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ABSTRACT 

Cable joints of cross-linked polyethylene (XLPE) are the weakest point in a power 

system and can cause insulation failures with the present of partial discharge (PD). 

Therefore, it is important to monitor PDs at cable joints and determine the type of the 

defect that exists at cable joints. Determination of the type of the defect at cable 

joints can reduce the repair time and maintenance cost. In this project, defect type in 

cable joint determination using partial discharge testing under noisy condition was 

carried out. Five joints of cross-linked polyethylene cable including artificial defects 

were created according to the conditions usually found at site. Various noise 

reduction techniques were applied to denoise the PD signals and the denoised PD 

signals were used to determine different types of defect in cable joints. The input 

features from different noise reduction techniques were applied to train the classifier 

to determine the type of the problem in the samples. Determination of the defect type 

was performed using Support Vector Machine (SVM) after DFT, WPT and DWT 

techniques. The results were compared between each noise reduction methods to 

evaluate the performance of the applied methods. It was found that the noise 

reduction technique on partial discharge signals from cable joint defects using 

discrete Fourier transform (DFT) yields a better accuracy than wavelet packet 

transform (WPT) and discrete wavelet transform (DWT). 

Keywords: Partial discharge measurement, support vector machine, high voltage 

engineering, cable insulation, signal processing 
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ABSTRAK 

Sambungan kabel polietilena silang (XLPE) adalah titik paling lemah dalam sistem 

kuasa dan boleh menyebabkan kegagalan penebat dengan masa pelepasan separa 

(PD). Oleh itu, adalah penting untuk memantau PD pada sendi kabel dan 

menentukan jenis kecacatan yang wujud pada sambungan kabel. Penentuan jenis 

kecacatan pada sambungan kabel boleh mengurangkan masa pembaikan dan kos 

penyelenggaraan. Dalam kerja ini, penentuan jenis kecacatan pada kabel 

menggunakan pengukuran pelepasan separa di bawah persekitaran yang bising telah 

dilakukan. Lima sambungan kabel polietilena (XLPE) dengan kecacatan yang dibuat 

secara buatan telah disediakan berdasarkan kecacatan yang sering ditemui di tapak. 

Teknik pengurangan hingar yang berbeza digunakan untuk mengecam isyarat PD 

dan isyarat PD denoised digunakan untuk menentukan jenis kecacatan yang 

berlainan dalam sambungan kabel. Ciri-ciri input dari teknik pengurangan hingar 

yang berbeza digunakan untuk melatih pengelas untuk mengklasifikasikan setiap 

jenis kecacatan dalam sampel bersama kabel. Penentuan jenis kecacatan dilakukan 

menggunakan Mesin Vektor Sokongan (SVM) yang mempunyai teknik-teknik 

seperti DFT, WPT dan DWT. Hasilnya dibandingkan antara setiap kaedah 

pengurangan hingar untuk menilai prestasi teknik yang digunakan. Telah didapati 

penentuan teknik pengurangan hingar ke atas isyarat pelepasan separa menggunakan 

transformasi Fourier diskret (DFT) menghasilkan ketepatan yang lebih baik 

berbanding transformasi paket wevlet (WPT) dan transformasi wevlet diskret 

(DWT). 
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CHAPTER 1:  INTRODUCTION 

 

1.1 Introduction 

As defined by IEC 60270 standard, partial discharge (PD) is a localized discharge of 

electrical, which only bridges partially the insulation between 2 conductors [1]. PD is 

the electrical stress concentration on the surface or in the insulation. There are 

electrical sparks occur within the insulation of medium and high voltage electrical 

equipment that can cause damage. It is due to high voltage applied to an insulation is 

higher than the inception of discharge voltage. When the electrical field stress 

becomes very high, a PD occurs. This causes electrical failure and insulation to break 

down. The National Electrical Code (NEC) implies that PD are the first sign of 

insulation deterioration. Cables, transformers and switchgear experience the greatest 

failures from insulation breakdown. PD will lead to degradation and breakdown of 

insulation.  

It is very important to monitor the insulation condition level because if there is a 

failure happens in any parts of a power system, it can cause damage to the 

equipment. Cable joints of XLPE cable are weak dielectrically points, which can 

cause discontinuity of insulation. PD can decrease the life of high voltage equipment 

because of insulation damage. Since PD can cause disastrous results to safety and 

financial, identifying PD events is a key indicator in condition monitoring of the 

insulation [2]. Therefore, it is crucial to detect PD at its early stage to replace the 

faulty parts as soon as possible at the correct time. PD types include void in solid 

insulation, void in liquid, electrical tree around a sharp point, electrical floating 

potential, surface discharge and corona. 
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PD is caused by discontinuities and flaws in high voltage electrical insulation and if 

left undetected, it can eventually lead to the full breakdown of the insulation system. 

The insulation defect is considered as a weak point for PD to occur. It normally 

happens because of defect such as delamination of power cable and insulation 

material, crack or air bubbles. Many PD determination works were performed in 

laboratories under no noise. However, in actual sites, PD measurement has low 

detection sensitivity due to the external noise interference [3]. PD does not cause 

immediate breakdown since it is only occur within the defect of insulation. However, 

it will affect the performance in a long run because of degradation of insulation. This 

is due to the development of PD may cause system breakdown at certain conditions. 

It depends on the type of the defect, location and quality of an insulation.  

 

1.2 Problem statement 

Many research works have been done on denoising of PD signals and it has been 

better and better. However, a perfect denoising method has not been achieved yet. 

Most previous research works used artificial noise generated by including random 

noise with different mean and standard deviation instead of actual noise encountered 

on site. Hence, another research is essential on how various noise levels and signal 

denoising techniques affect classification accuracy. 

 

1.3 Objectives of research 

The objectives of this research are: 

1. To perform measurement of partial discharge (PD) from artificially prepared 

cable joint defects. 
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2. To apply different noise reduction methods for partial discharge classification 

in XLPE cable joint. 

3. To compare the performance between each noise reduction method and the 

previous work. 

 

1.4 Dissertation Structure 

This report consists of five chapters. In Chapter 1, the introduction of PD 

phenomenon, problem statement of the research work and objectives of the research 

are explained. In Chapter 2, literature review about PD phenomena, detection method 

of PD and review on previous research works on classification using SVM, DFT, 

WPT and DWT is also included. In Chapter 3, the methodology of the work is 

described in details on each analysis techniques. The preparation of the test samples 

and the experiment setup of five different PD defects types are explained. Chapter 4 

reports on the results that have been obtained from this work and also comparison 

with the existing works. Finally, Chapter 5 is about the conclusions of the work and 

future work that can be performed. 
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CHAPTER 2:  PARTIAL DISCHARGE PHENOMENON 

 

2.1 Partial Discharge 

The life span of high voltage power cables is dependent on its insulation quality 

especially for insulated switchgear and transformer. PD is crucial to be detected at 

early stage to avoid the system damage. PD testing must be done once fault has been 

detected at a very early stage and PD pattern needs to be obtained to recognise and 

determine the risk of insulation breakdown. Testing will indicate if the existing 

component needs a service or replacement [1]. 

 

2.2 Partial Discharge Equivalent Circuit 

As suggested by IEC 60270 standard, Figure 2.1 shows an equivalent circuit of PD 

measurement. Through the test, the presence of PD and its location in electrical 

equipment can be detected. Assuming a piece of an equipment with a tiny air void in 

the insulation due to constant degradation and the void was exposed to PD [2].  

 

Figure 2.1: Equivalent circuit of a PD test 

 
The circuit components are:  

Ck = capacitance of the coupling capacitor  

Ci' = capacitance of the remaining insulation around the air void  
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Cp = capacitance of the void in the insulation due to defect  

Ci = capacitance of the insulation system  

Vn =  voltage applied 

M = measuring system in series  

At certain inception voltage, partial discharge occurs because of the electric field 

becomes stronger to bridge the air void (Ci) in the insulation. The voltage, Vn around 

charge across Ci increases after the air gap breakdown. The parallel capacitances 

provide extra charges around Ck and Ci or the applied voltage. Ck and Ci discharge a 

short pulse into Ci’ to supply excessive charges. However, it decreases the voltage 

across all capacitances and Vn reacts by charging all capacitances in the system back 

to Vn.  

PD test is performed by measuring directly the pulse discharged into Ci' through the 

coupling capacitor Ck. In the circuit, the system is represented by a single box but in 

actual, it includes the measuring device, connecting cables and coupling device. 

There are a lot of types of PD such as internal PD, surface PD and corona PD.  The 

insulator used in high voltage (HV) system is not fully perfect because there are 

presence of bubbles and impurities. The insulation degrades in long term and will 

allow PD to occur. PD is caused by multiples reasons and it will always become 

worse until it leads to flashover, which occurs at a peak voltage. It is due to the field 

strength in excess of insulation withstand capability. The overall insulation system 

remains capable of withstanding the applied electric field, except the defect site 

where PDs occur. Figure 2.2 shows an insulation withstand capability against applied 

field. 
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Figure 2.2: Insulation withstand capability against applied field 

 

2.3 Types of PD 

There are many types of PD such as surface discharges, corona discharges and 

internal discharges. 

2.3.1 Internal PD 

This type of PD occurs in defects, voids or cavities within the solid insulation as 

shown in Figure 2.3, which appear as cracks, delamination and air bubbles due to 

manufacturing processes or in power cable accessories. It can occur in all types of 

insulation including oil and gas. When PD activity is repetitive, it causes degradation 

of insulation material and eventually leads to breakdown. 

 

 

Figure 2.3: Internal PD 
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2.3.2 Surface PD 

Surface discharge happens in the insulation surface, causing treeing and tracking as 

shown in Figure 2.4. This type of PD causes insulation degradation on the surface of 

solid insulation. It is due to defects along the insulation surface under high field 

stress. This leads to ionization of air around the insulation or impurities, which 

causes it to become conductive. 

 

 

Figure 2.4: Surface discharges causes tree and track 

 

2.3.3 Corona PD 

Corona discharges occur in gaseous dielectrics in the present of in homogenous field. 

It happens due to the ionisation of air between high voltage electrode and the ground 

or at sharp point under high voltage as shown in Figure 2.5. 

 

 

Figure 2.5: Corona PD 
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2.4 Statistical Features  

PD data can be categorized into 2, which are pulse distributions and pulse height 

distributions. The pulse distributions are the number of PDs versus the phase angle 

while for the pulse height distributions are the PD charge magnitude versus phase 

angle. Statistical features from PD distributions are skewness, kurtosis, variance, 

mean and parameter of Weilbull [4]. 

The statistical data are calculated by:  

                                                                            
         

(2.1)

 

                                                     

        (2.2)

 

                                                       

       (2.3)

 

                                                            

(2.4)

 

where:  

xi is distribution discrete values, 

f(xi) is the function, 

N is the data size. 

The PD pulse rate probability distribution is expressed by the Weibull function [5, 6] 

using 
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       (2.5) 

where α and β represent every pulse height graph and PD pulse magnitude is denoted 

by q. 

The features of α-, β-, α+ and β+ are extracted from the positive and negative pulse 

height [7]. The pulse height graph is determined by the Weibull for statistical 

analysis while maintaining relevant data. These values can be used as the input for 

classifiers with mean, kurtosis, variance and skewness. The objective of the 

extracting features is to obtain useful input data from the raw PD data to show the 

PD pattern of a specific defect [8]. 

 

2.5 Classification features of PD 

In this work, there are few classification techniques for PD in order to have a better 

representative, which is called as feature extraction. These features can be obtained 

from the analysis techniques to utilize as an input for classification process. The 

features are support vector machine, discrete wavelet transform, discrete Fourier 

transform and wavelet packet transform.  

2.5.1 Support Vector Machine (SVM) 

SVM has been used widely as a classifier for the type and source of PD. It has drawn 

more attention in diagnostics and prediction due to its better generalization ability, 

effective classification and superior performance in cases of having a small data for 

training [9]. It is a learning technique, which is based on creating boundary 

separation between two groups of data set [10]. SVM is a machine that uses the main 
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of SVM concept, which is Kernel. Using this method, SVM can be adjusted to many 

tasks using kernel functions and various algorithms. 

SVM works in pattern recognition matters including nonlinear, tiny sample size and 

huge dimensionality [11]. The classification using SVM requires a pre-processing of 

the input for different PD sources, obtained by phase resolved partial discharge 

pattern. The data was separated into some phase distributions and the lowest 

magnitude, highest magnitude and the number of PD were determined [12].  

For example, a data set X is composed by samples xi, i = 1, … ,N, each of them 

defined by n features and belonging to a known class yi. Then, each sample is knows 

as a vector in an n-dimension of input space. According to the training data, a 

separated surface with the largest margin between each class can be obtained and the 

shape is suitable to fit the data distribution with good generalisation when tested with 

untrained data. Figure 2.6 shows input space in two-dimensional with a data 

separated in 2 classes. The data is separated by some planes but only one of them 

maximizes the margin. This is known as the optimal hyperplane pursued by SVM. 

 

Figure 2.6: Sample of two sets by SVM 
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To find the optimum hyperplane, SVM search automatically the training data subset, 

called support vectors that lie in the boundaries of class. The separated surface is 

gained by data mapping into feature space followed by the development of a hyper-

plane of linear. When it is re-mapped into the space of input, it results in a complex 

non-linear separation surface to segregate the data. The outcome was obtained by 

quadratic optimisation problem [13]. The frequency spectrum has stronger feature in 

identifying PD sources than time features while Radial Basis Function (RBF) kernel 

function gives better recognition rate than other kernels function, 

     

(2.6)

 

subject to: 

(2.7) 

where xi is input vector of i, yi is the assigned class, N is the training set size, w is the 

weight vector, b is a bias, ξi is a separation of data point i, φ(x) is the mapping 

function set, C is a cost and αi is a Lagrange multiplier. SVM was implemented in 

recognition of PD sources through PD signals obtained experimentally in time and 

frequency domains [14]. The distribution features, such as Weibull skewness factor, 

Weibull shape factor beta, normalized quantity number (NQN), skewness and 

kurtosis of the PD pulse distributions were used as the input data for SVM [15]. 

The kernel transformation function fails to fully separate the data, a slack error 

variable is used to create a margin decision function to do the data separation [16]. 

The linear optimal plane is constructed by the process of decision function through 
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dimensional space, called a hyperplane. The linear function defines the hyperplane 

with two parameters w and b [17]. 

2.5.2 Discrete wavelet transform (DWT) 

DWT was used to extract PD signals from 11 kV underground cable [18]. It was 

shown that wavelet transform (WT) is applicable to extract PD signals from the 

worst noisy condition but it is more complex compared to Fourier transform (FT) due 

to requiring expertise. The selection of the best mother wavelet was done for auto-

determining the threshold by implementing WT to PD signal denoising.  DWT was 

also applied to differentiate the acoustic PD signals [19]. 

An better method for DWT application with denoising to PD signals was proposed in 

[20]. First, the work defined the DWT filter structure. Then, analysis of the 

frequency bands was done on the wavelet coefficients in energy distribution and 

approximations in PD signals. Lastly, a DWT-based denoising technique was 

proposed and validated. They are approximations, which belong to the low frequency 

and detail for high frequency. 

This method was used to decompose the signals of PD with the different sub-band 

signals. Through the decomposed signals, the real shape signals of PD were 

estimated. Thus, it was successfully eliminating noise from the PD signals. The real 

shape of PD signals, which is obtained using DWT technique can be used in the 

classification of PD [18]. DWT was applied to extract relative features from different 

PD patterns according to different types of PD [21]. DWT is a process of filtering 

and down sampling signal and decomposes it into two coefficients with respect to the 

frequency components. They are approximations, which belong to the low frequency 

and detail for high frequency [22]. 
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DWT procedure from CWT by replacing p=p0m and q= q0p0m. DWT of a discrete 

signal x[n] is calculated using 

           

(2.8)

 

where: 

g represents for mother wavelet; 

n represents as integer where sample taken and; 

 p and q are a discrete manner. 

Quadrature mirror filter (QMF) that contains high pass filter h[n] and low pass filter 

I[n] are mirror phase of each other. For instance, signal x[n] got in both of HPF and 

LPF. To obtain the coefficients of dwt, the output from the filters need to down again 

by a factor of 2. Next, the output of HPF secured when down sampling done and 

after that the approximate coefficients which is from LPF gain details. Then, again 

the approximate coefficients are given to HPF and LPF while the process becomes 

continued and repeated. Both of the filters related by [23] 

            

(2.9)

 

Both filters are related by the L equation which represents the filter length, known as 

QMF. Figures 2.7 and 2.8 show the DWT decomposition levels and reconstruction 

levels where the process continued when coefficients are given to both filters. 

Denoising type method of DWT results in the coefficient of DWT for signal that also 

includes DWT thresholding. There are two types of thresholdings, which are soft and 

hard thresholding. In order to recover the coefficients signal, the multi-resolution 

signal decomposition feature is used to eliminate other sources. Next, some 

parameters are made to ensure that the wavelet process can happen for denoising of 
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the PD signals, for example mother wavelet selection,  decomposition level choice, 

thresholding function selection. Wavelet transform is a signal analysis that can give a 

good alternative description of the signal representation [24]. 

 

Figure 2.7: DWT decomposition levels 

 

Figure 2.8: DWT reconstruction levels 

2.5.3 Discrete Fourier transform (DFT) 

DFT converts equally-spaced samples of a function of a finite sequence into the same 

length of sequence for equally-spaced sample of the discrete-time Fourier 

transform (DTFT). DTFT is complex function of frequency [25]. The space where 

DTFT is sampled is the reciprocal of the input order duration. An inverse DFT uses 

DTFT samples as the coefficient of complex sinusoids at appropriate frequencies of 

DTFT. It has similar sample values as the original input order. The selection of the 
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optimum mother wavelet and threshold for DWT is important in obtaining good 

performance of DWT [26]. 

DFT is the original sequence of a frequency-domain for input data. If the initial 

sequence expands all non-zero number of a function, the DTFT is periodic and 

continuous. DFT yields discrete samples of a cycle. If the initial input sequence is a 

cycle from a periodic function, DFT yields all non-zeroes of a DTFT cycle [27]. 

DFT is one of the most main discrete transform in Fourier for various 

applications. In digital signal processing (DSP), the function is a signal or quantity, 

which changes against time, for example daily temperature readings or radio signal, 

sound wave pressure, sampled against a time step. In image processing, the samples 

are the pixels in a column or row of an image. 

DFT has been applied to determine partial differential equations and for many 

operations, for example, multiplying large integers or convolutions. DFT deals with a 

large amount of data. Hence, it is possible to implement it in 

computation by numerical methods or a hardware. The implementation applies fast 

Fourier transform (FFT) method. Hence, the terms DFT and FFT are 

interchangeable. Before its current usage, FFT has been applied for finite Fourier 

transform [28]. 

2.5.4 Wavelet packet transform (WPT) 

WPT is a good to identify sharp edges of a transition [29]. The signal decomposition 

using wavelet has a good adaptation to signals with special characteristics [30, 31]. 

The extension to the adaptive-based characteristics of WPT which a signal is 

possible, leads to coefficients to a compact representation of signals. When PD is 
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measured closely to their source, for instance a measurement of PD at a termination, 

WPT technique is suitable to be used. 

Basically, WPT is widely used to denoise PD signals to enhance the detection 

sensitivity with the assumption that measurements are added with additive white 

Gaussian noise [32, 33]. Many problems that exist in denoising PD signals for online 

testing such as selection of threshold value and noise interference from nearby 

location have been solved [34, 35]. Due to the WPT effectiveness in approximation 

of PD signals, efforts have been taken to apply WPT in gaining a vector of feature 

which characterises PD signals from various places. WPT was applied to obtain a 

frequency-time figure for various PD types, where the decomposition of PD image 

was obtained using WT for feature extraction [36].  

PD signals captured from the experiment were applied into WPT to identify a vector 

of feature to be applied in the training. Using WPT to determine a vector of feature 

other than transforming into representation of the signal is better because it can be 

added with noise reduction within one step and improvement of sensitivity. PD 

signals are nature of stochastic according to how PDs are obtained. For a PD to 

happen, 2 conditions must be reached [37]. The electric field is higher than a PD 

field of inception and one electron is there for a discharge.  

WPT transforms can successfully handle random time frequency localization, not 

like Fourier transform, which time information of a signal is not recovered. WPT 

coefficients can be applied as features for PD determination and application in sub-

band signals to delineate subtle features in a signal. The signal statistical properties 

of decomposed L2(R) within a wavelet of orthonormal are simplified compared to 

the statistical properties of the initial signals. Also, the wavelet function 
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orthogonality can reduce the mathematical analysis. Decorrelated statistical of the 

wavelet packet coefficients of a band-limited wide-sense stationary with higher 

resolution is a random process [38]. 

The level of resolution after the signal is starting to de-correlate is depending on the 

wavelet moments. Consider a random x as a rule for assignment on each output z as 

x(z). A process of stochastic x is a rule to assign to each z as a function of x(t, z). 

Thus, it is a time function family that depends on z. z is the set of all experimental 

output and the t domain is a real number set R. A PD is a complex phenomenon and 

can be taken as a stochastic phenomenon, which is unable to be described by a finite 

parameter numbers. A stochastic phenomenon can be defined in term of the order k 

cumulant by 

cum(x(t1), x(t2), x(t3), x(t4), x(tk)) = Ck(t1, ... , tk)        (2.10) 

Therefore, the first four cumulants of this process are  

      

    (2.11) 

The stochastic process cumulants are multi-dimensional vectors, which are difficult 

to be visualised and processed. It is commonly used in processing of signal to yield a 

1 dimensional slice through freezing some of its indexes k. A lot of types of 1 

dimensional slice are available, which include horizontal, vertical, offset and radial, 

diagonal. 

The wavelet coefficient at every level was considered as a stochastic process. Hence, 

the cumulants depending on the level for the coefficients of wavelet were gained 
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through WPT on each data. Every stochastic process was approximated by the 

standard deviation, skewness, mean and kurtosis at every decomposition node. To 

decrease the feature vector dimensionality belonging to decomposition, similar scale 

was added and was applied for every PD type as a fingerprint and used as the input 

for the classifiers. The kurtosis, standard deviation, mean and skewness are 

calculated using 

              (2.12) 

            (2.13) 

            (2.14) 

            (2.15) 

where x[n] is the wavelet coefficient at position n and  N is the wavelet coefficients 

number used at every scale.  

An assumption of one AC cycle has one PD only with a one type and of a single 

source is based on the limitation of the method the signals were captured and the 

classification algorithm and vector of the feature was validated. The classification 

algorithm and vector of the feature were applied to deal with PD sources of many 

sources. The classification under many PD sources in one AC cycle was investigated 

in [39]. 

  

Univ
ers

ity
 of

 M
ala

ya



19 
 

CHAPTER 3:  METHODOLOGY OF THE WORK 

 

This chapter describes the methodology that has been used for this work. PD 

measurement method, sample preparation for PD measurement and the proposed PD 

type classification techniques are described in details. This work focuses on 

obtaining PD patterns from five types of commonly encountered defect in actual 

XLPE cable joints and performing classification to identify the defect. Feature 

extractions were performed to obtain useful input features, which serve as 

identification marker for the cable joint defect. The extracted features of the input 

were implemented as the input data for SVM classifier.  

Different noise levels with increasing pulse count and magnitude were added to the 

PD signals to observe which input feature and classifier has the higher noise 

tolerance. The classifiers were trained using noise-free PD signals but tested with 

noisy PD signals. Noise levels of variable pulse count and noise level with variable 

amplitude were tested. The noise source was obtained from ground interference 

during raining which is not a randomly generated noise. 

 

3.1 Flowchart of Work 

The work was started with the measurement of PD signals in a laboratory as shown 

in Figure 3.1. There are five XLPE cable joints prepared in the lab, as shown in 

Table 3.1. Each of them was measured using the applied voltage of 6kV, 7kV and 

9kV for comparison on which defects have more PDs and to recognize them through 

different applied voltage. Next, PD patterns were recorded for each of the sample. 
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Figure 3.1: Flowchart of laboratory test work 

 

3.2 Samples Prepared 

Five XLPE, 11 kV cable joint with various defects artificial created were prepared as 

shown in Table 3.1. Defect of semiconductor layer air gap was introduced with 

Identify the best technique 
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Perform measurement of different 

defects 

 

Apply voltage (6kV, 7kV & 9kV) 

Capture PD signals for each defect & 

each applied voltage 

Perform feature extraction using 

different denoising techniques 

 

Determine the defect type using 
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insulation tape to wrap air layer around the semiconductor edge. Defect of metal 

particle on XLPE was introduced by spreading metal particles on the XLPE layer. 

Defect of insulation incision was introduced by using a shallow cut at the XLPE 

layer with a sharp knife. Defect of semiconductor layer tip was introduced by using 

rough edges at the semiconductor tip. Defect of axial direction shift was introduced 

by including the cable at an angle of out of centre. All defects were made at the 

XLPE cable before the joints were installed. The pictures of the defects are shown in 

Figure 3.2. 

Table 3.1: Cable joint defects used for the experiment 

Cable Joint Defect type 

C1 Defect of incision in insulation  

C2 Defect of shift in axial direction  

C3 Defect of tip at semiconductor layer  

C4 Defect of XLPE metal particle 

C5 Insulation cable with no defect 

 

      

                               (a)                                                                  (b) 
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                               (c)                                                                  (d) 

  

(e) 

Figure 3.2: Defects created; (a) Defect of incision on insulation, (b) Defect of shift 

on axial direction, (c) Defect of tip on semiconductor layer, (d) Defect of XLPE 

metal particle and (e) Defect of air gap in semiconductor layer  

 

3.3 PD Measurement 

Figure 3.3 shows a schematic diagram of a typical PD measurement set up and 

Figure 3.4 shows the actual measurement setup in HV laboratory. It consists of HV 

source served by step up transformer, measuring capacitor, cable joint sample, a 

coupling capacitor and a coupling device and a PD detection unit connected to a PC 

by a USB controller. The mobility of the charge from coupling capacitor produces a 

current, which is measured by the PD detector. The coupling device converts the 

detected current to a voltage. PD measurements taken from the different defects were 

performed at 6kV, 7kV and 9kV to identify the PD pattern at the PC.   
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Figure 3.3:Setup of PD measurement under AC voltage 

 

Figure 3.4: PD measurement setup in HV laboratory 

The measurement was started with insulation incision defect. Each defect was 

measured one by one using different source voltage such as 6kV, 7kV and 9kV. 

Thus, each of the defect was tested three times to obtain the PD pattern. The pattern 
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was stored in a PC and the PD signals were transferred from the testing devices to 

PD detector.  

3.4 Methods of PD classification 

In this work, PD classifier used to classify the PD signals is SVM. As the signal to 

noise (SNR) is higher it means lower noise. Denoising tehcniques used were DWT, 

DFT and WPT and were compared to between each other. The SVM method used is 

as shown in Figure 3.5. 

 

Figure 3.5: Feature concept of SVM 

3.5 Denoising techniques of PD signals 

Three techniques used to measure the PD signals are shown in Figure 3.6. Each of 

them consists of clean, noisy and denoised PD signals. The result was obtained by 

measurement of the PD signals using different techniques. The accuracies of the 

three techniques were determined.  
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Figure 3.6: Denoising techniques flowchart 
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CHAPTER 4:  RESULTS AND ANALYSIS 

 

4.1 OMICRON software 

PD signals from each defect were obtained using OMICRON software. The MPD600 

detector allows stream signals of PC to be displayed without using an oscilloscope. It 

is interfaced to display the signals in different ways, such as phase resolved PD 

patterns.  

Then, the obtained patterns were exported into MATLAB and Excel for further data 

analysis. By having the OMICRON software, the signals can be displayed and 

recorded. Figure 4.1 shows a view of the MPD600 software, which was used in the 

experiment according to the IEC60270 standard recommendation. Every defect was 

examined and tested using the same configuration of the PD threshold and the time 

for histogram acquisition was set to one minute. 

4.2 Measured PD signals 

PD signals were recorded for the five different defects of XLPE cable. Figures 4.2 to 

4.5 show the results of PD patterns at 6kV, 7kV and 9kV for each of the defects. The 

figure indicates the PD signals from insulation incision, axial direction shifts, XLPE 

metal particle, air gap in nsemiconductor layer and semiconductor layer tip defects. 
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Figure 4.1: Setup of MDP600 software 

4.3 Results obtained using OMICRON MPD600 software 

Using the MPD600 software, the PD patterns were recorded and captured for each 

defect to see the differences in the PD patterns. Figure 4.2 shows that as the voltage 

increased to 9kV, the number of PD increases to 94% from 92% and 93% for defect 

C1 (insulation incision defect). The pattern of the PD signals can be seen clearly as 

increasing as the voltage is increased.  
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For Figure 4.3, the increasing number of PD signals was detected at the increasing 

voltage to 9kV for defect C2 (axial direction shift defect). Referring to the PD pattern 

in this figure, the PD signals showed at 93% but it is obviously shown the increasing 

of PD pattern at the increasing voltage from 6kV to 9kV. Larger difference in the 

percentage of the PD number can be seen if the voltage is increased higher.  

From Figures 4.4 and 4.5, the percentage of PD signals is 95% and 86% respectively. 

Table 4.1 shows the percentage at 9kV of the applied voltage for the four defects, 

which are C1 (defect of incision on insulation), C2 (defect of shift of axial direction), 

C3 (defect of tip in semiconductor layer) and C4 (defect of XLPE metal particle). 

Table 4.1: PD signals percentage for the four defects at 9kV 

Types of defect Percentage of PD signals (%) 

C1 94 

C2 93 

C3 95 

C4 86 
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(a) 

 
(b) 
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(c) 

Figure 4.2: PD pattern on defect C1 (a) 6kV, (b) 7kV and (c) 9kV 

 

 
(a) 
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(b) 

 
(c) 

Figure 4.3: PD pattern on defect C2 at voltage in kV: (a) 6, (b) 7 and (c) 9 
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(a) 

 
(b) 
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(c) 

Figure 4.4: PD pattern on defect C3 at voltage in kV: (a) 6, (b) 7 and (c) 9  
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(b) 

 
(c) 

Figure 4.5: PD pattern on defect C4 at voltage in kV: (a) 6, (b) 7 and (c) 9  
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4.4 Measured PD signals 

There are three denoising techniques of PD signals been used in this study, which are 

DFT, WPT and DWT. Each of the technique was applied to denoise PD signals. The 

percentage of accuracies was obtained and compared.  

4.4.1 DFT technique 

Figure 4.6 shows a clean PD signal, PD signal after adding noise and denoised signal 

using DFT for defect C1 (insulation incision defect). Figure 4.7 shows a clean PD 

signal, PD signal with noise and denoised signal using DFT for defect C2 (axial 

direction shift defect). Figure 4.8 shows a clean PD signal, PD signal after adding 

noise and denoised signal using DFT for defect C3 (semiconductor layer tip defect). 

 

(a) 

 
(b) 
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(c) 

Figure 4.6: (a) Clean PD signal, (b) PD signal after adding noise and (c) denoised 

signal using DFT for defect C1 (insulation incision defect). 

 

 

(a) 

 

(b) 
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(c) 

Figure 4.7: (a) Clean PD signal, (b) PD signal after adding noise and (c) denoised 

signal using DFT for defect C2 (axial direction shift defect). 

 

 

(a) 

 

(b) 

Univ
ers

ity
 of

 M
ala

ya



38 
 

 

(c) 

Figure 4.8: (a) Clean PD signal, (b) PD signal after adding noise and (c) denoised 

signal using DFT for defect C3 (semiconductor layer tip defect). 

 

4.4.2 DWT Technique 

Figure 4.9 shows a clean PD signal, PD signal after adding noise and denoised signal 

using DWT for defect C1 (insulation incision defect). Figure 4.10 shows a clean PD 

signal, PD signal after adding noise and denoised signal using DWT for defect C2 

(axial direction shift defect). Figure 4.11 shows a clean PD signal, PD signal after 

adding noise and denoised signal using DWT for defect C3 (semiconductor layer tip 

defect). 
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(b) 

 

(c) 

Figure 4.9: (a) Clean PD signal, (b) PD signal after adding noise and (c) denoised 

signal using DWT for defect C1 (insulation incision defect). 
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(b) 

 

(c) 

Figure 4.10: (a) Clean PD signal, (b) PD signal after adding noise and (c) 

denoised signal using DWT for defect C2 (axial direction shift defect). 
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(b) 

 

(c) 

Figure 4.11: (a) Clean PD signal, (b) PD signal after adding noise and (c) 

denoised signal using DWT for defect C3 (semiconductor layer tip defect). 

 

4.4.3 WPT technique 

Figure 4.12 shows a clean PD signal, PD signal after adding noise and denoised 

signal using WPT for defect C1 (insulation incision defect). Figure 4.13 shows a 

clean PD signal, PD signal after adding noise and denoised signal using WPT for 

defect C2 (axial direction shift defect). Figure 4.14 shows a clean PD signal, PD 

signal after adding noise and denoised signal using WPT for defect C3 

(semiconductor layer tip defect). 
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(a) 

 

(b) 

 

(c) 

Figure 4.12: (a) Clean PD signal, (b) PD signal after adding noise and (c) 

denoised signal using WPT for defect C1 (insulation incision defect). 
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(a) 

 

(b) 

 

(c) 

Figure 4.13: (a) Clean PD signal, (b) PD signal after adding noise and (c) 

denoised signal using WPT for defect C2 (axial direction shift defect). 
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(a) 

 

(b) 

 

(c) 

Figure 4.14: (a) Clean PD signal, (b) PD signal after adding noise and (c) 

denoised signal using WPT for defect C3 (semiconductor layer tip defect). 
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4.5 Comparison of accuracies among different methods 

Table 4.2 shows comparison of defect determination accuracy from different 

denoisng methods, DFT, DWT and WPT under different signal to noise ratio (SNR) 

and with previous works. Each of the method was run for 10 times and the average 

accuracy was taken. From this table, it can be seen that DFT technique yields the 

highest accuracy of defect determination for cable joint defect, most accurate which 

is 100% at SNR =100 dB and 98.8889% at SNR = 1 dB and 10 dB. At higher SNR, 

the defect type determination accuracy is better for the three methods. It can also be 

seen that DFT-SVM yields high accuracy under different level of noise in the signals 

unlike DFT-ANN, which the accuracy decreases with the noise level. 

 

Table 4.2: Comparison of defect type determination accuracies among different 

methods and with previous works 

SNR SNR = 1 dB SNR = 10 dB SNR = 100 dB 

Method Accuracy (%) Accuracy (%) Accuracy (%) 

DFT-SVM 98.8889 98.8889 100 

WPT-SVM 51.1111 55.5556 77.7778 

DWT-SVM 36.6667 37.7778 71.1111 

DFT-ANN [40] 40.0000 46.6667 100 

WPT-ANN [40] 58.8889 66.6667 100 

DWT-ANN [40] 56.6667 66.6667 100 
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CHAPTER 5:  CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this project, determination of the type of cable joint defect using partial discharge 

(PD) measuring equipment with added noise using support vector machine (SVM) 

has been successfully carried out. Five cable joints of cross-linked polyethylene type 

with defects introduced artificially were successfully developed according to what 

are commonly found at site. Various noise reduction techniques were applied to 

denoise the PD signals and the denoised signals were used to determine different 

types of defect in cable joints. The input features from different noise reduction 

techniques were successfully implemented to train SVM to determine the defect 

nature. 

Determination of the defect type was successfully performed using Support Vector 

Machine (SVM) after DFT, WPT and DWT techniques. The results were compared 

between each noise reduction method and the existing work to validate the capability 

of the applied methods. It was found that the noise reduction technique on partial 

discharge signals from cable joint defects using discrete Fourier transform (DFT) 

yields a better accuracy than wavelet packet transform (WPT) and discrete wavelet 

transform (DWT). Hence, noise reduction on PD signals from cable joint defects 

using DFT can be a promising tool for site maintenance on cable joints. 

5.2 Recommendations for future work 

Future work that can be performed are: 

1. Test using different classifiers, such as artificial neural network (ANN) 

2. Test using different desnioing methods, such as Cepstrum analysis 
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