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ABSTRACT 

Solid bars are widely used in engineering applications for machine components and 

structures. Since the presence of an embedded crack in a solid bar could lead to a 

catastrophic failure of a whole structure, relevant studies on evaluating quantitative 

fracture values are always sought for the improvement of design in components. Due to 

the complexity of the experimental setup for evaluating an embedded crack in a solid 

component, numerical modelling becomes an attractive solution. Up to this date, only few 

studies of evaluating the stress intensity factors for the embedded cracks in a solid bar are 

reported in literature. Therefore, this research focuses on the evaluation of the stress 

intensity factors (SIFs) of an elliptical embedded crack in a square prismatic metallic bar 

subjected to torsion loading. To this end, the effects of various crack parameters on SIFs 

are investigated: crack aspect ratio, crack inclination and crack eccentricity. A software 

package of the boundary element method (DBEM) named BEASY is utilized to perform 

the analyses. J-integral method is adopted in order to compute the SIFs. Results show that 

as the crack aspect ratio increases, the absolute value of K2 increases while K3 decreases. 

Moreover, by evaluating 8 eccentricity values, it is found that K2 and K3 increases with 

the crack eccentricity. Through numerical analysis, it is revealed that for the case of 

inclined crack, the inclination angle of 45 degree produces maximum value of K1. Finally, 

the numerical findings are related to the stress distribution in the cross section of square 

bar using the theory of elasticity. Univ
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ABSTRAK 

Bar pepejal luas digunakan dalam aplikasi kejuruteraan untuk komponen mesin dan 

struktur. Memandangkan kemunculan retakan yang terbenam di dalam bar pepejal boleh 

menyebabkan kegagalan struktur keseluruhan, penyelidikan yang relevan terhadap 

penilaian kuantitatif bagi nilai patah sentiasa diusahakan untuk mempertingkatkan rekaan 

bentuk komponen. Oleh sebab persediaan eksperimen untuk menilai retakan terbenam di 

dalam komponen pepejal yang terlalu rumit, pemodelan berangka menjadi satu 

penyelesaian yang menarik perhatian. Hanya beberapa penyelidikan dijalankan untuk 

menilai faktor keamatan tekanan atas retakan terbenam di dalam bar pepejal yang 

dilaporkan di dalam kesusasteraan sehingga kina. Oleh demikian, penyelidikan ini 

memberi tumpuan kepada penilaian faktor keamatan tekanan (SIFs) daripada retakan 

terbenam berbentuk elips di dalam bar logam prismatik persegi tertakluk terhadap kilasan 

muatan. Kesan-kesan pelbagai parameter keretakan SIFs telah dikaji untuk mencapai 

objektif ini, merangkumi nisbah aspek retakan, kecenderungan retakan dan kesipian 

retakan. Sebuah pakej perisian kaedah unsur sempadan (DBEM) yang dinamakan 

BEASY telah digunakan untuk mejalankan analisis dalam penyelidikan ini. Kaedah J-

integral diamalkan untuk mencari nilai SIFs. Keputusan menunjukkan bahawa 

pernambahan nisbah aspek retakan akan meningkatkan nilai mutlak bagi K2 tetapi 

menurunkan nilai K3. Selain itu, didapati bahawa nilai K2 dan K3 meningkat dengan 

kesipian retakan berdasarkan penilaian terhadap 8 nilai kesipian. Melalui analisis 

berangka, ia dinyatakan bahawa sudut kecondongan 45 darjah akan menghasilkan nilai 

maksimum K1 dalam kes retakan cenderung. Akhir kata, hasil kajian berangka ini 

berkaitan rapat dengan agihan tegasan dalam keratan rentas bar persegi dengan 

menggunakan teori keanjalan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Square prismatic components are widely used in many industries such as construction, 

automotive, offshores, oil and gas, machineries, power plant, electrical power, and 

interior design. Prismatic components used as mold template, mortise pin, and column. 

The solid bars are widely used in engineering applications for machine components and 

structures. Manufacturing processes and loading during services could promote the 

initiation of an embedded crack in these components. The crack may then propagate when 

the components are operated under repeated, alternating or fluctuating stresses. 

Nowadays fracture mechanics analysis plays an important role in designing industrial 

components and has become important requirement for releasing the products. Hence, the 

study on fracture mechanics is important to understand the crack behaviors in materials 

in order to improve the mechanical performance of the products. As the prismatic bars 

are widely used in many industries such as structures in engineering applications and 

components in mechanical structure of machines, embedded cracks are often found in 

solid bars during services. These flaws cause the reduction of mechanical strength of the 

solid bars and could lead to a disastrous failure of the structure. Since fracture mechanics 

perspective has widely been adopted in engineering design process, studies on the stress 

intensity factor have become necessary, especially the possibility of the use of the data in 

a preliminary design stage. Relevant solutions/data are always sought to support the use 

of non-destructive technique for evaluating the embedded defects in structures. However, 

as reported by Lee (2007), there are only few studies on the embedded elliptical crack in 

solid bars that have been reported in literature. This statement was also highlighted by 
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Atroshchenko, Potapenko, and Glinka (2009) who noted that an embedded elliptical crack 

is more complex and challenging in crack geometry in comparison to surface cracks. 

In real events, this low energy fracture in high strength materials invigorated the advanced 

improvement of fracture mechanics. Fracture mechanics is an important tool to assess the 

behavior of component containing pre-existing crack. The object of fracture mechanics 

is to give quantitative responses to specific issues concerning cracks in structures. The 

role of fracture mechanics is illustrated in Figure 1.1. 

 

Figure 1.1: Facture Mechanics consist of effects from stress status, material nature and 

flaw property. (Speck, 2005) 

 

As an outline, consider a structure containing prior imperfections and/or in which cracks 

start in industrial adaption. The cracks might develop with time attributable to different 

reasons (for instance fatigue, wear, stress erosion) and will for the most part become 

logically quicker as depicted in Figure 1.2(a). The residual strength of the structure, which 

is the failure strength as an element of split size, diminishes with expanding crack size, 

as appeared in Figure 1.2(b). After a period, the residual strength turns out to be low to 

the point that the structure might fall flat in service (Janssen, 2004). 

Stresses 

Flaw Size 

Toughness 

Fracture 

Mechanics
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Figure 1.2: Engineering relationship with a crack. (Janssen, 2004) 

Also as we can see from the Figure 1.3, fracture mechanics which is considered with even 

ideal prospect is always widespread used in applications in our life, such as in aviation, 

machinery, chemical industry, shipbuilding, transportation as well as military project 

fields. It is solving the fracture resistance design, material selection, formulating the 

suitable heat treating and manufacturing processes, predicting fatigue life of components, 

modeling acceptable quality checking criterion and maintenance steps as well as fracture 

preventing and so many other problems. From the microscopic aspect, fracture mechanics 

researches misplaced atoms and the fracture processes of microscopic structure which is 

even smaller than crystalline grain, and in terms of the understanding of these processes, 

establishes supporting criteria for crack propagation and fracture. In contrast, from the 

macroscopic aspect, it makes evaluation and controlling for fracture intensity via 

analyzing the continuous medium mechanics and experimenting components excluded 

the condition for the fracture mechanism inside of materials. Hence, it is a highly valuable 

subject in application. 
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Figure 1.3: Fracture mechanics widespread use. (Janssen, 2004) 

 

As embedded crack evaluation in fracture mechanics research poses formidable 

challenges for both analytical and experimental solutions. The state of the art for material 

cutting and joining is perhaps still too limiting for creating experimental samples with 

embedded crack; and samples deliberately obtained by controlling metallurgical 

processing are often too difficult to study as crack density, size, location, and orientation 

almost never appeared favorably for experimental purposes. On the other hand, the 

analytical formulation of the boundary value problem for embedded elliptical crack is 

complex and challenging; and it is only amenable for special geometry and loading 

conditions. So, the way to do the figure the research out by simulating analysis would be 

efficient and valid. Hereby, we presented the results for the SIFs of embedded elliptical 

cracks within square prismatic bars under torsion. The lack of available solutions of such 

has been reported in literature to date. The effects of elliptical aspect ratio, eccentricity in 

the sense of an offset from the cross-sectional centroid, and inclination with respect to the 

plane normal to the centroid axis are studied. By way of an effective sampling of crack’s 

offset location and the regularity of the stress field, a reasonable ball-park estimate of 

SIFs for a crack at any location could be inferred using the results presented. All 

simulation results are performed using BEASY (2013), a relatively new program based 

on the dual boundary element method (DBEM). 
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1.2 Objectives 

A. To investigate numerically the effects of different crack parameters including 

crack aspect ratio, crack eccentricity and crack inclination on the stress intensity 

factor (SIF) of embedded cracks in a square bar under torsion loading. 

B. To evaluate the stress intensity factors (SIFs) for embedded cracks in square 

prismatic bars under torsion loading and analysis the reasons and effects of them. 

1.3 Scope of the research 

Main focus of this work is to assess the stress intensity factor value of embedded cracks 

under cyclic torsion loading as well as to investigate the effects of crack parameters as 

following: 

Crack aspect ratio, crack eccentricity, parametric crack size and crack inclination, as well 

as the different geometry of model comparisons. No experimental work was conducted. 

1.4 Dissertation organization 

This study report involves six parts which are showed as the following: 

Chapter 1: Introduction: this section displays the brief foundation and significance of the 

exploration. The scope and objectives of this research is additionally characterized in this 

section. 

Chapter 2: Literature Review: This section discusses about the fundamentals of Fracture 

mechanics, stress intensity factors and theory of finite or boundary element method and 

pervious works done by different analysts to assess SIFs, different strategies set up to deal 

with the crack mechanics issues is basically concluded and reported. 

Chapter 3: Methodology: This section illustrates the method took after to accomplish the 

designed destinations, software of BEASY programming wizard and its applications. 
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Chapter 4: Results and Discussion: This part shows, firstly, the benchmarking of BEASY 

results with accessible results in the previous work followed by the use of the Theory of 

Elasticity that could explain the reason of the effect of SIFs performed on the square bar. 

Moreover, the effects of the crack aspect ratios, crack eccentricities and the crack 

inclinations are discussed. Lastly, the remark study also showed the effect of the geometry 

of different models. 

Chapter 5: Conclusions: This part summarizes all the research finding and provides 

insight into suggested future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Prismatic bars are ubiquitously used as structural components in mechanisms, 

machineries, and other engineering applications. Embedded crack often found in 

prismatic bar during it application at different industries. Fatigue failure will occur in that 

particular embedded crack prismatic bar when the crack remains undiscovered and 

continue its application which load applied. Loading during services and manufacturing 

processes can also promote an embedded crack that typically often initiates in these 

components. It then may grow and cause the fatigue failure of the component under 

applied static loads. Selection of material and inspection routine playing an important role 

to avoid fatigue failure occur in components or structures used in all industries. As 

engineers explore limits to design products, material defects and flaws must be examined 

and fracture analysis becomes essential. The approach of examining cracks using fracture 

mechanics requires the stress intensity factors (SIFs); relevant solutions and off-the-shelf 

data for such are often sought to develop, validate, and support non-destructive techniques 

for evaluation of embedded defects in solids. However, very few and limited studies on 

embedded elliptical cracks have been reported in literature. Hence, stress intensity factors 

are concerned in order to perform decision making in effective material selection and 

ensure efficient inspection routine are carried out. Fatigue crack behavior often used to 

linear elastic facture mechanics to analyze. The way to analyze the fatigue crack behavior 

has widely been linear elastic fracture mechanics (LEFM) approach nowadays where 

elastic stress-strain field in the vicinity of crack tip are normally evaluated by calculating 

the stress intensity factors. When stress intensity factor (SIF) is exceed SIF limit of 

prismatic bar’s material, the cracked prismatic bar will propagate with load applied. 
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Currently there are only few studies for fracture mechanics of embedded crack in different 

locations in prismatic bar under pure torsion loading. Numerical analysis is a splendid 

option to investigate the stress intensity factor in order to obtain efficient and effective 

result. 

2.2 Fatigue and failure 

Under the cyclical loading, the permanent localized damage in one or more spots of 

materials, components and constructional elements would become cracks after a certain 

number of circulation. This sort of phenomenon is the typical fatigue in material and the 

crack would not even propagate until the fracture failure occurs as it’s characteristics 

showed in Figure 2.1. The dark part on the cross section showed the final phenomenon 

after slow crack growth, the bright part is the sudden fracture intersection. Fatigue failure 

is a process of the damage accumulation, hence the mechanics feature of it is different 

with statics mechanics. First difference is that the failure will happen even if the cyclic 

stress is much less than the limitation of the statics mechanics (Kim & Laird, 1978), but 

it will not happen immediately, it takes some time and even more; Secondly, before the 

fatigue failure happens, there will sometimes not be any obvious residual deformation 

even if the plastic material with the ductility and malleability (Korkmaz, 2010). 

 

Figure 2.1: Fracture failure of a mechanical component. 
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Theoretically speaking, there are three processes of the metal fatigue failure. Firstly, stage 

of microscopic crack: under the cyclic loading, due to the maximum stress of the objective 

usually emerges on the surface or near the surface location, the persistent slip band, grain 

boundary and inclusion of this range would develop to severe stress concentration spot 

and form the microscopic crack. After that, cracks would propagate along the 45° with 

the principal stress which is the maximal shear stress direction, the length of it would not 

exceed 0.05 mm, and the macroscopic crack is now developed. Secondly, stage of 

macroscopic crack derived by Paris, Gomez, and Anderson (1961): the crack generally 

would continue propagating along the perpendicular direction of the principal stress 

(Shigley et al., 1989). Lastly, stage of the sudden fracture: the objective would fracture 

immediately that subjected once more loading at any time when the crack propagates to 

a certain size of remaining cross section which would not resist the loading. These three 

stages could be plotted in Figure 2.2 below, where the failure due to fatigue in the form 

of the crack growth rate (da / dN) correlated with the cyclical component ΔK of the stress 

intensity factor K. 

 

Figure 2.2: Stages of fatigue failure (Shigley et al.,1989) 
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There are many famous engineering accidents as Figure 2.3 showed that are investigated 

by researchers in theory of fatigue after graph of the magnitude of a cyclic stress against 

the logarithmic scale of cycles to failure (S-N curve) (Wöhler, 1870) is proposed (Rotem, 

1991), so that the probable causes of these catastrophic disasters are valid to be found and 

it is also better for similar problems in other cases to refer to prevent earlier. 

Few years ago, due to the crack growth of the structure, failures still happed. The shocked 

accident Sea Gem, as the first offshore oil rig in Britain before, resulted in 13 crews killed 

since the legs of its rig collapsed in 1965. Carson (1980) and Gramling and Freudenburg 

(2006) both pointed out that the collapse bought by the metal fatigue should never be used 

inside the suspension system to link the hull to rig legs and the fatigue failure is drowned 

with irreparable damage. The investigation of Hatfield rail crash on October of 2000 

found by Vijayakumar, Wylie, Cullen, Wright, and Ai-Shamma'a (2009) also showed that 

rolling contact fatigue (also defined as multi-surface broke cracks) which is more severe 

than one single fatigue crack in a wheel in Eschede train disaster (Shallcross, 2013) 

caused a rail totally fragmented while trains were passing. Due the maintenance 

deficiency, there are so many gauge corner cracking with unknown location within the 

whole network that could lead to accident like above anytime. Fatigue cracks would not 

grow until the size of them reached a critical level, then the rail failed. Chetan, Khushbu, 

and Nauman (2012) reported that the fatal reason of the disaster of Chalk's Ocean Airways 

Flight 101 on December of 2005 was the fracture of the wing of the air plane resulted 

from the metal fatigue, and the problem is also due to the incorrect and inadequate way 

to detect and maintain the fatigue crack which is similar with the China Airlines Flight 

611 accident in 2002 (W.-C. Li, Harris, & Yu, 2008). The fatigue failure brought the 

plane made in 1947 lost the right wing suddenly and rushed into the sea vertically during 

the flying process. 
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(a) 

  

(b)                                   (c) 

Figure 2.3: (a) Sea Gem offshore oil rig; (b) Hatfield rail crash; (c) Chalk's Ocean 

Airways Flight 101 

 

2.3 Fatigue design philosophies 

To avoid the tragedies occurs, reliable design philosophy to prevent the fatigue-failure 

depends on experienced theories of mechanical engineering and material science. There 

are usually three criteria of design and evaluation utilized in fracture mechanics to assure 

the high quality of the design engineering product (Matthew, 2000): 
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2.3.1 Criterion of safe-life 

This design promised the least probability of the fatigue failure without any inspection or 

maintenance for the component subjected varying load during the service life. This 

criterion is especially applied in aircraft field because of the difficulty of the repair and 

the severe disaster to the life that may cause, but the shortages of it would be the high cost 

and over designed. 

2.3.2 Criterion of fail-safe 

As the content in (Rutherford, 1992)said, the material is intended to withstand the most 

extreme static or cyclic working stresses for a specific period in a manner that its potential 

failure would not be calamitous. The target is to avert calamitous failure by recognizing 

and evaluating the crack at its initial phases of propagation. 

2.3.3 Criterion of fault tolerance 

After the supplement has been completed by Dubrova (2013), the main target of this 

criterion is assuming that the structure contained flaws from the manufacturing or service 

process, then analyze the changing process between the stress intensity factors and other 

parameters and fatigue loading within preexisting flaws assumed to ensure that the 

parameters would not exceed the critical value (fracture toughness) during the service life 

or overhaul period.  

2.4 Fatigue and fracture mechanics 

It would not be enough to predict the life of service or assure the reliability of the design 

based on empirical conclusion, life upgrading and design optimization are always 

desirable to be enhanced by using fracture mechanics (Freudenthal, 1973). According to 

Fischer-Cripps (2000), fracture mechanics is the theoretical principal for the theory of 

fault tolerance can be described briefly as “It aims to describe a material’s resistance to 

failure such as determination of material’s toughness”, and there are two specific 
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categories of it, one is linear elastic fracture mechanics, the other is elastic plastic fracture 

mechanics. 

As a new branch of solid mechanics, fracture mechanics is one of the numerical analyses 

that researches the rules of cracks in materials and engineering structures especially for 

this kind of fatigue problem. Fracture mechanics studies the crack which is macroscopic 

and can be seen by eyes, and all kinds of flaws in engineering materials can be 

approximately regarded as crack. The content of fracture mechanics includes (Xing, 

1991): Firstly, the initial condition of crack; Secondly, the propagation process of crack 

under external loading and/ or subjected to other factors; Last but not least, what kind of 

extent that crack would being propagating could lead the fracture of the objective. 

Furthermore, for the needy of engineering as criterion of fault tolerance demonstrated by 

Johnson (1984), what kind of condition could cause the fracture of the structure within 

crack; which size could be allowed to contain inside the structure under certain loading; 

the rest life of the structure under a certain circumstance within structure cracks or based 

on a kind of serving condition. Famous findings of fracture mechanics in history are 

shown in Figure 2.4. 
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Figure 2.4: Brief history of fracture failure (Cotterell, 2002) 

 

Many relevant studies have been done to contribute to the fracture mechanics research in 

fatigue field, also to find crack growth process and rules. As Figure 2.5 showed, generally, 

cracks are generated under the stress or environment effect within the material. No matter 

micro or macro-cracks are going to be propagated or enlarged under the external stress 

effect or/ and the external environment influence after the crack nucleation process, it is 

also called crack propagation or crack growth process. Cracks will result in the fracture 

of material after reached a critical extent.  
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Figure 2.5: Fracture failure occurring steps 

There is not only one type of crack within the material like the diagram showed above, 

but also other different types of it. Normally, corner crack, surface crack, and embedded 

crack as showing in Figure 2.6 are often found in material inspection. 
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(a)            (b)         (c) 

Figure 2.6: Crack within different locations of an objective (a) Corner crack (b) Surface 

crack (c) Embedded crack. 

 

A crack in a component of a material is consist of disjoint one upper and one lower plane. 

The closed contour of the crack plane forms the crack front. When the objective within a 

crack is subjected to external loading, e.g. tension, bending or torsion. The crack faces 

would displace influenced by the loading with the deformed objective body, and in the 

meantime, the crack surfaces would be separated. This crack propagated phenomenon can 

be described as modes of failure. Three fracture modes that force the crack propagate 

resulted from applied loadings are illustrated in Figure 2.7: Mode I (K1): Opening mode 

that the crack plane is perpendicular to tensile stress; mode II (K2): in-plane shear that the 

crack plane is parallel to shear stress and the crack front is normal to the shear stress; 

mode III (K3): out of plane tearing that the crack plane and the crack front are both parallel 

to the shear stress. Any fracture in a solid structure may be described due to subjecting 

any one or more of these three modes. 
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Figure 2.7: Crack separation modes 

 

2.5 Linear Elastic Fracture Mechanics 

As an important branch of the fracture mechanics, linear elastic fracture mechanics 

(LEFM) conducts the mechanics analyses for crack based on the linear theory of elastic 

mechanics, and adapts some characteristic parameters (e.g. stress intensity factor, energy 

releasing rate) obtained from analyses before as the criterion to evaluate the crack 

propagation. The study of LEFM is especially for brittle materials of which the internal 

plastic deformed is small during the crack propagation till the final fracture process. 

The stress and strain acquired from LEFM are usually singular, which means the stress 

and strain on crack tip would be infinite. It is not logical in physics. In reality, the stress 

and strain near crack tip are high, LEFM is not applicable on crack tip. Generally speaking, 

these areas are complex, there are so many micro-factors (e.g. size of crystalline grain, 

dislocated structure, etc.) could affect the stress field of crack tip. The complex situation 

of crack tip would not be considered in LEFM, it applies the stress status of the outside 

area of crack tip to characterize the fracture features. When the external applied loading 

is not high, the fluctuate of the stress and strain near one of a small area of crack tip would 
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not influence the distribution of stress and strain of the external large area, and the stress 

and strain field affect in external small area could be settled by one parameter called stress 

intensity factor (SIF). For crack instability under this kind of loading effect, LEFM is 

applicable. 

There two inequalities which ensure the LEFM applied loading value in terms of 

experiences(M. E. Erdogan, 2000) 

𝑎 ≥ 2.5 (
𝐾1

𝜎𝑦
)

2

                                                        (2.1) 

𝐿 ≥ 2.5 (
𝐾1

𝜎𝑦
)

2

                                                        (2.2) 

Where a is the crack length; L is the thickness of the component; σ is the yield limit of 

material; 𝐾1 is the safety intensity factor calculated by LEFM under external loading. In 

another word, 𝐾1 has to satisfied with these two inequalities, as well, the effect of whole 

component should be linear under loading in LEFM. 

There are couple of important theoretical achievements as following: 

2.5.1 Griffith’s criterion 

During the World War I, fracture mechanics was still developed by Engineers. In terms 

of strain energy of crack in the objective, Griffith (1921) proposed the criterion of crack 

instability- Griffith’s criterion. The criterion could explain the reason why the real 

fracture strength of glass is much less than the theoretical strength. Moreover, it became 

one of the basic conceptions of the linear elastic fracture mechanics later. 

An object within a crack with length a as Figure 2.8 showed, the total potential energy of 

the object for every unit is 𝑈(𝑎) which is the function for crack length.  
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Figure 2.8: Object within crack 

The total potential energy decreased when the crack length a is increasing, from which 

could be regarded as the crack propagation tendency result from external loading. The 

decreasing rate of potential energy with crack propagation is called crack propagation 

force or strain releasing rate, noted as G: 

𝐺 = 𝑙𝑖𝑚
∆𝑎→0

𝑈(𝑎)−𝑈(𝑎+∆𝑎)

∆𝑎
= −

𝜕𝑈

𝜕𝑎
                                           (2.3) 

Under the external loading, the crack will not propagate even it showed propagation 

tendency until it reaches the certain value of the external loading; only the propagation 

occurs when the external loading increase to a critical value. Since in order to propagate 

the crack, the free surfaces should be increased, then the free surface energy also 

increased which amounted to the increment of resistance for the crack propagation. The 

crack will not propagate until the surface energy is adequate. Assuming the surface energy 

per unit is 𝛾, crack length is a, then for the thickness per unit, the crack surface energy 

would be the function for crack length a below: 

𝑆 = 2𝛼𝛾                                                            (2.4) 

The propagation resistance R could be measured by the changing rate between the surface 

energy and crack length, noted as: 
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𝑅 = 𝑙𝑖𝑚
∆𝑎→0

𝑆(𝑎+∆𝑎)−𝑆(𝑎)

∆𝑎
= −

𝜕𝑆

𝜕𝑎
= 2𝛾                                      (2.5) 

In summary, Griffith’s criterion could be concluded as: crack propagation force equaling 

to crack propagation resistance (G=R) is the critical condition for crack propagating. This 

criterion successfully explained the brittle fracture problem of glass, but it is not suitably 

applicable for metal. However, it has been amended by Orowan (1949). He inputted the 

plastic work besides the surface energy. Then the criterion could also be applied on the 

metal to a certain extent after his amending. 

2.5.2 Irwin's modification 

During the World War II, fracture mechanics was developed even notably. Irwin (1997) 

presented the conception of stress intensity factor (SIF) via analyzing the stress field near 

crack tip area, and established crack propagation criterion based on SIF parameters, 

thereby successfully explained the brittle fracture accident with low stress. The toughness 

of plane strain is a significant parameter of the engineering safety design, the evaluation 

of it is the basic content of fracture mechanics since the status of plane strain is the most 

dangerous working status in real engineering structure. 

As the polar coordinates showed in Figure 2.9, assuming both external loading and 

structure are symmetric with crack a. According to the calculation from elastic mechanics, 

the stress field near crack tip can be written approximately as following: 

𝜎𝑥 =
𝐾1

√2𝜋𝑟
cos

𝜃

2
(1 − sin

𝜃

2
sin

3𝜃

2
)                                        (2.6) 

𝜎𝑦 =
𝐾1

√2𝜋𝑟
cos

𝜃

2
(1 + sin

𝜃

2
sin

3𝜃

2
)                                        (2.7) 

𝜏𝑥𝑦 =
𝐾1

√2𝜋𝑟
sin

𝜃

2
cos

𝜃

2
sin

3𝜃

2
                                             (2.8) 

Where 𝜎𝑥, 𝜎𝑦 are stress components in a 2D problem; r and 𝜃 are polar coordinates. 

The approximate degree with equations above will be high if r is very small. Furthermore, 
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from the equations, we can conclude: stress will be increasing illimitably if 𝑟 → 0. K1 is 

unrelated with r and 𝜃, but the function for structure format and external loading, and it 

is also the parameter to control crack stress field. Irwin chose this one as a parameter to 

judge fracture which is called SIF.  

 

Figure 2.9: Polar coordinates of crack tip 

2.6 Stress intensity factor 

As a key point in LEFM, Irwin (1957) defined stress intensity factor (SIF) as a parameter 

to characterize the stress field strength near crack tip in elastic objective under external 

loading. According to LEFM above, any point near the crack in crack propagating process 

in Figure 2.10, the stress can be concluded as: 

𝜎𝑖𝑗 =
𝐾

√2𝜋𝑟
𝑓𝑖𝑗(𝜃)                                                      (2.9) 
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Figure 2.10: Stress at a point near crack tip 

Where σij is the stress for a certain point; r and θ are the polar coordinates. 

Recalling from the LEFM, the stress intensity factor in a finite crack objective is usually 

expressed as: 

𝐾 =  𝜎√𝜋𝑎 . 𝑓(𝑎
𝑊⁄ )                                                (2.10) 

Where f (a/W) is a function of boundary condition and a crack length about the geometry 

parameter.  

And according to LEFM, the fracture failure would be recognized when SIF as high as a 

critical value Kc (also known as fracture toughness) which is written as  

𝐾𝑐 =  √2𝐸(𝛾𝑐 +  𝛾𝑝)                                               (2.11) 

Where E is Young’s modulus, 𝛾𝑐 is the density of surface energy, and 𝛾𝑝 is the plastic 

strain energy. 

Stress intensity factor plays a vital role to estimate the fatigue life of a structure or 

component. Therefore, there is an essential importance that robust and accurate method 

must be used to calculate stress intensity factor while predicting fatigue life of the 

component or structure with crack like defects. 
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2.7 Analytical solutions for crack problems 

Most analytical methods to solve the SIF problems are complex functions or integral 

equations. Calculations for SIF values applied by variable functions in earlier time have 

been done by (Rooke, Cartwright, & Britain, 1976; Murakami, 1987) and many other 

researchers. Elliptical, semi-elliptical or quarter elliptical crack are used to define many 

cracks in engineering components and structures. The embedded crack in an infinite body 

subjected to external force is the most general case for elliptical flaw. Semi-

circular/elliptical and quarter circular/elliptical cracks are also very common crack shapes 

in engineering fracture mechanics as they are commonly emanatedr from geometrical 

irregularities such as notches, sharp edges, pinhole, etc. Determination of SIFs for such 

cracks is actively sought in literature.  The most well-known solutions were given by 

(Newman & Raju, 1983; Raju & Newman, 1986; Raju & Newman Jr, 1979). It is hard to 

find a simple analytical solution for other geometry and loading conditions in certain 

cases.  Hence, numerical techniques are often needed in order to obtain precise model 

in the problems (Fischer-Cripps, 2000). 

Montenegro, Cisilino, and Otegui (2006) utilized the O-integral algorithm and the weight 

function methodology for evaluating SIFs of embedded plane cracks. Wang and Glinka 

(2009) reported the stress intensity factors of embedded elliptical cracks under complex 

two-dimensional loading conditions using weight function method. Based on the 

properties of weight functions and the available weight functions for two-dimensional 

cracks, they proposed new mathematical expressions using the point load weight function. 

Qian (2010) reported the effects of crack aspect ratio, crack eccentricity and effect of pipe 

thickness on the SIFs of an embedded elliptical crack axially oriented in a pressurized 

pipe using the interaction integral approach for three-dimensional finite element crack 

front model. In the same year, Livieri and Segala (2010) described an analytical 

methodology to calculate the Stress Intensity Factors (SIF) for planar embedded cracks 
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with an arbitrarily shaped front by using the celebrated integral of Oore–Burns with a first 

order expansion and the actual shapes of 3D planar flaws are analyzed based on the 

homotopic transformations of a reference disk. 

Liu, Qian, Li, and Zheng (2011) calculated the stress intensity factors at the crack tip with 

the emphasis on the interaction between cracks for the double embedded elliptical cracks 

in a weld of pressure vessels under tension. It is found that the influence of the distance 

between the double embedded elliptical cracks and the differences with the single 

embedded crack of the point with maximum SIF. Takahashi and Ghoniem (2013) 

researched the SIF calculated by the Peach–Koehler (PK) force with numerical accuracy 

for penny-shape and elliptic cracks under pure Mode-I tension. Based on the Parametric 

Dislocation Dynamics (PDD) framework, the Burgers vector components corresponding 

to 3 modes in the PK force calculation could get the SIF simply done. In addition, the 

PDD method has also showed analogous fatigue crack growth to the dislocation dynamics 

simulations. Torshizian and Kargarnovin (2014) used plane elasticity theory to discuss an 

embedded arbitrarily oriented crack in a medium made of two dimensional functionally 

graded materials (2D-FGM) for the mixed-mode fracture mechanics analysis. What’s 

more, they adapted the Fourier transformers to solve the partial differential equations into 

the Cauchy-type singular integral equations which was then solved using Gauss–

Chebyshev polynomials. Finally, they solved Several different examples of SIFs with 

effects of nonhomogeneous material parameters δ1, δ2 and crack orientations θ and found 

the rules for the relationship between a combination of normal and shear loading applied 

on plate and a single normal loading for SIFs.  

2.8 Numerical solutions for crack problems 

As the computer technology nowadays is developing rapidly, it has enabled complicated 

and time consuming calculating became possible. Numerical solutions for the structure 

deformation and stress status are always more accurate than analytical solutions since it 

Univ
ers

ity
 of

 M
ala

ya



 

25 
 

contains more highly accurate details, such as element meshing, boundary condition and 

loading process etc. A lot of works to solve crack problems have been done by using 

numerical methods, and finite element method (FEM) and boundary element method 

(BEM) are two common ways. 

2.8.1 Solutions by finite element method 

It is often very important to estimate stress field around geometrical irregularities within 

any structure. Numerous studies on the usage of finite element method (FEM) to evaluate 

SIFs for structural discontinuities have been reported in literature. Yavari, Rajabi, 

Daneshvar, and Kadivar (2009) computed the resulting stress field in a rectangular plate 

with a pinhole and evaluated the effects of pin-plate clearance, friction, width of plate and 

position of hole using 2D FE model without incorporating the crack initiation and 

propagation mechanism. Lin and Smith (1999) researched finite element approach to 

evaluate two symmetric quarter elliptical cracks which located around the fastener holes 

subjected the pure tension and evaluated stress intensity factors by using J-integral 

method. The results were found to be in good agreements with previous literature. Da 

Fonte and De Freitas (1999) investigated a rotor shaft under mixed mode of torsion and 

bending loadings. The SIFs of the cracked shaft were accessed and the experimental data 

for validation were also compared. Next, Miranda, Meggiolaro, Castro, Martha, and 

Bittencourt (2003) used the FEM to evaluate the SIFs and fatigue growth analysis of one 

2D structure using automatic re-meshing algorithm. Le Delliou and Barthelet (2007) 

presented the influence coefficients for plates containing an elliptical crack with the 

parameters: relative size, shape and free surface proximity for the distance from the center 

of the ellipse to the closest free surface by using Gibi to make the meshes and using the 

FEA program Code Aster to finish the calculation. RSE-M Code that provides rules and 

requirements for in-service inspection of French PWR components has accepted these 

solutions. R. Li, Gao, and Lei (2012) utilized the net-section collapse principle and the 
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commercial finite element software ABAQUS to illustrate the embedded off-set elliptical 

cracks in a plate under tension and bending combination loading. The new solutions are 

close to the elastic-perfectly plastic FEA results and conservative with less than 15% 

errors. Furthermore, the lower limit load has been studied by replacing a rectangular crack 

circumscribing the elliptical crack. Five cracked bars are introduced and estimated to 

analysis the cracked truss type of the structures, SIFs of simple cracks are calculated by 

following fracture mechanics laws in FEM (Yazdi & Shooshtari, 2014). 

2.8.2 Solutions by boundary element method 

However, finite element method above could be an expensive option in term of time of 

modelling as it requires treatments of meshing at the nearest location of the crack tip when 

evaluating stress field problems at the crack tip which involve singularities (Leonel, 

Venturini, & Chateauneuf, 2011). Hence, boundary element method (BEM) has become 

a suitable technique and an alternative tool in linear elastic fracture mechanics approach. 

It is simple in modelling desired crack and solutions obtained are accurate. Boundary 

element method able to solve stress concentration efficiently by mesh reduction features. 

Furthermore, it is more proficient in evaluating mixed mode crack growth models. Model 

boundaries are discretized in 2D problems, whereas, model surfaces are meshed in 3D 

problems. BEM stress equations identically satisfies throughout the structure volume 

different with FEM which used approximate equations. Quadratic boundary element is 

used in to evaluate various stress components (Trevelyan, 1992). 

Many projects have applied BEM successfully by adapting the integral equation 

displacement boundary to structures without cracks. By using traction boundary integral 

equation, there are general solutions for different crack problems within geometry of three 

dimension (Domı́nguez & Ariza, 2000). Evaluation of stress intensity factor for various 

complex crack problems in elastic plate are presented by Yan (2006) by using 

displacement discontinuous element near crack tip based on boundary element method. 
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Next Yan (2010) implemented his previous work by using similar approach to evaluate 

multiple cracks problem in elastic media. Different methods applied by Wearing and 

Ahmadi-Brooghani (1999) to evaluate stress intensity factor. The methods that used such 

as displacement and stress extrapolation method, J-integral and quarter point approach 

are based on boundary element method. He proved that the results were in agreement with 

finite element solutions. Special emphasis on quarter point approach based on BEM was 

presented by Dong, Wang, and Wang (1997) to deal with interfacial crack model of two 

different materials. Yan and Liu (2012) evaluated stress intensity factors and elaborated 

the crack analysis of fatigue growth which was emanating from a circular hole in a plate 

of the elastic finite material. Atroshchenko et al. (2009) introduced the 3D classical 

elasticity for boundary value problem of an elliptical crack in an infinite body by using 

the method of simultaneous dual integral equations and solved the problem to transform 

to the linear algebraic equations system. They also obtained stress intensity factor (SIF) 

in the Fourier series expansion form. Hence, lots of specific cases under polynomial stress 

fields have got solutions and compared with previous results, then more complicated 

stress fields such as the partially loaded elliptical crack could also be figured out by 

adapting the method. 

Choi and Cho (2014) developed an isogeometric shape design sensitivity analysis method 

for the stress intensity factors (SIFs) in curved crack problems. Based on this approach, 

they directly utilized the Non-Uniform Rational B-Splines (NURBS) basis functions in 

CAD system in the response analysis to enable a seamless incorporation of exact 

geometry and higher continuity into the computational framework. They presented 

several numerical examples of curved crack problems to verify the developed 

isogeometric analysis (IGA) method and design sensitivity analysis (DSA) of SIFs 

method through the comparison with solutions of the conventional finite element 

approach. Recently, Imran et al. (2015) solved the stress intensity factors for the 
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embedded (penny/elliptical) cracks that is also considered as the planar inclusion in a 

solid cylinder. They carried out all the analyses for the SIFs of an embedded crack for 

different crack aspect ratios, crack eccentricities and crack inclinations as well by using 

a dual boundary element method (DBEM) based software. 

2.9 Boundary element method 

The boundary element method (BEM) is a new numerical solution which is developing 

after the finite element method. It segments elements on the boundary of the domain of 

function which is quite different with the finite element method, of which the ideology is 

segmenting element in the continuum domain, and applies governing function to 

approximate the boundary condition. As pioneers, Jaswon, Maiti, and Symm (1967) have 

solved the potential problem based on the indirect boundary element method. Then, Rizzo 

(1967) figured out the 2D linear electrostatics problem used direct boundary element 

method. This kind of numerical solution then has been spread to 3D elasticity of 

mechanics by Cruse (1969). After that, Brebbia and Butterfield (1978) found the 

boundary integral equation through the derivation from weighted residual approach, he 

pointed out that the weighted residual approach must be the most general numerical 

method, and if regard Kelvin solution as the weighted function, then the boundary integral 

equation would be derived from weighted residual approach as the solution for the 

boundary element method, from which the theoretical system has been preliminarily 

formed. Boundary element method is now adapted in not only structure and mechanical 

field but also in sound field, electromagnetic field and so on as we can see from the Figure 

2.11. 
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(a) 

      

(b)                                  (c) 

Figure 2.11: Extensive use of BEM: (a) acoustics field (Brancati, Aliabadi, & 

Benedetti, 2009); (b) electromagnetic field (Hohenester & Trügler, 2012); (c) fluid 

mechanics field (Pasquetti & Peres, 2015) 

 

2.9.1 Advantages of boundary element method 

Boundary element method (BEM) has lots of benefits then other numerical methods that 

could be the premier option to solve the complex three dimensional problems in fracture 

mechanics area (Aliabadi, 1997; Costabel, 1987; Nageswaran, 1990). The advantages of 

it could be simply listed as following:  

1. Less data preparation: BEM defined the boundary integral equation on the 

boundary as the governing function, it interpolates into the discrete function with 

the separable elements of the boundary and solve the boundary with the converted 

algebraic equations. Compared with the domain solution based on the partial 
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differential equation, the number of degrees of freedom is remarkably decreased 

because of the decreasing for the dimension of the problem, in the meantime, the 

solution of the discrete boundary could be considered much easier than the 

discrete domain. So the shape of the boundary can be simulated accurately with 

comparably sample elements and the final solution would be showed in the linear 

algebraic formulation with lower order. 

2. Efficient modelling: The model creation here only for 2D wizard only asked the 

linked nodes. For 3D part, only patches connected every lines set previously are 

required which is totally different with else extruded volume programming 

packages. What’s more, the amending for both 2D and 3D parts are easier because 

of the efficient modelling. 

3. Easier meshing method: the model discretization for BEM is generally less time 

consuming. For the 2D cracks, the meshing method is only discretizing the surface 

with lines; the small regular surfaces are defined also easily to cover only the 

patches of the model for 3D objectives which could reduce the number of the 

dimension for the meshing problem. 

4. More accurate results: Since the basis of the analysis for differential operator is 

used in BEM as the kernel function of the boundary integral equation, the feature 

of it supposed to concluded with combination of both analysis and value, then the 

accuracy of it is generally high, especially for the cases of boundary variable with 

high gradient changing, such as stress concentration problem, crack problem that 

the boundary variables appeared with singularities, and so on. BEM is universally 

acknowledged as more efficient with higher accuracy tool to solve the cased above 

than finite element method. 
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5. Special function for certain cases: boundary element method would be more 

convenient to handle the infinite domain and semi-infinite domain problems due 

to the differential operators used in BEM are satisfied in a condition of an infinite 

distance automatically. 

2.9.2 Difficulties in boundary element method 

1. Boundary integral equations require the explicit knowledge of a fundamental 

solution of the differential equation. Nonhomogeneous or nonlinear partial 

differential are not accessible by pure BEM. 

2. Matrices of Boundary element formulation are not symmetric and fully dense. For 

computational analysis, it requires more storage and high computation speed. 

2.10 Work flow of boundary element method 

After 40 years researching and developing, BEM has already been an accurate and 

efficient analytical method of the numerical engineering. From the mathematical aspect, 

it has not only overcome the difficulty caused by the integral singularity in a certain extent, 

but also consolidated the convergence property, deviation analysis as well as other 

different kinds of mathematical BEM analyses so that the theoretical principal of BEM 

has been provided within the validity and reliability. When it comes to the application in 

diverse fields, there so many areas like engineering, science and technology have been 

spread. For linear problems, the application of BEM is already normalized; for nonlinear 

problems, the application of it is also going to be mature gradually. Figure 2.12 shows the 

steps of boundary element method. 
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Figure 2.12: Flow chart of Boundary Element Method. (Hsiao, 2006) 

2.11 Summary 

Many methods are already available to calculate stress intensity factor values (F. Erdogan, 

1983), especially for corner crack and surface crack. However, there are only few works 

on embedded crack that have been reported in literature (Lee, 2007).  

Although the stress around geometrical irregularities has received extensive interests, the 

determination of stress field for different inclination degrees in several locations of 

embedded cracks remains open for updates. What’s more, there is also only few analyses 

on solution for non-circular component such as square prismatic bar which pure torsion 

loading applied.  
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Many researchers have reported solutions for SIFs and fatigue growth analysis of simple 

geometry structures. However, no solutions in pure torsion loading of different aspect 

ratio of embedded crack in a square prismatic bar have been reported. This research is 

intended to specifically update the knowledge in fracture mechanics by evaluating the 

stress intensity factors of an embedded elliptical crack with different inclinations and to 

assess the stress intensity factors in several locations with different eccentricities, in order 

to update the knowledge in fracture mechanics by new designed model case. 𝐾1, 𝐾2 and 

𝐾3 rules under static conditions are implemented in following chapters. 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

This section showed the techniques used to figure out the proposed objectives of this work. 

Stress intensity factor can be determined in three ways: experimentally, analytically and 

numerically. Experiment setups are hard to build up and significantly more tedious and 

immoderate. Analytical technique can ascertain exact SIFs just up to 2D crack issues. 

Because of the complexities in 3D crack geometries, experimental and analytical 

techniques are not as a suitable choice as that with the headway in computational 

simulation based programming software which is favored because of its comparably 

accurate and efficiency. As well, finite element method and boundary element method 

are most regularly utilized strategies compared to other numerical analysis method.  

Furthermore, Boundary element method (BEM) is widespread used nowadays due to its 

multi benefits relative to finite element method. It is a developing technology to solve 

issues occurred in different parts of designing processes such as acoustics, fluid 

mechanics, thermal dynamics and electromagnetics as well as fracture mechanics and so 

on (Aliabadi, 1997). BEM and FEM have also been compared in some literatures 

previously (Citarella & Cricrì, 2010) and (Wanderlingh, 1986). Then the commercial 

software BEASY is actually one of the most popular tool based on boundary element 

method. BEASY programming is innovated to analyze fatigue, crack growth and flaw 

evaluation etc. In this work, BEASY programming is utilized to model, analysis and 

investigate for an embedded crack subjected to certain loading, such as, tension, torsion 

or the combination of these two. 
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3.2 Dual boundary element method in BEASY 

Among these, from the application of the software, BEM applied software is going to 

develop to BEM programming package with preprocessor and postprocessor solving 

function and multi-problem dealing with. Dual boundary element method (DBEM) is now 

one of the most popular fatigue problem solving method and also used in the 

programming of BEASY software developed by Mi and Aliabadi (1992) which is used 

for computational engineering fracture analysis.  

Stress intensity factors (SIFs) are evaluated in BEASY via the J-integral concept of  

(Rice, 1968) and (Cherepanov, 1967) which gives, for crack opening in the 𝑥𝑖 direction, 

a path-independent energy integral of the form 

 𝐽 = ∫ (𝑊𝑛𝑖 − 𝑡𝑘𝑢𝑘,𝑖)dΓ
Γ

                                             (3.1) 

over a surface Γ with outward normal n. This concept was developed for linear elastic 

materials, and it was further extended to HRR solutions (Hutchinson, 1968) for materials 

with constitutive relationship in the form of Ramberg-Osgood. Using Green’s functions 

𝑈𝑖𝑗 for displacement and 𝑇𝑖𝑗 for traction, the strain energy density 𝑊(Γ) and the work-

conjugate of traction t and displacement u in J-integral are calculated using DBEM as 

follows (Mi and Aliabadi 1992). 

𝑢𝑖(𝐱′) + 𝛼𝑖𝑗(𝐱′)𝑢𝑗(𝐱′) + ∫ 𝑇𝑖𝑗(
Γ

𝐱′, 𝐱)𝑢𝑗(𝐱)dΓ(𝐱) = ∫ 𝑈𝑖𝑗(
Γ

𝐱′, 𝐱)𝑡𝑗(𝐱)dΓ(𝐱)  (3.2) 

1

2
𝑡𝑗(𝐱′) +  𝑛𝑖(𝐱′) ∫ 𝑇𝑖𝑗,𝑘(

Γ

𝐱′, 𝐱)𝑢𝑘(𝐱)dΓ(𝐱)  =  𝑛𝒊(𝐱′) ∫ 𝑈𝑖𝑗,𝑘(
Γ

𝐱′, 𝐱)𝑡𝑘(𝐱)dΓ(𝐱) 

(3.3) 
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where 𝑇𝑖𝑗’s singularity of O (
1

‖𝐱−𝐱′‖2) as x → x' warrants regularization and treatment 

in the sense of Cauchy; and 𝛼𝑖𝑗(𝐱′)is a term that emanates heretofore from an integral 

with the fundamental solution 𝑇𝑖𝑗  as its kernel. They claimed to have presented an 

effective numerical implementation of the dual boundary integrals, and such is BEASY. 

 

3.3 Simulation Work  

3.3.1 Model geometry and property 

As Figure 3.1 showed below, this simulation for the SIFs uses a prismatic square bar with 

the cross-section of 10 ×10 mm2 and length of 40 mm. It is twisted with a torque 𝑀𝑡 

that corresponds to the maximum shear stress of 𝜏max = 100 MPa. An isotropic linear 

elastic material mild with Young’s modulus of 210 GPa and Poisson’s ratio of 0.29 is 

used, such stiffness moduli are typical for steel alloys. 

 

Figure 3.1: The square prismatic bar within an embedded crack used in this work 
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3.3.2 BEASY working processes 

The working processes of the software BEASY is illustrated as following in Figure 3.2. 

Figure 3.2: Steps to evaluate SIFs using BEASY 

BEASY Simulation

PREPROCESSOR

Create nodes and 
linked with lines

Generate patches 
(define directions)

Define material 
Properties for both 
Youngs Modulus & 

Poission Ratio

Manully mesh the 
model

Define traction and 
displacement

Save dat. file

Sovle the model

SIF WIZARD

Open data file with 
solved model

Select crack type

Define crack location

Define crack 
dimension and 
meshing size

Define crack growth 
direction and 

elevation

Select SIF calculation 
method. e.g COD or 

J-integral

Select remeshing 
element type for both 

crackand model 
surfaces

Save data and run the 
simulation

POSTPROCESSOR

Checking the errors 
reported if applicable

Generate Excel file for 
SIFs data and graphs

Reorganize the mesh 
poionts in BEASY IMS.
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3.3.2.1 Model generation 

As we can see from Figure 3.3, the square prismatic model consists of two zones which 

are the main square bar part where the embedded crack will be set inside of it and a short 

cylinder part where the torsion loading will be easily applied on it. In BEASY interface, 

the model below as a sample should be built with nodes firstly, then linked every node 

created before with straight lines for the prismatic bar part and with the circular arch lines 

for the cylinder. 

   

Figure 3.3: Points and lines generation in BEASY interface 

After the last step is done, the patches with certain inward or outward direction should be 

created to cover the whole model. Mostly, each patch has been defined by 4 points created 

before, and for this work, there are totally 38 patches where they all connected together 

to cover the square prismatic bar. Also, each patch has the inward or outward definition 

with different color showed in the interface in BEASY, in Figure 3.4, the patches we can 

see are all marked in blue color which meant the outward direction. 
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Figure 3.4: Patches generation in BEASY interface 

 

3.3.2.2 Model meshing process 

For two dimensional meshing process, BEASY applies elements to the boundaries. Either 

straight lines or curve lines could be the meshing lines. The number of nodes correlated 

to the element are shown in the Table 3.1, and the type of meshing lines are shown in 

Figure 3.5 below. 

Table 3.1: 2D elements type in BEASY 

Element Order 
Number of 

Mesh Points 

Number of 

Nodes 

Constant 3 1 

Linear 3 2 

Quadrant 3 3 
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Figure 3.5: 2D line meshing lines in BEASY 

For the three dimensional problems, BEASY applies elements to the patches. These 

patches types are either quadrilateral or triangular. There are nine mesh points for the 

quadrilateral elements, and six mesh points for the triangular. Number of nodes correlated 

to elements showed in Table 3.2 and 3.3. The illustrations of the element types showed 

in Figure 3.6. 

 

Table 3.2: 3D quadrilateral elements type in BEASY 

Element Order Number of mesh points Number of nodes 

Constant 9 1 

Linear 9 4 

Reduced Quadratic 9 8 

Quadratic 9 9 
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Table 3.3: 3D Triangular elements type in BEASY 

Element Order Number of mesh points Number of nodes 

Constant 6 1 

Linear 6 3 

Quadratic 6 6 

 

 

 
 

Figure 3.6: 3D elements type for quadrilateral and triangular patches meshing 

 

In this work, all the patches of the model applied quadrilateral quadratic element meshes 

which were considerably accurate to simulate. There are total 16 fan shape elements on 

the surface of the left side of the end of the prismatic bar, and total 80 rectangular shape 

elements on the rectangular bar of the right side. After meshing process, the square 

prismatic bar model is shown in Figure 3.7. 

Quadratic 
Reduced 

Quadratic 
Linear Constant 

Quadratic Linear Constant 
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Figure 3.7: Element meshing of the model in BEASY interface 

 

3.3.2.3 Boundary conditions 

General speaking, boundary conditions can be applied with stress boundary conditions 

like traction, spring loads, constraints and so on, and potential boundary conditions could 

be heat transfer rate, flux density and thermal load, etc. 

For the fracture mechanics study here, only stress boundary conditions are considered 

such as tension, torsion and displacements etc. The model with applied boundary 

condition is shown in Figure 3.8. As we can see here, the left end of the prismatic bar has 

been applied the torsion loading as one traction boundary condition, the other side has 

been applied current displacement constraint which is same as clamped constraint. 
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Figure 3.8: Model with applied boundary conditions in BEASY interface 

 

3.3.2.4 Crack defining process 

There is an independent calculation part called “SIF wizard” of BEASY to solve the SIFs 

with certain types of cracks subjected to cyclic loading that showed in Figure 3.9. Firstly, 

the model built before should be loaded in this wizard. Secondly, the model loaded here 

should also be checked and saved in a proper location to confirm there would not be any 

small mistake and the solved result could be found easily after all the procedure is done. 

Then the work process will be going to the step named “edit the crack simulation data” 

showed in the figure below. 
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Figure 3.9: BEASY SIF wizard interface 

After open the SIF wizard above, the first step to define the crack is choosing the number 

and the type of it as Figure 3.10 showed below. As the figure showed, the required type 

of analysis to be performed should be the simulation of a single crack in Figure 3.10 (a); 

next, this single crack should be defined as a 3D embedded elliptical crack expect the 

aspect ratio equal to one, then that would be a 3D embedded penny crack showed in 

Figure 3.10 (b). Univ
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(a) 

 

(b) 

Figure 3.10: (a) crack quantity defining; (b) crack type defining 
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3.3.2.5 Defining the parameter of crack 

There are totally 3 coordinates for the crack that should be defined in the Cartesian 

coordinate system in BEASY to accurately set an embedded elliptical crack. To describe 

the parameters of the crack clearly, Figure 3.11 illustrated these parameters clearly, crack 

initiation point is the center of the crack from where the crack starts to grow. The lengths 

of major and minor axes are a and b respectively. The direction of first crack edge to the 

second edge defines the way along the crack front in which the crack will grow. After the 

center of the crack location and the first crack edge direction defined, the second crack 

edge direction will determine the inclination of the embedded crack. 

 

Figure 3.11: Parameters of embedded elliptical crack 

The steps to define these parameters in SIF wizard are illustrated in the Figure 3.12. 

Firstly, the center of the embedded crack location inside of the model is defined as in 

Figure 3.12(a) where the first column represents the number of the crack and the second 

column defines the space rectangular coordinates. Next is to define the crack size 

parameters for both the length of major and minor axes as Figure 3.12(b). Then to define 

the orientation of the crack front where the crack will start to grow which is also called 

direction of first crack edge that the software could recognize in the first column in Figure 

3.12(c), then the crack elevation in the second column is exactly the second edge direction 

in Figure 3.11. 
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(a) 

 

(b) 

 

(c) 

Figure 3.12: Steps to introduce Crack using BEASY SIF wizard (a) crack center point; 

(b) Crack size parameter; (c) crack growth direction & crack elevation parameter 
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3.3.2.6 Analysis method of SIFs 

Stress intensity factors can be calculated in two options in BEASY, one is J-integral 

method, the other is crack opening displacement method (COD) as Figure 3.13 showed. 

Due to the more accurate results of it, J-integral method developed by Rice (1968) is more 

widely used by researcher and also has been chosen for this work. 

 

Figure 3.13: SIFs calculation method options in BEASY 

 

J-integral is usually defined for non-elastic materials. It is known as a way to calculate 

the strain energy release rate, or energy per unit in a material for the fracture surface area. 

In the preceding calculations, we assume a monotonically loaded plastic material with the 

restriction that unloading is not permitted. 

Rice (1968) recognized that for non-linear elastic, homogenous, isotropic body in static 

equilibrium a certain integral called J-integral along a closed path is always equal to 0. 

Now let Ф be a closed contour bounding a region ‘A’ occupied by the body as shown in 

Figure 3.14. Let x1 and x2 be the fixed coordinates to which all the coordinates are 

referenced. The J-integral is given by the equation 

(3.4) 

Where W is strain energy density. The infinitesimal strain energy density dW is the work 

per unit volume done by the stress σij during an infinitesimal strain increment dεij. 
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 (3.5) 

 

                                              (3.6) 

 

Figure 3.14: A counter clockwise closed contour, Ф 

Also the traction vector T is a force per unit area acting on some plane in a stressed 

material and is defined according to the outward normal n to the contour Ф. u is a 

displacement vector. So  

                   (3.7) 

                                         (3.8) 
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3.3.2.7 Element Selection 

Selecting of the element type to mesh the crack and the surfaces in BEASY is shown in 

Figure 3.15. Hereby, In order to calculate SIFs in an efficient and accurate way, the 

element type on surface mesh is linear to make the calculation fast while the element type 

on crack is quadratic which is considered as a highly accurate method to proceed the 

calculation for the crack. 

 

Figure 3.15: Element type selection for meshing the crack and the surfaces 

 

3.3.2.8  Rest steps 

At the end, BEASY saves the defined data for all the geometry of the model and crack, 

as well as the boundary conditions, then runs the simulation to calculate SIFs and finally 

carry out all three modes K1, K2 and K3. The final results in Excel file in form of data 

values and graphs. 

3.4 Summary 

In this methodology chapter, the steps for using BEASY software and how it works to 

carry out the stress intensity factor values are reported in details. As well, the model 

property and crack parameters are illustrated. In next chapter, the few conclusions for the 

theory of elasticity, the effects of the crack aspect ratio, the effects of crack eccentricity 
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and the effects of crack inclination on the SIFs of an embedded crack in a square prismatic 

bar under torsion loading are presented and discussed. 
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CHAPTER 4 

RESULTS & DISCUSSIONS 

4.1 Introduction 

In this chapter, firstly, the benchmarking for the BEASY software has been done and 

compared with Newman-Raju solution (Newman Jr & Raju, 1986). Secondly, several 

results for elasticity have been concluded which could be considered as the theoretical 

principal and explanation for the SIFs effects of different parameters of embedded crack. 

Afterward, stress intensity factor results have been presented for an embedded crack with 

different parameters in square prismatic bars under torsion loading. Lastly, a comparison 

between different geometries of models have been showed and concluded. 

The parameters and notations used for the model are depicted in Figure 4.1. Embedded 

cracks with fixed b = 0.5 mm and aspect ratio of b/a are introduced in the square bar. The 

characteristic mesh size for crack front discretization for all cracks studied is 

approximately 0.02 mm, and all SIFs are normalized by 𝐾0 = 𝜏max√𝜋𝑏, where 𝜏max =

100 MPa. BEASY software, Boundary element based, is emerging software to solve 

boundary value problems in various engineering fields. To fulfill the objectives of this 

research, simulations are carried out using BEASY software. To demonstrate the 

accuracy of BEASY software, benchmarking is carried out by comparing BEASY results 

with the available results in literature. Univ
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Figure 4.1: Parameters and normalized position along crack front 

4.2 Benchmarking 

Since no solution for torsionally loaded prismatic bar with embedded cracks is available, 

Newman-Raju (NR) solution (Newman Jr & Raju, 1986) for embedded elliptical crack in 

a square bar loaded normally is used instead to benchmark the results of BEASY. A 20 

× 20 mm2 benchmarking model with 80 mm length is designed to validate the BEASY 

software. In Figure 4.2, we present the results of K1 for aspect ratios b/a = 0.5, 1, and 2 

subjected to normal stress of 100 MPa. 
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Figure 4.2: Benchmarking model with an embedded crack 

This simulation has characteristic mesh size of 0.05 mm on the crack front. Good 

agreement is observed the results overlap each other for most part, and there is a small 

difference for maximum values albeit that for minimum seems to be sizable. We remark 

that NR closed-form solution is approximate as it showed in Figure 4.3 below. 

Figure 4.3: K1 due to tensile loading on an embedded elliptical crack with aspect ratios 

b/a = 0.5, 1, and 2 within a square bar 
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4.3 Results from elasticity 

Rectangular bar is a straightforward geometry, yet the result of the shear stress is still 

lengthy since a second order partial differential equation must be fathomed. To start, the 

equation that models all torsional shear stress is, 

 
𝜕2𝜑

𝜕𝑥2 +
𝜕2𝜑

𝜕𝑦2 = −2𝐺𝜃                                                 (4.1) 

where G is the shear modulus, θ is the angle (radians) of twist per unit length (not the 

total twist) and φ is the scalar stress function (used to discover shear stress). 

In our case the maximum torsional shear stress has been defined as 𝜏𝑚𝑎𝑥 = 100 MPa, 

and as the square bar geometry setting above, the torque could be calculated as M = 20.8 

Nm since the width 2A and height 2B both equal to 10 mm as the Figure 4.4(a) showed 

below. There are two axes (X and X’) on the cross section for studying how the shear 

stress variate along them. 

Timoshenko and Goodier (1970) has given the relationship between the torque M and the 

angle (radians) of twist per unit length θ, 

𝑀 = 0.1406𝐺𝜃(2𝐴)4                                                (4.2) 

So, 𝜃 = 70446.39 rad. 

The dimension of "A" and "B" are diverse for the time being, so the derived solution can 

be utilized for any rectangular bar. The utilization of the x-axis facing the right is steady 

with standard beam coordinates (z is along the bar center, or coming out of the page for 

this case). The torsional shear stresses in the rectangular bar is not at all like a round bar, 

the stresses will change for diverse area around the middle. This makes the solution 

troublesome (and protracted). 

Univ
ers

ity
 of

 M
ala

ya



 

56 
 

Like all solutions to differential equations, a trial solution is proposed, and afterward 

substituted back into locate a particular solution. Since the solution ought to be 

symmetrical around both the x-axis and y-axis, a cos function ought to work. 

As a beginning stage, expect the stress function, φ, is 

∑ 𝐵𝑛 cos
𝑛𝜋𝑥

2𝐴
𝑌𝑛

∞
𝑛=1,3,5.. ,                                               (4.3) 

where 𝑏𝑛 are constants (will be counterbalanced later) and 𝑌𝑛 are functions of "y" that 

are not yet set. Presently, substitute this expected solution once more into the differential 

equation, giving 

[∑ 𝐵𝑛 (−
𝑛2𝜋2

4𝐴2 ) cos
𝑛𝜋𝑥

2𝐴
𝑌𝑛] + ∑ 𝐵𝑛 cos

𝑛𝜋𝑥

2𝐴
𝑌𝑛

′′ = −2𝐺𝜃,                     (4.4) 

Every one of the terms on the left have cosine functions, yet the right hand side does not. 

To make all terms steady, the -2Gθ consistent term can be composed as a fourier series 

(fundamentally only a series utilizing sine and cosine) as 

2𝐺𝜃 = ∑ 2𝐺𝜃
4

𝑛𝜋
(−1)(𝑛−1)/2 cos

𝑛𝜋𝑥

2𝐴

∞
𝑛=1,3,5.. ,                              (4.5) 

This may appear to be complex, but it will work out at last. On the off chance that the 

2Gθ series is substituted into the past mathematical equation, the cos terms will scratch 

off, giving 

[∑ 𝑏𝑛 (−
𝑛2𝜋2

4𝐴2 ) 𝑌𝑛] + ∑ 𝐵𝑛𝑌𝑛
′′ = − ∑ 2𝐺𝜃

4

𝑛𝜋
(−1)(𝑛−1)/2,                   (4.6) 

Where the " (prime) marks speak to derivatives as for y. Adjusting, moving 𝑏𝑛 term to 

the right hand side, and dropping the summation symbol for effortlessness (as yet 

summing on all terms with n), giving 

𝑌𝑛
′′ −

𝑛2𝜋2

4𝐴2
𝑌𝑛 = −2𝐺𝜃

4

𝑛𝜋𝐵𝑛
(−1)(𝑛−1)/2,                                 (4.7) 
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The 𝑌𝑛 expressions are elements of y that have not been set yet. It will be done at this 

point. Fundamentally, the equation above is another differential equation. The general 

result is 

𝑌𝑛 = 𝑎0 sinh
𝑛𝜋𝑦

2𝐴
+ 𝑏0 cosh

𝑛𝜋𝑦

2𝐴
+ 2𝐺𝜃

16𝐴2

𝑛3𝜋3𝐵𝑛
(−1)(𝑛−1)/2,                  (4.8) 

Presently the boundary conditions can be connected to decide the constants A and B. To 

start with, since the result will be symmetrical about the x-axis, there can be no sinh term 

(anti symmetric). Along these lines A absolutely will be zero. Next, B can be found with 

the boundary conditions φ = 0 at the edge, or when y = ±b, giving 

𝑏0 =
2𝐺𝜃

16𝐴2

𝑛3𝜋3𝐵𝑛
(−1)(𝑛−1)/2

cosh
𝑛𝜋𝐵

2𝐴

,                                             (4.9) 

This give Yn as 

𝑌𝑛 = 2𝐺𝜃
16𝐴2

𝑛3𝜋3𝐵𝑛
(−1)(𝑛−1)/2 [1 −

cosh
𝑛𝜋𝑦

2𝐴

cosh
𝑛𝜋𝐵

2𝐴

],                             (4.10) 

Substituting Yn, back into the stress function, φ, gives 

φ = ∑ 𝐺𝜃
32𝐴2

𝑛3𝜋3
(−1)

(𝑛−1)

2 [1 −
cosh

𝑛𝜋𝑦

2𝐴

cosh
𝑛𝜋𝐵

2𝐴

] cos
𝑛𝜋𝑥

2𝐴

∞
𝑛=1,3,5.. ,                     (4.11) 

 

This is the full answer for the stress function any location (x, y) for a rectangular 

intersection. Taking a derivative to x could discover the shear stress on the y-z plane, 

giving 

𝜏𝑦𝑧 = −
𝜕𝑦

𝜕𝑥
= 𝐺𝜃

16𝐴

𝜋2
∑

1

𝑛2
(−1)(𝑛−1)/2 [1 −

𝑐𝑜𝑠ℎ
𝑛𝜋𝑦

2𝐴

𝑐𝑜𝑠ℎ
𝑛𝜋𝐵

2𝐴

] 𝑠𝑖𝑛
𝑛𝜋𝑥

2𝐴

∞
𝑛=1,3,5..            (4.12) 
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In like manner, the stress in the x-z plane can be found from 

𝜏𝑥𝑧 =
𝜕𝜑

𝜕𝑦
= −𝐺𝜃

16𝐴

𝜋2
∑

1

𝑛2
(−1)(𝑛−1)/2 [

𝑠𝑖𝑛ℎ
𝑛𝜋𝑦

2𝐴
𝑐𝑜𝑠

𝑛𝜋𝑥

2𝐴

𝑐𝑜𝑠ℎ
𝑛𝜋𝐵

2𝐴

]∞
𝑛=1,3,5..                 (4.13) 

The overall shear stress will be a mix of both the y-z and x-z plane stress. 

𝜏𝑥𝑦 = √𝜏𝑥𝑧
2 + 𝜏𝑦𝑧

2                                                   (4.14) 

Last but not least, the definition domain of the function above has been set from 1 to 

infinite, so we should also consider the convergence of it. 

As the figure showed in Figure 4.4(b), the Equation (4.12) is going to converge when 

𝑛 ≥ 9, so that the stress components for 𝜏𝑦𝑧 could be accurately found based on the 

graphs above. Here, the normalized position on cross section respected to the length of 

the a along axis X’ and the normalized stress utilized the function 

 �̂� = 𝜏/𝜏𝑚𝑎𝑥                                                       (4.15) 

where the 𝜏𝑚𝑎𝑥 is the maximum shear stress applied on the square bar that is 100 MPa. 

Likewise, the 𝜏𝑥𝑧 in Figure 4.4(c) converged even more faster than the 𝜏𝑦𝑧, in which 

the graphs showed that this function converged when 𝑛 ≥ 9. Then followed the Equation 

(4.14), Figure 4.4(d) shows the shear stress distributions along X and X’, these results 

would be useful to understand the behavior of SIFs for cracks with offsets from the 

centroid. 
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Figure 4.4: (a) The geometry of a rectangular bar; (b) The convergence of normalized 

𝜏𝑦𝑧; (c) The convergence of normalized 𝜏𝑥𝑧; (d) shear stress distributions 

 

Along an elliptical contour of C as showed in Figure 4.4(a) parametrized by 

 (𝑥, 𝑦) = (𝑎 cos 𝑡, 𝑏 sin 𝑡)                                          (4.16) 

the tangent and normal vectors can be written as 

𝐞𝑛 = (1,
𝑎

𝑏
tan 𝑡) √1 +

𝑎2

𝑏2 tan2 𝑡⁄                                       (4.17) 

And 

 𝐞𝑡 = (−
𝑎

𝑏
tan 𝑡, 1) √1 +

𝑎2

𝑏2 tan2 𝑡⁄                                    (4.18) 

respectively; and this allows for the calculation of the normal and tangential shear 

component respectively as 

 𝜏𝑛 = (𝜏𝑥𝑧 , 𝜏𝑦𝑧) ⋅ 𝐞𝑛                                                (4.19) 
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And 

 𝜏𝑡 = (𝜏𝑥𝑧 , 𝜏𝑦𝑧) ⋅ 𝐞𝑡.                                                (4.20) 

The distributions of these components, as depicted in Figure 4.5, may be used to guide 

our intuition about the in-plane and anti-plane SIFs of K2 and K3. 

Figure 4.5: Distribution of the normal (dotted line) and tangential (solid line) shear 

stresses along an elliptical contour C around the centroid with vertical axis length b = 

0.5 mm and aspect ratio b/a as indicated in the subplots 
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4.4 Center cracks of different aspect ratio 

4.4.1 Introduction 

Crack aspect ratio is the ratio between the major and minor axis of the elliptical crack as 

shown in the Figure 4.6, in this work, cracks with aspect ratio 
𝑏

𝑎
∈ {1, 1.25, 1.5, 1.75, 2} 

and with b = 0.5 mm are studied. 

 

Figure 4.6: Circular and elliptical shapes different crack aspect ratios (b/a) 

4.4.2 Effects of crack aspect ratio for center cracks 

Figure 4.7(a) and Figure 4.7(b) depicted SIFs K2 and K3 for center cracks. K1 is irrelevant 

as it would equal to zero for normally oriented cracks. For b/a = 1 (i.e. a penny crack), 

the in-plane sliding mode K2 along the crack front for b/a = 1 is approximately zero, and 

the anti-plane tearing mode K3 is uniform. These could be expected intuitively as the shear 

stress field without cracks appears to be nearly concentric circles for small radial distances 

away from the centroid. The two-fold symmetry of a penny crack about the centroid with 

respected to the loading results in the periodic behavior seen in Figure 4.7(a) and 4.7(b). 

As the crack becomes more elliptical, the maximum value of K2 increases and K3 

decreases; and as intuitively expected by referencing Figure 4.5, it is seen to shift towards 
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the apical crack front positions of 1/4 and 3/4 for Mode II and stays at these apical 

positions for Mode III. The ratio of 0 ≤
𝐾2

max

𝐾3
max⁄ < 1, suggesting that the mild Mode 

III dominance is reduced as crack becomes more elliptical. As depicted in Figure 4.7(c) 

and (d), 𝐾2
max is observed to be increasing at a slower rate for b/a > 1.5, while 𝐾3

max 

decreases more or less linearly with b/a. 

 

Figure 4.7: (a) K2 for embedded center cracks with different aspect ratios (b = 0.5 mm); 

(b) K3 for embedded center cracks with different aspect ratios (b = 0.5 mm); (c) 𝐾2
max; 

(d) 𝐾3
max. 
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4.5 Eccentric cracks 

4.5.1 Introduction 

We define the eccentricity e in the sense of an offset from the centroid as 𝑒 ∙

𝐴

5
= true distance from centroid, and sample these locations on X and X’ (see Figure 4.8): 

(i) 𝑒 ∈ {1, 2, 3, 4}  along X’, and (ii) 𝑒 ∈ {√2, 2√2, 3√2, 4√2}  along X. And the 

normalized position along crack front are showed for eccentric cracks along different axes. 

Figure 4.8: Eccentric embedded crack with aspect ratio b/a = 1 on the cross section of 

the square prismatic bar 

 

4.5.2 Effects of eccentricity for penny cracks 

Nearly symmetrical or anti-symmetrical profile about the major or minor elliptic axes is 

observed in Figure 4.9(a) to (d).  𝐾2
max  and 𝐾3

max  are found to be respectively at 

locations which are very close to the major and minor axes. The maximum SIFs as a 

function of the eccentricity, as depicted in Figure 4.9(e) to (f), are qualitatively similar to 

Figure 4.4(d); and for all cases, 𝐾2
max > 𝐾3

max is observed. 
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Figure 4.9: (a) K2 of penny crack for different eccentricities along X’ axis; (b) K3 of 

penny crack for different eccentricities along X’ axis; (c) K2 of penny crack for different 

eccentricities along X axis; (d) K3 of penny crack for different eccentricities along X 

axis; (e) 𝐾2
max; (f) 𝐾3

max 

 

4.5.3 Effects of eccentricity for elliptical cracks 

Last but not least, the eccentricity rules could be not only applied to the penny crack 

showed in this section but also to the elliptical crack (𝑏/𝑎 ≠ 1). For example, b / a = 2, 

with b = 0.5 mm is shown in Figure 4.10. But since the size of the elliptical cracks became 
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smaller as a reduced from 0.5 mm to 0.25 mm, K2 and K3 in the same locations also 

showed smaller values compared with Figure 4.9 above. 

Figure 4.10: (a) K2 of elliptical crack for different eccentricities along X’ axis; (b) K3 of 

elliptical crack for different eccentricities along X’ axis; (c) K2 of elliptical crack for 

different eccentricities along X axis; (d) K3 of elliptical crack for different eccentricities 

along X axis; (e) 𝐾2
max; (f) 𝐾3

max 
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4.6 Cracks with inclination 

4.6.1 Introduction 

Crack inclination is the inclination from the crack plane. Angle α indicates the crack 

orientation which is considered from 0°  to 90°  to investigate its effects on stress 

intensity factor value as showed in Figure 4.11. We proceed to study cracks with 

inclination with respect to the normal plane of the prismatic axis of the bar. Inclinations 

of 𝛼 ∈ {0°, 22.5°, 45°, 67.5°, 90°} along X’ axis (correlated to Figure 4.8) are introduced. 

   

(a)                               (b) 

Figure 4.11: (a) Crack inclination α from y-z plane; (b) Crack inclination α from x-z 

plane 

 

4.6.2 Effects of inclination for penny cracks 

The SIFs of embedded crack with inclinations would be even more complicated since the 

effect of 𝛼 is a complex stress field that leads to all three modes of SIFs. Here, the size 

of penny crack is b= a= 0.5 mm. After observation, the most severe inclination for 𝐾1
max 
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is found to be 𝛼 = 45° . 𝐾1
max  for all cases is located at the crack front position 

corresponding to the minor axis as shown in Figure 4.12(a-c). Figure 4.13 and Figure 4.14 

show the SIFs respectively for K2 and K3. The most severe orientation for both modes is 

𝛼 = 90°. Interestingly, location for 𝐾3
max is on the minor axis, different from that of non-

inclined cracks; and the location of 𝐾2
max remains unchanged. 

Figure 4.12: (a) K1 of a center penny crack with inclinations; (b) K1 of inclined penny 

cracks with e = 2 along X’; (c) K1 of inclined penny cracks with e = 4 along X’; (d) 

𝐾1
max along X’. 
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Figure 4.13: (a) K2 of a center penny crack with inclinations; (b) K2 of inclined penny 

cracks with e = 2 along X’; (c) K2 of inclined penny cracks with e = 4 along X’; (d) 

𝐾2
max along X’. 

 

Figure 4.14: (a) K3 of a center penny crack with inclinations; (b) K3 of inclined penny 

cracks with e = 2 along X’; (c) K3 of inclined penny cracks with e = 4 along X’; (d) 

𝐾3
max along X’. 
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4.6.3 Effects of inclination for elliptical cracks 

As for the effects of inclination for elliptical cracks (here, b = 0.5 mm, a = 0.25 mm), all 

the findings for K1 are the same with penny cracks above as showed in Figure4.15 (a) to 

(c). However, the differences between the elliptical crack with inclinations and the penny 

crack are found from K2 and K3. The maximum values for both of K2 and K3 are found at 

𝛼 = 0° in Figure 4.16 and Figure 4.17. It is observed obviously from Figure 4.16 (a) for 

center elliptical crack with inclinations. 

 

Figure 4.15: (a) K1 of a center elliptical crack with inclinations; (b) K1 of inclined 

elliptical cracks with e = 2 along X’; (c) K1 of inclined elliptical cracks with e = 4 along 

X’; (d) 𝐾1
max along X’. Univ
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Figure 4.16: (a) K2 of a center elliptical crack with inclinations; (b) K2 of inclined 

elliptical cracks with e = 2 along X’; (c) K2 of inclined elliptical cracks with e = 4 along 

X’; (d) 𝐾2
max along X’. 

 

Figure 4.17: (a) K3 of a center elliptical crack with inclinations; (b) K3 of inclined 

elliptical cracks with e = 2 along X’; (c) K3 of inclined elliptical cracks with e = 4 along 

X’; (d) 𝐾3
max along X’. 
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4.7 Effects of different geometry models 

As the analysis showed above, the SIFs would be influenced by not only different 

parameters of cracks but also the geometry among different models. Thus, it is also 

important to study the effect of the SIFs for embedded crack with eccentricities within 

different models. Figure 4.18(a) has showed 3 different geometry models which are 

square bar 1 (10 × 10 mm2 for cross section), square bar 2 (10√2 × 10√2 mm2 for 

cross section) and one cylindrical bar (10√2 m for diameter). Eccentric penny cracks 

with b = a = 0.5 mm on the cross section of these three models have been set, in which 

eccentricities along X and X’ (as Figure 4.8 showed) are 2 and 4.071 respectively. 

Observation in Figure 4.18 (b) to (e) showed that the value of K2 and K3 in a square bar 

along the X’ axis is always greater than the same crack along the X axis even though the 

eccentricities of them are all same. The reason should be the stress distribution near the 

edge of the square bar is always higher than near other places (see Figure 4.4 (d)). Also, 

cracks along the X axis will suffered less deformed and the constraint from two edges of 

the model, and the less deformation of the crack the less SIFs of it will be obtained. 

On the other hand, the different results have been gained from the cylindrical bar, the K2 

and K3 are smaller than the value of the square bar 1 but higher than the square bar 2 with 

the same eccentricities since the geometry of it are different with these two square bars. 

The SIFs is decreasing when the volume of the model is becoming higher since the stress 

distribution is also decreasing. 
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Figure 4.18: (a) Penny crack on cross section of two square bars and a cylindrical bar; 

(b) K2 of penny cracks with e = 2 mm; (c) K3 of penny cracks with e = 2 mm; (d) K2 of 

penny cracks with e = 4.071 mm; (e) K3 of a penny crack with e = 4.071 mm. 
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CHAPTER 5 

CONCLUSIONS & FUTURE WORKS 

4.5 Conclusion 

Simulation results using BEASY software based on DBEM are presented in Chapter 4. 

SIFs for elliptical embedded cracks in a square prismatic bar subjected to torsion are 

evaluated thoroughly by considering elliptical aspect ratio, eccentricity in the sense of an 

offset from the centroid, and inclination with respect to the normal plane of the centroid 

axis. Through an effective sampling of locations over 1/8 of the cross-sectional domain, 

we have presented comprehensive results that could potentially be used to estimate the 

SIFs for an arbitrary (aspect ratio and inclination) crack located at a general location. 

Based on the results, some conclusions are made which can be summarized as follows: 

1. In general, the results conform to the theory of elasticity. 

2. As b/a increases, both in-plane and anti-plane, SIF increases and the most severe 

location is at or close to the apical positions.  

3. With offset, K2 is maximum at a location close to the major axis while K3 is 

maximum at a location close to the minor axis.  

4. As cracks become inclined, both these maximum values become highest with 

𝛼 = 90° for penny cracks, but the 𝛼 = 0° is the maximum value for elliptical 

cracks with (b/a = 2). 

5. SIF K1 due to the inclination is found to be maximum at the apical positions with 

𝛼 = 45° as the most severe orientation. 

6. The comparisons between different geometry models showed that the SIFs are 

influenced predominantly by stress distribution especially from the shearing and 

tearing effects. Nevertheless, the effect of the shape of external boundary is less 

significant. 
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4.6 Future works 

This work can be extended to the following further studies: 

Evaluations of SIFs for different loading such as bending or combination of tension and 

torsion applied on the square prismatic bar. 

Fatigue crack growth analysis of an embedded crack in a square prismatic bar for 

parameters and types of loadings designed. 
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