (62) 

where 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

 and 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 is the problem’s upper and lower boundary respectively. 

The value of 𝑄 will shrink in each iteration as follows: 

𝑄𝑖
𝑡+1 = 𝑄𝑖

𝑡 × 𝑠𝑓2,     𝑖 = 1, 2, … , 𝑑                 (63) 

where 𝑠𝑓2 is the predetermined parameter called shrink factor. The upper and lower 

individual boundary at iteration 𝑡 is calculated as follow: 

𝑈𝐵𝑖
𝑗

= 𝑥𝑖
𝑗

+ 𝑄𝑗,     𝑖 = 1, 2, … , 𝑑,     𝑗 = 1, 2, … , 𝑛                 (64) 

𝐿𝐵𝑖
𝑗

= 𝑥𝑖
𝑗

− 𝑄𝑗,     𝑖 = 1, 2, … , 𝑑,     𝑗 = 1, 2, … , 𝑛               (65) 

where 𝑥𝑖
𝑗
 is the position in 𝑖th dimension of 𝑗th population. The values that exceed 

the specified problem boundary will be replaced with their respective boundary value. 

Each population will produce a new population, 𝑥′𝑖
𝑗
 as follows: 
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𝑥′𝑖
𝑗

= 𝐿𝐵𝑖
𝑗

+ 𝑟𝑎𝑛𝑑 × (𝑈𝐵𝑖
𝑗

− 𝐿𝐵𝑖
𝑗
),     𝑖 = 1, 2, … , 𝑑,     𝑗 = 1, 2, … , 𝑛            (66) 

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1]). Each new population will be evaluated and their fitness is 

equal to their objective function value. For each population, some of the variables (the 

position in each dimension) have the probability to become the value of their respective 

boundaries as follows: 

IF 𝑥′𝑖
 𝑗

 < 0.1 × 𝑟𝑎𝑛𝑑 × |𝑅𝑖
𝑢𝑝𝑝𝑒𝑟 − 𝑅𝑖

𝑙𝑜𝑤𝑒𝑟| + 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 

 𝑥′
𝑖
 𝑗

= 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 

ELSE IF 𝑥′
𝑖
 𝑗

> 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟 − 0.1 × 𝑟𝑎𝑛𝑑 × |𝑅𝑖

𝑢𝑝𝑝𝑒𝑟 − 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟| 

 𝑥′
𝑖
 𝑗

= 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

 

END IF                   (67) 

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1]). This is to ensure that the variables that are close to the 

value of their boundaries have the probability to go to their boundaries, hence 

improving exploitation. Occasionally, the value of 𝑄 may change to simulate abrupt 

boundary expansion or shrinking as follows: 

IF 𝑄𝑖 < 𝑏𝑓 × |𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

− 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟| + 𝑅𝑖

𝑙𝑜𝑤𝑒𝑟 

𝑄𝑖 = 𝑂𝑄𝑖 × 𝑏𝑓   

  𝐸𝑁𝐷 𝐼𝐹                   (68) 

where 𝑂𝑄𝑖 is the initial 𝑄𝑖 value obtained in equation (62). The determination of the 

boundary factor, 𝑏𝑓 is explained in the next section. 
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3.2.1.3 Boundary factor determination 

M-MOPSO employs a new dynamic boundary mechanism to search for new 

solutions. Each individual will evolve based on their respective boundaries. These 

boundaries may shrink or expand in each iteration depending on the boundary factor, 

𝑏𝑓. Smaller 𝑏𝑓 ensures greater exploitation while larger 𝑏𝑓 encourages greater 

exploration. 𝑏𝑓 is determined as follows: 

1. Initially, 𝑏𝑓 is calculated as follows: 

𝑏𝑓 = 𝑟𝑎𝑛𝑑             (69) 

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1]). 

2. If the number of functional evaluations is more than half the maximum 

allowable, 𝑏𝑓 is calculated as follow: 

𝑏𝑓 = 0.1 × 𝑟𝑎𝑛𝑑         (70) 

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1]). 

3. If the number of REP member is equal to the maximum allowable, 𝑛𝑅𝑒𝑝  for 

𝑛𝑅𝑒𝑝
2⁄  iterations, 𝑏𝑓 is determined using equation (69). 

4. After 𝑆𝑓1 iterations from previous step, 𝑏𝑓 is determined using equation (70). 

5. Repeat step 3. 

𝑆𝑓1 is a predetermined parameter called saturation factor. 

3.2.1.4 Repository member admittance method 

In original MOPSO, the archive controller needs to determine the domination of 

each of repository member every time new members are admitted. This can lead to high 
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computational cost especially when the size of the repository grows larger in each 

iteration. Besides, identical solutions or populations (𝑃𝑂𝑃) may be admitted into the 

finite-sized repository, causing it to rapidly fill early in the iteration. In M-MOPSO, 

several modifications are made to lower the computational cost and ensure the 

uniqueness of the solutions in the repository. The pseudocode for repository member 

admittance is as follows: 

1. Determine each 𝑃𝑂𝑃 domination. 

2. Assign all 𝑅𝐸𝑃 member as nondominated. 

3. FOR each nondominated 𝑃𝑂𝑃 

FOR each 𝑅𝐸𝑃 member 

 BREAK if current 𝑃𝑂𝑃 is identical to current 𝑅𝐸𝑃 

 Assign current 𝑅𝐸𝑃 as dominated if it is dominated by current 𝑃𝑂𝑃 

 ELSE assign current 𝑃𝑂𝑃 as dominated if it is dominated by current  

 𝑅𝐸𝑃 and BREAK 

END FOR 

END FOR 

4. Insert nondominated 𝑅𝐸𝑃 and nondominated 𝑃𝑂𝑃 into 𝑅𝐸𝑃. 

3.2.1.5 Repository member deletion method 

Each time new nondominated solutions are found, the archive controller will add 

them into the repository. However, if the size of the repository exceeds the maximum 

allowable, some members of the repository will be removed by the archive controller. 

The original MOPSO determines which member to be removed based on the density of 
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the grids. Members in the grid with higher density have higher chance to be removed. In 

M-MOPSO, the factor that determines the removal of a member depends on the 

Euclidean distance in the objective space between each repository member and the latest 

admitted member. The repository member deletion method in M-MOPSO is as follows: 

1. Use roulette-wheel selection to select one member. The weight is defined as the 

Euclidean distance (in objective space) between each REP members and the 

latest admitted REP member (nearer member has higher weight). 

2. Delete the selected member. 

3. Repeat step 1 until the number of REP members does not exceeds the maximum 

allowable number. 

3.2.1.6 Mutation operator and population update method 

In M-MOPSO, the old population is replaced through the means of mutation. The 

same mutation operator used by MOPSO is used in M-MOPSO. Mutation happens with 

some probability (not every iteration). If the mutation process cannot improve the 

individual, its saturation counter is incremented by one. Once the saturation counter 

reached a predetermined value, that particular individual in the population may be 

replaced by one of the following method (randomly use one method with equal 

probability): 

• Choose one REP member by roulette-wheel method. Members from less 

crowded area in the grids have higher probability to be selected. 

• Randomly select one REP member. 

3.2.1.7 M-MOPSO procedures 

The whole procedures for M-MOPSO are as follows: 
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1. Randomly generate initial population, 𝑋𝑗 for 𝑗 = 1, 2, … , 𝑛 within the boundary. 

𝑥𝑖
𝑗

= 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 + 𝑟𝑎𝑛𝑑 × 𝑄𝑖,        

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1]), 𝑄𝑖 = |
𝑅𝑖

𝑢𝑝𝑝𝑒𝑟
−𝑅𝑖

𝑙𝑜𝑤𝑒𝑟

2
| , 𝑖 = 1, 2, … , 𝑑,    

where 𝑑 is the number of variables, 𝑛 is the predetermined number of 

population, 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

 and 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 are the upper and lower boundary respectively. 

2. Evaluate 𝑓(𝑋𝑗), store nondominated solutions in archive/repository, 𝑅𝐸𝑃, 

generate hypercubes, initialize saturation count, 𝑆𝑗 to zero, store initial 𝑋𝑗 

positions as best found positions so far, 𝐵𝐹𝑃𝑗. 

3. Generate new boundary. 

𝑈𝐵𝑖
𝑗

= 𝑥𝑖
𝑗

+ 𝑄𝑖    

𝐿𝐵𝑖
𝑗

= 𝑥𝑖
𝑗

− 𝑄𝑖         

4. Each particle in the population generates offspring, 𝑋′ 𝑗 within new boundary. 

𝑥′𝑖
 𝑗

= 𝐿𝐵𝑖
𝑗

+ 𝑟𝑎𝑛𝑑 × |𝑈𝐵𝑖
𝑗

− 𝐿𝐵𝑖
𝑗
|        

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1])       

5. For each particle, some of the variables have the probability to become the value 

of their respective boundaries as follows: 

IF 𝑥′𝑖
 𝑗

 < 0.1 × 𝑟𝑎𝑛𝑑 × |𝑅𝑖
𝑢𝑝𝑝𝑒𝑟 − 𝑅𝑖

𝑙𝑜𝑤𝑒𝑟| + 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 

 𝑥′
𝑖
 𝑗

= 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 

ELSE IF 𝑥′
𝑖
 𝑗

> 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟 − 0.1 × 𝑟𝑎𝑛𝑑 × |𝑅𝑖

𝑢𝑝𝑝𝑒𝑟 − 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟| 

𝑥′
𝑖
 𝑗

= 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

 

END IF                     
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where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1]) 

6. Evaluate 𝑓(𝑋′ 𝑗) and store nondominated 𝑋′ 𝑗 in 𝑅𝐸𝑃, update 𝑅𝐸𝑃 by removing 

dominated solutions, update hypercubes. 

7. 𝑋𝑗 performs mutation to generate 𝑋′′ 𝑗. Evaluate 𝑓(𝑋′′𝑗
) and replace 𝑋𝑗 if 𝑋′′ 𝑗 

is better. 

8. Compare 𝑋𝑗 with 𝐵𝐹𝑃𝑗 and update 𝐵𝐹𝑃𝑗. Increment 𝑆𝑗 if better 𝐵𝐹𝑃𝑗 is not 

found, otherwise reset 𝑆𝑗 to zero. 

9. Replace all 𝑋𝑗 with respective 𝐵𝐹𝑃𝑗. 

10. Store nondominated 𝑋𝑗in 𝑅𝐸𝑃, update 𝑅𝐸𝑃 by removing dominated solutions, 

update hypercubes. 

11. If 𝑆𝑗  =  𝑆𝑓1, replace 𝑋𝑗 by population update method. 

12. Shrink current boundary. 

𝑄𝑖 = 𝑄𝑖 × 𝑆𝑓2  

13. Determine boundary factor, 𝑏𝑓 . 

14. If 𝑄𝑖 < 𝑏𝑓 × |𝑅𝑖
𝑢𝑝𝑝𝑒𝑟 − 𝑅𝑖

𝑙𝑜𝑤𝑒𝑟| + 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟, update the boundary. 

𝑄𝑖 = 𝑂𝑄𝑖 × 𝑏𝑓        

where 𝑂𝑄𝑖 is the original 𝑄𝑖 value obtained in Step 1. 

15. If maximum iteration is achieved, terminate. Otherwise repeat step 3. 

The flowchart for M-MOPSO is given in Figure 3.5. 

Univ
ers

ity
 of

 M
ala

ya



58 

 

Figure 3.5: M-MOPSO’s flowchart. 
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3.2.1.8 Similarities and differences between MOPSO and M-MOPSO 

M-MOPSO have several similarities with the original MOPSO. Both are population-

based evolutionary algorithm, which evolve the solution vector/population (POP) in 

each iteration. Like MOPSO, M-MOPSO also uses external population/repository 

(REP) to store the non-dominated POP and construct the Pareto front. M-MOPSO also 

employs identical adaptive grid mechanism used in MOPSO. Also, both utilize elitism 

to update individual’s memory. Finally, M-MOPSO uses the same mutation operator 

utilized by MOPSO, though the subjects of mutation are different. 

There are six major differences between M-MOPSO and MOPSO. The first 

difference is the population evolution procedure. MOPSO utilizes swarm intelligence 

technique where the whole population coordinates their movements by following a 

single leader. This is achieved by considering the current leader position, the memory of 

each individual (individual best position) and their velocity. M-MOPSO instead 

employs dynamic boundary control mechanism. This is achieved by deliberate 

shrinking and expansion of each individual boundary. New populations are randomly 

generated within these adaptive boundaries. M-MOPSO does not restrict its search 

direction by following a single leader but instead each individual evolves independently 

according to their own boundary. 

Secondly, the mutation procedure in MOPSO is applied after the new position of the 

population has been found. The new population will replace the old one. In M-MOPSO, 

the mutation is applied directly on the old population (before evolution), not the new 

ones. The new population never replaces the old one. 

The repository update procedure in both algorithms is also different.  MOPSO 

updates the contents of its repository only after the new population has both been 
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generated and mutated while M-MOPSO updates the contents of its repository after the 

old population was mutated and also after the new population has been generated. 

The procedure for repository member selection is also different between the two 

algorithms. MOPSO determines the domination of each of repository member every 

time new members are admitted. New members are admitted every time new 

nondominated solutions are found. M-MOPSO however only determines the 

domination of some necessary members and any redundant solutions are ignored and 

not admitted into the repository.  

Both algorithms also use different repository member deletion procedure. MOPSO 

deletes its repository members based on the density of the grids, where members in the 

least populated grid have higher probability to be deleted. M-MOPSO deletes its 

repository members based on the Euclidean distance in the objective space between 

each repository member and the latest admitted member. The members nearer to the 

latest admitted member have higher probability to be deleted. 

The final difference is in the aspects of leader selection and population update. In 

MOPSO, a single new leader is selected in each iteration and replaces the previous 

leader. The leader is selected from a repository member in the least populated grid. All 

other population remains the same as in previous iteration. In M-MOPSO, each 

individual population has their own saturation counter. If they cannot improve/found 

better solution after a predetermined number of iteration, they will be replaced either by 

randomly selecting a repository member or by selecting a repository member in the least 

populated grid. 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1 Single-objective optimization problems 

The results of our experiments for each case study will be shown in a pair of tables. 

The first table of each pair provides the mean and the 95% confidence intervals for the 

PI of each algorithm. We probe the PI at four different time-steps: when 25,000, 50,000, 

100,000 and 200,000 FEs are performed by each algorithm. This decision is made to 

estimate the possibilities for terminating the optimization process earlier, immediately 

after good enough solutions are obtained. The second table of each pair provides the 

pairwise t-test results at 200,000 FEs. These results are intended to signify the statistical 

differences among the algorithms, where the algorithm on each row of the tables 

represents 𝐴1 on Table 3.3 while the algorithm on each column represents 𝐴2. The 

results for case studies I– III are provided in Tables 4.1 - 4.6. The results for case studies 

IV– V are provided in Tables 4.7 - 4.10 while the results for case study VI are provided 

in Tables 4.11 and 4.12. 

Table 4.1: Mean and confidence intervals for case study I. 

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs 

BSA 20285 ± 30.73 20341 ± 26.56 20392 ± 14.26 20418 ± 4.71 

AAA 20348 ± 10.42 20357 ± 14.87 20369 ± 9.91 20382 ± 7.02 

ABC 7875 ± 2576 11258 ± 4605 20299 ± 61.62 20317 ± 36.98 

DE 20384 ± 4.82 20381 ± 24.62 20388 ± 18.93 20406 ± 2.27 

CMAES 20211 ± 100.2 20373 ± 46.09 20403 ± 29.87 20412 ± 30.03 

 

Table 4.2: T-test results for case study I. 

  BSA AAA ABC DE CMAES 

BSA   +++ +++ ++ O 

AAA ---   + --- O 

ABC --- -   -- - 

DE -- +++ ++   O 

CMAES O O + O   
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In case study I, during the early stages of optimization, namely at 25,000 FEs, DE 

obtains the highest PI as shown in Table 4.1. Later, CMAES edged other algorithms to 

obtain better PI at 50,000 and 100,000 FEs. However, at the saturation of optimization, 

BSA obtained the highest PI after 200,000 FEs. According to the t-test in Table 4.2, 

BSA performed better than DE, AAA and ABC while performing equally well in 

comparison to CMAES. 

Table 4.3: Mean and confidence intervals for case study II. 

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs 

BSA 5.5488 ± 0.0038 5.5668 ± 0.0002 5.5676 ± 0.0000 5.5677 ± 0.0000 

AAA 5.5642 ± 0.0010 5.5659 ± 0.0004 5.5669 ± 0.0001 5.5673 ± 0.0000 

ABC 3.1832 ± 1.1607 5.4637 ± 0.0749 5.5532 ± 0.0072 5.5652 ± 0.0005 

DE 5.5671 ± 0.0001 5.5676 ± 0.0000 5.5677 ± 0.0000 5.5677 ± 0.0000 

CMAES 0.0000 ± 0.0000 5.5677 ± 0.0000 5.5677 ± 0.0000 5.5677 ± 0.0000 

 

Table 4.4: T-test results for case study II. 

  BSA AAA ABC DE CMAES 

BSA   +++ +++ O O 

AAA ---   +++ --- --- 

ABC --- ---   --- --- 

DE O +++ +++   O 

CMAES O +++ +++ O   

 

In case study II, during the early stages of optimization namely at 25,000 FEs, DE 

obtains the highest PI as shown in Table 4.3. At 50,000 FEs, CMAES improved 

compared to other algorithms to obtain better PI though DE emerged to perform equally 

well as CMAES at 100,000 FEs to obtain the highest PI. At the saturation of 

optimization, BSA, DE and CMAES obtained the highest PI after 200, 000 FEs. 

According to the t-test in Table 4.4, BSA performed better than AAA and ABC while 

performing equally well in comparison to CMAES and DE. 
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Table 4.5: Mean and confidence intervals for case study III. 

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs 

BSA 69.352 ± 22.656 87.487 ± 0.2997 87.876 ± 0.0699 87.976 ± 0.0251 

AAA 32.433 ± 25.991 85.017 ± 1.0445 85.844 ± 0.6977 86.365 ± 0.7140 

ABC 14.733 ± 19.259 78.110 ± 2.4286 78.612 ± 2.1388 78.612 ± 2.1387 

DE 43.995 ± 28.743 43.974 ± 28.73 43.99 ± 28.74 43.996 ± 28.744 

CMAES 87.770 ± 0.2776 87.968 ± 0.0192 87.968 ± 0.0192 87.968 ± 0.0192 

 

Table 4.6: T-test results for case study III. 

  BSA AAA ABC DE CMAES 

BSA  ++ +++ O O 

AAA --   +++ O -- 

ABC --- ---   O --- 

DE O O O   O 

CMAES O ++ +++ O   

 

In case study III, prior to convergence of optimization namely at 25,000, 50,000 and 

100,000 FEs, CMAES obtains the highest PI as shown in Table 4.5. However, at the 

convergence of optimization, BSA obtained the highest PI after 200, 000 FEs. 

According to the t-test in Table 4.6, BSA performed better than AAA and ABC while 

performing equally well in comparison to CMAES and DE. 

Table 4.7: Mean and confidence intervals for case study IV. 

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs 

BSA 89.117 ± 0.1457 89.404 ± 0.0027 89.406 ± 0.0015 89.408 ± 0.0012 

AAA 89.402 ± 0.0049 89.404 ± 0.0057 89.405 ± 0.0057 89.407 ± 0.0045 

ABC 89.340 ± 0.0530 89.391 ± 0.0102 89.392 ± 0.0101 89.395 ± 0.0069 

DE 89.364 ± 0.0272 89.347 ± 0.0290 89.376 ± 0.0141 89.391 ± 0.0134 

CMAES 89.140 ± 0.2024 89.359 ± 0.0407 89.371 ± 0.0387 89.373 ± 0.0382 
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Table 4.8: T-test results for case study IV. 

  BSA AAA ABC DE CMAES 

BSA   O O O O 

AAA O   O O O 

ABC O O   O O 

DE O O O     

CMAES O O O O   

 

In case study IV, during the early stages of optimization namely at 25,000 FEs, AAA 

obtains the highest PI as shown in Table 4.7. At 50,000 FEs, both BSA and AAA obtain 

the highest PI. However at the later stages of optimization namely at 100,000, and 

200,000 FEs, BSA obtained the highest PI. According to the t-test in Table 4.8, all 

algorithms perform equally well. 

Table 4.9: Mean and confidence intervals for case study V. 

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs 

BSA 95.049 ± 0.0211 95.071 ± 0.0015 95.072 ± 0.0009 95.073 ± 0.0001 

AAA 95.065 ± 0.0083 95.068 ± 0.0051 95.073 ± 0.0001 95.073 ± 0.0000 

ABC 95.046 ± 0.0176 95.041 ± 0.0127 95.047 ± 0.0110 95.061 ± 0.0089 

DE 75.907 ± 24.797 57.042 ± 30.428 57.043 ± 30.429 57.043 ± 30.429 

CMAES 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 

 

Table 4.10: T-test results for case study V. 

  BSA AAA ABC DE CMAES 

BSA   O O O +++ 

AAA O   O O +++ 

ABC O O   O +++ 

DE O O O  + 

CMAES --- --- --- -   

 

In case study V, during the early stages of optimization, namely at 25,000 FEs, AAA 

obtains the highest PI as shown in Table 4.9. Later, BSA edged other algorithms to 

obtain better PI at 50,000 FEs. At 100,000 FEs, AAA obtains the highest PI. At the 
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saturation of optimization, both BSA and AAA obtained the highest PI after 200,000 

FEs. According to the t-test in Table 4.10, BSA performed better than CMAES while 

performing equally well in comparison to AAA, ABC and DE. 

Table 4.11: Mean and confidence intervals for case study VI. 

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs 

BSA 2.5044 ± 0.0028 2.5153 ± 0.0011 2.5186 ± 0.0010 2.522 ± 0.0010 

AAA 2.5068 ± 0.0024 2.5112 ± 0.0011 2.5142 ± 0.0009 2.5165 ± 0.0007 

ABC 2.4739 ± 0.0072 2.4739 ± 0.0072 2.4739 ± 0.0072 2.4739 ± 0.0072 

DE 2.5176 ± 0.0004 2.5192 ± 0.0005 2.5206 ± 0.0004 2.5219 ± 0.0003 

CMAES 2.5196 ± 0.0012 2.5196 ± 0.0012 2.5196 ± 0.0012 2.5196 ± 0.0012 

 

Table 4.12: T-test results for case study VI. 

  BSA AAA ABC DE CMAES 

BSA   +++ +++ O O 

AAA ---   +++ --- -- 

ABC --- ---   --- --- 

DE O +++ +++ 

 

+ 

CMAES O ++ +++ -   

 

In case study VI, during the early stages of optimization namely at 25,000 and 50,000 

FEs, CMAES obtains the highest PI as shown in Table 4.11. Later, DE edged other 

algorithms to obtain better PI at 100,000 FEs. However at the saturation of optimization, 

BSA obtained the highest PI after 200,000 FEs. According to the t-test in Table 4.12, 

BSA performed better than AAA and ABC while performing equally well in 

comparison to DE and CMAES. 

The results provide several insights on the capabilities of each algorithm in solving 

fermentation problems. The problems investigated in this paper can be divided into two 

categories: constrained and unconstrained. Case study II is unconstrained problem while 

the rest are constrained problems. For unconstrained problem, all algorithms performed 

almost equally well and saturated at almost the same PI value. This means that for 
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unconstrained problems, there is flexibility in choosing an algorithm to solve a given 

problem as most of them converged to the same solution. However, a different scenario 

exists for constrained problems. For constrained problems, different algorithms 

performed differently in each problem with the exception of BSA. In overall, BSA is 

able to obtain the best results in all case studies by providing the highest means and 

narrow confidence interval. BSA obtained the highest means at 200,000 FEs for all 

problems except for case II where DE and CMAES saturated at the same highest value 

as BSA. Case V is an exception for constrained problem where AAA managed to obtain 

equal means as BSA. Even though DE and CMAES obtained higher means than BSA at 

NFE lower than 200,000 for some cases, BSA manages to obtain higher means than 

both algorithms at the end of 200,000 FEs for all constrained problems. This shows that 

when given a sufficient amount of NFE, BSA is the best option for solving constrained 

fermentation problems and provides improved performance compared to DE and other 

metaheuristics studied in this work for solving bioreactor application problems in 

general. 

AAA shows equal in performance as BSA for case IV and case V while it performs 

worse in other problems especially for case I and case III. ABC performs the worst in all 

the case studies except for case IV and case V where it performs relatively well. DE 

performs well for case I, II, IV and VI. However, it shows significantly worse results for 

case III and the V because of the difficulty of satisfying the constraints in these 

problems. Case III has three constraints to be satisfied, while case V has a single strict 

constraint as compared to other problems which either have more relaxed constraint or 

no constraints. CMAES performs well for most cases and even converged faster than 

BSA in case I, II, III and VI. However, it struggles to solve case V for the same reason as 

DE. Previously, M. Rocha et al. (2014) found that DE obtains the best overall 

performance for fed-batch fermentation problems. BSA, as an improved DE-based 
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algorithm is expected to perform better than DE. The results obtained from our 

experiments confirmed that BSA is a superior algorithm. 

4.2 Multi-objective optimization problems 

4.2.1 Benchmark problems 

We compare our algorithm with four other multi-objective algorithms namely multi-

objective grey wolf optimizer (MOGWO), multi-objective particle swarm optimizer 

(MOPSO), multi-objective evolutionary algorithm based on decompositions (MOEA/D) 

and multi-objective differential evolution (MODE). In this experiment, 20 standard 

multi-objective test problems proposed in CEC 2009 are used (Qingfu Zhang et al., 

2008) to evaluate the contested algorithms. These test problems consist of 10 

unconstrained functions (UF1-UF10) and 10 constrained functions (CF1-CF10). They 

are considered as one of the most challenging test problems in the literature that provide 

different multi-objective search spaces with different Pareto optimal fronts: convex, 

non-convex, discontinuous, and multi-modal. For all problems, 100 search agents are 

utilized and the algorithms are run for a maximum of 300,000 function evaluations. The 

number of parameters or variables for each of the unconstrained test functions is 30 

while for the number of variables for constrained test functions is 10. The parameters 

for all algorithms are set at default values as recommended by their respective author. 

The two parameters used for M-MOPSO are as follows: 

• 𝑆𝑓1 = 10: saturation factor 

• 𝑆𝑓2 = 0.97: shrink factor 

In M-MOPSO, these two parameters influence the converging behavior of the 

algorithm. These parameter values should be fine-tuned and in our experiment, we 

found the best parameter values after rigorous trial and error. As both MOPSO and M-
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MOPSO use the same external repository system, they both use the same following 

parameters: 

• 𝑛𝐺𝑟𝑖𝑑 = 10: number of grids per dimension 

• 𝑛𝑅𝑒𝑝 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡𝑠: repository size 

• 𝛼 = 0.1: grid inflation rate 

• 𝛽 = 2: leader selection pressure 

• 𝛾 = 2: deletion selection pressure 

The performance metric used for comparison is the Inverted Generational Distance 

(IGD) proposed by Sierra and Coello Coello (2005) which is used for measuring 

convergence and spread. The mathematical formulation for IGD is as follow: 

𝐼𝐺𝐷 =
√∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛
                           (71) 

where 𝑛 is the number of true Pareto optimal solutions and 𝑑𝑖 indicates the Euclidean 

distance between the 𝑖th true Pareto optimal solution in the reference set and the closest 

obtained Pareto optimal solutions by the algorithm. The Euclidean distance is calculated 

for every true solution with respect to its nearest obtained Pareto optimal solutions in 

the objective space. In our experiment, we used 1,000 evenly distributed solutions as the 

reference set for test instances with two objectives except for CF1 which used 21 

solutions while 10,000 solutions are used for test instances with three objectives. 

4.2.1.1 Unconstrained problems 

The algorithms are run 30 times for each test problem and the statistics results are 

provided in Table 4.13 and Figure 4.3. Aside from the above quantitative evaluation, we 

also provide the means for qualitative evaluations by illustrating the best set of Pareto 
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optimal solutions obtained by each algorithm on the objective space. These qualitative 

results are provided in Figure 4.4 - 4.13.  

The first three variables of the Pareto sets after 50,000, 100,000 and 300,000 number 

of function evaluations (NFE) are illustrated in Figure 4.1 and 4.2. The rate of 

convergence can be observed from Figure 4.1 and 4.2. It shows that during initial search 

process at NFE=10,000, only a small number of nondominated solutions are stored in 

the external archive and the solutions are distributed randomly in the search space. After 

100,000 NFE, more solutions were approaching to the true Pareto set. At the final stage 

of search (NFE=300,000), the maximum number of 100 solutions are stored in the 

archive and they mostly cover the true Pareto set. At this stage, the convergence and 

coverage of M-MOPSO can be clearly seen. 
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Figure 4.1: True and obtained Pareto sets of M-MOPSO for UF2: (A) at 10,000 

function evaluations, (B) at 100,000 function evaluations, (C) at 300,000 function 

evaluations. 
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Figure 4.2: True and obtained Pareto sets of M-MOPSO for UF9: (A) at 10,000 

function evaluations, (B) at 100,000 function evaluations, (C) at 300,000 function 

evaluations. 
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Table 4.13 describes the IGD result based on average, standard deviation, median 

and worst outcome from 30 test simulations on 10 unconstrained benchmark multi-

objective problems of CEC 2009. The tested algorithms are MOGWO, MOPSO, 

MOEA/D, MODE and M-MOPSO. Based on Table 4.13, M-MOPSO showed improved 

average result in comparison to all other algorithms in all benchmark problems except 

for problem UF2 and UF8. For UF2, MODE obtained the best average while for UF8, 

the best average was obtained by MOEA/D. It is worth noting that for UF2, M-MOPSO 

was the third best algorithm after MODE and MOEA/D in term of average result while 

for UF8, M-MOPSO was the second best after MOEA/D. This shows that in overall, M-

MOPSO have good convergence for multi-objective problems and rivals other 

algorithms used in this experiment. 

Table 4.13: IGD results for unconstrained CEC 2009 benchmark problems. 

  UF1 (bi-objective)  UF2 (bi-objective) 

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO  MOGWO MOPSO MOEA/D MODE M-MOPSO 

Average 0.10955 0.10566 0.15906 0.03365 0.02642  0.06042 0.05577 0.02024 0.01380 0.02050 

Median 0.10950 0.10840 0.12142 0.03345 0.02669  0.06084 0.05584 0.01215 0.01345 0.01987 

STD. Dev. 0.00553 0.00968 0.09000 0.00179 0.00395  0.00956 0.00526 0.01696 0.00105 0.00278 

Worst 0.11842 0.12226 0.31089 0.03719 0.03286  0.08232 0.06902 0.06325 0.01699 0.02750 

  UF3 (bi-objective)  UF4 (bi-objective) 

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO  MOGWO MOPSO MOEA/D MODE M-MOPSO 

Average 0.25349 0.39195 0.28254 0.18019 0.08247  0.05921 0.07847 0.06363 0.04595 0.03319 

Median 0.25625 0.40898 0.28788 0.17864 0.07990  0.05880 0.08004 0.06322 0.04641 0.03282 

STD. Dev. 0.05642 0.05864 0.03000 0.01058 0.01291  0.00226 0.00561 0.00453 0.00148 0.00218 

Worst 0.34665 0.46685 0.32290 0.20554 0.11507  0.07031 0.08640 0.07296 0.04875 0.04240 

  UF5 (bi-objective)  UF6 (bi-objective) 

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO  MOGWO MOPSO MOEA/D MODE M-MOPSO 

Average 0.69931 0.43357 0.94569 0.77167 0.16981  0.28241 0.38170 0.46731 0.49191 0.15018 

Median 0.62907 0.40824 0.92679 0.77098 0.17529  0.28452 0.32407 0.46227 0.48846 0.15447 

STD. Dev. 0.32321 0.20739 0.17414 0.05703 0.02186  0.04076 0.20857 0.10427 0.01555 0.06454 

Worst 2.19045 1.18900 1.28565 0.87944 0.21685  0.38275 0.85390 0.81389 0.52104 0.31263 

  UF7 (bi-objective)  UF8 (tri-objective) 

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO  MOGWO MOPSO MOEA/D MODE M-MOPSO 

Average 0.09982 0.15624 0.32143 0.11995 0.02825  2.73042 0.29777 0.12909 0.21322 0.13808 

Median 0.06949 0.06208 0.40413 0.10905 0.02802  3.25743 0.29766 0.11940 0.20849 0.13505 

STD. Dev. 0.08411 0.14338 0.21034 0.03745 0.00486  1.24334 0.04143 0.02528 0.02469 0.01655 

Worst 0.35172 0.40408 0.58568 0.20833 0.03742  4.15865 0.36733 0.18874 0.26685 0.17958 
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Table 4.13, continued. 

 
IGD 

  

UF9 (tri-objective)  UF10 (tri-objective) 

MOGWO MOPSO MOEA/D MODE M-MOPSO  MOGWO MOPSO MOEA/D MODE M-MOPSO 

Average 0.32416 0.37910 0.16876 0.22429 0.07254  2.55824 1.14397 0.45272 1.03144 0.31347 

Median 0.23950 0.36722 0.17164 0.22455 0.07146  1.04314 1.07498 0.49515 1.01960 0.30887 

STD. Dev. 0.19293 0.05252 0.01787 0.02450 0.00828  4.05456 0.57334 0.19059 0.07885 0.03822 

Worst 0.79260 0.51674 0.17960 0.28344 0.09267  15.33101 2.47642 0.73603 1.22866 0.40404 

 

Figure 4.3 shows the boxplot for IGD results based on 30 test simulations on 10 

unconstrained benchmark multi-objective problems of CEC 2009. Based on Figure 4.3, 

M-MOPSO showed improved average result in comparison to all other algorithms in all 

benchmark problems except for UF2 and UF8. Except for UF2 and UF8, the boxplots 

for M-MOPSO are lower and narrower compared to others. This shows that M-MOPSO 

has better convergence, spread and stability compared to other algorithms. 

Figure 4.4 - 4.13 illustrate both the coverage and convergence of the best solution 

found by each algorithm. The higher proximity of solutions to the true Pareto front 

reveals the improved convergence of the solutions obtained. M-MOPSO managed to 

construct well-defined Pareto fronts which closely resemble the true optimal Pareto 

fronts of each test functions. 

For UF1, M-MOPSO obtained more distributed solutions and closer to the true 

Pareto front compared to the others, as shown in Figure 4.4. For UF2, M-MOPSO, 

MOEA/D and MODE obtained almost similar results, which are well distributed and 

have good convergence toward the true Pareto front, as shown in Figure 4.5. In Figure 

4.6, M-MOPSO clearly shown better convergence and spread throughout the true Pareto 

front of UF3 when compared to other algorithms. For UF4, even though all algorithms 

have good Pareto front distribution, M-MOPSO has the advantage of better convergence 

towards the true Pareto front, as shown in Figure 4.7. Figure 4.8 shows that M-MOPSO 

obtained solutions which are closest to the true solutions compared to the solutions 

Univ
ers

ity
 of

 M
ala

ya



74 

obtained by other algorithms for UF5. From Figure 4.9, we can see that the true Pareto 

front for UF6 consists of three separate parts. M-MOPSO managed to find solutions 

which are close to all three parts. In Figure 4.10, MOEA/D shows good convergence 

and distribution of its solutions except at the lower part of its Pareto front. For M-

MOPSO,  even though its solutions are not as well distributed as MOEA/D’s, the Pareto 

front covers almost all areas of the true Pareto front. Figures 4.11, 4.12 and 4.13 show 

the Pareto fronts for the three objectives problems of UF8, UF9 and UF10 respectively. 

For UF8 and UF9, M-MOPSO shows better convergence and distribution compared to 

the others while for UF10, MOEA/D has the best result.  
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Figure 4.3: Boxplot for the statistical results for IGD on UF1 to UF10. 
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Figure 4.4: Obtained Pareto solutions for UF1. 
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Figure 4.5: Obtained Pareto solutions for UF2. 
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Figure 4.6: Obtained Pareto solutions for UF3. 
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Figure 4.7: Obtained Pareto solutions for UF4. 
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Figure 4.8: Obtained Pareto solutions for UF5. 
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Figure 4.9: Obtained Pareto solutions for UF6. 
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Figure 4.10: Obtained Pareto solutions for UF7. 
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Figure 4.11: Obtained Pareto solutions for UF8. 
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Figure 4.12: Obtained Pareto solutions for UF9. 
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Figure 4.13: Obtained Pareto solutions for UF10. 
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Figure 4.14: Convergence graph for UF1. 

 

Figure 4.15: Convergence graph for UF4. 
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Figure 4.16: Convergence graph for UF8. 

 

Figure 4.14 shows the convergence graph for UF1. The graph shows the average 

IGD of 30 runs recorded at 30 intervals of function evaluations (FE) obtained by each 

algorithm. MOGWO and MOEA/D converge faster by obtaining lower average IGD 

compared to M-MOPSO and other algorithms at 20,000 FE. However, they become 

saturated quicker than other algorithms and trapped at local optima after around 30,000 

FE. Meanwhile, M-MOPSO and MODE manage to avoid premature convergence and 

continue to converge gradually until termination, with M-MOPSO showing more 

noticeable improvements after every FE compared to others.  

The same scenario occurs in Figure 4.15 which shows the convergence graph for 

UF4. MOGWO and MOEA/D converge quicker but also saturates faster compared to 

M-MOPSO and MODE. M-MOPSO also obtains the best convergence curve after 

300,000 FE compared to others. 
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In Figure 4.16 which shows the convergence graph for UF8, MOGWO and 

MOEA/D converge faster than others by obtaining lower average IGD until at around 

30,000 FE. However, after 30,000 FE, MOGWO’s performance becomes worse. The 

same problem occurs for the original MOPSO, where its performance worsens after 

around 140,000 FE. This negative behaviour can be attributed to repository member 

deletion procedure implemented by both algorithms. This procedure is executed after 

the maximum number of repository members is obtained and the algorithm proceeds to 

delete one of their members based on the density of the grids. Depending on the 

member selected to be deleted, the IGD value can either improve or worsen. M-MOPSO 

eliminates the possibility to delete the ‘wrong’ member by implementing distance-based 

member deletion as opposed to density-based member deletion. Hence, it is able to 

maintain the quality of its solutions throughout the run as shown in the convergence 

graph. MODE and MOEA/D also maintain the smooth descend of their convergence 

curve as both does not employ external archive to store the solutions. 

4.2.1.2 Constrained problems 

In order to verify the their performance in solving constraint problems, the 

algorithms are run 30 times for each test problem and the statistics results are provided 

in Table 4.14 and Figure 4.17. To represent the qualitative results, the best set of Pareto 

optimal solutions obtained by each algorithm on the objective space are provided in 

Figure 4.18-4.27. 

Based on Table 4.14, M-MOPSO showed improved average result in comparison to 

all other algorithms in all benchmark problems except for problem CF1 and CF10. 

MOEA/D obtained the best average for CF1 and CF10. It is worth noting that for CF1 

and CF10, M-MOPSO was the second best algorithm after MOEA/D in term of average 
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result. This shows that in overall, M-MOPSO have good convergence for constrained 

multi-objective problems and rivals other algorithms used in this experiment. 

Table 4.14: IGD results for constrained CEC 2009 benchmark problems. 

 CF1 (bi-objective)  CF2 (bi-objective) 

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO  MOGWO MOPSO MOEA/D MODE M-MOPSO 

Average 0.01284 0.05009 0.00342 8.56482 0.00555  0.11466 0.08856 0.10155 0.19962 0.01319 

Median 0.01337 0.04838 0.00326 8.36916 0.00562  0.12056 0.07102 0.09299 0.19901 0.00718 

STD. Dev. 0.00276 0.00755 0.00132 0.51661 0.00060  0.02889 0.03743 0.05864 0.02332 0.02158 

Worst 0.01651 0.06521 0.00717 9.35663 0.00700  0.17114 0.17985 0.27604 0.24734 0.09347 

 CF3 (bi-objective)  CF4 (bi-objective) 

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO  MOGWO MOPSO MOEA/D MODE M-MOPSO 

Average 0.89932 0.52639 0.64998 0.23541 0.16287  0.15811 0.11103 0.69385 0.91112 0.03307 

Median 0.78064 0.51161 0.66162 0.23434 0.15667  0.11689 0.10641 0.67518 0.92238 0.03156 

STD. Dev. 0.43240 0.16151 0.04619 0.02519 0.04166  0.13796 0.01516 0.03798 0.03850 0.00659 

Worst 2.24078 0.89686 0.67927 0.28927 0.24743  0.64263 0.13524 0.76853 0.95548 0.05787 

 CF5 (bi-objective)  CF6 (bi-objective) 

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO  MOGWO MOPSO MOEA/D MODE M-MOPSO 

Average 0.55472 0.55721 0.68451 3.54554 0.20899  0.08492 0.13105 0.81639 4.30615 0.06520 

Median 0.56186 0.57480 0.67518 3.69688 0.19251  0.08118 0.12431 0.81639 4.02548 0.05716 

STD. Dev. 0.08743 0.11383 0.02848 1.35938 0.07403  0.02194 0.03990 0.00000 3.60753 0.02877 

Worst 0.72049 0.67521 0.76853 5.73554 0.40945  0.16408 0.21753 0.81639 13.2606 0.12662 

 CF7 (bi-objective)  CF8 (tri-objective) 

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO  MOGWO MOPSO MOEA/D MODE M-MOPSO 

Average 1.39173 0.37812 0.81639 45.8691 0.16155  4.82411 4.29267 0.77133 283.612 0.19009 

Median 1.07876 0.33577 0.81639 46.3603 0.14967  0.61483 0.50137 0.14983 272.578 0.18861 

STD. Dev. 0.89057 0.15463 0.00000 5.5944 0.06373  8.00306 9.97090 3.08474 65.151 0.01965 

Worst 3.41388 0.95016 0.81639 54.1519 0.29748  23.64818 47.3373 17.07868 423.237 0.24888 

 CF9 (tri-objective)  CF10 (tri-objective) 

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO  MOGWO MOPSO MOEA/D MODE M-MOPSO 

Average 2.48865 0.26847 0.13579 268.447 0.11914  3.14974 4.36486 0.59738 231.203 0.98001 

Median 2.55997 0.27029 0.13789 266.811 0.11640  1.01020 5.42038 0.45683 240.133 0.47228 

STD. Dev. 1.95641 0.03127 0.02274 51.116 0.01724  4.71217 2.96877 0.94537 43.123 1.39953 

Worst 5.78166 0.32490 0.17516 378.677 0.16263  19.36988 8.57767 5.56766 321.288 5.03013 

 

Figure 4.17 shows the boxplot for IGD results. Based on Fig. 18, M-MOPSO showed 

noticeable improvement compared to other algorithms for CF2, CF3, CF4 and CF5. For 

other benchmark problems, the distinction between each algorithm is difficult to 

observe due to the noticeably worse performance of MODE compared to others. 
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Figure 4.18-4.27 illustrate both the coverage and convergence of the best solution 

found by each algorithm. The higher proximity of solutions to the true Pareto front 

reveals the improved convergence of the solutions obtained. M-MOPSO managed to 

construct well-defined Pareto fronts which closely resemble the true optimal Pareto 

fronts of each test functions. 

For CF1, M-MOPSO, MOEA/D and MOGWO obtained almost perfect solutions, as 

shown in Figure 4.18. For CF2, both M-MOPSO and MOEA/D obtained good solutions 

which cover almost all the areas of the true Pareto front. For CF3, as shown in Figure 

4.20, there are three separate parts of true Pareto front. M-MOPSO found four solutions 

which are close to each part. Figure 4.21 shows a peculiarity where only three out of the 

five algorithms found solutions close to the true Pareto front. The three algorithms are 

M-MOPSO, MOGWO and MOPSO. All these three algorithms have one thing in 

common: they all employ external repository/archive to store non-dominated solutions. 

This shows the importance of archiving system in solving CF4. Also, M-MOPSO have 

better convergence compared to MOGWO and MOPSO. For CF5 and CF6 as shown in 

Figure 4.22 and 4.23 respectively, M-MOPSO converged better than other algorithms. It 

covers a larger portion of the Pareto front compared to others. For CF7, M-MOPSO 

obtained a more distributed solution which all converged on Pareto front compared to 

others, as shown in Figure 4.24. In Figure 4.25, there are five disconnected parts which 

represent the Pareto front of CF8 in three dimensional objective space. M-MOPSO 

obtained solutions that cover almost all parts. In Figure 4.26, M-MOPSO have good 

solutions for CF9 which are close to the true Pareto front and are well distributed. For 

CF10, MOEA/D has the best solutions as seen in Figure 4.27.  

Univ
ers

ity
 of

 M
ala

ya



91 

 

Figure 4.17: Boxplot for the statistical results for IGD on CF1 to CF10. 
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Figure 4.18: Obtained Pareto solutions for CF1. 
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Figure 4.19: Obtained Pareto solutions for CF2. 
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Figure 4.20: Obtained Pareto solutions for CF3. 
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Figure 4.21: Obtained Pareto solutions for CF4. 
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Figure 4.22: Obtained Pareto solutions for CF5. 
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Figure 4.23: Obtained Pareto solutions for CF6. 
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Figure 4.24: Obtained Pareto solutions for CF7. 
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Figure 4.25: Obtained Pareto solutions for CF8. 
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Figure 4.26: Obtained Pareto solutions for CF9. 
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Figure 4.27: Obtained Pareto solutions for CF10. 
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Figure 4.28: Convergence graph for CF5. 

 

Figure 4.29: Convergence graph for CF7. 
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Figure 4.30: Convergence graph for CF8. 

 

Figure 4.28 shows the convergence graph for CF5. The graph shows the average IGD 

of 30 runs recorded at 30 intervals of function evaluations (FE) obtained by each 

algorithm. MOEA/D converges slightly faster by obtaining lower average IGD 

compared to M-MOPSO and other algorithms at 20,000 FE. However, MOEA/D 

become saturated quicker than others and trapped at local optima after 30,000 FE. 

Meanwhile, M-MOPSO converges better than all other algorithms as early as 30,000 FE 

and stays as the algorithm with the best convergence until termination.  

The convergence graph for CF7 is shown in Figure 4.29. MOEA/D has the best IGD 

at 10,000 FE but quickly become saturated at 20,000 FE. M-MOPSO however matches 

the IGD of MOEA/D at 20,000 FE and has the best IGD among all the algorithms at 

30,000 FE. It continues to have the best IGD until termination. 
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In Figure 4.30, the convergence graph for CF8 is shown. At 10,000 and 20,000 FE 

both M-MOPSO and MOGWO have almost the same IGD. However, at 30,000 FE the 

IGD of MOGWO starts to become worse while the IGD of M-MOPSO continues to 

improve. This scenario occurs until termination. 

4.2.2 Fed-batch bioprocess problems 

For the application problems in case study VII and VIII, 200 search agents are 

utilized. The algorithms are run for a maximum of 200,000 and 400,000 function 

evaluations for case study VII and VIII respectively. The Pareto-optimal front between 

the yield and the productivity for case study VII is shown in Figure 4.31 while Figure 

4.32 shows the Pareto-optimal front for Case study VIII. 

In this experiment, we use two performance metrics. The first metric is Spacing (SP) 

(Schott, 1995), which is used to quantify the coverage by measuring the distance 

between consecutive solutions obtained in the Pareto front. The mathematical 

formulation for SP is as follow: 

𝑆𝑃 = √
1

𝑛−1
∑ (𝑑̅ − 𝑑𝑖)2𝑛

𝑖=1                   (72) 

where 𝑑̅ is the average of all 𝑑𝑖, 𝑛 is the number of Pareto optimal solutions 

obtained, and 𝑑𝑖 = min
𝑗

(|𝑓1
𝑖(𝑥⃗) − 𝑓1

𝑗(𝑥⃗)| + |𝑓2
𝑖(𝑥⃗) − 𝑓2

𝑗(𝑥⃗)|) for all 𝑖, 𝑗 = 1, 2, 3, … , 𝑛.  

The second metric is Maximum Spread (MS) (Zitzler, 1999), which measures the 

extent of spread in the obtained solutions in the Pareto front.  

𝑀𝑆 = √∑ max (𝑑(𝑎𝑖, 𝑏𝑖))𝑜
𝑖=1                  (73) 
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where 𝑑 is a function to calculate the Euclidean distance, 𝑎𝑖 is the maximum value in 

the 𝑖th objective, 𝑏𝑖 is the minimum value in the 𝑖th objective and 𝑜 is the number of 

objectives. 

Figure 4.31 showed that the original MOPSO is not effective in solving the 

constraint problem and could find only one feasible solution. M-MOPSO however, 

obtained a very good Pareto front and rivaled the performance of MOEA/D. 

Qualitatively speaking, MOGWO is the third best algorithm followed by MODE. 

 

Figure 4.31: Productivity-yield pareto-optimal front for case study VII. 

 

In Figure 4.32, M-MOPSO obtained a good Pareto front for case study VIII. All 

algorithms have almost equal convergence for this problem. The difference that set 

them apart is the spread of the Pareto front. M-MOPSO have the best coverage of the 
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whole objective space in which the distribution of the solutions found by M-MOPSO 

extends towards a greater area compared to other algorithms. In term of coverage, the 

second best algorithm is MOPSO, followed by MOEA/D, MOGWO and MODE. 

 

Figure 4.32: Pareto-optimal front of M-MOPSO against others for case study VIII: 

(A) M-MOPSO against MOEA/D, (B) M-MOPSO against MODE, (C) M-MOPSO 

against MOPSO, (D) M-MOPSO against MOGWO. 

 

Table 4.15: SP and MS results for chemical problems. 

  Case 1  Case 2 

SP MS  SP MS 

M-MOPSO 0.01298 2.21730  0.03412 2.71857 

MODE 0.09649 2.13055  0.01060 0.92574 

MOEA/D 0.01578 2.22270  0.06437 2.65010 

MOGWO 0.01379 2.22884  0.03134 2.50830 

MOPSO 0 0  0.02751 2.60926 
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Table 4.14 shows the results of SP and MS for all algorithms in case VII and case 

VIII. In case VII, aside of MOPSO which only found one unique solution, M-MOPSO 

obtained the lowest SP compared to others. This shows that M-MOPSO has the most 

uniform distribution of its Pareto front. For MS, MOGWO obtained the highest value 

which means that it has the largest spread compared to others, though marginally. In 

case VIII, MODE obtained the lowest SP compared to others, unfortunately it also 

obtained a significantly lower MS. M-MOPSO however obtained the better balance 

between SP and MS by not only obtaining the largest MS but also comparatively low 

SP. 

In overall, M-MOPSO was able to solve multi-objective bioprocess application 

problems effectively. This can be seen by the results obtained in both case study VII and 

VIII, where M-MOPSO edged over most algorithms tested in this study. 

Univ
ers

ity
 of

 M
ala

ya



108 

CHAPTER 5: CONCLUSION 

This study proposed the application of Backtracking Search Algorithm (BSA) on 

fed-batch fermentation processes. In fed-batch fermentation, nutrient feeding during 

fermentation process enhances higher product yield. Optimized nutrient feeding 

stimulates biomass growth and this increases product concentrations while curtailing 

biomass inhibition due to product and/or nutrient accumulation.  Hence, the substrate 

feed rate plays crucial role in fed-batch process optimization. 

We also demonstrated the application of metaheuristics on fed-batch aerated lagoon 

wastewater treatment. This process involves the intermittent feeding of concentrated 

wastewater into an aerated lagoon. The amount of wastewater to be fed into the lagoon 

at each day is treated as the variables to be optimized by the metaheuristic. Another 

contribution of this study is the formulation of fed-batch model for methane production 

from sewage sludge fermentation. Apart from the proper and cost-effective disposal of 

sewage sludge from the Waste Water Treatment Plant (WWTP), anaerobic digestion of 

sewage sludge plays a key role in the production of biogas namely methane. Usually 

batch mode fermentation is used to generate biogas. In the current work, biogas 

production was shown to be further enhanced by using fed-batch operation as feed rate 

becomes key optimization variable for metaheuristics. 

Based on past literature, Differential Evolution (DE) is considered as a more 

appropriate solution for bio-process applications. Since DE is known to be efficient in 

solving fermentation problems, BSA as a recent DE-based metaheuristic is deemed to 

be superior to the former. Four recent metaheuristics that included DE were applied on 

three bioprocess engineering problems widely used in literature alongside with the 

problems mentioned above and the results were compared with BSA. From the results, 

BSA showed consistency of obtaining highest fitness value in comparison to other four 
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metaheuristics for all the cases at convergence point. Therefore, BSA is suggested as the 

first choice metaheuristic to use when solving bioprocess engineering problems.  

The performances of metaheuristcs in solving multi-objectives fed-batch 

fermentation problems were also evaluated. In multi-objectives problems, the objectives 

to be optimized can extend beyond the production rate and include substrate utilization, 

environmental impact and economic benefits. Therefore, we presented a modification of 

multi-objective particle swarm optimization (MOPSO) to tackle multi-objective 

optimization problems. Our algorithm, called modified multi-objective particle swarm 

optimization (M-MOPSO) employs a new dynamic search boundary mechanism to 

properly balance exploration and exploitation during the search procedure. The 

archiving procedure used in MOPSO was also modified to maintain diversity in the 

Pareto front while reducing the computational cost of the archive controller. 

Our experiment used the CEC2009 multi-objective benchmark problems to verify the 

performance of our algorithm. Comparisons were made with four other recent 

algorithms, namely multi-objective grey wolf optimizer (MOGWO), multi-objective 

particle swarm optimizer (MOPSO), and multi-objective evolutionary algorithm based 

on decompositions (MOEA/D) and multi-objective differential evolution (MODE). 

Based on the results, M-MOPSO emerged as the better algorithm by obtaining better 

Inverted Generational Distance (IGD) average for eight out of the ten test instances. 

We also ran some simulations of multi-objective bioprocess application problems to 

investigate the capability of M-MOPSO in solving real-world engineering problems. M-

MOPSO showed promising results by rivaling other state-of-the art techniques used in 

this study. It also displayed better capability in handling constraint compared to 

MOPSO. For the unconstraint problem, M-MOPSO obtained superior coverage of the 

Pareto front while maintaining good convergence compared to other algorithms. 
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In overall, M-MOPSO was able to solve multi-objective problems with good 

convergence and it is interesting to extend the capability of this algorithm in solving 

many-objective problems and other more complex application problems in the future. 
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