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IDENTIFICATION OF ELASTIC PROPERTIES OF COMPOSITE PLATES 

USING NON-DESTRUCTIVE TWO STAGES DERIVATIVE-BASED METHOD 

AND META-HEURISTIC HYBRID OPTIMIZATION METHOD 

ABSTRACT 

Researchers have been investing much time and efforts in investigating non-destructive 

vibrational methods. Accuracy, repeatability, convergence and robustness are the 

important aspects determining the reliability of a non-destructive method. Evaluating 

the reliability of a method on the basis of these aspects is subjective because this 

depends on the compared methods and the applications. In this research, a derivative-

based method is developed to identify the elastic properties of composite plates under 

various boundary conditions. The novelty consists in its composition, where it is 

constructed adopting the Fourier method, a weighted least squares method and the mode 

shape error function. The displacement function of the plate structure is defined in terms 

of two-dimensional Fourier cosine series which is supplemented with several one-

dimensional additional terms to accommodate various boundary conditions. The 

derivatives of mode shape with respect to stiffness rigidity are derived and computed 

from the model‟s displacement function. A two-stage identification approach is 

proposed, in which stage 1 uses natural frequencies while stage 2 utilises mode shapes. 

The use of mode shapes in stage 2 is proven vital in improving the identifiability of the 

in-plane shear modulus and Poisson‟s ratio. However, the effectiveness of this method 

is dependent on the initial values. Therefore, a meta-heuristic hybrid optimisation 

method is proposed to enhance the exploratory and exploitative search processes. In 

early iterations, the two-point standard mutation is utilised collaboratively with the 

concept of the ACO unrepeated tour to evade local entrapments, while the one-point 

refined mutation is used in later iterations to supplement the exploitative search process, 

which is mainly contributed by the PSO. The proposed method is validated using test 
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functions and well-known engineering design problems. It exhibits an excellent global 

search capability in the presence of constraints. Furthermore, the applicability of the 

proposed method in material identification is investigated and compared with those of 

the conventional methods, namely, ACO, GA and PSO. It is proven to be relatively 

better than the conventional methods in various aspects. Instead of adopting the 

conventional natural frequency error function, the FRF error function is used to improve 

specifically the identifiability of the in-plane shear modulus and Poisson‟s ratio. The 

effectiveness of the FRF error function in material identification consists in the trade-off 

range between those of the natural frequency error function and mode shape error 

function. Comparing the two-stage derivative-based method with the meta-heuristic 

hybrid optimisation method, the latter is better in terms of accuracy and robustness, 

while the former exhibits superiority in the aspects of repeatability and convergence. 

 

Keywords: composite, derivative-based, frequency response function (FRF), meta-

heuristic, non-destructive 
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IDENTIFIKASI CIRI-CIRI ELASTIK PLAT KOMPOSIT MENGGUNAKAN 

KAEDAH DUA PERINGKAT BERASASKAN DERIVATIF DAN KAEDAH 

PENGOPTIMUMAN HIBRID META-HEURISTIK  

ABSTRAK 

Para penyelidik telah banyak menghabiskan masa dan usaha dalam mengkaji kaedah 

tidak musnah secara getaran. Ketepatan, kebolehulangan, kepantasan dan keteguhan 

merupakan aspek penting yang menentukan kebergantungan pendekatan tidak musnah. 

Penilaian kebergantungan kaedah berdasarkan aspek-aspek tersebut dikatakan subjektif 

disebabkan penilaian tersebut bergantung kepada kaedah yang dibandingkan serta jenis 

aplikasi. Dalam kajian ini, kaedah berasaskan derivatif telah direka untuk mengenalpasti 

ciri-ciri elastik bahan komposit dalam keadaan sempadan umum. Kebaharuan 

pendekatan tersebut terdapat dalam pembinaan algoritma yang berlandaskan kaedah 

Fourier, kaedah “weighted least squares” serta penggunaan fungsi ralat bentuk mod. 

Fungsi bentuk struktur ditakrifkan sebagai “Fourier cosine series” dua dimensi disertai 

beberapa istilah tambahan satu dimensi untuk menyesuaikan pelbagai keadaan 

sempadan umum. Derivatif bentuk mod berlandaskan “stiffness rigidity” dapat 

diperolehi daripada fungsi bentuk tersebut. Dalam kajian ini, pendekatan pengenalan 

berasaskan dua peringkat dikemukakan. Frekuensi semula jadi digunakan di peringkat 

pertama dan bentuk mod digunakan di peringkat kedua. Penggunaan bentuk mod di 

peringkat kedua dinyatakan penting dalam meningkatkan ketepatan modulus ricih 

dalam-satah dan nisbah Poisson. Namun, keberkesanan kaedah tersebut dikatakan 

bergantung kepada nilai permulaan. Oleh itu, kaedah pengoptimuman hibrid meta-

heuristik turut direka untuk meningkatkan proses penerokaan dan eksploitasi. Dalam 

lelaran awal, mutasi standard dua mata digunakan secara kolaboratif dengan konsep 

penerokaan tidak berulang yang terdapat dalam ACO untuk mengelakkan perangkap 

tempatan, manakala mutasi halus satu mata digunakan dalam lelaran kemudian untuk 
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menambahbaikan proses eksploitasi yang disumbangkan oleh PSO. Kaedah yang 

dicadangkan telah disahkan melalui penggunaan fungsi ujian dan pelbagai masalah reka 

bentuk kejuruteraan. Pendenkatan yang dicadangkan tersebut mempamerkan keupayaan 

pencarian global yang tinggi dalam keadaan yang didapati kekangan. Selain itu, 

penggunaan kaedah yang dicadangkan dalam pengenalan ciri-ciri elastik bahan 

komposit telah disiasat dan keberkesanan kaedah tersebut dibandingkan dengan kaedah 

konvensional, seperti ACO, GA dan PSO. Kaedah hibrid tersebut didapati cemerlang 

dalam pelbagai aspek. Selain menggunakan fungsi ralat frekuensi semula jadi 

konvensional dalam pengenalan ciri-ciri bahan, fungsi ralat FRF dicadangkan untuk 

memperbaiki pengenalpastian modulus ricih dalam-satah dan nisbah Poisson. 

Keberkesanan fungsi ralat “FRF” dalam mengenal pasti ciri-ciri elastik bahan komposit 

didapati terletak di antara keberkesanan fungsi ralat frequensi semula jadi dan fungsi 

ralat bentuk mod. Antara kaedah berasaskan dua-peringkat derivatif dan kaedah 

pengoptimuman hibrid meta-heuristik, kaedah pengoptimuman hibrid meta-heuristik 

terbukti lebih baik dari segi ketepatan dan keteguhan, manakala, kaedah kaedah 

berasaskan dua-peringkat derivatif terbukti lebih unggul dalam aspek kebolehulangan 

dan kepantasan. 

Kata kunci: komposit, derivatif, “frequency response function (FRF)”, meta-heuristik, 

tidak musnah 
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CHAPTER 1: INTRODUCTION 

1.1 Problem statement and motivation 

From the viewpoint of practical application, the knowledge of material properties is 

essential. Material properties must be known in advance before the material is adopted 

for particular purposes to ensure its application suitability. As time elapses, constructed 

structures, such as buildings, bridges, infrastructures, etc. may have experienced 

changes in material properties on account of ageing implications, climatic effects, 

inexorable fatigue and cyclic load accumulation, etc., and thereby, incurring a great 

possibility in the occurrence of catastrophic accidents. These undesirable implications 

can, in fact, be anticipated and avoided via the study of material identification. 

Therefore, understanding the fundamentals of material identification is imperative.  

Since the past decades, material evolution has been occurring incessantly from 

previous simple isotropic components to present heterogeneous composite structures. 

Composites are hybrid materials that are composed of at least two constituents at a 

macroscopic scale. They are manufactured in layers of laminates, and each layer is 

arranged in a specific orientation. Superiority in material properties has been the 

contributing factor leading to the widespread usage of composite materials in multiple 

industries. Corresponding to the advancement of emerging materials, material 

identification methods have as well been experiencing a breakthrough from traditional 

destructive identification approaches to current non-destructive evaluation techniques. 

Classical identification methods, such as tensile tests, compressive tests, etc., tend to be 

destructive, time-consuming and expensive. Therefore, a number of identification 

approaches have been developed to circumvent these drawbacks.   

A combined experimental and numerical technique has often been the primary choice 

in material identification owing to its non-destructive nature, promising accuracy as 
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well as cost- and time-saving advantages. This technique involves experimental 

measurement and numerical evaluation. It requires only a single experimental test to 

evaluate the elastic properties of a composite material, unlike conventional destructive 

tests. Experimental modal analysis (EMA) is conducted to acquire the modal parameters 

of a structure that define its dynamic behaviours. Subsequently, the modal parameters, 

namely, natural frequencies, mode shapes and damping properties are utilised as the 

reference parameters in numerical evaluation to identify the elastic properties of the 

target structure. Numerical evaluation involves the use of a forward method and an 

inverse method as well as the definition of an objective function. A forward method is 

used to construct a virtual plate model, in which, the input and output parameters of the 

model are the elastic properties and the modal parameters of a structure, respectively. 

Conversely, an inverse method is used to derive an inverse form of the plate model to 

evaluate the elastic properties by minimising the error difference between evaluated and 

reference modal parameters.  

Accuracy, repeatability, convergence and robustness are the important aspects 

determining the reliability of a non-destructive method. Evaluating the reliability of a 

method on the basis of these aspects is subjective because this depends on the compared 

methods and the applications. In material identification, the accuracy of a non-

destructive method can be evaluated based on the absolute percentage error between the 

identified and reference elastic properties, as well as the minimised value of the cost 

function. Furthermore, the repeatability of a non-destructive method can be studied by 

computing the standard deviations of several sets of the identified elastic properties, as 

well as those of the minimised value of the cost function. In the study of convergence, 

the computational time and the convergence rate in terms of iterations can be the 

relevant indicators. Apart, the robustness of a non-destructive approach can be defined 

by its range of applicability in the variation of boundary conditions, objective functions 
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and dimension number, as well as its degree of adaptation to problems that are prone to 

uncertainties. In brief, the reliability of a non-destructive method depends substantially 

on the accuracy, repeatability, convergence and robustness of the forward methods and 

the inverse or optimisation methods. Definition of an objective function is also one of 

the important factors affecting the effectiveness of an identification method. In non-

destructive vibrational material identification, the discrepancy between the reference 

and evaluated natural frequencies is commonly used to define the objective function 

(Hwang et al., 2010; Lin & Chang, 2010; Pagnotta & Stigliano, 2009). The main reason 

leading to its prevalent usage is due to the uniqueness and simple acquisition of natural 

frequencies. A natural frequency is unique such that it is expressed as a global value that 

defines a particular mode of a structure. Due to its uniqueness, natural frequencies can 

be computed by solving an Eigen problem, in which, the eigenvalues represent the 

natural frequencies. However, the drawback of using natural frequencies in material 

identification consists in its low sensitivity with respect to the Poisson‟s ratio. 

Alternatively, this issue can be solved by adjusting the parameters pertaining to the 

plate geometry, for examples, aspect ratio, angle of orthotropy and thickness to improve 

the sensitivity of resonant frequencies with respect to the Poisson‟s ratio, as proven in 

(Ragauskas & Belevičius, 2009; Silva et al., 2004). Furthermore, the drawback can be 

circumvented by including a higher quantity of resonant frequencies during 

computation, as discussed by Hwang et al. (2009). Instead of using only natural 

frequencies, Cugnoni et al. (2007) proposed the integrated use of the natural frequency 

error norm, diagonal modal assurance criteria (MAC) error norm, off-diagonal MAC 

error norm, mode shape error norm, and nodal line error norm to improve the accuracy 

of the in-plane Poisson‟s ratio and the out-of-plane shear moduli of thick composite 

plates.  
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The finite element method (FEM) has been widely used in material identification in 

conjunction with various derivative-based methods, mainly, due to its excellent 

flexibility and robustness. Nevertheless, in the aspect of accuracy, the Fourier method is 

proven better than the FEM due to its analytical quality. Developing a derivative-based 

method based on the Fourier method is challenging because of their infinite and 

complex natures. Despite, Ismail et al. (2013) successfully developed an inverse method 

to identify the elastic properties of orthotropic plates under general boundary conditions 

adopting the integrated use of the Fourier method and Newton-Raphson method. In the 

study, the discrepancy between the reference and evaluated natural frequencies is used 

to define the objective function in constructing the inverse algorithm. The approach is 

proven robust to general boundary conditions. However, the accuracy of this approach 

in identifying the in-plane shear modulus and the Poisson‟s ratio can be further 

improved due to the relatively low sensitivity of natural frequency with respect to both 

the properties. On the contrary, mode shapes are relatively more local than natural 

frequencies and hence, relatively more sensitive to the in-plane shear modulus. In 

addition, knowing that mode shapes and the Poisson‟s ratio are much related, the 

influence of mode shapes on the Poisson‟s ratio is relatively higher than that of natural 

frequencies. Therefore, to resolve this complication, a derivative-based method 

incorporated with the Fourier method and the mode shape error function can be the 

relevant solution.    

The proposed method can be an effective solution to a relevant problem. However, it 

incurs some drawbacks. Derivative-based methods are known to be problem dependent 

and less robust to the variation of initial values, number of parameters, etc.  

Furthermore, the coupled-implementation of natural frequencies and mode shapes error 

functions may complicate the identification procedures. The need of performing modal 

parameter extraction from the experimental frequency response function (FRF) may 
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consume relatively more processing time and affect the credibility of the results. 

Therefore, a more robust meta-heuristic optimisation method, integrated with the FRF 

error function can be the potential alternative to circumvent those drawbacks. Generally, 

the reliability of an identification method depends substantially on the effectiveness of 

the forward method, inverse method and error function. Based on the review of previous 

study, the research gaps are briefed in Table 1.1. 

Table 1.1: Research gap 

No. Aspects Previous Study Research Gap Current Study 

1 Forward method 

The use of Rayleigh‟s 

method, Rayleigh-Ritz 

method and finite 

element method (FEM) 

in material 

identification is 

common and abundant. 

Numerous analytical 

forward methods have 

been developed; 

however, the 

application of these 

methods in material 

identification is 

limited. 

The use of an 

analytical forward 

method, namely, 

Fourier method in 

material identification 

is proposed and 

studied. 

2 Inverse method 

Various derivative-

based inverse methods 

and meta-heuristic 

optimisation methods 

have been widely 

studied and developed. 

The application of a 

derivative-based 

method incorporated 

with an analytical 

forward method is 

uncommon.  The use of 

a meta-heuristic hybrid 

algorithm that is 

composed of three 

conventional methods 

is limited. 

The use of a 

derivative-based 

method incorporated 

with an analytical 

method used for 

material identification 

is studied. A new 

hybrid meta-heuristic 

algorithm, integrating 

three conventional 

methods is proposed 

and investigated. 

3 Error function 

Natural frequency error 

function has been 

widely used in material 

identification. 

The separate use of 

natural frequency and 

mode shape error 

functions is limited. 

The use of frequency 

response functions 

(FRFs) in material 

identification is rare. 

The separate use of 

natural frequency and 

mode shape error 

functions is 

investigated. The use 

of the Fourier-

generated FRFs is 

proposed and studied. 

  

1.2 Objectives 

The aim of this research is to develop non-destructive identification methods for 

composite materials. In this regards, two methods, namely, derivative-based and meta-

heuristic methods, of different applicability are explored. Notably, the reliability of an 

identification method is dependent on the type of the forward method, inverse method 
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and objective function used. On the basis of these factors, the objectives of the current 

research are presented as follows:   

i. To design a two-stage derivative-based method in determining the elastic 

properties of composite plates, in which, stage 1 involves the use natural 

frequencies and stage 2 involves the use of mode shapes 

ii. To design a meta-heuristic hybrid optimisation method in solving 

engineering design problems and in material identification as compared to 

three conventional algorithms, namely, genetic algorithm (GA), ant colony 

optimisation (ACO) and particle swarm optimisation (PSO)  

iii. To investigate the effectiveness of the proposed meta-heuristic 

optimisation method incorporated with three different objective functions, 

namely, natural frequency, mode shape and frequency response function 

(FRF) error functions 

iv. To validate the proposed two-stage derivative-based method and meta-

heuristic hybrid optimisation method in material identification with the 

benchmark 

1.3 Contributions 

Due to their non-destructive nature and time- and cost-saving advantages, the 

proposed methods can be more useful than the conventional destructive methods in 

manufacturing and construction industries, where operational cost and time are the main 

concerns. In the aspects of accuracy, repeatability, convergence and robustness, the 

specific contributions of the research corresponding to the objectives are elaborated as 

follows:     

i. The proposed two-stage derivative-based method is different from the 

existing methods, in which, the Fourier method is employed as the forward 
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method, while, a weighted least squares method is utilised as the inverse 

method. The natural frequency error function is used in stage 1, while, the 

mode shape error function is used in stage 2 to improve specifically the 

identifiability of the in-plane shear modulus and the Poisson‟s ratio. The 

proposed method is useful for the identification of elastic properties of 

simple structures, such as plates under general boundary conditions, due to 

its excellent repeatability and convergence, as well as its satisfactory 

accuracy and robustness.     

ii. The proposed meta-heuristic hybrid optimisation method is composed of 

three different conventional algorithms, namely, genetic algorithm (GA), 

ant colony optimisation (ACO) and particle swarm optimisation (PSO). 

Hence, it is known as meta-heuristic hybrid GA-ACO-PSO optimisation 

method. New features are introduced to improve the overall performance. 

The proposed method is effective in solving wide-ranging problems, 

including problems with multimodality, constraints and a large number of 

dimensions. It exhibits excellent accuracy and robustness, as well as 

considerably good repeatability and convergence. 

iii. The integrated use of the Fourier method, the proposed hybrid method and 

the FRF error function is inferred to be more effective in improving the 

identifiability of the in-plane shear modulus and the Poisson‟s ratio if 

compared to those of using the natural frequency error function, as well as 

the mode shape error function due to the direct exploitation of the 

experimental FRF data, which are not subjected to processing procedures. 

Selection of suitable FRFs can be made based on the sensitivity of natural 

modes with respect to elastic properties, as well as based on the location of 

impact that lies in the high response region of the corresponding modes to 
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improve the identifiability of the in-plane shear modulus and Poisson‟s 

ratio.  

iv. The experimental validation of the two-stage derivative-based method, as 

well as the meta-heuristic hybrid optimisation method confirms the 

feasibility and applicability of both the methods on real structures and 

thus, might be useful for on-site practical applications.       

1.4 Research flow and scope 

The research flow chart is constructed as shown in Figure 1.1. The current non-

destructive vibrational evaluation approaches are reviewed and surveyed critically. As 

mentioned, a non-destructive vibrational evaluation approach comprises a forward 

method and an inverse method. The present research proposes two identification 

methods, namely, two-stage derivative-based method and meta-heuristic hybrid GA-

ACO-PSO optimisation method. The research begins with the modelling of method 1. A 

two-stage procedure is involved in the first method, in which, stage 1 uses the natural 

frequency error function, whereas, stage 2 utilises the mode shape error function. The 

effects of using the proposed method on two different reference plates, namely, 

aluminium plate and graphite epoxy plate, as well as, under several sets of boundary 

conditions, namely, F-F-F-F, C-F-F-F and C-C-F-C (C: Clamped, F: Free) are studied. 

After the completion of method 1, the research continues with the modelling of method 

2. The feasibility of method 2 in solving 10 sets of test functions and four sets of 

engineering design problems, which are taken from the past literature, is first verified. 

The applicability of method 2 in material identification is then investigated. In this 

regards, the effectiveness of the proposed algorithm in identifying the elastic properties 

of two reference plates under several sets of boundary conditions, namely, F-F-F-F, C-

F-F-F and C-C-F-C, are studied and compared with those of the conventional 

algorithms, including, genetic algorithm (GA), ant colony optimisation (ACO) and 
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particle swarm optimisation (PSO). Furthermore, the effectiveness of the proposed 

meta-heuristic hybrid optimisation method, incorporated with different types of error 

functions (natural frequency, mode shape and frequency response function (FRF) error 

functions), is examined and the best error function is determined. Eventually, both of 

the proposed two-stage derivative-based method and meta-heuristic hybrid optimisation 

method are validated using real specimens. The elastic properties obtained from the 

conventional destructive test and the theoretical calculation are used as the benchmark 

parameters and compared with the results evaluated from the non-destructive evaluation 

approaches. In addition, the overall performances of the proposed two-stage derivative-

based method and the proposed meta-heuristic hybrid optimisation method are 

compared and summarized.  

1.5 Outline of the report 

The report consists of five major chapters, namely, introduction, literature review, 

research methodology, results and discussions, as well as conclusions and 

recommendations. The first chapter explains the problem statement and motivation of 

the research, as well as introduces the main idea of the research. Chapter two reviews 

the works done by previous researchers and presents the mathematical theories used in 

this research. Chapter three elaborates the procedures of performing the proposed two-

stage derivative-based method and the proposed meta-heuristic hybrid optimisation 

method during numerical verification stage, as well as the procedures of conducting the 

destructive test, theoretical calculation, and the proposed non-destructive tests during 

experimental validation stage. Chapter four presents and discusses the outcomes of the 

research. The last chapter concludes the research and provides some recommendations 

for future development.     
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Figure 1.1: Research flow chart 
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properties of two different 

reference plates, i.e., 

aluminium plate and 

graphite epoxy plate 

Investigation on the effects of 

using the proposed method in 

identifying the elastic 

properties of the plates under 

different boundary 

conditions, i.e., F-F-F-F, C-

F-F-F and C-C-F-C (F: 

Free; C: Clamped) 

Method 1 Method 2 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a review of the development of non-destructive vibrational 

evaluation approaches in determining the elastic properties of composite plates. 

Numerous experimental techniques, as well as numerical forward and inverse 

approaches are critically reviewed. Besides, this chapter also includes the mathematical 

theories of derivative-based methods and meta-heuristic optimisation methods.  

2.2 Overview 

Composite materials can be referred to as hybrid materials, which are made of two or 

more materials at a macroscopic scale. Nowadays, composite materials are drawing 

global interest and attention due to their prominent physical and chemical properties, 

such as lightweight, high strength and high corrosion resistance. Consequently, the 

production of a great assortment of composite materials is getting prevalent, and hence, 

inciting the development of identification methods for composite materials. Due to the 

substantial impact of composite materials to various industries, researchers have thus 

been devoting much effort to studying and developing material identification methods 

for composites since the past decades.  

Generally, the identification of elastic constants or elastic properties can be 

categorised into two main techniques, namely, destructive technique and non-

destructive technique, as shown in Figure 2.1. A destructive technique can be referred to 

as a classical static approach involving static mechanical tests, such as, tensile test, 

compressive test, bending test, torsional test, etc. to acquire the stresses and strains of a 

specimen. Direct identification of elastic constants can be performed based on the 

fundamental stress-strain theory. Due to the anisotropic characteristics of composites, 
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several tests need to be performed to identify the properties of different directions, 

hence, complicating the overall procedures. 

 

Figure 2.1: Overview of composite material properties identification methodologies 

A non-destructive technique involves two primary procedures, namely, experimental 

measurement and numerical evaluation. Experimental measurement involves the 

measurement and extraction of significant parameters employing a non-destructive 

experimental technique, while, numerical evaluation involves the evaluation of elastic 

properties of a composite material adopting a forward method and an inverse method.  

Experimental measurement can be categorised into two main approaches, namely, 

static approach and dynamic approach. In some cases, static tests are carried out in non-

destructive manners. These tests involve transverse quasi-static loadings on a specimen, 

in which the induced strains must not exceed 0.5% so that the elasticity of the specimen 

can be maintained and thus, the deflection could fully recover at the end of the test 
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(Wesolowski et al., 2009). The boundary conditions of the plate specimen are either 

simply-supported or clamped and the deformational parameters, namely, displacements 

and strains are acquired without damaging the specimen (Bruno et al., 2008; Kam et al., 

2009; Wesolowski et al., 2009). Unlike the destructive static approach, this approach 

requires the involvement of numerical evaluation to determine the elastic properties. 

Figure 2.2 presents the experimental set-up of the non-destructive static approach and 

the detailed procedures can be retrieved from (Wang & Kam, 2000).   

 

Figure 2.2: Distributed loading and point loading static test (Wang & Kam, 2000) 

A dynamic approach is one of the commonly-used non-destructive approaches. 

Basically, dynamic approach comprises two methods, namely, wave propagative 

methods and vibrational methods. Wave propagative methods usually adopt the 

application of ultrasonic wave passing through a specimen, where, the wave signal 

velocity and transit time of flight (TOF) of the wave from the emitting transducer to the 

receiving transducer, are recorded. The commonly-used emitting and receiving 

transducers are piezoelectric transducers due to the factors of low price and lightweight. 

Wave propagative methods can be further classified into bulk-wave-based methods 

(Castellano et al., 2014; Dahmen et al., 2010; Vishnuvardhan et al., 2007) and guided-

Univ
ers

ity
 of

 M
ala

ya



14 

wave-based methods (Glushkov et al., 2014; Marzani & De Marchi, 2013; Sale et al., 

2011). Bulk-wave-based methods are usually used in the identification of thick 

composite materials via through-transmission or back-reflection techniques. On the 

contrary, in guided-wave-based methods, Lamb waves or guided waves are usually 

generated and remained guided between two parallel free surfaces of a plate or shell. 

Lamb-wave-based methods are normally adopted for the investigation of thin plates. 

Nevertheless, due to several drawbacks of wave propagation methods, such as complex 

dispersive characteristics of waves, the formation of several waveforms in single 

frequency waves, complex procedures, and the need of active power, vibrational 

methods emerge as the best alternatives in material identification to circumvent those 

drawbacks. In vibrational methods, an external impact is placed on the specimen and the 

response of the vibrating specimen is measured and recorded in terms of frequency 

response functions (FRFs). Modal parameters, namely, natural frequencies, modal 

damping and mode shapes, which define the dynamic behaviours of the specimen, are 

then extracted from the acquired FRFs. Commonly, the obtained experimental natural 

frequencies are utilised in the subsequent numerical stage as the reference parameters.  

In numerical stage, direct evaluation refers to the direct identification of elastic 

properties of a material from a derived inverse equation with the experimental resonant 

frequencies served as the inputs. On the contrary, non-direct evaluation involves 

iterations and the minimisation or maximisation of an objective function. As shown in 

Figure 2.3, the non-direct evaluation of elastic properties of composite materials 

involves a forward method and an inverse method. In the forward method, parameters, 

such as natural frequencies, mode shapes, etc. of a specimen are evaluated using the 

inputs of elastic properties of the material, depending on respective identification 

approaches. In the inverse method, an error function, which is defined by the difference 

between the experimental and evaluated parameters, is minimised and an optimisation 

Univ
ers

ity
 of

 M
ala

ya



15 

algorithm is used to perform the solution search process. Generally, two types of non-

direct evaluation methods are reviewed in the present research, namely, derivative-

based methods (bayesian estimation method, feasible directions method, Newton‟s 

method, and nonlinear least squares method) and meta-heuristic optimisation methods 

(ant colony optimisation (ACO), genetic algorithm (GA), particle swarm optimisation 

(PSO) and response surface methodology (RSM)).  

 

Figure 2.3: Flow chart of non-direct evaluation of elastic properties 

The general procedures of a derivative-based method begin with the specification of 

the input parameters. Initially, the maximum number of iterations, the minimum 

improvement percentage, and the minimum value of convergence are specified. The 

benchmark or experimental modal parameters (natural frequencies, mode shapes or/and 

damping properties) are also specified in the error function. Most importantly, an initial 

set of elastic parameters are needed to initialise the algorithm. Given an initial set of 

elastic properties, the algorithm begins with the forward evaluation of the modal 

parameters. Based on the error function, the error between the benchmark and evaluated 

modal parameters is then evaluated. Subsequently, the derivative of the evaluated modal 

parameter with respect to the elastic property is computed. Afterthat, the step vector is 

evaluated from the derived inverse algorithm, involving the use of the evaluated 
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derivative matrix and error function values. The computed step vector signifies the 

distance between the assigned and actual elastic properties that will reduce the error 

between the benchmark and evaluated modal parameters. The next iteration begins with 

the addition of the step vector to the previous assigned elastic parameters. The iterations 

are carried on until either of the termination criteria is satisfied. The termination criteria 

include the maximum number of iterations, the minimum improvement percentage, and 

the minimum value of convergence. The elastic properties are eventually identified once 

the running algorithm is terminated. 

With regard to a meta-heuristic optimisation method, it does not involve the 

evaluation of derivatives. A slight difference exists in the procedures between the 

present and the former methods. Instead of assigning only an initial set of elastic 

parameters at once, a specific number of populations and boundaries of search region 

need to be defined initially. For the first iteration, several sets of elastic properties are 

randomly picked within the specified search region according to the predefined number 

of populations. In this approach, minimisation or maximisation of the error function is 

involved. An individual set of elastic parameters with a relatively better function value 

will be prioritised and the search will emphasize more on its surrounding area in the 

next iteration. The iterations persist until either of the stopping criteria is achieved. In 

the end, the elastic properties are evaluated once the running algorithm is stopped. 

A number of review articles pertaining to elastic parameter identification methods 

have been published, for instances, a review of elastic properties identification methods 

based on full-field measurements presented by Avril et al. (2008) and a review of recent 

progress of elastic characterization methods developed at the University of Calabria by 

Pagnotta (2008). In this chapter, the focus will be placed on reviewing the development 

of non-destructive vibrational experimental and numerical methods, as highlighted in 
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Figure 2.1. The type of the vibrational experimental method, as well as the type of the 

forward method, inverse method and objective function, incur significant influences on 

the accuracy, repeatability, convergence and robustness of an identification approach.  

2.3 Experimental measurements (Vibrational methods) 

Much research has been attempted employing vibrational methods in evaluating the 

elastic properties of composite materials. A vibrational method is often associated with 

experimental modal analysis (EMA), as studied by Schwarz and Richardson (1999). It 

is an experimental technique used to study the dynamic behaviours of elastic structures. 

The dynamic behaviours of a structure are normally expressed in terms of modal 

parameters, namely, natural frequencies, mode shapes and damping properties. 

Generally, there are two common types of excitations, namely, impulse excitation 

(Huang & Luo, 2013; Hwang et al., 2010; Hwang et al., 2009) and continuous variable 

excitation (Barkanov et al., 2015; Matter et al., 2011; Schwaar et al., 2012; Xu & Zhu, 

2013). Referring to impulse excitation, an impulser, such as an impact hammer is 

usually used to strike the specimen mechanically and elastically, as described in the 

ASTM standard (E1876-09, 2009). On the other hand, continuous variable excitation 

commonly involves the use of loud-speakers or shakers fed by a variable frequency 

oscillator. 

In accordance with the development of Fast Fourier Transform (FFT) analysers and 

virtual instruments, the impulse excitation technique has been widely used since the late 

1970s. The impulse technique is often the primary choice in the study of material 

identification due to its simple and inexpensive procedures, as shown in past literature 

(Hwang et al., 2010; Hwang et al., 2009; Lee & Kam, 2006a; Lee et al., 2007). At 

present, there is only an ASTM standard procedure specifically meant for isotropic 

materials but none for anisotropic materials. Despite, multiples studies have been 
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adopting such a procedure on orthotropic and anisotropic laminated materials, as shown 

in most of the mentioned publications. With regard to layer-wise identification of a 

multi-layered laminated plate, instead of conducting only a single experimental test, a 

number of tests are needed depending on the number of materials embedded in the 

multi-layered laminated plate (Lauwagie et al., 2004; Lauwagie et al., 2003). A large 

number of vibration tests are required when a large number of materials used in a multi-

layered plate. The vibrational experiment adopting impulse technique is commonly 

known as impact testing, as demonstrated in Figure 2.4 (Hwang et al., 2009). An impact 

hammer is usually used as the exciter and contactless eddy current proximity 

transducers (displacement) (Deobald & Gibson, 1988), accelerometers (De Wilde & 

Sol, 1986; Hwang et al., 2010; Hwang et al., 2009; Lee et al., 2007), microphones 

(Araujo et al., 2000; Araujo et al., 1996), or laser Doppler vibrometer (LDV) (Alfano & 

Pagnotta, 2005; Berthelot & Angoulvant, 2002; Lauwagie et al., 2003) are used as the 

response detectors. However, the shortcomings of this technique consist in its low 

reproducibility of input characteristics (manual excitation) and non-applicability to light 

and brittle objects. 
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Figure 2.4: Schematic of the impulse technique experimental set-up (Hwang et al., 

2009) 

Referring to a continuous variable excitation technique, the shaker excitation is 

commonly used and often compared with the impact excitation. Both of these 

excitations are developed since the creation of FFT analysers. As shown in Figure 2.5 

(Matter et al., 2011), the shaker testing is utilised to eliminate the drawbacks of the 

impact testing, such as the use of impact hammer might damage delicate surfaces and its 

limited frequency range of excitation, etc. Common types of shakers, namely, electro-

dynamic shakers and hydraulic shakers are used along with a stinger, which is a long 

slender rod, in order to specify the direction of the excitation force applied. There are 

several types of broadband signals for shaker measurements with FFT analysers, 

including transient signal, true random signal, pseudo-random signal, burst random 

signal, fast sine sweep (chirp) signal and burst chirp signal. This shaker excitation 

technique is widely used in various applications, including in the study of material 
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identification (Batista et al., 2009; Catania & Sorrentino, 2009; Giraudeau et al., 2010; 

Matter et al., 2011). Accelerometers (Catania & Sorrentino, 2009), LDV (Batista et al., 

2009; Matter et al., 2011) and non-interferometric (Giraudeau et al., 2010) transducers 

are the common response-measuring transducers used in shaker-based experiment. 

Although shakers exhibit better applicability in broadband frequency-wise, 

complications in setting up the experiment, as well as the mass loading effects due to 

the attached accelerometers on the specimen seem to impede the widespread usage. 

 

Figure 2.5: Schematic of the shaker-based experimental set-up (Matter et al., 2011) 

Apart from the shaker excitation, an alternative technique, which is known as the 

acoustic excitation has been developed as well, as shown in Figure 2.6 (Matter et al., 

2007). In the acoustic-based experiment, a loudspeaker fed by a signal generator with a 

power amplifier is used as the source of excitation. This excitation is more 

advantageous over the shaker excitation in the sense that the source of excitation and the 

specimen are contactless, thereby, avoiding mass loading implication. Besides, it is 

useful when dealing with structures having relatively low internal damping properties. 

Similar to the shaker excitation, several types of broadband signals can be configured. 

The application of this technique is considerably popular in identifying the elastic 

properties of materials (Barkanov et al., 2015; Schwaar et al., 2012; Xu & Zhu, 2013). 
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Normally, acoustic loudspeakers are used as the exciter and LDV (Schwaar et al., 2012; 

Xu & Zhu, 2013) is used as the response detector. Furthermore, interferometric 

transducers are also used to measure the dynamic response (Borza, 2004; Sato et al., 

2008). In terms of signal to noise ratio, the value is found to be comparatively low at 

low amplitudes, indicating that the noise level is relatively high. Despite, the accuracy 

of the natural frequencies educed from a narrow frequency band is barely affected. 

 

Figure 2.6: Schematic of the acoustic-based experimental set-up (Matter et al., 

2007) 

The impulse technique, shaker excitation technique and acoustic excitation technique 

incorporated with a variety of measuring techniques, such as the conventional contact 

accelerometers, contactless non-interferometric transducers, laser Doppler vibrometers 

and microphones can be seen to be equally high in demand and widely used due to their 

respective advantages and disadvantages that complement each other. The selection of 

either technique depends on the objectives and requirements of a research. In fact, there 

is no discernible difference in the procedures for each technique when handling a 

particular type of plate, such as isotropic, orthotropic, anisotropic and laminated plates. 

Certainly, when dealing with anisotropic and laminated plates, a number of 

experimental tests are required. Among those aforementioned techniques, the impulse 

technique appears to be the most popular approach at present in the research of material 

identification because of the ease of implementation, inexpensive procedures and wide-

ranging applicability. In terms of accuracy, those mentioned techniques provide reliable 

results only if proper and correct procedures are followed.     
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2.4 Numerical evaluation 

2.4.1 Forward method  

In a vibrational approach, forward methods are needed to determine the modal 

parameters, namely, natural frequencies, mode shapes or/and damping properties of a 

structure for subsequent use in the identification process. The details of the Rayleigh‟s 

method, Rayleigh-Ritz method, finite element method (FEM), and Fourier method, 

including the correlation parameters, type of plates used with respective geometrical 

shapes, boundary conditions, as well as principle of methods used are presented.  

2.4.1.1 Rayleigh’s method  

In the Rayleigh‟s method, the maximum kinetic and potential energies of a plate are 

needed to compose the Rayleigh‟s quotient. Referring to the study done by Dickinson 

(1978), for an orthotropic plate, the potential energy,      and kinetic energy,      can 

be expressed as follows: 
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where,       
    (        ),           , and             ,    and    

are the elastic moduli,     is the in-plane shear modulus,     and     are the Poisson‟s 

ratios,  (   ) is the transverse displacement of the plate,   denotes the thickness of the 

plate,   is the density of plate material,    and    are the constant in-plane forces per 

unit width and the double integral is taken over the area of the plate. The Rayleigh‟s 
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quotient is defined by the ratio of total potential to kinetic energy for a mode of 

vibration, which can be expressed as follows: 
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Let              and the assumed shape function  (   )   ( ) ( )  

        , where  ( ) and  ( ) are the characteristic beam functions which satisfy the 

boundary conditions on        and       respectively, and can be rearranged and 

expressed as follows: 
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Given the tables of beam characteristic functions by Felgar (1950), the frequently-

used orthotropic plate frequency parameter can be presented as follows: 
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where, the coefficients   ,   ,   ,   ,    and    can be found in the article written by 

Warburton (1954). 

Several studies have been performed utilising the Rayleigh‟s method for forward 

evaluation of natural frequencies of isotropic (Alfano & Pagnotta, 2007; Dickinson & 
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Diblasio, 1986) and orthotropic composite plates (Ayorinde, 1995; Kim & Dickinson, 

1985) in material identification, in which, both thin plates (Ayorinde & Gibson, 1993; 

Fallstrom, 1991), as well as thick plates (Ayorinde, 1995) are investigated. Most of the 

studies are carried out involving rectangular plates under free-free boundary conditions. 

Warburton (1954) was the first who proposed the use of characteristic beam vibration 

functions in the Rayleigh‟s method to study the vibration of thin, isotropic plates. His 

work was further investigated by Hearmon (1959), who applied such method to 

specially orthotropic composite plates, in which, the load was exerted either in parallel 

or perpendicular to the plates‟ fibres. Even though Warburton‟s expression allows 

straightforward calculation of plates‟ natural frequencies, the accuracy might be 

adversely affected if one or more free edges are involved in the study. Since the 

presence of free edge(s) affects the reliability of Warburton‟s equation, Alfano and 

Pagnotta (2006) proposed the use of Warburton‟s equation, which is supplemented with 

appropriate correction factors to identify the elastic properties of thin isotropic 

rectangular plates with free edges. The two elastic properties, namely, the elastic 

modulus and Poisson‟s ratio of the isotropic plate were finally identified using the 

equation derived from Warburton‟s equation involving at least two of the first four 

experimental natural frequencies. Later, Alfano and Pagnotta (2007) adopted the 

polynomial interpolating functions and more accurate correction factors, which were 

accounted for the variation of Poisson‟s ratio, to identify the Poisson‟s ratio and elastic 

modulus of the similar plate. In the research done by Ayorinde and Gibson (1993), the 

Rayleigh‟s method was employed based on the classical lamination theory to evaluate 

the natural frequencies of a thin rectangular orthotropic plate with free edges. The 

proposed method was validated using thin isotropic, orthotropic and laminated plates. 

Mcintyre and Woodhouse (1988) used the similar method to identify the elastic and 

damping constants of thin, orthotropic composite plates. In fact, this approach was 
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conducted on the basis of frequencies analysis and damping factors of low vibration 

modes, which enabling its applicability on various materials. Meanwhile, in the research 

done by Ayorinde (1995), the applicability of similar method on thick orthotropic plates 

with free edges was as well investigated. Instead of solely utilising the previous 

classical lamination theory, through-thickness shear and rotatory inertia were taken into 

account in the Rayleigh‟s method to evaluate the plate‟s resonant frequencies. In 

summary, the Rayleigh‟s method can be used to study the vibration of isotropic and 

orthotropic composite plates. When dealing with isotropic problems, only two elastic 

properties were involved, while, minimum of four elastic properties were needed when 

involving orthotropic structures. The Rayleigh‟s method is adopted in the modelling of 

the dynamic behaviour of rectangular plates, mainly because of its ease of 

implementation. However, its restriction in providing only information about the lowest 

or the first resonant frequency as well as its mediocre accuracy are the main reasons that 

lead to the development of the Rayleigh-Ritz method. 

2.4.1.2 Rayleigh-Ritz method  

The Rayleigh-Ritz method is an extension of the Rayleigh‟s method. Instead of using 

a single assumed function (static deflection shape), several assumed functions are 

superimposed to obtain a better approximation. This method allows the evaluation of 

natural frequencies of higher modes depending on the arbitrary number of assumed 

functions used. Referring to the article published by Deobald and Gibson (1988), the 

similar Rayleigh‟s quotient is expressed as follows:    
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In Equations (2.6) and (2.7),     denotes the coefficients and  (   ) represents the 

transverse displacement or the mode shape of the plate, which is composed of several 

admissible assumed functions    and    as well as   indicates the natural frequency, 

which can eventually be obtained by solving the corresponding eigenvalue problem. In 

practice, the Rayleigh-Ritz method is said to be applicable to all plate problems (linear 

or nonlinear), since the principle of virtual displacements applies to all plate problems 

(Reddy, 2006). The applicability of the Rayleigh-Ritz method in material identification 

has received considerable recognition among researchers (Berthelot & Angoulvant, 

2002; Lee et al., 2007; Rebillat & Boutillon, 2011). Most of the investigations are 

conducted on thin rectangular orthotropic plates (Berthelot & Angoulvant, 2002; 

Muthurajan et al., 2004), followed by thin rectangular laminated plates (Lee & Kam, 

2006a, 2006b) and thick rectangular Sandwich plates (Lee et al., 2007; Rebillat & 

Boutillon, 2011) with combinations of free-clamped edges (Berthelot & Angoulvant, 

2002; Deobald & Gibson, 1988), free edges (Muthurajan et al., 2004; Rebillat & 

Boutillon, 2011), and elastically-restrained edges (Lee & Kam, 2006b; Lee et al., 2007). 

To solve problems involving isotropic or specially orthotropic plates, the use of 

trigonometric series can be the simplest solution due to the presence of diagonal 

stiffness and mass matrices. However, when dealing with problems involving plates 

under arbitrary boundary conditions (excepts simply-supported) or problems involving 

generally orthotropic laminates, the use of trigonometric series is not recommended 

because of its complicated procedures. Therefore, polynomial series has come into 

existence and has been extensively used in computing the natural frequencies of plates 

owing to its straightforward algebraic manipulation. The use of this series is limited in 

the mid-1980s due to the difficulty in setting up the series to accommodate a variety of 

geometric boundary conditions. This issue can be solved by generating higher terms of 

the series on the basis of the starting polynomials specific to the boundary conditions, as 
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proposed by Bhat (1985). The Gram-Schmit process was used to produce orthogonal 

sets of polynomials. The outcomes revealed that the use of orthogonal polynomials led 

to better convergence. Lee and Kam adopted a set of Legendre‟s orthogonal 

polynomials to predict the natural frequencies of partially restrained thin laminated 

plates (Lee & Kam, 2006b), elastically restrained thin laminated plates (Lee & Kam, 

2006a), and free-edged thick laminated Sandwich plates (Lee et al., 2007). The 

difference between the partially and elastically restrained boundary conditions was the 

inclusion of additional strain energy stored in the centre spring in the elastically 

restrained boundary condition. Compared to the partially restrained boundary condition, 

the laminated plate under elastically restrained boundary condition performed better in 

the aspect of accuracy. In the absence of centre support, only five measured natural 

frequencies were needed in the identification process for better accuracy. However, for 

elastically restrained laminated plates with the number of the unknown spring constants 

and elastic constants of the elastic supports larger than two, more than seven measured 

natural frequencies were required to determine the elastic properties. Furthermore, 

Rebillat and Boutillon (2011) adopted the use of basic orthogonal polynomials with 

reference to the article published by Bhat (1985) to estimate the resonant frequencies of 

a thick sandwich plate under free-free boundary condition. In the reference article (Bhat, 

1985), the characteristic orthogonal polynomials were proven to be exceptionally useful 

for the study of lower modes of free-edged plates. As stated by Alobeid and Cooper 

(1995), the Rayleigh-Ritz approaches were in fact designated for the investigation of 

symmetric balanced and unbalanced cases. A more general shape function was 

introduced to curb some previously unsolved orthotropic composite plate boundary 

conditions, such as C-S-C-F, C-C-C-F, and C-F-C-F (C: Clamped, F: Free, S: Simply-

supported). Instead of using the Ashton approach (Chow et al., 1992), a summation of 

polynomial products was adopted as it was comparatively simpler. When compared 
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with previous Rayleigh-Ritz approaches, improved convergence properties were 

obtained. Apart from using polynomial series, the use of the vibrating beam 

characteristic functions has also been widely utilised to obtain the natural frequencies of 

plate structures in the study of elastic properties identification (Lai & Ip, 1996; Lai & 

Lau, 1993; Muthurajan et al., 2004). The selection of the characteristic equations of a 

vibrating beam is normally made based on the boundary conditions of the plate to 

represent its assumed mode shapes. In the article written by Deobald and Gibson 

(1988), a complication was found, in which the computed natural frequencies using 

such method was not closely matched with the reference experimental natural 

frequencies when involving orthotropic rectangular plates under free-clamped boundary 

conditions. However, the percentage of discrepancy between the experimental and 

predicted resonant frequencies was found to be much smaller (at most around 5%) for 

lower modes when applying the aforementioned method on free-edged orthotropic 

rectangular plates (Lai & Lau, 1993). The similar method was then utilised to obtain the 

natural frequencies of thin specially orthotropic plates with free edges and the 

introduction of influence coefficients in the frequency expression was found to be 

effective in reducing the errors (Muthurajan et al., 2004). A major challenge of the 

Rayleigh-Ritz method consists in the selection of appropriate shape functions for 

specific problems. The use of appropriate shape functions is of great importance as the 

quality of the outcomes is substantially relying on it. Apart, due to the limited flexibility 

of the Rayleigh-Ritz method, which is subjected to boundary constraints, the finite 

element method has thus come into existence to circumvent the shortcomings. 

2.4.1.3 Finite Element Method (FEM) 

The FEM has gained its usage prevalence in the study of material identification in 

recent years on account of its great flexibility and robustness to various boundary 

conditions and geometrical shapes. Basically, finite element models are created in order 
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to obtain the numerical modal parameters using given elastic properties as inputs. 

Natural frequencies or/and mode shapes are computed from the model for subsequent 

application in the identification process, as it can be observed in several published 

articles (Auzins et al., 2015; Li et al., 2016; Petrone & Meruane, 2017; Saito et al., 

2016). Plates of rectangular (Li et al., 2016; Petrone & Meruane, 2017; Saito et al., 

2016) and square (Kong et al., 2014; Ručevskis, 2014) geometrical shapes have often 

been investigated. Besides, few studies have been conducted on plates of various 

geometrical shapes, as shown in (Pagnotta & Stigliano, 2008, 2009). In the aspect of 

boundary condition, plates with free-free edges (Hwang et al., 2010; Petrone & 

Meruane, 2017), simply-supported edges (Garshasbinia & Jam, 2005) and clamped 

edges (Borza, 2004; Kong et al., 2014) have prevalently been the topics of interest. 

Mostly, laminated plates are utilised in previous studies (Kovalovs & Rucevskis, 2011; 

Petrone & Meruane, 2017). The thickness of plate plays a cardinal role as well in 

deciding the use of appropriate plate theory in finite element modelling. Hence, the 

collection of previous studies can be classified into thin isotropic (Pagnotta & Stigliano, 

2008, 2009), thin anisotropic (Fallstrom & Jonsson, 1991; Larsson, 1997), thin 

orthotropic (Fallstrom & Molin, 1987; Lauwagie et al., 2003), thin laminated plates 

(Kovalovs & Rucevskis, 2011; Petrone & Meruane, 2017)   as well as thick anisotropic 

(Sol et al., 1997) and thick laminated plates (Cugnoni et al., 2007; Matter et al., 2009). 

Referring to thin laminated plates, the finite element model is usually constructed, based 

on the Love-Kirchhoff theory or Classical Lamination Plate (CLP) theory, while, for 

thick laminated plates, the Mindlin theory, First-order Shear deformation theory or 

higher-order theory are the commonly-used theories, where, the effects due to through-

thickness shear deformation or/and rotary inertia are taken into account. Pagnotta and 

colleagues (Pagnotta & Stigliano, 2008, 2009) developed several two-dimensional and 

three-dimensional models of isotropic plates of various shapes, based on a theory 
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considering small deformations and linear elastic characteristic of the material. The 

plate model was assumed to be subjected to vibration in the absence of damping as well 

as made of homogeneous and isotropic material. Theoretically, its geometry and 

nominal size were supposed to be closely identical to the actual plate with a low degree 

of discrepancy and the difference between the evaluated and actual natural frequencies 

can be the relevant indicator. A discrepancy was discovered probably due to the 

inhomogeneity of the material as well as the low degree of resemblance between the 

dimensions of the model and those of the actual plate. In the research done by 

Garshasbinia and Jam (2005), the FEM was used to determine the natural frequencies of 

isotropic, orthotropic and anti-symmetric angle ply plates. Since only two elastic 

properties were needed in an isotropic problem, the equation of fundamental frequency 

was much simpler compared to orthotropic and anti-symmetric angle ply plates. 

Pertaining to the study of anti-symmetric angle ply plate, the properties of each layer 

were included in the governing equation. At least four resonant frequencies were 

required to accurately determine the two unknown elastic properties of isotropic plates, 

as stated by Pagnotta and Stigliano (2008). Sol (1986) constructed a finite element 

model of a medium thick anisotropic plate on the basis of Reissner-Mindlin theory for 

the identification of anisotropic plate rigidities. The presence of local material 

anisotropy was found to have influences on the numerical natural frequencies; hence, a 

single test was not advisable when dealing with inhomogeneous materials. Besides, in 

the study done by Lauwagie et al. (2003), Love-Kirchhoff theory was adopted in 

developing the finite element model of orthotropic plates, whereby, eight order 

polynomial Lagrange functions were used as the shape functions. The main drawback of 

this theory consists in the limitation in the thickness of a plate. Thus, an adapted 

Resonalyser procedure was used based on a more complex 3D finite element model in 

identifying the elastic properties of moderately-thick isotropic and orthotropic materials. 
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However, this procedure was not recommended when the homogeneity of the material 

was the subject of investigation. Later, they developed a novel method, based on an 

extension of the „Resonalyser‟ procedure to identify the elastic properties of a plate with 

an arbitrary number of layers, each with respective elastic properties (Lauwagie et al., 

2004). The classical lamination theory was used to surmount the problem of non-

uniqueness. Single test vibration data was not sufficient for subsequent use in the 

identification process. Instead, several test plates vibration data were needed, depending 

on the number of layered materials to be identified. The more the layered materials were 

used, the more the plate configurations were required, and thus, the more the plate 

vibration data were needed. Maletta and Pagnotta (2004) proposed the use of an over-

determined number of natural frequencies of an anisotropic plate to identify its elastic 

properties. Neither mode shapes, nor modal indices of particular modes were needed 

since frequencies were correlated simply by their number in a sequential order of 

magnitude. This method was said to be applicable to orthotropic and laminated plates. 

Later, Matter et al. (2007), Cugnoni et al. (2007), as well as Matter et al. (2009) 

developed finite element models, resembling multi-layered composite plates, based on a 

variable p-order shear deformation theory (PSDT). This generalised higher-order theory 

was adopted specifically for the study of inherent structure as well as thick or 

moderately thick multi-layered plates. The shape functions representing the through-

thickness displacement were said to be flexible and thus, adaptable to accuracy and 

computation time requirements. As proven in the article written by Cugnoni et al. 

(2004), the simulations of thick multi-layered composite plate model with the order of 

three and above utilising PSDT were well-correlated with those of using third-order 

layer-wised plate theory, as well as the computational effort was much reduced. Araujo 

and co-workers (Araujo et al., 2006a; Araujo et al., 2006b) adopted the FEM to 

construct an active plate model with surface-bonded piezoelectric patches, based on a 
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displacement field using third order expansions in the thickness coordinate the in-plane 

displacements and a constant transverse displacement. This model allowed the analysis 

of arbitrary thin and thick plate and shell structures with more accurate results. Hwang 

and teammates (Hwang et al., 2010; Hwang et al., 2009) adopted the FEM to model 

laminated composite plates. The use of more resonant frequencies was recommended to 

improve accuracy. As of today, the use of the FEM is of great interest due to its 

prominent flexibility and robustness; however, from the viewpoint of accuracy as 

compared to an analytical method, such as the Fourier method, the FEM certainly 

comes second.          

2.4.1.4 Fourier method 

Referring to the study performed by Ismail and co-authors (Ismail et al., 2011, 2013), 

an accurate analytical forward method, which was constructed based on the Fourier 

series, was utilised to generate the natural frequencies of orthotropic plates under 

general elastic boundary conditions. Equation (2.8) describes the motion of an 

orthotropic plate, assuming that a harmonic excitation is given. 
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A relationship between the elastic constants,      and the plate deflection 

displacement,  (   ) is established, in which the displacement deflection function is 

expressed in a more robust form of Fourier series expansion, as shown in equation (2.9). 

It is noted that for a thin orthotropic plate,        
    (        ) ,     

   
    (        ),           ,         

     ,      ,      , in which, 

   and    are the elastic moduli,   is the plate thickness,     and     are the Poisson‟s 

ratios and     is the shear modulus. Basically, the displacement function was composed 

of a two-dimensional Fourier cosine series supplemented with a number of terms in the 

form of one-dimensional series. Direct evaluation of the series expansions for all the 

related derivatives was done via term-by-term differentiation of the displacement series 

and a classical solution was derived by allowing the series to exactly fulfil the 

governing differential equation and all the boundary conditions at every field and 

boundary point. Eventually, the modal parameters, including the natural frequencies 

were computed by resolving a standard matrix eigenvalue problem. The salient 

advantage of this approach consists in its solution exactness and accuracy, in which, the 

governing differential equation and the boundary conditions are satisfied entirely and 

exactly on a point-wise basis. This method is also applicable to plates under arbitrary 

boundary conditions, loading features, and/or load conditions. Extensive studies have 

been done applying the Fourier method on plate vibration analysis; however, as of 

today, the use of this method in material characterization is not common. Though, with 

its outstanding accuracy and versatility, the application of this Fourier method in the 

field of material identification can be promising.   

2.4.2 Inverse method  

An inverse method plays an important role in determining elastic properties of a 

material as the accuracy, repeatability, convergence and robustness of the identification 

method reflect its reliability. Inverse methods can be classified into two main categories, 
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namely, derivative-based methods and meta-heuristic optimisation methods. Bayesian 

estimation method, feasible directions method, Newton‟s method, and nonlinear least 

squares method (Levenberg- Marquardt method) are the examples of derivative-based 

methods, while, ant colony optimisation (ACO), genetic algorithm (GA), particle swarm 

optimisation (PSO) and response surface methodology (RSM) are the examples of 

meta-heuristic optimisation methods. In the current section, the aforementioned 

methods, which are commonly used in material identification or other related fields, are 

reviewed. 

2.4.2.1 Derivative-based method 

(a) Bayesian estimation method 

In the Bayesian parameter estimation expression, weighting coefficients on the 

parameters and the responses are taken into consideration. The deviation between the 

initial model estimates and the experimental data is reduced by minimising a weighted 

error function. From the previous studies, the Bayesian estimation method was adopted 

by Lai and Ip (1996) to determine the material properties of unidirectional laminated 

composite plates under free-free boundary condition. An error function was defined by 

the discrepancy between the theoretical and experimental responses (natural 

frequencies) as well as the difference between the initial and updated parameters 

(estimated elastic constants), along with the presence of two weighting matrices. 

Sensitivity matrix, denoting the derivatives of the natural frequencies with respect to the 

four stiffnesses was evaluated as well for subsequent use in the identification process. 

Iteration process was initialised by assigning an initial guess of elastic constants and the 

process persisted until the updated elastic constants fell within 0.1% of the previous 

values. The complete procedures can be found in the aforementioned article. Generally, 

the number of iteration in Bayesian estimation would not exceed 10 and it is notable 

that the use of confidence on the initial estimates would, in fact, improve the 
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convergence. The comparison between the confidence matrices for the initial estimates 

and the updated parameters signifies the accuracy of the identified elastic properties. 

The results obtained using the Bayesian estimation method were found to be in good 

agreement with the results obtained from static testing. Hence, the use of the Bayesian 

estimation method involving modal data can be said to be one of the best alternatives of 

replacing static tests in material identification. Furthermore, Daghia et al. (2007) 

proposed a very different approach in determining the elastic constants of free-edged 

thick laminated plates within a Bayesian framework, applying two estimators, which 

were the Bayesian estimator (B) and the minimum variance estimator (MVE). Although 

the B estimator showed better performances in terms of efficiency and robustness, it 

was biased by the a priori information. As the deviation was reducing, the parameters 

were biased to remain close to the initial guesses. In contrast, the MVE estimator 

exhibited higher accuracy without any bias, but it was only sensitive to local minima 

and lower in convergence rate. The MVE estimator was then modified to improve its 

convergence rate by introducing a two-step procedure. From Table 2.1 (Daghia et al., 

2007), the modified MVE estimator can be seen improving in convergence rate with 

outstanding accuracy. The Bayesian estimation method in parameter identification is 

quite common; however, the amount of research conducted using this method in 

material identification is quite limited, mainly due to its mediocre accuracy and rate of 

convergence. The accuracy of this method is often questionable as the selection of an a 

priori parameter is very subjective and the way of defining and selecting an a priori 

parameter requires skills and experiences. 
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Table 2.1: Final estimates and number of iterations performed for cross-ply 

laminate (Daghia et al., 2007) 

 
   (   )    (   )         (   )     (   )     (   ) No. iter. 

Initial 150 17 0.25 8 8 5 
 

Deviation 17.5 4 0.05 1.5 1.5 1.5 
 

B 120.1 13.69 0.2812 5.989 6.206 3.206 3 

MVE 125 9.458 0.3058 6 5.996 3 39 

MVE-modified 

Stage 1 124.9 9.449 0.3306 5.999 5.983 2.985 10 

Stage 2 125 9.491 0.3013 6 5.999 3 13 

Target 125 9.5 0.3 6 6 3 
 

 

(b)  Feasible direction interior-point method 

Feasible direction method has once been utilised in material identification since 

1990‟s due to its simplicity in coding and efficiency, in which, penalty functions, active 

set strategies or quadratic programming sub-problems are not involved in the solutions 

(Araujo et al., 2006a; Araújo et al., 2002; Araujo et al., 2000; Araujo et al., 1996; 

Araujo et al., 2006b; Herskovits, 1998). It is very useful for problems with objective 

function or constraint functions that are not defined at infeasible points, for example, the 

identification of material properties of laminated composite plates with surface-bonded 

piezoelectric patches proposed by Araujo and collaborators (Araujo et al., 2006a; 

Araújo et al., 2002; Araujo et al., 2006b). As stated in the article by Araújo et al. (2002), 

simultaneous identification of elastic constants, piezoelectric and dielectric coefficients 

was impractical, thus, a separate evaluation of each category was required using the 

proposed method. This study also investigated the feasibility of the proposed method in 

determining elastic properties of multi-material laminated composite plates. In other 

studies (Araujo et al., 2006a; Araujo et al., 2006b), two different approaches were 

adopted and compared. The first method was the gradient-based technique, specifically, 

the use of Gauss-Newton algorithm (gradient-based) integrated with the feasible arc 

interior point algorithm (FAIPA) for unconstrained and constrained optimisations, 

respectively. The second method was the use of the meta-modeling method based on 
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artificial neural network (ANN) technique. Both approaches produced convincing 

results as the evaluated elastic properties were found to be reasonably accurate. 

However, in a close comparison, the error residuals of using FAIPA technique were 

found to be slightly lower as compared to those of using ANN technique. In the 

meantime, the convergence rate of FAIPA was discovered to be 1.2 to 2.4 times higher 

than that of ANN. Overall, FAIPA technique can be claimed to be the better technique.  

(c) Newton method 

Ismail et al. (2013) proposed the integrated use of the Newton-Raphson multivariate 

iterative method and the Fourier method to identify the elastic properties of orthotropic 

plates under general boundary conditions. Validations were done on plates under three 

different sets of boundary conditions, comprising combinations of free and clamped 

edges. The formulation of Newton-Raphson multivariate method started with the 

definition of a weighted error function, describing the square difference between 

experimental and predicted natural frequencies. The derivative of the error function with 

respect to the derivative of each parameter to be identified was expected to be zero. In 

the formulation, the sensitivity matrix denoting the derivative of the eigenvalues with 

respect to the derivative of the parameters to be identified was utilised as well. The 

effects of using four, five, six and seven natural frequencies with the definition of three 

different sets of weighting conditions were investigated. The weighting conditions were 

expressed in terms of error formulation, in which, absolute error (   ), absolute 

percentage error .  
 

 ̅ 
/ and the error in between the formers .  

 

 ̅
/ were defined. 

The results revealed that the root means squared (RSM) error of the identified elastic 

properties was found to be decreasing with respect to increasing number of natural 

frequencies. Besides, the use of the absolute error and the absolute percentage error in 

the formulation was found to have improved the identification results as well. As of 

today, the integrated use of the Newton method with the Fourier method to determine 
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elastic properties is considerably new and not popular since Newton method is a root-

finding method, which is only useful for simple identification problems, but not very 

practical for complex material identification problems.      

(d)  Nonlinear least squares method (Levenberg-Marquardt method) 

Cugnoni et al. (2007) utilised nonlinear least squares algorithm (Levenberg-

Marquardt algorithm) to identify the elastic properties of multilayered laminated 

composite plates, based on a global error function, which was composed of the natural 

frequency error function, mode shape-related error functions as well as the nodal line 

error function. The error functions pertaining to mode shape can be expressed in terms 

of Modal Assurance Criteria (MAC) error function and in terms of mode shape error 

function. In fact, MAC error function can be further decomposed into two classical error 

norms, which are the diagonal and off-diagonal MAC error norms. Meanwhile, mode 

shape error function was defined by the sum difference between the numerical and 

experimental of mode shapes in absolute values. Considering the difficulty in obtaining 

accurate Poisson‟s ratio using conventional error function (natural frequencies only), 

information on the nodal lines of the mode shapes, which were sensitive to the 

Poisson‟s ratio, should be taken into account in the determination process. Hence, nodal 

line error function was developed via interpolation of the mode shapes into grey-shaded 

2D images. Eventually, these five error functions were combined and weighted to form 

a general error function that would be minimised using Levenberg-Marquardt 

algorithm. The advantages of the proposed method were found in its prominent 

convergence rate as well as its great robustness. Only few iterations were needed in the 

determination of in-plane Young‟s and shear moduli with an uncertainty of 2 to 5%. 

Meanwhile, the transverse moduli of thin plates showed an uncertainty of about 10% 

and the deviation diminished as the thickness-to-span ratio of the plate increased. Later, 

Matter and teammates (Matter et al., 2007, 2009) further improved the method 
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developed by Cugnoni et al. (2007) to come out with a two-stage identification method. 

There were two ways of conducting the two-stage identification method, including the 

identification by parameter subset and the identification by progressive refinement. The 

identification by parameter subset was conducted by separating the evaluation of 

Poisson‟s ratio from the identification of the Young‟s and shear moduli, whereas, 

identification by progressive refinement was meant by determining the entire set of 

elastic properties via two consecutive steps from rough prediction to refined estimation. 

From the findings, this two-stage identification method showed positive identification 

results especially the Poisson‟s ratio and demonstrated excellent convergence rate as 

compared to the conventional one-step optimisation method.   

2.4.2.2 Meta-heuristic optimisation method 

(a)  Ant Colony Optimisation (ACO) 

Since decades ago, ACO has been actively used in dynamic applications, comprising 

scheduling problems, vehicle routing problems, assignment problems, and set problems 

on account of its directive search strategy and its ability to adapt to changes in real time. 

Yu and Xu (2010) proposed the use of continuous ACO (CnACO) to locate the 

structural damages as well as quantify the severity of damages of a frame. The objective 

function was defined by the discrepancy between the experimental and analytical 

natural frequencies and mode shapes. The proposed method was found to be effective 

and robust to various types of damages even in the presence of noise. Besides, 

Majumdar et al. (2012) utilised ACO to specifically locate and quantify structural 

damages on truss structures. It was proven that the use of first three natural frequencies 

was sufficient enough to locate the damage and the method was evident to be capable of 

handling noisy data. Daei and Mirmohammadi (2015) employed a modified continuous 

ACO to determine the location of structural damages and its severity, involving the use 

of flexibility matrix error function. In the study, the objective function was defined by 
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the discrepancy between the flexibility matrix of the reference and damaged structures, 

in which, the flexibility matrix of the damaged structure was actually composed of the 

natural frequencies and mode shapes of the damaged structure. The use of flexibility 

matrix in defining the objective function was said to be advantageous as only a few of 

the lower frequencies were needed in obtaining the flexibility matrix. Jalil et al. (2015) 

developed a modified version of ACO to construct a model representing a flexible plate 

structure. ACO with roulette wheel selection was proposed and the results revealed that 

the proposed ACO performed better, in terms of accuracy and convergence rate 

compared to the previous version of ACO. Koide et al. (2013) utilised ACO in 

identifying the optimal stacking sequence of laminated composite rectangular plates. 

There were four cases, in which, the optimal orientations of the piles were determined 

by (i) minimising the material cost, (ii) maximising the critical load factor, (iii) 

maximising the fundamental frequency of rectangular composite plates, and (iv) 

maximising the fundamental frequency of square composite plates with central hole. 

From the aforementioned articles, it is evident that the application of ACO in structural 

health monitoring is prevalent, probably, due to its excellent global search capability. 

Nevertheless, in the study of material identification, the use of ACO is not as 

overwhelming as that of in structural health monitoring, perhaps, due to its inferiority in 

convergence rate as compared to other meta-heuristic algorithms.  

(b) Genetic Algorithm (GA) 

Generally, GA is a useful tool for the evaluation of optimal solutions in scientific, 

technical and productions problems. It is a class of stochastic search algorithm owning 

the global search capability as well as requiring no initial estimation to initialise the 

optimisation process. Owing to its global search capability, GA has been widely 

employed in material identification. Similar to other meta-heuristic algorithms, the 

definition of an optimisation cost function is needed in GA. In the study of vibrational 
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method, the objective function is usually defined by the relative difference between the 

experimental and predicted natural frequencies as it can be found in several publications 

(Hwang et al., 2010; Lin & Chang, 2010; Pagnotta & Stigliano, 2009). Elastic 

properties of various types of plates have been studied using GA, including orthotropic 

plates (Maletta & Pagnotta, 2004; Silva et al., 2004) and laminated composite plates 

(Hwang et al., 2010; Lin & Chang, 2009, 2010). Rectangular plates under free (Hwang 

et al., 2010; Hwang et al., 2009; Lin & Chang, 2009) and simply-supported 

(Garshasbinia & Jam, 2005) boundary conditions are often the subjects of investigation. 

Referring to several relevant articles (Pagnotta & Stigliano, 2008, 2009; Silva et al., 

2004), the use of basic GA is found prevalent among researchers on account of its 

simplicity. As stated in the research done by Maletta and Pagnotta (2004), the 

involvement of the mode shape and the modal indices in the objective function was not 

necessary as the simple correlation of frequencies by their number in a sequential order 

of magnitude was said to be sufficient. The apparent advantage of such function can be 

observed in reducing the effect due to large experimental errors that may be incurred at 

higher frequencies. The identification of four and five elastic constants was claimed to 

be adequate for the study of thin laminated plates and thick laminated plates, 

respectively. Instead of using a minimisation objective, a maximisation objective 

function was utilised in GA (Garshasbinia & Jam, 2005). The cost function was defined 

by the difference between unity and the absolute percentage error between the 

experimental and numerical natural frequencies. The elastic properties of the orthotropic 

and laminated plates were then evaluated via the use of GA. Furthermore, an inverse 

method involving simple GA was proven to be viable for the study of orthotropic and 

laminated rectangular plates with arbitrary thickness as well as free edges. In the 

investigation of laminated plates (Ragauskas & Belevičius, 2009; Silva et al., 2004), the 

deviation between the identified and reference Poisson‟s ratio was found to be relatively 
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large as compared to the other properties, due to the low sensitivity of natural 

frequencies with respect to the Poisson‟s ratio. In addition, the change in the through-

thickness shear moduli was also discovered to be relatively low in variations of natural 

frequencies. Solutions to these issues can be undertaken by tailoring and determining 

the optimum plate geometric parameters, including, the plate side aspect ratio, 

orthotropy angles, and thickness so that the sensitivity of natural frequencies with 

respect to the through-thickness shear modulus as well as the Poisson‟s ratio can be 

enhanced. In this study, a two-step identification was performed. The first step was the 

identification of the plate geometric parameters as mentioned above, while the second 

step involved the ordinary material identification procedures adopting the optimised 

geometric parameters determined in the first step. GA was utilised in both of the steps. 

From the investigation, the use of plate geometric parameter optimisation procedure 

engaging genetic algorithm was proven to be necessary for achieving better 

identification results. On the other hand, four types of objective functions, as well as 

optimisation methods were investigated in elastic properties determination (Pagnotta & 

Stigliano, 2008, 2009). The efficiency of each objective function coupled with each type 

of optimisation method was investigated and compared in terms of the number of the 

FEM code runs. All the objective functions were applicable to GA and the results 

revealed that GA performed the best in terms of accuracy due to its global search 

ability; however, its convergence speed was the least convincing among them.  

Furthermore, the use of hybrid GA with improved efficiency in material 

identification can be found in the previous publications (Hwang et al., 2010; Hwang et 

al., 2009; Lin & Chang, 2009, 2010). Referring to the work done by Hwang et al. 

(2010), a hybrid algorithm, known as, real-parameter GA(RGA) (Hwang & He, 2006) 

was adopted to determine the elastic properties of rectangular laminated composite 

plates under free-free boundary conditions. RGA was employed in the crossover and 
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mutation processes, as well as, simulated annealing was utilised in another mutation 

process. Adaptive mechanisms were introduced to tailor the probabilities of the 

crossover and mutation operators to enhance the hill-climbing ability in the search of 

the optimum solution. Only the first six measured natural frequencies were considered 

in the identification of the four elastic constants of a thin laminated plate due to the 

difficulty in acquiring a large number of experimental natural frequencies. In addition, 

natural frequencies of higher modes were negligible since only four elastic properties 

were the parameters of interest. Similarly, the estimation of the Poisson‟s ratio was 

found to be inconsistent, unlike the other elastic properties, which showed high 

repeatability. Despite, the deviation in the Poisson‟s ratio could be reduced if more 

resonant frequencies were taken into account in the computation. In the article presented 

by Hwang et al. (2009), the similar hybrid GA was utilised to evaluate the effective 

elastic properties of a rectangular woven composite plate and two rectangular printed 

circuit boards (PCBs) under free-free boundary condition. Distinctively, a two-step 

procedure was used in the determination process. The first step was performed by 

taking into account the first four measured frequencies, in which the first three were 

fixed and the fourth was free to match to identify the missing frequencies. After the 

identification of missing frequencies was done in the first step, the identification of the 

effective elastic properties of the plates was continued using more measured frequencies 

according to the mode sequence. Comparisons of the effective elastic properties 

obtained in the first step and second step were done. The second step yielded better 

results, showing improved objective function values, as well as improved repeatability 

in the Poisson‟s ratio. This can be explained by the inclusion of more frequencies in the 

objective function. At present, it can be seen that the use of GA in material 

identification is getting prevalent, primarily, because of its excellent global search 

ability and its great accuracy.   
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(c) Particle Swarm Optimisation (PSO)   

PSO is one of the most prevalently-used meta-heuristic algorithms in wide-ranging 

applications due to its promising search quality and excellent rate of convergence. 

Leiderman and Castello (2016) proposed the integrated use of Quasi-Static-

Approximation with PSO to solve a time-harmonic inverse scattering problem in 

quantifying the interfacial defects incurred at an interface between two elastic solid half-

spaces. The proposed method was proven to be feasible in interfacial defect 

quantification as well as robust to noisy data. Liu et al. (2016) suggested the 

collaborative use of modified fuzzy C-Means (FCM) clustering algorithm with chaotic 

quantum particle swarm optimisation (CQPSO) for carbonate fluid identification. 

CQPSO algorithm was assigned to perform initialization and to produce globally 

optimum cluster centre with intention of evading premature convergence as well as 

local entrapment. The proposed approach was proven to be effective in determining 

fluid properties with total coincidence rate of fluid prediction approaching 97.10%. Xu 

and Gao (2016) introduced a hybrid approach integrating micromechanical modelling 

and backpropagation (BP) neural network to determine the thermal-elastic properties of 

composite materials. PSO was introduced into the proposed hybrid approach to evaluate 

the optimal multi-layered matrix thicknesses by minimising the coefficient of thermal 

expansion (CTE) of composites with the constraint of elastic modulus. Kutanaei and 

Choobbasti (2015) utilised PSO to study the combined effects of fibre and cement 

contents on the unconfined compression strength, modulus of elasticity, and axial strain 

at the peak strength of sand. The role of PSO was to approximate and build a 

polynomial model on the basis of experimental data and the constructed model was used 

to study the relationship between the cement content and the mechanical properties of 

sand as well as the relationship between the fibre content and the mechanical properties 

of sand. Similarly, Sun et al. (2015) adopted the use of PSO to determine the 
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temperature-dependent properties of a thermo-elastic structure, in which, PSO algorithm 

was designated to minimise a global objective function, which was defined by the errors 

of instantaneous frequencies and the sum of the highest order of the polynomials that 

were composed of the temperature-dependent properties. Referring to the reviews 

above, it can be observed that PSO is preferably adopted for collaborative application 

primarily because of its ease of implementation and high convergence rate.  

(d) Response Surface Methodology (RSM) 

Response surface methodology (RSM) is a collection of statistical and mathematical 

techniques beneficial for developing and optimising processes. Extensive studies have 

been done in identifying the elastic properties of laminated composite plates utilising 

the integration of the design of experiments and RSM (Bledzki et al., 1999; Hwang & 

Chang, 2000; Rikards et al., 2003; Rikards et al., 2001; Rikards et al., 1999). The use of 

RSM substantially improves the rate of convergence (approximately 50-100 times), 

thus, inciting the widespread usage of such method. In the study done by  Bledzki et al. 

(1999), the elastic properties of laminated composite plates with two different fibre-

surface treatments were studied, namely, the use of epoxy dispersion with aminosilane 

to enhance fibre/matrix adhesion (EP) and the use of polyethylene to eliminate 

fibre/matrix adhesion (PE). Apart from the drastic decrease in computational time, only 

one plate sample was needed to sufficiently determine the entire elastic constants by 

utilising the proposed RSM. The results revealed that EP composite possessed higher 

transverse stiffness owing to the excellent fibre/matrix adhesion. Moreover, as 

discussed by Rikards and teammates (Rikards et al., 2001; Rikards et al., 1999), the 

transverse shear modulus was discovered to be experiencing relatively large deviation in 

the study of thin plates due to insignificant transverse deformation. On the other hand, 

the transverse shear modulus of moderately thick plates was also found to be erroneous 

probably due to the use of RESINT program, which only considered the main terms of 
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the regression equation during approximation process. In comparison to the terms 

defining the in-plane elastic constants, the terms defining the transverse shear modulus 

were of the second order, thus, causing an error in transverse shear modulus. Although 

the use of RSM provides a substantial increase in convergence rate, its accuracy can still 

be further improved. As discussed in recent articles (Ghanmi et al., 2013; Sankar et al., 

2014), hybrid RSM and particle swarm optimisation (PSO) method was developed and 

utilised in material identification of composite plates for better accuracy. As 

demonstrated in Table 2.2 (Sankar et al., 2014), hybrid RSM-PSO yielded the most 

accurate results with the smallest errors among the different methods, while the 

convergence rate was reasonably good but not as good as that of solely RSM with the 

largest error. In recent years, researchers can be seen to be devoting their efforts to 

investigating this method in material identification, mainly, because of its prominent 

rate of convergence and accuracy.  

Table 2.2: System identification of orthotropic plate using hybrid RSM–PSO 

method in time domain with 5% noise (Sankar et al., 2014) 

System  

parameters 

Actual 

parameters 

Predicted parameters 

RSM 
Improved 

PSO 

Hybrid 

RSM–PSO 

GA (No 

noise) 

   (    ) 1.078 × 10
11

 1.500 × 10
11

 
1.029 × 

10
11

 

1.084 × 

10
11

 

1.070 × 

10
11

 

   (    ) 8.300 × 10
9
 5.011 × 10

9
 7.884 × 10

9
 8.335 × 10

9
 8.000 × 10

9
 

    0.421 0.45 0.38 0.41 0.325 

    (    ) 4.200 × 10
9
 4.219 × 10

9
 6.909 × 10

9
 4.022 × 10

9
 4.250 × 10

9
 

Avg. error ( ) 21.52 21.1 2.25 7.09 

Max. error ( ) 39.62 64.51 4.23 22.8 

CPU time ( ) 18.7 3508.75 3530.38 – 

 

(e) Hybrid algorithms involving GA, ACO and/or PSO 

With regard to the reviews of hybrid algorithms that involves GA, ACO and/or PSO, 

Sheikhalishahi et al. (2013) developed a hybrid GA-PSO approach to tackle reliability 

redundancy allocation problem. In the proposed approach, GA was specifically used to 

perform the exploratory search, while PSO was particularly utilised to conduct the 

exploitative search. However, only selected individuals were passed through PSO 
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operator to reduce the computational time. Yu et al. (2015) adopted the use of the 

hybrid GA-PSO algorithm for process planning scheduling in a manufacturing system. 

In the suggested algorithm, GA was assigned for the traversal of beginning process 

plans, followed by the use of PSO in choosing the suitable machine for each process as 

well as figuring the initiation time of every process. Unlike the previous literature, PSO 

was applied to the entire populations. Ming and Ponnambalam (2008) employed an 

integrated GA-PSO algorithm for the concurrent design of cellular manufacturing 

system. The novelty of this research can be seen in the simultaneous application of GA 

and PSO in making cell formation (CF) and grouping layout (GL) decisions, in which, 

GA was assigned for CF and PSO was designated for GL. Apart from GA-PSO, 

Fidanova et al. (2014) suggested the use of hybrid GA-ACO algorithm to determine the 

parameters of a fermentation process. GA was initially used to search potential solutions 

in a coarse manner. Then, ACO was assigned to search for a better solution in a more 

precise manner utilising the information collected by GA. Furthermore, a GA-ACO-

Local Search Hybrid algorithm was developed by Xu et al. (2006) to solve quadratic 

assignment problem. The probability of GA and ACO taking place was set equal (0.5) 

and local search was then used to further process the product of either GA or ACO to 

locally search for better solutions. Besides GA-ACO, Teo and Ponnambalam (2008) 

designed a combined ACO-PSO algorithm to tackle single row layout problem. In this 

hybrid algorithm, ACO was utilised initially to roughly search the feasible solutions, 

while PSO was then used to exploit the information garnered by ACO to search for 

better solutions at a more thorough pace. Gigras et al. (2015) adopted the use of a 

hybrid ACO-PSO algorithm for robotic path planning. The concept of pheromone 

intensity in ACO and the concept of velocity in PSO were utilised collaboratively to 

identify the shortest path to improve the convergence rate. Hybrid algorithms involving 

the integration of GA-PSO, GA-ACO, and ACO-PSO have been exhaustively 
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developed and applied in various fields since decades ago for their great advantages. In 

most cases, GA is used for diversification and the other is utilised for intensification. 

Meanwhile, for the hybridization between ACO and PSO, ACO is normally used for 

exploration and PSO is assigned for exploitation. Although extensive efforts have been 

devoted to developing hybrids involving two basic algorithms, the application of 

hybrids encompassing more than two basic algorithms in material identification is 

uncommon and thus, the collaboration between these three algorithms can be a potential 

approach. 

2.4.3 Uncertainty 

In real life applications, the presence of uncertainty is inevitable. Generally, 

uncertainty can be classified as aleatory and epistemic (Agarwal et al., 2004; 

Oberkampf et al., 2001). Aleatory uncertainty refers to the inherent randomness in the 

system, while epistemic uncertainty incurs because of the limited knowledge of the 

problem and its affecting factors. In the study of engineering structures, uncertainties 

can be treated as random variables and problems dealing with uncertainties can be 

referred to as stochastic problems. To solve such problems, probability approaches are 

the best solutions. The FEM is known to be a useful numerical method for solving 

wide-ranging problems. Nevertheless, its applicability in problems involving 

uncertainty is limited by its deterministic nature. Consequently, this drawback leads to 

the advent of the stochastic finite element method (SFEM). The SFEM has been 

prevalently used to study the reliability and analyse the robustness of uncertain 

structures (Xia et al., 2014). Notably, a number of variants of the SFEM have been 

developed, namely, Monte Carlo simulation (MCS) (Guoliang et al., 1993), perturbation 

method (Yong & Zhang, 1993) and the spectral stochastic finite element method 

(SSFEM) (Adhikari, 2011). Each method possesses a different strategy in dealing with 

the uncertainties. For further information, the details of these variants can be retrieved 
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from (Arregui-Mena et al., 2016). Numerous studies have been performed adopting 

such methods in investigating the effects of uncertainties on beam and/or plate 

structures. Wan et al. (2017) investigated the effects of the stiffener uncertainty on the 

vibration of plate structures. A beam-stiffened plate model is built for simulation 

purpose. The beam uncertainty incurs relatively little effect on the real part (amplitude) 

the beam mobility than that of the imaginary part (phase), given that the amount of 

beam uncertainty is within the allowable range. It can be deduced that the presence of 

uncertainties of stiffeners has little effect on the structure-borne-sound transmission 

between ribs and the panel foundations.  Xu et al. (2016) performed a study of the 

stochastic free vibration characteristics of a functionally graded material (FGM) beam. 

From the findings, the means of the modal frequencies are substantially dependent on 

the slenderness ratio, whereas the scatterings of the frequencies are less affected by the 

slenderness ratio. The uncertainties of the constituent material properties (e.g. elastic 

modulus, Poisson‟s ratio, density) have significant influences on the scattering of the 

modal parameters than those of the constituent material distribution (volume fraction 

index). The means of mode shapes deviate substantially with slenderness ratios, while 

the scatterings of mode shapes are sensitive to the randomness in mass densities and 

demonstrate no significant changes with the randomness in slenderness ratio, elastic 

moduli and material distribution. Sepahvand (2017) adopted the generalised polynomial 

chaos (gPC) expansion to quantify the uncertainty in the damping and frequency 

response function of composite plate structures. The findings reveal that the effects of 

uncertainties at lower modes are insignificant and thus, negligible. Grover et al. (2017) 

adopted a robust stochastic finite element analysis technique on the basis of first-order 

perturbation technique (FOPT) to study the effects of parametric uncertainties on the 

response of laminated composite and sandwich plates. For the anti-symmetric cross-ply 

plates, A 10% uncertainty in the longitudinal elastic modulus was found affecting the 
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response by 5% for a moderately thick anti-symmetric cross-ply plate. Besides, the 

boundary condition has a considerable influence on the static response. A 10% 

uncertainty in the longitudinal elastic modulus incurs about 20% and 10% variations in 

the responses for thin and moderately thick sandwich plates, respectively. It is 

concluded that the response of the structure is dependent on the presence of material 

uncertainties and the quantitative response is also affected by the boundary conditions, 

lamination sequence and span-thickness ratio of the structure.     

2.4.4 Summary 

At present, impulse technique turns out to be the most widely-used experimental 

approach used in the research of material identification because of the ease of 

implementation, inexpensive procedures and wide-ranging applicability on various 

structures. Hence, in the present research, impulse technique is adopted in conducting 

experimental measurement. With regard to forward methods, the Finite Element 

Method (FEM) emerges as the primary choice for forward computation of modal 

parameters in material identification due to its great flexibility and robustness to any 

boundary conditions and geometrical shapes. Nevertheless, in the aspect of accuracy, 

the Fourier method is relatively better than the FEM. In the meantime, a great number 

of studies have been conducted using the Fourier method in vibration analysis; 

nevertheless, sources pertaining to the application of the Fourier method in material 

identification are limited. Therefore, in the current study, the Fourier method is 

employed as the forward method for its high stability, accuracy and robustness. From 

the viewpoint of derivative-based optimisation methods, aa nonlinear least squares 

method has been widely used to deal with problems involving the combined use of error 

functions (natural frequencies, mode shapes, nodal lines, damping). As of today, the 

integrated use of different error functions is drawing many interests due to its 

remarkable effectiveness. Therefore, in the present investigation, a two-stage weighted 
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least square method is proposed, in which, stage 1 involves the use of natural frequency 

error function and stage 2 involves the use of mode shape error function. Referring to 

meta-heuristic optimisation methods, hybrid algorithms involving the integration of 

GA-PSO, GA-ACO, and ACO-PSO have been extensively developed and adopted into 

various applications due to their great effectiveness. It can be observed that developing 

hybrids involving two basic algorithms is no longer a new practice as well as in the 

meantime, hybrids adopting more than two basic algorithms can hardly be found in 

material identification. Therefore, in the present research, the application and 

collaboration of these three basic algorithms in material identification are investigated 

as it is believed that the weaknesses of respective algorithms can be minimised by the 

strengths of the other algorithms, thus, improving the overall performance. Natural 

frequency error function has been widely explored and applied in material 

identification. On the contrary, the use of FRF error function in material identification is 

scarce. From the viewpoint of accuracy, the use of FRF in material identification can be 

relatively better than that of the conventional natural frequency error function such that 

the experimental FRFs do not undergo processing procedures, thereby preserving the 

data credibility, unlike those of the experimental natural frequencies.     

2.5 Mathematical theory 

The mathematical theories of the selected forward method, namely, Fourier method 

and the relevant inverse methods, namely, derivative-based method and meta-heuristic 

optimisation methods are presented. 

2.5.1 Forward method (Fourier method) 

A forward method is used to evaluate the natural frequencies and modes shapes of 

the analytical model with inputs of elastic properties, as derived by Khov et al. (2009). 

Equation (2.10) describes the motion of a thin orthotropic plate without considering the 
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effects due to transverse shear deformation and rotary inertia. It is noted that for a thin 

orthotropic plate,        
    (        ) ,        

    (        ) ,     

      ,         
     ,      ,      , in which,    and    are the elastic 

moduli,   is the plate thickness,     and     are the Poisson‟s ratios and     is the shear 

modulus. In the present study, the subscripts „ ‟ and „ ‟ of elastic constants can be 

directly referred to as „ ‟ and „ ‟, respectively, since the fibre-reinforced composite 

material is not the subject of interest. A relationship between the stiffness rigidities,     

and the plate‟s deflection displacement,  (   )  is established. The displacement 

function is defined in a more robust form of the Fourier series expansion with the 

inclusion of several supplemental terms to accommodate several sets of boundary 

conditions, as demonstrated in equation (2.11). A system equation can be derived by 

substituting equation (2.11) into equation (2.10), and rearranged into equation (2.12). 
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 ))       (2.12) 

In matrix form, it can be written as: 

 ( ̃    )      ( ̃    )    (2.13) 

The natural frequencies and mode shapes of an orthotropic plate can then be obtained 

from solving a standard matrix characteristic equation (2.14) with    , in which the 

eigenvector A for a given eigenvalue contains the Fourier coefficients for the 

corresponding mode shapes. It is notable that in the FEM, the natural frequencies and 

mode shapes of a structure can be simply obtained by evaluating the eigenvalues and 
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eigenvectors, respectively. However, in the case of the Fourier method, the evaluated 

eigenvectors do not directly represent the identified mode shapes of a structure; instead, 

as mentioned before, these eigenvectors are defined as the Fourier coefficients that are 

used to evaluate mode shapes. Given the boundary conditions equations,      , as 

discussed by Khov et al. (2009), equation (2.13) can be written in the form of 

 (       )    (2.14) 

where, the stiffness matrix,    ̃        and the mass matrix,    ̃       . 

The detailed derivations of the forward method (Fourier method) in determining the 

dynamic parameters of a structure were presented in the article written by Khov et al. 

(2009).   

Furthermore, the frequency response function (FRF) of the plate model can be 

generated using the following formula, involving the evaluated natural frequencies as 

well as mode shapes.  

 

   ( )     ∑
      

  
            

 

   

 (2.15) 

where,      is the FRF for input at position   and output at position  ,   denotes the 

angular frequency,     and     indicate the     mode shape at position   and  ,    is the 

    mode angular natural frequency and  
 
 is the     mode damping ratio. 

2.5.2 Inverse method  

An inverse method is used to update and determine the four typical elastic properties 

of plates under different sets of boundary conditions. Generally, inverse methods can be 

categorised into derivative-based methods and meta-heuristic optimisation methods. 

The theories of these methods are elaborated as follows: 
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2.5.2.1 Derivative-based method 

Material identification begins with the definition of objective function. The aim is to 

determine elastic properties that constitute natural frequencies and mode shapes that are 

close to those benchmark natural frequencies and mode shapes. Hence, the objective 

function can be defined as the discrepancy between experimental and evaluated natural 

frequencies or mode shapes. In real life cases, the presence of uncertainty is inevitable, 

thus, regularization is needed to control the changes in elastic properties. Referring to 

the article written by (Mottershead et al., 2011), a weighted least squares method is used 

in constructing the non-destructive identification approach. The theories used in stage 1 

and stage 2 as well as the formulations of termination criteria are presented as follows: 

(a) Stage 1: The use of natural frequencies 

In stage 1, the natural frequency error function is utilised, and the identification 

procedures are obtained from literature, with the inclusion of regularisation parameter to 

control the effects induced by experimental uncertainties (Mottershead et al., 2011). The 

overall objective function in stage 1 is defined as follows: 

                    (2.16) 

where,   is the difference between the measured and evaluated eigenvalues,     is the 

change in flexural rigidities,    and    are the weighting matrices that define the 

importance of   and    , respectively, and   is a scalar parameter that is known as the 

regularisation parameter that controls the influence of the first term (residual norm) and 

second term (stiffness change norm) of the objective function. This regularisation 

parameter ranges from 0 to 0.3, depending on the suitability of respective applications. 

By minimising the objective function  , the solution can be computed as follows:  

     ,        -
       (2.17) 
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Let        
    (    )  be the measured eigenvalue, and        

  

  (    )
  be the evaluated eigenvalue. Hence, the discrepancy between measured and 

evaluated eigenvalues is defined as follows: 

   ,     - (2.18) 

where,   is the density,   is the thickness,    is the measured natural frequency, and    

is the evaluated natural frequencies. The weighting matrices can be defined as follows: 

 
   (

 

    (  )
)
 

 
(2.19) 

 

 
   

    ( )

    (   )
          ,     - 

(2.20) 

where,   is the sensitivity matrix that defines derivative of evaluated eigen-frequencies 

with respect to stiffness rigidities. These derivatives are obtained through the 

differentiation of the undamped eigenvalue equation, as demonstrated in equation 

(2.21). 
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(2.22) 

where,     is the evaluated eigen-frequency,     is the corresponding eigenvector 

containing the Fourier coefficients, 
  

    
 is the derivatives of mass matrix with respect to 

elastic properties and 
  

    
 is the derivative of stiffness matrix with respect to elastic 

properties.  

(b) Stage 2: The use of mode shapes 

In stage 2, mode shape error function is used and the overall objective function in 

stage 2 is slightly different from that of in stage 1, as defined below. 
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                    (2.23) 

By minimising the objective function  , the solution can be computed as follows:  

     ,        -
       (2.24) 

In stage 2, mode shape error function is used and the difference between measured and 

evaluated mode shapes is written as follows. 

   ,     - (2.25) 

where,    is the measured mode shapes and    is the evaluated mode shapes, 

respectively,     is the change in stiffness rigidities,    and    are the weighting 

matrices that define the importance of   and    , respectively, and   in this case is the 

diagonal matrix of regularization parameters controlling the influence of the first term 

(residual norm) and second term (stiffness change norm) of the objective function. The 

difference between   and   is that in stage 2, the regularization parameters for each 

stiffness rigidity can be selectively defined. Similarly, this regularization parameter 

ranges from 0 to 0.3, depending on the suitability of respective applications. The 

weighting matrices can be defined as follows: 

 
   (

 

    (  )
)
 

 
(2.26) 

 

 
   

    ( )

    (   )
          ,     - 

(2.27) 

where,   is the sensitivity matrix that defines derivative of evaluated mode shapes with 

respect to stiffness rigidities. The computation of these derivatives is relatively different 

from that of commonly-used finite element updating method. The derivations are 

elaborated as follows: 

Equation (2.11) is reinstated as follows: 
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The mode shape of a plate at a particular mode can be obtained from equation (2.11) by 

inserting the corresponding evaluated eigenvectors and supplemental terms into the 

equation. The number of nodes can be defined arbitrarily by defining the coordinates (x, 

y). Given that mode shapes are obtained from equation (2.11), the derivatives of mode 

shapes can as well be obtained through the differentiation of equation (2.11), as 

demonstrated below. 
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The derivatives of eigenvectors can be easily obtained using the method suggested by 

Fox and Kapoor (1968). The derivations are presented as follows: 
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(2.31) 
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where,    denote     eigenvector,    indicates     parameter, and    represents     

eigenvalue. Meanwhile, it is found that the derivatives of stiffness matrix and the mass 

matrix are involved in the formulations of the eigenvectors derivatives, as shown in 

equations (2.31-2.33). Therefore, according to the forward formulations of stiffness 

matrix and mass matrix which define    ̃         and     ̃        , 

respectively, the derivatives of both K and M can be obtained as follows: 
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In both Equations (2.34-2.35), 
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(2.36) 
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With the use of       , we can obtain the following equation: 

     

    
       

    
     

(2.38) 

Furthermore, the derivatives of supplemental terms 
   

 

    
 and 

   
 

    
 can be obtained from 

the following derivations. 
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          (2.40) 

 

   

    
 

    

    
        

    
      

  

    
  

(2.41) 

where,   ,  
    

      
    

    
     

 - ,   ,       - , and   and   are the 

coefficient matrices. For further understanding, the detailed explanation of these terms 
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can be found in the article written by Khov et al. (2009). It is notable that in the FEM, 

the natural frequencies and mode shapes of a structure can be simply obtained by 

evaluating the eigenvalues and eigenvectors, respectively. However, in the case of the 

Fourier method, the evaluated eigenvectors do not directly represent the identified mode 

shapes of a structure; instead, these eigenvectors represent double Fourier series 

coefficients,    , that are used to compute mode shapes. Discernible differences can be 

found in the derivations of the proposed inverse method and the existing FEM-based 

inverse methods that are more straightforward. 

(c) Termination criteria 

In the present study, three termination criteria are defined, namely, the maximum 

number of iterations, the minimum improvement percentage and the minimum value of 

convergence. The updating process is terminated when either of the criteria is met. In 

this research, the value of convergence is referred to as correlation coefficients, which 

can be defined by the errors of the selected modal parameters. In stage 1, the value of 

convergence is defined by the weighted absolute relative difference (CCABS) between 

the evaluated and reference natural frequencies, as demonstrated in equation (2.42). 

 

      
 

 
∑   

|   
    

|

   

 

   

 
(2.42) 

where,    
 and    

 are the measured and evaluated natural frequencies of mode    and 

   
 is the weighting factor. Meanwhile, in stage 2, the value of convergence 

(CCMDISP) is defined by the absolute relative difference between the measured and 

evaluated modal displacements, as described in equation (2.43). 
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where,     
and     

 are the measured and evaluated modal displacement of node   of 

mode  .  

2.5.2.2 Meta-heuristic optimisation method 

In the current section, the fundamental theories of genetic algorithm (GA), ant 

colony optimisation (ACO) and particle swarm optimisation (PSO) are presented. These 

theories are involved in the composition of the proposed meta-heuristic hybrid 

optimisation method, which is known as, hybrid GA-ACO-PSO. The mechanisms of the 

proposed method are thoroughly explicated in conjunction with relevant equations and 

formulas. Lastly, different types of objective functions used in the research are defined 

and presented. 

(a) Genetic Algorithm (GA) 

GA was first developed by Holland (1992) and since then, its potential advantages 

favour its widespread application in multiples fields. The basic idea of GA was inspired 

by the principle of genetic evolution in living organisms. Selection, crossover, mutation 

and elitism are the basic operators in genetic algorithms. An objective function is used 

to evaluate the fitness of each individual and the selection of individuals for further 

evolution or/and reproduction is made based on the fitness survival theory introduced 

by Darwin (1869). Crossover of genetic codes between pairs of chromosomes promotes 

local exploitation within a promising region while mutation of genetic codes in each 

chromosome encourages global exploration within a designated search area.  

(b) Ant Colony Optimisation (ACO) 

ACO was first invented by Dorigo and Caro (1999), emulating the foraging 

behaviour of real ants, in which they manage to build the shortest path between their 

settlement and the feeding source. Pheromone trails are used as a communication tool to 

construct the paths. A higher intensity of accumulated pheromones indicates a higher 
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possibility of prioritising the path as the preferred one, and finally, generating the 

shortest solution path. The pheromone,     on the edge connecting cities   and   after 

iteration   is updated using equation as follows:  

 
   (   )  (    )     ∑     

 

 

   

 
(2.44) 
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(2.45) 

where,    denotes the evaporation rate between iteration   and    ,   represents the 

number of ants,   is a constant, and    defines the length of tour built by     ant. The 

possibility of an ant   heading from city   to city   depends on the amount of 

accumulated pheromones, and hence, the probability function constituting the amount 

of pheromone is expressed as follows: 
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(2.46) 

where,  (  )  is the set of cities available for     ant,  

      denotes an unvisited city by     ant,   and   represent the relative significance of 

the trail over the path information,            with     denoting the distance between 

cities   and  .  

(c) Particle Swarm Optimisation (PSO) 

PSO was first constructed by Kennedy and Eberhart (1995), mimicking the social 

character of animals, such as a flock of birds, a school of fish and a swarm of bees to 

solve optimisation problems. Unlike GA, PSO utilises the information of local and 

global best positions of particles to solve optimisation problems. The formulations of 

PSO are defined as follows: 

  ⃗⃗      ⃗⃗   ⃗⃗    ⃗⃗    ⃗   ( ⃗⃗    ⃗⃗  )   ⃗⃗    ⃗   ( ⃗⃗    ⃗⃗  ) (2.47) 
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  ⃗⃗      ⃗   ⃗⃗    ⃗⃗   ⃗⃗     (2.48) 

where,  ⃗⃗     is the updated velocity,  indicates element-by-element vector 

multiplication,   is the number of iteration,  ⃗⃗   is the previous velocity,  ⃗⃗  is the 

momentum factor,  ⃗   and   ⃗   are random numbers within the range from 0 to 1,  ⃗⃗   is 

the previous best position,  ⃗⃗   is the globally best position in the whole neighbourhood, 

 ⃗⃗   and  ⃗⃗   are the strength of attraction,  ⃗⃗     is the updated position,  ⃗⃗   is the previous 

position, ⃗  and  ⃗⃗  are the coefficients (normally unity). The assignment of input variables 

in the equations above decides the exploration and exploitation processes, depending on 

types of problems. 

(d) Meta-heuristic optimisation method (Hybrid GA-ACO-PSO) 

The primary intention of combining GA, ACO, and PSO is to minimise each other 

weaknesses and in the meantime, to promote respective strengths and therefore, 

transforming into a better hybrid algorithm. It should be highlighted that instead of 

eliminating the random initialization of GA, the effect of random initialization is 

subdued by passing the products of GA through ACO and PSO operators. In the 

composition of the proposed algorithm, ACO is assigned for exploratory search, while 

PSO is designated for exploitative search. The products of GA are further processed by 

ACO and PSO to well distribute and organize the search coverage and thus, neutralize 

the biased effect of random initialization. Consequently, this enhances the searching 

process. The collaboration between GA and ACO enhances exploratory search such that 

ACO evades repeated tours from occurring and the presence of pheromone trails 

probability function makes the search to be more directive and organized. Meanwhile, 

the integration between GA and PSO improves exploitative search, in which, PSO is 

assgined to solely focus on exploitative search. In return, with the introduction of 

different operators and new features, GA enhances the convergence rate and subdues 
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the substantial dependency on the array of pheromones in ACO, as well as further 

boosts the exploitative search in PSO. Two types of mutation operators, namely, two-

point standard mutation and refined mutation are suggested in this algorithm. In early 

iterations, standard mutation is utilised collaboratively with the concept of the 

unrepeated tour in ACO to evade local entrapment, while refined mutation is used in 

later iterations to supplement the PSO exploitative search. Two main features, namely, 

fixed refined mutation and logarithmically-spaced refined mutation are introduced in the 

refined mutation. The details of the features, as well as the flow of the proposed meta-

heuristic hybrid GA-ACO-PSO, are described as follows: 

(i) Step 1: Initialization 

The number of generations, number of populations and number of dimensions 

(design variables) are specified accordingly. Before running the algorithm, input 

variables for ACO (such as pheromone initial intensity, number of paths, constant 

value) and input variables for PSO (such as momentum factor, strength of attraction) are 

specified appropriately. The lower and upper boundaries of each design variable are 

predefined. Once the assignment of inputs is done, the algorithm is set to run. The 

algorithm begins with the random generation of two populations, namely, the ant 

population and the particle population. It is noted that the number of ant population is 

equal to the number of particle population. These randomly-generated solutions are then 

used to initialise the GA operators. Fitness value of each set of the vector is then 

evaluated. 

(ii) Step 2: Selection, crossover, mutation, elitism  

Selection is made based on the fitness values, depending on the types of problems 

(minimisation). Vectors possessing better fitness values stand a higher possibility of 

getting selected for the crossover operation. Selected vectors of ACO and PSO are then 
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carried on to the one-point inter-crossover operation. Subsequently, the mutation 

operation is conducted, followed by the fitness evaluation. Two different types of 

mutation operators, namely, two-point standard mutation and refined mutation are 

proposed. In early iterations, standard mutation is used for exploratory search. The 

concept of the unvisited route in ACO is adopted to avoid the repetition of tours, and 

thus, might improve the convergence rate. Meanwhile, in later iterations when there is 

no unvisited route in the list or when the iteration exceeds half of its assigned value, the 

standard mutation is replaced by the refined mutation. The reason of introducing the 

refined mutation is to further improve the exploitative search, which is mainly 

contributed by PSO. Before proceeding to variable updating, elitism is performed on the 

list of vectors containing vectors of before and after evolution processes with the best 

individual remained at the top of the list and the worst at the bottom. The number of 

elite individuals that are remained for the next iteration corresponds to the predefined 

number of populations. In the proposed algorithm, the odd-numbered elite individuals 

obtained from the list with promising fitness values are eventually treated as the new 

populations of ACO. Comparison of the fitness level between the new population and 

the previous population is made before undergoing evolution processes to promote 

exploration in the coming iteration. Solutions from the previous population will be 

replaced with the solutions from the new population if their fitness levels are relatively 

inferior to those from the new population. Meanwhile, for the case of PSO, the even-

numbered elite individuals retrieved from the list of elitism are used to update the 

particles best and global best positions, hence, initiating the algorithm in the next 

iteration. Notably, the initial velocity vectors are set equal to zero and these vectors are 

involved in the computation starting from the second iteration after the replacement of 

the PSO-evaluated solutions by the elite individuals. Subsequently, before the next 

iteration takes place, the velocity vectors are updated with values obtained from the 
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subtraction between the evaluated and elite solutions to retain the exactness of the 

velocity vectors.  

(1) Crossover 

The equations of crossover in the proposed algorithm are defined as follows: 

          ,(         (    ))  ((       )     (    )) (      

    (        ))  ((       )     (        ))- (2.49) 

 

          ,(         (    ))  ((       )     (    )) (      

    (        ))  ((       )     (        ))- (2.50) 

where          and          are the vectors after undergoing crossover process,       

and       are random numbers ranging from 0 to 1,     and       denote the pair of 

vectors from ACO and PSO, and    indicates the crossover point.  

(2) Mutation 

Standard mutation 

The equations of two-point standard mutation are expressed as follows: 

             (       ) (2.51) 

 

             (       ) (2.52) 

 

   (      ) (       ) (2.53) 

 

   (      ) (       ) (2.54) 

where,       and       are the two mutated variables randomly selected from a vector 

  ,    and    are the predefined lower and upper boundaries of the variables, and    

and     are the two variables before undergoing mutation process. In order to avoid any 

repeated tours in standard mutation, all the possible routes are constructed based on the 

permutation of different path number for each design variable. The route for each of the 

mutated design variables is determined and the visited routes are deleted from the list. 
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The repeated route is replaced with another random pick of route from the list of the 

unvisited routes.  

Refined mutation  

In the present research, two refined mutation features, namely, fixed refined mutation 

and logarithmically-spaced refined mutation are proposed. The general concept of 

refined mutation is defined as follows: 

                 (     ) (2.55) 

 

      (         ) (2.56) 

 

      (         ) (2.57) 

 

              (     ) (2.58) 

where,    and    represent the lower and upper boundaries of percentage that need to 

be specified,         indicates the randomly picked percentage within the specified 

range,   is one of the variables randomly selected from the best solution vector,     and 

   denote the lower and upper boundaries of variable,   and      is the mutated 

variable. The concept of refined mutation is depicted in Figure 2.7, in which,    has 

been picked for refined mutation. Notably, the lower boundary or/and upper boundary 

in refined mutation are set equal to the predefined boundaries in case that the predefined 

values are exceeded. The difference between the fixed refined mutation and 

logarithmically-spaced refined mutation consists in the assignment of    and   . For 

fixed refined mutation, these parameters are fixed throughout the entire iterations, 

while, for logarithmically-spaced refined mutation, these parameters are defined in a 

descending logarithmical manner over iterations.  
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Figure 2.7: Concept of refined mutation 

(iii) Step 3: Variable updating     

The intensity of pheromone in ACO is updated using Equations (2.44-2.45), while 

for PSO, the velocities of particles are assigned randomly, as well as the local and best 

positions of the particle are determined and inserted into Equations (2.47-2.48) to 

initiate the algorithm in the second iteration.  

(iv) Step 4: Solution construction 

In the next iteration of ACO, the solutions are constructed by using equation (2.59) 

and (2.60) as shown below. The concept of combined discrete and continuous 

probability distribution scheme is demonstrated in Figure 2.8, as shown below.    and 

   are the lower and upper boundaries of the designated search areas for each design 

variable,   . The predefined search range of the design variables is divided equally by 

the predefined discrete total number of paths. Random pick of each design variable is 

then made within the region of respective selected paths. In details, the concept begins 

with a probabilistic pick of a discrete path by each ant for each design variable, in 

which, the path number is discrete. It is noted that each path is bounded by respective 

boundaries and each path is selected probabilistically based on the intensity of 

pheromones. As seen from Figure 2.8, ant 1 selects paths [2, 3, 4, 5] for variables 

,           -, respectively. Once a discrete path is selected by an ant for each design 
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variable, a random pick of each design variable is done within the boundaries of the 

selected discrete path, in which, each of the design variable is continuous. The „circles‟ 

denote the ants or solutions with respective routes.  

 

Figure 2.8: Concept of combined discrete and continuous probability distribution 

scheme 

Instead of using equation (2.46) as mentioned above, solutions are probabilistically 

constructed based on the following probability equation (2.59):  

    
  

   

∑    
 
   

 
(2.59) 

where,     is the pheromone intensity for     design variable at     path. At initial stage, 

the values of pheromone intensity for each path are set equal to unity and thus, the 

probability of selecting either path is the same for the first iteration. The discrete path 

number is picked based on equation (2.59) and the solution is randomly picked within a 

continuous range of a path number using equation (2.60) as shown below. It is noted 

that the use of this probability scheme is to mainly assist the exploration search in GA. 

 
  

  
(                 )  (       )

               
     (2.60) 

where,   
  is the     design variable of     ant,            is the path number that is 

picked based on the probability of pheromone accumulation (initially, all the probability 
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are set equal to unity) ,      denotes the random number ranges from 0 to 1,     and 

    are upper and lower boundaries of     design variable, and                 

indicates the predefined total number of paths. Meanwhile, in PSO, the previous 

velocities and the previous solution vectors are updated using equation (2.47-2.48), 

thus, constituting new velocities and solution vectors in the next iteration. The proposed 

hybrid algorithm continues operating until the maximum number of generation is 

achieved. For repeatability investigation, five independent runs are initiated. The 

complete course of the proposed hybrid algorithm is presented in Figure 2.9.  
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Figure 2.9: The proposed hybrid GA-ACO-PSO algorithm 
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(e) Objective function 

The performances of the proposed meta-heuristic hybrid optimisation method 

adopting three different types of error functions, namely, natural frequency error 

function, mode shape error function and frequency response function (FRF) error 

function are investigated and compared. The natural frequency error function is firstly 

used in the applicability study of the proposed method in material identification and 

utilised in the comparative study of the proposed method and the other established 

methods. The effects of using the proposed method incorporated with three different 

types of error functions, namely, natural frequency error function, mode shape error 

function and frequency response function (FRF) error function, in material 

identification are investigated. In the validation stage, a two-stage approach is adopted 

to accommodate the effects of uncertainties; stage 1 adopts the natural frequency error 

function, whereas stage 2 involves the FRF error function. The formulations of the error 

functions are described as follows: 

(i) Natural frequency 

In the present study, the first type of objective function can be expressed in terms of 

discrepancy of natural frequencies as follows: 

Minimise  ( )  ∑(
      ̅ 

   
)

  

   

  

subject to   
   

  
    

   
   

  
    

                               (2.61) 

where,   is the cost function of the design variable   ,             -,     is the 

evaluated natural frequencies,   ̅  is the reference or experimental natural frequencies, 

    and     are the lower and upper boundaries of the elastic properties, respectively. 

The elastic properties are the in-plane longitudinal elastic modulus (  ), in-plane 
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transverse elastic modulus (  ), in-plane shear modulus (   ) and major Poisson‟s ratio 

(   ). As shown in equation (2.61), two additional constraints are introduced to mitigate 

uncertainties as well as to avoid premature convergence.  

(ii) Mode shape  

Apart from using the natural frequency, the mode shape for each mode of vibration 

can be used and expressed in terms of modal assurance criterion (MAC) values as 

follows:  

 

    
|   

     
|
 

(   

     
)(   

     
)
 

(2.62) 

where, superscript    denotes Hermitian transpose,    
and    

are the     complex 

experimental (reference) and analytical mode shapes, respectively. The MAC value 

ranges from 0 to 1, where 1 indicates perfect resemblance between the experimental and 

analytical modes. The objective function involving the use of mode shapes can be 

expressed as follows:   

Minimise  ( )    ∑    

 

   

 
 

subject to   
   

  
    

   
   

  
    

                               (2.63) 

where,   is the cost function of the design variable   ,             -,   is the total 

number of modes,     and     are the lower and upper boundaries of the elastic 

properties, respectively. The elastic properties are the in-plane longitudinal elastic 

modulus (  ), in-plane transverse elastic modulus (  ), in-plane shear modulus (   ) 

and major Poisson‟s ratio (   ). As shown in equation (2.63), two additional constraints 

are introduced to mitigate uncertainties as well as to avoid premature convergence. 
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(iii) Frequency response function (FRF)  

Signature assurance criterion (SAC) or frequency response assurance criterion 

(FRAC) is a criterion measuring the shape similarity between two frequency response 

functions (FRFs). The value of SAC ranges from 0 to 1, where, 1 indicates perfectly 

identical shapes between both the correlated FRFs, whereas, 0 denotes the opposite. The 

formula is expressed as follows: 

 

    
|   

     
|
 

(   

     
)(   

     
)
 

(2.64) 

where,    
 = experimental or reference FRF 

    
 = analytical FRF 

On the other hand, cross signature scale factor (CSF) is a factor evaluating the 

amplitude discrepancies between two FRFs. The value of CSF ranges from 0 to 1, 

where, 1 indicates zero amplitude discrepancy between both the correlated FRFs, while 

0 denotes the opposite. The formula is expressed as follows: 

 
    

 |   

     
|

(   

     
)  (   

     
)
 

(2.65) 

where,    
 = experimental or reference FRF 

    
 = analytical FRF 

By combining both the SAC and CSF correlation analysis, the reliability of the 

results will be much reassured since both the aspect of shape and magnitude are taken 

into account in the correlation analysis. The objective function can be expressed as 

follows: 

Minimise  ( )  [(  ∑    

 

   

)  (  ∑    

 

   

)] 
 

subject to   
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                               (2.66) 

where,   is the cost function of the design variable   ,             -,   is the total 

number of nodes,     and     are the lower and upper boundaries of the elastic 

properties, respectively. The elastic properties are the in-plane longitudinal elastic 

modulus (  ), in-plane transverse elastic modulus (  ), in-plane shear modulus (   ) 

and major Poisson‟s ratio (   ). As shown in equation (2.66), two additional constraints 

are introduced to mitigate uncertainties as well as to avoid premature convergence. 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter consists of three main sections. The procedures of executing the 

proposed two-stage derivative-based method are first presented. Next, the procedures of 

verifying the proposed meta-heuristic hybrid optimisation method are described. Lastly, 

the procedures of conducting experimental validation on both the proposed methods are 

explained.  

3.2 Method 1: Two-stage derivative-based method  

In this method, a two-stage approach is adopted, where, in stage 1, the method 

developed by Ismail et al. (2013) is used to determine the two in-plane elastic moduli, 

in-plane shear modulus and major Poisson‟s ratio. In stage 2, the proposed method, 

which involves mode shapes, is utilised to improve the identifiability of the in-plane 

shear modulus and Poisson‟s ratio. Before the developed method is undertaken for real 

specimen application, it is tested and verified using plates retrieved from Deobald and 

Gibson (1988), namely, aluminium and graphite epoxy plates. In this context, these 

plates are known as the reference plates for better interpretation. The effects of using the 

developed method on two different reference plates are studied. The aluminium plate is 

known to be isotropic, such that, the elastic properties are independent of the location 

and orientation at a point in the body, while, the graphite epoxy composite plate is 

known to be orthotropic, such that, the elastic properties are different in three mutually 

perpendicular directions at a point in the body. The dimensions and material properties 

of the aluminium and graphite epoxy plates are presented in Table 3.1. These 

dimensions and material properties are used as the input parameters of the Fourier 

method developed by Khov et al. (2009) to generate the benchmark natural frequencies 

and mode shapes. The generated benchmark modal parameters are then used as the 

reference parameters in the inverse identification process. The effects of using the 
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proposed method on the reference plates under different sets of boundary conditions (F-

F-F-F, C-F-F-F, C-C-F-C, where, C: Clamped, F: Free) are investigated as well. It 

should be highlighted that for most identification approaches, the objective function is 

defined by a weighted combination of natural frequencies and mode shapes 

discrepancies, while in the present research, a separate definition of objective function 

for natural frequencies and mode shapes discrepancies is proposed to simplify the 

derivation and computation efforts. The accuracy, repeatability and convergence of the 

proposed two-stage derivative-based method in identifying the elastic properties of the 

aluminium and graphite epoxy plates are investigated and discussed. The accuracy is 

evaluated in terms of absolute percentage error of the evaluated properties with respect 

to the reference values, while, the repeatability is evaluated in terms of standard 

deviation. Lastly, the convergence is evaluated in terms of computational time. The 

details of both stages are elaborated in the following sub-sections. 

Table 3.1: Dimensions and elastic properties of reference plates 

Boundary 

condition 
    (  )   (  )   (     )    (   )    (   )     (   )         

Aluminium 

F-F-F-F 

254 3.160 2770 72.4 72.4 28.0 0.33 0.33 C-F-F-F 

C-C-F-C 

Graphite epoxy 

F-F-F-F 

254 

1.483 

1584 127.9 10.27 7.312 0.22 0.0177 C-F-F-F 1.688 

C-C-F-C 1.379 

 

3.2.1 Stage 1: Natural frequencies 

The updating procedures are similar to those explained by Ismail et al. (2013). In the 

present research, three termination criteria, namely, the maximum number of iterations, 

the minimum improvement percentage and the minimum value of convergence, are 

introduced. In the investigation of reference plates, regularization can be omitted since 

uncertainties are presumably absent, and thus, regularization parameter is set equal to 
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zero. In this study, the in-plane elastic moduli, in-plane shear modulus and major 

Poisson‟s ratio are updated using the first six natural frequencies. The procedures of 

conducting stage 1 are elaborated as follows: 

i. Estimate initial values for four parameters of the analytical model. 

ii. Specify the termination criteria, including, the maximum number of 

iterations, the minimum improvement percentage and the minimum value 

of convergence. 

iii. Input the reference or measured natural frequencies and the regularization 

parameter (if needed). 

iv. Utilise the forward method to produce the eigen frequencies. 

v. Evaluate the derivatives with respect to each parameter and build the   

matrix. 

vi. Evaluate the error difference between the evaluated and reference or 

measured natural frequencies, and build the   matrix. 

vii. Estimate     and update the four parameters. 

viii. Repeat steps 4-7 until either of the three termination criteria is met. 

3.2.2 Stage 2: Mode shapes 

The updating procedures are similar to those of stage 1. However, few settings must 

be configured, and the approach is slightly different from that in stage 1. In stage 1, a 

regularisation parameter is selected on the basis of the graph of stiffness change norm 

against residual norm and applied on all the involved design variables. In stage 2, 

regularisation parameters are introduced individually to each of the design variables to 

control the changes in each of the design variables individually. Certainly, the selection 

of inappropriate regularisation parameters may cause the proposed method to lose its 

effectiveness. Therefore, in this study, regularisation parameters are selected on the 
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basis of the theoretical relationship between the elastic properties and the optimising 

parameters (e.g. natural frequencies and mode shapes), as well as the information 

obtained from published articles (Pagnotta, 2008; Tam et al., 2017). The results 

obtained in stage 1 are used as the initial values in stage 2. In reference studies, the in-

plane shear modulus and major Poisson‟s ratio can be selectively directed to stage 2 

based on the quality of the results obtained in stage 1. In ideal cases, the in-plane elastic 

moduli do not undergo stage 2 because of their sufficiently high accuracy attained in 

stage 1 to avoid further deterioration. On the contrary, in experimental studies, the four 

elastic properties are subjected to stage 2, with consideration of the presence of 

uncertainties that may have provided several gaps for improvement after stage 1. The 

elastic moduli are taken into account under the condition that the changes in these 

elastic moduli are confined. Changes in the in-plane shear modulus and major Poisson‟s 

ratio are relatively less restricted by assigning appropriate regularisation parameters 

because mode shapes are relatively local and theoretically much related to both of these 

properties. In this study, the difference between the experimental and evaluated mode 

shapes (  ,     - ) is much smaller than that between the experimental and 

evaluated natural frequencies (  ,     -). Therefore, a scaling factor is needed to 

amplify the difference between the experimental and evaluated mode shapes in stage 2. 

The scaling factor can be defined on the basis of the difference between the 

experimental and evaluated mode shapes. Scaling can be performed by multiplying the 

values involving mode shapes with a multiple of 10 (e.g. 10, 100, 1000, etc.), depending 

on suitability. The process begins with the selection of the smallest number (i.e. 10) and 

increases gradually by multiples of 10. The scaling is regarded well defined when the 

maximum change in the parameters lies within 10% of the parameters determined from 

the former iteration and when the identification outcome converges to its solution. In 

addition, an overestimation of the scaling factor will cause severe divergence, whereas 
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an underestimation will stagnate the updating process. Hence, the appropriate scaling 

factor should be selected. Generally, the procedures of conducting stage 2 are presented 

as follows: 

i. Use the four parameters obtained from stage 1 as the initial values. 

ii. Specify the termination criteria, including, the maximum number of 

iterations, the minimum improvement percentage and the minimum value 

of convergence. 

iii. Input the reference or measured mode shapes and the regularization 

parameters (if needed), as well as scaling factor. 

iv. Utilise the forward method to produce the mode shapes. 

v. Evaluate the derivatives with respect to each parameter and build the   

matrix. 

vi. Evaluate the error difference between the evaluated and reference or 

measured mode shape modal displacements, and build the   matrix. 

vii. Estimate     and update the four parameters. 

viii. Repeat steps 4-7 until either of the three termination criteria is met. 

3.3 Method 2: Meta-heuristic hybrid optimisation method (Hybrid GA-ACO-

PSO) 

In the present section, the general flow of the proposed hybrid GA-ACO-PSO 

algorithm is first explained. Next, the procedures of examining the feasibility of the 

proposed method in solving test functions and established engineering design problems 

are presented. Subsequently, the procedures of conducting a study on the applicability 

of the proposed algorithm in material identification are elaborated. Lastly, the 

procedures of performing an investigation on the effects of using the proposed method 

with three different error functions in material identification are explicated.  
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3.3.1 General flow of algorithm 

The detailed theories of the proposed hybrid algorithm has been presented and 

explained in the previous chapter. Generally, the algorithm begins with the initialization 

of populations. The initial populations are divided equally into two groups, in which, 

each group passes through the ant colony optimisation (ACO) and particle swarm 

optimisation (PSO) operators, respectively. The products of each operator are 

subsequently processed and evolved via genetic algorithm (GA) operators. The parent 

populations as well as the evolved populations are then ranked and selected for further 

evolution in the next generation. The iterations continue until the termination criterion is 

achieved. In the present study, only one termination criterion, namely, the maximum 

number of generations or iterations is specified due to the reason of equal and fair 

comparison in the aspect of accuracy, repeatability and convergence with respect to 

other algorithms. The pseudo code demonstrating the flow of the algorithm is presented 

in Figure 3.1. 
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Figure 3.1: Pseudo code of the proposed hybrid algorithm 

 

3.3.2 Verification of the proposed method using test functions and engineering 

design problems 

Firstly, 10 sets of test functions and four sets of engineering design problems are 

used to verify the feasibility of the proposed method. Two different features, namely, 

fixed refined mutation and logarithmically-spaced refined mutation are introduced. The 

effects of feature variations in solving test functions and engineering design problems 

are investigated. Next, the effects of parameter variations in solving test functions are 

studied. The performance of the proposed method in solving test function and 

engineering design problems is then investigated and compared with those of 

conventional algorithms (i.e. GA, ACO, PSO) and other established algorithms. 
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Notably, before proceeding to the verification of the proposed method, the effects of 

variation in the input parameters are investigated comprehensively. Given that the 

number of evaluations is fixed, the numbers of generations and populations can be 

adjusted to achieve a fixed number of evaluations. Various combinations of the numbers 

of generations and populations leading to a fixed number of evaluations are 

investigated. The effects of increasing the number of paths, evaporation rate, and 

constant used in the ACO algorithm and the proposed method are investigated. The 

effects of increasing the strength of attraction and varying the momentum factor used in 

the PSO algorithm and the proposed method are also studied. Variations in the 

parameters of the two different features used in the proposed method are also 

investigated. Subsequently, selection of appropriate input parameters is made on the 

basis of the results obtained from the studies. 

3.3.2.1 Test functions 

The main reason of conducting this study is to investigate the feasibility of the 

proposed meta-heuristic hybrid optimisation method in solving unconstrained problems 

(test functions) in the presence of multimodality before it is adopted for material 

identification. It is notable that the involving test functions are normally referred to as 

unconstrained problems, such that, they are only bounded by search region boundaries. 

A total of 10 test functions are used to evaluate the performance of the proposed hybrid 

algorithm, in which, the first six (     ) are multimodal functions and the last four 

(      ) are unimodal functions. The details of the test functions can be found in 

Appendix A. It can be seen that the expression as well as the designated search region 

of each test function are distinctively varied from one another and this indirectly studies 

the robustness of the proposed algorithm. Furthermore, the number of dimensions,   

used in the research and the optimum solutions for the 10 test functions are presented in 

Table 3.2. In the present study, all the functions are to be minimised. For each function, 
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30 runs of simulations are executed. The research begins with the study of the effects of 

feature variations, followed by the study of the effects of parameter variations, the study 

of the performance comparison between the proposed and conventional algorithms and 

lastly, the study of the performance comparison between the proposed and established 

algorithms. 

  Table 3.2: Number of dimensions used and the optimum solutions for test 

functions 

Function Name Dimension, N Global optimum 

   F(x) x 

F1 Ackley 30 0 [0,.., 0]
N
 

F2 Griewangk 30 0 [0,.., 0]
N
 

F3 Rastrigin 30 0 [0,.., 0]
N
 

F4 Rosenbrock 30 0 [1,.., 1]
N
 

F5 Schwefel 30 0 
[420.9687,.., 

420.9687]
N
 

F6 Weierstrass 30 0 [0,.., 0]
N
 

F7 Schwefel P2.22 30 0 [0,.., 0]
N
 

F8 Sphere 30 0 [0,.., 0]
N
 

F9 Styblinski−Tang 30 −39.16599N 
[−2.903534,.., 

−2.903534]
N
 

F10 Zakharov 30 0 [0,.., 0]
N
 

 

(a) Effects of feature variations in solving test functions 

Firstly, the effects of feature variations are investigated. Basically, two features, 

namely, fixed refined mutation (feature 1) and logarithmically-spaced refined mutation 

(feature 2) are introduced. For feature 1, parameter    is fixed equal to 0.001, while 

parameter    is fixed equal to    , which is equivalent to 0.002. For feature 2, the 

command “         ” in the proposed hybrid algorithm is used to generate a 

logarithmically-spaced vector in descending order. When          = 2,500, from 10
0.01

 

to 10
0.00001

, a total of 2,500 logarithmically-spaced intervals are generated within the 

defined range. In the current study, parameter    is specified as the logarithmically-

spaced vector in descending order from 10
0.01

 to 10
0.00001

, while parameter    is defined 

as    . In the language of Matlab, it can be written as “         (0.01, 0.00001, 

2500)”. It should be informed that only one refined mutation point is involved in both 
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feature 1 and feature 2. The complete input settings of the proposed method in this 

study are presented in Table 3.3. This study is conducted to investigate and compare the 

effectiveness of the two proposed features in solving the test functions and the relatively 

best feature is selected for further investigation. It is notable that the performance is 

evaluated in terms of average minimised function value error (accuracy) and standard 

deviation (repeatability). 

(b) Effects of parameter variations in solving test functions 

Based on the outcomes obtained from the previous study, the relatively best feature 

is selected. Parameters, such as    and   , as well as the number of mutation points 

may affect the performance of the selected feature. To determine the relatively best 

combination of parameters in solving unconstrained problems, the effects of variations 

in the mentioned parameters are investigated. The input settings for the proposed 

algorithm are presented in Table 3.3. The effectiveness of parameter variations is 

evaluated in terms of average minimised function value error (accuracy) and standard 

deviation (repeatability). Average ranking of Friedman test is conducted to determine 

the relatively best combination of parameters.   

(c) Performance comparison between the proposed and conventional algorithms in 

solving test functions 

Adopting the relatively best combination of parameters which is determined from the 

previous study, the performance of the proposed algorithm in solving test functions is 

subsequently evaluated and compared with those of the conventional algorithms, 

namely, genetic algorithm (GA), ant colony optimisation (ACO) and particle swarm 

optimisation (PSO). The input settings for the algorithms are presented in Table 3.3. 

The number of evaluations is set to 200,040 for all the involved algorithms by fixing the 

number of generations (5,000) and the number of populations for the reason of equal 
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and fair comparison. In the present study, the number of evaluations includes those from 

the initialization stage as well. Basically, the number of evaluations can be interpreted 

as the number of times that the minimisation of the objective function has taken place. 

The number of evaluations for GA, ACO and PSO can be calculated based on equation 

(3.1), while for the proposed hybrid algorithm, the number of evaluations can be 

computed based on equation (3.2).  

                       

                       (                     ) 

                              ) (3.1) 

 

                       

   (                      (                     ) 

                              ) (3.2) 

 

The optimal number of path used in ACO and hybrid algorithm is found to be 30 and 

25, respectively. Notably, a higher number of path leads to a higher degree of 

exploitative search. Hence, it can be seen that in the hybrid algorithm, the contribution 

of ACO operator is mainly focalised on the exploratory search. On the other hand, the 

constant is a fixed number involved in the pheromone intensity updating of ACO. It is 

specified based on the type of objective function and the optimal constant used in this 

context is 10,000 for both the ACO and hybrid algorithms. Besides, the strength of 

attraction and the momentum factor in PSO are specified referring to (Garg, 2016); 

while for the proposed hybrid algorithm, those parameters are set lower so that the PSO 

operator in the algorithm could concentrate more on the exploitative search. The 

command “        ” in PSO, is used to generate a linearly-spaced vector within a 

specified range in descending order, for instance, when         = 5,000, from 0.9 to 

0.4, a total of 5,000 linearly-spaced interval are generated within the specified range. In 

this study,          is specified corresponding to the number of generation. Moreover, 

the number of crossover is the number of selected individual to undergo crossover 

process and similarly, the number of mutation is the number of selected individual to 
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undergo mutation process. Apart, the command “        ” in the proposed hybrid 

algorithm is used to generate a logarithmically-spaced vector in descending order, such 

that, when          = 2,500, from 10
0.01

 to 10
0.00001

, a total of 2,500 logarithmically-

spaced interval are generated within the defined range. The best parameters    and    

as well as  , as determined in the previous study are utilised in this comparative study. 

The accuracy, repeatability and the convergence of the involved algorithms are 

evaluated, in terms of average minimised function value error, standard deviation and 

average computational time, respectively. 

Table 3.3: Input settings for GA, ACO, PSO and the proposed hybrid algorithm 

Input variables 
Settings 

GA ACO PSO Hybrid 

1.  Number of generation 5,000 5,000 5,000 5,000 

2.  Number of populations 40 40 40 20 

3.  Number of evaluations 200,040 200,040 200,040 200,040 

4.  
Number of dimensions (desi

gn variables) 
30 30 30 30 

5.  ACO populations − 40 − 10 

6.  
Initial intensity of pheromo

ne for every vectors 
− 1 − 1 

7.  Number of paths − 30 − 25 

8.  Evaporation rate − 0 − 0 

9.  Constant − 10,000 − 10,000 

10.  PSO populations − − 40 10 

11.  Strength of attraction,  ⃗    ⃗   − − 1.5, 1.5 1.05, 1.05 

12.  Momentum factor,  ⃗  − − 
[0.9,0.4]; linsp

ace =5,000 

[0.5,0.1]; linsp

ace =5,000 

13.  Number of crossover 20 − − 10 

14.  
Number of standard (or refi

ned) mutation 
20 − − 10 (10) 

15.  
Initialization of refined mut

ation after     generation 
− − − 2,500

th
 

16.  

The percentage range of des

ign variables in refined mut

ation,         

− − − 

   = [0.01, 1.0

000E−05]; 

      ; log

space = 2,500 
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(d) Performance comparison between the proposed and published algorithms in 

solving test functions 

Furthermore, the performance of the proposed algorithm in solving test functions is 

as well compared with those of published algorithm, including, CPSO-H (Van den 

Bergh & Engelbrecht, 2004), CLPSO (Liang et al., 2006), APSO (Zhan et al., 2009), 

GOPSO (Wang et al., 2011), DNSCLPSO (Wang et al., 2013) and DNSPSO (Wang et 

al., 2013). The maximum number of evaluations is set to 200,040 (including initial 

evaluations) and the number of generation is fixed to 5,000 as well as the number of 

populations is defined as 40 (20 for the proposed hybrid algorithm). The input settings 

for the proposed hybrid algorithm are shown in Table 3.3. It should be noted that only 

the accuracy and repeatability are investigated and compared, while, the study of 

convergence (average computational time) is not conducted due to the need of 

rebuilding and rerunning those established algorithms using a particular computing 

device for fair and equal comparison. Average ranking of Friedman test is conducted on 

the accuracy and repeatability of the compared algorithms to determine the relatively 

best performing algorithm. 

3.3.2.2 Engineering design problems 

The present study is conducted to investigate the viability of the proposed hybrid 

algorithm in solving constrained problems (engineering design problems). The 

optimisation problems to be used for verification include Himmelblau‟s non-linear 

optimisation problem, pressure vessel design optimisation problem, welded beam 

design optimisation problem and gear train design optimisation problem. For each 

design problem, 30 runs of simulations are executed. Each design problem is first 

defined and explained, followed by the study of the effects of feature variations, the 

study of the effects of parameter variations, the study of the performance comparison 
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between the proposed and conventional algorithms as well as the study of the 

performance comparison between the proposed and established algorithms. 

(a) Definition 

(i) Himmelblau’s non-linear optimisation problem 

A great number of researchers have been utilising this example as a benchmark to 

verify newly-developed algorithms since decades ago. This problem is originated by 

Himmelblau (1972) and it comprises five positive design variables, six non-linear 

inequality constraints, and 10 boundary conditions, which can be defined as follows: 

 Minimise 

  ( )             
                                      (3.3) 

 

    ( )     

     ( )      

     ( )     
 

  ( )                                                      

  ( )                                                  
  

  ( )                                                     
 

          

         

                 
 

Several algorithms have been validated employing this example, including genetic 

algorithm (GA), cuckoo search, harmony search, simplex search, particle swarm 

optimisation (PSO) and hybrid PSO-GA. Two slightly different cases of constrained 

functions have been used, in which the parameter 0.0006262 (in bold) in   ( ) has been 

used for case 1 and replaced with 0.00026 for case 2. 

(ii) Pressure vessel design optimisation problem 

In general, a pressure vessel is a container invented to store or to contain fluids at a 

designated pressure, as visualized in Figure 3.2. In this example, the design of a 

compressed air pressure vessel with working pressure of 2000    and a maximum 
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volume of 750    is to be optimised to minimise the total material and manufacturing 

cost incurred (Kannan & Kramer, 1994). Pressure vessels are usually manufactured in 

cylindrical shape with both ends capped with hemispherical heads.  

 

Figure 3.2: Schematic diagram of a pressure vessel 

The working pressure and the volume have been fixed according to requirements, 

and the design variables to be determined include the thickness of the vessel,        , 

the thickness of the hemispherical caps,        , the inner radius of the vessel, 

      , and the length of the vessel excluding the caps,       .    and    are integers 

that are multiples of 0.0625   , whereas,   and   are continuous. The design variables 

can be expressed in the form of vector,   ,           - and the problem can be 

interpreted as follows: 

 Minimise 

 ( )                         
          

           
    (3.4) 

 

  ( )   ( )   ( )   ( )    

  ( )               

  ( )               

  ( )      
    

 

 
   

          

  ( )         
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(iii) Welded beam design optimisation problem 

As depicted in Figure 3.3, this welded beam design problem was first proposed by 

Rao (2009), with the objective of minimising the manufacturing cost of the welded 

beam by optimising the design parameters, including the thickness of the weld,     

   , the length of the welded joint,       , the height of the beam,       , and the 

width of the beam,       . A vector,     ,           -  is formed for simple 

representation. The equation below represents the objective function and the constraints 

are listed. Table 3.4 shows the representation of the symbols, as well as the input 

specifications of the problem. 

 

Figure 3.3: Welded beam schematic diagram 

 Minimise 

 ( )           
               (     ) (3.5) 
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Table 3.4: Notations for welded beam design problem 

 Representation Values 

1.                                  13,600 psi 

2.                            30,000 psi 

3.                6,000 lb 

4.               14 in 

5.                 12E+06 psi 

6.                   30E+06 psi 

7.                       - 

8.                        - 

9.                    
 
 - 

10.                   - 

 

(iv) Gear train design optimisation problem 

Generally, gear train can be defined as a system that is composed of a combination of 

various types of gears mounted on a frame, forming a complete working mechanism. 

This optimisation problem involves no constraints and was first presented by Sandgren 

(1990), with the intention of determining the best combination of four gears with a 

different number of teeth that would minimise the gear ratio. Since the number of teeth 

of the gearwheel is definite, the design variables to be identified would only involve 
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integers. The formulations associated with the gear ratio and the number of teeth 

(    ,           -) are shown as follows: 

 Minimise 

 ( )  (
 

     
 

    

    
)
 

 
(3.6) 

 

                  
 

           
    

    
 

 

(b) Effects of feature variations in solving engineering design problems 

The effects of feature variations in solving constrained problems are first examined. 

As mentioned before, two features, namely, fixed refined mutation (feature 1) and 

logarithmically-spaced refined mutation (feature 2) are proposed. The details of the 

proposed features have been explained in the previous section. The effectiveness of the 

proposed features is compared in terms of the best, average and worst minimised 

objective function values (accuracy), as well as the standard deviation (repeatability). 

The best performing feature is selected for subsequent application.  

(c) Effects of parameter variations in solving engineering design problems 

In this study, the effects of parameter variations in the selected feature are 

investigated. Parameters, such as,    and   , as well as the number of mutation points 

are varied and the relatively best combination of parameters is determined based on the 

performance, which is evaluated in terms of the best, average and worst minimised 

objective function values (accuracy), as well as the standard deviation (repeatability). 

Average ranking of Friedman test is performed to identify the relatively best 

combination of parameters. 
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(d) Performance comparison between the proposed and conventional algorithms in 

solving engineering design problems 

Adopting the best combination of parameters evaluated from the previous study, the 

performance of the proposed algorithm in solving engineering design problems is then 

evaluated and compared with those of the conventional algorithms, namely genetic 

algorithm (GA), ant colony optimisation (ACO) and particle swarm optimisation (PSO). 

The input settings for the conventional algorithms are similar to those used previously, 

as shown in Table 3.3, except for the maximum number of generations and evaluations. 

There are slight adjustments in the input settings for the proposed hybrid algorithm and 

the maximum number of iterations or generations, as well as evaluations varies 

according to design problems, as present in Table 3.5. It is noted that the maximum 

number of iterations and evaluations are fixed constant for all the involved algorithms in 

each design problem. The accuracy is evaluated in terms of the best, average and worst 

minimised objective function values, while, the repeatability is evaluated in terms of the 

standard deviation. On the other hand, the convergence is evaluated in terms of 

convergence rate and computational time. 
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Table 3.5: Input settings for the proposed algorithm 

Input variables 
Himmelblau‟s 

problem 

Pressure vessel 

design problem 

Welded beam 

design problem 

Gear train 

design problem 

1.  Number of generation 800 500 500 100 

2.  Number of populations 20 20 20 20 

3.  Number of evaluations 32,040 20,040 20,040 4,040 

4.  
Number of dimensions 

(design variables) 
5 4 4 4 

5.  ACO populations 10 10 10 10 

6.  
Initial intensity of phero

mone for every vectors 
1 1 1 1 

7.  Number of paths 25 25 25 25 

8.  Evaporation rate 0 0 0 0 

9.  Constant 10,000 10,000 10,000 10,000 

10.  PSO populations 10 10 10 10 

11.  
Strength of attraction, 

 ⃗    ⃗   
1.5, 1.5 1.5,1.5 2.0, 2.0 1.5, 1.5 

12.  Momentum factor,  ⃗  
[0.9,0.6]; 

linespace =800 

[0.9,0.6]; 

linespace =500 

[0.9,0.6]; 

linespace =500 

[0.9,0.6]; 

linespace =100 

13.  Number of crossover 10 10 10 10 

14.  
Number of standard (or r

efined) mutation 
10 (10) 10 (10) 10 (10) 10 (10) 

15.  

Initialization of refined 

mutation after     gener

ation 

400
th
 250

th
 250

th
 50

th
 

16.  

The percentage range of 

design variables in refin

ed mutation,         

   = 0.0010; 

      ; 

   = 0.0010; 

      ; 

   = 0.0010; 

      ; 

   = 0.0100; 

      ; 

 

(e) Performance comparison between the proposed and published algorithms in 

solving engineering design problems 

Lastly, the performance of the proposed algorithm in solving engineering design 

problems is compared with those of the published algorithms. The input settings for the 

proposed hybrid algorithm are presented in Table 3.5 and 30 runs of simulations are 

executed. The accuracy of the proposed hybrid algorithm is evaluated in terms of the 

best, average and worst solutions, while, the repeatability is evaluated in terms of the 

standard deviation and the convergence is evaluated in terms of the maximum number 

of evaluations.  
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3.3.3 Application in vibrational material identification 

Before the proposed meta-heuristic hybrid method is adopted for real specimen 

application, similarly, it is verified using the reference plates, namely, aluminium and 

graphite epoxy plates (Deobald & Gibson, 1988). The specifications of the aluminium 

and graphite epoxy plates are presented in Table 3.1. In the present study, the Fourier 

method introduced by Khov et al. (2009) is employed in the identification process as the 

forward method. It should be noted that in this study, only the commonly-used natural 

frequency error function is utilised in the identification process. The reference natural 

frequencies of the aluminium plate are generated using the mentioned published Fourier 

method with inputs of actual material properties taken from (Deobald & Gibson, 1988). 

On the other hand, for the graphite epoxy plate, the reference natural frequencies 

generated using the Fourier method are retrieved from (Khov et al., 2009). Three 

different sets of general boundary conditions, namely, F-F-F-F, C-F-F-F and C-C-F-C 

(C: Clamped; F: Free) are investigated. The accuracy of the proposed method is studied 

and compared in terms of minimised objective function values. The determined elastic 

properties are subsequently compared with the benchmark properties for quantitative 

verification. For repeatability study, five runs of simulations are executed and the 

standard deviations are evaluated. Furthermore, convergence study is conducted for 

different types of materials and different sets of boundary conditions. 

The identification process involves minimisation of the objective function. The input 

settings for genetic algorithm (GA), ant colony optimisation (ACO), particle swarm 

optimisation (PSO) and the proposed hybrid GA-ACO-PSO are listed in Table 3.6. The 

number of evaluations is set constant (i.e., 20) for all the involved algorithms by fixing 

the number of generations and number of populations for the reason of equal and fair 

comparison. As mentioned before in the previous section, the number of evaluations for 
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GA, ACO and PSO can be calculated based on equation (3.1), while for the proposed 

hybrid algorithm, the number of evaluations can be determined using equation (3.2).  

In the present study, four dimensions are involved, namely, in-plane longitudinal 

elastic modulus (  ), in-plane transverse elastic modulus (  ), in-plane shear modulus 

(   ) and major Poisson‟s ratio (   ). Similar to the previous section, the optimal 

number of path used in ACO and hybrid algorithm that yield the best results in material 

identification is found to be 30 and 25, respectively. The optimal constant used in this 

context is 10,000 for both ACO and hybrid algorithm. The strength of attraction and the 

momentum factor in PSO are defined based on the suggested values in (Garg, 2016); 

whilst for hybrid algorithm, those parameters are defined lower in values. As explained 

before, the linspace is specified according to the number of generations.  

Table 3.6: Input settings for GA, ACO, PSO and the proposed hybrid algorithm in 

material identification 

Input variables 
Settings  

GA ACO PSO Hybrid 

1.  Number of generations 20 20 20 20 

2.  Number of populations 40 40 40 20 

3.  Number of evaluations 840 840 840 840 

4.  
Number of dimensions 

(design variables) 
4 4 4 4 

5.  ACO populations - 40 - 10 

6.  

Initial intensity of 

pheromone for every 

vectors 

- 1 - 1 

7.  Number of paths - 30 - 25 

8.  Evaporation rate - 0 - 0 

9.  Constant - 10000 - 10000 

10.  PSO populations - - 40 10 

11.  
Strength of attraction, 

 ⃗    ⃗   
- - 1.5, 1.5 1.05, 1.05 

12.  Momentum factor,  ⃗  - - 
[0.9,0.4]; 

linspace =20 

[0.5,0.1]; 

linspace =20 

13.  Number of crossover 20 - - 10 

14.  
Number of standard (or 

refined) mutation 
20 - - 10 (10) 

15.  

Initialization of refined 

mutation after  

    generation 

- - - 10
th
 

16.  

The percentage range of 

design variables in refined 

mutation,         

- - - 
   = 0.02; 

   = 0.05; 
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3.3.4 Comparative study of different error functions 

In the present context, the emphasis is placed on the study of the effects of using the 

proposed meta-heuristic hybrid approach with different types of error functions, namely, 

natural frequency error function, mode shape error function and frequency response 

function (FRF) error function. The performance of each the involved error function is 

compared and discussed. It is noteworthy that only the graphite epoxy plate under F-F-

F-F (F: Free) boundary condition is investigated since the feasibility of the proposed 

method on different types of plates under different sets of boundaries conditions has 

been verified in the previous study. The dimensions and material properties of the 

graphite epoxy plate taken from literature (Deobald & Gibson, 1988) are shown in 

Table 3.1 in the previous section. These dimensions and material properties are used as 

the input parameters of the Fourier method developed by Khov et al. (2009) to generate 

the benchmark natural frequencies and mode shapes as well as the frequency response 

functions (FRFs). The generated benchmark parameters are then used as the reference 

parameters in the inverse problem. The input settings for the proposed hybrid algorithm 

are summarized in Table 3.7. The input settings for the conventional algorithms are 

similar to those presented in Table 3.6 in previous section, except for the number of 

populations, number of generations and number of evaluations. The number of 

evaluations is set constant (240) for all the involved algorithms by fixing the number of 

generations and number of populations, based on equation (4.3) and equation (4.4), as 

mentioned in the previous section. The accuracy of the proposed hybrid algorithm with 

different error functions is evaluated in terms of minimised error function values, as 

well as the absolute percentage error of the identified elastic properties. The 

repeatability is evaluated in terms of standard deviation of the identified elastic 

properties, while, the convergence is evaluated in terms of computational time.  
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Table 3.7: Input settings for hybrid algorithm in FRF-based material identification 

 Input variables Settings 

1.  Number of generations 5 

2.  Number of populations 20 

3.  Number of evaluations 240 

4.  Number of dimensions (design variables) 4 

5.  ACO populations 10 

6.  Initial intensity of pheromone for every vectors 1 

7.  Number of paths 25 

8.  Evaporation rate 0.9 

9.  Constant 10000 

10.  PSO populations 10 

11.  Strength of attraction,  ⃗    ⃗   1.05, 1.05 

12.  Momentum factor,  ⃗  [0.5,0.1]; linspace =5 

13.  Number of crossover 10 

14.  Number of standard (or refined) mutation 10 (10) 

15.  Initialization of refined mutation after     generation 3
rd

 

16.  
The percentage range of design variables in refined 

mutation,         
                

 

3.4 Experimental validation 

Experimental validation is an experimental test conducted involving the use of real 

specimens to validate the feasibility of the proposed methods in identifying the elastic 

properties of the real specimens. In this context, these real specimens are referred to as 

experimental plates for better interpretation. Two experimental plates, namely, 

acrylonitrile-butadine-styrene (ABS) plate and aluminium composite panel (ACP) are 

studied since the ABS plate is an isotropic material with great impact resistance and it is 

commonly used in automotive interior design industries, prototype construction 

industries, etc., while the ACP is an orthotropic material with great weather versatility 

and it is often utilised in building exterior and interior design industries, commercial 

signage design industries, etc. The results obtained from the destructive test (ABS plate) 

as well as from theoretical calculation (ACP) are needed to validate the results obtained 

from the proposed non-destructive technique. As highlighted, since there is no specific 

standard available for the identification of the material properties of the ACP using 

destructive test, theoretical calculation is thus performed. In this context, the details of 
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the destructive test and theoretical calculation are first presented, followed by the 

explanation of the non-destructive test. As mentioned, non-destructive test involves two 

main procedures, namely, experimental measurement and numerical evaluation. These 

procedures are hence explained in the following sub-sections.  

3.4.1 Destructive test  

Destructive tensile test is conducted to determine the elastic properties of the 

acrylonitrile-butadine-styrene (ABS) plate, involving the use of an INSTRON universal 

testing instrument, as demonstrated in Figure 3.4. The standard procedures of 

conducting tensile test on ABS specimen can be found in the ASTM D683 standard, 

entitled “Standard test Method for Tensile Properties of Plastics”. Initially, the ABS 

plate is cut into pieces of specimens according to the standard shape and dimensions 

stated in the ASTM D638 standard, as depicted in Figure 3.5 and Table 3.8. A total of 

10 pieces of specimens are produced, in which, five of the specimens are cut in the 

direction parallel to the x-axis of the plate, and the others are cut in the direction parallel 

to the y-axis of the plate. The gauge length and the width of each specimen are then 

measured and recorded. After that, the specimen is placed in between the grips of the 

INSTRO universal testing instrument. To minimise the possibility of slippage, the 

specimen is tightened considerably. The input settings for the tensile test machine 

program are specified appropriately, in which the maximum load is set equal to 1200N 

and the speed is set equal to 5mm/min. Upon reaching the maximum load, the machine 

comes to a halt. The width and the length of the specimen are subsequently measured 

and recorded. Furthermore, several precautionary measures need to be taken to avoid or 

reduce experimental errors. Before conducting tensile test, the specimens should be 

thoroughly inspected for any deformities to avoid inaccurate outcomes. Apart, slippage 

of grips should as well be avoided by making sure the grips are tightened appropriately 

as well as the surfaces of grips are in good condition.  
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Figure 3.4: INSTRON universal testing instrument 

 

Figure 3.5: Schematic diagram of specimen for thickness of 3mm 

Table 3.8: Dimension of specimen 

Dimensions Reading (mm) Tolerances (mm) 

W- Width of narrow section 13  0.5 

L- Length of narrow section 57  0.5 

WO- Width overall, min 19 +6.4 

LO- Length overall, min 165 No max 

G- Gage length 50  0.25 

D- Distance between grips 115  5 

R- Radius of fillet 76  1 

 

3.4.2 Theoretical calculation 

The aluminium composite panel (ACP) can be regarded as a composite plate as it is 

made of layers of different materials, comprising a layer of polyethylene core embedded 

in between two layers of the aluminium sheets. It is commonly used in building exterior 

and interior design industries due to its great weather versatility and durability. 
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Unfortunately, there is no specific test standard for determining the elastic properties of 

the ACP. Therefore, in this case, theoretical calculation appears to be the most relevant 

measure in evaluating the elastic properties, involving the use of established fibre-

reinforced composite material formula, known as “The Rule of Mixture”, as presented 

below (Reddy, 2004).  

Assumptions: 

 Perfect bonding exists between the aluminium sheet and polyethylene core. 

 The panel is a continuum, no gaps or empty spaces exist. 

 The panel behaves as a linear elastic material 

 The panel is transversely-isotropic, which is a class of orthotropic material that has 

the same properties in a single x-y plane, therefore the elastic modulus in x and y 

directions are the same. 

The Rule of Mixtures is applied to calculate the elastic modulus,   and Poisson‟s 

ratio,  .   

                             (3.6) 

 

                                (3.7) 

where,  

                                         

                                                          

                                                       

                                                         

                                                        

                                                          

                                                        

Univ
ers

ity
 of

 M
ala

ya



102 

3.4.3 Non-destructive test 

3.4.3.1 Experimental measurement 

Experimental modal analysis (EMA) is conducted to acquire the dynamic 

characteristics of the real specimens, expressed in terms of natural frequencies, mode 

shapes and damping properties. In the research, two experimental plates, namely, 

acrylonitrile-butadine-styrene (ABS) plate and aluminium composite panel (ACP) with 

dimensions of                 each, as well as density of           and 

         , respectively, are investigated. Referring to (Hwang et al., 2009), semi-

elastic strings are attached to the two diagonal corner edges of the plate to simulate F-F-

F-F boundary condition, as demonstrated in Figure 3.6. The reason of only investigating 

F-F-F-F (F: Free) boundary condition consists in its simple implementation without 

requiring any customized clamping system, unlike those of other boundary conditions. 

Based on the dimensions of the plate, a grid of     is defined, and 25 measurement 

points are present in each plate, where the distance between adjacent points is 75mm. 

The equipment involved include an impact hammer, an accelerometer, a multi-channel 

Data Acquisition (DAQ) hardware, a DAQ software (DASYLab), a curve fitting 

software (MEʹScope), and a matrix-calculation software (Matrix Laboratory 

(MATLAB) software). The experimental set-up is demonstrated in Figure 3.7 and 

Figure 3.8. As seen from the figures, the plate is bounded by semi-elastic strings to 

simulate F-F-F-F boundary condition. The impact hammer is connected to the multi-

channel DAQ hardware and it is used to strike the plate mechanically. The 

accelerometer is mounted on the surface of the plate at a particular point to measure the 

response of the plate (acceleration). It is connected to the multi-channel DAQ hardware 

and this DAQ hardware is connected to a laptop that is equipped with DAQ software 

and other post-processing software. The specifications of equipment are presented in 

Table 3.9. 
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Figure 3.6: Schematic diagram of plate 

 

Figure 3.7: Experimental set-up for ABS plate 
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Figure 3.8: Experimental set-up for ACP 

Table 3.9: Apparatus and equipment specifications 

No. Equipment/Material Specification/Purpose 

1. 
Acrylonitrile-butadine-

styrene (ABS) plate 

Dimension:                 

Density:           

2. 
Aluminium composite 

panel (ACP) 

Dimension:                 

Density:           

3. 
PCB Impact Hammer 

(Model 086C03) 

Sensitivity:          

Tip type: Medium tip with vinyl cover 

Hammer mass:        

Frequency range:        

Amplitude range:             

4. 
PCB Accelerometer 

(Model 352B68 SN 6149) 

Sensitivity:         

Frequency range:             

Amplitude range:                

5. 

NI USB Dynamic Signal 

Acquisition Module, 

Model NI-USB 9234 

Number of channel: 4 

ADC resolution: 

Type of ADC: delta sigma (with analogue pre-filtering) 

6. DASYLab
®
v10.0 

Sampling rate:           

Block size:         

Channel 1: Accelerometer 

Channel 0: Impact hammer 

Averaging: 5 

To perform FRF measurement 

7. MEʹscopeVES 4.0.0.99 
To perform curve fitting for modal parameters extraction from 

FRFs data 

8. MATLAB
®

R2013a To perform identification process 
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In experiments, collected data often come with uncertainties and these uncertainties 

are predominantly due to the presence of various errors, namely, prediction errors, 

measurement errors and implementation errors. In the present study, implementation 

and measurement errors are the emphasis since these errors might incur during the 

acquisition of vibration data. Uncertainties can be reduced experimentally and handled 

numerically. To minimise uncertainties incurred during experimental measurement, 

several important issues pertaining to experimental set-up should be taken into serious 

attention before conducting the experiment. These include the identification of the 

boundary condition of the real structure, the suitability of measurement grid (number of 

measurement degree of freedoms (DOFs)), as well as impact and response received 

locations (input and output DOFs), the hardness suitability of impact hammer tip, as 

well as the suitability of block size and sampling rate. By addressing these issues 

appropriately, the level of uncertainties incurred during experiment could greatly be 

reduced. It is noteworthy that these issues are dependent on the specimen dimensions, as 

well as the resonant frequency range of the specimen. The first five natural modes of the 

plates are utilised in this research and a total of 25 measurement DOFs are defined over 

each plate of similar dimensions. The impact location (input DOF) is roved from point 1 

to point 25, while the response received location (output DOF) is fixed at a particular 

point. In order to accurately capture all the modes of interest, it is necessary to place the 

accelerometer appropriately at locations that incur high responses of the corresponding 

modes, instead of those that are near to the nodal axes of the corresponding modes. 

Therefore, EMA is carried out a few times by placing the accelerometer at arbitrary 

locations to figure out the best locations for accurate acquisition of the modes of 

interest. In this study, point 1, point 3 and point 15 are discovered to be the best 

locations for capturing all the first five modes. 
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3.4.3.2 Numerical evaluation 

(a) Method 1: Two-stage derivative-based method 

For validation purposes, the proposed algorithm is tested on real specimens, namely, 

acrylonitrile-butadine-styrene (ABS) plate and aluminium composite panel (ACP). Only 

F-F-F-F (F: Free) boundary condition is studied due to the ease of implementation, 

unlike the other boundary conditions requiring proper clamping or supporting devices 

for effective execution. The details of stage 1 and stage 2 are elaborated as follows: 

(i) Stage 1: The use of natural frequencies 

There are slight differences in the procedures between the reference and 

experimental plates. In the study of experimental plates, considering the presence of 

uncertainties during experimental measurement, regularization is deemed necessary to 

accommodate the effects due to uncertainties. In the study of the acrylonitrile-butadine-

styrene (ABS) plate, since experimental results are involved, regularization is needed to 

accommodate the effects due to uncertainties. As stated in (Link, 1999), the 

recommended value of regularization parameter ranges from 0 to 0.3 depending on 

problem suitability. The regularization parameter is often selected based on the plot of 

stiffness change norm against residual norm (L-curve), such that the selected parameter 

is placed in the trade-off range between the stiffness change norm and residual norm. In 

this study, the regularization parameters for all the four elastic properties are defined by 

0.0030, selected based on the plot of stiffness change norm against residual norm. 

Similarly, in the investigation of the aluminium composite panel (ACP), the selected 

regularization parameters are 0.0030 for all the four elastic properties, as referred to the 

graph of stiffness change norm against residual norm (L-curve) in stage 1. The in-plane 

elastic moduli, in-plane shear modulus and major Poisson‟s ratio are updated using first 

five natural frequencies and the updating procedures are similar to those explained 

above. 
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(ii) Stage 2: The use of mode shapes 

The updating procedures are slightly different from those of reference plates. Instead 

of only involving the in-plane shear modulus (   ) and major Poisson‟s ratio (   ) in 

stage 2, the elastic moduli (  ,   ) are also updated in stage 2 because of the additional 

room for improvement caused by the presence of uncertainties. It is well known that the 

in-plane elastic moduli are relatively more sensitive to natural frequencies, and 

logically, the accuracy of elastic moduli determined in stage 1 can be inferred to be 

sufficiently good. Since the presence of uncertainties is inevitable during experiment, 

these elastic moduli should be taken into account as well under the condition that the 

changes in the elastic moduli are confined while the changes in the in-plane shear 

modulus and major Poisson‟s ratio are relatively less restricted by assigning appropriate 

values of regularization. In stage 2, the regularization parameters for the elastic moduli 

are both defined by the maximum recommended value of 0.3000, while the 

regularization parameters for the in-plane shear modulus and Poisson‟s ratio are both set 

equal to 0.0500 as suggested in (Link, 1999). In addition, the scaling factor for both the 

acrylonitrile-butadine-styrene (ABS) plate and aluminium composite panel (ACP) are 

defined by 100 and 10, respectively.  

(b) Method 2: Meta-heuristic optimisation method (Hybrid GA-ACO-PSO) 

The proposed method with the relatively best error function is adopted in the study 

and it has been proven that the use of the frequency response function (FRF) error 

function is relatively more effective in identifying the in-plane shear modulus and 

Poisson‟s ratio as compared to the use of the natural frequency error function. It is 

known that the presence of uncertainties in experiment is inevitable. In a consequence, 

to mitigate the effects due to uncertainties, a slightly different two-stage approach is 

adopted for identifying the elastic properties of the acrylonitrile-butadine-styrene (ABS) 

plate and aluminium composite panel (ACP), in which, the natural frequency error 
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function is employed initially to determine the elastic properties of the ABS plate and 

ACP within bounded search regions. In stage 2, the search areas are narrowed down and 

the FRF error function is utilised to specifically improve the identifiability of the in-

plane shear modulus and Poisson‟s ratio. It should be highlighted that before proceeding 

to stage 2, it is important to select relevant FRFs for effective execution of the 

identification process. In the reference studies, all the first five modes are taken into 

account and the entire 25 sets of FRFs are involved in the computation. The drawback 

of this approach without adopting any scheme of FRF selection consists in its limited 

ability in handling uncertainties. Therefore, in the experimental studies, before 

proceeding to stage 2, a two-level FRF selection scheme is introduced. The first level 

involves the mode selection which is made based on the sensitivity of modes with 

respect to the elastic properties of the plates. The selection of modes is required 

basically to specify and narrow down the frequency range of the FRFs. Modes that are 

sensitive to the in-plane shear modulus, as well as the Poisson‟s ratio, are of great 

interests for this study as the involvement of the FRFs containing these modes in stage 2 

is believed to be important in improving the identifiability of both the parameters. 

Subsequently, in the second level, the selection of FRF is made by referring to the node 

position (or impact location) that lies in the high response regions of the mode of 

interest determined from the first level. Those FRFs yielded from the impact locations 

incurring high responses of modes that are sensitive to the in-plane shear modulus and 

the Poisson‟s ratio are said to be useful and helpful in improving the identifiability of 

both the parameters. In some cases, those FRFs obtained from the impact locations 

incurring relatively low responses of modes can as well be useful under the condition 

that the presence of modes of interest in the FRFs must be pronouncedly visible. The 

input settings for the proposed hybrid algorithm in both stage 1 (natural frequency error 

function) and stage 2 (FRF error function) are similar to those presented in Table 3.7.  

Univ
ers

ity
 of

 M
ala

ya



109 

CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter comprises four main sections. It begins with the study of the two-stage 

derivative-based method, followed by the investigation of the meta-heuristic hybrid 

optimisation method. In the following section, the two proposed methods are validated 

experimentally and lastly, the performance comparison between the two-stage 

derivative-based method and meta-heuristic hybrid optimisation method is presented 

and discussed.       

4.2 Method 1: Two-stage derivative-based method 

This study consists of four sections, namely, accuracy study, repeatability study, 

convergence study and analysis of the results. In the first three sections, the 

identification results are presented and discussed, while, in the last section, the results 

obtained are critically analysed and justified. Notably, the benchmark natural 

frequencies and mode shapes, as well as the sensitivity graphs of the aluminium and 

graphite epoxy plates under different sets of boundary conditions are demonstrated in 

Appendix B. 

4.2.1 Accuracy of two-stage derivative-based method in reference plates 

In the investigation of the aluminium plate, it can be observed from Table 4.1 that the 

absolute percentage errors of elastic moduli and in-plane shear modulus with respect to 

reference values during stage 1 are relatively small (below 2%) if compared to those of 

the identified Poisson‟s ratio (around 9%). The in-plane shear modulus determined 

during stage 1 are found to be sufficiently good in terms of accuracy with comparatively 

low absolute percentage errors (below 1.3%) due to the issues associated with material 

isotropy. For isotropic materials, the sensitivity of natural frequencies with respect to 

the in-plane shear modulus is claimed to be relatively higher than those for composite 
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materials. In this study, the reference aluminium plate is known to be isotropic, 

therefore, in the absence of uncertainty, stage 1 is said to be sufficient for the 

identification of the in-plane shear modulus. Since the absolute percentage error of the 

evaluated Poisson‟s ratio are comparatively larger (around 9%), it is necessary to further 

improve the identifiability of the Poisson‟s ratio. Therefore, stage 2 is performed and 

the absolute percentage error of the Poisson‟s ratio can be seen experiencing a 

significant reduction from around 9% in stage 1 to around 4% in stage 2. Indirectly, this 

shows that a considerable sensitivity exists between mode shape and the Poisson‟s ratio 

which leads to the accurate identification of the Poisson‟s ratio and therefore, 

necessitating the implementation of stage 2. Meanwhile, the in-plane shear modulus 

experiences a slight deterioration in stage 2 under F-F-F-F boundary condition by at 

most 0.1254%. This occurence can be explained by the isotropic stiffness rigidity that 

relates the Poisson‟s ratio and in-plane shear modulus, such that, when the stiffness 

rigidity experiences changes, the Poisson‟s ratio and in-plane shear modulus are 

affected as well.  

Table 4.1: Identification results of aluminium plate under three different boundary 

conditions 

  Stage 1: Natural frequency Stage 2: Mode shape 

 Ref. Initial Updated Initial Updated 

F-F-F-F      

   (   ) 72.4 55 72.1630 [0.3273] 72.1630 72.1630 [0.3273] 

   (   ) 72.4 55 72.0349 [0.5043] 72.0349 72.0349 [0.5043] 

    (   ) 28 15 27.7922 [0.7421] 27.7922 27.7571 [0.8675] 

    0.33 0.3 0.2999 [9.1212] 0.2999 0.3179 [3.6667] 

C-F-F-F      

   (   ) 72.4 55 72.6179 [0.3010] 72.6179 72.6179 [0.3010] 

   (   ) 72.4 55 72.5016 [0.1403] 72.5016 72.5016 [0.1403] 

    (   ) 28 15 27.9399 [0.2146] 27.9399 27.9364 [0.2271] 

    0.33 0.3 0.2997 [9.1818] 0.2997 0.3147 [4.6364] 

C-C-F-C      

   (   ) 72.4 55 73.8295 [1.9745] 73.8295 73.8295 [1.9745] 

   (   ) 72.4 55 73.4772 [1.4878] 73.4772 73.4772 [1.4878] 

    (   ) 28 15 28.3556 [1.2700] 28.3556 28.3763 [1.3439] 

    0.33 0.3 0.3009 [8.8182] 0.3009 0.3139 [4.8788] 
#
[n]denotes the absolute percentage error with respect to the reference value. 
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In the study of the graphite epoxy plate, as shown in Table 4.2, the overall identified 

elastic moduli are relatively more accurate with absolute percentage errors of not more 

than 2.4% in stage 1, while, the absolute percentage errors of the in-plane shear 

modulus and the major Poisson‟s ratio with respect to the reference values are more 

than 2.6% in stage 1. Therefore, the use of mode shapes in stage 2 is suggested to 

improve the identifiability of the in-plane shear modulus and the major Poisson‟s ratio. 

From Table 4.2, the identified in-plane shear modulus in stage 2 under three different 

boundary conditions is more accurate with absolute percentage errors reduced from the 

most 4.6444% in stage 1 to the least 1.1816% in stage 2, while the absolute percentage 

errors of the Poisson‟s ratio are reduced from the most 9.0909% to the least 1.5000%. 

The maximum percentage of improvement for both the in-plane shear modulus and 

Poisson‟s ratio are 3.0717% and 6.2273%, respectively. This indirectly implies that a 

considerable influence exists between mode shapes and the evaluated in-plane shear 

modulus as well as the identified major Poisson‟s ratio. 

Table 4.2: Identification results of graphite epoxy plate under three different 

boundary conditions 

  Stage 1: Natural frequency Stage 2: Mode shape 

 Ref. Initial Updated Initial Updated 

F-F-F-F      

   (   ) 127.9 110 127.8279 [0.0564] 127.8279 127.8279 [0.0564] 

   (   ) 10.27 9 10.4585 [1.8354] 10.4585 10.4585 [1.8354] 

    (   ) 7.312 6 6.9724 [4.6444] 6.9724 7.1783 [1.8285] 

    0.22 0.2 0.2000 [9.0909] 0.2000 0.2058 [6.4545] 

C-F-F-F      

   (   ) 127.9 110 128.2560 [0.2783] 128.2560 128.2560 [0.2783] 

   (   ) 10.27 9 10.5074 [2.3116] 10.5074 10.5074 [2.3116] 

    (   ) 7.312 6 7.0010 [4.2533] 7.0010 7.2256 [1.1816] 

    0.22 0.2 0.2015 [8.4091] 0.2015 0.2067 [6.0455] 

C-C-F-C      

   (   ) 127.9 110 127.4364 [0.3625] 127.4364 127.4364 [0.3625] 

   (   ) 10.27 9 10.2500 [0.1947] 10.2500 10.2500 [0.1947] 

    (   ) 7.312 6 7.1158 [2.6833] 7.1158 7.2189 [1.2732] 

    0.22 0.2 0.2030 [7.7273] 0.2030 0.2233 [1.5000] 
#
[n]denotes the absolute percentage error with respect to the reference value. 
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4.2.2 Repeatability of two-stage derivative-based method in reference plates 

Five independent runs of this approach are executed using a fixed set of initial 

values. The results for each run turn out the same and hence, indicating 100% 

repeatability. This can be explained by the nature of the method, in which, it is known 

to be deterministic. In contrast to a probabilistic derivative-based method, such as 

bayesian estimation approach, in which, each run of simulation leads to different 

outcomes even with the same input of initial guesses, the present deterministic approach 

shows superiority in the aspect of repeatability over the probabilistic derivative-based 

approach.      

4.2.3 Convergence of two-stage derivative-based method in reference plates 

From Table 4.3, it can be observed that the updating process of stage 2 consumes 

relatively more computational time as compared to that of stage 1 due to the relatively 

bulk involvement of local information associated with mode shapes in stage 2 as well as 

the relatively tedious procedures of obtaining the derivatives of mode shapes with 

respect to design parameters. Despite consuming a maximum average computational 

time of 446.5720 seconds, which is equivalent to about seven minutes, the proposed 

two-stage derivative-based method can be considered the better method in the aspect of 

computational time, if compared to most of the meta-heuristic algorithms. The complete 

sets of computational time under each boundary condition are presented in Appendix C.        

Table 4.3: Average computational time of the proposed two-stage derivative-based 

method 

BC Aluminium plate  Graphite epoxy plate  

 Stage 1 (s) Stage 2 (s) Total (s) Stage 1 (s) Stage 2 (s) Total (s) 

F-F-F-F 11.8644 325.2434 337.1078 11.9040 272.1712 284.0752 

C-F-F-F 11.8410 434.7310 446.5720 22.9507 163.5534 186.5041 

C-C-F-C 29.3750 271.8027 301.1777 17.3910 217.3293 234.7203 

 

Univ
ers

ity
 of

 M
ala

ya



113 

4.2.4 Analysis of the proposed two-stages derivative-based method in reference 

plates 

Derivative-based method is known to be dependent on the initial values. Initial 

values that are further from the true values will cause divergence and thereby, affecting 

the solution quality. To effectively apply the proposed method, the range of the true 

values of the material must be known in advance. Otherwise, the application of this 

method is less effective. Instead of investigating the effects of using different sets of 

starting values, the feasibility of the proposed method is verified using different plates 

under different types of boundary conditions and the results reveal that the proposed 

method is effective in identifying the true elastic properties. 

Results obtained from reference studies suggest that for purely isotropic materials 

under a condition where uncertainties are presumably absent, the use of the natural 

frequency error function (stage 1) is sufficient for effective identification of the elastic 

moduli and in-plane shear modulus. The use of mode shape error function (stage 2) is 

recommended to improve the Poisson‟s ratio. The use of the natural frequency error 

function in stage 1 for composite materials provides several gaps for improvement in 

the identified in-plane shear modulus and Poisson‟s ratio. These findings can be 

explained by the reduced equation of the in-plane shear modulus derived from the 

stiffness matrix. The in-plane shear modulus of isotropic materials is theoretically 

related to the elastic modulus .  
 

 (   )
/ which is relatively more sensitive to natural 

frequencies. Therefore, in the absence of uncertainties, a condition equivalent to an 

ideal case, the use of the natural frequency error function in stage 1 is sufficient in 

determining the in-plane shear modulus of isotropic materials. The in-plane shear 

modulus of orthotropic composite materials is theoretically an independent parameter. 

Hence, the use of the mode shape error function in stage 2 is necessary to further 
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improve the identifiability of the in-plane shear modulus. In experimental studies, these 

discoveries can be relevant references in accommodating the presence of uncertainties. 

In the study of composite material, the identifiability of the in-plane shear modulus 

does also show an overall improvement after the use of mode shape in stage 2 due to the 

relationship between shear modulus and twisting modes. By fundamental definition, 

shear modulus is the ratio of shear stress to shear strain. Stress is a global parameter and 

can be found in shear modulus as well as Young‟s modulus. Since natural frequency is 

also a global parameter, the use of natural frequency error function is sufficiently good 

to identify shear modulus and Young‟s modulus. However, for shear modulus, the 

accuracy can be further improved by involving the use of mode shapes as shear 

modulus is much related to twisting modes (Hendrickson, 1963). These modes are 

unique and sometimes they are not symmetric and not uniform. Due to their uniqueness, 

the presence of twisting modes in the identification process appears to be more 

significant and influential to the change in in-plane shear modulus if compared to 

normal bending modes. In the present study, the first six non-rigid body modes are 

involved in the identification of the aluminium and graphite epoxy reference plates. In 

the investigation of the  aluminium plate, mode 1, 4 and 5 are twisting modes under F-

F-F-F boundary condition, while mode 2, 5 and 6 are twisting modes under C-F-F-F 

boundary condition, whereby under C-C-F-C boundary condition, mode 3, 5 and 6 are 

twisting modes. Meanwhile, in the study of graphite epoxy plate, mode 1, 3, and 6 are 

twisting modes under F-F-F-F boundary condition, while mode 1, 3, 4, 5, and  6 are 

twisting modes under C-F-F-F boundary condition and lastly, mode 2, 4, 5, and 6 are 

twisting modes under C-C-F-C boundary conditions. Therefore, by using a two-stage 

approach involving natural frequencies and mode shapes, the identifiability of in-plane 

shear modulus can be further improved. 
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Furthermore, the inclusion of mode shapes has also been proven vital in improving 

the identifiability of the Poisson‟s ratio and the results above indirectly imply that mode 

shapes are considerably sensitive with respect to the Poisson‟s ratio. Relatively, the 

Poisson‟s ratio can be said to be more sensitive to bending modes than twisting modes. 

This phenomenon can be explained by the composition of the Poisson‟s ratio, that 

defines the coupling effect between the normal deformations in two orthogonal 

directions (Lauwagie T. et al., 2010): 

      
  

  
 

(4.1) 

where,    is the normal strain in the i-direction, while    is the normal strain in the j-

direction induced by the coupling effect. In a simple interpretation, Poisson‟s ratio can 

be known as the ratio of shortening strain (  ) to tensile strain (  ). Scientifically, the 

Poisson‟s ratio is associated with mode shapes as it involves coupled strains, while 

mode shapes are fundamentally composed of the displacement of nodes. In fact, a 

relationship between strain and displacement does exist, such that strain is often 

expressed as mode curvature and displacement is obtained via the second integration of 

the mode curvature (strain) (Wang et al., 2014). Both strain and displacement are much 

related to the motion of an object that defines mode shapes. Compared to natural 

frequency, mode shape is more localized in the sense that the flexural or twisting 

movement of the plate is entirely determined and expressed in terms of displacement at 

each designated node of the plate at a particular natural frequency. Unlike a natural 

frequency, more information and details can be explored and retrieved from a mode 

shapes. Referring to the fundamental formula of the Poisson‟s ratio which is defined by 

the ratio of shortening strain and tensile strain, it can be logically related to bending 

modes such that in these bending modes, the shortening and tensile effects due to the 

bending motion are more significant as compared to those of twisting modes. Hence, it 
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draws a relatively close relationship between the Poisson‟s ratio and bending modes. In 

the study of  the aluminium plate, mode 2 and 3 are bending modes under F-F-F-F 

boundary condition, while mode 1, 3 and 4 are bending modes under C-F-F-F boundary 

condition, whereby under C-C-F-C boundary condition, mode 1, 2 and 4 are bending 

modes. Meanwhile, in the study of the graphite epoxy plate, mode 2, 4, and 5 are 

bending modes under F-F-F-F boundary condition, while mode 2 is bending modes 

under C-F-F-F boundary condition and lastly, mode 1 and 3 are bending modes under 

C-C-F-C boundary conditions. Consequently, it can be observed that the use of mode 

shape error function in stage 2 does improve the identifiability of the Poisson‟s ratio. In 

short, the use of the proposed two-stage approach is recommended for effective 

identification of the in-plane shear modulus and the Poisson‟s ratio of a composite 

structure.    

4.3 Method 2: Meta-heuristic hybrid optimisation method (Hybrid GA-ACO-

PSO) 

The present study consists of three main sections, including, verification using test 

functions and engineering design problems, application in vibrational material 

identification and lastly, comparative study of different error functions. The first section 

presents and discusses the results obtained from the feasibility study of the proposed 

hybrid method in solving unconstrained (test functions) and constrained (engineering 

design problems) problems. The next section demonstrates and analyses the results 

obtained from the applicability study of the proposed hybrid method in material 

identification involving the commonly-used error function. In the last section, the 

effectiveness of the proposed hybrid algorithm incorporated with different error 

functions is investigated and discussed. Notably, the benchmark natural frequencies and 

mode shapes, as well as the sensitivity graphs of the aluminium and graphite epoxy 

plates under different sets of boundary conditions are demonstrated in Appendix B. 
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4.3.1 Verification using test functions and engineering design problems 

The applicability of the proposed hybrid algorithm on test functions (unconstrained, 

unimodal, multimodal) and engineering design problems (constrained) (Himmelblau, 

1972; Kannan & Kramer, 1994; Rao, 2009; Sandgren, 1990) are validated in this 

section. Basically, there are two main sections, namely, test functions and engineering 

design problems. For each section, there are four sub-sections, namely, effects of feature 

variations, effects of parameter variations, performance comparison between the 

proposed and conventional algorithms and lastly, performance comparison between the 

proposed and published algorithms. It should be noted that the data are presented in four 

decimal places. 

4.3.1.1 Test functions 

(a) Effects of feature variations in solving test functions 

Two features, namely, fixed refined mutation (feature 1) and logarithmically-spaced 

refined mutation (feature 2) are proposed. The accuracy and repeatability of the features 

are studied and compared in terms of average minimised function value error (     ) 

and standard deviation, as shown in Table 4.4. Between feature 1 and feature 2, the least 

average minimised function value and standard deviation for each function are shown in 

bold. Feature 2 performs better when dealing with multimodal problems as compared to 

feature 1. This can be explained by the strength of feature 2 in inducing an logarithmic 

increase in the search precision over iterations. For feature 1, the search pace is fixed 

constant, thereby, restricting the change in the search precision. Between multimodal 

and unimodal problems, feature 1 is more effective in solving unimodal problems. 

Feature 1 also exhibits superiority in solving unimodal functions over feature 2. The 

reason consists in the effective match between the constant search precision of feature 1 

with the order of magnitude of the solution, and hence, yielding better results. Overall, 
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the logarithmically-spaced refined mutation (feature 2) can be claimed to be the better 

choice in solving unconstrained problems.  

Table 4.4: Average minimised function value error and standard deviation 

achieved by the proposed hybrid algorithm with different features 

 Test functions 
Average minimised function value 

errors ( 
 
   ) 

Standard deviation 

  Feature 1 Feature 2 Feature 1 Feature 2 

 Multimodal     

F1 Ackley 1.1772E+00 8.8818E−16 1.1427E+00 0.0000E+00 

F2 Griewangk 3.1084E−01 3.2933E−03 2.1346E−01 6.1861E−03 

F3 Rastrigin 1.2689E+01 0.0000E+00 5.7347E+00 0.0000E+00 

F4 Rosenbrock 4.6365E+01 2.6569E+01 2.2434E+01 1.0254E+00 

F5 Schwefel 1.0486E+03 5.8070E+02 5.0515E+02 3.2303E+02 

F6 Weierstrass 2.3423E+00 0.0000E+00 1.0035E+00 0.0000E+00 

 Unimodal     

F7 Schwefel P2.22 2.3768E−01 1.1757E−54 1.0959E−01 1.7281E−54 

F8 Sphere 5.1542E−04 3.7596E−90 4.7599E−04 1.6592E−89 

F9 Styblinski−Tang 0.0000E+00 7.1340E−02 0.0000E+00 2.2734E−02 

F10 Zakharov 1.7263E+01 2.0131E+01 7.1408E+00 1.1865E+01 

 

(b) Effects of parameter variations in solving test functions 

The values of    and   , as well as the number of mutation points may affect the 

performance of logarithmically-spaced refined mutation (feature 2). To determine the 

relatively best combination of parameters in solving unconstrained problems, the effects 

due to variations in the mentioned parameters are investigated. Several values of    and 

   are investigated, including,    = [(1.0000, 0.1000), (1.0000, 0.0100), (1.0000, 

0.0010), (0.1000, 0.0100), (0.1000, 0.0010), (0.1000, 0.0001), (0.0100, 0.0010), 

(0.0100, 0.0001), (0.0100, 1.0000E−05)] and       . For each parameter    and   , 

various number of mutation points are studied, such as   = [10, 6, 3, 1], in which, out of 

30 dimensions, there are 10, 6, 3, or 1 dimension(s) undergone the proposed refined 

mutation. The accuracy of each combination of parameters is evaluated in terms of 

average minimised function value errors (     ), as presented in Appendix D. The 

values (in bold) are the least average minimised function value errors. To identify the 

best combination of parameters at a statistical level, average ranking of Friedman test is 

conducted, as shown in Table 4.5 and Table 4.6. Parameter    = (0.01, 0.00001) yields 
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the least ranking value, indicating the relatively most effective parameter among all the 

variations. The sequence from the most to the least effective parameter    is listed as 

follows: (0.0100-0.00001), (0.0100-0.0010), (0.0100-0.0001), (0.1000-0.0001), 

(0.1000-0.0010), (0.1000-0.0100), (1.0000-0.0100), (1.0000-0.0010), (1.0000-0.1000). 

Furthermore, the use of 10 refined mutation points is found to be the relatively best 

choice, as shown in Table 4.6.  

Table 4.5: Friedman test on    variations 

No. Parameter    Ranking 

1 1.0000−0.1000 7.1500 

2 1.0000−0.0100 6.1375 

3 1.0000−0.0010 6.1625 

4 0.1000−0.0100 5.1125 

5 0.1000−0.0010 4.5125 

6 0.1000−0.0001 4.4125 

7 0.0100−0.0010 3.7375 

8 0.0100−0.0001 4.3125 

9 0.0100−1.0000E−05 3.4625 

 

Table 4.6: Friedman test on   variations 

No. Parameter   Ranking 

1 10 2.2944 

2 6 2.3167 

3 3 2.6000 

4 1 2.7889 

 

(c) Performance comparison between the proposed and conventional algorithms in 

solving test functions 

Under a fixed number of evaluations, the accuracy, repeatability and convergence of 

all the involved algorithms are investigated, in terms of average minimised function 

value errors, standard deviations and average computational time, as presented in Table 

4.7, Table 4.8 and Table 4.9, respectively. From Table 4.7 and Table 4.8, it can be seen 

that the proposed hybrid algorithm outperforms the other conventional algorithms, in 

terms of accuracy and repeatability for all the 10 test functions. This can be explained 

by the more complete search coverage of the proposed hybrid algorithm, in which, the 

Univ
ers

ity
 of

 M
ala

ya



120 

collaboration between genetic algorithm (GA) and ant colony optimisation (ACO) 

enhances the exploratory search, while the incorporation between genetic algorithm 

(GA) and particle swarm optimisation (PSO) improves the exploitative search. 

However, the proposed hybrid algorithm is found to be less convincing in terms of 

computational time, in which, it consumes the third least computational time among the 

four algorithms. This drawback is said to be caused by the time-consuming procedures 

of ACO operator in the composition of the proposed hybrid algorithm. The effect of this 

drawback may not be significant when it is used in complex practical applications, such 

as, material identification, etc. Overall, the proposed hybrid algorithm is proven to be 

the relatively best choice among all the algorithms in solving unconstrained problem 

due to its promising accuracy and repeatability as well as its satisfactory convergence. 

Table 4.7: Average minimised function value error (     ) achieved by GA, 

ACO, PSO and the proposed hybrid algorithm 

 Test functions GA ACO PSO Proposed 

 Multimodal     

F1 Ackley 5.5367E−01 7.8042E+00 6.2996E+00 8.8818E−16 

F2 Griewangk 9.9315E−01 5.6317E+00 2.8562E+01 0.0000E+00 

F3 Rastrigin 1.2400E−01 1.0574E+02 1.2844E+02 0.0000E+00 

F4 Rosenbrock 5.4078E+01 9.0607E+01 1.5869E+02 2.6349E+01 

F5 Schwefel 1.3815E+03 4.8440E+02 3.2182E+03 3.3993E+01 

F6 Weierstrass 4.0285E−01 1.0914E+01 1.0998E+01 0.0000E+00 

 Unimodal     

F7 Schwefel P2.22 3.2906E−01 2.3460E+01 7.9540E+00 2.3980E−197 

F8 Sphere 9.6391E−02 1.4398E+00 1.3029E+00 0.0000E+00 

F9 Styblinski−Tang 5.8215E+01 2.6548E+02 1.2046E+02 7.1340E−02 

F10 Zakharov 1.7549E+02 1.0656E+02 5.0452E+01 5.4603E−135 

 

Table 4.8: Standard deviation achieved by GA, ACO, PSO and the proposed 

hybrid algorithm 

 Test functions GA ACO PSO Proposed 

 Multimodal     

F1 Ackley 7.4119E−01 6.5273E−01 1.6687E+00 0.0000E+00 

F2 Griewangk 5.2668E−01 1.6215E+00 1.4879E+01 0.0000E+00 

F3 Rastrigin 2.0830E−01 6.2155E+00 3.1032E+01 0.0000E+00 

F4 Rosenbrock 3.0371E+01 2.6881E+01 9.7180E+01 1.0623E+00 

F5 Schwefel 1.1541E+03 1.5281E+02 7.2036E+02 1.2081E+01 

F6 Weierstrass 6.9991E−01 9.0727E−01 2.2248E+00 0.0000E+00 

 Unimodal     

F7 Schwefel P2.22 4.0579E−01 5.6364E+00 2.5258E+00 0.0000E+00 

F8 Sphere 1.6115E−01 3.2818E−01 1.1344E+00 0.0000E+00 

F9 Styblinski−Tang 2.9139E+01 1.2145E+02 3.9523E+01 2.2734E−02 

F10 Zakharov 6.2568E+01 2.8334E+01 2.9283E+01 2.9404E−134 
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Table 4.9: Average computational time (s) consumed by GA, ACO, PSO and the 

proposed hybrid algorithm 

 Test functions GA ACO PSO Proposed 

 Multimodal     

F1 Ackley 6.7591 34.0530 3.9075 17.5637 

F2 Griewangk 6.5775 33.3621 2.7232 17.2906 

F3 Rastrigin 6.0198 32.8629 2.1511 16.6845 

F4 Rosenbrock 6.2386 43.0278 2.2772 18.0221 

F5 Schwefel 6.1859 32.4051 3.1556 16.5884 

F6 Weierstrass 65.9326 91.4274 63.4896 78.1854 

 Unimodal     

F7 Schwefel P2.22 5.6452 32.3744 2.5993 19.5688 

F8 Sphere 5.6424 32.1542 2.6287 16.0283 

F9 Styblinski−Tang 6.6552 33.0512 3.6925 17.1748 

F10 Zakharov 7.8900 35.0688 4.8395 17.8307 

 

(d) Performance comparison between the proposed and published algorithms in 

solving test functions  

A comparative study of the proposed hybrid algorithm with respect to established 

algorithms, namely, CPSO-H (Van den Bergh & Engelbrecht, 2004), CLPSO (Liang et 

al., 2006), APSO (Zhan et al., 2009), GOPSO (Wang et al., 2011), DNSCLPSO (Wang 

et al., 2013) and DNSPSO (Wang et al., 2013) in solving unconstrained test functions is 

conducted. For equal and fair comparison, in the proposed method, the maximum 

number of evaluations (200,040 including initial evaluations) and the number of 

generation (5,000) as well as the number of populations (20 for the proposed algorithm, 

40 for the published algorithm) are set similar to those used in the published algorithms. 

30 runs of simulations are conducted as well as the average minimised function value 

errors and standard deviations are recorded, as presented in Table 4.10 and Table 4.11. 

It should be noted that the comparison in terms of average computational time is not 

included due to the need of rebuilding and rerunning those established algorithms using 

a particular computing device for fair and equal comparison. Results are presented in 

two decimal places as they are originally presented in two decimal places by Wang et al. 

(2013). Five functions are tested and as seen from Table 4.10 and Table 4.11, the 

proposed hybrid algorithm performs better in terms of accuracy and repeatability if 
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compared to those established algorithms. Average ranking of Friedman test is 

conducted as well and the least ranking value indicates the best performing algorithm, 

as shown in Table 4.12. The performance of the algorithms from best to worst is listed 

as follows: Proposed, DNSPSO, GOPSO, DNSCLPSO, CPSO-H, CLPSO, and lastly, 

APSO.   

Table 4.10: Average minimised function value error (     ) achieved by 

established algorithms and the proposed hybrid algorithm 

Test 

functions 
CPSO−H CLPSO APSO GOPSO DNSCLPSO DNSPSO Proposed 

Ackley 2.25E−14 1.85E−07 1.09E−14 3.43E−15 5.89E−16 5.89E−16 8.88E−16 

Griewangk 1.90E−02 4.37E−09 1.20E−02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Rastrigin 3.32E+00 1.50E−04 6.27E+00 0.00E+00 2.20E+00 0.00E+00 0.00E+00 

Weierstrass 4.74E−15 5.62E−07 4.77E−02 1.04E−08 0.00E+00 1.40E−13 0.00E+00 

Sphere 1.29E −36 1.23E−13 9.60E−66 0.00E+00 1.23E−50 0.00E+00 0.00E+00 

 

Table 4.11: Standard deviation achieved by established algorithms and the 

proposed hybrid algorithm 

Test 

functions 
CPSO−H CLPSO APSO GOPSO DNSCLPSO DNSPSO Proposed 

Ackley 3.07E−14 2.70E−07 1.94E−14 1.59E−15 0.00E+00 0.00E+00 0.00E+00 

Griewangk 8.81E−02 5.06E−08 9.14E−02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Rastrigin 1.18E+01 6.96E−04 1.28E+01 0.00E+00 1.96E+00 0.00E+00 0.00E+00 

Weierstrass 3.67E−14 1.38E−06 4.08E−01 2.19E−08 0.00E+00 5.29E−14 0.00E+00 

Sphere 7.61E−36 3.09E−13 1.57E−65 0.00E+00 2.86E−50 0.00E+00 0.00E+00 

 

Table 4.12: Friedman test on accuracy and repeatability 

No. Algorithms Accuracy Repeatability 

1 CPSO−H 5.6000 5.4000 

2 CLPSO 5.8000 5.8000 

3 APSO 5.8000 6.0000 

4 GOPSO 3.1000 3.1000 

5 DNSCLPSO 3.1000 3.2000 

6 DNSPSO 2.4000 2.5000 

7 Proposed 2.2000 2.0000 

 

4.3.1.2 Engineering design problems 

(a) Effects of feature variations in solving engineering design problems 

As mentioned in the previous section, the two proposed features are fixed refined 

mutation (feature 1) and logarithmically-spaced refined mutation (feature 2). The details 

of the features can be referred to in the previous section. As proven in the previous 
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section, feature 2 is more effective than feature 1 in solving unconstrained problems in 

the presence of multimodality. However, in the application of engineering design 

problems, feature 1 shows great superiority over feature 2 in terms accuracy and 

repeatability, as presented in Table 4.13. This can be explained by the great 

compatibility between the fixed refined mutation (feature 1) and the nature of the 

engineering design problems. Feature 2 with relatively high search precision is found to 

be less effective in solving the engineering problems due to the relatively large order of 

magnitude of the solution as well as the restriction imposed on the change in the 

solution, such that, in some cases, the solutions are only allowed be expressed in terms 

of the multiples of a specified number. Hence, it can be seen that feature 1 outperforms 

feature 2 in achieving the least best, average and worst minimised objective function 

values (in bold) as well as the least standard deviation (in bold) for all the design 

problems. In short, feature 1 can be claimed to be the better choice in solving 

engineering design problems.  

Table 4.13: Best, average and worst minimised objective function values as well as 

standard deviation achieved by the proposed hybrid algorithm with different 

features 

Problems Best Average Worst Standard deviation 

Himmelblau‟s     

Case 1     

Feature 1 −30665.5387 −30661.9060 −30638.7590 6.6061 

Feature 2 −30665.5366 −30651.1961 −30530.8256 28.2546 

Case 2     

Feature 1 −31025.5602 −31024.9575 −31021.0604 1.2189 

Feature 2 −31025.5601 −31023.9266 −30990.1009 6.3263 

Pressure vessel     

Feature 1 6059.7143 6387.6266 6820.5797 231.8850 

Feature 2 6060.0994 6553.2902 7351.5945 340.5299 

Welded beam     

Feature 1 1.7249 1.7431 1.8140 0.0253 

Feature 2 1.7284 1.7589 1.8363 0.0290 

Gear train     

Feature 1 2.7009E−12 9.1212E−10 4.5033E−09 1.1793E−09 

Feature 2 2.7009E−12 1.1627E−09 6.1933E−09 1.2592E−09 
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(b)  Effects of parameter variations in solving engineering design problems 

The values of    and    may influence the performance of fixed refined mutation 

(feature 1). Hence, the effects due to variations in the mentioned parameters are studied 

to identify the relatively most effective parameters in handling constrained problems. 

Several values of    and    are investigated, including,    = [0.1000, 0.0100, 0.0010, 

0.0001, 1.0000E−05] and       . The best, average and worst minimised objective 

function values as well as the standard deviations for all the problems are presented in 

Appendix E. Parameter    = 0.0010 demonstrates great dominance over the others in 

achieving the least best, average, and worst minimised objective function values as well 

as standard deviations (in bold) for the first three problems. However, for gear train 

design problem, parameter    = 0.0100 outperforms the other variations. Overall, 

parameter    = 0.0010 is proven to be the relatively best choice of parameter, yielding 

the least values in the aspects of the best, average and worst evaluated solutions as well 

as the standard deviations of the evaluated solutions in the Friedman test (in bold), as 

demonstrated in Table 4.14. The sequence from the most to the least effective parameter 

   in terms of the best evaluated solution is arranged as follows: 0.0010, 1.0000E-05, 

0.0001, 0.1000 and lastly, 0.0100, while, the sequence from the best to the worst 

parameter    in terms of the standard deviation is arranged as follows: 0.0010, 0.0100, 

0.1000, 0.0001 and lastly, 1.0000E-05. 

Table 4.14: Friedman test on parameter variations 

No. Parameter    Best Average Worst 
Standard 

deviation 

1. 0.1000 3.2500 2.5000 2.5833 2.6667 

2. 0.0100 3.4167 1.8333 1.5833 1.6667 

3. 0.0010 1.5833 1.0000 1.4167 1.1667 

4. 0.0001 2.2500 3.3333 3.0833 3.0000 

5. 1.0000E−05 2.0000 3.8333 3.8333 4.0000 
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(c) Performance comparison between the proposed and conventional algorithms in 

solving engineering design problems 

The performance of the proposed hybrid algorithm in handling engineering design 

problems is studied and compared with those of conventional algorithms. The accuracy, 

repeatability and convergence are investigated and discussed.  

(i) Accuracy and repeatability of meta-heuristic hybrid optimisation method in solving 

engineering design problems 

In the study of engineering design problems, the accuracy of algorithms can be 

evaluated in terms of best, average, and worst minimised objective function values, 

while the repeatability can be evaluated in terms of standard deviations. As shown in 

Table 4.15, the proposed hybrid algorithm outperforms genetic algorithm (GA), ant 

colony optimisation (ACO) and particel swarm optimisation (PSO) in achieving the 

least best, average and worst minimised objective function values as well as the least 

standard deviation in Himmelblau‟s problem case 1. For case 2, the proposed hybrid 

algorithm still yields the least best minimised objective function value, however, PSO 

performs better in terms of repeatability (the least standard deviation). In pressure 

design problem, the proposed hybrid algorithm and PSO outperform GA and ACO, in 

terms of accuracy (best minimised objective function values), while the proposed hybrid 

algorithm demonstrates slight superiority in achieving the least standard deviation over 

PSO. In welded beam and gear train design problems, the proposed algorithm 

dominates in both the aspects of accuracy and repeatability. As a whole, it can be 

observed that GA relatively performs the worst in the aspect of accuracy and 

repeatability primarily due to inferiority in exploration performed by the standard 

mutation operator. On account of the strong dependence on the array of pheromone 

intensity leading to biased evaluation, ACO is also found to be less promising in the 

aspect of accuracy and repeatability. Furthermore, the reason leading to the 
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considerably great performance of PSO in terms of accuracy and repeatability can be 

explained by the balanced distribution between intensification and diversification. 

However, overall, the proposed hybrid algorithm relatively performs the best in the 

aspect of accuracy and repeatability as compared to those conventional algorithms, and 

this is attributable to its more complete search coverage.  

Table 4.15: Best, average and worst minimised objective function values as well 

as standard deviation achieved by GA, ACO, PSO and the proposed hybrid 

algorithm 

Problems Best Average Worst Standard deviation 

Himmelblau‟s     

Case 1     

GA −30234.3196 −29843.0334 −29476.4048 180.2950 

ACO −30545.5765 −30172.7197 −29396.6277 256.1369 

PSO −30665.5365 −30660.2530 −30589.9784 14.7625 

Proposed −30665.5387 −30661.9060 −30638.7590 6.6061 

Case 2     

GA −30481.1240 −30205.2505 −29839.6100 152.3820 

ACO −30879.4371 −30601.5052 −30221.8405 181.4626 

PSO −31025.5589 −31025.3516 −31021.2128 0.7766 

Proposed −31025.5602 −31024.9575 −31021.0604 1.2189 

Pressure vessel     

GA 9338.6924 15756.4664 26533.9533 4437.4555 

ACO 6361.3903 6887.0627 7668.7851 347.8406 

PSO 6059.7143 6225.4735 7332.8415 280.3232 

Proposed 6059.7143 6387.6266 6820.5797 231.8850 

Welded beam     

GA 2.5853 3.5690 4.7892 0.6544 

ACO 2.0948 3.3591 4.6244 0.7140 

PSO 1.7250 1.7559 2.1777 0.0800 

Proposed 1.7249 1.7431 1.8140 0.0253 

Gear train     

GA 1.1661E−10 4.7066E−07 1.3320E−05 2.3866E−06 

ACO 2.7009E−12 1.1156E−09 1.3125E−08 2.3846E−09 

PSO 2.3078E−11 2.1080E−09 6.5123E−09 1.9745E−09 

Proposed 2.7009E−12 9.7022E−10 2.3576E−09 8.8056E−10 

 

(ii) Convergence of meta-heuristic hybrid optimisation method in solving engineering 

design problems 

In this context, convergence rate refers to the ability of an algorithm to converge to 

the solution involving lower number of evaluations. As seen from Figure 4.1 and Figure 

4.2 (Himmelblau‟s problem), GA and ACO seem to have trapped at local minima in 
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early iterations, while the proposed hybrid algorithm and PSO demonstrate great 

performance in convergence rate. From Figure 4.3 (pressure vessel design problem), 

GA can be seen to have difficulty in finding the global solution since the beginning of 

iterations, while ACO shows slight superiority over GA but still falls into local minima 

in later iterations. The proposed hybrid algorithm is found leading PSO in terms of 

convergence in early iterations, however, in later iterations, PSO is found to be ahead of 

it. In welded beam design problem, GA and ACO are again found to have fallen into 

local traps, as shown in Figure 4.4. PSO still outperforms the proposed hybrid algorithm 

in terms of convergence rate. Lastly, from Figure 4.5 (gear train design problem), GA 

seems to have converged earlier than the rest, but it is trapped at local minima, whereas, 

the proposed hybrid algorithm performs the best in terms of convergence among all the 

algorithms. From a general perspective, it can be seen that GA experiences severe 

premature convergence due to issues pertaining to standard mutation of GA 

(exploration), as mentioned previously. In some cases, ACO exhibits considerably good 

convergence rate on account of its more directive search ability as well as its ability in 

eliminating redundant and repeated solutions. Unfortunately, falling into local traps is 

still the main concern due to the strong dependence on the pheromone intensity. 

Overall, PSO can be claimed to be slightly better than the proposed hybrid algorithm in 

terms of convergence rate as the drawbacks of GA operator in the aspect of convergence 

rate compromises the overall convergence rate of the proposed hybrid algorithm.    Univ
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Figure 4.1: Convergence rate achieved by GA, ACO, PSO and the proposed hybrid 

algorithm for Himmelblau’s non-linear optimisation problem case 1 

 
Figure 4.2: Convergence rate achieved by GA, ACO, PSO and the proposed hybrid 

algorithm for Himmelblau’s non-linear optimisation problem case 1 

 
Figure 4.3: Convergence rate achieved by GA, ACO, PSO and the proposed hybrid 

algorithm for pressure vessel design optimisation problem 
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Figure 4.4: Convergence rate achieved by GA, ACO, PSO and the proposed hybrid 

algorithm for welded beam design optimisation problem 

 
Figure 4.5: Convergence rate achieved by GA, ACO, PSO and the proposed hybrid 

algorithm for gear train design optimisation problem 

 

Computational time refers to the total time consumed by the algorithm to converge to 

its solution. When dealing with Himmelblau‟s problem (case 1), PSO (0.5414s) 

consumes the least computational time compared to the proposed hybrid algorithm 

(1.9146s), GA (1.7780s) and ACO (2.1166s), as shown in Figure 4.6. The maximum 

computational time difference is about 1.6 seconds. On the other hand, from Figure 4.7 

(case 2), the sequence from the least to most time-consuming algorithms is listed as 

follows: PSO (0.6261s), the proposed hybrid algorithm (1.7642s), GA (1.8213s) and 

lastly, ACO (1.9871s). The maximum difference is about 1.4 seconds. In the application 
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of pressure vessel design problem, the proposed hybrid algorithm is found to have 

consumed the most computational time (1.6525s), followed by GA (1.3600s), ACO 

(1.3497s) and lastly, PSO (0.5793s), as demonstrated in Figure 4.8. The maximum 

computational time difference is around 1.1 seconds. In the study of welded beam 

design problem, the most time-consuming algorithm is found to be ACO (1.4922s), 

tailed by the proposed hybrid algorithm (1.4558s), GA (1.3241s) and lastly, PSO 

(0.6741s), as depicted in Figure 4.9. The maximum computational time difference is 

approximately 0.9 seconds. Furthermore, from Figure 4.10 (gear train design problem), 

PSO still dominates in terms of computational time (0.0787s), followed by ACO 

(0.2442s), GA (0.2462s), and lastly, the hybrid algorithm (0.2760s). The maximum 

computational time difference is about 0.2 seconds. As a whole, PSO outperforms the 

other algorithms in consuming the least computational time, while, the proposed hybrid 

algorithm consumes considerably lesser computational time if compared to GA and 

ACO. The involvement of simple formulations is the main reason contributing to the 

least consumption of computational time in PSO. Despite the proposed hybrid algorithm 

showing inferiority in computational time, this shortcoming is relatively insignificant in 

practical applications, such as, in material identification.  

 
Figure 4.6: Computational time consumed by GA, ACO, PSO and the proposed 

hybrid algorithm for Himmelblau’s non-linear optimisation problem case 1 
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Figure 4.7: Computational time consumed by GA, ACO, PSO and the proposed 

hybrid algorithm for Himmelblau’s non-linear optimisation problem case 2 

 
Figure 4.8: Computational time consumed by GA, ACO, PSO and the proposed 

hybrid algorithm for pressure vessel design optimisation problem 

 
Figure 4.9: Computational time consumed by GA, ACO, PSO and the proposed 

hybrid algorithm for welded beam design optimisation problem 
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Figure 4.10: Computational time consumed by GA, ACO, PSO and the proposed 

hybrid algorithm for gear train design optimisation problem 

 

(d) Performance comparison between the proposed and published algorithms in 

solving engineering design problems 

Unlike the other sections, which, are organized into the sub-sections of accuracy 

study, repeatability study and convergence study, the present study is divided into four 

sub-sections, comprising, Himmelblau‟s non-linear optimisation problem, pressure 

vessel design optimisation problem, welded beam design optimisation problem and gear 

train design optimisation problem for better interpretation since a relatively large 

number of published algorithms are taken into comparison in each of the design 

problem.  

(i) Himmelblau’s non-linear optimisation problem 

Comparisons of the developed algorithm with respect to the previous ones have been 

made and presented in Table 4.16. From Table 4.16, some of the past researches can be 

observed providing undesirable solutions as the constraints have been violated. The 

proposed algorithm demonstrates great performances in terms of accuracy with solution, 

x = [78.0000, 33.0000, 29.9953, 45.0000, 36.7758] and f(x) = −30665.5387 for case 1, 

as well as x = [78.0000, 33.0000, 27.0710, 45.0000, 44.9692] and f(x) = −31025.5602 
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for case 2. The values in bold refers to the relatively best solutions. The proposed hybrid 

algorithm is seen to be better in terms of accuracy if compared to those of (Deb, 2000; 

Gandomi et al., 2013; Himmelblau, 1972; Homaifar et al., 1994; Lee & Geem, 2005) 

for case 1 and to those of (Coello, 2000a; Coello, 2000b; Fesanghary et al., 2008; 

Omran & Salman, 2009) for case 2. In the aspect of repeatability, the proposed method 

performs better than most of the other algorithm, as shown in Table 4.17. Furthermore, 

the maximum number of evaluations of the proposed hybrid algorithm is found to be 

relatively lower than those of (Deb, 2000; He et al., 2004; Lee & Geem, 2005; Mehta & 

Dasgupta, 2012) for case 1, and that of (Shi & Eberhart, 1998) for case 2. For case 1, 

the proposed algorithm requires maximum 32,040 evaluations to converge, while the 

algorithm developed by He et al. (2004) requires maximum 90,000 evaluations, 

signifying a reduction of about 64.40%. However, the best solution achieved by the 

proposed algorithm is slightly inferior by 9.7830E−07%. For case 2, as compared to the 

algorithm developed by Hu et al. (2003), slight inferiority can also be seen (by 

3.8678E−06) in the best solution achieved by the proposed algorithm. Despite, the 

proposed algorithm exhibits a massive improvement in the number of evaluations by 

83.98% with respect to that of (Hu et al., 2003). In general, the proposed algorithm can 

be claimed as the better algorithm in the aspect of accuracy, repeatability and 

convergence.  
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Table 4.16: Comparison of the best solutions for Himmelblau’s problem applying different algorithms 

Case Algorithms Design variables Constraints Function value 

  x1 x2 x3 x4 x5 0 ≤ g1 ≤ 92 90 ≤ g2 ≤ 110 20 ≤ g3 ≤ 25 f(x) 

1 

Homaifar et al. (1994)  80.3900 35.0700 32.0500 40.3300 33.3400 91.6562 99.5369 20.0255 −30005.7000 

Himmelblau (1972) NA NA NA NA NA NA NA NA −30373.9490 

Gandomi et al. (2013) 78.0000 33.0000 29.9962 45.0000 36.7761 92.0000 98.8407 20.0003 −30665.2330 

Lee and Geem (2005)  78.0000 33.0000 29.9950 45.0000 36.7760 92.0000  98.8405 19.9999 
v
 −30665.5000 

Mehta and Dasgupta (2012)  78.0000 33.0000 29.9953 45.0000 36.7758 NA NA NA −30665.5387 

Deb (2000) NA NA NA NA NA NA NA NA −30665.5370 

He et al. (2004) 78.0000 33.0000 29.9953 45.0000 36.7758 93.2854 
v
 100.4048 20.0000 −30665.5390 

Dimopoulos (2007) 78.0000 33.0000 29.9953 45.0000 36.7758 92.0000 98.8405 20.0000 −30665.5400 

Proposed (feature 1) 78.0000 33.0000 29.9953 45.0000 36.7758 92.0000 98.8405 20.0000 −30665.5387 

 

2 

Coello (2000a) 78.5958 33.0100 27.6460 45.0000 45.0000 91.9564 100.5451 20.2519 −30810.3590 

Coello (2000b) 78.0495 33.0070 27.0810 45.0000 44.9400 93.2838 
v
 100.4079 20.0019 −31020.8590 

Fesanghary et al. (2008)  78.0000 33.0000 27.0851 45.0000 44.9253 93.2783 
v
 100.3961 20.0000 −31024.3166 

Omran and Salman (2009)  78.0000 33.0000 27.0710 45.0000 44.9692 93.2854 
v
 100.4048 20.0000 −31025.5563 

Shi and Eberhart (1998)  78.0000 33.0000 27.0710 45.0000 44.9690 93.2853 
v
 100.4047 20.0000 −31025.5610 

Hu et al. (2003) 78.0000 33.0000 27.0710 45.0000 44.9692 92.0000 100.4049 20.0000 −31025.5614 

Proposed (feature 1) 78.0000 33.0000 27.0710 45.0000 44.9692 92.0000 100.4048 20.0000 −31025.5602 

*NA= Not available, superscript v= violated 
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Table 4.17: Repeatability study for Himmelblau’s problem 

Case Algorithms Best Average Worst 
Standard 

deviation 

Number of 

evaluations 

1 

Homaifar et al. (1994)  −30005.7000 NA NA NA NA 

Himmelblau (1972)  −30373.9490 NA NA NA NA 

Gandomi et al. (2013)  −30665.2327 NA NA 11.6231 5,000 

Lee and Geem (2005)  −30665.5000 NA NA NA 65,000 

Mehta and Dasgupta (2012)  −30665.5387 NA NA NA 62,748 

Deb (2000) −30665.5370 NA −29846.6540 NA 250,050 

He et al. (2004) −30665.5390 −30643.9890 NA 70.0430 90,000 

Dimopoulos (2007)  −30665.5400 NA NA NA NA 

Proposed (feature 1) −30665.5387 −30661.9060 −30638.7590 6.6061 32,040 

 

2 

Coello (2000a)  −30810.3590 NA NA NA 1,600 

Coello (2000b) −31020.8590 −30984.2407 −30792.4077 73.6335 2,100 

Fesanghary et al. (2008)  −31024.3166 NA NA NA 28,000 

Omran and Salman (2009)  −31025.5563 NA NA NA 50,000 

Shi and Eberhart (1998)  −31025.5610 NA NA NA NA 

Hu et al. (2003)  −31025.5614 −31025.5614 NA 0 200,000 

Proposed (feature 1) −31025.5602 −31024.9575 −31021.0604 1.2189 32,040 

*NA= Not available 

 

 

Univ
ers

ity
 of

 M
ala

ya



136 

(ii) Pressure vessel design optimisation problem 

This design problem has been solved utilising numerous algorithms in the past and 

the results of the proposed algorithm and other algorithms are summarized in Table 

4.18. In this context, the proposed hybrid algorithm achieves better solution (x = 

[0.8125, 0.4375, 42.0984, 176.6366] and f(x) = 6059.7143) if compared to those of 

(Coelho, 2010; Coello, 2000b; Coello & Montes, 2002; Deb, 1997; He & Wang, 2007; 

Kannan & Kramer, 1994; Kaveh & Talatahari, 2010; Lee & Geem, 2005; Mezura-

Montes & Coello, 2008; Sandgren, 1990; Zhang & Wang, 1993). The proposed hybrid 

algorithm is found to have achieved the least best solution, similar to those of (Akay & 

Karaboga, 2012; Cagnina et al., 2008; Gandomi et al., 2013; He et al., 2004). 

Furthermore, the suggested algorithm exhibits better repeatability than those of (Coelho, 

2010; Gandomi et al., 2013; He et al., 2004; Mezura-Montes & Coello, 2008) with 

standard deviation of 231.8850, as demonstrated in Table 4.19. In the aspect of 

convergence, the proposed hybrid algorithm is found to have consumed the least 

number of evaluations (20,040) among all the compared algorithms. In general, the 

proposed algorithm emerges as one of the most competitive algorithms in solving this 

problem.  
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Table 4.18: Comparison of best solutions for pressure vessel design problem 

applying different algorithms 

Algorithms Design variables Function value 

 x1 x2 x3 x4 f(x) 

Sandgren (1990)  1.1250 0.6250 47.7000 117.7010 8129.1036 

Lee and Geem (2005)  1.1250 0.6250 58.2789 43.7549 7198.4330 

Kannan and Kramer 

(1994) 

1.1250 0.6250 58.2910 43.6900 7198.0428 

Zhang and Wang (1993)  1.1250 0.6250 58.2900 43.6930 7197.7000 

Deb (1997) 0.9375 0.5000 48.3290 112.6790 6410.3811 

Coello (2000b) 0.8125 0.4375 40.3239 200.0000 6288.7445 

He and Wang (2007)  0.8125 0.4375 42.0913 176.7465 6061.0777 

Coello and Montes (2002)  0.8125 0.4375 42.0974 176.6541 6059.9460 

Mezura-Montes and 

Coello (2008) 

0.8125 0.4375 42.0981 176.6405 6059.7456 

Kaveh and Talatahari 

(2010) 

0.8125 0.4375 42.0984 176.6378 6059.7258 

Coelho (2010) 0.8125 0.4375 42.0984 176.6372 6059.7208 

Akay and Karaboga 

(2012) 

0.8125 0.4375 42.0984 176.6366 6059.7143 

Cagnina et al. (2008)  0.8125 0.4375 42.0984 176.6366 6059.7143 

Gandomi et al. (2013)  0.8125 0.4375 42.0984 176.6366 6059.7143 

He et al. (2004) 0.8125 0.4375 42.0984 176.6366 6059.7143 

Proposed (feature 1) 0.8125 0.4375 42.0984 176.6366 6059.7143 

 

Table 4.19: Repeatability study for pressure vessel design problem 

Algorithms Best Average Worst Standard deviation 
Number of 

evaluations 

Sandgren (1990)  8129.1036 NA NA NA NA 

Lee and Geem (2005)  7198.4330 NA NA NA NA 

Kannan and Kramer 

(1994) 

7198.0428 NA NA NA NA 

Zhang and Wang 

(1993) 

7197.7000 NA NA NA NA 

Deb (1997) 6410.3811 NA NA NA NA 

Coello (2000b) 6288.7445 6293.8432 6308.1497 7.4133 900,000 

He and Wang (2007)  6061.0777 6147.1332 6363.8041 86.4545 200,000 

Coello and Montes 

(2002) 

6059.9460 6177.2533 6469.3220 130.9297 80,000 

Mezura-Montes and 

Coello (2008) 

6059.7456 6850.0049 7332.8798 426.0000 25,000 

Kaveh and Talatahari 

(2010) 

6059.7258 6081.7812 6150.1289 67.2418 NA 

Coelho (2010) 6059.7208 6440.3786 7544.4925 448.4711 NA 

Akay and Karaboga 

(2012) 

6059.7143 6245.3081 NA 205.0000 30,000 

Cagnina et al. (2008)  6059.7143 6092.0498 NA 12.1725 24,000 

Gandomi et al. (2013)  6059.7143 6447.7360 6495.3470 502.6930 NA 

He et al. (2004) 6059.7143 6289.9288 NA 305.7800 30,000 

Proposed (feature 1) 6059.7143 6387.6266 6820.5797 231.8850 20,040 

*NA= Not available 
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(iii) Welded beam design optimisation problem 

Several publications can be found adopting this problem for verification purposes. 

From Table 4.20, the proposed hybrid algorithm of feature 1 can be seen yielding better 

solution if compared those of the other algorithms (Coello, 2000b; Coello & Montes, 

2002; Dimopoulos, 2007; Gandomi et al., 2011; He & Wang, 2007; Hedar & 

Fukushima, 2006; Mezura-Montes & Coello, 2008), in which, x = [0.2057, 3.4705, 

9.0366, 0.2057] and f(x) = 1.7249. In the study of repeatability, the proposed algorithm 

performs satisfactorily and better than those of (Akay & Karaboga, 2012; Cagnina et al., 

2008; Coello & Montes, 2002; Gandomi et al., 2011; Hedar & Fukushima, 2006; 

Mezura-Montes & Coello, 2008) with standard deviation of 0.0253, as shown in Table 

4.21. In terms of convergence, the proposed hybrid algorithm is discovered to have 

undergone the least number of evaluations among all the compared algorithms. The best 

solution evaluated using the proposed hybrid algorithm is the same as that of algorithm 

developed by Mehta and Dasgupta (2012); nevertheless, the proposed hybrid algorithm 

shows 8.8884% of reduction in the number of evaluations. In general, the proposed 

hybrid algorithm appears to be one of the well-rounded algorithms.  
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Table 4.20: Comparison of the best solutions for welded beam design problem 

applying different algorithms 

Algorithms Design variables 
Function 

value 

 x1 x2 x3 x4 f(x) 

Coello (2000b) 0.2088 3.4205 8.9975 0.2100 1.7483 

Mezura-Montes and Coello 

(2008) 

0.1997 3.6121 9.0375 0.2061 1.7373 

Gandomi et al. (2011)  0.2015 3.5620 9.0414 0.2057 1.7312 

Dimopoulos (2007)  0.2015 3.5620 9.0414 0.2057 1.7312 

Coello and Montes (2002)  0.2060 3.4713 9.0202 0.2065 1.7282 

He and Wang (2007)  0.2024 3.5442 9.0482 0.2057 1.7280 

Hedar and Fukushima (2006)  0.2056 3.4726 9.0366 0.2057 1.7250 

Kaveh and Talatahari (2010)  0.2057 3.4711 9.0367 0.2057 1.7249 

Mehta and Dasgupta (2012)  0.2057 3.4705 9.0366 0.2057 1.7249 

Mezura-Montes et al. (2007)  0.2057 3.4705 9.0366 0.2057 1.7249 

Cagnina et al. (2008)  0.2057 3.4705 9.0366 0.2057 1.7249 

Akay and Karaboga (2012)  0.2057 3.4705 9.0366 0.2057 1.7249 

Hu et al. (2003)  0.2057 3.4705 9.0366 0.2057 1.7249 

Proposed (feature 1) 0.2057 3.4705 9.0366 0.2057 1.7249 

 

Table 4.21: Repeatability study for welded beam design problem 

Algorithms Best Mean Worst 
Standard 

deviation 

Number of 

evaluations 

Coello (2000b) 1.7483 1.7720 1.7858 0.0112 NA 

Mezura-Montes and 

Coello (2008) 

1.7373 1.8133 1.9947 0.0705 25,000 

Gandomi et al. (2011)  1.7312 1.8787 2.3456 0.2678 50,000 

Dimopoulos (2007)  1.7312 NA NA NA NA 

Coello and Montes 

(2002) 

1.7282 1.7927 1.9934 0.0747 80,000 

He and Wang (2007)  1.7280 1.7488 1.7821 0.0129 NA 

Hedar and Fukushima 

(2006) 

1.7250 1.7564 1.8844 0.0424 NA 

Kaveh and Talatahari 

(2010) 

1.7249 1.7298 1.7760 0.0092 NA 

Mehta and Dasgupta 

(2012) 

1.7249 NA NA NA 21,995 

Mezura-Montes et al. 

(2007) 

1.7249 1.7250 NA 1.0000E−15 24,000 

Cagnina et al. (2008)  1.7249 2.0574 NA 0.2154 24,000 

Akay and Karaboga 

(2012) 

1.7249 1.7419 NA 0.0310 30,000 

Hu et al. (2003)  1.7249 NA NA NA NA 

Proposed (feature 1) 1.7249 1.7431 1.8140 0.0253 20,040 

*NA= Not available 
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(iv) Gear train design optimisation problem 

There are few literature utilising this problem for validation purposes. From Table 

4.22, the proposed hybrid algorithm exhibits dominating performances in terms of 

accuracy over (Kannan & Kramer, 1994; Sandgren, 1990) with solution of x = [16, 19, 

43, 49] and f(x) = 2.7009E−12. Apart, as seen from Table 4.23, it is evident that the 

proposed method shows better repeatability as well as better convergence over 

(Gandomi et al., 2013). In general, the proposed hybrid algorithm is proven to have 

performed the best among all the algorithms. 

Table 4.22: Comparison of the best solutions for gear train design problem 

applying different algorithms 

Algorithms Design variables 
Function 

value 

 Td (x1 ) Tb (x2 ) Ta (x3 ) Tf (x4 ) Gear ratio f(x) 

Sandgren (1990)  18 22 45 60 0.1467 5.7120E−6 

Kannan and Kramer 

(1994) 

13 15 33 41 0.1441 2.1460E−8 

Deb and Goyal (1996)  16 19 43 49 0.1443 2.7009E−12 

Gandomi et al. (2013)  16 19 43 49 0.1443 2.7009E−12 

Proposed (feature 1) 16 19 43 49 0.1443 2.7009E−12 

 

Table 4.23: Repeatability study for gear train design problem 

Algorithms Best Average Worst 
Standard 

deviation 

Number of 

evaluations 

Sandgren (1990)  5.7120E−6 NA NA NA NA 

Kannan and Kramer 

(1994) 

2.1460E−8 NA NA NA NA 

Deb and Goyal 

(1996) 

2.7009E−12 NA NA NA NA 

Gandomi et al. 

(2013) 

2.7009E−12 1.9841E−9 2.3576E−9 3.5546E−9 5,000 

Proposed (feature 1) 2.7009E−12 9.7022E−10 2.3576E−9 8.8056E−10 4,040 

*NA= Not available 
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4.3.2 Application in vibrational material identification 

This section consists of four sub-sections, including, accuracy study, repeatability 

study, convergence study and lastly, robustness study. The results pertaining to the 

accuracy, repeatability, convergence as well as robustness of the proposed meta-

heuristic algorithm are presented and analysed.    

4.3.2.1 Accuracy of meta-heuristic hybrid optimisation method in reference plates 

Figure 4.11 demonstrate the comparison of minimised objective function values 

achieved by genetic algorithm (GA), ant colony optimisation (ACO), particle swarm 

optimisation (PSO) and the proposed hybrid algorithm for the aluminium plate. It is 

noted that for visual qualitative comparison reason, the graphs shown in Figure 4.11 

have been enlarged and the maximum limit of y-axis does not represent the actual 

minimised values achieved by those algorithms. From Figure 4.11, it can be observed 

that ACO performs the worst, followed by GA and PSO, while the hybrid algorithm 

demonstrates the relatively best results. Still, in the study of the aluminium plate, the 

proposed hybrid algorithm appears to be the relatively best choice with minimised 

values of 1.5579E-08, 2.4244e-08 and 7.8573e-08 under three different sets of boundary 

conditions, as presented in Table 4.24, Table 4.25 and Table 4.26, respectively. It can be 

observed that the evaluated elastic properties deviate by 1.2727% at most from the 

benchmark properties when utilising the proposed hybrid algorithm. From those 

observations, it can be inferred that the proposed hybrid algorithm is the better 

algorithm in the aspect of accuracy in material identification. 
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Figure 4.11: Comparison of minimised value for aluminium plate using different 

algorithms 

Table 4.24: Elastic constants obtained for aluminium plate under F-F-F-F 

boundary condition 

   (   )   (   )    (   )     Obj. Fun. 

PSO 72.4631[0.0872] 72.3508[0.0680] 28.0034[0.0121] 0.3330[0.9091] 3.0826E-06 

GA 72.4607[0.0838] 72.3786[0.0296] 27.9958[0.0150] 0.3301[0.0303] 1.1039E-07 

ACO 72.7990[0.5511] 72.1331[0.3686] 27.9286[0.2550] 0.3344[1.3333] 8.7278E-06 

Proposed 72.4002[0.0003] 72.4211[0.0291] 28.0019[0.0068] 0.3299[0.0303] 1.5579E-08 

Benchmark 72.4 72.4 28 0.33 - 
#
[n]denotes the absolute percentage error with respect to the benchmark value. 

 

Table 4.25: Elastic constants obtained for aluminium plate under C-F-F-F 

boundary condition 

   (   )   (   )    (   )     Obj. Fun. 

PSO 72.3556[0.0613] 73.0242[0.8622] 28.0288[0.1029] 0.3158[4.3030] 4.4058E-06 

GA 72.4287[0.0396] 72.8125[0.5698] 28.0457[0.1632] 0.3159[4.2727] 4.8509e-06 

ACO 72.4018[0.0025] 70.7281[2.3091] 27.9373[0.2239] 0.3553[7.6667] 2.5178E-05 

Proposed 72.4057[0.0079] 72.4130[0.0180] 27.9956[0.0157] 0.3295[0.1515] 2.4244e-08 

Benchmark 72.4 72.4 28 0.33 - 
#
[n]denotes the absolute percentage error with respect to the benchmark value. 

 

Table 4.26: Elastic constants obtained for aluminium plate under C-C-F-C 

boundary condition 

   (   )   (   )    (   )     Obj. Fun. 

PSO 72.1016[0.4122] 72.2972[0.1420] 27.7662[0.8350] 0.3390[2.7273] 3.6406e-07 

GA 72.2092[0.2635] 72.2842[0.1599] 27.8983[0.3632] 0.3355[1.6667] 4.0050e-07 

ACO 73.5411[1.5761] 72.7066[0.4235] 28.6222[2.2221] 0.3028[8.2424] 4.3167e-06 

Proposed 72.3456[0.0751] 72.3924[0.0105] 27.8143[0.6632] 0.3342[1.2727] 7.8573e-08 

Benchmark 72.4 72.4 28 0.33 - 
#
[n]denotes the absolute percentage error with respect to the benchmark value. 
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In the investigation of the graphite epoxy plate, it can be seen from Figure 4.12 that 

PSO, GA and the proposed hybrid algorithm yield considerably better outcomes as 

compared to ACO. Similarly, for the reason of visual qualitative comparison, the graphs 

shown in Figure 4.12 have been enlarged, as mentioned above. The results suggest that 

PSO and GA can be the probable alternatives as it can be observed that the values are 

comparatively close but marginally inferior to those of the proposed hybrid algorithm. 

In comparison of the four algorithms, the proposed hybrid algorithm yields the best 

results under every set of boundary conditions with values of 2.8081E-08, 1.2745E-07 

and 3.5636E-08, as shown in Table 4.27, Table 4.28 and Table 4.29, respectively. 

Meanwhile, the absolute percentage errors of the determined elastic properties with 

respect to benchmark properties using the proposed hybrid algorithm are found to be 

below 3%. These consequently verify the accuracy of the proposed hybrid algorithm in 

material identification.  

 

Figure 4.12: Comparison of minimised value for graphite epoxy plate using 

different algorithms 
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Table 4.27: Elastic constants obtained for graphite epoxy plate under F-F-F-F 

boundary condition 

   (   )   (   )    (   )     Obj. Fun. 

PSO 127.8802[0.0155] 10.2697[0.0029] 7.3092[0.0383] 0.2067[6.0455] 2.5121E-07 

GA 127.8441[0.0437] 10.2668[0.0312] 7.3117[0.0041] 0.2316[5.2727] 2.1230E-07 

ACO 128.4253[0.4107] 10.2508[0.0182] 7.3072[0.0656] 0.1756[20.182] 6.9808E-06 

Proposed 127.8654[0.0271] 10.2696[0.0039] 7.3134[0.0191] 0.2183[0.7727] 2.8081E-08 

Benchmark 127.9 10.27 7.312 0.22 - 
#
[n]denotes the absolute percentage error with respect to the benchmark value. 

 

Table 4.28: Elastic constants obtained for graphite epoxy plate under C-F-F-F 

boundary condition 

   (   )   (   )    (   )     Obj. Fun. 

PSO 127.8159[0.0658] 10.2619[0.0789] 7.3263[0.1956] 0.2368[7.6364] 3.2977E-07 

GA 127.8445[0.0434] 10.2391[0.3009] 7.3410[0.3966] 0.1957[11.045] 1.3924E-06 

ACO 128.2228[0.2524] 10.3010[0.3019] 7.2463[0.8985] 0.2630[19.545] 8.0426E-06 

Proposed 127.9189[0.0148] 10.2781[0.0789] 7.3118[0.0027] 0.2140[2.7273] 1.2745E-07 

Benchmark 127.9 10.27 7.312 0.22 - 
#
[n]denotes the absolute percentage error with respect to the benchmark value. 

 

Table 4.29: Elastic constants obtained for graphite epoxy plate under C-C-F-C 

boundary condition 

   (   )   (   )    (   )     Obj. Fun. 

PSO 127.6372[0.2055] 10.2642[0.0565] 7.2971[0.2038] 0.2362[7.3636] 7.9172E-07 

GA 128.0523[0.1191] 10.2709[0.0088] 7.2975[0.1983] 0.2186[0.6364] 1.3538E-07 

ACO 128.3453[0.3482] 10.2966[0.2590] 7.2949[0.2339] 0.2159[1.8636] 5.2515E-06 

Proposed 127.8287[0.0557] 10.2688[0.0117] 7.3164[0.0602] 0.2203[0.1364] 3.5636E-08 

Benchmark 127.9 10.27 7.312 0.22 - 
#
[n]denotes the absolute percentage error with respect to the benchmark value. 

 

The improvement percentages of the identified elastic properties when using the 

proposed algorithm with respect to those using conventional algorithms are presented in 

Table 4.30. It shows that the accuracy of the determined    and    using the proposed 

hybrid algorithm in comparisons to those of using other algorithms is improved by 

2.2911% and 0.3836% at most for the aluminium and graphite epoxy plates, 

respectively. Furthermore, the evaluated in-plane shear modulus of the aluminium and 

graphite epoxy plates utilising the proposed hybrid algorithm is found to be more 

accurate by at most 1.5589% and 0.8958%, respectively when comparing to those of 

using traditional algorithms. Significant improvements can as well be seen in the 

identified Poisson‟s ratio of the aluminium plate (by 7.5151% at most) and graphite 

epoxy plate (by 19.410% at most) when applying the proposed hybrid algorithm. 
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Overall, the proposed hybrid algorithm is proven to be slightly more superior to the 

others in the aspect of accuracy.   

Table 4.30: Improvement percentage of identified elastic properties using the 

proposed algorithm with respect to those of using other algorithms 

   ( )   ( )    ( )    ( ) 

Aluminium 0.0317-1.501 0.0005-2.2911 0.0053-1.5589 0.3940-7.5152 

Graphite epoxy 0.0166-0.3836 0.0143-0.2473 0.0192-0.8958 0.5000-19.410 

 

4.3.2.2 Repeatability of meta-heuristic hybrid optimisation method in reference 

plates 

In the study of the aluminium plate, it can be seen that from Figure 4.13, the 

proposed hybrid algorithm yields the relatively least standard deviations under all the 

three boundary conditions as compared to those of conventional algorithms. As 

presented in Table 4.31, Table 4.32 and Table 4.33, the proposed hybrid algorithm 

performs the best in the aspect of repeatability with standard deviations of 2.7751E-07, 

1.9999E-07 and 1.8245E-07 under three different boundary conditions, respectively.      

 

Figure 4.13: Comparison of repeatability for aluminium plate using different 

algorithms 
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Table 4.31: Repeatability study using different type of algorithms for aluminium 

plate under F-F-F-F boundary condition 

 Best Average Worst Std. dev. 

PSO 3.0826E-06 1.8734E-05 5.2624E-05 1.8059E-05 

GA 1.1039E-07 7.5095E-06 2.6547E-05 9.7445E-06 

ACO 8.7278E-06 1.3182E-04 2.5658E-04 8.7483E-05 

Proposed 1.5579E-08 4.0034E-07 8.7327E-07 2.7751E-07 

 

Table 4.32: Repeatability study using different type of algorithms for aluminium 

plate under C-F-F-F boundary condition 

 Best Average Worst Std. dev. 

PSO 4.4058E-06 2.2551E-05 8.1018E-05 2.9593E-05 

GA 4.8509E-06 1.3303E-05 2.2814E-05 7.8665E-06 

ACO 2.5178E-05 9.2809E-05 2.4608E-04 7.9389E-05 

Proposed 2.4244E-08 2.2518E-07 5.2392E-07 1.9999E-07 

 

Table 4.33: Repeatability study using different type of algorithms for aluminium 

plate under C-C-F-C boundary condition 

 Best Average Worst Std. dev. 

PSO 3.6406E-07 1.3024E-05 4.3623E-05 1.6081E-05 

GA 4.0050E-07 6.6893E-07 8.8026E-07 2.0707E-07 

ACO 4.3167E-06 2.4678E-05 8.4013E-05 2.9836E-05 

Proposed 7.8573E-08 2.6036E-07 5.9360E-07 1.8245E-07 

 

In the study of the graphite epoxy plate, similarly, the proposed hybrid algorithm 

exhibits superiority in the aspect of repeatability over the conventional algorithms, as 

depicted in Figure 4.14. The standard deviations for graphite epoxy plate under three 

different sets of boundary conditions are 2.7751E-07, 1.9999E-07, and 1.8245E-07, as 

demonstrated in Table 4.34, Table 4.35 and Table 4.36, respectively. The great 

repeatability of the proposed method in material identification can be explained by the 

effective search coverage, in which, the exploratory search is contributed by the 

collaboration between genetic algorithm (GA) and ant colony optimisation (ACO) 

operator, while the exploitative search is contributed by the cooperation between genetic 

algorithm (GA) and particle swarm optimisation (PSO).   
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Figure 4.14: Comparison of repeatability for graphite epoxy plate using different 

algorithms 

Table 4.34: Repeatability study using different type of algorithms for graphite 

epoxy plate under F-F-F-F boundary condition 

 Best Average Worst Std. dev. 

PSO 2.5121E-07 3.3108E-04 1.6394E-03 6.5418E-04 

GA 2.1230E-07 1.8251E-06 5.6053E-06 2.0889E-06 

ACO 6.9808E-06 4.7169E-04 1.5170E-03 5.5143E-04 

Proposed 2.8081E-08 1.6298E-07 2.3106E-07 7.7340E-08 

 

Table 4.35: Repeatability study using different type of algorithms for graphite 

epoxy plate under C-F-F-F boundary condition 

 Best Average Worst Std. dev. 

PSO 3.2977E-07 1.0014E-06 1.9707E-06 5.4871E-07 

GA 1.3924E-06 5.2336E-06 1.2572E-05 4.1214E-06 

ACO 8.0426E-06 2.3155E-04 5.4768E-04 1.8497E-04 

Proposed 1.2745E-07 2.2914E-07 3.8962E-07 1.0473E-07 

 

Table 4.36: Repeatability study using different type of algorithms for graphite 

epoxy plate under C-C-F-C boundary condition 

 Best Average Worst Std. dev. 

PSO 7.9172E-07 3.4247E-05 1.5742E-04 6.1708E-05 

GA 1.3538E-07 3.1563E-06 1.3302E-05 5.0936E-06 

ACO 5.2515E-06 4.9431E-04 1.6992E-03 6.2138E-04 

Proposed 3.5636E-08 2.4207E-07 6.7863E-07 2.3007E-07 
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Besides, from Table 4.37, the proposed hybrid algorithm leads the rest of the 

algorithms in terms of repeatability by at most 8.7205E-05 and 6.5410E-04 in difference 

of standard deviation for the aluminium and graphite epoxy plates, respectively. This 

can be a useful reference for future development of the proposed algorithm in 

improving the repeatability in material identification.   

Table 4.37: Difference of standard deviation of the proposed hybrid algorithm 

with respect to those of other algorithms 

 F-F-F-F C-F-F-F C-C-F-C 

Aluminium 

9.4670E-06 

- 

8.7205E-05 

7.6665E-06 

- 

7.9189E-05 

2.4620E-08 

- 

2.9654E-05 

Graphite epoxy 

2.0116E-04 

- 

6.5410E-04 

4.4398E-07 

- 

1.8487E-04 

4.8635E-06 

- 

6.2115E-04 

 

4.3.2.3 Convergence of meta-heuristic hybrid optimisation method in reference 

plates 

In this section, the convergence rate in sequence of the number of iteration is firstly 

investigated, followed by the study of computational time. Figure 4.15, Figure 4.16 and 

Figure 4.17 depict the convergence behaviours of the four algorithms for the aluminium 

plate under F-F-F-F, C-F-F-F and C-C-F-C (C: Clamped, F: Free) boundary conditions, 

respectively. Figure 4.15 shows the convergence plot for the aluminium plate under F-

F-F-F boundary condition. As expected, the hybrid algorithm exhibits as good 

convergence rate as that of ant colony optimisation (ACO), while those of genetic 

algorithm (GA) and particle swarm optimisation (PSO) come after. In Figure 4.16, the 

hybrid algorithm demonstrates its great dominance in convergence rate over the other 

algorithms, in which, it leads to a great decrease in the objective function values after 

the first iteration. Under C-C-F-C boundary condition (Figure 4.17), the hybrid 

algorithm surpasses the other algorithms in terms of convergence rate in early iterations, 
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however, in iteration 6, PSO converges slightly sooner than that of the hybrid algorithm. 

Despite, the proposed hybrid algorithm yields considerably good results.  

 

Figure 4.15: Convergence rate of different types of algorithms for aluminium plate 

under F-F-F-F boundary condition 

 

Figure 4.16: Convergence rate of different types of algorithms for aluminium plate 

under C-F-F-F boundary condition Univ
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Figure 4.17: Convergence rate of different types of algorithms for aluminium plate 

under C-C-F-C boundary condition 

On the other hand, Figure 4.18, Figure 4.19, and Figure 4.20 demonstrate the 

convergence graphs of the four algorithms for the graphite epoxy plate under F-F-F-F, 

C-F-F-F and C-C-F-C boundary conditions, respectively. From Figure 4.18, it can be 

observed that from iteration 1 to 3, a drastic reduction occurs in the objective function 

values of the proposed hybrid algorithm before it is further reduced in iteration 6. In 

view of other algorithms, the initial values are comparatively smaller and the reduction 

of objective function values is not as much as that of the proposed hybrid algorithm. 

Meanwhile, under C-F-F-F boundary condition, the proposed hybrid algorithm exhibits 

considerably similar convergence rate as those of GA and ACO starting from iteration 3, 

as depicted in Figure 4.19. The proposed hybrid algorithm experiences a great drop in 

the objective function value from iteration 1 to 3. As shown in Figure 4.20, it can be 

observed that the proposed hybrid algorithm performs the best, in which it yields the 

least minimised objective function value at the highest rate among all the algorithms.  
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Figure 4.18: Convergence rate of different types of algorithms for graphite epoxy 

plate under F-F-F-F boundary condition 

 

Figure 4.19: Convergence rate of different types of algorithms for graphite epoxy 

plate under C-F-F-F boundary condition 

 

Figure 4.20: Convergence rate of different types of algorithms for graphite epoxy 

plate under C-C-F-C boundary condition 
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Overall, it can be observed that in early iterations, the proposed hybrid algorithm 

converges to its solution at a comparatively higher rate. This phenomenon occurs due to 

the equal contribution of work load from both the ACO and PSO operators, in which 

ACO operator is assigned for exploratory search, while PSO operator is designated for 

exploitative search. The biased effect due to random initialization of GA operator is 

compromised via the use of ACO and PSO operators and in the next iteration, those 

processed outcomes, in which, ones from the products of exploration search (ACO) and 

the other from the products of exploitative search (PSO) are subsequently merged and 

evolved again via the use of GA operators. Therefore, at the end, the rate of 

minimisation can be seen on the rise in comparison to those of other involved 

algorithms due to well distribution of search coverage.  

Apart from the investigation of convergence rate, technically, algorithm that 

consumes much computational time can be referred to as computationally expensive 

(high computational cost). A slight difference exists between convergence rate and 

computational time in the present study, in which, convergence rate refers to the ability 

of the algorithm to converge involving lower number of evaluations, whereby, 

computational time refers to the total time consumed by the algorithm to converge to its 

solution. In this context, the number of evaluations for each algorithm is fixed constant 

for equal comparison purposes and the computational time of each algorithm for the 

aluminium and graphite epoxy plates are presented in Figure 4.21 and Figure 4.22, 

respectively. The results show that under a fixed number of evaluations, the 

computational time of the involved algorithms is almost similar with time difference not 

exceeding 12 seconds. The proposed hybrid algorithm is found tailing the rest of the 

algorithms in terms of computational time (3928s), in which, genetic algorithm (GA), 

ant colony optimisation (ACO) and particle swarm optimisation (PSO) consume 3922s, 

3926s and 3924s, respectively. The time difference between the proposed hybrid 
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algorithm and the least time-consuming GA is found to be around 6 seconds, indicating 

0.1530% in difference with respect to the time consumed by GA. Despite, comparing to 

the accuracy improvement of the proposed hybrid algorithm, the drawback of the 

proposed hybrid algorithm in the aspect of computational time is as well overshadowed 

by its relatively more significant accuracy improvement, where, the accuracy of the 

identified   ,   ,    , and     using the proposed hybrid algorithm are improved by at 

most 1.501%, 2.2911%, 1.5589% and 7.5152%, respectively with respect to those of 

using conventional algorithms, as demonstrated in Table 4.30. Furthermore, in the study 

of the graphite epoxy plate under F-F-F-F boundary condition, the proposed hybrid 

algorithm is found consuming the most computational time (3872s) if compared to GA 

(3860s), ACO (3867s) and PSO (3864s). In comparison to the least time-consuming 

GA, the proposed algorithm is found to have lagged behind by 12 seconds at most, 

which is equivalent to 0.3109% in difference. Despite, the shortcoming of the proposed 

algorithm in this aspect is offset by its relatively larger accuracy improvement, as shown 

in Table 4.30, garnering 0.3836%, 0.2473%, 0.8958% and 19.41% of improvement at 

most for   ,   ,    , and    , respectively. Generally, the relatively rapid convergence 

of the hybrid algorithm in sequence of iterations, its high repeatability as well as its 

excellent capability in searching for the global minimum are said to have compensated 

its shortcoming in the aspect of computational time. 
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Figure 4.21: Computational time of different types of algorithms for aluminium 

plate under F-F-F-F boundary condition 

 

Figure 4.22: Computational time of different types of algorithms for graphite 

epoxy plate under F-F-F-F boundary condition 

 

4.3.2.4  Robustness of meta-heuristic hybrid optimisation method in reference 

plates 

In real cases, experimental data often comes with uncertainties and these 

uncertainties are predominantly due to the presence of various errors, namely, 

prediction errors, measurement errors and implementation errors. In the present study, 

implementation and measurement errors are the emphasis since these errors might incur 
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during the acquisition of vibration data. Uncertainties can be reduced experimentally 

and handled numerically. To minimise uncertainties incurred during experimental 

measurement, several important issues pertaining to experimental set-up should be 

taken into serious attention before conducting the experiment. These include the 

identification of the boundary condition of the real structure, the suitability of impact 

location and impact grid, the hardness suitability of impact hammer tip as well as the 

suitability of block size and sampling rate. By addressing these issues appropriately, the 

level of uncertainties incurred during experiment could greatly be reduced. It is 

noteworthy that these issues are in fact dependent on the specimen dimensions as well 

as the resonant frequency range of the specimen. Even though several precautionary 

steps have been strictly followed during experiment, it is learnt that in reality, the 

presence of uncertainties in the measured data are inevitable; therefore, it is necessary to 

curb these uncertainties numerically. In numerical evaluation, in order to accommodate 

these uncertainties as well as to avoid premature convergence, constraints should be 

introduced. In the present study, two additional inequality constraints are defined to 

mitigate the presence of uncertainties, in which, the ratio of in-plane shear modulus 

(   ) to in-plane longitudinal elastic modulus (  ) as well as the ratio of in-plane shear 

modulus (   ) to in-plane transverse elastic modulus (  ) are restricted to be within the 

range of 0 to 1. Furthermore, since the range of elastic properties is unknown in 

practical applications, the search boundaries of elastic properties can initially be set 

large enough to encompass possible search areas. In addressing uncertainties in the 

measured results, the influence of these errors/uncertainties on the end outcomes are 

studied and presented. Three different levels of errors, namely, 1%, 5% and 10% are 

artificially introduced into the “measured” natural frequencies and these “erroneous” 

natural frequencies are subsequently used as the reference parameters in the proposed 

hybrid algorithm. The uncertainties (i.e. 1%, 5% and 10%) are assigned in the way that 
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the specified amount represents the upper limit of the range of the uncertainty. For 

example, a 10% uncertainty indicates an uncertainty that lies within the range of 0 to 

10%. Five sets of computations are executed and the set with the relatively best 

minimised objective function value is chosen and presented in Table 4.38 and Table 

4.39. The reason of introducing three levels of errors is to investigate the influence of 

increasing errors on the absolute percentage error of the identified elastic properties. 

The error level is set up to 10% considering it is in the worst-case scenario. Apart, this 

investigation is extended to the graphite epoxy and aluminium plates to study the effects 

of the types of plate on the absolute percentage error of identified elastic properties in 

the presence of errors. It is noted that the absolute percentage error is evaluated on the 

basis of the absolute percentage error between the identified elastic properties and the 

actual reference elastic properties. From Table 4.38 and Table 4.39, the identified elastic 

moduli (   and   ), as well as the identified in-plane shear modulus (   ) experience 

elevated deviations as the error level rises from 1% to 10% with the absolute percentage 

error ranging from 0.01% to 8%. On the other hand, the evaluated Poisson‟s ratio (   ) 

fluctuates within the range of 0.02% to 13% in the presence of increasing level of error. 

This occurrence could possibly due to the insignificant influence of natural frequency 

on the identified Poisson‟s ratio,    . During initialization of numerical evaluation, the 

value of Poisson‟s ratio is first randomly assigned. Because of the insignificant 

influence of natural frequencies on the Poisson‟s ratio, great changes in natural 

frequency induce little changes in the Poisson‟s ratio, causing the identified Poisson‟s to 

be locally trapped near its initial value. Therefore, it can be observed that the identified 

Poisson‟s ratio fluctuates and deviates more from its actual value if compared to the 

other elastic constants. Overall, the proposed hybrid algorithm is proven to be able to 

produce reliable identification results in the presence of errors, regardless of types of 

material as well as boundary conditions.  
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Table 4.38: Identified elastic properties of aluminium plate in the presence of 

increasing errors 

   (   )   (   )    (   )     

Benchmark 72.4 72.4 28 0.33 

F-F-F-F     

1% 72.5913 [0.2642] 72.4991 [0.1369] 28.0085 [0.0304] 0.3290 [0.3030] 

5% 71.1711 [1.6974] 72.2650 [0.1865] 28.2343 [0.8368] 0.3190 [3.3333] 

10% 73.9361 [2.1217] 77.4832 [7.0210] 28.2909 [1.0389] 0.2947 [10.6970] 

C-F-F-F     

1% 72.4563 [0.0778] 71.9042 [0.6848] 27.7964 [0.7271] 0.3524 [6.7879] 

5% 71.1265 [1.7590] 71.5846 [1.1262] 27.6695 [1.1804] 0.3626 [9.8788] 

10% 70.3329 [2.8551] 68.9921 [4.7070] 28.5882 [2.1007] 0.2999 [9.1212] 

C-C-F-C     

1% 72.7744 [0.5171] 72.4439 [0.0606] 27.9578 [0.1507] 0.3243 [1.7273] 

5% 71.0602 [1.8506] 71.9986 [0.5544] 29.7598 [6.2850] 0.3212 [2.6667] 

10% 69.8662 [3.4997] 67.1080 [7.3094] 30.2124 [7.9014] 0.3091 [6.3333] 
#
[n]denotes the absolute percentage error with respect to the benchmark value. 

 

Table 4.39: Identified elastic properties of graphite epoxy plate in the presence of 

increasing errors 

   (   )   (   )    (   )     

Benchmark 127.9 10.27 7.312 0.22 

F-F-F-F     

1% 128.1903 [0.2270] 10.2659 [0.0399] 7.3114 [0.0082] 0.2470 [12.2727] 

5% 129.1287 [0.9607] 10.1255 [1.4070] 7.3225 [0.1436] 0.2209 [0.4091] 

10% 129.7710 [1.4629] 10.7189 [4.3710] 7.2655 [0.6359] 0.2443 [11.0455] 

C-F-F-F     

1% 127.2377 [0.5178] 10.3559 [0.8364] 7.2500 [0.8479] 0.2267 [3.0455] 

5% 126.4558 [1.1292] 10.5217 [2.4508] 7.1893 [1.6781] 0.2120 [3.6364] 

10% 124.2640 [2.8428] 10.9467 [6.5891] 7.5320 [3.0088] 0.2205 [0.2273] 

C-C-F-C     

1% 127.4838 [0.3254] 10.1851 [0.8267] 7.3196 [0.1039] 0.2282 [3.7273] 

5% 123.1655 [3.7017] 10.4110 [1.3729] 7.0117 [4.1069] 0.2293 [4.2273] 

10% 118.9493 [6.9982] 10.4508 [1.7605] 7.6814 [5.0520] 0.2344 [6.5455] 
#
[n]denotes the absolute percentage error with respect to the benchmark value. 

 

4.3.3 Comparative study of different error functions 

The results of using the natural frequency error function, mode shape error function 

and frequency response function (FRF) error function embedded in the proposed hybrid 

algorithm are presented in this section. Five sets of simulations have been executed and 

the best set of evaluated elastic properties with the least minimised value is shown in 

bold, as depicted in Appendix F. Three different types of objective functions have been 
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utilised and since the sensitivity of each type of objective function with respect to the 

change in elastic properties is varied, the minimised objective function values are not 

compared among different types of objective functions used. On the other hand, the 

computational time of using three different types of error functions is investigated and 

compared, as presented in Appendix F. The discussion begins with the study of 

accuracy of using the proposed hybrid algorithm with different error functions, followed 

by the study of repeatability and lastly, the study of convergence. 

4.3.3.1 Accuracy of meta-heuristic hybrid optimisation method with different 

error functions in reference plates 

As shown in Figure 4.23, the absolute percentage error of evaluated    using 

frequency response function (FRF) error function is found to be the least with 

0.00172%, followed by those of using natural frequency error function with 1.1651% 

and mode shape error function with 6.8312%. The error can be seen to be experiencing 

reduction by approximately 1.2% and 6.8% when using FRF error function with respect 

to those of using natural frequency and mode shape error functions, respectively. 

Meanwhile, in Figure 4.24, approximately 6.3% of improvement is visible in the 

accuracy of the determined    when replacing the use of mode shape error function 

with the use of FRF error function. In the meantime, there is only around 0.9% 

difference between those of using FRF error function and natural frequency error 

function. Similarly, as depicted in Figure 4.25, the use of FRF error function exhibit 

about 7% and 1% greater superiority in determining reliable     over the use of mode 

shape and natural frequency error functions, respectively. Apart, in Figure 4.26, the use 

of mode shape error function surpasses both the use of natural frequency error function 

and FRF error function in terms of accuracy of the evaluated     by roughly 27% and 

2%, respectively and thus, emerging as the best choice of error function in identifying 

Poisson's ratio. In the meantime, the use of FRF error function produces considerably 
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good and reliable Poisson‟s ratio with 2.2727% of absolute percentage error and about 

25% of reduction with respect to that of natural frequency error function only. From 

Figure 4.23, Figure 4.24, Figure 4.25 and Figure 4.26, it is found that the use of the 

natural frequency as well as FRF objective functions lead to excellent outcomes, 

especially the in-plane longitudinal elastic modulus, in-plane transverse elastic modulus 

and in-plane shear modulus with comparatively small absolute percentage errors. 

However, discernible inferiority can be seen in determining the major Poisson‟s ratio 

when using either of the aforementioned objective function. Instead, the mode shape 

objective function exhibits convincing ability in evaluating reliable Poisson‟s ratio with 

significantly small absolute percentage error. However, the drawback consists in its 

disability in yielding reliable and accurate elastic moduli and shear modulus. It can be 

deduced that the absolute percentage errors of the outcomes yielded using FRF lie in 

between those of natural frequencies and mode shapes. This can be explained by the 

fundamental equation of the FRFs, which are composed of natural frequencies, mode 

shapes as well as damping properties.   

 
Figure 4.23: Absolute percentage error of evaluated    
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Figure 4.24: Absolute percentage error of evaluated    

 
Figure 4.25: Absolute percentage error of evaluated     

 
Figure 4.26: Absolute percentage error of evaluated     
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4.3.3.2 Repeatability of meta-heuristic hybrid optimisation method with different 

error functions in reference plates 

In the study of repeatability, from Figure 4.27, the use of the frequency response 

function (FRF) error function yields the lowest standard deviation (0.9247) of evaluated 

   with about 3 and 14 in difference with respect to those in natural frequency and 

mode shape error functions, respectively. As demonstrated in Figure 4.28, even though 

the standard deviations of identified    using the FRF error function is not the lowest 

(0.1734), its repeatability is convincingly good as the difference of standard deviation 

with respect to the lowest (0.0131) is not as large as those of evaluated longitudinal 

elastic modulus. Meanwhile, in Figure 4.29, the repeatability of evaluated     using the 

FRF error function is found the best with standard deviation of 0.08607, followed by the 

natural frequency error function and mode shape error function with standard deviations 

of 0.1302 and 0.8531, respectively. In view of the evaluated     as depicted in Figure 

4.30, the use of the mode shape error function yields the lowest standard deviation 

(0.006279), tailed by the use of the FRF error function (0.01315) and the use of the 

natural frequency error function (0.03505). In general view of Figure 4.27, Figure 4.28, 

Figure 4.29 and Figure 4.30, the standard deviations of the evaluated   ,    and     

using the FRF error function are found relatively lower than those of using the mode 

shape error function. Comparable and even better repeatability can as well be observed 

in the identified   ,    and     when using the FRF error function if compared to those 

of using the natural frequency error function. On the contrary, the use of the mode shape 

error function leads to excellent repeatability in the determined     if compared to those 

of using the natural frequency and FRF error functions, as shown in Figure 4.30. 

Therefore, it can be addressed that the repeatability of using the FRF error function 

consists in the trade-off range between those of using the natural frequency and mode 

shape error functions.  
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Figure 4.27: Standard deviation of the evaluated    

 
Figure 4.28: Standard deviation of the evaluated    

 
Figure 4.29: Standard deviation of the evaluated     
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Figure 4.30: Standard deviation of the evaluated     
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involvement of a greater number of localized parameters, such as the unit displacements 

of nodes for each vibrational mode. Composed of natural frequencies, mode shapes and 

damping properties, the use of the FRF error function exhibits the characteristics of 

those parameters and thus, the computational time is also influenced by those 

parameters. As compared to mode shapes, FRFs are relatively more localized as well as 

more information can be retrieved and observed from FRFs. Therefore, it can be seen 

that the use of the FRF error function consumes relatively more computational time as 

compared to the use of the mode shape error function. Despite, from the perspective of 

practical applications, this drawback can be compensated by the processing time 

consumed during the extraction of experimental natural frequencies and mode shapes 

from experimental FRF data, in which, these procedures are not required in the use of 

the FRF error function. As a whole, the use of the FRF error function can be claimed to 

be the better alternative, accounting for its relatively more complete and satisfactory 

performances in the aspects of accuracy, repeatability and convergence. The complete 

sets of computational time are presented in Appendix F.               

 
Figure 4.31: Computational time of using different types of error functions 
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4.3.3.4 Analysis of meta-heuristic hybrid optimisation method with different error 

functions in reference plates 

The analysis and explanation of the results are considerably similar to those of two-

stage derivative-based method which involves natural frequencies and mode shapes. 

The figures above indirectly imply that the sensitivity of natural frequencies with 

respect to the elastic and shear moduli is relatively higher in comparison to that of the 

Poisson‟s ratio. On the contrary, mode shapes are found to be more sensitive to the 

changes in the Poisson‟s ratio than those in elastic and shear moduli. As mentioned 

before, this phenomenon can be associated with the composition of the Poisson‟s ratio, 

which is regarded as the ratio of shortening strain to tensile strain. Based on the basic 

definition of Poisson‟s ratio, a relationship does exist between the Poisson‟s ratio and 

mode shapes as both are fundamentally composed of strains. Mode shapes are defined 

in terms of nodes‟ displacements, and these displacements can be obtained via the 

second order integration of mode curvature (strain). Hence, it can be observed that the 

use of the mode shape error function yields excellent Poisson‟s ratio, but not the other 

elastic properties. With the use of the frequency response functions (FRFs) that are 

composed of natural frequencies, mode shapes and damping properties, the outcomes 

are found to be experiencing a great improvement due to the contributions from both 

natural frequencies and modes shapes.  

Apart, the results show that the use of the FRF error function yields better shear 

modulus compared to both the natural frequency and mode shape error function. The 

main reason consists in the relation between shear modulus and twisting modes. By 

general definition, shear modulus is the ratio of shear stress to shear strain. Stress, 

which is a global parameter, can be found in shear modulus as well as in elastic 

modulus. Since natural frequency is a global parameter, the use of natural frequency 

error function is sufficiently good to identify shear modulus and elastic modulus. 
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However, for shear modulus, it is much related to twisting modes (Hendrickson, 1963), 

in which, these modes are unique and sometimes they are not symmetric and not 

uniform. In the present study, the first six non-rigid body modes are involved in the 

identification process and mode 1, 3 and 6 are found to be twisting modes. Due to their 

uniqueness, the presence of twisting modes appears to be more significant and 

distinctive compared to normal bending modes, that are much related to elastic 

modulus. Therefore, by involving FRFs, which are composed of both natural 

frequencies and mode shapes, the identifiability of shear modulus can be further 

improved.  

Referring to the use of the mode shape error function, the reliability of the evaluated 

shear modulus is questionable due to the great influence of stress, which is a global 

parameter compared to that of strain, which is a local parameter. Even though mode 

shape is much related to shear strain in the composition of shear modulus, the influence 

of mode shape on shear modulus, is marginally significant. Therefore, the sole use of 

the mode shape error function shows inferiority in identifying shear modulus.   

 

4.4 Experimental validation 

The results of the destructive test for the acrylonitrile-butadine-styrene (ABS) plate 

as well as theoretical calculation for the aluminium composite panel (ACP) are first 

presented. In the following sections, the results of the proposed non-destructive test are 

then presented and compared with those obtained from the destructive test and 

theoretical calculation. 

4.4.1 Destructive test 

The final benchmark elastic properties of acrylonitrile-butadine-styrene (ABS) plate 

obtained from tensile test are presented in Table 4.40. 
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Table 4.40: Benchmark elastic properties of ABS plate obtained from tensile test 

Elastic Properties 

Benchmark value 

obtained from tensile 

test 

   (   ) 2.3782 

   (   ) 2.3050 

    (   ) 0.8763 

     0.3370 

 

4.4.2 Theoretical calculation 

On the other hand, the final benchmark elastic properties of the aluminium composite 

panel (ACP) obtained from theoretical calculations are presented in Table 4.41. 

Table 4.41: Benchmark elastic properties of ACP obtained from theoretical 

calculation 

Elastic Properties 
Benchmark value 

obtained from calculation 

   (   ) 10.3079 

   (   ) 10.3079 

    (   ) 3.8465 

     0.3656 

 

4.4.3 Non-destructive test 

4.4.3.1 Method 1: Two-stage derivative-based method 

(a) Accuracy of two-stage derivative-based method in experimental plates 

In the study of the acrylonitrile-butadine-styrene (ABS) plate, from Table 4.42, the 

identified     and     can be seen experiencing a relatively great improvement in 

accuracy after stage 2 with the absolute percentage errors reduced by 8.7416% and 

7.4481%, respectively. This can be explained by the considerable sensitivity of mode 

shapes with respect to the evaluated     and    . On the other hand, relatively small 

changes can be observed in the identified    and     after stage 2 as the changes in    

and    are controlled by the suggested regularization parameters.  

Univ
ers

ity
 of

 M
ala

ya



168 

Table 4.42: Identification results of ABS plate under F-F-F-F boundary condition 

  Stage 1: Natural frequency Stage 2: Mode shape 

F-F-F-F Static Initial Updated Initial Updated 

   (   ) 2.3782 2.9000 2.6428 [11.1261] 2.6428 2.6245 [10.3566] 

   (   ) 2.3050 2.9000 2.6702 [15.8438] 2.6702 2.6760 [16.0954] 

    (   ) 0.8763 1.0500 0.9549 [8.9698] 0.9549 0.8783 [0.2282] 

    0.3370 0.3000 0.3035 [9.9407] 0.3035 0.3286 [2.4926] 
#
[n]denotes the absolute percentage error with respect to the static test value. 

 

Apart from that, Table 4.43 presents the experimental natural frequencies and mode 

shapes obtained from experimental modal analysis (EMA) as well as the evaluated 

natural frequencies and mode shapes obtained using the proposed two-stage derivative-

based method. The emphasis is placed on the evaluated mode shapes in stage 1 and 

stage 2. From a qualitative perspective, a high degree of resemblance can be observed in 

between all the experimental and evaluated mode shapes as well as there is no 

discernible difference shown in between the mode shapes obtained from stage 1 and 

stage 2. Based on the presented mode shapes, mode 1, mode 4 and mode 5 are 

apparently known to be twisting modes, whereby mode 2 and mode 3 are bending 

modes. From Table 4.44, it can be seen that mode 2, mode 3, mode 4 and mode 5 

experience a reduction in the average node displacement differences after stage 2, thus, 

it can be directly interpreted that the identifiability of the     and the     are mainly 

contributed by these modes. From the fundamental equations of the shear modulus and 

Poisson‟s ratio, the influence of twisting modes on the shear modulus is known to be 

relatively more significant than that on the Poisson‟s ratio. Between bending and 

twisting modes, the influence of bending mode on the Poisson‟s ratio is relatively more 

significant. Therefore, it can be inferred that the accuracy of the     is further 

improved, mainly due to the contribution from mode 4 and mode 5 which are regarded 

as twisting modes, whereby, the accuracy of the     can be seen to have improved after 

stage 2, mainly due to the influence of mode 2 and mode 3 which are the bending 

modes. Overall, it can be seen that the weighted absolute relative difference between the 
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experimental and evaluated modal displacements (CCMDISP) is reduced from 1.0318 

in stage 1 to 0.9909 in stage 2 . This shows that despite the reduction in CCMDISP is 

small, the implementation of stage 2 with the aid of scaling factors is important in 

improving the identifiability of the     and    .  

Table 4.43: Comparison of experimental and evaluated natural frequencies and 

mode shapes for ABS plate 

Mode Experimental 

measurement 

Numerical evaluation 

Stage 1 Stage 2 

1 

31.90 Hz 

 
 

32.9334 Hz 

 

31.9337 Hz 

 

2 

47.70 Hz 

 
 

48.4408 Hz 

 

47.8930 Hz 

 

3 

61.70 Hz 

 
 

61.6635 Hz 

 

62.2511 Hz 

 

4 

84.80 Hz 

 
 

85.8236 Hz 

 

84.4028 Hz 

 

5 

84.90 Hz 

 
 

85.9887 Hz 

 

84.7198 Hz 
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Table 4.44: Average node displacement difference between experimental and 

evaluated mode shapes for ABS plate 

Mode 
Average node displacement 

difference (dimensionless) 

 Stage 1 Stage 2 

1 0.4648 0.4656 

2 0.3819 0.3542 

3 2.8658 2.7029 

4 0.8315 0.8277 

5 0.6148 0.6043 

CCMDISP 1.0318 0.9909 

 

Furthermore, in the investigation of the aluminium composite panel (ACP), from 

Table 4.45, the evaluated     is found to have deteriorated in terms of accuracy by 

6.1614%. This can be explained by the use of theoretical calculation to determine the 

reference elastic properties of ACP, in which, several assumptions have been made 

upon applying the formulas, and thus, might have compromised the credibility. The 

evaluated elastic properties are said to be valid and reasonable since the absolute 

percentage errors are recorded within 20%. Thus, in this case, the evaluated     can be 

claimed to be in good agreement with the reference     with absolute error of 

16.4513% after stage 2. Meanwhile, the accuracy of the evaluated     is improved by 

13.0197% after stage 2. The changes in    as well as in    are relatively small if 

compared to the others as controlled by the specified regularization parameters. Overall, 

the results are reasonably good and stage 2 is proven important to preserve the accuracy 

of both the     and      with absolute percentage errors of not exceeding 20%.  

Table 4.45: Identification results of ACP under F-F-F-F boundary condition 

  Stage 1: Natural frequency Stage 2: Mode shape 

F-F-F-F Cal Initial Updated Initial Updated 

   (   ) 10.3097 12.0000 11.8014 [14.4689] 11.8014 11.8610 [15.0470] 

   (   ) 10.3097 11.0000 10.8456 [4.9412] 10.8456 10.7829 [4.5899] 

    (   ) 3.8465 3.5000 3.4507 [10.2899] 3.4507 3.2137 [16.4513] 

    0.3656 0.2800 0.2762 [24.4530] 0.2762 0.3238 [11.4333] 
#
[n]denotes the absolute percentage error with respect to the calculated value. 
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As shown in Table 4.46, the experimental natural frequencies and mode shapes are 

compared with those of evaluated from stage 1 and stage 2. The experimental mode 

shapes are almost similar to those of evaluated mode shapes and there is no discernible 

difference shown in between the mode shapes obtained from stage 1 and stage 2.  

Similar to the ABS plate, mode 1, mode 4 and mode 5 are twisting modes, while mode 

2 and mode 3 are bending modes. Mode 1 contributes to the improved identification of 

the     in stage 2, while, mode 2 and mode 3 contributes to the accurate identification 

of the     as it can be observed from Table 4.47 that mode 1, mode 2 and mode 3 incur 

a reduction in the average node displacement differences. As a whole, it can be 

observed that the weighted absolute relative difference between experimental and 

evaluated modal displacements (CCMDISP) experiences a small reduction from 1.1406 

in stage 1 to 1.1054 in stage 2. Although the reduction is small, the use of stage 2 in 

conjunction with scaling factors is proven effective in preserving the identifiability of 

the     and     with absolute percentage errors maintained within 20% with respect to 

the benchmark parameters. 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



172 

Table 4.46: Comparison of experimental and evaluated natural frequencies and 

mode shapes for ACP 

Mode Experimental 

measurement 

Numerical evaluation 

Stage 1 Stage 2 

1 

52.70 Hz 

 
 

52.8556 Hz 

 

51.5486 Hz 

 

2 

82.10 Hz 

 
 

85.2059 Hz 

 

83.2553 Hz 

 

3 

107.00 Hz 

 
 

105.2253 Hz 

 

106.4991 Hz 

 

4 

142.00 Hz 

 
 

141.2432 Hz 

 

139.0896 Hz 

 

5 

149.00 Hz 

 
 

143.7471 Hz 

 

141.9151 Hz 

 

 

Table 4.47: Average nodal displacement difference between experimental and 

evaluated mode shapes for ACP 

Mode 

Average node 

displacement difference 

(dimensionless) 

 Stage 1 Stage 2 

1 0.4156 0.4145 

2 1.4194 1.3854 

3 1.6673 1.4603 

4 0.9662 1.0099 

5 1.2345 1.2567 

CCMDISP 1.1406 1.1054 
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(b) Repeatability of two-stage derivative-based method in experimental plates 

As mentioned, the proposed method is a deterministic approach and the results 

obtained from five independent runs turn out to be the same. Therefore, it can be 

inferred that using a fixed set of initial values, the repeatability of this approach appears 

to be 100% regardless of the number of runs.  

(c) Convergence of two-stage derivative-based method in experimental plates 

Table 4.48 demonstrates the computational time consumed by the proposed method 

in identifying the elastic properties of acrylonitrile-butadine-styrene (ABS) plate. It can 

be observed that the updating process of stage 2 consumes relatively more time as 

compared to that of stage 1 due to the consideration of a large number of mode shape 

information in stage 2 as well as the relatively indirect updating procedures of stage 2. 

The proposed two-stage derivative-based method consumes about seven minutes of 

computational time at most in determining the elastic properties of the ABS plate, and 

this is quite promising as compared to most of the meta-heuristic methods. Depending 

on the three basic identification stopping criteria, as demonstrated in Table 4.49, it can 

be observed from Table 4.50 that in stage 1, the first stopping criterion is met, where the 

maximum number of iteration is achieved (10). In stage 2, the third stopping criterion is 

satisfied, where the minimum value of convergence is achieved (0.990931). It should be 

informed that six decimal places are used in the study of convergence due to the 

relatively small order of magnitude of the convergence value.  

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



174 

Table 4.48: Computational time of ABS plate 

Set Stage 1 (s) Stage 2 (s) Total (s) 

1 59.0030 359.9599 418.9629 

2 58.3020 358.8376 417.1396 

3 58.6871 359.2133 417.9004 

4 58.1406 359.9401 418.0807 

5 58.8989 359.8981 418.7970 

Average 58.6063 359.5698 418.1761 

 

Table 4.49: Identification stopping criteria of ABS plate 

Stage 
Maximum number of 

iteration 

Minimum improvement 

percentage 

Minimum value of 

convergence 

1 10 0.1000 0.0030 

2 10 0.0100 1.0000 

 

Table 4.50: Convergence results of ABS plate 

Iteration CCABS CCMDISP 

1 0.012932 1.031773 

2 0.011299 1.025390 

3 0.009815 1.024478 

4 0.008500 1.024344 

5 0.007338 1.045571 

6 0.006313 0.990931 

7 0.005411 - 

8 0.004618 - 

9 0.003924 - 

10 0.003363 - 

 

Furthermore, in the study of the aluminium composite panel (ACP), it is also found 

that the computational time consumed by the updating process of stage 2 is relatively 

more than that of stage 1 on account of the involvement of a large number of mode 

shape parameters as well as the indirect procedures of stage 2. The proposed method 

consumes about 7 minutes of computational time at most. Notably, the amount of 

computational time needed is dependent on the termination criteria, namely, maximum 

number of iteration, minimum improvement percentage and minimum value of 

convergence, as specified in Table 4.52. From Table 4.53, it can be observed that in 

stage 1, the second termination criterion is satisfied, where the predefined minimum 

improvement percentage is achieved at iteration 4 (0.0278%). Meanwhile in stage 2, the 
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third stopping criterion is met where the solution has converged to the minimum value 

of convergence (1.105379). 

Table 4.51: Computational time of ACP 

Set Stage 1 (s) Stage 2 (s) Total (s) 

1 23.4339 420.3862 443.8201 

2 23.4568 419.5393 442.9961 

3 23.4887 419.5177 443.0064 

4 23.5556 421.0835 444.6390 

5 23.5797 419.3662 442.9458 

Average 23.5029 419.9786 443.4815 

 

Table 4.52: Identification stopping criteria of ACP 

Stage 
Maximum number of 

iteration 

Minimum improvement 

percentage 

Minimum value of 

convergence 

1 10 0.1000 0.0030 

2 10 0.0100 1.1100 

 

Table 4.53: Convergence results of ACP 

Iteration CCABS CCMDISP 

1 0.003724 1.140626 

2 0.003610 1.115335 

3 0.003598 1.122679 

4 0.003597 1.118665 

5 - 1.116487 

6 - 1.117945 

7 - 1.105379 

 

4.4.3.2 Method 2: Meta-heuristic hybrid optimisation method (Hybrid GA-ACO-

PSO) 

(a) Selection of frequency response functions (FRFs) 

A two-stage approach with a two-level FRF selection scheme is proposed to 

accomodate the effects due to uncertainties. Stage 1 involves the use of the natural 

frequency error function while stage 2 involves the use of the FRF error function. 

Before proceeding to stage 2, the two-level FRF selection is performed. The first level 

involves the selection of modes that are sensitive to the target elastic properties (in-

plane shear modulus and Poisson‟s ratio). The mode selection is made based on the 
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results obtained from a sensitivity study. The second level involves the selection of 

FRFs based on the node position (or impact location) that lies in the high response 

regions of the selected modes.  

A sensitivity study is conducted in the investigation of experimental plates to serve 

as a useful reference for the mode selection. As mentioned, the selection of modes is 

conducted mainly to specify as well as to narrow down the frequency range of the FRFs, 

hence, improving the identifiability of the in-plane shear modulus and Poisson's ratio. 

The sensitivity plots of the ABS plate and ACP are demonstrated in Figure 4.32 and 

Figure 4.33, respectively. It can be observed that the plots of both the ABS plate and 

ACP are similar, in which, the influence of mode 1, mode 4 and mode 5 on     can be 

seen to be relatively greater as compared to that of mode 2 and mode 3. This can be 

explained by the twisting behaviours of the aforementioned modes, as depicted in 

Figure 4.34 and Figure 4.35. The presence of shear strain in these modes is relatively 

more significant if compared to that of bending strain. Since the in-plane shear modulus 

is fundamentally related to shear strain, the influence of these modes on the in-plane 

shear modulus is found to be substantial. Furthermore, in comparison to the rest of the 

modes, mode 2 and mode 3 are found to be relatively more sensitive to    . The reason 

consists in the bending characteristics of these modes, as shown in Figure 4.34 and 

Figure 4.35, in which, the presence of bending strain in these modes is relatively 

significant than that of shear strain. Since the Poisson‟s ratio is basically composed of 

bending strain, these bending modes are thus possessing larger influence on the 

Poisson‟s ratio. Therefore, in stage 2, FRFs containing modes that are sensitive to both 

    as well as     can be selectively adopted into the identification process to further 

improve the identifiability of the in-plane shear modulus and the Poisson‟s ratio. As 

compared to natural frequencies, more local information can be retrieved from FRFs as 

it is basically composed of natural frequencies, mode shapes and damping properties. 
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Therefore, instead of selectively adopting natural frequencies, which are more global, 

the use of FRFs in stage is the better option. 

 
Figure 4.32: Sensitivity graph of ABS plate 

 
Figure 4.33: Sensitivity graph of ACP 
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Figure 4.34: Corresponding mode shapes of ABS plate after stage 1 

 

 

Figure 4.35: Corresponding mode shapes of ACP after stage 1 

There are a total of 25 DOFs defined over each plate and each designated DOF 

possesses respective set of FRF, depending on the input and output DOF. In this context, 

input DOF refers to the location of impact (roving impact hammer), while, output DOF 

refers to the location of response received (fixed accelerometer). As demonstrated in 

Figure 4.36 and Figure 4.37, the corresponding modes of interest for the ABS plate and 

ACP determined from the first level, which include mode 1 and mode 3, are of great 

emphasis. In the second level of the FRF selection scheme, four sets of FRFs 

corresponding to the location of impact at point 5, 9, 21 and 25 with respect to the fixed 

location of response received at point 1 are selected on account of the dominant 

contributions of mode 1 and mode 3 in those selected locations, as depicted in Figure 
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4.36 and Figure 4.37. It can be seen that point 5, 21 and 25 lie in high response regions 

of mode 1 and mode 3, whilst, point 9 is placed at relatively low response regions of 

mode 1 and mode 3. Despite located at relatively low response regions of mode 1 and 

mode 3, the FRF yielded from the location of impact at point 9 is still selected due to 

the clear visibility of the peaks of mode 1 and mode 3 in the FRF. 

 

Figure 4.36: 25 measurement DOFs of corresponding modes of the ABS plate 

determined from the first level FRF selection scheme 

 

 

Figure 4.37: 25 measurement DOFs of corresponding modes of ACP determined 

from the first level FRF selection scheme 

 

(b) Accuracy of meta-heuristic hybrid optimisation method with frequency response 

function (FRF) error function in experimental plates 

Table 4.54 presents the experimental and evaluated natural frequencies of the ABS 

plate in the first stage. The natural frequencies evaluated in the first stage can be seen to 

have matched reasonably well with the experimental natural frequencies, garnering the 

maximum absolute percentage error of 0.9567%. It can as well be observed that the 

presence of uncertainties in higher modes is relatively more significant, which leads to 

relatively larger absolute percentage error in higher modes. 
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Table 4.54: Experimental and evaluated natural frequencies of ABS plate in the 

first stage 

Natural frequency (Hz) 1
st
 2

nd
 3

rd
 4

th
 5

th
 

Experimental 31.90 47.70 61.70 84.80 84.90 

Evaluated 
32.0077 

[0.3376] 

47.6636 

[0.0763] 

61.5580 

[0.2301] 

83.9887 

[0.9567] 

84.2800 

[0.7303] 

#[n] denotes the absolute percentage error with respect to the experimental value. 

 

In view of FRF, slight changes can be seen on the evaluated FRFs of the ABS plate 

before and after the second stage, as depicted in Figure 4.38, Figure 4.39, Figure 4.40 

and Figure 4.41. It is notable that the level of coincidence between the experimental and 

evaluated resonance peaks is of greater importance as compared to that of the other 

local frequencies. From the figures, it can be observed that the resonance peaks 

indicating mode 1 and mode 3 in the evaluated FRFs experience a slight improvement 

and coincide well with those of the experimental FRFs after the second stage. Referring 

to Figure 4.38, Figure 4.39 and Figure 4.40, a noticeable reduction can as well be seen 

in the magnitude difference between the experimental and evaluated local frequencies 

after the second stage, with the indications shown in black. Certainly, in some cases, the 

magnitude difference between the experimental and evaluated local frequencies can be 

seen in a rise after the second stage, with the notations marked in green. The reason 

consists in the reach of a compromise, such that, a reduction in magnitude difference of 

particular local frequencies could somehow cause an increment in magnitude difference 

of the other. Contrary to the others, Figure 4.41 shows no significant changes in the 

magnitude difference between the experimental and evaluated FRFs on account of the 

reach of sufficient improvement.   
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Figure 4.38: Evaluated and experimental FRFs of ABS plate before (top) and after 

(bottom) the second stage with input DOF at point 5 and output DOF at point 1. 

Note: Arrow in black indicates a reduction in magnitude difference before and 

after the second stage. Univ
ers

ity
 of

 M
ala

ya



182 

 

Figure 4.39: Evaluated and experimental FRFs of ABS plate before (top) and after 

(bottom) the second stage with input DOF at point 9 and output DOF at point 1. 

Note: Arrow in black indicates a reduction in magnitude difference before and 

after the second stage, while arrow in green denotes an increment in magnitude 

difference before and after the second stage. 
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Figure 4.40: Evaluated and experimental FRFs of ABS plate before (top) and after 

(bottom) the second stage with input DOF at point 21 and output DOF at point 1. 

Note: Arrow in black indicates a reduction in magnitude difference before and 

after the second stage, while arrow in green denotes an increment in magnitude 

difference before and after the second stage. 
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Figure 4.41: Evaluated and experimental FRFs of ABS plate before (top) and after 

(bottom) the second stage with input DOF at point 25 and output DOF at point 1. 
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The evaluated elastic properties of the ABS plate using the natural frequency error 

function in the first stage as well as the FRF error function in the second stage are 

presented in Table 4.55 and Table 4.56, respectively. In the first stage, the best 

evaluated   ,   ,    , and     are reported to be          ,          ,           

and       , respectively with the minimised value of           . On the other 

hand, in the second stage, the best evaluated   ,   ,    , and     are discovered to be 

         ,          ,           and       , respectively with the minimised 

value of       . Comparison shall not be made upon the minimised values obtained 

from both stages due to different application of error functions. It can be observed that 

the absolute percentage error of the evaluated     with respect to the benchmark 

parameter is reduced from         in the first stage to         in the second stage, 

while, the absolute percentage error of the evaluated     can as well be seen 

experiencing a drop from         in the first stage to         in the second stage. 

From the overall results, it can be inferred that the application of the FRF error function 

is able to improve the identifiability of the in-plane shear modulus and the Poisson‟s 

ratio of the ABS plate. 

Table 4.55: Evaluated elastic properties of ABS plate using natural frequency 

error function in stage 1 

Set    (   )    (   )     (   )     
Minimised 

value 

Tensile 2.3782 2.3050 0.8763 0.3370 - 

LB 1.5000 1.5000 0.5000 0.2000 - 

UB 3.5000 3.5000 2.0000 0.4000 - 

1 2.6399 2.5671 0.9088 0.3158 1.8516E-04 

2 2.5452 2.6499 0.9119 0.3185 1.7074E-04 

3 2.6667 2.5047 0.8987 0.3293 2.2873E-04 

4 2.5280 2.7476 0.8970 0.3079 2.3707E-04 

5
*
 

2.5682 

[7.9892] 

2.6156 

[13.4751] 

0.8992 

[2.6133] 

0.3188 

[5.4006] 
1.6597E-04 

Mean 
2.5896 

[8.8891] 

2.6170 

[13.5358] 

0.9031 

[3.0583] 

0.3181 

[5.6083] 
1.9753E-04 

*
The set in bold indicates the best set amongst the five sets with the least minimised value. 

#
[n] denotes the absolute percentage error with respect to the tensile test value. 
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Table 4.56: Evaluated elastic properties of ABS plate using FRF error function in 

stage 2 

Set    (   )    (   )     (   )     
Minimised 

value 

Tensile 2.3782 2.3050 0.8763 0.3370 - 

LB 2.3500 2.3500 0.8000 0.3000 - 

UB 2.9000 2.9000 1.0000 0.3500 - 

1
*
 

2.5864 

[8.7545] 

2.5582 

[10.9848] 

0.8917 

[1.7574] 

0.3314 

[1.6617] 
1.1228 

2 2.6417 2.4608 0.8927 0.3477 1.1241 

3 2.5582 2.5163 0.8904 0.3497 1.1254 

4 2.5901 2.5527 0.8940 0.3344 1.1333 

5 2.7982 2.4600 0.8910 0.3305 1.1267 

Mean 
2.6349 

[10.7939] 

2.5096 

[8.8764] 

0.8920 

[1.7916] 

0.3387 

[2.2028] 
1.1265 

*
The set in bold indicates the best set amongst the five sets with the least minimised value. 

#
[n] denotes the absolute percentage error with respect to the tensile test value. 

 

Table 4.57 demonstrates the experimental and evaluated natural frequencies of the 

ACP after first stage identification. It can be observed that the first natural mode 

experiences the largest deviation with respect to the experimental natural frequency 

probably due to the presence of deformities at microscopic level, which is not taken into 

account in the computation. As a whole, the evaluated natural frequencies correlate 

considerably well with the measured natural frequencies. 

Table 4.57: Experimental and evaluated natural frequencies of ACP after the first 

stage 

Natural frequency (Hz) 1
st
 2

nd
 3

rd
 4

th
 5

th
 

Experimental 52.70 82.10 107.00 142.00 149.00 

Evaluated 
53.9054 

[2.2872] 

82.2233 

[0.1502] 

106.5531 

[0.4177] 

139.5983 

[1.6913] 

147.4436 

[1.0446] 

#[n] denotes the absolute percentage error with respect to the experimental value. 

 

The qualitative correlation level between the evaluated and the experimental FRFs of 

the ACP can be seen to have improved discernably after undergoing the second stage, as 

demonstrated in Figure 4.42, Figure 4.43, Figure 4.44 and Figure 4.45. From the figures, 

three peaks denoting modes 1, 2 and 3 can be seen in the experimental FRFs. With the 

use of the proposed two-stage approach incorporated with a two-level FRF selection 

scheme, only modes 1 and 3 are selected and involved in the identification. Therefore, 
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only the peaks denoting modes 1 and 3 can be seen in the evaluated FRF. As 

emphasized, the coincidence level of the resonance peaks before the experimental and 

evaluated FRFs is of greater significance as compared to that of the local frequencies. It 

can be observed that the resonance peaks of experimental FRFs match considerably well 

with those of the evaluated FRFs after the second stage. Local frequencies around the 

vicinity of resonance peaks indicating mode 1 also experience a pronounced reduction 

in magnitude difference after the second stage, as indicated in black. Likewise, the 

magnitude difference of certain local frequencies can be seen in a rise with the 

indications shown in green due to the reach of a compromise, as mentioned before.  
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Figure 4.42: Evaluated and experimental FRFs of ACP before (top) and after 

(bottom) the second stage with input DOF at point 5 and output DOF at point 1. 

Note: Arrow in black indicates a reduction in magnitude difference before and 

after the second stage, while arrow in green denotes an increment in magnitude 

difference before and after the second stage. Univ
ers
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Figure 4.43: Evaluated and experimental FRFs of ACP before (top) and after 

(bottom) the second stage with input DOF at point 9 and output DOF at point 1. 

Note: Arrow in black indicates a reduction in magnitude difference before and 

after the second stage. Univ
ers
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 of
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Figure 4.44: Evaluated and experimental FRFs of ACP before (top) and after 

(bottom) the second stage with input DOF at point 21 and output DOF at point 1. 

Note: Arrow in black indicates a reduction in magnitude difference before and 

after the second stage, while arrow in green denotes an increment in magnitude 

difference before and after the second stage. Univ
ers
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Figure 4.45: Evaluated and experimental FRFs of ACP before (top) and after 

(bottom) the second stage with input DOF at point 25 and output DOF at point 1. 

Note: Arrow in black indicates a reduction in magnitude difference before and 

after the second stage, while arrow in green denotes an increment in magnitude 

difference before and after the second stage. 

Furthermore, in the study of the aluminium composite panel (ACP), the results 

obtained from stage 1 and stage 2 are presented in, respectively. The elastic properties 

of the ACP obtained from the first stage and the second stage are presented in Table 

4.58 and Table 4.59, respectively. The best evaluated   ,   ,    , and     using the 

natural frequency error function are found to be          ,           ,           

and       , respectively with the minimised value of           . Meanwhile, the 
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best evaluated   ,   ,    , and     using the FRF error function are discovered to be 

          ,           ,           and       , respectively, with the minimised 

value of       . The results show that the identified     experiences an increase in the 

absolute percentage error with respect to benchmark value from         in the first 

stage to          in the second stage. On the contrary, a massive improvement can be 

seen in the accuracy of the identified     with absolute percentage error reduced from 

         in the first stage to          in the second stage. This phenomenon may 

be due to some contradictions arisen between the nature of the real structure and the 

assumptions made upon performing the theoretical calculation using the well-known 

formulations, such as, the incorrect hypothesis of a uniform and transversely-isotropic 

panel. Despite deterioration is shown in the identified in-plane shear modulus with 

respect to the benchmark value, the evaluated FRFs correlate well with the experimental 

FRFs after second, as demonstrated before. Overall, it can be deduced that the use of the 

FRF error function does preserve the identifiability of the in-plane shear modulus and 

the Poisson‟s ratio of the ACP with absolute errors maintained below 20%. 

Table 4.58: Evaluated elastic properties of ACP using natural frequency error 

function in stage 1 

Set Ex (GPa) Ey (GPa) Gxy (GPa) vxy 
Minimised 

value 

Calculation 10.3097 10.3097 3.8465 0.3656 - 

LB 9.0000 9.0000 2.0000 0.2000 - 

UB 15.0000 15.0000 4.0000 0.4000 - 

1 12.7923 9.7400 3.4414 0.3229 1.1502E-03 

2 13.0927 9.5663 3.3504 0.3548 2.2302E-03 

3 12.7400 9.8114 3.5889 0.3613 1.0659E-03 

4
*
 

9.6266 

[6.6258] 

12.6695 

[22.8891] 

3.6019 

[6.3590] 

0.2433 

[33.4519] 
9.3809E-04 

5 10.5130 12.6308 3.5475 0.2693 1.5205E-03 

Mean 
11.7529 

[13.9985] 

10.8836 

[5.5666] 

3.5060 

[8.8522] 

0.3103 

[15.1258] 
1.3795E-03 

*
The set in bold indicates the best set amongst the five sets with the least minimised value. 

#
[n] denotes the absolute percentage error with respect to the calculated value. 
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Table 4.59: Evaluated elastic properties of ACP using FRF error function in stage 

2 

Set Ex (GPa) Ey (GPa) Gxy (GPa) vxy 
Minimised 

value 

Calculation 10.3097 10.3097 3.8465 0.3656 - 

LB 10.0000 10.0000 3.0000 0.2800 - 

UB 13.0000 13.0000 4.0000 0.3200 - 

1 12.4609 10.4158 3.3946 0.3039 0.6277 

2 11.0199 10.9403 3.3612 0.3115 0.6650 

3 12.5870 10.3533 3.3657 0.2989 0.6669 

4
*
 

11.4612 

[11.1691] 

10.9005 

[5.7305] 

3.3863 

[11.9641] 

0.3184 

[12.9103] 
0.6010 

5 12.1617 11.1326 3.4287 0.2901 0.6241 

Mean 
11.9381 

[15.7948] 

10.7485 

[4.2562] 

3.3873 

[11.9381] 

0.3046 

[16.6849] 
0.6369 

*
The set in bold indicates the best set amongst the five sets with the least minimised value. 

#
[n] denotes the absolute percentage error with respect to the calculated value. 

 

The results above reveal that the proposed identification method is feasible in 

improving the identifiability of the in-plane shear modulus and the Poisson‟s ratio. One 

of the contributing factors is the introduction of the two-level FRF selection scheme in 

the identification process. The first level involves the mode selection which is made 

based on the sensitivity of modes with respect to the in-plane shear modulus and the 

Poisson‟s ratio, followed by the second level which involves the selection of FRFs 

referring to the node position (or the impact location in this study) that lies in the high 

response regions of the modes of interest determined from the first level. 

(c) Repeatability of meta-heuristic hybrid optimisation method with frequency 

response function (FRF) error function in experimental plates  

Table 4.60 and Table 4.61 present the standard deviations of evaluated elastic 

properties of the acrylonitrile-butadine-styrene (ABS) plate and aluminium composite 

panel (ACP), respectively. In the study of the ABS plate, the overall repeatability can be 

seen to be considerably good with standard deviations of not more than 0.09, whereas, 

in the study of the ACP, the overall repeatability is relatively less convincing with larger 

standard deviations (1.4446 at most). This can be explained by the different order of 

magnitude between the elastic properties of the ABS plate and ACP, in which, the 
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elastic properties of the ACP are relatively larger than those of ABS, hence, the incurred 

standard deviations are found to be larger.    

Table 4.60: Standard deviations of evaluated elastic properties of ABS plate 

 Ex (GPa) Ey (GPa) Gxy (GPa) vxy 

Stage 1 0.0542 0.0815 0.0060 0.0069 

Stage 2 0.0860 0.0427 0.0013 0.0083 

 

Table 4.61: Standard deviations of evaluated elastic properties of ACP 

 Ex (GPa) Ey (GPa) Gxy (GPa) vxy 

Stage 1 1.4077 1.4446 0.0961 0.0467 

Stage 2 0.6025 0.3080 0.0242 0.0098 

 

(d) Convergence of meta-heuristic hybrid optimisation method with frequency 

response function (FRF) error function in experimental plates 

In this context, the convergence of the proposed algorithm in identifying the elastic 

properties of the acrylonitrile-butadine-styrene (ABS) plate and aluminium composite 

panel (ACP) is investigated in terms of computational time, as presented in Table 4.62 

and Table 4.63, respectively. From the tables, it can be observed that stage 2 consumes 

relatively more computational time as compared to stage 1, mainly due to the 

involvement of more localised parameters in the application of frequency response 

function (FRF) error function in stage 2. Overall, the total average computational time is 

about 3033 seconds, which is approximately equivalent to 51 minutes. As compared to 

the conventional destructive identification approaches which require complying with 

certain standard procedures, the proposed method is said to be relatively more 

promising in terms of computational time.    

 

 

Univ
ers

ity
 of

 M
ala

ya



195 

Table 4.62: Computational time of the proposed meta-heuristic hybrid algorithm 

in determining the elastic properties of ABS plate 

Set Stage 1 (s) Stage 2 (s) Total (s) 

1 1099.5481 1929.5738 3029.1219 

2 1101.4429 1911.8509 3013.2938 

3 1100.7816 1901.0254 3001.8069 

4 1104.7591 1934.4297 3039.1888 

5 1099.7829 1936.7043 3036.4872 

Average 1101.2629 1922.7168 3023.9797 

 

Table 4.63: Computational time of the proposed meta-heuristic hybrid algorithm 

in determining the elastic properties of ACP 

Set Stage 1 (s) Stage 2 (s) Total (s) 

1 1097.9476 1932.8024 3030.7500 

2 1097.4559 1938.3119 3035.7678 

3 1099.3411 1936.5649 3035.9060 

4 1096.3115 1905.2580 3001.5695 

5 1097.2637 1936.4004 3033.6641 

Average 1097.6640 1929.8675 3027.5315 

 

4.5 Comparison between two-stage derivative-based method and meta-

heuristic hybrid optimisation method 

Table 4.64 presents the results obtained using two-stage derivative-based method as 

well as the results obtained using meta-heuristic hybrid optimisation method. It should 

be noted that the evaluated properties with the least absolute percentage errors among 

both the compared methods are shown in bold. From the table, it can be observed that in 

the study of the graphite epoxy reference plate, the integrated use of meta-heuristic 

hybrid optimisation method with frequency response function (FRF) error function 

yields better   ,   ,    , and     with values of            ,           , 

          and       , respectively as well as with absolute percentage errors of 

       ,        ,         and        , respectively. Meanwhile, in the 

investigation of the ABS experimental plate, the   ,   ,    , and     evaluated using 

meta-heuristic hybrid optimisation method are also found to be more accurate with 

values of          ,          ,           and       , respectively as well as 
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with absolute percentage errors of        ,         ,        , and        , 

respectively. Overall, meta-heuristic hybrid optimisation method can be claimed to be 

the better method in the aspect of accuracy.  

Table 4.64: Comparison of evaluated elastic properties using two-stage derivative-

based method and meta-heuristic hybrid optimisation method 

 Benchmark 
Two-stage derivative-

based method 

Meta-heuristic hybrid 

optimisation method 

Reference study Value Value Value 

Graphite epoxy 

plate 
   

   (   ) 127.9 127.8279 [0.0564] 127.8978 [0.0017] 

  (   ) 10.27 10.4585 [1.8354] 10.1681 [0.9922] 

   (   ) 7.312 7.1783 [1.8285] 7.2961 [0.2175] 

    0.22 0.2058 [6.4545] 0.2150 [2.2727] 

Experimental study    

ABS plate    

   (   ) 2.3782 2.6245 [10.3566] 2.5864 [8.7545] 

  (   ) 2.3050 2.6760 [16.0954] 2.5582 [10.9848] 

   (   ) 0.8763 0.8783 [0.2282] 0.8917 [1.7574] 

    0.3370 0.3286 [2.4926] 0.3314 [1.6617] 

ACP    

   (   ) 10.3097 11.8610 [15.0470] 11.4612 [11.1691] 

  (   ) 10.3097 10.7829 [4.5899] 10.9005 [5.7305] 

   (   ) 3.8465 3.2137 [16.4513] 3.3863 [11.9641] 

    0.3656 0.3238 [11.4333] 0.3184 [12.9103] 
#
[n]denotes the absolute percentage error with respect to the benchmark value. 

 

Apart, from the viewpoint of repeatability, the proposed two-stage derivative-based 

method shows great superiority over meta-heuristic hybrid optimisation method, in 

which, the standard deviation is found to be 0.0000 when using two-stage derivative-

based method, signifying 100% repeatability regardless of number of runs due to the 

deterministic characteristic of the proposed two-stage derivative-based method.  
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Table 4.65: Comparison of standard deviations of evaluated elastic properties 

using two-stage derivative-based method and meta-heuristic hybrid optimisation 

method 

 

Two-stage 

derivative-based 

method 

Meta-heuristic 

hybrid 

optimisation 

method 

Reference study   

Graphite epoxy plate   

   (   ) 0.0000 0.9247 

  (   ) 0.0000 0.1734 

   (   ) 0.0000 0.0861 

    0.0000 0.0132 

Experimental study   

ABS plate   

   (   ) 0.0000 0.0860 

  (   ) 0.0000 0.0427 

   (   ) 0.0000 0.0013 

    0.0000 0.0083 

ACP   

   (   ) 0.0000 0.6025 

  (   ) 0.0000 0.3080 

   (   ) 0.0000 0.0242 

    0.0000 0.0098 

 

From Table 4.66, the proposed two-stage derivative-based method is evident to have 

consumed relatively lesser overall computational time as compared to the proposed 

meta-heuristic hybrid optimisation method due to the exploitation of gradient 

information as well as the relatively smaller allowable search regions used in the two-

stage derivative-based method.  

Table 4.66: Comparison of average computational time of evaluated elastic 

properties using two-stage derivative-based method and meta-heuristic hybrid 

optimisation method 

 
Two-stage derivative-based 

method (s) 

Meta-heuristic hybrid 

optimisation method (s) 

Reference study   

Graphite epoxy plate 234.7203 2015.4959 

Experimental study   

ABS plate 418.1761 3023.9797 

ACP 443.4815 3027.5315 

 

Nevertheless, when comparing the aspect of robustness, the meta-heuristic hybrid 

optimisation method exhibits superiority over the two-stage derivative-based method. 

Univ
ers

ity
 of

 M
ala

ya



198 

The proposed two-stage derivative-based method is designated only for material 

identification, whereby, the proposed meta-heuristic hybrid optimisation method is a 

more universal approach, in which, it can be used in various applications, such as 

unconstrained unimodal and multimodal problems, constrained engineering design 

problems as well as material identification. The meta-heuristic hybrid optimisation 

method is effective in solving problems involving large number of dimensions, while, 

the proposed two-stage derivative-based method is restricted to relatively low-

dimensional material identification problems. In addition, the quality of outcomes when 

using the two-stage derivative-based method depends substantially on the initial 

guesses, such that, initial guesses that differ vastly from the actual values would 

compromise the effectiveness of the proposed method. In contrast, the use of meta-

heuristic hybrid optimisation has less restriction on initialization and encompasses 

relatively much larger search regions. In the other point of view, both methods are 

applicable in material identification as well as robust to different types of materials and 

different sets of boundary conditions. In the meantime, both methods are said to be able 

to handle uncertainties. As a whole, two-stage derivative-based method is better in the 

aspects of repeatability and convergence rate, whereas, meta-heuristic hybrid 

optimisation method is better in the aspects of accuracy and robustness. From the 

perspective of applicability, two-stage derivative-based method is said to be effective in 

solving unimodal problems, under the condition that the solution of the problem is 

known beforehand, while, meta-heuristic hybrid optimisation method is claimed to be 

feasible in solving various problems, including problems with multimodality, 

constraints and large number of dimensions. 
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Table 4.67: Robustness of the proposed two-stage derivative-based method and 

meta-heuristic hybrid optimisation method 

Criteria of robustness 
Two-stage derivative-based 

method 

Meta-heuristic hybrid 

optimisation method 

Test functions (unconstrained, 

unimodal, multimodal) 
No Yes 

Engineering design problems 

(constrained) 
No Yes 

Large number of dimensions No Yes 

Large area of search region No Yes 

Material identification Yes Yes 

Various types of materials Yes Yes 

Various sets of boundary 

conditions 
Yes Yes 

Handling of uncertainties Yes Yes 

Yes indicates “Applicable” in fulfilling the criteria of robustness 

No denotes “Not Applicable” in fulfilling the criteria of robustness 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

In the present study, two-stage derivative-based method has been developed, in 

which, the Fourier method is utilised as the forward method, while, a weighted least 

squares method is used as the inverse method as well as natural frequencies are 

employed in stage 1 and mode shapes are utilised in stage 2. The feasibility of the 

proposed method on different types of plates under different sets of boundary conditions 

has been verified and the proposed method has been proven viable in improving as well 

as preserving the identifiability of the in-plane shear modulus and Poisson‟s ratio. This 

can be explained by the relationship between the in-plane shear modulus and twisting 

modes as well as the relationship between the Poisson‟s ratio and bending modes. 

Basically, shear modulus is defined by the ratio of shear stress to shear strain and in 

twisting modes, the contribution of shear strain is known to be relatively significant. On 

the other hand, Poisson‟s ratio is defined by the ratio of shortening strain to tensile 

strain and in bending modes, the contribution of these strains are comparatively larger. 

Therefore, it can be observed that the use of mode shape error function in stage 2 does 

help in improving the identifiability of the in-plane shear modulus and the Poisson‟s 

ratio.  

Furthermore, meta-heuristic hybrid optimisation method (Hybrid GA-ACO-PSO) has 

also been developed. The primary motivation of combining these algorithms is to 

complement respective weaknesses as well as promote respective strengths, hence, 

transforming into a better algorithm. In the composition of the proposed method, the 

collaboration between genetic algorithm (GA) operator and ant colony optimisation 

(ACO) operator helps in enhancing the exploratory process, while the cooperation 

between genetic algorithm (GA) operator and particle swarm optimisation (PSO) 

operator contributes in improving the exploitative process. Two different mutation 
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operators, namely, fixed refined mutation (feature 1) and logarithmically-spaced refined 

mutation (feature 2) are introduced to aid the process of intensification. The proposed 

method with new features has been tested in solving unconstrained test functions and 

constrained engineering design problems. Feature 2 is found to be relatively effective in 

dealing with high-dimensional unconstrained test functions in the presence of 

multimodality due to its ability in inducing an logarithmic increase in the search 

precision over iterations. Meanwhile, feature 1 is discovered to be relatively effective in 

tackling constrained engineering design problems on account of its great compatibility 

with the nature of the engineering design problems. In the following study, the proposed 

method has been applied in material identification and it demonstrates promising 

performances in the aspects of accuracy, repeatability, convergence and robustness due 

to its excellent global search capability. 

Apart from that, the use of the proposed meta-heuristic hybrid optimisation method 

incorporated with different types of error functions, namely, natural frequency error 

function, mode shape error function and frequency response function (FRF) error 

function has been studied and the FRF error function has been proven to be the most 

complete error function, in which, its accuracy and repeatability consist in the trade-off 

range between those of the natural frequency error function and the mode shape error 

function. However, the FRF error function consumes the most computational time as 

compared to the other error functions as it involves a large number of local data. 

Despite, from the perspective of practical applications, this drawback can be 

compensated by the processing time consumed during the extraction of experimental 

natural frequencies and mode shapes from experimental FRF data, in which, these 

procedures are not required when utilising the FRF error function. As a whole, FRF 

error function emerges as the better alternative, considering its relatively more complete 

and satisfactory performances in the aspects of accuracy, repeatability and convergence.    
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The proposed two-stage derivative-based method and meta-heuristic hybrid 

optimisation method have been validated experimentally, in which, the results obtained 

from destructive test and theoretical calculation are compared with those obtained from 

the proposed non-destructive tests. As mentioned, a non-destructive test involves 

experimental measurement and numerical evaluation. Experimental modal analysis 

(EMA) is conducted and the acquired data are subsequently used as the reference 

parameters in the proposed algorithms. In the proposed two-stage derivative-based 

method, regularization parameters are introduced to consider the effects due to 

uncertainties. It has been proven to be feasible in improving the identifiability of the in-

plane shear modulus and the Poisson‟s ratio of experimental plates. Furthermore, in the 

proposed meta-heuristic hybrid optimisation method, two-stage procedures are adopted 

as well to mitigate the presence of uncertainties. Stage 1 involves the use of the 

proposed method incorporated with the natural frequency error function and stage 2 

involves the use of the proposed method incorporated with the FRF error function. 

Selection of FRFs to be used in the identification process is performed based on the 

sensitivity of natural modes with respect to the elastic parameters as well as based on 

the location of impact which lies in the high response regions of the selected modes. As 

a result, it has been proven to be viable in improving the identifiability of the in-plane 

shear modulus and Poisson‟s ratio. Overall, two-stage derivative-based method shows 

better performances in the aspects of repeatability and convergence, while meta-

heuristic hybrid optimisation method demonstrates superiority in terms of accuracy and 

robustness. The perspectives of robustness in the context can be interpreted as the 

applicability of the method in various types of problems (in the presence of 

multimodality, constraints), the consideration of a large number of dimensions and a 

large area of search regions as well as the applicability in material identification 
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(different types of materials, different sets of boundary conditions, handling of 

uncertainties).   

5.2 Recommendations 

There are strengths and weaknesses in both the proposed methods. As mentioned, the 

proposed two-stage derivative-based method is relatively inferior in the aspects of 

accuracy and robustness, while, the proposed meta-heuristic hybrid method is relatively 

less promising in terms of repeatability and convergence. In fact, to circumvent these 

drawbacks, the organized collaboration between the two proposed methods can be the 

solution. With the help of meta-heuristic operators which are more precise and global, 

the search precision of the derivative-based method can be improved and the search 

region can as well be extended, thus, enhancing the accuracy and robustness. Besides, 

by introducing the gradient information of the derivative-based method into the meta-

heuristic method, the repeatability and convergence can be bettered. Furthermore, the 

integrated use of two different derivative-based methods can as well be a potential 

approach. For instance, the combined use of Bayesian estimation method which 

involves the application of a prior and Newton method which is a root-finding algorithm 

might be viable in tackling issues pertaining to accuracy and robustness. Apart, 

developing a meta-heuristic hybrid optimisation method by incorporating three different 

established algorithms other than the proposed algorithms can also be a topic of interest 

to improve the overall performance of the approach. From the perspective of 

applications, the use of the recommended methods in material defect quantification, 

structural health monitoring as well as self-healing material identification can be a 

promising scope of study due to the substantial impact in various industries, especially, 

in manufacturing and construction industries.    
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