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 DESIGN AND DEVELOPMENT OF AN ELECTROMYOGRAPHY (EMG) 

BASED ACTIVE ELBOW ORTHOSIS WITH FEEDBACK CONTROL 

ABSTRACT 

The project presents the design and development of an electromyography based 

active elbow orthosis for self-rehabilitation of post stroke patients or patients with elbow 

injuries. The elbow could lose its functionality as a result of multiple reasons however 

Humans depend on their elbow and the hand as a whole to carry out various activities of 

everyday life. Rehabilitation by physiotherapist is the traditional method to regain elbow 

functionality but it requires the patient to travel frequently to the hospital and the extra 

cost of consulting a physiotherapist. This gave rise to the need for developing an elbow 

orthosis which can be used for self-therapy, eliminating the cost and stress of visiting a 

physiotherapist. The active orthosis measures the patient’s activity using 

Electromyography and the electrical signal obtained from this sensor is used to control 

the actuator that drives the orthosis. The orthosis is battery-powered with an active range 

of 60 – 140 degrees. The actuator for the orthosis generates a torque of 2.9Nm and the 

frame is made of light-weight thermoplastic polypropylene. The device was tested on five 

different subjects to determine the performance of the device in helping to flex and extend 

the patient’s elbows. The range of movement of the joint when the subject was not 

wearing the orthosis and when the subject was wearing the orthosis was recorded using 

Kinovea software and the joint angle movement was thus calculated and compared. The 

analysis of the elbow orthosis using Kinovea software showed that the device is capable 

of helping in the flexion and extension of the human elbow through the normal ROM. 

Keywords: Active elbow orthosis, Self-Rehabilitation, Electromyography 
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REKA BENTUK DAN PEMBANGUNAN ELECTROMYOGRAPHY 

BERDASARKAN AKTIF ORTHOSIS DAN TINDAKAN RANSANGAN 

ABSTRAK 

Projek ini menerangkan ciri-ciri dan proses pembangunan sebuah 

electromyography berdasarkan siku aktif orthosis bagi proses pemulihan pesakit yang 

telah mengalami angin ahmar atau kecederaan pada bahagian siku. Bahagian siku yang 

mengalami kecederaan berisiko untuk tidak berfungsi dengan baik disebabkan pelbagai 

faktor. Walaubagaimanapun, manusia sememangnya bergantung kepada siku dan 

keseluruhan tangan untuk melakukan pelbagai aktiviti seharian. Proses pemulihan oleh 

ahli terapi Adalah kaedah tradisional yang digunakan untuk mengembalikan fungsi pada 

bahagian siku, namum kaedah ini memerlukan pesakit untuk berulang-alik ke hospital 

dan mengeluarkan belanja untuk sesi konsultasi bersama ahli terapi terbabit. Justeru, 

proses siku orthosis sangat diperlukan kerana mampu untuk mengurangkan kos dan juga 

tekanan berbanding kaedah pemulihan tradisional. Hal ini kerana pesakit boleh 

melakukan proses terapi sendiri.  

Proses orthosis yang aktif mengukur kadar aktiviti pesakit menggunakan 

electromyography dan isyarat elektrik yang diperolehi daripada pengesan tersebut dan 

seterusnya digunakan untuk mengawal penggerak yang menggerakkan orthosis. Orthosis 

tersebut menggunakan dengan kadar aktif purata 60-140 darjah. Penggerak yang terdapat 

dalam orthosis menghasilkan tenaga putaran 2.9m dan bingkainya diperbuat daripada 

thermoplastik polypropylene yang ringan. Alat tersebut telah diuji pada lima subjek yang 

berbeza untuk menentukan keberkesanannya dalam melentur dan memanjangkan siku 

pesakit. Kadar purata pergerakan sendi apabila subjek tidak memakai orthosis dan apabila 

subjek memakainya telah direkodkan menggunakan aplikasi Kinovea. Pergerakan sudut 

sendi dikira dan dibandingkan. Analisa mengenai siku orthosis menggunakan aplikasi 
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kinovea menunjukkan bahawa alat tersebut mampu membantu dalam pelenturan dan 

pemanjangan siku manusia melalui ROM biasa.  

Keywords: Active elbow orthosis, Self-Rehabilitation, Electromyography 
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Elbow orthosis are externally applied devices to the segments of the arm, 

particularly around the elbow to help improve or restore function or structural 

characteristics of affected muscles, joints and tendons.  Some types of elbow orthosis 

comprise braces, stabilizers, sprints, sleeves and straps. The primary function of the elbow 

orthosis is to provide low-load, prolonged flexion mobilization force to elbow joint, 

restrict full elbow extension or flexion or to restrict or prevent forearm rotation. 

Electromyography (EMG) is a technique used to measure and record electrical 

signals that occur from the movement of the muscles. EMG translates electrical signals 

from the neurons which causes the muscles to contract into graphs, sounds or numerical 

values that can be easily interpreted. This signals can be used to control the movement of 

DC motors thereby controlling the movement of the elbow orthosis. 

This project involves the development of an active elbow orthosis. The orthosis is 

automated by using the signals extracted from the EMG sensor as the input to the actuator 

which in turn moves the orthosis thereby flexing or extending the elbow. 

1.2 Problem Statement 

The main effector of the upper body is the arm. It allows for reaching, grasping 

and manipulation. Humans depend on the arm for carrying out multiple activities of daily 

life like eating, picking and placing. The arm consists of the wrist, elbow and shoulder. 

The loss of functionality of the elbow affects the whole arm thereby limiting the activities 

a person could perform. Patients with spinal cord injuries depend on the full range motion 

of the elbow for the movement of the wheelchair to adjust the sitting positions or bring 

their hand to the face. (Curt, Schwab, & Dietz, 2004) 
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The elbow could lose its functionality as a result of several reasons. It could be as 

a result of health problems for example trauma, congenital hand defects, or a disease. 

Extreme activities or exercises could equally strain the elbow thereby limiting the 

functionality of the elbow and hands. (Imm, 2014) 

To regain elbow functionality, the patient has to go through rehabilitation. The 

rehabilitation is currently achieved with the use of a passive or static orthosis supervised 

by a physiotherapist. (Engen, 1976). The downside to these devices is that they passively 

flex and extend the arm without the patient making use of their muscle hence will not 

achieve the desired scar tissue breakdown. 

Hence the requirement for the development of an active elbow orthosis, to help 

patients with elbow limitations regain full function of their elbow. The active elbow 

orthosis incorporates the concept of the passive device to help flex and extend their arms 

however the movement of the arm in this case would be initiated by the patient. The 

device uses a sensor system (Electromyography) in measuring the elbow muscular 

activity of the patient, an actuator in performing the required motion of the actuated part 

and a control system to control the actuator based on the movement of the patient, current 

position of the orthosis and other variables. (Březina & Jabloński, 2013). Since the elbow 

is automated, the need for a physiotherapist is eliminated, hence self-rehabilitation is 

achieved. 

1.3 Objectives 

i. To design and develop an active elbow orthosis. 

ii. To implement electromyography (EMG) to automate the elbow orthosis. 
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1.4 Significance of the project 

• To enable self-rehabilitation whereby the stroke patients or patients with elbow 

injury can exercise their elbows by themselves. 

• To reduce or eliminate the cost of a physiotherapist. 

• To assist stroke patients and patients with injured elbow to carry out the basic 

activities of daily life. 

• Inexpensive and light weight design. 

1.5  Scope of study 

The scope covers the design of the elbow orthosis using solid works. It includes 

the development of the design into a solid model and the control of the DC motor 

movement using Arduino. It equally covers the implementation of EMG to detect the 

signals from the muscle of the patient which enables the movement of the DC motor in 

either flexion or extension, hence the automation of the elbow orthosis. 

1.6 Report outline 

This report consists of five chapters which describes the development of a smart 

elbow orthosis. It elaborates on how the smart elbow orthosis detects the signal from the 

muscle using electromyography and how the signals are transmitted to the motor to enable 

flexion and extension of the elbow. 

Chapter 1 describes the general idea of this project, a brief definition of the elbow 

joint, elbow orthosis and electromyography, its problem statements and objectives. It also 

includes the significance of project, scope of study, methodology and the report outline.  
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Chapter 2 presents the overview of previous works done by other researchers 

regarding elbow orthosis and electromyography. It equally describes briefly the anatomy 

of the elbow joint, its bones, muscles and common injuries of the elbow. 

Chapter 3 discusses the hardware development of the of the elbow orthosis which 

includes selection of components and the bill of materials. It equally explains the use of 

electromyography in extracting muscle signals from the human arm and using the signal 

as the input to the actuator to enable flexion and extension. 

Chapter 4 analyses the design, the graphs and the result of the prototype of the 

elbow orthosis  

Chapter 5 presents the conclusion, the limitation of study and recommendation for 

future work. 
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1.7 Methodology 

 

Figure 1.1: Project Methodology  
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CHAPTER 2: LITERATURE REVIEW 

2.1  Introduction 

The chapter entails the description of the anatomy of the human elbow with the 

review of previous approaches to the design of elbow orthosis.  

The elbow joint is a hinge joint allowing for flexion and extension of the forearm 

with respect to the upper arm. (Jones, 2017). The joint allows for rotation of the forearm. 

The elbow joint occurs at the junction of the upper arm bone (humerus) and the lower 

arm bone (radius and ulna).  

The three main ligaments of the elbow joint are the Medial Collateral Ligament, 

Lateral Collateral Ligament and the Annular Ligament while the largest of the muscles 

of the elbow joint are the biceps brachii, triceps brachii, brachialis, brachioradialis, 

pronator teres, extensor carpi radialis brevis. The muscles of the arm are responsible for 

enabling the joint to flex, extend, supinate and pronate. (O'rahilly, Muller, Carpenter, & 

Swenson, 2008).   

The elbow joint is a common site for injuries since multiple muscles passes 

through the joint. The common injuries of the elbow joint are humeral fracture, elbow 

dislocation, ligament laxity, post-operative, osteoarthritis, radial and or ulnar Fracture, 

tendonitis, lateral epicondylitis (tennis elbow), medial epicondylitis (Golfer’s Elbow), fat 

pad injury. (Imm, 2014). 

These injuries causes restriction in the movement of the elbow which could lead 

to overall loss of elbow functionality due to the inactivity of the muscle. The inactivity of 

the muscle could lead to fracture or increase in fat mass. To retain the muscle power, 

rehabilitation in form of physical exercise is necessary. This exercise, usually supervised 
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by a physiotherapist involves the repeated flexion and extension of the elbow to build up 

the muscle strength thereby preventing inactivity of the muscle. 

A smart device which uses a sensor system in measuring patient’s activity, an 

actuator in performing the motion desired and a control system in controlling the actuator 

based on the activity of the patient is known as an active orthosis. Rehabilitation with the 

use of an active orthosis is similar the traditional rehabilitation process except that the 

physiotherapist is been replaced by the orthotic device. (Ripel, Krejsa, & Hrbáček, 2014) 

 

Figure 2.1: Active orthosis scheme. (Ripel et al., 2014) 

This project presents the development of an active elbow orthosis which uses 

Electromyography to measure to measure the patient’s activity. In the active orthosis 

scheme shown above, the feedback from the EMG sensor measuring the elbow activity 

is used to control the actuator. 

2.2 The Elbow 

 The major function of the elbow is the addition of mobility of the hand in space 

by shortening/lengthening the arm or rotating the forearm and to provide control and 
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stability for skilled hand motions and forceful upper extremity motions. The resting 

position of the elbow is full extension with full forearm supination and the closed pack 

position is 900 of flexion with 50 of supination. The elbow joint occurs at the junction of 

three bones, the upper arm bone known as the humerus, the radius bone which is the 

bigger of the two forearm bones and the ulna. (Chai, 2004).  

  

Figure 2.2: Bones of the elbow. (A) Anterior view. (B) Posterior view. (C) 

Lateral view. 

The elbow consists of three joints. The first joint is the hinge joint with one degree 

of freedom which allows for flexion and extension of the elbow. It is called the humero-

ulna joint because it is formed between the humerus and the ulna bones of the arm. The 

rest position of the humero-ulna joint is when the elbow is in 700 of flexion and the 

forearm in 100 of supination. The second joint is called the humero-radial joint because it 

is formed between the radius and the humerus bones of the arm. It is a ball and socket 

joint with two degrees of freedom. The rest position of the humero-radial joint is when 
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the elbow is in full extension with forearm supination. It equally allows for flexion and 

extension as well as pronation and supination of the elbow. The third joint in the elbow 

is the proximal radio-ulna joint which is formed by the radius and the ulna bones of the 

arm. It is a pivot joint with one degree of freedom which enables the pronation and 

supination of the forearm. The rest position is when the elbow is in 700 flexion and the 

forearm at 350 supination. (Chai, 2004) 

  

Figure 2.3: Elbow movement. (Admin, 2015) 

The muscle of the elbow joint are responsible for enabling it to flex, extend, 

supinate and pronate. The largest of the muscles are the biceps brachii, triceps brachii, 

brachialis, brachioradialis, pronator teres, extensor carpi radialis brevis. The biceps 

brachii enables the flexing of the elbow joint and the supination of the forearm and the 

brachioradialis equally helps with the flexing of the elbow, pronation and supination. The 

triceps brachii is the main extensor of the elbow while the extensor carpi radialis brevis 

is the extensor of the wrist. The brachialis is the strongest elbow flexor when the palm is 

pronated and the pronator teres aid flexion of the elbow and pronation of the forearm. 

(Clinic, 2017) 

Univ
ers

ity
 of

 M
ala

ya



10 

Elbow flexion is simply the bending of the elbow joint by moving the forearm 

towards the upper arm resulting in a decrease of angle while elbow extension is the 

movement of the forearm away from the upper arm resulting in an increase of angle. The 

range of motion of elbow flexion is 0 – 1450 though hyperextension occurs especially in 

female. The functional range of motion is 300 – 1300 for push or/and pull actions.(Chai, 

2004) 

Pronation is the movement of the forearm so the palm faces the posterior i.e. faces 

down and supination is the movement of the forearm so the arm faces the anterior i.e. 

faces upwards. Full pronation and supination turns the forearm, wrist and hand at almost 

180 degrees. Turning a screwdriver or turning or a key are examples of pronation and 

supination. They both occur at the hinge joint of the elbow known as the radioulnar joint. 

The end of the radius bone is rotated around the ulna by the pronator muscles from its 

position on the lateral side of the wrist to the medial side of the wrist during pronation. 

The muscles of the elbow rotate the radius bone in the opposite direction of the pronator 

muscles during supination. The axis of rotation during pronation and supination passes 

through the center of the radial head and the distal ulnar head. The range of motion is 0-

700 pronation and 0- 850 supination with a functional range of 500 of pronation and 500 

of supination i.e. for opening door knob or opening of a can. (Chai, 2004) 

 

Figure 2.4: Axis of forearm motion. (Chai, 2004) 
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2.3  Range of Motion (ROM) 

 

Figure 2.5: Range of Motion of the Elbow. (Luttgens & Hamilton, 1997) 

 The range of motion of a joint is the angle in which it moves from the anatomical 

position (zero degrees) to the extreme limit of segment motion in a particular direction. 

(Hall, 2003). It is usually measured in degrees using an instrument called goniometer. 

Range of motion test is traditionally performed in three different ways; active, passive 

and resistive range of motion. The active range of motion test is performed by the patient 

under their own power, the passive range of motion is performed by taking the patient 

through full ROM or up until the point of pain while the resistive range of motion is 

performed by the examiner resisting the athlete as they move through the motion. (Norkin 

& White, 2009). Normal ROM for the elbow is 140-150 degrees flexion, 0 degrees 

extension and 76-84 degrees pronation, 80 degrees supination. The functional ROM of 

the elbow is 30 – 130 degrees flexion and 50 degrees of pronation-supination. (Sardelli, 

Tashjian, & MacWilliams, 2011). 
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2.4 Common Elbow Injuries 

Multiple muscles and ligament passing through the elbow joints makes the joint a 

common site for injuries. This injuries occur mostly during sports or recreational activities 

and as a result of accidental falls. The most common of the elbow injuries are acute 

injuries and elbow overuse. (Field & Savoie, 1998). 

Overuse injuries occur when high stress is placed on a tissue or joint as a result of 

overdoing or repeating an activity. The high stress concentrated over the inner elbow over 

time causes injuries which could result into swelling behind the elbow (bursitis), series 

of micro tears in the connective tissue in or around the tendon (tennis elbow or golfer’s 

elbow) or pinched nerves which usually occur with repeated motions. They are common 

in athletes that are subjected to repetitive elbow flexion-extension or pronation-supination 

of the wrist motion. (Maloney, Mohr, & El Attrache, 1999).  

Unlike overuse injuries, acute elbow injuries occur as a result of a sudden impact 

or trauma. They are caused by a fall on the arm or contact collision during sports. They 

results in bone fractures, elbow dislocation, ligament sprains or tendon rupture. Elbow 

fracture is the break in one of the bones of the elbow usually requiring a surgery then an 

immobilization orthoses. Elbow dislocation occur as a result of the ulna and radius been 

forceful driven posterior to the humerus. (Physiopedia, 2010). Ligament sprain occurs as 

a result of damage to the medial collateral ligament (MCL) of the elbow which be as a 

result of overuse, impact injury or accident. Elbow hyperextension injury occurs as a 

result of over-straightening (bending the elbow backwards in the wrong direction) of the 

elbow which damages the ligaments and structures of the elbow. 

Most injuries require three stages of tissue healing. The inflammatory stage, 

proliferative stage and the scar maturation. The inflammatory stage lasts around one 
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week. During this stage, rest is more important than any form of exercise. Immobilization 

orthoses are used for protecting, supporting and resting the injured part. The second stage, 

proliferative stage begins after a few days and could last for a few weeks. During this 

stage, mobilization orthoses which takes advantage of tissue’s elasticity and 

responsiveness to external stress are useful for facilitating tissue growth. Active exercises 

using mobilization orthoses occur during the scar maturation stage. (Physiopedia, 2010) 

2.5 Orthosis 

 Orthosis are devices applied externally for modification of the functional 

characteristics of the neuro-muscular-skeletal system. (Bowker, Condie, Bader, & Pratt, 

1993). The common goals of orthosis are to stabilize weak or paralyzed segments or 

joints, support damaged or diseased segments or joint, limit or augment motion across 

joints, control abnormal or spastic movements and unload distal segments. (Hsu, Michael, 

& Fisk, 2008). 

 All orthosis apply forces to the body. (Edelstein & Bruckner, 2002). The benefit 

of the force applied may be to resist or assist motion, transfer force, or protect a body 

part. Orthosis used to resist motion are used for controlling excessive or unwanted motion 

and to maintain a particular body alignment. For example, a wrist-hand orthosis used for 

minimizing ulnar deviation in a patient with rheumatoid arthritis, a knee ankle foot 

orthosis uses to stabilize the knee in a patient with quadriceps paralysis.  Univ
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Figure 2.6: Knee ankle foot orthosis. (trbsorthosis.com) 

Orthosis used to assist motion provide mechanical assistance of weak or paralyzed 

muscles to enable the patient to perform a specific function. For example, a wrist-hand 

orthosis may link the wrist extension to flex the fingers in a paralyzed hand. (Edelstein & 

Bruckner, 2002) 

 

Figure 2.7: Wrist-hand orthosis: Cock-up splint. (ibnsinamedical.com) 
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Orthosis can also be used to transfer forces from one portion of the body to 

another. For example, a foot orthosis that shifts load from a heel spur to the forefoot. It 

absorbs the shock at the heel contact and transfers the load to the forefoot. (Edelstein & 

Bruckner, 2002) 

 

Figure 2.8: Internal heel orthosis (fadavis.com) 

Some orthosis are used to protect body areas and preventing deformity or injury. 

For example, the newly grafted skin of a patient with burns need to be shielded from 

secondary trauma. The wrist-hand-stabilizer below is used by patients with burns who are 

vulnerable to flexion contractures. (Edelstein & Bruckner, 2002) 

 

Figure 2.9: Wrist-hand-stabilizer (plasticsurgerykey.com) 
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2.5.1 Classification of orthoses 

Orthoses can be classified into static, dynamic, and progressive orthoses based on 

the goal or intent of its design. 

  Static orthoses are the most common and they allow no motion across the joint or 

segment involved. Hence the primary goal of static orthoses is stabilization. They are 

thought to be resting, or positional orthoses used for positioning or holding. They can be 

used to facilitate dynamic functions, for example, blocking one joint to encourage the 

movement of the other.(Riggs, Lyden, Chung, & Murphy, 2011) 

Dynamic orthoses allow motion across the joint or segment involved. They 

generate a mobilizing force on a targeted tissue which results in a passive assisted ROM. 

(Fess & Phillips, 1987; Glasgow, Tooth, Fleming, & Peters, 2011). The controlled 

mobilizing force is applied via a dynamic assist in form of rubber bands, springs, 

neoprene or wrapped elastic cord.  

Progressive orthoses are those with diverse biomechanical functions as the 

disability progress or changes. It is designed to accommodate improvement or 

deterioration of the disease. They are similar to dynamic orthoses except that they use 

non-elastic components like screws, hinges, turnbuckles or non-elastic tape to deliver the 

mobilizing force. (Sueoka & DeTemple, 2011) 

 Orthoses can equally be classified as therapeutic or functional. Therapeutic 

orthoses are those which involve the use of force to improve the patient’s motor skills i.e. 

to strengthen the muscle, while functional orthosis are those which helps the patient 

regain lost learnt skills such as those required for daily life activities or work-related 

skills. (Placidi, 2007) 
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2.6 Elbow orthosis 

The objective of elbow orthosis ranges from provision of stability to the elbow, 

allowing mobility of the elbow, biomechanical alignment control of the elbow, pressure 

redistribution in the elbow, external force restriction to the elbow, excessive movements 

limitation of the elbow, elbow protection and shock absorption. There has been a string 

of noteworthy research efforts in the field of elbow orthoses. The following though not a 

complete list presents a snapshot of the field 

Vanderniepen, Van Ham, Van Damme, and Lefeber (2008) developed a powered 

elbow orthosis for orthopedic rehabilitation using Mechanically Adjustable Compliance 

and Controllable Equilibrium Position Actuator (MACCEPA) actuators. A MACCEPA 

actuator is a bidirectional rotational actuator with mechanically adaptable compliance 

consisting of a spring and two electric drives. It was developed using MACCEPA 

actuators to ensure inherent compliance thereby providing safety. The orthosis design is 

wearable, light hence portable allowing for frequent and longer training sessions. 

Mechanical stops were added to the device to avoid over extension of the elbow. The 

orthosis is powered with a Maxon gearbox, electric drive and a worm gear, allowing a 

maximum torque of 10Nm and an overall weight of 1.1kg.  

 

Figure 2.10: Prototype of the powered elbow orthosis 
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NEEM (NEUROExos-Elbow-Module), a portable wearable robotic elbow 

exoskeleton using Series Elastic Actuation (SEA) for the mobilization of paretic or spastic 

elbow condition was developed. (Cempini et al., 2013; Vitiello et al., 2016). The low 

level control system of the orthosis provides two different therapy protocols, the torque 

control and the joint position control to achieve basic physical rehabilitation process. 

NEEM can supply a joint torque of 30N-m with a spring stiffness of 100 N.m.rad-1, a 

value comparable to that of the human elbow. (Abe & Yamada, 2003). It has a double 

shell structure with a 4-DoF passive alignment mechanism and a one active DOF with 

remote cable-driven actuation. 

 

Figure 2.11: NEUROExos Elbow Module 

A 1-DOF bimanual wearable robotic device with Master-Slave configuration to 

train elbow movement in flexion and extension was developed in (Herrnstadt, Alavi, 

Randhawa, Boyd, & Menon, 2015). The orthoses combines position and force sensors 

with the implementation of control loops which can be operated for both passive and 

active training. Any movement or resistance made by the master (non-hemi paretic arm) 

causes an equal movement or resistance of the slave (hemi paretic arm). 
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Figure 2.12: Bimanual wearable robotic device 

An active orthosis which provides assisted movement to the injured elbow by 

reacting to the patient’s muscular activity was developed in (Ripel & Krejsa, 2012). The 

orthosis uses a tensometric gauge attached to the frame to measure the patient’s effort to 

move the elbow. The actuator in turn moves the orthosis through the joint in the desired 

direction.  

 

Figure 2.13: Mechanical design of the Active orthosis 

(Pylatiuk et al., 2009) integrated electromyography, functional electrical 

stimulation and a fluidic actuator in his development of a lightweight elbow orthosis for 

treatment of patients suffering from paraplegia. The problem with this approach is that 
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functional electrical stimulation causes the muscle redundancy instead of causing 

voluntary contraction of the muscle.(Faller, Nogueira Neto, Button, & Nohama, 2009) 

 

Figure 2.14: Mechanical design of the hybrid orthosis 

2.7 Actuator Control 

Measuring the patient’s activity is the key input for the orthoses system. Many 

methods based on several principles exists for the measurement of muscle activity. Strain 

gauge measures strain and converts it into a change in electrical resistance. Strain is the 

result of external force applied to a body in form of the displacement and deformation 

that occur. The actuator control is based on the feedback from the strain gauge. 

 

Figure 2.15: Mechanism of Strain gauge Sensing 
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Electromyography (EMG) measures muscle response or electrical activity 

(voltage) in response to a nerve’s stimulation of the muscle. The electrical activity is 

usually measured and recorded using three surface electrodes, a negative, positive and 

ground. The electrodes are placed about 1cm apart on top of the muscles that needs to be 

monitored. The signal from the EMG sensor needs to be converted from analog to digital 

so as to be understood and used the signal in controller coding. The force exerted by the 

muscles in real time is represented by the voltage measured. 

 

Figure 2.16: Mechanism of Electromyography sensing 

Mechanomyography (MMG) measures mechanical signal that appears when a 

muscle is contracted using an accelerometer or microphone placed on the skin. The signal 

is characterized by low frequency distribution below 100Hz. The vibration of the muscle 

during activation creates pressure waves that can be detected on the skin’s surface by 

accelerometers, piezo-electric contact sensors, condenser microphone or a laser distance 

sensor. (Watakabe, Itoh, Mita, & Akataki, 1998) 
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Figure 2.17: Mechanism of MMG Sensing 

The MMG has a higher signal-to-noise ratio compared to the EMG. Thus can be 

used to monitor muscle activity from deeper muscles without using invasive measurement 

techniques. (Beck et al., 2006). It does not suffer any interference from the electrical 

stimulation device while the muscle signal is being collected. (Faller et al., 2009). 

However EMG is chosen for this project due to its vast popularity and deep knowledge 

of the sensing procedure. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

This chapter details the mechanical design and the electrical design of the elbow 

orthosis. It focuses on the hardware design, biomechanics of the elbow, device 

functionality, the details of components selection and the bill of materials. It equally 

discusses the software design including the electrical circuits. 

3.1.1 Gantt Chart 

The Gantt chart (refer to appendix) shows how the project planning was organized 

and carried out. Research (literature review and component selection) required some 

amount of time because the project methodology and the proper components have 

carefully and rightly selected. The orthosis design and developed was done in about four 

weeks followed by the circuit design and programming which was accomplished in 

another four weeks as well. The orthosis was then tested, evaluated and then the report 

writing began in December. 

3.2 Functionality 

 The main function of this elbow orthosis is to enable the patient exercise their 

elbows without the need of a physiotherapist. The arm is designed to move over the 

normal range of motion of the elbow both in flexion and extension. The device exercises 

the elbow by enabling flexing and extension the forearm at varying angles for a required 

period of time. The flexing and extending of the arm is solely based on the output from 

the electromyography sensor. It also provides other functions like supporting the forearm 

and allowing the patient to lock their elbow at any desired angle for an extended period 

of time.  
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Figure 3.1: Flow chart of elbow orthosis system 

The orthosis in its off state positions locks the forearm at any desired angle 

suitable for performing day to day tasks to improve the quality of life of the patient. In its 

on state, the electromyography sensor obtains electrical signal from the muscle when 

flexed. These signals are sent to the DC motor which has been programmed to flex and 

extend the forearm at varying angles for a predefined period of time. This action is 

repetitive until the orthosis is switched off and the patient can lock the device at any 

desired angle. 
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Figure 3.2: Block Diagram of Elbow orthosis 

3.3 Mechanical Design 

 The design is made up of two shells, one part supporting the upper arm and 

another supporting the lower arm linked together by two hinges.  

3.3.1 The Frame 

The frame consists of shells designed to support the lower arm without restricting 

any of its movement. The design is light weight thereby keeping most of the weight off 

the injured shoulder of the patient. The shells of the orthosis was developed using 

thermoplastic polypropylene. 
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Figure 3.3: CAD Design of the Elbow Orthosis 

A thermoplastic is a plastic polymer which is moldable when heated above a 

specific temperature and solidifies upon cooling. There are multiple types of 

thermoplastic materials including ABS thermoplastic and polyethylene thermoplastic 

polymer. Acrylonitrile butadiene styrene (ABS) is known for its light weight, high impact 

resistance, safety and mechanical toughness. Polypropylene thermoplastic polymer is 

equally known for its lightweight, toughness, high density and high resistance to 

temperature changes.(plastics, 2017). However polypropylene thermoplastic was selected 

because it was a cheaper option. 

3.3.2 The Joint 

 The mechanical joint of the elbow orthosis consist of a hinge and a DC motor 

attached to it. A hinge joint allows one degree of movement and the DC motor actuates 

and allow for flexion and extension of the elbow joint. The hinge joint can move the 

elbow over normal range of elbow movement. 

16.0 cm 

20.5 cm 
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Figure 3.4: CAD Design of the Hinge Jointjoin 

3.4 Elbow Biomechanics 

The elbow has two degrees of freedom because it is capable of flexion and extension as 

well as pronation and supination. However it is mostly considered as a simple hinge joint 

with one degree of freedom because of the congruity at the ulnohumeral articulation and 

surrounding soft tissue. (Morrey & Sanchez-Sotelo, 2009). It is important to know the 

relationship between forces acting through the biceps muscle to generate an idea of the 

force required by the prosthesis to sustain. 

𝑇 = 𝐹 ×  𝑟                                                                                             (3.1) 

Where 

T= torque (Nm) 

F = Force (N) 

r = moment arm (m) 
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Torque is the measure of the extent to which a force can cause rotation in an 

object. Force is any influence that causes a free body to undergo acceleration. The 

muscles of the body are responsible for creating torques which moves the limbs. A muscle 

contracts by pulling on its point of attachment along a line of action. A line of action is 

the imaginary line that the force pulls or pushes along. Moment arm is the perpendicular 

distance from the line of action to the centre of joint rotation. It represents the mechanical 

transformation between the muscle and the joint. (van der Helm, 2000) 

 

Figure 3.5 Free body diagram of the forearm holding a ball (Artati, Van der 

Smagt, Krüger, & Baena) 

The free body diagram above was used to analyse the effects created by the forces 

and moments acting on the elbow joint. It is assumed that the forearm is rigidly fixed and 

R stands for the forces acting between the ulna and the humerus that is the joint reaction 

force, B stands for the force acting through the biceps and G is the forearm weight acting 

vertically downwards. The force in the biceps can be calculated by taking moments about 

the elbow bearing in mind that the joint reaction force has a moment arm of zero hence it 

creates no moment about the joint axis. 
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∑𝐹 =  0                                                                                                         (3.2)  

∑𝑇 = 0                                                                                                           (3.3)                                                            

(𝐵 ×  𝐷1) − (𝐺 ×  𝐷2) − (𝑊 ×  𝐷3)                                            (3.4) 

𝑊ℎ𝑒𝑟𝑒  

𝐷1, 𝐷2, 𝐷3 =  𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑒𝑙𝑏𝑜𝑤 𝑗𝑜𝑖𝑛𝑡 

𝐺 =  𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑢𝑚𝑒𝑟𝑢𝑠                                                                 (3.5)  

𝑆𝑢𝑚 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 ‘𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  0 =  − 𝑅 +  𝐵 −  𝐺 –  𝑊 

The moment in the y-axis direction can be calculated using the force through the 

biceps keeping in mind that the sum of the sum of the moment is equal to zero. Since B, 

G and W are known, R can be calculated. (Lucas, Cooke, & Friis, 1999) 

3.5 Components Selection 

The main components used in the design of the elbow orthosis are the Power 

window motor, motor driver, thermoplastic polypropylene, Arduino Uno, 12V battery 

pack and the Muscle sensor. 

3.5.1 Thermoplastic polypropylene 

This is used as the frame of the elbow orthosis. Polypropylene was chosen because 

it can be manufactured through different methods and used in multiple applications. It is 

low cost, readily available, light weight with good fatigue resistance and impact strength. 

(Mechanisms, 2016) 
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Figure 3.6: Polypropylene sheets 

3.5.2 Arduino Uno 

 

Figure 3.7: Arduino Uno (MrLndr, 2011) 

A microcontroller allows a programmer to gain direct access to hardware from a 

higher-level language (than assembly), often based on C or C++. Arduino was selected 

for this project because it is the most popular and easiest to use microcontroller. It can be 
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programmed with a USB cable and can also send and receive serial data through this 

connection. The standard Arduino packages offer rows of female headers for sticking 

wires into. 

3.5.3 Power window motor 

 The functional range of elbow movement is between 30 degrees and 130 degrees 

and the elbow joint requires a maximum moment of 5.8Nm to carry out various activities 

of daily life. However only a moment of about 3.1Nm is required by the elbow joint to 

hold the forearm at 90 degrees against gravity (Murray & Johnson, 2004). Hence an elbow 

orthosis should allow for this range of elbow movement and a torque higher than 6Nm.  

 

Figure 3.8: Power window motor (lazada.com.my) 

Several actuation techniques are available for the actuation of the orthosis. Some are the 

Series Elastic Actuator (SEA), Mechanically Adjustable Compliance and Controllable 

Equilibrium Position Actuator (MACCEPA), Pneumatic Artificial Muscles and so on. A 

metallic gear servo motor would have been the best choice due to its robust mechanical 

construction, containing a brushed motor, gearbox, motor controller and a feedback 

mechanism that allows to set the motor's angular position. However a servo motor which 
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provides the required torque for the elbow orthosis is very expensive thereby defeating 

one of the significance of the project. As a result, a power window motor was chosen 

because of its high torque and affordable price compared to that of a DC motor. A power 

window motor runs for a very long time without overheating and it can be paired with a 

potentiometer to provide the precision required. 

3.5.4 Motor Driver 

 The L298N motor driver is an H-bridge which can be used to control the speed 

and direction of motors with an Arduino. It can control motors of voltage between 5 to 

35V DC at up to 2A peak with a heavy duty heat sink. It contains four switching elements, 

transistors or MOSFETs, with the motor at the centre forming an H-like configuration. 

The rotation direction of the motor is changed by changing the direction of the current 

flow.  

 

Figure 3.9: L298N Motor Driver (Amazon.com) 
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3.5.5 Muscle sensor 

 Measuring the patient’s activity is the key input for the orthoses system. Many 

methods like the Strain gauge, MMG and EMG exists for the measurement of muscle 

activity. EMG was however chosen for this project due to its vast popularity and deep 

knowledge of the sensing procedure. The muscle sensor was chosen for this project 

because it is Arduino powered which allows for easier integration with the 

microcontroller. This muscle sensor does not output raw EMG signal, rather it output 

filtered and rectified electrical activity of the muscle and gives the output in volts. It 

allows to add the sensor pads directly to the board hence getting rid of excess cables. 

 

Figure 3.10: Muscle sensor (Sparkfun.com) 

3.5.6 Power Source  

The power window motor used in this project was designed to operate at operate at 12 

volts and 5A no-load current. The Lithium polymer (LiPo) battery 11.1V is a light weight 

battery capable of powering the high voltage DC motor. However it is very expensive and 

requires a very costly charger. Another option is using 10x1.2V AA batteries but the 

combination of the batteries cannot supply the required current to power the high current 
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DC motor. Hence a 12V lead acid battery pack was chosen though it is heavy, it is strong 

enough to power the motor. For commercialization, LiPo or Lithium Iron Phosphate 

(LiFePO4) would be used. 

 

Figure 3.11: 12V Lead Acid Battery (lazada.com.my) 

3.6 Bill of Materials 

Table 3.1 shows the specification, quantity and the price estimation of the main 

components to be used for the project. 

Table 3.1: Bill of Materials 

Material Specification Quantity Price 

Power Window 

Motor + Motor 

Shield 

• Voltage Rating: 12VDC 

• No load Speed:  85 ± 15RPM 

• Rated Speed: 60 ± 15RPM 

• Current (No Load): <5A 

• Rated Current (Load): <15A 

• Stall Current: <28A at 12V 

1 Rm60 Univ
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• Rated Torque: 30Kg.cm 

(2.9N.m) 

• Stall Torque (Locked): 100 ± 

15Kg.cm (~10N.m) 

Arduino Uno • Operating Voltage: 5V 

• Digital I/O Pins: 14 

• PWM Digital I/O Pins: 6 

•  Analog Input Pins: 6 

• DC Current per I/O Pin: 40 mA 

•DC Current for 3.3V Pin: 50 mA 

• ATmega328P 

1 Rm40 

Muscle sensor • Small Form Factor 

• Specially Designed For 

Microcontrollers 

• Adjustable Gain 

• 3.5mm Connector 

• Breadboard Compatible 

• Power supply voltage: min. 

+-3.5V 

• 1.0" x 1.0" 

1 Rm280 

Thermoplastic • Thermoplastic acrylic and 

polyvinyl chloride 

1 Rm 40 

Univ
ers

ity
 of

 M
ala

ya



36 

• Length: 300mm/11.8" 

• Width: 200mm 

• Thickness: 1mm 

Ratchet hinge • Iron material 

• 16mm thickness 

• 125mm barrel length 

• 105 degrees range 

2 Rm10 

Power Supply Voltage: 12V 

Capacity: 7.0Ah 

Size: 150mm x 63mm x 94 mm 

Weight: ~2.324kg 

1 Rm60 

Velcro Straps 20mm x 180mm (7") L x 3 pcs.  Rm 10 

Total   Rm500 

 

3.7 Electrical Design 

 Basically the entire circuit consists of hooking up the power window motor, the 

electrodes and the muscle sensor to a ground, power, and signal wire. The ground wires 

all combine and go to both the black (-) wire of the battery and one of the ground inputs 

on the Arduino. The power lines all go to the red (+) wire of the battery. The signal wire 

goes into one of the digital Arduino pins: 3, 5, 6, or 9 
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Figure 3.12: Circuit connection 

 Basically the entire circuit consists of hooking up the power window motor, the 

electrodes and the muscle sensor to a ground, power, and signal wire. The ground wires 

all combine and go to both the black (-) wire of the battery and one of the ground inputs 

on the arduino. The power lines all go to the red (+) wire of the battery. The signal wire 

goes into one of the digital Arduino pins: 3, 5, 6, or 9 

3.8 Subjects of the Experiment 

 Five subjects with no conditions especially at the elbow region would be chosen 

to undergo the experiment to determine the performance of the device in helping to flex 

and extend their elbows through the normal human range of motion. Subjects with no 

elbow or arm conditions were chosen because we need to observe if the device built can 

mimic the normal elbow range of motion for flexion and extension.  

The first stage of the testing would be for the subjects to flex and extend their 

elbows without the elbow orthosis worn on. The subject’s normal range of motion for 

flexion and extension would be measured using a goniometer. The orthosis is then 
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mounted on their arms and the electrodes placed on the selected muscle. The subjects 

would then try to flex their elbows and the electrical signal detected from the muscle 

sensor would serve as the input to the actuator which moves in a manner that flexes and 

extends the elbow. The range of motion would then be recorded and compared with 

normal ROM of the subject previously measured. The results would then be analysed 

using Kinovea software as it compares side by side the normal ROM without the elbow 

orthosis worn and the ROM when the orthosis is been worn.  

The table below shows the criteria used to choose the subjects for the experiment. 

The subjects that fulfils the criteria would be chosen to undergo the testing procedure of 

the developed elbow orthosis. This study was approved by University Malaya Medical 

Centre ethics committee under the reference number 829.15 

Table 3.2 Selection Criteria 

Criteria Justification 

Gender 3 females and 2 males 

Age Age gap of 20 years to 45years  

Elbow Joint range of motion Can fulfil normal flexion and extension 

ranging from 0 – 140 degrees. 

Strength of the muscle (Oxford 

Grading Scale) 

The strength of the muscle should be able 

to allow for full range of motion against 

gravity 

Health Condition No chronic health condition 

Orthotic History No history of orthosis use 

Elbow-Flexion Contracture Condition Higher than 30 degrees 
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3.9 Kinovea 

 The method used to measure angles and for assessing joint position in space is 

known as Goniometry. (Nordin & Frankel, 2001). A goniometer is a tool mostly used to 

measure an angles in the musculoskeletal system. It can also be defined as a tool that 

allows an object to be rotated to a precise angular position. It is used in medicine or 

rehabilitation for recording range of motions of a joint in the patient’s body for tracking 

the patient’s progress in a rehabilitation program.(Milanese et al., 2014). The goniometer 

is mostly suitable and usually easy to use for one degree of freedom joints. However it is 

very difficult to use for measuring range of motions with multiple degrees of freedom. 

 

Figure 3.13: International Goniometer (www.ncmedical.com) 

Multiple approaches to measuring angular positions of the human body 

extremities has been demonstrated in the literature. The most popular approach requires 

the use of an accelerometer. The downside is the requirement of extra devices to aid the 

measurement and the need for knowledge about data acquisition.(Dejnabadi et al., 2006). 

Univ
ers

ity
 of

 M
ala

ya



40 

Another approach requires the use of Wii Remote infrared sensors using a table for setting 

the origin and a glove. The infrared LEDs are used for registering the movement which 

is captured using the infrared camera of the WII Remote. (Attygalle et al., 2008). The 

measurements proposed in the literature generally requires the use of devices which are 

costly. The ideal measurement approach should not require the use extra sensors or 

gadgets and most importantly, it should be easy to use. 

Kinovea is a free software used to analyse videos mostly in the field of medicine 

and sport. It is used for analysing, comparing and evaluating movement of patients or 

athletes. It is capable of measuring distance, speed, line length and the data obtained can 

easily be exported to an Excel file or video formats or images for analysis depending on 

the need of the experiment.(Guzmán-Valdivia et al., 2013). Unlike the other approaches 

to angle measurements, Kinovea is easy to use, free and does not require extra sensors or 

gadgets for analysis of the body extremeties. Hence the software was chosen to be used 

to measure, observe and analyse the elbow movement. 

 

Figure 3.14: Kinovea Software 
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Kinovea works by detecting and analysing videos using position markers for 

measuring the angular positions of the body extremities. The video to be analysed would 

be captured using webcam, then position markers would be added for the analysis of the 

video. Angular positions of the elbow are obtained from the video and then exported to 

an excel sheet for analysis. 

 

Figure 3.15: Analysis Block Diagram Using Kinovea  
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CHAPTER 4: RESULTS AND DISCUSSION 

The Active elbow orthosis having the mechanical and electrical design described 

in the previous chapters was built and tested for different hardware and software 

specifications. The design weighs about 1.5kg with a posterior forearm shell of length of 

16cm and anterior forearm shell of 20.5cm. 

4.1 Experimental Setup of the Active Elbow Orthosis 

  The pictures below show the hardware of the active elbow orthosis prototype. The 

orthosis has two shells, one covering the forearm part of the arm, the anterior region, 

while the other covers the posterior region of the arm connected together by a hinge. The 

shells were made with Thermoplastic polypropylene. The hinge functions as the elbow 

joint allowing for one degree of freedom movement, flexion and extension of the elbow. 

The Velcro straps helps to keep the orthosis in a fixed position when worn.  

  

Figure 4.1: Elbow Orthosis Frame 
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The DC motor attached to the hinge joint in figure 4.2 below actuates the elbow 

orthosis. The electrical circuit controlled by the Arduino microcontroller includes the 

connection of the 12V DC power supply, the L298N motor shield and the muscle sensor 

to the elbow orthosis. The power window motor has a torque of 2.9N.m which is capable 

of moving the forearm for flexion-extension movement. 

 

Figure 4.2: Setup of the Active Elbow Orthosis 

The EMG sensors are placed on the bicep and triceps muscle because they are 

responsible for flexion and extension of the forearm. When the circuit is on, the muscle 

sensor reads input from the biceps and triceps muscle and sends the information to the 

microcontroller. In the absence of an input, the orthosis remains in the neutral or locked 

position. However if there’s an input to the muscle sensor, the microcontroller processes 

this input and sends an output to the DC motor. The DC motor then moves in a direction 

that flexes and extends the forearm and the cycle is repeated until the system is switched 

off. 
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4.2 DC Motor Control with Muscle Sensor 

 Figure 4.3 depicts the signal obtained from the muscle sensor when the 

muscle is at rest and when muscle activity is detected. The muscle sensor outputs muscle 

activity when it is at rest and during contraction. The muscle sensor used measures the 

rectified filtered electrical activity which is in voltage. This signal serves as the control 

signal for the DC motor. When the muscle is at rest, no signal would be sent to the motor, 

however when any muscle activity is been detected, the DC motor responds to this signal 

by flexing or extending the elbow. 

 

Figure 4.3: Muscle Signal 

4.3 Biomechanical Analysis Using Kinovea 

 The elbow orthosis was analysed using Kinovea to determine whether the device 

can help in the flexion and extension of the human elbow through the normal ROM. The 

ROM of the joint when the subject was not wearing the orthosis and when the subject was 

wearing the orthosis was recorded using the software and the joint angle movement was 

thus calculated and compared. 
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Figure 4.4: Biomechanical Analysis 

 The accurate measurement of the arm is required before the Kinovea software can 

be used. Hence the distance between each of the limbs of the human body was measured. 

The distance between the shoulder and the elbow is 18.5cm and the distance between the 

elbow and the wrist is 20.5cm. The angular measurement of elbow in flexion and 

extension with respect to the origin was equally measured as seen in figure 4.4 above. 

The elbow covered 340 degrees in flexion and 1770 degrees in extension. 
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Table 4.1 below shows the result obtained from the application of Kinovea. It 

presents the maximum flexion angles of the elbow joint for the five subjects used for 

testing the performance of the elbow orthosis. The second column of the table shows the 

maximum flexion angles when the elbow orthosis is not worn while the third column 

shows when maximum flexion angles when the orthosis is worn. The percentage 

difference, which is the error of the elbow orthosis is calculated in the fourth column. The 

data from Table 4.1 was plotted in a graph as seen in figure 4.5 below.  

The average maximum flexion angle of the elbow joint obtained is 140.8 degrees 

while the normal range of motion for the elbow is 140 – 150 degrees flexion. (Sardelli et 

al., 2011). This shows that the subjects chosen on an average falls within the normal range 

of elbow flexion movement. However only subject 2 and subject 5 falls within the normal 

range. Subject 1, subject 3 and subject 4 falls below the normal range of flexion 

movement with a few degrees. 

Table 1.1 Maximum Flexion Angle of Elbow Joint 

Subject The maximum flexion angle of the 

elbow joint (degree) 

Percentage 

difference (%) 

 
Without Elbow 

Orthosis 

With Elbow 

Orthosis 

Subject 1 136 107 21.3 

Subject 2 146 96 34.2 

Subject 3 137 100 27.0 

Subject 4 135 106 21.5 

Subject 5 150 95 36.7 

Average 140.8 100.8 28.14 
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Figure 1.5: Flexion Angle of Elbow Joint 

 When the orthosis is worn, it was obtained from the result that all the subjects 

were not able to accomplish their normal flexion. Subject 1 falls short with 21.3 degrees 

while subject 2 falls short of normal flexion with 34.2 degrees. Subject 3 fell short with 

27.0 degrees, subject 4 with 21.5 degrees and subject 5 with 36.7 degrees. The highest 

error obtained was from subject 5 and the average error was 28.14 degrees. 

 The average error shows that the elbow orthosis does not fully assist in covering 

the normal elbow flexion range of motion. This could be as a result of the torque provided 

by the DC motor not been sufficient enough to lift the arm. It could equally be that the 

design does not suit all the subjects because only one orthosis was designed and tested on 

five different subjects. Whereas five different orthosis should have been custom made for 

the five different subjects. 
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Table 1.2 Maximum Extension Angle of the Elbow Joint 

Subjects The maximum angle extension of the 

elbow joint 

Percentage 

Difference (%) 

Without Elbow 

Orthosis 

With Elbow 

Orthosis 

Subject 1 3 9 3.3 

Subject 2 2 15 7.2 

Subject 3 4 19 8.3 

Subject 4 3 17 7.7 

Subject 5 7 18 6.1 

Average 3.8 15.6 6.5 

 

Table 4.2 above displays the result obtained from the Kinovea software. It 

presents the maximum extension angles of the elbow joint of the five subjects used for 

testing the performance of the elbow orthosis. The second column of the table shows the 

maximum extension angles when the elbow orthosis is not worn while the third column 

shows when maximum extension angles when the orthosis is worn. The percentage 

difference, which is the error of the elbow orthosis is calculated in the fourth column. The 

data from Table 4.2 was plotted in a graph as seen in figure 4.6 below.  
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Figure 4.6: Elbow Joint Extension Angle 

From the results, it can be seen that the average maximum extension angle of the 

elbow joint obtained from the subject is 70 degrees while the normal range of motion for 

the elbow is 00 - 50 degrees extension. (Sardelli et al., 2011). This shows that the subjects 

chosen on an average falls within the normal range of elbow extension movement. 

Subjects 1, 2, 3 and 4 falls within the normal range of elbow extension however Subject 

5 falls below the normal range with 20 degrees. 

The subjects were not able to accomplish their normal extension when the orthosis was 

worn. Subject 1 falls short with 3.30 degrees while subject 2 falls short of normal flexion 

with 7.20 degrees. Subject 3 fell short with 8.30 degrees, subject 4 with 7.70 degrees and 

subject 5 with 6.10 degrees. The highest error obtained was from subject 3 and the average 

error was 6.50 degrees. 

 The normal range of movement for extension is 0 – 5 degrees. The result displayed 

in the table shows that the elbow orthosis is capable of almost mimicking full extension. 
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The orthosis could have fully mimicked the range of motion for extension if the orthosis 

was custom designed for each of the subjects and a motor generating higher torque is 

used.  

The active human ROM is from 40 degrees to 140 degrees. The result shows that 

the elbow orthosis moves through these active range. Hence the orthosis can be used to 

help patients with post stroke conditions having weak arms especially at the elbow region 

to regain their elbow active ROM thus the device can be used for self-rehabilitation. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

 An active elbow orthosis which detects signal from the muscle using 

electromyography has been developed. The mechanical design, method of sensing and 

actuation and the analysis of the results have been presented. The aim of the project which 

was to design and develop an active elbow orthosis and to implement electromyography 

(EMG) in the orthosis has been achieved. However the third objective which was to 

implement feedback control in the elbow orthosis was not achieved. The analysis of the 

elbow orthosis using Kinovea software showed that it is capable of helping in the flexion 

and extension of the human elbow through the normal ROM.  

5.2 Limitation and Recommendation 

 The orthosis in this project was actuated with a motor capable of a moment of 

2.9N.m. However the elbow joint requires a maximum moment of 5.8Nm to carry out 

various activities of daily life hence a motor capable of a higher torque should be used.  

 The orthosis was powered with a 12V lead acid rechargeable battery. This battery 

is heavy which makes the orthosis not portable. A Lipo battery or a LiFePO4 battery 

should be used to make the orthosis portable. 

 A feedback control was to be implemented in the orthosis to make the orthosis 

more accurate and automatically correct for flexion-extension angle errors. However due 

to time-constraint, it wasn’t implemented hence should be applied in future work. 
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APPENDIX A: GANTT CHART 
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APPENDIX B: PROGRAM CODE 
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