
APPLICATION OF SWARM INTELLIGENCE
OPTIMIZATION ON BIO-PROCESS PROBLEMS

MOHAMAD ZIHIN BIN MOHD ZAIN

FACULTY OF ENGINEERING

UNIVERSITY OF MALAYA
KUALA LUMPUR

 2018Univ

ers
ity

 of
 M

ala
ya

APLLICATION OF SWARM INTELLIGENCE

OPTIMIZATION ON BIO-PROCESS PROBLEMS

MOHAMAD ZIHIN BIN MOHD ZAIN

DISSERTATION SUBMITTED IN FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER

OF ENGINEERING SCIENCE

FACULTY OF ENGINEERING

UNIVERSITY OF MALAYA

KUALA LUMPUR

2018 Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Mohamad Zihin bin Mohd Zain

Matric No: KGA140054

Name of Degree: Master of Engineering Science

Title of Dissertation: Application of Swarm Intelligence Optimization on Bio-process

 Problems.

Field of Study: Computer / Data networks

 I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair

dealing and for permitted purposes and any excerpt or extract from, or

reference to or reproduction of any copyright work has been disclosed

expressly and sufficiently and the title of the Work and its authorship have

been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that

the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the

University of Malaya (“UM”), who henceforth shall be owner of the

copyright in this Work and that any reproduction or use in any form or by any

means whatsoever is prohibited without the written consent of UM having

been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed

any copyright whether intentionally or otherwise, I may be subject to legal

action or any other action as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date:

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

ABSTRACT

An improved version of Differential Evolution (DE) namely Backtracking Search

Algorithm (BSA) is applied to several fed batch fermentation problems and its

performance is compared with recent emerging metaheuristics such as Artificial Algae

Algorithm (AAA), Artificial Bee Colony (ABC), Covariance Matrix Adaptation

Evolution Strategy (CMAES) and DE. Also, fed batch fermentation problems in winery

wastewater treatment and biogas generation from sewage sludge are developed for

optimization. Though DE traditionally performs better than other evolutionary

algorithms and swarm intelligence techniques in optimization of fed-batch fermentation,

BSA edged DE and other recent metaheuristics to emerge as superior optimization

method in this work. BSA gave the best overall performance by showing improved

solutions and more robust convergence in comparison with various metaheuristics used

in this work. Multi-objective optimization problems are also addressed by proposing a

modified multi-criterion optimization algorithm based on a Pareto-based Particle Swarm

Optimization (PSO) algorithm called Multi-Objective Particle Swarm Optimization

(MOPSO). This modified algorithm called Modified Multi-Objective Particle Swarm

Optimization (M-MOPSO) employs a fixed-sized external archive along with a dynamic

boundary-based search mechanism to evolve the population. The proposed method is

tested on 10 multi-objective benchmark problems of CEC 2009 and compared with four

metaheuristics: Multi-Objective Grey Wolf Optimizer (MOGWO), Multi-Objective

Evolutionary Algorithm Based on Decomposition (MOEA/D), Multi-Objective

Differential Evolution (MODE) and MOPSO. Two multi-objective fed-batch models are

also used as case studies to verify the performance of the proposed algorithm. Our

method emerged highly competitive when compared with other algorithms based on

their qualitative and quantitative results.

Univ
ers

ity
 of

 M
ala

ya

iv

ABSTRAK

Versi penambahbaikan Differential Evolution (DE) yang dipanggil sebagai

Backtracking Search Algorithm (BSA) diaplikasikan kepada beberapa masalah

penapaian fed batch dan prestasinya dibandingkan dengan metaheuristic-metaheuristic

terkini seperti Artificial Algae Algorithm (AAA), Artificial Bee Colony (ABC),

Covariance Matrix Adaptation Evolution Strategy (CMAES) dan DE. Masalah-masalah

penapaian fed batch di dalam rawatan sisa air wain dan penjanaan biogas daripada

kumbahan enapcemar juga dibangunkan untuk pengoptimuman. Walaupun DE secara

tradisinya mempunyai prestasi yang lebih baik daripada lain-lain algorithma evolusi dan

teknik kecerdasan swarm dalam pengoptimuman penapaian fed batch, BSA telah

mengatasi DE dan lain-lain metaheuristic untuk tampil sebagai kaedah pengoptimuman

terbaik dalam kajian ini. BSA telah memberikan prestasi kesuluruhan terbaik dengan

menunjukkan penyelesaian yang lebih baik dan penumpuan yang lebih teguh

berbanding lain-lain metaheuristic yang digunakan dalam kajian ini. Masalah

pengoptimuman pelbagai objektif juga telah ditumpukan dengan mencadangkan satu

algoritma pengoptimuman pelbagai kriteria yang diubahsuai berdasarkan daripada

Particle Swarm Optimization (PSO) algoritma yang berasaskan Pareto yang dipanggil

sebagai Multi-Objective Particle Swarm Optimization (MOPSO). Algoritma yang

diubahsuai ini yang dipanggil sebagai Modified Multi-Objective Particle Swarm

Optimization (M-MOPSO) menggunakan arkib luaran bersaiz tetap disamping

mekanisma carian berasaskan sempadan yang dinamik untuk mengevolusikan populasi.

Kaedah yang dicadangkan diuji dengan 10 masalah penanda aras pelbagai objektif CEC

2009 dan dibandingkan dengan empat metaheuristic: Multi-Objective Grey Wolf

Optimizer (MOGWO), Multi-Objective Evolutionary Algorithm Based on

Decomposition (MOEA/D) Multi-Objective Differential Evolution (MODE) dan

MOPSO. Dua model fed-batch pelbagai objektif juga digunakan sebagai kes pengajian

Univ
ers

ity
 of

 M
ala

ya

v

untuk mengesahkan prestasi algoritma yang dicadangkan. Kaedah kami tampil berdaya

saing tinggi apabila dibandingkan dengan algoritma-algoritma lain berdasarkan kepada

keputusan kualitatif dan kuantitatif.

Univ
ers

ity
 of

 M
ala

ya

vi

ACKNOWLEDGEMENTS

The submission of this thesis was made possible due to the contributions of various

people. I would like to take this opportunity to express my appreciation and gratitude to

my supervisors Associate Prof. Dr. Jeevan A/L Kanesan and Ir. Dr. Chuah Joon Huang,

for their support, inspiration and valuable suggestions throughout this project. I would

like to extend special thanks to Prof. Graham Kendall and Associate Prof. Hernan

Aguirre for their consultation and sharing of expertise in the field of evolutionary

computation and optimization. I would also like to thank University of Malaya for the

financial support through University of Malaya Research Grant (UMRG) RG 333-

15AFR. I would also like to thank all members in Expert Systems and Optimization

research group. I would like to express an utmost appreciation to my parents Mohd Zain

bin Abd Jalil and Zarina bt Omar and also my family for their affection and

encouragement.

Author

Mohamad Zihin bin Mohd Zain

Univ
ers

ity
 of

 M
ala

ya

vii

TABLE OF CONTENTS

Abstract .. iii

Abstrak ... iv

Acknowledgements .. vi

Table of Contents .. vii

List of Figures ... x

List of Tables... xii

List of Symbols and Abbreviations .. xiv

List of Appendices ... xvi

CHAPTER 1: INTRODUCTIONS .. 17

1.1 Problem Statement ... 19

1.2 Objectives .. 21

1.3 Scope ... 22

CHAPTER 2: LITERATURE REVIEW .. 24

2.1 Backtracking Search Algorithm (BSA) ... 28

2.1.1 Initialization .. 29

2.1.2 Selection-I .. 29

2.1.3 Mutation ... 29

2.1.4 Crossover .. 30

2.1.5 Selection-II ... 30

2.2 Case study I.. 31

2.3 Case study II .. 32

2.4 Case study III ... 34

Univ
ers

ity
 of

 M
ala

ya

viii

2.5 Case study IV & V: Pilot-scale fed-batch aerated lagoons treating winery

wastewaters .. 36

2.6 Case study VI: Methane production from sewage sludge fermentation 37

2.7 Case study VII ... 38

2.8 Case study VIII .. 40

CHAPTER 3: METHODOLOGY ... 41

3.1 Single-objective optimization problems .. 41

3.1.1 Conversion of case study VI from batch mode into fed-batch mode. 41

3.1.2 Validation of batch results and improvement using fed batch for case

study VI .. 44

3.1.3 Experimental setup ... 46

3.2 Multi-objective optimization problems ... 49

3.2.1 Modified Multi Objective Particle Swarm Optimization (M-MOPSO) ... 49

3.2.1.1 Population initialization .. 50

3.2.1.2 Dynamic boundary control mechanism 51

3.2.1.3 Boundary factor determination .. 53

3.2.1.4 Repository member admittance method 53

3.2.1.5 Repository member deletion method .. 54

3.2.1.6 Mutation operator and population update method 55

3.2.1.7 M-MOPSO procedures .. 55

3.2.1.8 Similarities and differences between MOPSO and M-MOPSO 59

CHAPTER 4: RESULTS AND DISCUSSIONS .. 61

4.1 Single-objective optimization problems .. 61

4.2 Multi-objective optimization problems ... 67

4.2.1 Benchmark problems .. 67

Univ
ers

ity
 of

 M
ala

ya

ix

4.2.1.1 Unconstrained problems .. 68

4.2.1.2 Constrained problems .. 88

4.2.2 Fed-batch bioprocess problems .. 104

CHAPTER 5: CONCLUSION ... 108

References ... 111

List of Publications and Papers Presented .. 116

Appendix A ... 117

Appendix B ... 120

Univ
ers

ity
 of

 M
ala

ya

x

LIST OF FIGURES

Figure 2.1: A general structure of BSA .. 28

Figure 3.1: Comparison of batch and fed-batch for sludge fermentation 45

Figure 3.2: Control profile for the fed-batch sludge fermentation 45

Figure 3.3: BSA flowchart. ... 48

Figure 3.4: Fed-batch fermentation using M-MOPSO. .. 49

Figure 3.5: M-MOPSO’s flowchart. ... 58

Figure 4.1: True and obtained Pareto sets of M-MOPSO for UF2: (A) at 10,000 function

evaluations, (B) at 100,000 function evaluations, (C) at 300,000 function evaluations. 70

Figure 4.2: True and obtained Pareto sets of M-MOPSO for UF9: (A) at 10,000 function

evaluations, (B) at 100,000 function evaluations, (C) at 300,000 function evaluations. 71

Figure 4.3: Boxplot for the statistical results for IGD on UF1 to UF10. 75

Figure 4.4: Obtained Pareto solutions for UF1. .. 76

Figure 4.5: Obtained Pareto solutions for UF2. .. 77

Figure 4.6: Obtained Pareto solutions for UF3. .. 78

Figure 4.7: Obtained Pareto solutions for UF4. .. 79

Figure 4.8: Obtained Pareto solutions for UF5. .. 80

Figure 4.9: Obtained Pareto solutions for UF6. .. 81

Figure 4.10: Obtained Pareto solutions for UF7. .. 82

Figure 4.11: Obtained Pareto solutions for UF8. .. 83

Figure 4.12: Obtained Pareto solutions for UF9. .. 84

Figure 4.13: Obtained Pareto solutions for UF10. .. 85

Figure 4.14: Convergence graph for UF1. .. 86

Figure 4.15: Convergence graph for UF4. .. 86

Figure 4.16: Convergence graph for UF8. .. 87

Univ
ers

ity
 of

 M
ala

ya

xi

Figure 4.17: Boxplot for the statistical results for IGD on CF1 to CF10. 91

Figure 4.18: Obtained Pareto solutions for CF1. .. 92

Figure 4.19: Obtained Pareto solutions for CF2. .. 93

Figure 4.20: Obtained Pareto solutions for CF3. .. 94

Figure 4.21: Obtained Pareto solutions for CF4. .. 95

Figure 4.22: Obtained Pareto solutions for CF5. .. 96

Figure 4.23: Obtained Pareto solutions for CF6. .. 97

Figure 4.24: Obtained Pareto solutions for CF7. .. 98

Figure 4.25: Obtained Pareto solutions for CF8. .. 99

Figure 4.26: Obtained Pareto solutions for CF9. .. 100

Figure 4.27: Obtained Pareto solutions for CF10. .. 101

Figure 4.28: Convergence graph for CF5. .. 102

Figure 4.29: Convergence graph for CF7. .. 102

Figure 4.30: Convergence graph for CF8. .. 103

Figure 4.31: Productivity-yield pareto-optimal front for case study VII. 105

Figure 4.32: Pareto-optimal front of M-MOPSO against others for case study VIII: (A)

M-MOPSO against MOEA/D, (B) M-MOPSO against MODE, (C) M-MOPSO against

MOPSO, (D) M-MOPSO against MOGWO. ... 106

Univ
ers

ity
 of

 M
ala

ya

xii

LIST OF TABLES

Table 2.1: Variables definitions for case study I... 32

Table 2.2: Parameter values for case study I... 32

Table 2.3: Variables definitions for case study II. .. 33

Table 2.4: Parameter values for case study II. .. 34

Table 2.5: Variables definitions for case study III. ... 35

Table 2.6: Parameter values for case study III. ... 35

Table 2.7: Variables definitions for case study IV and V. .. 36

Table 2.8: Kinetic parameters for case study IV and V. ... 37

Table 2.9: Parameter values for case study IV and V. .. 37

Table 2.10: Variables definitions for case study VII. ... 39

Table 2.11: Parameter values for case study VII. ... 39

Table 3.1: Variables definitions for case study VI. ... 43

Table 3.2: Parameter values for case study VI. ... 43

Table 3.3: Symbolic encoding for comparing t-tests results. .. 48

Table 4.1: Mean and confidence intervals for case study I. .. 61

Table 4.2: T-test results for case study I. .. 61

Table 4.3: Mean and confidence intervals for case study II. .. 62

Table 4.4: T-test results for case study II. ... 62

Table 4.5: Mean and confidence intervals for case study III. ... 63

Table 4.6: T-test results for case study III... 63

Table 4.7: Mean and confidence intervals for case study IV. ... 63

Table 4.8: T-test results for case study IV. ... 64

Table 4.9: Mean and confidence intervals for case study V. .. 64

Univ
ers

ity
 of

 M
ala

ya

xiii

Table 4.10: T-test results for case study V. ... 64

Table 4.11: Mean and confidence intervals for case study VI. 65

Table 4.12: T-test results for case study VI. ... 65

Table 4.13: IGD results for unconstrained CEC 2009 benchmark problems. 72

Table 4.14: IGD results for constrained CEC 2009 benchmark problems. 89

Table 4.15: SP and MS results for chemical problems. .. 106

Univ
ers

ity
 of

 M
ala

ya

xiv

LIST OF SYMBOLS AND ABBREVIATIONS

𝑡𝑓 : Final time

AAA : Artificial Algae Algorithm

ABC : Artificial Bee Colony Optimization

BSA : Backtracking Search Optimization Algorithm

CMA-ES : Covariance Matrix Adaptation Evolution Strategy

COD : Chemical oxygen demand

CS : Cuckoo Search

DE : Differential evolution

EA : Evolutionary algorithms

FA : Firefly Algorithm

FE : Function evaluation

GWO : Grey wolf optimizer

IGD : Inverted Generational Distance

M-MOPSO : Modified multi-objective particle swarm optimization

MODE : Multi-objective differential evolution

MOEA/D : Multi-objective evolutionary algorithm based on decomposition

MOGWO : Multi-objective grey wolf optimizer

MOM : Multi-objective metaheuristic

MOPSO : Multi-objective particle swarm optimization

MS : Maximum Spread

NSGA : Non-dominated Sorting Genetic Algorithm

ODE : Ordinary differential equation

PI : Performance index

PSO : Particle Swarm Optimization

Univ
ers

ity
 of

 M
ala

ya

xv

SOM : Single-objective metaheuristic

SP : Spacing

SS : Sewage Sludge

WWTP : Waste Water Treatment Plant

𝐶𝐻4 : Methane

𝐶𝑂2 : Carbon dioxide

𝑃𝑂𝑃 : Population

𝑅𝐸𝑃 : Repository

Univ
ers

ity
 of

 M
ala

ya

xvi

LIST OF APPENDICES

Appendix A: Matlab Code for BSA in Solving Case Study I ……………………... 113

Appendix B: Matlab Code for M-MOPSO ………………………………………... 116

Univ
ers

ity
 of

 M
ala

ya

17

CHAPTER 1: INTRODUCTIONS

Optimization is one of the most important research areas in applied mathematics. The

diverse applications of optimization which range from manufacturing and engineering

to business and medication have attracted many researchers to explore the field. The

field of biotechnology contains many problems that can take advantage of the

optimization process. One such problem is the fermentation problem. The crucial

factors in the development and optimization of fermentation processes are the quality

and quantity of the products, which can be improved at the cultivation levels.

Traditionally, fermentation processes is done in batch mode, where an amount of

substrate is fed only once at the beginning of the fermentation. This is in contrast to fed-

batch mode, where the substrate is fed in a controlled amount during a set interval of

time. In fed-batch fermentation, nutrient feeding along the process enhances higher

product concentrations. Controlled nutrient feeding increases biomass in controlled

manner and this improves product concentrations with less impact of product and/or

nutrient inhibition of biomass. This complex nature of fed-batch fermentation

encourages optimization method development that predicts optimal feeding profile to

enhance the process performance. In order to obtain proper simulation of the process,

usually differential equations that model the mass balances of various state variables are

developed.

 Metaheuristic is one of the means to solve optimization problems. It is a process of

trial and error to discover the solution of a problem and consists of certain trade-off of

randomization and local search. One of the most appealing characteristic of

metaheuristic is that it uses derivation-free mechanisms and is stochastic in nature. This

enables faster convergence and less expensive computation as compared to

deterministic method. In optimization, a problem may consist of either one objective or

Univ
ers

ity
 of

 M
ala

ya

18

more than one. For the problem with one objective, we call it single-objective problem.

For the problem with two or three objectives, we call it multi-objective problem. For the

problem with more than three objectives, we call it many-objective problem.

Consequently, a metaheuristic is developed to solve a particular type of problem. A

metaheuristic that is used to solve a single-objective problem is called single-objective

metaheuristic (SOM) while a metaheuristic that is used to solve a multi-objective

problem is called multi-objective metaheuristic (MOM).

In fermentation or bioprocess problems, the input feeding profile or substrate feed

rate is considered a key variable. Metaheuristic is considered as the most suitable

optimization strategy to be used. This is because complexity involved in analytical

approaches will increases with the increasing number of state and control variables.

Deterministic algorithms also have a high computational overhead as well as have a

tendency of premature convergence towards local optima.

One of the attributes of most real-world engineering is that they often have multiple

conflicting goals. These multiple objectives may provide certain trade-offs which result

in numerous solutions to be chosen from. From these solutions, it is up to the decision

makers to choose one of the solutions to suit their needs. In contrast to a single-

objective optimization problem where the optimal solution is clearly defined, there is no

direct way to define the superiority of one solution compared to another in a multi-

objective problem. One of the ways to solve this type of problem is by using the

concepts of Pareto dominance and Pareto-optimality where there exists more than one

'optimal solutions'.

To understand the concept of Pareto dominance, consider a multi-objective

optimization in a problem with two or three objective functions below:

Univ
ers

ity
 of

 M
ala

ya

19

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐹(𝑋) = 𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝐺(𝑋), (1)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 ≤ 𝑥𝑖 ≤ 𝑅𝑖

𝑢𝑝𝑝𝑒𝑟, 𝑖 = 1, 2, … , 𝑑 (2)

where 𝑑 is the number of variables, 𝐺 is the number of objective functions, and

[𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 , 𝑅𝑖

𝑢𝑝𝑝𝑒𝑟] are the boundaries of 𝑖th variables. In Pareto dominance, given that

there are two candidate solutions: 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑑) and 𝑍 = (𝑧1, 𝑧2, … , 𝑧𝑑), vector 𝑌

dominates vector 𝑍 (denote as 𝑌 ≻ 𝑍) if and only if,

𝑓𝑔(𝑌) ≤ 𝑓𝑔(𝑍), ∀𝑔 ∈ {1, … , 𝐺} (3)

𝑓𝑔(𝑌) < 𝑓𝑔(𝑍), ∀𝑔∃{1, … , 𝐺} (4)

If solution 𝑌 is not dominated by any other solutions, then 𝑌 is declared as a

nondominated or Pareto optimal solution. There are no superior solutions to the problem

than 𝑌, although there may be other equally good solutions. On the other hand, a

solution 𝑌 ∈ 𝑋 is called Pareto-optimal if and only if,

∄𝑍 ∈ 𝑋|𝑓(𝑍) ≻ 𝑓(𝑌) (5)

The set of solutions that satisfy (5) is known as the Pareto optimal set and the fitness

values corresponding to these solutions form the Pareto front or trade-off surface in

objective space.

1.1 Problem Statement

Stochastic algorithms or metaheuristics have been previously applied on various

bioprocess optimization problems. A recent study shows differential evolution (DE)

(Storn & Price, 1997) is a better solution for bio-process applications (Banga et al.,

Univ
ers

ity
 of

 M
ala

ya

20

2004). However, a new algorithm called the Backtracking Search Optimization

Algorithm (BSA) was recently proposed by Civicioglu (2013). BSA was developed

based on DE and has many elements similar to DE. However, it improved upon DE by

incorporating new elements such as improved mutation and crossover operators and the

utilization of a dual population. BSA also has only one control parameter compared to

DE which requires two parameters for fine-tuning. With these improvements, it is

expected that BSA will perform better than DE. Since DE is known to be efficient in

solving fermentation problems (Banga et al., 2004; Da Ros et al., 2013; M. Rocha et al.,

2014), BSA as a recent DE-based metaheuristic is proposed in this paper and we

investigate various fermentation problems. Our hypothesis is that it will perform better

compared to other stochastic algorithms. BSA, being a powerful evolutionary algorithm,

is a suitable algorithm to be used in searching for optimal control profiles for the

complex bioreactor chemical process.

In fermentation and bioprocess technology, the utilization of fed-batch operation is

considered common. In biological wastewater treatment however, batch mode is still

dominantly used and fed-batch is regarded as a relatively new technique (Montalvo et

al., 2010). In a basic process of fed-batch wastewater treatment, the wastewater is fed

slowly into the aerated bioreactor. During this process, the effluent is never removed

until after the operating volume of the bioreactor is mostly filled. This enabled reduction

of inhibitory or toxic effects through the dilution of highly concentrated toxic

compounds in an aeration based large volume tank. This results in greater chemical

oxygen demand (COD) removal rate and smaller required reactor volume. The aeration

tank is emptied when it is almost full and the process is repeated.

The disposal of sludge is one of the major problems in municipal wastewater

treatment, and constitutes up to half of the operating costs of a Waste Water Treatment

Univ
ers

ity
 of

 M
ala

ya

21

Plant (WWTP) (J. Baeyens et al., 1997). Though different methods for sludge disposal

exist, anaerobic digestion is one of the preferred routes as it is not limited to the

production of biogas from waste, but also lower the amount of final sludge solids for

disposal and curtailing odour problems (Appels et al., 2008), resulting in cost reduction.

This justifies the importance of anaerobic sludge digestion process in a modern WWTP.

Nowadays, the potential of biogas as an energy source has gained plenty of recognition,

with the majority of biogas is currently generated by the digestion of sewage treatment

sludge while the minority of it is produced through the fermentation or gasification of

solid waste or of lignocellulosic material (Chandra et al., 2012). The anaerobic digestion

kinetics for methane fermentation of sewage sludge was proposed by Sosnowski et al.

(2008). However, the proposed model was only designed for batch mode operation.

Considering the advantages of fed-batch process in various fermentation problems, it is

appropriate to convert this model into fed-batch mode. The utilization of fed-batch

technique can increase the output of desirable products such as protein and biofuel in

various fields of biotechnology and hence contribute to the development of renewable

energy production and sustainable science.

In the past decade, several SOMs were converted to solve multi-objective problems.

The conversions to MOMs were carried out by implementing some modification as well

as introducing new concepts such as Pareto dominance and decomposition. However,

due to increased search complexity in multi-objective optimization, premature

convergence becomes a cumbersome problem (Marler & Arora 2004). Hence, the

improvements in this research area remain open for developments.

1.2 Objectives

In order to investigate the effectiveness of metaheuristic in solving bioprocess

problems, several goals need to be achieved:

Univ
ers

ity
 of

 M
ala

ya

22

1. Identify various single-objective and multi-objective real-world bioprocess

problems.

2. Apply recent metaheuristics to solve the problems.

3. Propose modification of existing metaheuristic to improve its performance in

solving multi-objective bioprocess problems.

1.3 Scope

This study applies the Backtracking Search Optimization Algorithm (BSA)

(Civicioglu, 2013) to different bioprocess case studies and compares its performance

with some well-known algorithms from the scientific literature. This is done by

simulating the bioprocess through a set of differential equations that model the mass

balances of various state variables. This study also introduces process optimization in

the treatment of winery wastewater. Additionally, we also propose the modeling of fed-

batch methane fermentation of sewage sludge. This model is converted from the

existing batch model. The bioprocess problems considered in this study cover various

aspects of human life, ranging from biofuel production of ethanol and pharmaceutical

synthesis of protein and penicillin to treatment of wastewater and sewage sludge.

Finally the multi-objective optimization of bioprocess application is addressed using

MOMs.

• The bioprocess problems are selected from well-established bioprocess models

drawn from the scientific literature which cover various aspects of human life. A

problem with batch model will be converted into fed-batch model.

• Recent SOMs are applied to the optimization problems and their performances

in solving single-objective bioprocess problems are compared. The SOMs are

population-based algorithms.

Univ
ers

ity
 of

 M
ala

ya

23

• A pareto-based MOMs is modified and its performance is compared with other

pareto and decomposition techniques. The comparisons are made through

benchmark problems and real-world bioprocess problems.

Univ
ers

ity
 of

 M
ala

ya

24

CHAPTER 2: LITERATURE REVIEW

Biotechnology has been considered as one of the new knowledge-based economy

and can provide advancements and growth for societies and economies while enabling

better health care and sustainable transformation of raw materials and hazardous waste

treatment in industries (Juma & Konde, 2001). Fermentation process is one of the

fundamental elements in biotechnology. Stochastic algorithms or metaheuristics have

been previously applied on various bioprocess optimization problems. Evolutionary

algorithms (EA) have been utilized on the bioprocess of protein production with E. coli,

and they have been compared with first order gradient algorithms and with dynamic

programming by Roubos et al. (1999). According to I. Rocha (2003), health care is one

of the most promising applications in biotechnology, with pharmaceutical recombinant

DNA applications being the sector with the highest growth rate. Various valuable

products such as antibiotics and recombinant protein have been produced using

fermentation techniques. The optimization of feeding profile for ethanol and penicillin

production was applied by Kookos (2004) using Simulated Annealing while the

optimization of protein production in E. coli was applied using Ant Algorithms by

Jayaraman et al. (2001). Chiou and Wang (1999) used Differential Evolution (DE) for

the optimization of the Zymomous mobilis fed-batch fermentation while Wang and

Cheng (1999) used the same algorithm for ethanol production in Saccharomyces

cerevisiae. Sarkar and Modak (2004) used a genetic algorithm based technique to

address fed-batch bioreactor application problems with single or multiple control

variables.

A recent study shows DE is a better solution for bio-process applications (Banga et

al., 2004). Da Ros et al. (2013) have even suggested DE hybrids for these applications

after showing DE as the better method in the estimation of the kinetic parameters of an

Univ
ers

ity
 of

 M
ala

ya

25

alcoholic fermentation model. M. Rocha et al. (2014) compared the performance of

EAs, DE and Particle Swarm Optimization (PSO) on four different bioprocess case

studies taken from the scientific literature and found that DE had better performance

when compared to other algorithms.

In recent years, many new nature-inspired algorithms have emerged such as Particle

Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), Artificial Bee Colony

Optimization (ABC) (Basturk, 2006), Cuckoo Search (CS) (X. S. Yang & Suash, 2009),

Firefly Algorithm (FA) (Xin She Yang, 2010) and Artificial Algae Algorithm (AAA)

(Uymaz et al., 2015). A detailed discussion on the proliferation of search algorithms can

be seen in Sörensen (2015) and an overview of some of the most widely used can be

seen in Burke and Kendall (2014). These algorithms were applied to various problems

and have shown improved performance compared to classical algorithms.

BSA was developed for solving real-valued numerical optimization problems based

on the behaviour of living creatures in social groups revisiting at random intervals to

preying areas enriched by food source. It has shown promising results in solving

boundary-constrained benchmark problems. Due to its encouraging performance,

several studies have been done to investigate BSA’s capabilities in solving various

engineering problems (Askarzadeh & Coelho, 2014; Das et al., 2014; El-Fergany, 2015;

Guney et al., 2014; Song et al., 2015).

BSA uses a unique mechanism for generating trial individual by controlling the

amplitude of the search direction through mutation parameter, F. This enables a

balanced global and local search, thus enhances its problem solving ability. BSA also

consults its historical population which is stored in its memory to generate more

efficient trial population, resulting in improved searching ability. Other algorithms such

as PSO, DE and Covariance Matrix Adaptation Evolution Strategy (CMAES) do not use

Univ
ers

ity
 of

 M
ala

ya

26

previous generation populations. BSA employs advanced crossover strategy, which has

a non-uniform and complex structure that guarantees the generation of new trial

population in each generation. This strategy, which enhances BSA’s problem-solving

capabilities, is different to those used in genetic algorithm and its variants. Also, its

mutation strategy uses only one direction individual for each target individual as

opposed to the strategy used in DE and its derivatives, where more than one individual

can mutate in each generation. BSA also have only one control parameter in comparison

to three used by DE for fine-tuning. Even though BSA is robust and less likely to be

trapped in local optima, it has a weakness of poor convergence performance and

accuracy.

The algorithms that we use in this thesis to be compared with BSA are CMAES,

ABC, AAA and DE. We chose these algorithms in our work for various reasons.

CMAES is used because it is recent swarm intelligence metaheuristic with good global

convergence. It is a highly competitive, quasi parameter free global optimization

algorithm for non-separable objective functions. However, it has poor performance for

separable objective functions. Also, its very algorithmic features are undermined by the

presence of constraints

ABC is chosen because it is a widely-used technique among swarm intelligence with

promising performance on various problems. It has sufficiently strong local search

ability for various types of problems. Its weakness is that it is sensitive to the control

parameter used. It also has poor definition of search direction as it treats the signs of the

fitness values equally.

AAA is the latest algorithm used in this work and represents the evolution of modern

swarm intelligence method. It is a robust and high-performance global optimization

Univ
ers

ity
 of

 M
ala

ya

27

algorithm. However, it has three control parameters and is sensitive to the initial value

of these control parameters.

Finally, DE is used as it is an established method in the field of fed-batch

fermentation optimization and regarded as the best performing algorithm in the

simulation of fed-batch fermentation problems. It is a very effective global search

algorithm with a quite simple mathematical structure. The algorithm is also able to

choose from up to ten different options for its combination of mutation and crossover

schemes. However, it has three control parameters and the algorithm is sensitive to the

initial value of these parameters. Also, the process of determining the optimum mutation

and crossover strategies for the problem structure in the DE algorithm is time-

consuming.

In the context of multi-objective optimization, several SOMs algorithms such as

PSO, EA and grey wolf optimizer (GWO) (Mirjalili et al., 2014) have been converted

into their multi-objective versions which are multi-objective particle swarm

optimization (MOPSO) (Coello et al., 2004), multi-objective evolutionary algorithm

based on decomposition (MOEA/D) (Q. Zhang & Li, 2007) and multi-objective grey

wolf optimizer (MOGWO) (Mirjalili et al., 2016). There are also algorithms which are

an improvements or modification of existing MOMs. One such example is the Non-

dominated Sorting Genetic Algorithm (NSGA) (Goldberg, 1989; Srinivas & Deb,

1994), which was improved upon by NSGA-II (Deb et al., 2002).

Researches on the area of multi-objective bioprocess optimization problems are not

new. Polymerization systems have been numerously studied (Cawthon & Knaebel,

1989; Silva & Biscaia Jr, 2003; Tsoukas et al., 1982). A detailed review on the

application of multi-objective optimization in chemical engineering was presented by

Univ
ers

ity
 of

 M
ala

ya

28

Bhaskar et al. (2000). More recently, the multi-objective optimization of fed-batch

bioreactors was addressed by Sarkar and Modak (2005) using NSGA-II.

2.1 Backtracking Search Algorithm (BSA)

BSA is an evolutionary algorithm based on DE (Civicioglu, 2013). It has advanced

mutation and crossover operators for the generation of trial populations. It also has

balanced exploration and exploitation abilities by generating parameter 𝐹. This

parameter will control the range of the search direction by adjusting the size of the

search amplitude (either large value for global search or low value for local search). The

historical population, stored in its memory, promotes effective trial individuals

generation and ensures high population diversity. BSA also has the advantage of having

only one control parameter, the 𝑚𝑖𝑥𝑟𝑎𝑡𝑒. This parameter determines the number of

elements of individuals that will mutate in a trial, thus facilitating ease of application by

reducing the number of parameters that require fine-tuning.

The procedures of BSA can be separated into five processes: initialization, selection-

I, mutation, crossover and selection-II. A general BSA structure is presented in Figure

2.1. For details on the processes, refer to (Civicioglu, 2013). Overviews of the five

processes are provided below:

Figure 2.1: A general structure of BSA

Univ
ers

ity
 of

 M
ala

ya

29

2.1.1 Initialization

The procedures of BSA begin by initializing the population P as follows:

𝑃𝑖,𝑗 = 𝑙𝑜𝑤𝑒𝑟𝑗 + (𝑢𝑝𝑝𝑒𝑟𝑗 − 𝑙𝑜𝑤𝑒𝑟𝑗) × 𝑟𝑎𝑛𝑑𝑜𝑚, 𝑖 = (1,2, … , 𝑁𝑃), 𝑗 = (1,2, … , 𝐷𝑃) (6)

where 𝑁𝑃 and 𝐷𝑃 are the size of the population and the number of dimension of the

problem respectively. 𝑟𝑎𝑛𝑑𝑜𝑚 is a real value uniformly distributed between 0 and 1.

𝑙𝑜𝑤𝑒𝑟𝑗 and 𝑢𝑝𝑝𝑒𝑟𝑗 represent the lower and upper bound in the 𝑗-th element of the 𝑖-th

individual respectively.

2.1.2 Selection-I

In the Selection-I procedure, the historical population 𝑜𝑙𝑑𝑃 is generated to calculate

the search direction. Initially, it is calculated as follow:

𝑜𝑙𝑑𝑃𝑖,𝑗 = 𝑙𝑜𝑤𝑒𝑟𝑗 + (𝑢𝑝𝑝𝑒𝑟𝑗 − 𝑙𝑜𝑤𝑒𝑟𝑗) × 𝑟𝑎𝑛𝑑𝑜𝑚, 𝑖 = (1,2, … , 𝑁𝑃), 𝑗 =

(1,2, … , 𝐷𝑃) (7)

In each iteration, 𝑜𝑙𝑑𝑃 is defined as follow:

𝑖𝑓 𝑎 < 𝑏 𝑡ℎ𝑒𝑛 𝑜𝑙𝑑𝑃 ∶= 𝑃|𝑎, 𝑏 ∈ [0,1] (8)

where : = is the update operation. 𝑎 and 𝑏 are two random numbers with uniform

distribution between 0 to 1. The above equation ensures that the population in BSA can

be randomly selected from historical population. This historical population is

memorized by the algorithm until it is changed through a random permutation.

2.1.3 Mutation

The initial trial population is generated through mutation operation as follows:

𝑇 = 𝑃 + (𝑜𝑙𝑑𝑃 − 𝑃) × 𝐹 (9)

Univ
ers

ity
 of

 M
ala

ya

30

where 𝐹 is a scale factor which controls the amplitude of the search-direction matrix

(𝑜𝑙𝑑𝑃 − 𝑃). In the original paper, 𝐹 = 3 ⋅ 𝑟𝑎𝑛𝑑𝑜𝑚, where 𝑟𝑎𝑛𝑑𝑜𝑚 is a random real

number with uniform distribution between 0 to 1. By involving the historical population

in the calculation of the search-direction matrix, BSA learns from its memory of

previous generations to obtain a trial population.

2.1.4 Crossover

The final trial population 𝑇 is generated by crossover. The trial individuals with

improved fitness values guide the search direction for the optimization problem. The

crossover of the BSA works as follows. A binary integer-valued matrix (map) of size

𝑁𝑃 × 𝐷𝑃 is computed in the first step. The individuals of 𝑇 are generated by using the

relevant individuals of 𝑃. If 𝑚𝑎𝑝𝑖,𝑗 = 1, 𝑇 is updated with 𝑇𝑖,𝑗 ∶= 𝑃𝑖,𝑗.

2.1.5 Selection-II

In the Selection-II phase, the 𝑇𝑖 that outperforms the corresponding 𝑃𝑖 in terms of

fitness value is used to update the 𝑃𝑖. When the best solution 𝑃𝑏𝑒𝑠𝑡 dominates the

previous global optimal value found by the BSA, the global optimal solution is replaced

by 𝑃𝑏𝑒𝑠𝑡 and the global optimal value is also updated to be the fitness value of 𝑃𝑏𝑒𝑠𝑡.

Eight fermentation models are as case studies in this work, six of which are single-

objective while the other two are multi-objectives. These cases are chosen based on the

different nature of the bioprocesses. The fed batch fermentation case studies considered

in this study cover various aspects of human life, ranging from biofuel production of

ethanol, pharmaceutical synthesis of protein and penicillin, to treatment of wastewater

and sewage sludge. The idea is to compare the performance of the algorithms in

different fed batch fermentation systems.

Univ
ers

ity
 of

 M
ala

ya

31

2.2 Case study I

The first case study in this paper is the fed-batch bioreactor process of ethanol by

Saccharomyces cerevisiae. This problem was first proposed by Chen and Hwang

(1990), with the goal of obtaining the substrate feed rate profile that maximizes the

production of ethanol. The model equations are as follows:

𝑑𝑥1

𝑑𝑡
= 𝑔1𝑥1 − 𝑢

𝑥1

𝑥4
 (10)

𝑑𝑥2

𝑑𝑡
= −10𝑔1𝑥1 + 𝑢

150−𝑥2

𝑥4
 (11)

𝑑𝑥3

𝑑𝑡
= 𝑔1𝑥1 − 𝑢

𝑥3

𝑥4
 (12)

𝑑𝑥4

𝑑𝑡
= 𝑢 (13)

The kinetic variables 𝑔1 and 𝑔2 (h−1) are given by:

𝑔1 =
0.408

(1+
𝑥3
16

)

𝑥2

(0.22+𝑥2)
 (14)

𝑔2 =
1

(1+
𝑥3

71.5
)

𝑥2

(0.44+𝑥2)
 (15)

The performance index (PI) is defined as:

𝑃𝐼 = 𝑥3(𝑡𝑓)𝑥4(𝑡𝑓) (16)

The variables for case study I are defined in Table 2.1. The variable constraints are:

0 ≤ 𝑥4(𝑡) ≤ 200 and 0 ≤ 𝑢(𝑡) ≤ 12. The final time, 𝑡𝑓 and the initial state

conditions are given in Table 2.2.

Univ
ers

ity
 of

 M
ala

ya

32

Table 2.1: Variables definitions for case study I.

State variables Definitions

𝑥1 Cell mass (g/L)

𝑥2 Substrate concentrations (g/L)

𝑥3 Ethanol concentrations (g/L)

𝑥4 Volume of the reactor (L)

𝑢 Feeding rate (L/h)

Table 2.2: Parameter values for case study I.

Parameter Value

𝑡𝑓 54 hours

𝑥1(0) 1 g/L

𝑥2(0) 150 g/L

𝑥3(0) 0 g/L

𝑥4(0) 10 L

2.3 Case study II

The second case study involves induced foreign protein production by recombinant

bacteria, firstly proposed by Lee and Ramirez (1994). The problem was later modified

by Tholudur and Ramirez (1997). The model equations (Tholudur & Ramirez, 1997) are

as follows:

𝑑𝑥1

𝑑𝑡
= 𝑢1 − 𝑢2 (17)

𝑑𝑥2

𝑑𝑡
= 𝑔1𝑥2 −

𝑢1+𝑢2

𝑥1
𝑥2 (18)

𝑑𝑥3

𝑑𝑡
=

100𝑢1

𝑥1
−

𝑢1+𝑢2

𝑥1
𝑥3 −

𝑔1

0.51
𝑥2 (19)

𝑑𝑥4

𝑑𝑡
= 𝑅𝑓𝑝𝑥2 −

𝑢1+𝑢2

𝑥1
𝑥4 (20)

𝑑𝑥5

𝑑𝑡
=

4𝑢2

𝑥1
−

𝑢1+𝑢2

𝑥1
𝑥5 (21)

Univ
ers

ity
 of

 M
ala

ya

33

𝑑𝑥6

𝑑𝑡
= −𝑘1𝑥6 (22)

𝑑𝑥7

𝑑𝑡
= 𝑘2(1 − 𝑥7) (23)

The process kinetics are given by:

𝑔1 = (
𝑥3

14.35+𝑥3(1+
𝑥3

111.5
)
) (𝑥6 +

0.22𝑥7

0.22+𝑥5
) (24)

𝑅𝑓𝑝 = (
0.233𝑥3

14.35+𝑥3(1+
𝑥3

111.5
)
) (

0.005+𝑥5

0.022+𝑥5
) (25)

𝑘1 = 𝑘2 =
0.09𝑥5

0.034+𝑥5
 (26)

The PI is defined as:

𝑃𝐼 = 𝑥4(𝑡𝑓)𝑥1(𝑡𝑓) − 𝑄 ∫ 𝑢2(𝑡)𝑑𝑡
𝑡𝑓

0
 (27)

The variables for case study II are defined in Table 2.3. The variable constraints are:

0 ≤ 𝑢1,2(𝑡) ≤ 1. The ratio of the cost of the inducer to the value of the protein

product, 𝑄, the final time, 𝑡𝑓 and the initial state conditions are given in Table 2.4.

Table 2.3: Variables definitions for case study II.

State variables Definitions

𝑥1 Reactor volume (L)

𝑥2 Cell concentrations (g/L)

𝑥3 Substrate concentrations (g/L)

𝑥4 Foreign protein concentrations (g/L)

𝑥5 Inducer concentrations (g/L)

𝑥6 Inducer shock factors on the cell growth rate

𝑥7 Recovery factors on the cell growth rate

𝑢1 Glucose feed rates (L/h)

𝑢2 Inducer feed rates (L/h)

Univ
ers

ity
 of

 M
ala

ya

34

Table 2.4: Parameter values for case study II.

Parameter Value

𝑄 5

𝑡𝑓 10 hours

𝑥1(0) 1 L

𝑥2(0) 0.1 g/L

𝑥3(0) 40 g/L

𝑥4(0) 0 g/L

𝑥5(0) 0 g/L

𝑥6(0) 1 g/L

𝑥7(0) 0 g/L

2.4 Case study III

The third case study is the fed-batch fermentation of penicillin which was presented

by Banga et al. (2005).The model equations are as follows:

𝑑𝑥1

𝑑𝑡
= 𝑔1𝑥1 − 𝑢 (

𝑥1

500𝑥4
) (28)

𝑑𝑥2

𝑑𝑡
= 𝑔1𝑥1 − 0.01𝑥2 − 𝑢 (

𝑥2

500𝑥4
) (29)

𝑑𝑥3

𝑑𝑡
= − (

𝑔1𝑥1

0.47
) − (

𝑔2𝑥2

1.2
) − 𝑥1 (

0.029𝑥3

0.0001+𝑥3
) +

𝑢

𝑥4
(1 −

𝑥3

500
) (30)

𝑑𝑥4

𝑑𝑡
=

𝑢

500
 (31)

The process kinetics are given by:

𝑔1 = 0.11 (
𝑥3

0.006𝑥1+𝑥3
) (32)

𝑔2 = 0.0055 (
𝑥3

0.0001+𝑥3(1+10𝑥3)
) (33)

The variable constraints are: 0 ≤ 𝑥1(𝑡) ≤ 40, 0 ≤ 𝑥3(𝑡) ≤ 25, 0 ≤ 𝑥4(𝑡) ≤

 10 and 0 ≤ 𝑢(𝑡) ≤ 50. The PI is defined as:

Univ
ers

ity
 of

 M
ala

ya

35

𝑃𝐼 = 𝑥2(𝑡𝑓)𝑥4(𝑡𝑓) (34)

The variables for case study III are defined in Table 2.5. The final time, 𝑡𝑓 and the

initial state conditions are given in Table 2.6.

Table 2.5: Variables definitions for case study III.

State variables Definitions

𝑥1 Biomass concentrations (g/L)

𝑥2 penicillin concentrations (g/L)

𝑥3 substrate concentrations (g/L)

𝑥4 Volume of the reactor (L)

𝑢 Feeding rate (L/h)

Table 2.6: Parameter values for case study III.

Parameter Value

𝑡𝑓 132 h

𝑥1(0) 1.5 g/L

𝑥2(0) 0 g/L

𝑥3(0) 0 g/L

𝑥4(0) 7 L

The above case studies are well-established bioprocess models drawn from the

scientific literature. We use these models to verify the robustness of recent

metaheuristics. Montalvo et al. (2010) used fed-batch operation in biological wastewater

treatment though wastewater treatment rarely employs fed-batch operation. Thus, in the

following sections, we propose the applications of fed-batch process optimization using

the same metaheuristics on the field of biology wastewater treatment for the purpose of

detoxification and methane production and investigate its effectiveness.

Univ
ers

ity
 of

 M
ala

ya

36

2.5 Case study IV & V: Pilot-scale fed-batch aerated lagoons treating winery

wastewaters

Montalvo et al. (2010) proposed the treatment of winery wastewaters using two stage

pilot-scale fed-batch aerated lagoons. The overall performance of this process can be

evaluated by measuring the COD removal efficiency which is defined as the quotient

between the difference of the initial COD and effluent COD concentrations and the

initial COD concentration (Pelillo et al., 2006). The model equations (Montalvo et al.,

2010) are as follows:

𝑑𝑉

𝑑𝑡
= 𝐹 (35)

𝑑𝑆

𝑑𝑡
= (

𝐹

𝑉
) (𝑆0 − 𝑆) − [

𝜇𝑚(𝑆−𝑆𝑛𝑏)

𝐾𝑆+(𝑆−𝑆𝑛𝑏)
− 𝐾𝑑](

𝑋

𝑌
) (36)

𝑑𝑋

𝑑𝑡
= [[

𝜇𝑚(𝑆−𝑆𝑛𝑏)

𝐾𝑆+(𝑆−𝑆𝑛𝑏)
− 𝐾𝑑] − (

𝐹

𝑉
)] 𝑋 (37)

The variables for case study IV and V are defined in Table 2.7. The values for the

kinetic parameters are given in Table 2.8.

Table 2.7: Variables definitions for case study IV and V.

State variables Definitions

𝑉 Lagoon volume (L or m3)

𝐹 Volumetric flow-rate (L or m3/day),

𝑡 Operation time (days)

𝜇𝑚 Maximum specific microbial growth rate (1/days)

𝑆0 Influent substrate concentrations (mg or g COD/L)

𝑆 Effluent substrate concentrations (mg or g COD/L)

𝑆𝑛𝑏 Non-biodegradable substrate concentration (mg or g COD/ L)

𝑋 Cellular or biomass concentration (mg)

𝑌 Cellular yield coefficient (g VSS/g COD)

𝐾𝑆 Saturation constant (mg or g COD/L)

Univ
ers

ity
 of

 M
ala

ya

37

Table 2.8: Kinetic parameters for case study IV and V.

Parameter Value

 𝜇𝑚 0.28 1/days

𝑌 0.26 g VSS/g COD

𝐾𝑆 175 mg COD/L

𝐾𝑑 0.12 1/days

𝑆𝑛𝑏 790 mg COD/L

The volume constraint is given as: 𝑉 ≤ 𝑉𝑚 where 𝑉𝑚 is the maximum operational

lagoon volume. The values for 𝑉𝑚 and the final time, 𝑡𝑓 along with the initial conditions

for the two stages of operation is given in Table 2.9.

Table 2.9: Parameter values for case study IV and V.

Parameter First stage Second stage

𝑉𝑚 27.20 m3 10.80 m3

𝑡𝑓 30 days 24 days

𝑉(0) 3.470 m3 5.10 m3

𝑆0(0) 8700 mg/L 1980.33 mg/L

𝑋(0) 900 mg VSS/L 21373 mg VSS/L

The bounds on the decision variables are 𝐹 ∈ [0; 2] for the first stage and 𝐹 ∈

 [0; 1] for the second stage. The PI is defined as:

𝑃𝐼 = (𝑆0 − 𝑆)/𝑆0 × 100 − (𝑉𝑚 − 𝑉) × 100 (38)

In this study, we consider the first stage and the second stage of this model as case

study IV and case study V respectively.

2.6 Case study VI: Methane production from sewage sludge fermentation

The model for batch methane fermentation of Sewage Sludge (SS) was proposed

by Sosnowski et al. (2008), where the carbon balance process was determined and the

simple kinetic model of anaerobic digestion was developed. The batch experiment with

the above mentioned feedstock was conducted in a large scale laboratory reactor of

Univ
ers

ity
 of

 M
ala

ya

38

working volume of 40.0 dm-3. In our study, we convert this batch model into a fed-batch

model which will be discussed in Section 3.1.1

2.7 Case study VII

In this case study, we will address the lysine fermentation model proposed by Ohno

et al. (1976). The model equations are as follow:

𝑑𝑥1

𝑑𝑡
= 𝜇𝑥1 (39)

𝑑𝑥2

𝑑𝑡
= 𝐹𝑆𝐹 − 𝜎𝑥1 (40)

𝑑𝑥3

𝑑𝑡
= 𝜋𝑥1 (41)

𝑑𝑥4

𝑑𝑡
= 𝐹 (42)

where

𝜇 = 0.125𝑥2 (43)

𝜎 =
𝜇

0.135
 (44)

𝜋 = −384𝜇2 + 134𝜇 (45)

The variables for case study I are defined in Table 2.10. The variable constraints are:

𝑥4(𝑡) ≤ 20 and 0 ≤ 𝐹(𝑡) ≤ 2. The initial state conditions and the value of 𝑆𝐹 are given

in Table 2.11.

Univ
ers

ity
 of

 M
ala

ya

39

Table 2.10: Variables definitions for case study VII.

State variables Definitions

𝑥1 Cell mass (g/L)

𝑥2 Substrate concentrations (g/L)

𝑥3 Product (Lysine) concentrations (g/L)

𝑥4 Fermenter volume (L)

𝐹 Substrate volumetric feeding rate (L/h)

𝑆𝐹 Substrate feed concentration (g/L)

𝜇 Specific growth rates

𝜎 Substrate consumption

𝜋 Product formation

Table 2.11: Parameter values for case study VII.

Parameter Value

𝑥1(0) 0.1 g/L

𝑥2(0) 14 g/L

𝑥3(0) 0 g/L

𝑥4(0) 5 L

𝑆𝐹 2.8 wt%

There are two performance index (PI) which are needed to be maximized. The first

PI is the productivity (𝐽𝑝)while the second PI is the yield (𝐽𝑦). These are defined as

follows:

𝐽𝑝 =
𝑥3(𝑡𝑓)

𝑡𝑓
 (46)

𝐽𝑦 =
𝑥3(𝑡𝑓)

∫ 𝐹(𝑡)𝑆𝐹𝑑𝑡
𝑡𝑓

0

 (47)

where the final time, 𝑡𝑓 is an additional variable to be found by the algorithm within

the range of 30-40 h. The number of intervals for the feeding sequence is set as 20

intervals.

Univ
ers

ity
 of

 M
ala

ya

40

2.8 Case study VIII

This case study is the same as case study II except that in this case, there are two

performance index (PI). In case study II, the PI is to maximize the amount of protein

product while minimizing the amount of inducer by using the later term as a penalty. In

case study VIII however, the two terms are separated into two different objectives as

follows:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑢1(𝑡), 𝑢2(𝑡)

 𝐽1 = 𝑥4(𝑡𝑓)𝑥1(𝑡𝑓). (48)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑢1(𝑡), 𝑢2(𝑡)

 𝐽2 = ∫ 𝑢2(𝑡)𝑑𝑡
𝑡𝑓

0
. (49)

Univ
ers

ity
 of

 M
ala

ya

41

CHAPTER 3: METHODOLOGY

The methodology of this study can be divided into two parts. The first part addresses

the single-objective problems while the second part involves the multi-objective

problems.

3.1 Single-objective optimization problems

Six case studies (case studies I-VI) which were discussed in Section 2 are used in our

experiments.

3.1.1 Conversion of case study VI from batch mode into fed-batch mode.

The batch operation of methane fermentation can be converted into fed-batch by

using the continuity equation:

𝑚𝑖𝑛 − 𝑚𝑜𝑢𝑡 − 𝑚𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 =
𝑑𝑚

𝑑𝑡
 (50)

Replace the formula with the rate of change of substrate:

𝑆𝑖𝑛 − 𝑆𝑜𝑢𝑡 − 𝑆𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 =
𝑑𝑆

𝑑𝑡
 (51)

In fed-batch, no substrate is taken out and the substrate is consumed at a constant

rate:

𝑆𝑖𝑛 − 𝑘𝑆 =
𝑑𝑆

𝑑𝑡
 (52)

Where the substrate input is defined as follow:

𝑆𝑖𝑛 =
𝑢∙(𝑆0−𝑆)

𝐿
 (53)

where 𝑢 is the feed flow rate, 𝑆0 is the substrate concentration in the feed, 𝑆 is the

substrate concentration in the fermentor and 𝐿 is the volume of the fermentor. When

Univ
ers

ity
 of

 M
ala

ya

42

converting a batch model into fed-batch, a diluting term is added into each element. The

diluting term is added only to the elements which are either in solid or liquid state.

Hence, the elements which are in gaseous state remain unchanged (del Rio-Chanona et

al., 2016).

In this study, the methane fermentation of sewage sludge in fed-batch mode was

investigated and is considered as case study VI. The fed-batch operation of sewage

sludge fermentation, which was converted from the batch model by Sosnowski et al.

(2008), was modeled as follows:

𝑑𝑆

𝑑𝑡
=

𝑢

𝐿
∗ (𝑆0 − 𝑆) − 𝑘 ∙ 𝑆 (54)

𝑑𝑉

𝑑𝑡
= 𝑌𝑉/𝑆 ∙ 𝑘 ∙ 𝑆 − 𝑣𝑉 ∙

𝑉

𝐾𝑆+𝑉
∙ 𝑋0 − 𝑉 ∗

𝑢

𝐿
 (55)

𝑑𝐶𝐻4

𝑑𝑡
= 𝑌𝐶𝐻4/𝑉 ∙ 𝑣𝑉 ∙

𝑉

𝐾𝑆+𝑉
∙ 𝑋0 (56)

𝑑𝐶𝑂2

𝑑𝑡
= 𝑌𝐶𝑂2/𝑆 ∙ 𝑘 ∙ 𝑆 + 𝑌𝐶𝑂2/𝑉 ∙ 𝑣𝑉 ∙

𝑉

𝐾𝑆+𝑉
∙ 𝑋0 (57)

𝑑𝐿

𝑑𝑡
= 𝑢 (58)

The variables for case study VI are defined in Table 3.1. The constant parameter

values, the final time, 𝑡𝑓 and the initial state conditions are given in Table 3.2.

Univ
ers

ity
 of

 M
ala

ya

43

Table 3.1: Variables definitions for case study VI.

State variables Definitions

𝑘 Constant of first-order reaction (𝑑−1)

𝑆 Carbon content in TSS (𝑔 𝐶 𝑑𝑚−3)

𝑉 Carbon content in VFA (𝑔 𝐶 𝑑𝑚−3)

𝐾𝑆 Saturation constant (𝑔 𝐶 𝑑𝑚−3)

𝑋0 Biomass concentration (𝑔 𝐶 𝑑𝑚−3)

𝑣𝑉 Maximum specific utilization of VFA rate (𝑑−1)

𝑌𝑉/𝑆 Yield factor of VFA from substrate

𝑌𝐶𝐻4/𝑉 Yield factor of 𝐶𝐻4 from VFA

𝑌𝐶𝑂2/𝑆 Yield factor of 𝐶𝑂2 from 𝑆

𝑌𝐶𝑂2/𝑉 Yield factor of 𝐶𝑂2 from VFA

Table 3.2: Parameter values for case study VI.

Parameter Value

𝑋0 5 𝑔 𝐶 𝑑𝑚−3

𝑆0 20 𝑔 𝐶 𝑑𝑚−3

𝑘 0.11 𝑑−1

𝑌𝑉/𝑆 0.72 𝑑−1

𝐾𝑆 11.24 𝑔 𝐶 𝑑𝑚−3

𝑣𝑉 2.08 𝑑−1

𝑌𝐶𝐻4/𝑉 0.71 𝑑−1

𝑌𝐶𝑂2/𝑆 0.17 𝑑−1

𝑌𝐶𝑂2/𝑉 0.22 𝑑−1

𝑡𝑓 23 𝑑

𝑆(0) 4.75 𝑔 𝐶 𝑑𝑚−3

𝑉(0) 0 𝑔 𝐶 𝑑𝑚−3

𝐶𝐻4(0) 0 𝑔 𝐶 𝑑𝑚−3

𝐶𝑂2(0) 0 𝑔 𝐶 𝑑𝑚−3

𝐿(0) 2.4 𝑑𝑚3

The variable constraints are: 𝑢 ∈ [0; 1], 𝑆(𝑡) ≤ 5, 𝐿(𝑡) ≤ 40. The total mass of

carbon in the fermentor is constrained as follow:

[𝑆(𝑡) + 𝑉(𝑡) + 𝐶𝐻4(𝑡) + 𝐶𝑂2(𝑡)] ∙ 𝐿(𝑡) ≤ 12 (59)

The performance index (PI) is given by:

𝑃𝐼 = 𝐶𝐻4(𝑡𝑓) (60)

Univ
ers

ity
 of

 M
ala

ya

44

3.1.2 Validation of batch results and improvement using fed batch for case

study VI

To show the improvements of fed-batch operation over batch in the methane

production from sewage sludge fermentation, we ran a preliminary test for this model.

Figure 3.1 shows the comparison of batch and fed-batch for sludge fermentation where

FB stands for fed-batch while B stands for batch. The result for fed-batch was obtained

from our preliminary simulation using the methodology described above and BSA as

the optimization algorithm. We found that fed-batch produced 8.95% more methane

compared to the conventional batch process. This improvement comes from the

controlled feeding for each day during the fermentation process. The amount of

methane produced by fed-batch starts to increase over batch after the ninth day. It is

worth noting that fed-batch was able to produce more methane even when the initial

substrate is less than the amount used in batch (4.75 g dm-3 for fed-batch compared to 5

g dm-3 for batch). Figure 3.2 shows the best feeding rate obtained by BSA for case study

VI.

Univ
ers

ity
 of

 M
ala

ya

45

Figure 3.1: Comparison of batch and fed-batch for sludge fermentation

Figure 3.2: Control profile for the fed-batch sludge fermentation

Univ
ers

ity
 of

 M
ala

ya

46

3.1.3 Experimental setup

In this experiment, BSA is compared with four different metaheuristics: Covariance

Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen & Ostermeier, 1996),

Differential Evolution (DE) (Storn & Price, 1997), Artificial Bee Colony (ABC)

(Basturk, 2006) and Artificial Algae Algorithm (AAA) (Uymaz et al., 2015). All the

algorithms are population-based algorithm. In the context of fed-batch fermentation

processes optimization, the solutions found by the algorithms represent the trajectory of

input variables. The solutions or input variables are represented by 𝑀 × (𝑁 + 1) real

valued vectors. 𝑀 is the predetermined number of input variables. 𝑁 is the

predetermined size of input variables or the number of feeding intervals. Each vector

encodes an input variable as a temporal sequence of values, defined as a piecewise

linear function, with 𝑁 equally spaced, linearly interpolated segments. For the cases

where there are more than one input variables, all the 𝑀 vectors are joined sequentially

to create a solution. In this experiment, all the case studies have only one input variable

except for case study II which has two input variables.

Each solution is evaluated by running a numerical simulation of the differential

equation model defined in each case. This simulation is achieved using the Runge-Kutta

method provided by Matlab ODE suite. After the simulation, the fitness value of the

solution is calculated according to the PI of each case. Also, the relative and absolute

error tolerances for integrations of the system dynamics were set to 10−8 in order to

provide accurate and consistent results. The constraints for each case are handled by

implementing constant penalty method. Figure 3.3 shows the flowchart of BSA

implementation in the experiments.

The means of 30 runs along with its 95% confidence intervals are presented as

results in this paper. T-test (Goulden, 1956) for two-sample comparisons is

Univ
ers

ity
 of

 M
ala

ya

47

implemented in this work. We also employed the Holm correction for the p-values

(Holm, 1979) for the multiple pairwise comparisons. For ease of presentation, we used a

symbolic encoding for the p-values obtained from t-tests results. Different symbols are

employed that give straightforward comparison between the algorithms and report

whether the mean of algorithm 𝐴1 is greater than the mean of 𝐴2 or vice versa, as

shown in Table 3.3. In the experiments, some algorithms may show insignificant

difference between each other based on their statistical evaluation. However, our goal is

to determine the algorithm that can provide consistent good results by having high

average and narrow confidence interval for all cases.

In our experiments, we use the standard parameters for each algorithm that were

suggested by previous studies. The termination condition is set after 200,000 FEs

(function evaluations) and the population size for all algorithms is 20. For DE in

particular, the parameters are as follow: 𝐹 = 0.5 and 𝐶𝑅 = 0.6. The value of 𝑁 is equal

to the value of 𝑡𝑓 in all single-objective cases except for case studies II and III (25 and

10 respectively).

Univ
ers

ity
 of

 M
ala

ya

48

Figure 3.3: BSA flowchart.

Table 3.3: Symbolic encoding for comparing t-tests results.

p-Value Condition Symbol

p ⩽ 0.001 mean(𝐴1) > mean(𝐴2) +++

p ⩽ 0.001 mean(𝐴1) < mean(𝐴2) - - -

0.001 < p ⩽ 0.01 mean(𝐴1) > mean(𝐴2) ++

0.001 < p ⩽ 0.01 mean(𝐴1) < mean(𝐴2) - -

0.01 < p ⩽ 0.05 mean(𝐴1) > mean(𝐴2) +

0.01 < p ⩽ 0.05 mean(𝐴1) < mean(𝐴2) -

p ⩾ 0.05 O

Start

Initialization

Selection-I

Mutation and crossover

Simulation of ODE model

and fitness (PI) evaluation

Selection-II

End criterion met?

End

No

Yes

Simulation of ODE model

and fitness (PI) evaluation

Univ
ers

ity
 of

 M
ala

ya

49

3.2 Multi-objective optimization problems

Two case studies (case studies VII and VIII), which was discussed in Section 2 will

be used for our study in multi-objective bioprocess problems.

3.2.1 Modified Multi Objective Particle Swarm Optimization (M-MOPSO)

In the second part this study, we propose a modification of an existing MOM called

multi-objective particle swarm optimization (MOPSO) (Coello et al., 2004). This

modification, called modified MOPSO (M-MOPSO) retains some elements used in the

original MOPSO but at the same time introduces new processes to either replace or

combine with the original procedures.

Figure 3.4: Fed-batch fermentation using M-MOPSO.

Figure 3.4 shows the overall flowchart of the fed-batch fermentation optimization

system using M-MOPSO. M-MOPSO generates solutions which represent the substrate

feed rate for the bioprocess. The unit of substrate feed rate is defined as the volume per

unit time (𝑉 𝑡⁄). This variable provides the feeding profile for the bioreactor to provide a

certain amount of input at a certain time during the fermentation process. The

bioprocess is simulated using mathematical model which is usually a set of ordinary

differential equations (ODE). The ODE describe the relationship between operating

parameters that includes inputs, intermediatory and outputs. The biomass is

Biomass

Substrate

feed rate

Product

Performance

index
M-MOPSO Mathematical

model

Performance

index evaluation

Univ
ers

ity
 of

 M
ala

ya

50

continuously used by the substrate to produce yield. The output information from the

bioprocess, such as the volume of the product and biomass are used to calculate the

performance index (PI) of the solutions. The PI values are given back to M-MOPSO to

find better solutions and the cycle repeats until the end criterion is met.

M-MOPSO shares many similarities with MOPSO. The biggest similarity is the

utilization of external archive/repository (𝑅𝐸𝑃). In the original MOPSO, the repository

is made up of two main elements: the archive controller and the grid. The archive

controller governs the selection and removal of the repository members. The grid

system used in MOPSO is in the form of adaptive hypercubes where the objective space

is divided into several regions to store the solutions. This system is used to reduce the

computational cost when the archive controller needs to add or remove the repository

member. Though the same principle is used in M-MOPSO, the execution is different.

While the M-MOPSO uses the same grid system, the procedure for its archive controller

is modified in several ways. These modifications, along with the introduction of other

new procedures are described in the following subsections.

3.2.1.1 Population initialization

M-MOPSO initialize by randomly generating 𝑛 number of population 𝑃𝑂𝑃 within

the problem’s upper and lower boundary. The value of 𝑛 is predetermined by the user.

𝑃𝑂𝑃 = [
𝑥1

1 ⋯ 𝑥𝑑
1

⋮ ⋱ ⋮
𝑥1

𝑛 ⋯ 𝑥𝑑
𝑛

] or

𝑃𝑂𝑃𝑗 = [𝑥1
𝑗
, 𝑥2

𝑗
, … , 𝑥𝑑

𝑗
] (61)

where 𝑥𝑖
𝑗
 is the variable in 𝑖th dimension of 𝑗th population.

Univ
ers

ity
 of

 M
ala

ya

51

3.2.1.2 Dynamic boundary control mechanism

A new boundary control mechanism is introduced in this paper. This mechanism is

the main evolutionary process of the population. In each iteration t, each individual in

the population will produce a new population according to the current boundary of each

individual. The boundary of each individual changes dynamically by taking into account

the current position of the individual and the boundary factor, bf which is defined in

section 3.2.1.3. This new procedure is implemented to overcome the weakness of the

swarm intelligence used in MOPSO in its exploitation aspect. With this new technique,

balanced exploration and exploitation can be achieved by intelligently expand or shrink

the search boundary of each individual based on some set of conditions. This boundary

is determined by calculating the initial value of 𝑄 as follow:

𝑄𝑖 =
𝑅𝑖

𝑙𝑜𝑤𝑒𝑟−𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

2
, 𝑖 = 1, 2, … , 𝑑 (62)

where 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

 and 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 is the problem’s upper and lower boundary respectively.

The value of 𝑄 will shrink in each iteration as follows:

𝑄𝑖
𝑡+1 = 𝑄𝑖

𝑡 × 𝑠𝑓2, 𝑖 = 1, 2, … , 𝑑 (63)

where 𝑠𝑓2 is the predetermined parameter called shrink factor. The upper and lower

individual boundary at iteration 𝑡 is calculated as follow:

𝑈𝐵𝑖
𝑗

= 𝑥𝑖
𝑗

+ 𝑄𝑗, 𝑖 = 1, 2, … , 𝑑, 𝑗 = 1, 2, … , 𝑛 (64)

𝐿𝐵𝑖
𝑗

= 𝑥𝑖
𝑗

− 𝑄𝑗, 𝑖 = 1, 2, … , 𝑑, 𝑗 = 1, 2, … , 𝑛 (65)

where 𝑥𝑖
𝑗
 is the position in 𝑖th dimension of 𝑗th population. The values that exceed

the specified problem boundary will be replaced with their respective boundary value.

Each population will produce a new population, 𝑥′𝑖
𝑗
 as follows:

Univ
ers

ity
 of

 M
ala

ya

52

𝑥′𝑖
𝑗

= 𝐿𝐵𝑖
𝑗

+ 𝑟𝑎𝑛𝑑 × (𝑈𝐵𝑖
𝑗

− 𝐿𝐵𝑖
𝑗
), 𝑖 = 1, 2, … , 𝑑, 𝑗 = 1, 2, … , 𝑛 (66)

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1]). Each new population will be evaluated and their fitness is

equal to their objective function value. For each population, some of the variables (the

position in each dimension) have the probability to become the value of their respective

boundaries as follows:

IF 𝑥′𝑖
 𝑗

 < 0.1 × 𝑟𝑎𝑛𝑑 × |𝑅𝑖
𝑢𝑝𝑝𝑒𝑟 − 𝑅𝑖

𝑙𝑜𝑤𝑒𝑟| + 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟

 𝑥′
𝑖
 𝑗

= 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟

ELSE IF 𝑥′
𝑖
 𝑗

> 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟 − 0.1 × 𝑟𝑎𝑛𝑑 × |𝑅𝑖

𝑢𝑝𝑝𝑒𝑟 − 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟|

 𝑥′
𝑖
 𝑗

= 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

END IF (67)

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1]). This is to ensure that the variables that are close to the

value of their boundaries have the probability to go to their boundaries, hence

improving exploitation. Occasionally, the value of 𝑄 may change to simulate abrupt

boundary expansion or shrinking as follows:

IF 𝑄𝑖 < 𝑏𝑓 × |𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

− 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟| + 𝑅𝑖

𝑙𝑜𝑤𝑒𝑟

𝑄𝑖 = 𝑂𝑄𝑖 × 𝑏𝑓

 𝐸𝑁𝐷 𝐼𝐹 (68)

where 𝑂𝑄𝑖 is the initial 𝑄𝑖 value obtained in equation (62). The determination of the

boundary factor, 𝑏𝑓 is explained in the next section.

Univ
ers

ity
 of

 M
ala

ya

53

3.2.1.3 Boundary factor determination

M-MOPSO employs a new dynamic boundary mechanism to search for new

solutions. Each individual will evolve based on their respective boundaries. These

boundaries may shrink or expand in each iteration depending on the boundary factor,

𝑏𝑓. Smaller 𝑏𝑓 ensures greater exploitation while larger 𝑏𝑓 encourages greater

exploration. 𝑏𝑓 is determined as follows:

1. Initially, 𝑏𝑓 is calculated as follows:

𝑏𝑓 = 𝑟𝑎𝑛𝑑 (69)

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1]).

2. If the number of functional evaluations is more than half the maximum

allowable, 𝑏𝑓 is calculated as follow:

𝑏𝑓 = 0.1 × 𝑟𝑎𝑛𝑑 (70)

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1]).

3. If the number of REP member is equal to the maximum allowable, 𝑛𝑅𝑒𝑝 for

𝑛𝑅𝑒𝑝
2⁄ iterations, 𝑏𝑓 is determined using equation (69).

4. After 𝑆𝑓1 iterations from previous step, 𝑏𝑓 is determined using equation (70).

5. Repeat step 3.

𝑆𝑓1 is a predetermined parameter called saturation factor.

3.2.1.4 Repository member admittance method

In original MOPSO, the archive controller needs to determine the domination of

each of repository member every time new members are admitted. This can lead to high

Univ
ers

ity
 of

 M
ala

ya

54

computational cost especially when the size of the repository grows larger in each

iteration. Besides, identical solutions or populations (𝑃𝑂𝑃) may be admitted into the

finite-sized repository, causing it to rapidly fill early in the iteration. In M-MOPSO,

several modifications are made to lower the computational cost and ensure the

uniqueness of the solutions in the repository. The pseudocode for repository member

admittance is as follows:

1. Determine each 𝑃𝑂𝑃 domination.

2. Assign all 𝑅𝐸𝑃 member as nondominated.

3. FOR each nondominated 𝑃𝑂𝑃

FOR each 𝑅𝐸𝑃 member

 BREAK if current 𝑃𝑂𝑃 is identical to current 𝑅𝐸𝑃

 Assign current 𝑅𝐸𝑃 as dominated if it is dominated by current 𝑃𝑂𝑃

 ELSE assign current 𝑃𝑂𝑃 as dominated if it is dominated by current

 𝑅𝐸𝑃 and BREAK

END FOR

END FOR

4. Insert nondominated 𝑅𝐸𝑃 and nondominated 𝑃𝑂𝑃 into 𝑅𝐸𝑃.

3.2.1.5 Repository member deletion method

Each time new nondominated solutions are found, the archive controller will add

them into the repository. However, if the size of the repository exceeds the maximum

allowable, some members of the repository will be removed by the archive controller.

The original MOPSO determines which member to be removed based on the density of

Univ
ers

ity
 of

 M
ala

ya

55

the grids. Members in the grid with higher density have higher chance to be removed. In

M-MOPSO, the factor that determines the removal of a member depends on the

Euclidean distance in the objective space between each repository member and the latest

admitted member. The repository member deletion method in M-MOPSO is as follows:

1. Use roulette-wheel selection to select one member. The weight is defined as the

Euclidean distance (in objective space) between each REP members and the

latest admitted REP member (nearer member has higher weight).

2. Delete the selected member.

3. Repeat step 1 until the number of REP members does not exceeds the maximum

allowable number.

3.2.1.6 Mutation operator and population update method

In M-MOPSO, the old population is replaced through the means of mutation. The

same mutation operator used by MOPSO is used in M-MOPSO. Mutation happens with

some probability (not every iteration). If the mutation process cannot improve the

individual, its saturation counter is incremented by one. Once the saturation counter

reached a predetermined value, that particular individual in the population may be

replaced by one of the following method (randomly use one method with equal

probability):

• Choose one REP member by roulette-wheel method. Members from less

crowded area in the grids have higher probability to be selected.

• Randomly select one REP member.

3.2.1.7 M-MOPSO procedures

The whole procedures for M-MOPSO are as follows:

Univ
ers

ity
 of

 M
ala

ya

56

1. Randomly generate initial population, 𝑋𝑗 for 𝑗 = 1, 2, … , 𝑛 within the boundary.

𝑥𝑖
𝑗

= 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 + 𝑟𝑎𝑛𝑑 × 𝑄𝑖,

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1]), 𝑄𝑖 = |
𝑅𝑖

𝑢𝑝𝑝𝑒𝑟
−𝑅𝑖

𝑙𝑜𝑤𝑒𝑟

2
| , 𝑖 = 1, 2, … , 𝑑,

where 𝑑 is the number of variables, 𝑛 is the predetermined number of

population, 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

 and 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟 are the upper and lower boundary respectively.

2. Evaluate 𝑓(𝑋𝑗), store nondominated solutions in archive/repository, 𝑅𝐸𝑃,

generate hypercubes, initialize saturation count, 𝑆𝑗 to zero, store initial 𝑋𝑗

positions as best found positions so far, 𝐵𝐹𝑃𝑗.

3. Generate new boundary.

𝑈𝐵𝑖
𝑗

= 𝑥𝑖
𝑗

+ 𝑄𝑖

𝐿𝐵𝑖
𝑗

= 𝑥𝑖
𝑗

− 𝑄𝑖

4. Each particle in the population generates offspring, 𝑋′ 𝑗 within new boundary.

𝑥′𝑖
 𝑗

= 𝐿𝐵𝑖
𝑗

+ 𝑟𝑎𝑛𝑑 × |𝑈𝐵𝑖
𝑗

− 𝐿𝐵𝑖
𝑗
|

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1])

5. For each particle, some of the variables have the probability to become the value

of their respective boundaries as follows:

IF 𝑥′𝑖
 𝑗

 < 0.1 × 𝑟𝑎𝑛𝑑 × |𝑅𝑖
𝑢𝑝𝑝𝑒𝑟 − 𝑅𝑖

𝑙𝑜𝑤𝑒𝑟| + 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟

 𝑥′
𝑖
 𝑗

= 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟

ELSE IF 𝑥′
𝑖
 𝑗

> 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟 − 0.1 × 𝑟𝑎𝑛𝑑 × |𝑅𝑖

𝑢𝑝𝑝𝑒𝑟 − 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟|

𝑥′
𝑖
 𝑗

= 𝑅𝑖
𝑢𝑝𝑝𝑒𝑟

END IF

Univ
ers

ity
 of

 M
ala

ya

57

where 𝑟𝑎𝑛𝑑~ ∪ ([0, 1])

6. Evaluate 𝑓(𝑋′ 𝑗) and store nondominated 𝑋′ 𝑗 in 𝑅𝐸𝑃, update 𝑅𝐸𝑃 by removing

dominated solutions, update hypercubes.

7. 𝑋𝑗 performs mutation to generate 𝑋′′ 𝑗. Evaluate 𝑓(𝑋′′𝑗
) and replace 𝑋𝑗 if 𝑋′′ 𝑗

is better.

8. Compare 𝑋𝑗 with 𝐵𝐹𝑃𝑗 and update 𝐵𝐹𝑃𝑗. Increment 𝑆𝑗 if better 𝐵𝐹𝑃𝑗 is not

found, otherwise reset 𝑆𝑗 to zero.

9. Replace all 𝑋𝑗 with respective 𝐵𝐹𝑃𝑗.

10. Store nondominated 𝑋𝑗in 𝑅𝐸𝑃, update 𝑅𝐸𝑃 by removing dominated solutions,

update hypercubes.

11. If 𝑆𝑗 = 𝑆𝑓1, replace 𝑋𝑗 by population update method.

12. Shrink current boundary.

𝑄𝑖 = 𝑄𝑖 × 𝑆𝑓2

13. Determine boundary factor, 𝑏𝑓 .

14. If 𝑄𝑖 < 𝑏𝑓 × |𝑅𝑖
𝑢𝑝𝑝𝑒𝑟 − 𝑅𝑖

𝑙𝑜𝑤𝑒𝑟| + 𝑅𝑖
𝑙𝑜𝑤𝑒𝑟, update the boundary.

𝑄𝑖 = 𝑂𝑄𝑖 × 𝑏𝑓

where 𝑂𝑄𝑖 is the original 𝑄𝑖 value obtained in Step 1.

15. If maximum iteration is achieved, terminate. Otherwise repeat step 3.

The flowchart for M-MOPSO is given in Figure 3.5.

Univ
ers

ity
 of

 M
ala

ya

58

Figure 3.5: M-MOPSO’s flowchart.

Initialize POP

Evaluate POP

Store nondominated POP in REP

Initialize memory

Calculate NEWPOP boundary

Generate NEWPOP (evaluate

NEWPOP)

Update REP (store

nondominated NEWPOP in

REP + REP member deletion)

Mutate POP (evaluate POP)

Update REP (store

nondominated POP in REP +

REP member deletion)

Update memory

Update POP

Update NEWPOP boundary

(shrink or expand)

No

Yes

End

End criterion met?

Univ
ers

ity
 of

 M
ala

ya

59

3.2.1.8 Similarities and differences between MOPSO and M-MOPSO

M-MOPSO have several similarities with the original MOPSO. Both are population-

based evolutionary algorithm, which evolve the solution vector/population (POP) in

each iteration. Like MOPSO, M-MOPSO also uses external population/repository

(REP) to store the non-dominated POP and construct the Pareto front. M-MOPSO also

employs identical adaptive grid mechanism used in MOPSO. Also, both utilize elitism

to update individual’s memory. Finally, M-MOPSO uses the same mutation operator

utilized by MOPSO, though the subjects of mutation are different.

There are six major differences between M-MOPSO and MOPSO. The first

difference is the population evolution procedure. MOPSO utilizes swarm intelligence

technique where the whole population coordinates their movements by following a

single leader. This is achieved by considering the current leader position, the memory of

each individual (individual best position) and their velocity. M-MOPSO instead

employs dynamic boundary control mechanism. This is achieved by deliberate

shrinking and expansion of each individual boundary. New populations are randomly

generated within these adaptive boundaries. M-MOPSO does not restrict its search

direction by following a single leader but instead each individual evolves independently

according to their own boundary.

Secondly, the mutation procedure in MOPSO is applied after the new position of the

population has been found. The new population will replace the old one. In M-MOPSO,

the mutation is applied directly on the old population (before evolution), not the new

ones. The new population never replaces the old one.

The repository update procedure in both algorithms is also different. MOPSO

updates the contents of its repository only after the new population has both been

Univ
ers

ity
 of

 M
ala

ya

60

generated and mutated while M-MOPSO updates the contents of its repository after the

old population was mutated and also after the new population has been generated.

The procedure for repository member selection is also different between the two

algorithms. MOPSO determines the domination of each of repository member every

time new members are admitted. New members are admitted every time new

nondominated solutions are found. M-MOPSO however only determines the

domination of some necessary members and any redundant solutions are ignored and

not admitted into the repository.

Both algorithms also use different repository member deletion procedure. MOPSO

deletes its repository members based on the density of the grids, where members in the

least populated grid have higher probability to be deleted. M-MOPSO deletes its

repository members based on the Euclidean distance in the objective space between

each repository member and the latest admitted member. The members nearer to the

latest admitted member have higher probability to be deleted.

The final difference is in the aspects of leader selection and population update. In

MOPSO, a single new leader is selected in each iteration and replaces the previous

leader. The leader is selected from a repository member in the least populated grid. All

other population remains the same as in previous iteration. In M-MOPSO, each

individual population has their own saturation counter. If they cannot improve/found

better solution after a predetermined number of iteration, they will be replaced either by

randomly selecting a repository member or by selecting a repository member in the least

populated grid.

Univ
ers

ity
 of

 M
ala

ya

61

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1 Single-objective optimization problems

The results of our experiments for each case study will be shown in a pair of tables.

The first table of each pair provides the mean and the 95% confidence intervals for the

PI of each algorithm. We probe the PI at four different time-steps: when 25,000, 50,000,

100,000 and 200,000 FEs are performed by each algorithm. This decision is made to

estimate the possibilities for terminating the optimization process earlier, immediately

after good enough solutions are obtained. The second table of each pair provides the

pairwise t-test results at 200,000 FEs. These results are intended to signify the statistical

differences among the algorithms, where the algorithm on each row of the tables

represents 𝐴1 on Table 3.3 while the algorithm on each column represents 𝐴2. The

results for case studies I– III are provided in Tables 4.1 - 4.6. The results for case studies

IV– V are provided in Tables 4.7 - 4.10 while the results for case study VI are provided

in Tables 4.11 and 4.12.

Table 4.1: Mean and confidence intervals for case study I.

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

BSA 20285 ± 30.73 20341 ± 26.56 20392 ± 14.26 20418 ± 4.71

AAA 20348 ± 10.42 20357 ± 14.87 20369 ± 9.91 20382 ± 7.02

ABC 7875 ± 2576 11258 ± 4605 20299 ± 61.62 20317 ± 36.98

DE 20384 ± 4.82 20381 ± 24.62 20388 ± 18.93 20406 ± 2.27

CMAES 20211 ± 100.2 20373 ± 46.09 20403 ± 29.87 20412 ± 30.03

Table 4.2: T-test results for case study I.

 BSA AAA ABC DE CMAES

BSA +++ +++ ++ O

AAA --- + --- O

ABC --- - -- -

DE -- +++ ++ O

CMAES O O + O

Univ
ers

ity
 of

 M
ala

ya

62

In case study I, during the early stages of optimization, namely at 25,000 FEs, DE

obtains the highest PI as shown in Table 4.1. Later, CMAES edged other algorithms to

obtain better PI at 50,000 and 100,000 FEs. However, at the saturation of optimization,

BSA obtained the highest PI after 200,000 FEs. According to the t-test in Table 4.2,

BSA performed better than DE, AAA and ABC while performing equally well in

comparison to CMAES.

Table 4.3: Mean and confidence intervals for case study II.

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

BSA 5.5488 ± 0.0038 5.5668 ± 0.0002 5.5676 ± 0.0000 5.5677 ± 0.0000

AAA 5.5642 ± 0.0010 5.5659 ± 0.0004 5.5669 ± 0.0001 5.5673 ± 0.0000

ABC 3.1832 ± 1.1607 5.4637 ± 0.0749 5.5532 ± 0.0072 5.5652 ± 0.0005

DE 5.5671 ± 0.0001 5.5676 ± 0.0000 5.5677 ± 0.0000 5.5677 ± 0.0000

CMAES 0.0000 ± 0.0000 5.5677 ± 0.0000 5.5677 ± 0.0000 5.5677 ± 0.0000

Table 4.4: T-test results for case study II.

 BSA AAA ABC DE CMAES

BSA +++ +++ O O

AAA --- +++ --- ---

ABC --- --- --- ---

DE O +++ +++ O

CMAES O +++ +++ O

In case study II, during the early stages of optimization namely at 25,000 FEs, DE

obtains the highest PI as shown in Table 4.3. At 50,000 FEs, CMAES improved

compared to other algorithms to obtain better PI though DE emerged to perform equally

well as CMAES at 100,000 FEs to obtain the highest PI. At the saturation of

optimization, BSA, DE and CMAES obtained the highest PI after 200, 000 FEs.

According to the t-test in Table 4.4, BSA performed better than AAA and ABC while

performing equally well in comparison to CMAES and DE.

Univ
ers

ity
 of

 M
ala

ya

63

Table 4.5: Mean and confidence intervals for case study III.

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

BSA 69.352 ± 22.656 87.487 ± 0.2997 87.876 ± 0.0699 87.976 ± 0.0251

AAA 32.433 ± 25.991 85.017 ± 1.0445 85.844 ± 0.6977 86.365 ± 0.7140

ABC 14.733 ± 19.259 78.110 ± 2.4286 78.612 ± 2.1388 78.612 ± 2.1387

DE 43.995 ± 28.743 43.974 ± 28.73 43.99 ± 28.74 43.996 ± 28.744

CMAES 87.770 ± 0.2776 87.968 ± 0.0192 87.968 ± 0.0192 87.968 ± 0.0192

Table 4.6: T-test results for case study III.

 BSA AAA ABC DE CMAES

BSA ++ +++ O O

AAA -- +++ O --

ABC --- --- O ---

DE O O O O

CMAES O ++ +++ O

In case study III, prior to convergence of optimization namely at 25,000, 50,000 and

100,000 FEs, CMAES obtains the highest PI as shown in Table 4.5. However, at the

convergence of optimization, BSA obtained the highest PI after 200, 000 FEs.

According to the t-test in Table 4.6, BSA performed better than AAA and ABC while

performing equally well in comparison to CMAES and DE.

Table 4.7: Mean and confidence intervals for case study IV.

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

BSA 89.117 ± 0.1457 89.404 ± 0.0027 89.406 ± 0.0015 89.408 ± 0.0012

AAA 89.402 ± 0.0049 89.404 ± 0.0057 89.405 ± 0.0057 89.407 ± 0.0045

ABC 89.340 ± 0.0530 89.391 ± 0.0102 89.392 ± 0.0101 89.395 ± 0.0069

DE 89.364 ± 0.0272 89.347 ± 0.0290 89.376 ± 0.0141 89.391 ± 0.0134

CMAES 89.140 ± 0.2024 89.359 ± 0.0407 89.371 ± 0.0387 89.373 ± 0.0382

Univ
ers

ity
 of

 M
ala

ya

64

Table 4.8: T-test results for case study IV.

 BSA AAA ABC DE CMAES

BSA O O O O

AAA O O O O

ABC O O O O

DE O O O

CMAES O O O O

In case study IV, during the early stages of optimization namely at 25,000 FEs, AAA

obtains the highest PI as shown in Table 4.7. At 50,000 FEs, both BSA and AAA obtain

the highest PI. However at the later stages of optimization namely at 100,000, and

200,000 FEs, BSA obtained the highest PI. According to the t-test in Table 4.8, all

algorithms perform equally well.

Table 4.9: Mean and confidence intervals for case study V.

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

BSA 95.049 ± 0.0211 95.071 ± 0.0015 95.072 ± 0.0009 95.073 ± 0.0001

AAA 95.065 ± 0.0083 95.068 ± 0.0051 95.073 ± 0.0001 95.073 ± 0.0000

ABC 95.046 ± 0.0176 95.041 ± 0.0127 95.047 ± 0.0110 95.061 ± 0.0089

DE 75.907 ± 24.797 57.042 ± 30.428 57.043 ± 30.429 57.043 ± 30.429

CMAES 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

Table 4.10: T-test results for case study V.

 BSA AAA ABC DE CMAES

BSA O O O +++

AAA O O O +++

ABC O O O +++

DE O O O +

CMAES --- --- --- -

In case study V, during the early stages of optimization, namely at 25,000 FEs, AAA

obtains the highest PI as shown in Table 4.9. Later, BSA edged other algorithms to

obtain better PI at 50,000 FEs. At 100,000 FEs, AAA obtains the highest PI. At the

Univ
ers

ity
 of

 M
ala

ya

65

saturation of optimization, both BSA and AAA obtained the highest PI after 200,000

FEs. According to the t-test in Table 4.10, BSA performed better than CMAES while

performing equally well in comparison to AAA, ABC and DE.

Table 4.11: Mean and confidence intervals for case study VI.

Algorithm PI 25,000 FEs PI 50,000 FEs PI 100,000 FEs PI 200,000 FEs

BSA 2.5044 ± 0.0028 2.5153 ± 0.0011 2.5186 ± 0.0010 2.522 ± 0.0010

AAA 2.5068 ± 0.0024 2.5112 ± 0.0011 2.5142 ± 0.0009 2.5165 ± 0.0007

ABC 2.4739 ± 0.0072 2.4739 ± 0.0072 2.4739 ± 0.0072 2.4739 ± 0.0072

DE 2.5176 ± 0.0004 2.5192 ± 0.0005 2.5206 ± 0.0004 2.5219 ± 0.0003

CMAES 2.5196 ± 0.0012 2.5196 ± 0.0012 2.5196 ± 0.0012 2.5196 ± 0.0012

Table 4.12: T-test results for case study VI.

 BSA AAA ABC DE CMAES

BSA +++ +++ O O

AAA --- +++ --- --

ABC --- --- --- ---

DE O +++ +++

+

CMAES O ++ +++ -

In case study VI, during the early stages of optimization namely at 25,000 and 50,000

FEs, CMAES obtains the highest PI as shown in Table 4.11. Later, DE edged other

algorithms to obtain better PI at 100,000 FEs. However at the saturation of optimization,

BSA obtained the highest PI after 200,000 FEs. According to the t-test in Table 4.12,

BSA performed better than AAA and ABC while performing equally well in

comparison to DE and CMAES.

The results provide several insights on the capabilities of each algorithm in solving

fermentation problems. The problems investigated in this paper can be divided into two

categories: constrained and unconstrained. Case study II is unconstrained problem while

the rest are constrained problems. For unconstrained problem, all algorithms performed

almost equally well and saturated at almost the same PI value. This means that for

Univ
ers

ity
 of

 M
ala

ya

66

unconstrained problems, there is flexibility in choosing an algorithm to solve a given

problem as most of them converged to the same solution. However, a different scenario

exists for constrained problems. For constrained problems, different algorithms

performed differently in each problem with the exception of BSA. In overall, BSA is

able to obtain the best results in all case studies by providing the highest means and

narrow confidence interval. BSA obtained the highest means at 200,000 FEs for all

problems except for case II where DE and CMAES saturated at the same highest value

as BSA. Case V is an exception for constrained problem where AAA managed to obtain

equal means as BSA. Even though DE and CMAES obtained higher means than BSA at

NFE lower than 200,000 for some cases, BSA manages to obtain higher means than

both algorithms at the end of 200,000 FEs for all constrained problems. This shows that

when given a sufficient amount of NFE, BSA is the best option for solving constrained

fermentation problems and provides improved performance compared to DE and other

metaheuristics studied in this work for solving bioreactor application problems in

general.

AAA shows equal in performance as BSA for case IV and case V while it performs

worse in other problems especially for case I and case III. ABC performs the worst in all

the case studies except for case IV and case V where it performs relatively well. DE

performs well for case I, II, IV and VI. However, it shows significantly worse results for

case III and the V because of the difficulty of satisfying the constraints in these

problems. Case III has three constraints to be satisfied, while case V has a single strict

constraint as compared to other problems which either have more relaxed constraint or

no constraints. CMAES performs well for most cases and even converged faster than

BSA in case I, II, III and VI. However, it struggles to solve case V for the same reason as

DE. Previously, M. Rocha et al. (2014) found that DE obtains the best overall

performance for fed-batch fermentation problems. BSA, as an improved DE-based

Univ
ers

ity
 of

 M
ala

ya

67

algorithm is expected to perform better than DE. The results obtained from our

experiments confirmed that BSA is a superior algorithm.

4.2 Multi-objective optimization problems

4.2.1 Benchmark problems

We compare our algorithm with four other multi-objective algorithms namely multi-

objective grey wolf optimizer (MOGWO), multi-objective particle swarm optimizer

(MOPSO), multi-objective evolutionary algorithm based on decompositions (MOEA/D)

and multi-objective differential evolution (MODE). In this experiment, 20 standard

multi-objective test problems proposed in CEC 2009 are used (Qingfu Zhang et al.,

2008) to evaluate the contested algorithms. These test problems consist of 10

unconstrained functions (UF1-UF10) and 10 constrained functions (CF1-CF10). They

are considered as one of the most challenging test problems in the literature that provide

different multi-objective search spaces with different Pareto optimal fronts: convex,

non-convex, discontinuous, and multi-modal. For all problems, 100 search agents are

utilized and the algorithms are run for a maximum of 300,000 function evaluations. The

number of parameters or variables for each of the unconstrained test functions is 30

while for the number of variables for constrained test functions is 10. The parameters

for all algorithms are set at default values as recommended by their respective author.

The two parameters used for M-MOPSO are as follows:

• 𝑆𝑓1 = 10: saturation factor

• 𝑆𝑓2 = 0.97: shrink factor

In M-MOPSO, these two parameters influence the converging behavior of the

algorithm. These parameter values should be fine-tuned and in our experiment, we

found the best parameter values after rigorous trial and error. As both MOPSO and M-

Univ
ers

ity
 of

 M
ala

ya

68

MOPSO use the same external repository system, they both use the same following

parameters:

• 𝑛𝐺𝑟𝑖𝑑 = 10: number of grids per dimension

• 𝑛𝑅𝑒𝑝 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡𝑠: repository size

• 𝛼 = 0.1: grid inflation rate

• 𝛽 = 2: leader selection pressure

• 𝛾 = 2: deletion selection pressure

The performance metric used for comparison is the Inverted Generational Distance

(IGD) proposed by Sierra and Coello Coello (2005) which is used for measuring

convergence and spread. The mathematical formulation for IGD is as follow:

𝐼𝐺𝐷 =
√∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛
 (71)

where 𝑛 is the number of true Pareto optimal solutions and 𝑑𝑖 indicates the Euclidean

distance between the 𝑖th true Pareto optimal solution in the reference set and the closest

obtained Pareto optimal solutions by the algorithm. The Euclidean distance is calculated

for every true solution with respect to its nearest obtained Pareto optimal solutions in

the objective space. In our experiment, we used 1,000 evenly distributed solutions as the

reference set for test instances with two objectives except for CF1 which used 21

solutions while 10,000 solutions are used for test instances with three objectives.

4.2.1.1 Unconstrained problems

The algorithms are run 30 times for each test problem and the statistics results are

provided in Table 4.13 and Figure 4.3. Aside from the above quantitative evaluation, we

also provide the means for qualitative evaluations by illustrating the best set of Pareto

Univ
ers

ity
 of

 M
ala

ya

69

optimal solutions obtained by each algorithm on the objective space. These qualitative

results are provided in Figure 4.4 - 4.13.

The first three variables of the Pareto sets after 50,000, 100,000 and 300,000 number

of function evaluations (NFE) are illustrated in Figure 4.1 and 4.2. The rate of

convergence can be observed from Figure 4.1 and 4.2. It shows that during initial search

process at NFE=10,000, only a small number of nondominated solutions are stored in

the external archive and the solutions are distributed randomly in the search space. After

100,000 NFE, more solutions were approaching to the true Pareto set. At the final stage

of search (NFE=300,000), the maximum number of 100 solutions are stored in the

archive and they mostly cover the true Pareto set. At this stage, the convergence and

coverage of M-MOPSO can be clearly seen.

Univ
ers

ity
 of

 M
ala

ya

70

Figure 4.1: True and obtained Pareto sets of M-MOPSO for UF2: (A) at 10,000

function evaluations, (B) at 100,000 function evaluations, (C) at 300,000 function

evaluations.

Univ
ers

ity
 of

 M
ala

ya

71

Figure 4.2: True and obtained Pareto sets of M-MOPSO for UF9: (A) at 10,000

function evaluations, (B) at 100,000 function evaluations, (C) at 300,000 function

evaluations.

Univ
ers

ity
 of

 M
ala

ya

72

Table 4.13 describes the IGD result based on average, standard deviation, median

and worst outcome from 30 test simulations on 10 unconstrained benchmark multi-

objective problems of CEC 2009. The tested algorithms are MOGWO, MOPSO,

MOEA/D, MODE and M-MOPSO. Based on Table 4.13, M-MOPSO showed improved

average result in comparison to all other algorithms in all benchmark problems except

for problem UF2 and UF8. For UF2, MODE obtained the best average while for UF8,

the best average was obtained by MOEA/D. It is worth noting that for UF2, M-MOPSO

was the third best algorithm after MODE and MOEA/D in term of average result while

for UF8, M-MOPSO was the second best after MOEA/D. This shows that in overall, M-

MOPSO have good convergence for multi-objective problems and rivals other

algorithms used in this experiment.

Table 4.13: IGD results for unconstrained CEC 2009 benchmark problems.

 UF1 (bi-objective) UF2 (bi-objective)

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO MOGWO MOPSO MOEA/D MODE M-MOPSO

Average 0.10955 0.10566 0.15906 0.03365 0.02642 0.06042 0.05577 0.02024 0.01380 0.02050

Median 0.10950 0.10840 0.12142 0.03345 0.02669 0.06084 0.05584 0.01215 0.01345 0.01987

STD. Dev. 0.00553 0.00968 0.09000 0.00179 0.00395 0.00956 0.00526 0.01696 0.00105 0.00278

Worst 0.11842 0.12226 0.31089 0.03719 0.03286 0.08232 0.06902 0.06325 0.01699 0.02750

 UF3 (bi-objective) UF4 (bi-objective)

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO MOGWO MOPSO MOEA/D MODE M-MOPSO

Average 0.25349 0.39195 0.28254 0.18019 0.08247 0.05921 0.07847 0.06363 0.04595 0.03319

Median 0.25625 0.40898 0.28788 0.17864 0.07990 0.05880 0.08004 0.06322 0.04641 0.03282

STD. Dev. 0.05642 0.05864 0.03000 0.01058 0.01291 0.00226 0.00561 0.00453 0.00148 0.00218

Worst 0.34665 0.46685 0.32290 0.20554 0.11507 0.07031 0.08640 0.07296 0.04875 0.04240

 UF5 (bi-objective) UF6 (bi-objective)

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO MOGWO MOPSO MOEA/D MODE M-MOPSO

Average 0.69931 0.43357 0.94569 0.77167 0.16981 0.28241 0.38170 0.46731 0.49191 0.15018

Median 0.62907 0.40824 0.92679 0.77098 0.17529 0.28452 0.32407 0.46227 0.48846 0.15447

STD. Dev. 0.32321 0.20739 0.17414 0.05703 0.02186 0.04076 0.20857 0.10427 0.01555 0.06454

Worst 2.19045 1.18900 1.28565 0.87944 0.21685 0.38275 0.85390 0.81389 0.52104 0.31263

 UF7 (bi-objective) UF8 (tri-objective)

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO MOGWO MOPSO MOEA/D MODE M-MOPSO

Average 0.09982 0.15624 0.32143 0.11995 0.02825 2.73042 0.29777 0.12909 0.21322 0.13808

Median 0.06949 0.06208 0.40413 0.10905 0.02802 3.25743 0.29766 0.11940 0.20849 0.13505

STD. Dev. 0.08411 0.14338 0.21034 0.03745 0.00486 1.24334 0.04143 0.02528 0.02469 0.01655

Worst 0.35172 0.40408 0.58568 0.20833 0.03742 4.15865 0.36733 0.18874 0.26685 0.17958

Univ
ers

ity
 of

 M
ala

ya

73

Table 4.13, continued.

IGD

UF9 (tri-objective) UF10 (tri-objective)

MOGWO MOPSO MOEA/D MODE M-MOPSO MOGWO MOPSO MOEA/D MODE M-MOPSO

Average 0.32416 0.37910 0.16876 0.22429 0.07254 2.55824 1.14397 0.45272 1.03144 0.31347

Median 0.23950 0.36722 0.17164 0.22455 0.07146 1.04314 1.07498 0.49515 1.01960 0.30887

STD. Dev. 0.19293 0.05252 0.01787 0.02450 0.00828 4.05456 0.57334 0.19059 0.07885 0.03822

Worst 0.79260 0.51674 0.17960 0.28344 0.09267 15.33101 2.47642 0.73603 1.22866 0.40404

Figure 4.3 shows the boxplot for IGD results based on 30 test simulations on 10

unconstrained benchmark multi-objective problems of CEC 2009. Based on Figure 4.3,

M-MOPSO showed improved average result in comparison to all other algorithms in all

benchmark problems except for UF2 and UF8. Except for UF2 and UF8, the boxplots

for M-MOPSO are lower and narrower compared to others. This shows that M-MOPSO

has better convergence, spread and stability compared to other algorithms.

Figure 4.4 - 4.13 illustrate both the coverage and convergence of the best solution

found by each algorithm. The higher proximity of solutions to the true Pareto front

reveals the improved convergence of the solutions obtained. M-MOPSO managed to

construct well-defined Pareto fronts which closely resemble the true optimal Pareto

fronts of each test functions.

For UF1, M-MOPSO obtained more distributed solutions and closer to the true

Pareto front compared to the others, as shown in Figure 4.4. For UF2, M-MOPSO,

MOEA/D and MODE obtained almost similar results, which are well distributed and

have good convergence toward the true Pareto front, as shown in Figure 4.5. In Figure

4.6, M-MOPSO clearly shown better convergence and spread throughout the true Pareto

front of UF3 when compared to other algorithms. For UF4, even though all algorithms

have good Pareto front distribution, M-MOPSO has the advantage of better convergence

towards the true Pareto front, as shown in Figure 4.7. Figure 4.8 shows that M-MOPSO

obtained solutions which are closest to the true solutions compared to the solutions

Univ
ers

ity
 of

 M
ala

ya

74

obtained by other algorithms for UF5. From Figure 4.9, we can see that the true Pareto

front for UF6 consists of three separate parts. M-MOPSO managed to find solutions

which are close to all three parts. In Figure 4.10, MOEA/D shows good convergence

and distribution of its solutions except at the lower part of its Pareto front. For M-

MOPSO, even though its solutions are not as well distributed as MOEA/D’s, the Pareto

front covers almost all areas of the true Pareto front. Figures 4.11, 4.12 and 4.13 show

the Pareto fronts for the three objectives problems of UF8, UF9 and UF10 respectively.

For UF8 and UF9, M-MOPSO shows better convergence and distribution compared to

the others while for UF10, MOEA/D has the best result.

Univ
ers

ity
 of

 M
ala

ya

75

Figure 4.3: Boxplot for the statistical results for IGD on UF1 to UF10.

Univ
ers

ity
 of

 M
ala

ya

76

Figure 4.4: Obtained Pareto solutions for UF1.

Univ
ers

ity
 of

 M
ala

ya

77

Figure 4.5: Obtained Pareto solutions for UF2.

 Univ
ers

ity
 of

 M
ala

ya

78

Figure 4.6: Obtained Pareto solutions for UF3.

 Univ
ers

ity
 of

 M
ala

ya

79

Figure 4.7: Obtained Pareto solutions for UF4.

 Univ
ers

ity
 of

 M
ala

ya

80

Figure 4.8: Obtained Pareto solutions for UF5.

 Univ
ers

ity
 of

 M
ala

ya

81

Figure 4.9: Obtained Pareto solutions for UF6.

 Univ
ers

ity
 of

 M
ala

ya

82

Figure 4.10: Obtained Pareto solutions for UF7.

 Univ
ers

ity
 of

 M
ala

ya

83

Figure 4.11: Obtained Pareto solutions for UF8.

 Univ
ers

ity
 of

 M
ala

ya

84

Figure 4.12: Obtained Pareto solutions for UF9.

 Univ
ers

ity
 of

 M
ala

ya

85

Figure 4.13: Obtained Pareto solutions for UF10.

 Univ
ers

ity
 of

 M
ala

ya

86

Figure 4.14: Convergence graph for UF1.

Figure 4.15: Convergence graph for UF4.

Univ
ers

ity
 of

 M
ala

ya

87

Figure 4.16: Convergence graph for UF8.

Figure 4.14 shows the convergence graph for UF1. The graph shows the average

IGD of 30 runs recorded at 30 intervals of function evaluations (FE) obtained by each

algorithm. MOGWO and MOEA/D converge faster by obtaining lower average IGD

compared to M-MOPSO and other algorithms at 20,000 FE. However, they become

saturated quicker than other algorithms and trapped at local optima after around 30,000

FE. Meanwhile, M-MOPSO and MODE manage to avoid premature convergence and

continue to converge gradually until termination, with M-MOPSO showing more

noticeable improvements after every FE compared to others.

The same scenario occurs in Figure 4.15 which shows the convergence graph for

UF4. MOGWO and MOEA/D converge quicker but also saturates faster compared to

M-MOPSO and MODE. M-MOPSO also obtains the best convergence curve after

300,000 FE compared to others.

Univ
ers

ity
 of

 M
ala

ya

88

In Figure 4.16 which shows the convergence graph for UF8, MOGWO and

MOEA/D converge faster than others by obtaining lower average IGD until at around

30,000 FE. However, after 30,000 FE, MOGWO’s performance becomes worse. The

same problem occurs for the original MOPSO, where its performance worsens after

around 140,000 FE. This negative behaviour can be attributed to repository member

deletion procedure implemented by both algorithms. This procedure is executed after

the maximum number of repository members is obtained and the algorithm proceeds to

delete one of their members based on the density of the grids. Depending on the

member selected to be deleted, the IGD value can either improve or worsen. M-MOPSO

eliminates the possibility to delete the ‘wrong’ member by implementing distance-based

member deletion as opposed to density-based member deletion. Hence, it is able to

maintain the quality of its solutions throughout the run as shown in the convergence

graph. MODE and MOEA/D also maintain the smooth descend of their convergence

curve as both does not employ external archive to store the solutions.

4.2.1.2 Constrained problems

In order to verify the their performance in solving constraint problems, the

algorithms are run 30 times for each test problem and the statistics results are provided

in Table 4.14 and Figure 4.17. To represent the qualitative results, the best set of Pareto

optimal solutions obtained by each algorithm on the objective space are provided in

Figure 4.18-4.27.

Based on Table 4.14, M-MOPSO showed improved average result in comparison to

all other algorithms in all benchmark problems except for problem CF1 and CF10.

MOEA/D obtained the best average for CF1 and CF10. It is worth noting that for CF1

and CF10, M-MOPSO was the second best algorithm after MOEA/D in term of average

Univ
ers

ity
 of

 M
ala

ya

89

result. This shows that in overall, M-MOPSO have good convergence for constrained

multi-objective problems and rivals other algorithms used in this experiment.

Table 4.14: IGD results for constrained CEC 2009 benchmark problems.

 CF1 (bi-objective) CF2 (bi-objective)

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO MOGWO MOPSO MOEA/D MODE M-MOPSO

Average 0.01284 0.05009 0.00342 8.56482 0.00555 0.11466 0.08856 0.10155 0.19962 0.01319

Median 0.01337 0.04838 0.00326 8.36916 0.00562 0.12056 0.07102 0.09299 0.19901 0.00718

STD. Dev. 0.00276 0.00755 0.00132 0.51661 0.00060 0.02889 0.03743 0.05864 0.02332 0.02158

Worst 0.01651 0.06521 0.00717 9.35663 0.00700 0.17114 0.17985 0.27604 0.24734 0.09347

 CF3 (bi-objective) CF4 (bi-objective)

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO MOGWO MOPSO MOEA/D MODE M-MOPSO

Average 0.89932 0.52639 0.64998 0.23541 0.16287 0.15811 0.11103 0.69385 0.91112 0.03307

Median 0.78064 0.51161 0.66162 0.23434 0.15667 0.11689 0.10641 0.67518 0.92238 0.03156

STD. Dev. 0.43240 0.16151 0.04619 0.02519 0.04166 0.13796 0.01516 0.03798 0.03850 0.00659

Worst 2.24078 0.89686 0.67927 0.28927 0.24743 0.64263 0.13524 0.76853 0.95548 0.05787

 CF5 (bi-objective) CF6 (bi-objective)

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO MOGWO MOPSO MOEA/D MODE M-MOPSO

Average 0.55472 0.55721 0.68451 3.54554 0.20899 0.08492 0.13105 0.81639 4.30615 0.06520

Median 0.56186 0.57480 0.67518 3.69688 0.19251 0.08118 0.12431 0.81639 4.02548 0.05716

STD. Dev. 0.08743 0.11383 0.02848 1.35938 0.07403 0.02194 0.03990 0.00000 3.60753 0.02877

Worst 0.72049 0.67521 0.76853 5.73554 0.40945 0.16408 0.21753 0.81639 13.2606 0.12662

 CF7 (bi-objective) CF8 (tri-objective)

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO MOGWO MOPSO MOEA/D MODE M-MOPSO

Average 1.39173 0.37812 0.81639 45.8691 0.16155 4.82411 4.29267 0.77133 283.612 0.19009

Median 1.07876 0.33577 0.81639 46.3603 0.14967 0.61483 0.50137 0.14983 272.578 0.18861

STD. Dev. 0.89057 0.15463 0.00000 5.5944 0.06373 8.00306 9.97090 3.08474 65.151 0.01965

Worst 3.41388 0.95016 0.81639 54.1519 0.29748 23.64818 47.3373 17.07868 423.237 0.24888

 CF9 (tri-objective) CF10 (tri-objective)

IGD MOGWO MOPSO MOEA/D MODE M-MOPSO MOGWO MOPSO MOEA/D MODE M-MOPSO

Average 2.48865 0.26847 0.13579 268.447 0.11914 3.14974 4.36486 0.59738 231.203 0.98001

Median 2.55997 0.27029 0.13789 266.811 0.11640 1.01020 5.42038 0.45683 240.133 0.47228

STD. Dev. 1.95641 0.03127 0.02274 51.116 0.01724 4.71217 2.96877 0.94537 43.123 1.39953

Worst 5.78166 0.32490 0.17516 378.677 0.16263 19.36988 8.57767 5.56766 321.288 5.03013

Figure 4.17 shows the boxplot for IGD results. Based on Fig. 18, M-MOPSO showed

noticeable improvement compared to other algorithms for CF2, CF3, CF4 and CF5. For

other benchmark problems, the distinction between each algorithm is difficult to

observe due to the noticeably worse performance of MODE compared to others.

Univ
ers

ity
 of

 M
ala

ya

90

Figure 4.18-4.27 illustrate both the coverage and convergence of the best solution

found by each algorithm. The higher proximity of solutions to the true Pareto front

reveals the improved convergence of the solutions obtained. M-MOPSO managed to

construct well-defined Pareto fronts which closely resemble the true optimal Pareto

fronts of each test functions.

For CF1, M-MOPSO, MOEA/D and MOGWO obtained almost perfect solutions, as

shown in Figure 4.18. For CF2, both M-MOPSO and MOEA/D obtained good solutions

which cover almost all the areas of the true Pareto front. For CF3, as shown in Figure

4.20, there are three separate parts of true Pareto front. M-MOPSO found four solutions

which are close to each part. Figure 4.21 shows a peculiarity where only three out of the

five algorithms found solutions close to the true Pareto front. The three algorithms are

M-MOPSO, MOGWO and MOPSO. All these three algorithms have one thing in

common: they all employ external repository/archive to store non-dominated solutions.

This shows the importance of archiving system in solving CF4. Also, M-MOPSO have

better convergence compared to MOGWO and MOPSO. For CF5 and CF6 as shown in

Figure 4.22 and 4.23 respectively, M-MOPSO converged better than other algorithms. It

covers a larger portion of the Pareto front compared to others. For CF7, M-MOPSO

obtained a more distributed solution which all converged on Pareto front compared to

others, as shown in Figure 4.24. In Figure 4.25, there are five disconnected parts which

represent the Pareto front of CF8 in three dimensional objective space. M-MOPSO

obtained solutions that cover almost all parts. In Figure 4.26, M-MOPSO have good

solutions for CF9 which are close to the true Pareto front and are well distributed. For

CF10, MOEA/D has the best solutions as seen in Figure 4.27.

Univ
ers

ity
 of

 M
ala

ya

91

Figure 4.17: Boxplot for the statistical results for IGD on CF1 to CF10.

Univ
ers

ity
 of

 M
ala

ya

92

Figure 4.18: Obtained Pareto solutions for CF1.

Univ
ers

ity
 of

 M
ala

ya

93

Figure 4.19: Obtained Pareto solutions for CF2.

Univ
ers

ity
 of

 M
ala

ya

94

Figure 4.20: Obtained Pareto solutions for CF3.

Univ
ers

ity
 of

 M
ala

ya

95

Figure 4.21: Obtained Pareto solutions for CF4.

Univ
ers

ity
 of

 M
ala

ya

96

Figure 4.22: Obtained Pareto solutions for CF5.

Univ
ers

ity
 of

 M
ala

ya

97

Figure 4.23: Obtained Pareto solutions for CF6.

Univ
ers

ity
 of

 M
ala

ya

98

Figure 4.24: Obtained Pareto solutions for CF7.

Univ
ers

ity
 of

 M
ala

ya

99

Figure 4.25: Obtained Pareto solutions for CF8.

Univ
ers

ity
 of

 M
ala

ya

100

Figure 4.26: Obtained Pareto solutions for CF9.

Univ
ers

ity
 of

 M
ala

ya

101

Figure 4.27: Obtained Pareto solutions for CF10.

 Univ
ers

ity
 of

 M
ala

ya

102

Figure 4.28: Convergence graph for CF5.

Figure 4.29: Convergence graph for CF7.

Univ
ers

ity
 of

 M
ala

ya

103

Figure 4.30: Convergence graph for CF8.

Figure 4.28 shows the convergence graph for CF5. The graph shows the average IGD

of 30 runs recorded at 30 intervals of function evaluations (FE) obtained by each

algorithm. MOEA/D converges slightly faster by obtaining lower average IGD

compared to M-MOPSO and other algorithms at 20,000 FE. However, MOEA/D

become saturated quicker than others and trapped at local optima after 30,000 FE.

Meanwhile, M-MOPSO converges better than all other algorithms as early as 30,000 FE

and stays as the algorithm with the best convergence until termination.

The convergence graph for CF7 is shown in Figure 4.29. MOEA/D has the best IGD

at 10,000 FE but quickly become saturated at 20,000 FE. M-MOPSO however matches

the IGD of MOEA/D at 20,000 FE and has the best IGD among all the algorithms at

30,000 FE. It continues to have the best IGD until termination.

Univ
ers

ity
 of

 M
ala

ya

104

In Figure 4.30, the convergence graph for CF8 is shown. At 10,000 and 20,000 FE

both M-MOPSO and MOGWO have almost the same IGD. However, at 30,000 FE the

IGD of MOGWO starts to become worse while the IGD of M-MOPSO continues to

improve. This scenario occurs until termination.

4.2.2 Fed-batch bioprocess problems

For the application problems in case study VII and VIII, 200 search agents are

utilized. The algorithms are run for a maximum of 200,000 and 400,000 function

evaluations for case study VII and VIII respectively. The Pareto-optimal front between

the yield and the productivity for case study VII is shown in Figure 4.31 while Figure

4.32 shows the Pareto-optimal front for Case study VIII.

In this experiment, we use two performance metrics. The first metric is Spacing (SP)

(Schott, 1995), which is used to quantify the coverage by measuring the distance

between consecutive solutions obtained in the Pareto front. The mathematical

formulation for SP is as follow:

𝑆𝑃 = √
1

𝑛−1
∑ (𝑑̅ − 𝑑𝑖)2𝑛

𝑖=1 (72)

where 𝑑̅ is the average of all 𝑑𝑖, 𝑛 is the number of Pareto optimal solutions

obtained, and 𝑑𝑖 = min
𝑗

(|𝑓1
𝑖(𝑥⃗) − 𝑓1

𝑗(𝑥⃗)| + |𝑓2
𝑖(𝑥⃗) − 𝑓2

𝑗(𝑥⃗)|) for all 𝑖, 𝑗 = 1, 2, 3, … , 𝑛.

The second metric is Maximum Spread (MS) (Zitzler, 1999), which measures the

extent of spread in the obtained solutions in the Pareto front.

𝑀𝑆 = √∑ max (𝑑(𝑎𝑖, 𝑏𝑖))𝑜
𝑖=1 (73)

Univ
ers

ity
 of

 M
ala

ya

105

where 𝑑 is a function to calculate the Euclidean distance, 𝑎𝑖 is the maximum value in

the 𝑖th objective, 𝑏𝑖 is the minimum value in the 𝑖th objective and 𝑜 is the number of

objectives.

Figure 4.31 showed that the original MOPSO is not effective in solving the

constraint problem and could find only one feasible solution. M-MOPSO however,

obtained a very good Pareto front and rivaled the performance of MOEA/D.

Qualitatively speaking, MOGWO is the third best algorithm followed by MODE.

Figure 4.31: Productivity-yield pareto-optimal front for case study VII.

In Figure 4.32, M-MOPSO obtained a good Pareto front for case study VIII. All

algorithms have almost equal convergence for this problem. The difference that set

them apart is the spread of the Pareto front. M-MOPSO have the best coverage of the

Univ
ers

ity
 of

 M
ala

ya

106

whole objective space in which the distribution of the solutions found by M-MOPSO

extends towards a greater area compared to other algorithms. In term of coverage, the

second best algorithm is MOPSO, followed by MOEA/D, MOGWO and MODE.

Figure 4.32: Pareto-optimal front of M-MOPSO against others for case study VIII:

(A) M-MOPSO against MOEA/D, (B) M-MOPSO against MODE, (C) M-MOPSO

against MOPSO, (D) M-MOPSO against MOGWO.

Table 4.15: SP and MS results for chemical problems.

 Case 1 Case 2

SP MS SP MS

M-MOPSO 0.01298 2.21730 0.03412 2.71857

MODE 0.09649 2.13055 0.01060 0.92574

MOEA/D 0.01578 2.22270 0.06437 2.65010

MOGWO 0.01379 2.22884 0.03134 2.50830

MOPSO 0 0 0.02751 2.60926

Univ
ers

ity
 of

 M
ala

ya

107

Table 4.14 shows the results of SP and MS for all algorithms in case VII and case

VIII. In case VII, aside of MOPSO which only found one unique solution, M-MOPSO

obtained the lowest SP compared to others. This shows that M-MOPSO has the most

uniform distribution of its Pareto front. For MS, MOGWO obtained the highest value

which means that it has the largest spread compared to others, though marginally. In

case VIII, MODE obtained the lowest SP compared to others, unfortunately it also

obtained a significantly lower MS. M-MOPSO however obtained the better balance

between SP and MS by not only obtaining the largest MS but also comparatively low

SP.

In overall, M-MOPSO was able to solve multi-objective bioprocess application

problems effectively. This can be seen by the results obtained in both case study VII and

VIII, where M-MOPSO edged over most algorithms tested in this study.

Univ
ers

ity
 of

 M
ala

ya

108

CHAPTER 5: CONCLUSION

This study proposed the application of Backtracking Search Algorithm (BSA) on

fed-batch fermentation processes. In fed-batch fermentation, nutrient feeding during

fermentation process enhances higher product yield. Optimized nutrient feeding

stimulates biomass growth and this increases product concentrations while curtailing

biomass inhibition due to product and/or nutrient accumulation. Hence, the substrate

feed rate plays crucial role in fed-batch process optimization.

We also demonstrated the application of metaheuristics on fed-batch aerated lagoon

wastewater treatment. This process involves the intermittent feeding of concentrated

wastewater into an aerated lagoon. The amount of wastewater to be fed into the lagoon

at each day is treated as the variables to be optimized by the metaheuristic. Another

contribution of this study is the formulation of fed-batch model for methane production

from sewage sludge fermentation. Apart from the proper and cost-effective disposal of

sewage sludge from the Waste Water Treatment Plant (WWTP), anaerobic digestion of

sewage sludge plays a key role in the production of biogas namely methane. Usually

batch mode fermentation is used to generate biogas. In the current work, biogas

production was shown to be further enhanced by using fed-batch operation as feed rate

becomes key optimization variable for metaheuristics.

Based on past literature, Differential Evolution (DE) is considered as a more

appropriate solution for bio-process applications. Since DE is known to be efficient in

solving fermentation problems, BSA as a recent DE-based metaheuristic is deemed to

be superior to the former. Four recent metaheuristics that included DE were applied on

three bioprocess engineering problems widely used in literature alongside with the

problems mentioned above and the results were compared with BSA. From the results,

BSA showed consistency of obtaining highest fitness value in comparison to other four

Univ
ers

ity
 of

 M
ala

ya

109

metaheuristics for all the cases at convergence point. Therefore, BSA is suggested as the

first choice metaheuristic to use when solving bioprocess engineering problems.

The performances of metaheuristcs in solving multi-objectives fed-batch

fermentation problems were also evaluated. In multi-objectives problems, the objectives

to be optimized can extend beyond the production rate and include substrate utilization,

environmental impact and economic benefits. Therefore, we presented a modification of

multi-objective particle swarm optimization (MOPSO) to tackle multi-objective

optimization problems. Our algorithm, called modified multi-objective particle swarm

optimization (M-MOPSO) employs a new dynamic search boundary mechanism to

properly balance exploration and exploitation during the search procedure. The

archiving procedure used in MOPSO was also modified to maintain diversity in the

Pareto front while reducing the computational cost of the archive controller.

Our experiment used the CEC2009 multi-objective benchmark problems to verify the

performance of our algorithm. Comparisons were made with four other recent

algorithms, namely multi-objective grey wolf optimizer (MOGWO), multi-objective

particle swarm optimizer (MOPSO), and multi-objective evolutionary algorithm based

on decompositions (MOEA/D) and multi-objective differential evolution (MODE).

Based on the results, M-MOPSO emerged as the better algorithm by obtaining better

Inverted Generational Distance (IGD) average for eight out of the ten test instances.

We also ran some simulations of multi-objective bioprocess application problems to

investigate the capability of M-MOPSO in solving real-world engineering problems. M-

MOPSO showed promising results by rivaling other state-of-the art techniques used in

this study. It also displayed better capability in handling constraint compared to

MOPSO. For the unconstraint problem, M-MOPSO obtained superior coverage of the

Pareto front while maintaining good convergence compared to other algorithms.

Univ
ers

ity
 of

 M
ala

ya

110

In overall, M-MOPSO was able to solve multi-objective problems with good

convergence and it is interesting to extend the capability of this algorithm in solving

many-objective problems and other more complex application problems in the future.

Univ
ers

ity
 of

 M
ala

ya

111

REFERENCES

Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the

anaerobic digestion of waste-activated sludge. Progress in Energy and

Combustion Science, 34(6), 755-781.

Askarzadeh, A., & Coelho, L. d. S. (2014). A backtracking search algorithm combined

with Burger's chaotic map for parameter estimation of PEMFC electrochemical

model. International Journal of Hydrogen Energy, 39(21), 11165-11174.

Banga, J. R., Balsa-Canto, E., Moles, C. G., & Alonso, A. A. (2005). Dynamic

optimization of bioprocesses: Efficient and robust numerical strategies. Journal

of Biotechnology, 117(4), 407-419.

Banga, J. R., Moles, C. G., & Alonso, A. A. (2004). Global Optimization of

Bioprocesses using Stochastic and Hybrid Methods. In C. A. Floudas & P.

Pardalos (Eds.), Frontiers in Global Optimization (pp. 45-70). Boston, MA:

Springer US.

Basturk, B., Karaboga, D. (2006). An artificial bee colony (ABC) algorithm for numeric

function optimization. Paper presented at the Proceedings of the IEEE Swarm

Intelligence Symposium 2006, Indianapolis, Indiana, USA.

Bhaskar, V., Gupta, S. K., & Ray, A. K. (2000). Applications of multiobjective

optimization in chemical engineering. Reviews in chemical engineering, 16(1),

1-54.

Burke, E. K., & Kendall, G. (2014). Search Methodologies - Introductory Tutorials in

Optimization and Decision Support Techniques (2 ed.). New York: Springer US.

Cawthon, G. D., & Knaebel, K. S. (1989). Optimization of semibatch polymerization

reactions. Computers & Chemical Engineering, 13(1), 63-72.

Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from

lignocellulosic agricultural crop wastes: A review in context to second

generation of biofuel production. Renewable and Sustainable Energy Reviews,

16(3), 1462-1476.

Chen, C.-T., & Hwang, C. (1990). Optimal control computation for differential-

algebraic process systems with general constraints. Chemical Engineering

Communications, 97(1), 9-26.

Chiou, J.-P., & Wang, F.-S. (1999). Hybrid method of evolutionary algorithms for static

and dynamic optimization problems with application to a fed-batch fermentation

process. Computers & Chemical Engineering, 23(9), 1277-1291.

Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical

optimization problems. Applied Mathematics and Computation, 219(15), 8121-

8144.

Univ
ers

ity
 of

 M
ala

ya

112

Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives

with particle swarm optimization. Ieee Transactions on Evolutionary

Computation, 8(3), 256-279.

Da Ros, S., Colusso, G., Weschenfelder, T. A., de Marsillac Terra, L., de Castilhos, F.,

Corazza, M. L., & Schwaab, M. (2013). A comparison among stochastic

optimization algorithms for parameter estimation of biochemical kinetic models.

Applied Soft Computing, 13(5), 2205-2214.

Das, S., Mandal, D., Kar, R., & Ghoshal, S. P. (2014). Interference suppression of

linear antenna arrays with combined Backtracking Search Algorithm and

Differential Evolution. Paper presented at the International Conference on

Communications and Signal Processing (ICCSP).

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. Ieee Transactions on Evolutionary

Computation, 6(2), 182-197.

del Rio-Chanona, E. A., Zhang, D., & Vassiliadis, V. S. (2016). Model-based real-time

optimisation of a fed-batch cyanobacterial hydrogen production process using

economic model predictive control strategy. Chemical Engineering Science,

142, 289-298.

El-Fergany, A. (2015). Optimal allocation of multi-type distributed generators using

backtracking search optimization algorithm. International Journal of Electrical

Power & Energy Systems, 64, 1197-1205.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning: Addison-Wesley Longman Publishing Co., Inc.

Goulden, C. H. (1956). Methods of statistical analysis (2nd ed.): John Wiley & Sons

Ltd.

Guney, K., Durmus, A., & Basbug, S. (2014). Backtracking search optimization

algorithm for synthesis of concentric circular antenna arrays. International

Journal of Antennas and Propagation, 2014.

Hansen, N., & Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions

in evolution strategies: The covariance matrix adaptation. Paper presented at the

Proceedings of IEEE International Conference on Evolutionary Computation,

1996

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian

journal of statistics, 65-70.

J. Baeyens, L. Hosten, & E. Van Vaerenbergh. (1997). Afvalwaterzuivering

(Wastewater treatment) (2nd ed.). The Netherlands: Kluwer Academic

Publishers.

Jayaraman, V. K., Kulkarni, B. D., Gupta, K., Rajesh, J., & Kusumaker, H. S. (2001).

Dynamic Optimization of Fed-Batch Bioreactors Using the Ant Algorithm.

Biotechnology Progress, 17(1), 81-88.

Univ
ers

ity
 of

 M
ala

ya

113

Juma, C., & Konde, V. (2001). The new bioeconomy: industrial and environmental

biotechnology in developing countries. Paper presented at the United Nations

Conference on Trade and Development.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Paper presented at the

IEEE Int. Conf. on Neural Networks, Piscataway, NJ.

Kookos, I. K. (2004). Optimization of Batch and Fed-Batch Bioreactors using

Simulated Annealing. Biotechnology Progress, 20(4), 1285-1288.

Lee, J., & Ramirez, W. F. (1994). Optimal fed-batch control of induced foreign protein

production by recombinant bacteria. AIChE Journal, 40(5), 899-907.

Marler, R. T., & Arora , J. S. (2004). Survey of multi-objective optimization methods

for engineering. Structural and Multidisciplinary Optimization, 26(6), 369-395.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in

Engineering Software, 69, 46-61.

Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. d. S. (2016). Multi-objective grey

wolf optimizer: A novel algorithm for multi-criterion optimization. Expert

Systems with Applications, 47, 106-119.

Montalvo, S., Guerrero, L., Rivera, E., Borja, R., Chica, A., & Martín, A. (2010).

Kinetic evaluation and performance of pilot-scale fed-batch aerated lagoons

treating winery wastewaters. Bioresource Technology, 101(10), 3452-3456.

Ohno, H., Nakanishi, E., & Takamatsu, T. (1976). Optimal control of a semibatch

fermentation. Biotechnology and Bioengineering, 18(6), 847-864.

Pelillo, M., Rincón, B., Raposo, F., Martín, A., & Borja, R. (2006). Mathematical

modelling of the aerobic degradation of two-phase olive mill effluents in a batch

reactor. Biochemical Engineering Journal, 30(3), 308-315.

Rocha, I. (2003). Model-based strategies for computer-aided operation of recombinant

E. coli fermentation. (Ph.D. thesis), Universidade do Minho. Retrieved from

<http://hdl.handle.net/1822/1269>

Rocha, M., Mendes, R., Rocha, O., Rocha, I., & Ferreira, E. C. (2014). Optimization of

fed-batch fermentation processes with bio-inspired algorithms. Expert Systems

with Applications, 41(5), 2186-2195.

Roubos, J. A., van Straten, G., & van Boxtel, A. J. B. (1999). An evolutionary strategy

for fed-batch bioreactor optimization; concepts and performance. Journal of

Biotechnology, 67(2–3), 173-187.

Sarkar, D., & Modak, J. M. (2004). Optimization of fed-batch bioreactors using genetic

algorithm: multiple control variables. Computers & Chemical Engineering,

28(5), 789-798.

Univ
ers

ity
 of

 M
ala

ya

http://hdl.handle.net/1822/1269

114

Sarkar, D., & Modak, J. M. (2005). Pareto-optimal solutions for multi-objective

optimization of fed-batch bioreactors using nondominated sorting genetic

algorithm. Chemical Engineering Science, 60(2), 481-492.

Schott, J. R. (1995). Fault Tolerant Design Using Single and Multicriteria Genetic

Algorithm Optimization: DTIC Document. Massachusetts Institute of

Technology. Department of Aeronautics and Astronautics.

Sierra, M. R., & Coello Coello, C. A. (2005). Improving PSO-Based Multi-objective

Optimization Using Crowding, Mutation and ∈-Dominance. Proceedings of the

Evolutionary Multi-Criterion Optimization: Third International Conference.

(pp. 505-519). Berlin, Heidelberg: Springer Berlin Heidelberg.

Silva, C. M., & Biscaia Jr, E. C. (2003). Genetic algorithm development for multi-

objective optimization of batch free-radical polymerization reactors. Computers

& Chemical Engineering, 27(8–9), 1329-1344.

Song, X., Zhang, X., Zhao, S., & Li, L. (2015). Backtracking search algorithm for

effective and efficient surface wave analysis. Journal of Applied Geophysics,

114, 19-31.

Sörensen, K. (2015). Metaheuristics—the metaphor exposed. International

Transactions in Operational Research, 22(1), 3-18.

Sosnowski, P., Klepacz-Smolka, A., Kaczorek, K., & Ledakowicz, S. (2008). Kinetic

investigations of methane co-fermentation of sewage sludge and organic fraction

of municipal solid wastes. Bioresource Technology, 99(13), 5731-5737.

Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated

Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221-248.

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic

for global Optimization over Continuous Spaces. Journal of Global

Optimization, 11(4), 341-359.

Tholudur, A., & Ramirez, W. F. (1997). Obtaining smoother singular arc policies using

a modified iterative dynamic programming algorithm. International Journal of

Control, 68(5), 1115-1128.

Tsoukas, A., Tirrell, M., & Stephanopoulos, G. (1982). Multiobjective dynamic

optimization of semibatch copolymerization reactors. Chemical Engineering

Science, 37(12), 1785-1795.

Uymaz, S. A., Tezel, G., & Yel, E. (2015). Artificial algae algorithm (AAA) for

nonlinear global optimization. Applied Soft Computing, 31, 153-171.

Wang, F.-S., & Cheng, W.-M. (1999). Simultaneous Optimization of Feeding Rate and

Operation Parameters for Fed-Batch Fermentation Processes. Biotechnology

Progress, 15(5), 949-952.

Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Beckington, UK:

Luniver press.

Univ
ers

ity
 of

 M
ala

ya

115

Yang, X. S., & Suash, D. (2009). Cuckoo Search via Levy flights. Paper presented at the

World Congress on Nature & Biologically Inspired Computing, 2009. NaBIC

2009.

Zhang, Q., & Li, H. (2007). MOEA/D: A Multiobjective Evolutionary Algorithm Based

on Decomposition. Ieee Transactions on Evolutionary Computation, 11(6), 712-

731.

Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., & Tiwari, S. (2008).

Multiobjective optimization test instances for the CEC 2009 special session and

competition. Paper presented at the University of Essex, Colchester, UK and

Nanyang technological University, Singapore. Special session on performance

assessment of multi-objective optimization algorithms, technical report.

Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods

and applications.

Univ
ers

ity
 of

 M
ala

ya

116

LIST OF PUBLICATIONS AND PAPERS PRESENTED

bin Mohd Zain, M. Z., Kanesan, J., Kendall, G., & Chuah, J. H. (2018). Optimization of

fed-batch fermentation processes using the Backtracking Search Algorithm, Expert

Systems with Applications, 91, 286-297.

Mohamad Zihin, M. Z., Kanesan, J., Chuah, J. H., Dhanapal, S., Kendall, G. (2018).

Modified Multi-Objective Particle Swarm Optimization for constrained optimization

problems, Applied Soft Computing (Submitted).

Univ
ers

ity
 of

 M
ala

ya

