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MODEL UPDATING AND DAMAGE DETECTION OF FRAME STRUCTURES 

USING OUTPUT-ONLY MEASUREMENTS 

 

ABSTRACT 

Modal based damage detection and localization is one of the most efficient non-

destructive health assessment methods in civil structures. It is based on the fact that 

damage in the structure alters structural and consequently modal properties of the 

system. There are many ways of employing modal properties for damage detection, 

including reconstructing flexibility matrix using modal data i.e. modal flexibility matrix. 

Among various structural systems, utilizing this method in frame structures is relatively 

more difficult. The main reason is their complex geometry and subsequently complex 

flexibility matrix. The second concern is that mass normalized mode shapes are required 

to reconstruct flexibility matrix and they are not so easy to obtain, especially in 

operational modal testing. The third issue is incomplete measurements. In frame 

structures like jacket platforms for example, it is not possible to measure all degrees of 

freedom and it is important to find a solution to detect damages on unmeasured part of  

the structure. This study aims to address these concerns and other issues that are related 

to damage detection of frame structures using operational modal analysis (OMA). A 

scaled model of a steel frame structure was constructed and tested in the laboratory. The 

model was excited using two shakers that were mounted on top of the structure. 

Although the input forces were available, but they were just used to validate the results 

of operational modal analysis. Since input forces were assumed to be unavailable in 

OMA, an alternative scaling method based on change in mass was used to normalize 

mode shapes. Among various flexibility based detection methods, damage locating 

vectors were found to be one of the most suitable methods considering the complex 

geometry of the frame structure and were used as the primary detection method in this 
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study. The method was tested by a number of damage scenarios and the results were 

showing that damage locating vectors (DLV) is always certain on indicating the 

undamaged members, but it sometimes fails to indicate the damaged member(s) with an 

acceptable certainty. To solve this problem, a second damage indicator was suggested 

based on cross model cross mode (CMCM) model updating method. The advantage of 

using this indicator was that it has the opposite type of error compare to DLV and so 

combining these two methods resulted on a more certain damage indicator. Cross model 

cross mode model updating was also used to address the problem of incomplete 

measurements by updating a finite element model of the frame structures in respect to 

the experimental data. Then each unmeasured member was damaged in updated FE 

model which provided a range of frequencies for each damage case. Comparing the 

calculated frequencies with the frequencies obtained from the experiment and also using 

the extra information provided by the measured DOFs, it was possible to approximate 

the location of the damaged member. 
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MODEL UPDATING AND DAMAGE DETECTION OF FRAME STRUCTURES 

USING OUTPUT-ONLY MEASUREMENTS 

 

ABSTRAK 

Dalam kejuruteraan awam kaedah yang paling efisyen dalam pengesanan kerosakan 

stuktur adalah kaedah non-destructive health assessment. Ia adalah berdasarkan kepada 

fakta bahawa kerosakan dalam struktur mengubah sifat-sifat struktur. Terdapat banyak 

cara untuk menggunakan modal analisis untuk mengesan kerosakan stuktur termasuk 

membina semula fleksibiliti matriks menggunakan data modal. Sebab utama kaedah ini 

dipilih kerana ia boleh menyelesaikan masalah geometri yang kompleks, berkebolehan 

membina jisim bentuk mod normal yang dikehendaki dan melengkapkan data yang 

tidak lengkap terutama stuktur berangka. Kajian ini bertujuan untuk menangani masalah 

yang berkaitan dengan pengesanan kerosakan struktur menggunakan OMA. Model 

berskala struktur kerangka keluli berskala makmal telah dibina dan diuji di makmal 

dengan menggunakan dua penggoncang yang dipasang di atas struktur. Oleh sebab 

input tidak tersedia di OMA, kaedah scaling alternatif berdasarkan perubahan dalam 

jisim digunakan untuk menormalkan bentuk mod. Di antara pelbagai kaedah 

pengesanan fleksibiliti, damage locating vectors kerosakan adalah kaedah yang paling 

sesuai kerana kaedah geometri kompleks struktur kerangka telah digunakan dalam 

kaedah pengesanan stuktur di awal kajian. Kaedah ini telah diuji oleh beberapa kes 

kerosakan dan keputusan menunjukkan bahawa DLV sentiasa menumpu pada bahagian-

bahagian yang tidak rosak, tetapi juga gagal untuk mengesan bahagian yang rosak 

dengan tepat. Untuk menyelesaikan masalah ini, kaedah cross model cross mode  

(CMCM) telah digunakan. Kaedah ini mempunyai jenis yang bertentangan dengan ralat 

bandingkan dengan DLV dan menggabungkan kedua-dua kaedah untuk menghasilkan 

pengesan kerosakan yang lebih tepat. CMCM juga digunakan untuk menangani masalah 
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data tidak lengkap dengan mengemaskini model unsur terhingga struktur rangka 

berkenaan dengan data eksperimen. Kemudian setiap stuktur dalam model FE 

dikemaskini untuk menyediakan julat frekuensi bagi setiap kes kerosakan. Dengan 

membandingkan frekuensi yang telah dikira dengan frekuensi yang diperolehi daripada 

eksperimen dan DOFS yang telah diukur, ia dapat mengesan kerosakan pada stuktur 

kajian.  
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Non-destructive structural examination and damage detection methods can be classified 

as local damage detection and global damage detection. Local damage detection 

methods e.g. visual inspection, CT scanning, ultrasonic, etc, are mainly used to detect 

local damages in some specific regions of the structure. The results of these methods are 

fairly accurate. However to perform them, the existence of damage and its estimated 

location must be known; otherwise a whole structure inspection is necessary. This 

illuminates the weakness of these methods for the large and complicated structures in 

closed or invisible environments e.g. almost all civil structures. Therefore in such 

structures, using global damage detection methods are the only option, either to 

precisely locate the damaged section of the structure or to identify the existence of 

damage and its approximate location for further inspections.  

One of the global damage identification and detection approaches, and in fact the most 

reported one, is modal based damage detection. The basic principle of this approach is 

simple. The modal parameters of a structure e.g. natural frequencies, mode shapes, 

modal strains energy etc, are consequences of structural characteristic i.e. mass, 

damping and stiffness. Once some damages appear in the structure, it changes some of 

the structural parameters, usually stiffness, which accordingly affects the modal 

behaviour of the structure. Therefore major changes in vibration characteristics or 

modal parameters of the structure may be understood as existence of damage. 

Modal based damage detection approach have been developed for the past few decades 

(Salawu, 1997). Over these years, a large number of methods and techniques have been 

introduced, studied and developed in different aspects. Vibration based damage 
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detection procedure includes two main elements. The first is modal parameter 

estimation techniques. Like nearly all engineering or scientific topics, this area was 

greatly benefited by the escalation technology. The second element of a vibration based 

damage detection process is identification and detection methods that employ estimated 

modal parameters to detect and locate damage. It is important to mention that although 

these two elements can be seen individually, to use them in a damage detection strategy 

they are influenced by each other and need to be studied together. 

Modal parameter estimation methods are divided into two main categories i.e. 

Experimental Modal Analysis (EMA) and Operational Modal Analysis (OMA). 

Experimental modal analysis uses both input and output measurements i.e. excitation 

and response to estimate modal parameters whereas operational modal analysis relies 

only on output measurements. That is why OMA often referred to as output-only modal 

analysis. In EMA, artificial excitation is normally used to measure Frequency Response 

Function (FRF) or Impulse Response Functions (IRF). Conducting EMA is normally 

possible in the lab environments only and it is very difficult and often impossible to be 

used in the field and for large civil structures. That is why in the field of civil 

engineering, the final applications of modal based damage detection methods are limited 

to Operational Modal Analysis. 

The second element of modal based damage detection is the methods and techniques 

that are used to employ the modal parameters of the structure to identify and locate 

damages. Several approaches are reported and developed in the past few decades. Some 

of these methods are using frequency changes to identify damage. Some methods use 

mode shapes or its derivatives like mode shape curvature or strain mode shape. Another 

group of damage identification methods are based on dynamically measured flexibility 

of the structure etc. Any of these methods have some advantages and disadvantages that 
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make them suitable for a particular case. However, one of the most important 

parameters that are governing this is the modal estimation techniques that were used to 

estimate modal parameters. For example, EMA obtains more accurate mode shapes and 

is able to scale them more precisely than OMA. On the other hand, complete 

measurements are not always possible in the field and so complete mode shapes are not 

always available in OMA. That is why in general, frequency based damage detection 

methods are the better option for OMA and using methods based on mode shapes or 

modal flexibility is rather challenging in real structures. This study aims to address few 

of these challenges. 

1.2 Problem Statement 

This study has several problems that need to be addressed in order to achieve its 

objectives. However, they can be summarized into two: 

1. Damage detection based on operational modal analysis is one of the two main 

problems of this study. Since input force is not available, a lots of valuable 

information including mass are missing. In general, there are two strategies to 

encounter this problem. One is developing a damage detection method that does 

not require those missing information as input data e.g. frequency based 

methods. The second solution is to obtain those missing information by other 

means and methods. This study chooses the second strategy. 

 

2. The second main problem of this study is the issue of incomplete measurement. 

In a jacket platform, it is not very practical to put sensors under water. So a 

section of the structure that has the maximum risk of damaged cannot be 

measured. This study proposed a strategy to solve this problem in an easy and 

cheap way.  
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1.3 Objectives 

The objectives of this study are as follow: 

i. To evaluate the consistency of modal identification and damage detection 

methods employing operational modal analysis on a lab-scale frame structure 

 

ii. To examine the factors that are contributing to reliability and consistency of 

mode shape scaling method based on mass modification in a frame-like 

structure.  

 

iii. To evaluate the reliability of using damage locating vectors to locate damage 

using output only modal analysis. 

 

iv. To propose an easy and reliable detection method that is able to detect damages 

which are located in unmeasured region of the structure.  

1.4 Scope of the Study 

This study focuses on modal testing and damage detection of a jacket-like frame 

structure. The original test set up was to model and test the frame with and without 

braces, however only the results of frame without braces are presented in this thesis. All 

the objectives of this study are based on the results of output-only modal testing. 

Frequency response function (FRF) based modal identification is not the concern of this 

study and is used only to validate the results. One of the important assumptions of this 

study is that the intact and damaged structures are both linear systems. In other word, 

damage does not have any nonlinear effect on the structure and its response can still be 

modelled using linear equations of motion.  
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1.5 Outline of Thesis 

This thesis contains six chapters. The next chapter reviews the work that had been 

carried out by various researchers on the theme studied in this work and gives a brief 

introduction to the different topics discussed in this thesis. The third chapter presents all 

the theories that are used in various aspects of this thesis, either directly or as the 

background theory of the package that are employed. Chapter 4 presents the proposed 

methods that are employed in this thesis. The chapter consists of the methods of 

numerical modelling and analyses, experimental methods and also the methods of 

applying mass normalization, model updating and damage detection approaches to the 

particular problem of this study. Chapter 5 comprises the results and discussion of the 

work carried out in this research and finally chapter 6 contains conclusions and 

recommendations.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Overview 

Structural health monitoring and vibration based damage detection has been the subject 

of many studies in the past few decades. From the early years which these methods 

were very basic, many researchers devoted their career to advance this engineering 

topic. Today, vibration based damage detection and localization techniques are based on 

variety of approaches e.g. flexibility based methods, modal strain energy based 

methods, model updating based methods, damage locating vectors, statistical 

approaches etc. This chapter aims to review some of these researches, mainly those 

which are directly or indirectly related to the topic of this study.   

2.2 Frequency based Methods 

Frequency-based detection methods use changes of natural frequencies caused by 

damage as the basic feature to indicate and locate them. In fact, the observation that 

natural frequency of a structure changes by introducing damage (lost of stiffness) was 

the first motivation for vibration based damage detection methods (Salawu, 1997). 

There are a large number of studies in the past few decades on frequency based damage 

identification methods. The earliest studies on this subjects can be found in a review 

paper presented by (Salawu, 1997). The most important advantage of frequency based 

methods is that natural frequencies can be easily measured using a few sensors and 

access to the entire structure is not required. However, the method has few limitations 

that have been addresses in the literature. One of the first known limitations of these 

methods is that natural frequencies are not very sensitive to the local errors. So to use 

these methods either the measurements must be very precise or the damage must be 

severe. Otherwise, the frequency shift is difficult to measure. Although based on an 
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statistical study, (S. W.  Doebling, Farrar, & Goodman, 1997) suggested that among 

modal variables, modal frequencies have the least statistical variation from random error 

sources. 

Another limitation of frequency based methods is that frequencies are more of a global 

property of the structure and they might not contain the local information of damage. 

However this issue can be addressed by measuring higher natural frequencies which 

requires more advance technologies (Salawu, 1997). Frequency based methods can be 

divided into two categories i.e. forward problems and inverse problems.  

The forward problems are based on determining frequency shifts caused by known 

damage cases and comparing them with the measured frequencies to predict the damage 

location. The known frequency shifts are usually obtained numerically e.g. using FE 

modelling and analysis. One of the earliest studies on using forward problems for 

damage detection is dated back to three decades ago (Cawley & Adams, 1979). Their 

method was based on an error term that relates the measured frequency shifts of a pair 

of modes to a set of numerical data that produces frequency shifts caused by stiffness 

reduction. (M. I. Friswell, Penny, & Wilson, 1994) presume a highly accurate model of 

the structure and use this model to calculate frequency shifts of undamaged structure as 

well as postulated damage scenarios. They then calculate the ratio of frequency shift for 

all the modes and damage scenarios. They compared the measured frequency shifts with 

these data by fitting a power-law relation to them. A fit that is a line with unity slope is 

the identification of correct damage scenario. A similar form of study is presented by 

(Juneja, Haftka, & Cudney, 1997) which is based on matching the response of the 

damaged structure to a database of structural responses. 
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There are another groups of studies based on explicit frequency shifts that fit in this 

category. (Hasan, 1995) derived an explicit frequency shift expression for a beam on an 

elastic foundation, showing that frequency shift does not have an explicit dependence in 

this condition. (Hu & Liang, 1993; Morassi & Rollo, 2001) derived an explicit 

frequency shift expression for a cracked beam vibrating in bending using a perturbation 

approach. (Kasper, Swanson, & Reichard, 2008) applied the expressions of explicit 

wave-number shift and frequency shift to a cracked uniform beam, with both shallow 

and deep cracks. However their expression is based on high frequency approximation 

and inapplicable for fundamental frequencies. 

Inverse methods on the other hand, are based on an initial model of the structure e.g. 

FEM which is combined with measured data to improve the model. The measurements 

are often in form of modal parameters which are extracted from acceleration and force 

data, although frequency response function (FRF) can also be used (M. I. Friswell, 

2007). 

The application of inverse problems on damage detection is dated back to early 70s 

(Lifshitz & Rotem, 1969). These inverse methods are not necessarily categorized as 

model updating methods. For example (Stubbs & Osegueda, 1990a, 1990b) presented a 

damage detection method based on the sensitivity of modal frequency changes. They 

computed an error function for the i th mode and jth structural member and any member 

with minimum error is detected as damaged member. A good number of early 

publication in this subject are presented in (Salawu, 1997).  

(Messina, Williams, & Contursi, 1998) proposed a detection method based on the 

sensitivity of the frequency of each mode to damage in each location. It uses the 

statistical correlation between the numerically estimated frequency shifts and the actual 
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measured frequency shifts. They wrote the analytical frequency shifts as a function of 

the damage extent vector. Damage extent vector which maximizes the multiple damage 

location assurance is indicating the damage state.   

(Liang, Choy, & Hu, 1991) and (Nandwana & Maiti, 1997) and (Chaudhari & Maiti, 

2000) used a rotational spring to represent crack in Euler-Bernoulli type beams. They 

obtained plots of the spring’s stiffness with the spring’s location for any of the three 

bending natural modes through the characteristic equation. The crack’s location and 

stiffness was identifying by the intersection of the three curves. (Patil & Maiti, 2003) 

extended this method to beams with varying boundary conditions. Further studies on 

damage detection using inverse problem with the scope of beams are carried out by (J-T 

Kim & Stubbs, 2003; Maity & Tripathy, 2005; Morassi & Rollo, 2001; Zhong, Oyadiji, 

& Ding, 2008). 

2.3 Frame Structures 

(Jeong-Tae Kim & Stubbs, 1995) presented an algorithm to detect and locate damage in 

jacket offshore platforms in unsupervised condition. It means only post-damage modal 

parameters are available. To do this, they estimated a baseline modal parameters of 

jacket-type offshore platforms. Based on that they formulated a theory of damage 

localization and severity estimation. To verify their method, they use a numerical 

example of a jacket-type offshore structure with limited modal information. 

(Farrar & Jauregui, 1998a, 1998b) used five damage identification algorithms and 

applied them to the I-40 bridge in an experimental study. The five algorithms they used 

were change in flexibility, change in stiffness, change in uniform load surface curvature, 

damage index and mode shape curvature methods. They concluded that standard modal 

properties i.e. natural frequencies and mode shapes were relatively less capable of 
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detecting damage. In compare, damage index method which uses the second derivatives 

of mode shapes and also the mode shape curvature method are more capable of 

detecting and locating damage. However, they indicated that all these mode shape based 

methods are still suffering from a few well-known confounding actors i.e. the difficulty 

of accurately identifying mode shapes, the need for complete measurements which 

requires a big number of sensors etc. More importantly, they stated that compared to a 

basic modal parameter like natural frequency, mode shapes have a larger statistical 

variability.  

(Z. Shi, Law, & Zhang, 2002; Z. Shi, Law, & Zhang, 2000) demonstrated a method to 

detect and locate damage by using the elemental energy quotient difference and modal 

strain energy change. Their method also quantifies the damage using sensitivity analysis 

as well as using an algorithm based on change in modal strain energy. (Mangal, 

Idichandy, & Ganapathy, 2001) used vibration responses due to impulse and relaxation 

on a laboratory model of a jacket platform.  They concluded that both impulse and 

relaxation responses are useful for monitoring the jacket structure and that their results 

can be used as the basis for automated and on-line monitoring of offshore jacket 

platforms using neural networks. 

(Nichols, 2003) conducted an experimental study to realize the use of ambient 

excitation in detecting damage in offshore structure. He excited two models of an 

articulated offshore structure and estimated the prediction error. The results 

demonstrated that the prediction error was increasing when damage was introduced to 

the structure. They use this technique mostly to predict the presence of damage.  

(Yang, Li, & Hu, 2004) used a damage localization method based on decomposing the 

modal strain energy to locate damage in an offshore platform. Their method required 
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only a few numbers of identified mode shapes from intact and damaged structure. They 

demonstrated their method by successfully localizing damaged member of a template 

offshore structure. (X. Shi, Matsui, Li, & Gong, 2007) use partial measurements of 

offshore jacket platforms in unsupervised condition to identify and localize damage. 

The advantage of their method is that it is robust against identification error of baseline 

structure. 

(Cheng & Wang, 2008) demonstrated a method that uses time-domain data under 

random loading to detecting damage in offshore platforms. They suggested that only a 

few number of accelerometers can be used to efficiently detect the damage and 

increasing the number of sensors only improves the damage detection’s success rate.  

(X. Shi, Li, Yang, & Gong, 2008) proposed a method to evaluate location and severity 

of damage in jacket platforms. They used incomplete measurements of modal 

parameters of a scaled platform that was excited from the ground using white noise. 

They demonstrated that their damage detection algorithm is robust against the errors of 

baseline FEM model in compare to the real structure when the principal errors is formed 

by difference of modal frequencies.  

(Cavalieri, Imbimbo, Betti, & Brügger, 2009) conducted an experiment for dynamic 

identification and the damage assessment of a steel frame under ground motion. They 

used both OKID-ERA/DC time domain approach and EFDD frequency domain 

approach for modal identification. They evaluated a number of damage detection 

algorithms and concluded that MSECR and the rdi2 indices are mode reliable on 

positioning the damaged member.  

One of the issues that are frequently reported in the literature is the insensitivity of 

global modes to local damages. In large frame structures, higher modes are more 
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localized than lower modes since they represent local member vibration characteristics. 

Mode localization is a dynamic phenomenon associated with weakly-coupled periodic 

Structures which is caused by small imperfections which perturb the periodicity (Yi, 

Zhou, Kunnath, & Xu, 2008). So higher modes are generally more significant in 

identifying local structural damages. The identification and employment of higher local 

modes in engineering structures for damage detection or other purposes are reported in 

the work of many researchers (Bouzit & Pierre, 1995; Cox & Agnes, 1999; Mester & 

Benaroya, 1994; Qi, Xun, Xiaozhai, Dong, & Chang, 2005). 

 In case of frame structures in particular (Yi, et al., 2008) use sensitive higher modes in 

physical structural parameter identification of local members. They used hammer-

impact and stable sinusoidal sweep to excite local vibrations of a column in a four story 

reinforced concrete frame structure. They used poly-reference least-squares complex 

frequency domain method to identify modal parameters. Their study shows that higher 

modes posses localized characteristics while lower modes represent the global dynamic 

properties of the entire frame stricture. They concluded that higher modes are 

concentrate in several ‘modal’ regions of the FRF diagram called pass-bands. The order 

of the pass-band is similar to the order of the vibration mode shape of a single 

member’s half sine wave.  

(Ulriksen et. al. 2017 a) presented a damage detection method using shape input 

distribution. Their method is based on a shaping inputs with fixed spatial distribution. 

Then they use a theoretical model such that these inputs suppress certain steady-state 

vibration quantities. Damage is localized when the vibration signature induced by the 

shaped inputs in the damaged state corresponds to that in the reference state. They 

employed this method to localize damage in a model of offshore platform (Ulriksen et. 

al. 2017 b). They applied harmonic inputs to interrogate the structural domain with 
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respect to a 1% mass perturbation, acting in all translational DOF in a single node 

below the sea level. The method was able to locate damage, although with a poor 

accuracy which can be improved by employing more sensors to increase resolution. 

2.4 Mass Normalization 

In modal analysis, displacement mode shapes are vectors that are containing relative 

displacement of all measured DOFs in respect to each other. So in general form, the size 

of these vectors are arbitrary and based on the application, they might need to be scaled 

to a specific size. The simplest form of scaling a mode shape is to set the maximum 

value of displacement to unity. Another form of scaling is to set the length of the vector 

to unity. However, the most important mode shape scaling is when mode shapes are 

scaled with respect to the mass matrix i.e. mass normalization.  

Mass normalized mode shapes are usually determined through an experimental modal 

analysis (EMA) where the excitation force is measured and frequency response function 

(FRF) can be obtained (Ewins, 1984; Heylen & Sas, 2006). However, one of the 

challenges in structural health monitoring is that in real civil structures, which are in 

fact the actual application of damage detection methods, it is not possible to measure the 

input force. In Most cases, modal analysis procedure of civil structures is what is called 

operational modal analysis. In this case the excitation forces are ambient forces which 

cannot be measured and the modal analysis relies solely on measuring the outputs i.e. 

output-only modal analysis (Heylen & Sas, 2006; Zhang & Brincker, 2005). 

Early methods of normalizing operational mode shapes were using the results of finite 

element simulations to scale the mode shapes (Pandey & Biswas, 1994). (Gao & 

Randall, 1996a, 1996b) proposed a method to determine frequency response function 

from response measurements only, which consequently could mass normalize mode 
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shapes using measurement data. However, one of the most reported and effective 

methods of mass normalization of operational mode shapes are called sensitivity based 

methods. These methods are based on frequency shifts caused by a structural 

modification (Kranjc, Slavič, & Boltežar, 2013).  

A civil structure can be modified in different ways. For example, (Coppotelli, 2009) 

used stiffness change as structural modification to obtain FRF using operational data. 

(Parloo, Verboven, Guillaume, & Van Overmeire, 2002) proposed a sensitivity based 

mass normalization method in which the structure is modified by adding mass. This 

method was later employed, improved and updated by ( Hout & Avitabile, 2004, López 

Aenlle, Brincker, & Fernández Canteli, 2005; López Aenlle, Brincker, Fernández 

Canteli, & Villa García, 2005). (Khatibi, Ashory, & Malekjafarian, 2009) suggested that 

the first mode of the structure is not very sensitive to change in mass and cannot be 

properly normalized using mass modification method. They proposed a combination of 

mass and stiffness modification method to address this problem.  (Hout & Avitabile, 

2004) used different mass change ratios to normalize opertional mode shapes, varying 

between 1 to 5%. They suggested that mass change ratio of 5% gives the optimum 

results as it changes modal frequencies considerabley without changing the mode 

shapes significantly. They also suggested that the position and distribution of additional 

mass influences the reliability of the results.  

2.5 Model Updating 

Numerical modeling in engineering is a way to simulate the behavior of real systems. In 

structural engineering, this is normally done using finite element modeling and analysis. 

The most important concern of any simulation is the level of similarity to the real 

system. In other word, how much of the properties of the real system are replicated in 

the model. In any simulation, there are always some unknown or uncertain properties 
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that can only be modelled using certain assumptions. These assumptions are often 

detracting the accuracy of the model. To resolve the inaccuracy caused by uncertainty, 

model updating methods has been developed to adjust unknown system properties based 

on other behaviors of the system. One of the most suitable behaviors of structural 

systems that can be used to update FE simulations are its modal and vibrations 

parameters. Modal properties not only provide comprehensive information of the global 

and local behaviour of the structure, but they are relatively easy to extract 

experimentally from an actual structure (M. Friswell & Mottershead, 1995; Mottershead 

& Friswell, 1993). 

One of the many applications of model updating in civil and structural engineering is 

structural health monitoring and damage detection. The basic idea behind this 

application is that damage in the structure is usually equivalent to loose of stiffness. So 

if the stiffness of a member or components of the structure need to be updated from 

undamaged to damaged state, this can be translated as presence of damage (Brownjohn, 

De Stefano, Xu, Wenzel, & Aktan, 2011; Deraemaeker & Worden, 2012; Scott W 

Doebling, Farrar, & Prime, 1998; Scott W Doebling, Farrar, Prime, & Shevitz, 1996).  

Model updating problems are inverse problems. As oppose to “forward problems” 

which output of the models are estimated by structural parameters, in “inverse 

problems” outputs are used to estimate or modify structural parameters (Simoen, De 

Roeck, & Lombaert, 2015). In regard to uncertainty, model updating methods are used 

to improve the uncertainty problem of structural properties while they themselves are 

influenced by uncertainty of modal data. These two types of uncertainly are referred to 

as “uncertainty related to the prediction model” and “uncertainty related to the 

experimental data” respectively. 
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Uncertainty related to the prediction model is discussed by many authors such as (Der 

Kiureghian & Ditlevsen, 2009; Kennedy & O'Hagan, 2001; Walker et al., 2003). Based 

on their discussions, (Simoen, et al., 2015) summarized this type of uncertainty into 

three groups. First is model parameter uncertainty or model input uncertainty or variable 

uncertainty. This type of uncertainty is caused by uncertainty of the input parameters 

such as material or physical properties, load characteristics or geometry. The second is 

model structure uncertainty, also referred to as model framework or model form 

uncertainty. This type of uncertainty is caused by the lack of knowledge or 

understanding of the true system which forces the designer to make assumptions and do 

simplifications. The third is model code uncertainty or numerical uncertainty or 

technical model uncertainty. This uncertainty arises from errors in the computer 

implementation i.e. software or hardware errors. 

The second type of uncertainty is uncertainty related to the experimental data. The 

results of modal analysis are always subjected to uncertainties. This causes unreliability 

and inaccurateness in prediction, detection and localization of damage in the structure. 

Uncertainties in modal parameters are having two sources. The first source is the natural 

variability of structural parameters which causes the same inconsistency and 

randomness in modal parameters. These types of uncertainties cannot be eliminated. 

The second type of uncertainties of modal parameters are related to the modal analysis 

itself i.e. modal identification methods, accuracy of sensors and measurements, 

measurement noises etc. It is possible to reduce this type of uncertainty by increasing 

the accuracy of measurements and modal identification methods (Xu, Qian, Chen, & 

Song, 2015). A frequently used method of incorporating these uncertainties in damage 

detection is based on probabilistic approaches (Huang, Gardoni, & Hurlebaus, 2012; 

Papadopoulos & Garcia, 1998; Xia & Hao, 2003; Yeo, Shin, Lee, & Chang, 2000). 
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They describe uncertainties as random variables characterized by mean values and 

standard deviations. 

Model updating methods can be categorized into two groups i.e. direct matrix methods 

and indirect physical property adjustment methods. In direct matrix methods, updating 

changes are made to the mass and stiffness matrices directly. Since the whole mass and 

stiffness matrices are updated at once, these methods are generally non-iterative 

methods. The advantage of these types of methods is that since they are non-iterative, 

they do not require a lot of computational effort. However, their disadvantage is that 

although they can generate a modified model through structural matrices, but the 

physical property of individual structural members cannot be obtained. On the other 

hand there are indirect physical property adjustment methods that are correcting 

individual members in order to update the whole structure. Using these methods, it is 

possible to physically realize the updated structure. However since these methods are 

iterative, they demand more computational effort (S. Wang, Li, & Li, 2015). 

(Hu & Li, 2007) developed a model updating method called Cross Model Cross Mode. 

CMCM model updating method is capable of updating the stiffness, mass and damping 

matrices simultaneously. This method has the advantages of both groups of updating 

method. It is a non-iterative method, yet its modification is based on the original 

physical form of the structure and so the updated model can still be physically realized. 

CMCM updating method was used and verified in the numerical studies presented by 

(Hu, Li, & Wang, 2007; Li, Wang, & Hu, 2008). In 2015,  (S. Wang, et al., 2015) 

conducted an experimental verification of the method by applying it on a laboratory 

model of an offshore jacket platform.   
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2.6 Damage Detection 

Damage detection based on change in modal flexibility matrix was first used by 

(Pandey & Biswas, 1994). They demonstrated that the flexibility matrix can be 

accurately estimated from a few of the lower modes which are easy to measure. 

However since flexibility matrix is global, using even an accurately measured flexibility 

matrix to locate damage in complex structures like trusses and frames is not so straight 

forward. In 2002, Bernal  proposed a method called “Damage Locating Vectors” that 

employs flexibility change matrix to locate damaged member (Bernal, 2002). This 

method which is also known as DLV is based on calculating sets of load vectors that 

when are applied to the structure (either intact or damaged) cause zero stress in the 

damage member/region. In this method, DLVs are the null space of flexibility matrix 

which can be calculated using singular value decomposition of flexibility changes.  

In 2004, Bernal and Gunes evaluated DLV method by using it in a benchmark study 

developed by the IASC-ASCE SHM Task Group. In this study, they computed a state-

space realization of the system from the measured signals and then extracted flexibility 

matrices from the matrices of the realization. They described that by measuring at least 

three DOFs at each level and using DLV method, it is possible to define inter-story 

stiffness and centre of stiffness positions from the modal data and use them to determine 

the level, location, and extent of the damage without the need for an explicit model 

(Bernal & Gunes, 2004). 

(Gao, 2005) and later (Gao, Spencer Jr, & Bernal, 2007) presented experimental 

verification of DLV method using a 5.6m long three dimensional truss structure. They 

used the same approach discussed in (Bernal & Gunes, 2004) to estimate flexibility 

matrices using small number of sensors. They concluded that despite of the small effect 

of damage on the modal properties, DLV is able to correctly locate the damage member 
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using only limited number of sensors and truncated modes. However, they reported a 

significant number of false positive detections which was caused by using small number 

of sensors. They solved this issue by conducting the modal testing in few stages. In the 

first stage, the approximate location of damage is identified and in second stage, a dense 

distribution of sensors in that region identifies the exact location of damage. 

DLV method is based on flexibility matrices of intact and damaged structure which are 

extracted from mass normalized mode shapes. So DLV works best when the 

information of input excitation is available. Although it is not easy, often impossible, to 

excite a real structure and measure the input forces. This limits the application of DLV.  

One way of dealing with this problem is to use a method to scale mode shapes in output 

only modal testing. There are numerous studies regarding mode shape identification and 

scaling using output-only modal data. (Brincker & Andersen, 2003; Brincker, 

Rodrigues, & Andersen, 2004; Hout & Avitabile, 2004; López Aenlle, Brincker, & 

Fernández Canteli, 2005; B.-T. Wang, 2001). By employing mass normalized mode 

shapes obtained from output-only modal data, DLV can be used to detect damage in a 

structure under ambient excitation (Gao, 2005; Gao & Spencer, 2002). 

In 2006, an enhanced version of DLV was proposed by Bernal called “Stochastic 

Damage Locating Vector” method. SDLV method is the extension of DLV when the 

input is unknown (Bernal, 2006). So by employing this method, damage locating vector 

can be directly used for real structures under ambient excitation. SDLV was later tested 

experimentally by (An, Ou, Li, & Spencer, 2014) using an 8 m long steel truss structure. 

In 2007, Bernal proposed a generalization of DLV approach called Dynamic Damage 

Locating Vector or (DDLV) (Bernal, 2007a). Change in flexibility matrices which the 

original DLV method is based on, only contains the information of the static response of 
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the system. So if a particular damage case does not change the static response of the 

system, it remains undetectable. However, in a system identification procedure, 

information of the dynamic behaviour of the system is also obtained. DDLV approach 

make use of these extra information to provide a more robust and effective damage 

localization (Bernal, 2007a; Maddalo & Bernal, 2011). Later that year, Bernal proposed 

an improved version of DDLV called Stochastic Dynamic Damage Locating Vector or 

(SDDLV). The proposed method is based on the fact that what is actually needed in the 

DDLV is not necessarily change of flexibility matrix itself,  but a basis for its null space 

(Bernal, 2007b). 

In latest techniques of vibration based damage detection, modal identification is not 

required for damage localization (Sekjær et. al. 2017). (Bernal & Kunwar, 2016) 

presented a method that operating with two frequency domain subspaces which one of 

them are obtained by Fourier transformation of output measurements and the other from 

a model of the reference state together with a postulated damage distribution. This is 

somehow similar to detection methods based on model updating, except that only the 

damage distribution enters the formulation. The advantage of their method is that the 

time histories of the excitation are not used in their technique.   

2.7 Summary 

This Chapter contains a review of previous studies related to the subject of this research. 

The contents of this Chapter can be categorises into three i.e. mass normalization, 

model updating and damage detection.  

In case of mass normalization, this review emphasises on the methods based on 

operational modal analysis. Most of the studies in this group were just theoretical and 

they have rarely been experimentally tested. So a numerical/experimental set up is 
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proposed in this study to examine one of the methods i.e. mass change method and to 

eventually use its findings for damage detection. 

Model updating is the other reviewed topic. The forward vs. inverse problems, various 

types of prediction model uncertainty and also direct matrix vs. indirect physical 

property adjustment updating methods were reviewed in this Chapter. Among them, an 

indirect method called Cross Model Cross Mode is selected and modified to update the 

finite element model in this study. 

The main part of this Chapter is the review of various damage detection methods. The 

main focus is on a particular method called “Damage Locating Vectors”. various 

theoretical, numerical and experimental studies on this method were founded in the 

literature and a number of them were reviewed in this Chapter. The main focus of this 

study is on the issue of false positive in incomplete measurements. This issue is reported 

in some articles and their solution is sensor redistribution. This solution is not 

applicable if the incomplete measurement is due to inaccessibility to parts of the 

structure and so an alternative method is proposed in this study to overcome this 

problem.  
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CHAPTER 3: THEORETICAL BACKGROUND 

3.1 Modal Identification 

3.1.1 Frequency Response Function 

Here, the background theory of frequency response function, which is used in ICATS 

software is described. (Avitabile, 2001; Boot, van de Molengraft, & Nuij, 2003; Heylen 

& Sas, 2006; Ibsen & Liingaard, 2006; Irvine, 2000; Schwarz & Richardson, 1999) 

The general and famous mathematical representation of a dynamic system is shown in 

Equation 3.1 

  ̈      ̇                                                                                              (3.1) 

were M is mass matrix, C is damping matrix , K is stiffness matrix and f is excitation 

force. 

By setting f(t)=0, the solution of the Equation can be assumed as          . 

Substituting its derivatives into Equation 3.1 gives: 

                                                                                                          (3.2) 

The non-trivial solution of this Equation is: 

                                                                                                               (3.3) 

Equation 3.3 is called Characteristic Equation of the System and s is complex-valued 

frequency variable or Laplace variable. 

Roots of Equation 3.3 are λ1 and λ2 : 
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 √(

 

  
)
 

 (
 

 
)                                                                                        (3.4) 

So the general solution of Equation 3.3 is: 

                                                                                                                 (3.5) 

where A and B are initial condition constants.  

For under-damped systems with damping ratio less than one ( ζ < 1), the roots of 

Equation 3.5 ( λ1 and λ2) are always complex conjugates of each other: 

λ1&2 =σ1 ± jω                                                                                                          (3.6) 

where σ1 is damping factor and ω is the damped natural frequency. The other way of 

solving Equation 3.3 is by writing it in frequency domain. It converts the second order 

differential equation to an algebraic equation. Using Fourier transform, Equation 3.3 

converts to:  

                                                                                                 (3.7) 

The reverse of the term              in Equation 3.7 is is called frequency 

response function H(ω). The frequency response function relates the Fourier transform 

of the system's input and response and can be written as: 

     
 

          
 

  ⁄

     (
 

 
)  

 

 

                                                                       (3.8) 

The characteristic values of the denominator of Equation 3.8 are called the complex 

poles of the system or otherwise known as modal frequencies. 
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The frequency response function can also be expressed as the function of the complex 

roots: 

     
  ⁄

              
 

  

       
 

  

       
                                                               (3.9) 

For a multi degree of freedom system, frequency response function can be written as: 

[    ]  ∑   
   

  

     
 

  
 

     
                                                                                 (3.10) 

 where: 

 ω = Frequency variable 

 r = Modal vector number 

λr = System pole 

N = Number of modal frequencies 

3.1.2 Frequency Domain Decomposition 

One of the earliest response only modal identification methods is called Basic 

Frequency Domain (BFD). This approach is based on simple signal processing using 

Discrete Fourier Transform. This method estimates well separated modes from the 

power spectral density matrix (Bendat & Piersol, 1980). The classical method is fairy 

reliable on estimating natural frequencies and mode shapes of the well separated modes. 

However, it typically fails to detect close modes or in case it does, the results are 

heavily biased. The other problem of this method is that it estimates frequencies only 

within the frequency resolution and it cannot estimate damping. 

Frequency Domain Decomposition (FDD), established by Brincker and others 

(Brincker, Zhang, & Andersen, 2000; Brincker, Zhang, & Andersen, 2001), is an 
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extension to the classical frequency domain approach. The core of this method is 

decomposing the spectral matrix into a set of auto spectral density functions using 

Singular Value Decomposition (SVD). Each of the auto spectral density functions are 

corresponding to a single degree of freedom system. The exact results obtain by this 

method if the structure is lightly damped, the loading is white noise and the geometries 

of the two close modes are orthogonal. If some of these conditions are not satisfied, then 

decomposition into SDOF system is approximate, however the results are still 

significantly more accurate than classical approach (Brincker, et al., 2001). 

Referring to (Brincker, et al., 2001), the relationship between unknown inputs x(t) and 

measured response y(t) can be expressed as: 

T

xxyy jHjGjHjG )()()()(                                                                              (3.11) 

where Gxx (jω) is the r×r Power Spectral Density matrix of the input, Gyy (jω) is the 

m×m Power Spectral Density matrix of the responses and r and m are the number of 

inputs and responses respectively. H(jω) is the m×r Frequency Response Function 

matrix and ˮ__ˮ denote complex conjunction. The FRF can be written in pole - residue 

form of: 

k

k
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R
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
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





1

)(                                                                                 (3.12) 

where n is the number of modes, λk is the pole and Rk is the residue which is expressed 

as: 

T

kkkR                                                                                                                    (3.13) 
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where ϕk and γk are modes shape vector and modal participation vector respectively. If 

the input force is a white noise, its power spectral density is a constant matrix i.e. Gxx 

(jω) = C. With this assumption, Equation 3.11 becomes: 
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)(                                  (3.14) 

where H denotes transposed complex conjugate. Multiplying two partial fraction factors 

while using the Heaviside partial fraction theorem, the output power spectral density 

can be reduced to a pole - residue form: 
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where Ak is the kth residue matrix of the output power spectral density which is given by: 
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                                                                      (3.16) 

The contribution of the kth mode to the residue is given by: 

k

T

kk
k

RCR
A

2
                                                                                                         (3.17) 

where αk is negative of the real part of the pole λk=-αk+jωk . In case of light damping, 

this term become dominating and so the residue becomes proportional to the mode 

shape vector: 
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kkk dCRCRA                                                                         (3.18) 
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where dk is a scalar constant. At a certain frequency ω, only one or two modes are 

contributing significantly which can be denoted by Sub(ω). So in case of lightly damped 

structure, the response spectral density can be written as: 

k
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)(                                                                      (3.19) 

To identify modes using frequency domain decomposition (FDD) method, first power 

spectral density must be estimated. Then the estimated output power spectral density is 

decomposed by taking the SVD of the matrix: 

H

iiiiyy USUjG )(ˆ                                                                                                 (3.20) 

where ωi denotes discrete frequencies, ],...,,[ 21 imiii uuuU  is a unity matrix holding the 

singular values uij, and Si is a diagonal matrix holding the scalar singular values sij. Near 

a peak corresponding to the kth mode in the spectrum, this mode or a possible close 

mode is dominating. If only the kth mode is dominating, there is only one term in 

Equation 3.19. In this case, the first singular vector uij is an estimation of the mode 

shape: 

1
ˆ

iu                                                                                                                   (3.21) 

Referring to Equation 3.19, the corresponding singular value is the auto power spectral 

density function of the corresponding SDOF system. This function is identified around 

the peak by comparing the mode shape estimate ̂  with the singular vectors for the 

frequency lines around the peak. If the singular vector has high modal assurance 

criterion (MAC) value with ̂ , the corresponding singular value belongs to the SDOF 

density function. It should be noted that  modal assurance criterion index is a measure 
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of degree of linearity between estimates of a modal vector. It makes it an effective 

index for quantifying the correspondence between two sets of mode shapes. MAC value 

of 0 represents two completely independent mode shapes while the value of 1 indicates 

two identical mode shapes.  

Normal FDD technique can only estimate modal frequencies and mode shapes. In order 

to estimate damping ratio, those singular value data near the peak which their 

corresponding singular vectors are having high enough MAC value, are transferred back 

to time domain via inverse FFT. From the free decay time domain function, which is 

also the auto correlation function of the SDOF system, the natural frequency and the 

damping ratio are found by estimating crossing times and logarithmic decrement. This 

extension to FDD is called Enhanced Frequency Domain Decomposition (EFDD)  

(Jacobsen, Andersen, & Brincker, 2006). 

For the first step, all extremes rk  on the correlation function are found for both peaks 

and valleys. The logarithmic decrement δ is then given by 
















kr

r

k

0ln
2

                                                                                                        (3.22) 

where r0 is the initial value of the correlation function and rk is the kth extreme. 

Therefore, the initial value of the correlation function and the logarithmic decrement 

can be found by linear regression on kδ and  krln2 . Finally, the damping ratio is given 

by: 

22 4





                                                                                                     (3.23) 
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By adopting a similar procedure, the frequency is found by making a linear regression 

on the crossing times and the times corresponding to the extremes, considering that the 

relationship between damped and undammed natural frequencies is: 

21 
 dff                                                                                                          (3.24) 

3.2 CMCM Model Updating 

Cross Model Cross Mode is a model updating method, developed by (Hu & Li, 2007) 

and is going to be used to update the finite element model of this study. More details on 

this method in compare to other updating methods can be found in CHAPTER 2:. In 

this section, the theory of CMCM updating method is presented based on (Hu & Li, 

2007; Hu, et al., 2007). 

Let's Imagine M and K are the mass and stiffness matrices that are obtained using 

unmodified finite element model and M* and K* are the mass and stiffness matrices of 

the actual model. The aim is to update M and K using modal properties including a 

number of modal frequencies and mode shapes of both FE and actual models. Lets λi 

and ϕi be the ith modal frequencies and arbitrarily scaled mode shapes, associated with 

M and K, which can be expressed in form of: 

                                                                                                                     (3.25) 

Now let's assume that the stiffness and mass matrices of the actual i.e. experimental 

model, K* and M*  are modifications of K and M respectively which can be expressed 

as: 

     ∑     
  
                                                                                                  (3.26) 
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     ∑     
  
                                                                                                 (3.27) 

where Kn and Mn are the stiffness and mass matrices, corresponding to the nth member. 

Ne is the number of elements and αn and βn are stiffness and mass correction factors 

respectively. In a simple form, each element is assumed to be updated by only one 

parameter. For example αn is correcting Young's Modulus to update stiffness matrix and 

βn is correcting mass density to update mass matrix. Although in many cases, the 

stiffness matrix of each element is more complex and cannot be updated using only one 

correction parameter. For example in beam elements, change in geometry might results 

on stiffness change in only one direction and to address that, αn need to have more than 

one correction term. 

Similar to Equation 3.25, the jth eigenvalue and eigenvector associated with M* and K*  

is expressed as: 

  
     

      
                                                                                                         (3.28) 

Pre-multiplying Equation 3.25 by    
    and Equation 3.28 by     

  yields: 

     
          

                                                                                              (3.29) 

  
     

     
      

     
                                                                                      (3.30) 

Since M and K are symmetric matrices, their transposes are equal to themselves. So the 

left side of Equations 3.29 and 3.30 can be written as: 

    
       

       
    

                                                                                     (3.31) 

    
       

       
    

                                                                                      (3.32) 
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Furthermore, the transpose of a scalar matrix is equal to itself. For example 

    
       

      
      . Considering this, Equations 3.31 and 3.32 can be 

expressed as: 

   
            

    
                                                                                      (3.33) 

   
            

    
                                                                                        (3.34) 

Dividing Equation. 3.30 by Equation 3.29, and using the scalar identities of Equations 

3.33 and 3.34, one obtains: 

    
     

 

    
    

   
  
 

  

    
     

 

    
    

                                                                                         (3.35) 

Substituting Equations 3.26 and 3.27 into Equation 3.35 yields: 

  ∑        
  
    

  
 

  
(  ∑        

  
   )                                                               (3.36) 

where  

      
    

     
 

    
    

                                                                                                         (3.37) 

      
    

     
 

    
    

                                                                                                        (3.38) 

To summarize this equation, lets replace ij with a new index m and also introduce 

    
  
 

  
 , so Equation 3.36 becomes: 

  ∑       
  
      (  ∑       

  
   )                                                             (3.39) 
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Rearranging Equation 3.39, one obtains: 

∑       
  
      ∑       

  
                                                                      (3.40) 

By introducing                and          , Equation 3.40 can be expressed 

as: 

∑       
  
    ∑       

  
                                                                                (3.41) 

When the number of available modes from the finite-element model and corresponding 

real structure are Ni  and Nj respectively, a total number of Nm = Ni × Nj equations can 

be formed from Equation 3.41 which can be written in matrix form: 

                                                                                                                    (3.42) 

In Equation 3.42, C and E are matrices with dimension of Nm × Ne,  α and β are column 

vectors of size Ne and f is a column vector of size Nm. 

3.3 Mass Normalization 

Output-only modal testing, sometimes refers to as operational modal analysis, is a 

modal testing method based on the ambient excitation which are in most cases 

unknown. There are many advantages to this method as oppose to experimental modal 

testing.  

First of all, this method is applicable for a wider range of structures. Although acquiring 

the precise and useful information of input force is usually feasible for scaled laboratory 

structures, but it should never be forgotten that the reason for those tests are to use their 

findings in real case scenarios. It is safe to say that in most cases, it is either not possible 
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to apply input forces to full scale structures or it is not possible to effectively measure 

them. 

Furthermore, exciting the structure for modal testing purpose, assuming that it is 

effectively possible, might influence the operating conditions of the structure. Output-

only technology provides better and more reliable results in cases where the actual 

conditions of the system are essential for the structural response. 

Output-only technology is a lot cheaper than EMA. It is possible to consider permanent 

sensors for important structures and record the measurements over a long period of time 

for further use. It also gives other possible applications like vibration level estimation 

since the actual response of the system is stored. 

Despite of all these advantages, this technology still has many problems remain entirely 

or partly unsolved. One of the important problems which is going to be discussed here 

is the problem of mode shape scaling.  

To answer this, it is important to first discuses mode shape versus operating deflection 

shape. Mode shapes and operational deflection shapes are a lot similar to each other in 

the first glance, but in fact there are not the same. Modeshapes are independent from the 

forces that are acting on the system. They only depend on material properties and 

boundary conditions and also geometrical properties. Mode shapes do not have unique 

values and units, although mode shapes themselves are unique and can be defined as the 

motion of one DOF relative to other DOFs.  

Operational deflection shape in other hand is depending on the excitation forces applied 

to a system.  They do have units, usually displacement or displacement per force. In a 

nutshell, ODSs are actually demonstrating that how much the structure is really moving 
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at a particular time or frequency.  Unlike mode shapes that can only be defined for 

stationary linear systems, ODSs can also be defined for non stationary and/or nonlinear 

conditions and even for structures that do not resonate. So the question is how are they 

related? Modes are more of a mathematical concept. They are solutions to differential 

equations of motion which express the stationary linear vibration of a structure. This is 

from an analytical perspective. Although experimentally, modal testing is in fact done 

by measuring operational deflection shapes and interpreting them to define mode 

shapes. For example for sine testing where a sinusoidal input force applies to the system 

near to one of its resonant frequencies, the mode shape is ODS itself. In case of lightly 

damped structures where the modes are not coupled together, the ODS near a resonant 

frequency is dominated by a single mode shape.  These are some assumption behind all 

normal mode testing. Using these assumptions and interpretations, considering that the 

excitation forces are measured, mode shapes can be obtained by curve fitting frequency 

response function. In case the information of input forces is no available, further 

assumptions are required.  

A description of a mode consists of three quantities; eigenvalue, eigenvector and modal 

mass. Eigenvectors are vectors which their entries are representing the motion at each 

degree of freedom. Eigenvectors are describing a shape and not the value of vibratory 

motion, so they do not have a specific length. They are often referred to as mode shapes. 

Each eigenvector comes with a complex number called eigenvalue which hold the 

frequency at which the mode shape is being excited. Modal mass is the physical scaling 

factor between force and resulting motion. Unlike modal frequency and mode shape, 

modal mass cannot be derived from experimental operating deflection shape.  

When modes are defined numerically, since mass and stiffness matrices are available 

the calculated mode shapes have orthogonal property. It means since the computed 
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modal vectors are derived directly from mass and stiffness matrices, they are scaled in a 

way that they can diagonalize these two matrices by pre and post multiplication as 

shown in Equation 3.43. In this Equation, mass matrix is being pre and post multiplied 

by mode shapes and the result is a diagonal matrix which refers to as modal mass 

matrix.  

[ ] [ ][ ]  [ ]                                                                                                 (3.43) 

If the lengths of eigenvectors are regulated in a way that the modal masses are all equal 

to one, such operation is called unit modal mass scaling. In this case the eigenvectors or 

mode shapes are referred to as mass normalized mode shapes. Mode shape scaling and 

particularly mass normalization is a common practice when the modal properties are 

needed for structural response simulation, structural modification or damage 

identification and detection applications.   

When the mass matrix is available, in FE analysis for instance, the mode shapes can be 

simply scaled using the mass matrix. However this is not the case for nearly all 

experimental measurements. In a real case, the only available information is the 

structure's responses to the unmeasured or at best measured exciting forces. So there are 

other techniques to scale the calculated mode shapes which some are going to be 

discussed here.  

3.3.1 FRF based Mass Normalization 

Frequency response is the measure of the output spectrum of the structure in response to 

the input force. Considering the theoretical form of FRFs (Equation 3.10), it is 

represented in rational fraction form with two matrix polynomial function as numerator 

and denominator. The denominator parts of the FRF (      ) and (     
 ) are called 
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the characteristic equation. The process of curve fitting the FRF to find damping and 

frequency is in fact solving the roots of the characteristic equation, λr. 

The numerator part of the Equation 3.10 is called residue. Assuming that p and q are the 

output and input measured degrees of freedom and r is modal vector number, residue 

can be written as follow: 

                                                                                                                 (3.44) 

where Q is modal scaling factor and Ψ is modal coefficient.  

Analytically, modal scaling factor, Q , is the relationship between the normalized modal 

vectors and the absolute scaling of the mass matrix. Experimentally, modal scaling 

factor is the relationship between normalized modal vectors and the absolute scaling of 

the residue information. This definition of modal scaling factor offers a solution to the 

mode shape scaling problem in experimental modal analysis.  

For undamped or proportionally damped systems, modal scaling factor is normally 

presented as modal mass: 

   
 

    
 

      

      
                                                                                                 (3.45) 

To scale mode shapes to unit modal mass, Equation 3.44 must be written for qth column:  

{
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                                                                                         (3.46) 
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where r=number of modes and n=number of DOFs.  

It must be noticed that in this Equation, residues have unique values and reflect physical 

properties of the structure, but the mode shapes are not unique in value and can be  

arbitrarily scaled. The scaling constant Qr must always be set in a way that Equation 

3.46 remains valid. The value of Qr can be chosen prior to the mode shape scaling or the 

mode shapes can be scaled first and then Qr be calculated to satisfy Equation 3.46. In 

order to scale mode shapes to unit modal mass (UMM), next step is to set the modal 

mass in Equation 3.45 to one, therefore: 

   
 

  
                                                                                                                     (3.47) 

Substituting Equation 3.47 into Equation 3.46 gives: 
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                                                               (3.48) 

3.3.2 Mass Normalization using Mass Change Method 

The most vital assumption of the previous scaling method is that the input force must be 

measured. Although in most cases, the input force is unknown or hard to measure. 

Scaling mode shapes when the input data is not available is in fact the ultimate 

challenge. There are a couple of methods and suggestions in the literature to solve this 

problem (Bernal & Gunes, 2002; Brincker & Andersen, 2003; López Aenlle, Brincker, 

& Fernández Canteli, 2005; López Aenlle, Brincker, Fernández Canteli, et al., 2005; 

Parloo, et al., 2002). A description of their mass normalization method is described in 

this section. 
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Imagine a structure with mass matrix of M and stiffness matrix of K. Operational modal 

testing of the structures determines modal frequencies (ω) and arbitrary scaled mode 

shape (φ) of the structure. Let’s (Ψ) be the mode shape (φ) that is scaled to unity i.e. 

Ψ.ΨT=1 . From equation of motion; 

     
                                                                                                              (3.49) 

Now let's assume some changes in the mass matrix on DOFs where the mode shape is 

measured. This alters both modal frequencies and mode shapes and Equation 3.49 can 

be written as: 

          
                                                                                                (3.50) 

where ΔM is the mass change matrix and ω2 and Ψ2 are the new modal frequencies and 

mode shapes. Subtracting Equations 3.49 and 3.50 gives: 

      
      

         
                                                                 (3.51) 

Now let's assume that the change in mass does not significantly change the mode 

shapes, which means      . Frequency shifts due to mass changes can be written in 

form of Equation 3.52: 

  
    

                                                                                                          (3.52) 

where    
       

 
  and           

So from Equations 3.51 and 3.52; 

   
  

 
                                                                                                           (3.53) 
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Among various scaling factors, there is one particular scaling factor that scales the mode 

shape Ψ to Φ so that it satisfies Equation 3.54: 

                                                                                                                     (3.54) 

where M is mass matrix and Φ is mass normalized mode shape. The desired scaling 

factor, α, is the factor that relates Ψ and Φ; 

                                                                                                                         (3.55) 

From Equation 3.53 to 3.55 one can obtain: 

 
  

 
                                                                                                            (3.56) 

So the scaling factor can be obtained using Equation 3.57 

  √
   

      
                                                                                                          (3.57) 

This method is one of the simplest scaling methods based on mass change. Although the 

scaling factor is not so precise, but it is fast and handy and can be used for most cases. 

There is another scaling method in this group that is able to calculate the scaling factor 

more precisely. Again, let's α be the scaling factor that relates the scaled to unity mode 

shape Ψ to mass normalized mode shape Φ (Equation 3.55). Pre and past multiplication 

of this Equation to mass matrix gives: 

                                                                                                          (3.58) 

Considering Equation 3.54, the scaling factor in its general form is: 
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√    
                                                                                                                (3.59) 

So the scaling factor for normal structure and structure with change in mass are as 

follows: 

   
 

√  
    

                                                                                                            (3.60) 

   
 

√  
         

                                                                                                    (3.61) 

Again, let's assume that the change in mass does not significantly change the mode 

shapes, which means      . Then Equation 3.61 can be written as: 

   
 

√  
       

     

 
 

√
 

  
    

     

                                                                     (3.62) 

Equation 3.62 shows that when a mass change applies to the structure, it decreases the 

scaling factor and in the other hand limit of Equation 3.62 when ΔM approaching “0” 

is: 

       (
 

√
 

  
    

     

)    
                                                                                  (3.63) 

If β is mass change factor so that ΔM1= β1(Δm), ΔM2= β2(Δm) and ΔMn= βn(Δm), then 

the scaling factor can be calculated by drawing α versus β diagram and extrapolating it 

toward β=0. 
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3.4 Damage Locating Vectors 

3.4.1 Modal Flexibility 

Equation 3.64 is a second order differential equation, describing the undamped free 

vibration of a structure. In this equation [M] represents mass matrix, [K] is the stiffness 

matrix and {u} is the displacement vector.  

[ ]{ ̈} [ ]{ }                                                                                                  (3.64) 

Equation 3.65 is the eigen solution of this system were [Λ] and [Φ] are the eigenvalue 

and eigenvector matrices respectively.  Eigenvalue matrix is the diagonal matrix of the 

squared natural frequencies of the structure,    
 . Eigenvector matrix holds mass 

normalized eigenvectors of the structure as rows. Eigenvectors are mass normalized if 

their matrix satisfies Equation 3.66;  

[ ] [ ][ ]  [ ]                                                                                                    (3.65) 

[ ] [ ][ ]  [ ]                                                                                                    (3.66) 

So considering Equation 3.65, the stiffness matrix can be calculated using Equation 

3.67; 

[ ]  [ ]  [ ][ ]                                                                                                (3.67) 

Since flexibility matrix is the inverse of stiffness matrix, [ ]  [ ]   the flexibility 

matrix can be calculated using Equation 3.68;  

[ ]  [ ][ ]  [ ]                                                                                                  (3.68) 
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Let’s assume that n is the number of degrees of freedom and m is the number of 

estimated modes were m < n. Therefore m eigenvectors with n entries are available and 

so Φ is an n×m matrix. Since only m modes are available, eigenvalue is an m×m 

diagonal matrix. So regardless of the number of available modes, the result of Equations 

3.67 and 3.68 are always n×n matrices. 

Equations 3.67 and 3.68 are presenting the mathematical relationship between 

eigenvalue, eigenvector, stiffness and flexibility matrices in their general form. 

Although an important point must be considered when using them with actual data. 

Stiffness and flexibility matrices are inverse of each other, only if they are full rank. In 

this case, being full rank means all the modes are participating in them i.e. m=n. 

However, since in this case the number of modes is less than the number of DOFs, none 

of the two matrices are full rank. The important point in using Equations 3.67 and 3.68 

is that if m=n, both equations are valid and their results are accurate. However in case 

which few numbers of modes are available, the results of at least one of the two 

equations are biased. Equation 3.67 is able to estimate stiffness matrix, if a few number 

of higher modes are available. In other word, stiffness matrix converges using the 

modes with higher eigenvalues. On the other hand, flexibility matrix can be estimated 

using a few numbers of lower modes. In practice, it is not possible to extract higher 

modes of a system. It is usually not possible to acquire higher modes using modal 

analysis, hens it is not possible to estimate stiffness matrix using modal testing. 

3.4.2 Damage Locating Vectors 

One of the most distinguished damage detection methods based on change in flexibility 

is called Damage Locating Vectors. Damage locating vectors (DLV) is in fact one of the 

best methods that uses dynamically measured flexibility matrix to locate damage. This 

method, introduced by (Bernal, 2002), has the ability to accurately locate single and 
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multiple damage cases in the structure, regardless of its geometry. Damage locating 

vectors are a set of vectors with a particular property. They cause identical deformations 

when they are applied to undamaged and damaged state of the structure. As a result, 

when DLVs are applied to undamaged structure, they induce zero (or relatively small) 

stress in damage member(s). So using these load vectors and doing linear static analysis 

of the undamaged structure under these loading and extracting the characterizing stress 

of all members, the damaged member can be easily spotted as it has zero or relatively 

small stress compare to other members. 

Damage locating vectors defines as the null space of the change in flexibility (Bernal, 

2002). However, precise flexibility changes are not the only parameters that can be used 

to compute DLVs. (Bernal, 2006) stated that even though flexibility cannot be extracted 

exclusively from output signals in case of operational or ambient vibration, the vectors 

in the null space can be estimated from output signals without having explicit flexibility 

matrices. Damage locating vectors can also be extracted from the null space of change 

in the transfer matrix (Bernal, 2007a, 2010). 

Consider a structure that is as linear in damaged state that it is in undamaged state. Also 

consider determining damaged and undamaged flexibility matrices at m sensor locations 

(GD and GU) in which m ≤ n, the number of DOFs. For an ideal situation where the 

flexibility matrices are exact, assume that there are a number of load vectors l, defined 

in sensor coordinates, which results in identical deformations at undamaged and the 

damaged states (Bernal, 2002) : 

                                                                                                                     (3.69) 

If all the load vectors that satisfy this requirement are written in a matrix L, then: 
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                                                                                                       (3.70) 

There are two conditions that Equation 3.70 can be satisfied.  Either GD - GU =0 or L is 

a basis for the null space. The first possibility implies when there is no damage on the 

structure i.e. GD = GU or that the damage is in a part of the structure where the stresses 

are zero for any loading in sensor coordinates. However, less assume that GD - GU ≠ 0 

and there is damage(s) in the system. In this case, the vectors assigned to the null space 

of ΔG (matrix L) can be found by calculating singular value decomposition (SVD) of 

flexibility shifts (Bernal, 2002).  

        [ ] [
   
  

] [ 
 

  
]                                                                              (3.71) 

In Equation 3.71, the matrix S is a diagonal matrix, containing singular values and 

matrix V is an orthogonal matrix, containing vectors of row space and null space (L).  

To employ load vectors of matrix V to locate damaged members, the first step is to 

apply them to the undamaged structure and to their corresponding sensor locations 

which causes stress in the members. To distinguish large and small stresses, the 

independent internal stresses in every element must be reduced to a single value that is 

called the characterizing stress, σ. Unlike "stress" which is a generalized term pointing 

to actual stress or a stress resultant, the characterizing stress is defined in such a way 

that the strain energy per unit length, area or volume is proportional to the square of its 

value. For a planar beam element the characterizing stress can be shown as:  

 jijibeam MMMM  22                                                                                    (3.72) 

where Mi and Mj are the two end moments of the beam. In each case, the Normalized 

Stress Index (nsi) defines as in Equation 3.73;  
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(max)i

i
insi




                                                                                                               (3.73) 

where σi is the characterizing stress in a given element and σi(max) is the largest 

characterizing stress over all the elements of its kind. 

Not all the vectors in matrix [V] are actually damage locating vectors (DLV). DLVs in 

general are vectors of [V] associated with negligible or zero singular values in matrix 

[S]. However, singular values in practice are seldom equal to zero and so a threshold is 

required to decide which vectors belong to raw space and which ones belong to null 

space and are in fact DLV. 

To define such threshold, let's pre and post multiply Equation 3.71 by a vector of [V], 

for example Vi, which results:                                                                          

  
        

        
                                                                                   (3.74) 

This suggests that the singular values of ΔG (Si) are the difference of the external work 

of the associated singular vector when it is applied to the damaged and undamaged 

states of the model as a load set. If it is assumed that the characterizing stress caused by 

applying Vi in undamaged and damaged states are adequately equal, then the difference 

in work is caused by changes in the strain energy in the damaged member, so:  





D

jjis 2                                                                                                              (3.75) 

where j refers to the particular element and α is a constant that depend on the extent of 

the damage on each element except on j. If the vector Vi is multiplied by a constant, ci so 

that the largest characterizing stress over the full domain is equal to unity, then:  
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



D

jjii nsisc 2                                                                                                         (3.76) 

This Equation can also be written as: 





D

ji
i

mii nsisc 2
                                                                                                  (3.77) 

where nsim is the largest nsi in the damaged region and 0 < i1. Let's assume that the 

vector that is associated with the largest value of Equation 3.77 is that where i=q. By 

normalizing this Equation with respect to its largest value and taking a square root on 

both sides one gets; 

ii
i

m svnnsi 2
                                                                                                          (3.78) 

where, 

 
2

2

qq

ii
i

cs

cs
svn                                                                                                              (3.79) 

i

q

qmi nsi



                                                                                                          (3.80) 

Since the svn is computed without knowledge of the damage, then estimation of the 

largest nsi in Equation 3.78 over the damaged region is equivalent to selecting a value 

for ρ. In Equation 3.80, 1
qmnsi  and 

i

q



  can be taken as equal to one. Choosing a 

value for nsim that does not exceed one obtains a cut on svn. If the flexibility matrices 

are very accurate and the errors in computing stresses are small, then the best results are 

expected at very low values of nsim. In practice however, such accuracy is not 
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attainable. So a safe cut-off value of 0.2 is recommended by (Bernal, 2002) to operate 

well for a wide range of conditions. 

So as a result, only vectors with svn ≤ 0.2 are taken as DLVs. When a group of vectors 

are selected as DLVs, the damage can be localized by calculating weighted stress index 

(WSI) using Equation 3.81.  

ndlv

svn

nsi

WSI

ndlv

i i

i



1

}{

                                                                                                        (3.81) 

)015.0,max( ii svnsvn 
 

The members with WSI less than 1 are indicated as damaged members (Bernal, 2002). 
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CHAPTER 4: METHODOLOGY 

4.1 Overview 

This chapter describes all the methods that are used in this study. The contents of this 

chapter can be viewed in two categories i.e. modelling methods and analysis methods. 

Modelling methods are referring to the techniques and procedures that are used to 

model the frame structure in order to generate data. For examples, finite element 

simulations, laboratory set up and experimental modal analysis are within this category. 

The analysis methods are referring to those methods that are applied to analyze the 

generated data for different purposes in line with the objectives of this study e.g. model 

updating, mass normalization and damage detection. The general theories of these 

methods are presented in CHAPTER 3: and this chapter contains their implementation 

for this particular case study.  

4.2 Frame Structure 

A schematic of the frame structure used in this study is shown in Figure 4.1. It is a steel 

frame made of steel pipes as beam and column and also a steel plate as upper deck. The 

frame's height from the floor to top of the steel plate is 300±1 cm. The centre to centre 

dimensions of the frame are 115×130 cm at the base and 50×70 cm at the top. The steel 

plate, seating on top of the frame is 70×90 cm in dimensions and 4 cm in thickness. The 

columns are rising vertically in the rear YZ plane, but they are inclined in all other 

planes. All the columns are 7 cm in diameter and 5 mm in thickness and all the beams 

are 3.25 cm in diameter and 3 mm in thickness. The mass of the frame structure 

including columns, beams, 4cm tick steel plate, two shakers, two amplifiers and the 

frames of hanging blocks is approximately 320 kg. 
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Figure 4.1: Frame structure with numbering of nodes, beams and columns 

 

Selecting nodes and DOFs in any structural analysis method e.g. modal analysis, is very 

much depends on structure's type. In case of frame structures and trusts, joints are the 

preliminary choices for nodes. In finite element analysis, beams and columns of a frame 

structure might be divided further to increase accuracy. However, due to technical and 

financial limits, that is not usually applicable and even necessary for an experimental 

modal analysis. So, throughout this study, nodes are assigned in the intersection of 

beams and columns and no node is assigned in the middle of the members.  
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Figure 4.1 is illustrating the numbering of nodes, beams and columns  and also the 

global coordinate axes. The node numbering sequence starts with node one which is a 

support located at the origin of global coordinate. The other 19 nodes are sequentially 

numbered clockwise from bottom to top. 16 columns and 12 beams are numbered 

accordingly. 

In general, each node of a space frame has six degrees of freedom i.e. dX, dY, dZ, rX, 

rY and rZ. Although in case of this study, only translational DOFs are of interest 

(mainly because only translational sensors are available for the experiment). 

Considering that the frame has 20 nodes, this result on 60 DOFs in total. However, 

nodes 1 to 4 are supports and so the number of independent DOFs of the frame structure 

is 48. Table 4.1 is presenting the sequence of these 48 degrees of freedom. For example, 

DOF 36 is referring to translational DOF of node 16 along global Z axis. This 

sequencing is used throughout the study, for example in assembling flexibility and mass 

matrices etc.  

Table 4.1: Sequence of DOFs of the model 

Node 

number 

DOF number  

 

Node 

number 

DOF number 

X Y Z X Y Z 

1 Fixed Fixed Fixed  

 

 

11 19 20 21 

2 Fixed Fixed Fixed  12 22 23 23 

3 Fixed Fixed Fixed  13 25 26 27 

4 Fixed Fixed Fixed  14 28 29 30 

5 1 2 3  15 31 32 33 

6 4 5 6  16 34 35 36 

7 7 8 9  17 37 38 39 

8 10 11 12  18 40 41 42 

9 13 14 15  19 43 44 45 

10 16 17 18  20 46 47 48 
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4.3 FE Simulation 

Finite element simulation is almost always a key part of any study in the field of 

structural engineering. Using FE, it is possible to simulate various structural systems 

and study their behaviour in almost no cost. In this study, FE modelling and analyses  

are employed in different ways and for different purposes. The first use of FE modelling 

was to give a general estimation of the structure's dynamic and modal behaviour prior to 

experimental set up. FE simulation also has a key task on examining the experimental 

results of various methods that are used in this study e.g. damage locating vectors, mass 

normalizations, etc. In all these cases, the analysis results of experimental data are 

compared to those obtained using FE modelling to acquire their reliability1. On top of 

these, FE simulation is in fact part of some methods that are used in this study. For 

example, in model updating method or DLV which will be describing later in this 

chapter, FE simulation has a different role other than just validating its equivalent 

experimental findings. 

All the finite element simulations and analyses in this study are done using commercial 

finite element software, DIANA 9.3. DIANA has two different modules for FE 

modeling and FE analysis. The graphical user interface (GUI) of this package is 

iDIANA. Modeling the geometry, assigning elements, meshing, assigning input forces, 

constrains, material and physical properties etc. are all done in iDIANA environment. 

When the model is completed, DIANA's analysis module is used to run different FE 

analysis including linear static, linear dynamic, nonlinear static, eigen analysis etc. 

                                                 
1
 This statement is not suggesting that the finite element results are more reliable and must be used as 

benchmark. In case of modal properties, the most reliable and realistic results are those obtained by the 
experiment and any numerical simulation must be updated in reference to them. However, when it comes 
to examining the correctness of a particular method like mass change method or damage locating vectors, 
finite element simulation acts like a puzzle book with appended solutions and hints. So the correctness 
and reliability of the findings of those methods can be examined using finite element analysis, before they 

are employed experimentally where there is no hint to check whether their results are correct or not. 
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4.3.1 FE Modelling using iDIANA 

Modeling the geometry of the frame structure in iDIANA is straight forward. Three 

types of structural elements are used to model the frame structure. L12BE two node 

beam elements are used to model columns and beams, HX24L eight node brick 

elements are used to model the steel plate and PT3T translational point mass is used to 

model the effect of extra weights and equipments placed on the model.  

Diana offers three classes of beam elements. Class-I beam elements are the simplest 

form which are based on Bernoulli theory. They must only be specified with the general 

parameters i.e. area and moment of inertia, however, shear deformations can also be 

specified for this type of elements if required. Class-II beam elements are numerically 

integrated over their cross-section and along their axis. Therefore these elements may be 

used in geometrical and physical nonlinear analysis. Class-III beam elements comprise a 

number of curved (higher order) elements which are numerically integrated over their 

cross-section and along their axis.  

None of the FE analyses in this study requires any of the advantages of class II or III 

beam elements. Nonlinear dynamic analysis in this study does not comprise any 

geometrical or physical nonlinearity to employ class-II beam elements. The local 

deformations of elements and members are also not important to this study. So as much 

as using class-III beam elements might offer some extra information on deformation of 

the members, it definitely does not worth the significant increase of computing time, 

especially in nonlinear dynamic analysis. Hence, L12BE which is the 3D version of 

class-I beam element in Diana is used for this study. For the same reason, HX24L was 

selected as the simplest form of brick elements to assign mass of the hanging blocks and 

the applied forces with minimum computing time. 
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The laboratory model of the frame structure includes two concrete blocks, hanging on 

the upper deck. Since the two blocks are not directly attached to the frame structure, 

their mass is not part of the mass matrix. The best approximation of their effect is their 

downward forces that are applied to the upper deck in 8 points. Some of the equipments 

are placed of the frame structure. Among them weight of two amplifiers are significant 

so their mass need to be added to the model. Moreover, there are extra weights that are 

used for mode shape scaling and need to be model (Refer to chapter 4.6). To simulate 

all these, 6 point mass elements (PT3T) were assigned to nodes 13 to 16, 18 and 20. 

PT3T is a three dimensional translation point mass/damping element. When applied to a 

node, this element directly adds the allocated amount of mass into three corresponding 

entries of that node in the mass matrix.  

4.3.2 FE Analyses using DIANA 

Based on the application, three different types of analyses are being performed on FE 

model i.e. eigen analysis, structural dynamic analysis and structural linear static 

analysis. 

Eigen analysis of FE model is used to extract modal frequencies and mass normalized 

mode shapes directly from mass and stiffness matrices. The results of this analysis are 

used to study the overall modal properties of the model. They are also used as 

benchmark for mass normalization of the experimental mode shapes. The frame 

structure is assumed to have 48 degrees of freedom, so the full rank results of eigen 

analysis must include 48 modes. This is if only three translational DOFs are assumed 

for each node. However, L12BE element has 6 DOF at each node. So regardless of the 

assumption, rotational DOFs are included in stiffness and mass matrices in DIANA. 

Moreover, the steel plate on the deck is also meshed to smaller elements for some 

modelling reasons. Hence, the actual stiffness and mass matrices generated in iDIANA 
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is a lot larger than the assumed 48×48. Although this does not affect the results of 

extracted mode shapes. The final results are the translational modal vectors of the 

desired 16 nodes i.e. nodes 5 to 20 and for the lower modes.  

Structural dynamic analysis is used to further investigate the modal behaviour of the 

model. Unlike eigen analysis, modal properties are not the direct results of this analysis 

procedure. The outputs of FE dynamic analysis are the response of each node to the 

input excitation. The quantity of excitation is force and the quantity of response is 

acceleration. The input force is the force signal that was recorded during the 

experiment. The original signal is recorded for 60 seconds with sampling rate of 3200 

S/s. So the original signal contains 192,000 samples. This number is extremely large to 

be used in FE dynamic analysis. So the sampling rate was reduced to 320 S/s and the 

time was reduced to 5 seconds. So the final signal was containing 1,600 samples. This 

signal was used as input force to FE dynamic analysis. The analysis produces 1,600 

accelerations for each DOF with the time intervals of 0.003125s. These data were used 

in ARTeMIS for modal identification. 

The structural linear static analysis was used solely for DLV detection method. DLV, 

which is one of the detection methods used in this study, is based on calculating sets of 

loads with a special property. When these load vectors are applied to the structure, they 

induce zero or low stress on damaged member. To implement this, the load vectors 

were assigned to all 48 DOFs of the model in iDIANA. Then the stresses of all 

members were computed using linear static analysis of FE model.  

4.4 Experimental Work 

The frame structure shown in Figure 4.2 was fabricated and installed in the heavy 

structure laboratory of Department of Civil Engineering, University of Malaya. This 
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sub-chapter presents the methods that are used to test the laboratory model of the frame 

structure. 

 

Figure 4.2: Laboratory model of the frame structure 

 

4.4.1 Modal Testing Equipments 

i. Accelerometer 

Kistler 8702B50M1 K-Shear single axis accelerometer was used to measure the 

acceleration of the main DOFs of frame structure (Figure 4.3 - Left). This sensor has the 

acceleration range of ±50 g and the frequency range of 0.5 to 10 kHz. It can detect 

acceleration with the sensitivity of 100 mV/g. These accelerometers are connected to 

the model using a magnet mounted to their tip so they can be easily roved between 
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DOFs. 16 accelerometers of this type were available, but 14 of them had to be used 

simultaneously during the test. Four Kistler 8776A50 K-Shear single axis 

accelerometers were also used to record the acceleration of two concrete blocks and two 

shakers attached to them (Figure 4.3 - Right) 

 

Figure 4.3: Kistler K-Shear accelerometers 

 

ii. Force transducer 

A PCB 208C02 force transducer was used to measure the applied input force to the 

frame structure (Figure 4.4). This sensor has the measurement range of 0.4448 kN in 

both tension and pressure. Using this sensor, the frequency of the applied force can be 

as low as 0.001 Hz and as high as 36 kHz, far beyond the range needed for this study. 

The sensitivity of the sensor is 11241 mV/kN. 

 

Figure 4.4: PCB 208C02 force transducer 

 

 

iii. Signal Analyzer 

A 32 channel OROS OR-38 signal analyzer / data logger is using for this study (Figure 

4.5). This device provides 40 kHz of real-time bandwidth on its 24 bit ICP inputs. The 
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input signals can go up to ±40 V. It is equipped with a 40 GB internal hard disk and any 

external device such as laptop or PC can be connected to it via its 100 Mb/s Ethernet. Its 

interface program is NVGate. 

 

Figure 4.5: OROS OR38 signal analyzer 

 

 

iv. Power Amplifier 

Figure 4.6 shows the APS-125 power amplifier. The job of this device is to receive a 

weak low voltage signal from the analyzer or any other signal generator and amplifies 

it, so it become powerful enough to be used by the shaker to apply force to the structure.  

 

 

Figure 4.6: Labworks PA-151 power amplifier 
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v. Shaker 

Figure 4.7 shows the ET-132-2 shaker used for this study. It provides the maximum 

load of 31 N for sinusoidal signals, 22 N for random signals and 67 N for shock forces. 

It has the maximum displacement of 1.3 cm peak to peak. 

 

Figure 4.7: ET-132-2 shaker 

4.4.2 Test Setup 

4.4.2.1 Concrete Blocks 

In laboratory, there are normally two ways of using the shakers to excite the model. 

First is by fastening the shaker to a fix support e.g. floor and using the rigidity of the 

support to provide the reaction force. Although sometimes it is difficult or not practical 

to support a shaker from a floor-mounted fixture. It particularly accrues in lateral 

excitation. In these cases, the solution is to hang the shaker from a support cable 

attached above the test article and attach masses to the base of the shaker to provide 

more inertia to push against the model (Figure 4.8). The whole concept of this set up is 

simple. In any modal testing, the job of shaker is to apply force to the model. For a 

shaker mounted to the floor or a stand etc, the reaction is provided by the stiffness of 
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that rigid body, while for a suspended shaker the reaction is provided by the inertia of 

shaker's mass, F=ma. 

 

Figure 4.8: Shaker is hanged to excite the car via piano strings 

(www.businessmagnet.co.uk) 

 

In this test set up, the same concept of suspended shaker is used with some 

modifications. The main difference is that the shakers-masses are not suspended to a 

side hanger. Instead, they are placed on top of the model, on the deck. For the relatively 

large model in this study, this is an advantage not to have a second hanger next to the 

model to just suspend the shaker. More importantly, this excitation method has potential 

of being extended and used in full-scale structures. 

The main concern in this setup is that the mass should be placed on top of the deck in a 

way that it moves totally independent from it, at least in one direction. In other word 
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and assuming ideal conditions, if the deck moves, the mass stands still and does not 

follow the motion of the deck it is sitting on. This is possible by significantly 

diminishing the friction between the deck and the mass. A number of methods have 

been tested to reduce friction up to the point that is desired for the purpose of this study. 

The first proposal was to place rollers under the mass. It was tested by vibrating the 

block and measuring the input force and acceleration of it. Since the mass of the block 

was precisely measured, it was expected that the mass multiplied by its acceleration be 

equal to the input force. Although in this case, it was lower. This indicates that a 

fraction of the input force is overcoming the friction. Replacing rollers with bearings 

although improved the results significantly, but still was not up to the required level. 

 The third proposal was to suspend the concrete blocks. This is more similar to the 

suspended shaker method, although there are few concerns that need to be addressed. 

The main advantage of using rollers or bearings, if the friction can be cancel out, is that 

their motion is forth and back and unlike a hung body, it does not have a return or rest 

point. However, the motion of a suspended mass is like a pendulum (Figure 4.9). So 

even though the shaker is causing it to move forth and back, but it has its own 

oscillation characteristic i.e. swinging frequency that perhaps interferes with the input 

force. Moreover, this frequency might interfere with the vibration of the structure. So 

these effects need to be considered.   

Two concrete blocks, weighted 67.8 and 68.2 kg, are hung to a steel frames using very 

thin steel cables, as shown in Figure 4.10. In this setup, the two blocks can freely swing 

in any vertical plan in a short span which means they act similar to simple pendulum. 

The word similar is used, because these blocks do not fulfill one important assumption 

of a simple pendulum. In a simple pendulum, one point mass is suspended to a 

relatively long and light inextensible string whereas in this case, each block is 
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suspended to four cables and the geometry of the blocks and the place where cables are 

connected to the blocks are making this system different from a simple pendulum. 

However some laws that are governing a simple pendulum can be approximately 

applied to this model. 

 

Figure 4.9: The difference between the motion of the block on rollers and suspended  

 

 

Figure 4.10: Schematic of concrete block suspended from a steel frame 
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Simple pendulums are nonlinear in general and their period is depending on initial 

angular displacement amplitude. However, with the assumption of small angles, 

sin(θ)≈θ, the frequency and period of the pendulum are independent from the initial 

angular displacement and are a function of length and acceleration of gravity (g). In this 

case, period of pendulum is: 

      √
 

 
                                                                                                                 (4.1) 

where T is period of pendulum, L is pendulum's length and g is acceleration of gravity.   

In case of these blocks and the way they swing (Figure 4.11), it is apparent that the 

block does not rotate around the pivot point. Because each block is suspended to two 

cables at each side, it maintains its horizontalness and moves up and down when it 

swings front and back. Figure 4.11 is showing the suspended block from the side. L is 

the length of each cable which is 60 ± 0.5 cm. d is the lateral displacement, h is the 

vertical displacement and θ is the swing angle. First, let's imagine the block is 

suspended to its frame and the frame is placed on the ground i.e. the frame itself is 

stationary. If the block swings within the small angle range, θ < 5°, then the frequency 

of the block can be approximately calculated using Equation 4.2 

  
 

  
√

 

 
     ====> f = 0.65 Hz                                                                                 (4.2)  

Vibrating characteristics of both blocks and their frames were tested on the ground. 

Table 4.2 is presenting the main resonance frequencies of the block which are 0.7 Hz 

laterally and 1.2 Hz angular. Other than these two, the test shows that the block has 

significant response in 2.3 and 17 Hz. The supporting frame also has 6 resonance 

frequencies within the range of this study as presented in Table 4.2. The two frames are 
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seating on rubbers that are acting as isolators. This is to minimize the vibration 

interference between the frame and the model itself. Although any trace of these 6 

frequencies on the final results are going to be monitored.  

 

Figure 4.11: Motion of suspended concrete block relative to the deck 

 

Table 4.2: Resonance frequencies of suspended concrete block and the supporting 

frame 

 Vibrating Frequencies (Hz) 

Concrete 

Block 
 0.7 1.2 2.3 17  

Supporting 

Frame 
21 24 113 162 186 222 

 

The first three resonance frequencies of the block are not within the range of the input 

force, so the blocks are not excited in those frequencies. However there is another factor 

that significantly minimizes the effect of blocks oscillation on the model which needs to 

be discussed. What happened in an oscillating pendulum, or in this case the block, is 

d 

h 

L 

θ θ 

d 

h 

(a) (b) 
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that it repeatedly converts kinetic energy to potential energy by gaining height and vise 

versa by gaining velocity. When the swing span is wide, θ > 5°, this conversion 

relationship is nonlinear. For smaller span, conversion can be assumed linear. However 

if the span is too short it means the value of h (Figure 4.11) is very close to zero and so 

the pendulum's energy is much less than it needs to overcome frictions and it does not 

oscillate. 

The other important concern is that the frames that are holding the blocks are seating on 

the deck and moving together with it. If the deck is stationary relative to the global 

coordinate (ground) and blocks are swinging or moving by an external force, the lateral 

displacement of the block, d, causes the block to gain height h as shown in Figure 4.11-

a. Now let's imagine that the block is completely stationary relative to the global 

coordinate (ground) and the deck is moving (Figure 4.11-b). Any lateral displacement 

of the deck, d, causes the frame to move back and forth above the stationary block. In 

fact it does not matter whether the block is moving relative to the frame or frame is 

moving relative to the block. In both cases, the block gains height h for a relative 

displacement of d (Figure 4.11). So the best way of reducing the oscillating effect of the 

block is by minimizing its swing span as much as possible, specifying that the swing 

span is the motion of the block relative to the deck. In case of this study, d was 

monitored throughout the test using a laser proximity sensor and was not in any time 

more than 0.5 cm. So it is safe to assume that h is zero and the block is just moving 

laterally.  

4.4.2.2 Excitation 

The first important feature of any modal analysis is its type i.e. Experimental Modal 

Analysis versus Operational Modal Analysis. With a number of exceptions, EMA 

versus OMA in most cases can be rephrased to forced versus ambient excitation. Forced 
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excitation means that an external studied and known source of excitation applies to a 

known degree of freedom in order to measure the structure's response. This excitation 

can be a single sinusoidal signal, a random white signal, hammer impact force or a 

known deflection and release. This type of analysis requires a controlled condition 

which is only applicable in laboratory. There are many examples of experimental modal 

analysis of a full size structure e.g. wing or fuselage of an airliner or a car. However, in 

case of very large structures e.g. civil structures, EMA is not applicable as it is 

practically impossible to measure the excitation force(s) and therefore operational 

modal analysis is the only option. Operational modal analysis is based on the ambient 

and operational forces that excite the structure. Wave, wind, traffic, running 

machineries are some examples of ambient forces. The key fact is that these forces are 

not measurable and the modal analysis is entirely based on output signals.  

Setting up a known excitation force is almost always possible in the laboratory, as it is 

possible for the 3 m height frame structure in this study. However, the main goal here is 

to exercise operational modal analysis to study its pros and cons. To do this, the 

experiment is set up in a way that fairly resembles the operational condition on the 

platform. Besides waves, wind and other environmental sources of excitation, an 

operational jacket platform is subjected to dynamic excitations produced by rotating 

machineries on the deck. A rotating machine like pump rotates at a particular frequency, 

so its vibration excites the structure at the same frequency and also at its harmonics. The 

machine's gearbox is also rotating at few different frequencies. Permutation of these 

excitations from different machines can be used to perform operational modal analysis.  

In this study, the effect of running machines on the deck is tried to be mimicked by 

shaking hanging masses on the deck. The upper deck consists of two concrete blocks, 

hanged and precisely leveled inside steel frames and can freely swing in a short span. 

Each block is attached to the vibrating shaft of the shaker, while the shaker itself is 
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attached to the deck. Figure 4.12 is showing the position of the two concrete blocks on 

the deck. Blocks are placed at two sides of the deck and perpendicular to each other, so 

that they can excite the model along X and Z axes as well as rotationally around Y axis.  

Each block is attached to the shaker’s shaft as shown in Figure 4.13. A force transducer 

is measuring the interaction force between the shaker and the block. Shaker itself is 

fixed to the deck from underneath using screws.  

 

Figure 4.12: Two concrete blocks located on top of the frame structure 

 

4.4.2.3 Measurement 

Referring to Table 4.1, frame structure has 48 degrees of freedom that need to be 

measured. The number of available accelerometers was 16 and apparently it was not 

possible to measure all 48 DOFs simultaneously. So the model was divided to four 

segments, the acceleration of DOFs at each floor was measured using 12 accelerometers 

and the whole model was measured by roving these accelerometers in four steps. 

Although the amplitude of the amplifiers were not changed during the test, but these 

four sets of measurements are not directly compatible. In case of modal identification 
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using frequency response function, the response is divided by input force which 

consequently normalizes measurements of all DOFs. However in case of output only 

modal identification, the input force is not available and so the relationship between the 

amplitude of different measurement sets are unknown. For this reason, at least one DOF 

must be measured in all the measurement sets as reference. In this case, two reference 

DOFs i.e. 15X (31) and 16Z (36) were selected and two extra accelerometers were used 

permanently to measure these two DOFs.  

 

 

Figure 4.13: Close view of block-shaker configuration. 

 

 

Figure 4.14 is showing three accelerometers connected to a node. They are measuring 

the response of the node in its local coordinate which will later be converted to global 

coordinate of the model.  

Other than measuring the acceleration of the main body, four accelerometers were used 

to measure the acceleration of the concrete blocks and the DOF which shaker is 
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connected to (Figure 4.13). Although the location of the shaker is not listed as one of 

the main DOFs of the model, but these two DOFs are required for FRF based modal 

identification using ICATS. Two force transducers were also measuring the interaction 

between the concrete blocks and the deck which can be translated to the input force at 

those DOFs (Figure 4.13). 

 

Figure 4.14: The accelerometers connected to a node in its three local axes.  

 

4.4.2.4 Modal Testing 

Herein, the general procedure of modal testing is described. The specific exercises of 

introducing damage and adding extra mass are described in their respective subchapters. 

Assuming that concrete blocks and shakers are installed and adjusted, modal testing 

begins with installing all the sensors to the model and connecting each sensor to a 

channel of data analyses. The data analyzer used in this study has 24 channels, so all the 

18 accelerometers (12 main, 2 references, 2 shaker, and 2 blocks) and the two force 

transducers can be attached to it simultaneously. A laser proximity sensor was also 
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connected to the 21st channel to monitor the relative motion of the concrete blocks. 

However data of proximity sensors and the acceleration of the concrete blocks were not 

directly reported and used in the present study. Two amplifiers were also connected to 

output channel of data analyzer to receive the force signals, amplifying them and send 

them to the shakers. 

The final setups are done using NvGate, the graphic user interface of OROS. It is 

definitely not so relevant to explain all the setups in detail, but few are worth 

mentioning. The sampling rate was set to 3200 S/s for the entire test. This is about 7 to 

8 times larger than the sampling rate needed for the objectives of this study; however 

the extra data was produced in no cost and could be used in further studies. 

A variety of signals were also tested i.e. random white and pink signals, sweep 

sinusoidal and step sinusoidal. However only the data of random signals are used and 

this study. The bandwidths of input signals were between 3 Hz to 1.25 kHz. The 3 Hz 

lower band was selected to pass the first three frequencies of concrete blocks (Table 

4.2), considering that the model vibrates at around 4 Hz in its first mode. NvGate 

automatically calculates the bandwidth by dividing the sampling rate to 2.56, which is 

equal to 1.25 kHz. So the upper band of input signal is selected accordingly. 

At the beginning, the 12 main accelerometers were attached to nodes 5 to 8 in the first 

floor. The responses of these four nodes under different types of excitation were 

recorded before they are roved to the upper floor. For instance, there are three 

recordings for each random signal. Once the model was excited using shaker-1, then 

shaker 2 and then both shakers were working together. The recording length for each 

excitation scenario was 60s. There were also other forms of excitations which were not 
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used in this study. Only after all the excitation scenarios were tested, the main 

accelerometers roved to the next floor. 

4.4.3 Modal Identification 

All the objectives of this study are based on output-only modal testing. The modal 

identification method that is used for this purpose is EFDD which is described in 

chapter 3.1.2. ARTeMIS uses this approach to identify modal properties from output-

only data. The academic licence of ARTeMIS Extraction Pro 3.2 is used in this study to 

extract modal frequencies and mode shapes of the model. 

Besides OMA which is the primary identification method, FRF based modal 

identification methods are also used in some cases to reconfirm the results of OMA. For 

this purpose, ICATS 2008 (imperial college) was used in this study to perform FRF 

based modal identification and normalization. Both software’s are licensed to 

Department of Civil Engineering, University of Malaya. The results of these 

identification methods are presented in the next chapter.  

Figure 4.15 is illustrating the modal identification methods that are used in this study. 

This flowchart is showing that modal identification techniques are divided into two 

category of finite element and experimental identification methods. FE identification 

method is divided to eigen analysis and dynamic analysis. Both experimental modal 

analysis and FE dynamic analysis are employing EMA and OMA identification 

methods as shown in the Figure. Step 5 in the flowchart is showing that the excitation 

force that was recorded during the test is in fact being used as input force for the FE 

dynamic analysis.  
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Figure 4.15: Flowchart of modal identification methods
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4.5 Model Updating using CMCM 

4.5.1 Complete Measurements 

The background theory of CMCM model updating method is presented in chapter 3.2. 

This section describes how this method is implemented in particular case of this study. 

First, some positive and negative features of this method in respect to this case study 

need to be explained. CMCM method, like direct and iterative methods, is actually 

dealing with an optimisation problem. Although unlike iterative methods, it has the 

advantage of not requiring iteration and thus the computation time and possible of 

divergence are eliminated. Another important feature of this method is that the detected 

FE modes and experimental modes do not need to be paired. Moreover, those detected 

modes do not need to be scaled, neither relative to each other, nor to a property of the 

model e.g. mass (Hu, et al., 2007). However, this method has a significant limitation 

which is particularly a big concern in this case study and need to be addressed i.e. 

CMCM method cannot deal with incomplete mode shape. It should be noted that the 

main purpose of using this method in this study is to come up with a solution for 

damage detection when the lower DOFs of the frame structure are not experimentall y 

measured.  

Before dealing with the special case of model updating using incomplete mode shapes, 

let's begin with the case which mode shapes are complete. Equation 3.42 is the matrix 

form of Equation 3.41. Matrices C and E contain the stiffness and mass information and 

vectors α and β are containing stiffness and mass correction factors respectively. For 

simplicity, at first it is assumed that the mass matrix of the FE model and actual model 

are the same i.e. M*=M. In this case Equation 3.42 is reduced to: 

                                                                                                                             (4.3) 
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As mentioned above, in a simple form each element can be assumed to be updated by 

only one parameter. In case of stiffness, this parameter is the Young's Modulus of the 

member which is being corrected by α. This assumption can be close to reality in certain 

circumstances. For example if this method is being used for truss elements, this 

assumption can be used. Because truss is a single degree of freedom element (at each 

node) and has axial stiffness only. So either changing the size of the element or 

changing the Young's Modulus, both give the same result. On the other hand, beam 

elements have six degrees of freedom and in a simple form when only translational 

degrees of freedom are of interest, they are three DOFs elements. In this case, by 

changing only Young's Modulus the modification of axial and bending stiffness's are 

tight to each other and are changed all together. This could be acceptable, only if one is 

confident that the geometry of the element is correctly assumed and only material 

properties need to be modified.  

4.5.2 Incomplete Measurements 

The main purpose of employing model updating for this research is to come up with a 

solution for damage detection of frame structure when the entire mode shapes are not 

available. Although as mentioned before, one of the weaknesses of CMCM model 

updating method is that complete mode shapes are required. Considering this, it is 

important to come up with a practical solution to update the model using incomplete 

data. 

By definition, every numerical modelling and prediction e.g. FE simulation is an 

idealized representation of reality. So they are not perfectly presenting the behaviour of 

the actual system which can be expressed as model uncertainty. Model uncertainty does 

not have one reason. In fact it has a number of types and sources which has been 

discussed in the work of many researchers such as (Der Kiureghian & Ditlevsen, 2009; 
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Kennedy & O'Hagan, 2001; Simoen, et al., 2015; Walker, et al., 2003). From these 

publications, model uncertainty can be summarized to three different types: 

1- Model parameter uncertainty: This type of uncertainty is caused by inaccurate or 

uncertain parameters and inputs such as material properties, geometry, load 

characteristics, etc. 

2- Model structure uncertainty: This type of uncertainty is the result of modelling 

simplifications and assumptions due to lack of knowledge or understanding of the true 

system. Simplifications of boundary conditions, governing physical equations and 

model order are few examples of this type of uncertainty. 

3- Model code uncertainty: This type of uncertainty results from errors in the computer 

implementations and hardware and software errors. Nowadays this type of uncertainty 

is considered negligible compare to the other sources of error.  

Other than these three uncertainty sources, there is another type of uncertainty which is 

related to the experimental data. This is not listed as one of the modelling errors above, 

because it does not act in any of the modelling stages, instead it acts during model 

updating process.  

The proposed method here is addressing type-1 uncertainty which the modelling error is 

caused by material and physical properties of the members. It is based on the 

assumption that the modelling error in all the similar members i.e. beams and column, 

are more or less similar and by calculating the correction factor for a group of members, 

the rest can be updated accordingly and with an acceptable level of accuracy. This  

method also requires few iterations to give an acceptable estimation of updated model.  
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The main requirement of this method is to estimate paired modes in FE and experiment. 

This requires a precise simulation of the model to achieve as much compatibly as 

possible. It should be noted that only half of each detected mode shape is available from 

experiment which should be compared with the corresponding DOFs obtained from FE 

analysis. The other important point is that it is not really necessary to use higher modes, 

at least not for the first iteration, since it is more difficult to pair them. 

As stated before, Equations 3.37 and 3.38 need complete mode shapes of FE and 

experiment i.e. ϕ and ϕ*. All 48 DOFs are available in ϕ, but the first 12DOFs of ϕ* are 

not estimated. In the first step, the missing DOFs of ϕ* is filled with corresponding 

elements of ϕ as shown in Equations 4.4 and 4.5. 

 

  [

  

 
   

]                                                                                                                   (4.4) 
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                                                                                                                  (4.5) 

 

The process of calculating the stiffness and mass correcting factors using ϕ and ϕ* is the 

same as before, except that α is being calculated only for the upper half of the structure 

(B5 to B12 and C9 to C16). Since the size of similar members in this case study is the 

same, initially the same correcting factor can be used for similar members. In other 

cases, a combination of engineering judgment and try and error is needed to presume 
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correcting factors for the unmeasured members based on the correcting factors of 

measured members. This process needs to be repeated for few times until frequencies 

and available mode shapes converge.  

4.5.3 Updating Stiffness and Mass Matrices 

As explained before, there are a few ways to manipulate the stiffness of members in FE 

model. The easiest way is to change the Young's Modulus of each individual member. 

Although it is not very accurate since by changing Young's Modulus it is not possible to 

change axial and bending stiffness independently. So instead of material property, it is 

better to manipulate physical properties of each member. Figure 4.16 is showing the 

typical 6 degree of freedom beam element in the shape of a pipe that has been used in 

FE model together with its cross section. The physical properties of each member are 

the radius (r) and thickness (t) of the pipe. These are the two parameters that need to be 

changed in order to update the stiffness matrix of each member.  

  

 

Figure 4.16: Schematic of a beam element with shape of a hollow pipe 
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The axial and bending stiffness in beam elements shown in Figure 4.16 are calculated 

using Equations 4.6 and 4.7 

L

EA
Kaxial                                                                                                              (4.6) 

3

12

L

EI
Kbending                                                                                                         (4.7) 

where E is Young's Modulus, L is the length of the member, A is the cross section's area 

and I is the cross section's moment of inertia.  

Figure 4.17 is presenting the stiffness matrix of a 6 DOF beam element based on its 

local coordinate i.e. the length of the beam is along X. In this matrix, DOFs 1, 2 and 3 

are respectively corresponding to dX, dY and dZ of one end of the element and DOFs 4, 

5 and 6 are for the other end with the same sequence. The reason why angular DOFs are 

not included in this matrix is that those DOFs are not measured in the experiment.  

 

Figure 4.17: Stiffness matrix of a 6 DOF beam element 

 

Univ
ers

ity
 of

 M
ala

ya



78 

It was stated that the stiffness matrix of each member is being corrected separately for 

each axis. So matrix Kn in Equation 3.37 only contains two rows and column of Figure 

4.17 in each step i.e. 1 and 4 for axial stiffness, 2 and 5 for bending along Y and 3 and 6 

for bending along Z. This results three separate correction factors for each member 

named αa, αby and αbz respectively. Since the cross section of the members are circular 

which is symmetric along Y and Z axes, the bending stiffness along Y and Z are always 

the same and so αby and αbz cannot be used independently. So with the condition of αby 

and αbz not being significantly different, their average (αb) may be used to correct 

bending stiffness of both directions, otherwise the cross section of that particular 

member must be changed to provide different stiffness along Y and Z axes. When 

correcting factors were determined, the corrected stiffness of nth member can then be 

calculated using Equations 4.8 and 4.9 

nanana KK ,,,                                                                                                       (4.8) 

nbnbnb KK ,,,                                                                                                       (4.9) 

where K and K' are indicating the original and corrected values of stiffness respectively. 

Now with corrected axial and bending stiffness of the member being available, the 

physical properties of the member need to be updated. To do so, Equations 4.6 and 4.7 

need to be written in terms of the section's physical properties i.e. r and t:  

L
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where ro and ri are outside and inside radius of the pipe respectively. The length and 

Young's Modulus of the member are known. So providing three additional conditions 

i.e. 0or , 0ir  and 0)(  io rr , the corrected values of ro and ri can be calculated 

using the following system of nonlinear equations: 
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                                                                                             (4.12) 

It should be noted that basically there is an easier way to introduce physical properties 

to DIANA. This is by introducing the cross section area, A, and area moment of inertia I 

directly, without having to set the size of the pipe. It is definitely much easier to 

calculate A and I using Equations 4.10 and 4.11 directly. Although the problem is that 

regardless of the assumption, beam elements in FE analysis are still 12 DOF elements 

so angular properties of the beam elements should also be introduced for each member. 

It must be reminded that angular properties of elements has always been and should 

have been part of the FE analysis. Because regardless of their DOFs being measured or 

not, they are naturally acting in the actual model too. However since their corresponding 

DOFs are not being measured, it is not possible to directly update angular properties of 

the elements. So it is more practical to estimate the size of the pipe using updated A and 

I and use it as physical properties and let the software calculate the rest of the 

information it needs based on them.  

The FE model is then updated using the corrected physical properties of all members. 

Since the stiffness correction is performed by changing the dimensions of the members, 

this process alters the mass matrix as well. That is why it is better to update stiffness 

matrix before mass matrix and it needs to be reminded that the new version of mass 
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matrix should be corrected. Correction of mass matrix is much simpler than stiffness 

matrix since only one correcting factor is needed for each member which is applied to 

the member's mass density. The rest of the procedure is similar to what has been 

explained for correcting stiffness matrix. 

The last thing that needs to be pointed out is the method of obtaining stiffness and mass 

matrices. It is possible to extract the global stiffness and mass matrices of the structure 

from FE model. However it does not provide the matrices of each individual member. 

So Kn and Mn have to be assembling using MATLAB. To make sure this manually 

assembled local matrix matches FE outputs, the global stiffness and mass matrices are 

also manually assembled and compared with FE results. For simplicity, the mass matrix 

in FE analysis is set to "lumped mass" to make it easier to reconstruct. After comparing 

the two results, the maximum difference between the two matrices were found to be 

very minimal. So it is safe to use manually obtained local matrices against FE generated 

global matrices. In case the difference is found to be significant, the proposed solution 

is to calculate the error individually for each DOF and scale the corresponding DOF of 

local matrix accordingly. The calculated local matrix can then be used against FE 

generated global matrix. 

Figure 4.18 is illustrating the cross model cross mode model updating method in a 

simple flowchart form. It clarifies the role of each modal identification method in the 

process of model updating. As presented in the flowcharts, only the OMA identified 

modes  are employing in this method while FE eigen analysis is only used to extract full 

rank stiffness and mass matrices.  
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Figure 4.18: Flowchart of CMCM model updating method
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4.6 Mass Normalization 

The theory behind mass normalization using change in mass is described in chapter 

3.3.2. In this chapter, the implementation of the method is presented.  

One  important factor is the mass change ratio i.e. the ratio of added mass to the mass of 

the structure. As mentioned in the theory of this method, the important assumption is 

the similarity of the mode shapes before and after mass modification. If the mass change 

ratio is so large, it changes the mode shapes significantly. On the other hand small mass 

change ratio might not affect the modal frequencies at all. So it is important to keep this 

ratio at its optimum level. (Hout & Avitabile, 2004) are suggesting the ratio of 5% for 

the best results.  

The other important factors in mode shape scaling by change in mass is the position and 

distribution which the extra mass is added and/or shifted. While adding mass to a 

certain DOF can alter modal frequencies and mode shapes in certain modes, it might not 

affect some other modes significantly. There are few ways to assess the sensitivity of a 

mode shape to mass change in a particular DOF. For example (Parloo, et al., 2002) are 

presenting a method which not only the sensitivity of a mode in mass change is 

calculated, but the sensitivity of each DOFs of the mode is also elaborated. The 

important point is that in this method, mode shapes need to be properly scaled in order 

to calculate the sensitivity of mass change in modes.  

To set up a mode scaling procedure using change in mass, it is quite important to have 

an initial estimation of the location of extra masses. The optimum position of mass i n 

terms of their participation on the mode shape is entirely governed by the mode shapes 

themselves. Generally speaking, if a lumped mass is added to the "node" DOF of a 

mode shape, it causes minimum or no effect on that particular mode while if it is added 
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to an anti-node, the effect on the modal frequency and mode shape is utmost. Obviously 

adding mass to only one degree of freedom does not affect all the desired modes at the 

same level. Although if the location of the lumped mass is selected right, it can affect 

most or all desire mode shapes to a level which is required for mass normalization. 

Based on some experimental limits e.g. a device occupies a joint, which can also be the 

case in a real platform, four joints has been selected as desire points to add mass. Nodes 

14, 16, 18 and 20 (Figure 4.19) are labeled as points A, B, C and D consequently and 

any mass placed on any of these 4 nodes is denoted with the same letter. Initially, total 

of 10 mass change scenarios has been tested as follow: 

 

a) Unmodified: The modal properties of the structure without any additional mass are 

elaborated which is denoted by letter "U" 

  

b) Single point modification: 10 kg weight (approximately 3% of the structure’s mass) 

is placed on points A to D separately which are denoted by the same letter and results in 

4 separate cases. 

 

c) Dual point modification: 2×10 kg  weights (approximately 6% of the structure’s 

mass) are simultaneously placed on points A to D which results in 6 different cases e.g. 

"AC" denotes that masses are simultaneously added to points A and C. 

 

To study the optimum mass change modification for mass normalization, two finite 

element analyses has been carried out. First is FE eigen analysis which calculates modal 

frequencies and mass normalized mode shapes directly from mass and stiffness 

matrices. The existence of mass matrix and consequently mass normalized mode shapes 

provides an accurate reference to assess the accuracy of the scaling factor calculated by 
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each mass scenario. Basically, what eigen analysis provides are modal data which are 

ideal in any aspect. Calculated modal frequencies and mode shapes in eigen analysis are 

exact (regardless of whether or not they are in agreement with the experimental results) 

and so one can solely study the effectiveness of mass change scenario without having to  

consider the effects of measurement and identification errors which are existed in 

experimental results. 

 

 

 

Figure 4.19: The location of external weights on the frame structure 
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FE dynamic analysis is used to mediate between the "perfection" of eigen analysis and 

"flaws" of experimental results. In FE eigen analysis, both measurement and modal 

identification are exact and free of systematic errors (although in FE eigen analysis, 

there is no actual measurement stage and it is all modal identification). On the other 

hand, Experimental modal testing suffers from error in both measurement and modal 

identification. In FE dynamic analysis however, the measurement stage is similar to 

eigen analysis and free of systematic errors while modal identification procedure is 

similar to the experiment. 

FE dynamic analysis is the numerical replication of the experiments set up and test. 

Unlike FE eigen analysis, the modal frequencies and mode shapes in FE dynamic 

analysis are not numerically derived from mass and stiffness matrices. Instead, they are 

estimated using the response of the FE model to the applied dynamic loads, similar to 

what is done in modal testing. Dynamic input forces, the exact same force that has been 

measured during the experiment, are applied to the same DOFs of the finite element 

model. A nonlinear dynamic analysis calculates the response of the model in terms of 

acceleration in every time step which is equivalent of the sampling intervals. The 

measured response of the FE model is then used to determine the modal properties of 

the model, using similar method as the experimental data.  

In the first step, FE eigen analysis is used to assess the effectiveness of the method. To 

do so, modal frequencies and mass normalized mode shapes of FE model are calculated 

for unmodified and all 10 mass scenarios using eigen analysis. The scaling factor of 

each mode and each scenario is then calculated using Equation 3.57. 

Equation 4.13 is presenting the relationship between mass normalized mode shape (Φ) 

and the same mode shape, scaled to unity (Ψ), with scaling factor (α). 
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                                                                                                                    (4.13) 

      

 

In general, the goal of mass normalization is to elaborate α in order to calculate Φ from 

Ψ, mentioning that any arbitrary mode shape can be scaled to Ψ. However in this case, 

since the goal is to check the results of mass normalization method, the procedure is 

reversed. Eigen analysis numerically calculates the precise mass normalized mode 

shapes. Therefore, the exact value of scaling factor can be calculated using Equation 

4.14. 

 

       √                                                                                                           (4.14) 

 

The same mass normalized mode shapes can be scaled to Ψ to calculate the scaling 

factor (α) using Equation 3.57, which is then compared with αexact to evaluate its 

accuracy. 

The next step is to evaluate the mass normalization results of FE dynamic analysis. The 

procedure of calculating scaling factor is exactly the same as for FE eigen analysis, 

except that the exact value is not available in this case. Instead, the estimated scaling 

factors of each mass scenario are compared with each other and also with the scaling 

factor that is calculated using FRF data, which in principle is more reliable and accurate. 

Using the results of FE eigen analysis and FE dynamic analysis, the best mass scenarios 

are selected and used in the experiment. Figure 4.20 is illustrating the mass normalized 

method using change in mass in the flowchart form.  
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Figure 4.20: Flowchart of mass normalization method
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4.7 Damage Detection and Localization 

4.7.1 Damage Scenarios 

Before getting to the details of damage scenarios, it is important to define terms 

"undamaged state" and "damaged state" clearly. An important assumption of this study 

is linearity. It assumes that the system remains linear throughout the test i.e. mass and 

stiffness matrices are constant. Although damage in this case is defined as change of 

stiffness (more correctly loose of stiffness) in one or more of the members which 

consequently alters the global stiffness matrix. So how is this definition consistent with 

linearity assumption?  The answer is that the structure is not being seen as one nonlinear 

system, but instead as two different linear systems with similar mass matrices and 

different stiffness matrices and in fact it is required for each of the damaged states of the 

structure to be linear.  

The other important assumption is that the stiffness matrices' difference is not due to 

geometrical changes; instead it is due to change in the stiffness of one or more 

members, either physically e.g. crack, or materially e.g. corrosion. It is not even 

necessarily loose of stiffness; it can be gain of stiffness by welding a crack. By this 

definition, damaged and undamaged states are totally relative. Undamaged is considered 

as "before the change" state and damaged is "after the change" state. So what is called 

undamaged structure here is not at all equivalent to intact structure. The intact model 

was incised and welded back a few times for other parts of the project. So if the original 

intact structure always be considered as "Undamaged state", the error of cutting and 

welding the members accumulates and eventually become significant. The solution is to 

repeatedly update the undamaged state to minimize this error.  

Figure 4.1 is showing the numbering of columns and beams of the frame structure. 

Damages are introduced to the structure by incising one or few of these members using 
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a mini-cutter. In each case damages can be fixed by welding the damaged member, 

considering that the modal parameters of repaired structure might be slightly different 

from the original undamaged structure and need to be tested again. So to minimize the 

number of repairs and tests, damages are applied one after the other and then fixed one 

after the other. Table 4.3 is presenting damage scenarios in detail. As it shows, the test 

begins with case U1 which represents intact structure. Then a number of damages were 

introduced and fixed until all the members are welded back again. This stage of the 

structure is called U2. The same procedure of damaging and fixing produces few more 

damage cases until the structure is entirely fixed again, which is called U3. As presented 

in Table 4.3, total of 10 damage scenarios was produced and in each case, the reference 

case is show in the last column.  

Table 4.3: Description of damage scenarios (refer to Appendix II for illustration) 

Damage 

case 

Damaged 

member(s) 
Description Reference 

U1 - Model is intact - 

D1 C5 C5 is incised in the middle U1 

D2 C2 - C5 D1 +  C2 is incised below node 6 U1 

D3 C2 - C5 - B5 D2 + B5 is incised at node 9 U1/U2 

D4 C2 - B5 D3 - C5 is welded U2 

D5 B5 D4 - C2 is welded U2 

U2 - D5 - B5 is welded - 

D6 B3 U2 + B3 is incised at node 8 U2 

D7 B3 - B6 D6 + B6 is incised close to node 10 U2 

D8 C5 - B3 - B6 D7 + C5 is incised in the middle U2/U3 

D9 C5 - B6 D8 - B3 is welded U3 

D10 B6 D9 - C5 is welded U3 

U3 - All members are welded - 
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4.7.2 Damage Locating Vectors 

The theory of damage locating vector is presented in chapter 3.4 . In this section, the 

process of applying the method for this study is described. As the first step, the modal 

flexibility matrices of undamaged and damaged scenarios need to be calculated using 

Equation 3.68. In this Equation, modal frequencies and mass normalized mode shapes 

are the requirements. The mass normalization method is described in chapter 4.6 and its 

results are going to be discussed later in Chapter 5. So let's just assume that a few 

numbers of modes are identified and their mode shapes are scaled with an acceptable 

accuracy. With this assumption, using DLV involves a number of steps as follow: 

 

i. Obtaining modal flexibility matrices 

It was mentioned before that flexibility matrix is global, so Equation 3.68 converges 

using global mode shapes i.e. lower frequencies. In other word, only the first few modes 

are required to estimate the modal flexibility matrix and existence of higher modes only 

increase the accuracy of the matrix. In this case, modal flexibility matrices were 

calculated using different number of modes i.e. 6, 9 and 12 modes. However, the core of 

the study is based on the modal flexibility matrices that are calculated using the first 9 

modes. Assuming that 9 modes are available, matrix [Φ]48×9 in Equation 3.68 has 48 

rows corresponding to DOFs and 9 columns corresponding to mode shapes. The 

dimension of eigenvalue matrix is equal to the number of available modes and so [Λ]-1 

is a 9×9 matrix. This shows that regardless of the number of available modes, the 

calculated flexibility matrix in Equation 3.68 is always 48×48. 
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ii. Calculating SVD of flexibility change matrix 

The flexibility change matrix is [ΔG]48×48 = [GD] - [GU]. The singular value 

decomposition of [ΔG] was calculated using MATLAB and the result of this operation 

were matrices [U], [S] and [V]T. Matrix U48×48 is not of interest. Matrix S48×48 is a 

diagonal matrix that contains singular values. Matrix V48×48 is an orthogonal matrix 

which its columns are either vectors of raw space or null space. Ideally, the locating 

vectors are those columns of V that are associated with singular values of zero. However 

the singular values are not exactly zero in practice and so a criterion is needed to decide 

on which columns of V are DLVs. 

 

iii. Selecting DLVs 

To select which vectors of [V] are DLVs, first all 48 vectors must be applied to the 

undamaged model. To do this, the entries of each vector were applied as a force to its 

associated DOF in FE model. This resulted on 48 different FE models which every one 

of them were subjected to 48 point forces. By performing a linear static analysis for  

each model, the characterizing stresses of all 28 members were computed. With these 

results and using a series of operations that was described in chapter 3.4, the svn index 

was calculated for each vector. Load vectors with svn ≤ 0.2 were selected as DLV. 

Although this is the standard procedure of finding DLVs, but it should be emphasised 

that this procedure is very difficult and time consuming in practice, particularly in case 

of this study. The number of DOFs (sensor locations) and consequently the number of 

load vectors in this study is relatively large and having to run 48 FE analyses just to 

select DLVs among them does not seem to be practical. Fortunately, it is not at all 
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necessary to apply all load vectors in practice, at least not in this case. As mentioned 

before, DLVs are those vectors that are associated with very small or zero singular 

values. So the best was of evaluating the load vectors is to calculate svn of those vectors 

associated with the lowest singular values until it hits the cut-off values. Although not 

impossible, but it is very unlikely that one of the load vectors with higher singular value 

results on svn lower that the cut off value. So it is not necessary to evaluate those load 

vectors. In case of this study, always the 10th to 15th last load vectors out of 48 were 

considered as DLVs. 

 

iv. Calculating WSI as damage indicator 

Ideally, the damaged member can be located using only one DLV. All it takes is to 

analyze the model under its loading and to find the member with zero or negligible 

characterizing stress. Although in reality the calculated DLVs are not so perfect. 

Weighted stress index (WSI) combines the information from mul tiple DLVs in a way 

that introduces additional robustness into the technique.  

Weighted stress index (WSI) of each member were calculated using Equation 3.81. For 

example, imagine that 10 load vectors were selected as DLVs and the WSI index of 

column C5 was being calculated. The first step is to calculate the nsi indices of column 

C5 for all 10 DLVs. In each case, the calculated nsi were normalized by svn value of its 

associated DLV. WSI is simply the average of all 10 normalized nsi values of column 

C5. The WSI of all beams and columns were similarly calculated. Any member with 

WSI index below 1 is considered as damaged member. Figure 4.21 is illustrating the 

method of employing damage locating vector in the flowchart form.  
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Figure 4.21: Flowchart of damage detection using damage locating vector
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4.7.3 Damage Detection using Incomplete Measurements 

4.7.3.1 Overview 

One of the first steps in structural analysis is dividing the model into smaller 

components i.e. elements to do numerical modelling and analysis. Choosing the 

number, size and type of these elements in different parts of the structure is a decision 

that one must take based on type of the structure, type and purpose of the structural 

analysis, the capability of the available hardware and software etc. This process which 

can be referred to as "meshing" is determining the number of nodes and DOFs and 

consequently the dimension of mass, stiffness and damping matrices. When it comes to 

experimental modal analysis, modelling the structure with fine meshing and large 

number of DOFs is not really applicable. That is because the number of sensors are 

limited which governs the number of nodes and DOFs. The bottom line is that  in 

general, it is unnecessary and pointless to introduce DOFs and to expand the size of 

structural matrices without measuring them all. If one is decided to divide a beam into 

60 nodes, but can only measure 20 of them, this fine meshing is pointless and the size of 

the model must be reduced to 20 DOFs.  

Sometimes the structure itself imposes a minimum number of elements and DOFs that 

should be assigned. For example in frame and truss structures, the number of joints is 

usually the minimum number of nodes that are assigned in modelling. That is the case 

where certain nodes and DOFs must be assigned regardless of whether they can be 

measured or not. There might also be some other valid reasons to introduce DOFs that 

cannot be measured. This is how the term "incomplete measurement" is defined; the 

nodes and DOFs those are assigned for a legitimate reason, but cannot be 

experimentally measured. In a jacket structure for example where parts of the structure 

is under water, it is obviously very difficult to measure underwater DOFs. 
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The review of former studies on this subject was presented in CHAPTER 2:. Despite of 

their interesting approaches and promising results, it is rather apparent that not every 

method is necessary suitable for every problem. Particularly in this case, due to the 

complex geometry of the frame structure, these methods are not entirely applicable to 

address incomplete measurement problem. Nonetheless, this study proposed a simple 

and handy technique to estimate the location of damaged member of a frame structure 

using incomplete measurements. 

4.7.3.2 Frequency Shift Vectors 

It is known that incomplete measurements do not affect the estimation of modal 

frequencies. A solo sensor in the right location can fairly measure all the modal 

frequencies of the structure. Incomplete measurements result on incomplete mode 

shapes which consequently affects the assessment of modal flexibility matrix. The core 

damage localization of this study i.e. DLV is entirely based on the modal flexibility 

matrix. So if some DOFs are missing from flexibility matrix, it makes DLV insensitive 

to damaged members associated to those DOFs. The detail of how the missing DOFs 

are affecting DLV is discussed in chapter 5.6.2 based on the results. Briefly, when the 

missing DOFs are in a specific part of the frame structure e.g. all the nodes in first floor, 

DLV is unable to evaluate members that are attached to those DOFs. However, if the 

damaged member is a column, it is at least able to identify the foot (not the exact 

member) which is involved in damage, only if the two end of the foot are measured or 

known (supports). Damaged members that are not associated to unmeasured DOFs can 

still be detected by DLV in an incomplete measurement. So in such case, DLV can 

partially evaluate the damage scenario of the frame structure. Although the absent or 

uncertain part of its results need to be cover with another detection method. 
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 To do this, a frequency based method is proposed to provide additional information to 

identify possible damaged members located in unmeasured part of the structure. This 

method, in general, is based on studying the frequency shifts of updated FE model 

caused by known damage cases and comparing them with the experimental frequency 

shift caused by unknown damage scenario. With a methodical comparison, it is possible 

to approximation the damaged member with a reasonable level of confident.  

To explain the method, let's use a hypothetical frame structure with a number of 

unmeasured DOFs. Let's assume that the unmeasured DOFs are associated with 5 

members, m1 to m5. Unmeasured member is defined as a member which either one end 

or both ends of it are linked to an unmeasured node. Furthermore, unmeasured node 

here is defined as a node which none of its DOFs are measured. This hypothetical 

structure is subjected to an unknown damage scenario, D. The first 10 modal 

frequencies and mode shapes of the model are estimated experimentally for undamaged 

and damage cases. Apparently, only measured DOFs are presented in mode shape 

vectors and consequently in modal flexibility matrices. As mentioned, these incomplete 

modal flexibility matrices can still be used to calculate DLVs, but since no DLV is 

calculated for missing DOFs, the calculated WSI indexes of m1 to m5 are not reliable. 

However, the estimated WSI of other members are reliable and can be used to evaluate 

their condition. 

In case which the damaged member in damage case D is one of the measured members, 

it can be identified using DLV. Although if one of the unmeasured members are 

involved, DLV is unable to detect it. Even if DLV identifies one of the measured 

members as damaged, there is a chance that D is a multiple damage case and 

unmeasured members are contributing to it as well. So regardless of the results of DLV, 
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damage case D cannot be certainly determined without the knowledge of unmeasured 

members.  

The first step to check the possible contribution of unmeasured members in D is to 

simulate five damage scenarios d1 to d5 by reducing the stiffness of m1 to m5 

respectively in updated FE model. The level of stiffness reduction should be set in a 

way that the overall frequency shifts in FE results do not be significantly different from 

those obtained in the experiment. In other word, the damage severity in FE should not 

be extensively different from the actual case; however the tolerance is fairly high. This 

can be achieved by a number of tries and errors. 

The modal frequencies of intact FE model and d1 to d5 are then estimated using FE 

dynamic analysis. It should be reminded that the FE model is updated, so the modal 

frequencies of undamaged FE and experimental models are adequately similar. The 

proportion of the frequency shifts relative to undamaged cases are then calculated for d1 

to d5 as well as for D and are named fs1 to fs5 and FS, respectively.  

Let's imagine that m2 is the sole unknown damaged member which means m2 is 

responsible for FS. Since FE model is updated, the frequency shifts caused by d2 are 

supposed to be similar to the frequency shifts caused by D, i.e. FS = fs2. However this 

statement is extremely ideal. The detected modal frequencies in both FE and experiment 

are not totally accurate. Although FE model is updated, but there is always a level of 

error in any simulation. The position and magnitude of stiffness reduction in FE is just 

an approximation of the unknown damage case. All these factors and many more are the 

reason why the frequency shifts in FE and experiment are never the same. 

Although the similarity of the two frequency shift vectors is not possible, but there is a 

valid question; is there any meaningful relationship between the two vectors? Because if 
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such relationship can be evaluated, it can be used as an indicator to locate the damaged 

member.  

4.7.3.3 Assessing the Relationship between FS and fs2 

The definition of relationship and association and their difference is presented in 

appendix I. Based on that definition, the aim is to find a causal relationship between FS 

and fs2. The simplest way of assessing the relationship between two variables is by 

calculating their Pearson's correlation. So in case there is a relationship between FS and 

fs2, their correlation coefficient must be significant. This is absolutely true, but 

correlation coefficient is unable to find an exclusive relationship between the two 

variables. The reason, as was explained before, is that it is very possible for fs1 to fs5 to 

be moderately or even highly correlated with each other. This makes fs2 a "cofounding 

variable" between them and FS. So all these variables would have some level of 

correlation with FS and fs2 cannot be identified. The method of identifying cofounding 

variables using multiple linear regression is described in chapter 0. This approach is 

used here to distinguish between the causal relationship of fs2 and FS and the 

association of other possible correlated variables.  

Smart-PLS statistical software is used to calculate the linear regression coefficients. 

This software does structural equation modelling (SEM) using partial least square 

regression analysis (PLS). Structural equation modelling is a method of fitting a 

network of variables to data. This software is a powerful statistical tool which is very 

famous in the area of social science (Hair Jr, Hult, Ringle, & Sarstedt, 2016). Smart-

PLS is capable of fitting a large number of variables with very complex relationships. 

However in case of this study, it was just used as a calculator to do very simple multiple 

linear regression analysis. The Flowchart in Figure 4.22 is showing the method of using 

frequency shift to detect damage in unmeasured part of the structure. 
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Figure 4.22: Flowchart of damage detection using frequency shift method 
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 Overview 

This chapter includes presentation and discussion of the results of this study. For most 

cases, the methods of obtaining the results e.g. measurements, analyses, calculations etc. 

and also the theories that have been used are presented  

The chapter contains four main topics: 

i. The first topic discusses about the results of mass normalization using mass 

change method. This subchapter has two objectives. First is to verify the results 

of this mass normalization method and to propose a technique to assess the 

accuracy and reliability of its findings. For this purpose, numerically generated 

data are used to study the relationship between mode shapes correlation, 

frequency shifts and estimated scaling factors. The second is to apply this 

method for mass normalization of experimental mode shapes. The results are 

then being used in other parts of the study. 

ii. The second topic of this chapter includes the results of model updating. Model 

updating is about utilizing experimental data to update the numerical FE model 

to acquire maximum similarity between reality and simulation. The primary 

purpose of using model updating in this study was its necessity for the proposed 

damage detection method that uses incomplete measurements. However, it was 

also used as a standalone detection method which enhances the reliability of 

damage locating vectors.  
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iii. The third topic discusses about the results of "Damage Locating Vectors". The 

method is applied to 10 damage scenarios to evaluate its ability to detect 

damaged member in different circumstances. Three different sets of data are 

used for this purpose. First are the results of FE eigen analysis. The mode shapes 

in eigen analysis are numerically scaled, so its results are used as benchmark. 

The second sets of data are obtained using FE dynamic analysis. This method 

benefits from the ideal measurements similar to eigen analysis, but its modal 

identification and scaling processes are similar to the experimental modal 

analysis. So it mediates between FE eigen analysis and the experiment. Finally, 

damage locating vector is used to predict different damage scenarios using 

experimental data. 

iv. The last topic of this chapter presents and discusses the proposed method of 

damage detection using incomplete measurements. The proposed method is 

based on the frequency shifts of the updated FE model under certain damage 

scenarios and studying their relationship with the experimental data using 

multiple linear regression analysis. Being paired with DLV, this approach can 

predict the damage scenario with an acceptable accuracy.  

5.2 Modal Identification 

The academic license of ARTeMIS Extractor Pro. 3.2 is used in this study to extract 

modal properties of FE and experimental model. In both cases, the measured 

acceleration of each DOF in cm/s2 is imported to the software. In case of experimental 

data, the local coordinate of each measurement is not perpendicular to the global 

coordinate of the frame structure. So in each case, the measured accelerations of each 
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node in its local XYZ axes need to be converted to global coordinate. ARTeMIS is 

capable of importing the data in its local coordinate and does the conversion.  

After data sets are processed, ARTeMIS draws the average of the normalized singular 

value of spectral density matrices of all data sets (Figure 5.1). Modes are identified at 

this step by manual peak picking as shown in Figure 5.1. Peak picking requires a 

general understanding of the system as some peaks might be not useful or some desire 

modes might not be shows as an individual peak. For example the results are showing a 

sharp peak at 50 Hz; however former FE eigen analysis of the frame structure did not 

identify any mode close to this frequency. In fact this peak is always presented in the 

results and is caused by the noise that the alternating current is inducing to the system 

which is exactly 50 Hz. The other example is the two peaks that are identified at 30.4 

and 31.9 Hz. At the first glance, the first peak might look not so significant and the 

second peak be selected. However FE results are showing that the model has two modes 

at this range with very close frequencies, but different mode shapes; one is the second 

bending along Z and the other is second bending along X. Since the two modes are very 

close, to clearly identify the first mode and its mode shape, another data processing is 

required with the data sets along Z directions to solely identify this mode.  

After all the desired modes are selected, ARTeMIS exports all the required information 

of the modes including modal frequencies, mode shapes and modal damping of each 

mode. Figure 5.2 is showing the first 6 experimental mode shapes identified using 

ARTeMIS.  
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Figure 5.1: Enhanced FDD peak picking in ARTeMIS 

 

 

Figure 5.2: The first 6 experimental mode shapes identified using ARTeMIS. 
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5.3 Mass Normalization 

The background theory of mass normalization using mass change is presented in 

chapter 3.3.2. The methods of utilizing this approach in this study are also described in 

chapter 4.6. So this part only focuses on presentation of the results of this approach and 

also discussions about them. This section has two main objectives. One is to verify this 

approach numerically and experimentally and based on that propose few suggestions on 

how to effectively apply this method and enhance its reliability. The second goal is to 

produce required data to be used for other parts of the study. 

This part is presented in three sections: 

i. All 10 mass modification scenarios that are presented in chapter 4.6 are tested 

using finite element eigen analysis. Precise mass normalized mode shapes are 

available in eigen analysis; therefore they can be used as reference to validate 

the findings. The aim is to realize which parameters are playing a role on 

validity and reliability of the results. 

ii. All 10 mass modification scenarios are tested using finite element dynamic 

analysis. Unlike eigen analysis, the mode identification method in FE dynamic 

analysis is similar to the experiment. So its results and findings are more 

compatible with the experiment. In general, the main goal of these two FE 

analyses is to find which mass modification scenarios are more suitable for the 

task. 

iii. The modification scenarios that are selected by FE analysis are then used to 

normalize the experimental mode shapes. 
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5.3.1 Mass Normalization using Eigen Analysis 

10 mass modification scenarios were simulated in iDIANA by adding point mass 

elements to respective joints. The updated modal frequencies and mass normalized 

mode shapes of each case are then obtained using eigen analysis. Using modal 

frequencies and mode shapes of original and modified cases, the scaling factor for each 

mass scenario and each mode was calculated using the method described in chapter 

3.3.2. 

 

i. Single 10 kg mass scenarios 

Figure 5.3 is presenting the scaling factors calculated using 4 single mass scenarios. The 

reference line which is the numerically calculated scaling factor of original case is also 

shown by dotted line.  

The results are showing that the estimated scaling factor of all mass scenarios perfectly 

fits the exact value for the first 3 modes. Case B is showing a tolerable fit for modes 4 

and 5 too. Other than this, the estimated scaling factors are far from being acceptable. 

To explain this, two important factors must be discussed i.e. correlation and frequency 

shift.  

As mentioned before, one of the main assumptions in Equations 3.57 and 3.63 are that 

the mode shapes after mass modification should not be significantly changed. They 

assume that the two mode shapes remain identical and so they only use Ψ1 to calculate 

α. So to describe why the results are so erroneous after mode four, the frequency and 

mode shapes changes might offer some explanation.  
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Figure 5.3: Scaling factor estimated by a single 10 kg mass placed on points A to D 

(FE eigen analysis) 

 

 

Figure 5.4 is presenting the correlation between the mode shapes of original model and 

single mass scenarios. It shows that the mode shape correlation of all cases are close to 

1 for the first three modes which partly explains the perfect estimation of scaling factor  

for these three modes. Modes 4 to 9 (except for mode 6) are showing a very low 

correlation for case A which means they do not satisfy the assumption of Equations 3.57 

and 3.63 and should be eliminated. For case B, the correlations of modes 4 to 6 are 

acceptable, although a bit low for mode 5, but it still explains the exactable results that 

were mentioned above.  

 

Figure 5.4: Correlation of original and modified mode shapes in single mass scenarios 

(FE eigen analysis) 
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It should be noticed that a high correlation value does not necessarily results in a good 

estimation of α. It is because correlation between two modes can be high simply 

because the extra mass had no effect on that mode shape and did not changed it at all. 

The value of frequency shift is another factor that can help assessing the reliability of 

estimated scaling factors (Figure 5.5). For example in cases C and D, although the 

correlation is close to 1, but the frequency shift of modes 4 to 6 are significantly low, 

less than 0.05% which is far less than the minimum of 1% suggested by (Brincker & 

Andersen, 2003). It means the extra masses in these two points did not participate in 

these 3 modes. The reason is that the upper deck is node of mode 4 to 6 i.e. the standing 

point of vibration which makes the extra mass ineffective. Although since Upper deck is 

the anti-node of mode shapes 1 to 3, the extra mass placed on points C and D effectively 

change the modal frequency and provides a perfect estimation of scaling factor. In case 

of points A and B however, lower deck is not on the node of any of the 6 mode shapes 

and so they alter all the modes and give a reasonable estimation of α.  

 

 

Figure 5.5: Frequency shifts of modified mode shapes in single mass scenarios (FE 

eigen analysis) 
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ii. Dual 10 kg mass scenarios 

Figure 5.6 is presenting the scaling factors calculated using 6 dual mass scenarios. The 

results are showing a significant improvement in the accuracy o f calculated scaling 

factors in compare to single mass scenarios. BC-BD and CD are presenting acceptable 

fit with the exact value for all modes. However, the results of AB, AC and AD are 

starting to deviate from the exact value after mode 4. Further investigation of 

correlations and frequency shifts of these cases (Figure 5.7 and Figure 5.8) indicates 

that these inaccurate scaling factors are suffering from either low correlation factor or 

an improper frequency shift, or even both.  

Results of eigen analysis are showing that among 10 mass modification scenarios, only 

BC, BD and CD are providing reliable results.   

 

 

Figure 5.6: Scaling factor estimated by dual mass scenarios (FE eigen analysis) 
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Figure 5.7: Correlation of original and modified mode shapes in dual mass scenarios 

(FE eigen analysis) 

 

 

Figure 5.8: Frequency shifts of modified mode shapes in dual mass scenarios (FE eigen 

analysis) 

 

 

5.3.2 Mass Normalization using FE Dynamic Analysis 

FE eigen analysis can be considered as the most accurate way of calculating the modal 

frequencies and mode shapes. What makes it so accurate is that the modal parameters 

are calculated directly from mass and stiffness matrices. Although this could be not so 

favorable when the results are being use to validate the experiment. FE dynamic 

analysis is used to provide modal parameters that are more similar and more compatible 

with the experiment. To do so, the very same input forces that have been recorded 
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during experimental tests are applied to the FE model with the same sampling 

frequency, 320 Hz, and to the same points. The acceleration of each DOF is also 

recorded at the same sampling frequency. Table 5.1 presents the frequency of the 

estimated FE modes of Eigen analysis, dynamic analysis using ARTeMIS and dynamic 

analysis using FRF. Unlike eigen analysis, in dynamic analysis the first 12 modes are 

extracted and being used for damage detection.  

Table 5.1: Frequency of detected modes in eigen and dynamic FE analysis 

 

 

 

Figure 5.9 and Figure 5.10 are showing the estimated scaling factor of the first 12 

modes of FE dynamic analysis using 4 and 6 mass scenarios respectively. The scaling 

factor calculated using FRF is also presented in these Figures as reference line. It should 

be noted that although the results calculated using FRF are expected to be more accurate 

than the results of mass change method, but it cannot be used as a reference the same 

way it was used in eigen analysis. One reason is that although accurate, the scaling 

Finite 

Element 
Description 

Frequency (Hz) 

FE Eigen  FE Dynamic 
(ARTeMIS) 

FE Dynamic 
(FRF) 

Mode 1 1st bending along X 4.08 4.099 4.2 

Mode 2 1st bending along Z 4.64 5.661 5.62 

Mode 3 1st torsion around Y 8.51 8.644 8.73 

Mode 4 2nd  bending along Z 26.59 26.25 26.28 

Mode 5 2nd  bending along X 26.93 26.25 26.82 

Mode 6 2nd   torsion around Y 30.01 35.21 35.59 

Mode 7 3rd bending along X 62.32 53.27 52.9 

Mode 8 3rd bending along Z 72.27 66.13 66.76 

Mode 9 3rd  torsion around Y 77.88 76.54 76.31 

Mode 10 4th bending along X NA 89.05 89.33 

Mode 11 1st vertical along Y NA 93.68 94.13 

Mode 12 4th bending along Z NA 96.36 96.92 
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factors calculated using FRF are not as accurate as those calculated in eigen analysis2. 

The other reason is that the scaling factors that are estimated using FRF belonging to 

their own detected modes which are not entirely similar to those that are estimated using 

ARTeMIS 

Similar to the results of FE eigen analysis, the single mass scenarios are not promising 

at all. If the line of FRF is considered as an approximate reference line, most of the 

estimated scaling factors are significantly far from this line. Moreover, the results of 

different mass scenarios in Figure 5.9 are not at all close to each other, except for the 

first 3 modes. This shows that single mass scenarios were unable to accurately or even 

approximately estimate the scaling factors.   

 

 

Figure 5.9: Estimated scaling factor in FE dynamic analysis for single mass scenarios 

 

                                                 
2
 This statement should not be misreading as if the findings of eigen analysis are more accurate and 

reliable than other modal estimation methods. In case of modal estimation, it is clear that the experimental 
results are the benchmark and any other findings should be compared and updated in respect to them. But 
when it comes to investigation of a method that employs modal parameters, the findings of each modal 
estimation technique is evaluated internally. For example, the scaling factors of the eigen analysis mode 
shapes that are estimated using mass change method, are being compared with the numerically obtained 

scaling factors using eigen analysis. Apparently, this internal comparison is significantly more reliable . 
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Figure 5.10: Estimated scaling factor in FE dynamic analysis for double mass scenarios 

 

The estimated scaling factors of double mass scenarios in Figure 5.10 are noticeably 

more concrete compare to single mass scenarios. In most cases, they are following the 

same trend as each other and also compare to FRF results. Among the 6 dual mass 

scenarios, three of them are showing the best estimation in all 12 modes i.e. BC, BD 

and CD. Similar to FE eigen analysis, the correlations and frequency shifts are being 

used to evaluate the estimated scaling factors (Figure 5.11and Figure 5.14). Both 

correlation value and frequency shift of a mode must be within the range in order to 

accept the scaling factor. The results are showing that with few exceptions, for each of 

the cases with correlation and frequency shift within the range, the estimated scaling 

factors are closer to each other and also to FRF line. 

 

Figure 5.11: Correlations of unmodified and modified mode shapes in single mass 

scenarios (FE dynamic analysis) 
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Figure 5.12: Frequency shifts in single mass scenarios (FE dynamic analysis) 

 

 

 

Figure 5.13: Correlations of unmodified and modified in dual mass scenarios (FE 

dynamic analysis) 

 

 

Figure 5.14: Frequency shifts in dual mass scenarios (FE dynamic analysis) 
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5.3.3 Rules of Assessing Reliable Scaling Factor 

The results of FE eigen analysis and FE dynamic analysis are suggesting a relationship 

between the correlation of Ψ1 and Ψ2 and also the frequency shift and the reliability of 

the calculated scaling factor. From the results of all previously examined mass scenarios 

it was concluded that when the correlation of the two mode shapes is high (Correl > 

0.9), the estimated scaling factor is smaller than its actual value. It is because the mass 

change were unable to adequately change the mode shape which happened when the 

mass is very small or it is placed on the node of that particular mode shape.  

If the correlation of the two mode shapes is low (Correl < 0.8), but the frequency shift is 

high (Δω > 3%), it shows that the added mass is large, causing the mode shape to 

change which is in contrary with the assumption of this method and so the calculated 

scaling factor is not reliable. Although rare, it is possible for both correlation and 

frequency shift to be low. This happens when the amount of added mass is sufficient, 

but its position or distribution (in case multiple masses are added) is critical in a way 

that it significantly affects some DOFs of the structure and not the others. Regardless of 

what the reason is, this case should also be rejected. 

The most favorable situation is when the correlation of the two mode shapes is high 

(Correl > 0.9) and the frequency shift is sufficient (Δω > 1%). Although the optimum 

values for correlation and frequency shifts are (Correl > 95%) and (2%< Δω <5%). This 

criterion is very useful to evaluate the truthfulness of the calculated scaling factors in 

actual cases where the exact value is not available.  

Using these rules, the reliability of experimentally estimated scaling factors is being 

examined. Based on the results of FE eigen analysis and Fe dynamic analysis, only 

three mass scenarios was tested experimentally i.e.  BC, BD and CD. 
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5.3.4 Mass Normalization of Experimental Modes 

Table 5.2 is presenting the frequency of the first 12 experimental modes. Comparing 

Table 5.1 and Table 5.2 shows that the first 8 mode shapes of experiment and FE 

dynamic analysis are generally paired. Although when it goes to higher frequencies, the 

detected modes are different. Furthermore, the modal frequencies of the first modes are 

similar and when it goes to higher modes, they become more different. 

Table 5.2: Frequency of detected experimental mode shapes using FRF and ARTeMIS 

 

 

 

 

 

 

The scaling factors of all 12 modes are estimated using three mass scenarios i.e. BC, 

BD and CD which are presented in Figure 5.15. The comparison of the estimated 

scaling factors with themselves and also with FRF line shows that in almost al l cases, 

the results are more or less following the same trend with an acceptable proximity. Only 

in mode 4, the distance of the data is significant. 

Examination of correlation values and frequency changes (Figure 5.16 and Figure 5.17) 

are also showing that the results of mode 4 are not reliable. Another interesting 

observation is the inconsistency between correlation value and frequency shift in mode 

4. Low correlation value in mode 4 is indicating that the mode shape is significantly 

Experiment Description 
Frequency (Hz) 

ARTeMIS FRF 

Mode 1 1
st
 bending along X 4.72 4.76 

Mode 2 1
st
 bending along Z 5.64 5.70 

Mode 3 1
st
  torsion around Y 9.37 9.37 

Mode 4 2
nd

  bending along Z 30.40 30.31 

Mode 5 2
nd

  bending along X 31.90 32.03 

Mode 6 2
nd

   torsion around Y 41.29 41.25 

Mode 7 3
rd

 bending along X 61.90 61.64 

Mode 8 3
rd

 bending along Z 72.66 72.89 

Mode 9 Atypical shape 84.29 84.45 

Mode 10 3
rd

  torsion around Y 97.81 97.53 

Mode 11 Atypical shape 105.5 104.94 

Mode 12 Atypical shape 123.3 123.83 
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changed which is suggesting that the effect of mass changes were significant in this 

mode. This should be normally coupled with a high frequency shift. However the 

frequency shifts of this mode are below 1% in all three cases. As explained before, this 

could be because the extra mass only affects the neighboring DOFs without actually 

altering the mode itself. It could also be due to an error on mode shape estimation in this 

particular mode. This possibility is more probable since all three mass scenarios are 

having the same problem. However, no matter what causes this problem, the results of 

mode 4 are not reliable and this mode should be ignored. 

 

Figure 5.15: Estimated scaling factor using selected mass change scenarios obtained 

experimentally 

 

 

Figure 5.16: Correlation of unmodified and modified mode shapes obtained 

experimentally 
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Figure 5.17: Frequency shift of modes obtained experimentally 

 

5.4 Model Updating 

5.4.1 CMCM using Complete Measurements 

The theory of CMCM model updating is explained in chapter 3.2 and its 

implementation method is described in chapter 4.5. This section is presenting step by 

step updating of FE model using this method. For this purpose, the first 9 modes of both 

FE dynamic analysis and experiment are being used. Figure 5.18 is presenting the 

modal frequencies of the first 9 modes. The Figure shows that over all, the estimated 

frequency in FE is lower than what has been obtained from the experiment. This shows 

that the stiffness of FE model in general is lower than what is estimated in the 

experiment. 

The first step to update the FE model is finding the correcting factor of the stiffness of 

each member. As mentioned before, three stiffness correcting factors are calculated for 

each member, one for its axial stiffness and two for bending stiffness's. Figure 5.19 and 

Figure 5.20 are presenting the stiffness correcting factors of columns and beams 

respectively, calculated in first step. The estimated correction factor is above one in all 

cases which indicates that the axial and bending stiffness of the members need to be 
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increased. To apply corrected stiffness to FE model, the physical property of each 

member is calculated using Equation 4.12. In case the estimated size of a group of 

members are very close to each other, their physical properties can be assigned i n bulk 

for simplicity. However it is always better to model all the members individually if 

possible.  

 

 

Figure 5.18: FE and EX comparison of the frequencies of the first 9 modes 

 

 

Figure 5.19: Stiffness and mass correcting factors of columns using complete 

measurements (Step 1) 
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Figure 5.20: Stiffness and mass correcting factors of beams using complete 

measurement  (Step 1) 

 

After stiffness matrix is updated, it is time to calculate the mass correction value of each 

member. It is possible to use the mass matrix and modal properties of the original FE 

model to update the mass matrix and then apply the correcting factors to the stiffness 

updated version of the model. This is approximate, but saves an additional modal 

estimation step. However to get more accurate results, especially in case which the 

stiffness correcting factors are relatively large, it is better to recalculate modal 

properties and mass and stiffness matrices after each updating stage. The calculated 

mass updating factor for columns and beams in step 1 are presented in Figure 5.19 and 

Figure 5.20 respectively. As it was expected, the calculated mass correcting factors for 

all members are below 1, indicating that the overall mass of the model need to be 

reduced. It is reasonable since mass reduction would increase the overall frequencies of 

the model. Although it should also be noticed that only part of the estimated mass 

correcting value is corresponding to the original model. A segment of it is acting on the 

extra mass that was increased by increasing the size of the members. This explains once 

more why it is better to recalculate modal properties after each step.  
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After both stiffness and mass matrices are updated, the whole process is repeated again 

to check the results. Figure 5.21 and Figure 5.22 are presenting the calculated correcting 

factors of the second step. The results are showing that the estimated correcting factors 

of mass and axial stiffness of all members are close to one. Bending stiffness of 

columns are just slightly higher than they should be and bending stiffness of beams 

need to be reduced. The dimensions of all members need to be updated again to apply 

the new sets of correcting factors.   

 

Figure 5.21: Stiffness and mass correcting factors of columns using complete 

measurements (Step 2) 

 

Figure 5.22: Stiffness and mass correcting factors of beams using complete 

measurements  (Step 2) 
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After updating the model in second stage, the correcting values are calculated again to 

see if they are converged. Figure 5.23 and Figure 5.24 are showing the third sets of 

stiffness and mass correcting factors of columns and beams respectively. All the 

correcting values are close to one which indicates that the model is converged. 

 

Figure 5.23: Stiffness and mass correcting factors of columns using complete 

measurements  (Step 3) 

 

.  

Figure 5.24: Stiffness and mass correcting factors of beams using complete 

measurements  (Step 3) 
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The updated model can be examined by comparing the frequencies and mode shapes of 

FE model and experiment. Figure 5.25 compares the frequencies deviation of original 

model and 1st and 2nd corrected models. It shows that the frequencies of the model after 

second update are not more than 2% different from the experiment. The correlations of 

updated mode shapes are also above 98%. 

 

Figure 5.25: Comparison of the frequencies of original model and 1st and 2nd 

corrections 

 

5.4.2 CMCM using Incomplete Measurements 

The main reason for model updating in this study is to find a solution for detecting and 

locating damage in parts of the structure that are not measured. That is why it is 

important to find a way to update the model using incomplete data. The proposed 

method of model updating using incomplete data is presented in chapter 4.5.2. In 

general, the method approximates the missing items of the experimental data i.e. mode 

shape components, based on the available corresponding items obtained from FE. 

Equations 5.1 and 5.2 are presenting the modal vectors obtained from FE model and 

experiment in matrix form: 

  [
  

  
]                                                                                                                    (5.1)       
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  [
  

 

  
 ]                                                                                                                    (5.2) 

where    and    are FE mode shapes corresponding to the unmeasured and measured 

DOFs and   
  and   

  are experimental mode shapes corresponding to the unmeasured 

and measured DOFs respectively. It should be noted that vectors of ϕ and ϕ* are 

arbitrary scaled. All the items of the two matrices above are known except for   
  which 

can be approximately estimated using Equation 5.3:  

  
    √

  
    

 

  
   

                                                                                                         (5.3) 

With ϕ and ϕ* both available, the first step is to estimate the stiffness correcting factor 

of each element. It should be reminded that although the missing part of the ϕ* is filled, 

but it is approximate and so it is not able to estimate the correcting factors of its 

corresponding members. The point is that updating the stiffness of measured DOFs 

gradually converges that piece of information which in return improves the accuracy of 

the correcting factor in each step. 

Figure 5.26 and Figure 5.27 are presenting the results of the stiffness correcting factors 

estimation for columns C9 to C16 and beams B5 to B12 respectively. The estimated 

correcting factors are used to update their corresponding columns and beams' stiffness. 

As mentioned before, the size of columns and beams are similar throughout the model 

and so it is a good approximation to use the average of correcting factor of each case for 

similar unmeasured members, which is show in Figure 5.26 and Figure 5.27 by dotted 

lines in each case. 
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Figure 5.26: Stiffness and mass correcting factors of columns using incomplete 

measurements (Step 1) 

 

 

Figure 5.27: Stiffness and mass correcting factors of beams using incomplete 

measurements (Step 1) 

 

Similar to what as explained previously, the global and local stiffness and mass matrices 

need to be recalculated after stiffness is updated. Furthermore, it is very important to 

recalculate   
  after each step. The updated information are then used to estimate the 

mass correcting factor of each measured member and its average value is used to update 

mass of the unmeasured members.  
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The second round of updating stiffness and mass matrices are similar to the first one and 

its results are presented in Figure 5.28 and Figure 5.29. The results are showing that the 

axial stiffness of beams is already converged in one step, but the rest still need to be 

updated. The mass matrix of all members is also converged. However, since mass of the 

member is a function of its physical properties, stiffness updating alters mass matrix and 

so it should be estimated after each step.  

 

Figure 5.28: Stiffness and mass correcting factors of columns using incomplete 

measurements (Step 2) 

 

 

Figure 5.29: Stiffness and mass correcting factors of beams using incomplete 

measurements (Step 2) 
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Figure 5.30 and Figure 5.31 are showing the results of the third updating step. As it 

shows, the stiffness of the beams and axial stiffness of the columns are converged, but 

bending stiffness of columns are not. Figure 5.32 shows the results of the columns 4th  

updating step which the entire model is eventually updated.  

 

Figure 5.30: Stiffness and mass correcting factors of columns using incomplete 

measurements (Step 3) 

 

 

 

Figure 5.31: Stiffness and mass correcting factors of beams using incomplete 

measurements (Step 3) 
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Figure 5.32: Stiffness and mass correcting factors of columns using incomplete 

measurements (Step 4) 

 

5.5 Damage Detection and Localization 

5.5.1 Damage Locating Vectors 

5.5.1.1 Finite Element Results 

The theory and implementation of damage locating vector is presented in chapters 3.4 

and 4.7.2. In this chapter, the results of damage locating vectors are presented and 

discussed. The first step is to verify the ability of damage locating vector in locating 

damaged members in different damage scenarios. For this purpose, FE eigen analysis is  

used considering its ultimate accuracy in mode identification and mode shape 

normalization. All 10 damage scenarios that have been presented in Table 4.3 are 

simulated in FE model and modal frequencies and mass normalized mode shapes of 

undamaged and each damaged scenarios are used to construct flexibility matrix. Using 

DLV method, 48 sets of load vectors are calculated for all DOFs and those with lower 

singular values are used to calculate WSI index which is damage indicator.  
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Figure 5.33 is presenting WSI index of the first four damage scenarios using FE eigen 

analysis. The horizontal axis shows the member's number and the vertical axis shows 

WSI value. Members with index values less than one are identified as damaged member. 

In horizontal axis, members 1 to 16 are referring to columns and members 17 to 28 are 

referring to beams. So the column's numbers are the same as their respective member's 

number e.g. member 9 is column 9, but beam 5 in this sequence for example is 

numbered as member 21.  

The results are indicating that in all cases, WSI index of the damaged members are less 

than one and they are located with ultimate accuracy. The case is similar for the rest of 

damage scenarios which are presented in Appendix III. Such perfect and accurate 

results confirm that when all the governing factors such as the number of detected 

modes, the number of measured DOFs, the accuracy of identified modes and mass 

normalization are in their best shape, damage locating vector is able to accurately and 

with no doubt locate the damaged members. From this ground, the effects of each of 

these factors are going to be analyzed and discussed.   

Figure 5.34 and Figure 5.35are presenting the WSI index of the first four damage 

scenarios using FE dynamic analysis. Figure 5.34 shows the case which modes are 

identified and normalized using FRF while Figure 5.35 is presenting the case which 

modes are identified using ARTeMIS and normalized using mass change method. In 

both cases, WSI of most of damaged columns are less than one which indicates 

existence of damage. However in case of beams, WSI are more than one, especially in 

case of multiple damage scenarios.  However they are all relatively small enough to be 

identified as damaged member.  
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Figure 5.33: WSI index of the first 4 damage scenarios using FE eigen analysis  
(members with WSI less than one are considered as damaged) 

 

It should be reminded that Figure 5.34 and Figure 5.35 are presenting the results of FE 

analysis. Similar to any other numerical simulation, these results are not suffering fro m 

some of the errors that are usually expected in an experiment. For example, the results 

are not influenced by environmental noises or calibration errors etc. However in this 

case, FE dynamic analysis shares some uncertainties with experimental results, when it 

comes to mode identification and normalization. For example, the effect of sampling 

rate and the frequency resolution on mode identification are in fact putting FE dynamic 

analysis and experimental analysis at the same side, compare to a numerical method like 

eigen analysis which provides absolutely accurate results in modal identification and 

normalization. 

Figure 5.35 and the rest of these diagrams that are presented in Appendix III are 

verifying that for FE dynamic analysis results, the mass normalization using change in 

WSI=1 WSI=1 

WSI=1 WSI=1 
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mass and also the proposed method of accepting/rejecting the calculated scaling factor 

is up to the accuracy required for flexibility based damage detection. 

 

Figure 5.34: WSI index of the first 4 damage scenarios using FE dynamic analysis and 

FRF identification method in ICATS 

 

Figure 5.35: WSI index of the first 4 damage scenarios using FE dynamic analysis and 

EFDD identification method in ARTeMIS 
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5.5.1.2 Experimental Results 

Figure 5.36 and Figure 5.37 are presenting the WSI index of the first four damage 

scenarios of experimental modal analysis. Figure 5.36 shows the case which modes are 

identified and normalized using FRF and Figure 5.37 is showing the case which modes 

are identified using ARTeMIS and normalized using mass change method. Unlike FE 

dynamic analysis, almost none of the damaged member's indices are less than one. 

However, in all cases, the index values are low enough for damaged members to be 

distinguishable. The worse results are for WSI value of beam 5 (member 21) in D3 and 

D4.  

 

Figure 5.36: WSI index of the first 4 damage scenarios of the experiment using FRF 

identification method in ICATS 

 

In general, in this type of structures, damage in columns is much easier to be detected 

than in beams. There are two reasons for this. The first reason is the geometry. In a 

frame structure, columns are in line with each other. So any change in the stiffness of a 

column alters more entries of the stiffness matrix than those of a beam. In other word, 

damage in columns has more "global influence" than damage in beams. This makes it 
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easier to identify change of stiffness in a column. The second reason is that the beams of 

these types of frame structures are smaller than the columns. So their stiffness change is 

less effective in the stiffness or flexibility matrix.  

 

Figure 5.37: WSI index of the first 4 damage scenarios of the experiment using EFDD 

identification method in ARTeMIS 

 

5.5.1.3 Effect of Absence of Higher Modes 

To study the effect of the number of detected modes, particularly higher modes on the 

accuracy of this method, the experimental results have been repeated using only the first 

6 modes. The results of this test are presented in Figure 5.38 and Figure 5.39. The 

results are showing that for the first two damage scenarios where only columns are 

involved, the damaged members are easily identified, although the index is higher than 

one. However in damage cases 3 and 4 beam 5 is not undoubtedly distinguishable as the 

damaged member. This interesting observation agrees with the previous statement about 

sensitivity of columns and beams in this method. Since damage in a column has more 

global effect on the stiffness matrix, it is detectable using only the first 6 modes which 
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are also more global. Although when it comes to a beam with more of a local influence 

on stiffness matrix, the presence of higher more local modes is vital for detecting 

damage on them. 

 

Figure 5.38: WSI index of the first 4 damage scenarios using the first 6 modes 

(Experiment- FRF) 

Figure 5.39: WSI index of the first 4 damage scenarios using the first 6 modes 

(Experiment - ARTeMIS) 
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5.5.2 Utilizing CMCM as Damage Indicator 

5.5.2.1 Damage Detection based on CMCM 

Originally, CMCM is a model updating method. However its ability to track changes on 

the stiffness of the members makes it a possible damage indicator. CMCM as damage 

detection method has some advantages over DLV. The most important advantage is that 

it does not need mass normalized mode shapes and works with any arbitrary scale. This 

alone is important enough, because scaling mode shapes in OMA analysis is not so easy 

and straightforward. However, there are some other aspects in favour of DLV. Unlike 

DLV that works with the more global "Flexibility Matrix", CMCM needs local 

"Stiffness Matrix". Flexibility matrix is global and so it converges by using lower 

frequency modes. However stiffness matrix cannot be extracted from these modes. So 

the stiffness matrix of the experimental model is not available. The only way it can be 

estimated or better to say approximated is by updating the FE model.  

Implementing CMCM so that it can be used as damage detector has two main steps:  

1- First step is to update the FE model using the experimental results of damaged 

structure. To achieve the best results, the updating process must be performing as 

accurate as possible. 

2- The updated FE model should then be updated against experimental results of 

undamaged structure. 

Lets K and M be the stiffness and mass matrices of FE model. Equations 5.4 and 5.5 are 

used to update matrix K and M: 
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                                                                                                     (5.5) 

where    is the ith mode shape of FE model and   
  is the jth mode shape of damaged 

model obtained experimentally. The process of updating is similar to what has been 

presented before and is not repeated here. Now let's K* be the stiffness matrix of FE 

model after being updated by damaged results. The second step is updating K* using 

experimental results of undamaged structure, as shown in Equation 5.6: 

      
(  

 )
 
  

   
 

(  
 )

 
    

 
                                                                                                   (5.6) 

where   
  is the kth mode shape of updated FE model and   

  is the lth mode shape of 

undamaged experimental model. Cn,kl is then used to estimate stiffness correcting factor. 

Any member with stiffness correcting value more than one is marked as damaged 

member. Besides, the correcting value itself is a good measure of damage severity.  

Since this method is based on comparing the two sets of modal frequencies and mode 

shapes, a question might rise that why modal properties of undamaged and damaged 

state of the model cannot be compared right away to calculate C. The answer is simple; 

because in that case K is not available. This is the key point of this method. Since 

stiffness and mass matrices are not available in the actual model, it uses FE model to 

intervene between the two sets of data. Since mass and more importantly stiffness 

matrices are available in FE, they can then be used to relate frequency and mode shape 
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changes to the DOFs and geometry of the structure. So to achieve the best results using 

CMCM, it is important to do an accurate FE modeling and updating.     

Figure 5.40 is presenting the results of damage detection using CMCM for the first 4 

damage scenarios. As it shows, the method clearly identifies all damaged members. 

Moreover, the correcting factors associated with each damaged member are 

corresponding with their damage severity which is around 30 to 35% in this case.  

 

Figure 5.40: Damage detection using CMCM 

 

However the correcting factor value of 1.3 in Figure 5.40 are clearly identifying them as 

damaged members, but the results are also showing relatively high values for intact 

members too. However there is a significant difference between the calculated value of 

damaged members and mistakenly identified intact members, but this error causes 

uncertainty on damage localization and is a flaw of this method. Close examination of 

the geometry of the structure reviles that in most cases, the incorrectly detected 
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members are at one end connected to the damaged member. Since damage in a member 

alters DOFs of its two ends, it indirectly influences the other members that are in one 

end connected to those DOFs. This can help to do a better judgment on pointing to the 

damaged member. 

5.5.2.2 Enhancing DLV using CMCM Indicator 

While CMCM based detection method that is presented here and DLV method are both 

showing some major errors in detecting damaged members, particularly in multi 

damage scenarios, but there is an interesting difference between their types of error. An 

overall investigation of all the damage detection results that are obtained using DLV 

suggests that the errors of this method are generally similar to what is known as "Type 

II" error. On the other hand, results of CMCM are suggesting that this method in general 

suffers from what is known as "Type I" error. 

Let's define these two types of error and their differences, but to do so, let's briefly 

define a statistical term called "null hypothesis". In statistics, the term "null hypothesis" 

refers to a general statement or default position that there is no relationship between two 

phenomena (Everitt, 1998). This definition is generally used in social science and this 

study has nothing to do with statistic. However this term can somehow be redefine to 

suit the purpose of this study. Let's say that in this case, the default state of each 

member in each set of damage detection analysis is being undamaged. In other word, 

the "null hypothesis" of each member is for it to be undamaged. So the job of the 

detection method is to simply "reject" this hypothesis or default state whenever it comes 

to a damaged member. Now let's see in how many ways a detection method might fail 

doing its job. 

Univ
ers

ity
 of

 M
ala

ya



138 

Type I error, also known as false positive, is defined as "incorrect rejection of a true null 

hypothesis". It means the null hypothesis is actually true, but the method incorrectly 

rejects it. Reminding that a true null hypothesis in this case means the member is 

actually undamaged, then "incorrect rejection" of it means that the detection method 

incorrectly marked an intact member as damaged. On the other hand, type II error, also 

known as false negative, is defined as "the failure to reject a false null hypothesis". It 

means the null hypothesis is actually false, but the method fails to rejects it. Again, 

reminding that when the null hypothesis is false, it means that the member is damaged. 

So the detection method should be able to reject the null hypothesis, but it fails and 

marks a damaged member as intact. It is clear that although these two examples are both 

called error, but they are so different and has different impact on the final results and 

conclusions. 

A closer look at all the results obtained from CMCM and DLV shows that CMCM is 

generally suffering from "type I" error. As it rarely fails to detect a damaged member, 

but it occasionally marks some undamaged members as damaged. In contrary, results of 

DLV are suggesting that it generally suffers from "type II" error. As it rarely marks an 

undamaged member as damaged, but it sometimes fails to detect an actual damaged 

member. It should be noted that this statement is not ruling out the effect of other 

sources of error. "CMCM rarely fails to detect damaged member" does not imply that 

this method is always successful on locating damaged member. The ability and 

accuracy of any damage detection methods depends on many external factors e.g. modal 

testing set up, equipments, quality of raw data, method of modal analysis, accuracy of 

extracted modal parameters, accurate numerical simulation of the model etc. Assuming 

that most of these factors are considered and are in their best shape possible, there are 

always imperfections that cause errors and uncertainty. The statement above is 
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describing how these errors are influencing the final results and which conclusion made 

by those results are more uncertain.  

It should be emphasized that the DLV’s error type that is explained here as being false 

negative should not be misunderstood and being compared by the term “false positive” 

that is discussed in earlier studies by (An, et al., 2014; Gao, 2005; Gao, et al., 2007). 

The false positive detection that is reported by them is referring to a problem caused by 

insufficient number of measurement points. This causes the absence of a damage 

locating vector between two or more members and if one of those members is damaged, 

it is possible that other members be falsely marked as damaged. This issue is further 

described in 5.6.1. 

The important point of describing types of errors is that when there are two 

methodologies to address a problem, each with one of the two types of error, they are 

able to cancel each other's uncertainty in some extend. Figure 5.41 is presenting the 

results of DLV method for damage scenarios D7 to D10. These damaged cases are 

chosen since they involved two damaged beams and the results of DLV are very 

uncertain to detect these damaged members. The reason is that the WSI index calculated 

for damaged members, particularly beams are way above one which is the suggested 

limit for damaged member to be detected. Furthermore, the WSI indices of undamaged 

members are as low as 6 for some cases. For example WSI index of the damaged beam 

B6 (member-22) in D8 scenario is 5.1 while the WSI of undamaged beams B2, B5 and 

B11 (members 18, 21 and 27) are 6. This makes it very difficult to assertively detecting 

the damaged member.  
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Figure 5.41: Results of DLV for damage scenarios D7 to D10. (Output only) 

 

 

In Figure 5.42 and Figure 5.45, the left diagrams are presenting the results of CMCM 

damage detection for damage scenarios D7 to D10 respectively. As mentioned before, 

since the nature of error in this method is type I, all damaged members are detected, but 

meanwhile many undamaged beams are also having significant value of correcting 

factor which is a false positive. In Figure 5.42 and Figure 5.45, the right diagrams are 

showing the results of CMCM that are normalized by WSI index respectively. The 

normalizing process is very straight forward, simply dividing the correcting factor by 

WSI. Although since the scale of correcting factor starts from 1, it is first subtracted by 

1 as shown in Equation 5.7;        

  
     

   
                                                                                                                   (5.7) 

where α is correcting factor and i is the normalized damage indicator. The value of i 

itself has no particular meaning and it is just a ratio between the lower and higher points 
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of the diagram. So it is again normalized to one to make it more sensible. The results  of 

normalized damage indicators are showing that combining the two damage detection 

methods is significantly improving the reliability of the final results.  

 

Figure 5.42: CMCM damage detection (left) and CMCM normalized by WSI (right) for 

D7 

 

 

Figure 5.43: CMCM damage detection (left) and CMCM normalized by WSI (right) for 

D8 

 

 

 

 

Figure 5.44: CMCM damage detection (left) and CMCM normalized by WSI (right) for 

D9 
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Figure 5.45: CMCM damage detection (left) and CMCM normalized by WSI (right) for 

D10 

5.6 Damage Detection using Incomplete Measurements 

5.6.1 “False‎positive”‎in‎DLV 

False positive detection in DLV is one of the issues that is reported and discussed in a 

number of studies. This is when the method calculates zero or small stress for an 

undamaged member and identifies it as being damaged. False positive detection is not a 

drawback of the DLV method itself. It is the result of using DLV when the number of 

sensors is less than the number of DOFs i.e. incomplete measurement. In this case, the 

load vectors are not calculated for all degrees of freedom or nodes. In a frame or truss 

structure for example, this might cause zero stress for an intact member that is 

connected to a damaged member, simply because no other load vector is available 

between the two to balance the stress. 

 (Gao, 2005; Gao, et al., 2007) presented the experimental verification of DLV method. 

They tested a 5.6 m long, three-dimensional truss structure at University of Illinois. In 

both of their single damage scenarios, two intact members were falsely identified as 

damaged along with the damaged member. They explained that when the number of 

sensors is increased, the likelihood of false identification of damaged elements is 

significantly reduced. Briefly, their methodology was based on dividing the structure to 

different sections and using smart sensor network to measure the required DOFs. 
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Another study of this type is conducted by (An, et al., 2014). They tested an 8 m long, 

three-dimensional truss structure and used SDLV to detect damage scenarios under 

ambient vibration. Noting that their objectives and methodologies were different from 

those in this study, but they’ve also encountered and addressed DLV’s false positive 

detection due to incomplete measurement. They’ve stated that “when limited sensors of 

the detected structure or substructure are used to build the flexibility matrix, the SDLV 

method can only tell the damaged section which contains the damaged elements and 

false positives. Thus, if the exact damaged elements are required, the second step of 

damage detection should be conducted again in the damaged section with measured 

nodes from all nodes in this section”. In other word, in a structure with a big number of 

DOFs, test can be conducted in various stages. First a limited number of sensors can be 

used to approximate the location of damage and then a finer measurement setup is used 

to accurately locate the damaged member. 

Although their solution is simple and practical, but it is based on the assumption that all 

the structure is potentially accessible and the reason for incomplete measurement is 

limited number of sensors or impracticality of a complete measurement. However in 

case of this study, the frame structure is not so large and so a complete measurement is 

practical. The assumed reason behind incomplete measurement is that certain part of the 

structure is difficult, expensive or even impossible to be measured. In this case, if the 

results of incomplete measurements are indicating that the damage is located in that 

section, it is not possible to redistribute the sensors in that area to further identify the 

damaged member. So at this part, the focus of this study is to find a way to rule out the 

false positive detections of DLV without redistributing the sensors.   
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5.6.2 Incomplete Measurements Results 

To study the possibility of detecting damaged members when their corresponding DOFs 

are not measured, the data of the first 12 DOFs are eliminated in the analysis. These 12 

DOFs are connected to columns C1 to C8 and beams B1 to B4 which means they effect 

the detection of damage in these members. Four damage scenarios D1, D2, D6 and D7 

are involved with these unmeasured members and are selected to study the effect of 

incomplete measurements on DLV results.  

As the first step, WSI index of all members are calculated for these 4 damage scenarios. 

As described before, damage locating vectors are load vectors that are applied to the 

location of sensors in a way that they cause zero or negligible stress on damage 

member. For example in case column 5 is damaged, the corresponding locating vectors 

of the two ends of the column i.e. nodes 5 and 9 are calculated in a way that they cancel 

each other and also the effect of any other force that is acting on the member. Now the 

question is that what if DOFs of one end of the member are not measured? For example 

in case of column C5, if the DOFs of node 5 are not measured it means no load vectors 

are calculated for one end of the member. So how the load vectors at node 9 can impose 

zero stress on C5 without the presence of counteracting load vectors at node 5? To 

answer this, it should be reminded that considering columns C1 and C5 as two different 

members is only valid if a node is defined between them. However since node 5 is not 

measured, in DLVs point of view columns 1 and 5 are not two separate members, 

instead it is one long element which is stretched between nodes 1 and 9. So damage in 

column 5 makes the load vectors at node 9 to be equal to its corresponding reaction 

force in node 1. In this case, the calculated WSI index is small not only for column 5, 

but also for column 1 which DLV sees it as part of the same member. This is what has 

been referred to as “false positive detection”, which in this case column 5 is the actual 

damaged member and column 1 is falsely detected by DLV.  
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Figure 5.46 is presenting the WSI index of four selected damage scenarios using 

incomplete measurements. As explained above, for damage scenario D1, although only 

column 5 is damaged, the WSI index of column 1 is also small. What can be concluded 

from this Figure is that if WSI index of two members that are in line with each other are 

small, considering that the connection of the two members are not measured, at least 

one of the two members are damaged. Another consideration in this Figure is that the 

WSI index of members 17 to 20 (beams B1 to B4) are also small. This could be easily 

described, considering that none of the DOFs of these members are measured and the 

small stress values of these members are in fact caused by the deformation of columns 

attached to them.  

 

Figure 5.46: WSI index of D1, D2, D6 and D7 obtained using incomplete 

measurements 

 

In case of D2 which columns C2 and C5 are damaged, the results are showing the same 

thing. Column C1 is below C5 and C6 is above C2. So existence of damage in columns 

C2 and C5 causes WSI index of C1 and C6 to be calculated low too i.e. false positive 
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detection of C1 and C6. In case of D6 which beam B3 (member 19) is damaged the WSI 

index of the beam is low. However noting can be concluded from this value since it is 

not really caused by damage in the member; instead it is caused by absence of load 

vectors at this member. It can be seen in this Figure that the WSI of all beams in that 

section are low and not just beam 3. The last damage scenario, D7, is the case which 

beam 6 (member 22) is damaged. Since it is known that both ends of this beam are 

measured, then the low value of WSI is an indication of damage in this beam. 

The results of these four damage scenarios presented in Figure 5.46 shows that in case 

of incomplete measurements, DLV can in some cases approximate the damaged 

member. However even this approximation needs extra consideration on the geometry 

of the structure and the position of unmeasured DOFs. In case of columns, it is possible 

to detect the damaged leg in general, but not the actual damaged member. In case of 

unmeasured beams, DLV completely fails to locate damaged member. In case which 

damaged member is within the measured part of the structure, DLV works as usual. 

5.6.3 Enhancing DLV using Frequency Shift Method 

Obviously the main issue with incomplete measurements is that the mode shape vectors 

are not entirely available, however it does not affect the accuracy of estimated modal 

frequencies. In fact modal frequencies can be estimated using even a single sensor 

which is mounted in the right position. Consequently, the incomplete measurements 

only affect damage detection methods which are employing mode shapes, l ike it 

considerably affect the reliability of DLV. Considering this, a frequency based damage 

detection method should be a better choice in case of incomplete measurements. This is 

true; except that despite of complete or incomplete measurements, frequency based 

damage detection methods are not so reliable when it comes to damage location. 

However in case of incomplete measurements, pairing two or more detection methods 
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that are using different approaches can improve the accuracy of the final results i.e. 

enhancing the approximate predictions of DLV using a frequency based approach. In 

other word, the goal of the proposed frequency method is not to detect and locate 

damaged members throughout the structure. It only needs to rule out the false positive 

detections of DLV.  

For this purpose, a complementary method is presented here that approximately 

indicates the damaged member using natural frequencies only. This method in general is 

based on categorizing the pattern of frequency shifts due to different damage scenarios 

and comparing them with the frequency shift that is estimated in the experiment. In 

order to generate sets of frequency shifts that are corresponding to the stiffness lost of 

unmeasured members, the finite element model of the frame structure should first be 

updated in respect to the experimental data. This condition indicates that although this 

method is using frequencies only, but it still relies on mode shapes and cannot be used 

independently. As it was mentioned above, it is more of a complementary method to 

increase the accuracy of the existing mode shape based method.  

The results of model updating using incomplete measurements are presented in chapter 

5.4.2. Different damage scenarios are then simulated using the updated finite element 

model. In this case, 8 columns and 4 beams are connected to the unmeasured nodes and 

need to be examined i.e. beams 1 to 4 and columns 1 to 8. In each scenario, the Young’s 

Modulus of the member is reduced by 70% and new sets of natural frequencies are 

measured using FE dynamic analysis and ARTeMIS. 

Table 5.3 is presenting the estimated frequencies of updated undamaged FE model for 

the first 9 modes. It is also presenting the percentage of frequency shift caused by each 

damage scenario in respect to the undamaged frequency. The results are also visualized 
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in Figure 5.47 and Figure 5.48. These graphs are demonstrating that each simulated 

damage scenario has a particular frequency shift pattern which is different from the 

others. However the level of this dissimilarity varies from case to case which can be 

measured by their correlations. It should be mentioned that beam B6 is included in this 

analysis although it is not among unmeasured members. It is because B6 is one of the 

two damaged members of damage scenario D7 and has been previously detected as 

possible damaged member using DLV.  

 

Table 5.3: Frequency shifts caused by stiffness reduction in unmeasured members 

U (Hz) 

Frequency shifts in respect to U (%) 

B1 B2 B3 B4 B6 C1 C2 C3 C4 C5 C6 C7 C8 

1 4.68 0.39 0.00 0.39 0.00 0.00 0.83 0.81 0.83 0.83 0.32 0.32 0.32 0.32 

2 5.68 0.00 0.37 0.00 0.37 1.36 0.69 0.65 0.65 0.69 0.24 0.26 0.26 0.24 

3 9.47 0.08 0.11 0.08 0.11 0.31 0.54 0.52 0.52 0.54 0.53 0.52 0.51 0.53 

4 30.82 0.19 0.34 0.38 0.08 0.15 0.56 1.02 1.50 1.09 0.26 0.49 0.71 0.53 

5 32.56 0.19 0.30 0.07 0.19 0.15 0.89 1.26 1.08 0.71 0.45 0.63 0.52 0.33 

6 40.87 0.20 0.07 0.07 0.50 0.07 1.73 0.73 0.40 1.33 0.93 0.43 0.27 0.73 

7 62.95 0.30 0.30 0.30 0.29 0.39 0.96 1.08 1.04 0.95 1.32 1.49 1.46 1.28 

8 73.45 0.01 0.13 0.11 0.01 0.22 1.17 1.21 1.50 1.21 0.39 1.53 2.43 1.50 

9 85.72 0.29 0.33 0.28 0.33 0.79 0.99 1.63 1.90 1.64 0.59 1.12 0.66 0.32 
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Figure 5.47: Frequency shifts caused by stiffness reduction in beams 

 

Figure 5.48: Frequency shifts caused by stiffness reduction in columns 

 

Table 5.4 is presenting the cross correlation of frequency shifts of all members. For 

example, the correlation of columns C2 and C3 is 0.89, indicating that the frequency 

shifts caused by stiffness reduction in these two members are relatively similar. On the 

other hand, correlation of columns C2 and C5 is 0.08 which shows that the stiffness 

reduction in these two members cause different patterns of frequency shifts. Knowing 

the frequency shift cross correlations of all the members is particularly important, 

because if the experimental data are showing similar pattern with C2 and C3 for 
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instance, it is not likely that they are both responsible for that frequency shift. Instead, 

one of the two columns e.g. C2 is in fact the damaged member and C3 is correlated with 

the experimental data, only because it is correlated with C2. This issue is signifying that 

correlation alone is not a reliable damage indicator, because it is also possible for 

undamaged members to have significant correlation with the experimental data and this 

happens more than often. 

To discriminate these two conditions, let's use the term "explain" instead of the general 

term "correlate". So in this case, the results of both C2 and C3 are correlated with the 

experimental data, but only C2 is in fact explaining it i.e. C2 is "explanatory variable" 

of experimental data. C3 is correlated with the experimental data, only because it is 

correlated with its explanatory variable. Let's be reminded that C2 and C3 are used here 

just as an example. 

Table 5.4: Cross correlation of frequency shifts of unmeasured beams and columns 

Corr. B1 B2 B3 B4 B6 C1 C2 C3 C4 C5 C6 C7 C8 

B1 1             

B2 -0.17 1            

B3 0.77 -0.01 1           

B4 -0.01 0.30 -0.41 1          

B6 -0.41 0.62 -0.36 0.44 1         

C1 0.12 -0.37 -0.24 0.53 -0.27 1        

C2 0.30 0.42 0.32 -0.02 0.00 0.15 1       

C3 0.16 0.45 0.48 -0.28 0.05 -0.14 0.89 1      

C4 0.26 0.07 0.28 0.32 -0.03 0.59 0.65 0.60 1     

C5 0.37 -0.02 0.07 0.51 -0.16 0.50 0.08 -0.16 0.23 1    

C6 0.03 0.16 0.15 -0.10 -0.05 0.23 0.63 0.58 0.43 0.49 1   

C7 -0.25 -0.01 0.06 -0.38 -0.15 0.15 0.40 0.48 0.25 0.18 0.87 1  

C8 -0.17 -0.18 0.01 -0.14 -0.29 0.38 0.14 0.15 0.22 0.50 0.79 0.89 1 
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5.6.3.1 Damage Scenario D1: 

Figure 5.49 is illustrating the correlation of frequency shifts between all unmeasured 

members and experimental data of damage scenario D1 (Refer to Table 4.3). Two 

members are demonstrating high similarity with the experiment i.e. C5 and C6. 

However the correlations of B4, C1, C2 and C8 with D1 are also relatively high which 

could be sign of a multiple damage scenario. 

 

 

Figure 5.49: Correlation of frequency shifts between all unmeasured members and D1 

 

To narrow down the number of possible damaged members, these results should be 

compared with the results of DLV in Figure 5.46. As described before, DLV is unable 

to identify damaged member in unmeasured part of the structure. However it is able to 

indicate the foot of the possible damaged column. In this case, the results of DLV are 

showing that among 8 unmeasured columns, C1 and C5 are the only possible damaged 

members. However based on DLV, any of the 4 unmeasured beams could also 

contribute to the damage scenario. 
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Referring to Table 5.4, the correlations of C6 and C8 with C5 (the possible damaged 

member) are around 50% which is relatively high. Assuming that C5 is the sole 

damaged member, this could explain the similarity between the frequency shifts of these 

two columns with experimental data. Figure 5.49 is showing that the similarity of C1 

with experimental data is considerably lower than C5, which indicates that C5 is the 

likely damaged member. The high value of cross correlation between C1 and C5 (Table 

5.4) also supports this scenario. However the other possibility is that both C1 and C5 are 

damaged, or perhaps the joint between the two columns is responsible for these results. 

Furthermore, any of the four beams, especially B1 and B4 are still possible cases which 

could contribute to this damage scenario. 

As stated in APPENDIX 0, multiple regression analysis is also a reliable method to 

confirm whether C5 is the sole damaged member or not. As a reminder, if two sets of 

data are both correlated with the experiment, the results of multiple regression analysis 

can elucidate which one is in fact "explaining" the experimental data and which one is 

just correlated with the first one.   

Figure 5.50 is showing the results of multiple regression analysis of columns C1 and 

C5. The top-left of this Figure is showing the relationship of C1 with the experimental 

data of damage scenario D1. The number on the line is called the regression coefficient 

of C1 and D1 which is 0.36, equal to their correlations which are presented in Figure 

5.49. The number on the circle of D1 is called "R-squared" which is the coefficient of 

determination. In other word, it measures how much of D1 is predicted (or explained) 

by C1. In this case, the R2 of C1 on D1 is 0.13 (in the scale of 0 to 1) which shows D1 

is not being considerably explained by C1.  
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Figure 5.50: Regression coefficients of C1 and C5 with D1 in Smart PLS 

 

The top-right of Figure 5.50 is showing the relationship of C5 with the experimental 

data of damage scenario D1. The regression coefficient of C5 on D1 is 0.73, also equal 

to their correlations shown in Figure 5.49. The R2 of C5 on D1 is 0.53 which is 

relatively high and shows that C5 is predicting D1 notably. 

What if the relationships of C1 and C5 with D1 are determined at the same time in one 

model? The results of this model are presented in the bottom of Figure 5.50. It shows 

that when C1 and C5 are modelled together, the regression coefficient of C5 is still 

0.73, but the regression coefficient of C1 is dropped from 0.36 to zero. It means the 

regression coefficient of C1 and D1 is entirely absorbed by C5 when it is presented in 

the model. This clearly indicates that C1 has no genuine relationship with D1 and in fact 

it is C5 that is fully responsible for the correlation of C1 and D1. In other word, C1 is 

50% correlated with C5 (Table 5.4) and C5 is 73% correlated with D1. The result of 

multiply these two numbers is 0.36 which is exactly the correlation between C1 and D1. 

This again shows that C1 has no genuine relationship with D1 and it is correlated with 

D1, only because it is correlated with C5. 
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The same method can be used for all other members to see whether their relationship 

with D1 is real or it is through C5. Although the results of DLV are showing that no 

other column is involved in damage scenario D1, but they are also included. Table 5.5 is 

presenting the direct regression coefficient and also R2 of all unmeasured members with 

D1. It also presents the Effect of C5 on the relationship of all members with D1. The 

results are showing that almost all the members (except for C6) have insignificant value 

of R2 which indicates that D1 is not considerably being explained by them. In some 

cases, the presence of C5 in the model has dropped the regression coefficient to either 

zero or a small negative value.  For B3 and C2, the regression coefficient is almost the 

same, with and without C5 being in the model and that is simply because they had no 

correlation with C5 in the first place. To sum up, either the low value of R 2 or the 

reduced regression coefficient are indicating that these members are not involved in this 

particular damage scenario. 

However in case of C6, the R2 is 0.25 which is noteworthy. Although 30% of the 

original 50% regression coefficient of C6 and D1 is absorbed by C5, but there is still 

20% left which indicates a weak independent relationship between C6 and D1. So C6 

could be seen as a possible damaged member besides C5. Although there is another 

factor which is against this possibility. The R2 of C5 on D1 is 53%. If C6 is the other 

damaged member, the combination of C5 and C6 should probably have a higher R2 on 

D1. However the R2 of both C5 and C6 on D1 is 56% which is not significantly 

different. The word probably is used here because in certain conditions, it is 

mathematically possible that C6 is really damaged, but its presence does not increase 

the R2 of C5 on D1. So based on these results, there is still a chance that C6 is damaged 

too, although not significant enough to doubt the results of DLV. 
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Table 5.5: Effect of C5 on the relationship of all members with D1 

Member 

Direct relationship with D1 Regression 

coefficient 

when modelled 

with C5 

Regression 

Coefficient 
R2 

B1 0.17 0.03 -0.12 

B2 0.03 0.00 0.05 

B3 -0.22 0.05 -0.28 

B4 0.26 0.07 -0.16 

C1 0.36 0.13 0.00 

C2 0.26 0.07 0.20 

C3 -0.10 0.01 0.02 

C4 -0.06 0.00 -0.25 

C6 0.50 0.25 0.19 

C7 0.26 0.07 0.13 

C8 0.41 0.16 0.06 

 

5.6.3.2 Damage Scenario D2: 

Figure 5.51 is illustrating the correlation of frequency shifts between all unmeasured 

members and experimental data of damage scenario D2 (Refer to Table 4.3). Three 

members are demonstrating high similarity with the experiment i.e. C2, C5 and C6. 

However the correlations of all other members (except for B6) with D1 are relatively 

high and close to 40%. This is expected since all these members have some level of 

correlation with either one of C2, C5 or C6, which means they probably have dependent 

relationship with D1. Unless they are actually the damaged member; which based on 

these numbers it is not likely the case. B6 is the only member which is not correlated 

with any of these three and consequently has no dependent relationship with D1. 
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Figure 5.51: Correlation of frequency shifts between all unmeasured members and D2 

 

The results of DLV (Figure 5.46) are showing that columns C3, C4, C7 and C8 are not 

among the possible damaged members. Furthermore they do not have a high correlation 

with D1, so these four columns are most probably not involved in this damage scenario. 

Based on this Figure and also the results of DLV (Figure 5.46), columns C2, C5 and C6 

are most likely to be the damaged members. Although C1 does not seem to be able to 

explain D2 on its own, but it can be part of a multiple damage scenario. It is also 

possible for any of the beams to be involved in D2 if there is more than one damaged 

member. Since these results are proposing so many possibilities, regression analysis is 

the only way to confirm the damaged case. 

Since C2, C5 and C6 are the most possible damaged members, first their direct 

relationship with D2 need to be examined. Figure 5.52 is presenting the regression 

coefficient and R2 of these columns to D2. The results are showing that all three 

members have significant regression coefficient and R2 in relation with D2. So there is a 

possibility that all three members are in fact damaged. However since C2 and C6 and 

also C5 and C6 are correlated, there are two other possibility that need to be examined. 
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The first is that either C6 has an indirect relationship with D2 through C2 or C5 or even 

both. The second possibility is that C2 or C5 or even both are in an indirect relationship 

through C6. C2 and C5 cannot have an indirect relationship through each other, because 

they are not correlated (Refer to Table 5.4). 

 

 

Figure 5.52: Direct relationship of C2, C5 and C6 with D2 in Smart PLS 

 

Figure 5.53 is presenting the regression coefficient of C2, C5 and C6 with D2 in pairs. 

The results are showing that none of the direct regression coefficients are absorbed by 

the other column. It suggests that the relationship between these three members and D1 

are not through each other. One way of describing this result is that all three members 

are explaining D2 independently, which means all three members are damaged. 

Although it is possible, but high values of R2 is not in favour of this option. Because in 

case all three members are damaged, the R2 of them together is expected to be around 

0.6 to 0.8. So the R2 of any two of them cannot be as large as that. In this case, the R2 of 

C2 and C5 on D2 is 0.79, which is a very good prediction by itself. Therefore it does not 

seem to be any room for another variable in this model to determine D2 independently. 

The best way to answer this is to model all three columns in the same model to see their 

contribution on prediction of D2. 
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Figure 5.53: Regression coefficients of C2, C5 and C6 with D2 in Smart PLS 

Figure 5.54 is presenting the results of regression analysis of all three suspected 

columns in the same model with D2. These results give a clearer picture of how these 

three columns are in relation with D2. As shown in this Figure, the regression 

coefficient of C2 and C5 to D2 are significant, but the relationship of C6 to D2 is 

disappeared. This indicates that C6 does not independently explain D2, therefore it is 

not damaged. Since C2 and C5 are not correlated, based on these results it can be most 

certainly concluded that they are both contributing on determining D2 and so they are 

both damaged. 

 

Figure 5.54: Regression coefficients of C2, C5 and C6 with D2 in Smart PLS (All in 

one model) 
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Now that two of the damaged members are identified, it is time to the next step and 

make sure no other member is contributing on determining D2 i.e. there is not any other 

damaged member. Before that, let's discuss the results of these three columns a bit 

further. The main question is, if C6 didn't have an independent relationship with D2, 

why C2 and C5 were not able to absorb its regression coefficient in Figure 5.53. To 

answer this, it should be noticed that D2 is at least a dual damage scenario (since other 

members are not being inspected yet). It means two damaged members are responsible 

for its frequency shifts. However the data sets that are provided by updated FE model 

only includes the frequency shifts of individual damaged members which requires 12 

different FE analysis. So it is obviously not reasonable or even possible to include all 

the combinations of these 12 members. In case of this damage scenario, a damage 

scenario similar to D2 is not even available in FE data sets. 

For example, if the frequency shifts caused by damage in column C2 and the frequency 

shifts caused by column C5 are correlated, it means the effects of these two columns on 

shifting the frequencies of the structure are similar. Therefore it is more probable that if 

these two members are damaged at the same time, the frequency shifts are more or less 

similar to their individual cases. However if C2 and C5 are shifting the frequency of the 

structure in different ways (no correlation) or in opposite ways (negative correlation), 

apparently when they are damaged simultaneously, the resulting frequency shifts are not 

similar to any of those individual cases. Referring to Figure 5.52, the direct regression 

coefficient of C2 and C5 on D2 are 0.53 and 0.76 respectively which are very 

significant. When they are separately modelled next to C6 (Figure 5.53), they are able to 

absorb a considerable part of the regression coefficient between C6 and D2. However 

since none of them are entirely determining D2, they are not able to absorb the entire 

regression coefficient between C6 and D2. When they are both placed in the model 

(Figure 5.54), they explain D2 completely and so when C6 is added to the model, it 
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does not exhibit any relationship with D2. In fact, if there was a single FE data set that 

represents the effect of damage of both C2 and C5 (let's name it C2+C5); it was able to 

absorb the regression coefficient of C6. 

The accurate way of producing C2+C5 is by reducing the stiffness of both members in 

FE and calculating the frequency shifts. However it is also possible to reconstruct it 

using C2 and C5 data. This form of modelling is presented in Figure 5.55. There are a 

number of terminologies that are usually used in field of statistic and need to be 

described in order to discuss this Figure. The yellow rectangles are called "Items". Each 

item contains one of the data sets. The blue circles are called "variables" which are 

representing one or few items that are connected to them. A group of one variable and 

its corresponding items is called "measurement model" and finally a group of variables 

connected to each other is called the "structural model".  

There are two types of measurement model i.e. reflective and formative. Since all the 

terms that are mentioned, including these two are originally from statistics and are 

generally used in the field of social science, their common definitions are usually 

sensible for social scientists. So instead of their original definition, a very simple 

explanation of reflective versus formative measurement is believed to be more useful in 

this case. In a reflective measurement model, the variable is calculated in a way that it is 

similar to all its items and reflects all of them. So apparently the important condition of 

a reflective measurement model is that all its items must represent the same thing and be 

highly correlated and similar. For example, imagine the modal testing of damage 

scenario D2 is repeated 5 times to increase its accuracy and the results are recorded in 

D21 to D25. Since these are five readings of the same damage scenario, they are 

expected to be very similar to each other and if one of them happened to be so different 

from the others (because of noise for instance), it should be eliminated from the 
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measurement model. In this case variable D2 should be constructed reflectively, since it 

represents the same thing as all its items. 

 

Figure 5.55: Formative measurement model of C2 and C5 in Smart PLS 

 

On the other hand, in a formative measurement model the variable is formed by all its 

items, however it is representing a different phenomenon than them. A formative 

variable appreciates the differences between its items and the data of each item is 

contributing to shape a part of information in the resulting variable. So in a formative 

measurement model, the items are supposed to be not too similar to each other. The best 

example of a formative measurement model is C2+C5 in Figure 5.55. C2 and C5 are not 

expected to be similar. Depends on the condition, they can be very similar, totally 

different and even opposite each other. In this case, the C2+C5 variable should be 

measured formatively using C2 and C5. C2 and C5 are both influencing the new C2+C5 

variable which could be totally different than each of them. 

In statistical models, a reflective measurement model is indicated by arrows pointing 

from variable to the items, to show that the variable is reflecting each of its items, e.g. 

D2 in Figure 5.55. In this case the numbers on the arrows are showing how much the 
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reflective variable is similar to each of its items. A formative measurement model is 

indicated by the arrows pointing from the items to the variable, to show that the variable 

is being formed by all its items, e.g. C2+C5 in Figure 5.55. In this case, the numbers on 

the arrows are showing that how much each item has contributed to form the variable. If 

a measurement model has only one item, it cannot be called formative or reflective, 

because the variable is exactly the same as its item. In this case the direction of the 

arrow makes no difference. It should be noted that in the models shown previously, all 

the variables were measured using one item. So the items were purposely hidden to save 

space on the Figure, but they are all existed in the model. 

Figure 5.55 is demonstrating that the new variable C2+C5 is predicting D2 completely 

and so C6 shows no relationship with D2 anymore. The effect of C2+C5 on the 

relationship of other members with D2 is calculated and presented in Table 5.6. The 

results are showing that none of the members have any independent relationship with 

D2 and so none of them are damaged. So D2 is correctly identified as a dual damage 

scenario of column 2 and column 5. 

Table 5.6: Effect of C2+C5 on the relationship of all members with D2 

Member 

Direct relationship with D2 Regression 

coefficient when 

modelled with 

C2+C5 

Regression 

Coefficient 
R2 

B1 0.22 0.05 -0.24 

B2 0.36 0.13 0.18 

B3 -0.05 0.00 -0.27 

B4 0.40 0.16 0.06 

C1 0.24 0.06 -0.24 

C3 0.25 0.06 -0.06 

C4 0.24 0.06 -0.32 

C6 0.69 0.48 0.10 

C7 0.30 0.09 -0.02 

C8 0.35 0.12 -0.10 

 
 

 
  

Univ
ers

ity
 of

 M
ala

ya



163 

5.6.3.3 Damage Scenario D6: 

Figure 5.56 is illustrating the correlation of frequency shifts between all unmeasured 

members and experimental data of damage scenario D6. Five members are 

demonstrating high similarity with the experiment i.e. B1, B3, C2, C3 and C4. Referring 

to Table 5.4, the correlation of B1 and B3 and also the correlations of C2, C3 and C4 

are relatively high which indicates that perhaps some of these members are having a 

dependant relationship with D6 through the yet unknown damaged member. The results 

of DLV (Figure 5.46) are predicting that none of the columns are damaged in this 

damage scenario. However three columns are demonstrating high relationship with D6. 

This could be due to their correlation with either B1 or B3. Although referring to Table 

5.4, the correlation between beams and columns are not large enough to cause these 

results. So this should be investigated further using regression analysis.   

 

Figure 5.56: Correlation of frequency shifts between all unmeasured members and D6 

 

Figure 5.57 is showing the direct regression coefficient and R2 of the two beams and 

three columns with D6. All the R2 are significant while B3 and C3 seem to have a better 

determination of D6. 
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Figure 5.57: Regression coefficients of members with high correlation with D6 in 

Smart PLS (Direct relationship) 

 

Figure 5.58 is showing the regression coefficient of these 5 members in pair. The 

regression coefficient of B1 and B3 is presented at top left of this Figure which shows 

that the relationship between B1 and D1 is not independent and goes through B3. So B1 

is not the damaged member. Although other results are showing that B3 is not able to 

absorb the regression coefficient of none of the columns. So it suggests that at least one 

of these columns is in a multiple damage scenario with B3.  

 

Figure 5.58: Effect of B3 on the relationship of B1, C2, C3 and C4 with D7 in Smart 

PLS 
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Figure 5.59 (left) is showing the regression coefficient of B3, C2 and C3 with D6 in one 

model. The results are showing that the regression coefficient of C2 is entirely absorbed 

by C3 and so C2 is not the damaged member. Figure 5.59 (right) is presenting the 

regression coefficient of B3, C3 and C4 to check if the relationship of C4 with D1 is 

through C3 or not. However the results are showing that the regression coefficients of 

both of them are reduced, but they are still meaningful. This is suggesting that B3, C3 

and C4 are all might be damaged members. 

 

 

Figure 5.59: Regression coefficients of B3-C2-C3 and B3-C3-C4 in two models with 

D6 in Smart PLS  

 

With the assumption of a multiple damage scenario, B3, C3 and C4 are used in a 

formative measurement model to create B3+C3+C4 variable that represents the multiple 

damage scenarios. This new variable is modelled with the remaining members to check 

if they have any effect of D6 (Table 5.7). The results do not show any independent 

relationship between the remaining members and D6. 
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Table 5.7: Effect of B3+C4+C4 on the relationship of all members with D6 

Member 

Direct relationship with D6 Regression 

coefficient when 

modelled with 

B3+C3+C4 

Regression 

Coefficient 
R2 

B1 0.52 0.27 -0.01 

B2 -0.06 0.00 -0.19 

B4 -0.37 0.14 -0.18 

C1 -0.08 0.00 -0.07 

C2 0.50 0.25 -0.01 

C5 -0.38 0.14 -0.44 

C6 -0.02 0.00 -0.41 

C7 -0.04 0.00 -0.27 

C8 -0.25 0.06 -0.35 

    

 

Regression analysis has detected that damage scenario D6 is a multiple damage scenario 

with one beam and two columns being involved. This is in contrast with results of DLV 

that suggests no column is damaged. So either the results of DLV are false negative and 

it incorrectly gave pass to two damaged columns, or there is something wrong with the 

frequency shift data of D6 and the results of regression analysis. As mentioned earlier in 

this chapter, the error of DLV is always type II error i.e. giving false negative, which 

could be the case here. Considering the previous results of DLV, it typically makes 

wrong prediction on beams and never failed on the columns. So it is most likely that the 

results of DLV are correct and these two columns are not damaged. On the other  hand, 

if it is assumed that the columns are not damaged, then it means that the regression 

analysis is suffering from a fault. It can be faulty experimental data or even a modelling 

error which caused these suspicious results. Therefore, even if it is assumed that the two 

columns are not damaged, it does not seem to be consistent to just ignoring the two 

columns and announcing beam B3 as the solo damaged member; although this is 

actually the case for damage scenario D6. So regression analysis has somehow failed to 
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reliably detect beam B3 as damaged member; however the results are meaningful 

enough to raise suspicions about this beam. 

5.6.3.4 Damage Scenario D7: 

Figure 5.60 is illustrating the correlation of frequency shifts between all unmeasured 

members and experimental data of damage scenario D7. B2 and B6 are having high 

correlations with D7 and so their regression coefficients are being examined. Referring 

to Table 5.4,  the correlation of these two beams are 0.62 which indicates that perhaps 

one of these beams are having a dependent relationship with D7 through the other. 

Figure 5.60: Correlation of frequency shifts between all unmeasured members and D7 

Figure 5.61 is showing the direct regression coefficient and R2 of B2 and B6 with D7. 

The R2 of B6 is very significant and much higher than the R2 of B2. The results of DLV 

(Figure 5.46) are suggesting that B6 is damaged in damage scenario D7. In fact that is 

the reason why B6 is included in the regression analysis despite that it is a measured 

member. So knowing that B6 is damaged, the main task of regression analysis is to 

check whether other members are contributing in this damage scenario or not. 
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Figure 5.61: Regression coefficients of B2 and B6 with D7 in Smart PLS  

 

Figure 5.61 is also demonstrating the regression coefficient of B2 and B6 with D7 in 

one model. The results are showing that the direct regression coefficient of B2 which is 

0.52 is absorbed by B6 and is reduced to 0.11. This value is not significant enough for 

B2 to be identified as damaged member. Although the correlation of other members 

with D7 is very low (Figure 5.60), but they have to be checked in the same model with 

B6 to make sure no other member is contributing in this damage scenario. 

Table 5.8 is presenting the Effect of B6 on the relationship of all members with D7. The 

results are showing that the direct regression coefficient and R2 of beam B3 are zero, 

however when it is modelled with B6, its regression coefficient is increased 

significantly to 0.37. This is a perfect example to show that correlation is not a complete 

measure of contributory relationship between two variables; in this case between a 

damaged member and a damaged scenario which is partially caused by it. 

The reason why B3 is not able to predict D7 directly is its correlation with B6. 

Referring to Table 5.4, the correlation of B3 and B6 is negative, indicating that they 

change the frequency of the structure not only differently, but in fact in opposite ways. 

Figure 5.47 is illustrating that how peaks and valleys of their frequency shift diagram 
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are opposite each other in the first five modes. It also shows that in general, the 

magnitude of the frequency shift of B6 is larger than B3. So consequently, the traces of 

the contribution of B3 on D7 are cancelling out by the opposite and dominant effect of 

B6. That is why when only B3 and D7 are in the picture (Figure 5.62), the model does 

not see any similarity between the two and so their regression coefficient is almost zero. 

It should be noted that the direct regression coefficient of zero does not imply anything 

in particular. Depending on the magnitude of D6 and also the correlation of D3 and D6, 

the direct regression coefficient of D3 under this circumstance could've been anything 

between a relatively low positive to a negative value, which in this case happened to be 

close to zero. 

Table 5.8: Effect of B6 on the relationship of all members with D7 

`Member 

Direct relationship with D7 Regression 

coefficient 

when modelled 

with B6 

Regression 

Coefficient 
R2 

B1 -0.12 0.02 0.10 

B2 0.52 0.27 0.11 

B3 0.06 0.00 0.37 

B4 0.11 0.01 -0.26 

C1 -0.23 0.05 -0.04 

C2 0.12 0.02 0.04 

C3 0.15 0.08 -0.09 

C4 0.07 0.00 -0.17 

C5 -0.14 0.02 -0.03 

C6 0.24 0.06 -0.07 

C7 0.21 0.05 -0.14 

C8 -0.07 0.00 -0.10 
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When B6 is presented in the model (Figure 5.62), its contribution to predict D7 is now 

determined by the model. As a result, the model realizes the differences between B6 and 

D7 and determines that these differences are 37% similar to B3. 

 

Figure 5.62: Regression coefficients of B3 and B6 with D7 in Smart PLS  

 

 

B3 and B6 are both identified as contributing damaged members on D7. So a formative 

measurement model is used to create a new B3+B6 variable, using the data of B3 and 

B6 as shown in Figure 5.63. The results of regression analysis using the new model are 

showing that B3+B6 has direct regression coefficient of 0.81 to D7 and its R2 on D7 is 

0.65 which indicate that B3+B6 are determining D7 significantly. Once again, all the 

unmeasured members must be verified in the same model with B3+B6 to make sure 

there is no other contributor in this model. The results of this verification are presented 

in Table 5.9 which confirms there is no other damaged member in D7. 

 

Figure 5.63: Formative measurement of B3 and B6 in Smart PLS 
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Table 5.9: Effect of B3+B6 on the relationship of all members with D7 

`Member 

Direct relationship with D7 Regression 

coefficient 

when modelled 

with B3+B6 

Regression 

Coefficient 
R2 

B1 -0.12 0.02 -0.06 

B2 0.52 0.27 -0.02 

B4 0.11 0.01 -0.13 

C1 -0.23 0.05 0.10 

C2 0.12 0.02 -0.07 

C3 0.15 0.08 0.04 

C4 0.07 0.00 -0.13 

C5 -0.14 0.02 -0.03 

C6 0.24 0.06 -0.03 

C7 0.21 0.05 -0.21 

C8 -0.07 0.00 0.06 

    

 

Although this frequency based method was proposed to detect damage in unmeasured 

parts of the structure in case of incomplete measurement, but it can also be used for 

other damage scenarios to verify the results of the other methods. Even in case of 

complete measurement, it can be really helpful to verify the results of other methods 

that have been presented in this study. However since all aspects of implementing this 

method was discussed in these four damage scenarios, discussing the other damage 

scenarios do not add much to the content of this study and so are not reported. Although 

it should be reminded that this method is vastly relaying on model updating and the 

updating method that has been reported in this study is based on mode shapes. So unless 

any other updating method is used, this method cannot be seen as a standalone 

frequency based approach. 
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CHAPTER 6: CONCLUSION 

This research and its primary goal was to perform modal based damage detection in a 

frame structure using operational data. This goal was perused by studying different 

aspects of this problem which are presented in the beginning of this thesis as four main 

objectives.  

The first objective was employing operational modal testing on a lab-scaled frame 

structure in order to obtain reliable modal parameters for further steps of this study. This 

was pointed out as an individual objective, because the techniques of simulating 

operational modal analysis in the laboratory is not reported much in the literature. The 

main advantage of such experimental set up was that both EMA an OMA could be 

carried out on the model. So the results of experimental modal analysis were always 

available in all the cases to be used as benchmark to the findings of operational modal 

analysis. 

The second objective was to mass normalize mode shapes obtained by OMA, which is 

in fact an ongoing subject in the literature. The concluding remarks of this objective are 

presented in Section 6.1 

The third objective was to evaluate damage locating vector and its reliability when it 

uses the OMA identified and normalized modes as input. The concluding remarks of 

this objective are presented in Section 6.3 

Finally, the main objective of this study was to propose a practical and effective method 

to detect damage using incomplete measurements which is concluded in sections 6.2 

and 6.3. 
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6.1 Mass Normalization 

Obtaining mass normalized mode shapes using operational modal analysis and in 

absence of the measured input force was one of the objectives of this study. The mass 

normalization method used in this study was based on changing the mass matrix of the 

structure and utilizing the extra information to scale the mode shapes. To do this, 

external weights were added to particular DOFs of the structure in different 

configurations and the scaling factors of each case were calculated. Either FE results or 

the results of EMA were used to evaluate the accuracy of the calculated scaling factor in 

each case.  

Since input forces were measured in this case study, the calculated scaling factors had 

the privilege of being evaluated by a more reliable and accurate scaling method. This is 

obviously a deal breaker since the whole point of using such method is to be 

independent from measuring the input force; however, the measurement of input force 

was to verify the accuracy of the results. According to the results which are presented 

and discussed in chapter 5.3, the accuracy of this normalization method can be 

estimated and increased by taking few steps. The first and most important step is to find 

the best location, or a set of appropriate locations to add external weights. The most 

apparent principle is that the weights should not be added to the node of any of the 

modes, since it is not able to alter that particular mode. The best point to add mass is the 

point which is participating in all the mode shapes. If the number of modes is high, 

more than one location might be required to affect all the modes. This principle is good 

enough to approximate the possible locations to add weights. However the best way of 

evaluating them is FE modelling where the exact value of scaling factor is available. 

The second contributing factor is the amount of mass added to the structure. This is also 

very important factor, because if the external weight is too small, it does not alter the 

Univ
ers

ity
 of

 M
ala

ya



174 

modes sufficiently and if it is too large, it completely changes the frequency and shape 

of the modes. This approximation is useful for the first estimation; however the 

optimum value of mass can be evaluated using FE analysis. 

The first two steps help to narrow down different mass change scenarios in terms of 

position and amount of mass to be applied to the real structure. It is rational to select 

more than one mass scenario to be used in the experiment for more verification. It is 

particularly important, because the findings of FE analysis might not be perfectly 

applicable in the experiment. Hence the integrity of location and amount of added 

weights need to be evaluated for the experiment independently. As described in chapter 

5.3, two parameters are suggested to indirectly evaluate the goodness of the findings, 

i.e. frequency shift and correlation of mode shapes. These two criterions can be used to 

accept or reject the calculated scaling factor of each individual mode or even the whole 

mass scenario. Using all these steps, mode shapes in OMA can be mass normalized with 

an acceptable level of accuracy.  

One important concern about this normalization method is its implementation in real 

structures. While placing and moving external masses in a scaled model is not much of 

a concern, but its possibility and practicality must be assessed in real case scenarios. 

This dictates additional factors when the location and amount of masses are being 

selected. For example, if a number of concrete blocks are used as external weights, the 

best idea for different mass scenarios is to just move the blocks between different points 

in one floor (if possible) rather than moving them up and down the structure. Another 

simple and promising proposal is to use a number of light weight and high pressure 

plastic of polyethylene water tanks that can be easily moved all over the structure. The 

water can also be pumped to/from any point of the structure for almost no cost. 

Therefore there is no restriction when deciding on the location of weights. However due 
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to the low mass density of water, the amount of weight becomes a concern and the 

weight must be designed to be distributed in an area instead of being placed in one 

point.  

6.2 Model Updating 

The primary application of model updating in this study was matching the modes of FE 

and experiment so that they can be used in the frequency based damage detection to 

address incomplete measurements. Utilizing CMCM in this study and its results were 

pointing to the significant accuracy and reliability of this method. However this 

accuracy comes with a price i.e. the need for complete measurement of the structure and 

availability of all DOFs in mode shapes. This is in fact the disadvantage of this method 

since complete measurements are not always possible in real case problems. More 

importantly, it is in contrast with its application in this study i.e. being used to address 

incomplete measurement problem. There were two reasons why CMCM could still be 

used in this case. The first reason was that the number of missing DOFs was relatively 

low and the unmeasured and measured members were similar in size. So with some 

modifications to the original method, CMCM was still offering reasonable accuracy. 

The second reason was that the frequency based detection method is not very sensitive 

to the accuracy of model updating. Since the method relies on the relative frequency 

shifts and not the absolute values of frequencies, an approximate updating of the model 

is enough to provide concrete results. 

6.3 Damage Identification 

Three damage detection and localization methods were used in this study. These three 

methods were reported either individually or in conjunction with each other. Damage 

Locating Vectors was the core detection method that its locating ability was tested using 
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variety of damage scenarios i.e. single and multiple damage cases of beams and column. 

DLV has a number of advantages in compare to some other types of detection methods. 

One is its ability to locate damaged member regardless of the geometry of the structure. 

It is also capable of identifying individual damaged members in a multiple damage 

scenario.  

The results of this study are showing that in case of incomplete measurements, DLV is 

still able to provide some useful information on the approximate location of damaged 

member. This particular feature of DLV is reported in a number of former studies, for 

example (An, et al., 2014; Gao, 2005; Gao, et al., 2007). In these studies, a few number 

of sensors are used to measure selected DOFs throughout the structure. So instead of 

locating the damaged member, DLV shows the area where the damaged member is 

located. Then they use a number of approaches to find the exact damaged member 

within that area, mainly based on increasing the resolution of measurement in the 

detected region. The important point is that in these cases, the reason behind incomplete 

measurement is to minimize the number of required sensors and the size of recorded 

data. However in case of this study, the reason of incomplete measurement is that a part 

of the structure is inaccessible. So unlike those studies, it is not possible to increase the 

measurement resolution in the detected region. That is why a frequency based approach 

is used in this study to locate the damaged member within the suspicious area detected 

by DLV.  

 

The main weakness of the DLV approach used in this study is that it requires mass 

normalized mode shapes. This is a major concern of the method when it is being used in 

OMA. It should be emphasised that this weakness is not directly from DLV, but in fact 
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the way DLVs are obtained in this study i.e. modal flexibility matrix. There are other 

approaches to calculate DLVs  which are in some extend addressing this issue (Bernal, 

2006). 

One particular issue that was encountered in this study, especially for beams, was the 

indistinct results of DLV i.e. the WSI index of damaged member being relatively or 

significantly lower than other members, but not lower than the threshold of 1. Part of 

this issue could be due to inaccuracies of modal identification and normalization, since 

the DLV results of FE and EMA are considerably more concrete. Another contributing 

factor is indeed the number of detected modes. This was also tested by reducing the 

number of modes to see its effect on accuracy of DLV results. It shows that the absence 

of higher and more local modes reduces the accuracy of the results considerably. 

The second detection method that was modified and tested in this study was derived 

from CMCM model updating approach by employing the stiffness correcting factor as 

damage index. Similar to DLV, this method also required completely measured mode 

shapes, although in this case they could be arbitrary scaled. Similar to DLV, the results 

of this method were also correct, but indistinct. The interesting observation was that by 

combining the two methods, the consistency and accuracy of the results were 

significantly improved, as described in chapter 5.5.2. 

The third detection method introduced in this study was relying solely on modal 

frequencies to address the incomplete measurement problem. It was based on producing 

frequency shift data of different damage scenarios using updated FE model and trying to 

predict the experimental frequency shifts using these data. In this study, this method 

were used to assess the unmeasured members only, whereas the measured members 

were still being assessed using DLV. As reported in former studies (An, et al., 2014; 
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Gao, 2005; Gao, et al., 2007), incomplete measurement causes false positive detection 

in DLV results. As mentioned earlier, in most of these studies, the false positive 

detection is resolved by increasing the measurement resolution in the suspected region 

and again using DLV to rule out the falsely detected members and locate the actual 

damaged member. This is not an option in this study, because in this case the 

unmeasured DOFs are assumed to be inaccessible. So the proposed frequency based 

method is in fact doing the same thing i.e. ruling out false positive detections, but using 

a different approach that does not require further measurements. 

Furthermore, this method can be totally used stand alone to assess the entire structure, 

and since it only requires modal frequencies, it seems to be a much better solution than 

the other methods. However, it should be considered that although this method is 

entirely based on modal frequencies, but it requires FE model to be updated and most 

reliable updating methods including CMCM are based on mode shapes. The second 

point is that this method involves lots of tries and errors. The analyzing process of this 

method begins with a hand-full of members that are marked as damaged. They are then 

tested against each other, ruling out the intact members and identifying the damaged 

ones. This process becomes a lot more complicated and perhaps less reliable and 

accurate when the number of members are increased. 

As an overall conclusion, there are varieties of damage detection approaches that are 

introduced in the literature and their reliability are tested using numerical simulations or 

in best case using controlled experimental data. However, all these methods are meant 

to be used in real full size structures in service with all the limits they impose. So it 

seems very realistic to single out a damage detection approach to be used in real case 

structures. The best strategy is to study different types of damage detection methods and 
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their abilities and weaknesses and to use a combination of them to find a solution for 

real structures. This was the perspective of this study.  

6.4 Recommendations 

There are a number of subjects that was not addressed in this thesis for various reasons, 

which are believed to be noteworthy for further studies. The frame structure reported in 

this thesis was a simple frame without horizontal or vertical braces, except for the third 

floor where amplifiers were located. However, the original proposal of this study was 

based on a frame with braces which was an approximate scale of a jacket platform in 

Persian Gulf. The effect of braces on process of damage detection can be further study. 

The frequency based detection method that was introduced in this study was employed 

only for incomplete measurements. This method is relying on modal frequencies only, 

which makes it a perfect approach to be used in operational modal analysis. So it worth 

being modified to be used as a standalone detection method. This requires and updating 

method that is not based on availability of mode shapes.  
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