# A COMPARISON STUDY FOR ACTIVE CHILLED BEAM AND VARIABLE AIR VOLUME SYSTEMS FOR AN OFFICE BUILDING

TAM JUN HAO

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR

2018

## A COMPARISON STUDY FOR ACTIVE CHILLED BEAM AND VARIABLE AIR VOLUME SYSTEMS FOR AN OFFICE BUILDING

TAM JUN HAO

## THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF MECHANICAL ENGINEERING

## FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR

2018

## UNIVERSITY OF MALAYA ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Tam Jun Hao

(I.C/Passport No:

Registration/Matric No: KQK 160021

Name of Degree: Master in Mechanical Engineering

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

A Comparison Study for Active Chilled Beam and Variable Air Volume Systems for

An Office Building

Field of Study:

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date:

Subscribed and solemnly declared before,

Witness's Signature

Date:

Name:

Designation:

#### ABSTRACT

Comparison in terms of energy and cost is carried out between two different air distribution systems: variable air volume (VAV) and active chilled beam (ACB) based on a virtual building. Cooling load calculation was performed to determine the total load demand and system design was carried out to determine the system capacity. All design steps were presented in detail for both systems based on appropriate design requirement in accordance with ASHRAE's standards. Comparing to VAV, ACB is more complicated in terms of design as it involves specific design considerations such as room latent load shall not be too high, secondary chilled water temperature shall not be lower than the room dew point temperature and room shall have adequate ceiling space for the placement of chilled beam. Energy and cost analysis was done to determine which system gives better saving. From the results analysis, it shows that ACB is more energy-saving than VAV especially at full load and normal part-load conditions because of the reduced AHU fan's capacity. In terms of cost, ACB has higher initial cost than VAV where it is mainly contributed by the secondary chilled water pipe, heat exchanger and the beam itself. However, the operation cost is lower for ACB and for long term use, ACB is more costsaving than VAV. Since the results discussed in this thesis is obtained by numerical method, for future work, it's recommended to perform energy audit on the actual building in order to verify the validity of the computed results.

#### ACKNOLEDGEMENTS

The author expresses his sincere appreciation to all who contributed to the success of this research. Special thanks to the research supervisor Professor Ir. Dr. Yau Yat Huang who had offered great assistance throughout this project. Without his knowledge and assistance this study would not have been successful.

Finally, sincere gratitude and acknowledgement dedicated towards the contribution of author's parents and friends who had been helpful and supportive throughout this research.

## TABLE OF CONTENTS

| ABSTR  | RACT                          | ii  |
|--------|-------------------------------|-----|
| ACKNO  | OLEDGEMENTS                   | iii |
| TABLE  | E OF CONTENTS                 | iv  |
| LIST O | OF FIGURES                    | vii |
| LIST O | OF TABLES                     | ix  |
| LIST O | OF APPENDICES                 | xii |
| СНАРТ  | <b>FER 1. INTRODUCTION</b>    |     |
| 1.1    | Background                    | 13  |
| 1.2    | Problem Statement             | 15  |
| 1.3    | Scope of study                | 15  |
| 1.4    | Objective                     | 16  |
| 1.5    | Methodology                   | 16  |
| 1.6    | Outline of Thesis             | 17  |
| СНАРТ  | TER 2. LITERATURE REVIEW      |     |
| 2.1    | Introduction                  |     |
| 2.2    | System Design                 |     |
| 2.2.   | 2.1 Active Chilled Beam (ACB) |     |
| 2.2    | 2.2 Variable Air Volume (VAV) |     |
| 2.3    | Technical comparison          |     |
| СНАРТ  | FER 3. METHODOLOGY            |     |
| 3.1    | Introduction                  |     |
| 3.2    | Cooling Load Calculation      |     |

| 3.2.1  | Cooling Load Definition                       | 37  |
|--------|-----------------------------------------------|-----|
| 3.2.2  | Cooling Load Calculation Method               |     |
| 3.2.3  | Hourly Analysis Program (HAP 4.90)            | 39  |
| 3.2.4  | Building Layout                               | 41  |
| 3.2.5  | Cooling Load Calculation Theory               | 43  |
| 3.2.6  | Example of cooling load calculation using HAP | 48  |
| 3.3 A  | ir Distribution System Design                 | 55  |
| 3.3.1  | System Sizing                                 | 56  |
| 3.3.2  | Duct Sizing                                   | 81  |
| 3.4 C  | hiller Plant Design                           | 83  |
| 3.5 S  | ystem Control                                 | 87  |
| 3.5.1  | Variable Air Volume (VAV) system              | 87  |
| 3.5.2  | Active Chilled Beam (ACB)                     | 88  |
| CHAPTE | R 4. RESULTS                                  | 91  |
| 4.1 In | ntroduction                                   | 91  |
| 4.2 C  | ooling Load                                   |     |
| 4.3 S  | ystem Capacity                                |     |
| 4.3.1  | VAV                                           |     |
| 4.3.2  | ACB                                           | 106 |
| 4.4 S  | ystem Layout                                  | 115 |
| CHAPTE | R 5. ENERGY & COST ANALYSIS AND DISCUSSION    | 117 |
| 5.1 Ir | ntroduction                                   | 117 |

| 5.2 Energy Comparison                  |     |
|----------------------------------------|-----|
| 5.2.1 Individual Floors                |     |
| 5.2.2 Overall Building                 |     |
| 5.3 Cost Comparison                    |     |
| 5.3.1 Initial Cost                     |     |
| 5.3.2 Operation Cost                   |     |
| CHAPTER 6. CONCLUSION & RECOMMENDATION |     |
| 6.1 Introduction                       |     |
| 6.2 Conclusions                        |     |
| 6.3 Recommendations                    |     |
| REFERENCE                              |     |
| APPENDICES                             | 140 |
|                                        |     |

## LIST OF FIGURES

| Figure 2.1 Passive Chilled Beam and Active Chilled Beam [5] 19                       |
|--------------------------------------------------------------------------------------|
| Figure 2.2 Schematic of An Active Chilled Beam System with Air Handling Unit [6]. 20 |
| Figure 2.3 Psychrometric Chart of An Active Chilled Beam System with Air Handling    |
| Unit [6]                                                                             |
| Figure 2.4 Psychrometric Relationship between Space and Primary Airflow [7]          |
| Figure 2.5 Relationship between Chilled Beams Placement, Airflow and Local Velocity  |
| [7]                                                                                  |
| Figure 2.6 Schematics for System That Shares the Same Chiller [7]                    |
| Figure 2.7 Schematics for System with Dedicated Chiller [7]24                        |
| Figure 2.8 Chilled Water Temperature Reset based on Outdoor Air Dew Point [7] 25     |
| Figure 2.9 Zone Monitoring with On/off Control and Moisture Sensor [7]               |
| Figure 2.10 Zone Monitoring with Modulating Control [7]                              |
| Figure 2.11 VAV Controller for Cooling with Electric Reheat [10]                     |
| Figure 2.12 VAV Controller for Cooling with Modulating Reheat [10]28                 |
| Figure 2.13 Cooling Processes of Basic VAV System [11]                               |
| Figure 3.1 Ground Floor Layout                                                       |
| Figure 3.2 Level 1 to Level 9 Floor Layout                                           |
| Figure 3.3 Level 10 Floor Layout                                                     |
| Figure 3.4 Weather Properties Tab in HAP                                             |
| Figure 3.5 Space Properties [General]                                                |
| Figure 3.6 Space Properties [Internals]                                              |
| Figure 3.7 Space Properties [Walls, Windows, Doors]                                  |
| Figure 3.8 Space Properties [Infiltration]                                           |
| Figure 3.9 Space Properties [Floors]                                                 |
| Figure 3.10 Design Report [Cooling Load]                                             |

| Figure 3.11 Air System Properties [General]                           | 57  |
|-----------------------------------------------------------------------|-----|
| Figure 3.12 Air System Properties [System Components-Ventilation Air] | 58  |
| Figure 3.13 Air System Properties [System Components-Central Cooling] | 59  |
| Figure 3.14 Air System Properties [System Components-Supply System]   | 60  |
| Figure 3.15 Air System Properties [Zone Components-Spaces]            | 61  |
| Figure 3.16 Air System Properties [Zone Components-Thermostats]       | 62  |
| Figure 3.17 Air System Properties [Zone Components-Supply Terminals]  | 63  |
| Figure 3.18 Air System Properties [System Sizing]                     | 64  |
| Figure 3.19 Generate Design Results                                   | 65  |
| Figure 3.20 Design Report [System Capacity highlighted in red box]    | 66  |
| Figure 3.21 VAV System Layout                                         | 71  |
| Figure 3.22 TROX Selection Software                                   | 74  |
| Figure 3.23 McQuay Duct Sizer                                         | 82  |
| Figure 3.24 Constant Primary Flow (CPF) Schematic [18]                | 83  |
| Figure 3.25 Constant Primary-Variable Secondary Flow Schematic. [18]  | 84  |
| Figure 3.26 Variable Primary Flow (VPF) Schematic [18]                | 85  |
| Figure 3.27 Comparison Between CPF, P/S and VPF                       | 86  |
| Figure 3.28 VAV system control schematic                              | 89  |
| Figure 3.29 ACB System Control Schematic                              | 90  |
| Figure 4.1 VAV System Layout                                          | 116 |
| Figure 4.2 ACB System Layout                                          | 116 |

## LIST OF TABLES

| Table 2.1 Comparison between Designed VAVR System, Designed ACB System and        |
|-----------------------------------------------------------------------------------|
| Modified ACB System at Full Load Condition                                        |
| Table 2.2 Comparison between Designed VAVR System, Designed ACB System and        |
| Modified ACB System at Part Load Condition                                        |
| Table 2.3 Comparison between Designed VAVR System, Designed ACB System and        |
| Modified ACB System at Lowest Part Load Condition                                 |
| Table 2.4 Cost Comparison between Designed VAVR System, Designed ACB System       |
| and Modified ACB System                                                           |
| Table 3.1 Indoor & Outdoor Conditions    43                                       |
| Table 3.2 Tabulation of System Capacity for VAV [Level 1 to Level 9]67            |
| Table 3.3 Tabulation of System Capacity for VAV [Level 1 to Level 9] (SI Unit) 68 |
| Table 3.4 VAV Type and Capacity                                                   |
| Table 3.5 Active Chilled Beam Capacity                                            |
| Table 3.6 Active Chilled Beam Capacity (SI Unit)                                  |
| Table 3.7 Tabulation of System Capacity for ACB [Level 1 to Level 9]      78      |
| Table 3.8 Tabulation of System Capacity for ACB [Level 1 to Level 9] (SI Unit) 79 |
| Table 4.1 Space Cooling Load for Level Ground Floor    92                         |
| Table 4.2 Space Cooling Load for Level Ground Floor (SI Unit)    92               |
| Table 4.3 Space Cooling Load for Level 1 to Level 9                               |
| Table 4.4 Space Cooling Load for Level 1 to Level 9 (SI Unit)                     |
| Table 4.5 Space Cooling Load for Level 10    96                                   |
| Table 4.6 Space Cooling Load for Level 10 (SI Unit)                               |
| Table 4.7 AHU Capacity for Ground Floor    99                                     |
| Table 4.8 AHU Capacity for Ground Floor (SI Unit)                                 |
| Table 4.9 AHU Capacity for Level 1 to Level 9    100                              |

| Table 4.10 AHU Capacity for Level 1 to Level 9 (SI Unit)                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 4.11 AHU Capacity for Level 10    103                                                                                                                                                                                     |
| Table 4.12 AHU Capacity for Level 10 (SI Unit)    104                                                                                                                                                                           |
| Table 4.13 Summary of AHU Capacity for All Levels    105                                                                                                                                                                        |
| Table 4.14 Summary of AHU Capacity for All Levels (SI Unit)                                                                                                                                                                     |
| Table 4.15 AHU Capacity and Chilled Beam Capacity for Ground Floor       107                                                                                                                                                    |
| Table 4.16 AHU Capacity and Chilled Beam Capacity for Ground Floor (SI Unit) 107                                                                                                                                                |
| Table 4.17 AHU Capacity and Chilled Beam Capacity for Level 1 to Level 9 108                                                                                                                                                    |
| Table 4.18 AHU Capacity and Chilled Beam Capacity for Level 1 to Level 9 (SI Unit)                                                                                                                                              |
|                                                                                                                                                                                                                                 |
| Table 4.19 AHU Capacity and Chilled Beam Capacity for Level 10                                                                                                                                                                  |
| Table 4.20 AHU Capacity and Chilled Beam Capacity for Level 10 (SI Unit) 112                                                                                                                                                    |
| Table 4.21 Summary of AHU Capacity and Chilled Beam Capacity for All Levels 114                                                                                                                                                 |
| Table 4.22 Summary of AHU Capacity and Chilled Beam Capacity for All Levels (SI                                                                                                                                                 |
| Unit)                                                                                                                                                                                                                           |
| Table 5.1 Total Power Consumption at 3 Different Load Conditions for Ground Level                                                                                                                                               |
|                                                                                                                                                                                                                                 |
| Table 5.2 Total Power Consumption at 3 Different Load Conditions for Ground Level (SI                                                                                                                                           |
| Unit)                                                                                                                                                                                                                           |
| Table 5.3 Total Power Consumption at 3 Different Load Conditions for Level 1 to Level                                                                                                                                           |
|                                                                                                                                                                                                                                 |
| 9                                                                                                                                                                                                                               |
| 9                                                                                                                                                                                                                               |
| 9       122         Table 5.4 Total Power Consumption at 3 Different Load Conditions for Level 1 to Level         9 (SI Unit)         123                                                                                       |
| 9       122         Table 5.4 Total Power Consumption at 3 Different Load Conditions for Level 1 to Level         9 (SI Unit)         123         Table 5.5 Total Power Consumption at 3 Different Load Conditions for Level 10 |
| <ul> <li>9</li></ul>                                                                                                                                                                                                            |

| Table 5.7 Total Power Input at 3 Different Load Conditions for Overa  | ll Building 129      |
|-----------------------------------------------------------------------|----------------------|
| Table 5.8 Total Power Input at 3 Different Load Conditions for Overal | l Building (SI unit) |
|                                                                       |                      |
| Table 5.9 Total Cost of The Entire Chiller Plant                      |                      |
| Table 5.10 Total Cost of The Entire Chiller Plant (USD)               |                      |
| Table 5.11 TNB Tariff                                                 |                      |
| Table 5.12 TNB Tariff (USD)                                           |                      |
| Table 5.13 Energy Consumption in Monthly and Yearly Basis             |                      |
| Table 5.14 Total Cost Savings in Monthly and Yearly Basis             |                      |
| Table 5.15 Total Cost Savings in Monthly and Yearly Basis (USD)       |                      |
|                                                                       |                      |

## LIST OF APPENDICES

| Appendix 1 Ground Floor – ACB Layout       | 133 |
|--------------------------------------------|-----|
| Appendix 2 Ground Floor – VAV Layout       | 134 |
| Appendix 3 Level 1 to Level 9 – ACB Layout | 135 |
| Appendix 4 Level 1 to Level 9 – VAV Layout | 136 |
| Appendix 5 Level 10 – ACB Layout           | 137 |
| Appendix 6 Level 10 – VAV Layout           | 138 |

xii

#### **CHAPTER 1. INTRODUCTION**

#### 1.1 Background

Chilled water-based system is designed to provide cooling for large commercial buildings such as office, shopping mall, hotel and hospital. Due to the fact that more than 40% of the building's total energy comes from air-conditioning, equipment efficiency and system efficiency are often taken into serious consideration, be it at design stage, or during operation [1]. Not only they consume large amount of energy, resulting in high operating cost, they also represent a large amount of investment from the perspective of first cost, maintenance cost and physical space required.

A chiller plant (chilled water-based system) comprises of two parts: water side and air side where the former refers to chilled water distribution system and the latter refers to air distribution system. Chilled water distribution system involves major equipment like chillers, cooling towers and pumps whereas air distribution system involves air handling unit (AHU), dedicated outdoor air system (DOAS), fan coil unit (FCU) and exhaust fan. Equipment that consumes the most energy is chiller and most often, chiller efficiency is given top priority especially during equipment selection as wrong selection would end up high operating cost.

Typically, chiller efficiency is 0.56 kW/RT and the total plant efficiency is 0.9 kW/RT. The term kW refers to the energy consumed (electrical input) and RT refers to the equipment's capacity. The lower the kW/RT, the more efficient it is. To ensure the total plant efficiency is low in terms of kW/RT, it starts from the selection of individual equipment (chiller, cooling tower, pumps and ahu). The process is rather straight forward where the efficiency of equipment can be referred to the available technical specifications of the product itself. Unlike equipment efficiency, it involves more complicated system design, control and monitoring. to ensure high system efficiency.

For chilled water side, there are two common types of system design, namely constant primary/variable secondary flow (P/S) and variable primary flow (VPF). P/S consists of 2 loops where the primary loop is constant flow serving the chillers and the secondary loop is variable flow serving the AHUs. On the other hand, VPF consists of only 1 loop and the flow is variable throughout. Comparing between these two systems, VPF is more efficient as the chillers and pumps operate in response to the load demand. Unlike VPF, the primary pump for P/S operate at full load all the time regardless of the load demand.

For air side, there are many types of air distribution system such as constant air volume (CAV), variable air volume (VAV), underfloor air distribution (UFAD), stratum ventilation and active chilled beam system (ACB). CAV is the most conventional air distribution system and it's also the most inefficient system where the supply air flow is constant all the time regardless of the load demand. Meanwhile, VAV is the improved version of CAV where the supply air flow is varying in response to the load demand. This system is not new but it has been used for some time especially for office buildings.

Whereas, UFAD is an entirely different system where the air supply is from the ground (floor plenum) instead of from the top, as what is commonly seen in a normal overhead system. It is designed to supply cooled air up to human height rather than filling up the whole room [2]. For Stratum Ventilation, the air supply is from the side (wall plenum) that provides cooling directly to the occupants, which is claimed to be more efficient than UFAD [3]. Nevertheless, due to the fact that the difference in terms of design is significant for both UFAD and stratum ventilation when comparing to the conventional overhead system, the consideration of using such system is often turned down as it affects significantly on the building layout in order to fit in the system. ACB is another air distribution system, comparably more energy efficient but less common especially in Asia Pacific region [4]. Unlike UFAD and stratum ventilation, the design of ACB is not far different from the overhead system and in fact, the ceiling height required is lesser than

the conventional CAV. Therefore, it is believed that ACB could be the better substitute of the conventional CAV or VAV in future compared to UFAD and stratum ventilation.

#### **1.2 Problem Statement**

Chilled water-based system consumes considerable amount of energy in a large building which results in high operation cost. There are many ways to reduce the total energy consumption of a chiller plant, one of which is by using efficient air distribution system. For office buildings, the most commonly-used air distribution system is variable air volume (VAV). VAV is claimed to be energy efficient as the capacity delivered by the system is based on the load demand. However, there is another type of air distribution system, Active Chilled Beam (ACB), claimed to be even more energy efficient than VAV where it helps remove room sensible load through secondary coil which consequently reduces the AHU capacity. As far as energy is concerned, efficiency of the air distribution system is of main priority. Some reports claim that VAV is more efficient than ACB in certain conditions. To determine which system is more efficient that could give better savings, proper analysis should be done based on appropriate design conditions.

### 1.3 Scope of study

A comprehensive literature review focusing on the comparison between VAV and ACB was performed. Review was based on the comparative study done by several authors. Design requirement used and design method proposed were taken into consideration in the analysis of this project in terms of system design, control and comparison method. Detailed comparison was performed based on virtual building and the best air distribution system in terms of efficiency and savings was proposed as the outcome of this project.

### 1.4 Objective

This research project is to propose a sustainable air distribution system that provides long term savings to the building's owner or consultant. The objectives are:

- To compare between two different systems: ACB and VAV in terms of design, control, efficiency and cost.
- To perform energy and cost analysis.
- To prove active chilled beam (ACB) is the better option.

### 1.5 Methodology

The research starts with a prior literature review on the comparison study between VAV and ACB done by others. The method of analysis used by the author is being analysed to understand how the comparison is done. Based on the method proposed where a fair comparison is made by the author, the same approach is being applied on the analysis for this project. The design calculations are based on appropriate calculation method as recommended in ASHRAE's handbook. System design for respective system is performed using validated design approach. Energy and cost analysis are carried out to determine the savings comparing between two systems. Finally, all processes are compiled and documented into a thesis.



### **1.6** Outline of Thesis

It consists of total six chapters as follows:

In **Chapter 1**, research background, problem statement, scope of study, objective, and methodology were discussed.

In **Chapter 2**, previous work done by others were reviewed. The design requirement used and methodology proposed for respective system: VAV and CAV were studied.

In **Chapter 3**, methodology of this project was elaborated from design calculations to results analysis.

In Chapter 4, the calculation results were presented for both systems.

In Chapter 5, results analysis and discussion were performed.

In **Chapter 6**, conclusion was made based on the results analysis and recommendations were given for future work.

#### **CHAPTER 2. LITERATURE REVIEW**

#### 2.1 Introduction

A prior literature review was carried out to attain a deep understanding in the field of study. This chapter divided into two sections which are namely system design and technical comparison. System design includes fundamental principle, design consideration and control design proposed by others. Technical comparison covers technical analysis done by others comparing between variable air volume (VAV) and active chilled beam (ACB). The outcome of this review created the need for detailed comparison between active chilled beam (ACB) and variable air volume (VAV) based on the virtual building.

### 2.2 System Design

Research have been performed on both VAV and ACB to determine the fundamental principle and design consideration as well as the control design of each system.

#### 2.2.1 Active Chilled Beam (ACB)

Generally, chilled beams can be divided into two types: passive chilled beam (PCB) and active chilled beam (ACB). For PCB, heat exchange takes place between the coil and the entering air is by natural means where the air movement through the coil is caused by the difference in density between warm air and cold air. On the other hand, for ACB, the primary air is supplied by a mechanical device (air handler) where it induces the room air to pass through the secondary coil and mix with the primary air before entering the room as shown in **Figure 2.1**. Since it involves forced convection, ACB is better than PCB in terms of performance and efficiency. For that reason, in this project, the comparison is made between ACB and VAV.



Figure 2.1 Passive Chilled Beam and Active Chilled Beam [5]

The processes of a typical active chilled beam system are explained as below:

Referring to **Figure 2.2** and **Figure 2.3**, the outdoor air at state 1 and the return air at state 2 are mixed at a certain percentage at state 3. The mixed air is then cooled and dehumidified by cooling coil from state 3 to state 4 where the air reaches its saturation point. As the air travels into the beam at state 5, the temperature is expected to increase slightly due to heat gains from the fan and ducts. The primary air at state 5 is then driven into the beam through number of nozzles which leads to entrainment effect, consequently causing the induction of air from the conditioned space to the secondary coil. The secondary coil removes only the room sensible heat. The secondary air is cooled from state 2 to state 6 by the secondary coil before being mixed with the primary air and released to the conditioned space at state 7.



Figure 2.2 Schematic of An Active Chilled Beam System with Air Handling Unit [6]



Figure 2.3 Psychrometric Chart of An Active Chilled Beam System with Air Handling Unit [6]

#### 2.2.1.1 Air side

The advantage of using active chilled beam is the reduced airflow of the AHU/DOAS because of the secondary chilled water circuit in the beams that helps remove the room sensible load. The airflow of the primary air, however must be sufficient enough to

remove the latent load in order to maintain specified room humidity levels and meet the minimum ventilation requirement [7]. **Figure 2.4** shows the relationship between primary air supply and space load conditions of a typical space. From the figure, the latent airflow factor ( $F_{LATENT}$ ) is determined based on specified primary air dew point temperature and room relative humidity. With the ventilation rate assumed (in accordance with ASHRAE's standard), the primary airflow rate required can be calculated from the function as follows:

 $CFM_{LATENT} = F_{LATENT} \ x \ CFM_{VENT}$ 



Primary Air Dewpoint Termperature, °F



As far as thermal comfort is concerned, beam placement should be optimized considering the air velocities. **Figure 2.5** shows the maximum occupied zone velocities in relation to the primary airflow rates and active chilled beam spacing. Assuming the ceiling height is 9 ft (2.74 m) and the distance L is set at 8 ft (2.44 m) the maximum airflow allowed is about 65 cfm/lf corresponding to the maximum local velocity,  $V_L$  of 120 fpm (0.61 m/s) and local velocity,  $V_{H1}$  of 30 fpm (0.15 m/s). As the distance increases, the maximum airflow allowed and local velocity increase as well. This consequently reduces the number of chilled beams required.



2) Selection and velocity recommendations are per 2007 ASHRAE Handbook (HVAC Applications) .



#### 2.2.1.2 Water side

The typical chilled water supply temperature to the air handlers or DOAS is 45 °F (7 °C). Whereas, the beam chilled water supply temperature ranges between 59 °F (15 °C) and 61 °F (16 °C) considering the space design condition and minimum ventilation rates. The space dewpoint temperature is about 51-52 °F (10.5-11 °C) [8]. The air discharge temperature must be higher than the space dewpoint temperature to avoid condensation. There are two types of design configuration: the first one is where the chilled water supply for both the primary and secondary loop comes from the same source, or in other words, from the same chiller. However, this configuration requires a heat exchanger in the secondary loop to ensure the chilled water delivered is within the specified temperature range as to prevent condensation.

Another design configuration is the chilled water supply for the primary and secondary loops are not from the source where each loop has its own dedicated chiller serving the AHU and the beam respectively. In this case, heat exchanger is not required at the secondary side as the chilled water is directly supplied from the chiller itself where the chilled water will be set at higher temperature. This configuration is claimed to be more efficient in the sense that the chiller is designed based on higher supply temperature in which the energy consumed is lesser than chiller with low supply temperature. Besides, the temperature of the chilled water supply can be easily maintained at desired setpoint which makes the control easier for the prevention of condensation. **Figure 2.6** illustrates the chilled water schematics for system sharing the same chiller where a heat exchanger is used. The secondary loop consists of a pump, modulating valve and temperature sensor. The valve can be 2-way or 3-way depending on the pump type. If the pump is of constant speed, 3-way valve is used where a bypass is required to recirculate the water based on the supply temperature. If the pump is of variable speed, then 2-way valve is used where the pump speed will be adjusted accordingly when the valve is open/close.

Meanwhile, **Figure 2.7** shows the chilled water schematics for system with dedicated chiller. It consists of a pump, valve, storage vessel (expansion tank) and temperature sensor. The same thing for the valve where it can be 3-way or 2-way depending on the pump type (constant speed or variable speed). Storage vessel is required for the expansion of chilled water when the valve is close and during system shutdown when the chilled water becomes warm.



Figure 2.6 Schematics for System That Shares the Same Chiller [7]



Figure 2.7 Schematics for System with Dedicated Chiller [7]

### **Condensation prevention strategy**

Several methods to prevent condensation [7]:

- 1. Central monitoring and control
- 2. Zone monitoring with on/off control
- 3. Zone monitoring with modulating control

For **central monitoring and control**, the outdoor dew point temperature will be used to control the chilled water supply temperature. This method is used for applications where infiltration of outdoor air into the conditioned space is excessive. Another method is **zone monitoring with on/off control** where moisture sensors are used to control the zone on/off valve. The valve will be shut off until the moisture is evaporated. Meanwhile for **zone monitoring with modulating control**, temperature sensor and dew point sensor in the space will be used to modulate the zone chilled water supply temperature by recirculating the return water via a 3-way valve and a pump at the bypass line. Instead of using 3-way valve, another alternative is by using 2-way valve and a VSD pump.



Figure 2.8 Chilled Water Temperature Reset based on Outdoor Air Dew Point [7]



Figure 2.9 Zone Monitoring with On/off Control and Moisture Sensor [7]



Figure 2.10 Zone Monitoring with Modulating Control [7]

#### 2.2.2 Variable Air Volume (VAV)

VAV system is composed of multiple VAV boxes that control the air supply to respective zone by modulating the damper based on load demand. Temperature sensor or thermostat is used to determine the load demand where it will trigger the VAV damper to open/close and consequently the fan to ram up/down until the static pressure is maintained at its setpoint. The reheat coil is to ensure the supply air temperature is maintained at its setpoint during part load condition when the damper's position can no longer be adjusted as to meet the minimum ventilation rates [9].

There are two types of reheat: electric reheat and water reheat. Electric reheat uses electric element/coil to provide direct heating to the supply air whereas water reheat uses hot water from external source like boiler or cooling tower to heat the air passing through the coil. There are many different types of VAV controller depending on the brands. Each brand has its own control logic. **Figure 2.11** shows the example of system schematic of VAV controller with electric stages reheat. During cooling mode when the room temperature is above the cooling setpoint, the damper will open and the airflow will increase to maximum. Reheat will only take place during part load when the room temperature is below the heating setpoint. There are 3 stages of heating where the 1<sup>st</sup> stage will cut-in first, followed by 2<sup>nd</sup> stage and 3<sup>rd</sup> stage if the room temperature continues to fall at minimum constant airflow.

On the other hand, **Figure 2.12** shows the system schematic of VAV controller with modulating reheat. During cooling mode, the airflow will increase to maximum when the room temperature is above the cooling setpoint. However, during reheat mode, the heating takes place in such a way that the hot water supply is determined by the room temperature during part load. When the room temperature is lower than the heating setpoint, the valve will open to allow hot water to pass through the coil until the setpoint is met.



Figure 2.11 VAV Controller for Cooling with Electric Reheat [10]



Figure 2.12 VAV Controller for Cooling with Modulating Reheat [10]

VAV system delivers a varying quantity of constant temperature air, typically between 45 °F and 55 °F dry-bulb temperature [11]. The load demand determines the airflow of the supply air required. **Figure 2.13** shows the processes of the system at different load conditions. For full load, the system is designed at peak outdoor air temperature that delivers 1,500 cfm of supply air, of which 450 cfm is outdoor air required for the space based on the maximum occupancy rate. Meanwhile, for part load, the system is designed at peak outdoor air dew point temperature that delivers a lower supply airflow due to reduced space sensible load in relation to solar load. In cases like rainy day, the supply airflow is further reduced as the outdoor air temperature is lower than usual. For all the conditions, the room air is maintained at 74 °F (23 °C) dry bulb and between 52% and 60% RH.



Figure 2.13 Cooling Processes of Basic VAV System [11]

### 2.2.2.1 Air side

### Zoning and Thermostat

VAV system delivers air to conditioned space by zones where each zone has its own VAV box. The zoning is done based on the load characteristics and the function of the space. For example, office and conference room shall have separate zones as the load characteristic and function of the space are different. Unlike office, the occupancy load for conference room is not consistent and it only lasts for few hours. Temperature sensors or thermostats are used to determine the occupancy load which consequently modulate the VAV damper and the fan speed.

#### **Demand Control Ventilation (DCV)**

DCV controls ventilation air supply to the zone based on CO2 concentration and CO2 sensors are used to measure the CO2 concentration which indicates the number of occupants present in the zone. In response to the CO2 sensor, the outdoor ventilation air damper is adjusted accordingly to maintain the concentration within the setpoint.

At individual zone: During occupy mode, the CO2 concentration is maintained at 1000ppm based on the loop output (0 to 100%). Loop output refers to damper's position. From 0 to 50%, the minimum airflow setpoint is reset whereas from 50% to 100%, the minimum outdoor air is reset.

At the AHU: The minimum outdoor air setpoint is reset based on the highest zone CO2 loop signal between 50% and 100%.

#### **Occupancy Controls**

Occupancy sensors are used to detect a zone whether it's occupied or otherwise where the ventilation airflow is reduced to zero when there is no occupant. Typically, occupancy sensors are used in lighting system for the convenience of operation. Lights will be automatically switched off when people are not around. Technically, these sensors are motion sensors where they respond based on the motion surrounding. Using occupancy sensor alone is not enough as it only triggers the system to either switch on or switch off regardless of the occupancy load, whether it's high or low. The system is more efficient if motion sensors are used together with temperature sensors and CO2 sensors where the former will shut off the system when zero occupancy load and the latter will reduce the airflow when low occupancy load. Occupancy control can be either done separately for the aircon system itself or interlocked with lighting system.

#### 2.3 Technical comparison

Several studies have been carried out by others comparing between VAV and ACB. According to the article written by Jeff Stein and Steven T. Taylor [12], VAV is proved to be more energy-saving and cost-saving compared to ACB. The comparison was done between three systems: ACB + DOAS, VAV Reheat and Hybrid based on a building located in US, The UC Davis Medical Center Graduate Studies Building (GSB), which consists of private offices, open offices and classroom/conference rooms.

Following are the design requirement used in the comparison analysis [13] [14] [15]:

- 1. For Active Chilled Beam Design, Dedicated Outdoor Air System (DOAS) is used to supply 100% outside air with average primary airflow rate of 0.6 cfm/ft2. The designed airflow is justified to be close to the minimum ventilation in high density spaces. The chilled water supply to the air handler and heat exchanger is 45 °F (7 °C) whereas to the chilled beam is 57 °F (14 °C). The primary air is maintained at 63 °F (17 °C).
- 2. For **VAV Reheat Design**, a single air handler is sized for 0.9 cfm/ft2 at load conditions. The VAV boxes for cooling-only have zero minimum flow rate and with reheat have minimum flow rates in the dead band between heating and cooling of 0.15 cfm/ft2. The supply air temperature varies from 55 °F (13 °C) to 65 °F (18 °C) depending on the zone room temperature.

3. For **Hybrid Design**, only 30% of the air-conditioned area uses hybrid VAV + ACB and 70% uses conventional VAV reheat. Reason being, the interior zones are low load zones where adding chilled beams doesn't bring significant impact to the reduction of primary airflow rates and conference rooms which have high peak ventilation rates require the CO2 controls. The air handler has designed airflow rate of 0.7 cfm/ft2 and supply air temperature of 55 °F (13 °C) to 65 °F (18 °C). Meanwhile, the chilled water supply to the air handler is 45 °F (7 °C) whereas to the chilled beam is 57 °F (14 °C).

From the simulation results, it shows that VAV reheat is the most efficient design followed by hybrid and ACB. Comparing to ACB, VAV reheat could save up to about 40% of energy used for HVAC application and hybrid is about 33%. as it uses 40% less energy than the ACB design whereas hybrid design uses 33% less. The savings for VAV reheat design is mainly contributed by the reduction of airflow rate during part load as the fan speed is equal to the cubic of fan power according to fan's law. When the fan speed is reduced, the fan power is reduced by the power of three. On top of that, the outdoor air intake is less for VAV reheat during part load and the minimum airflow rate is 0.15 cfm/ft2 (0.75 l/s/m<sup>2</sup>) as compared to 0.6 cfm/ft2 (3 l/s/m<sup>2</sup>) for ACB.

In terms of cost, again VAV reheat is the lowest (\$ 25/ft2), followed by hybrid (\$ 37/ft2) and ACB (\$ 62/ft2). ACB has the highest cost largely due to high labor cost, high equipment cost and high material cost as it involves complicated control system and additional secondary chilled water system.

Meanwhile, benefits like higher floor-to-floor height and better indoor air quality for ACB system are proved to be overstated as the low airflow rate reduces the air velocity which results in the same or larger duct size used compared to VAV even though the airflow rate for VAV is higher since the air velocity used to size the duct is higher. In other words, the low velocity used to size the duct for ACB offset the space savings. In terms of indoor air quality, even though the outdoor air intake is higher for ACB, the possibility of condensation occurs at the secondary coil due to design fault or device failure could cause the growth of mold which consequently affects the indoor air quality. Besides, number of shortcomings have been highlighted against ACB that include water leakage, tedious maintenance, restricted lighting fixture location, inflexibility of future tenant improvement and poor thermal comfort due to oversupply cooling.

On top of that, the cost of the system for ACB is comparatively higher than VAVR due to the system complexity and additional chilled water pipe.

However, TROX and Dadanco claimed that ACB provides better savings compared to VAV, disputing on the load conditions used by Jeff and Steven is not appropriate. To prove ACB is the better system in terms of energy saving and cost saving, TROX has done a detailed comparison between ACB and VAVR.

Comparison was done at three different operating conditions: space sensible and latent at 100%, space sensible at 75% & space latent at 90% and space sensible at 50% & space latent at 80%. Based on the load conditions used in ASHRAE's article, the total energy consumed by ACB is higher than VAVR especially during part load. This is because the design requirement used is different from each other, for example the supply air temperature and the amount of outdoor air intake.

However, applying the same load conditions shows that ACB system is comparatively more energy-saving than VAVR system especially during peak load (as shown in **Table 2.1 to Table 2.3**). Meanwhile, the cost for modified ACB system is significantly reduced to slightly closer to designed VAV system with only 22% higher as compared to designed ACB system with 150% higher than VAV (as shown in **Table 2.4**).

| Load Conditions                      | SAT | OA     | RA      | OA    | AHU Cooling | Beam cooling | Fan  | Pumps | Total Energy |                   |
|--------------------------------------|-----|--------|---------|-------|-------------|--------------|------|-------|--------------|-------------------|
| (100% sensible & latent space loads) | F   | CFM    | CFM     | %     | kW          | kW           | BHP  | внр   | kW           |                   |
| VAVR system as described             | 55  | 8,475  | 41,525  | 17    | 49.9        | 0            | 45.6 | 5.5   | 88           |                   |
| ACB system as described              | 63  | 30,000 | 0       | 100   | 40.5        | 23.5         | 26   | 8.7   | 89.9         | Slightly higher   |
|                                      |     |        | Modifie | d ACB | system      |              |      |       |              |                   |
| Primary air @ 55 F DB, 53 F DP       | 55  | 16,667 | 0       | 100   | 28.7        | 24.4         | 4.5  | 7.6   | 62.1         | 30% less than VAV |
| Mixing at air handling unit          | 55  | 8,475  | 8,192   | 51    | 21.6        | 24.4         | 4.5  | 6.8   | 54.5         | 38% less than VAV |

Table 2.1 Comparison between Designed VAVR System, Designed ACB System and Modified ACB System at Full Load Condition

an VAVR

#### Table 2.2 Comparison between Designed VAVR System, Designed ACB System and Modified ACB System at Part Load Condition

| Load Conditions                         | SAT | OA     | RA     | OA  | AHU Cooling | Beam cooling | Fan | Pumps | Total Energy |                    |
|-----------------------------------------|-----|--------|--------|-----|-------------|--------------|-----|-------|--------------|--------------------|
| (75% sensible & 90% latent space loads) | F   | CFM    | CFM    | %   | kW          | kW           | BHP | BHP   | kW           |                    |
| VAVR system as described                | 55  | 8,475  | 29,025 | 23  | 26.6        | 0            | 26  | 2.9   | 48.2         |                    |
| ACB system as described                 | 63  | 30,000 | 0      | 100 | 40.2        | 14.3         | 26  | 7     | 79.2         | 64% more than VAVR |
| Modified ACB system                     |     |        |        |     |             |              |     |       |              |                    |
| Primary air @ 55 F DB, 53 F DP          | 55  | 16,667 | 0      | 100 | 28.5        | 15.3         | 4.5 | 5.9   | 51.5         | 6% more than VAVR  |
| Mixing at air handling unit             | 55  | 8,475  | 8,192  | 51  | 10.3        | 15.3         | 4.5 | 3.9   | 31.8         | 34% less than VAVR |
|                                         |     | >      |        |     | •           |              |     |       |              |                    |
| Load Conditions                         | SAT | OA     | RA     | OA  | AHU Cooling | Beam cooling | Fan | Pumps | Total Energy |                       |
|-----------------------------------------|-----|--------|--------|-----|-------------|--------------|-----|-------|--------------|-----------------------|
| (50% sensible & 80% latent space loads) | F   | CFM    | CFM    | %   | kW          | kW           | BHP | BHP   | kW           |                       |
| VAVR system as described                | 55  | 8,475  | 16,125 | 34  | 13          | 0            | 6.6 | 2     | 19.4         |                       |
| ACB system as described                 | 63  | 30,000 | 0      | 100 | 15.6        | 5.1          | 26  | 1.4   | 41.2         | 112% higher than VAVR |
| Modified ACB system                     |     |        |        |     |             |              |     |       |              |                       |
| Primary air @ 55 F DB, 53 F DP          | 55  | 16,667 | 0      | 100 | 8.4         | 6.1          | 4.5 | 5.9   | 19.3         |                       |
| Mixing at air handling unit             | 55  | 16,667 | 0      | 100 | 8.4         | 6.1          | 4.5 | 3.9   | 19.3         | Similar               |

Table 2.3 Comparison between Designed VAVR System, Designed ACB System and Modified ACB System at Lowest Part Load Condition

 Table 2.4 Cost Comparison between Designed VAVR System, Designed ACB System and Modified ACB System

|                           | VAVR system as designed |          | ACB system a | s designed | Modified ACB system |
|---------------------------|-------------------------|----------|--------------|------------|---------------------|
|                           | Cost of Qty             | Cost/cfm | Cost or Qty  | Cost/cfm   | Cost or Qty         |
| Material cost (\$)        | 215,179                 | 4.3      | 576,496      | 19.22      | 320,282             |
| Labor cost (\$)           | 584,058                 | 11.68    | 1,509,349    | 50.31      | 838,544             |
| Equipment cost (\$)       | 319,695                 | 6.39     | 608,349      | 20.28      | 337,978             |
| Subcontractors (\$)       | 252,067                 | 5.04     | 647,037      | 21.57      | 359,472             |
| Lbs. of ductwork (lbs)    | 38,000                  |          | 28,612       |            | 15,896              |
| Chilled water piping (Lf) | 310                     |          | 10,244       |            | 5,691               |
| Hot water piping (Lf)     | 2,085                   |          | 9,630        |            | 5,350               |
| Total HVAC cost (\$)      | 1,370,999               |          | 3,341,231    |            | 1,856,277           |
| HVAC cost (\$/ft2)        | 25                      | 27       | 62           | 111        | 33                  |

On top of that, Dadanco highlighted the unusual design requirements used in the article where the primary airflow rate of 0.6 cfm/ft2 (3 l/s/m<sup>2</sup>) used in the analysis is deemed to be unreasonably high, as compared to typical design with only 0.2 cfm/ft2 (0.97 l/s/ft<sup>2</sup>) [16]. Based on the open plan office, only four 8ft long ACB's with 85 cfm are required to meet the load instead of twelve 8ft long ACB's. This requires total airflow rate of 340 cfm (0.2 cfm/ft2) for ACB as compared to 1,330 cfm (0.8 cfm/ft2) for VAVR at peak load. In other words, the system has been unnecessarily over-designed for ACB.

If 0.2 cfm/ft2 were used, even at part load condition (40%), the total airflow rate of ACB (340 cfm) is still lower than VAVR (532 cfm). In fact, it can be further reduced to as low as 120 cfm, the minimum ventilation rate required by using variable primary air volume. Besides, Dadanco also mentioned that ACB has a proven record of safe operation without condensation occurring at the secondary coil and it can be achieved with minimal controls. Moreover, the velocity used to size the duct shall be made the same for both systems to ensure a fair comparison.

#### **Summary**

The fundamental principle, design considerations and control design in available literatures of VAV and ACB were covered in this chapter. Different design approach used by various authors and comparison between the two systems in terms of energy and cost were discussed. Appropriate load conditions will be used to ensure a fair comparison is made between the two systems.

#### **CHAPTER 3. METHODOLOGY**

#### 3.1 Introduction

A detailed explanation on the cooling load calculation, the air distribution system design, chiller plant design and control system design for both variable air volume (VAV) and active chilled beam (ACB) are given in this chapter. Cooling load calculation is performed using Hourly Analysis Program (HAP) 4.90 by Carrier and air distribution system design is by using Excel Spreadsheet and TROX selection software. Since cooling load is the same for both systems, the calculation is done and presented for only once. For the air distribution system design, however, the approach is different from each other and thus a separate explanation on the design steps is made for respective system. Likewise, the control system is different for both systems and explanation is made separately. Duct sizing and pipe sizing are presented as well for both systems.

#### **3.2** Cooling Load Calculation

#### **3.2.1** Cooling Load Definition

Cooling load is defined by the rate at which energy is removed from a space by mechanical means in order to maintain the desired room temperature and humidity. It's often associated with heat gain where energy is transferred or generated within the space.

Heat gains generally can be divided into two components, sensible heat and latent heat. Following is the different forms of heat gains:

- 1. Solar radiations from external
- 2. Heat conduction and convection through roof
- Heat conduction and convection through wall
   Heat conduction, convection and radiation through window
- 4. Heat generated from lighting fixtures

- 5. Heat generated from electrical devices or machineries
- 6. Heat generated from human bodies
- 7. Heat generated from infiltration

#### 3.2.2 Cooling Load Calculation Method

Three methods can be used to calculate cooling load. These include:

- 1. Transfer Function Method (TFM)
- 2. CLTD/SCL/CLF Method
- 3. Radiant Time Series Method (RTSM)

**Transfer Function Method (TFM)** is a computer based method where it solves complicated heat transfer functions in predicting hourly cooling load. This method is widely used in the HVAC engineering community and in fact it's adopted by ASHRAE.

**CLTD/SCL/CLF Method** is a hand calculation method where it's based on tabulated results from transfer function method (TFM) in predicting hourly cooling load. CLTD refers to cooling load temperature difference where it is used to determine the heat gain of the wall and roof, SCL refers to solar cooling load where it is used to determine the solar gain through window and CLF refers to cooling load factors where it is used to determine the internal heat source. Compared to TFM, CLTD/SCL/CLF method has certain limitations and normally it's used for academic purpose. On top of that, the calculations process takes time.

**Radiant Time Series Method (RTSM)** is the latest method where it's well suited for both hand and computer use. In other words, it replaces both TFM and CLTD/SCL/CLF method. In this project, RTSM is used to determine the cooling load with the help of Hourly Analysis Program (HAP 4.90) by Carrier.

## 3.2.3 Hourly Analysis Program (HAP 4.90)

HAP is a computer tool for engineers to design HVAC system for buildings. It can be used to estimate cooling load, design system, simulate energy use and calculate energy costs. However, in this project, HAP is only used to estimate the cooling load. The design steps are as follows:

- 1. Key in the necessary data input:
- 2. Weather Data of the particular building site.
- 3. Space Data of the particular room space defined in the building:
  - General (Name, Floor Area, Ceiling Height, Building Weight and OA Ventilation Requirement)
  - Internals (Overhead Lighting, Task Lighting, Electrical Equipment, People and Misc. Load)
  - Walls, Windows, Doors (Exposure, Wall Gross Area, Window Quantity)
  - Roofs, Skylights (Roof Gross Area, Roof Slope and Skylight Quantity)
  - Infiltration (CFM/ACH)
  - Floors (Floor Type)
  - Partitions (Wall Partition/Ceiling Partition)
- 4. System Data
  - General (Name, Equipment Type and Air System Type)
  - System Components (Ventilation Air, Central Cooling, Supply Fan and etc.)
  - Zone Components (Space Assignment, Thermostats and Supply Terminals)
  - Sizing Data (System Sizing and Zone Sizing)
  - Equipment
- Generate Design Results Report for each system defined. The report consists of the following details:
  - Air System Information

- Sizing Calculation Information
- Central Cooling Coil Sizing Data (Total coil load, Sensible coil load, Coil CFM and etc.)
- Supply Fan Sizing Data (Actual max CFM/ft2, Fan motor BHP, Fan motor kW and Fan static)
- Outdoor Ventilation Air Data (Design airflow CFM, CFM/ft2 and CFM/person)
- Total Zone Loads (Transmission, Lighting, People, Infiltration and etc.)
- Total System Loads (Plenum load, Fan load, Ventilation Load and etc.)

Tabulate the necessary information generated using excel spreadsheet. For VAV, both the zone load and system load are recorded but for ACB, only zone load is required.

## **3.2.4 Building Layout**

In this project, a virtual building layout is used where it consists of total 13 floors including 2 sub-basements. Air-conditioning is provided from ground floor up to level 10 penthouse office. Since level 1 to 9 are typical floors, system layout for both VAV and ACB are designed based on three distinct floors: GF, L1-L9 and L10 as shown in **Figure 3.1**, **Figure 3.2** and **Figure 3.3** respectively.



**Figure 3.1 Ground Floor Layout** 





L1-L9 TYPICAL LAYOUT (OFFICE) scale 1:150

Figure 3.2 Level 1 to Level 9 Floor Layout



Figure 3.3 Level 10 Floor Layout

Assuming the building is located in the city of Kuala Lumpur, the indoor conditions and outdoor conditions are as shown in **Table 3.1**.

| Indoor Conditions                | Outdoor Conditions               |
|----------------------------------|----------------------------------|
| Design Dry Bulb: 75 °F (24 °C)   | Region: Asia/Pacific             |
| Design Wet Bulb: 64 °F (17.8 °C) | Location: Malaysia               |
|                                  | City: Kuala Lumpur               |
|                                  | Latitude: 3.1°                   |
|                                  | Longitude: -101.6°               |
|                                  | Elevation: 72 ft                 |
|                                  | Design Dry Bulb: 95 °F (35 °)    |
|                                  | Design Wet Bulb: 82 °F (27.8 °C) |

Table 3.1 Indoor & Outdoor Conditions

### 3.2.5 Cooling Load Calculation Theory

The cooling load calculated in HAP 4.9 is based on transfer function method as follows:

$$Q_o = v_o q_o + v_1 q_1 + v_2 q_2 - w_1 Q_1 - w_2 Q_2$$

where Q is the load. The subscripts refer to specific points in time. 0 is the current hour,

1 is the previous hour and 2 is two hours before.

q is the heat gain. The subscripts 0, 1 and 2 refer to the same as of load.

 $v_0$ ,  $v_1$ ,  $v_2$ ,  $w_1$  and  $w_2$  are transfer function coefficients. Values of these coefficients vary for each type of heat gain and room due to the different heat transfer processes involved in converting each type of heat gain into load. These coefficients can be obtained from ASHRAE's published journal.

This function is called room transfer function and it's used to determine different types of cooling load given that the heat gain and coefficients are known.

#### 3.2.5.1 Wall and Roof Load

Wall and roof loads account for heat transferred through wall or roof due to solar radiation through the exterior surface and the temperature difference between indoor and outdoor air. The following equation is used to calculate the sol-air temperature:

$$T_{sa} = T_{oa} \times \propto l/h_0 - \epsilon \Delta R/h_0$$

where  $T_{sa}$  is sol-air temperature, F or C

Toa is outdoor air dry-bulb temperature, F or C

 $\alpha$  is wall or roof exterior surface absorptivity for solar radiation

l is total solar flux on wall or roof surface, Btu/hr/hr/ft2 or W/m2

 $h_0$  is convective heat transfer coefficient on exterior wall or roof surface, 3 BTU/h-ft2-F or 17 W/m2-K

 $\boldsymbol{\epsilon}$  is emittance of exterior surface, 1

 $\Delta \mathbf{R}$  is difference between longwave radiation incident on exterior surface and blackbody radiation at T<sub>oa</sub>, BTU/h-ft2 or W/m2. For vertical surfaces,  $\Delta \mathbf{R} = 0$ . For horizontal surfaces,  $\Delta \mathbf{R} = 20$ .

Wall and roof transmission loads involve special considerations on the heat gain calculation because of the delay between the heat gain occurs at the outer surface and the heat gain reaches to the interior surface of the wall or roof. Unlike others, for wall and roof transmission load, the heat gain is determined by other function called conduction transfer function and the following shows the conduction transfer function for the interior surface of wall.

$$\frac{q_o}{A} = \mathbf{b}_o t_{eo} + \mathbf{b}_1 t_{e1} + \mathbf{b}_2 t_{e2} + \mathbf{b}_3 t_{e3} + \mathbf{b}_4 t_{e4} + \mathbf{b}_5 t_{e5} + \mathbf{b}_6 t_{e6} - d_1 q_1$$
$$- d_2 q_2 - d_3 q_3 - d_4 q_4 - d_5 q_5 - d_6 q_6 - t_{rc} \sum C_n$$

Where **q** is the heat gain. The subscripts refer to specific points in time. **0** is the current hour, **1** is the previous hour and **2** is two hours before.

 $t_e$  is the sol-air temperature for the exterior surface of the wall.

**b**, **d**, **and**  $c_n$  are conduction transfer function coefficients. Values of these coefficients vary depending on the construction of the wall or roof.

 $\mathbf{t_{rc}}$  is the indoor air temperature.

A is the exterior wall surface area.

Once the heat gain is known, the load is then determined using the Room Transfer Function Equation.

#### 3.2.5.2 Window Transmission Load

Window transmission loads are the result of heat flow through windows due to the difference between indoor and outdoor temperature. The heat gain is calculated from the following equation:

$$q = \mathbf{U} \times \mathbf{A} \times (\mathbf{T}_{oa} - \mathbf{T}_{r})$$

where  $\mathbf{q}$  is window transmission heat gain, BTU/h or W

U is overall window U-value, BTU/hr-ft2-F or W/m2-K

A is window area, ft2 or m2

 $\mathbf{T}_{\mathbf{r}}$  is room air temperature, F or C

 $T_{oa}$  is outdoor air temperature, F or C

H is average floor to ceiling height for space, ft

K is unit conversion factor (60 min/hr for English units m3/1000L for S.I. Metric units

#### 3.2.5.3 Lighting Load

The heat gain is calculated from the following equation:

$$q = \mathbf{K} \times \mathbf{P} \times \mathbf{BM} \times \mathbf{Fs}/100$$

where q is lighting heat gain, BTU/h or W

K is unit conversion factor (3.412 Btu/h/W for English unit or 1.0 for S.I. Metric unit)

**P** is lighting fixture power, W

BM is ballast multiplier, decimal

Fs is schedule percentage value, percent of maximum lighting watts for the hour

#### 3.2.5.4 Electrical Equipment Load

The heat gain is calculated from the following equation:

$$q = \mathbf{K} \times \mathbf{P} \times \mathbf{Fs}/100$$

where **q** is heat gain, BTU/h or W

K is unit conversion factor (3.412 Btu/h / W for English unit or 1.0 for S.I. Metric unit)

P is electrical equipment maximum power, W

Fs is schedule percentage value, percent of maximum power use

## 3.2.5.5 People Load

People loads are the result of sensible and latent heat gain from the occupants in a space. The latent component involves the transfer of moisture to room air and is thus converted to load directly. The sensible component however involves separate convective and radiative components and is evaluated using transfer function proceedres.

The sensible heat gain is calculated from the following equation:

$$q = \text{HG} \times \text{O} \times \text{Fs}/100$$

where  $\mathbf{q}$  is people heat gain, BTU/h or W

HG is unit heat gain, BTU/h/person or W/person

#### 3.2.5.6 Infiltration Load

Infiltration loads are the result of uncontrolled leakage of air into the building. Infiltration airflow needs to be determine before getting the infiltration load. Following is the equation for infiltration airflow:

 $V_i = CFM/ft2 \times Area of Exterior Walls in Space$ 

$$V_i = ACH \times A_f \times H/K$$

where  $A_f$  is floor area for space, ft2

**H** is average floor to ceiling height for space, ft

K is unit conversion factor (60 min/hr for English units m3/1000L for S.I. Metric units)

The infiltration load is calculated from the following equation:

$$\boldsymbol{Q}_{s} = \boldsymbol{\rho}_{a} \times \boldsymbol{C}_{pa} \times \boldsymbol{V}_{i} \times \boldsymbol{K} \left( \boldsymbol{T}_{oa} - \boldsymbol{T}_{r} \right)$$

$$Q_l = \rho_a \times h_{fg} \times V_i \times K (\omega_{oa} - \omega_r)$$

where C<sub>pa</sub> is heat capacity of air, 0.24 BTU/lbm-F or 1004.8 J/kg-K

 $\rho_a$  is density of air

 $\mathbf{Q}_{l}$  is latent infiltration load, BTU/h or W

 $Q_s$  is sensible infiltration load, BTU/h or W

 $T_{oa}$  is outdoor air temperature, F or C

 $T_r$  is room temperature, F or C

 $h_{fg}$  is heat of vaporization of water, 1054.8 BTU/lbm or 2.4535 E+06 J/kg

 $\omega_{oa}$  is outdoor air specific humidity, lb/lb or kg/kg

 $\omega_r$  is room specific humidity, lb/lb or kg/kg

## 3.2.6 Example of cooling load calculation using HAP

- Weather data is keyed in based on location of the building as shown in Figure 3.4. The following are the data input:
  - Region: Asia/Pacific
  - Location: Malaysia:
  - City: Kuala Lumpur
  - Latitude: 3.1 °
  - Longtitude: -101.6 °
  - Elevation: 72 ft
  - Dry Bulb Temperature: 95 °F
  - Wet Bulb Temperature: 82 °F

| % Weather Properties - [Kuala Lumpur] |                                                               |             |     |                                       |                     |  |  |  |
|---------------------------------------|---------------------------------------------------------------|-------------|-----|---------------------------------------|---------------------|--|--|--|
| Design                                | Design Parameters Design Temperatures Design Solar Simulation |             |     |                                       |                     |  |  |  |
| <u>R</u> egior                        | : Asia/Pacific                                                | •           |     | Atmospheric Clearness Number          | 1.00                |  |  |  |
| <u>L</u> ocatio                       | on: Malaysia                                                  | <b>~</b>    |     | Average <u>G</u> round Reflectance    | 0.20                |  |  |  |
| <u>C</u> ity:                         | Kuala Lump                                                    | <b>▼</b> IL |     | Soil Conductivity                     | 0.800 BTU/hr/ft/F   |  |  |  |
| L <u>a</u> titud                      | e:                                                            | 3.1         | deg | Design Clg Calculation <u>M</u> onths | Jan 🔻 to Dec 👻      |  |  |  |
| L <u>o</u> ngitu                      | ide:                                                          | -101.6      | deg | Time Zene (CMT + / )                  |                     |  |  |  |
| Ele <u>v</u> ati                      | on:                                                           | 72.0        | ft  |                                       | -8.0 nours          |  |  |  |
| Summe                                 | er Design <u>D</u> B                                          | 95.0        | ۴F  | Daylight Savings Ti <u>m</u> e        | • Yes C No          |  |  |  |
| Summe                                 | er Coincident <u>W</u> B                                      | 82.0        | ۴F  | DST <u>B</u> egins                    | Mar 💌 15            |  |  |  |
| Summe                                 | er Daily <u>R</u> ange                                        | 16.2        | ۴F  | DST <u>E</u> nds                      | Oct 👻 31            |  |  |  |
| Winter                                | Design DB                                                     | 71.0        | ۴F  | Data Source:                          | 0,                  |  |  |  |
| Winter                                | Coincident WB                                                 | 59.3        | ۴F  | User Modified                         |                     |  |  |  |
|                                       |                                                               |             |     |                                       |                     |  |  |  |
|                                       |                                                               |             |     | ОК                                    | Cancel <u>H</u> elp |  |  |  |

Figure 3.4 Weather Properties Tab in HAP

2. Space is defined by putting in appropriate inputs as shown in Figure 3.5.

General

- Name: Mgr 1
- Floor Area: 151 ft<sup>2</sup>
- Avg Ceiling Height: 9 ft
- Building Weight: 70 lb/ft<sup>2</sup>
- Outdoor Air Requirement:
  - Space Usage: Office
  - OA Requirement 1: 5 cfm/person
  - OA Requirement 2: 0.06 cfm/ft<sup>2</sup>

| 🚮 Space Properties - [L1-MGR 1]                                                                   |                                                                                               |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| General Internals   Walls, Windows, Doors   Roofs, Skylights   Infiltration   Floors   Partitions |                                                                                               |  |  |  |  |  |  |
| Name                                                                                              | L1-MGR 1                                                                                      |  |  |  |  |  |  |
| <u>F</u> loor Area                                                                                | 151.0 ft²                                                                                     |  |  |  |  |  |  |
| Avg Ceiling <u>H</u> eight                                                                        | 9.0 ft                                                                                        |  |  |  |  |  |  |
| Building <u>W</u> eight                                                                           | 70.0 lb/ft²                                                                                   |  |  |  |  |  |  |
| OA Ventilation Requ<br>Space <u>U</u> sage                                                        | Light Med. Heavy<br>OA Ventilation Requirements<br>Space <u>U</u> sage OFFICE: Office space ▼ |  |  |  |  |  |  |
| OA Requirement <u>1</u>                                                                           | 5.0 CFM/person                                                                                |  |  |  |  |  |  |
| OA Requirement <u>2</u>                                                                           | 0.06                                                                                          |  |  |  |  |  |  |
| Space usage defaults: ASHRAE Std 62.1-2010<br>Defaults can be changed via View/Preferences.       |                                                                                               |  |  |  |  |  |  |
|                                                                                                   | OK Cancel <u>H</u> elp                                                                        |  |  |  |  |  |  |

Figure 3.5 Space Properties [General]

## Internals

## • Overhead Lighting

- Fixture Type: Recessed, unvented
- Wattage: 2.00 W/ft<sup>2</sup>
- Ballast Multiplier: 1.00
- Schedule: 90.1 Office Lights/Elec

# • Task Lighting

- Wattage: 1.00 W/ft<sup>2</sup>
- Schedule: 90.1 Office Lights/Elec
- People
  - Occupancy: 200 ft<sup>2</sup>/person
  - Activity Level: Office Work
  - Sensible: 245 BTU/hr/person
  - Latent: 205 BTU/hr/person
  - Schedule: 90.1 Office Occupancy

| 🗊 Space Properti           | Space Properties - [L1-MGR 1] |                         |                |                    |  |  |  |
|----------------------------|-------------------------------|-------------------------|----------------|--------------------|--|--|--|
| General Interna            | s Walls, Windows, Doors   1   | Roofs, Skylights        | Infiltration F | loors   Partitions |  |  |  |
| Cverhead Lighti            | ng                            | People                  |                |                    |  |  |  |
| <u>F</u> ixture Type       | Recessed, unvented            | Occupancy               | 200.00         | ft²/person 💌       |  |  |  |
| <u>W</u> attage            | 2.00 W/ft <sup>e</sup> •      | Acti <u>v</u> ity Level | Office Work    | •                  |  |  |  |
| <u>B</u> allast Multiplier | 1.00                          | Sensi <u>b</u> le       | 245.0          | BTU/hr/person      |  |  |  |
| <u>S</u> chedule           | 90.1 Office Lights/Elec 💌     | <u>L</u> atent          | 205.0          | BTU/hr/person      |  |  |  |
| Task Lighting              |                               | Sch <u>e</u> dule       | 90.1 Office C  | )ccupancy 💌        |  |  |  |
| W <u>a</u> ttage           | 1.00 W/ft° 💌                  | - Miscellaneous         | s Loads        |                    |  |  |  |
| Schedule                   | 90.1 Office Lights/Elec 💌     | Sens <u>i</u> ble       | 0              | BTU/hr             |  |  |  |
| Electrical Equip           | ment                          | Sche <u>d</u> ule       | (none)         |                    |  |  |  |
| Wa <u>t</u> tage           | 0.00 W/ft -                   | Late <u>n</u> t         | 0              | BTU/hr             |  |  |  |
| <u>Sch</u> edule           | 90.1 Office Lights/Elec 💌     | Sched <u>u</u> le       | (none)         |                    |  |  |  |
|                            |                               | OK                      | Cancel         | <u>H</u> elp       |  |  |  |

Figure 3.6 Space Properties [Internals]

## Walls, Window, Doors

Based on the compass direction shown in the layout, the exposure to sunlight for Mgr 1 is determined as North East. The wall gross area is calculated from the ceiling height and and wall length. The window quantity is determined by using 0.9 window-to-wall ratio.

|   | Exposure  | Wall<br>Gross<br>Area<br>ft <sup>e</sup> | Window<br>1<br>Quantity | Window<br>2<br>มีนอกtity | Door<br>Quantity | Construction Types<br>for Exposure: <b>1 (NE)</b><br>Wall Baseline - Steel Framed |
|---|-----------|------------------------------------------|-------------------------|--------------------------|------------------|-----------------------------------------------------------------------------------|
| 1 | NE 💌      | 100.0                                    | 90                      | 0                        |                  |                                                                                   |
| 2 | not use 🔻 |                                          |                         |                          |                  | Window 1 Normal Glass                                                             |
| 3 | not use 💌 |                                          |                         |                          |                  | Shade 1 (none)                                                                    |
| 4 | not use 💌 |                                          |                         |                          |                  |                                                                                   |
| 5 | not use 💌 |                                          |                         |                          |                  | Window 2 Normal Glass                                                             |
| 6 | not use 💌 |                                          |                         |                          |                  | S <u>h</u> ade 2 (none)                                                           |
| 7 | not use 💌 |                                          |                         |                          |                  |                                                                                   |
| 8 | not use 💌 |                                          |                         |                          |                  | (none)                                                                            |

Figure 3.7 Space Properties [Walls, Windows, Doors]

## Roof, Skylights

Mgr 1 is located at middle floors: Level 1 to Level 9, thus roof and skylight properties are not required. Only top most floor where roof and skylight are involved.

#### **Infiltration**

The minimum air filtration rate is set at 0.05 ACH at all hours.

| 🗊 Space Properties - [L1-MGR 1]                                                                   |                |                            |           |              |  |  |  |  |
|---------------------------------------------------------------------------------------------------|----------------|----------------------------|-----------|--------------|--|--|--|--|
| General Internals   Walls, Windows, Doors   Roofs, Skylights   Infiltration   Floors   Partitions |                |                            |           |              |  |  |  |  |
|                                                                                                   |                |                            |           |              |  |  |  |  |
|                                                                                                   | Ent            | er infiltration rate in an | y column: |              |  |  |  |  |
|                                                                                                   | CFM CFM/fP ACH |                            |           |              |  |  |  |  |
| Design <u>C</u> ooling                                                                            | 1.13           | 0.01                       | 0.05      |              |  |  |  |  |
| Design <u>H</u> eating                                                                            | 0.00           | 0.00                       | 0.00      |              |  |  |  |  |
| Energy <u>A</u> nalysis                                                                           | 0.00           | 0.00                       | 0.00      |              |  |  |  |  |
|                                                                                                   | _              |                            |           |              |  |  |  |  |
| Infiltration occurs:                                                                              | O Only When F  | an <u>O</u> ff             |           |              |  |  |  |  |
|                                                                                                   | All Hours      |                            |           |              |  |  |  |  |
|                                                                                                   |                |                            |           |              |  |  |  |  |
|                                                                                                   |                |                            |           |              |  |  |  |  |
|                                                                                                   |                |                            |           |              |  |  |  |  |
|                                                                                                   |                |                            |           |              |  |  |  |  |
|                                                                                                   |                | OK                         | Cancel    | <u>H</u> elp |  |  |  |  |
|                                                                                                   | _              |                            |           |              |  |  |  |  |

Figure 3.8 Space Properties [Infiltration]

## Floors

The floor type is above conditioned space. Except ground floor, all the floors above are above conditioned space.

| 🚮 Space Properties - [L1-MGR 1]                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Internals Walls, Windows, Doors Roofs, Skylights Infiltration Floors Partitions                                                                                |
| Floor Type<br>Floor Above Conditioned Space<br>C Floor Above Unconditioned Space<br>C Slab Floor On Grade<br>C Slab Floor Below Grade<br>Floor Above Conditioned Space |
| No Additional Inputs                                                                                                                                                   |
| OK Cancel <u>H</u> elp                                                                                                                                                 |

Figure 3.9 Space Properties [Floors]

# Partitions

Partitions are not defined since the space surrounding the meeting room is air-conditioned.

Design report is generated once the air system properties are defined. Refer to the table highlighted in red.

|                              | DE SIGN COOLING          |                   |          | D                  | DE SIGN HEATING   |          |  |  |
|------------------------------|--------------------------|-------------------|----------|--------------------|-------------------|----------|--|--|
|                              | COOLING DATA AT Jun 1200 |                   |          | HEATING DATA       | AT DE S HTG       |          |  |  |
|                              | COOLING OA D             | B/WB 87.7 °F/     | 80.5°F   | HEATING OA D       | B/WB 71.0°F/      | 59.3 °F  |  |  |
|                              |                          | Sensible          | Latent   |                    | Sensible          | Latent   |  |  |
| ZONE LOADS                   | Details                  | (BTU/hr)          | (BTU/hr) | Details            | (BTU/hr)          | (BTU/hr) |  |  |
| Window& Skylight Solar Loads | 90 ft <sup>2</sup>       | 4445              | -        | 90 ft <sup>e</sup> | -                 | -        |  |  |
| Wall Transmission            | 10 ft <sup>2</sup>       | 18                | -        | 10 ft <sup>e</sup> | 0                 | -        |  |  |
| RoofTransmission             | 0 ft²                    | 0                 | -        | 0 ft <del>*</del>  | 0                 | -        |  |  |
| WindowTransmission           | 90 ft <sup>2</sup>       | 975               | -        | 90 ft <sup>e</sup> | 0                 | -        |  |  |
| Skylight Transmission        | 0 ft <sup>2</sup>        | 0                 | -        | 0 ft <sup>e</sup>  | 0                 | -        |  |  |
| Door Loads                   | 0 ft <sup>2</sup>        | 0                 | -        | 0 ft <sup>e</sup>  | 0                 | -        |  |  |
| FloorTransmission            | 0 ft <sup>2</sup>        | 0                 | -        | 0 ft <del>*</del>  | 0                 | -        |  |  |
| Partitions                   | 0 ft <sup>2</sup>        | 0                 | -        | 0 ft <sup>e</sup>  | 0                 | -        |  |  |
| Ceiling                      | 0 ft <sup>2</sup>        | 0                 | -        | 0 ft <sup>e</sup>  | 0                 | -        |  |  |
| Overhead Lighting            | 272 W                    | 825               | -        | 0                  | 0                 | -        |  |  |
| Task Lighting                | 136 W                    | 435               | -        | 0                  | 0                 | -        |  |  |
| Electric Equipment           | 0 W                      | 0                 | -        | 0                  | 0                 | -        |  |  |
| People                       | 1                        | 134               | 139      | 0                  | 0                 | 0        |  |  |
| Infiltration                 | -                        | 15                | 71       | -                  | 0                 | 0        |  |  |
| Miscellaneous                | -                        | 0                 | 0        | -                  | 0                 | 0        |  |  |
| Safety Factor                | 10% / 10%                | 685               | 21       | 0%                 | 0                 | 0        |  |  |
| >> Total Zone Loads          | -                        | 7532              | 231      | -                  | 0                 | 0        |  |  |
| Zone Conditioning            | -                        | 7597              | 231      | _                  | -91               | 0        |  |  |
| Plenum Wall Load             | 0%                       | 0                 | -        | 0                  | 0                 | -        |  |  |
| Plenum Roof Load             | 0%                       | 0                 | -        | 0                  | 0                 | -        |  |  |
| Plenum Lighting Load         | 0%                       | 0                 | -        | 0                  | 0                 | -        |  |  |
| Return Fan Load              | 302 CFM                  | 0                 | -        | 19 CFM             | 0                 | -        |  |  |
| Ventilation Load             | 11 CFM                   | 140               | 721      | 16 CFM             | -35               | -32      |  |  |
| Supply Fan Load              | 302 CFM                  | 251               | -        | 19 CFM             | -20               | -        |  |  |
| Space Fan Coil Fans          | -                        | 0                 | -        | -                  | 0                 | -        |  |  |
| Duct Heat Gain / Loss        | 0%                       | 0                 | -        | 0%                 | 0                 | -        |  |  |
| >> Total System Loads        | -                        | 7987              | 952      | -                  | -146              | -32      |  |  |
| Central Cooling Coil         | -                        | 7987              | 952      | -                  | -380              | -32      |  |  |
| Preheat Coil                 | -                        | 0                 | -        | -                  | 0                 | -        |  |  |
| Terminal Reheat Coils        | -                        | 0                 | -        | -                  | 234               | -        |  |  |
| >> Total Conditioning        | -                        | 7987              | 952      | -                  | -146              | -32      |  |  |
| Key:                         | Positiv                  | ve values are clo | loads    | Positiv            | ve values are htp | loads    |  |  |
| Negative values are htg loa  |                          |                   | loads    | Negati             | ve values are clo | gloads   |  |  |

Figure 3.10 Design Report [Cooling Load]

#### **3.3** Air Distribution System Design

The design of air distribution system involves the sizing of cooling coil and AHU fan. The design approach is different for both systems where ACB is rather complicated compared to VAV as it involves more specific design considerations. These include:

#### 1. Room latent load must not be too high

Due to limitation on the air flow rate of ACB (as high flow rate causes high pressure drop), part of the latent capacity of AHU is compromised. Technically, ACB only caters for the room sensible load and the room latent load is by AHU. Because the air flow is determined by the chilled beam, the latent capacity of AHU has been restricted and for this reason, room latent load is always the first consideration to be looked at when deciding whether to use ACB for that particular space. Spaces like restaurant where the latent load is high is not suitable for the use of ACB system.

# 2. CHWS temperature at the secondary coil must not less than room dew point temperature

Condensation is always the main problem faced by engineer when designing ACB system. It happens when the coil surface temperature is lower than the room dew point temperature. To avoid condensation, devices monitoring the room dew point and controlling the CHWS are put in place, integrated with a complete control system.

#### 3. Adequate ceiling space for the placement of chilled beam

Not all the spaces have large ceiling space to fit in a 1.5m long and 0.593m wide chilled beam with a gap of 2m from the wall and 3m between two beams. Spaces with limited ceiling space have no choice but to use normal air diffusers instead of chilled beam. This in fact is one of the disadvantages of chilled beam system.

## 3.3.1 System Sizing

### 3.3.1.1 Variable Air Volume (VAV) system

The sizing of coiling coil and AHU fan for VAV system is somehow similar to Constant Air Volume (CAV) where it takes into account of the space cooling load, ventilation load and fan load. The difference is the varying fan speed in response to the varying load demand. In other words, VAV is more energy efficient compared to CAV as the air flow is based on the load demand.

The design sequence is as follows:

- 1. Cooling load is calculated for every conditioned space using HAP.
- 2. Air system is defined for every individual space in HAP.
- 3. Design report is then generated from HAP.
- 4. AHU capacity is calculated from the total system capacity of every individual space.
- Zoning of space is done based on space function using VAV box. The capacity of VAV box is determined by the total airflow required for particular zone.

## 3.3.1.2 Example of system sizing for VAV

## 1. Cooling load is calculated for every conditioned space using HAP.

Cooling load is calculated by defining the space with appropriate inputs as shown in the earlier part. The room sensible and latent load obtained for Mgr 1 are **7,532 Btu/hr and 231 Btu/hr** respectively.

# 2. Air system is defined for every individual space in HAP.

## General

System is defined by the equipment type, air system type and number of zones as illustrated in **Figure 3.11**:

- Equipment Type: Chilled Water Air Handling Units
- Air System Type: VAV
- Number of Zones: 1

| E | Air System Properties - [L1-MGR 1 VAV]                                                                                                   |                         |  |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|
|   | General System Components Zone Components                                                                                                | Sizing Data   Equipment |  |  |  |  |  |
|   | Air System Components   20ne components       Air System Name       Equipment Type       Air System Type       VAV       Number of Zones | Handling Units          |  |  |  |  |  |
|   |                                                                                                                                          |                         |  |  |  |  |  |
|   |                                                                                                                                          | OK Cancel <u>H</u> elp  |  |  |  |  |  |

Figure 3.11 Air System Properties [General]

## System Components

Ventilation air is defined by the following parameters as illustrated in Figure 3.12:

- Airflow Control: Demand Controlled Ventilation •
- Ventilation Sizing Method: ASHRAE Std 62.1-2010 •
- Base Ventilation Rate:20% •
- Unoccupied Damper Position: Closed •
- Damper Leak Rate: 5% •
- Minimum CO2 Differential: 100ppm •
- Maximum CO2 Differential: 700ppm •
- Outdoor Air CO2 Level: 400ppm •

| Minimum CO2 Differential: 100ppm<br>Maximum CO2 Differential: 700ppm                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                      |                     |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------|--|--|--|--|
| Outdoor Air CO2 Level: 400ppm           Image: Air System Properties - [L1-MGR 1 VAV]           Image: General System Components           Zone Components           Sizing Data                                                       |                                                                                                                                                                                                                                                                          |                                                                                      |                     |  |  |  |  |
| ✓ Ventilation Air         Economizer         Vent. Reclaim         Precool Coil         Preheat Cojl         Humidification         Dehumidification         Central Cooling         Supply Fan         Duct System         Return Fan | Ventilation Air Data<br><u>A</u> irflow Control<br><u>V</u> entilation Sizing Method<br>Base Ventilation Rate<br><u>Schedule</u><br>Unocc. Damper Position<br>D <u>a</u> mper Leak Rate<br>Minimum CO2 Differential<br>Maximum CO2 Differential<br>Outdoor Air CO2 Level | Demand Con<br>ASHRAE Std<br>20<br>(none)<br>C <u>O</u> pen<br>5<br>100<br>700<br>400 | trolled Ventilation |  |  |  |  |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                          | ок                                                                                   | Cancel <u>H</u> elp |  |  |  |  |

Figure 3.12 Air System Properties [System Components-Ventilation Air]

Central cooling is defined by the following parameters as illustrated in Figure 3.13:

- Supply Temperature: 53 °F (12 °C)
- Coil Bypass Factor: 0.1
- Cooling Source: Chilled Water
- Capacity Control: Constant Temp, Fan On

| S Air System Properties - [L1-MGR 1 VAV]                                                                                                                                                                                                                                             |                                      |                                                                                    |                                                |   |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------|---|--|--|--|--|
| General System Components Zone Components Sizing Data Equipment                                                                                                                                                                                                                      |                                      |                                                                                    |                                                |   |  |  |  |  |
| ✓       Ventilation Air         Economizer         ∨ent. Reclaim         Precool Coil         ✓       Preheat Coil         Humidification         Dehumidification         ✓       Central Cooling         ✓       Supply Fan         ✓       Duct System         ■       Beturn Fan | Central Cooling Data<br>Supply Temp. | 53.0<br>0.100<br>Chilled Water<br>J F M A<br>Constant Terr<br>65.0<br>95.0<br>30.0 | °F<br>MJJASOND<br>np, Fan On<br>°F<br>°F<br>°F | - |  |  |  |  |
|                                                                                                                                                                                                                                                                                      | 5                                    | OK                                                                                 | Cancel <u>H</u> elp                            |   |  |  |  |  |

Figure 3.13 Air System Properties [System Components-Central Cooling]

Supply Fan is defined by the following parameters as illustrated in Figure 3.14:

- Fan Type: Forward Curve with Variable Frequency Drive
- Configuration: Draw-Thru
- Total Static: 1.50 in. wg.
- Overall Efficiency: 65%

| ☑ Air System Properties - [L1-MGR 1 VAV]                                                                                                                                                                                                       |                                                                                                                                                             |                                                                          |                                                                                                             |     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| General System Components   Zone Components   Sizing Data   Equipment                                                                                                                                                                          |                                                                                                                                                             |                                                                          |                                                                                                             |     |  |  |  |
| ✓ Ventilation Air         Economizer         Vent. Reclaim         Precool Coil         ✓ Preheat Cojl         Humidification         Dehumidification         ✓ Central Cooling         ✓ Supply Fan         ✓ Duct System         Beturn Fan | Supply Fan<br>Ean Type<br>Configuration<br>Total Static<br>Overall Efficiency<br>& Airflow 100<br><u>&amp; KW</u> 100<br>& Airflow 40<br><u>&amp;</u> KW 19 | Forward Cur<br>Draw-Thi<br>1.50<br>65<br>90 80<br>77 60<br>30 20<br>13 9 | rved with Var. Freq. Drive<br>ru C <u>B</u> low-Thru<br>in. wg.<br>%<br>70 60 50<br>44 35 25<br>10 0<br>7 6 |     |  |  |  |
|                                                                                                                                                                                                                                                |                                                                                                                                                             | OK                                                                       | Cancel <u>H</u>                                                                                             | elp |  |  |  |

Figure 3.14 Air System Properties [System Components-Supply System]

## Zone Components

**Space** is assigned to a particular system defined. Multiple spaces can be added to one system. However, to be more accurate so that more details are given, each system is assigned with one space as shown in **Figure 3.15**.

| Air System Properties - [L1-MGR 1 VAV]                                                                |                                                                                                                                                                                                                                       |                                                            |                       |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|--|--|--|--|
| General System Compo                                                                                  | nents Zone Components                                                                                                                                                                                                                 | Sizing Data   Equipment                                    | <u>ц</u>              |  |  |  |  |
| <ul> <li>Spaces</li> <li>Thermostats</li> <li>Supply Terminals</li> <li>Zone Heating Units</li> </ul> | Space Assignments<br>Spaces<br>GF-LIFT LOBBY<br>GF-MEETING ROOM<br>GF-MEETING ROOM<br>GF-OFFICE 1<br>GF-OFFICE 2<br>GF-RETAIL<br>GF-UTILITY<br>L10-BAR<br>L10-CHARIMAN OFFII<br>L10-DIRECTOR<br>L10-FOYER<br>L10-DF<br>L10-LIFT LOBBY | Zone<br>Zone 1<br>< <prev<br>L1-MGR 1<br/>Bemove</prev<br> | 1 of 1<br>Next>><br>1 |  |  |  |  |
|                                                                                                       |                                                                                                                                                                                                                                       | OK Cancel                                                  | Help                  |  |  |  |  |

Figure 3.15 Air System Properties [Zone Components-Spaces]

Thermostats is defined by the following parameters as shown in Figure 3.16:

- Cooling T-sat setpoints: occupied 75  $^{\circ}$ F unoccupied 80  $^{\circ}$ F
- T-sat Throttling Range: 1.5 °F
- Diversity Factor: 90%
- Thermostat Schedule: Office
- Thermostat Schedule: 90.1 Office Template

|                                                 | There also and Zara Data                     |                             |
|-------------------------------------------------|----------------------------------------------|-----------------------------|
| <ul> <li>Spaces</li> <li>Thermostats</li> </ul> | All zone Tstats set the same                 | e 🕢 🕞 Zone All of 1         |
| Supply Terminals                                | Zone Name                                    | All Zones 🔹                 |
| Zone Heating Units                              | <u>C</u> ooling T-stat Setpoints             | occ. 75.0 °F unocc. 80.0 °F |
|                                                 | <u>H</u> eating T-stat Setpoints             | occ. 70.0 °F unocc. 65.0 °F |
|                                                 | T-stat <u>T</u> hrottling Range              | 1.50 °F                     |
|                                                 | Diversity Factor                             | 90 %                        |
|                                                 | Direct Exhaust Air <u>f</u> low              | 0.0 CFM                     |
|                                                 | Direct Exhaust Fan <u>K</u> W<br>Shared Data | 0.0 KW                      |
|                                                 | Thermostat <u>S</u> chedule                  | 90.1 Office Thermostat 🛛 💌  |
|                                                 | Unoccupied Cooling is                        | Available 🔿 Not available   |

Figure 3.16 Air System Properties [Zone Components-Thermostats]

Supply Terminals are defined with the following inputs as shown in Figure 3.17:

- Zone: All Zones
- Terminal Type: VAV box with Reheat
- Minimum Airflow: 25 cfm/person

| Air System Properties - [L1-MGR 1 VAV]                                          |                                           |                         |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------|-------------------------|--|--|--|--|--|--|--|
| General   System Components   Zone Components   Sizing Data   Equipment         |                                           |                         |  |  |  |  |  |  |  |
| <ul> <li>✓ Spaces</li> <li>✓ Thermostats</li> <li>✓ Supply Terminals</li> </ul> | Supply Terminal Data                      | ▲ J Zone All of 1       |  |  |  |  |  |  |  |
| 🗖 Zone Heating Units                                                            | Terminal <u>T</u> ype                     | VAV box with Reheat     |  |  |  |  |  |  |  |
|                                                                                 | <u>M</u> inimum Airflow                   | 25.00 CFM/person 💌      |  |  |  |  |  |  |  |
|                                                                                 | Total Static                              | in. wg.                 |  |  |  |  |  |  |  |
|                                                                                 | Fan <u>O</u> verall Efficiency            | %                       |  |  |  |  |  |  |  |
|                                                                                 | <u>D</u> esign Supply Temp<br>Shared Data | *F                      |  |  |  |  |  |  |  |
|                                                                                 | Reheat Coil <u>H</u> eat Source           | Hot Water               |  |  |  |  |  |  |  |
|                                                                                 | Reheat Coil <u>S</u> chedule              | J F M A M J J A S O N D |  |  |  |  |  |  |  |
|                                                                                 |                                           |                         |  |  |  |  |  |  |  |
|                                                                                 |                                           | OK Cancel <u>H</u> elp  |  |  |  |  |  |  |  |

Figure 3.17 Air System Properties [Zone Components-Supply Terminals]

## Sizing Data

System sizing data is based on computer-generated inputs and the chilled water delta T is determined by the difference between chilled water return temperature, 54 °F (12 °C) and chilled water supply temperature, 44 °F (6.7 °C), which is 10 °F (5.3 °C). Refer to **Figure 3.18.** 

# <u>Equipment</u>

Equipment properties is not required.

| Sustem Sizing          | System Sizing Data                        | $\leftarrow$ |                                            |         |
|------------------------|-------------------------------------------|--------------|--------------------------------------------|---------|
| Zone Sizing            | Sizing Data<br>Cooling Supply Temperature | 53.0         | *F                                         |         |
|                        | Supply <u>A</u> irflow Rate               | 325.0        | CFM                                        |         |
| <u>S</u> izing Data is | Ventilation Airflow Rate                  | 16.0         | CFM                                        |         |
| Computer -             | Heating Supply Temperature                | 95.0         | *F                                         |         |
| C User -<br>Defined    | Hot Deck Supply Airflow Rate              | 0.0          | CFM                                        |         |
|                        | Hydronic Sizing Specifications            |              | Safety Factors —                           |         |
|                        | Chilled Water Delta-T 10.0                | ۴F           | Cooling Sensi <u>b</u> le                  | 10      |
|                        | Hot Water Delta-T 20.0                    | ۴F           | Cooling <u>L</u> atent<br>Hea <u>t</u> ing | 10<br>0 |
|                        |                                           |              |                                            |         |

Figure 3.18 Air System Properties [System Sizing]

## 3. Design report is then generated from HAP.

The report of the design results is generated for each individual system defined for each individual space as shown in **Figure 3.19**. From the report, the system is sized based on the total system loads required under the column of design cooling as shown in **Figure 3.20**. The system capacity obtained for Mgr 1 is **7,987 Btu/hr sensible** and **952 Btu/hr latent**.

| · · · · · · · · · · · · · · · · · · · |                          |      |                          |                 |             |                  | _    |
|---------------------------------------|--------------------------|------|--------------------------|-----------------|-------------|------------------|------|
| 📸 HAP49 - [Research Pr                | roject]                  |      |                          |                 |             |                  | x    |
| Project Edit View F                   | Reports Wizards Help     |      |                          |                 |             |                  |      |
| 🖹 🚅 🖬 💷 🖪                             | 8 🖆 🖻 🖻 🗙 🖉              | 9 🄶  | 📓 ⊾ 🖫 🏢                  |                 | £ 🚰         | 8                |      |
| 🕮 Research Project - Nev              | Air System               | Туре |                          | Sizing Status   |             | Simulation Statu | is 🔥 |
| 🛛 🚟 Weather                           | L1-EQUIP 2 VAV           | VAV  |                          | Sizing Invalida | ated        | Not Simulated    |      |
| Spaces                                | L1-FILE ROOM 1 VAV       | VAV  |                          | Sizing Invalida | ated        | Not Simulated    |      |
| Systems                               | L1-FILE ROOM 2 VAV       | VAV  |                          | Sizing Invalida | ated        | Not Simulated    |      |
| Plants                                | L1-FILE ROOM 3 VAV       | VAV  |                          | Sizing Invalida | ated        | Not Simulated    |      |
| Buildings                             | L1-IDF VAV               | VAV  |                          | Sizing Invalida | ated        | Not Simulated    |      |
| Project Libraries                     | I G L1-LIFT LOBBY VAV    | VAV  |                          | Sizing Invalida | ated        | Not Simulated    |      |
| Schedules                             | SI L1-MEETING ROOM 1 VAV | VAV  |                          | Sized           |             | Not Simulated    |      |
| - Waiis                               | L1-MEETING ROOM 2 VAV    | VAV  |                          | Sized           |             | Not Simulated    |      |
| Windows                               | I GLI-MEETING ROOM 3 VAV | VAV  |                          | Sized           |             | Not Simulated    |      |
|                                       | L1-MGB 1 VAV             |      | Deplicate                |                 |             | Not Simulated    |      |
| Shades                                | CL1-MGR 2 VAV            |      | Duplicate                |                 |             | Not Simulated    |      |
|                                       | CL1-MGR 3 VAV            |      | Delete                   |                 |             | Not Simulated    |      |
|                                       | GL1-MGR 4 VAV            |      |                          |                 | -           | Not Simulated    |      |
| Boilers                               | GL1-MGR 5 VAV            |      | Print Input Data         |                 |             | Not Simulated    |      |
| 📲 Electric Rates                      | CL1-MGR 6 VAV            |      | View Input Data          |                 |             | Not Simulated    |      |
| 🕂 🐻 Fuel Rates                        | CL1-OFFICE 1 VAV         |      | The super second         |                 |             | Not Simulated    |      |
|                                       | CL1-OFFICE 2 VAV         |      | Print/View Design Result | s               |             | Not Simulated    | _    |
|                                       | CLI-OFFICE 3 VAV         |      | Print/View Simulation Re | sults           |             | Not Simulated    |      |
|                                       | CLI-PANTRY VAV           |      | Thing their differences  | -Juica          | d           | Not Simulated    |      |
|                                       |                          |      | Properties               |                 |             |                  | . *  |
|                                       |                          |      |                          | 1               | - H D J D D | 17. Log og DM    |      |

Figure 3.19 Generate Design Results

|                              | D                             | DE SIGN COOLING   |          |                         | DE SIGN HEATING  |          |  |
|------------------------------|-------------------------------|-------------------|----------|-------------------------|------------------|----------|--|
|                              | COOLING DATA                  | AT Jun 1200       |          | HEATING DATA AT DES HTG |                  |          |  |
|                              | COOLING OA D                  | B/WB 87.7 °F      | 80.5 °F  | HEATING OA DI           | B/WB 71.0°F/     | 59.3 °F  |  |
|                              |                               | Sensible          | Latent   |                         | Sensible         | Latent   |  |
| ZONE LOADS                   | Details                       | (BTU/hr)          | (BTU/hr) | Details                 | (BTU/hr)         | (BTU/hr) |  |
| Window& Skylight Solar Loads | 90 ft <sup>2</sup>            | 4445              | -        | 90 ft <sup>e</sup>      | -                | -        |  |
| Wall Transmission            | 10 ft <sup>2</sup>            | 18                | -        | 10 ft <sup>e</sup>      | 0                | -        |  |
| RoofTransmission             | 0 ft <sup>2</sup>             | 0                 | -        | 0 ft <sup>e</sup>       | 0                | -        |  |
| WindowTransmission           | 90 ft <sup>2</sup>            | 975               | -        | 90 ft <del>*</del>      | 0                | -        |  |
| Skylight Transmission        | 0 ft <sup>2</sup>             | 0                 | -        | 0 ft <sup>e</sup>       | 0                | -        |  |
| Door Loads                   | 0 ft <sup>2</sup>             | 0                 | -        | 0 ft <del>*</del>       | 0                | -        |  |
| FloorTransmission            | 0 ft <sup>2</sup>             | 0                 | -        | 0 ft <del>*</del>       | 0                | -        |  |
| Partitions                   | 0 ft <sup>2</sup>             | 0                 | -        | 0 ft <sup>e</sup>       | 0                | -        |  |
| Ceiling                      | 0 ft <sup>2</sup>             | 0                 | -        | 0 ft <sup>e</sup>       | 0                | -        |  |
| Overhead Lighting            | 272 W                         | 825               | -        | 0                       | 0                | -        |  |
| Task Lighting                | 136 W                         | 435               | -        | 0                       | 0                | -        |  |
| Electric Equipment           | 0 W                           | 0                 | -        | 0                       | 0                | -        |  |
| People                       | 1                             | 134               | 139      | 0                       | 0                | 0        |  |
| Infiltration                 | -                             | 15                | 71       | -                       | 0                | 0        |  |
| Miscellaneous                | -                             | 0                 | 0        | -                       | 0                | 0        |  |
| Safety Factor                | 10% / 10%                     | 685               | 21       | 0%                      | 0                | 0        |  |
| >> Total Zone Loads          | -                             | 7532              | 231      | -                       | 0                | 0        |  |
| Zone Conditioning            | -                             | 7597              | 231      |                         | -91              | 0        |  |
| Plenum Wall Load             | 0%                            | 0                 | -        | 0                       | 0                | -        |  |
| Plenum RoofLoad              | 0%                            | 0                 | -        | 0                       | 0                | -        |  |
| Plenum Lighting Load         | 0%                            | 0                 | -        | 0                       | 0                | -        |  |
| Return Fan Load              | 302 CFM                       | 0                 | -        | 19 CFM                  | 0                | -        |  |
| Ventilation Load             | 11 CFM                        | 140               | 721      | 16 CFM                  | -35              | -32      |  |
| Supply Fan Load              | 302 CFM                       | 251               | -        | 19 CFM                  | -20              | -        |  |
| Space Fan Coil Fans          | -                             | 0                 | -        | -                       | 0                | -        |  |
| Duct Heat Gain / Loss        | 0%                            | 0                 | -        | 0%                      | 0                | -        |  |
| >> Total System Loads        | -                             | 7987              | 952      | -                       | -146             | -32      |  |
| Central Cooling Coil         | -                             | 7987              | 952      | -                       | -380             | -32      |  |
| Preheat Coil                 | -                             | 0                 | -        | -                       | 0                | -        |  |
| Terminal Reheat Coils        | -                             | 0                 | -        | -                       | 234              | -        |  |
| >> Total Conditioning        | -                             | 7987              | 952      | -                       | -146             | -32      |  |
| Key:                         | Positiv                       | ve values are clo | loads    | Positiv                 | e values are htg | loads    |  |
|                              | Negative values are htg loads |                   |          | Negati                  | ve values are cl | gloads   |  |

Figure 3.20 Design Report [System Capacity highlighted in red box]

## 4. AHU capacity is calculated from the total system capacity of every individual space.

The results of every individual space are tabulated in terms of room load and system capacity as shown in **Table 3.2.** The total of all system capacity is the AHU capacity

for that particular floor (highlighted in red).

|                 | Floor     | Supply Air | Frech Air |                          |                        |                       |
|-----------------|-----------|------------|-----------|--------------------------|------------------------|-----------------------|
| Space           | Area, ft2 | CFM        | CFM       | Sensible Load,<br>BTU/hr | Latent Load,<br>BTU/hr | Total Load,<br>BTU/hr |
| Compactius Room | 146       | 46         | 16        | 1,503                    | 1,031                  | 2,534                 |
| Corridor        | 1,808     | 680        | 249       | 22,349                   | 17,926                 | 40,275                |
| Director 1      | 280       | 955        | 30        | 22,915                   | 1,307                  | 24,222                |
| Director 2      | 323       | 919        | 34        | 22,060                   | 1,782                  | 23,842                |
| Director 3      | 312       | 914        | 33        | 1,687                    | 2,168                  | 3,855                 |
| Equip 1         | 71        | 23         | 8         | 731                      | 501                    | 1,232                 |
| Equip 2         | 89        | 28         | 9         | 916                      | 628                    | 1,544                 |
| File Room 1     | 140       | 44         | 15        | 1,442                    | 989                    | 2,431                 |
| File Room 2     | 86        | 27         | 9         | 886                      | 607                    | 1,493                 |
| File Room 3     | 135       | 43         | 14        | 1,402                    | 954                    | 2,356                 |
| IDF             | 122       | 39         | 13        | 1,256                    | 862                    | 2,118                 |
| Lift Lobby      | 463       | 214        | 49        | 6,445                    | 3,453                  | 9,898                 |
| Meeting Room 1  | 420       | 330        | 58        | 8,769                    | 4,396                  | 13,165                |
| Meeting Room 2  | 237       | 186        | 33        | 5,350                    | 2,540                  | 7,890                 |
| Meeting Room 3  | 248       | 195        | 34        | 5,178                    | 2,596                  | 7,774                 |
| Mgr 1           | 151       | 325        | 16        | 7,987                    | 952                    | 8,939                 |
| Mgr 2           | 151       | 325        | 16        | 7,987                    | 952                    | 8,939                 |
| Mgr 3           | 151       | 325        | 16        | 7,987                    | 952                    | 8,939                 |
| Mgr 4           | 151       | 325        | 16        | 7,987                    | 952                    | 8,939                 |
| Mgr 5           | 188       | 431        | 20        | 10,211                   | 1,057                  | 11,268                |
| Mgr 6           | 188       | 431        | 20        | 10,211                   | 1,057                  | 11,268                |
| Office 1        | 1,249     | 2,120      | 133       | 51,765                   | 8,131                  | 59,896                |
| Office 2        | 2,799     | 4,456      | 297       | 108,426                  | 16,453                 | 124,879               |

| <b>Table 3.2</b> 1 | Tabulation of S | ystem Capacit | y for VAV [Level 1 to Level 9] | $\mathbf{A}$ |
|--------------------|-----------------|---------------|--------------------------------|--------------|
|                    |                 |               |                                |              |

| Office 3      | 404    | 754    | 43    | 18,142  | 2,114  | 20,256  |
|---------------|--------|--------|-------|---------|--------|---------|
| Pantry        | 200    | 93     | 21    | 2,789   | 1,492  | 4,281   |
| Printing      | 334    | 152    | 35    | 4,597   | 2,408  | 7,005   |
| Room 1        | 172    | 385    | 18    | 9,344   | 1,080  | 10,424  |
| Room 2        | 173    | 386    | 18    | 9,358   | 1,089  | 10,447  |
| Sec 1         | 118    | 54     | 13    | 1,624   | 851    | 2,475   |
| Sec 2         | 140    | 64     | 15    | 1,927   | 1,009  | 2,936   |
| Sec 3         | 205    | 93     | 22    | 2,821   | 1,478  | 4,299   |
| Service Lobby | 200    | 93     | 21    | 2,784   | 1,491  | 4,275   |
|               | 11,854 | 15,455 | 1,344 | 368,836 | 85,258 | 454,094 |

 Table 3.3 Tabulation of System Capacity for VAV [Level 1 to Level 9] (SI Unit)

|                 |                   | Floor Area | Supply   | System Capacity      |                        |                       |
|-----------------|-------------------|------------|----------|----------------------|------------------------|-----------------------|
| Space           | Floor m2 Air, l/s |            | Air, l/s | Sensible Load,<br>kW | Latent Load,<br>BTU/hr | Total Load,<br>BTU/hr |
| Compactius Room | L1                | 14         | 21.70    | 0.44                 | 1,031                  | 2,534                 |
| Corridor        | L1                | 168        | 320.75   | 6.55                 | 17,926                 | 40,275                |
| Director 1      | L1                | 26         | 450.47   | 6.72                 | 1,307                  | 24,222                |
| Director 2      | L1                | 30         | 433.49   | 6.47                 | 1,782                  | 23,842                |
| Director 3      | L1                | 29         | 431.13   | 0.49                 | 2,168                  | 3,855                 |
| Equip 1         | L1                | 7          | 10.85    | 0.21                 | 501                    | 1,232                 |
| Equip 2         | L1                | 8          | 13.21    | 0.27                 | 628                    | 1,544                 |
| File Room 1     | L1                | 13         | 20.75    | 0.42                 | 989                    | 2,431                 |
| File Room 2     | L1                | 8          | 12.74    | 0.26                 | 607                    | 1,493                 |
| File Room 3     | L1                | 13         | 20.28    | 0.41                 | 954                    | 2,356                 |
| IDF             | L1                | 11         | 18.40    | 0.37                 | 862                    | 2,118                 |

|                |    | 1,101 | 7,290    | 108   | 85,258 | 454,094 |
|----------------|----|-------|----------|-------|--------|---------|
| Service Lobby  | L1 | 19    | 43.87    | 0.82  | 1,491  | 4,275   |
| Sec 3          | L1 | 19    | 43.87    | 0.83  | 1,478  | 4,299   |
| Sec 2          | L1 | 13    | 30.19    | 0.56  | 1,009  | 2,936   |
| Sec 1          | L1 | 11    | 25.47    | 0.48  | 851    | 2,475   |
| Room 2         | L1 | 16    | 182.08   | 2.74  | 1,089  | 10,447  |
| Room 1         | L1 | 16    | 181.60   | 2.74  | 1,080  | 10,424  |
| Printing       | L1 | 31    | 71.70    | 1.35  | 2,408  | 7,005   |
| Pantry         | L1 | 19    | 43.87    | 0.82  | 1,492  | 4,281   |
| Office 3       | L1 | 38    | 355.66   | 5.32  | 2,114  | 20,256  |
| Office 2       | L1 | 260   | 2,101.89 | 31.78 | 16,453 | 124,879 |
| Office 1       | L1 | 116   | 1,000.00 | 15.17 | 8,131  | 59,896  |
| Mgr 6          | L1 | 17    | 203.30   | 2.99  | 1,057  | 11,268  |
| Mgr 5          | L1 | 17    | 203.30   | 2.99  | 1,057  | 11,268  |
| Mgr 4          | L1 | 14    | 153.30   | 2.34  | 952    | 8,939   |
| Mgr 3          | L1 | 14    | 153.30   | 2.34  | 952    | 8,939   |
| Mgr 2          | L1 | 14    | 153.30   | 2.34  | 952    | 8,939   |
| Mgr 1          | L1 | 14    | 153.30   | 2.34  | 952    | 8,939   |
| Meeting Room 3 | L1 | 23    | 91.98    | 1.52  | 2,596  | 7,774   |
| Meeting Room 2 | L1 | 22    | 87.74    | 1.57  | 2,540  | 7,890   |
| Meeting Room 1 | L1 | 39    | 155.66   | 2.57  | 4,396  | 13,165  |

The AHU capacity for that particular floor (level 1 to level 9) is as follows:

- Sensible Load = 368,836 Btu/hr
- Latent Load = 82,258 Btu/hr
- Total Load = 454,094 Btu/hr
- Airflow = 15,455 cfm
#### 5. Zoning of space is done based on space function using VAV box.

VAV box have a range of size in terms of inlet diameter and flow capacity as shown in **Table 3.4.** Based on the flow capacity, the type of VAV box is selected. For Mgr 1, since it's an individual room that serves for specific function, it's made into one zone. The total flow rate for that zone is 325 cfm and thus Type A VAV box is used as shown in **Figure 3.21.** 

| Туре | Inlet Size Diameter (mm) | Capacity (cfm) |
|------|--------------------------|----------------|
| А    | 150                      | 1-382          |
| В    | 200                      | 383-594        |
| С    | 250                      | 595-848        |
| D    | 300                      | 849-1293       |
| E    | 350                      | 1294-1802      |
| F    | 400                      | 1803-2290      |

Table 3.4 VAV Type and Capacity



Figure 3.21 VAV System Layout

#### **3.3.1.3** Active Chilled Beam (ACB)

Unlike VAV, the sizing of coil and fan for AHU considers only the room latent load, ventilation load and supply fan load where the room sensible load is catered by the beam itself.

The design sequence is as follows:

1. Cooling load for each and every room space is calculated.

2. Room sensible load is used to determine the number of beams required for individual space.

3. Total cooling load excluding room sensible is used to size air system for individual space.

4. The total of every individual system capacity is the capacity of AHU.

\* Note that not all the spaces are provided with chilled beams such as corridor, files room, utility room where the ceiling space is limited.

TROX Software is used to size chilled beam with the following inputs (as shown in **Figure 3.22**):

- Primary air temperature = 12 °C
- Water flow temperature =  $15 \, {}^{\circ}C$
- Water flow = 300 l/h
- Room air temperature =  $24 \text{ }^{\circ}\text{C}$
- Relative Humidity = 55%
- Air flow = 30 l/s

The maximum allowable water temperature difference is  $3^{\circ}$ C and the supply air pressure drop is 250 pa. For this project, the water flow rate is set at 300 l/h (0.0833 l/s) maximum and the resulting water temperature difference is 2.9 K (2.9 °C). The water flow rate setpoint will be varied according to the room sensible load required in order to optimize the usage of water for individual zones. As such, the chilled beam capacity will be

different in terms of total thermal capacity and water capacity in accordance with the water flow rate.

Tabulation of active chilled beam capacity based on water flow rate is as shown in Table

**3.5** where it is obtained from TROX selection tool.

| Water Flow Rate, I/h | Total Thermal Capacity, Btu/hr | Water Capacity, Btu/hr |
|----------------------|--------------------------------|------------------------|
| 300                  | 5,002                          | 3,504                  |
| 225                  | 4,794                          | 3,296                  |
| 200                  | 4,692                          | 3,197                  |
| 150                  | 4,405                          | 2,911                  |
| 100                  | 3,903                          | 2,406                  |
| 75                   | 3,511                          | 2,013                  |
| 50                   | 3,023                          | 1,525                  |
| 38                   | 2,774                          | 1,280                  |
| 30                   | 2,603                          | 1,106                  |

Table 3.5 Active Chilled Beam Capacity

|                             | $\boldsymbol{\rho}$   |
|-----------------------------|-----------------------|
| Table 3.6 Active Chilled Be | am Capacity (SI Unit) |

| Water Flow (l/s) | Water kW | Total kW |
|------------------|----------|----------|
| 0.0833           | 1.03     | 1.47     |
| 0.0625           | 0.97     | 1.41     |
| 0.0556           | 0.94     | 1.38     |
| 0.0417           | 0.85     | 1.29     |
| 0.0278           | 0.71     | 1.14     |
| 0.0208           | 0.59     | 1.03     |
| 0.0139           | 0.45     | 0.89     |
| 0.0106           | 0.38     | 0.81     |
| 0.0083           | 0.32     | 0.76     |

| 🔀 [Project 1] - TROX Easy Product Finder - Loc                                                  | ation of project: United States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    | - @ X                          |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| File View Project Wizards ?                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    | Search 💌                       |
| : 🎦 🖸 📕 🎒 🕰 🗮 🗄 🔂                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                    | 0                              |
| Project Structure  Project 1                                                                    | New Item: Order code         DID632-DE-LR-4-M-LR-0-0         /         1         500x1500x593         /         0         /         0         /         0         /         0         /         0         /         0         /         0         /         0         /         0         /         0         /         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |                                                                                                                                                                                                    | + >                            |
|                                                                                                 | Operation Cooling V Water=cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t                                                                                                                                                                                                  | Application/Photo/Video        |
|                                                                                                 | Aerodynamic Data Input V <sub>Pr</sub> A H <sub>1</sub> L X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30         I/s         (1292)           3.00         m         (1.06.0)           2.00         m         (0.82.0)           4.00         m         2.00           2.00         m         (0.194.0) |                                |
| Product list                                                                                    | Cooling Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    | DID632                         |
| Yroducts     Air Diffusers     Air Water Systems                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 0.16 m/s<br>= 0.7 K                                                                                                                                                                              | Active chilled beam            |
| <ul> <li>Passive cooling units</li> <li>Induction units</li> <li>Active chilled beam</li> </ul> | ν <sub>L</sub><br>Δt <sub>L</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 0.35 m/s<br>= 1.6 K                                                                                                                                                                              |                                |
| DID312-DE<br>DID300B                                                                            | Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    |                                |
| DID632-DE                                                                                       | Input Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acoustic results                                                                                                                                                                                   |                                |
| DID642<br>DID6008-L<br>DID604-DE<br>DID614                                                      | t <sub>z</sub> 12.0 °C (12.024.0)<br>t 15.0 °C (10.020.0)<br>V β00 l/h (30300)<br>Q <sub>w</sub> Δp <sub>w</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= -1466  W \qquad \triangleq  \Delta p_t$ $= -1027  W \qquad \equiv  L_{WA}$ $= 22.3  k^{Pa} \qquad L_{WNC}$                                                                                      | = 245 Pa<br>= 36 dB(A)<br>= 31 |
| DID-R<br>DID-E                                                                                  | t. 24.0 °C. (19.0 27.0) ▼ Δt <sub>w</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 2.9 K 💌                                                                                                                                                                                          |                                |

Figure 3.22 TROX Selection Software

#### 3.3.1.4 Example of system sizing for ACB

#### 1. Cooling load for each and every room space is calculated.

Similar to VAV, cooling load for ACB is calculated using HAP which has been performed in earlier part. The room sensible and latent load obtained for Mgr 1 are **7,532 Btu/hr** and **231 Btu/hr** respectively.

# 2. Room sensible load is used to determine the number of beams required for individual space.

Room sensible = 7,532 Btu/hr

Based on the cooling capacity of chilled beam as shown in **Table 3.5**, two numbers of chilled beam are required with each having 100 l/hr water flowrate and 64 cfm air flowrate.

# 3. Total cooling load excluding room sensible is used to size air system for individual space.

Individual air system (AHU) is sized to cater for all the load except room sensible as it has been catered by chilled beam itself. The system flow rate is based on the total air flow rate required by the chilled beams. However, the supply air flow rate and fresh air flow rate need to meet the minimum air requirement according to ASHRAE's standard. Calculations are shown as follows:

Air-conditioned area =  $151 \text{ ft}^2$ 

Occupancy rate =  $200 \text{ ft}^2/\text{ppl}$ 

Total occupancy = 0.755 ppl

Minimum supply air required = 20 cfm/ppl x 0.755 ppl = 15.1 cfm

Minimum fresh air required =  $(5 \text{ cfm/ppl x } 0.755 \text{ ppl}) + (0.06 \text{ cfm/ft}^2 \text{ x } 151 \text{ ft}^2) = 12.8 \text{ cfm}$ 

Total supply air = 64 cfm/beam x 2 = 128 cfm

Total fresh air = 10% of 128 cfm = 12.8 cfm

Since

Total supply air -128 cfm is more than minimum supply air required - 15.1 cfm, it's fine.

Total fresh air - 12.8cfm is equal to minimum fresh air required - 12.8 cfm, it's fine.

Outdoor Air Dry Bulb Temperature = 95 °F

Outdoor Air Wet Bulb Temperature =  $82 \text{ }^{\circ}\text{F}$ 

Outdoor Air Moisture = 145 grain/lbs

Room Dry Bulb Temperature = 75 °F

Room Wet Bulb Temperature =  $64 \text{ }^{\circ}\text{F}$ 

Room Air Moisture = 71.5 grain/lbs

Supply Air Flow = 127 cfm

Fresh Air Flow = 13 cfm

Return Air Flow = 115 cfm

Mixed air temperature and moisture are determined based on the outdoor air and room air conditions:

Mixed Air Dry Bulb Temperature = 76.91 °F

Mixed Air Moisture = 78.5 grain/lbs

Off-coil is set at the conditions:

Dry bulb temperature =  $53 \text{ }^{\circ}\text{F}$ 

The system capacity for Mgr 1 is determined from the equation below:

#### Sensible load

 $Q_s = 1.08 \times airflow \times \Delta T$ 

 $Q_s = 1.08 \text{ x} 128 \text{ cfm x} (76.91-53) \text{ }^{\circ}\text{F} = 3,306 \text{ Btu/hr}$ 

#### Latent load

 $Q_s = 0.68 \times airflow \times \Delta W$ 

 $Q_s = 0.68 \text{ x } 128 \text{ cfm x } (78.5-59.8) \text{ }^{\circ}\text{F} = 1,631 \text{ Btu/hr}$ 

## 4. The total of every individual system capacity is the capacity of AHU.

The capacity of AHU is determined from the total system capacity of every individual space as shown in **Table 3.7.** 

The capacity of AHU is 150,213 Btu/hr sensible and 79,183 Btu/hr latent...

| Space           | Floor     | ACB                         |                               |                           |                                   |                 | AHU                 |                   |        |  |
|-----------------|-----------|-----------------------------|-------------------------------|---------------------------|-----------------------------------|-----------------|---------------------|-------------------|--------|--|
| Space           | Area, ft2 | Total Air Flow<br>Rate, cfm | Total Water Flow<br>Rate, Gpm | Total Sensible,<br>Btu/hr | Total Sensible,<br>Btu/hr (water) | Air<br>Flow,CFM | Sensible,<br>BTU/hr | Latent,<br>BTU/hr | Total  |  |
| Compactius Room | 146       | -                           | -                             | -                         | -                                 | 46              | 1,503               | 1,031             | 2,534  |  |
| Corridor        | 1,808     | -                           | -                             | -                         | -                                 | 680             | 22,349              | 17,926            | 40,275 |  |
| Director 1      | 280       | 256                         | 2.1                           | 20,008                    | 10,512                            | 256             | 6,437               | 2,905             | 9,342  |  |
| Director 2      | 323       | 256                         | 2.1                           | 20,008                    | 10,512                            | 256             | 6,437               | 2,905             | 9,342  |  |
| Director 3      | 312       | 256                         | 2.1                           | 20,008                    | 10,512                            | 256             | 6,437               | 2,905             | 9,342  |  |
| Equip 1         | 71        | -                           | -                             | -                         | -                                 | 23              | 731                 | 501               | 1,232  |  |
| Equip 2         | 89        | -                           | -                             | -                         | -                                 | 28              | 916                 | 628               | 1,544  |  |
| File Room 1     | 140       | -                           | -                             |                           | -                                 | 44              | 1,442               | 989               | 2,431  |  |
| File Room 2     | 86        | -                           | -                             | -                         | -                                 | 27              | 886                 | 607               | 1,493  |  |
| File Room 3     | 135       | -                           | - • 🗙                         | -                         | -                                 | 43              | 1,402               | 954               | 2,356  |  |
| IDF             | 122       | -                           | -                             | <b>.</b> .                | -                                 | 39              | 1,256               | 862               | 2,118  |  |
| Lift Lobby      | 463       | 64                          | 2.1                           | 5,002                     | 10,512                            | 64              | 1,833               | 1,231             | 3,064  |  |
| Meeting Room 1  | 420       | 128                         | 1.4                           | 7,806                     | 7,218                             | 128             | 3,395               | 1,838             | 5,233  |  |
| Meeting Room 2  | 237       | 64                          | 1.4                           | 3,903                     | 7,218                             | 64              | 1,833               | 1,231             | 3,064  |  |
| Meeting Room 3  | 248       | 64                          | 1.4                           | 3,903                     | 7,218                             | 64              | 1,833               | 1,231             | 3,064  |  |
| Mgr 1           | 151       | 128                         | 1.4                           | 7,806                     | 7,218                             | 128             | 3,306               | 1,631             | 4,937  |  |
| Mgr 2           | 151       | 128                         | 1.4                           | 7,806                     | 7,218                             | 128             | 3,306               | 1,631             | 4,937  |  |
| Mgr 3           | 151       | 128                         | 1.4                           | 7,806                     | 7,218                             | 128             | 3,306               | 1,631             | 4,937  |  |
| Mgr 4           | 151       | 128                         | 1.4                           | 7,806                     | 7,218                             | 128             | 3,306               | 1,631             | 4,937  |  |
| Mgr 5           | 188       | 128                         | 2.1                           | 10,004                    | 10,512                            | 128             | 3,306               | 1,631             | 4,937  |  |
| Mgr 6           | 188       | 128                         | 2.1                           | 10,004                    | 10,512                            | 128             | 3,306               | 1,631             | 4,937  |  |
| Office 1        | 1,249     | 640                         | 2.1                           | 50,020                    | 10,512                            | 640             | 14,008              | 5,469             | 19,477 |  |
| Office 2        | 2,799     | 1280                        | 2.1                           | 100,040                   | 10,512                            | 1,280           | 30,811              | 11,481            | 42,292 |  |

# Table 3.7 Tabulation of System Capacity for ACB [Level 1 to Level 9]

| P             |        |       |     |         | •       |       |         |        |         |
|---------------|--------|-------|-----|---------|---------|-------|---------|--------|---------|
| Office 3      | 404    | 256   | 1.9 | 18,768  | 9,591   | 256   | 6,437   | 2,905  | 9,342   |
| Pantry        | 200    | 64    | 0.9 | 3,023   | 4,575   | 64    | 1,937   | 1,473  | 3,410   |
| Printing      | 334    | 64    | 1.4 | 3,903   | 7,218   | 64    | 1,937   | 1,473  | 3,410   |
| Room 1        | 172    | 128   | 1.9 | 9,384   | 9,591   | 128   | 3,395   | 1,838  | 5,233   |
| Room 2        | 173    | 128   | 1.9 | 9,384   | 9,591   | 128   | 3,395   | 1,838  | 5,233   |
| Sec 1         | 118    | -     | -   | -       |         | 54    | 1,624   | 851    | 2,475   |
| Sec 2         | 140    | -     | -   | -       |         | 64    | 1,927   | 1,009  | 2,936   |
| Sec 3         | 205    | -     | -   | -       |         | 93    | 2,821   | 1,478  | 4,299   |
| Service Lobby | 200    | 64    | 0.9 | 3,023   | 4,575   | 64    | 3,395   | 1,838  | 5,233   |
|               | 11,854 | 4,480 | 36  | 329,415 | 179,763 | 5,621 | 150,213 | 79,183 | 229,396 |

|                 |          | Table 3.8 Ta                | bulation of System C          | apacity for ACB [     | Level 1 to Level 9]           | (SI Unit)       |                 |               |              |
|-----------------|----------|-----------------------------|-------------------------------|-----------------------|-------------------------------|-----------------|-----------------|---------------|--------------|
|                 | Floor    | ACB                         |                               |                       |                               |                 | AHU             |               |              |
| Space           | Area, m2 | Total Air Flow<br>Rate, l/s | Total Water Flow<br>Rate, l/s | Total Sensible,<br>kW | Total Sensible,<br>kW (water) | Air<br>Flow,l/s | Sensible,<br>kW | Latent,<br>kW | Total,<br>kW |
| Compactius Room | 14       | -                           | -                             | -                     | -                             | 21.70           | 0.44            | 0.30          | 0.74         |
| Corridor        | 168      | -                           | -                             | -                     | -                             | 320.75          | 6.55            | 5.25          | 11.80        |
| Director 1      | 26       | 120.75                      | 0.13                          | 5.86                  | 3.08                          | 120.75          | 1.89            | 0.85          | 2.74         |
| Director 2      | 30       | 120.75                      | 0.13                          | 5.86                  | 3.08                          | 120.75          | 1.89            | 0.85          | 2.74         |
| Director 3      | 29       | 120.75                      | 0.13                          | 5.86                  | 3.08                          | 120.75          | 1.89            | 0.85          | 2.74         |
| Equip 1         | 7        | -                           | -                             | -                     | -                             | 10.85           | 0.21            | 0.15          | 0.36         |
| Equip 2         | 8        |                             | -                             | -                     | -                             | 13.21           | 0.27            | 0.18          | 0.45         |
| File Room 1     | 13       | -                           | -                             | -                     | -                             | 20.75           | 0.42            | 0.29          | 0.71         |
| File Room 2     | 8        | -                           | -                             | -                     | -                             | 12.74           | 0.26            | 0.18          | 0.44         |
| File Room 3     | 13       | -                           | -                             | -                     | -                             | 20.28           | 0.41            | 0.28          | 0.69         |
| IDF             | 11       | -                           | -                             | -                     | -                             | 18.40           | 0.37            | 0.25          | 0.62         |

| Lift Lobby     | 43    | 30.19  | 0.13       | 1 47  | 3.08 | 30.19          | 0.54 | 0.36 | 0.90  |
|----------------|-------|--------|------------|-------|------|----------------|------|------|-------|
| Mastine Days 1 | 20    | (0.29  | 0.15       | 2.20  | 2.10 | 50.17<br>(0.29 | 0.04 | 0.50 | 1.52  |
| Meeting Room I | 39    | 60.38  | 0.09       | 2.29  | 2.12 | 60.38          | 0.99 | 0.54 | 1.53  |
| Meeting Room 2 | 22    | 30.19  | 0.09       | 1.14  | 2.12 | 30.19          | 0.54 | 0.36 | 0.90  |
| Meeting Room 3 | 23    | 30.19  | 0.09       | 1.14  | 2.12 | 30.19          | 0.54 | 0.36 | 0.90  |
| Mgr 1          | 14    | 60.38  | 0.09       | 2.29  | 2.12 | 60.38          | 0.97 | 0.48 | 1.45  |
| Mgr 2          | 14    | 60.38  | 0.09       | 2.29  | 2.12 | 60.38          | 0.97 | 0.48 | 1.45  |
| Mgr 3          | 14    | 60.38  | 0.09       | 2.29  | 2.12 | 60.38          | 0.97 | 0.48 | 1.45  |
| Mgr 4          | 14    | 60.38  | 0.09       | 2.29  | 2.12 | 60.38          | 0.97 | 0.48 | 1.45  |
| Mgr 5          | 17    | 60.38  | 0.13       | 2.93  | 3.08 | 60.38          | 0.97 | 0.48 | 1.45  |
| Mgr 6          | 17    | 60.38  | 0.13       | 2.93  | 3.08 | 60.38          | 0.97 | 0.48 | 1.45  |
| Office 1       | 116   | 301.89 | 0.13       | 14.66 | 3.08 | 301.89         | 4.11 | 1.60 | 5.71  |
| Office 2       | 260   | 603.77 | 0.13       | 29.32 | 3.08 | 603.77         | 9.03 | 3.36 | 12.39 |
| Office 3       | 38    | 120.75 | 0.12       | 5.50  | 2.81 | 120.75         | 1.89 | 0.85 | 2.74  |
| Pantry         | 19    | 30.19  | 0.06       | 0.89  | 1.34 | 30.19          | 0.57 | 0.43 | 1.00  |
| Printing       | 31    | 30.19  | 0.09       | 1.14  | 2.12 | 30.19          | 0.57 | 0.43 | 1.00  |
| Room 1         | 16    | 60.38  | 0.12       | 2.75  | 2.81 | 60.38          | 0.99 | 0.54 | 1.53  |
| Room 2         | 16    | 60.38  | 0.12       | 2.75  | 2.81 | 60.38          | 0.99 | 0.54 | 1.53  |
| Sec 1          | 11    | -      | 0          | -     | -    | 25.47          | 0.48 | 0.25 | 0.73  |
| Sec 2          | 13    | -      | <b>W</b> - | -     | -    | 30.19          | 0.56 | 0.30 | 0.86  |
| Sec 3          | 19    | -      | -          | -     | -    | 43.87          | 0.83 | 0.43 | 1.26  |
| Service Lobby  | 19    | 30.19  | 0.06       | 0.89  | 1.34 | 30.19          | 0.99 | 0.54 | 1.53  |
|                | 1,101 | 2,113  | 2          | 97    | 53   | 2,651          | 44   | 23   | 67    |
|                |       |        |            |       |      |                |      |      |       |
|                |       |        |            |       |      |                |      |      |       |
|                |       |        |            |       |      |                |      |      |       |

#### 3.3.2 Duct Sizing

Sizing of duct-works in ventilation systems can be done by the following method

- i) Velocity Method
- ii) Equal Friction Method

#### **Equal Friction Method**

Equal friction method is also known constant pressure method where the pressure is remained constant when performing duct sizing calculations. This method is most preferable as the calculation is much simpler compared to velocity method. Typical values for supply and return ducts would be 0.09, 0.095 or 0.100 in. w.g. per 100ft (22.41, 23.66, or 24.9 Pa per 30 m) [17].

To maintain the pressure at a constant value, the size of the duct and velocity will gradually reduce. The method may add more duct cross-sectional changes and increase the number of components in the system compared to other methods. For simplicity purpose, duct size – McQuay is used to calculate the minimum duct size as shown in

#### **Figure 3.23.**

The sequence is as follows:

- Set the value of head loss or in other words pressure loss (0.1 in w.g./100ft in normal practice).
- 2. Key in the air flow rate that passes through the duct.
- 3. Determine the dimension of the duct by ensuring the width-to-height ratio is within 4 as it may create massive head loss that consequently affects the airflow.
- 4. Determine the head loss for every section by multiplying with the section's length.
- Determine the total head loss by summing up all the section losses which have been used to calculate the duct size earlier. This total head loss is the external static pressure (ESP) of the fan.



Figure 3.23 McQuay Duct Sizer

#### 3.4 Chiller Plant Design

There are many ways to design a chilled water air-conditioning system and the first thing to do after getting the cooling load is to decide on what type of pumping scheme to be used for the system. Pumping scheme determines the system flow. Generally, there are three common types of pumping schemes used where they include:

- Constant Primary Flow (CPF)
- Constant Primary Variable Secondary Flow (P/S)
- Variable Primary Flow (VPF)

**Constant Primary Flow (CPF)** is a simple pumping scheme where it doesn't require sophisticated equipment and complicated control to form a chilled water system. However, the system is claimed to be inefficient in terms of energy consumption as the system operation is fixed where it doesn't react to the actual load demand. In other words, be it in high load or low load conditions, the system will run at full load all the time.



Figure 3.24 Constant Primary Flow (CPF) Schematic [18]

**Constant Primary – Variable Secondary Flow (P/S)**, commonly known as primarysecondary flow is a rather complicated pumping scheme compared to constant primary flow as it involves two loops: primary and secondary with dedicated pump sets that requires advanced control system to communicate between the equipment involved. Generally, it's composed of constant primary pump that serves the chiller itself and variable secondary pump (with VSD) that serves the load demand. A decoupler is used to separate the primary and secondary loops with a flowmeter that monitors the flow across the channel which determines the staging of the pump and the chiller. How the system works is basically start from the load demand, where the room temperature sensor triggers the motorized valve to on or off, which turns affects the differential pressure readings as displayed in the differential pressure sensor (DPS) and consequently triggers the secondary pump to stage up or down. When staging of the secondary pumps happens, the flow in the decouple line will experience a sudden change in flow which call the chillers to start or stop. One of the main problems faced in such system is low delta T syndrome during low load. However, it's relatively more energy efficient than the conventional primary constant pumping scheme.



Figure 3.25 Constant Primary-Variable Secondary Flow Schematic. [18]

**Variable Primary Flow (VPF)** is the latest pumping scheme compared to the other two where it doesn't require another set of pumps for another loop. But the control will be much more complicated than primary-secondary flow as it involves the control of water flow directly at the chiller side in response to the load demand. This technically means a variable speed chiller is needed to cater for the varying water flow as normal chillers are designed for constant water flow. The working principle is somehow different from primary-secondary flow where the pump serving the chillers is of variable speed. Because of the direct control of flow at the chiller side, a bypass is needed to ensure minimum flow of water back to the chiller to avoid freezing of the evaporator tubes. Similarly, the same thing happens where load variations triggers the motorized valve to on or off, which in turns affects the DP readings and consequently ramps up or down the primary variable pumps, resulting the chillers to start or stop. In terms of energy efficiency, it's comparable to primary-secondary flow and one of its biggest drawbacks is the cost of the chiller where it usually costs double the price of a normal constant speed chiller. For that reason, most of the building owners would prefer primary-secondary flow than primary variable flow.



Figure 3.26 Variable Primary Flow (VPF) Schematic [18]

Between the three pumping schemes, VPF has the greatest potential in terms of energy saving because of its efficient variable-speed pumping characteristics. Besides, VPF makes the most efficient use of over-pumping to mitigate low delta T syndrome. Though, the control is rather complicated compared to P/S and CPF. On top of that, the equipment cost is higher as the chiller used is not a normal chiller where it needs to be variable speed

type and it usually costs two times higher than a normal chiller in terms of RM/RT. Following table summarizes the comparison between the three pumping schemes:

|                                | CPF           | P/S            | VPF               |
|--------------------------------|---------------|----------------|-------------------|
| Chiller Type                   | Constant flow | Constant flow  | Variable flow     |
| Pump Energy                    | Base case     | 50 – 60 % less | 60-75 % less      |
| Valve Type                     | Three-way     | Two-way        | Two-way           |
| Control                        | simple        | simple         | Complex           |
| <b>Overall Investment Cost</b> | Base case     | 5 % higher     | 10 % higher       |
| Plant Space                    | Base case     | larger         | Same as base case |

Figure 3.27 Comparison Between CPF, P/S and VPF

As far as energy is concerned, VPF is proposed in this project since it provides significant savings on the operation cost even though the overall investment cost is high. However, the selection of pumping scheme type doesn't affect the results comparison between the two different air distribution systems, VAV and ACB as both use the same pumping scheme.

#### 3.5 System Control

System control forms the central part of a chiller plant that integrates all devices and equipment, enabling them to communicate among each other and work in a sequential manner. ACB involves a more sophisticated control compared to VAV as it needs to take into account of the condensation issue at the secondary coil. The control should be designed in such a way that the chilled water supply temperature is not less than the room dew point temperature.

#### 3.5.1 Variable Air Volume (VAV) system

VAV consists of VAV box and VSD fan that varies the flow of conditioned air into individual zones depending on room temperature. Temperature sensor and thermostat are used to monitor the room temperature.

The control sequence is as follows (refer to Figure 3.28):

Room temperature for individual zone is set at specific setpoint. Any deviation on the room temperature changes the damper's position of VAV box. Assuming the occupancy load is high and the room temperature exceeds its setpoint, the damper will be adjusted in a position where it allows more air into the room. This consequently causes the air static pressure to reduce. In order to maintain the static pressure at its setpoint, the VSD fan will need to increase its speed. As the fan's speed increases, the return air flow increases and to a point when it exceeds its setpoint, the PIBCV valve will modulate to allow more chilled water to pass through the AHU's coil. CO2 sensor is to modulate the outdoor air damper when the amount of CO2 deviates from its setpoint.

#### **3.5.2** Active Chilled Beam (ACB)

ACB consists of primary and secondary coils. Primary refers to the AHU coil and secondary refers to the chilled beam coil where it's separated by a heat exchanger. Temperature sensor is placed at the return air grill for common area and temperature thermostat is used at individual room where the temperature setpoint is remotely controlled by the occupant.

The control sequence is as follows (refer to **Figure 3.29**):

The room temperature and dew point temperature are set at specific setpoint. Any deviation on the temperature modulates the PICBV valve. As far as condensation is concerned, the room dew point temperature is given priority over the room temperature. Assuming the occupancy load is high and the room temperature exceeds its setpoint, the PIBCV will open to allow more chilled water to pass through the beam and the differential pressure sensor will then trigger the VSD pump to run in a higher speed. This consequently causes the supply temperature to reduce and triggers the PIBCV on the primary side to open. Likewise, the PIBCV at the AHU will be triggered by the return air temperature sensor when it exceeds its setpoint. Eventually, the differential pressure sensor will send the signal to the main VSD pump to increase its speed. CO2 sensor is to modulate the outdoor air damper when the amount of CO2 deviates from its setpoint.

In short, the difference in control between the two systems is the varying flow of the air and water in response to room temperature for VAV and ACB respectively.



Figure 3.28 VAV system control schematic



Figure 3.29 ACB System Control Schematic

#### **CHAPTER 4. RESULTS**

#### 4.1 Introduction

The results obtained from relevant design calculations for both VAV and ACB system were discussed in this chapter. Cooling load was presented in the form of table for all the floors as well as the system capacity. System layout was also presented to show the difference between the two systems in terms of design layout and space required.

#### 4.2 Cooling Load

Cooling load results is obtained from Hourly Analysis Program (HAP) 4.90. Based on the functions discussed in Chapter 3 Methodology, the total cooling load is determined for all individual spaces in every floor. The cooling load is the same for both VAV and ACB.

From **Table 4.1**, it shows that the room sensible and latent load required for ground floor are 96,192 Btu/hr and 8,924 Btu/hr respectively. Whereas for Level 1 to Level 9, the room sensible is 353,128 Btu/hr and room latent is 19,932 Btu/hr as shown in **Table 4.3**. For level 10, the room sensible is 237,313 Btu/hr and room latent is 24,460 Btu/hr as shown in **Table 4.5**.

| Space          | Floor Floor Area | Eleon Anos 642  | Sumply Ain CEM  | A Fresh Air. CFM |                       | Room                |                    |
|----------------|------------------|-----------------|-----------------|------------------|-----------------------|---------------------|--------------------|
| Space          | L 100L           | rioor Area, 112 | Supply Air, CFM | Fresh Air, CFM   | Sensible Load, BTU/hr | Latent Load, BTU/hr | Total Load, BTU/hr |
| Lift Lobby     | GF               | 1,012           | 520             | 108              | 10,822                | 1,834               | 12,656             |
| Meeting Room 1 | GF               | 162             | 127             | 22               | 2,659                 | 407                 | 3,066              |
| Meeting Room 2 | GF               | 135             | 106             | 19               | 2,216                 | 338                 | 2,819              |
| Office 1       | GF               | 172             | 87              | 18               | 1,814                 | 257                 | 2,071              |
| Office 2       | GF               | 129             | 65              | 14               | 1,361                 | 193                 | 1,554              |
| Retail         | GF               | 3,724           | 3,361           | 396              | 75,291                | 5,659               | 80,950             |
| IDF            | GF               | 122             | 39              | 13               | 890                   | 125                 | 1,015              |
| Utility        | GF               | 108             | 49              | 11               | 1,139                 | 111                 | 1,250              |
|                |                  | 5,564           | 4,354           | 601              | 96,192                | 8,924               | 105,381            |

Table 4.1 Space Cooling Load for Level Ground Floor

 Table 4.2 Space Cooling Load for Level Ground Floor (SI Unit)

| Space          | Floor | Floor Area m?    | Supply Air 1/a  | Frech Air 1/a  | Room              |                 |                |
|----------------|-------|------------------|-----------------|----------------|-------------------|-----------------|----------------|
| Space          | FIOOL | Floor Area, III2 | Supply All, 1/S | FIESH AII, 1/S | Sensible Load, kW | Latent Load, kW | Total Load, kW |
| Lift Lobby     | GF    | 94               | 245.28          | 50.94          | 3.17              | 0.54            | 3.71           |
| Meeting Room 1 | GF    | 15               | 59.91           | 10.38          | 0.78              | 0.12            | 0.90           |
| Meeting Room 2 | GF    | 13               | 50.00           | 8.96           | 0.65              | 0.10            | 0.83           |
| Office 1       | GF    | 16               | 41.04           | 8.49           | 0.53              | 0.08            | 0.61           |
| Office 2       | GF    | 12               | 30.66           | 6.60           | 0.40              | 0.06            | 0.46           |
| Retail         | GF    | 346              | 1,585.38        | 186.79         | 22.07             | 1.66            | 23.72          |
| IDF            | GF    | 11               | 18.40           | 6.13           | 0.26              | 0.04            | 0.30           |
| Utility        | GF    | 10               | 23.11           | 5.19           | 0.33              | 0.03            | 0.37           |
|                |       | 517              | 2,054           | 283            | 28                | 3               | 31             |

| <b>S</b> maaa   | Floor | Floor Area 642  | Sumply Air CEM    | Enoch Ain CEM  |                       | Room                |                    |
|-----------------|-------|-----------------|-------------------|----------------|-----------------------|---------------------|--------------------|
| Space           | FIOOF | Floor Area, It2 | Supply Air, Crivi | Fresh Air, CFM | Sensible Load, BTU/hr | Latent Load, BTU/hr | Total Load, BTU/hr |
| Compactius Room | L1    | 146             | 46                | 16             | 1,065                 | 150                 | 1,215              |
| Corridor        | L1    | 1,808           | 680               | 249            | 15,608                | 4,882               | 20,490             |
| Director 1      | L1    | 280             | 955               | 30             | 22,307                | 397                 | 22,704             |
| Director 2      | L1    | 323             | 919               | 34             | 21,401                | 479                 | 21,880             |
| Director 3      | L1    | 312             | 914               | 33             | 21,284                | 463                 | 21,917             |
| Equip 1         | L1    | 71              | 23                | 8              | 518                   | 73                  | 591                |
| Equip 2         | L1    | 89              | 28                | 9              | 649                   | 91                  | 740                |
| File Room 1     | L1    | 140             | 44                | 15             | 1,021                 | 144                 | 1,165              |
| File Room 2     | L1    | 86              | 27                | 9              | 627                   | 88                  | 715                |
| File Room 3     | L1    | 135             | 43                | 14             | 984                   | 138                 | 1,122              |
| IDF             | L1    | 122             | 39                | 13             | 890                   | 125                 | 1,015              |
| Lift Lobby      | L1    | 463             | 214               | 49             | 4,951                 | 625                 | 5,576              |
| Meeting Room 1  | L1    | 420             | 330               | 58             | 6,894                 | 1,053               | 7,947              |
| Meeting Room 2  | L1    | 237             | 186               | 33             | 4,318                 | 648                 | 4,966              |
| Meeting Room 3  | L1    | 248             | 195               | 34             | 4,071                 | 622                 | 4,693              |
| Mgr 1           | L1    | 151             | 325               | 16             | 7,532                 | 231                 | 7,763              |
| Mgr 2           | L1    | 151             | 325               | 16             | 7,532                 | 231                 | 7,763              |
| Mgr 3           | L1    | 151             | 325               | 16             | 7,532                 | 231                 | 7,763              |
| Mgr 4           | L1    | 151             | 325               | 16             | 7,532                 | 231                 | 7,763              |
| Mgr 5           | L1    | 188             | 431               | 20             | 9,806                 | 277                 | 10,083             |
| Mgr 6           | L1    | 188             | 431               | 20             | 9,806                 | 277                 | 10,083             |
| Office 1        | L1    | 1,249           | 2,120             | 133            | 48,787                | 1,910               | 50,697             |
| Office 2        | L1    | 2,799           | 4,456             | 297            | 100,074               | 4,108               | 104,182            |
| Office 3        | L1    | 404             | 754               | 43             | 17,392                | 572                 | 17,964             |
| Pantry          | L1    | 200             | 93                | 21             | 2,145                 | 270                 | 2,415              |

# Table 4.3 Space Cooling Load for Level 1 to Level 9

| Printing      | L1 | 334    | 152    | 35    | 3,522   | 342    | 3,864   |
|---------------|----|--------|--------|-------|---------|--------|---------|
| Room 1        | L1 | 172    | 385    | 18    | 8,924   | 264    | 9,188   |
| Room 2        | L1 | 173    | 386    | 18    | 8,935   | 265    | 9,200   |
| Sec 1         | L1 | 118    | 54     | 13    | 1,244   | 121    | 1,365   |
| Sec 2         | L1 | 140    | 64     | 15    | 1,476   | 144    | 1,620   |
| Sec 3         | L1 | 205    | 93     | 22    | 2,162   | 210    | 2,372   |
| Service Lobby | L1 | 200    | 93     | 21    | 2,139   | 270    | 2,409   |
|               |    | 11,854 | 15,455 | 1,344 | 353,128 | 19,932 | 373,230 |

 Table 4.4 Space Cooling Load for Level 1 to Level 9 (SI Unit)

| Space           | Floor | Floor Area, m2 | Supply Air 1/a  | Enogh Ain 1/a  | Room              |                 |                    |  |
|-----------------|-------|----------------|-----------------|----------------|-------------------|-----------------|--------------------|--|
| space           | Floor |                | Supply All, 1/S | Fresh Air, 1/8 | Sensible Load, kW | Latent Load, kW | Total Load, BTU/hr |  |
| Compactius Room | L1    | 14             | 21.70           | 7.55           | 0.31              | 0.04            | 1,215              |  |
| Corridor        | L1    | 168            | 320.75          | 117.45         | 4.57              | 1.43            | 20,490             |  |
| Director 1      | L1    | 26             | 450.47          | 14.15          | 6.54              | 0.12            | 22,704             |  |
| Director 2      | L1    | 30             | 433.49          | 16.04          | 6.27              | 0.14            | 21,880             |  |
| Director 3      | L1    | 29             | 431.13          | 15.57          | 6.24              | 0.14            | 21,917             |  |
| Equip 1         | L1    | 7              | 10.85           | 3.77           | 0.15              | 0.02            | 591                |  |
| Equip 2         | L1    | 8              | 13.21           | 4.25           | 0.19              | 0.03            | 740                |  |
| File Room 1     | L1    | 13             | 20.75           | 7.08           | 0.30              | 0.04            | 1,165              |  |
| File Room 2     | L1    | 8              | 12.74           | 4.25           | 0.18              | 0.03            | 715                |  |
| File Room 3     | L1    | 13             | 20.28           | 6.60           | 0.29              | 0.04            | 1,122              |  |
| IDF             | L1    | 11             | 18.40           | 6.13           | 0.26              | 0.04            | 1,015              |  |
| Lift Lobby      | L1    | 43             | 100.94          | 23.11          | 1.45              | 0.18            | 5,576              |  |
| Meeting Room 1  | L1    | 39             | 155.66          | 27.36          | 2.02              | 0.31            | 7,947              |  |
| Meeting Room 2  | L1    | 22             | 87.74           | 15.57          | 1.27              | 0.19            | 4,966              |  |

| Meeting Room 3 | L1 | 23    | 91.98    | 16.04  | 1.19  | 0.18 | 4,693   |
|----------------|----|-------|----------|--------|-------|------|---------|
| Mgr 1          | L1 | 14    | 153.30   | 7.55   | 2.21  | 0.07 | 7,763   |
| Mgr 2          | L1 | 14    | 153.30   | 7.55   | 2.21  | 0.07 | 7,763   |
| Mgr 3          | L1 | 14    | 153.30   | 7.55   | 2.21  | 0.07 | 7,763   |
| Mgr 4          | L1 | 14    | 153.30   | 7.55   | 2.21  | 0.07 | 7,763   |
| Mgr 5          | L1 | 17    | 203.30   | 9.43   | 2.87  | 0.08 | 10,083  |
| Mgr 6          | L1 | 17    | 203.30   | 9.43   | 2.87  | 0.08 | 10,083  |
| Office 1       | L1 | 116   | 1,000.00 | 62.74  | 14.30 | 0.56 | 50,697  |
| Office 2       | L1 | 260   | 2,101.89 | 140.09 | 29.33 | 1.20 | 104,182 |
| Office 3       | L1 | 38    | 355.66   | 20.28  | 5.10  | 0.17 | 17,964  |
| Pantry         | L1 | 19    | 43.87    | 9.91   | 0.63  | 0.08 | 2,415   |
| Printing       | L1 | 31    | 71.70    | 16.51  | 1.03  | 0.10 | 3,864   |
| Room 1         | L1 | 16    | 181.60   | 8.49   | 2.62  | 0.08 | 9,188   |
| Room 2         | L1 | 16    | 182.08   | 8.49   | 2.62  | 0.08 | 9,200   |
| Sec 1          | L1 | 11    | 25.47    | 6.13   | 0.36  | 0.04 | 1,365   |
| Sec 2          | L1 | 13    | 30.19    | 7.08   | 0.43  | 0.04 | 1,620   |
| Sec 3          | L1 | 19    | 43.87    | 10.38  | 0.63  | 0.06 | 2,372   |
| Service Lobby  | L1 | 19    | 43.87    | 9.91   | 0.63  | 0.08 | 2,409   |
|                |    | 1,101 | 7,290    | 634    | 103   | 6    | 109     |
|                |    |       |          |        |       |      |         |

| <b>S</b> mana    | Fleen | Floor Area 62   | Sumala Air CEM  | English Ain CEM |                       | Room                |                    |
|------------------|-------|-----------------|-----------------|-----------------|-----------------------|---------------------|--------------------|
| Space            | Floor | Floor Area, It2 | Supply Air, CFM | Fresh Air, CFM  | Sensible Load, BTU/hr | Latent Load, BTU/hr | Total Load, BTU/hr |
| Bar              | L10   | 215             | 110             | 58              | 2,299                 | 389                 | 2,688              |
| Chairman Office  | L10   | 700             | 939             | 74              | 21,370                | 1,026               | 22,396             |
| Director         | L10   | 872             | 955             | 30              | 22,307                | 397                 | 22,704             |
| Foyer            | L10   | 431             | 180             | 59              | 3,760                 | 1,340               | 5,100              |
| IDF              | L10   | 118             | 55              | 13              | 1,262                 | 159                 | 1,421              |
| Lift Lobby       | L10   | 1,195           | 614             | 127             | 12,779                | 2,165               | 14,944             |
| Lounge 1         | L10   | 248             | 416             | 26              | 9,572                 | 379                 | 9,951              |
| Lounge 2         | L10   | 237             | 386             | 25              | 8,862                 | 362                 | 9,224              |
| Lounge 3         | L10   | 248             | 411             | 26              | 9,334                 | 364                 | 9,698              |
| Meeting Room     | L10   | 258             | 421             | 27              | 9,679                 | 395                 | 10,074             |
| Outdoor Terrace  | L10   | 3,957           | 2,848           | 544             | 63,404                | 12,462              | 75,866             |
| PA               | L10   | 280             | 512             | 30              | 11,811                | 428                 | 12,239             |
| PA 1             | L10   | 178             | 90              | 19              | 1,878                 | 266                 | 2,144              |
| PA 2             | L10   | 355             | 520             | 38              | 11,767                | 521                 | 12,288             |
| Pantry           | L10   | 108             | 55              | 11              | 1,139                 | 162                 | 1,301              |
| Private Room     | L10   | 371             | 188             | 39              | 3,913                 | 555                 | 4,468              |
| Residence Office | L10   | 452             | 720             | 48              | 16,845                | 650                 | 17,495             |
| Sec              | L10   | 140             | 71              | 15              | 1,477                 | 209                 | 1,942              |
| Secu             | L10   | 83              | 42              | 9               | 876                   | 124                 | 1,000              |
| Service Lobby    | L10   | 304             | 156             | 32              | 3,251                 | 551                 | 3,802              |
| Strategy         | L10   | 312             | 144             | 33              | 3,338                 | 459                 | 3,797              |
| Utility 1        | L10   | 72              | 33              | 8               | 759                   | 74                  | 833                |
| Utility 2        | L10   | 46              | 21              | 5               | 488                   | 47                  | 535                |
| VIP Lounge       | L10   | 398             | 615             | 42              | 14,122                | 609                 | 14,731             |
| Waiting          | L10   | 118             | 49              | 16              | 1,021                 | 367                 | 1,388              |
|                  |       | 11,696          | 10,551          | 1,354           | 237,313               | 24,460              | 262,029            |

# Table 4.5 Space Cooling Load for Level 10

| Space            | Floor | Eleon Anos m2   | Sumply Aim 1/a  | Enoch Ain 1/a  |                   | Room            |                |
|------------------|-------|-----------------|-----------------|----------------|-------------------|-----------------|----------------|
| Space            | Floor | rioor Area, inz | Supply Air, i/s | rresh Air, 1/8 | Sensible Load, kW | Latent Load, kW | Total Load, kW |
| Bar              | L10   | 20              | 51.89           | 27.36          | 0.67              | 0.11            | 0.79           |
| Chairman Office  | L10   | 65              | 442.92          | 34.91          | 6.26              | 0.30            | 6.56           |
| Director         | L10   | 81              | 450.47          | 14.15          | 6.54              | 0.12            | 6.65           |
| Foyer            | L10   | 40              | 84.91           | 27.83          | 1.10              | 0.39            | 1.49           |
| IDF              | L10   | 11              | 25.94           | 6.13           | 0.37              | 0.05            | 0.42           |
| Lift Lobby       | L10   | 111             | 289.62          | 59.91          | 3.75              | 0.63            | 4.38           |
| Lounge 1         | L10   | 23              | 196.23          | 12.26          | 2.81              | 0.11            | 2.92           |
| Lounge 2         | L10   | 22              | 182.08          | 11.79          | 2.60              | 0.11            | 2.70           |
| Lounge 3         | L10   | 23              | 193.87          | 12.26          | 2.74              | 0.11            | 2.84           |
| Meeting Room     | L10   | 24              | 198.58          | 12.74          | 2.84              | 0.12            | 2.95           |
| Outdoor Terrace  | L10   | 368             | 1,343.40        | 256.60         | 18.58             | 3.65            | 22.23          |
| PA               | L10   | 26              | 241.51          | 14.15          | 3.46              | 0.13            | 3.59           |
| PA 1             | L10   | 17              | 42.45           | 8.96           | 0.55              | 0.08            | 0.63           |
| PA 2             | L10   | 33              | 245.28          | 17.92          | 3.45              | 0.15            | 3.60           |
| Pantry           | L10   | 10              | 25.94           | 5.19           | 0.33              | 0.05            | 0.38           |
| Private Room     | L10   | 34              | 88.68           | 18.40          | 1.15              | 0.16            | 1.31           |
| Residence Office | L10   | 42              | 339.62          | 22.64          | 4.94              | 0.19            | 5.13           |
| Sec              | L10   | 13              | 33.49           | 7.08           | 0.43              | 0.06            | 0.57           |
| Secu             | L10   | 8               | 19.81           | 4.25           | 0.26              | 0.04            | 0.29           |
| Service Lobby    | L10   | 28              | 73.58           | 15.09          | 0.95              | 0.16            | 1.11           |
| Strategy         | L10   | 29              | 67.92           | 15.57          | 0.98              | 0.13            | 1.11           |
| Utility 1        | L10   | 7               | 15.57           | 3.77           | 0.22              | 0.02            | 0.24           |
| Utility 2        | L10   | 4               | 9.91            | 2.36           | 0.14              | 0.01            | 0.16           |
| VIP Lounge       | L10   | 37              | 290.09          | 19.81          | 4.14              | 0.18            | 4.32           |
| Waiting          | L10   | 11              | 23.11           | 7.55           | 0.30              | 0.11            | 0.41           |
|                  |       | 1,087           | 4,977           | 639            | 70                | 7               | 77             |

### Table 4.6 Space Cooling Load for Level 10 (SI Unit)

#### 4.3 System Capacity

System capacity is determined based on the total space cooling load and the total ventilation air required. For both VAV and ACB, the cooling coil is sized based on 53 °F off-coil and 75DB/64WB °F room temperature.

#### 4.3.1 VAV

From **Table 4.7**, it shows that the total AHU capacity required for Ground Floor is 150,376 BTU/hr, where 110,814 BTU/hr is sensible and 39,562 BTU/hr is latent. Whereas, for Level 1 to Level 9, the total AHU capacity is 454,094 Btu/hr with 368,836 Btu/hr sensible and 85,258 Btu/hr latent as shown in **Table 4.9**. For level 10, the total AHU capacity is 398,674 Btu/hr, with 305,532 Btu/hr sensible and 93,142 Btu/hr latent as shown in **Table 4.11**. **Table 4.13** shows the summary of AHU capacity for all levels.

| Space          | Floor | Eleon Anos ft?  | Supply Air CEM    | Enoch Ain CEM   | Cooling Coil, AHU     |                     |                    |  |
|----------------|-------|-----------------|-------------------|-----------------|-----------------------|---------------------|--------------------|--|
| Space          | Floor | rioor Area, 112 | Supply Air, Crivi | rresh Air, Crwi | Sensible Load, BTU/hr | Latent Load, BTU/hr | Total Load, BTU/hr |  |
| Lift Lobby     | GF    | 1,012           | 520               | 108             | 14,382                | 7,590               | 21,972             |  |
| Meeting Room 1 | GF    | 162             | 127               | 22              | 3,696                 | 1,746               | 5,442              |  |
| Meeting Room 2 | GF    | 135             | 106               | 19              | 1,413                 | 1,344               | 2,757              |  |
| Office 1       | GF    | 172             | 87                | 18              | 2,386                 | 1,153               | 3,539              |  |
| Office 2       | GF    | 129             | 65                | 14              | 1,790                 | 864                 | 2,654              |  |
| Retail         | GF    | 3,724           | 3,361             | 396             | 84,391                | 25,224              | 109,615            |  |
| IDF            | GF    | 122             | 39                | 13              | 1,256                 | 862                 | 2,118              |  |
| Utility        | GF    | 108             | 49                | 11              | 1,500                 | 779                 | 2,279              |  |
|                |       | 5,564           | 4,354             | 601             | 110,814               | 39,562              | 150,376            |  |

 Table 4.7 AHU Capacity for Ground Floor

 Table 4.8 AHU Capacity for Ground Floor (SI Unit)

| Space          | Floor         | Floor Area, m2 | Supply Air 1/2 | Enoch Air 1/a    | Cooling Coil, AHU |                 |                |  |
|----------------|---------------|----------------|----------------|------------------|-------------------|-----------------|----------------|--|
| Space          | <b>F100</b> r |                | Supply Air, is | r resii Air, 1/8 | Sensible Load, kW | Latent Load, kW | Total Load, kW |  |
| Lift Lobby     | GF            | 94             | 245.28         | 50.94            | 4.21              | 2.22            | 6.44           |  |
| Meeting Room 1 | GF            | 15             | 59.91          | 10.38            | 1.08              | 0.51            | 1.59           |  |
| Meeting Room 2 | GF            | 13             | 50.00          | 8.96             | 0.41              | 0.39            | 0.81           |  |
| Office 1       | GF            | 16             | 41.04          | 8.49             | 0.70              | 0.34            | 1.04           |  |
| Office 2       | GF            | 12             | 30.66          | 6.60             | 0.52              | 0.25            | 0.78           |  |
| Retail         | GF            | 346            | 1,585.38       | 186.79           | 24.73             | 7.39            | 32.13          |  |
| IDF            | GF            | 11             | 18.40          | 6.13             | 0.37              | 0.25            | 0.62           |  |
| Utility        | GF            | 10             | 23.11          | 5.19             | 0.44              | 0.23            | 0.67           |  |
|                |               | 517            | 2,054          | 283              | 32                | 12              | 44             |  |

| Space           | Floor | Floor Aroo ft?  | Supply Air CFM    | Enoch Air CEM  | Cooling Coil, AHU     |                     |                    |  |
|-----------------|-------|-----------------|-------------------|----------------|-----------------------|---------------------|--------------------|--|
| Space           | FIOOL | Floor Area, 112 | Supply Air, Crivi | rresh Air, Crm | Sensible Load, BTU/hr | Latent Load, BTU/hr | Total Load, BTU/hr |  |
| Compactius Room | L1    | 146             | 46                | 16             | 1,503                 | 1,031               | 2,534              |  |
| Corridor        | L1    | 1,808           | 680               | 249            | 22,349                | 17,926              | 40,275             |  |
| Director 1      | L1    | 280             | 955               | 30             | 22,915                | 1,307               | 24,222             |  |
| Director 2      | L1    | 323             | 919               | 34             | 22,060                | 1,782               | 23,842             |  |
| Director 3      | L1    | 312             | 914               | 33             | 1,687                 | 2,168               | 3,855              |  |
| Equip 1         | L1    | 71              | 23                | 8              | 731                   | 501                 | 1,232              |  |
| Equip 2         | L1    | 89              | 28                | 9              | 916                   | 628                 | 1,544              |  |
| File Room 1     | L1    | 140             | 44                | 15             | 1,442                 | 989                 | 2,431              |  |
| File Room 2     | L1    | 86              | 27                | 9              | 886                   | 607                 | 1,493              |  |
| File Room 3     | L1    | 135             | 43                | 14             | 1,402                 | 954                 | 2,356              |  |
| IDF             | L1    | 122             | 39                | 13             | 1,256                 | 862                 | 2,118              |  |
| Lift Lobby      | L1    | 463             | 214               | 49             | 6,445                 | 3,453               | 9,898              |  |
| Meeting Room 1  | L1    | 420             | 330               | 58             | 8,769                 | 4,396               | 13,165             |  |
| Meeting Room 2  | L1    | 237             | 186               | 33             | 5,350                 | 2,540               | 7,890              |  |
| Meeting Room 3  | L1    | 248             | 195               | 34             | 5,178                 | 2,596               | 7,774              |  |
| Mgr 1           | L1    | 151             | 325               | 16             | 7,987                 | 952                 | 8,939              |  |
| Mgr 2           | L1    | 151             | 325               | 16             | 7,987                 | 952                 | 8,939              |  |
| Mgr 3           | L1    | 151             | 325               | 16             | 7,987                 | 952                 | 8,939              |  |
| Mgr 4           | L1    | 151             | 325               | 16             | 7,987                 | 952                 | 8,939              |  |
| Mgr 5           | L1    | 188             | 431               | 20             | 10,211                | 1,057               | 11,268             |  |
| Mgr 6           | L1    | 188             | 431               | 20             | 10,211                | 1,057               | 11,268             |  |
| Office 1        | L1    | 1,249           | 2,120             | 133            | 51,765                | 8,131               | 59,896             |  |
| Office 2        | L1    | 2,799           | 4,456             | 297            | 108,426               | 16,453              | 124,879            |  |

### Table 4.9 AHU Capacity for Level 1 to Level 9

| Office 3      | L1 | 404    | 754    | 43    | 18,142  | 2,114  | 20,256  |
|---------------|----|--------|--------|-------|---------|--------|---------|
| Pantry        | L1 | 200    | 93     | 21    | 2,789   | 1,492  | 4,281   |
| Printing      | L1 | 334    | 152    | 35    | 4,597   | 2,408  | 7,005   |
| Room 1        | L1 | 172    | 385    | 18    | 9,344   | 1,080  | 10,424  |
| Room 2        | L1 | 173    | 386    | 18    | 9,358   | 1,089  | 10,447  |
| Sec 1         | L1 | 118    | 54     | 13    | 1,624   | 851    | 2,475   |
| Sec 2         | L1 | 140    | 64     | 15    | 1,927   | 1,009  | 2,936   |
| Sec 3         | L1 | 205    | 93     | 22    | 2,821   | 1,478  | 4,299   |
| Service Lobby | L1 | 200    | 93     | 21    | 2,784   | 1,491  | 4,275   |
|               |    | 11,854 | 15,455 | 1,344 | 368,836 | 85,258 | 454,094 |

 Table 4.10 AHU Capacity for Level 1 to Level 9 (SI Unit)

| Engag           | Floor | Eleon Anos m2    | Supply Air 1/a  | Fresh Air 1/s  | Cooling Coil, AHU |                 |                |  |
|-----------------|-------|------------------|-----------------|----------------|-------------------|-----------------|----------------|--|
| Space           | FIOOL | Floor Area, III2 | Supply Air, i/s | rresh Air, 1/s | Sensible Load, kW | Latent Load, kW | Total Load, kW |  |
| Compactius Room | L1    | 14               | 21.70           | 7.55           | 0.44              | 0.30            | 0.74           |  |
| Corridor        | L1    | 168              | 320.75          | 117.45         | 6.55              | 5.25            | 11.80          |  |
| Director 1      | L1    | 26               | 450.47          | 14.15          | 6.72              | 0.38            | 7.10           |  |
| Director 2      | L1    | 30               | 433.49          | 16.04          | 6.47              | 0.52            | 6.99           |  |
| Director 3      | L1    | 29               | 431.13          | 15.57          | 0.49              | 0.64            | 1.13           |  |
| Equip 1         | L1    | 7                | 10.85           | 3.77           | 0.21              | 0.15            | 0.36           |  |
| Equip 2         | L1    | 8                | 13.21           | 4.25           | 0.27              | 0.18            | 0.45           |  |
| File Room 1     | L1    | 13               | 20.75           | 7.08           | 0.42              | 0.29            | 0.71           |  |
| File Room 2     | L1    | 8                | 12.74           | 4.25           | 0.26              | 0.18            | 0.44           |  |
| File Room 3     | L1    | 13               | 20.28           | 6.60           | 0.41              | 0.28            | 0.69           |  |
| IDF             | L1    | 11               | 18.40           | 6.13           | 0.37              | 0.25            | 0.62           |  |

| T:0 T 11       | T 1 | 12    | 100.04   | 22.11  | 1.00  | 1.01 | 2.00  |
|----------------|-----|-------|----------|--------|-------|------|-------|
| Lift Lobby     | LI  | 43    | 100.94   | 23.11  | 1.89  | 1.01 | 2.90  |
| Meeting Room 1 | L1  | 39    | 155.66   | 27.36  | 2.57  | 1.29 | 3.86  |
| Meeting Room 2 | L1  | 22    | 87.74    | 15.57  | 1.57  | 0.74 | 2.31  |
| Meeting Room 3 | L1  | 23    | 91.98    | 16.04  | 1.52  | 0.76 | 2.28  |
| Mgr 1          | L1  | 14    | 153.30   | 7.55   | 2.34  | 0.28 | 2.62  |
| Mgr 2          | L1  | 14    | 153.30   | 7.55   | 2.34  | 0.28 | 2.62  |
| Mgr 3          | L1  | 14    | 153.30   | 7.55   | 2.34  | 0.28 | 2.62  |
| Mgr 4          | L1  | 14    | 153.30   | 7.55   | 2.34  | 0.28 | 2.62  |
| Mgr 5          | L1  | 17    | 203.30   | 9.43   | 2.99  | 0.31 | 3.30  |
| Mgr 6          | L1  | 17    | 203.30   | 9.43   | 2.99  | 0.31 | 3.30  |
| Office 1       | L1  | 116   | 1,000.00 | 62.74  | 15.17 | 2.38 | 17.55 |
| Office 2       | L1  | 260   | 2,101.89 | 140.09 | 31.78 | 4.82 | 36.60 |
| Office 3       | L1  | 38    | 355.66   | 20.28  | 5.32  | 0.62 | 5.94  |
| Pantry         | L1  | 19    | 43.87    | 9.91   | 0.82  | 0.44 | 1.25  |
| Printing       | L1  | 31    | 71.70    | 16.51  | 1.35  | 0.71 | 2.05  |
| Room 1         | L1  | 16    | 181.60   | 8.49   | 2.74  | 0.32 | 3.05  |
| Room 2         | L1  | 16    | 182.08   | 8.49   | 2.74  | 0.32 | 3.06  |
| Sec 1          | L1  | 11    | 25.47    | 6.13   | 0.48  | 0.25 | 0.73  |
| Sec 2          | L1  | 13    | 30.19    | 7.08   | 0.56  | 0.30 | 0.86  |
| Sec 3          | L1  | 19    | 43.87    | 10.38  | 0.83  | 0.43 | 1.26  |
| Service Lobby  | L1  | 19    | 43.87    | 9.91   | 0.82  | 0.44 | 1.25  |
|                |     | 1,101 | 7,290    | 634    | 108   | 25   | 133   |
|                |     | V.    |          |        |       |      |       |

| <u>Ema ao</u>    | Floor | Eleon Anos 612  | Supply Ain CEM  | Enoch Ain CEM  |                       | Cooling Coil, AHU   | ling Coil, AHU     |  |  |
|------------------|-------|-----------------|-----------------|----------------|-----------------------|---------------------|--------------------|--|--|
| Space            | Floor | Floor Area, 112 | Supply Air, CFM | Fresh Air, CFM | Sensible Load, BTU/hr | Latent Load, BTU/hr | Total Load, BTU/hr |  |  |
| Bar              | L10   | 215             | 110             | 58             | 34,567                | 2,525               | 37,092             |  |  |
| Chairman Office  | L10   | 700             | 939             | 74             | 23,613                | 4,180               | 27,793             |  |  |
| Director         | L10   | 872             | 955             | 30             | 22,915                | 1,307               | 24,222             |  |  |
| Foyer            | L10   | 431             | 180             | 59             | 5,560                 | 4,465               | 10,025             |  |  |
| IDF              | L10   | 118             | 55              | 13             | 1,642                 | 880                 | 2,522              |  |  |
| Lift Lobby       | L10   | 1,195           | 614             | 127            | 16,982                | 8,962               | 25,944             |  |  |
| Lounge 1         | L10   | 248             | 416             | 26             | 10,161                | 1,616               | 11,777             |  |  |
| Lounge 2         | L10   | 237             | 386             | 25             | 9,425                 | 1,548               | 10,973             |  |  |
| Lounge 3         | L10   | 248             | 411             | 26             | 9,811                 | 1,456               | 11,267             |  |  |
| Meeting Room     | L10   | 258             | 421             | 27             | 10,341                | 1,689               | 12,030             |  |  |
| Outdoor Terrace  | L10   | 3,957           | 2,848           | 544            | 78,347                | 43,878              | 122,225            |  |  |
| PA               | L10   | 280             | 512             | 30             | 12,483                | 1,812               | 14,295             |  |  |
| PA 1             | L10   | 178             | 90              | 19             | 2,469                 | 1,193               | 3,662              |  |  |
| PA 2             | L10   | 355             | 520             | 38             | 12,448                | 2,112               | 14,560             |  |  |
| Pantry           | L10   | 108             | 55              | 11             | 1,498                 | 724                 | 2,222              |  |  |
| Private Room     | L10   | 371             | 188             | 39             | 5,147                 | 2,486               | 7,633              |  |  |
| Residence Office | L10   | 452             | 720             | 48             | 17,652                | 1,645               | 19,297             |  |  |
| Sec              | L10   | 140             | 71              | 15             | 1,942                 | 938                 | 2,880              |  |  |
| Secu             | L10   | 83              | 42              | 9              | 1,179                 | 638                 | 1,817              |  |  |
| Service Lobby    | L10   | 304             | 156             | 32             | 4,320                 | 2,280               | 6,600              |  |  |
| Strategy         | L10   | 312             | 144             | 33             | 4,325                 | 2,121               | 6,446              |  |  |
| Utility 1        | L10   | 72              | 33              | 8              | 1,000                 | 519                 | 1,519              |  |  |
| Utility 2        | L10   | 46              | 21              | 5              | 643                   | 334                 | 977                |  |  |

### Table 4.11 AHU Capacity for Level 10

| VIP Lounge | L10 | 398    | 615    | 42    | 15,493  | 2,604  | 18,097  |
|------------|-----|--------|--------|-------|---------|--------|---------|
| Waiting    | L10 | 118    | 49     | 16    | 1,569   | 1,230  | 2,799   |
|            |     | 11,696 | 10,551 | 1,354 | 305,532 | 93,142 | 398,674 |

|                                                                          | 11,696 10 |                | ,551           | 1,354            | 305,532           | 93,142          | 398,6          |  |  |  |
|--------------------------------------------------------------------------|-----------|----------------|----------------|------------------|-------------------|-----------------|----------------|--|--|--|
| Table 4.12 AHU Capacity for Level 10 (SI Unit)                           |           |                |                |                  |                   |                 |                |  |  |  |
| Space Floor Floor Area m2 Supply Air 1/6 Fresh Air 1/6 Cooling Coil, AHU |           |                |                |                  |                   |                 |                |  |  |  |
| Space                                                                    | FIOOF     | rioor Area, m2 | Supply Air, I/ | s Fresh Air, l/s | Sensible Load, kW | Latent Load, kW | Total Load, kW |  |  |  |
| Bar                                                                      | L10       | 20             | 51.89          | 27.36            | 10.13             | 0.74            | 10.87          |  |  |  |
| Chairman Office                                                          | L10       | 65             | 442.92         | 34.91            | 6.92              | 1.23            | 8.15           |  |  |  |
| Director                                                                 | L10       | 81             | 450.47         | 14.15            | 6.72              | 0.38            | 7.10           |  |  |  |
| Foyer                                                                    | L10       | 40             | 84.91          | 27.83            | 1.63              | 1.31            | 2.94           |  |  |  |
| IDF                                                                      | L10       | 11             | 25.94          | 6.13             | 0.48              | 0.26            | 0.74           |  |  |  |
| Lift Lobby                                                               | L10       | 111            | 289.62         | 59.91            | 4.98              | 2.63            | 7.60           |  |  |  |
| Lounge 1                                                                 | L10       | 23             | 196.23         | 12.26            | 2.98              | 0.47            | 3.45           |  |  |  |
| Lounge 2                                                                 | L10       | 22             | 182.08         | 11.79            | 2.76              | 0.45            | 3.22           |  |  |  |
| Lounge 3                                                                 | L10       | 23             | 193.87         | 12.26            | 2.88              | 0.43            | 3.30           |  |  |  |
| Meeting Room                                                             | L10       | 24             | 198.58         | 12.74            | 3.03              | 0.49            | 3.53           |  |  |  |
| Outdoor Terrace                                                          | L10       | 368            | 1,343.40       | 256.60           | 22.96             | 12.86           | 35.82          |  |  |  |
| PA                                                                       | L10       | 26             | 241.51         | 14.15            | 3.66              | 0.53            | 4.19           |  |  |  |
| PA 1                                                                     | L10       | 17             | 42.45          | 8.96             | 0.72              | 0.35            | 1.07           |  |  |  |
| PA 2                                                                     | L10       | 33             | 245.28         | 17.92            | 3.65              | 0.62            | 4.27           |  |  |  |
| Pantry                                                                   | L10       | 10             | 25.94          | 5.19             | 0.44              | 0.21            | 0.65           |  |  |  |
| Private Room                                                             | L10       | 34             | 88.68          | 18.40            | 1.51              | 0.73            | 2.24           |  |  |  |
| Residence Office                                                         | L10       | 42             | 339.62         | 22.64            | 5.17              | 0.48            | 5.66           |  |  |  |
| Sec                                                                      | L10       | 13             | 33.49          | 7.08             | 0.57              | 0.27            | 0.84           |  |  |  |

| Secu          | L10 | 8     | 19.81  | 4.25  | 0.35 | 0.19 | 0.53 |
|---------------|-----|-------|--------|-------|------|------|------|
| Service Lobby | L10 | 28    | 73.58  | 15.09 | 1.27 | 0.67 | 1.93 |
| Strategy      | L10 | 29    | 67.92  | 15.57 | 1.27 | 0.62 | 1.89 |
| Utility 1     | L10 | 7     | 15.57  | 3.77  | 0.29 | 0.15 | 0.45 |
| Utility 2     | L10 | 4     | 9.91   | 2.36  | 0.19 | 0.10 | 0.29 |
| VIP Lounge    | L10 | 37    | 290.09 | 19.81 | 4.54 | 0.76 | 5.30 |
| Waiting       | L10 | 11    | 23.11  | 7.55  | 0.46 | 0.36 | 0.82 |
|               |     | 1,087 | 4,977  | 639   | 90   | 27   | 117  |

Table 4.13 Summary of AHU Capacity for All Levels

| Floor Level | Reference no.    | Area Served | Floor Area, ft2 | Sensible, Btu/hr | Cooling Capacity, Btu/hr | On Coil | Off coil | Air Flow, cfm | Static, pa | Water<br>Flow,<br>gpm |
|-------------|------------------|-------------|-----------------|------------------|--------------------------|---------|----------|---------------|------------|-----------------------|
| GF          | AHU-OFF-GF       | GF          | 5,564           | 110,814          | 150,376                  | 77      | 53       | 4,354         | 500        | 30.08                 |
| L1-L9       | AHU-OFF-L1 TO L9 | L1          | 11,854          | 368,836          | 454,094                  | 75      | 53       | 15,455        | 500        | 90.82                 |
| L10         | AHU-OFF-L10      | L10         | 11,696          | 305,532          | 398,674                  | 77      | 53       | 10,551        | 500        | 79.73                 |

 Table 4.14 Summary of AHU Capacity for All Levels (SI Unit)

| Floor Level | Reference no.    | Area Served | Floor Area, m2 | Sensible, kW | Cooling Capacity, kW | On Coil | Off coil | Air Flow, l/s | Static, pa | Water<br>Flow, l/s |
|-------------|------------------|-------------|----------------|--------------|----------------------|---------|----------|---------------|------------|--------------------|
| GF          | AHU-OFF-GF       | GF          | 517            | 32           | 44                   | 25      | 12       | 2,054         | 500        | 1.90               |
| L1-L9       | AHU-OFF-L1 TO L9 | L1          | 1,101          | 108          | 133                  | 24      | 12       | 7,290         | 501        | 5.73               |
| L10         | AHU-OFF-L10      | L10         | 1,087          | 90           | 117                  | 25      | 12       | 4,977         | 502        | 5.03               |

#### 4.3.2 ACB

For ACB system, the total AHU capacity is significantly lesser than VAV as the room sensible is catered by chilled beams. As shown in **Table 4.15**, for Ground Floor, the total AHU capacity is 64,302 Btu/hr and the total sensible capacity of chilled beam is 100,591 Btu/hr. Whereas, for Level 1 to Level 9, the total AHU capacity and total sensible capacity of chilled beam are 229,396 Btu/hr and 329,415 Btu/hr respectively as shown in **Table 4.17**. For level 10, the total AHU capacity is 216,442 Btu/hr and the total sensible capacity of chilled beam is 254,879 Btu/hr as shown in **Table 4.19**. **Table 4.21** shows the summary of AHU capacity and chilled beam capacity for all levels.
|                | Floor     |                             |                               | AHU                       |                                   |                 |                     |                   |                  |
|----------------|-----------|-----------------------------|-------------------------------|---------------------------|-----------------------------------|-----------------|---------------------|-------------------|------------------|
| Space          | Area, ft2 | Total Air Flow<br>Rate, cfm | Total Water<br>Flow Rate, Gpm | Total Sensible,<br>Btu/hr | Total Sensible,<br>Btu/hr (water) | Air<br>Flow,CFM | Sensible,<br>BTU/hr | Latent,<br>BTU/hr | Total,<br>Btu/hr |
| Lift Lobby     | 1012      | 192                         | 1.4                           | 11,709                    | 7,218                             | 342             | 9,648               | 6,290             | 15,938           |
| Meeting Room 1 | 162       | 64                          | 1.4                           | 3,903                     | 7,218                             | 64              | 1,833               | 1,231             | 3,064            |
| Meeting Room 2 | 135       | 64                          | 1.4                           | 3,903                     | 7,218                             | 64              | 1,833               | 1,231             | 3,064            |
| Office 1       | 172       | 64                          | 0.9                           | 3,023                     | 4,575                             | 64              | 1,787               | 1,126             | 2,913            |
| Office 2       | 129       | 64                          | 0.9                           | 3,023                     | 4,575                             | 64              | 1,731               | 995               | 2,726            |
| Retail         | 3724      | 960                         | 2.1                           | 75,030                    | 10,512                            | 960             | 23,065              | 8,511             | 31,576           |
| IDF            | 112       | -                           | -                             |                           | -                                 | 39              | 1,015               | 1,256             | 2,271            |
| Utility        | 108       | -                           | -                             |                           | -                                 | 49              | 1,250               | 1,500             | 2,750            |
|                | 5,442     | 1,408                       | 8.26                          | 100,591                   | 41,316                            | 1,646           | 42,162              | 22,140            | 64,302           |
|                |           |                             | • *                           | 3                         |                                   |                 |                     |                   |                  |

 Table 4.15 AHU Capacity and Chilled Beam Capacity for Ground Floor

 Table 4.16 AHU Capacity and Chilled Beam Capacity for Ground Floor (SI Unit)

|                | Floor    |                             | Α                             | СВ                    |                               | AHU             |                 |               |              |  |
|----------------|----------|-----------------------------|-------------------------------|-----------------------|-------------------------------|-----------------|-----------------|---------------|--------------|--|
| Space          | Area, m2 | Total Air Flow<br>Rate, l/s | Total Water<br>Flow Rate, l/s | Total Sensible,<br>kW | Total Sensible,<br>kW (water) | Air<br>Flow,l/s | Sensible,<br>kW | Latent,<br>kW | Total,<br>kW |  |
| Lift Lobby     | 94       | 90.57                       | 0.09                          | 3.43                  | 2.12                          | 161.32          | 2.83            | 1.84          | 4.67         |  |
| Meeting Room 1 | 15       | 30.19                       | 0.09                          | 1.14                  | 2.12                          | 30.19           | 0.54            | 0.36          | 0.90         |  |
| Meeting Room 2 | 13       | 30.19                       | 0.09                          | 1.14                  | 2.12                          | 30.19           | 0.54            | 0.36          | 0.90         |  |
| Office 1       | 16       | 30.19                       | 0.06                          | 0.89                  | 1.34                          | 30.19           | 0.52            | 0.33          | 0.85         |  |
| Office 2       | 12       | 30.19                       | 0.06                          | 0.89                  | 1.34                          | 30.19           | 0.51            | 0.29          | 0.80         |  |
| Retail         | 346      | 452.83                      | 0.13                          | 21.99                 | 3.08                          | 452.83          | 6.76            | 2.49          | 9.25         |  |
| IDF            | 10       | -                           | -                             | -                     | -                             | 18.40           | 0.30            | 0.37          | 0.67         |  |
| Utility        | 10       | -                           | -                             | -                     | -                             | 23.11           | 0.37            | 0.44          | 0.81         |  |
|                | 516      | 664.15                      | 0.52                          | 29.48                 | 12.11                         | 776.42          | 12.36           | 6.49          | 18.85        |  |

|                 | Floor     |                             | ACE                           |                           | AHU                               |                 |                     |                   |                  |
|-----------------|-----------|-----------------------------|-------------------------------|---------------------------|-----------------------------------|-----------------|---------------------|-------------------|------------------|
| Space           | Area, ft2 | Total Air Flow<br>Rate, cfm | Total Water Flow<br>Rate, Gpm | Total Sensible,<br>Btu/hr | Total Sensible,<br>Btu/hr (water) | Air<br>Flow,CFM | Sensible,<br>BTU/hr | Latent,<br>BTU/hr | Total,<br>Btu/hr |
| Compactius Room | 146       | -                           | -                             | -                         | -                                 | 46              | 1,503               | 1,031             | 2,534            |
| Corridor        | 1,808     | -                           | -                             | -                         | -                                 | 680             | 22,349              | 17,926            | 40,275           |
| Director 1      | 280       | 256                         | 2.1                           | 20,008                    | 10,512                            | 256             | 6,437               | 2,905             | 9,342            |
| Director 2      | 323       | 256                         | 2.1                           | 20,008                    | 10,512                            | 256             | 6,437               | 2,905             | 9,342            |
| Director 3      | 312       | 256                         | 2.1                           | 20,008                    | 10,512                            | 256             | 6,437               | 2,905             | 9,342            |
| Equip 1         | 71        | -                           | -                             | -                         | -                                 | 23              | 731                 | 501               | 1,232            |
| Equip 2         | 89        | -                           | -                             |                           | -                                 | 28              | 916                 | 628               | 1,544            |
| File Room 1     | 140       | -                           | -                             | -                         | -                                 | 44              | 1,442               | 989               | 2,431            |
| File Room 2     | 86        | -                           | -                             | -                         | -                                 | 27              | 886                 | 607               | 1,493            |
| File Room 3     | 135       | -                           | -                             | -                         | -                                 | 43              | 1,402               | 954               | 2,356            |
| IDF             | 122       | -                           | -                             | -                         | -                                 | 39              | 1,256               | 862               | 2,118            |
| Lift Lobby      | 463       | 64                          | 2.1                           | 5,002                     | 10,512                            | 64              | 1,833               | 1,231             | 3,064            |
| Meeting Room 1  | 420       | 128                         | 1.4                           | 7,806                     | 7,218                             | 128             | 3,395               | 1,838             | 5,233            |
| Meeting Room 2  | 237       | 64                          | 1.4                           | 3,903                     | 7,218                             | 64              | 1,833               | 1,231             | 3,064            |
| Meeting Room 3  | 248       | 64                          | 1.4                           | 3,903                     | 7,218                             | 64              | 1,833               | 1,231             | 3,064            |
| Mgr 1           | 151       | 128                         | 1.4                           | 7,806                     | 7,218                             | 128             | 3,306               | 1,631             | 4,937            |
| Mgr 2           | 151       | 128                         | 1.4                           | 7,806                     | 7,218                             | 128             | 3,306               | 1,631             | 4,937            |
| Mgr 3           | 151       | 128                         | 1.4                           | 7,806                     | 7,218                             | 128             | 3,306               | 1,631             | 4,937            |
| Mgr 4           | 151       | 128                         | 1.4                           | 7,806                     | 7,218                             | 128             | 3,306               | 1,631             | 4,937            |
| Mgr 5           | 188       | 128                         | 2.1                           | 10,004                    | 10,512                            | 128             | 3,306               | 1,631             | 4,937            |
| Mgr 6           | 188       | 128                         | 2.1                           | 10,004                    | 10,512                            | 128             | 3,306               | 1,631             | 4,937            |
| Office 1        | 1,249     | 640                         | 2.1                           | 50,020                    | 10,512                            | 640             | 14,008              | 5,469             | 19,477           |
| Office 2        | 2,799     | 1280                        | 2.1                           | 100,040                   | 10,512                            | 1,280           | 30,811              | 11,481            | 42,292           |
| Office 3        | 404       | 256                         | 1.9                           | 18,768                    | 9,591                             | 256             | 6,437               | 2,905             | 9,342            |

# Table 4.17 AHU Capacity and Chilled Beam Capacity for Level 1 to Level 9

| Pantry        | 200    | 64    | 0.9 | 3,023   | 4,575   | 64    | 1,937   | 1,473  | 3,410   |
|---------------|--------|-------|-----|---------|---------|-------|---------|--------|---------|
| Printing      | 334    | 64    | 1.4 | 3,903   | 7,218   | 64    | 1,937   | 1,473  | 3,410   |
| Room 1        | 172    | 128   | 1.9 | 9,384   | 9,591   | 128   | 3,395   | 1,838  | 5,233   |
| Room 2        | 173    | 128   | 1.9 | 9,384   | 9,591   | 128   | 3,395   | 1,838  | 5,233   |
| Sec 1         | 118    | -     | -   | -       | -       | 54    | 1,624   | 851    | 2,475   |
| Sec 2         | 140    | -     | -   | -       | -       | 64    | 1,927   | 1,009  | 2,936   |
| Sec 3         | 205    | -     | -   | -       |         | 93    | 2,821   | 1,478  | 4,299   |
| Service Lobby | 200    | 64    | 0.9 | 3,023   | 4,575   | 64    | 3,395   | 1,838  | 5,233   |
|               | 11,854 | 4,480 | 36  | 329,415 | 179,763 | 5,621 | 150,213 | 79,183 | 229,396 |
|               |        |       |     |         |         |       |         |        |         |

Table 4.18 AHU Capacity and Chilled Beam Capacity for Level 1 to Level 9 (SI Unit)

| Floor ACB       |          |                             |                               |                       |                               | AHU             |                 |               |              |  |
|-----------------|----------|-----------------------------|-------------------------------|-----------------------|-------------------------------|-----------------|-----------------|---------------|--------------|--|
| Space           | Area, m2 | Total Air Flow<br>Rate, l/s | Total Water Flow<br>Rate, l/s | Total Sensible,<br>kW | Total Sensible,<br>kW (water) | Air<br>Flow,l/s | Sensible,<br>kW | Latent,<br>kW | Total,<br>kW |  |
| Compactius Room | 14       | -                           | -                             | -                     | -                             | 21.70           | 0.44            | 0.30          | 0.74         |  |
| Corridor        | 168      | -                           |                               | -                     | -                             | 320.75          | 6.55            | 5.25          | 11.80        |  |
| Director 1      | 26       | 120.75                      | 0.13                          | 5.86                  | 3.08                          | 120.75          | 1.89            | 0.85          | 2.74         |  |
| Director 2      | 30       | 120.75                      | 0.13                          | 5.86                  | 3.08                          | 120.75          | 1.89            | 0.85          | 2.74         |  |
| Director 3      | 29       | 120.75                      | 0.13                          | 5.86                  | 3.08                          | 120.75          | 1.89            | 0.85          | 2.74         |  |
| Equip 1         | 7        | -                           | -                             | -                     | -                             | 10.85           | 0.21            | 0.15          | 0.36         |  |
| Equip 2         | 8        |                             | -                             | -                     | -                             | 13.21           | 0.27            | 0.18          | 0.45         |  |
| File Room 1     | 13       | -                           | -                             | -                     | -                             | 20.75           | 0.42            | 0.29          | 0.71         |  |
| File Room 2     | 8        |                             | -                             | -                     | -                             | 12.74           | 0.26            | 0.18          | 0.44         |  |
| File Room 3     | 13       |                             | -                             | -                     | -                             | 20.28           | 0.41            | 0.28          | 0.69         |  |
| IDF             | 11       | -                           | -                             | -                     | -                             | 18.40           | 0.37            | 0.25          | 0.62         |  |
| Lift Lobby      | 43       | 30.19                       | 0.13                          | 1.47                  | 3.08                          | 30.19           | 0.54            | 0.36          | 0.90         |  |
| Meeting Room 1  | 39       | 60.38                       | 0.09                          | 2.29                  | 2.12                          | 60.38           | 0.99            | 0.54          | 1.53         |  |

| Meeting Room 2 | 22    | 30.19  | 0.09 | 1.14  | 2.12 | 30.19  | 0.54 | 0.36 | 0.90  |
|----------------|-------|--------|------|-------|------|--------|------|------|-------|
| Meeting Room 3 | 23    | 30.19  | 0.09 | 1.14  | 2.12 | 30.19  | 0.54 | 0.36 | 0.90  |
| Mgr 1          | 14    | 60.38  | 0.09 | 2.29  | 2.12 | 60.38  | 0.97 | 0.48 | 1.45  |
| Mgr 2          | 14    | 60.38  | 0.09 | 2.29  | 2.12 | 60.38  | 0.97 | 0.48 | 1.45  |
| Mgr 3          | 14    | 60.38  | 0.09 | 2.29  | 2.12 | 60.38  | 0.97 | 0.48 | 1.45  |
| Mgr 4          | 14    | 60.38  | 0.09 | 2.29  | 2.12 | 60.38  | 0.97 | 0.48 | 1.45  |
| Mgr 5          | 17    | 60.38  | 0.13 | 2.93  | 3.08 | 60.38  | 0.97 | 0.48 | 1.45  |
| Mgr 6          | 17    | 60.38  | 0.13 | 2.93  | 3.08 | 60.38  | 0.97 | 0.48 | 1.45  |
| Office 1       | 116   | 301.89 | 0.13 | 14.66 | 3.08 | 301.89 | 4.11 | 1.60 | 5.71  |
| Office 2       | 260   | 603.77 | 0.13 | 29.32 | 3.08 | 603.77 | 9.03 | 3.36 | 12.39 |
| Office 3       | 38    | 120.75 | 0.12 | 5.50  | 2.81 | 120.75 | 1.89 | 0.85 | 2.74  |
| Pantry         | 19    | 30.19  | 0.06 | 0.89  | 1.34 | 30.19  | 0.57 | 0.43 | 1.00  |
| Printing       | 31    | 30.19  | 0.09 | 1.14  | 2.12 | 30.19  | 0.57 | 0.43 | 1.00  |
| Room 1         | 16    | 60.38  | 0.12 | 2.75  | 2.81 | 60.38  | 0.99 | 0.54 | 1.53  |
| Room 2         | 16    | 60.38  | 0.12 | 2.75  | 2.81 | 60.38  | 0.99 | 0.54 | 1.53  |
| Sec 1          | 11    | -      | -    | -     | -    | 25.47  | 0.48 | 0.25 | 0.73  |
| Sec 2          | 13    | -      |      | -     | -    | 30.19  | 0.56 | 0.30 | 0.86  |
| Sec 3          | 19    | -      | -    | -     | -    | 43.87  | 0.83 | 0.43 | 1.26  |
| Service Lobby  | 19    | 30.19  | 0.06 | 0.89  | 1.34 | 30.19  | 0.99 | 0.54 | 1.53  |
|                | 1,101 | 2,113  | 2    | 97    | 53   | 2,651  | 44   | 23   | 67    |
|                |       |        |      |       |      |        |      |      |       |

|                     | Floor     |                             | AC                            | B                         |                                   | AHU                   |                  |                   |        |  |
|---------------------|-----------|-----------------------------|-------------------------------|---------------------------|-----------------------------------|-----------------------|------------------|-------------------|--------|--|
| Space               | Area, ft2 | Total Air Flow<br>Rate, cfm | Total Water Flow<br>Rate, Gpm | Total Sensible,<br>Btu/hr | Total Sensible,<br>Btu/hr (water) | Air Flow<br>Rate, CFM | Sensible, BTU/hr | Latent,<br>BTU/hr | Total  |  |
| Bar                 | 215       | 64                          | 2.1                           | 5,002                     | 10,512                            | 64                    | 1,839            | 1,245             | 3,084  |  |
| Chairman<br>Office  | 700       | 320                         | 1.9                           | 23,460                    | 9,591                             | 320                   | 8,684            | 5,141             | 13,825 |  |
| Director            | 872       | 320                         | 1.9                           | 23,460                    | 9,591                             | 320                   | 8,907            | 5,656             | 14,563 |  |
| Foyer               | 431       | 64                          | 1.4                           | 3,903                     | 7,218                             | 64                    | 1,937            | 1,473             | 3,410  |  |
| IDF                 | 118       | -                           | -                             | - (                       | -                                 | 55                    | 1,642            | 880               | 2,522  |  |
| Lift Lobby          | 1,195     | 192                         | 1.9                           | 14,076                    | 9,591                             | 392                   | 11,105           | 7,309             | 18,414 |  |
| Lounge 1            | 248       | 128                         | 2.1                           | 10,004                    | 10,512                            | 128                   | 3,451            | 1,966             | 5,417  |  |
| Lounge 2            | 237       | 128                         | 1.9                           | 9,384                     | 9,591                             | 128                   | 3,435            | 1,930             | 5,365  |  |
| Lounge 2            | 237       | 128                         | 2.1                           | 10,004                    | 10,512                            | 128                   | 3,451            | 1,966             | 5,417  |  |
| Meeting Room        | 258       | 128                         | 2.1                           | 10,004                    | 10,512                            | 128                   | 3,465            | 1,998             | 5,463  |  |
| Outdoor<br>Terrace  | 259       | 832                         | 2.1                           | 65,026                    | 10,512                            | 1,832                 | 49,821           | 29,371            | 79,192 |  |
| PA                  | 280       | 192                         | 1.4                           | 11,709                    | 7,218                             | 192                   | 5,017            | 2,627             | 7,644  |  |
| PA 1                | 178       | 64                          | 0.9                           | 3,023                     | 4,575                             | 64                    | 1,795            | 1,143             | 2,938  |  |
| PA 2                | 355       | 192                         | 1.9                           | 14,076                    | 9,591                             | 192                   | 5,127            | 2,881             | 8,008  |  |
| Pantry              | 108       | -                           | -                             | -                         | -                                 | 55                    | 1,498            | 724               | 2,222  |  |
| Private Room        | 371       | 64                          | 2.1                           | 5,002                     | 10,512                            | 64                    | 1,991            | 1,597             | 3,588  |  |
| Residence<br>Office | 452       | 256                         | 1.9                           | 18,768                    | 9,591                             | 256                   | 6,815            | 3,778             | 10,593 |  |
| Sec                 | 140       | 64                          | 0.9                           | 3,023                     | 4,575                             | 64                    | 1,746            | 1,030             | 2,776  |  |
| Secu                | 83        | -                           | -                             | -                         | -                                 | 42                    | 1,179            | 638               | 1,817  |  |
| Service Lobby       | 304       | 64                          | 0.9                           | 3,023                     | 4,575                             | 64                    | 1,931            | 1,459             | 3,390  |  |
| Strategy            | 312       | 64                          | 1.4                           | 3,903                     | 7,218                             | 64                    | 1,939            | 1,477             | 3,416  |  |
| Utility 1           | 72        | -                           | -                             | -                         | -                                 | 33                    | 1,000            | 519               | 1,519  |  |

## Table 4.19 AHU Capacity and Chilled Beam Capacity for Level 10

| Utility 2  | 46    | -     | -   | -       | -       | 21    | 643     | 334    | 977     |
|------------|-------|-------|-----|---------|---------|-------|---------|--------|---------|
| VIP Lounge | 398   | 192   | 2.1 | 15,006  | 10,512  | 192   | 5,187   | 3,020  | 8,207   |
| Waiting    | 118   | 64    | 0.9 | 3,023   | 4,575   | 64    | 1,715   | 960    | 2,675   |
|            | 7,987 | 3,520 | 34  | 254,879 | 171,084 | 4,926 | 135,320 | 81,122 | 216,442 |

Table 4.20 AHU Capacity and Chilled Beam Capacity for Level 10 (SI Unit)

|                    | Floor    |                             | ACI                           | В                     |                               | AHU                   |              |               |              |  |  |
|--------------------|----------|-----------------------------|-------------------------------|-----------------------|-------------------------------|-----------------------|--------------|---------------|--------------|--|--|
| Space              | Area, m2 | Total Air Flow<br>Rate, l/s | Total Water Flow<br>Rate, l/s | Total Sensible,<br>kW | Total Sensible, kW<br>(water) | Air Flow<br>Rate, l/s | Sensible, kW | Latent,<br>kW | Total,<br>kW |  |  |
| Bar                | 20       | 64.00                       | 2.10                          | 5002.00               | 10512.00                      | 30.19                 | 0.54         | 0.36          | 0.90         |  |  |
| Chairman<br>Office | 65       | 320.00                      | 1.92                          | 23460.00              | 9591.00                       | 150.94                | 2.55         | 1.51          | 4.05         |  |  |
| Director           | 81       | 150.94                      | 0.12                          | 6.88                  | 2.81                          | 150.94                | 2.61         | 1.66          | 4.27         |  |  |
| Foyer              | 40       | 30.19                       | 0.09                          | 1.14                  | 2.12                          | 30.19                 | 0.57         | 0.43          | 1.00         |  |  |
| IDF                | 11       | -                           | -                             | <u> </u>              | -                             | 25.94                 | 0.48         | 0.26          | 0.74         |  |  |
| Lift Lobby         | 111      | 192.00                      | 1.92                          | 14076.00              | 9591.00                       | 184.91                | 3.25         | 2.14          | 5.40         |  |  |
| Lounge 1           | 23       | 128.00                      | 2.10                          | 10004.00              | 10512.00                      | 60.38                 | 1.01         | 0.58          | 1.59         |  |  |
| Lounge 2           | 22       | 128.00                      | 1.92                          | 9384.00               | 9591.00                       | 60.38                 | 1.01         | 0.57          | 1.57         |  |  |
| Lounge 2           | 22       | 128.00                      | 2.10                          | 10004.00              | 10512.00                      | 60.38                 | 1.01         | 0.58          | 1.59         |  |  |
| Meeting Room       | 24       | 128.00                      | 2.10                          | 10004.00              | 10512.00                      | 60.38                 | 1.02         | 0.59          | 1.60         |  |  |
| Outdoor<br>Terrace | 24       | 832.00                      | 2.10                          | 65026.00              | 10512.00                      | 864.15                | 14.60        | 8.61          | 23.21        |  |  |
| PA                 | 26       | 192.00                      | 1.44                          | 11709.00              | 7218.00                       | 90.57                 | 1.47         | 0.77          | 2.24         |  |  |
| PA 1               | 17       | 64.00                       | 0.92                          | 3023.00               | 4575.00                       | 30.19                 | 0.53         | 0.33          | 0.86         |  |  |
| PA 2               | 33       | 192.00                      | 1.92                          | 14076.00              | 9591.00                       | 90.57                 | 1.50         | 0.84          | 2.35         |  |  |
| Pantry             | 10       | -                           | -                             | -                     | -                             | 25.94                 | 0.44         | 0.21          | 0.65         |  |  |
| Private Room       | 34       | 64.00                       | 2.10                          | 5002.00               | 10512.00                      | 30.19                 | 0.58         | 0.47          | 1.05         |  |  |

| Residence<br>Office | 42  | 256.00 | 1.92 | 18768.00 | 9591.00  | 120.75 | 2.00 | 1.11 | 3.10 |
|---------------------|-----|--------|------|----------|----------|--------|------|------|------|
| Sec                 | 13  | 64.00  | 0.92 | 3023.00  | 4575.00  | 30.19  | 0.51 | 0.30 | 0.81 |
| Secu                | 8   | -      | -    | -        | -        | 19.81  | 0.35 | 0.19 | 0.53 |
| Service Lobby       | 28  | 64.00  | 0.92 | 3023.00  | 4575.00  | 30.19  | 0.57 | 0.43 | 0.99 |
| Strategy            | 29  | 64.00  | 1.44 | 3903.00  | 7218.00  | 30.19  | 0.57 | 0.43 | 1.00 |
| Utility 1           | 7   | -      | -    | -        |          | 15.57  | 0.29 | 0.15 | 0.45 |
| Utility 2           | 4   | -      | -    | -        |          | 9.91   | 0.19 | 0.10 | 0.29 |
| VIP Lounge          | 37  | 192.00 | 2.10 | 15006.00 | 10512.00 | 90.57  | 1.52 | 0.89 | 2.41 |
| Waiting             | 11  | 64.00  | 0.92 | 3023.00  | 4575.00  | 30.19  | 0.50 | 0.28 | 0.78 |
|                     | 742 | 3,317  | 31   | 227,524  | 154,280  | 2,324  | 40   | 24   | 63   |
|                     |     |        |      |          |          |        |      |      |      |
|                     |     |        |      |          |          |        |      |      |      |

|       |                    |                             | L                         | ACB                               |                                 | AHU                   |                     |                   |                  |                           |  |
|-------|--------------------|-----------------------------|---------------------------|-----------------------------------|---------------------------------|-----------------------|---------------------|-------------------|------------------|---------------------------|--|
| Space | Floor<br>area, ft2 | Total Air Flow<br>Rate, cfm | Total Sensible,<br>Btu/hr | Total Sensible,<br>Btu/hr (water) | Total Water Flow<br>Rate, USgpm | Air Flow<br>Rate, CFM | Sensible,<br>BTU/hr | Latent,<br>BTU/hr | Total,<br>Btu/hr | Water Flow<br>Rate, USgpm |  |
| GF    | 5564               | 1,408                       | 100,591                   | 41,316                            | 8                               | 1,646                 | 42,162              | 22,140            | 64,302           | 13                        |  |
| L1-L9 | 11854              | 4,480                       | 329,415                   | 179,763                           | 36                              | 5,621                 | 150,213             | 79,183            | 229,396          | 46                        |  |
| L10   | 11696.3            | 3,520                       | 254,879                   | 171,084                           | 34                              | 4,926                 | 135,320             | 81,122            | 216,442          | 43                        |  |
|       |                    |                             |                           |                                   | X                               |                       |                     |                   |                  |                           |  |

 Table 4.21 Summary of AHU Capacity and Chilled Beam Capacity for All Levels

 Table 4.22 Summary of AHU Capacity and Chilled Beam Capacity for All Levels (SI Unit)

|       | Floor    |                             |                       | ACB                           |                               | AHU                   |                 |               |              |                         |  |
|-------|----------|-----------------------------|-----------------------|-------------------------------|-------------------------------|-----------------------|-----------------|---------------|--------------|-------------------------|--|
| Space | Area, m2 | Total Air Flow<br>Rate, l/s | Total Sensible,<br>kW | Total Sensible,<br>kW (water) | Total Water Flow<br>Rate, l/s | Air Flow<br>Rate, l/s | Sensible,<br>kW | Latent,<br>kW | Total,<br>kW | Water Flow<br>Rate, l/s |  |
| GF    | 517      | 664.15                      | 47,448.58             | 12.11                         | 0.52                          | 776                   | 12.36           | 6.49          | 18.85        | 0.81                    |  |
| L1-L9 | 1101     | 2,113.21                    | 155,384.43            | 52.68                         | 2.27                          | 2,651                 | 44.02           | 23.21         | 67.23        | 2.89                    |  |
| L10   | 1087     | 1,660.38                    | 120,225.94            | 50.14                         | 2.16                          | 2,324                 | 39.66           | 23.77         | 63.43        | 2.73                    |  |
|       |          |                             |                       |                               |                               |                       |                 |               |              |                         |  |

#### 4.4 System Layout

Air duct is sized based on procedures explained in Chapter 3 Methodology for both systems. It involves only ducting for VAV at every individual zone where VAV box is used to control the air flow into the conditioned space. Whereas for ACB, it involves both ducting and piping where the air flow is constant all the time but the water flow varies in response to room temperature. Zoning is done by using PIBCV valve to control the secondary chilled water flow into the chilled beams based on room temperature for each particular zone. For each zone, temperature sensor or thermostat is used to measure the room temperature and send the signal to VAV box or PIBCV valve to modulate the air flow and water flow respectively. Temperature sensor is used for open areas where the conditioned space is not confined within a compartment or a room. For close areas like manager office, thermostat is used to allow user to control the desired temperature. From the following figures, it can be observed that the duct required is lesser for ACB compared to VAV. However, additional piping is required for ACB. Figure 4.1 shows the layout of VAV system where it involves only ducting and Figure 4.2 shows the layout of ACB system where it involves both ducting and piping. Refer to Appendix 3 and 4 for complete layout.



Figure 4.1 VAV System Layout

Figure 4.2 ACB System Layout

#### **CHAPTER 5. ENERGY & COST ANALYSIS AND DISCUSSION**

#### 5.1 Introduction

A detailed analysis on the energy and cost comparing between VAV and ACB is presented in this chapter. Both short-term and long-term savings are determined and justified.

#### 5.2 Energy Comparison

Energy comparison is performed based on individual floors and overall building at three different load conditions: 100%, 75% sensible & 90% latent, and 50% sensible & 80% latent. At these three conditions, the system capacity and power consumption are determined. System capacity includes the capacity of AHU, pump, chilled beam, chiller and cooling tower. Likewise, the power consumption includes the equipment involved in the system and analysis is performed to determine which system gives better saving.

#### 5.2.1 Individual Floors

#### 5.2.1.1 Ground Floor

In terms of AHU capacity, VAV is much higher than ACB with 57% more at full load and part load conditions, and 55% more at lowest load condition. Likewise, VAV has higher power consumption than ACB where at full load condition, the power consumption is 50% higher than the latter with 10.9 kW compared to 7.3 kW as shown in **Table 5.1**. At part load conditions, VAV has higher power consumption than ACB with 8.4 kW and 6.1 kW compared to 6.2 kW and 5.1 kW respectively. In other words, ACB is more energy-saving compared to VAV at all three conditions for ground floor.

#### 5.2.1.2 Level 1 to Level 9

The AHU capacity for VAV is higher than ACB at all three conditions, between the range 45 – 50%. In terms of power consumption, VAV is 21% higher than ACB at full load condition with 34 kW compared to 28.0 kW as shown in **Table 5.3.** Likewise, at normal part load condition, VAV has higher power consumption than ACB, with 25.7 kW compared to 21.9 kW. However, at lowest part load condition, the power consumption for VAV is lower than ACB, with 18.1 kW compared to 20.1 kW.

#### 5.2.1.3 Level 10

Comparing between the two systems, VAV has higher AHU capacity than ACB at all three conditions, at the range of 42 - 46%. In terms of power consumption, VAV is 8% higher than ACB at full load condition, with 28.3 kW compared to 26.2 kW. However, at part load conditions, the savings is on the VAV's side where the power consumption is 22.5 kW and 16.0 kW compared to 22.5 kW and 19.2 kW respectively for ACB.

|                                 |                                          | 10      | 0%      | 75% sensible | 90% latent | 50% sensible | 80% latent |
|---------------------------------|------------------------------------------|---------|---------|--------------|------------|--------------|------------|
| LOAD & CAPACITY                 |                                          | VAV     | ACB     | VAV          | ACB        | VAV          | ACB        |
| Required Building & System Load | Zone Sensible Heat(Btu/hr)               | 96,192  | 96,192  | 72,144       | 72,144     | 48,096       | 48,096     |
|                                 | Zone Latent Heat(Btu/hr)                 | 8,924   | 8,924   | 8,032        | 8,032      | 7,139        | 7,139      |
|                                 | Total Zone Load(Btu/hr)                  | 105,116 | 105,116 | 80,176       | 80,176     | 55,235       | 55,235     |
|                                 |                                          |         |         |              |            |              |            |
| System Capacity                 | ACB Water Capacity (Btu/hr)              | -       | 41,316  | -            | 35,685     | -            | 29,094     |
|                                 | ACB Capacity (Btu/hr)                    | -       | 100,591 | -            | 95,013     | -            | 86,396     |
|                                 | AHU Capacity Sensible (Btu/hr)           | 110,814 | 42,162  | 83,111       | 31,622     | 55,407       | 21,081     |
|                                 | AHU Capacity Latent (Btu/hr)             | 39,562  | 22,140  | 35,606       | 19,926     | 31,650       | 17,712     |
|                                 | Total AHU Capacity (Btu/hr)              | 150,376 | 64,302  | 118,716      | 51,548     | 87,057       | 38,793     |
|                                 |                                          |         |         |              |            |              |            |
|                                 | AHU Air flow (cfm)                       | 4,354   | 1,646   | 3,206        | 1,496      | 2,138        | 1,646      |
|                                 | AHU Chilled Water flow (gpm)             | 30.1    | 12.9    | 23.7         | 10.3       | 17.4         | 7.8        |
|                                 | ACB Chilled Water flow - Primary (gpm)   | -       | 13.2    | -            | 11.4       | -            | 9.3        |
|                                 | ACB Chilled Water flow - Secondary (gpm) | -       | 8.3     | -            | 7.1        | -            | 5.8        |
|                                 |                                          |         |         |              |            |              |            |
|                                 | Condenser Water flow (gpm)               | 39.1    | 27.5    | 30.9         | 22.7       | 22.6         | 17.7       |
|                                 |                                          |         |         |              |            |              |            |
|                                 | Chiller Capacity (RT)                    | 12.5    | 8.8     | 9.9          | 7.3        | 7.3          | 5.7        |
|                                 | Cooling Tower Capacity (HRT)             | 16.3    | 11.4    | 12.9         | 9.5        | 9.4          | 7.4        |
|                                 |                                          |         |         |              |            |              |            |
| Power Consumption               |                                          |         |         |              |            |              |            |
| Water side (Pump)               | AHU Power Input (kW)                     | 0.5     | 0.2     | 0            | 0.2        | 0.3          | 0          |
|                                 | ACB Power Input - Primary (kW)           | -       | 0.2     | -            | 0.2        | -            | 0.1        |
|                                 | ACB Power Input - Secondary (kW)         | -       | 0.1     | -            | 0.1        | -            | 0.1        |
|                                 |                                          |         |         |              |            |              |            |

#### Table 5.1 Total Power Consumption at 3 Different Load Conditions for Ground Level

| Air side (Fan) | AHU Power Input (kW)           | 2.3  | 1.2 | 1.7 | 1.1 | 1.1 | 1.2 |
|----------------|--------------------------------|------|-----|-----|-----|-----|-----|
|                |                                |      |     |     |     |     |     |
|                | Chiller Power Input (kW)       | 7.5  | 5.3 | 5.9 | 4.4 | 4.4 | 3.4 |
|                | Cooling Tower Power Input (kW) | 0.5  | 0.3 | 0.4 | 0.3 | 0.3 | 0.2 |
|                |                                |      |     |     |     |     |     |
|                | Total Power Input (kW)         | 10.9 | 7.3 | 8.4 | 6.2 | 6.1 | 5.1 |

# Table 5.2 Total Power Consumption at 3 Different Load Conditions for Ground Level (SI Unit)

|                                 |                                          | 100   | %   | 75% sensible | 90% latent | 50% sensible | 80% latent |
|---------------------------------|------------------------------------------|-------|-----|--------------|------------|--------------|------------|
| LOAD & CAPACITY                 |                                          | VAV   | ACB | VAV          | ACB        | VAV          | ACB        |
| Required Building & System Load | Zone Sensible Heat(kW)                   | 28    | 28  | 21           | 21         | 14           | 14         |
|                                 | Zone Latent Heat(kW)                     | 3     | 3   | 2            | 2          | 2            | 2          |
|                                 | Total Zone Load(kW)                      | 31    | 31  | 23           | 23         | 16           | 16         |
| System Capacity                 | ACB Water Capacity (kW)                  | -     | 12  | -            | 10         | -            | 9          |
|                                 | ACB Capacity (kW)                        | -     | 29  | -            | 28         | -            | 25         |
|                                 | AHU Capacity Sensible (kW)               | 32    | 12  | 24           | 9          | 16           | 6          |
|                                 | AHU Capacity Latent (kW)                 | 12    | 6   | 10           | 6          | 9            | 5          |
|                                 | Total AHU Capacity (kW)                  | 44    | 19  | 35           | 15         | 26           | 11         |
|                                 |                                          |       |     |              |            |              |            |
|                                 | AHU Air flow (l/s)                       | 2,054 | 776 | 1,512        | 706        | 1,008        | 776        |
|                                 | AHU Chilled Water flow (l/s)             | 1.9   | 0.8 | 1.5          | 0.7        | 1.1          | 0.5        |
|                                 | ACB Chilled Water flow - Primary (l/s)   | -     | 0.8 | -            | 0.7        | -            | 0.6        |
|                                 | ACB Chilled Water flow - Secondary (l/s) | -     | 0.5 | -            | 0.5        | -            | 0.4        |
|                                 | Condesner Water flow (l/s)               | 2.5   | 1.7 | 1.9          | 1.4        | 1.4          | 1.1        |

| Chiller Capacity (kW)            | 44                                                                                                                                                                                                         | 31                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chiller Capacity (kW)            | 44                                                                                                                                                                                                         | 31                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  |                                                                                                                                                                                                            | 51                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cooling Tower Capacity (kW)      | 57                                                                                                                                                                                                         | 40                                                                                                                                                                                                                                                                                                          | 45                                                                                                                                                                                                                                                                                                                                                                                | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AHU Power Input (kW)             | 0.5                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                               | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ACB Power Input - Primary (kW)   | -                                                                                                                                                                                                          | 0.2                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ACB Power Input - Secondary (kW) | -                                                                                                                                                                                                          | 0.1                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AHU Power Input (kW)             | 2.3                                                                                                                                                                                                        | 1.2                                                                                                                                                                                                                                                                                                         | 1.7                                                                                                                                                                                                                                                                                                                                                                               | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chiller Power Input (kW)         | 7.5                                                                                                                                                                                                        | 5.3                                                                                                                                                                                                                                                                                                         | 5.9                                                                                                                                                                                                                                                                                                                                                                               | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cooling Tower Power Input (kW)   | 0.5                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                               | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Total Power Input (kW)           | 10.9                                                                                                                                                                                                       | 7.3                                                                                                                                                                                                                                                                                                         | 8.4                                                                                                                                                                                                                                                                                                                                                                               | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  | AHU Power Input (kW)<br>ACB Power Input - Primary (kW)<br>ACB Power Input - Secondary (kW)<br>AHU Power Input (kW)<br>Chiller Power Input (kW)<br>Cooling Tower Power Input (kW)<br>Total Power Input (kW) | AHU Power Input (kW)       0.5         ACB Power Input - Primary (kW)       -         ACB Power Input - Secondary (kW)       -         AHU Power Input (kW)       2.3         Chiller Power Input (kW)       7.5         Cooling Tower Power Input (kW)       0.5         Total Power Input (kW)       10.9 | AHU Power Input (kW)       0.5       0.2         ACB Power Input - Primary (kW)       -       0.1         ACB Power Input - Secondary (kW)       -       0.1         AHU Power Input (kW)       2.3       1.2         Chiller Power Input (kW)       7.5       5.3         Cooling Tower Power Input (kW)       0.5       0.3         Total Power Input (kW)       10.9       7.3 | AHU Power Input (kW)       0.5       0.2       0.4         ACB Power Input - Primary (kW)       -       0.2       -         ACB Power Input - Secondary (kW)       -       0.1       -         AHU Power Input (kW)       2.3       1.2       1.7         AHU Power Input (kW)       7.5       5.3       5.9         Chiller Power Input (kW)       0.5       0.3       0.4         Cooling Tower Power Input (kW)       0.5       0.3       0.4         Total Power Input (kW)       10.9       7.3       8.4 | AHU Power Input (kW)       0.5       0.2       0.4       0.2         ACB Power Input - Primary (kW)       -       0.1       -       0.1         ACB Power Input - Secondary (kW)       -       0.1       -       0.1         AHU Power Input (kW)       2.3       1.2       1.7       1.1         AHU Power Input (kW)       7.5       5.3       5.9       4.4         Cooling Tower Power Input (kW)       0.5       0.3       0.4       0.3         Total Power Input (kW)       10.9       7.3       8.4       6.2 | AHU Power Input (kW)       0.5       0.2       0.4       0.2       0.3         ACB Power Input - Primary (kW)       -       0.2       -       0.2       -         ACB Power Input - Secondary (kW)       -       0.1       -       0.1       -         AHU Power Input (kW)       2.3       1.2       1.7       1.1       1.1         AHU Power Input (kW)       7.5       5.3       5.9       4.4       4.4         Cooling Tower Power Input (kW)       0.5       0.3       0.4       0.3       0.3         Total Power Input (kW)       10.9       7.3       8.4       6.2       6.1 |

|                                 |                                          | 10      | 0%      | 75% sensible | 90% latent | 50% sensible | 80% latent |
|---------------------------------|------------------------------------------|---------|---------|--------------|------------|--------------|------------|
| LOAD & CAPACITY                 |                                          | VAV     | ACB     | VAV          | ACB        | VAV          | ACB        |
| Required Building & System Load | Zone Sensible Heat(Btu/hr)               | 353,128 | 353,128 | 264,846      | 264,846    | 176,564      | 176,564    |
|                                 | Zone Latent Heat(Btu/hr)                 | 19,932  | 19,932  | 17,939       | 17,939     | 15,946       | 15,946     |
|                                 | Total Zone Load(Btu/hr)                  | 373,060 | 373,060 | 282,785      | 282,785    | 192,510      | 192,510    |
| System Capacity                 | ACB Water Capacity (Btu/hr)              | _       | 179.763 | -            | 122.343    | _            | 134.754    |
|                                 | ACB Capacity (Btu/hr)                    | -       | 329,415 | -            | 221,905    | -            | 274,732    |
|                                 | AHU Capacity Sensible (Btu/hr)           | 368,836 | 150,213 | 276,627      | 112,660    | 184,418      | 75,107     |
|                                 | AHU Capacity Latent (Btu/hr)             | 85,258  | 79,183  | 76,732       | 71,265     | 68,206       | 63,346     |
|                                 | Total AHU Capacity (Btu/hr)              | 454,094 | 229,396 | 353,359      | 183,924    | 252,624      | 138,453    |
|                                 | AHU Air flow (cfm)                       | 15,455  | 5,621   | 10,672       | 5,621      | 7,115        | 5,621      |
|                                 | AHU Chilled Water flow (gpm)             | 90.8    | 45.9    | 70.7         | 36.8       | 50.5         | 27.7       |
|                                 | ACB Chilled Water flow - Primary (gpm)   | -       | 57.5    | -            | 39.1       | -            | 43.1       |
|                                 | ACB Chilled Water flow - Secondary (gpm) | _       | 36.0    | -            | 24.5       | -            | 27.0       |
|                                 | Condesner Water flow (gpm)               | 118.1   | 106.4   | 91.9         | 79.6       | 65.7         | 71.0       |
|                                 | Chiller Capacity (RT)                    | 37.8    | 3/1     | 29.4         | 25.5       | 21.1         | 22.8       |
|                                 | Cooling Tower Capacity (HRT)             | 49.2    | 44.3    | 38.3         | 33.2       | 27.4         | 29.6       |
|                                 |                                          |         |         |              |            |              |            |
| Power Consumption               |                                          |         |         |              |            |              |            |
| Water side (Pump)               | AHU Power Input (kW)                     | 1.6     | 0.7     | 1.3          | 0.6        | 0.9          | 0.4        |
|                                 | ACB Power Input - Primary (kW)           | -       | 0.9     | -            | 0.6        | -            | 0.7        |
|                                 | ACB Power Input - Secondary (kW)         | -       | 0.6     | -            | 0.4        | -            | 0.4        |
|                                 |                                          |         |         |              |            |              |            |

#### Table 5.3 Total Power Consumption at 3 Different Load Conditions for Level 1 to Level 9

| Air side (Fan) | AHU Power Input (kW)           | 8.2  | 4.0  | 5.7  | 4.0  | 3.8  | 4.0  |
|----------------|--------------------------------|------|------|------|------|------|------|
|                |                                |      |      |      |      |      |      |
|                | Chiller Power Input (kW)       | 22.7 | 20.5 | 17.7 | 15.3 | 12.6 | 13.7 |
|                | Cooling Tower Power Input (kW) | 1.5  | 1.3  | 1.1  | 1.0  | 0.8  | 0.9  |
|                |                                |      |      |      |      |      |      |
|                | Total Power Input (kW)         | 34.0 | 28.0 | 25.7 | 21.9 | 18.1 | 20.1 |

|                                 | Total Power Input (kW)                   | 34.0          | 28.0         | 25.7               | 21.9            | 18.1         | 20.1       |
|---------------------------------|------------------------------------------|---------------|--------------|--------------------|-----------------|--------------|------------|
|                                 |                                          |               |              |                    |                 |              |            |
|                                 |                                          | D'00 ( I      |              | ст 114 т           |                 |              |            |
|                                 | Table 5.4 Total Power Consumption at 3   | Different Loa | a Conditions | for Level 1 to Lev | vel 9 (SI Unit) |              |            |
|                                 |                                          | 10            | 0%           | 75% sensible       | 90% latent      | 50% sensible | 80% latent |
| LOAD & CAPACITY                 |                                          | VAV           | ACB          | VAV                | ACB             | VAV          | ACB        |
| Required Building & System Load | Zone Sensible Heat(kW)                   | 103           | 103          | 78                 | 78              | 52           | 52         |
|                                 | Zone Latent Heat(kW)                     | 6             | 6            | 5                  | 5               | 5            | 5          |
|                                 | Total Zone Load(kW)                      | 109           | 109          | 83                 | 83              | 56           | 56         |
|                                 |                                          |               |              |                    |                 |              |            |
| System Capacity                 | ACB Water Capacity (kW)                  | -             | 53           | -                  | 36              | -            | 39         |
|                                 | ACB Capacity (kW)                        | -             | 97           | -                  | 65              | -            | 81         |
|                                 | AHU Capacity Sensible (kW)               | 108           | 44           | 81                 | 33              | 54           | 22         |
|                                 | AHU Capacity Latent (kW)                 | 25            | 23           | 22                 | 21              | 20           | 19         |
|                                 | Total AHU Capacity (kW)                  | 133           | 67           | 104                | 54              | 74           | 41         |
|                                 |                                          |               |              |                    |                 |              |            |
|                                 | AHU Air flow (l/s)                       | 7,290         | 2,651        | 5,034              | 2,651           | 3,356        | 2,651      |
|                                 | AHU Chilled Water flow (l/s)             | 5.7           | 2.9          | 4.5                | 2.3             | 3.2          | 1.7        |
|                                 | ACB Chilled Water flow - Primary (l/s)   | -             | 3.6          | -                  | 2.5             | -            | 2.7        |
|                                 | ACB Chilled Water flow - Secondary (l/s) | -             | 2.3          | -                  | 1.5             | -            | 1.7        |
|                                 |                                          |               |              |                    |                 |              |            |
|                                 | Condesner Water flow (l/s)               | 7.4           | 6.7          | 5.8                | 5.0             | 4.1          | 4.5        |

| Chiller Capacity (kW)<br>Cooling Tower Capacity (kW)<br>AHU Power Input (kW)<br>ACB Power Input - Primary (kW)<br>ACB Power Input - Secondary (kW)<br>AHU Power Input (kW) | 133<br>173<br>1.6<br>-<br>-                                                          | 120<br>156<br>0.7<br>0.9<br>0.6                                                                                                | 104<br>135<br>1.3<br>-<br>-                                                                                                                                    | 90<br>117<br>0.6<br>0.6<br>0.4                                                                                                                                                                                       | 74<br>96<br>0.9<br>-                                                                                                                                                                                                                                       | 80<br>104<br>0.4<br>0.7                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cooling Tower Capacity (kW) AHU Power Input (kW) ACB Power Input - Primary (kW) ACB Power Input - Secondary (kW) AHU Power Input (kW)                                      | 173<br>1.6<br>-<br>-                                                                 | 156<br>0.7<br>0.9<br>0.6                                                                                                       | 135<br>1.3<br>-                                                                                                                                                | 117<br>0.6<br>0.6<br>0.4                                                                                                                                                                                             | 96<br>0.9<br>-                                                                                                                                                                                                                                             | 104<br>0.4<br>0.7                                                                                                                                                                                                                                                                                |
| AHU Power Input (kW)<br>ACB Power Input - Primary (kW)<br>ACB Power Input - Secondary (kW)<br>AHU Power Input (kW)                                                         | 1.6<br>-<br>-                                                                        | 0.7<br>0.9<br>0.6                                                                                                              | 1.3<br>-<br>-                                                                                                                                                  | 0.6<br>0.6<br>0.4                                                                                                                                                                                                    | 0.9                                                                                                                                                                                                                                                        | 0.4                                                                                                                                                                                                                                                                                              |
| AHU Power Input (kW)         ACB Power Input - Primary (kW)         ACB Power Input - Secondary (kW)         AHU Power Input (kW)                                          | 1.6<br>-<br>-                                                                        | 0.7<br>0.9<br>0.6                                                                                                              | 1.3<br>-<br>-                                                                                                                                                  | 0.6<br>0.6<br>0.4                                                                                                                                                                                                    | 0.9                                                                                                                                                                                                                                                        | 0.4 0.7                                                                                                                                                                                                                                                                                          |
| AHU Power Input (kW)         ACB Power Input - Primary (kW)         ACB Power Input - Secondary (kW)         AHU Power Input (kW)                                          | 1.6<br>-<br>-                                                                        | 0.7<br>0.9<br>0.6                                                                                                              | 1.3<br>-<br>-                                                                                                                                                  | 0.6<br>0.6<br>0.4                                                                                                                                                                                                    | 0.9                                                                                                                                                                                                                                                        | 0.4 0.7                                                                                                                                                                                                                                                                                          |
| ACB Power Input - Primary (kW)<br>ACB Power Input - Secondary (kW)<br>AHU Power Input (kW)                                                                                 | -                                                                                    | 0.9                                                                                                                            | -                                                                                                                                                              | 0.6<br>0.4                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                          | 0.7                                                                                                                                                                                                                                                                                              |
| ACB Power Input - Secondary (kW) AHU Power Input (kW)                                                                                                                      | -                                                                                    | 0.6                                                                                                                            | -                                                                                                                                                              | 0.4                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |
| AHU Power Input (kW)                                                                                                                                                       |                                                                                      |                                                                                                                                |                                                                                                                                                                | 1                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                          | 0.4                                                                                                                                                                                                                                                                                              |
| AHU Power Input (kW)                                                                                                                                                       |                                                                                      |                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                            | 8.2                                                                                  | 4.0                                                                                                                            | 5.7                                                                                                                                                            | 4.0                                                                                                                                                                                                                  | 3.8                                                                                                                                                                                                                                                        | 4.0                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                            |                                                                                      |                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |
| Chiller Power Input (kW)                                                                                                                                                   | 22.7                                                                                 | 20.5                                                                                                                           | 17.7                                                                                                                                                           | 15.3                                                                                                                                                                                                                 | 12.6                                                                                                                                                                                                                                                       | 13.7                                                                                                                                                                                                                                                                                             |
| Cooling Tower Power Input (kW)                                                                                                                                             | 1.5                                                                                  | 1.3                                                                                                                            | 1.1                                                                                                                                                            | 1.0                                                                                                                                                                                                                  | 0.8                                                                                                                                                                                                                                                        | 0.9                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                            |                                                                                      |                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |
| Total Power Input (kW)                                                                                                                                                     | 34.0                                                                                 | 28.0                                                                                                                           | 25.7                                                                                                                                                           | 21.9                                                                                                                                                                                                                 | 18.1                                                                                                                                                                                                                                                       | 20.1                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                            |                                                                                      |                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                            | Chiller Power Input (kW)<br>Cooling Tower Power Input (kW)<br>Total Power Input (kW) | Chiller Power Input (kW)       22.7         Cooling Tower Power Input (kW)       1.5         Total Power Input (kW)       34.0 | Chiller Power Input (kW)       22.7       20.5         Cooling Tower Power Input (kW)       1.5       1.3         Total Power Input (kW)       34.0       28.0 | Chiller Power Input (kW)         22.7         20.5         17.7           Cooling Tower Power Input (kW)         1.5         1.3         1.1           Total Power Input (kW)         34.0         28.0         25.7 | Chiller Power Input (kW)         22.7         20.5         17.7         15.3           Cooling Tower Power Input (kW)         1.5         1.3         1.1         1.0           Total Power Input (kW)         34.0         28.0         25.7         21.9 | Chiller Power Input (kW)         22.7         20.5         17.7         15.3         12.6           Cooling Tower Power Input (kW)         1.5         1.3         1.1         1.0         0.8           Total Power Input (kW)         34.0         28.0         25.7         21.9         18.1 |

|                                 |                                          | 10      | 0%      | 75% sensible | 90% latent | 50% sensible | 80% latent |
|---------------------------------|------------------------------------------|---------|---------|--------------|------------|--------------|------------|
| LOAD & CAPACITY                 |                                          | VAV     | ACB     | VAV          | ACB        | VAV          | ACB        |
| Required Building & System Load | Zone Sensible Heat(Btu/hr)               | 237,313 | 237,313 | 177,985      | 177,985    | 118,657      | 118,657    |
|                                 | Zone Latent Heat(Btu/hr)                 | 24,460  | 24,460  | 22,014       | 22,014     | 19,568       | 19,568     |
|                                 | Total Zone Load(Btu/hr)                  | 261,773 | 261,773 | 199,999      | 199,999    | 138,225      | 138,225    |
| System Capacity                 | ACB Water Capacity (Btu/hr)              | -       | 171,084 | -            | 158,628    | -            | 133,950    |
|                                 | ACB Capacity (Btu/hr)                    | - 🤇     | 254,879 | -            | 242,577    | -            | 217,953    |
|                                 | AHU Capacity Sensible (Btu/hr)           | 305,532 | 135,320 | 229,149      | 101,490    | 152,766      | 67,660     |
|                                 | AHU Capacity Latent (Btu/hr)             | 93,142  | 81,122  | 83,828       | 73,010     | 74,514       | 64,898     |
|                                 | Total AHU Capacity (Btu/hr)              | 398,674 | 216,442 | 312,977      | 174,500    | 227,280      | 132,558    |
|                                 | AHU Air flow (cfm)                       | 10,551  | 4,926   | 8,841        | 4,926      | 5,894        | 4,926      |
|                                 | AHU Chilled Water flow (gpm)             | 79.7    | 43.3    | 62.6         | 34.9       | 45.5         | 26.5       |
|                                 | ACB Chilled Water flow - Primary (gpm)   | -       | 54.7    | -            | 50.8       | -            | 42.9       |
|                                 | ACB Chilled Water flow - Secondary (gpm) | -       | 34.2    | -            | 31.7       | -            | 26.8       |
|                                 | Condesner Water flow (gpm)               | 103.7   | 100.8   | 81.4         | 86.6       | 59.1         | 69.3       |
|                                 | Chiller Capacity (RT)                    | 33.2    | 32.3    | 26.1         | 27.8       | 18.9         | 22.2       |
|                                 | Cooling Tower Capacity (HRT)             | 43.2    | 42.0    | 33.9         | 36.1       | 24.6         | 28.9       |
| Power Consumption               |                                          |         |         |              |            |              |            |
| Water side (Pump)               | AHU Power Input (kW)                     | 1.4     | 0.7     | 1            | 0.6        | 0.8          | 0          |
|                                 | ACB Power Input - Primary (kW)           | -       | 0.9     | -            | 0.8        | -            | 0.7        |
|                                 | ACB Power Input - Secondary (kW)         | -       | 0.5     | -            | 0.5        | -            | 0.4        |
|                                 |                                          |         |         |              |            |              |            |

## Table 5.5 Total Power Consumption at 3 Different Load Conditions for Level 10

| Air side (Fan) | AHU Power Input (kW)           | 5.6  | 3.5  | 4.7  | 3.5  | 3.1  | 3.5  |
|----------------|--------------------------------|------|------|------|------|------|------|
|                |                                |      |      |      |      |      |      |
|                | Chiller Power Input (kW)       | 19.9 | 19.4 | 15.6 | 16.7 | 11.4 | 13.3 |
|                | Cooling Tower Power Input (kW) | 1.3  | 1.3  | 1.0  | 1.1  | 0.7  | 0.9  |
|                |                                |      |      |      |      |      |      |
|                | Total Power Input (kW)         | 28.3 | 26.2 | 22.5 | 23.1 | 16.0 | 19.2 |
|                |                                |      | N'C  |      |      |      |      |

 Table 5.6 Total Power Consumption at 3 Different Load Conditions for Level 10 (SI Units)

|                                 |                                          | 10    | 0%    | 75% sensible | 90% latent | 50% sensible | 80% latent |
|---------------------------------|------------------------------------------|-------|-------|--------------|------------|--------------|------------|
| LOAD & CAPACITY                 |                                          | VAV   | ACB   | VAV          | ACB        | VAV          | ACB        |
| Required Building & System Load | Zone Sensible Heat(kW)                   | 70    | 70    | 52           | 52         | 35           | 35         |
|                                 | Zone Latent Heat(kW)                     | 7     | 7     | 6            | 6          | 6            | 6          |
|                                 | Total Zone Load(kW)                      | 77    | 77    | 59           | 59         | 41           | 41         |
| System Capacity                 | ACB Water Capacity (kW)                  | -     | 50    | -            | 46         | -            | 39         |
|                                 | ACB Capacity (kW)                        | -     | 75    | -            | 71         | -            | 64         |
|                                 | AHU Capacity Sensible (kW)               | 90    | 40    | 67           | 30         | 45           | 20         |
|                                 | AHU Capacity Latent (kW)                 | 27    | 24    | 25           | 21         | 22           | 19         |
|                                 | Total AHU Capacity (kW)                  | 117   | 63    | 92           | 51         | 67           | 39         |
|                                 |                                          |       |       |              |            |              |            |
|                                 | AHU Air flow (l/s)                       | 4,977 | 2,324 | 4,170        | 2,324      | 2,780        | 2,324      |
|                                 | AHU Chilled Water flow (l/s)             | 5.0   | 2.7   | 3.9          | 2.2        | 2.9          | 1.7        |
|                                 | ACB Chilled Water flow - Primary (l/s)   | -     | 3.5   | -            | 3.2        | -            | 2.7        |
|                                 | ACB Chilled Water flow - Secondary (l/s) | -     | 2.2   | -            | 2.0        | -            | 1.7        |
|                                 |                                          |       |       |              |            |              |            |
|                                 | Condesner Water flow (l/s)               | 6.5   | 6.4   | 5.1          | 5.5        | 3.7          | 4.4        |
|                                 |                                          |       |       |              |            |              |            |

|                   | Chiller Capacity (kW)            | 117  | 114  | 92   | 98   | 67   | 78   |
|-------------------|----------------------------------|------|------|------|------|------|------|
|                   | Cooling Tower Capacity (kW)      | 152  | 148  | 119  | 127  | 87   | 102  |
|                   |                                  |      |      |      |      |      |      |
| Power Consumption |                                  |      |      |      |      |      |      |
| Water side (Pump) | AHU Power Input (kW)             | 1.4  | 0.7  | 1.1  | 0.6  | 0.8  | 0.4  |
|                   | ACB Power Input - Primary (kW)   | -    | 0.9  | -    | 0.8  | -    | 0.7  |
|                   | ACB Power Input - Secondary (kW) | -    | 0.5  | -    | 0.5  | -    | 0.4  |
|                   |                                  |      |      |      |      |      |      |
| Air side (Fan)    | AHU Power Input (kW)             | 5.6  | 3.5  | 4.7  | 3.5  | 3.1  | 3.5  |
|                   |                                  | X    |      |      |      |      |      |
|                   | Chiller Power Input (kW)         | 19.9 | 19.4 | 15.6 | 16.7 | 11.4 | 13.3 |
|                   | Cooling Tower Power Input (kW)   | 1.3  | 1.3  | 1.0  | 1.1  | 0.7  | 0.9  |
|                   |                                  |      |      |      |      |      |      |
|                   | Total Power Input (kW)           | 28.3 | 26.2 | 22.5 | 23.1 | 16.0 | 19.2 |

Total Power Input (kW)

#### 5.2.2 Overall Building

For overall building AHU capacity, VAV is higher than ACB at all three load conditions, by 50% at full load, 48% at part load and 45% at lowest part load. ACB has lower AHU capacity mainly because part of the cooling load (room sensible) is catered by chilled beams. Meanwhile, for overall building power consumption, VAV is higher than ACB at full load and normal part load conditions, with 345 kW and 262.1 kW compared to 284.5 kW and 226.1 kW respectively as shown in **Table 5.7.** However, at lowest part load condition, VAV has lower power consumption with 185 kW compared to 204.1 kW for ACB. The higher power consumption for ACB at lowest part load condition can be explained by the use of constant air volume diffuser at particular zones where the space available is too small for the placement of chilled beams. To improve the overall system, VAV can be used for spaces where chilled beams are not allowed. However, the penalty is the increase in initial cost as the cost of VAV box is comparably high against normal CAV system.

|                                 |                                          | 100%      |           | 75% sensible | 90% latent | 50% sensible | 80% latent |
|---------------------------------|------------------------------------------|-----------|-----------|--------------|------------|--------------|------------|
| LOAD & CAPACITY                 |                                          | VAV       | ACB       | VAV          | ACB        | VAV          | ACB        |
| Required Building & System Load | Zone Sensible Heat(Btu/hr)               | 3,511,657 | 3,511,657 | 2,633,743    | 2,633,743  | 1,755,829    | 1,755,829  |
|                                 | Zone Latent Heat(Btu/hr)                 | 212,772   | 212,772   | 191,495      | 191,495    | 170,218      | 170,218    |
|                                 | Total Zone Load(Btu/hr)                  | 3,724,429 | 3,724,429 | 2,825,238    | 2,825,238  | 1,926,046    | 1,926,046  |
|                                 |                                          |           |           |              |            |              |            |
| System Capacity                 | ACB Water Capacity (Btu/hr)              | -         | 1,830,267 | -            | 1,295,400  | -            | 1,375,830  |
|                                 | ACB Capacity (Btu/hr)                    | -         | 3,320,205 | -            | 2,334,735  | -            | 2,776,937  |
|                                 | AHU Capacity Sensible (Btu/hr)           | 3,735,870 | 1,529,399 | 2,801,903    | 1,147,049  | 1,867,935    | 764,700    |
|                                 | AHU Capacity Latent (Btu/hr)             | 900,026   | 815,909   | 810,023      | 734,318    | 720,021      | 652,727    |
|                                 | Total AHU Capacity (Btu/hr)              | 4,635,896 | 2,345,308 | 3,611,926    | 1,881,367  | 2,587,956    | 1,417,427  |
|                                 |                                          |           |           |              |            |              |            |
|                                 | AHU Air flow (cfm)                       | 154,000   | 57,161    | 108,098      | 57,011     | 72,065       | 57,161     |
|                                 | AHU Chilled Water flow (gpm)             | 927.2     | 469.1     | 722.4        | 376.3      | 517.6        | 283.5      |
|                                 | ACB Chilled Water flow - Primary (gpm)   | -         | 585.7     | -            | 414.5      | -            | 440.3      |
|                                 | ACB Chilled Water flow - Secondary (gpm) | -         | 366.1     | -            | 259.1      | -            | 275.2      |
|                                 |                                          |           |           |              |            |              |            |
|                                 | Condesner Water flow (gpm)               | 1205.3    | 1085.6    | 939.1        | 826.0      | 672.9        | 726.2      |
|                                 |                                          |           |           |              |            |              |            |
|                                 | Chiller Capacity (RT)                    | 386.3     | 348.0     | 301.0        | 264.7      | 215.7        | 232.8      |
|                                 | Cooling Tower Capacity (HRT)             | 502.2     | 452.4     | 391.3        | 344.1      | 280.4        | 302.6      |
|                                 |                                          |           |           |              |            |              |            |
| Power Consumption               |                                          |           |           |              |            |              |            |
| Water side (Pump)               | AHU Power Input (kW)                     | 16.4      | 7.5       | 13           | 6.0        | 9.2          | 5          |
|                                 | ACB Power Input - Primary (kW)           | -         | 9.3       | -            | 6.6        | -            | 7.0        |

#### Table 5.7 Total Power Input at 3 Different Load Conditions for Overall Building

|                | ACB Power Input - Secondary (kW) | -     | 5.8   | -     | 4.1   | -     | 4.4   |
|----------------|----------------------------------|-------|-------|-------|-------|-------|-------|
|                |                                  |       |       |       |       |       |       |
| Air side (Fan) | AHU Power Input (kW)             | 81.9  | 40.5  | 57.5  | 40.4  | 38.3  | 40.5  |
|                |                                  |       |       |       |       |       |       |
|                | Chiller Power Input (kW)         | 231.8 | 208.8 | 180.6 | 158.8 | 129.4 | 139.7 |
|                | Cooling Tower Power Input (kW)   | 15.1  | 13.6  | 11.7  | 10.3  | 8.4   | 9.1   |
|                |                                  |       |       | /     |       |       |       |
|                | Total Power Input (kW)           | 345.2 | 285.5 | 262.6 | 226.3 | 185.3 | 205.2 |

 Total Power Input (kW)
 345.2
 285.5
 262.6
 226

|                                 |                                          | 100%   |        | 75% sensible | 90% latent | 50% sensible | 80% latent |
|---------------------------------|------------------------------------------|--------|--------|--------------|------------|--------------|------------|
| LOAD & CAPACITY                 |                                          | VAV    | ACB    | VAV          | ACB        | VAV          | ACB        |
| Required Building & System Load | Zone Sensible Heat(kW)                   | 1,029  | 1,029  | 772          | 772        | 515          | 515        |
|                                 | Zone Latent Heat(kW)                     | 62     | 62     | 56           | 56         | 50           | 50         |
|                                 | Total Zone Load(kW)                      | 1,092  | 1,092  | 828          | 828        | 564          | 564        |
|                                 |                                          |        |        |              |            |              |            |
| System Capacity                 | ACB Water Capacity (kW)                  | -      | 536    | -            | 380        | -            | 403        |
|                                 | ACB Capacity (kW)                        | -      | 973    | -            | 684        | -            | 814        |
|                                 | AHU Capacity Sensible (kW)               | 1,095  | 448    | 821          | 336        | 547          | 224        |
|                                 | AHU Capacity Latent (kW)                 | 264    | 239    | 237          | 215        | 211          | 191        |
|                                 | Total AHU Capacity (kW)                  | 1,359  | 687    | 1,059        | 551        | 758          | 415        |
|                                 |                                          |        |        |              |            |              |            |
|                                 | AHU Air flow (l/s)                       | 72,642 | 26,963 | 50,990       | 26,892     | 33,993       | 26,963     |
|                                 | AHU Chilled Water flow (l/s)             | 58.5   | 29.6   | 45.6         | 23.7       | 32.7         | 17.9       |
|                                 | ACB Chilled Water flow - Primary (l/s)   | -      | 37.0   | -            | 26.2       | -            | 27.8       |
|                                 | ACB Chilled Water flow - Secondary (l/s) | -      | 23.1   | -            | 16.3       | -            | 17.4       |
|                                 |                                          |        |        |              |            |              |            |
|                                 | Condesner Water flow (l/s)               | 76.0   | 68.5   | 59.2         | 52.1       | 42.5         | 45.8       |
|                                 |                                          |        |        |              |            |              |            |
|                                 | Chiller Capacity (kW)                    | 1,359  | 1,224  | 1,059        | 931        | 758          | 819        |
|                                 | Cooling Tower Capacity (kW)              | 1,766  | 1,591  | 1,376        | 1,210      | 986          | 1,064      |
|                                 |                                          |        |        |              |            |              |            |
| Power Consumption               |                                          |        |        |              |            |              |            |
| Water side (Pump)               | AHU Power Input (kW)                     | 16.4   | 7.5    | 12.8         | 6.0        | 9.2          | 4.5        |
|                                 | ACB Power Input - Primary (kW)           | -      | 9.3    | -            | 6.6        | _            | 7.0        |

### Table 5.8 Total Power Input at 3 Different Load Conditions for Overall Building (SI unit)

|                |                                  |       | 5.0   |       | 4.1   |       | 4.4   |
|----------------|----------------------------------|-------|-------|-------|-------|-------|-------|
|                | ACB Power Input - Secondary (KW) | -     | 5.8   |       | 4.1   | -     | 4.4   |
| Aineide (Een)  | ALULI Desser Legent (LW)         |       | 40.5  | 57.5  | 40.4  | 29.2  | 40.5  |
| Air side (Fan) | AHO Power input (kw)             | 81.9  | 40.5  | 57.5  | 40.4  | 38.3  | 40.5  |
|                |                                  | 221.9 | 200.0 | 190.6 | 150.0 | 120.4 | 120.7 |
|                |                                  | 231.8 | 208.8 | 180.6 | 158.8 | 129.4 | 139.7 |
|                | Cooling Tower Power Input (KW)   | 15.1  | 13.6  | 11./  | 10.3  | 8.4   | 9.1   |
|                | Total Power Input (kW)           | 345.2 | 285.5 | 262.6 | 226.3 | 185 3 | 205.2 |
|                | Total Fower Input (KW)           | 545.2 | 203.3 | 202.0 | 220.3 | 105.5 | 205.2 |
|                |                                  |       |       |       |       |       |       |
|                |                                  |       |       |       |       |       | 132   |

#### 5.3 Cost Comparison

Cost comparison is divided into two parts: initial cost and operation cost. Initial cost will determine the short-term savings and operation cost on the other hand will determine the long-term savings.

#### 5.3.1 Initial Cost

The total initial cost can be divided into four parts: preliminaries and preambles, water side, air side and BMS. Preliminaries and preambles covers the cost for training, testing & commissioning, drawings, insurance and etc. as per specifications and conditions of contract. For water side, it covers the cost of equipment and material for both chilled water and condenser water that include chiller, cooling tower, pump, expansion tank, piping and etc. On the other hand, for air side, the cost of equipment and material include AHU, FCU, diffuser, damper, ducting and etc. For BMS, it covers the cost for input/output devices and control system equipment where it's quoted separately by specialists.

Comparing between the two systems in terms of total initial cost, ACB is approximately 5% higher than VAV with RM 8,259,777.73 compared to RM 7,882,188.34 where it's largely contributed by the water side for the additional chilled water piping and equipment at the secondary side such as secondary pump, heat exchanger and chilled beams as shown in **Table 5.9**.

The cost difference for air side is significant, approximately 72% lesser for ACB over VAV, with merely RM 783,677.73 compared to RM 2,810,948.34. In other words, it can be deduced that the reduction of air flow rate required significantly reduces the cost for the air side.

| VAV                            | Cost, RM     | ACB                            | Cost, RM     |  |  |
|--------------------------------|--------------|--------------------------------|--------------|--|--|
| Preliminaries and Preambles    | 161,500.00   | Preliminaries and Preambles    | 161,500.00   |  |  |
|                                |              |                                |              |  |  |
| Water Side                     |              | Water Side                     |              |  |  |
| Chiller                        | 600,000.00   | Chiller                        | 525,000.00   |  |  |
| Chilled Water Pump             |              | Chilled Water Pump             |              |  |  |
| Primary                        | 30,000.00    | Primary                        | 30,000.00    |  |  |
| Secondary                      |              | Secondary                      | 30,000.00    |  |  |
| Condenser Water Pump           | 45,000.00    | Condenser Water Pump           | 45,000.00    |  |  |
| Cooling Tower                  | 600,000.00   | Cooling Tower                  | 528,000.00   |  |  |
| Chilled Water Piping           | 568,270.00   | Chilled Water Piping           | 2,096,130.00 |  |  |
| Condenser Water Piping         | 350,720.00   | Condenser Water Piping         | 350,720.00   |  |  |
| Valves                         | 80,000.00    | Valves                         | 200,000.00   |  |  |
| Decoupler (bypass line)        | 15,000.00    | Decoupler (bypass line)        | 15,000.00    |  |  |
| Make-up water piping           | 12,750.00    | Make-up water piping           | 12,750.00    |  |  |
| Expansion Tank                 | 5,000.00     | Expansion Tank                 | 5,000.00     |  |  |
| Motor Control Center (MCC)     | 840,000.00   | Heat Exchanger                 | 16,000.00    |  |  |
| Power cables and Control Cable | 300,000.00   | Motor Control Center (MCC)     | 840,000.00   |  |  |
| Master Controller              | 50,000.00    | Power cables and Control Cable | 300,000.00   |  |  |
| Chemical Treatment             | 45,000.00    | Master Controller              | 50,000.00    |  |  |
| Flushing and Water Treatment   | 6,000.00     | Chemical Treatment             | 45,000.00    |  |  |
| Testing & Commissioning        | 12,000.00    | Flushing and Water Treatment   | 6,000.00     |  |  |
|                                |              | Testing & Commissioning        | 12,000.00    |  |  |
|                                |              | Active Chilled Beam            | 813,000.00   |  |  |
|                                | 3,559,740.00 |                                | 5,919,600.00 |  |  |
|                                |              |                                |              |  |  |
| Air Side                       |              | Air Side                       |              |  |  |
| AHUs & FCUs                    | 290,820.00   | AHUs & FCUs                    | 122,538.00   |  |  |
| Condensate Water Piping        | 52,000.00    | Condensate Water Piping        | 33,800.00    |  |  |
| Ductworks                      | 966,878.34   | Ductworks                      | 303,839.73   |  |  |
| Silencers                      | 26,000.00    | Silencers                      | 26,000.00    |  |  |
| Diffusers                      | 465,250.00   | Diffusers                      | 237,500.00   |  |  |
| Control Panel                  | 50,000.00    | Control Panel                  | 50,000.00    |  |  |
| Power cable and control cable  | 10,000.00    | Power cable and control cable  | 10,000.00    |  |  |
| VAV box                        | 950,000.00   |                                |              |  |  |
|                                | 2,810,948.34 |                                | 783,677.73   |  |  |
|                                |              |                                |              |  |  |
| BMS                            | 1,350,000.00 | BMS                            | 1,395,000.00 |  |  |
| Total                          | 7,882,188.34 | Total                          | 8,259,777.73 |  |  |

#### Table 5.9 Total Cost of The Entire Chiller Plant

| VAV                            | Cost, \$     |
|--------------------------------|--------------|
| Preliminaries and Preambles    | 40,375.00    |
|                                |              |
| Water Side                     |              |
| Chiller                        | 150,000.00   |
| Chilled Water Pump             |              |
| Primary                        | 7,500.00     |
| Secondary                      | -            |
| Condenser Water Pump           | 11,250.00    |
| Cooling Tower                  | 150,000.00   |
| Chilled Water Piping           | 142,067.50   |
| Condenser Water Piping         | 87,680.00    |
| Vavles                         | 20,000.00    |
| Decoupler (bypass line)        | 3,750.00     |
| Make-up water piping           | 3,187.50     |
| Expansion Tank                 | 1,250.00     |
| Motor Control Center (MCC)     | 210,000.00   |
| Power cables and Control Cable | 75,000.00    |
| Master Controller              | 12,500.00    |
| Chemical Treatment             | 11,250.00    |
| Flushing and Water Treatment   | 1,500.00     |
| Testing & Commisioning         | 3,000.00     |
|                                |              |
|                                |              |
|                                | 889,935.00   |
|                                |              |
| Air Side                       |              |
| AHUs & FCUs                    | 72,705.00    |
| Condenstate Water Piping       | 13,000.00    |
| Ductworks                      | 241,719.59   |
| Silencers                      | 6,500.00     |
| Diffusers                      | 116,312.50   |
| Control Panel                  | 12,500.00    |
| Power cable and control cable  | 2,500.00     |
| VAV box                        | 237,500.00   |
|                                | 702,737.09   |
|                                |              |
| BMS                            | 337,500.00   |
| Total                          | 1,970,547.09 |

#### Table 5.10 Total Cost of The Entire Chiller Plant (USD)

| ACB                            | Cost. \$     |
|--------------------------------|--------------|
| Preliminaries and Preambles    | 40.375.00    |
|                                |              |
| Water Side                     |              |
| Chiller                        | 131,250.00   |
| Chilled Water Pump             |              |
| Primary                        | 7,500.00     |
| Secondary                      | 7,500.00     |
| Condenser Water Pump           | 11,250.00    |
| Cooling Tower                  | 132,000.00   |
| Chilled Water Piping           | 274,032.50   |
| Condenser Water Piping         | 87,680.00    |
| Vavles                         | 50,000.00    |
| Decoupler (bypass line)        | 3,750.00     |
| Make-up water piping           | 3,187.50     |
| Expansion Tank                 | 1,250.00     |
| Heat Exchanger                 | 4,000.00     |
| Motor Control Center (MCC)     | 210,000.00   |
| Power cables and Control Cable | 75,000.00    |
| Master Controller              | 12,500.00    |
| Chemical Treatment             | 11,250.00    |
| Flushing and Water Treatment   | 1,500.00     |
| Testing & Commisioning         | 3,000.00     |
| ACB                            | 453,250.00   |
|                                | 1,479,900.00 |
|                                |              |
| Air Side                       |              |
| AHUs & FCUs                    | 30,634.50    |
| Condenstate Water Piping       | 8,450.00     |
| Ductworks                      | 75,959.93    |
| Silencers                      | 6,500.00     |
| Diffusers                      | 59,375.00    |
| Control Panel                  | 12,500.00    |
| Power cable and control cable  | 2,500.00     |
|                                |              |
|                                | 195,919.43   |
|                                |              |
| BMS                            | 348,750.00   |
| Total                          | 2,064,944.43 |

#### 5.3.2 Operation Cost

The system operation cost reflects on the total energy demand and consumption. **Table 5.11** shows the TNB tariff rate used to calculate the operation cost. **Table 5.13** shows the energy consumption in monthly and yearly basis and **Table 5.14** shows the total cost savings in monthly and yearly basis. From the results, at full load and normal part load conditions, the yearly cost savings is on ACB's side with RM 62,708 and RM 38,153 respectively. However, at lowest part load condition, the savings is on VAV's side with RM 20,910. As mentioned earlier, some of the conditioned space are equipped with constant air volume (CAV) diffusers for ACB system and because of this, ACB is less efficient at lowest part load condition compared to VAV. Nevertheless, the amount of savings at full load and normal part load conditions is more than the losses at lowest part load condition.

#### Table 5.11 TNB Tariff

| Operation Cost | Rate  | Unit   |
|----------------|-------|--------|
| Demand         | 30.3  | RM/kW  |
| Consumption    | 0.365 | RM/kWh |

\* Tariff C1-Medium voltage general commercial tariff

#### Table 5.12 TNB Tariff (USD)

| <b>Operation Cost</b> | Rate    | Unit   |
|-----------------------|---------|--------|
| Demand                | 7.757   | \$/kW  |
| Consumption           | 0.09125 | \$/kWh |

\* Tariff C1-Medium voltage general commercial tariff

#### Table 5.13 Energy Consumption in Monthly and Yearly Basis

|                              | 100%    |         | 75% sensible | 90% latent | 50% sensible | 80% latent |
|------------------------------|---------|---------|--------------|------------|--------------|------------|
|                              | VAV     | ACB     | VAV          | ACB        | VAV          | ACB        |
| Demand (kW)                  | 345     | 286     | 263          | 226        | 185          | 205        |
| Consumption kWh<br>(monthly) | 82,841  | 68,524  | 63,026       | 54,316     | 44,471       | 49,245     |
| Consumption kWh<br>(yearly)  | 994,097 | 822,294 | 756,317      | 651,789    | 533,653      | 590,941    |
| Savings (yearly)             |         | 171,804 |              | 104,529    |              | (57,288)   |

|                             | 100%    |         | 75% sensible 90% latent |         | 50% sensible | 80% latent |
|-----------------------------|---------|---------|-------------------------|---------|--------------|------------|
|                             | VAV     | ACB     | VAV                     | ACB     | VAV          | ACB        |
| Demand RM                   | 10,459  | 8,651   | 7,957                   | 6,857   | 5,614        | 6,217      |
| Consumption RM<br>(monthly) | 30,237  | 25,011  | 23,005                  | 19,825  | 16,232       | 17,974     |
| Consumption RM<br>(yearly)  | 362,846 | 300,137 | 276,056                 | 237,903 | 194,783      | 215,694    |
| Savings (yearly)            |         | 62,708  |                         | 38,153  |              | (20,910)   |

#### Table 5.14 Total Cost Savings in Monthly and Yearly Basis

#### Table 5.15 Total Cost Savings in Monthly and Yearly Basis (USD)

|                             | 100%   |        | 75% sensible 90% latent |        | 50% sensible | 80% latent |
|-----------------------------|--------|--------|-------------------------|--------|--------------|------------|
|                             | VAV    | ACB    | VAV                     | ACB    | VAV          | ACB        |
| Demand \$                   | 2,615  | 2,163  | 1,989                   | 1,714  | 1,404        | 1,554      |
| Consumption \$<br>(monthly) | 7,559  | 6,253  | 5,751                   | 4,956  | 4,058        | 4,494      |
| Consumption \$<br>(yearly)  | 90,711 | 75,034 | 69,014                  | 59,476 | 48,696       | 53,923     |
| Savings (yearly)            |        | 15,677 |                         | 9,538  | *            | (5,228)    |

#### **CHAPTER 6. CONCLUSION & RECOMMENDATION**

#### 6.1 Introduction

The primary objective of this research was to propose a sustainable air distribution system that provides long term savings based on the energy and cost analysis results comparing between ACB and VAV.

#### 6.2 Conclusions

From the analysis results, it can be concluded that ACB is better than VAV in terms of total energy consumption and energy cost. In other words, for long term saving, ACB is recommended even though the initial cost is relatively high compared to VAV. However, in terms of system design, ACB is more complicated than VAV as it involves many specific design considerations at design stage and sophisticated system control during operation.

#### 6.3 **Recommendations**

The results discussed in this thesis is obtained by numerical method where the validity may be questioned by others. One of the ways to verify the validity of the results is by performing energy audit on the existing system for an actual building. This will give actual load data of the building and system performance in timely basis where it can be used to compare with the computed results.

#### REFERENCE

- [1] X. Wei, G. Xu, and A. Kusiak, "Modeling and optimization of a chiller plant," *Energy*, vol. 73, pp. 898-907, 2014.
- [2] K. Zhang, X. Zhang, S. Li, and X. Jin, "Review of underfloor air distribution technology," *Energy and Buildings*, vol. 85, pp. 180-186, 2014.
- [3] C. Huan, F. H. Wang, Z. Lin, X. Z. Wu, Z. J. Ma, Z. H. Wang, *et al.*, "An experimental investigation into stratum ventilation for the cooling of an office with asymmetrically distributed heat gains," *Building and Environment*, vol. 110, pp. 76-88, 2016.
- [4] "Chilled Beam System Market," SE 3413.
- [5] "Chilled Beam System," *Trane Engineers Newletter*, vol. 38, April 2011.
- [6] C. Chen, W. Cai, Y. Wang, C. Lin, and L. Wang, "Operating characteristics and efficiencies of an active chilled beam terminal unit under variable air volume mode," *Applied Thermal Engineering*, vol. 85, pp. 71-79, 2015.
- [7] "Chilled Beam Design Guide," ed: TROX USA, 2009.
- [8] D. O. R. Alexander, M., "Design Considerations For Active Chilled Beams," *ASHRAE*, p. 7, September 2008.
- [9] S. S. Taylor, J.; Paliaga, G.; Cheng, H., "Dual Maximum VAV Box Control Logic," *ASHRAE*, p. 10, December 2012.
- [10] Asli, "VAV Terminal Units," ed, p. 11.
- [11] J. Murphy, "Using VAV To Limit Humidity at Part Load," *ASHRAE*, p. 5, October 2010.
- [12] J. T. Stein, S. T., "VAV Reheat Versus Active Chilled Beams & DOAS," *ASHRAE*, p. 12, May 2013.
- [13] M. D. Hastbacka, J.; Bouza A., "Emerging Technologies: DOAS, radiant cooling revisited," *ASHRAE*, p. 4, December 2012 2012.
- [14] S. D. Weidner, J.; Walsh, M., "Cooling with less air: using underfloor air distribution and chilled beams," *ASHRAE*, December 2009.
- [15] P. W. Rumsey, J., "Chilled Beams in Labs: Eliminating Reheat & Saving Energy on a Budget," *ASHRAE*, p. 7, January 2007.
- [16] D. Harris, "VAV versus Active Chilled Beam-Debate," ed: Dadanco, 2013.
- [17] F. W. Dougherty, "Equal Friction Solution for Duct Sizing," ASHRAE, May 2009.
- [18] H. R. S., "Energy Impacts of Chilled-Water-Piping Configuration," p. 8, November 2011.

#### APPENDICES

#### **Appendix: Layout Drawings**

- Appendix 1 Ground Floor ACB Layout
- Appendix 2 Ground Floor VAV Layout
- Appendix 3 Level 1 to Level 9 ACB Layout
- Appendix 4 Level 1 to Level 9 VAV Layout
- Appendix 5 Level 10 ACB Layout
- Appendix 6 Level 10 VAV Layout