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LONG-TERM ELECTRICAL ENERGY CONSUMPTION: FORMULATING 

AND FORECASTING VIA OPTIMIZED GENE EXPRESSION 

PROGRAMMING 

ABSTRACT 

This study mathematically formulates the effects of two different historical data types,                      

(i) electrical energy consumption in preceding years and (ii) socio-economic indicators 

(SEI) on electrical energy consumption (EEC)  of ASEAN-5 countries, namely, Malaysia, 

Indonesia, Singapore, Thailand, and Philippines.  

Firstly, a multi-objective feature selection approach is developed in this study to 

extract the most influential subsets of input variables from each historical data type (EEC 

and SEI) with maximum relevancy and minimum redundancy for long-term EEC 

modeling. In the developed feature selection approach, multi-objective binary-valued 

backtracking search algorithm (MOBBSA) is used as an efficient evolutionary search 

algorithm to search within different combinations of input variables and selects the non-

dominated feature subsets, which minimize simultaneously both the estimation error and 

the number of features. 

Then, in order to cope with the limitations of the existing artificial intelligence (AI) 

based methods, optimized gene expression programming (GEP) is applied to precisely 

formulate the relationships between historical data and EEC of ASEAN-5 countries. The 

optimized GEP as a recent extension of GEP approach is superior to other AI-based 

methods in giving an optimized explicit equation, which clearly shows the relationship 

between input historical data and EEC in different countries without prior knowledge 

about the nature of the relationships between independent and dependent variables. This 

merit is provided by balancing the exploitation of solution structure and exploration of its 

appropriate weighting factors through use of a robust and efficient optimization algorithm 

in learning process of GEP approach.  
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To assess the applicability and accuracy of the proposed method for long-term 

electrical energy consumption, its estimates are compared with those obtained from 

artificial neural network (ANN), support vector regression (SVR), adaptive neuro-fuzzy 

inference system (ANFIS), rule-based data mining algorithm, GEP, linear, quadratic and  

exponential models optimized by particle swarm optimization (PSO), cuckoo search 

algorithm (CSA), artificial cooperative search (ACS) algorithm and backtracking search 

algorithm (BSA). The simulation results are validated by actual data sets observed from 

1971 until 2013. The results confirm the higher accuracy and reliability of the proposed 

method as compared with other artificial intelligence based models. On the basis of the 

favorable results obtained, it can be concluded that recent enhancements in AI-based 

approaches, as in this study, could result higher accuracy with the least complexity for 

long-term EEC forecasting.  

Finally, future estimations of EEC in ASEAN-5 countries are projected up to 2030 by 

applying the rolling-based forecasting procedure on mathematical models derived from 

optimized GEP. Furthermore, EEC in ASEAN-5 countries is forecasted by autoregressive 

integrated moving average (ARIMA) model and first-order single-variable grey model 

(GM (1, 1)) and their forecasts are compared with those obtained by the proposed method. 

Keywords: electrical energy consumption, forecasting, gene expression 

programming, optimization 
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PENGELUARAN TENAGA LISTRIK TERJEMAHAN: MEMASUKKAN DAN 

MENINGKATKAN PROGRAMMING GENE OPTIMASI 

ABSTRAK 

Kajian ini secara matematik merumuskan kesan dua jenis data sejarah yang berlainan, 

(i) penggunaan tenaga elektrik dalam tahun-tahun sebelumnya dan (ii) petunjuk 

sosioekonomi (SEI) mengenai penggunaan tenaga elektrik (EEC) bagi negara-negara 

ASEAN-5, Indonesia, Singapura, Thailand, dan Filipina. 

Pertama, pendekatan pemilihan ciri multi-objektif dibangunkan dalam kajian ini untuk 

mengekstrak subset yang paling berpengaruh bagi pemboleh ubah input dari setiap jenis 

data sejarah (EEC dan SEI) dengan perkaitan maksimum dan redundansi minimum untuk 

pemodelan EEC jangka panjang. Dalam pendekatan pemilihan ciri yang maju, algoritma 

carian backtracking bernilai binary-objective (MOBBSA) digunakan sebagai algoritma 

carian evolusi yang cekap untuk mencari dalam kombinasi yang berbeza pembolehubah 

input dan memilih subset ciri yang tidak dikuasai, yang meminimumkan secara serentak 

kedua-dua anggaran kesilapan dan bilangan ciri. 

Kemudian, untuk mengatasi batasan kaedah berasaskan kecerdasan buatan (AI) sedia 

ada, pengaturcaraan pengekspresian gen yang dioptimumkan digunakan untuk 

merumuskan hubungan antara data sejarah dan EEC negara-negara ASEAN-5. GEP yang 

dioptimumkan sebagai pendekatan baru GEP yang dioptimumkan adalah lebih tinggi 

daripada kaedah berasaskan AI yang lain dalam memberikan persamaan eksplisit yang 

dioptimumkan, yang jelas menunjukkan hubungan antara input data sejarah dan EEC di 

negara-negara yang berbeza tanpa pengetahuan terlebih dahulu tentang sifat hubungan 

antara bebas dan pembolehubah bergantung. Kelebihan ini disediakan dengan 

mengimbangi eksploitasi struktur penyelesaian dan penerokaan faktor penimbang yang 
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sesuai melalui penggunaan algoritma pengoptimuman yang mantap dan cekap dalam 

proses pembelajaran pendekatan GEP. 

Untuk menilai kebolehgunaan dan ketepatan kaedah yang dicadangkan untuk 

penggunaan tenaga elektrik jangka panjang, anggarannya dibandingkan dengan yang 

diperoleh daripada rangkaian saraf tiruan (ANN), sokongan vektor regresi (SVR), sistem 

inferensi neuro-fuzzy adaptif (ANFIS) algoritma perlombongan data berasaskan 

peraturan, model GEP, linier, kuadrat dan eksponen yang dioptimumkan oleh 

pengoptimuman swarm partikel (PSO), algoritma carian pintar (CSA), algoritma carian 

koperasi buatan (ACS) dan algoritma carian mundur (BSA). Hasil simulasi disahkan oleh 

set data sebenar yang diperhatikan dari tahun 1971 hingga 2013. Hasilnya mengesahkan 

ketepatan dan keandalan yang lebih tinggi dari metode yang dicadangkan dibandingkan 

dengan model berdasarkan kecerdasan buatan yang lain. Berdasarkan hasil yang 

menggembirakan yang diperolehi, dapat disimpulkan bahawa peningkatan baru-baru ini 

dalam pendekatan berasaskan AI, seperti dalam kajian ini, dapat menghasilkan ketepatan 

yang lebih tinggi dengan kerumitan paling rendah untuk peramalan EEC jangka panjang. 

Akhir sekali, anggaran masa depan EEC di negara-negara ASEAN-5 diunjurkan 

sehingga 2030 dengan menggunakan prosedur ramalan berasaskan rolling mengenai 

model matematik yang diperoleh daripada GEP yang dioptimumkan. Tambahan pula, 

EEC di negara-negara ASEAN-5 diramalkan oleh model purata bergerak bersepadu 

autoregressive (ARIMA) dan model kelabu tunggal-ubah tunggal (GM (1, 1)) dan 

ramalan mereka dibandingkan dengan yang diperolehi melalui kaedah yang dicadangkan. 

Keywords: penggunaan tenaga elektrik, peramalan, pengaturcaraan gen gen, 

pengoptimuman 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Today, existing grids are under pressure to deliver the growing demand for power, as 

well as provide a stable and sustainable supply of electricity. These complex challenges 

are driving the evolution of smart grid technologies. Since the smart grid is taken as the 

future power grid development goal. The construction of the smart grid will exert 

significant impacts on the electric power industry. In smart grid environment, the capacity 

of distributed generators (DGs), transmission and distribution (T&D) system’s efficiency 

will be optimized, thus it brings a challenge to the grid’s stability while storing the 

electricity for future use has lots of difficulty and requires huge investment. Improper and 

inaccurate forecasts on this area will lead to electricity shortage, energy resource waste, 

loss of profit due to the penalty paid for under/over estimate of electricity consumption 

and even grid collapse. Therefore, accurate electricity demand forecasting is essential to 

move towards the smart grid technology (J. Wang, Li, Niu, & Tan, 2012). 

According to the time horizon, the electricity consumption forecasting is classified as 

short-term, medium-term and long-term forecasts. Short-term forecasting (several days 

ahead in hourly steps) has attracted substantial attention due to its importance for power 

system control, economic dispatch and the order of unit commitment in electricity 

markets. Midterm forecasting (several months ahead in weekly or longer steps) is 

especially interesting for companies operating in a deregulated environment, as it 

provides them with valuable information about the market need of energy, scheduling the 

maintenance of the units, the fuel supplies, electrical energy imports/exports. Long-term 

(years ahead in annual or longer steps) forecasting has been always playing a vital role in 

power system management and planning. The accuracy of long-term load forecast 

directly impacts on effectiveness of energy trading, system reliability, operation and 

maintenance (O&M) costs, T&D expanding, and generators scheduling. Moreover, 
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accurate long-term power load forecasting can provide reliable guidance for power grid 

development and power construction planning, which is also important for the sustainable 

development of any country.  

Accurate forecasts are also a prerequisite for decision makers to develop an optimal 

strategy that includes risk reduction and improving the economic and social benefits. The 

accurate long-term load forecast gives the more realistic spectrum of future country’s 

energy sources consumption for moving towards sustainable development in a 

globalizing world while the growing global population is driving an even greater increase 

in the electricity consumption. 

Electrical energy consumption (EEC) reflects the degree of economic development, 

and much evidence supports a causal relationship between economic growth and energy 

consumption. Association of Southeast Asian Nations (ASEAN) is one of the largest 

economic zones in the world with rapid and relatively stable economic growth. In fact, 

ASEAN has experienced much lower volatility in economic growth since 2000 than the 

European Union (analysis, 2013). If ASEAN considered as a single economic entity, it 

would already rank as the sixth-largest economy in the world, trailing the US, China, 

Japan, Germany, and the United Kingdom (ASEAN Community in Figures (ACIF), 2013 

(6th ed.), Jakarta: ASEAN, Retrieved 9 May 2015).   

ASEAN is a major global hub of manufacturing and trade, as well as one of the fastest-

growing consumer markets in the world (analysis, 2013). As the region seeks to deepen 

its ties and capture an even greater share of global trade, its economic profile is rising 

which directly reflects on EEC.  

According to the World Bank (WB) data bank, ASEAN's electricity consumption has 

changed dramatically since the early 1970s with average annual growth rate of 8.58% that 

is almost two (2.7) time more than the average annual growth rate of the global EEC. 

Only the five largest economies in this area (ASEAN-5 countries); Malaysia, Indonesia, 
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Singapore, Thailand, and Philippines consumed 52.65 MTOE in 2013 as shown in Figure 

1.1, which ranked the ASEAN-5 countries as the world's sixth-largest electricity 

consumer, behind the China, US, Japan, India, and Russia. So, long-term forecasting of 

EEC to manage a power system, and fulfill power requirements with consideration of 

economic growth in the future is one of the most critical and challenging issues for 

sustainable development of ASEAN-5 countries.  

 

Figure 1.1: The annual aggregate amount of EEC in ASEAN-5 countries from 

1971 to 2013 

1.1.1 ASEAN Power Grid  

ASEAN’s high economic growth has rapidly increased electric energy consumption. 

Consequently, it has driven up the energy security risks. ASEAN recognizes the critical 

role of an efficient, reliable, and resilient electricity infrastructure in stimulating regional 

economic growth and development. To meet the growing electricity demand, huge 

investments in power generation capacity will be required. 

Since the ASEAN-5 countries seeking to meet the expected growth in demand of the 

power sector in coming decades, investment in additional generating capacity and grids 

that is both sustainable and cost effective will be the biggest challenge.  
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 At present, both the availability and the affordability of fuel supply are being 

prioritized over environmental sustainability; hence, fossil fuels, particularly coal and gas 

fired turbines, dominate the fuel mix. Efforts to use energy resources effectively are 

hampered by the uneven distribution of these resources and different levels of investment 

and economic development among ASEAN member countries. Sufficient financial 

resources, enabling governance environments, and regional coordination are critical 

drivers for reliable (available), sustainable, and affordable power systems. Secure, 

sustainable, and affordable electricity generation is vital to support regional economic 

growth in any region. Thus, these three daunting challenges have to be addressed when 

facing investment in this region (IEA, 2015). Together, these three challenges constitute 

the power supply trilemma as imply a trade-off when choosing one over the other. The 

energy trilemma is illustrated in Figure 1.2. 

 

 
 

 

Figure 1.2: The energy trilemma 

 

Energy can be available all the time  

Energy can be affordable for all  Energy can be supplied in future 
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A regional ASEAN Power Grid (APG) would address the power supply trilemma by 

connecting countries with surplus power generation capacity to those facing a deficit; this 

would allow ASEAN countries to meet rising energy demand, improve access to energy 

services, and reduce the costs of developing an energy infrastructure. In recognizing the 

potential advantages to be gained from the establishment of integrated systems, the 

electricity interconnecting arrangements is mandated within the region through the APG. 

The primary aim of APG is to ensure regional energy security by promoting the effective 

utilization and sharing of resources for common regional benefit. In addition, the APG 

could help eliminate inefficient generation, lowering overall costs, and making more 

efficient electricity generation in the region. An interconnected power system could also 

further enhance the development and integration of variable renewable power generation 

capacity, which would bring benefits such as enhanced energy security and environmental 

sustainability. The APG will contribute to the creation of the provision for future energy 

trade, and mutually exploit the abundant energy resources within the region and reduce 

the dependency of fuel imports from other regions. 

Energy resources, including fossil fuels and renewables, are abundant throughout the 

geographical region of ASEAN. The summary of energy resources of ASEAN-5 

countries is reported in Table 1.1 (T. Ahmed et al., 2017). Indonesia is the largest oil 

producer, corresponding to its possession of the largest oil reserve in the region. However, 

Malaysia is the only net oil exporter of the region. Indonesia and Malaysia stand in the 

top of natural gas reserves. Thailand and Singapore are the net liquefied natural gas 

(LNG) importer in this region, while Malaysia and Indonesia are net exporters of LNG. 

Coal is most abundant fossil fuel in the region. Indonesia, Thailand, and Malaysia have 

the highest amount of coal reserves, respectively. Indonesia is the world largest steam 

coal exporters. While, Thailand, Malaysia, and Philippines are importers of steam coal.  
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The ASEAN-5 countries have an abundance of hydropower resources, including large, 

mini, micro, and pico hydropower plants. Indonesia and Malaysia have massive potentials 

for hydropower. Moreover, Philippines and Thailand possess great resources for 

hydropower generation, and they are actively developing this sector. 

ASEAN-5 countries have a great potential for non-hydro based renewable generation. 

A significant supply of biomass energy is available in this region, from agricultural 

residues of rice husks, rice straw, corn cobs, sugarcane trash, cassava stalks, bagasse, as 

well as coconut and palm oil. Indonesia, Malaysia, and Thailand are the top three 

countries that have the highest theoretical biomass energy reserve, respectively, as 

Indonesia and Malaysia are the highest palm oil producers in the world and 40% of the 

Thai populations are actively depend on agriculture sector for livelihood. However, the 

technical and economic potential of biomass energy is much less due to difficulty of 

collecting these residues from its distributed geographic territory. 

 Philippines and Indonesia are the second and third largest geothermal power 

generators in the world, respectively. The rest of countries have not exploited their 

respective geothermal energy resources potential as of yet.  

Solar is one of the most important and usable clean energy sources in the world, and 

due to the fact that ASEAN-5 countries are generally tropical, the region has the highest 

solar irradiation, at an average of 4.5 kW h/m2, encompassing a significant area. Solar 

photovoltaic (PV) prospects and utilization of individual ASEAN countries has been 

reviewed in (Ismail, Ramirez-Iniguez, Asif, Munir, & Muhammad-Sukki, 2015) and 

shows that ASEAN countries have annual solar insolation level ranging from 1460 to 

1892 kW h/m2 per year. Consequently, Malaysia and Thailand are significantly 

advantaged when it comes to solar energy.  

Univ
ers

ity
 of

 M
ala

ya



7 

With the exception of Singapore, most ASEAN-5 countries have great potentials for 

onshore wind energy potentials. Thailand and Philippines have the highest theoretical 

wind energy potentials respectively. Furthermore, ASEAN-5 countries are generally 

located in coastal areas; hence, there is a great possibility for offshore wind energy 

generation. While all ASEAN-5 countries have high potential for harvesting offshore 

wind energy, it is necessary to exploit the offshore wind potentials for this region. 

Table 1.1: Energy resources in ASEAN-5 countries 

Country 
Oil 

(BBI)1 

Gas 

(TCF)2 

Coal 

(MMT)3 

Hydro 
(MW) 

Biomass 
(MW) 

Geothermal 
(MW) 

 
Solar 

(MW) 

Onshore 
wind 

(MW) 

Offshore 

wind  
(TW.h, 

2030) 

Malaysia 3.42 84.40 1024.50 29500 29000 – 1412 2599 13.39 

Indonesia 10 169.5 38000 75625 49810 29000 551 9300 21.34 
Singapore – – – – – – – – 0.22 

Thailand 0.16 12.20 1240 16655 22831 – 3000 190000 19.42 
Philippines 0.28 4.60 346 13107 20 2047 350 76000 6.96 

1. one barrel of crude oil (BBL) 

2. trillion cubic feet (TCF) 

3. million metric tons (MMT) 

Since electricity cannot be cost effectively stored on a national scale, a country 

develops domestic electricity sources to achieve higher self-sufficiency. As it shows in 

Table 1.1, ASEAN-5 countries are unevenly endowed with power generation resources 

such as coal, natural gas, and hydro. Nevertheless, some countries in the region have more 

resources than required to meet domestic demand, others fail to develop sufficient 

electricity sources on their own due to resources shortages.  

International power grid interconnection is a solution to this problem. It resolves 

difficulties in power resources endowment so, it allows a region to develop electricity 

infrastructure more efficiently than individual countries.  

The continuing efforts of the ASEAN-5 countries in strengthening and restructuring 

their respective power market industry are oriented towards this direction. Electricity is 

produced through a mix of oil, gas, coal, hydro, geothermal and other renewable energy 

sources. Enhancing electricity trade across borders, through integrating the national 
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power grids, is expected to provide benefits of meeting the rising electricity demand and 

improving access to various energy resources.  

The efficient utilization of clean energy resources to meet increasing electricity 

demand is imposing the integration of the electricity market and the construction of secure 

transmission mechanisms around the globe. Accordingly, the ASEAN-5 countries are 

integrating their large geographical power transmission infrastructure via APG.  

ASEAN-5 countries have an abundance of renewable resources throughout their 

geographical region. However, the distribution is far from uniform, they have high 

potential to further harness renewable energy (RE), especially hydro, geothermal, 

biomass/biogas, wind, and solar power. Table 1.2 tabulates the present status of installed 

capacity of renewable generators in ASEAN-5 countries and their future targets (T. 

Ahmed et al., 2017). It can be observed that ASEAN-5 countries have less amount of 

installed capacity for renewables at present. Indonesia has the largest renewable power 

generation in this region with only 1353 MW installed capacity, followed by Thailand, 

Philippines, Malaysia, and Singapore. Recognizing the benefits that RE provides in terms 

of energy security, most countries have set individual targets and support schemes, which 

directly support the APG targets. According to Table 1.2, the target of RE generation in 

each country is utilizing the abundant renewable sources to generate the maximum 

amount of clean energy. 

Table 1.2: Installed capacity of renewable power generators for ASEAN-5 

countries in 2013 

Country 

Installed 

Capacity 

(MW) 

Target of RE generation 

Malaysia 129  985 MW in 2015 (~ 5.5% of energy mix), 2080 MW in 2020 and 4000 MW in 2030 

Indonesia 1353  17% of total primary energy consumption in 2025 and 25.9% in 2030 

Singapore 10  4% of total generated electricity from RE sources in 2030 

Thailand 984  13701 MW; 25% share of RE in 2021 

Philippines 171  15234.3 MW in 2030 
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The primary advantages of system integration are the increase in security of supply 

and efficiency. Larger service territories allow for the pooling of generating resources, 

thus taking advantage of generation diversity. Therefore, APG supports access to multi-

technology and geographically dispersed RE resources. Furthermore, system integration 

may boost renewable power generation as variable sources can be supported by flexible 

generation technologies. In the short term, this could lead to considerably greater 

exploitation of hydroelectric resources, while significantly higher targets for modern 

renewable energy can be achieved only in the medium to long-term (IEA, 2015). 

The rapid growth of energy demand, caused by an increasing population as well as 

favorable economic growth rates, results in ASEAN-5 countries being faced with pressure 

on energy access and energy security. This is reinforced by the complicated archipelagic 

geography of the region. Even though they are a net exporter of energy, the countries 

differ very much in their reserves of fossil fuels and are dependent on imports of at least 

one fossil fuel. High fossil fuel dependency is due to the uneven distribution of 

renewables throughout the geographical region, high capital cost involvement of 

renewables generation, and the lack of transmission expansion planning for remotely 

located renewable generators. Mature renewable energy technologies such as hydro and 

geothermal are developed in the region but still have large potential for further expansion. 

New technologies like solar and wind start to see their deployment in recent years but 

their fraction in the total energy mix remains negligible. 

Renewable power generations could be expedited by utilizing semi-shallow 

transmission expansion planning. In addition, the ASEAN power market integration via 

the establishment of APG could be another possible solution in meeting the increasing 

electricity demand from clean energy sources. The establishment of APG will create a 

sustainable and secure power system network, where investors can invest beyond borders 
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to renewable generators, and could easily transfer the generated power from cross border 

trades. In addition, APG will reduce the investment cost of electricity generation and 

increase the net savings of the ASEAN-5 countries. 

The geographical map of APG interconnections is illustrated in Figure 1.3. APG have 

been divided into three regions, namely Eastern, Northern, and Southern regions. It can 

be observed from Figure 1.3 that among sixteen interconnection projects, some 

interconnection projects are already in operation, some are ongoing, and rests of the 

interconnection projects will be established in future. The status of existing, ongoing and 

future projects are given in Tables 1.3 – 1.6, respectively according to updates from Heads 

of ASEAN Power Utilities/Authorities (HAPUA) secretariat (T. Ahmed et al., 2017). 

Table 1.3 shows that seven projects of APG are in operation with cross border power 

transfer of 5032 –5192 MW, while, Table 1.4 illustrates that five projects of APG are 

under construction, which will allow 5589 MW of cross border power transfer. From 

Table 1.5 it can be seen that, another twelve projects of APG are in planning stage with a 

capacity of 24,829– 27,979 MW cross border power transfer. 

APG as a flagship program is an initiative to construct a regional power 

interconnection to connect the region, first on cross-border bilateral terms, and then 

gradually expand to sub-regional basis and subsequently leading to a total integrated 

South East Asia power grid system. So, the long-term strategic goals of APG can be 

concisely summarized as follows:  

• To facilitate and expedite the implementation of the ASEAN Interconnection 

Master Plan and to further harmonize technical standards and operating 

procedures as well as regulatory and policy frameworks among the ASEAN 

Member States. 
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• To achieve a long-term security, availability and reliability of energy supply, 

particularly in electricity through regional energy cooperation in Trans-ASEAN 

Energy Network. 

• To optimize the region’s energy resources towards an integrated ASEAN Power 

Grid system. 

• To further harmonize all aspect of technical standard and operating procedure as 

well as regulatory frame works among member country. 

 

Figure 1.3: Geographical map of APG interconnections 
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Table 1.3: APG existing projects 

No. Project System Type Capacity (MW) 

1 P. Malaysia –Singapore    

 Plentong– Woodlands HVAC: 230 kV EE1 450 

2 Thailand - P.Malaysia    

 Sadao - Bukit Keteri HVAC: 132/11 5 kV EE 80 

 Khlong Ngae - Gurun HVDC: 300 kV EE 300 

6 Sarawak– West Kali-mantan    

 Mambong – Bengkayang HVAC: 275 kV EE 70-230 

9 Thailand– Lao PDR    

 
Nakhon Phanom –Thakhek – 

Then Hinboun 
HVAC: 230 kV PP2 220 

 Ubon Ratchathani 2 – Houay Ho HVAC: 230 kV PP 126 

 Roi Et 2 - Nam Theun 2 HVAC: 230 kV PP 948 

 
Udon Thani 3– Na Bong – Nam 

Ngum 2 
HVAC: 500 kV PP 597 

 
Nakhon Phanom 2 – Thakhek – 

Theun Hin-boun 
HVAC: 230 kV PP 220 

 
Mae M oh 3 – Nan 2 – Hong Sa 

# 1, 2, 3 
HVAC: 500 kV PP 1473 

10 Lao PDR– Vietnam    

 Xekaman 3 - Thanhmy HVAC: kV PP 248 

12 Vietnam– Cambodia    

 
Chau Doc – Takeo – Phnom 

Penh 
HVAC: 230 kV PP 200 

14 Thailand– Cambodia    

 
Aranyaprathet – Bantey 

Meanchey 
HVAC: 115 kV PP 100 

Total Capacity 5032-5192 

      1: Energy Exchange (EE), 2: Power Purchase (PP) 

 

Table 1.4: APG on-going projects 

No. Project System Type Capacity (MW) 

2 Thailand -P.Malaysia    

 
Su – ngai kolok – Rantau 

Panjang 
HVAC: 132/115 k V EE1 100 

4 P. Malaysia – Sumatra    

 Melaka - Pekan Baru HVDC: kV 
PP2 

 & EE 
600 

8 Sarawak– Sabah – Brunei    

 Sarawak – Brunei HVAC: 275 k V EE 2 * 100 

9 Thailand– Lao PDR    

 
Udon Thani 3 – Na Bong – Nam 

Ngiep 
HVAC: 500 kV PP 269 

 
Ubon Ratchathani 3– Pakse – Xe 

Pien Xe Namnoi 
HVAC: 500 kV PP 390 

 
Khon Kaen 4 – Loei 2 – 

Xayaburi 
HVAC: 500 kV PP 1220 

10 Lao PDR– Vietnam    

 
Xekaman 1 - Ban Hat San -

Pleiku 
HVAC: 500 kV PP 1000 

 Nam Mo - Ban Ve HVAC: 230 kV PP 100 

 Luang Prabang - Nho Quan HVAC: 500 kV PP 1410 

13 Lao PDR– Cambodia    

 Ban Hat – Stung Treng HVAC: 230 kV PP 300 

Total Capacity 5589 

1: EE (Energy Exchange), 2: PP (Power Purchase) 
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Table 1.5: APG future projects 

No. Project System Type Capacity (MW) 

1 P. Malaysia – Singapore    

 
Plentong – Woodlands (2nd 

link) 
HVDC: kV PP1 600 

2 Thailand– P. Malaysia    

 
Khlong Mgae – Gurun 

(Addition) 
HVDC: 300 kV EE2 300 

3 Sarawak– P. Malaysia HVDC: kV PP 2 * 800 

5 Batam – Singapore HVAC: kV PP 3 * 200 

7 Philippines – Sabah HVDC: kV EE 500 

8 Sarawak – Sabah – Brunei    

 Sarawak – Sabah HVAC: 275 kV PP 100 

9 Thailand– Lao PDR    

 Nong Khai – Khoksa - at HVAC: 230 kV EE 600 

 Nakhon Phanom – Thakhek HVAC: 230 kV EE 510 

 Thoeng – Bo Keo HVAC: 230 kV EE 315 

 Udon Thani 3 – Na Bong HVAC: 500 kV PP 1040 

 Ubon Ratchathani 3– Pakse HVAC: 500 kV PP  

 
Nan 2 – Tha Wang Pha – Nam 

Ou 
HVAC: 500 kV PP  

10 Lao PDR – Vietnam    

 Xekaman 1 - Pleiku 2 HVAC: 230 kV PP 290 

 Luang Prabang – Nho Quan HVAC: 500 kV PP 1600 

 Nam Mo - Ban Ve HVAC: 230 kV PP  

11 Thailand – Myanmar    

 
Mai Khot – Mae Chan – Chiang 

Rai 
HVAC: 230 kV PP 369 

 Hutgyi – Phitsanulok 3 HVAC: 500 kV PP 1190 

 Mong Ton – Sai Noi 2 
HVAC: 500 - 800 

kV 
PP 3150 - 6300 

 Myanmar– Thailand HVAC: 500 kV PP 7000 

12 Vietnam - Cambodia    

 Tay Ninh –  Strung Treng HVAC: 230 kV PP 465 

14 Thailand – Cambodia    

 Battambang – Prachin Buri 2 HVAC: 230 kV EE 300 

 Stung Meteuk (Mnum) – Trat 2 HVAC: 230 kV PP 100 

 Koh Kong - Thailand HVAC: 500 kV PP 1800 

15 E. Sabah– E. Kalimantan    

 Sipitang – East Kalimantan HVAC: kV EE 200 

16 Singapore – Sumatra    

 Sumatra – Singapore HVDC: kV PP 600 

Total Capacity 24829 - 27979 

 1: EE (Energy Exchange), 2: PP (Power Purchase) 

Two primary advantages of system integration are the increase in security of supply 

and efficiency. Larger service territories allow for the pooling of generating resources, 

thus taking advantage of the benefits of generation diversity. This diversity also has the 

ability to aggregate demand. Power systems can be integrated through coordination or 

complete consolidation. In the ASEAN context, complete consolidation is impractical, 

not least because of geographical factors, but also because of complete consolidation 
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would necessitate the establishment of a single market operator with authority that 

stretches across multiple jurisdictions, requiring changes in national laws. Consolidation 

is achievable, however, at a sub-regional level. Between the various sub-regions, 

coordination is a more efficient option for power sector integration. Thus, the efficient 

governance of APG can be achieved under both liberalized and regulated market.  

Principally, development of the power sector needs a strong, reliable, and depoliticized 

governance framework. A precondition for such a governance framework is an 

independent and strong regulator. As regulator plays a pivotal role in a regional market, 

the ASEAN Energy Regulators' Network (AERN) is formally established among the 

ASEAN energy regulators to forge closer cooperation among ASEAN energy 

departments with a view of promoting sustainability and economic development of the 

region. 

A regulatory agency (also regulatory authority, regulatory body, or regulator) is 

independent from other branches or arms of the governments for exercising autonomous 

authority over APG operation in a regulatory or supervisory capacity. It deals in the areas 

of administrative law, regulatory law, secondary legislation, and rule/policy making. 

Accordingly, the AERN must be formally separated from the executive branch (i.e. 

department of energy in each country), and governed by statute without executive 

political influence on the regulation process.  

In liberalized markets, efficiency can only be obtained by having transparent 

procedures, fair grid access, and a substantial number of market players. The electricity 

prices for final consumers generally consist of the costs of generation, network, retailing, 

taxes and levies as well as profit margins. The market and regulatory system need to 

ensure that all these components are fully covered to stimulate future investment. Tariffs 

should be set in such a way to cover these costs. It is also critical to define and designate 
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the operation and maintenance responsibilities of each regulator early on, to avoid overlap 

and misunderstanding of roles. Additionally, matters pertaining to cross-border energy 

transfer must be managed in line with practice. Hence, APG independent system operator 

(AISO) and the AERN will work closely to address the technical, legal and economic 

issues of cross border interconnections for multilateral electricity trade in the region. 

Their key responsibilities include establishing electricity security regulations, allocating 

the cost of transmission development, revising network codes, system monitoring, 

allocating the interconnection capacity, providing the mechanisms to deal with congested 

capacity within the national power systems, facilitating the connection of new producers 

to the power system and providing the plan for future expanding of power system. 

1.1.2 Overview of EEC in ASEAN-5 Countries 

1.1.2.1 Malaysia 

As illustrated in Figure 1.1, the electric energy consumption of Malaysia has been 

growing from 0.3 MTOE (26.63 KGOE per-capital) in 1971 to 11.53 MTOE (387.96 

KGOE per-capital) in 2013 with the average annual growth rate of 9.19%. The Malaysia’s 

compositions of gross power generation for the last five years (2009-2013) adapted from 

statistical report on electric power industry conducted by energy commission is illustrated 

in Figure 1.4 (Malaysia Energy Information Hub Unit, 2015). According to this report in 

2009, 48.1%, 35.51%, 14.24%, and 2.18% of gross power generation composition had 

generated from natural gas, crude oil, coal, and hydropower respectively. On that year, 

39.37%, 29.04%, 18.97%, 12.26%, 0.22%, and 0.13% of total generation were for 

industries, commercial sector, residential sector, grid loss (transmission loss plus power 

plants consumption), agricultural sector, and public transportation respectively. The 

electricity sales to various consuming sectors from 2009 until 2013 are shown in Figure 

1.5.  
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Malaysia as a developing country has been subject to numerous perturbations on its 

economy. In recent years, infrastructure limitations such as concerns about energy 

consumption, scarcity of resources, fluctuation of fuel price, fluctuation on electricity 

consumption patterns, and economic crisis in this country have forced the government to 

move toward utilizing RE for sustainable development of power system. Hence, beyond 

year 2011, biodiesel, biomass, biogas, and solar power plants have been developed to 

redress the power system due to high-expected demand in the following years. The 

electricity consumption trend of Malaysia has been changing gradually due to the increase 

in population, urban life, and economic growth. The portions of electric energy 

consumption have changed to 41.71%, 30.06%, 16.62%, 8.14%, 0.28%, and 0.18% for 

industries, commercial sector, residential sector, grid loss, agricultural sector, and public 

transportation respectively while 44.06%, 35.79%, 16.61%, 2.96%, 0.33%, 0.21%, 

0.04%, and 0.01% of the total electric power consumption have been supplied from 

natural gas, crude oil, coal, hydropower, biomass, biodiesel, solar, and biogas respectively 

in 2013. 

 
Figure 1.4: Malaysia’s composition of gross power generation 
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Figure 1.5: Electricity sale to various consuming sectors in Malaysia 

 

1.1.2.2 Indonesia 

Indonesia as a developing country has the largest population and economy in the 

ASEAN region. The electric energy consumption in this country has been growing from 

0.14 MTOE (1.23 KGOE per-capital) in 1971 to 16.92 MTOE (67.73 KGOE per-capital) 

in 2013 with the average growth rate of 12.36%.  

As illustrated in Figure 1.6, in 2011, 73.79% of its fuel mix came from fossil fuel 

sources (36.14% oil–fired, 19.39% gas-fired, and 18.26% coal-fired power plants). The 

remainder is made up of biomass (21.57%), hydroelectric (2.21%), geothermal (1.16%), 

and other renewables (1.26%). According to Figure 1.7, on that year, 40.55%, 34.1%, 

24.59%, 0.67%, and 0.08% of total power generation were for household sector, 

industries, commercial sector, grid loss (transmission loss plus power plants 

consumption), and public transportation respectively (Ministry of Energy and Mineral 

Resources, 2015).  

Indonesia is one of the leading exporters of steam coal in the world and also one of the 

largest exporters of LNG. Since 2004, the country’s oil production has been declining and 

as a result insufficient to cover the oil demand. Indonesia has therefore become a net 

importer of oil. Thus, Indonesia is focusing on the use of locally available energy sources 
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such as coal-fired generation and its geothermal potential to increase its energy diversity 

and lessen its dependency on oil. 

 Indonesia is one of the two countries in the ASEAN region that has abundant 

geothermal resources. Additionally, it produces a noteworthy part of its power from 

biomass and hydro sources. According to Figure 1.6, in 2013, 26.45% of Indonesia’s 

power production is covered by renewables (19% biomass, 2.39% hydroelectric, 4.41% 

biofuel, and 0.66% geothermal). The remainder is made up of fossil fuel sources (33.67% 

oil, 25.46% coal, and 14.41% gas).  

While urban development is high, rural electrification faces a multitude of challenges. 

As shown in Figure 1.7, the portions of electric energy consumption have not changed 

significantly since last five years. Although the total electric energy consumption reached 

to 16.92 MTOE in 2013, the portions of electric energy consumption remained as 40.87%, 

34.08%, 24.25%, 0.73%, and 0.07% for household sector, industries, commercial sector, 

grid loss, and public transportation respectively. 

 

Figure 1.6:  Indonesia’s composition of gross power generation 
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Figure 1.7: Electricity sale to various consuming sectors in Indonesia 

 

1.1.2.3 Singapore 

Given Singapore’s mature economy as compared to other ASEAN countries, electric 

energy consumption growth is relatively slow. As shown in Figure 1.1, the electric energy 

consumption of Singapore has been growing from 0.21 MTOE (99.3 KGOE per-capital) 

in 1971 to 4.1 MTOE (760.01 KGOE per-capital) in 2013 with the average growth rate 

of 7.42%. Singapore is fully dependent on imported fuel resources for its power 

generation. As shown in Figure 1.8, approximately 90% of Singapore’s electric energy 

consumption has been produced from gas-fired generation in 2013. Figure 1.9 illustrates 

the electricity sales to various consuming sectors in this country from 2009 until 2013. 

As shown in this figure, in 2013, 41.92%, 37.19%, 15.03%, 5.27%, and 0.58% of total 

power generation have been used for industries, commercial sector, household sector, 

public transportation, and grid loss (transmission loss plus power plants consumption) 

respectively (The Energy Market Authority (EMA), 2016). 

Due to limited land area and natural endowments, Singapore is recognized as 

alternative energy disadvantaged country. Although, Singapore has no reserves of fossil 

fuels, it plays a major role as an oil trading and refining hub for the region. 
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Figure 1.8: Singapore’s composition of gross power generation 

 

 

Figure 1.9: Electricity sale to various consuming sectors in Singapore 

 

1.1.2.4 Thailand 

Thailand’s electric energy consumption has been growing from 0.39 MTOE (10.34 

KGOE per-capital) in 1971 to 14.24 MTOE (212.45 KGOE per-capital) in 2013 with the 

average growth rate of 9.06%. Thailand’s composition of gross power generation for the 

last five years (1992-2013) is reported in Figure 1.10. According to this report (Energy 

Policy and Planning Office (EPPO), 2015), in 2013, natural gas makes up 70.21% of 

power generation as domestic oil and coal reserves are very limited. The remainder is 
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made up of lignite (11.24%), coal (9.57%), RE (4.24%), hydropower (3.87%), oil 

(0.75%), and diesel (0.1%).  

Dependency on gas-fired power generation makes Thailand vulnerable to fluctuations 

in the international market, and poses important concerns for electricity supply and power 

security. Thailand’s national power development plan focuses on increasing green energy 

to maintain the security and adequacy of the power system. Hence, beyond year 2009, 

renewable power plants have been added to the power system due to high-expected 

demand in the following years. Since the production is not sufficient to cover country’s 

energy needs, Thailand is a net importer of fossil fuels as well as electricity.  

The electricity sales to various consuming sectors in this country from 2009 until 2013 

are reported in Figure 1.11. As illustrated in this report, Thailand’s electricity import has 

been 5.54% of total power generation in 2009. Against this backdrop, Thailand will play 

a major role in the APG as future interconnections with Lao PDR, Cambodia, Myanmar, 

and Malaysia, which have the potential to boost security of supply and present the 

opportunity of additional electricity imports. Increasing import capacity would help 

Thailand to decrease its gas dependency, decarbonize its electricity sector, and increase 

access to generation capacity.  

 

Figure 1.10: Thailand’s composition of gross power generation 
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Figure 1.11: Electricity sale to various consuming sectors in Thailand 

 

1.1.2.5 Philippines 

The electric energy consumption of Philippines has been growing from 0.75 MTOE 

(20.27 KGOE per-capital) in 1971 to 5.85 MTOE (59.51 KGOE per-capital) in 2013 with 

the average growth rate of 5.19%. As shown in Figure 1.12 (Department of Energy, 2013), 

the power generation mix is relatively balanced among coal (34.79%), gas (28.8%), 

geothermal (13.25%), hydropower (12.52%), oil (10.48%), and other renewables (0.15%) 

in 2013. The country is the world’s second-largest consumer of geothermal energy and 

has a high capacity for renewable energy. In 2009, geothermal provided at about 16.67% 

of its electric energy consumption, and still has potential for further substantial expansion 

of geothermal power generation.  

The Philippines consists of over 7000 islands. Due to this complex geography, the 

government faces challenges for household electrification. The electricity sales to various 

consuming sectors from 2009 until 2013 are reported in Figure 1.13 (Department of 

Energy, 2013). As it reported, the portion of electric energy consumption has not grown 

significantly for residential sector in this country.  
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Figure 1.12: Philippines’s composition of gross power generation 

 

 
Figure 1.13: Electricity sale to various consuming sectors in Philippines 

 

 

1.2 Problem Statement 

The geographical distribution of the energy resources of ASEAN-5 countries is 

illustrated in Figure 1.14. It can be inferred from this figure that the integration of the 

energy market could enhance the utilization of the energy resources of the region. Though 

ASEAN-5 countries are rich in energy resources, meeting this increasingly electric energy 

demand at its regular business pace will be challenging. The uneven distribution of 

renewable energy resources and different levels of economic development among 

ASEAN-5 countries complicate efforts to effectively use energy resources to meet 
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demand not just between but also within countries. In particular, the electric power supply 

trilemma of the sustainability, availability and affordability of fossil fuels (oil, gas, coal) 

poses challenges for power supply in Southeast Asia. While growing regional power 

demand leads to increased competition for available energy resources and tightens the 

availability of conventional fuel supply, sustainability concerns call for increasingly 

cleaner energy supplies. 

However, the APG is a solution for power supply trilemma in this region; it has been 

faced significant hurdles in creating a fully liberalized regional electricity market. Given 

the prevalence of subsidies, the absence of modern metering systems in most countries 

and a need to invest in economically unviable rural electrification from a utility viewpoint 

are the main difficulties in creating a fully liberalized regional electricity market. 

Moreover, ASEAN-5 countries vary greatly in their size, political, economy, geography, 

and national energy resources. Geographically, ASEAN-5 countries are mountainous and 

in many cases separated by large bodies of water, making some physical interconnections 

a technical and economic challenge. ASEAN-5 countries also vary considerably with 

regard to their power sector regulations, market structure, and technical characteristics. 

Both physical and institutional infrastructures need to be in place for regional energy 

cooperation to function properly. Due to the economic differences between the ASEAN-

5 countries, not all the countries have the luxury to produce and distribute electricity 

easily. Nor will they all have the same abilities to distribute electricity consistently and 

the electricity access in this region varies greatly from country to country. Therefore, the 

electricity consumption rate in the ASEAN region is not uniform. Similarly, there is a 

large discrepancy between ASEAN-5 countries in installed capacity of power. The 

problem becomes more acute when the socio-economic conditions, legal, political, 

technical, and cultural diversity between ASEAN-5 countries are considered. It 

recognizes that even if a fully consolidated regional market may not be achievable in the 
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foreseeable future, the growth in electricity demand of ASEAN-5 countries can be more 

efficiently met by establishing long and medium-term regional plans to add capacity and 

expand or upgrade APG. Regional planning and cost sharing allow for larger investments 

than would otherwise be possible. Having clear and agreed upon plans can also translate 

to savings of both time and cost. For example, building a higher rated transmission line 

to cater for long-term forecasted demand growth is better than building lower rated lines, 

which would only have to be upgraded later to meet future demand. 

As APG currently lacks enforcement, planning, and budgetary powers, ASEAN 

member states need to start conducting adequate studies and look at workable governance 

models to increase electricity trade across countries. Additionally, it is essential that the 

AISO and AERN have clear knowledge about future electric energy consumption of each 

country to expand the APG efficiently according to the long-term mutual benefit of 

interconnected countries. It is necessary to study each country individually since ASEAN-

5 countries have different dependency on EEC with wide range of electric energy 

resources and have different level of economic development. The inherent differences 

among ASEAN-5 countries have important implications for the different power systems 

in terms of markets (pricing, impact of subsidies), governance frameworks (institutions, 

policies), electricity security (national resources, electrification, emergency), as well as 

region-wide initiatives, at both individual country and regional levels. With an almost 

linear trend in population growth and strong economic development, demand growth may 

soon surpass the available capacity for generation. So, these inherent differences among 

ASEAN-5 countries will become increasingly important both as challenges and as 

opportunities, which are summarized in Figure 1.14.  
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Bangkok Manila

Kuala Lumpur

Jakarta

SINGAPORE

MALAYSIA

THAILAND

PHILIPPINES

INDONESIA 

ASEAN-5 

Countries

Largest electric energy consumer in ASEAN, with massive scope for 
growth; it exports steam coal (the world’s largest) and liquefied 
natural gas (LNG), and is an increasing importer of oil. It has the 
world’s third largest installed geothermal electric capacity. 
Additionally, Indonesia is the world's largest producer of palm oil. 

        

Opportunities :

* Coal business

* Palm oil plantation

* Exploration and production (E&P) 

business in oil and gas industry

Challenges :

* Rural electrification

* Energy subsidies

* Utilization of green energy

Indonesia

Strategically situated, it has become 
ASIA’s key oil trading and refining hub 
(the third largest in the world) and could 
become a major gas hub. 

Opportunities :

* Oil trading and       

refining hub 

Challenges :

* High dependency 

on imported energy 

Singapore

Third largest electric energy consumer in 
ASEAN with relatively high per-capital 
consumption; it has a significant margin of 
capacity over demand. It exports oil and 
LNG significantly, but production is 
maturing. Additionally, Malaysia  is the 
world's second largest producer of palm oil.

Challenges :

* Energy subsidies

* Utilization of 

green energy

Opportunities :

* Refinery & 
petrochemical business 

* LNG business 

Malaysia

Second largest electric energy consumer in ASEAN 
and heavily dependent on energy imports due to 
limited energy resources; aims to diversify electricity 
generation. 

Challenges :

* High dependency on 
imported energy 

* Energy subsidies

* Utilization of green energy

Opportunities :

* Resource of biomass

* High reserve of 

natural gas 

Thailand

Fast rising electricity demand requires 
expanded supplies; strongly reliant on energy 
imports, thought it has the world’s second 
largest installed geothermal electric capacity 
beyond the US and it has overtaken all other 
members of ASEAN in terms of installed 
wind energy capacity. Philippines consists of 
over 7000 islands, thus the electrification  is 
very challenging in this country. 

Opportunities :

* Geothermal energy 

* Oil retail business 

* Wind energy

Challenges :

* Limited petroleum 
resource

* Complex geography

Philippines 

 

Figure 1.14: Summary of energy challenges and opportunities in ASEAN-5 

countries 

The outlook of electric energy consumption in ASEAN-5 countries highlights that 

energy optimization strategy and systematic management of power system are a matter 

of sustainable development necessity due to high-expected demand in the following years 

and variations in trend of electricity consumption in the preceding years. Reliable energy 

consumption forecasting can provide effective decision-making support on developing 

strategic plans for power system enterprises and establishing resourceful energy policies. 

Thus, ASEAN-5 countries should give high consideration to the electric energy 

consumption forecasting to prudently develop their national power grids and provide the 

plan for future expanding of APG. Owning to dependency of electric energy consumption 
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on various parameters, considering most influential input variables in long-term EEC 

modeling is a daunting task. In order to cope with the difficulties associated with energy 

consumption modeling, an efficient methodology is required to accurately model and 

forecast long-term EEC of ASEAN-5 countries. To address the difficulties involved in 

long-term energy consumption forecasting whereas, there is an implicit relationship 

among historical data, different techniques have been proposed to achieve a robust model 

with high accuracy. So far, the time series methods, artificial intelligence (AI) based 

approaches, and hybrid methods have been employed for long-term EEC forecasting. 

Despite the satisfactorily performance of AI-based approaches, and hybrid form of these 

methods for long-term EEC forecasting, the main shortcoming still is black-box problem 

that they do not provide the knowledge of process for obtaining a solution. Hence, they 

are not capable of generating a definite prediction equation based on the input historical 

data. In this regard, the application of new forecasting techniques, which can overcome 

the shortcomings of the existing AI-based approaches, is encouraged to precisely 

formulate the relationships between the historical data and EEC of ASEAN-5 countries. 

1.3 Research Objectives 

The main objectives of this study are: 

 To develop optimized gene expression programming approach for coping with the 

limitations of existing AI-based approaches in long-term EEC forecasting.  

 To develop multi-objective feature selection technique for extracting the most 

influential variables with minimum redundancy and maximum relevancy on EEC.  

 To formulate the effects of two different historical data types, (i) EEC in preceding 

years and (ii) socio-economic indicators (SI) on EEC of ASEAN-5 counties. 

 To access the accuracy of the proposed method for long-term EEC forecasting of 

ASEAN-5 countries and compare the estimations with different methodologies. 

 To project the future EEC of ASEAN-5 countries up to 2030.  
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1.4 Scope of Study 

The strength of the proposed technique lies in its ability to provide explicit forecasting 

expressions with better-fit solutions. The optimized GEP is used in this study to 

mathematically formulate the effects of two different input data sets (i.e. socio-economic 

indicators and electricity consumption in preceding years) on EEC of the ASEAN-5 

countries from 1971 to 2014. Furthermore, the parallel comparison is carried out to 

evaluate the effectiveness of two different historical data types on long-term EEC 

forecasting. All historical data types in this study are adapted form World Bank (WB) 

data bank. The rolling-based forecasting procedure is implemented to anticipate the 

annual EEC of ASEAN-5 countries up to 2030. To assess the applicability and accuracy 

of the proposed method, its results are compared with AI-based approaches that have been 

applied for long-term energy consumption forecasting in a successful manner. All the 

simulations are evaluated in MATLAB (R2014a) environment on a personal computer, 

with a core-2 quad processor of 2.6 GHz clock speed and 2 GB RAM. 

1.5 Organization of Thesis 

The rest of the thesis is organized as follows: 

 First, the background on the concepts involved in this work and the related literature 

review are presented. In chapter three, long-term EEC forecasting models are described. 

In this chapter, the basic concept and flowchart of time series methods and AI-based 

approaches are briefly explained. Next, four metaheuristic optimization methods, namely 

PSO, CSA, ACS and BSA are implemented in learning process of GEP to form different 

optimized GEP approaches. In chapter four, the multi-objective feature selection is 

developed to extract the most influential subsets of input variables for long-term EEC 

modeling. Then the performance of optimized GEP is compared with other AI-based 

approaches. Further comparison is provided in this section to specify the most effective 

structure of input data sets. Moreover, EEC of ASEAN-5 countries are projected up to 
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2030 by applying different time series forecasting methods and their forecasts are 

compare with those obtained by proposed approach. Eventually, chapter five outlines the 

conclusion and the future works. A comprehensive list of reference is provided at the end 

of the thesis. 

Univ
ers

ity
 of

 M
ala

ya



30 

CHAPTER 2: LITERATURE REVIEW  

2.1 Introduction 

To address the difficulties involved in long-term energy consumption forecasting 

whereas, there is an implicit relationship among historical data, different techniques have 

been proposed to achieve a robust model with high accuracy. 

In this framework, the techniques can be classified into statistical models including 

regression-based model and time series methods such as auto regressive integrated 

moving average (ARIMA) and gray model (GM); and artificial intelligence (AI) based 

approaches including artificial neural network (ANN), fuzzy method, support vector 

regression (SVR), knowledge-based expert system (KBES), metaheuristic techniques and 

genetic programming (GP) (Hernandez et al., 2014). 

2.2 Time Series Methods 

The ARIMA model is one of the most popular models for a time series forecasting 

when there is no missing sample within the time series and the time series is stationary 

(Yu, Zhu, & Zhang, 2012). Although ARIMA models are quite flexible as they can 

represent several different types of time series, namely pure auto regressive (AR), pure 

moving average (MA) and combined ARMA (AR and MA), their major limitation is the 

pre-assumed linear form of the model (Ardakani & Ardehali, 2014).  

GM is a practical approach in time series forecasting due to its simplicity and ability 

to characterize an unknown system with incomplete information within the time series. 

The main principle of this approach to extract hidden information from incomplete data 

is to process the data indirectly through data mapping to the state space. In spite of this 

mechanism, the original GM is not suitable for long-term energy consumption forecasting 

due to disability of this approach to reflect the growth trends within different period into 

behavioral modeling of unknown systems (Hsu & Chen, 2003).  

Univ
ers

ity
 of

 M
ala

ya



31 

2.3 Artificial Intelligence-Based Approaches 

In the past decade, the AI-based approaches are considered as enhanced alternatives 

to statistical models for energy consumption forecasting. AI-based approaches often 

guarantee a satisfying degree of estimation accuracy while independent and dependent 

variables faced too much fluctuation. Table 2.1 outlines the summary of AI-based 

approaches, which have been employed for long-term energy consumption forecasting.  

ANN is the most widely used technique among the AI-based approaches, which has 

been applied in the field of energy management (Ekonomou, 2010; Kankal, Akpınar, 

Kömürcü, & Özşahin, 2011; Kialashaki & Reisel, 2014; Sözen, Arcaklioğlu, & 

Özkaymak, 2005). The capability of ANN to precisely learn, store, and recall information 

from experience, discover the relation between input and output variables, and extract 

various discriminators in complex environment makes this method especially attractive 

for long-term energy consumption forecasting.  

SVR is another AI-based technique, which has been employed as a powerful predictive 

technique in energy consumption forecasting  due to its ability to adapt and capture 

complex relationships in the input data (Hong, 2009). A significant advantage of SVR is 

that this method guarantees that the global minimum is found during the training phase, 

while ANN is trapped in local minima. Unlike ANN, SVR is less prone to over fitting 

due to independently of computational complexity to dimensionality of the input space. 

Moreover, SVR has a simpler geometric interpretation and it gives sparse solution 

(Ghelardoni, Ghio, & Anguita, 2013). 

         The fuzzy logic system successfully applied in (Elias & Hatziargyriou, 2009) for 

energy consumption forecasting. This approach is based on predefined rules (if-then) that 

lack the ability to learn and adapt them-self to new condition. In (Zahedi, Azizi, Bahadori, 

Elkamel, & Wan Alwi, 2013), the authors applied combination of fuzzy system and ANN 
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(Neuro-Fuzzy) to overcome this drawback. A specific approach in neuro-fuzzy 

development is the adaptive neuro-fuzzy inference system (ANFIS), which is considered 

to be a universal estimator capable for short, medium, and long-term energy consumption 

forecasting (Nadimi, Azadeh, Pazhoheshfar, & Saberi, 2010).  

Furthermore, an effective practice to increase the forecasting accuracy and address the 

nonlinearity involved in long-term forecasting is integrating several techniques into a 

hybrid form. An integrated algorithm for forecasting energy consumption based on multi-

layer perceptron (MLP) ANN, computer simulation and design of experiments is 

developed in (A. Azadeh, Ghaderi, & Sohrabkhani, 2008). The integration of fuzzy 

system and data mining approach is presented for energy consumption forecasting (A. 

Azadeh, Saberi, Ghaderi, Gitiforouz, & Ebrahimipour, 2008). Data mining approach is 

applied to extract the rules for constructing fuzzy system estimation in this study. A 

hybrid ANFIS and computer simulation is proposed to improve the accuracy of energy 

consumption forecasting (A. Azadeh, Saberi, Gitiforouz, & Saberi, 2009). 

Despite the satisfactorily performance of ANN, SVR, ANFIS, and hybrid form of these 

methods for energy consumption forecasting, the main shortcoming still is black-box 

problem that they do not provide the knowledge of process for obtaining a solution. 

Hence, they are not capable of generating a definite prediction equation based on the input 

historical data (S. Roy, Ghosh, Das, & Banerjee, 2015). 

In order to cope with the difficulties associated with energy consumption modeling, 

different forms of mathematical expressions optimized by metaheuristic methods have 

been proposed to use historical data for formulation the energy consumption.  

Metaheuristic methods have been applied as efficient tools to provide realistic 

estimation models by optimizing the coefficients of predefined mathematical expressions. 
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These methods are characterized by stochastic nature, global search ability, and a large 

amount of implicit parallelism.  

Different metaheuristic methods have been developed to provide more accurate and 

realistic estimation model through altering the way by which the weighting factors are 

determined. ant colony optimization (ACO) (Duran Toksarı, 2007), genetic algorithm 

approach (GA) (Canyurt & Ozturk, 2008), simulated annealing approach (SA) (Ozcelik 

& Hepbasli, 2006), particle swarm optimization (PSO) (Askarzadeh, 2014; Ünler, 2008), 

gravitational search algorithm (GSA) (Behrang, Assareh, Ghalambaz, Assari, & 

Noghrehabadi, 2011), artificial cooperative search (ACS) (Kaboli, Selvaraj, & Rahim, 

2016), harmony search algorithm (HS) (Ceylan, Ceylan, Haldenbilen, & Baskan, 2008), 

artificial bee colony (ABC) (Kıran, Özceylan, Gündüz, & Paksoy, 2012b), charged 

system search (CSS) (Kaveh, Shamsapour, Sheikholeslami, & Mashhadian, 2012), 

imperialist competitive algorithm (ICA) (Nasab, Khezri, Khodamoradi, & Gargari, 2010) 

and cuckoo search algorithm (CSA) (Chang, Zhu, & Chen, 2015) are the metaheuristic 

optimization algorithms that have been satisfactorily applied in the field of  energy 

(electricity, petroleum, oil, fossil fuels) consumption forecasting.  

Lately, to promote the estimation accuracy combinatorial metaheuristic methods have 

been developed. These methods include a hybrid approach of ACO with PSO (Kıran, 

Özceylan, Gündüz, & Paksoy, 2012a), and a hybrid version of GA with PSO (Amjadi, 

Nezamabadi-Pour, & Farsangi, 2010; Assareh, Behrang, Assari, & Ghanbarzadeh, 2010). 

Furthermore, metaheuristic methods have been integrated with other techniques into a 

hybrid method to improve the performance of estimation methods. Recent hybrid 

solutions include ANN-TLBO (teaching learning based optimization) (Uzlu, Kankal, 

Akpınar, & Dede, 2014), ANN-PSO (Ardakani & Ardehali, 2014), ANN-GA (Ali 

Azadeh, Ghaderi, Tarverdian, & Saberi, 2007), SVR-DE (differential evolution) (J. Wang 
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et al., 2012), optimized GM (Hamzacebi & Es, 2014), ARIMA-PSO (Y. Wang, Wang, 

Zhao, & Dong, 2012) and Fuzzy-GA (Liu & Fang, 2013).  

Although metaheuristic methods have been applied to provide realistic estimation 

models, the significant limitation still is that they require predefined knowledge about the 

structure of the existing relationship between the variables (fitness functions) which need 

to be ascertained beforehand (S. Roy et al., 2015). Furthermore, for all application of 

metaheuristic methods, the major deficiencies still are too many control parameters and 

quite sensitive to initial values of these parameters. Although the promising results are 

provided by combinatorial optimization methods, the proper integration point between 

the two metaheuristic methods is difficult to determine. Moreover, the inherent 

complexity of combinatorial optimization methods involves a non-negligible increase of 

the efforts for properly tuning the control parameters.  

In order to cope with the limitations of the existing AI-based methods, genetic 

programming (GP) is employed to extract the relevant information of the corresponding 

problem and transform the derived information into a mathematical model. The capability 

of generating prediction equation without prior knowledge about the nature of the 

relationships between independent and dependent variables is a remarkable attribute of 

GP. Compared to metaheuristic methods, GP strategy provides a superior alternative for 

long-term energy consumption forecasting as it precludes the need to conform to the 

predefined fitness functions. Although the coupled GP with SA has been proposed in 

(Mostafavi, Mostafavi, Jaafari, & Hosseinpour, 2013) to enhance the efficiency of GP, 

still the bloat phenomenon (code growth problem) hampers the applicability of GP-based 

modeling system for energy consumption forecasting. The tendency of GP to complicate 

the model without any significant improvement in estimation accuracy is known as bloat 

phenomenon which slows the evolutionary search process, consumes computing 
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resources, and eventually impedes its ability and efficiency to discover better solutions 

(Whigham & Dick, 2010).  

The gene expression programming (GEP) is an extension of GP (Rafieerad et al., 2016) 

, that incorporates advantages of GA into GP to avoid bloat. It takes the flexibility of GP 

and simplicity of GA hence it can be considered as an effective tool for long-term energy 

consumption forecasting. Although GEP has successfully modeled electricity 

consumption in (Mousavi, Mostafavi, & Hosseinpour, 2014), still more robust tool is 

required to formulate the energy consumption due to its inherent nonlinearity and 

complexity. Despite the flexible representation and efficient evolutionary process of GEP, 

it has difficulty discovering preferable and simplified function structure (Zhong, Ong, & 

Cai, 2015). Thus, a need has gradually emerged in contemporary meta-modelling 

paradigms to develop an approach for long-term energy consumption forecasting, which 

can combine the inherent capability of a GEP strategy in adapting information into a 

mathematical expression with the clarity of explicit closed form analytical representation 

of mathematical models optimized by metaheuristic methods. To bridge this gap, 

optimized GEP has been developed as an offshoot of the versatile evolutionary based 

meta-modelling techniques. A preliminary version of the optimized GEP approach was 

presented in (Zhong et al., 2015) to further improve the search performance, in which for 

each generation a metaheuristic optimization method is invoked on every chromosome in 

a population to tune up the constants of GEP. This approach was applied for mathematical 

modeling of benchmark problems and obtained results confirm the well performance of 

this method in comparison with other GP variants. 

The optimized GEP is applied in this study as an enhanced approach to further improve 

forecasting precision. The mathematical model of the GEP can be manipulated in 

practical circumstances to provide a distinct advantage of a greater transparency and 

Univ
ers

ity
 of

 M
ala

ya



36 

simplicity in forecasting. This merit is provided by deploying a metaheuristic method 

over GEP models to determine the optimal weighting factors (best coefficients with 

minimum error).  

Metaheuristic methods do not require precisely defined mathematical expressions and 

impose fewer mathematical requirements to obtain a highly accurate model. Hence, they 

have been employed as efficient tools to provide realistic estimation models by 

optimizing the weights of mathematical expressions developed by GEP. Several robust 

and efficient metaheuristic optimization methodologies including PSO, CSA, ACS and 

backtracking search optimization algorithm (BSA) which not only provide highly 

accurate results but also have relatively simple implementation procedure with fewest 

control parameters are applied in learning process of GEP to form three different variants 

of optimized GEP for long-term EEC forecasting.  

Table 2.1: Summary of studies on long-term energy consumption forecasting for 

various countries via AI-based methods 

Methods Forecasting for Period Model Input variables MAPE*
 

Fuzzy 

regression 

Energy demand of the Greek 

power system (Elias & 
Hatziargyriou, 2009) 

1987-2003 - 

Number of customers,  

Energy consumption, 
Temperatures 

0.70% 

Energy consumption of Iran(A. 

Azadeh, Saberi, & Seraj, 2010) 
1995-2005 - Previously observed values 0.82% 

ANN 

 

Energy consumption of 
Turkey(Kankal et al., 2011) 

1980-2014 - 

GDP (gross domestic 

production),   POP 
(population), IMP (import),  

EXP (export) 

1.22% 

Energy demand in the industrial  
sector of  US (Kialashaki & 

Reisel, 2014) 

1980-2030 - GDP, Price of energy carriers 0.57% 

Net energy consumption of 
Turkey(Sözen et al., 2005) 

1975-2003 - 
POP, IMP, EXP ,Installed 
capacity, Gross generation 

2.14% 

ANN-MLP 

 

Energy consumption of 

Greek(Ekonomou, 2010) 
2005–2015 - 

GDP, Temperature, Installed 

capacity, Electricity 
consumption 

1.37% 

ANFIS 
Electricity consumption of  G7 
(Nadimi et al., 2010) 

2008-2015 - GDP,POP 1.49% 

SVM 
Regional electric load of 

Taiwan(Hong, 2009) 
1981-2000 - Previously observed values 1.29 

KBES 

Load of fast developing 
utility(Kandil, El-Debeiky, & 

Hasanien, 2002) 

1981-2007 - 
Years, Temperature, 

Ramadan 
1.33% 

GP 

Electricity consumption of  
Turkey (Karabulut, Alkan, & 

Yilmaz, 2008) 

1994-2010 - Previous demand, Climate 1.16% 
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Data mining 
Electricity demand of  Turkey 
(KÜÇÜKDENİZ, 2010) 

1980-2025 - Previously observed values 3.25% 

GEP 
Electricity demand of Thailand 
(Mousavi et al., 2014) 

1986-2009 Expression GDP, POP, EXP, Stock index 0.37% 

ACO 
Energy demand of Turkey 

(Duran Toksarı, 2007) 
1979-2025 

Linear, 

Quadratic 
GDP, POP, IMP, EXP 1.07% 

GA 
Fossil fuels demand of Turkey 

(Canyurt & Ozturk, 2008) 
1980-2020 Quadratic GDP, IMP, EXP 2.09% 

SA 
Petroleum demand of Turkey 
(Ozcelik & Hepbasli, 2006) 

1990-2020 
Linear, 
Quadratic 

GDP, Vehicle ownership 2.2% 

PSO 

Energy demand of Turkey 

(Ünler, 2008) 
1979-2025 

Linear, 

Quadratic 
GDP - POP - IMP - EXP 0.83% 

Electricity demand of Iran 

(Askarzadeh, 2014) 
1982-2030 

Quadratic, 

Exponential 
GDP, POP, IMP, EXP 1.16% 

GSA 
Oil demand of Iran (Behrang et 

al., 2011) 
1981-2030 

Linear, 

Exponential 

GDP, POP, IMP, EXP, 

Number of vehicles 
1.14% 

ACS 
Electric energy consumption of 

Iran (Kaboli et al., 2016) 
1992-2030 

Linear, 

Quadratic, 

Exponential, 
Logarithmic 

GDP, POP, IMP, EXP, Stock 

index 
0.75% 

HS 
Transport energy demand of 

Turkey (Ceylan et al., 2008) 
1970-2025 

Linear, 

Quadratic, 
Exponential 

GDP, Vehicle kilometers 13.41% 

ABC 
Electricity demand of Turkey 

(Kıran et al., 2012b) 
1979-2025 

Linear, 

Quadratic 
GDP, POP, IMP, EXP 2.26% 

CSS 
Transport energy demand of Iran 
(Kaveh et al., 2012) 

1968-2030 
Linear, 
Exponential 

GDP, Number of vehicles 3.31% 

ICA 
Energy demand of Iran (Nasab 

et al., 2010) 
1986-2017 

Exponential, 

Quadratic 
GDP, POP, EXP 1.14% 

Combinatorial methods 

Methods Forecasting for Period Model Input variables MAPE*
 

 

PSO-ACO 
Energy demand of Turkey 
(Kıran et al., 2012a) 

1979-2025 
Linear, 
Quadratic 

GDP, POP, IMP, EXP 1.03% 

PSO - GA 

Electricity demand of Iran 
(Amjadi et al., 2010) 

1980-2006 
Linear, 
Nonlinear 

GDP, POP, Number of 
customers, Electricity price 

0.98% 

Oil demand of Iran (Assareh et 

al., 2010) 
1981-2030 

Linear, 

Exponential 
GDP, POP, IMP, EXP 1.36% 

Fuzzy- 

data mining 

Electricity demand of Iran (A. 
Azadeh, Saberi, et al., 2008) 

1995-2005 - Previously observed values 2% 

ANN-TLBO 
Energy demand of Turkey (Uzlu 
et al., 2014) 

1980-2020 - GDP, POP, IMP, EXP 1.50% 

ANN-PSO 
Electricity demand of Iran and 
US (Ardakani & Ardehali, 2014) 

1967-2030 - GDP, POP, IMP, EXP 1.51% 

ANN-GA 
Electricity consumption of Iran 

(Ali Azadeh et al., 2007) 
1981-2008 

Logarithmic, 

Linear 

Price, Number of customers, 

Value added 
3.68% 

Simulated- 

ANN 

Electrical energy consumption 

of Iran(A. Azadeh, Ghaderi, et 
al., 2008) 

1994-2005 - Previously observed values 1.8% 

GRNN-FOA 

Power load of  Beijing city and 

China(H.-z. Li, Guo, Li, & Sun, 

2013) 

1978-2012 - Previously observed values 1.15% 

Simulation-

ANFIS 

Electricity consumption of 

Iran(A. Azadeh et al., 2009) 
1994-2005 - Previously observed values 1.55% 
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* Mean absolute percentage errors (MAPEs) are on testing period of each model. 
 

 

 

 

 

 

SVR-DE 
Electricity demand of Beijing (J. 

Wang et al., 2012) 
1987-2008 - Previously observed values 1.1% 

LS-SVM-FOA 

Electricity consumption of 

China(H. Li, Guo, Zhao, Su, & 
Wang, 2012) 

1998-2011 - Previously observed values 1.03% 

Optimized GM 
Electricity consumption of 

Turkey (Hamzacebi & Es, 2014) 
1945-2025 - Previously observed values 3.28% 

ARIMA- PSO 
Electricity demand of china (Y. 

Wang et al., 2012) 
2006-2010 - Previously observed values 2.19% 

Fuzzy-GA 
Electrical load of Shanghai (Liu 

& Fang, 2013) 
1990-2010 - Previously observed values 7.45% 

GP-SA 
Electricity demand of Thailand 

(Mostafavi et al., 2013) 
1986-2009 Nonlinear, 

Expression 

GDP, POP, EXP, Stock 

index 
0.5% 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Introduction 

All applied methods in this study are presented in this chapter. First, the time series 

forecasting methods namely; autoregressive integrated moving average (ARIMA) and 

first-order single-variable grey model (GM (1, 1)) are briefly descried. Then, the basic 

concept and flow chart of artificial intelligence-based techniques such as artificial neural 

network (ANN), support vector regression (SVR), adaptive neuro-fuzzy inference system 

(ANFIS), and gene expression programming (GEP) are explained. Next, four different 

robust and efficient metaheuristic optimization methods, namely; particle swarm 

optimization (PSO), cuckoo search algorithm (CSA), artificial cooperative search (ACS) 

algorithm and backtracking search algorithm (BSA) are applied in the second learning 

process of GEP to form optimized GEP approach. Eventually, multi-objective 

backtracking search algorithm (MOBSA) is developed and its procedure is described.  

3.2 Time Series Forecasting Methods 

3.2.1 Autoregressive Integrated Moving Average  

Among the statistical forecasting techniques, autoregressive integrated moving 

average (ARIMA) is a high-precision non-structural method for time series forecasting 

when there is no missing data  within the time series. Particularly in time series analysis, 

an ARIMA model is considered as a “filter” that tries to separate the time series from the 

noise, and the time series is then extrapolated either to predict future points in the series 

or to better understand the data. Non-seasonal ARIMA models are generally denoted as 

ARIMA (p,d,q), where parameters q, d, and p are non-negative integers. The parameter 

p represents the number of time lags for the autoregressive model (i.e. AR (p)), the 

parameter d denotes the number of differences (I) that are needed to make the series 

stationary and q is the order of the moving average  (i.e. MA (q))  part (Yuan, Liu, & 

Fang, 2016).  
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The autoregressive (AR) part of the ARIMA model with order p is of the form: 

𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯+ ∅𝑝𝑌𝑡−𝑝 + 𝑒𝑡 + 𝑐 (3.1) 

where Ø1, Ø2,…,Øp are the parameters of the model and the independent variables Yt-1, Yt-

2…,Yt-p are time-lagged values of the forecast variable. As the forecasts are only 

dependent on observed values in the previous time periods, this model named auto 

regression. 

The moving average (MA) part of the ARIMA model consists of the past errors as the 

explanatory variable. A moving average model with order q is of the form: 

𝑌𝑡 = 𝑒𝑡 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯+ 𝜃𝑞𝑒𝑡−𝑞 + 𝑐 (3.2) 

where θ1, θ2,…,θq are the parameters of the model and et, et-1, et-2,…, et-q are white noise 

error terms.  

An autoregressive (AR (p)) model is coupled with a moving average (MA (q)) model to 

form an ARMA (p,q) (autoregressive moving average) model for stationary series. For 

non-stationary series, differencing is added to ARMA model. Differencing is a method to 

stabilize the mean of the series, eliminate seasonality, and consequently make the series 

stationary. The first difference between consecutive observations is calculated according 

to Eq. (3.3) to mathematically difference the data.  

∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 (3.3) 

Finally, the general form of ARIMA model is formulated in Eq. (3.4) which requires at 

least p+d presamples to initialize the time series. 

∆𝑑𝑌𝑡 = 𝑐 + ∅1∆𝑑𝑌𝑡−1 + ∅2∆𝑑𝑌𝑡−2 + ⋯+ ∅𝑝∆𝑑𝑌𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1

− 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞 

(3.4) 
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3.2.2 First-Order Single-Variable Grey Model 

Grey model (GM)  is  a practical  approach  in  time  series  forecasting  due  to  its  

simplicity  and  ability  to generate, excavate, and extract useful information from a gray 

system. A system with limited number of available observations and partially known 

information is considered as a gray, hazy, or uncertain system. The main principle of this 

method to predict the behavior of gray systems is to process the data indirectly through 

data mapping to the state space. 

In the context of grey systems theory, GM (p, q) represents a grey model, where q 

denotes the number of variables and p denotes the order of the difference equation. 

Although, various types of grey prediction models can be formed, the GM (1, 1) as a first-

order single-variable grey model is superior to other grey prediction models due to its 

high computational efficiency (Zhao & Guo, 2016).  

GM (1, 1) is a time series-forecasting model, which does not need any prior knowledge 

such as probability distribution of the input data, and it can only be used in positive data 

sequences with minimum number of four observations. Since all the primitive data points 

are positive in this study, GM (1, 1) can be used to forecast the future values. GM (1, 1) 

model is formed to forecast the future values according to the five sequential steps: 

i- First-order accumulated generating operation (1-AGO) 

ii- Build GM (1, 1) model 

iii- Last square estimation method 

iv- Whitenization process (first-order grey differential equation) 

v- Inverse accumulated generating operation (IAGO) 

The modelling procedure of GM (1, 1) is demonstrated in Figure 3.1. Firstly, the first-

order accumulating generation operator (1-AGO) is applied on the non-negative time 
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sequence of primitive data obtained from the system in order to smooth the randomness 

and form the GM (1, 1) model. Then, the first-order grey differential equation is solved 

to obtain the H-step ahead predicted values of the primitive data. Finally, the inverse 

accumulating generation operator (IAGO) is applied to find the predicted values.  

Eq. (3.5) denotes the initial time sequence of primitive data obtained from the system. 

𝑥(0)(𝑡) = {𝑥(0)(1), 𝑥(0)(2), 𝑥(0)(3),… , 𝑥(0)(𝑛)},    𝑛 ≥ 4 (3.5) 

where n is the number of the observations and x(0)(t) is a non-negative sequence. 

The first-order AGO is applied on a non-negative sequence x(0)(t), so the following 

monotonically increasing sequence x(1)(t)  is obtained. 

𝑥(1)(𝑡) = {𝑥(1)(1), 𝑥(1)(2), 𝑥(1)(3),… , 𝑥(1)(𝑛)},    𝑛 ≥ 4 (3.6) 

where  

𝑥(1)(𝑡) = ∑𝑥(0)(𝑖),   𝑡 = 1,2,3, … , 𝑛

𝑡

𝑖=1

 (3.7) 

According to the Eq. (3.8), the mean sequence of consecutive neighbors in x(1)(t) denoted 

by z(1)(t)  is obtained.  

𝑧(1)(𝑡) = {𝑧(1)(1), 𝑧(1)(2), 𝑧(1)(3), … , 𝑧(1)(𝑛)} (3.8) 

where  

𝑧(1)(𝑡) =
1

2
(𝑥(1)(𝑡) + 𝑥(1)(𝑡 − 1)) (3.9) 

So, the basic form of GM (1, 1) model can be formulated according to Eq. (3.10).   

𝑥(0)(𝑡) + 𝑎𝑧(1)(𝑡) = 𝑏 (3.10) 
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The last square estimation method is applied to obtain the GM (1, 1) model 

coefficients 𝑎̂ = [
𝑎
𝑏
] as follow: 

𝑎̂ = [𝑎, 𝑏]𝑇 = (𝐵𝑇𝐵)−1𝐵𝑇𝑌 (3.11) 

where 

𝑌 =

[
 
 
 
 
𝑥(0)(2)

𝑥(0)(3)
...

𝑥(0)(𝑛)]
 
 
 
 

   , 𝐵 =

[
 
 
 
 
−𝑧(1)(2)

−𝑧(1)(3)
...

−𝑧(1)(𝑛)

1
1...
1]
 
 
 
 

 (3.12) 

The whitening equation of GM (1, 1) model as formulated by Eq. (3.12) is solved to 

obtain the solution at time (t+1) according to Eq. (3.13).  

𝑑𝑥(1)

𝑑𝑡
+ 𝑎𝑥(1) = 𝑏 (3.13) 

𝑥̂(1)(𝑡 + 1) = (𝑥(0)(1) −
𝑏

𝑎
) 𝑒−𝑎𝑡 +

𝑏

𝑎
 (3.14) 

To obtain the predicted value of the primitive data at time (t + 1), the IAGO is applied to 

establish the following grey forecasting sequence. 

𝑥̂(0)(𝑡) = (1 − 𝑒𝑎) (𝑥(0)(1) −
𝑏

𝑎
) 𝑒−𝑎(𝑡−1) (3.15) 

where 𝑥̂(0)(1) = 𝑥(0)(1) 

Consequently, the predicted value of the primitive data at time (t + H) is obtained 

according to the Eq. (3.16). 

𝑥̂(0)(𝑡 + 𝐻) = (1 − 𝑒𝑎) (𝑥(0)(1) −
𝑏

𝑎
) 𝑒−𝑎(𝑡+𝐻−1) (3.16) 

where 𝑥̂(0)(𝑡 + 𝐻) denotes H-step ahead predicted values.  
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Figure 3.1: Modelling procedure of GM (1, 1) 
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3.3 Artificial Intelligence-Based Techniques 

3.3.1 Artificial Neural Network 

Artificial neural networks (ANNs) are artificial networks inspired by nervous system 

which are considered as human attempts to understand what goes on in the biological 

neural networks (in particular the brain). ANNs simulate the learning process provided 

by nervous system with the hope of capturing the power of biological neural network, 

collectively performs tasks that even the supercomputers with high-level computational 

capacity have not been able to process (Landeras, López, Kisi, & Shiri, 2012).  

The ANN is analogous to biological neural network, which consists of a highly 

interconnected network with very simple processors known as neurons. The neurons are 

linked by weighted connections that communicate to each other by sending the signals 

from one neuron to other neurons while the strength of weighted connections expresses 

the importance of each neuron input. Each neurons is associated with a transfer function, 

which describes how the weighted sum of a neuron input signal is converted to an output 

signal.  

The main characteristic feature of ANNs is that these artificial networks acquire 

accumulated experience within learning process and respond to new conditions based on 

the knowledge gained within the learning process. In ANNs, the learning process is 

provided through repeated adjustments of numerical weights, thus the weighted 

connections are considered as basic means of long-term memory in these networks.  

Although various topologies of neural networks (NNs), have evolved based on the 

training paradigm neuron arrangement and neuron connections. Among the various types 

of NNs, multilayer perceptron (MLP) and the radial basis function (RBF) network have 

been the most useful types of NN in different applications. The main differences between 

these two types of NN reside in the activation functions of the hidden layer. The activation 
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function belongs to the Gaussian family in RBF network whereas, the linear, logistic 

sigmoid and bipolar sigmoid (hyperbolic tangent) activation functions are used in MLP 

(Kankal et al., 2011). 

Generally, there is a trade-off between higher robustness provides by RBF network 

and higher accuracy gains by MLP. Due to the non-linear nature of RBF network, it brings 

much more robustness to adversarial noise. Instead, MLP is an acronym for deep learning 

in NNs as it has multiple hidden layers to provide higher accuracy.  

MLP as a feedforward NN has the generalizing ability to approximate essentially any 

function with high degree of accuracy, so it is considered as universal approximators.  

As shown in Figure 3.2, the MLP architecture is composed of three layers: 

i- Input layer, where the data are introduced into the NN (source neurons) 

ii- Hidden layer(s) where the data are processed (computational neurons) 

iii- Output layer where the results of given inputs are obtained.  
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Figure 3.2: The MLP architecture 
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Each of these layers has several processing units, and each unit is fully interconnected 

with weighted connections to units in the subsequent layer. Each layer contains a number 

of nodes. Every input is multiplied by each of the nodes using its inter-connection weight. 

The output of each neuron is obtained by passing the sum of the product through an 

activation function, while the bias input (memory) is connected to each neuron to stabilize 

the origin of activation function for better learning. 

MLP networks are usually applied to perform supervised learning tasks, which involve 

iterative training methods to adjust the connection weights within the network. Generally, 

several passes are required to attain a desired level of estimation accuracy. Adjustment of 

the correction weights is carried out using the standard error back-propagation algorithm, 

which minimizes the total error with the gradient decent method (Raza & Khosravi, 

2015). Back-propagation is a systematic method for training MLP networks as its 

schematic diagram is briefly described in Table 3.1. 

 

Table 3.1: General structure of back-propagation algorithm 

1. Initialize weights 

Repeat 

2. Apply a sample 

         Calculate the output of each neuron: 

               Summation  

               Addition of bias  

               Activation  

         end 

3.  Calculate the output errors 

4. Backpropagation of the error  

5. Update weights and biases  

Until termination criteria are satisfied; 
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 Initialize weights 

The initial weights or numerical estimates of the connection strength between all 

neurons (wij) are assigned randomly. Furthermore the initial value of activation threshold 

(w0j) is also assigned to each neuron randomly. This activation threshold is analogous to 

an independent term of the linear combination of the outputs from the previous neurons, 

and it is considered as a weight assigned to a fictitious neuron known as bias unit with an 

output value of 1. Therefore, the rule of the bias input (memory) is to shift the origin of 

activation function for better learning.  

 Apply a sample 

Apply the input vector {X1,X2, X3,…, Xk} having desired output vector {y1,y2, y3,…, 

ym}.   

 Feed-forward computation 

Starting from the first hidden layer and propagating toward the output layer. Each input 

unit (xi) assigns initial weight (wi) and broadcast this weight to all neuron in above layer 

(first hidden layer). 

i. Each neuron in the first hidden layer (nj) sums its input weights  

ji

k

i

ijj wXwinn 0

1

_ 
  

(3.17) 

ii. The activation function (f) process the output signal of each neuron (nj) in hidden 

layers  

)in_n(fn jj 
 

(3.18) 

Generally the activation functions are one of the linear, logistic sigmoid and 

bipolar sigmoid (hyperbolic tangent) activation functions. 

The linear activation function is: 
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jjj in_n)in_n(fn 
 

(3.19) 

In a MLP network if the neurons have linear activation functions the capabilities 

of the network is no better than a single layer network with linear activation 

function. Thus, nonlinear activation functions (sigmoid functions) are used, which 

usually limit the output signal of each neuron to the values between two 

asymptotes. 

The logistic sigmoid function as formulated below is the most widely used 

activation function in MLP.  

)in_n(jj
je1

1
)in_n(fn






 

(3.20) 

The hyperbolic tangent function as formulated by Eq. (3.21) is another sigmoidal 

function is used as activation function for neurons in hidden layer of MLP 

networks. The hyperbolic tangent function is closely related to the bipolar sigmoid 

function. 

)in_n(

)in_n(

)in_n(

)in_n(

jj
j

j

j

j

e1

e1

e1

e1
)in_n(fn



















 

(3.21) 

iii. The output signal jth neuron of total (N) neuron in hidden layer (L) denoted by 

(nLj) is transferred to next hidden layer as follow: 









 



 j

L

i

N

i

ijj
L wnwfn 0

1

1  

(3.22) 

iv. The output signal of each neurons in the last hidden layer are propagated toward 

the output layer as follow: 









 



ji

m

i

ijj hnhgy 0

1

ˆ

 

(3.23) 
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where (g), (hij) and (h0j) are the activation function of output layer known as 

transfer function, the connection strength (weight) between ith neuron in last 

hidden layer and jth neuron in output layer, and the weight assigned to the bias unit 

of jth neuron in output layer respectively. 

 Calculate the output errors 

The error information term of each neuron in output layer is computed as follows: 

  







 



ji

m

i

ijjjj hnhgyy 0

1

ˆ

 

(3.24) 

 Backpropagation of the error 

Propagate the error backward to the input layer through each hidden layer using the 

error information term.  

The backward weight correction term from output layer to last hidden layer and its 

bias correction term are computed as follow:  

ijij nh 
 (3.25) 

jj0h    (3.26) 

where α is learning rate:  

The error information term of each neuron in last hidden layer is calculated from 

multiplying the summation of its backward weights correction by derivative of its 

activation function as follow:   


















 



ji

N

i

ij

m

i

ijjj wnwfh 0

11



 

(3.27) 

The backward weight correction term from the hidden layer (L) is sent to its hidden 

layer below (L-1) and its bias correction term are computed as follow 
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1 L

jjij nw 
 

(3.28) 

jjw  0  
(3.29) 

The error information term of each neuron in hidden layer is calculated as follow 


















 



 j

L

j

N

i

ij

N

i

ijjj wnwfw 0

1

11



 

(3.30) 

The backward weight correction term from first hidden layer is sent to the input layer and 

its bias correction term are computed as follow: 

ijij Xw    (3.31) 

jjw   0  
(3.32) 

 Update weights and biases 

Each neuron in the output layer updates its bias and weights as follow: 

    ijijij hthth 1  (3.33) 

    jijj hthth 00 1   (3.34) 

Each neuron in hidden layer updates its bias and weights as follow: 

    ijijij wtwtw 1  (3.35) 

    jijj wtwtw 00 1   (3.36) 

Each neuron in first hidden layer updates its bias and weights as follow: 

    ijijij wtwtw 1  (3.37) 

    jijj wtwtw 00 1   (3.38) 

 

Eventually, Table 3.2 describes the Pseudo coding of back-propagation algorithm. 
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Table 3.2: Pseudocode of back-propagation algorithm 

Data: X, y, Max epoch, Number of hidden layers, Number of neurons in hidden layers, Transfer function 

Result: ŷ  

// Initialization 
1. The initial weights and biases are assigned randomly 

2.  for epoch ← 1 to Max epoch do  

3.       for every pattern in the training set do  

4.              present the pattern to the network 

             // Propagated the input forward through the network 

5.               for each layer in the network do 

6.                      for every node in each layer do 

7.                             Calculate the weight sum of the inputs to the node   

8.                              Add the threshold to the sum   

9.                              Calculate the activation for the node   

10.                    end 

11.             end 

             // Propagate the errors backward through the network 

12.             for every node in the output layer do  

13.                    calculate the error signal   

14.             end 

15.             for all hidden layers do   

16.                   for every neuron in each layer do 

17.                          Calculate the node's signal error   

18.                          Update each node's weight in the network  

19.                   end 

20.             end  

             // Calculate Global Error 

21.          Calculate the Error Function 

22.    end 

23.end 
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3.3.2 Support Vector Regression 

Kernel-based techniques e.g., Kernel principal component analysis (PCA), Kernel 

Fisher discriminant analysis (KFD), Bayes point machines, Gaussian processes and 

SVMs (support vector machines) represent a major development in machine learning 

algorithms. Kernel-based techniques map the data into a higher dimensional feature 

spaces in the hope that in the higher dimensional spaces the data are linearly separated or 

have better structure. SVMs as an extension to nonlinear model of the generalized portrait 

algorithm are the best-known member of Kernel-based techniques, which is able to either 

classify the input data or capture complex relationships in the input data. SVM that deal 

with function approximation and forecasting is just termed as SVR and SVM that deal 

with classification problems is just termed as support vector classification (SVC). With 

only a few minor modification, SVC is converted to SVR. So, SVM can be promoted to 

form SVR as a powerful function approximation technique based on statistical learning 

theory (Bian, Han, Du, Jaubert, & Li, 2016).   

Considering the given data set as follow:  

𝐺 = {(𝑥𝑘 , 𝑦𝑘), 𝑘 = 1,2,3, … ,𝑁} (3.31) 

Where xkЄ Rn denotes the kth element in n -dimensional input vector, ykЄ R carrying the 

observed response values at time step k with total number of N observation. The linear 

SVR estimation function is expressed as follows: 

𝑦𝑘̂ = 𝑓(𝑥𝑘) = 〈𝑊, 𝑥𝑘〉 + 𝑏 (3.32) 

where b and W are the intercept and weight vector of the regression function, respectively, 

𝑦𝑘̂ is the estimated output of the model at time step k and 〈𝑊, 𝑥𝑘〉 denotes the vector inner 

product of the predictors. 
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In order to allow nonlinear modeling, SVR method uses Kernel trick by applying the 

Kernel function 𝜓 (xk) that is s a non-linear mapping from the input space to a high 

dimensional feature space. So, the SVR estimation function is rewritten as follow: 

𝑦𝑘̂ = 𝑓(𝑥𝑘) = 〈𝑊,𝜓(𝑥𝑘)〉 + 𝑏 (3.33) 

In SVR method the attempt is to find a function that deviates from yK by a value no 

greater than ε for every data point (k =1, 2... N), while W is as flat as possible. Thus, for 

better generalization performance and ensure that W is as flat as possible, the norm of 

vector W that measures the flatness of the function as formulated by Eq. (3.34) needs to 

be minimized: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐽(𝑊) =
||𝑊||2

2
 (3.34) 

subject to all residuals having a value less than epsilon: 

⩝ 𝑘: |𝑦𝑘 − 𝑦𝑘̂| ≤ ε (3.35) 

The SVR is insensitive to small errors as it penalizes the errors that are greater than ε. 

This task is accomplished in SVR through use of ε-insensitive loss function as described 

by Eq. (3.36). 

𝐿𝑜𝑠𝑠𝜀(𝑦𝑘, 𝑦𝑘̂) = {
0,                 𝑖𝑓 |𝑦𝑘 − 𝑦𝑘̂| ≤ ε

|𝑦𝑘 − 𝑦𝑘̂| − ε, otherwise
} (3.36) 

According to ε-insensitive loss function, if the forecasted value is within the ε– 

insensitive tube the calculated loss is equal to zero. Considering the ε-insensitive loss 

function leads to the objective function known as the regularized risk function. Then the 

task in SVR is to estimate the threshold value (b) and weight vector (W) that minimizes 

the following regularized risk function: 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑅(𝐶) =
𝐶

𝑁
∑ 𝐿𝑜𝑠𝑠𝜀(𝑦𝑘, 𝑦𝑘̂)

𝑁

𝐾=1

+
‖𝑊‖2

2
 (3.37) 

where the parameter C is a positive constant regularization parameter, which determines 

the trade-off between the model flatness and the penalty imposed on forecasted values 

that lie outside the ε– insensitive tube. In SVR, since the parameter ε specifies the degree 

of tolerable errors (accuracy), the regularization parameter (C) specifies the balance 

between accuracy and generalization ability (Hong, 2010).  

In this stage, it is possible that no SVR estimation function finds to satisfy the 

constraints for every data point (k =1, 2... N), so the feasible constraints are not 

guaranteed. To deal with other infeasible constraints, two slack variables (


kk , ) 

which represent the distance from actual values to the corresponding boundary values of 

ε– insensitive tube for each data point as shown in Figure 3.3. 

 

Figure 3.3: The graphical representation of ε-insensitive loss function in SVR 

Although this approach is similar to the soft margin concept in SVC, the main 

difference comes in the slack variables used. SVR involves assigning two slack variables 

(


kk , ) for each data point, whereas in SVC for each data point one slack variable (

k ) is assigned. Including two slack variables, leads to the primal formula, which needs 

to be optimized as follow:  
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑅(𝑊, 
kk , ) =

𝐶

𝑁
∑(  kk  )

𝑁

𝐾=1

+
‖𝑊‖2

2
 

S.t. 

(3.38) 

⩝ 𝑘: 𝑦𝑘 − 𝑦𝑘̂ ≤ ε + k  (3.39) 

⩝ 𝑘: 𝑦𝑘̂ − 𝑦𝑘 ≤ ε + k
*  (3.40) 

⩝ 𝑘: k
*

k , ≥    0 (3.41) 

To Improve the performance accuracy of SVR, the parameter ε are replaced by a 

parameter (ⱴ), which is used to control the number of support vectors and training errors 

within the range of [0, 1]. After replacing (ε) by (ⱴ), the primal formula is transformed 

into 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑅(𝑊, 
kk , , ε) = 𝐶((ⱴ. ε) + (

1

𝑁
∑(  kk  )))

𝑁

𝐾=1

+
‖𝑊‖2

2
 

S.t. 

(3.42) 

  ⩝ 𝑘: 𝑦𝑘 − 𝑦𝑘̂ ≤ ε + k            (3.43) 

⩝ 𝑘: 𝑦𝑘̂ − 𝑦𝑘 ≤ ε + k
*           (3.44) 

⩝ 𝑘: k
*

k , ≥   0 (3.45) 

To solve this constrained optimization problem (minimizing the primal formula) the 

primal Lagrangian form as formulated by Eq. (3.46) is used.  

𝐿(𝑊, 𝑏, 
kk , , 𝛼𝑘 , 𝛼𝑘

∗ , 𝛽𝑘, 𝛽𝐾
∗ , Ƞ) =

‖𝑊‖2

2
+ 𝐶. ⱴ. ε +

𝐶

𝑁
∑ (  kk  ) − Ƞ.𝑁

𝐾=1 ε −

∑ (  k
*
kkk  )𝑁

𝐾=1 − ∑ 𝛼𝑘( k + 𝑦𝑘 − 𝑦𝑘̂
𝑁
𝐾=1 + ε) − ∑ 𝛼𝑘

∗( 
k + 𝑦𝑘̂ − 𝑦𝑘

𝑁
𝐾=1 + ε)              

(3.46) 

where 𝛼𝑘, 𝛼𝑘
∗ , 𝛽𝑘, 𝛽𝐾

∗  𝑎𝑛𝑑 Ƞ are Lagrangian multipliers. 

Then, the saddle point of primal Lagrangian form that minimize over the primal 

variables ( 
kk , ), (b) and (W) and, maximize over the Lagrangian multipliers 

(𝛼𝑘, 𝛼𝑘
∗), (𝛽𝑘, 𝛽𝐾

∗ ) 𝑎𝑛𝑑 (Ƞ) is fined. Thus, the derivatives of Lagrangian form with respect 
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to the primal variables are set to zero, which yields the following Karush-Kuhn-Tucker 

(KKT) complementarity conditions: 

𝛿𝐿

𝛿𝑊
= 𝑊 − ∑ (𝛼𝑘

∗ − 𝛼𝑘
𝑁
𝐾=1 )𝜓(𝑥𝑘)= 0 (3.47) 

𝛿𝐿

𝛿𝑊
= 𝐶. ⱴ − ∑ (𝛼𝑘

∗ + 𝛼𝑘
𝑁
𝐾=1 ) − Ƞ = 0 (3.48) 

𝛿𝐿

𝛿𝑊
= ∑ (𝛼𝑘

∗ − 𝛼𝑘
𝑁
𝐾=1 )= 0 (3.49) 

𝛿𝐿

𝛿𝑊
=

𝐶

𝑁
− 𝛼𝑘

∗ − 𝛽𝐾
∗  = 0           𝑘 = 1,2, … ,𝑁 (3.50) 

While the problem is convex and satisfies a constraint, the value of the optimal solution 

to the primal problem is calculated by the solution of the dual Lagrangian, in spite of the 

fact that the optimal values of the primal and dual Lagrangian should be equal, and their 

difference are known as duality gap. To obtain the dual formula, a Lagrangian function 

from the primal function by introducing two non-negative Lagrange multipliers (αk,α
*
k) 

for each observation (xk). Then, the dual Lagrangian is obtained by substituting Eqs. 

(3.47) – (3.50) into Eq. (3.46). This leads to the dual formula, which should be maximized 

as formulated below:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿(𝛼) = ∑(α𝑘 − α𝑘
∗ )𝑦𝑘 −

𝑁

𝑘=1

1

2
∑ ∑(

𝑁

𝑗=1

α𝑘 −

𝑁

𝐾=1

α𝑗
∗)(α𝑘 − α𝑗

∗)𝐾𝑘𝑗 (3.51) 

subject to the constraints 

∑(α𝑘 − α𝑘
∗ ) = 0

𝑁

𝑘=1

 (3.52) 

∑(α𝑘 + α𝑘
∗ ) ≤ 𝐶. ⱴ

𝑁

𝑘=1

 (3.53) 

⩝ 𝑘: 0 ≤ 𝛼𝑘, 𝛼𝑘
∗   ≤

𝐶

𝑁
 (3.51) 
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Where  𝐾𝑘𝑗 = 𝑘(𝑥𝑘,𝑥𝑗) = 𝜓(𝑥𝑘)
𝑇𝜓(𝑥𝑗) is the inner product of two vectors xk and xj in 

the feature space 𝜓(𝑥𝑘) 𝑎𝑛𝑑 𝜓(𝑥𝑗)  respectively, known as the Kernel function which 

needs to meet Mercer’s condition. The Mercer’s theorem is positive semi-definite, 

meaning that Kernel matrix has only non-negative Eigen values. By applying positive 

definite Kernel, the optimization problem is converted to the convex optimization 

problem thus the unique solution is insured. In general, there are number of Kernels that 

can be used in SVM models. The most widely used Kernel functions are linear function, 

polynomial function, Gaussian RBF (radial basis function), exponential RBF, and 

sigmoid function. 

 Linear Kernel function 

The simplest Kernel function is the Linear Kernel that defined by the inner product 

<𝑥𝑘,𝑥𝑗> as given below: 

 𝐾𝑘𝑗 = 𝑘(𝑥𝑘,𝑥𝑗) = 𝑥𝑘
𝑇𝑥𝑗 + 𝑐0 (3.55) 

where, c0 is an optional constant value.  

 Polynomial Kernel function 

The polynomial kernel is a non-stationary kernel function. Polynomial kernel function 

as formulated by Eq. (3.56) is well suited for problems where all the input data is 

normalized. 

 𝐾𝑘𝑗 = 𝑘(𝑥𝑘,𝑥𝑗) = (𝑎𝑥𝑘
𝑇𝑥𝑗 + 𝑐0)

𝑑 (3.56) 

where, constant term c0, the slope a, and the polynomial degree d are the adjustable 

parameters for this Kernel function.  
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 Gaussian RBF (radial basis function) 

The Gaussian RBF is formulated as follow: 

 𝐾𝑘𝑗 = 𝑘(𝑥𝑘,𝑥𝑗) = exp (−
‖𝑥𝑘−𝑥𝑗‖

2

2𝛾2 ) (3.57) 

where the γ is constant parameter, alternatively Gaussian RBF can be implemented as: 

 𝐾𝑘𝑗 = 𝑘(𝑥𝑘,𝑥𝑗) = exp (−𝜕 ‖𝑥𝑘 − 𝑥𝑗‖
2
) (3.58) 

where, ∂ is the adjustable parameter that plays a major role in the performance of the 

Gaussian RBF. If this adjustable parameter overestimated, the Gaussian RBF behaves 

linearly and the higher-dimensional projection starts to lose its non-linear power. If this 

parameter underestimated, the Gaussian RBF starts to lose its regularization performance 

and the decision boundary become highly sensitive to the noise in training data set.  

 Exponential RBF 

The exponential kernel function as formulated by Eq. (3.59) is closely similar to the 

Gaussian RBF, while the square of the norm left out.  

 𝐾𝑘𝑗 = 𝑘(𝑥𝑘,𝑥𝑗) = exp (−𝜕 ‖𝑥𝑘 − 𝑥𝑗‖) (3.59) 

 Hyperbolic Tangent Kernel function 

The Hyperbolic Tangent Kernel function is a sigmoid function comes from the ANNs 

field. Since, in artificial neurons the bipolar sigmoid function is used as an activation 

function, the Hyperbolic Tangent Kernel function is also known as MLP Kernel function. 

Generally, SVMs models are closely related to ANNs, and a SVM model using a MLP 

Kernel function is equivalent to a two-layer, perceptron ANN. Using MLP Kernel 

function in SVM is an alternative training method for ANNs, in which rather than by 

solving a non-convex, unconstrained optimization problem as in ANNs, in SVMs the 
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unknown parameters are obtained by solving a quadratic programming problem with 

linear constraints. Additionally, despite being only conditionally positive definite, MLP 

Kernel function as formulated by Eq. (3.60) shows acceptable performance in practice. 

 𝐾𝑘𝑗 = 𝑘(𝑥𝑘,𝑥𝑗) = tanh( 𝑎𝑥𝑘
𝑇𝑥𝑗 + 𝑐0) (3.60) 

where, c0 and a are the adjustable parameters for this Kernel function. In general, a 

common value for tuning a is (data dimension)-1. 

According to the nonlinear mapping of Kernel functions in the feature space, the 

regression parameter W no longer need to be calculated explicitly. The maximization 

problem formulated by Eq. (3.51) is considered as a quadratic programming (QP) 

problem. By virtue of a quadratic programming problem, the global solution of two non-

negative Lagrange multipliers (αk,α
*
k) for each data set (k=1,2,…N) is guaranteed. The 

data point that vanishes the pair of non-negative Lagrange multipliers (αkα
*

k = 0) lead to 

the spares model while the data point that does not vanish the pair of non-negative 

Lagrange multipliers (αkα
*
k ≠ 0) is known as support vector. For the sparse model (αkα

*
k 

= 0) the QP problem is only need to be calculated for the support vectors. So, the optimal 

desired wight vector for the regression hyperplane is calculated as follow: 

                                            𝑊 = ∑ (α𝑘 − α𝑘
∗ )𝑁

𝑘=1  𝜓(𝑥𝑘)  (3.61) 

and the bias b for the regression hyperplane is calculated such that the following condition 

is satisfied for all the support vectors. 

ε − 𝑦𝑘 + 𝑦𝑘̂ = 0 (3.62) 

Finally, the regression function can be written as  

𝑦𝑘̂(𝑥) = ∑ (α𝑘 − α𝑘
∗ )𝑁

𝑘=1  𝑘(𝑥,𝑥𝑘) + 𝑏 (3.63) 
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3.3.3 Adaptive Neuro-Fuzzy Inference System 

The fuzzy logic approach is based on the predefined rules (if-then) that lacks the ability 

to learn and adapt them-self to a new condition. Thus to overcome this drawback authors 

in   (J. S. R. Jang, 1993) hybridized a fuzzy inference system (FIS) with ANN to form 

ANFIS. The ANFIS methodology can be considered as an adaptive system in the form 

similar to ANN in which by training the system the parameters of the fuzzy membership 

functions (antecedent parameters) and the parameters of the fuzzy system output function 

(consequent parameters) are adapted. ANFIS possesses the advantage of both FIS and 

ANN and it has been solved the drawbacks of both systems, while the complicated 

procedures of neural networks are bypassed by applying linguistic variables of FIS 

system, and the lack of FIS is solved by applying the neural inference system which create 

the ability to learn and adapt them-self to new condition. Therefore, this approach is 

capable to simulate complex nonlinear mappings using fuzzy system with ANN learning, 

and it is considered as a universal estimator capable for short, medium, and long-term 

forecasting.  

ANFIS was developed as an adaptive system with a set of fuzzy rules (if-then) and 

tunable membership function (MF) parameters in a training phase. During the training 

phase of ANFIS, two different parameters should be optimized to provide the learning 

procedures:  

i- Antecedent parameters (the MF parameters) 

ii- Consequent parameters (the fuzzy system output function) 

As the consequent parameters are linear, to optimize these parameters the linear least-

squares method is applied and to optimize the antecedent parameters similar to neural 

networks the backpropagation algorithm in conjunction with an optimization method such 

as gradient descent is applied.  
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Generally, five different layers construct the ANFIS structure while each layer consists 

of node functions and the inputs of the nodes in the present layer are obtained from 

previous layers (Tavana, Fallahpour, Di Caprio, & Santos-Arteaga, 2016). The 

consecutive layers of ANFIS structure are as follows: layer 1 is fuzzification (if-part), 

layer 2 is production part, layer 3 is normalization part, layer 4 is defuzzification (then-

part), and eventually layer 5 is total output generation part. Figure 3.4 shows the structure 

of ANFIS with two independent variables (x and y) as input and one dependent variable 

fout as an output. 

Π



X

X y

N

Π
y

yX

N

1w

2w

11 fw

22 fw

1w

2w

Inputs Layer 1
(if part)

Layer 2
(rules)

Layer 3 
(norm)

Layer 4
(then part)

Layer 5 
(output)

outf

1A

2A

2B

1B

 
Figure 3.4: The general structure of ANFIS 

For fuzzy inference systems, differing in the consequence of the set of fuzzy rules (if-

then) and defuzzification procedures lead to two different types of fuzzy inference 

systems known as Mamdani type FIS and Sugeno type FIS. 

In many respects, Mamdani type FIS is similar to Sugeno method. The fuzzifying the 

inputs data and executing the fuzzy operators are similar fuzzy inference process in both 

types. The main difference between Sugeno type FIS and Mamdani type FIS is the way 

the fuzzy inputs are converted to the crisp output. In Mamdani type FIS for computing 

the crisp output the defuzzification technique of a fuzzy output is used while in Sugeno 

type FIS the weighted average method is used. As the consequents of the rules are not 
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fuzzy in the Sugeno method, the interpretability and expressive power of Mamdani output 

are eliminated in this method. In comparison to Mamdani type FIS, Sugeno has faster 

processing time since instead of the time consuming defuzzification process the weighted 

average method is applied. Particularly, in decision support applications Mamdani 

method is widely applied, due to intuitive nature and the interpretable of the rule base 

provided in this method. Moreover, another difference between Sugeno and Mamdani 

type FIS is that Sugeno has no output membership functions whereas Mamdani FIS has 

output membership so, Sugeno method provides an output that is either linear (weighted) 

mathematical expression or a constant. Instead, Mamdani method provides an output that 

is a fuzzy set. ANFIS architectures representing both the Mamdani and Sugeno methods. 

In comparison to Mamdani type FIS, Sugeno has more flexibility in system design as 

latter can be integrated with ANFIS tool to model the systems more precisely (Svalina, 

Galzina, Lujić, & Šimunović, 2013). 

Considering ANFIS with Sugeno type FIS, so the rule base of ANFIS contains fuzzy 

IF-THEN rules of a first order Sugeno type FIS are stated as: 

Rule 1:    If x is A1 and y is B1 then z is f1(x, y; p1, q1, r1) = x p1+y q1 +r1 

Rule 2:   If x is A2 and y is B2 then z is f2(x, y; p2, q2, r2) = x p2+y q2 +r2 

where fi(x, y; pi, qi, ri) is a first order polynomial function which represents the outputs of 

the Sugeno type FIS, Ai and Bi are the fuzzy sets, and x and y are two different input and 

z is an output of ANFIS model. 

In the ANFIS structure different layers consists of different node function. As shown 

in Figure 3.4, adaptive nodes which represent the adjustable parameter sets are denoted 

by squares whereas fixed nodes which represent the fixed parameter sets in the system 

are denoted by circles. 
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 Layer 1 

Every node in this layer is an adaptive node with a node function as follow: 

𝑄1,𝑖 = 𝜇𝐴𝑖(𝑥),          𝑖 = 1,2 (3.64) 

𝑄1,𝑖 = 𝜇𝐵𝑖−2(𝑦),     𝑖 = 3,4 (2.65) 

where x and y are the inputs to node i , Ai and Bi are linguistic labels, 𝜇𝐴𝑖 and  𝜇𝐵𝑖 are the 

membership functions for 𝐴𝑖 and 𝐵𝑖 fuzzy sets, respectively and Q1,i  is the membership 

grade of a fuzzy set and considered as the output of node i in the first layer which specifies 

the degree to the given input (x or y) satisfies the quantifies.  

Typically in ANFIS, the MF (membership function) for a fuzzy set can be any 

parameterized membership function, such as generalized Bell shaped function, Gaussian, 

trapezoidal or triangular. 

A generalized Bell shaped MF (bell MF) is specified as folows: 

𝜇𝐴(𝑥; 𝑎, 𝑏, 𝑐) =
1

1 + {
𝑥 − 𝑐

𝑎 }2𝑏
 (3.66) 

A Gaussian MF is specified as folows: 

𝜇𝐴(𝑥; 𝑐, 𝜎) = 𝑒−0.5(
𝑥−𝑐
𝜎

)2
 (3.67) 

while 𝜎 and c determined the width and center of Guassian MF, respectively.  

A trapezoidal MF is specified as folows: 

𝜇𝐴(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 − 𝑎

𝑏 − 𝑎
, 1,

𝑑 − 𝑥

𝑑 − 𝑐
) , 0) (3.68) 

The parameters with a < b ≤ c < d specify the x cordinates of the four corners for the 

underlying trapezoidal MF. 
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A triangular MF is specified as folows: 

𝜇𝐴(𝑥; 𝑎, 𝑏, 𝑐) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝑥 − 𝑎

𝑏 − 𝑎
,
𝑐 − 𝑥

𝑐 − 𝑏
) , 0) (3.69) 

The parameters with a < b < c specify the x cordinates of the three corners for the 

underlying triangular MF. Where in this layer, the parameters a,b,c,d and  𝜎 are the 

antecedent parameters. 

 Layer 2 

Every node in this layer is a fixed node whose output is the product of all the incoming 

signals. In this layer through multiplication of input signals the firing strength of each 

rule is determined. 

𝑄2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥)𝜇𝐵𝑖(𝑦),        𝑖 = 1,2 (3.70) 

where wi is output signal which represents the firing strength of a rule. 

 Layer 3 

Every node in this layer is a fixed node. In this layer, the firing strength provided in 

previous layer is normalized by computing the ratio of the ith rule’s firing strength to the 

sum of all rules’ firing strengths. 

 

𝑄3,𝑖 = 𝑤𝑖̅̅ ̅ =
𝑤𝑖

𝑤1 + 𝑤2
                 𝑖 = 1,2   (3.71) 

where 𝑤̅ is output signal which represents the normalized firing strength of a rule. 
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 Layer 4 

In this layer every node i is adaptive with a node function. 

𝑄4,𝑖 = 𝑤𝑖̅̅ ̅𝑓𝑖                                 𝑖 = 1,2                                                        (3.72) 

where f1 and f2 are the fuzzy IF-THEN rules as follows: 

Rule1:   If x is A1 and y is B1 then z=f1(x, y; p1, q1, r1)  

Rule2:   If x is A2 and y is B2 then z=f2(x, y; p2, q2, r2)  

where ri, qi and pi are the parameter set, referred to as the linear consequent parameters. 

 Layer 5 

This layer has only one fixed node that computes the overall output of ANFIS by 

summation of all incoming signals. 

𝑄5,𝑖 = 𝑓𝑜𝑢𝑡 = ∑ 𝑤𝑖̅̅ ̅𝑓𝑖
𝑖

=
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
=  𝑜𝑣𝑒𝑟𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡          𝑖 = 1,2 (3.73) 

The overall output is linear combination of the consequent parameters. Thus, the final 

output of ANFIS is expressed: 

𝑓𝑜𝑢𝑡 = 𝑤1̅̅̅̅ 𝑓1 + 𝑤2̅̅̅̅ 𝑓2 =
𝑤1

𝑤1 + 𝑤2
 𝑓1 +

𝑤2

𝑤1 + 𝑤2
 𝑓2 

= (𝑤1̅̅̅̅ 𝑥)𝑝1 + (𝑤2̅̅̅̅ 𝑥)𝑝2 + (𝑤1̅̅̅̅ 𝑦)𝑞1 + (𝑤2̅̅̅̅ 𝑦)𝑞2 + (𝑤1̅̅̅̅ )𝑟1 + (𝑤2̅̅̅̅ )𝑟2          

(3.74) 

Eventually, ANFIS applies a hybrid learning algorithm for parameters tuning. It 

utilizes the back propagation algorithm and the least squared method for updating the 

input MF parameters (antecedent parameters) in layer 1, and training the consequent 

parameters, respectively. 

 

Univ
ers

ity
 of

 M
ala

ya



67 

3.3.4 Gene Expression Programming 

GP as a preliminary version of GEP (gene expression programming) is a supervised 

machine learning technique that creates sophisticated computer programs (mathematical 

models) to fit the experimental data using the principle of Darwinian natural selection 

(evolutionary change). Generally, GP is defined as an evolutionary algorithm that 

searches a program space instead of a data space to discover complex relationships among 

observed data. The computer programs developed by GP and its variants are based on 

parse trees that adapt and learn by changing their shapes, sizes, and structural architecture.  

Unlike other AI techniques, GP does not suffer from black-box problem, due to its 

ability to generate explicit formulations (mathematical models) without assuming prior 

form of the existing relationship. 

In GP the tendency for growing program size (depth of parse trees) as the search 

progresses without increasing in quality of results is known as bloat, which leads to 

producing nested functions. The bloat phenomenon causes a number of problems (e.g. 

large, complex, inefficient, and non-functional programs) that limit the application of GP 

systems. To overcome this drawback, the GEP has been proposed as an extension of GP.  

GEP is extremely versatile and greatly surpasses the existing evolutionary methods, 

as the GEP inherited the expressive parse trees of varied sizes and shapes from GP; and 

it inherited the linear chromosomes of fixed length from GA to avoid bloat (Oltean & 

Grosan, 2003). The comparison between GEP, GP, and GA is summarized in Table 3.3. 

In GEP, the linear chromosomes of fixed length composed of genes structurally organized 

in a head and tail (i.e. work as genotype) and the parse trees (i.e. work as phenotype), 

developing a genotype-phenotype system.  

Univ
ers

ity
 of

 M
ala

ya



68 

Table 3.3: Comparison of GEP technique with GP and GA 

GEP GP GA 

It is closely related 

to GP and GA. 

 

 

Its chromosomes are non-

linear, varying in shape as well 

as length, which are  known as 

‘parse trees’ 

It has linear chromosomes of 

fixed length. 

 

 

It inherited the expressive parse 

trees of varied sizes and shapes 

from GP; and it inherited the 

linear chromosomes of fixed 

length from GA. 

At the same time, it uses a 

single entity working as 

genome (gene) and phenome 

(body). 

Similar to GP, it uses a single 

entity working as genome and 

phenome at the same time. 

It does not suffer from bloat 

problem. 

 

It suffers from bloat problem. - 

It produces valid expressions. Sometimes, it produces invalid 

expressions. 

Sometimes, it can lead to 

invalid solutions. 

 

It is well established beyond the 

replicator threshold. 

It is not well established 

beyond the replicator threshold 

It is not established beyond the 

replicator threshold. 

It still has difficulty discovering 

suitable numeric constants for 

terminal nodes in the expression 

trees. 

It has difficulty for constant 

creation procedure. 

Unlike the GEP and GP, its 

genetic operators work on data 

space to optimize the given 

problem (i.e. optimization 

approach). 

The genotype-phenotype system in GEP benefiting from a simple genome to keep 

and transmit the genetic information and a complex phenotype to explore the environment 

and adapt to it much like a living organism. The computer programs generated by GEP 

are composed of multiple parse trees (expression trees) due to multigenic nature of its 

genotype-phenotype system, which allows evaluation of more complex programs 

comprised of several subprograms.  

The genome of GEP consists of a linear, symbolic string (chromosome) with fixed 

length composed of one or more genes with equal size structurally organized in head and 

tail domains. Each allele of a gene is constructed from a predefined set of mathematical 

functions, variables, and numeric constants. The head domain contains mathematical 

functions as well as terminals and random numeric constants (RNC), while the tail 

domain can contain only terminals and RNC, which provides essentially a reservoir of 

terminals and pool of RNC (i.e. Dc domain) to ensure that all genes always correspond to 
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valid expression tree (ET). The arrangement of functions and terminals in the head and 

tail domains is known as structural architecture. The head length is defined by user, while 

the length of the tail is determined as 

 (3.75) 

 where t,  h,  and   n max  represent   the   tail   length,   the   head  length,   and   the number 

of arguments for the function that takes the most arguments, respectively. 

Once  the   head  length  and   the   set  of   functions   have  been  set,   the length  

of   a  gene  is   also   decided   accordingly. The   genes  of   GEP   can   be transformed   

into   an  ET   by  the   level-order   traversal, and   these   genes   within  one   chromosome  

are  connected  sequentially together by  a  user-specified  linking   function which is not 

shown in the chromosome. When expressed as trees, each gene in the chromosome codes 

for a sub-ET, and the sub-ETs add via the linking function to form the expression tree. In 

GEP, individual solutions are based on ‘ETs’ used to represent functional forms, which 

fit the experimental data. These ETs are made of ‘nodes’, which start with a rote node 

and correspond to branch points in the tree, or to ‘leaves ’that terminate the branches. The 

branch points are functional operators. The ‘leaves’ (terminals) are either variables or 

RNC. As well as the variables, RNC can also be used as terminals, giving added flexibility 

in evolution of the models. 

It is easy to manipulate genetically the linear chromosomes of fixed length, 

without losing their functional complexity. Hence, in GEP, the creation of genetic 

diversity is extremely simplified, as the evolutionary operators work at chromosome level 

not expression trees (ETs); and only, the chromosomes are transmitted in the process of 

reproduction. Therefore, the pivotal insight of GEP consisted in the invention of Karva 

11nht  )( max
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notation (K-expression) as an unequivocal translation system to encode the language of 

chromosomes to the language of ETs. 

Eq. (3.76) is considered as an example to clarify the genotype-phenotype system 

of GEP. An algebraic expression as in Eq. (3.76) is represented either by a K-expression 

or by an ET in Figure 3.5.  

 (3.76) 

The Eq. (3.76) is coded by a chromosome (model) with two genes (terms), where 

the head length of each gene is four, the predefined mathematical functions are {√, sin, 

−, +, ×, /} and the variables are {a, b, c, d}. According to Eq. (3.75) the tail length of each 

gene is specified to be five (t=5) while its head length is four (h= 4) and the number of 

arguments for the predefined mathematical functions that takes the most arguments is 

equal to two (n max =2).  

The mathematical form of ET is expressed as a chromosome, which is the straightforward 

reading of the ET from left to right and from top to bottom. Eq. (3.76) can also be mapped 

as an ET. To map the encoded information within a gene into the sub-ET, the K-

expression string is scanned gene by gene. Then the first position of each gene is placed 

to the root of the corresponding sub-ET. This mapping process continues sequentially 

until all leaf nodes in the ET are composed of elements from the terminal set. As 

illustrated in Figure 3.5 the first and second genes evolve simultaneously within the 

chromosome are interpreted by sub-ET1 and sub-ET2 respectively, which are joined by 

an addition function to form an ET structure. The ET consists of a group of nodes, which 

are shown by circles. Each node represents either a mathematical function or a variable. 
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The variables are leaf nodes and the predefined mathematical functions are branch points 

that govern the connectivity between the terminal nodes. 

 

 
 

Figure 3.5: GEP’s genotype-phenotype system attached with considered 

mathematical equation 

 

The generic algorithm of GEP is shown in Table 3.4. GEP can be explained by 

dividing its evolution process into four major steps: initialization, elitist selection, 

reproduction, and termination.  
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Table 3.4: General structure of GEP 

1. Initialization 

  repeat 

2. Selection and Replication 

Reproduction  

3. Mutation 

4. IS transposition  

5. RIS transposition 

6. Gene transposition 

7. Single or double crossover 

8. Gene crossover 

9. Inversion 

end 

  until termination criteria are satisfied; 

 

 Initialization 

The initial chromosomes equal to the dimension of population are generated randomly 

to form the population of solutions. In GEP method, each individual of population 

(chromosome) composed of genes structurally organized in a head and tail to generate 

valid solution. The separation of genes in two parts (head and tail) implies Karva notation 

as a universal way of representing any mathematical or logical expression that can be 

represented as a parse tree with different sizes and shapes. Through Kerva notation, all 

chromosomes are translated to ETs, and then the solutions are executed to obtain their 

fitness values.  

 Selection and Replication  

The selection operator selects the programs for the replication operator to copy a 

chromosome with high fitness score into the new generation. In this stage of GEP for 

reducing the risk of losing fit individuals, the potentially useful individuals are selected 

into the next generation according to their fitness by roulette wheel selection (fitness 

proportionate selection) with elitism. The individuals with higher fitness scores will be 
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less likely to be eliminated in reproduction process, to guarantee the survival and cloning 

of the best chromosomes in new population. 

The reproduction process genetically manipulates the population by conducting 

genetic operations on randomly selected chromosomes as illustrated in Table 3.5. Thus, 

in GEP, a chromosome might be modified by one or several operators at a time or not be 

modified at all. The pseudocode of GEP is provided in Table 3.5 to elucidate the operation 

of genetic operators in this method. The reproduction process in GEP includes the 

following genetic operations: 

 Mutation 

To increase the diversity of the population, mutation is placed at any location of a 

chromosome but it does not affect its structure, i.e., the alleles in the head change in to 

other functions or terminals, whereas alleles in the tail can be changed only into other 

terminals.  

 IS (insertion sequence) transposition 

 To facilitate the evolution process in GEP, the transposition operators create simple 

repetitive sequences in the genome. The transposition operators randomly select the 

chromosome, the gene to be manipulated, the first position of transposon (transposable 

element), and its length. In IS transposition operation any sequence in the genome is 

inserted randomly at any position in the head of a randomly chosen gene expect for the 

first position (gene root). 

 Root insertion sequence (RIS) transposition 

 In RIS transposition operation, any transposon with a function in the first position is 

inserted randomly at root of a randomly chosen gene. 
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 Gene transposition 

This operator entirely transposes a randomly selected gene into the root of the 

chromosome. 

 Single and double crossover 

 In 1-point recombination (single crossover) operation, the genetic material is 

exchanged at the randomly selected single location between a pair of randomly chosen 

chromosomes (parent) to generate new offspring. In 2-point recombination operation 

(double crossover), two randomly selected substrings are exchanged between two 

chromosomes.  

 Gene crossover 

This operator entirely exchanges two randomly selected genes in two chromosomes to 

generate new offspring. 

 Inversion 

By means of this operator, the allele in the gene head of a randomly selected 

chromosome is reallocated in the reverse order to facilitate the evaluation process.  

 Termination criteria 

The program executes the aforementioned genetic operations iteratively for a certain 

number of generations or until an explicit formulation has been found. When the stopping 

conditions are met, the best mathematical model in the form of expression tree is exported 

to the output. 
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Table 3.5: Pseudocode of GEP algorithm 

Input: Generation max, Population size, Genes numbers, Head length, Function set, Terminal set, Constants per gene, DC limit 

Crossover rate, Mutation rate, Inversion rate, Transposition rate 

Output: Solution Best-Cost, Solution Best-ET 

// Initialization// 

1.  population           initialize population (Population size, Genes numbers, Head length, Function set, Terminal set, Constants per gene, 

DC limit) 

2.  for each Solution i ∈ population do  

         // Translate the Chromosome into Expression Tree // 

3.       Solution i_ET                  translate breadth first (Solution i_genes) 

        // Execute the Corresponding Expression Tree// 

4.      Solution i_cost                  execute (Solution i_ET) 

5.  end 

    // Elitist selection & Replication // 

6.  Solution Best           select best solution (population) 

7.  population           copy Solution Best  

8.  while stopping condition are not met do  

         // Parent Selection Process// 

9.     parent i           select parents (population) 

10.   parent j           select parents (population) 

        // Crossover operator// 

11.   offspring 1                  crossover (parent i, parent j, Crossover rate) 

12.   offspring 2                 crossover (parent j, parent j, Crossover rate) 

         // Mutation operator // 

13.   offspring 1m                  mutation (offspring 1, Mutation rate) 

14.   offspring 2m                  mutation (offspring 2, Mutation rate) 

         // Inversion operator // 

15.   offspring 1_inversion                  inversion (offspring 1m, Inversion rate) 

16.   offspring 2_inversion                  inversion (offspring 2m, Inversion rate) 

         // Transposition operator // 

17.   offspring 1_transposition                  inversion (offspring 1_inversion, Transposition rate) 

18.   offspring 2_transposition                  inversion (offspring 1_inversion, Transposition rate) 

        // Traslate the Choromosme into Experession Tree//  

19.   offspring 1_ET                  translate breadth first (offspring 1_transposition) 

20.   offspring 2_ET                  translate breadth first (offspring 2_transposition) 

        // Execute the Corresponding Expression Tree //  

21.   offspring 1_cost                 execute (offspring 1_ET) 

22.   offspring 2_cost                  execute (offspring 2_ET) 

        // Roulette Wheel Selection //  

23.    population           population update RWS (offspring 1_cost, offspring 2_cost) 

24. end 

25. return to best soloution 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



76 

3.3.5 Optimized Gene Expression Programming 

The key issue in evolutionary modeling is balancing the exploitation of solution 

structure and exploration of its appropriate weighting factors. GEP lacks the ability to 

precisely generate and evolve empirical coefficients of generated mathematical model 

(Zhong et al., 2015). While evolution process of GEP has been developed more efficiently 

for exploitation of solution structure, it is difficult for evolution to come up with 

appropriate weighting factors. The RNC algorithm handles constant creation in GEP. To 

refine the weighting parameters of functional form expressed as a tree structure a 

metaheuristic optimization method is invoked over final solution of standard GEP, which 

is an optimized extension to GEP. The pivotal insight of the optimized GEP lies in the 

integration of a robust and efficient metaheuristic optimization method with GEP while 

optimization method with fixed fitness evaluation function as in GEP is invoked to 

optimize a parameter vector consisted of all weighting parameters in GEP chromosomes. 

Thus, learning process of optimized GEP is divided into two phases: in the first phase, 

the exploration of solution structure is provided by GEP; while in the second phase, the 

exploitation of its optimal weighting factors is provided by optimization method. The 

search power of metaheuristic method on parameter optimization tunes up the constant 

creation process in GEP and improves the prediction accuracy without further 

complicated model. Due to effectiveness and the potential benefits provided by optimized 

GEP, fewer control parameters (i.e. functional operators) can be selected to precisely 

adapt the information into a mathematical model.  

Four different robust and efficient metaheuristic optimization methods, namely PSO, 

CSA, ACS, and BSA, which not only provide highly accurate results but also have simple 

implementation procedure with fewest control parameters, are examined to assess the 

most effective optimization algorithm for optimal training in the second learning process 

of optimized GEP. 
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3.3.5.1 Particle Swarm Optimization 

PSO as a population-based metaheuristic technique has attracted significant attention 

to tackle the complexity of different optimization problems due to its simple concept with 

efficient search mechanism on real-valued numerical optimization (Sebtahmadi, Azad, 

Kaboli, Islam, & Mekhilef, 2017). It is inspired by particles moving around in the search 

space. As shown in Figure 3.6, each particle in PSO has a position (xn) and a velocity (vn). 

Each particle keeps track of the overall best value, gbest, as well as its previous best 

position, Pbest. The new position of the particle is computed as follows: 

)
)i(

nx
nbestg(randc)

)i(
nx)i(

nbestP(randc
)i(

nvnw
)i(
1n

v 2211 
  (3.77) 

)nPop...1i(
)i(
1n

v
)i(

nx
)i(
1n

x 



  (3.78) 

 

 

Figure 3.6: The mechanism of particles (i & j) movement toward the global 

position (gbest) within 2-dimensions search space 

where rand1 and rand2 are the random values distributed uniformly between 0 and 1, c1 

and c2 are the acceleration factors, which determine the relative pull for particles towards 

Pbest and gbest. w is the inertia weight that keeps a balance between global and local 

searches. The main structure and pseudocode of PSO is depicted in Tables 3.6 and 3.7 

respectively.  
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Table 3.6: General structure of PSO 

1. Initialization 

     Generate random initial solution for particles 

     Determine gbest of swarm and Pbest of particles  

2. For all particles, 

   Generate new solution by using (3.77) and (3.78) 

3.  Update global Pbest and local gbest 

4.  Not stopping criterion go to step 2 

5.  Stop 

     To provide balance between exploration of the problem's search and exploitation of 

better results, instead of using a constant inertia weight an adaptive inertia weight is used. 

Global search requires larger step sizes at the beginning of the optimization process to 

determine the most promising areas. To provide local search ability, then the step size is 

reduced to focus only on that area. Thus, the inertia weight in PSO is adapted 

descendingly as a function of iteration (n) according to Eg. (3.79). 

   nmax/wminwmaxwmaxwnw   (3.79) 

 where nmax is maximum number of iterations and wmin and wmax are the minimum and 

maximum boundary of inertia weight, respectively. 

Table 3.7: Pseudocode of PSO  

Data: nPop, nVar, max cycle, low, up, C1,C2,wmin, wmax 

Result: xbest | gbest= f (xbest) 

    //Initialization  

1.    gbest, n=0 ≈ ∞ 

2.    for i ← 1 to nPop do 

3.          for k ← 1 to nVar do  

4.              x i,k ~ U (low k, up k) 
5.          end 

6.           v i = 0  

7.           y i = f (x i) 
8.           Pbest, i  := x i 

9.           if y i < gbest then gbest := y i end 

10.  end 

11.   for n ← 1 to max cycle do  

12.         for i ← 1 to nPop do 

13.             w = wmax – ((wmax – wmin) (n / max cycle)) 
14.             v i  = w vi +( Pbest, i  – x i) (c1 rand) + ( g best – x i) (c2 rand) 

15.              x i  = x i + v i 
16.              for k ← 1 to nVar do 

17.                     if    x i,k  > up k  \/ x i,k  < low k  then 
18.                            x i,k  =   x i,k  – v i 

19.                            x i,k  := min (max (x i,k ,low k ), up k) 

20.                    end 

21.              end 

22.              y i = f (x i) 

23.         end 
24.          if min f (x) < gbest then  

25.               gbest := min f (x)    
26.                        xbest := arg min f (x) 

27.               end 

28.  end        
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3.3.5.2 Cuckoo Search Algorithm 

Cuckoo search algorithm (CSA) as a global optimization algorithm was inspired by 

the obligate brood parasitism of cuckoo and cowbird by laying their eggs in the nests of 

other host passerines to increase their reproductivity (Gandomi, Yang, & Alavi, 2013). 

The cuckoo and cowbird seek the parental care and nests of other host birds for their 

brood to fledge. The organisms with such breeding behavior are known as brood parasites. 

Although, the female parasitic cuckoos are very specialized in the mimicry in pattern and 

colors of eggs, some host bird can distinguish between their own eggs and intruding eggs. 

The host bird will either build a completely new nest in new location or simply throw 

alien eggs away if alien eggs are discovered. Eventually, the alien eggs are hatched to 

chicks by the host birds, if the alien eggs have not been detected. 

CSA is based on the following idealized rules while the aim is to employ the cuckoo 

eggs as the potentially better solutions to replace with not-so-good solution in the nests.  

i- Each egg in a nest represents a solution and a cuckoo’s egg represents new 

solution. 

ii- Each cuckoo lays one egg in a randomly chosen nest at a time. 

iii- For the next generation the best nests with high quality of eggs are chosen.  

iv- The host bird can discover the alien eggs with probability Pa ϵ (0, 1). In this 

case, the host bird abundant its nest to build new one elsewhere.   

CSA as a nature-inspired algorithm has the advantage of a simple implementation 

procedure and only a few control parameters. Despite its simple structure, it has been 

robust and effective algorithm with high probability of finding optimal parameters at 

numerical optimization. In CSA, cuckoos select a random nest to lay their eggs. Eggs 

with the highest quality (the better solution) are passed to the next generation by an elitist 

selection process. Alien eggs are detected by the host birds and thrown away or the nest 
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is discarded instead. The path and the position iterative formula of CSA comprises five 

stages: initialization, generating, evaluating, elitist selection, and alien egg discovery as 

presented in Table 3.8.  

Table 3.8: General structure of CSA 

1. Initialization 

  Repeat 

  lay the cuckoo eggs in the host nest 

2. Generate the cuckoo egg with Lévy flight  

3. Evaluate the quality of cuckoo egg 

4. Elitist selection 

     end 

5. Alien egg discovery  

  until stopping conditions are met; 

 

 Initialization 

The initial values of the i th host nest is defined by using Eq. (3.80). 

  nVar,...,3,2,1j,nPop,...,3,2,1i

for

)x(fy,)up,low(U~x ix;ijj0g;j,i





 
(3.80) 

where:  

nPop is population size of host nests; 

nVar is number of respective optimization variable; 

U represents the uniform distribution function; 

lowj and upj  are lower and upper search space limits of jth variable;  

yi;x are productivity of ith host nest;  

g is generation number; 
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 Generate the cuckoo egg with Lévy flight 

The cuckoo’s egg as a new solution is calculated based on the previous best nests (xbest) 

by Lévy flights. The Lévy flights  is a  random walk while the step-lengths are distributed 

acording to the heavy-tailed probability distribution. The new solution of CSA is 

calculated as follows: 

)(L3randnew
gxnew

1g
x 


 (3.81) 

where  
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where  

 is a Lévy distribution function describing randomly walked steps with an infinite 

variance and infinite mean, β is the distribution factor (ß ϵ [0.3, 1.99]);  

rand3 is a normally distributed random number in [0, 1], randx and randy are two normally 

distributed stochastic variables with standard deviation σx ( β) and σy( β), respectively; 

 is the gamma distribution function, xg
best is corresponding to the nest with highest 

productivity among all nests in gth generation , and ɑ > 0 is the step size; 

)(L

(.)
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 Evaluate the quality of cuckoo egg 

The cuckoo selects a random host nest to lay its egg. If the quality of the generated 

cuckoo’s egg in previous step is better than the quality of the randomly selected host egg, 

the new solution is kept for next generation. Therefore, in this step of CSA the quality of 

cuckoo’s egg is compared with the quality of the host egg.  

)x(fy

)x(fy

k
gx;k

new
gx;k

k
g

new
g





 
(3.84) 

where xg
k is the randomly selected host egg in gth generation, and k

gx;k
y is its 

corresponding fitness.  

 Elitist selection 

If the fitness of host egg is worse than cuckoo’s egg, the randomly selected host egg 

is replaced with cuckoo’s egg. Figure 3.7 depicts the elitist selection process of CSA.  

 

Figure 3.7: The elitist selection process of CSA 
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 Alien egg discovery  

Discovery of an alien egg with the probability of Pa ϵ (0, 1) similar to the Lévy flights 

creates a new solution for the problem. The new solution due to this action is found out 

in the following way: 












)best

gx(2randp)best
gx(1randp5randLdis

gxdis
1g

x  (3.85) 

where  

𝐿 = {
1      𝑖𝑓 𝑟𝑎𝑛𝑑4 < 𝑃𝑎

0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (3.86) 

rand is the distributed random numbers in [0, 1] and randp is the random perturbation for 

positions of the nests in xg
best. The same elitist selection process as in previous step is 

applied for this new solution. Eventually, the value of the fitness function is calculated 

and the nest corresponding to the best fitness function after all generation  is reported as 

the best nest (xbest).  

The pseudocode of CSA algorithm is provided in Table 3.9. 

Table 3.9: Pseudocode of CSA  
Data: nPop, nVar, Max cycle, low, up, f, ß, pa   
Result: xbest | ybest = f (xbest) 

    //Initialization of host nests 

1.    ybest g=0 ≈ ∞ 

2. for i ← 1 to nPop do 

3.          for j ← 1 to nVar do  
4.              x i,j ~ U (low j, up j) 

5.          end 

6.           y i = f(x i) 
7.  end 

8.   for g ← 1 to max cycle do  

9.        x new  ←  Generate a Cuckoo randomly by Lévy flight 

10.      x k     ←  Choose a random nest among the host nests 
11.           if  f(x new) < f(x k) 

12.                x k := x new 

13.          end  

14.       A fraction (pa) of the worse nests are abandoned  

15.       New nests are built via Lévy flights at new location 

16.       Solutions/nests are ranked  

17.       mbest = min (f (x)) | best ∈ {1, 2, 3,…, nPop} 
18.           if y < ybest then  

19.                 ybest := mbest 

20.                 xbest := xbest 

21.          end 

22. end        
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3.3.5.3 Artificial Corporative Search 

A preliminary version of the ACS algorithm was presented in (Civicioglu, 2013a), in 

which applied for solving complex optimization problems and the results confirmed the 

well performance of this algorithm in comparison with other metaheuristic approaches. 

As the superorganisms intelligently behave in nature, ACS drew inspiration from the 

cooperation and mutualism based biological interaction of two eusocial superorganisms 

living in the same habitat. A superorganism is any aggregate of individuals that behaves 

like an intelligent unified organism while the members of superorganism have a social 

cooperative instinct, and are unable to survive away from their superorganism for 

extended periods. There is a biological interaction based on amensalism between the 

superorganisms that have parasite-host or predator-prey relationship, which leads to 

coevolution, cooperation, or coextinction between the superorganisms. 

The ACS is a new two-population search algorithm based on coevolution process. The 

ACS has been developed to overcome some of the drawbacks of metaheuristic 

approaches; e.g. too many control parameters and over sensitivity to initial value of these 

parameters, premature convergence and time-consuming computation due to deficient 

balance between exploitation of better results and exploration of the problem's search 

space.  

The ACS has only one control parameter and is not over sensitive to the initial value 

of this parameter. Two operators; crossover and mutation, which provide the balance 

between exploitation and exploration, are utilized in this algorithm. These operators are 

unique and quite different from the structures of the crossover and mutation strategies 

defined in other evolutionary methods; e.g. GA and DE. The ACS has advantage of a 

memorization process to facilitate the exploration of the feeding areas. The ACS 

comprises seven stages: initialization, selection of Predator, selection of Prey, mutation, 
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crossover, boundary control, and export the best individual. The generic algorithm of 

ACS is shown in Table 3.10.  

                                                                                   . 

Table 3.10: General structure of ACS 

1. Initialization 

Repeat 

2. Selection of Predator 

3. Selection of Prey 

      Finding active individuals  

    4.  Mutation 

          5.  Crossover 

     end 

6. Boundary control 

7. Export the best individual  

Until stopping conditions are met 

 

  Initialization 

In ACS algorithm, a superorganism consisting of random solutions of the related 

problem corresponds to an artificial superorganism migrating to more productive feeding 

areas. ACS  algorithm  contains  two superorganisms; α and β that have artificial sub-

superorganisms  equal  to  the  dimension  of  the  population. The initial values of the 

individuals of i th sub-superorganism belong to each superorganism (α and β) are defined 

by using Eq. (3.87). 

  nVar,...,3,2,1j,nPop,...,3,2,1i

for

)if(β
i;β

,y)j,upj~U(low
0i,j;g

β

)if(αi;αy,)j,upj~U(low
0i,j;g

α









 

 

(3.87) 

where:  
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nPop is the population size of individuals in the superorganisms α and β; 

nVar is the number of respective optimization variable; 

U represents the uniform distribution function; 

lowj and upj  are the lower and upper search space limits of jth variable;  

yi;α and yi;β  are the productivity of ith sub-superorganism related to α and β 

superorganisms;  

g  is the generation number which express the coevolution level  of  the superorganisms; 

 Selection of Predator 

In this stage of ACS algorithm the coevolution process for both of superorganisms is 

provided, while the Predator sub-superorganism is determined randomly from two 

superorganisms in each generation through the ‘if-then-else’ decision rule according to 

Eq. (3.88). 

2key:,
β

y:
predator

y,βpredator:else

1key:,αy:
predator

y,αpredator:then
)1,0a,b~U(

baif




 

 

(3.88) 

where: 

:=  is the update operation; 

a and b are randomly generated numbers; 

key is a memory to track  the origin of Predator in each iteration; 
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 Selection of Prey  

In this stage of ACS algorithm, the similar decision rule provided in Eq. (3.88) is 

applied for random selection of Prey sub-superorganism from two superorganisms. To 

mimic the behavior of the natural superorganisms, the hierarchical sequencing between 

the individuals of Prey sub-superorganisms is permuted through a random shuffling 

function. The obtained Prey is used to determine the search direction in each generation 

according to Eq. (3.90). Subsequently, in this stage the Predator pursues the Prey for a 

period of time while they migrate towards more productive feeding areas which provide 

a memorization process to facilitate the exploration of the feeding areas. 

(prey)permutingprey:

βprey:else,αprey:then
),a,b~U(

baif




10

 

 

(3.89) 

 Mutation 

The mutation process of ACS models biological interaction location x among Predator 

and Prey sub-superorganisms according to Eq. (3.90) while the random walk function 

(Wiener process) is applied in mutation process to mathematically formulate the foraging 

behavior of  sub-superorganisms. The local and global search capability of ACS algorithm 

is promoted, as the Prey sub-superorganisms is used to generate a mutation matrix (x)  by 

taking partial advantage of its experiences from previous generations. 

)1,0a,b,c~U(
.a.(b-c)4 R

predator)R.(preypredatorx





 

 

(3.90) 
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  Crossover 

A binary integer-valued matrix (M) that indicates the active individuals of the Predator 

are determined for crossover process according to Eq. (3.91). In ACS, active individuals 

stand for the individuals that participated in a migration at any time and only they can 

discover new biological interaction locations. During migration, the control parameter of 

ACS, determines the probability of corporation between individuals by selecting the 

biological interaction level within the crossover process. Eq. (3.91) elucidates the unique 

crossover strategy of ACS. 

   ,...,nVar3,2,1j,,...,nPop3,2,1i

for

i,jpredator:i,jxthen0i,jMif

0ar)i,randi(nVMelse

0r))(randi(nVai,randpermMthen
)1,0a,b~U(

(p.b)aif

,1i,jM











 (3.91) 

where  

P is the control parameter of optimization algorithm. ACS has only one control parameter; 

probability of biological interaction (P) which restricts the number of the active 

individuals of each sub-superorganism by controlling the number of individuals to be 

engaged in the crossover process. The experiments with different values of P exposed 

that ACS algorithm is not too sensitive to its control parameter, while P is in the range of 

[0.05 0.15]. 

randperm(nVar) is random permutation function that generates a row vector containing 

a random permutation of the integers from 1 to nVar inclusive.  

randi(nVar) is random selection function that generates a pseudorandom integer between 

1 and nVar. 
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 Boundary control  

At the end of the crossover process, if the achieved interaction location x violates the 

habitat limits, the related interaction location is updated according to the boundary control 

mechanism developed in this stage.  

)j,upj~U(lowi,jxthen)jupi,j(xor)jlowi,j(xif   (3.92) 

 Export the global minimum: 

Finally, the fitness value of the best individual is exported as global minimum and its 

position is considered as global minimizer according to the Eq. (3.93). 

   ,...,gMax3,2,1,g,...,nPop3,2,1i

for

1gg

,gpredatorimizer:minglobal,gyimum:minglobalthen1gygyif

)predator(ymingy

predatory:βy,predatorβ:else

predatory:αy,predatorα:then1keyif

)if(x:i;predatory,ix:ipredatortheni;predatory)if(xfi















 

(3.93) 

Due to the probabilistic nature of ACS algorithm, the selected predator can be different 

in each generation. Thus, the cooperative/coevolution process is provided in ACS 

algorithm for both of the superorganisms. Moreover, the self-interaction process is 

provided in ACS algorithm while the origin of Predator and Prey sub-superorganisms are 

the same with each other in a generation. 

Eventually, the pseudocode of ACS algorithm is provided in Table 3.11.  

Univ
ers

ity
 of

 M
ala

ya



90 

Table 3.11: Pseudocode of ACS  

Data: nPop, nVar, Max cycle, low, up, f, P 
Result: Globalminimizer | globalminimum = f (globalminimizer) 

1. Superorganisms: α, β 

    //Initialization 

2. globalminimum g=0 ≈ ∞ 

3. for i ← 1 to nPop do 

4.          for j ← 1 to nVar do  
5.              α i,j, β i,j ~ U (low j, up j) 
6.           end 

7.           y i;α = f(α i,) 

              y i;β = f(β i) 
8.  end 

9. for g ← 1 to max cycle do  

            // Selection 

10.       if rnd < rnd then  

11.             Predator = α, y Predator = y α ,     key=1 
12.       else 

13.             Predator = β, y Predator = y β ,    key=2 

14.       end 
15.        if rnd < rnd then Prey = α else Prey= β end  

16.        Prey := permuting (Prey) 

17.        if  rnd < rnd then R=4.rnd.(rnd-rnd) else R ~ Г (4.rnd, 1) end 
18.        M1:nPop, 1:nVar =1 

19.        for q←1 to nPop.nVar do  
20.                   if rnd < (P.rnd) then M rndint (nPop), rndint (nVar) = 0 end  

21.        end 

22.        if rnd < (P.rnd) then 

23.                  for i ← to nPop do  

24.                          for j ← 1 to nVar do 
25.                                  if  rnd < (P.rnd) then  

26.                                       Mi,j = 1 

27.                                 else                                        
28.                                       Mi,j = 0                           

29.                                 end 

30.                          end 

31.                  end 

32.        end 

33.        for i ← 1 to nPop do 
34.                 if ∑ Mi = nVar then M i, rndint (nVar) = 0 end 

35.        end  

             // Mutation 

36.        x= Predator + R.(Prey – Predator) 

37.        for i ← 1 to nPop do  
38.              for j ← 1 to nVar do         

                          // Crossover 
39.                     if M i,j > 0 the x i,j := Predator i,j end 

                         // Boundary control 

40.                    if (x i,j < low j) ˅ (x i,j > up j) then  
41.                        x i,j := rnd.( up j - low j) + low j 
42.                   end 

43.               end 

44.         end 

             // Selection 

45.        for i ← 1 to nPop do  
46.                 if f (x i) < y i; Predator then Predator i := x i , y i; Predator := f(x i) end     

47.        end 

48.        if key = 1 then  
49.               α := Predator, y α := y Predator 

50.        else  

51.               β := Predator, y β := y Predator 
52.        end 

53.        y best = min (y Predator) | best ∈ {1, 2, 3,…, nPop} 
54.        if y best < globalminimum then  

55.                 globalminimum := y best 
                      globalminimizer := Predator best 

56.        end 

57. end        
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3.3.5.4 Backtracking Search Algorithm 

BSA is one of the most recently proposed evolutionary algorithms with a simple 

structure but high effectiveness in solving multimodal functions that enables it to easily 

adapt to different numerical optimization problems. This merit is provided by balancing 

exploitation of better results and exploration of the problem's search space through use of 

a single control parameter and two advanced crossover and mutation operators. Its 

strategy contains two advanced crossover and mutation operators for generating a trial 

population. These operators are unique and quite different from the structures of the 

crossover and mutation strategies defined in other evolutionary methods (e.g. GA and 

DE). BSA’s strategies for generating trial populations and controlling the search-space 

boundaries and adapting the amplitude of the search-direction matrix provide effective 

exploration and exploitation capabilities.  

 BSA has been developed to overcome the drawbacks of metaheuristic methods (e.g. 

too many control parameters and over sensitivity to initial value of these parameters, 

premature convergence and time-consuming computation), since it has only one control 

parameter and is not overly sensitive to the initial parameter value. It also possesses a 

memory that allows it to take advantage of the experience gained from past generations 

when generating a trial population. In particular, it stores a randomly chosen population 

from previous generation in its memory for use in generating the search-direction matrix.  

Statistical analysis in (Civicioglu, 2013b) confirm that BSA is a promising 

optimization method for solving high multimodal optimization benchmarks over different 

well-known evolutionary methods. BSA comprises six stages: initialization, selection-I, 

mutation, crossover, boundary control, and selection-II as presented in Table. 3.12. 
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Table 3.12: General structure of BSA 

1. Initialization 

Repeat 

2. Selection I 

    Generation of Trial-Population 

3. Mutation 

4. Crossover 

    end 

5.  Selection II 

Until stopping conditions are met; 
                            

 

 Initialization 

This process of BSA initially scatters the population members in the solution space. 

The initial value of i th individual in the solution space is defined by using Eq. (3.94). 

  nVar,...,3,2,1j,nPop,...,3,2,1i

for

)if(Piy,)j,upj~U(low0i,j;gP





 (3.94) 

where:  

nPop is population size. nVar is number of respective optimization variable. U represents 

the uniform distribution function. lowj and upj are lower and upper search space limits of 

jth variable. yi  is productivity of ith individual. g is generation number. 

 Selection-I  

In this stage of BSA algorithm, a historical population (oldP) which is utilized to 

determine the search-direction matrix is initialized. The historical population is initialized 

according to Eq. (3.95). 

)j,upj~U(lowi,joldP  (3.95) 
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Then the historical population is redefined at each iteration through the ‘if-then’ 

decision rule (by comparing two random numbers a and b) according to Eq. (3.96). 

Subsequently, in this stage the population (P) pursues the historical population for a 

period of time (until it is changed), which provides a memorization process to facilitate 

the exploration of search space in this algorithm. 

PoldP:then
),a,b~U(

baif 
10

 (3.96) 

where 

:= is the update operation. 

a and b are randomly generated numbers. 

Finally, the hierarchical sequencing between the individuals of historical population is 

permuted through a random shuffling function. The obtained oldP is used to determine 

the search-direction matrix in each generation according to Eq. (3.97).  

)(oldPpermutingoldP:  (3.97) 

where: 

permuting (oldP) is a random shuffling function. As a permuting function, it randomly 

changes the order of the individuals in historical population.  

 Mutation 

In the mutation step, an initial form of trial population (Mutant) is generated through 

the Eq. (3.98) while the Wiener process (F) is applied in mutation process to controls the 

amplitude of the search-direction matrix (oldP - P).  
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)1,0rndn~N(
.rndn3 F

P)F.(oldPPMutant





 (3.98) 

where 

N is standard normal distribution.  

 Crossover 

A binary integer-valued matrix (map) that indicates the active individuals of the trial 

population is determined for crossover process according to Eq. (3.99). In BSA, active 

individuals stand for the individuals that participate in a crossover at any time and only 

they can discover new solutions. The control parameter of BSA, determines the 

probability of corporation between individuals in the crossover process by selecting the 

active individuals of population. Eq. (3.99) elucidates the unique crossover strategy of 

BSA. 

 

   ,...,nVar3,2,1j,,...,nPop3,2,1i

for

i,jP:i,jTthen1i,jmapif

ttanMu:T

0ar)i,randi(nVmap

else

)nVar,...,3,2,1(permutingu,)1,0rnd~U(
0

)nd . nVarmixrate. r:1(
i,umap

then
)1,0a,b~U(

baif

,1i,jmap
















 

(3.99) 

where  

mixrate is the control parameter of optimization algorithm. BSA has only one control 

parameter that controls the number of individuals to be engaged in the crossover process. 
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The control parameter of BSA (mixrate) varies from 0% to 100% of population size. The 

experiments with different values of mixrate exposed that BSA algorithm is not too 

sensitive to initial value of its control parameter.  

 Permuting(1,2,…,nVar)  is a random permutation that refers to the act of randomly 

rearranging (reordering) all members.  

randi(nVar) is a random selection function that generates a pseudorandom integer 

between 1 and nVar. 

 Boundary control  

At the end of the crossover process, if an individual in generated offspring (T ) violates 

the boundary condition of the optimization problem, the related individual is updated 

according to the boundary control mechanism developed in this stage.  

)j,upj~U(lowi,jTthen)jupi,j(Tor)jlowi,j(Tif   (3.100) 

 Selection II: 

Finally, the fitness value of the best individual is exported as global minimum and its 

position is considered as global minimizer according to the Eq. (3.101). 

   ,...,gMax3,2,1,g,...,nPop3,2,1i

for

1gg

,gPimizer:minglobal,gyimum:minglobalthen1gygyif

))gP(fmin(gy
iT:iP,)if(T:iy,theniy)if(Tfi











 (3.101) 

Eventually, the pseudocode of BSA algorithm is provided in Table 3.13.  
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Table 3.13 Pseudocode of BSA 

Data: nPop, nVar, Max cycle, low, up, f, mixrate 
Result: Globalminimizer | globalminimum = f (globalminimizer) 

1. Superorganisms: α, β 

    //Initialization 

2. globalminimum g=0 ≈ ∞ 

3. for i ← 1 to nPop do 

4.          for j ← 1 to nVar do  
5.              P i,j, oldP i,j ~ U (low j, up j) 
6.           end 

7.           y i = f(P i) 

8.  end 

9.   for g ← 1 to max cycle do  

            // Selection-I 

10.         if rnd < rnd then  

11.             oldP := P 

12.        end 
13.        oldP := permuting (pldP) 

14.     Generation of trial population  

               //Mutation 

15.               mutant = P + 3.(normrnd(0,1)). (oldP - P) 

               //Crossover 

16.              map1:nPop, 1:nVar =1 

17.               for i←1 to nPop do  
18.                    if rnd < rnd  

19.                        then map i, u (1: [mixrate. rnd. D])  = 0 | u =randperm (nVar)  

20.                        else map i,randi(nVar) = 0 
21.                  end 

22.              end 

23.          T := mutant 

24.           for i ← 1 to nPop do     

25.               for j ← 1 to nVar do     

26.                 if  mapi,j = 1                    
27.                   then Ti,j := Pi,j                        

28.                 end                 

29.              end                            

30.          end                       

31.     end 

            // Boundary control 

32.          for i ← 1 to nPop do  
33.              for j ← 1 to nVar do         

                                                    

34.                    if (T i,j < low j) ˅ (T i,j > up j) then  
35.                        T i,j := rnd.( up j - low j) + low j 

36.                   end 
37.               end 

38.         end 

             // Selection-II 

39.           for i ← 1 to nPop do  
40.                 if f (T i) < y i  then P i := T i , y i; := f(T i) end     

41.          end 

42.           y best = min (f (P)) | best ∈ {1, 2, 3,…, nPop} 
43.           if y best < globalminimum then  

44.                 globalminimum := y best 

                      globalminimizer := P best 

45.          end 

46. end        
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(a) Multi-objective backtracking search algorithm 

In the context of multi-objective optimization, instead of unique solution, there is a 

Pareto optimal set corresponding to the optimal value of each objective. Considering the 

two solution from Pareto optimal set as denoted by ɛ = (ɛ1, … , ɛN) and ∂ = (∂1, … , ∂𝑁) 

and their corresponding objective functions represent by 𝑓(ɛ) = (𝑓1(ɛ),… , 𝑓𝑚(ɛ)) and 

𝑓(∂) = (𝑓1(∂),… , 𝑓m(∂)). The solution ∂ is dominated by the solution ɛ, denoted by 

𝑓(ɛ) ≺ 𝑓(𝜕), if and only if the conditions described in Eq. (3.102) are satisfied. 

Therefore, the solution ɛ is considered as a non-dominated solution. 

∀𝑖 ∈ {1,… ,𝑚} ∶  𝑓𝑗(ɛ) ≤ 𝑓𝑗(∂) 

∃𝑖 ∈ {1,… ,𝑚} ∶  𝑓𝑗(ɛ) < 𝑓𝑗(∂) 
(3.102) 

For two objective functions denoted by f1 and f2, the Pareto optimal set is illustrated in 

Fig 1. Where the dominated solutions are represented by the gray circles and the Pareto 

optimal set of two objectives (f1 and f2) are represented by red circuits.  

 

 

 

Figure 3.8: The Pareto optimal set for the two objective functions (A and B are 

two sample from non-dominated solutions) 
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 External elitist archive 

In the context of evolutionary multi-objective optimization, finding non-dominated 

solutions within evolutionary process have been retained for different methods, so this 

sorting method in evolutionary multi-objective optimization algorithms have been 

enhanced over the last years. Initially the non-dominated sorting strategy proposed as an 

efficient selection strategy in multi-objective optimization (Holland & Goldberg, 1989). 

Later, Deb et al. (Srinivas & Deb, 1994) applied non-dominated sorting strategy in genetic 

algorithm and proposed non-dominated sorting genetic algorithm (NSGA) to solve the 

multi-objective optimization problems. Afterwards, Deb et al. (Deb, Pratap, Agarwal, & 

Meyarivan, 2002) developed a more efficient non-dominated sorting strategy as an 

enhanced variant of NSGA known as fast non-dominated sort which called NSGA-II. 

Necessity to specify the value of sharing parameter (σshare), high computational 

complexity of non-dominated sorting, and lack of elitism are the main criticisms of NSGA 

approach, which have been solved in NSGA-II. The two novel methods for non-

dominated sorting known as deductive sort and climbing sort were presented in 

(McClymont & Keedwell, 2012). The results demonstrate that deductive sort outperforms 

the fast non-dominated sort of NSGA-II. Another method for non-dominated sorting 

named efficient non-dominated sorting (ENS) strategy was proposed in (X. Zhang, Tian, 

Cheng, & Jin, 2015) that for searching within ENS, two different strategies including 

binary search (BS) and sequential search (SS) are employed. Although the results show 

that both ENS-based non-dominated sorting strategies are more efficient than other 

sorting approaches, the efficiency of the ENS-based sorting strategies decreases as the 

number of objectives increases (Modiri-Delshad & Rahim, 2016).  

Using an elitism strategy to store the non-dominated solutions found within the 

optimization process is another mechanism proposed in (Zitzler & Thiele, 1999) to update 

and retain the non-dominated solutions. The main motivation for using elitist reservation 
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mechanism is that a result that is non-dominated to other results in  its  current  generation  

is not necessarily non-dominated with respect to all other results which optimization 

algorithm has found so far (Coello, 2006). 

An elitist reservation mechanism is adopted in this study as an external elitist archive 

to update and retain the non-dominated solutions in each generation of BSA. Initially the 

external elitist archive is empty; within the optimization progresses, it stores the non-

dominated solutions according to the following ‘if-then’ rules:  

i- If the trial pattern (a new generated solution) dominates some of  the archived 

elitist then all dominated members of the external elitist archive are replaced 

by non-dominated trial pattern;  

ii- If the trial pattern is dominated by at least one member of the external elitist 

archive then the trial pattern is disregarded for elitist archive;    

iii- If the archived members of the external elitist archive are not dominated by 

the trial pattern and trial pattern is not dominated by the archived members 

then the external elitist archive retains the trial pattern as a new elitist member 

(non-dominated solution) 

As the optimization progresses, the members of external elitist archive increases. 

Therefore, to prevent overpopulation of the external elitist archive the crowding   distance 

of all members are measured and the extra members of the archive are removed according 

to their crowding distance value.  

 Crowding distance 

To keep the external elitist archive to its maximum capacity the crowding distances 

(CD) of all solutions in Pareto-front (external elitist archive) are computed and the 

solution with the lowest CD value is subject to deletion when the archive is overloaded.  
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The crowding distance is a factor to evaluate the distribution of the solutions in Pareto 

-front by measuring the density around a solution. The crowding distances computes the 

distance of two neighbor points around the solution. The crowding distances of ith solution 

in the Pareto -front is calculated by Eq. (3.103). 

𝐶𝐷𝑖 = ∑
𝑓𝑗(𝑖 + 1) − 𝑓𝑗(𝑖 − 1)

𝑓𝑗
𝑚𝑎𝑥 − 𝑓𝑗

𝑚𝑖𝑛

𝑚

𝑗=1

 (3.103) 

where, CDi is crowding distance of solution i. fj is the jth objective function. fj 
max and fj 

min are maximum and minimum values of the jth objective function respectively. m is 

number of objectives. 

For the boundaries solutions (fj 
max and fj 

min) the crowding distance is set to infinite, as 

there is only one neighbor point for those solutions.     

 Procedure of multi-objective BSA (non-dominated approach) 

In the context of multi-objective optimization, instead of unique solution, there is a 

Pareto  optimal set corresponding to the optimal value of each objective. Thus, to extend 

BSA to a multi-objective optimization approach, the replacement mechanism is adapted 

according to the concept of Pareto dominance (Modiri-Delshad & Rahim, 2016). Similar 

to BSA, in multi-objective BSA mutation and crossover operators are first applied to 

produce the offspring (T). Then the comparison in the final step of BSA (export the global 

minimum) is modified according to the concept of Pareto dominance to replace ith 

individual of population (Pi) by ith individual in offspring (Ti) if the Pi is dominated by Ti. 

The consecutive steps in BSA algorithm are followed to form the multi-objective BSA, 

expect the last step (export the global minimum). Instead of exporting a global minimum, 

a Pareto optimal set is stored. The following steps represent the sequential procedure of 

multi-objective BSA with an external elitist archive and crowding distance measure. 

Univ
ers

ity
 of

 M
ala

ya



101 

Step 1: The initial population (P) equal to the dimension of the optimization variables is 

randomly generated according to Eq. (3.94).  

Step 2: Evaluate the fitness function of each individual of initial population and store the 

non-dominated solutions among the population into the external elitist archive. 

Step 3: The historical population is determined randomly according to Eq. (3.95).   

Step 4: The historical population is updated at each iteration through the ‘if-then’ decision 

rule according to Eq. (3.96) 

Step 5: Apply the mutation operator to generate an initial form of trial population 

(Mutant) according to Eq. (3.98).   

Step 6: Apply the crossover operator over the initial form of trial population obtained in 

pervious step to generate the final form of offspring (T) according to Eq. (3.99).   

Step 7: At the end of the crossover process, if an individual in the generated offspring (T) 

violates the boundary condition of the optimization problem, the related individual in 

offspring is updated according to the boundary control developed by Eq. (3.100).   

Step 8: If the ith element of generated offspring (Ti) dominates the ith element of population 

(Pi), then Ti is replaced by Pi. 

Step 9: Update the external elitist archive according to aforementioned ‘if-then’ rules.  

Step 10: If the external elitist archive exceeds its maximum capacity, the crowing distance 

for all members of elitist archive are computed and the less crowded solutions are 

removed from the archive one after another. 

Step 11: If the stopping criteria are not satisfied, set g=g+1 and return to the step 4.  
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CHAPTER 4: LONG-TERM ELECTRICAL ENERGY CONSUMPTION 

FORMULATING AND FORECASTING 

4.1 Introduction 

In long-term energy modeling process, energy consumption of a country is considered 

as a function of diverse socio-economic indicators (SEI). As demonstrated in Table 2.1, 

the energy consumed in a specific year (t) depends not only on the values of socio-

economic indicators in that year but also on the energy consumed in the previous years. 

Thus, two types of input historical data from 1971 to 2011 inclusive, which are expressed 

as follows, are considered in this study to mathematically formulate the long-term EEC 

of ASEAN-5 countries via optimized GEP and metaheuristic methods.   

i- Socio-economic indicators (SEI) that electric energy consumption of a 

country is mostly affected/reflected by them, namely, gross domestic product 

(GDP), population (POP), import (IMP), and export of goods and services 

(EXP), total energy consumption (TEC), price of energy (POE), carbon 

dioxide emissions (CDE), urbanization rate (UR), industrialization rate (IR) 

and stock index (SI). 

ii- EEC in preceding ten years (EEC (t-1), EEC (t-2), EEC (t-3), …, EEC (t-10)) 

where it is assumed as a time series with annual interval. 

4.2 Long-term Electrical Energy Consumption Formulating 

The input historical data sets of ASEAN-5 countries in the last 41 years (1971-2011) 

are adapted from the WB data bank. Since the range of historical data varies widely, both 

dependent and independent variables are normalized according to Eq. (4.1). The main 

feature of data normalization is adjusting raw data observed on different scales to a 

notionally common scale, often prior to data processing. 
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where 
__

Z is the normalized value, Z is the value to be normalized, and t is annual interval. 

If all the aforementioned exogenous variables are applied in the modeling process, this 

will not only slowing down the learning process but also giving rise to a poor performance 

and overfitting the training data. In other words, although these factors are of vital 

importance to long-term energy modeling process, only those features exhibiting 

significant influence on the output should be picked.  

The total possible combinations of k objects taken from a list of S at a time without 

repetition can be calculated by: 
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(4.2) 

Assuming all exogenous variables are used to mathematically formulate the EEC of 

ASEAN-5 countries (S=10), according to Eq. (4.2) there are 1023 different combinations 

of variables for each historical input data set. Though all subsets of variables have causal 

relation with EEC, it is neither efficient nor feasible to employ all of them as inputs and 

assess their performances. Instead, an efficient feature selection technique is applied to 

select the most effective subset of variables in model construction.  

In the context of statistics and machine learning, feature (variables, predictors) 

selection, also known as attribute selection, variable selection or variable subset selection 

is a method for selecting a subset of relevant features in model construction. The objective 

of using feature selection techniques is three-fold: 
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i- Improving the prediction performance of the predictors by reducing 

overfitting (formally, reduction of variance). 

ii- Providing faster and more cost-effective process to construct the model 

(facilitate learning process). 

iii- Providing a simplified model that make it easier to interpret (improving the 

generalization ability). 

The main objective of a feature selection technique is to evaluate relevancy and 

redundancy of the input features for selecting the best subset of features representing the 

most important information of the original feature set. A large number of predictors could 

result in inferior performance of extracted models due to the course of dimensionality 

principle. Removing either redundant or irrelevant features from a data set contains many 

features without incurring much loss of predictive accuracy is the central premise for 

using a feature selection technique.  

A search strategy along with an evaluation metric is applied in a feature selection 

algorithm to search candidate subsets of feature and score the performance of these 

candidates respectively.  

Testing all possible feature subsets to find one that minimizes the error rate is the 

simplest feature selection algorithm that provides an exhaustive search of the feature 

space, but it is computationally intractable (Unler & Murat, 2010). Thus, the combination 

of a search strategy to explore the space of all possible combination of features along with 

an evaluation measure to assess the quality of features heavily influences on the 

effectiveness of a feature selection algorithm.  

According to how a search technique is combined with a learning algorithm 

(evaluation metric) for construction of the models forms three classes of feature selection 

methods, namely wrappers, filters, and embedded (Renani, Elias, & Rahim, 2016).  
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Wrapper (search guided by accuracy) methods use a predictive model to score feature 

subsets. In wrapper methods, each candidate feature subsets is used to train a model that 

is tested on a holdout set. The score for each candidate subset is provided by evaluating 

the error rate of the model on testing set. As wrapper methods train a new predictive 

model for each candidate subsets, they often provide the best performing feature set for 

that particular type of model at the expense of computationally intensive tasks.  

In filter (information gain) methods, instead of the error rate to score a candidate subset 

of feature a proxy measure is used. The proxy measures such as the pointwise mutual 

information, Pearson product-moment correlation coefficient and mutual information are 

chosen to provide fast computation for capturing the effectiveness of the feature set.  

The wrapper methods are higher computationally intensive than filter methods, but 

wrapper methods provide a subset of feature that its performance is evaluated by specific 

type of learning algorithm. Due to the lack of learning algorithm in filters, a feature set 

from the filter methods is usually more general and giving lower prediction performance 

than the set from wrapper methods. The filter methods are widely used to expose the 

relationships between the variables and provide a feature ranking rather than an explicit 

best feature subset. So, a filter can be used as a preprocessing step for a wrapper to form 

a hybrid feature selection method. In this hybrid method, filter works as dimensionality 

reduction method allowing a wrapper method to be used for appropriate selection of the 

most relevant features on larger data sets. 

Embedded methods learn which subset of features has best contribute to the accuracy 

of the model while the model is constructed. In embedded methods, the feature selection 

part and training process cannot be distinguished, as selection of the features and model 

construction procedures are performed simultaneously. Although, the embedded methods 

are less computationally intensive than wrapper methods, the main drawback of these 
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methods is that the selected features are sensitive to the structure of the underlying model 

so embedded methods are usually specific to their learning algorithms. Different types of 

embedded method are classification trees, random forests, and regularization approaches. 

Regularization approaches also known as penalization approaches are the most common 

type of embedded feature selection methods. The penalization approaches add additional 

constraints into the model construction process, which bias the model toward simplicity 

by penalizing the model for higher complexity.  

Wrapper methods often provide the most relevant features for particular type of model, 

but needing a systematic searching algorithm in their evolutionary training process. Since, 

the exhaustive search is generally impractical, the sequential search as a heuristic 

technique to feature selection has been proposed to add or remove features sequentially 

until there is no improvement in the accuracy of model. The sequential search has a 

tendency to become stagnated in local optima. Thus, the randomized search algorithm 

known as metaheuristic algorithm is proposed to explore the space of different feature 

subsets. Metaheuristic algorithms incorporating randomness into search procedure of 

feature selection to escape local optima. GA, SA, ACO and PSO are different 

metaheuristic algorithms that have been applied in the context of feature selection (Unler 

& Murat, 2010).  

These metaheuristic algorithms deal with feature selection as a single objective 

optimization problem, so the number of relevant features should be predefined and always 

find the subset of features with fixed number of features. Generally, feature selection has 

two main conflicting objectives, which are minimizing simultaneously both the 

estimation error and the number of features. Therefore, feature selection problem can be 

expressed as a multi-objective problem that has two main objectives, maximizing the 

accuracy of model and minimizing the number of features whereby the decision is a 

Univ
ers

ity
 of

 M
ala

ya



107 

tradeoff between these two objectives. Treating feature selection as a multi-objective 

problem leads to a set of non-dominated feature subsets to meet different requirements in 

real-world applications.  

Multi-objective particle swarm optimization (MOPSO) and NSGA-II have been 

investigated in (Xue, Zhang, & Browne, 2013, 2014) to generate a Pareto front of feature 

subsets, but still more efficient searching strategy is essential to better address feature 

selection problems (C. Zhang, Zhou, Li, Fu, & Peng, 2017). Existing multi-objective 

feature selection algorithms suffer from the problems of high computational cost, too 

many control parameters, and over sensitivity to initial value of these parameters,  BSA 

with only one control parameter is argued computationally less expensive than other 

metaheuristic algorithms (Modiri-Delshad & Rahim, 2016). A binary-valued BSA 

(BBSA) has been proposed by (M. S. Ahmed et al., 2017) to solve the optimization of 

discrete parameters. In BBSA, the individuals in the population are encoded as a binary 

vector, and the population value is converted to zero or one according to Eq. (4.3). 

                                        (4.3) 

                                         

where S is the sigmoid function, PB is its binary value and w is the population value.  

However, BBSA has been exploited as an efficient searching algorithm for feature 

selection in (C. Zhang et al., 2017). It treats the task as a single objective problem and it 

could not directly be used to address multi-objective feature selection problems. Different 

versions of multi-objective BSA (MOBSA) have been developed in (Modiri-Delshad & 

Rahim, 2016; Zou, Chen, Li, Lu, & Lin, 2017). Statistical analyses in (Modiri-Delshad & 

Rahim, 2016) confirm that MOBSA is a promising optimization method for solving high 

dimensional multi-objective problems over different well-known multi-objective 
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evolutionary algorithms (e.g. MOPSO and NSGA-II). Therefore, in this study BBSA-

based multi-objective feature selection algorithm is developed as a promising technique 

to generate a Pareto front of non-dominated feature subsets.  

To assess the performance of each candidate feature subsets, any learning algorithm 

(e.g. ANN, SVM, ANFIS) can be used in the evolutionary training process of BSA-based 

multi-objective feature selection algorithm. ANFIS is considered as a universal estimator 

due to its fast learning capability to approximate nonlinear functions (Tavana et al., 2016); 

hence, it is adopted as an evaluation metric method in proposed multi-objective wrapper-

based feature selection method. In particular, ANFIS employs an efficient hybrid learning 

method that combines the least squares method and gradient descent. The least square 

method is main factor for quick training (Alizadeh, Jolai, Aminnayeri, & Rada, 2012). 

Thus, after only few epoch of training, ANFIS is able to construct the predictive model. 

Since the least square method is computationally efficient, the models are constructed for 

various combinations of features selected by multi-objective BBSA (MOBBSA), train 

them with single/few running of the least-squares method, and then a non-dominated 

subset of features with the best performance is chosen for constructing the model.  

Before applying the feature selection to extract the most influential subsets of input 

variables with maximum relevancy and minimum redundancy for long-term EEC 

modeling, both dependent and independent variables are randomly divided into two sets: 

70% as the training set and 30% as the test set. The training set is used to construct the 

ANFIS models with different subsets of input variables, while the test set is used to access 

the strength and utility of generated models.   

In the developed multi-objective feature selection method, MOBBSA is used to search 

within 1023 different combinations of input variables and selects the non-dominated 

feature subsets, while ANFIS is applied as evaluation metric to determine the 
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performance of each feature subset. During the training process of applied learning 

method (ANFIS), each individual of MOBBSA represents one input variable. The 

developed feature selection strategy uses an elitist external archive to store non-

dominated feature subsets, which simultaneously minimize both the root mean square 

error (RMSE) on the test set and the number of input variables as the optimal solution set 

according to the concept of Pareto dominance. MOBBSA as an extension of BSA has 

only one control parameter named “mixrate”, which controls the number of individuals 

to be engaged in the crossover process. The population of individuals is set to 50 and the 

maximum value of mixrate (i.e. 100% of the population size) is considered in the 

developed feature selection strategy to engage all the individuals in the crossover process.  

To form the structure of ANFIS for feature selection, the Sugeno-type FIS  is used as 

a promising alternative to Mamdani-type, since the Sugeno-type is well suited for 

modeling nonlinear systems by interpolating between multiple linear models. Based on 

the work conducted in (J.-S. Jang, 1996), the scatter partitioning can be used to facilitate 

the training process of ANFIS in feature selection. Since subtractive clustering is a 

realization of scatter partitioning, it is used to set up the ANFIS for feature selection.  

The optimal subsets of input variables selected by developed multi-objective feature 

selection for modeling the EEC of ASEAN-5 countries are illustrated in Figures 4.1- 4.5. 

According to the obtained results, regardless of which country is studied, a subset of SEI 

with four variables and a subset of EEC with three variables dominate all other optimal 

subsets. This implies that these obtained subsets as non-dominated solutions provide least 

RMSE with minimum number of input variables. The obtained non-dominated SEI and 

EEC subsets consist of GDP, POP, IMP and EXP, and EEC in preceding three years (EEC 

(t-1), EEC (t-2), and EEC (t-3)) as input variables respectively.  

Univ
ers

ity
 of

 M
ala

ya



110 

 

(a) 

 

 

(b) 

 

Figure 4.1: The optimal subsets of input variables for EEC modeling selected 

via MOBBSA feature selection from two different input historical data sets:           

(a) Malaysia's SEI, (b) Malaysia's EEC 

 

 

(a) 

 

 

(b) 

 

Figure 4.2: The optimal subsets of input variables for EEC modeling selected 

via MOBBSA feature selection from two different input historical data sets:           

(a) Indonesia's SEI, (b) Indonesia's EEC 
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(a) 

 

 

(b) 

 

Figure 4.3: The optimal subsets of input variables for EEC modeling selected 

via MOBBSA feature selection from two different input historical data sets:           

(a) Singapore's SEI, (b) Singapore's EEC 

 

 

(a) 

 

 

(b) 

 

Figure 4.4: The optimal subsets of input variables for EEC modeling selected 

via MOBBSA feature selection from two different input historical data sets:               

(a) Thailand's SEI, (b) Thailand's EEC 
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(a) 

 

 

(b) 

 

Figure 4.5: The optimal subsets of input variables for EEC modeling selected 

via MOBBSA feature selection from two different input historical data sets:           

(a) Philippines's SEI, (b) Philippines's EEC 

The effects of two input historical data types (i.e. SEI and EEC in preceding three 

years) on electricity consumption of ASEAN-5 countries are more visible by the 

correlation coefficients. A correlation coefficient is a coefficient that elucidates a 

quantitative measure of some type of correlation and dependence, meaning a predictive 

relationship between two observed data that can be exploited in practice.  

The Pearson product-moment correlation coefficient (PPMCC) denoted by ‘r’ and 

Spearman's rank correlation coefficient denoted by ‘rs’ are two different correlation 

analyses that are widely used in science to assess how well the relationship between two 

variables can be described by a linear or a monotonic function respectively (Zahedi et al., 

2013). A correlation between two variables, however, does not imply causation mean that 

the change in one variable is the cause of the change in the values of the other variable. 
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Figure 4.6: Historical EEC and socio-economic indicators data of ASEAN-5 

countries for 1971-2013 

The PPMCC describes both the strength and the direction of the linear association 

between two variables. It takes a range of values from +1 to -1. Where r=+1 indicates 

that there is total positive correlation, r=0 indicates that there is no correlation, and r= 

−1 indicates that there is total negative correlation. Pearson correlation coefficient 

between two variables x and y is calculated by using Eq. (4.4) where N is total number of 

observations.  
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 (4.4) 

As PPMCC measures only a linear relationship, still a meaningful relationship can 

exist even if the correlation coefficient is close to zero. So Spearman's rank correlation 

coefficient is used to measure a monotonic relationship between two observed data. In 

the monotonic relationships, the variables tend to change together, but not necessarily at 

a constant rate (linear relationship). The Spearman's coefficient is defined as the PPMCC 

between the ranked values for each variable rather than the raw data.  

The measure of these two coefficients between input historical data and EEC of 

ASEAN-5 countries are tabulated in Table 4.1. As the results show, although there are 

strong linear relationships between independent and dependent variables, the monotonic 

functions can describe the relationships between historical data and EEC of ASEAN-5 

countries in a more appropriate way.  

Table 4.1: PPMCC and Spearman's rank correlation coefficient between EEC 

of ASEAN-5 countries and two types of input historical data 

Input 

historical data 

Correlation coefficient 

r rs r rs r rs r rs r rs 

Malaysia Indonesia Singapore Thailand Philippines 

POP 0.9646 0.9998 0.9458 0.9998 0.9939 0.9987 0.9217 0.9993 0.9681 0.9944 

GDP 0.9632 0.9902 0.9037 0.9655 0.9413 0.9904 0.9509 0.9705 0.9441 0.9796 

IMP 0.9758 0.9862 0.9284 0.9672 0.9365 0.9897 0.9436 0.9850 0.9798 0.9789 

EXP 0.9789 0.9963 0.9516 0.9722 0.9346 0.9907 0.9499 0.9973 0.9820 0.9796 

EEC(t-1) 0.9967 0.9996 0.9992 0.9996 0.9988 0.9998 0.9980 0.9986 0.9883 0.9964 

EEC(t-2) 0.9936 0.9994 0.9982 0.9994 0.9978 0.9996 0.9959 0.9984 0.9867 0.9927 

EEC(t-3) 0.9900 0.9994 0.9976 0.9994 0.9963 0.9994 0.9924 0.9983 0.9865 0.9900 
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Table 4.1 confirms, social-economic indicators of ASEAN-5 countries (i.e. POP, 

GDP, IMP, and EXP) have high impacts on EEC, and POP is the most effective one as 

expected. As the correlation coefficients corresponding to POP demonstrate, there is a 

strong relationship between population and electricity consumption. The population 

growth leads to higher demand for social services, health care, and education so higher 

EEC is required to provide them.  

Moreover, it is obvious that for increasing the GDP of ASEAN-5 counties higher EEC 

is required. Electricity is the backbone of a nation’s progress. A country’s GDP is the 

sum of its industrial, agricultural, and services output. The services and agriculture 

sectors are light to moderate electricity users. The industrial sector is very dependent on 

electricity. When a business flourishes, the EEC increases. As a result, the relationship 

between GDP and EEC is higher for the countries that have high exposure to the industrial 

sector in the GDP. In addition, the rate of IMP and EXP of goods and services in any 

country typically indicate the industrial activities. Thus, these two indicators are 

determined as effective factors on GDP (see Tables 4.2 - 4.6) and consequently on EEC 

of ASEAN-5 counties. The measures of PPMCC and Spearman's rank correlation 

coefficient between SEI of ASEAN-5 countries are reported in Table 4.2 – 4.6.  

Table 4.2: PPMCC and Spearman's rank correlation coefficient between SEI of 

Malaysia  

Correlation 

coefficient 

r rs r rs r rs r rs 

POP GDP IMP EXP 

r 
POP 

1  0.9151  0.9478  0.9411  

rs  1  0.9904  0.9864  0.9965 

r 
GDP 

0.9151  1  0.9862  0.9879  

rs  0.9904  1  0.9951  0.9942 

r 
IMP 

0.9478  0.9862  1  0.9958  

rs  0.9864  0.9951  1  0.9918 

r 
EXP 

0.9411  0.9879  0.9958  1  

rs  0.9965  0.9942  0.9918  1 
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Table 4.3: PPMCC and Spearman's rank correlation coefficient between SEI of 

Indonesia 

Correlation 

coefficient  

r rs r rs r rs r rs 

POP GDP IMP EXP 

r POP 

 

1  0.8096  0.8415  0.8645  

rs  1  0.9656  0.9674  0.9726 

r GDP 

 

0.8096  1  0.9889  0.9832  

rs  0.9656  1  0.9888  0.9785 

r IMP 

 

0.8415  0.9889  1  0.9946  

rs  0.9674  0.9888  1  0.9832 

r EXP 

 

0.8645  0.9832  0.9946  1  

rs  0.9726  0.9785  0.9832  1 

 

Table 4.4: PPMCC and Spearman's rank correlation coefficient between SEI of 

Singapore 

Correlation 

coefficient  

r rs r rs r rs r rs 

POP GDP IMP EXP 

r POP 

 

1  0.9567  0.9465  0.9438  

rs  1  0.9883  0.9874  0.9888 

r GDP 

 

0.9567  1  0.9929  0.9931  

rs  0.9883  1  0.9952  0.9947 

r IMP 

 

0.9465  0.9929  1  0.9995  

rs  0.9874  0.9952  1  0.9996 

r EXP 

 

0.9438  0.9931  0.9995  1  

rs  0.9888  0.9947  0.9996  1 

 

Table 4.5: PPMCC and Spearman's rank correlation coefficient between SEI of 

Thailand  

Correlation 

coefficient  

r rs r rs r rs r rs 

POP GDP IMP EXP 

r POP 

 

1  0.8640  0.8126  0.8108  

rs  1  0.9682  0.9837  0.9966 

r GDP 

 

0.8640  1  0.9793  0.9726  

rs  0.9682  1  0.9897  0.9738 

r IMP 

 

0.8126  0.9793  1  0.9947  

rs  0.9837  0.9897  1  0.9883 

r EXP 

 

0.8108  0.9726  0.9947  1  

rs  0.9966  0.9738  0.9883  1 
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Table 4.6: PPMCC and Spearman's rank correlation coefficient between SEI of 

Philippines 

Correlation 

coefficient  

r rs r rs r rs r rs 

POP GDP IMP EXP 

r POP 

 

1  0.9073  0.9559  0.9519  

rs  1  0.9815  0.9789  0.9871 

r GDP 

 

0.9073  1  0.9536  0.9619  

rs  0.9815  1  0.9954  0.9865 

r IMP 

 

0.9559  0.9536  1  0.9957  

rs  0.9789  0.9954  1  0.9895 

r EXP 

 

0.9519  0.9619  0.9957  1  

rs  0.9871  0.9865  0.9895  1 

 

By comparing the correlation coefficients of ASEAN-5 countries in Table 4.1, it is 

concluded that the Spearman's rank correlation coefficients corresponding to POP in 

Malaysia and Indonesia are almost equal and higher than that in other countries, which 

imply that EEC in these countries are more sensitive to population growth as compared 

with other countries. The sensitivity of EEC to population growth in ASEAN-5 countries 

is ranked as Malaysia = Indonesia > Thailand > Singapore> Philippines. In addition, the 

impact of GDP on EEC in Singapore is more than that in other countries, which highlights 

that Singapore has highest exposure to the industrial sector in the GDP. The effect of 

economic growth in terms of GDP on EEC growth is ranked as Singapore > Malaysia > 

Philippines > Thailand > Indonesia. Further, the impacts of IMP and EXP on EEC are 

ranked as Singapore > Malaysia > Thailand > Philippines > Indonesia, and Thailand > 

Malaysia > Singapore > Philippines > Indonesia respectively. According to Table 4.1, 

while the EEC is considered as a time series, the sensitivity of EEC to electricity 

consumption in preceding years is reduced as time passes. So the strength of relationships 

between EEC and EEC in preceding three years is ranked as EEC (t-1) > EEC (t-2) > 

EEC (t-3). 
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As shown in Figures 4.7 – 4.11, despite almost linear trend in population growth of 

ASEAN-5 countries, the electricity consumption of ASEAN-5 countries have not been 

continuously growing during last decades. Due to numerous perturbations on economy 

of ASEAN-5 countries, the growth rate of electricity consumption in these countries have 

been volatile. Revival of the economic activities and the positive economic growth are 

directly reflected in GDP, IMP and EXP hence, they are considered as barometers of the 

economy. Since the growth rate of main economy indicators (GDP, IMP and EXP) have 

been highly volatile, their violation have been reflected on electricity consumption in the 

meanwhile. 

 

Figure 4.7: Growth rate of Malaysia’s EEC and SEI 

 

Figure 4.8: Growth rate of Indonesia’s EEC and SEI 

-30

-10

10

30

50

70

90

1
9
7

2
1

9
7

3
1

9
7

4
1

9
7

5
1

9
7

6
1

9
7

7
1

9
7

8
1

9
7

9
1

9
8

0
1

9
8

1
1

9
8

2
1

9
8

3
1

9
8

4
1

9
8

5
1

9
8

6
1

9
8

7
1

9
8

8
1

9
8

9
1

9
9

0
1

9
9

1
1

9
9

2
1

9
9

3
1

9
9

4
1

9
9

5
1

9
9

6
1

9
9

7
1

9
9

8
1

9
9

9
2

0
0

0
2

0
0

1
2

0
0

2
2

0
0

3
2

0
0

4
2

0
0

5
2

0
0

6
2

0
0

7
2

0
0

8
2

0
0

9
2

0
1

0
2

0
1

1
2

0
1

2
2

0
1

3

G
ro

w
th

 r
at

e 
(%

)

Year

EEC POP GDP IMP EXP

-65

-45

-25

-5

15

35

55

75

95

115

135

1
9
7

2
1

9
7

3
1

9
7

4
1

9
7

5
1

9
7

6
1

9
7

7
1

9
7

8
1

9
7

9
1

9
8

0
1

9
8

1
1

9
8

2
1

9
8

3
1

9
8

4
1

9
8

5
1

9
8

6
1

9
8

7
1

9
8

8
1

9
8

9
1

9
9

0
1

9
9

1
1

9
9

2
1

9
9

3
1

9
9

4
1

9
9

5
1

9
9

6
1

9
9

7
1

9
9

8
1

9
9

9
2

0
0

0
2

0
0

1
2

0
0

2
2

0
0

3
2

0
0

4
2

0
0

5
2

0
0

6
2

0
0

7
2

0
0

8
2

0
0

9
2

0
1

0
2

0
1

1
2

0
1

2
2

0
1

3

G
ro

w
th

 r
at

e 
(%

)

Year

EEC POP GDP IMP EXP

Univ
ers

ity
 of

 M
ala

ya



119 

 

Figure 4.9: Growth rate of Singapore’s EEC and SEI 

 

Figure 4.10: Growth rate of Thailand’s EEC and SEI 

 

Figure 4.11: Growth rate of Philippines’s EEC and SEI 
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The average annual growth rate (AAGR) of EEC and SEI in ASEAN-5 countries from 

1971 until 2013 are tabulated in Table 4.7. According to this table, the highest growth 

rate of EEC, GDP and EXP belong to Indonesia, while Philippines and Thailand have the 

highest growth rate of POP and IMP respectively.  

Table 4.7: Average annual growth rate of EEC and SEI in ASEAN-5 countries  

SEI 
Average annual growth rate (AAGR) 

Malaysia Indonesia Singapore Thailand Philippines 

EEC 9.1956% 12.3583% 7.4240% 9.0598% 5.1950% 

POP 2.3551% 1.8239% 2.2679% 1.3654% 2.3666% 

GDP 11.3659% 13.0150% 12.8156% 10.4486% 9.4165% 

IMP 13.7575% 14.2830% 13.9332% 14.9076% 11.4034% 

EXP 13.8491% 14.8257% 14.6587% 14.7486% 10.7592% 

 

4.2.1 Formulation of EEC by Metaheuristic Methods 

In general, the annual EEC base on factors affecting the consumption is modeled 

mathematically by:  

 (4.5) 

where  is the normalized electrical energy consumption,  and  are the ith  and 

jth normalized independent variables respectively, wi  and wij are the corresponding 

weighting factors, w0 is the constant value ,and  T is the total number of independent 

variables. In this general model m and k, determine the exact form of mathematical model.   

As indicated in Tables 2.1 and 4.1, the multiple linear (m =0 and k=0), quadratic (m 

=0 and k=1) and exponential (m =1 and k=0) forms of equations are commonly used to 

model relationships between EEC and input historical data. In this study, multiple linear 

and quadratic models represent linear and monotonic relationships between EEC and 

input historical data respectively.  
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While the EEC is assumed as a time series and is defined as a function of annual EEC 

in preceding three years, the multiple linear, quadratic, and exponential models are 

expressed as follows: 

0w)3(tEEC3w)2(tEEC2w)1(tEEC1wLinear(t)EEC 
____________

 (4.6) 
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(4.8) 

For considering the structure of socio-economic indicators, GDP, POP, IMP and EXP 

are used as input historical data sets and the multiple linear, quadratic, and exponential 

models for the annual EEC are rewritten as follows:  
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The direct and indirect effects of socio-economic indicators on electricity 

consumption make the EEC forecasting a complex optimization problem, which needs an 

efficient method to provide the accurate coefficients of the EEC models. To forecast the 

electricity consumption accurately the metaheuristic methods are applied for seeking the 

optimal coefficients of EEC models through minimizing the cost function given by: 

 (4.12) 

where EEC (t)observed and EEC(t) are the observed and predicted electricity consumption 

respectively and N is total number of observations. 

The coefficients of EEC models w are calculated by: 

 (4.13) 

In order to provide more accurate optimal values of weighting parameters based on 

historical data types for EEC forecasting of ASEAN-5 countries, those optimization 

methods have been invoked in optimized GEP are applied as powerful tools to search for 

the best estimate of the vector parameters within the search space.  

4.2.2 Formulation of EEC by Optimized GEP 

Compared to metaheuristic methods, GEP strategy provides a superior alternative for 

long-term energy consumption forecasting as it precludes the need for predefined form 

of the mathematical models. Although metaheuristic methods have been applied to 

provide realistic estimation models, the major limitation is that they require prior 

knowledge about the nature of the relationships between independent and dependent 

variables.  
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In order to cope with the limitations of the existing methods for formulating EEC, 

optimized GEP is employed in this study. First, GEP is applied to extract the structure of 

the existing relationship between the historical data and transform the derived information 

into a mathematical model then a metaheuristic optimization method is deployed over 

GEP model to determine the optimal weighting factors through minimizing the same 

fitness evaluation function as in GEP (Eq. (4.12)).   

To formulate the long-term EEC by GEP, the electricity consumption is considered as 

a time series that is a function of annual consumption in preceding three years as 

expressed by  

 (4.14) 

To formulate the long-term EEC by GEP while the socio-economic indicators are 

considered as input data sets, it is defined that 

 (4.15) 

4.3 Simulation Results and Discussions 

The optimized GEP is used in this study to precisely formulate the relationships 

between historical data sets and EEC of ASEAN-5 countries, namely, Malaysia, 

Indonesia, Singapore, Thailand, and Philippines, as they inherently have different 

dependencies on EEC. The most effective historical data type is selected by a parallel 

comparison. For the purpose of parallel comparison, two different input data types (i.e. 

SEI and EEC) of ASEAN-5 countries from 1971 until 2011 are examined. Furthermore, 

to assess the effectiveness of optimized GEP for long-term EEC forecasting its estimates 

are compared with those obtained from ANN, SVR, ANFIS, rule-based data mining 

algorithm, GEP, linear and quadratic models optimized by PSO, CSA, ACS and BSA. 
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In general, to find the empirical models by the soft computing techniques, a similar 

procedure is followed. Thus, in this study, to obtain the optimal AI-based models for long-

term EEC forecasting, the following sequential steps are carried out for all methods. 

i- For parallel comparison, two different types of historical data for 1971-2011 

are considered as independent variables and annual EEC on that period is 

considered as a dependent variable.  

ii- Both independent and dependent variables are divided into two subsets, where 

annual data from 1971 to 2001 inclusive is utilized for training of design phase 

and that for 2002-2011 is used for testing phase of obtained models.  

iii- The training phase is designed for the learning process. The computer 

programs that connect the input variables to the output are derived through 

learning process. To speed up the learning process, both input and output 

variables are normalized according to Eq. (4.1). 

iv- The testing phase is used to measure the performance of the models obtained 

by AI-based methods on data that played no role in building the models. To 

quantify the prediction performance of models several evaluation criteria are 

employed; mean absolute percentage error (MAPE), root mean square error 

(RMSE), Thiel's inequality coefficient (U-statistic) and coefficient of 

determination (R-squared), given by: 

 

(4.16) 
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v- U-statistic provides a measure of how well fitted a time series of forecasted 

values to a corresponding time series of actual data. The U-statistic is always 

laid between [0,1] while the value closer to zero indicating greater forecasting 

accuracy with a perfect fit and the value closer to one means the estimation is 

no better than a naive guess. 

vi- Whiteness test (Durbin-Watson test) is used to ensure that the obtained models 

adequately describe a given data series (AlRashidi & El-Naggar, 2010). The 

whiteness test is obtained through a confirmatory analysis. The objective of 

confirmatory analysis is to confirm the whiteness of estimated residuals (e(t)). 

The whiteness of estimated residuals implies that they are uncorrelated. This 

analysis is provided via the calculation of the residuals autocorrelation 

function (RACF) as defined by:  

 

(4.19) 

vii- The RACF values are in the range of [0, 1], if the RACF value is significantly 

different from zero, it will fall outside a confidence level. This indicates that 

the residuals are not white (correlated) and an important independent variable 

has been omitted from the tested model.  

viii- The most efficient model and the most effective input historical data type are 

selected according to their performance on the testing phase to choose best 

ones with generalization capability when dealing with unseen data in the 

future applications. 

As, the parameters setting of AI-based methods are  highly problem dependent and 

there is no consensus about the optimum values of parameters, the methodologies similar 
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to that successfully used in the literature for energy consumption forecasting are 

considered in this study to set  the control parameters of applied methods. 

The back propagation MLP as a type of ANN using feed-forward architecture trained 

with back propagation (BP) learning algorithm is used. This network is considered as a 

universal estimator because of its small solution network and quick computational speed 

that permit supervised training over large input data sets. The effectiveness of ANN 

models depend on their network’s structure, transfer function, and learning algorithm, 

thus the following characteristics: two hidden layers, logarithmic sigmoid transfer 

function, and Levenberg-Marquardt PB learning algorithm as determined in (Ekonomou, 

2010) for long-term EEC forecasting, are used to form a MLP model in this study. 

The model constructing in SVR depends on the selection of kernel, kernel's 

parameters, soft margin parameter, and fraction of error goal. In this study, Gaussian RBF 

(radial basis function) kernel has been employed for as much as it is not only easier to 

implement, but also has excellent overall performance compared to other kernel functions 

in kernelized learning algorithms. As there is no structural method on efficient tuning of 

SVR parameters, this parameters have been set to (ʋ = 0.5, C =1, ∂ = 1/6) for the sake of 

comparison as recommended in (J. Wang et al., 2012), where, ʋ within its range [0, 1] 

controls the width of the fraction of errors, C as a regularization parameter controls the 

empirical risk degree of SVR, and the ∂ controls the bandwidth of the Gaussian RBF 

kernel. 

To form the ANFIS structure the Sugeno-type FIS is used as a promising alternative 

to Mamdani-type, since the Sugeno-type is well suited for modeling nonlinear systems 

by interpolating between multiple linear models. The membership function type is 

Gaussian as recommended in (A. Azadeh et al., 2009; Nadimi et al., 2010) and two 
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clustering methods are used to set up the ANFIS, namely Fuzzy c-means (FCM) 

clustering and subtractive clustering (radii = 0.8). 

Data mining is the process of extracting potentially useful knowledge, from the 

enormous data sets to provide explicit model of what is happening behind some data so 

that it can predict future outcomes. Among different data mining (e.g. rule-based and/or 

decision tree learning) algorithms, M5-Rules (M5-R) as a rule-based learning algorithm 

is applied for long-term energy consumption forecasting due to its ability to reflect the 

growth trends beyond the training period. M5-R builds a model tree using symbolic rule 

learning algorithms and makes the best leaf into a rule in each iteration. It creates a 

decision list for regression problems using separate-and-conquer (S&C) or covering 

algorithm. This algorithm ensures that each instance of the original training set is covered 

by at least one rule. The model structure is built in WEKA environment (i.e. an open-

source data mining suite) with default parameter values as recommended in (Wu et al., 

2013). 

GEP is undertaken using a GeneXproTools (i.e. a data-driven computing package). 

The GEP implementation procedure involves following steps: arranging the structure of 

chromosomes, forming the corresponding ET for all genes within the chromosomes to 

evaluate the GEP performance and developing the evolutionary processes to adapt the 

given data into an algebraic expression. Once the head length and the set of functions 

have been set, the length of a gene is also decided accordingly to arrange the structure of 

chromosomes. Genes within one chromosome are transformed into sub-ETs that are 

connected by a predefined linking function so to form an ET its parameters should be 

further specified. Eventually, the evolutionary operators are tuned to develop an efficient 

learning algorithm. Table 4.8 summarizes all parameter settings of GEP models. To 

Univ
ers

ity
 of

 M
ala

ya



128 

develop an optimized GEP the generated models are integrated with an optimization 

method in MATLAB environment.  

The standard form of PSO algorithm is executed to form optimized GEP. The 

population is set to 100 in this algorithm. The acceleration factors c1 and c2 are both 2.0 

similar to (Kıran et al., 2012a; Rafieerad et al., 2017), a decaying inertia weight ω starting 

at 0.9 and ending at 0.4 with run time increasing is used as specified in (Askarzadeh, 

2014) for long-term EEC forecasting. 

For CSA the number of nests (Np) is set to 100. The two main parameters in this 

method that have to be predetermined are the probability of an alien egg (pa) and the value 

of the distribution factor (ß). As reported in (Nguyen, Vo, & Truong, 2014), while pa has 

tuned in its range [0, 1] the effect of the probability (pa) is inconsiderable and different 

values of the probability in this range can lead to the same optimal solution. Besides, as 

experience in (Nguyen et al., 2014), the value of the distribution factor in the suggested 

range (ß ϵ [0.3, 1.99]) does not have much effect on the final solution of optimization 

problems so, it is fixed at 1.5 in this study.  

The control parameter of ACS determines the probability of corporation between 

individuals by selecting the biological interaction level within the crossover process. This 

parameter varies in the range of 0.05 to 0.9. However, the ACS is not sensitive to this 

parameter; p = 0.15 is considered in this study as recommended in (Civicioglu, 2013a) 

and the population of individuals in the superorganisms is set to 100 in this algorithm.      

The control parameter of BSA controls the number of individuals to be engaged 

within the crossover process. This parameter varies from 0% to 100% of population size 

(Modiri-Delshad, Aghay Kaboli, Taslimi-Renani, & Rahim, 2016). However, the BSA is 

not sensitive to this parameter; its maximum value is considered in this study to achieve 
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the best solutions (Modiri-Delshad & Rahim, 2014), and the population of individuals is 

set to 100 in this algorithm.      

Table 4.8: Parameter setting of studied methods 

  

 

 

Methods Parameters Value 

ANN MLP 

Hidden layer 2 

Transfer function logarithmic sigmoid 

Learning algorithm Levenberg-Marquardt PB 

SVR RBF kernel 

Kernel's parameter (∂) 1/6 

Soft margin parameter (C) 1 

Fraction of error ( ʋ) 0.5 

ANFIS 

FCMC (FCM clustering) 

FIS structure Sugeno-type 

Membership function Gaussian 

SC (Subtractive clustering) 

Cluster radius 0.8 

FIS structure Sugeno-type 

Membership function Gaussian 

Rule-based 

data mining 
M5-R  Min number of instances per leaf node 4 

GEP 

Chromosome architecture 

 

Chromosomes 30 

Number of genes 4 

Head size 7 

Function set 
×,/,+,-, power (x, y*) , e^y, Log, 
EXP 

Constants per gene 2 Floating points ∈ [-10, +10] 

ET-setting 

Linking function Addition 

Fitness function Eq.15 

Genetic operators 

 

Mutation rate 0.00138 

IS & RIS transposition rate 0.00546 

Single & double crossover rate 0.00277 

Gene crossover rate 0.00277 

Inversion rate 0.00546 

Metaheuristic 

optimization 

PSO 

Swarm population  100 

w [0.4, 0.9] 

c1=c2 2 

CSA 

Number of nests  100 

Distribution factor  (ß) 1.5 

Probability of an alien egg (Pa) [0, 1] 

ACS 

Number of individuals 100 

P                                                                 0.15 

BSA 
Number of individuals 100 

mixrate 100% 

Univ
ers

ity
 of

 M
ala

ya



130 

The performances of machine learning methods for Malaysia’s EEC forecasting based 

on two input historical data types (SEI and EEC) are tabulated in Tables 4.9 and 4.10. 

The RACF values in these tables confirm the whiteness of estimated residuals at a 

confidence interval level for all obtained models. 

 According to these tables, the forecasting accuracy of methods with two different 

input data types based on multiple-criteria decision analysis using  mean rank of methods 

for MAPE index is ranked as GEP-BSA > GEP-ACS > GEP-CSA = GEP-PSO > GEP = 

exponential-BSA > exponential-ACS > M5-R = exponential-PSO > quadratic-PSO > quadratic-

BSA > quadratic-ACS > ANFIS-SC = ANFIS-FCMC = linear-ACS > ANN = linear-PSO = 

exponential-CSA > linear-BSA > SVR > linear-CSA > quadratic-CSA.  

Regardless of the input data type, the enhanced results in Tables 4.9 and 4.10 show 

that the optimized GEP methods provide better-fit estimation than other studied 

approaches. Moreover, it is found that the most efficient optimization algorithm for 

training GEP is BSA, as GEP-BSA yields more promising results in term of MAPE, U-

statistic, RMSE and R-squared indexes. Eqs. (4.20) and (4.21) present Malaysia’s EEC 

formulations derived from GEP-BSA based on SEI and EEC respectively. In Figure 4.12 

GEP–BSA performances during training of design phase (1971-2001) and testing phase 

(2002-2011) based on two different input historical data types are depicted. It is found 

that, while the EEC is considered as the input for long-term EEC forecasting in Malaysia 

by GEP-BSA model, the lowest MAPE (1.5882%), RMSE (0.0458), U-statistic (0.0133) 

and highest R-squared value (0.9933) are attained.  
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Table 4.9: Comparison between forecasting accuracy of studied methods on 

Malaysia’s EEC based on SEI 

Model Methods 

MAPE (%) RMSE U-statistic R2 RACF 

Input historical data 

SEI 

ANN MLP 4.4974 0.1324 0.0390 0.9490 0.0002 

support vector machines SVR 5.7964 0.1238 0.0345 0.9531 0.0023 

ANFIS 
FCMC 3.4638 0.0716 0.0205 0.9834 0.0009 

SC 4.1464 0.0886 0.0251 0.9771 0.0010 

Rule-based data mining M5-R 3.3482 0.1078 0.0295 0.9691 0.0003 

Multiple linear 

PSO 5.6918 0.1194 0.0339 0.9574 0.0030 

CSA 8.8197 0.1625 0.0460 0.9071 0.0019 

ACS 5.6904 0.1194 0.0339 0.9574 0.0030 

BSA 5.6904 0.1194 0.0339 0.9574 0.0030 

Quadratic 

PSO 5.3469 0.1329 0.0330 0.9475 0.0008 

CSA 10.085 0.2138 0.0587 0.8665 0.0035 

ACS 5.4414 0.1129 0.0326 0.9625 0.0021 

BSA 5.0932 0.1036 0.0292 0.9684 0.0015 

Exponential 

PSO 5.2251 0.1413 0.0418 0.9403 0.0011 

CSA 5.2046 0.1412 0.0419 0.9338 0.0008 

ACS 4.8430 0.1004 0.0292 0.9690 0.0007 

BSA 3.8568 0.0779 0.0224 0.9812 0.0004 

GEP RNC 3.9818 0.0939 0.0266 0.9735 0.0009 

Optimized GEP 

PSO 3.3306 0.0737 0.0214 0.9811 0.0014 

CSA 3.0735 0.0833 0.0243 0.9762 0.0010 

ACS 3.0700 0.0673 0.0193 0.9854 0.0012 

BSA 2.8935 0.0620 0.0190 0.9871 0.0015 
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Table 4.10: Comparison between forecasting accuracy of studied methods on 

Malaysia’s EEC based on EEC in preceding years 

Model Methods 

MAPE (%) RMSE U-statistic R2 RACF 

Input historical data 

EEC 

ANN MLP 7.1476 0.1800 0.0541 0.9068 0.0001 

support vector machines SVR 3.1507 0.0818 0.0239 0.9790 0.0004 

ANFIS 
FCMC 8.3499 0.2172 0.0658 0.8643 0.0002 

SC 5.4397 0.1458 0.0434 0.9389 0.0003 

Rule-based data mining M5-R  3.9939 0.1324 0.0317 0.9569 0.0003 

Multiple linear 

PSO 2.4169 0.0574 0.0166 0.9897 0.0030 

CSA 3.4282 0.0861 0.0251 0.9670 0.0009 

ACS 2.3492 0.0561 0.0162 0.9902 0.0025 

BSA 2.4405 0.0579 0.0167 0.9895 0.0030 

Quadratic 

PSO 1.8840 0.0560 0.0162 0.9903 0.0023 

CSA 5.7457 0.1270 0.0356 0.9490 0.0032 

ACS 2.0994 0.0592 0.0171 0.9893 0.0028 

BSA 2.4365 0.0693 0.0202 0.9867 0.0009 

Exponential 

PSO 1.7351 0.0490 0.0142 0.9924 0.0015 

CSA 5.1652 0.1024 0.0288 0.9655 0.0027 

ACS 1.6505 0.0488 0.0141 0.9925 0.0022 

BSA 1.6773 0.0502 0.0145 0.9921 0.0027 

GEP RNC 1.6687 0.0492 0.0143 0.9924 0.0016 

Optimized GEP 

PSO 1.5956 0.0462 0.0134 0.9932 0.0015 

CSA 1.5962 0.0461 0.0133 0.9932 0.0015 

ACS 1.5893 0.0461 0.0133 0.9931 0.0014 

BSA 1.5882 0.0458 0.0133 0.9931 0.0014 
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Figure 4.12: Malaysia’s EEC actual data from 1971 to 2011 and GEP-BSA 

performances during training of design phase (1971-2001) and testing phase (2002-

2011) based on two different input historical data types (SEI and EEC) 

The performances of studied methods for EEC forecasting in Indonesia based on two 

input data types (SEI and EEC) are quantified in Tables 4.11 and 4.12. The calculated 

RACF values in these tables indicate that the estimated residuals of all models are 

uncorrelated and obtained models adequately describe the given set of data. The 

forecasting accuracy of methods on Indonesia’s EEC with two input data types according 

to average rank of methods for MAPE index is ranked as GEP-BSA > GEP-ACS  > GEP-PSO 

> GEP-CSA > exponential-PSO > ANFIS-SC  = quadratic-ACS > quadratic-PSO > GEP > 

exponential-BSA > exponential-ACS > linear-ACS = quadratic-BSA > linear-PSO > ANN > SVR 

> linear-CSA = linear-BSA > quadratic-CSA = exponential-CSA > ANFIS-FCMC > M5-R. In 

addition, the parallel comparison reveals that GEP-BSA is the most efficient model and 

EEC is more effective input historical data type than SEI, while the best reported values 

in Tables 4.11 and 4.12 in term of MAPE (0.8538%), RMSE (0.017), U-statistic (0.0048) 

and R-squared (0.9984) indexes belong to this model on the basis of EEC in preceding 

three years. The effects of socio-economic indicators and EEC in preceding years on 

Indonesia’s EEC are formulated via GEP-BSA as given by Eqs. (4.22) and (4.23) 

respectively. The performances of GEP–BSA based on two input data types are illustrated 

in Figure 4.13. 

Training phase Testing phase 
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Table 4.11: Comparison between forecasting accuracy of studied methods on 

Indonesia’s EEC based on SEI 

Model Methods 

MAPE (%) RMSE U-statistic R2 RACF 

Input historical data 

SEI 

ANN MLP 2.5090 0.0460 0.0129 0.9940 0.0006 

support vector machines SVR 4.6485 0.1079 0.0304 0.9605 0.0039 

ANFIS 
FCMC 12.532 0.2680 0.0715 0.8042 0.0045 

SC 2.0935 0.0439 0.0125 0.9928 0.0022 

Rule-based data mining M5-R  8.7602 0.1728 0.0516 0.9137 0.0002 

Multiple linear 

PSO 7.1256 0.1558 0.0458 0.9222 0.0123 

CSA 4.9234 0.1090 0.0310 0.9525 0.0067 

ACS 6.2888 0.1216 0.0353 0.9466 0.0115 

BSA 8.2636 0.1806 0.0534 0.8992 0.0152 

Quadratic 

PSO 2.4535 0.0567 0.0160 0.9907 0.0023 

CSA 5.8577 0.1428 0.0405 0.9334 0.0131 

ACS 3.9840 0.1259 0.0351 0.9560 0.0058 

BSA 7.7384 0.2312 0.0629 0.8539 0.0104 

Exponential 

PSO 3.7295 0.0708 0.0204 0.9800 0.0038 

CSA 6.7837 0.1312 0.0384 0.8945 0.0030 

ACS 4.8770 0.0927 0.0269 0.9586 0.0033 

BSA 4.1775 0.0919 0.0260 0.9711 0.0038 

GEP RNC 3.1973 0.0635 0.0183 0.9857 0.0015 

Optimized GEP 

PSO 2.4381 0.0484 0.0138 0.9917 0.0017 

CSA 2.4720 0.0476 0.0136 0.9914 0.0018 

ACS 2.3354 0.0463 0.0132 0.9915 0.0017 

BSA 2.0545 0.0384 0.0108 0.9957 0.0008 
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Table 4.12: Comparison between forecasting accuracy of studied methods on 

Indonesia’s EEC based on EEC in preceding years 

Model Methods 

MAPE (%) RMSE U-statistic R2 RACF 

Input historical data 

EEC 

ANN MLP 3.7065 0.0866 0.0251 0.9792 0.0003 

support vector machines SVR 2.2494 0.0567 0.0163 0.9902 0.0003 

ANFIS 
FCMC 2.6444 0.0586 0.0169 0.9903 0.0005 

SC 1.9537 0.0420 0.0121 0.9949 0.0005 

Rule-based data mining M5-R  12.223 0.2265 0.0689 0.8393 0.0003 

Multiple linear 

PSO 1.5747 0.0292 0.0082 0.9969 0.0008 

CSA 1.9776 0.1279 0.0377 0.9457 0.0008 

ACS 1.5747 0.0292 0.0082 0.9969 0.0008 

BSA 1.5747 0.0292 0.0082 0.9969 0.0008 

Quadratic 

PSO 1.8720 0.0419 0.0120 0.9948 0.0005 

CSA 5.1518 0.1027 0.0285 0.9698 0.0010 

ACS 1.3224 0.0314 0.0090 0.9969 0.0006 

BSA 1.1515 0.0263 0.0075 0.9977 0.0005 

Exponential 

PSO 1.1355 0.0266 0.0076 0.9976 0.0005 

CSA 2.9690 0.0552 0.0155 0.9906 0.0007 

ACS 1.8054 0.0398 0.0114 0.9953 0.0006 

BSA 1.8612 0.0415 0.0119 0.9949 0.0005 

GEP RNC 1.9332 0.0397 0.0114 0.9932 0.0007 

Optimized GEP 

PSO 0.8754 0.0170 0.0048 0.9984 0.0007 

CSA 0.8553 0.0172 0.0049 0.9983 0.0007 

ACS 0.8545 0.0170 0.0048 0.9984 0.0007 

BSA 0.8538 0.0170 0.0048 0.9984 0.0007 
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Figure 4.13: Indonesia’s EEC actual data from 1971 to 2011 and GEP-BSA 

performances during training of design phase (1971-2001) and testing phase (2002-

2011) based on two different input historical data types (SEI and EEC) 

 

For further examination of solution methodologies, the performances of optimized 

GEP methods for long-term EEC forecasting in Singapore are compared with those from 

other soft computing approaches as shown in Tables 4.13 and 4.14. The RACF values 

reported in these tables confirm that the estimated residuals of all obtained models are 

white at a confidence interval level.  

According to Tables 4.13 and 4.14, the forecasting accuracy of studied methods with 

two different input data types based on mean rank of methods for MAPE index is ranked 

as GEP-BSA > GEP-ACS > GEP-PSO > GEP-CSA > exponential-PSO > ANFIS-SC = quadratic-

ACS > quadratic-PSO > GEP > exponential-BSA > exponential-ACS > linear-ACS = quadratic-

BSA > linear-PSO > ANN > SVR > linear-CSA = linear-BSA > quadratic-CSA = exponential-CSA 

> ANFIS-FCMC > M5-R.  

Regardless of which input data type is considered for long-term EEC forecasting in 

Singapore, the enhanced results in Tables 4.13 and 4.14 show that the optimized GEP 

methodologies provide better-fit estimation than other studied methods. Moreover, it is 

determined that BSA is the most efficient optimization algorithm for training the GEP, 
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while in term of MAPE index, 1.7537% and 0.7438%,  achieved  by GEP-BSA on the basis 

of SEI and EEC respectively, that are less than the values achieved by the other 

optimization algorithms. Furthermore, the parallel comparison indicates that EEC in 

preceding three years as input for GEP-BSA, leads to more promising results in term of  

MAPE (0.7438%), RMSE (0.0221), U-statistic (0.0059) and R-squared (0.9983) indexes 

as compared with those resulting from socio-economic indicators data. Eqs. (4.24) and 

(4.25) give the mathematical models of annual EEC in Singapore generated by GEP-BSA 

based on socio-economic indicators and EEC in preceding years respectively, and Figure 

4.14 shows their performances. 

 

Table 4.13: Comparison between forecasting accuracy of studied methods on 

Singapore’s EEC based on SEI 

Model Methods 

MAPE (%) RMSE U-statistic R2 RACF 

Input historical data 

SEI 

ANN MLP 5.4114 0.1150 0.0317 0.9675 0.0001 

support vector machines SVR 2.2395 0.0466 0.0125 0.9928 0.0004 

ANFIS 
FCMC 11.051 0.2301 0.0653 0.8748 0.0022 

SC 11.723 0.2433 0.0693 0.8600 0.0027 

Rule-based data mining M5-R  3.2925 0.0652 0.0175 0.9883 0.0006 

Multiple linear 

PSO 7.2170 0.1714 0.0442 0.9286 0.0017 

CSA 4.4273 0.1082 0.0284 0.9701 0.0013 

ACS 4.0048 0.0844 0.0229 0.9803 0.0011 

BSA 8.2341 0.1921 0.0493 0.9107 0.0020 

Quadratic 

PSO 5.0722 0.1400 0.0385 0.9522 0.0016 

CSA 3.2630 0.0771 0.0204 0.9842 0.0006 

ACS 3.0950 0.0836 0.0221 0.9819 0.0021 

BSA 3.1069 0.0807 0.0218 0.9829 0.0023 

Exponential 

PSO 4.1140 0.0864 0.0230 0.9809 0.0008 

CSA 6.2667 0.1441 0.0378 0.9464 0.0018 

ACS 2.9980 0.0682 0.0181 0.9866 0.0006 

BSA 2.1266 0.0431 0.0116 0.9936 0.0004 

GEP RNC 1.9352 0.0444 0.0119 0.9941 0.0005 

Optimized GEP 

PSO 1.7855 0.0437 0.0117 0.9942 0.0006 

CSA 1.8391 0.0489 0.0117 0.9929 0.0006 

ACS 1.8656 0.0494 0.0132 0.9928 0.0006 

BSA 1.7537 0.0436 0.0130 0.9943 0.0006 
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(4.24) 

Table 4.14: Comparison between forecasting accuracy of studied methods on 

Singapore’s EEC based on EEC in preceding years 

Model Methods 

MAPE (%) RMSE U-statistic R2 RACF 

Input historical data 

EEC 

ANN MLP 7.9625 0.1721 0.0481 0.9300 2.4E-6 

support vector machines SVR 2.1208 0.0542 0.0147 0.9924 9.6E-5 

ANFIS 
FCMC 1.7814 0.0453 0.0120 0.9950 0.0006 

SC 1.1823 0.0267 0.0072 0.9982 0.0002 

Rule-based data mining M5-R  6.8772 0.1315 0.0365 0.9426 0.0001 

Multiple linear 

PSO 2.1839 0.0474 0.0125 0.9938 0.0005 

CSA 1.2206 0.0307 0.0082 0.9960 0.0002 

ACS 2.1839 0.0474 0.0125 0.9938 0.0005 

BSA 2.1839 0.0474 0.0125 0.9938 0.0005 

Quadratic 

PSO 0.9837 0.0308 0.0083 0.9971 0.0004 

CSA 1.0547 0.0293 0.0078 0.9942 0.0002 

ACS 1.3785 0.0299 0.0079 0.9972 0.0005 

BSA 1.8180 0.0385 0.0102 0.9958 0.0002 

Exponential 

PSO 1.0078 0.0231 0.0062 0.9980 0.0001 

CSA 3.1979 0.0621 0.0170 0.9865 0.0003 

ACS 1.0155 0.0235 0.0063 0.9978 0.0002 

BSA 1.8061 0.0443 0.0120 0.9948 0.0002 

GEP RNC 0.9695 0.0268 0.0072 0.9977 0.0003 

Optimized GEP 

PSO 0.7442 0.0222 0.0059 0.9983 0.0003 

CSA 0.7442 0.0231 0.0062 0.9982 0.0003 

ACS 0.7441 0.0222 0.0059 0.9983 0.0003 

BSA 0.7438 0.0221 0.0059 0.9983 0.0003 
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Figure 4.14: Singapore’s EEC actual data from 1971 to 2011 and GEP-BSA 

performances during training of design phase (1971-2001) and testing phase (2002-

2011) based on two different input historical data types (SEI and EEC) 

 

Tables 4.15 and 4.16 summarizes the performances of machine learning methods for 

Thailand’s EEC forecasting based on two input historical data types (SEI and EEC). It is 

observed that all obtained models adequately describe the given set of data, while the 

RACF values reported in these tables confirm the whiteness of estimated residuals at a 

confidence interval level for all models. 

According to Tables 4.15 and 4.16, the forecasting accuracy of methods on Thailand’s 

EEC with two different input data types based on multiple-criteria decision analysis using  

average rank of methods for MAPE index is ranked as GEP-BSA > GEP-ACS > GEP-PSO > 

GEP-CSA > exponential-ACS > GEP > quadratic-BSA > linear-CSA = quadratic-ACS = 

exponential-PSO > exponential-CSA > ANFIS-FCMC = ANFIS-SC = exponential-BSA > linear-

ACS > linear-PSO > M5-R = linear-BSA = quadratic-PSO > ANN > SVR > quadratic-CSA. The 

comparison between forecasting accuracy of studied methods on Thailand’s EEC reveals 

that optimized GEP approaches outperform the other studied methods. Whereas the 

superior MAPE (1.1136%), RMSE (0.0262),U-statistic (0.007) and R-squared (0.9952) 

values reported in Table 4.16 belong to GEP-BSA model based on EEC. Therefore, it is 

concluded that the most efficient optimization algorithm for training GEP and the most 
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effective historical data set for modeling annual EEC in Thailand are BSA and EEC 

respectively. Eqs. (4.26) and (4.27) present the mathematical models derived from GEP-

BSA on the basis of SEI and EEC, respectively. Figure 4.15 depicts the GEP–BSA 

performances during training phase (1971-2001) and testing phase (2002-2011) based on 

two different input historical data types. 

Table 4.15: Comparison between forecasting accuracy of studied methods on 

Thailand’s EEC based on SEI 

Model Methods 

MAPE (%) RMSE U-statistic R2 RACF 

Input historical data 

SEI 

ANN MLP 8.1969 0.1862 0.0482 0.9200 0.0004 

support vector machines SVR 8.7580 0.2041 0.0529 0.9013 0.0006 

ANFIS 
FCMC 7.2486 0.1717 0.0446 0.9322 0.0004 

SC 4.2471 0.1041 0.0275 0.9747 0.0004 

Rule-based data mining M5-R  6.2948 0.1393 0.0389 0.9427 0.0007 

Multiple linear 

PSO 12.791 0.3243 0.0823 0.7574 0.0004 

CSA 6.7875 0.1335 0.0372 0.9355 0.0003 

ACS 10.549 0.2569 0.0666 0.8322 0.0004 

BSA 12.813 0.3250 0.0825 0.7564 0.0004 

Quadratic 

PSO 8.2532 0.2000 0.0520 0.9070 0.0004 

CSA 15.347 0.3859 0.0964 0.6571 0.0005 

ACS 4.3885 0.1205 0.0332 0.9659 0.0005 

BSA 3.8569 0.1122 0.0305 0.9704 0.0004 

Exponential 

PSO 9.2354 0.2233 0.0580 0.8797 0.0049 

CSA 6.7774 0.1470 0.0398 0.9275 0.0042 

ACS 6.5384 0.1529 0.0402 0.9446 0.0039 

BSA 5.3402 0.1225 0.0324 0.9641 0.0019 

GEP RNC 4.3917 0.0827 0.0228 0.9810 0.0006 

Optimized GEP 

PSO 1.9466 0.0413 0.0112 0.9899 0.0008 

CSA 2.3729 0.0477 2.3729 0.9899 0.0007 

ACS 1.9366 0.0451 0.0121 0.9939 00007 

BSA 1.6996 0.0350 0.0095 0.9914 0.0007 
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Table 4.16: Comparison between forecasting accuracy of studied methods on 

Thailand’s EEC based on EEC in preceding years 

Model Methods 

MAPE (%) RMSE U-statistic R2 RACF 

Input historical data 

EEC 

ANN MLP 4.3944 0.0850 0.0235 0.9833 0.0004 

support vector machines SVR 5.4721 0.1193 0.0332 0.9654 0.0004 

ANFIS 
FCMC 2.7473 0.0625 0.0167 0.9909 0.0004 

SC 7.4006 0.1464 0.0411 0.9508 0.0004 

Rule-based data mining M5-R  13.545 0.2562 0.0744 0.8303 0.0007 

Multiple linear 

PSO 1.9657 0.0542 0.0145 0.9922 0.0006 

CSA 1.9338 0.0426 0.0116 0.9928 0.0004 

ACS 1.9656 0.0542 0.0145 0.9922 0.0006 

BSA 1.9658 0.0542 0.0145 0.9922 0.0006 

Quadratic 

PSO 3.6552 0.0780 0.0214 0.9856 0.0005 

CSA 8.4025 0.1697 0.0480 0.9326 0.0003 

ACS 3.4792 0.0786 0.0216 0.9851 0.0004 

BSA 3.5277 0.0695 0.0191 0.9885 0.0005 

Exponential 

PSO 1.1652 0.0309 0.0083 0.9957 0.0005 

CSA 3.1172 0.0633 0.0174 0.9884 0.0003 

ACS 1.1506 0.0335 0.0090 0.9963 0.0005 

BSA 3.7468 0.0808 0.0222 0.9842 0.0006 

GEP RNC 1.6752 0.0432 0.0116 0.9945 0.0005 

Optimized GEP 

PSO 1.1850 0.0282 0.0076 0.9947 0.0004 

CSA 1.1870 0.0280 0.0075 0.9925 0.0004 

ACS 1.1774 0.0390 0.0106 0.9953 0.0004 

BSA 1.1136 0.0262 0.0070 0.9952 0.0004 
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Figure 4.15: Thailand’s EEC actual data from 1971 to 2011 and GEP-BSA 

performances during training of design phase (1971-2001) and testing phase (2002-

2011) based on two different input historical data types (SEI and EEC) 

As shown in Tables 4.17 and 4.18, the performances of optimized GEP models for 

long-term EEC forecasting in Philippines are quantified in terms of MAPE, RMSE, U-

statistic and R-squared indexes and the computed values are compared with those from 

other soft computing approaches. Furthermore, to ensure that the obtained models 

adequately describe the  given  set  of  data the RACF values are calculated for all models. 

It is observed that all obtained models adequately describe the given data sets, as the 

RACF values reported in these tables demonstrate that the estimated residuals for all 

models are uncorrelated. 

In this case, the forecasting accuracy of studied methods with two different input data 

types based on mean rank of models for MAPE index is ranked as GEP-BSA > GEP-ACS > 

GEP-PSO > GEP-CSA > quadratic-PSO > quadratic-ACS > exponential-ACS > M5-R = 

exponential-CSA > exponential-BSA > ANN = ANFIS-SC > GEP > linear-ACS > linear-PSO > 

SVR > linear-BSA > linear-CSA = quadratic-BSA > exponential-PSO > ANFIS-FCMC > quadratic-

CSA. As the results show, the optimized GEP approaches provide better-fit estimation than 

other studied methods. Additionally, it is observed that the most efficient optimization 

algorithm for training GEP and the most effective input data set for modeling the annual 

EEC in Philippines are BSA and EEC respectively, as the superior reported results in 

Testing phase 
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Tables 4.17 and 4.18 belong to GEP-BSA based on EEC in preceding three years. The 

mathematical models created by GEP-BSA for annual EEC in Philippines on the basis of 

socio-economic indicators and EEC in preceding years are given by Eqs. (4.28) and (4.29) 

respectively, and their performances are illustrated in Figure 4.16. 

Table 4.17: Comparison between forecasting accuracy of studied methods on 

Philippines’s EEC based on SEI 

Model Methods 

MAPE (%) RMSE U-statistic R2 RACF 

Input historical data 

SEI 

ANN MLP 2.4528 0.0621 0.0172 0.9828 0.0172 

support vector machines SVR 7.9029 0.1508 0.0431 0.9241 0.0431 

ANFIS 
FCMC 7.1802 0.1787 0.0510 0.9064 0.0510 

SC 2.7641 0.0537 0.0145 0.9910 0.0145 

Rule-based data mining M5-R  2.8117 0.0555 0.0153 0.9863 0.0153 

Multiple linear 

PSO 6.9359 0.1392 0.0396 0.9328 0.0396 

CSA 5.9640 0.1197 0.0331 0.9455 0.0331 

ACS 6.5111 0.1232 0.0350 0.9457 0.0335 

BSA 6.9359 0.1392 0.0396 0.9328 0.0396 

Quadratic 

PSO 2.9362 0.0613 0.0168 0.9819 0.0168 

CSA 9.3903 0.1882 0.0503 0.8859 0.0503 

ACS 4.4576 0.0966 0.0270 0.9632 0.0236 

BSA 6.5858 0.1756 0.0469 0.9060 0.0469 

Exponential 

PSO 6.9488 0.1331 0.0364 0.9379 0.0050 

CSA 4.6084 0.1046 0.0293 0.9560 0.0018 

ACS 4.9384 0.1097 0.0306 0.9526 0.0021 

BSA 5.6783 0.1160 0.0327 0.9506 0.0016 

GEP RNC 5.3862 0.1062 0.0287 0.9613 0.0287 

Optimized GEP 

PSO 2.8362 0.0562 0.0155 0.9860 0.0155 

CSA 3.1573 0.0772 0.0214 0.9745 0.0214 

ACS 2.8117 0.0555 0.0153 0.9863 0.0150 

BSA 1.6177 0.0371 0.0101 0.9927 0.0101 
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Table 4.18: Comparison between forecasting accuracy of studied methods on 

Philippines’s EEC based on EEC in preceding years 

Model Methods 

MAPE (%) RMSE U-statistic R2 RACF 

Input historical data 

EEC 

ANN MLP 8.0189 0.1625 0.0466 0.9206 0.0466 

support vector machines SVR 1.5659 0.0325 0.0089 0.9921 0.0089 

ANFIS 
FCMC 3.9330 0.0837 0.0235 0.9764 0.0235 

SC 7.9228 0.1850 0.0530 0.8982 0.0530 

Rule-based data mining M5-R  2.3669 0.0574 0.0159 0.9604 0.0159 

Multiple linear 

PSO 2.0260 0.0404 0.0110 0.9904 0.0110 

CSA 4.3170 0.0885 0.0238 0.9686 0.0238 

ACS 2.0260 0.0404 0.0110 0.9904 0.0110 

BSA 2.0260 0.0404 0.0110 0.9904 0.0110 

Quadratic 

PSO 1.2871 0.0343 0.0094 0.9918 0.0094 

CSA 6.1602 0.1287 0.0342 0.9402 0.0342 

ACS 1.3965 0.0368 0.0101 0.9912 0.0102 

BSA 3.5364 0.0742 0.0200 0.9795 0.0200 

Exponential 

PSO 3.0411 0.0646 0.0175 0.9831 0.0008 

CSA 1.6135 0.0327 0.0089 0.9917 0.0006 

ACS 1.4638 0.0333 0.0091 0.9876 0.0005 

BSA 1.9291 0.0382 0.0104 0.9910 0.0007 

GEP RNC 2.0768 0.0472 0.0131 0.9856 0.0131 

Optimized GEP 

PSO 1.1239 0.0324 0.0089 0.9917 0.0089 

CSA 1.1238 0.0324 0.0089 0.9917 0.0089 

ACS 1.1237 0.0324 0.0089 0.9917 0.0089 

BSA 1.0951 0.0308 0.0084 0.9921 0.0084 
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Figure 4.16: Philippines’s EEC actual data from 1971 to 2011 and GEP-BSA 

performances during training of design phase (1971-2001) and testing phase (2002-

2011) based on two different input historical data types (SEI and EEC) 

The minimum, average, and maximum values of MAPE indicator obtained after 50 

trials run of applied optimization methods on the most performant models (optimized 

GEP) are tabulated in Table 4.19. The robustness of the developed models is confirmed 

according to the obtained results in this table.  

Table 4.19: The minimum, average, and maximum values for MAPE indicator 

of optimized GEP methods 

ASEAN-5 

Countries 

Input historical 

 data type 
MAPE Index 

Methods 

PSO CSA ACS BSA 

Malaysia 

SEI 

Max MAPE (%) 3.5866 3.3560 3.2448 3.2497 

Mean MAPE (%) 3.5698 3.2045 3.1045 3.0036 

Min MAPE (%) 3.3306 3.0735 3.0700 2.8935 

EEC 

Max MAPE (%) 1.6005 1.5999 1.5956 15952 

Mean MAPE (%) 1.5987 1.5991 1.5961 1.5950 

Min MAPE (%) 1.5956 1.5962 1.5893 1.5882 

Indonesia  

SEI 

Max MAPE (%) 2.7456 2.8654 2.5846 2.5646 

Mean MAPE (%) 2.5569 2.5689 2.4564 2.1546 

Min MAPE (%) 2.4381 2.4720 2.3354 2.0545 

EEC 

Max MAPE (%) 0.8972 0.9961 0.8551 0.8539 

Mean MAPE (%) 0.8765 0.8958 0.8549 0.8539 

Min MAPE (%) 0.8754 0.8553 0.8545 0.8538 

Singapore  

SEI 

Max MAPE (%) 2.0134 2.2121 2.0987 1.9874 

Mean MAPE (%) 1.9564 1.9856 1.9776 1.8236 

Min MAPE (%) 1.7855 1.8391 1.8656 1.7537 

EEC 

Max MAPE (%) 0.7447 0.8849 0.7441 0.7446 

Mean MAPE (%) 0.7445 0.7947 0.7441 0.7444 

Min MAPE (%) 0.7442 0.7442 0.7441 0.7438 

Thailand  

SEI 

Max MAPE (%) 2.7654 3.0012 2.2458 2.4145 

Mean MAPE (%) 2.2148 2.8987 2.0236 1.9754 

Min MAPE (%) 1.9466 2.3729 1.9366 1.6996 

EEC 

Max MAPE (%) 1.5564 1.5745 1.4698 1.4669 

Mean MAPE (%) 1.3659 1.3398 1.3254 1.2365 

Min MAPE (%) 1.1850 1.1870 1.1774 1.1136 

Philippines 

SEI 

Max MAPE (%) 3.5569 3.3654 3.0214 2.1056 

Mean MAPE (%) 3.0212 3.2236 2.9874 1.8803 

Min MAPE (%) 2.8362 3.1573 2.8117 1.6177 

EEC 

Max MAPE (%) 1.5249 1.1284 1.1244 1.1578 

Mean MAPE (%) 1.3642 1.1269 1.1242 1.1254 

Min MAPE (%) 1.1239 1.1238 1.1237 1.0951 

Training phase Testing phase 
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4.3.1 Validation of the Model Using Statistical Methods  

Different statistical methods are applied as external validation to verify the validity of 

mathematical models developed by GEP-BSA. To evaluate the performance of the obtained 

model the following attributes were recommended (Mousavi et al., 2014): 

i- If a model gives |R| > 0.8, a strong correlation exists between the predicted 

and observed values. 

ii- If a model gives 0.2 < |R| < 0.8, a correlation exists between the predicted and 

observed values.  

iii- If a model gives |R| < 0.2, a weak correlation exists between the predicted and 

observed values. 

In addition, new factors suggested by (Golbraikh & Tropsha, 2002) are checked for 

external validation of the obtained models on the testing phase. It is recommended that at 

least one slope of the regression lines (k or 𝑘′) through the origin should be close to one. 

It should be noted that k and 𝑘′ are the slopes of the regression lines between the 

regressions of actual output (ℎ𝑖) against predicted output (𝑡𝑖) or 𝑡𝑖 against ℎ𝑖 through the 

origin, i.e. ℎ𝑖=𝑘 𝑡𝑖 and 𝑡𝑖 = 𝑘′ℎ𝑖, respectively. In addition, the performance indexes of m 

and n should be less than 0.1 (m and n are the two factors for evaluating the model 

performance). Recently, Roy and Roy (P. P. Roy & Roy, 2008) presented a confirmed 

indicator (𝑅𝑚) for external predictability of models. For 𝑅𝑚 > 0.5, the condition is 

satisfied. Either the squared correlation coefficient (through the origin) between predicted 

and experimental values (𝑅𝑜
2), or the squared correlation coefficient between 

experimental and predicted values (𝑅𝑜′
2) should be close to 𝑅2 and to one (Alavi, 

Aminian, Gandomi, & Esmaeili, 2011; Mostafavi et al., 2013; Mostafavi, Mousavi, & 

Hosseinpour, 2014). In item one, R should be greater than 0.8. In the second item, k should 

be between 0.85 and 1.15. In the third item, 𝑘′
 should be between 0.85 and 1.15. 

According to items four and five, m and n values should be smaller than 0.1. Finally 𝑅𝑚  
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should be greater than 0.5. The statistical factors of the GEP-BSA models for formulating 

the EEC of ASEAN-5 countries based on two different input historical data types (SEI 

and EEC) are tabulated in Tables 4.20 - 4.24. As shown, the developed models satisfy all 

the requisite conditions. The validation phase ensures that GEP-BSA provides precise 

models, which are strongly applicable for long-term EEC forecasting of ASEAN-5 

countries. 

Table 4.20: Statistical factors of the GEP-BSA model for formulating the EEC of 

Malaysia based on two different input historical data types (SEI and EEC) 

Item Formula Condition SEI EEC 

1 R 0.8 < 𝑅 0.9935 0.9966 

2 𝑘 =
∑ (ℎ𝑖 × 𝑡𝑖)

𝑛
𝑖=1

∑ ℎ𝑖
2𝑛

𝑖=1

 0.85 < 𝑘 < 1.15 0.9981 0.9959 

3 𝑘′ =
∑ (ℎ𝑖 × 𝑡𝑖)

𝑛
𝑖=1

∑ 𝑡𝑖
2𝑛

𝑖=1

 0.85 < 𝑘′ < 1.15 1.0016 1.0038 

4 𝑚 =
𝑅2 − 𝑅𝑜

2

𝑅2  |𝑚| < 0.1 -0.0118 -0.0056 

5 𝑛 =
𝑅2 −   𝑅𝑜′

2

𝑅2
 |𝑛| < 0.1 -0.0120 -0.0057 

6 𝑅𝑚 = 𝑅2 × (1 − √|𝑅2 − 𝑅𝑜
2|) 0.5 < 𝑅𝑚 0.9763 0.9881 

Where 

𝑅𝑜
2 = 1 −

∑ (𝑡𝑖−ℎ𝑖
𝑜)2𝑛

𝑖=1

∑ (𝑡𝑖−𝑡𝑖̅)
2𝑛

𝑖=1

, ℎ𝑖
𝑜
=k × 𝑡𝑖 0.8 < 𝑅𝑜

2 < 1  0.9998 0.9996 

  𝑅𝑜′
2 = 1 −

∑ (ℎ𝑖−𝑡𝑖
𝑜)2𝑛

𝑖=1

∑ (ℎ𝑖−ℎ𝑖̅̅̅)2𝑛
𝑖=1

, 𝑡𝑖
𝑜=𝑘′ × ℎ𝑖 0.8 <   𝑅𝑜′

2 < 1 0.9999 0.9997 

 

Table 4.21: Statistical factors of the GEP-BSA model for formulating the EEC of 

Indonesia based on two different input historical data types (SEI and EEC) 

Item Formula Condition SEI EEC 

1 R 0.8 < 𝑅 0.9913 0.9992 

2 𝑘 =
∑ (ℎ𝑖 × 𝑡𝑖)

𝑛
𝑖=1

∑ ℎ𝑖
2𝑛

𝑖=1

 0.85 < 𝑘 < 1.15 0.9992 0.9989 

3 𝑘′ =
∑ (ℎ𝑖 × 𝑡𝑖)

𝑛
𝑖=1

∑ 𝑡𝑖
2𝑛

𝑖=1

 0.85 < 𝑘′ < 1.15 1.0006 1.0010 

4 𝑚 =
𝑅2 − 𝑅𝑜

2

𝑅2  |𝑚| < 0.1 -0.0043 -0.0015 

5 𝑛 =
𝑅2 −   𝑅𝑜′

2

𝑅2  |𝑛| < 0.1 -0.0043 -0.0015 

6 𝑅𝑚 = 𝑅2 × (1 − √|𝑅2 − 𝑅𝑜
2|) 0.5 < 𝑅𝑚 0.9914 0.9970 
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Where 

𝑅𝑜
2 = 1 −

∑ (𝑡𝑖−ℎ𝑖
𝑜)2𝑛

𝑖=1

∑ (𝑡𝑖−𝑡𝑖̅)
2𝑛

𝑖=1

, ℎ𝑖
𝑜
=k × 𝑡𝑖 0.8 < 𝑅𝑜

2 < 1  1.0000 1.0000 

  𝑅𝑜′
2 = 1 −

∑ (ℎ𝑖−𝑡𝑖
𝑜)2𝑛

𝑖=1

∑ (ℎ𝑖−ℎ𝑖
̅̅̅)2𝑛

𝑖=1

, 𝑡𝑖
𝑜=𝑘′ × ℎ𝑖 0.8 <   𝑅𝑜′

2 < 1 1.0000 1.0000 

 

Table 4.22: Statistical factors of the GEP-BSA model for formulating the EEC of 

Singapore based on two different input historical data types (SEI and EEC) 

Item Formula Condition SEI EEC 

1 R 0.8 < 𝑅 0.9972 0.9992 

2 𝑘 =
∑ (ℎ𝑖 × 𝑡𝑖)

𝑛
𝑖=1

∑ ℎ𝑖
2𝑛

𝑖=1

 0.85 < 𝑘 < 1.15 1.0013 0.9983 

3 𝑘′ =
∑ (ℎ𝑖 × 𝑡𝑖)

𝑛
𝑖=1

∑ 𝑡𝑖
2𝑛

𝑖=1

 0.85 < 𝑘′ < 1.15 0.9984 1.0016 

4 𝑚 =
𝑅2 − 𝑅𝑜

2

𝑅2  |𝑚| < 0.1 -0.0055 -0.0016 

5 𝑛 =
𝑅2 −   𝑅𝑜′

2

𝑅2  |𝑛| < 0.1 -0.0055 -0.0016 

6 𝑅𝑚 = 𝑅2 × (1 − √|𝑅2 − 𝑅𝑜
2|) 0.5 < 𝑅𝑚 0.9890 0.9967 

Where 

𝑅𝑜
2 = 1 −

∑ (𝑡𝑖−ℎ𝑖
𝑜)2𝑛

𝑖=1

∑ (𝑡𝑖−𝑡𝑖̅)
2𝑛

𝑖=1

, ℎ𝑖
𝑜
=k × 𝑡𝑖 0.8 < 𝑅𝑜

2 < 1  1.0000 0.9999 

  𝑅𝑜′
2 = 1 −

∑ (ℎ𝑖−𝑡𝑖
𝑜)2𝑛

𝑖=1

∑ (ℎ𝑖−ℎ𝑖̅̅̅)2𝑛
𝑖=1

, 𝑡𝑖
𝑜=𝑘′ × ℎ𝑖 0.8 <   𝑅𝑜′

2 < 1 1.0000 0.9999 

 

Table 4.23: Statistical factors of the GEP-BSA model for formulating the EEC of 

Thailand based on two different input historical data types (SEI and EEC) 

Item Formula Condition SEI EEC 

1 R 0.8 < 𝑅 0.9960 0.9977 

2 𝑘 =
∑ (ℎ𝑖 × 𝑡𝑖)

𝑛
𝑖=1

∑ ℎ𝑖
2𝑛

𝑖=1

 0.85 < 𝑘 < 1.15 1.0050 0.9991 

3 𝑘′ =
∑ (ℎ𝑖 × 𝑡𝑖)

𝑛
𝑖=1

∑ 𝑡𝑖
2𝑛

𝑖=1

 0.85 < 𝑘′ < 1.15 0.9946 1.0006 

4 𝑚 =
𝑅2 − 𝑅𝑜

2

𝑅2  |𝑚| < 0.1 -0.0071 -0.0045 

5 𝑛 =
𝑅2 −   𝑅𝑜′

2

𝑅2  |𝑛| < 0.1 -0.0070 -0.0045 

6 𝑅𝑚 = 𝑅2 × (1 − √|𝑅2 − 𝑅𝑜
2|) 0.5 < 𝑅𝑚 0.9850 0.9910 

Where 

𝑅𝑜
2 = 1 −

∑ (𝑡𝑖−ℎ𝑖
𝑜)2𝑛

𝑖=1

∑ (𝑡𝑖−𝑡𝑖̅)
2𝑛

𝑖=1

, ℎ𝑖
𝑜
=k × 𝑡𝑖 0.8 < 𝑅𝑜

2 < 1  0.9995 1.0000 

  𝑅𝑜′
2 = 1 −

∑ (ℎ𝑖−𝑡𝑖
𝑜)2𝑛

𝑖=1

∑ (ℎ𝑖−ℎ𝑖̅̅̅)2𝑛
𝑖=1

, 𝑡𝑖
𝑜=𝑘′ × ℎ𝑖 0.8 <   𝑅𝑜′

2 < 1 0.9995 1.0000 
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Table 4.24: Statistical factors of the GEP-BSA model for formulating the EEC of 

Philippines based on two different input historical data types (SEI and EEC) 

Item Formula Condition SEI EEC 

1 R 0.8 < 𝑅 0.9963 0.9964 

2 𝑘 =
∑ (ℎ𝑖 × 𝑡𝑖)

𝑛
𝑖=1

∑ ℎ𝑖
2𝑛

𝑖=1

 0.85 < 𝑘 < 1.15 0.9934 0.9956 

3 𝑘′ =
∑ (ℎ𝑖 × 𝑡𝑖)

𝑛
𝑖=1

∑ 𝑡𝑖
2𝑛

𝑖=1

 0.85 < 𝑘′ < 1.15 1.0061 1.0041 

4 𝑚 =
𝑅2 − 𝑅𝑜

2

𝑅2  |𝑚| < 0.1 -0.0052 -0.0063 

5 𝑛 =
𝑅2 −   𝑅𝑜′

2

𝑅2
 |𝑛| < 0.1 -0.0056 -0.0065 

6 𝑅𝑚 = 𝑅2 × (1 − √|𝑅2 − 𝑅𝑜
2|) 0.5 < 𝑅𝑚 0.9875 0.9866 

Where 

𝑅𝑜
2 = 1 −

∑ (𝑡𝑖−ℎ𝑖
𝑜)2𝑛

𝑖=1

∑ (𝑡𝑖−𝑡𝑖̅)
2𝑛

𝑖=1

, ℎ𝑖
𝑜
=k × 𝑡𝑖 0.8 < 𝑅𝑜

2 < 1  0.9990 0.9995 

  𝑅𝑜′
2 = 1 −

∑ (ℎ𝑖−𝑡𝑖
𝑜)2𝑛

𝑖=1

∑ (ℎ𝑖−ℎ𝑖̅̅̅)2𝑛
𝑖=1

, 𝑡𝑖
𝑜=𝑘′ × ℎ𝑖 0.8 <   𝑅𝑜′

2 < 1 0.9991 0.9996 

 

4.3.2 Long-term Electrical Energy Consumption Forecasting 

More importantly, it is also of interest in this study to determine the accuracy of 

optimized GEP approaches for long-term EEC forecasting of ASEAN-5 countries based 

on two different input data types and anticipate their annual growth rate up to 2030 using 

the most accurate methodology.  

Although ASEAN-5 countries inherently have different dependencies on EEC, the 

reported results indicate that GEP-BSA on the basis of EEC in comparison with other 

studied methodologies offers sufficient accuracy to be utilized for long-term EEC 

forecasting. Thus, future estimations of EEC in ASEAN-5 countries are projected up to 

2030 by applying the rolling forecast on mathematical models developed by GEP-BSA on 

the basis of EEC in preceding three years. The flow chart of optimized GEP for long-term 

EEC forecasting is illustrated in Figure 4.17. 
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Normalize input vectors 

using Eg.(4.1)

Input data (1971-2011)

EEC 

in preceding three years

 ("t-1", "t-2", "t-3") 

SEI

(POP, GDP, IMP, EXP)

Apply metaheuristic  method 

(PSO, CSA, ACS or BSA) 

on the chromosome with 

relatively high fitness values

Tune up constants for the 

best individual chromosome 

using Egs.(4.12) and (4.13)

Select the most efficient optimization 

algorithm for training GEP 

and the most effective input data set 

Testing phase (2002-2011)

Determine MAPE ( Eg.(4.16))

Apply GEP

 using fitness function Eg.(4.12)

Training of design phase (1971-2001)

Transform the derived information into a 

mathematical model

Forecasting EEC (2012-2030)

Rolling forecast
Observed EEC 

(2009, 2010, 2011)

EEC

 

Figure 4.17: The procedure of optimized GEP for long-term EEC forecasting 

A rolling forecast is a first-in, first-out (FIFO) process for projecting the future over 

a time period. Rolling forecast is often used either in the short-term or in long-term 

forecasting as it rolls the forecast toward the next period of time (e.g. year, month, day, 

hour and minute) (Hong, 2009). Figure 4.18 shows the rolling-based forecasting 

procedure. As shown in this figure, a rolling forecast's drop/add process ensures that the 

number of periods in a rolling forecast window remains constant. Because a rolling 

forecast window requires consecutive revisions, it is also known as an iterative forecast 

or a continuous forecast.  
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Figure 4.18: The rolling-based forecasting procedure 

                                                     

To anticipate the annual EEC in ASEAN-5 countries up to 2030, the rolling-based 

procedure is implemented on GEP-BSA mathematical models while EEC in preceding 

three years is considered as a rolling forecast window. Firstly, the primary observed 

samples (EEC in 2009, 2010, and 2011) are fed into the GEP-BSA model, then the EEC in 

the year of 2012 is forecasted. Secondly, the forecast window rolls one-step ahead and 

the observations from 2010 to 2011, and the forecasted value for 2012 are similarly again 

fed into the GEP-BSA model, then EEC in the year of 2013 is forecasted. The annual 

forecasts for EEC up to 2030 are obtained through rolling the forecast window until 2029. 

Furthermore, EEC in ASEAN-5 countries is also forecasted up to 2030 by another 

two different time series forecasting methods, namely ARIMA and GM (1, 1), and their 

forecasts are compared with those obtained by proposed method. The performances of 

applied time series methods for long-term EEC forecasting of ASEAN-5 countries is 

tabulated in Table 4.25. The RACF values in this table confirm the whiteness of estimated 

residuals at a confidence interval level for all obtained models. Regardless of which 

country is studied, the enhanced results in Table 4.25 confirm that the developed model 

by GEP-BSA provides better-fit estimations in comparison with other applied time series 

forecasting methods. 

t-3 t-2 t-1 t

tt-1t-2 t+1

t+1tt-1 t+2

t+2t+1t t+3

Observed value 

Previously predicted value

Currently predicted value

Rolling forecast window
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Table 4.25: Comparison between forecasting accuracy of ARIMA, GM (1, 1), 

and GEP-BSA models for EEC of ASEAN-5 countries 

ASEAN-5 

countries 
Methods 

Performance indexes 

MAPE (%) RMSE U-statistic R2 RACF 

Malaysia 

ARIMA 3.1337 0.0931 0.0272 0.9750 0.0002 

GM (1,1) 3.3584 0.0965 0.0282 0.9731 0.0002 

GEP-BSA 1.5882 0.0458 0.0133 0.9933 0.0014 

Indonesia 

ARIMA 1.5342 0.0287 0.0081 0.9977 0.0006 

GM (1,1) 2.6985 0.0586 0.0167 0.9906 0.0002 

GEP-BSA 0.8538 0.0170 0.0048 0.9984 0.0007 

Singapore 

ARIMA 1.5064 0.0334 0.0090 0.9973 0.0002 

GM (1,1) 1.4341 0.0285 0.0076 0.9980 0.0003 

GEP-BSA 0.7438 0.0221 0.0059 0.9983 0.0003 

Thailand 

ARIMA 2.1290 0.0435 0.0119 0.9902 0.0004 

GM (1,1) 1.3575 0.0318 0.0085 0.9923 0.0003 

GEP-BSA 1.1136 0.0262 0.0070 0.9952 0.0004 

Philippines 

ARIMA 1.2251 0.0253 0.0069 0.9912 0.0003 

GM (1,1) 1.3258 0.0362 0.0099 0.9901 0.0002 

GEP-BSA 1.0951 0.0308 0.0084 0.9921 0.0084 

 

The forecasted EEC in ASEAN-5 countries based on ARIMA, GM (1, 1) and GEP-

BSA models are shown in Figures 4.19 - 4.23. 

It is determined that based on ARIMA model the average annual growth rates (AAGRs) 

of EEC from 2011 until 2030 for Malaysia, Indonesia, Singapore, Thailand and 

Philippines are 6.29%, 4.39%, 1.7%, 3.71% and 3.03%, respectively.  

GM (1, 1) provides the AAGRs of EEC from 2011 until 2030 for Malaysia, Indonesia, 

Singapore, Thailand and Philippines, respectively as: 2.67%, 2.91%, 3.98%, 3.53% and 

2.5%.  

By utilizing GEP-BSA the AAGRs of EEC from 2011 until 2030 for Malaysia, Indonesia, 

Singapore, Thailand and Philippines are obtained as 3.52%, 2.9%, 1.83%, 3.35% and 

2.02%, respectively. According to the obtained results based on  GEP-BSA models, it can 

be concluded that highest AAGRs of EEC in this region will be belong to Malaysia, 

Thailand, Indonesia, Philippines and Singapore respectively. 
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Figure 4.19: Future projection of Malaysia’ EEC up to 2030 

 

Figure 4.20: Future projection of Indonesia’ EEC up to 2030 

 

Figure 4.21: Future projection of Singapore’s EEC up to 2030 
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Figure 4.22: Future projection of Thailand’s EEC up to 2030 

 

 

Figure 4.23: Future projection of Philippines’s EEC up to 2030 

 

To access the forecasting accuracy of applied time series methods the annual data 

from 2012 to 2014 inclusive is considered as unseen dataset (hold-out dataset). The 

performances of applied methods for long-term EEC forecasting of ASEAN-5 countries 

on unseen dataset are tabulated in Table 4.26. The collected results in this table indicate 

that, regardless of which country is studied, GEP-BSA in comparison with other studied 

methods offers sufficient accuracy to be utilized for long-term EEC forecasting. 
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Table 4.26: Annual forecasted EEC in ASEAN-5 countries based on applied 

time series forecasting methods 

Methods 
2012 

(MTOE) 
Relative 

error 
2013 

(MTOE) 
Relative 

error 
2014 

(MTOE) 
Relative 

error 
RMSE U-statistic MAPE% 

Malaysia 

ARIMA 12.3351 -0.1375 12.7500 -0.1131 13.5975 -0.1382 2.1936 0.0599 12.9625 

GM(1,1) 10.3987 0.0410 10.5001 0.0832 10.5007 0.1210 1.3434 0.0404 8.17816 

GEP-BSA 10.9279 -0.0077 11.3619 0.0080 11.8043 0.0118 0.1492 0.004 0.9229 

Indonesia 

ARIMA 14.506 0.0741 15.3911 0.0815 16.3034 0.0846 1.9934 0.0412 8.0102 

GM(1,1) 14.0571 0.1027 14.1982 0.1527 14.2486 0.2000 3.6570 0.0782 15.1836 

GEP-BSA 14.8256 0.0537 15.3877 0.0817 15.9533 0.1042 1.9328 0.0399 7.9922 

Singapore 

ARIMA 3.7859 0.0444 3.8254 0.0507 4.0817 0.0187 0.2736 0.0227 3.7991 

GM(1,1) 3.8000 0.0409 3.9100 0.0297 4.3164 -0.037 0.2210 0.0182 3.6115 

GEP-BSA 3.8268 0.0341 3.9071 0.0304 3.9869 0.0415 0.2081 0.0172 3.5386 

Thailand 

ARIMA 14.0152 0.0166 14.6250 0.0074 15.2098 -0.0180 0.3048 0.0068 1.4070 

GM(1,1) 13.8341 0.0294 14.5815 0.0104 14.9402 -1.76e-5 0.4462 0.0101 1.3277 

GEP-BSA 14.2562 -0.0002 14.6596 0.0051 15.4422 -0.0336 0.2996 0.0067 1.2979 

Philippines 

ARIMA 5.37745 0.0313 5.5545 0.0433 5.6311 0.0643 0.3787 0.0220 4.6314 

GM(1,1) 5.41213 0.0250 5.5029 0.0522 5.5483 0.0780 0.4299 0.0251 5.1783 

GEP-BSA 5.4096 0.0255 5.5324 0.0471 5.6558 0.0602 0.3724 0.0217 4.4283 

 

The resulting forecasts of total EEC in ASEAN-5 countries via GEP-BSA are shown in 

Figure 4.24. As it shown, the total EEC of ASEAN-5 countries is predicted to continually 

growth from 2011 up to 2030 with average annual growth rate of 3.01%. The total EEC 

of ASEAN-5 countries is projected to be 82.56 MTOE in 2030, which is about 1.75 times 

that in 2011. Moreover, it is observed that Malaysia’ EEC approaches 20.25 MTOE in 
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2030 which is about 1.93 times that in 2011. For the Indonesia, EEC in 2030 is forecasted 

as 172% of that in 2011 at 24.54 MTOE. The Singapore’s EEC is predicted to continually 

growth from 3.75 MTOE in 2011 to 5.29 in 2030. The EEC of Thailand is expected to be 

24.74 MTOE in 2030, which is about 1.87 times that in 2011. The Philippines’s EEC in 

2030 is anticipated as 1.46 times more than that in 2011 at 7.73 MTOE.  

 

Figure 4.24: Future projection of annual EEC of ASEAN-5 countries up to 2030 

using GEP-BSA 
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CHAPTER 5: CONCLUSION 

5.1 Conclusion 

In this study, optimized GEP models based on PSO, CSA, ACS, and BSA algorithms 

for long-term EEC forecasting using two different data types (i.e. SEI and EEC) are 

developed. The solution framework is implemented for ASEAN-5 counties (i.e. Malaysia, 

Indonesia, Singapore, Thailand, and Philippines), which inherently have different 

dependencies on EEC.  

Regardless of which country is studied, the results show that the developed model by 

GEP-BSA based on EEC in preceding three years provides better-fit estimations as 

compared to other AI-based solution frameworks. The EEC of ASEAN-5 countries is 

modeled by ANN, SVR, ANFIS, M5-R, GEP, and predefined mathematical expressions 

(i.e. linear, quadratic and exponential models) optimized by PSO, CSA, ACS, and BSA 

to compare the performances of the proposed models with those obtained from other AI-

based models on the same case studies.  

The total EEC of ASEAN-5 countries is predicted to continually growth from 2011 up 

to 2030 with average growth rate of 3.01% per year. It is projected to be 82.56 MTOE in 

2030, which is about 1.75 times that in 2011. The forecasting results release that EEC of 

ASEAN-5 countries has increasing trend, which is forecasted to continue in future, unless 

the demand-side management programs are properly designed and implemented to 

optimize the electricity consumption. 

Furthermore, it is demonstrated that recent enhancements in AI-based approaches, as 

in GEP-BSA, could result higher accuracy with the least complexity for long-term EEC 

forecasting. While in term of MAPE index the obtained results by GEP-BSA on the basis 

of socio-economic indicators are 27.33%, 35.74%, 9.38%, 61.3%, 69.97%, and based on 

EEC in preceding years are 4.82%, 55.83%, 23.28%, 33.52%, 47.27% higher accurate 
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than those obtained by GEP for Malaysia, Indonesia, Singapore, Thailand and 

Philippines, respectively. The proposed method is superior to other AI models in giving 

an optimized explicit equation, which clearly shows the relationship between input 

historical data and EEC in different countries without prior knowledge about the nature 

of the relationships between historical data and EEC. 

 It can be concluded that the mathematical models derived from optimized GEP can 

be used satisfactorily for long-term energy consumption forecasting by anyone not 

necessarily being expert in the field of soft computing in a spreadsheet on a personal 

computer even on a hand-held calculator. Thus, it can be a potential tool for policy makers 

and scholars to develop energy strategies plainly. 

5.2 Future Works 

The following tasks can be carried out as the future works. 

 The proposed methodology can be applied in electricity market environment for 

mid-term and short-term electricity demand forecasting, electricity price 

forecasting and spinning reserve requirement forecasting.  

 The proposed methodology can be utilized for wind and solar power forecasting. 

 The optimized GEP approach can be applied for wind turbine power curve 

monitoring. 

 The proposed methodology can be used to develop prediction models for energy 

consumption and carbon dioxide (CO2) emissions in different countries.  

 The proposed methodology can also be used to provide future estimations of 

socio-economic indicators in different countries. 
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