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SOLVING THE INTEGRATED INVENTORY SUPPLY CHAIN 

PROBLEMS USING META-HEURISTIC METHODS 

ABSTRACT 

Nowadays, managing supply chain networks are really important for all companies 

especially those producing seasonal products. The novelties of this work are as 

follows. First, a novel multi-objective multi-item seasonal inventory control model 

was developed for known-deterministic variable demands where shortages in 

combination of backorder and lost sale were considered. Moreover, all unit 

discounts (AUD) for a number of products and incremental quantity discount (IQD) 

for some other items were considered. The main novelty of the first model is to 

minimize the required storage space for the first time in the literature in addition to 

minimizing the total inventory cost. While the weights of both objectives are 

considered to be fuzzy numbers due to their uncertainty, the model was formulated 

into a fuzzy multi-objective decision making (FMODM) framework called Fuzzy 

Weighted Sum Method (FWSM) and was shown to be a mixed-integer binary 

nonlinear programming type. In order to solve the model, a multi-objective particle 

swarm optimization (MOPSO) approach was applied. The efficiency of the 

algorithm was compared to a multi-objective genetic algorithm (MOGA) as well. 

The second novelty of the work is an extension of the proposed model, where a 

novel model of the integrated seasonal inventory-supply chain distributor–retailer 

network for a multiple-product location allocation problem in a planning horizon 

consisting of multiple periods was formulated. The distance between the distributors 

and retailers were assumed to be Euclidean and Square Euclidean. The retailers 

purchase the products from the distributors under both AUD and IQD policies. 

Furthermore, the products were delivered in packets of known size of items where 

the model was extended for both cases of with and without shortages. Besides, the 
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distributors (vendors) stored the manufactured products in their own warehouses 

before delivering them to the retailers since the total warehouse spaces and the total 

available budget for purchasing the items from the distributors were limited. It was 

considered that the distributors manufacture the products under some production 

limitations. The aim of the problem was to find the optimal order quantities of the 

products purchased by the retailers from the distributors in different periods and 

determine the coordinates of the distributors’ locations to minimize the total 

inventory-supply chain cost. In fact, finding out the optimal order quantities of items 

in each period and the optimal locations of distributers among retailers are the main 

novelty of the second model proposed for the first time in the literature. As the mixed 

integer nonlinear model of the problem was complicated to solve using exact 

methods, several meta-heuristic algorithms were employed in to optimize the 

models under investigation. A Modified Particle Swarm Optimization (MPSO) 

algorithm, a Genetic Algorithm (GA), a modified fruit fly optimization algorithm 

(MFOA) and a simulated annealing (SA) algorithm were used to find the optimal 

solution. A design of experiment approach i.e. Taguchi was used to optimize the 

algorithms parameters. While there was no benchmark in the literature, some 

numerical examples were generated to show the performance of the algorithms for 

both Euclidean and Square Euclidean distances while some case studies were also 

considered. 

Keywords: inventory control problem, seasonal items, supply chain, meta-

heuristics 
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ABSTRAK 

Pada masa kini, pengurusan dan pengendalian rangkaian bekalan adalah penting 

bagi semua syarikat terutamanya yang menghasilkan produk bermusim dan 

berfesyen.  Dalam kajian ini, model kawalan inventori bagi pelbagai-item pelbagai-

tempoh produk bermusim dibangunkan untuk permintaan berubah deterministik-

berketentuan di bawah bajet yang terhad. Selain itu, semua diskaun unit (AUD) 

untuk beberapa produk dan diskaun kuantiti tambahan (IQD) untuk beberapa 

barangan lain juga dipertimbangkan. Walaupun objektif adalah untuk 

mengurangkan jumlah kos inventori dan ruang simpanan yang diperlukan, model 

itu dirumuskan ke dalam rangka kerja kriteria berbilang membuat keputusan kabur 

(FMODM) dan ditunjukkan sebagai jenis pengaturcaraan linear binari integer 

bercampur. Dalam usaha untuk menyelesaikan model, pendekatan pelbagai objektif 

pengoptimuman swarm zarah (MOPSO) digunakan. Satu set penyelesaian 

kompromi termasuk penyelesaian optimum dan yang hampir optimum 

menggunakan MOPSO telah diperolehi untuk beberapa contoh berangka, di mana 

hasilnya dibandingkan dengan keputusan yang diperolehi dengan menggunakan 

pendekatan kabur berpemberat. Untuk menilai kecekapan MOPSO yang 

dicadangkan, model ini juga diselesaikan menggunakan algoritma genetik pelbagai 

objektif (MOGA). Sebagai lanjutan daripada model yang dicadangkan, reka bentuk 

bersepadu rangkaian inventori- pengedar rantaian bekalan-peruncit untuk masalah 

peruntukan lokasi dalam tempoh rancangan pembangunan yang terdiri daripada 

pelbagai-tempoh bagi pelbagai-item bermusim dimodelkan. Jarak antara pengedar 

dan peruncit diandaikan sebagai Euclidean dan Euclidean persegi. Peruncit membeli 

produk dari pengedar di bawah kedua-dua polisi AUD dan IQD. Di samping itu, 

produk yang dihantar dalam paket yang diketahui saiz produk di mana model ini 

diperluaskan untuk kedua-dua kes dengan dan tanpa kekurangan bekalan dimana 
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jika berlaku kekurangan, sebahagian daripada permintaan dianggap backorder dan 

sebahagian lagi dikira sebagai lost sales. Selain itu, pengedar menyimpan produk 

dalam gudang mereka sendiri sebelum diserahkan kepada peruncit kerana jumlah 

ruang gudang dan jumlah bajet yang ada untuk membeli barangan dari pengedar 

(vendor) adalah terhad. Kekangan kapasiti juga diambil kira apabila merancang 

tahap inventori. Adalah dianggap bahawa pengedar mengeluarkan produk di bawah 

beberapa batasan pengeluaran. Oleh kerana masalah model integer campuran tak 

linear rumit untuk diselesaikan menggunakan kaedah yang tepat, beberapa 

algoritma meta-heuristik diambil kira dalam penyelesaian ini untuk 

mengoptimumkan model yang dikaji. Dalam model tanpa kekurangan bekalan, 

algoritma Modified Particle Swarm Optimization (MPSO) dan algoritma genetik 

(GA) digunakan untuk menyelesaikan masalah itu. Berbanding kes kekurangan 

bekalan, pengoptimuman algoritma lalat buah diubah suai (MFOA) dicadangkan 

untuk mencari penyelesaian yang optimum. Dalam model ini, kerana sifat yang tak 

linear rumusan asal dan perasan bahawa tidak ada penanda aras disediakan dalam 

kesusasteraan untuk membenarkan dan mengesahkan keputusan, pengoptimuman 

swarm zarah (PSO) dan penyepuhlindapan simulasi (SA) algoritma diwakili juga. 

Dalam usaha untuk mengoptimumkan parameter algoritma yang dicadangkan itu, 

reka bentuk eksperimen iaitu pendekatan Taguchi digunakan. Beberapa contoh 

berangka dijana untuk menunjukkan prestasi dan penggunaan algoritma untuk 

kedua-dua Euclidean dan jarak Euclidean persegi. Dalam model ini, kerana sifat 

yang tak linear pada rumusan asal dan pemerhatian terhadapat kekurangan penanda 

aras disediakan dalam kajian lepas untuk membenarkan dan mengesahkan 

keputusan, algoritma pengoptimuman swarm zarah (PSO) dan penyepuhlindapan 

simulasi (SA) juga disediakan. Beberapa contoh berangka dijana untuk 
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menunjukkan prestasi dan penggunaan algoritma untuk kedua-dua jarak Euclidean 

dan Euclidean persegi.  

Katakunci: model kawalan inventori, produk bermusim, rangkaian bekalan, meta-

heuristics 
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CHAPTER 1: INTRODUCTION 

1.1      Research Background 

Planning for inventory order quantity and the order time of the products is an 

important managerial decision that affects the total costs associated with an 

inventory system. The most basic model that has been developed for this decision 

making so far is the economic order quantity (EOQ). While there is not a common 

agreement on the history of EOQ, (Roach, 2005) refers the history of EOQ back to 

Ford W. Harris who has developed it in 1913. This model in its classic form 

encompasses the planning for one product in a period with many assumptions. 

However, while these assumptions make the model simpler, they limit its 

applicability in real-world environments. To overcome this limitation, researchers 

infract the traditional assumptions gradually.  

In order to extend the classical EOQ, one approach is to consider the inventory 

problem of multiple products, multiple planning periods, or their combination. In 

this regard, (Lee & Kang, 2008) developed a model to manage inventory of a 

product in multiple periods. Roy and Maiti (2000) proposed a multi-item inventory 

model with constant demand and infinite replenishment under the restrictions on 

storage area, total average shortage cost, and total average inventory investment 

cost. Silver and Moon (2001) developed a constrained optimization model for a 

group of end items with known and constant demand rate along with convertibility 

to other useful units. Panda et al. (2005) proposed a nonlinear goal programming 

technique to obtain the EOQ of a multi-item inventory problem using penalty 

functions in a decision-making context. Kim and Kim (2000) formulated a multi-

period inventory/distribution planning problem as a mixed integer linear 
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programming and solved it by a Lagrangian relaxation approach. Luciano et. al. 

(2003) used the value-at risk idea for inventory management and provided a risk 

measure for inventory management in a static multi-period framework. Matsuyama 

(2006) tried to generalize the newsboy model to deal with unsatisfied demands or 

unsold quantities; extending the planning horizon to more than one period. 

Supply chain is an integrated system of facilities and activities that synchronizes 

inter-related business functions of material procurement, material transformation to 

intermediates and final products, and distribution of these products to customers 

(Simchi-Levi et. al., 2000). Supply chain management is a set of approaches utilized 

to efficiently integrate suppliers, manufacturers, warehouses, and stores, so that 

merchandise is produced and distributed at the right quantities, to the right locations, 

and at the right time, in order to minimize system-wide costs while satisfying service 

level requirements (Simchi-Levi et al., 2000). Figure 1.1 shows a representation of 

the supply chain network proposed in this work in which suppliers, manufacturers, 

distributors, retailers and customers are included. 

 

Figure 1.1: A representation of the supply chain network 

1.2      Statement of the Problem 

Designing an appropriate supply chain network and connections among the 

members of the network can play an important role in reducing the overall costs of 

production. It also should be taken into account that producing a suitable level of 

the products based on the orders received from customers can increasingly reduce 
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the costs in a supply chain. Since the marketing teams assess the location of the 

customers in different areas to locate the distributors, distance can be a determining 

factor to reduce the transportation costs with respect to the volume of the products 

transferred from distributors to retailers. Therefore, determining the proper location 

of the distributors in between retailers to transfer the products ordered by the 

retailers with the minimum cost and in the shortest time are two vital decisions that 

the managers should take into consideration in order to effectively manage the 

supply chains. Investigating these kinds of decisions, without taking into account 

certain tactical and operational decisions, could have a negative impact on the 

performance of the supply chain. In a supply chain network, making decisions on 

enterprise matters straightly affects transportation and costs involved in inventory 

system. Therefore, optimizing an integrated supply chain model with more 

flexibility and efficiency is required. In the particular case of the products, those are 

manufactured and stored during different periods (seasons), some key issues give 

the relevance of this problem. On the one hand, these kinds of products will be 

démodé (for clothes) or spoiled (i.e. chemical or food materials) after a specific 

time-period. It means that these products are only popular in those particular seasons 

(periods). On the other hand, transporting and holding the products in different 

periods need to be paid more attention in comparison with other items due to 

expiration date among other reasons.  

The growth and developments in logistics and supply chain caused a more 

attention to controlling and managing inventory systems. This is evidence in the 

attention they have received from many researchers and practitioners. These 

attentions appear as efforts on inventory management to run various strategies of 

supply chain problem. One of the most representative strategies of supply chain 

problems is the well-known facility location–allocation problem which is 
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formulated to be considered as an inventory-supply chain location allocation (ISLA) 

model. 

In recent decades, scientists have been mimicking natural phenomena to propose 

methods and algorithms for solving complex optimization problems. Based on the 

complexity of real-life optimization problems, one may not be able to use exact 

algorithms. Typically, meta-heuristic methods are frequently used to find a near 

optimum solution in an acceptable period.  

Meta-heuristics are kind of near-optimal algorithms that were proposed in the 

recent years to integrate basic heuristic methods in higher-level structures in order 

to effectively and efficiently search a solution space. Nowadays, these algorithms 

have a large number of applications in optimization of different hard-to-solve 

problems. The particle swarm optimization (PSO) proposed by (Eberhart & 

Kennedy, 1995) is a population-based stochastic meta-heuristic algorithm that was 

inspired by social behavior of bird flocking or fish schooling. PSO is a meta-

heuristic that requires few or no assumptions on the problem being optimized and 

can search very large spaces of candidate solutions. However, meta-heuristics such 

as PSO do not guarantee an optimal solution is ever found. PSO can therefore be 

used on optimization problems that are partially irregular and noisy over time 

(Gigras & Gupta, 2012). In the past decade, PSO has been well applied to solve 

different problems. In inventory control problems, (Taleizadeh et. al., 2010) solved 

an integer nonlinear programming type of inventory control problem using PSO. 

Baykasoglu & Gocken (2011) utilized a PSO to solve an EOQ inventory control 

problem in fuzzy environments.  

The Fruit Fly Optimization Algorithm (FOA) is a novel meta-heuristic algorithm 

for finding out global optimization based on the food finding behavior of the fruit 
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fly. The fruit fly itself is superior to other species in sensing and perception, 

especially in osphresis and vision (Pan, 2012).  

In this research, the main focus would be on the modeling and formulating novel 

inventory and supply chain problems for multiple items in a finite horizon (multi-

period) considering the limitations inherent in the real world problems. The 

proposed model can be also useful for seasonal and fashion industry problems those 

manufacturing several items in multi-period (season).  In fact, multi-period or finite 

horizon means that the process of ordering (replenishment) items starts in a 

particular period and will finish in another specific period. The ordering process will 

be placed for each item in each period according to the demand of the customers 

received for that particular item in each period. This process can be different for 

different type of items. For example in fashion clothing products, the ordering 

(replenishment) process of the warm clothes as well as jackets, cardigan, gloves, 

caps and mufflers will start in the early of December and finish by the end of 

February in Tehran (Iran). The demands of these items are variable and do not 

follow a pattern trend at all. In this research work, first a mixed-integer binary 

nonlinear programming is formulated to model a multi-product multi-period 

inventory control problem where both the total inventory costs and the required 

storage are minimized. Two discount policies which are which are all-unit discount 

(AUD) for a number of products and incremental quantity discount (IQD) for some 

other items are considered by sellers. Then, a location allocation problem under a 

supply chain network is modeled since the aim is to find the location of the vendors 

and the order quantities of the products (allocation) sold to the retailers. In the 

proposed inventory-supply chain problem, after producing the products, the 

distributors store the products into their warehouses and then sell them to the 
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retailers. The graphical representation of the proposed first, second and third 

problems are shown by Figures 1.2, 1.3 and 1.4, respectively.  

Graphical representation of the first problem Figure 1.2: 

problem secondGraphical representation of the  Figure 1.3: 

problem thirdrepresentation of the Graphical  :4Figure 1. 

Figure 1.2 shows a graphical representation of the first problem where a multi-

objective fuzzy multi-item multi-period inventory control problem with its 

constraints is presented in details. A seasonal multi-item inventory-location 
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allocation problem for a two-echelon supply chain is shown in Figure 1.3 where 

shortages are not allowed. Figure 1.4 depicts the graphical presentation when 

shortages are allowed where the problem has its own limitations. 

The research problems of the proposed thesis are listed as follows:  

- There is no any fuzzy multi-objective model for a multi-period (seasonal) 

inventory problem in the literature in which the objectives are minimizing total costs 

and the required storage space for a new storage, simultaneously. 

- Lack of a multi-period (seasonal) inventory model for locating some new 

producers among the retailers in a two-echelon supply chain problem. 

-  Finding the most suitable solution methodologies for solving these problems. 

Here, seasonality means those items which their ordering (replenishment) process 

will start in a particular period and will finish in another specific period based on 

the demands received (Dayarian et al., 2016; Diewert et al., 2009; Mogale et al., 

2017; Saracoglu et al., 2014; Tanksale & Jha, 2017).  In other words, in this work, 

the definition of seasonality is interchangeable to multi-period items referred to 

(Dayarian, et. al., 2015) definition “A convenient way to model the seasonal 

fluctuations is to represent the horizon as a finite set of periods”. 

1.3      Research Objectives and Research Questions 

The objectives of this research are listed as follows: 

i. To formulate mathematical models for a fuzzy multi-objective multi-

product multi-period (seasonal) inventory control problem.  

ii. To formulate a mathematical model for a two-echelon multi-product multi-

period (season) inventory-supply chain location allocation problem.  
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iii. To use optimization approaches in order to reach the optimum or near-

optimum solutions by employing well-known meta-heuristic algorithms 

and compare their performances. 

 

The research questions of the study are listed as follows: 

I. How a fuzzy multi-objective multi-item multi-period (seasonal) inventory 

problem can be modeled. 

II. How a two-echelon multi-product multi-period (seasonal) inventory-supply 

chain location allocation problem can be modeled. 

III. What are the solutions to the proposed inventory and supply chain problems. 

1.4      Scope of the Research 

The novelty of the research was developed in two directions. First part focused 

on a fuzzy multi-objective multi-product multi-period inventory control problem 

with variable demands in which the total available budget for puchasing the products 

and also the truck capacity to transfer the products were restricted. While the 

objectives were to minimize both the total inventory cost and the required storage 

space, the model was formulated into a fuzzy multi-objective decision making 

(FMODM) framework i.e. FWSM which was considered to be a mixed-integer 

binary nonlinear programming type. This is a novel model of fuzzy multi-objective 

multi-period (seasonal) inventory model at which the objective of minimizing the 

required storage space is considered for the first time in addition to minimizing the 

total nventoryc costs. 

In the second part, two situations were provided for formulating the proposed 

ISLA. First, a novel two-echelon multi-product multi-period inventory-supply chain 

problem was investigated for a facility location allocation problem at which the 
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capacity of the vendors’ warehouses, the total available budget and the production 

capacitity were limited. The products were sold under AUD discount policy and the 

distance among the buyers and vendors were considered to be Euclidean. Then, a 

distributor-retailer multi-item multi-period inventory problem was modeled for a 

facility location allocation problem where the shortages were allowed and in case of 

shortage, a fraction was lost sale for some products and a fraction was backordering 

for some other products. Products were purchased under AUD and IQD discount 

policies and the distance among distributors and retailers were defined to be 

Euclidean and Square Euclidean.  

Numerical and computatonal examples were generated to assess the performance 

of the proposed algorithms. In order to solve the proposed models, meta-heuristic 

algorithms namely MOGA, PSO, SA, GA and MFOA were utilized. In addition, a 

design of experiment approach called Taguchi was applied to tune the parametes’ 

algorithms as well. Furthermore, the algorithems were evaluated using case studies. 

All algorithms have been coded on MATLAB R2013a and the codes have been 

executed on a computer with 3.80 GHz and 4 GB of RAM. Lastly, all the graphical 

and statistical analyses were performed in MINITAB 15. 

1.5      Organization of the Thesis 

There are seven chapters in this thesis, which are arranged as follows: 

Chapter 1: In this Chapter, the background of study, problem statements, research 

objectives and research questions, and scope of the work were explained. 

Chapter 2: This Chapter contains an overall literature review using the works 

which are relevant to inventory control problems, supply chain management, 

inventory-supply chain management and location allocation problem.  
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Chapter 3: This Chapter presents the detailed methodology applied to carry out 

the research objectives. This chapter also describes a brief explanation of various 

optimization algorithms used in this research study. 

Chapter 4: This Chapter emphasizes on examining and comparing the results of 

MOPSO and MOGA on a multi-objective multi-product multi-period inventory 

control problem. 

Chapter 5: A two-echelon multiple products, multiple periods inventory-supply 

chain model is derived for a facility location allocation problem. Two tuned meta-

heuristic algorithms (PSO and GA) are used to solve the problems and then their 

results are compared to each other as well. 

Chapter 6: In this Chapter, a distributor-retailer multi-item multi-period inventory 

supply chain problem is formulated in a location allocation problem where MFOA, 

PSO and SA are employed to optimize the problem. 

Chapter 7: This Chapter proposes the conclusion of the research in addition to 

some recommendations for further study. 
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CHAPTER 2: LITERATURE REVIEW 

2.1      Introduction 

This Chapter is about of the review of the literature works related to multi-item 

multi-period inventory-supply chain and location allocation problems. Furthermore, 

the proposed works relevant to the meta-heuristic algorithms applied in inventory 

control, supply chain and location allocation in the literature are reviewed. 

Moreover, the literature review of the works applying the design of experimental 

method i.e. Taguchi approach is also performed.  

2.2      Inventory Control Problem (ICP) 

The inventory control problem is the problem encountered by a company which 

has to decide how much to order in each time-period to meet demand for its 

products. The problem can be formulated by using mathematical techniques of 

optimal control, dynamic programming and network optimization. The study of 

these techniques is part of inventory theory (Malakooti, 2013).   

Planning for inventory order quantity and order time of the products are the 

important managerial decisions that affect the total costs associated with an 

inventory system. The most fundamental model that has been developed for this 

decision making is the economic order quantity (EOQ).  

2.3      Inventory-Supply chain Problems (ISP) 

2.3.1      Multi-objective ISP 

For economic purposes, a wide range of problems is considered to be multi-

objective with some constraints on what combinations of those objectives are 

attainable. For example, customer's demand for a variety of items is specified by the 
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process of maximization of the qualities conducted from those items, subject to a 

constraint based on how much salary is given by the employers to spend on those 

items and on the prices of those items.  

A multi-objective optimization problem is an optimization problem that involves 

multiple independent objective functions which are in conflict with each other 

(Benson, 2000). In mathematical terms, a multi-objective optimization problem can 

be formulated as (Benson, 2000; Hwang & Masud, 1979): 

1 2 ( ( ), ( ),..., ( ))

. . ,

kMin f x f x f x

s t x X
                                                                             (2.1) 

where the integer 2k   is the number of objectives and the set X is the feasible set 

of decision vectors. The feasible set is typically defined by some constraint 

functions. In addition, the vector-valued objective function is often defined as 

follows: 

1: , ( ) ( ( ),..., ( ))k T

kf X f x f x f x   

If some objective functions are to be maximized, it is equivalent to minimize their 

negative. An element *x X is called a feasible solution or a feasible decision. A 

vector 
* *( ) kx f x  for a feasible solution *x is called an objective vector or an 

outcome.  

2.3.1.1   Multi-product ISP  

Instead of a single item, many firms, enterprises or vendors are motivated to store 

a number of products to enhance their business profitability. They are also motivated 

to attract customers to purchase several items simultaneously. Seasonal products are 

manufactured and stored in different periods such as sport clothing, the customers 

Univ
ers

ity
 of

 M
ala

ya



13 

 

 

usually prefer to have the matched clothes relevant to the sport they are doing. For 

example, one may wear a blue shirt with a blue short as a football player. 

Ben-Daya and Raouf (1993) considered a multi-product, single-period inventory 

control problem with stochastic demand, for which the multi-periodic inventory 

control problem was investigated in depth for multiple products producing in 

multiple periods. Recently, (Wang & Xu, 2009) studied a multi-period, multi-

product inventory control problem having several inventory classes that can be 

substituted for one another to satisfy the demand for a given reservation class. The 

weakness of the work was that shortages were not considered while formulating the 

model in uncertainty could be as its strength. A dynamic programming approach 

was employed to model the problem. Das et al. (2000) formulated a multi-item 

inventory model in which the demands were fixed and infinite replenishment (multi-

period) under restrictions on storage area were considered, where costs included 

average shortage, and inventory investment cost. The weakness was that only 

backorder was considered and its strength was that a fuzzy version of multi-

objective inventory was formulated. 

Mohebbi and Posner (2002) studied an inventory system based on periodic 

review, multiple replenishment, and multilevel delivery. They assumed that the 

demand follows a Poisson distribution, that shortages were allowed. Considering 

lost sale only could be as its weakness while backordering was not proposed. Lee 

and Kang (2008) improved an inventory model to manage the inventory of a single 

product in multiple periods in a real case study in Taiwan where the weakness was 

that the model was provided only for a case study and was not applicable for other 

problems. Padmanabhan and Vrat (1990) developed a multi-item/objective 

inventory model having deteriorating items with stock dependent demand using a 
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goal programming method. Moreover, (Taleizadeh et al., 2013) proposed a multi-

product inventory control problem with a stochastic replenishment period in which 

the demands were fuzzy numbers, and shortages were allowed to occur with a 

combination of backorders and lost sales. Considering the problem in both fuzzy 

and stochastic environments could be considered as its strength and ignoring some 

real constraints was its weakness. Chakrabortty and Hasin (2013) studied a multi-

objective multi-item multi-period inventory control problem (production planning) 

where the aim was to minimize the total costs with accordance to order quantities, 

labor levels, overtime, subcontracting and backordering levels, and labor, machine 

and warehouse capacity. Shortages were not considered. Ebrahimipour et. al. (2015) 

provided a multi-product multi-objective preventive maintenance scheduling 

problem in a multi-production line in which reliability of production lines, costs of 

maintenance, failure and downtime of system were calculated as multi-objective 

problem, and a variety of thresholds for available manpower, spare part inventory 

and periods under maintenance were used.  

Yousefi et. al. (2012) developed a multi-item multi-objective joint replenishment 

inventory problem where the objectives were minimizing the total holding and 

ordering costs, and minimizing the transportation costs as the second objective. The 

problem was formulated wrongly while all the objectives were in the same unit and 

identical. Esfandiari and Seifbarghy (2013) considered a multi-objective inventory 

supply chain problem with multiple products under stochastic environment in which 

the supplier prices were linearly dependent on the order size of the items. A multi-

objective multi-criteria supplier selection and inventory control problem with 

multiple products formulated as mixed integer programming was modeled by 

(Parhizkari et. al. 2013). Their proposed inventory objectives included minimizing 

the quality and offering price of suppliers, simultaneously. They did not used the 
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classical multi-objective problems as well as evolutionary algorithms to solve the 

problem. Moattar et. al. (2014) formulated an integrated multi-objective multi-

product production and distribution planning in the presence of Manufacturing 

Partners where the goals were to minimize the total costs and maximize the quality 

level of the products supplied by distributors. The weakness was that shortages were 

not allowed. 

Khalili-Damghani and Shahrokh (2014) studied a multi-objective multi-item 

multi-period production planning problem considered as a mixed-integer 

mathematical programming in which the aims were to minimize the total inventory 

costs, maximize customer services and maximize the quality of end products. 

Modeling the problem in fuzzy environment was the work strength since it would 

not be resolvable once the dimension of the problem increases. Gholamian et. al. 

(2015) considered a multi-objective multi-product multi-side multi-period mixed-

integer nonlinear programming inventory supply chain problem under fuzzy 

environment. Gholamian et. al. (2015) presented a mixed-integer nonlinear model 

for a multi-objective multi-item inventory supply chain production planning under 

uncertainty where the objectives contained minimizing the total inventory costs, 

maximizing customer services and minimizing the rate of changes in human 

resource. The weakness of all the works reviewed in this section would be that all 

of them were formulated in a single-period. 

 

2.3.1.2   Multi-period (seasonal) ISP 

This work proposed a multi-period inventory model for multiple items. The 

multi-periodic inventory control problems have been investigated in depth in a wide 

range of works. Chiang (2003) investigated a periodic review inventory model in 
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which the period was partly long. The important aspect of his study was to introduce 

emergency orders to prevent shortages. He employed a dynamic programming 

approach to model the problem. Mohebbi and Posner (2002) investigated an 

inventory system with periodic review, multiple replenishment, and multilevel 

delivery. Assuming a Poisson process for the demand, shortages were allowed in 

this research, and the lost sale policy could be employed. The model was formulated 

only for the small-size problem with one item which could be considered as its 

weakness. Lee and Kang (2008) developed a model for managing inventory of a 

product in multiple periods. Their model was first derived for one item and then was 

extended for several products. Mousavi et. al. (2013) proposed a multiproduct multi-

period inventory control problem under time value of money and inflation where 

total storage space and budget were limited. They solved the problem using two 

meta-heuristic algorithms, that is, genetic algorithm and simulated annealing. The 

problem was not considered for those companies building or extending their 

warehouses while the truck capacity and also shortages were not proposed. 

However, the problem was calculated the costs under inflation and currency 

fluctuation rates. Mirzapour Al-e-hashem and Rekik (2014) presented a 

multiproduct multi-period inventory routing problem, where multiple constrained 

vehicles distributed products from multiple suppliers to a single plant to meet the 

given demand of each product over a finite planning horizon. They only provided 

the problem with one plant which was rare in the real world company competition. 

Janakiraman et. al. (2013) analyzed the multiperiodic newsvendor problem and 

proposed some new results. 

Pasandideh et. al. (2013) addressed a multi-product multi-period inventory 

control problem considered as mixed-integer nonlinear programming with storage 

and the number of packets capacity which was solved by Memetic and genetic 
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algorithms. Mousavi et. al. (2013) studied a multi-item multi-period mixed-integer, 

nonlinear inventory control problem in which shortages were allowed and the 

storage space and the order quantity were constrained. The aim was to find out the 

number of packets and order quantities so that the total costs became minimized. 

The objective of optimizing the total storage space for storing the items could be 

investigated. Li et. al. (2012) considered a multi-item multi-period capacitated 

dynamic lot-sizing problem where each item faced a series of dynamic demands, 

and in each period, multiple items shared limited production resources. In their 

research, shortages were allowed in the forms of backorder and lost sale. Mousavi 

et. al. (2013) formulated a mixed-integer nonlinear model for a seasonal multi-

product multi-period inventory control problem in which the total budget and the 

storage space were limited. The aim was to minimize the total inventory costs 

including ordering, holding, purchasing and shortage costs. Pasandideh et. al. (2013) 

modeled a multi-item multi-period mixed-integer binary nonlinear inventory control 

problem where the items were packed into the pre-specified boxes. The shortages 

were not allowed as its weakness.  

Inventory problems dealing with fashion products are usually modeled in a 

known number of periods. A few research works on multiperiodic inventory control 

problems have been conducted. Ahmed et. al. (2007) investigated a multi-period 

single-item inventory problem with linear cost, where the objective function was a 

coherent risk measure. The model could be extended for multi-item inventory 

problem. Sepehri (2011) formulated an integrated flow network and expanded it to 

a multi-period multi-product inventory control problem with the possibility of 

holding inventories in a multi-stage multimember cooperative supply chain. Their 

model did not consider shortages as an important part of the costs. Zhang et. al. 

(2009) presented some convex stochastic programming models for multi-period 
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inventory control problems where the market demand was random and order 

quantities needed to be decided before the demand was realized. As a strength of the 

work, the problem was formulated in uncertainty. Choi et. al. (2011) proposed a 

solution scheme for a periodic review multi-period inventory problem under a 

mean–variance framework. 

In the literature of inventory seasonal items, there are different models with 

different definition of demand seasonality. In some works, a specific pattern 

(synchronized fluctuation) of seasonal demands were considered (Eppen & Iyer, 

1997; Liu et al. 2017; Van Mieghem & Dada, 1999; Swinney et al., 2011; Jinzhao 

Shi et al., 2017). In many works in the literature published recently, seasonality has 

been considered to be multi-period where the demands values have been variable in 

different periods. These values have been generated randomly due to lack of 

benchmark in the literature (Dayarian et al., 2016; Diewert et al., 2009; Mogale et 

al., 2017; 2016; Saracoglu et al., 2014; Tanksale & Jha, 2017). Moreover, in the 

work proposed by (Costantino et al., 2016), it has been clearly mentioned that the 

seasonal demands can be random or stochastic. 

2.3.1.3   Discounted ISP 

Quantity discount strategies has attracted further attention because of its practical 

importance in purchasing and control of a product. It derives better marginal cost of 

purchase/production availing the chances of cost savings through bulk 

purchase/production. In supply chains, quantity discounts can be considered as an 

inventory coordination mechanism between a buyer and a supplier (Shin & Benton, 

2004). Benton (1985) considered an inventory system having quantity discount for 

multiple price breaks and alternative lot-sizing policy. Maity (2011) developed a 

model for multi-item inventory control system based on breakable items, taking into 
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account all units (AUD) and incremental quantity discount (IQD) policies where the 

shortages were not allowed. In this thesis, a combination of AUD and IQD is used, 

which is rather similar to the work by (Sana & Chaudhuri, 2008). Sana and 

Chaudhuri (2008) extended an EOQ model based on discounts through the 

relaxation of the pre-assumptions associated with payments where the real world 

limitations as well as budget and truck capacities were ignored. Furthermore, 

(Taleizadeh et. al., 2011) considered a mixed integer, nonlinear programming for 

solving multi-product multi-constraint inventory control systems having stochastic 

replenishment intervals and incremental discounts for which a genetic algorithm 

was employed to find the near-optimum order quantities of the products. In their 

work, the uncertainty was considered as a real case; however, the algorithms’ 

parameters were not tuned statistically. Recently, Mousavi et. al. (2013) improved 

the solution of a discounted multi-item multi-period inventory control problem for 

seasonal items, in which shortages were allowed, and the costs were calculated 

under inflation and time value of money. As a weakness, the supply chain and 

location-allocation parts of the work was not considered 

Quantity discount policies are usually treated as an inventory coordination 

mechanism between buyers and suppliers (Shin & Benton, 2004). To name a few 

research works in this area includes (Chang & Chang, 2001) who used a linear 

programming relaxation based on piecewise linearization techniques to solve an 

inventory problem with variable lead-time, crashing cost, and price-quantity 

discount. The model was formulated and solve only for the problems with small-

size. Further, (Taleizadeh et al., 2010) proposed a fuzzy mixed-integer nonlinear 

programming model for a multiproduct multi-chance constraints inventory problem 

with probabilistic period length and total discount under fuzzy purchasing price and 

holding cost and solved it by a hybrid meta-heuristic intelligent algorithm. Mousavi 
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et al. (2014a) investigated a multi-objective multi-item multi-period inventory 

control problem where IQD and AUD policies were considered. Besides, shortages 

were allowed and the discount rates were calculated as fuzzy values in the proposed 

model. The model compares two design of experiment methods i.e. Taguchi and 

Response Surface Methodology (RSM) to tune the algorithms’ parameters where 

the Taguchi performance was found to be better than RSM to optimize values of the 

parameters. Chen et al. (2015) proposed an integrated multi-objective inventory 

supply selection with some supplier’s discount policy.  

2.3.1.4   Fuzzy ISP 

In general, many of the variables, resources, and constraints used in a decision-

making problem are considered either deterministic or stochastic. However, real-

life scenarios demand them to be imprecise, which are, uncertainty is to be imposed 

in a non-stochastic sense. According to (Maiti & Maiti, 2008), a business may start 

with some warehouse spaces in an inventory control problem. However, due to 

unexpected demands, some additional storage spaces may need to be added. These 

added spaces are normally imprecise in nature that should be determined. Moreover, 

one of the weaknesses of many current inventory models is that they have not 

optimized the storage space required for the items ordering for satisfying the 

demands in uncertainty. Therefore, this study formulates a novel inventory problem 

to optimize both objectives of the required storage space and the total inventory 

costs, simultaneously. While the weights of these objectives are unspecified and 

uncertain for the decision makars, they are considered fuzzy numbers in this thesis. 

Maity and Maiti (2008) formulated an optimal production strategy for an inventory 

control system of deteriorating multi-items under a single owner based on resource 

constraints under inflation and discounting in a fuzzy environment. Recently, (Chen 
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& Ho, 2013) investigated a newsboy inventory problem in a fuzzy environment by 

analyzing the optimal inventory policy for the single-order newsboy problem 

considering fuzzy demand and quantity discounts. Moreover, (Guchhait et al., 2013) 

modeled an inventory control problem under discount based on fuzzy production 

rate and demand. Mousavi et al. (2014a) addressed an inventory control problem 

with fuzzy discount rates. 

In this study, a triangular fuzzy is used to show the fuzzy membership functions 

of the weights of the objectives and a α-cut is also applied to convert these fuzzy 

variables to crisp ones. These two approaches have been considerably applied in 

Inventory and supply chain fields in the literature, recently. Priyan et al. (2014) used 

Triangular and trapezoidal fuzzy numbers for modeling a fuzzy multi-period EOQ 

inventory problem where α-cut approach was applied to convert the fuzzy numbers 

to crisp. Kao and Hsu (2002) formulated a fuzzy lot-sizing reorder point inventory 

problem in which demands were considered fuzzy numbers. In their work, α-cut of 

the fuzzy demand was used to construct the fuzzy total inventory cost for each 

inventory policy. Sadi-Nezhad et al. (2011) investigated a multi-item multi-period 

inventory control problem with fuzzy setup cost, holding cost and shortage cost 

where triangular and α-cut approaches were used to show and convert fuzzy 

numbers, respectively. Handfield et al. (2009) developed a fuzzy (Q, r) inventory 

model in a supply chain problem where demand, lead time, supplier yield and 

penalty costs were considered to be fuzzy numbers. Both triangular and α-cut 

methods were utilized to depict and construct fuzzy numbers. De and Sana (2013) a 

fuzzy α-cut technique was incorporated for fuzzy optimization in an EOQ inventory 

control problem where the order quantity, shortage quantity and the promotional 

index were triangular fuzzy decision variables.  
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In order to combine the fuzzy objectives into one objective, FWSM is used where 

weighted sum method is the most common method for multiobjective optimization 

problems (Kim & Weck, 2006). There are a lot of works in the literature used 

FWSM (Cheng et al., 2013; Ma et al., 2017; Majidi et al.2017; Stojiljković, 2017; 

Su, 2017), and also some works published in Supply chain and Inventory recently 

(Lee, 2017; Maity & Maiti, 2008; Mousavi et al., 2014b). 

Table 2.1 shows the literature review of the works reviewed in this work in 

which DOE is an abbreviation of term "design of experiments."  
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           Table 2.1: Literature review of some of the works related to Section 2.3.1 

 References 
Multi-

product 
Multi-period Fuzzy Multi-objective Discount policy Solving Methodology Shortages DOE 

(Chiang, 2003) -  - - B&B - - 
(Mohebbi & Posner, 

2002) - - - - Level-crossing  - 
(A. H. Lee & Kang, 

2008) -  - IQD Numerical methods - - 

(Mousavi et al., 2013)   - IQD GA - - 
(Mirzapour Al-e-

hashem & Rekik, 2014)   - - CPLEX - - 
(Janakiraman et al., 

2013) -  - - -  - 

(Shin & Benton, 2004) - - - IQD&AUD Simulation - - 

(Benton, 1985) - - - AUD Simulation - - 

(P. Abad, 1988) - - - IQD Numerical methods - - 

(P. L. Abad, 1988) - - - IQD Numerical methods - - 

(Maiti & Maiti, 2008)  - - IQD&AUD GA - - 
(Sana & Chaudhuri, 

2008)  - - AUD Numerical methods - - 

(Taleizadeh et al., 2010)  - - IQD&AUD GA  - 
(S.-P. Chen & Ho, 

2013) - - - IQD Yager ranking  - - 

(Khan et al., 2014) - - - IQD Excel macro - - 

(Taleizadeh et al., 2013) - -  - TOPSIS & GA  - 
(S.-H. Huang & Lin, 

2010)  - - - ACO - - 

(K. Li et al., 2014) - - - - Tabu search & Lagranngian - - 

(Taleizadeh et al., 2008) -  - - Tabu search  - - 

(Taleizadeh et al., 2009) - - - IQD Goal programming & GA  - 
(Pasandideh et al., 

2014)  - - IQD GA & Fuzzy simulation  - 
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Table 2.1, Continued 

(Taleizadeh et al., 2009)  - - - GA  - 

(Taleizadeh et al., 2011)  - - - SA & GA  - 

(Yaghin et al., 2013) - -  - TOPSIS & GA  - 

(Aarts & Korst, 1988)  - - IQD fuzzy simulation  - 
(Dorigo & Birattari, 

2010)  - - - Harmony search  - 
(Kennedy & Eberhart, 

1995)  - - - Bee colony & PSO  - 
(Y.-R. Chen & Dye, 

2013)  -  - Fuzzy programming algorithm  - - 
(Coello Coello & 

Lechuga, 2002) -   - Fuzzy method - - 
This research     PSO & GA  Taguchi 
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2.3.2   Single-objective ISP 

Advances in SCM software and data warehousing practices, which enable data 

sharing through Electronic Data Interchanges (EDI), have helped in the 

development of coordinated supply chains (Tan, 2001). Supply chain optimization 

involves both strategic decisions of facility location, and tactical decisions of 

inventory. Traditional supply chain optimization models in the literature treat 

location and inventory decisions separately (Wang & Yin, 2013). An integrated 

Supply Chain Management (SCM) strategy allows companies to increase efficiency 

and decrease waste. More specifically, successful implementation of an integrated 

SCM model results in savings in energy and fuel in addition to the elimination of 

redundant activities; all of these benefits translate into money savings within the 

companies (Mentzer et al., 2001; Spekman et al., 1998). However, ignoring 

interaction between long-term decisions of location and short-term decisions of 

inventory can lead to sub-optimality. Furthermore, companies are under intense 

pressure to cut product and material costs while maintaining a high level of quality 

and after-sale services. Achieving this starts with supplier selection. Therefore, an 

efficient supplier selection process needs to be in place and of paramount 

importance for successful SCM (Chan et al., 2008). Inventory management is one 

of the important scopes in SCM and many academic communities have presented 

various strategies.  

In this work, the design of a two-echelon vendor-buyer supply chain network for 

a multi-product multi-period inventory problem is investigated. The two-echelon 

means the supply chain network includes only two members i.e. vendors and buyers. 

It will include three members if the supply chain network is a three-echelon one. In 

recent years, numerous studies have been carried out on supply chain and inventory 

problems considering the two-echelon design. In Sadeghi et al. (2013b), a 
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constrained the two-echelon multi-vendor multi-retailer single-warehouse supply 

chain was developed, in which both the space and the annual number of orders of 

the central warehouse were limited. A coordination model of the joint determination 

of order quantity and reorder point variables was proposed by (Chaharsooghi & 

Heydari, 2010). The research decentralized supply chain consisting of one buyer 

and one supplier in a multi-period setting. The design of a two-echelon production 

distribution network with multiple manufacturing plants, distribution centers and a 

set of candidate warehouses was considered by (Cardona-Valdés et al., 2014). The 

study took into account a multi-objective version of supply chain in stochastic 

environment and a Tabu search algorithm was used to solve the problem. In 

Bandyopadhyay and Bhattacharya (2013) a NSGA II was proposed to solve a tri-

objective problem for a two echelon serial supply chain. The objectives were: (1) 

minimization of the total cost of a two-echelon serial supply chain and (2) 

minimization of the variance of order quantity and (3) minimization of the total 

inventory. Ghiami et al. (2013) studied a two-echelon supply chain model for 

deteriorating inventory was investigated, in which the retailer’s warehouse had a 

limited capacity. The proposed system included one wholesaler and one retailer, 

which aimed to minimize the total cost. Sadeghi et al. (2014a) developed a bi-

objective vendor managed inventory model in a supply chain with one vendor and 

several retailers, in which the determination of the optimal numbers of different 

machines, working in series to produce a single item was considered.  

2.3.2.1   Inventory-Supply Chain Management Location Allocation (ISLA) 

Most real-world problems in industries and commerce are studied using a single-

objective optimization model. The assumption that organizations always seek to 

minimize cost or maximize profit rather than make trade-offs among multiple 

objectives has been used extensively in the literature. In this regards, classical 
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inventory models have been developed under the basic assumption that a single 

product is purchased or produced. There are many works have been performed on 

ICP in different areas of the study in the recent decade. Das and Maiti (2007) studied 

a single period newsboy type inventory problem for two substitutable deteriorating 

items where the resource were constrained. The demands of the customers were 

probabilistic and lot sizes were also random. The aim was to maximize a single 

objective profit function with the space constraint. Dey et al. (2008) developed a 

finite time horizon inventory problem for a deteriorating item with two separate 

warehouses including an own warehouse of finite dimension and a rented warehouse 

where lead-time was considered to be interval-valued lead-time and inflation and 

time value of money were calculated into the model. 

Dutta and Chakraborty (2008) proposed a novel way to develop several strategies 

for single-period inventory models in a real decision-making situation. They 

provided their model under uncertainty in the demands of customers where the 

demands were described by imprecise terms and formulated by fuzzy sets. The aim 

was to find out the optimal order quantity that will maximize the total expected 

profit after the end of the season. Chen et al. (2008) investigated a classical inventory 

single-period newsboy model with fixed life cycle. The model was extended with 

reusable and imperfect products where the objective was to find the optimal order 

quantities in cases with or without corporation. Liu and Luo (2009) modeled a risk-

averse newsvendor problem with return policy under the conditional value-at-risk 

criterion where the combination of the expected profit and conditional value-at-risk 

as the objective function was chosen. Chen et al. (2011) addressed a dynamic pricing 

problem of a single-item, make-to-stock production system at which the customer 

demands arrival was based on Poisson processes with changeable rates depending 

on selling prices. Additionally, product-processing times follow an Erlang 
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distribution where the aim is to identify a dynamic control policy which decided 

production and adjusted the price to maximize the long-run total profit under 

discount policy. 

The optimal control of a capacitated periodic-review make-to-stock inventory 

control problem was addressed by (Zhou et al., 2011) at which production capacity 

was limited and demands arrived in different classes. The goal was to optimize the 

total inventory costs under discount policies. Peng et al. (2010) studied a finite 

horizon, single-product, multi-period model at which the decisions related to pricing 

and inventory had to be made at the beginning of each period at the same time. The 

aim was to maximize the expected profit in the whole planning horizon. A single-

item single-period inventory control problem with discrete customer demands was 

described by (Behret & Kahraman, 2012) at which the demand rates were 

considered to be a stochastic variable while inventory costs including holding cost 

and shortage cost were imprecise and represented by fuzzy numbers. Choudhary and 

Shankar (2011) modeled a single product multi-period procurement lot-sizing 

problem formulated in an integer linear programming approach which is procured 

from a single supplier considering rejections and late deliveries AUD policy.  

Two types of inventory lot-sizing problems including the production planning 

and control of a single product involving combined manufacturing and 

remanufacturing operations have been investigated by (Zouadi et al., 2013). Xiao et 

al. (2012) discussed  an item assembly inventory planning and control system in a 

manufacturing environment at which the process of returning end-of-life item was 

considered to be stochastic in terms of arriving demand, quality and quantity. Paul 

et al. (2013) proposed a risk management approach for solving an inventory control 

problem for imperfect products with demand uncertainty and process reliability in 

which a non-linear constrained optimization model was modeled. The main 
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objective was to maximize the graded mean integration value of the total expected 

profit. Yang et al. (2014) addressed a single-product multiple review inventory 

control problem with finite-horizon and setting certain/uncertain supply chain 

capacity where in different periods the customer demands had random variables.  

Wang  et al. (2015) studied a single-period single-item/multi-item inventory 

newsboy control problem in random and uncertain environment. Hnaien et al. 

(2015) proposed a single-period inventory control problem of an assembly system 

for one type of the finished item in which lead times and the customer demands had 

stochastic values. 

2.3.2.2   Location-Allocation Problem (LAP) 

In a location allocation (LA) problem, a number of new facilities are placed in 

between a number of specific customers in a feasible area such that the total 

transportation cost from facilities to customers is minimized. The location allocation 

model was proposed by (Cooper, 1963) and extended by numerous researchers such 

as (Harris et al., 2014; Hosseininezhad et al., 2013; Mousavi & Niaki, 2012; 

Mousaviet al., 2013; Willoughby & Uyeno, 2001). Furthermore, (Logendran & 

Terrell, 1988; Sherali & Rizzo, 1991; Carrizosa et al., 1995; Carrizosa et al., 1998;  

Zhou, 2000), were some of the researchers who extended the LA problem in 

stochastic environments. Zhou and Liu (2003) studied a capacitated LA problem 

with stochastic demands and deterministic locations. They employed three types of 

stochastic programming to model the problem. Zhou and Liu (2007) considered a 

capacitated LA problem with fuzzy demands in which the customers’ locations were 

deterministic. Wen and Iwamura (2008a) proposed a fuzzy facility LA model under 

the Hurwicz criterion. Wen and Iwamura (2008b) utilized a facility LA model in 

random fuzzy environment. They used the (a,b)-cost minimization under the 

Hurwicz criterion to formulate the problem. Abiri and Yousefli (2010) proposed an 
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application of the probabilistic programming approach to model the fuzzy LA 

problem where demands were fuzzy and locations were deterministic. 

There are many works in the literature performed on inventory and supply chain 

with location allocation problems. Ghodratnama et al. (2015) developed a multi-

objective supply chain location allocation problem in which the objectives were to 

minimize total transportation and installation costs, minimize service time, tardiness 

and flows containing raw materials and also minimize total greenhouse gas emitted 

by transportation mode. Wang and Lee (2015) improved a capacitated facility 

location-allocation problem for a multi-echelon supply chain problem to formulate 

a stochastic model in which the aim was to maximize the total profit. Arabzad et al. 

(2015) presented a multi-objective facility location-allocation supply chain problem 

with multiple suppliers, multiple products, multiple plants and multiple customers. 

The objectives were minimizing the total supply chain costs and minimizing total 

deterioration rate caused by transportation alternatives. Karmaker and Saha (2015) 

investigated a multi-staged location-allocation fuzzy decision making supply chain 

problem. 

2.3.2.3 Inventory-Supply Chain Location-Allocation without shortages 

(ISLAWOS) 

This work considers a supply chain network in which several vendors 

(manufacturers) are considered to be located in a certain area between numerous 

buyers who own the warehouses with the limited capacity. Furthermore, the 

objective is to find the optimal quantity (allocation) that each buyer orders from the 

vendors. In a location allocation problem, several new facilities are located in 

between a number of pre-specific customers in a determined area such that the total 

transportation cost from facilities to customers is minimized. In supply chain 

Univ
ers

ity
 of

 M
ala

ya



31 

 

 

management, a number of studies have being probing the location allocation 

problem. Abolhasani et al., (2013) optimized a class of supply chain problems, 

known as multi-commodities consumer supply chain problem, where the problem 

considered to be a production-distribution planning category. It aimed to determine 

the facilities location, consumers’ allocation and facilities configuration to minimize 

the total cost of the entire network.  

Shahabi et al. (2013) developed mathematical models to coordinate facility 

location and inventory control for a four-echelon supply chain network consisting 

of multiple suppliers, warehouses, hubs and retailers. Wang and Yin (2013) 

investigated an integrated supply chain optimization problem in which the 

optimized facility locations, customer allocations, and inventory management 

decisions were considered when the facilities were subject to disruption risks. 

Diabat et al. (2013) considered a closed-loop location-inventory problem with 

forward supply chain consisting of a single echelon where the distribution centers 

had to distribute a single product to different retailers with random demands. 

Furthermore, (Ahmadi-Javid & Seddighi, 2013) developed a location-routing 

problem in a supply-chain network considering a producer–distributors set which 

produced a single commodity and distributed it to a set of customers.  

In the inventory control problems, the vendors sell their products under some 

discount policies in order to attract and encourage the customers to increase 

purchase. AUD is one of most common policies that has been taken into account in 

the literature recently. Mousavi et al. (2013) modeled a seasonal multi-product, 

multi-period inventory control problem in which the inventory costs were obtained 

under inflation and all-unit discount policy. A multi-item multi-period inventory 

control problem with all-unit and/or incremental quantity discount policies under 

limited storage capacity was developed by (Mousavi et al., 2013). Recently, a 
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deteriorating multi-item inventory model with price discount and variable demands 

via fuzzy logic under all unit discount policy has been investigated by (Chakraborty 

et al., 2013). Chen and Ho (2013) analyzed the optimal inventory policy for the 

single-order newsboy problem with fuzzy demand and quantity discounts. 

Furthermore, an integer linear programming approach was used in (Choudhary & 

Shankar, 2011) to solve a multi-period procurement, lot-sizing problem for a single 

product that was procured from a single supplier, considering rejections and late 

deliveries under all-unit quantity discount environment. 

In the recent decades, meta-heuristics algorithms have attracted the attention of 

many researchers in order to optimize different and complex problems in various 

engineering and science domains. The PSO algorithm is a popular and perhaps the 

most widely used meta-heuristic algorithms that was first introduced by (Eberhart 

& Kennedy, 1995). PSO is a population-based stochastic meta-heuristic algorithm 

that is inspired by the social behavior of bird flocking or fish schooling. PSO is a 

meta-heuristic that requires few or no assumptions on the problem being optimized 

and can search very large and complex spaces of candidate solutions. PSO can 

therefore be utilized on optimization problems that are partially irregular and noisy 

over time (Gigras & Gupta, 2012). This algorithm has been used for solving the 

inventory and supply chain problems in recent years. Mousavi et al. (2013) applied 

a PSO algorithm to solve a multi-product multi-period inventory control problem 

where the shortages (Backorder and Lost sale) were allowed.  

In the multi-objective version, (Latha Shankar et al., 2012) modelled a single-

product for four-echelon supply chain architecture consisting of suppliers, 

production plants, distribution centres and customer zones. They used a PSO 

algorithm to solve the problem. Bozorgi-Amiri et al. (2012) investigated a relief 

chain design problem for which, not only demands but also supplies and the cost of 
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procurement in addition to transportation were considered as the uncertain 

parameters. Furthermore, the model considered uncertainty for the locations solving 

using the PSO algorithm. Park and Kyung (2013) proposed a method to optimize 

both the total cost and order fill rates in a supply chain using the PSO method. They 

automatically adjusted the initial order quantities of all tiers involved in a supply 

chain by considering information quality level, which was determined by the degree 

of availability of lead time history data. 

In order to optimize the proposed multi-product multi-period supply chain 

problem and determine the location of the vendors in a specific area among the 

buyers, a modified particle swarm optimization (MPSO) is utilized in this work. 

2.3.2.4   Inventory-Supply Chain Location Allocation with shortages (ISLAWS) 

Business requirements will change over time. This can be due to mergers and 

acquisitions, entrance to new markets, expansion of product ranges, or indeed 

changes to the regulatory environment. In the contemporary business environment, 

competition is no longer between organizations. The necessity to coordinate several 

business partners, internal corporate departments, business processes, and diverse 

customers across the supply chain gave rise to the field of SCM (Turban et al., 2009). 

The current business environment has become unpredictable with the consequence 

that the emphasis placed on the role played by logistics and SCM has been 

continuously increasing: the environment is becoming increasingly complex and 

competitive (Gebennini et al., 2009). The value of inventory is approximately 14% 

of gross domestic product in the United States, while annual transportation and 

warehousing expenses average approximately nine percent of gross domestic 

product (Wilson, 2005). Retail companies in the US spend approximately $14 

billion per year on inventory interest, insurance, taxes, depreciation, obsolescence, 
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and warehousing. Their logistics activities account for 15–20% of the total cost of 

finished goods (Menlo, 2007). With such a huge logistics investment, it is important 

to make sound decisions for facility locations and inventory allocation in a supply 

chain. The design and management of supply chain network in today’s competitive 

business environment is one of the most important and difficult problems that 

managers face (Tsao & Lu, 2012). 

(a)   Multi-product ISLAWS 

In this sub-section, the works relevant to multi-product ISCLAWS in the 

literature were reviewed. The bulk of the literature has focused on two-level supply 

chains that supply a single product. Nowadays, for enhancing the power of the 

competition in the market, more companies prefer to produce and handle various 

items under integrated inventory systems. Karakaya and Bakal (2013)  analyzed a 

decentralized supply chain with a single retailer and a single manufacturer where 

the retailer sold multiple products in a single period. The products differed in terms 

of a limited number of features only. Diabat et al. (2009) studied an integrated 

inventory and multi-facility location problems with single supplier and multiple 

retailers under risk pooling. They employed a genetic algorithm to find a near-

optimum solution of the problem. Diabat et al. (2013) specified the location of 

warehouses and inventory policies at the warehouses and retailers in a nonlinear 

mixed-integer model of multi-echelon joint inventory-location problem, where a 

Lagrangian relaxation-based approach was applied to solve their problem. Ganesh 

et al. (2013) analyzed the value of information sharing using a comprehensive 

supply chain that has multiple levels, may have different degrees of information 

sharing, and supplies multiple products that may have different levels of 

substitutability and whose demands could be correlated to different degrees. Tsao 

and Sheen (2012) considered a multi-item supply chain with a credit period and 
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weight freight cost discounts in which the retailer bore the freight costs, but the 

freight carrier provided freight-transport discounts that were positively related to the 

weight of the cargo transported. 

(b)   Multi-period ISLAWS  

In today’s business world, time is a very important factor for managing the bulk 

of the products in supply chains especially when the process is involved in a number 

of time-periods. In this study, a multiple period multiple product supply chain 

integrated with a location-allocation problem is formulated. Considering a supply 

chain model with multiple periods particularly for those products manufacturing in 

different periods is becoming an interesting issue among the researchers. Ramezani 

et al. (2014) addressed the application of fuzzy sets to design a multi-product, multi-

period, closed-loop supply chain network. The presented supply chain included 

three objective functions: maximization of profit, minimization of delivery time, and 

maximization of quality. Zhang (2013) proposed a model and solution method for 

coordinating integrated production and inventory cycles in a manufacturing supply 

chain involving reverse logistics for multiple items with finite multiple periods. 

Mousavi et al. (2013) modeled a capacitated multi-facility location allocation 

problems with stochastic demands and customer locations in which the distances 

between customers and facilities were considered to be Euclidean and Square 

Euclidean. In addition, a capacitated multi-facility location allocation problem with 

fuzzy demands and stochastic customers’ locations were studied by (Mousavi & 

Niaki, 2013) where Euclidean and Square Euclidean functions were utilized to 

formulate the problem. Mousavi et al. (2013) developed a mixed binary integer 

mathematical programming model for ordering seasonal items in multi-item multi-

period inventory control systems in which orders and sales occurred in a given 

season under interest and inflation factors. Rodriguez et al. (2014) proposed an 
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optimization model to redesign the supply chain of spare part delivery under demand 

uncertainty from strategic and tactical perspectives in a planning horizon consisting 

of multiple periods. Moreover, long-term decisions involve new installations, 

expansions, and elimination of warehouses and factories handling multiple 

products. These decisions also correspond to which warehouses should be used as 

repair workshops in order to store, repair, and deliver used units to customers. Omar 

(2013) developed and analyzed a game theoretic model for revenue-dependent 

revenue sharing contracts wherein the actual proportion in which the supply chain 

revenue was shared among the players would depend on the quantum of revenue 

generated. The aim was to understand why revenue-dependent revenue sharing 

contracts were (or not) preferred over revenue-independent contracts. He also 

examined if supply chains could be coordinated over multiple periods using both 

types of revenue sharing contracts. 

(c)   Discounted ISLAWS 

In the addressed supply chain model, the distributors order the multiple products 

in multiple periods under a couple of discount policies which are all-unit and 

incremental quantity discount where the products are delivered in known packets 

with a certain number of items. Lin (2013) incorporated overlapped delivery and 

imperfect items into the production–distribution model. The model improved the 

observable fact that the system might have experienced shortage during the 

screening duration and considered quantity discount. Tsao and Lu (2012) addressed 

an integrated facility location and inventory allocation problem considering 

transportation cost discounts. Their study considered two types of transportation 

discounts simultaneously: quantity discounts for inbound transportation cost and 

distance discounts for outbound transportation cost. Li and Liu (2006) developed a 

model for illustrating how to use quantity discount policy to achieve supply chain 
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coordination. A supplier-buyer system selling one type of product in multiple 

periods and probabilistic customer demand was considered. They also showed that 

if both the buyer and the supplier can find a coordination mechanism to make joint 

decisions, the joint profit is more than the sum of their profits in the decentralized 

decision situation. Mousavi et al. (2014) employed a PSO algorithm to solve a 

inventory-location allocation problem in which AUD strategy was applied for 

purchasing costs and Euclidean and square Euclidean distances were used to 

compute distances between vendors and buyers. Huang et al. (2014) considered a 

supply chain in which one manufacturer sells a seasonal product to the end market 

through a retailer. Faced with uncertain market demand and limited capacity, the 

manufacturer can maximize its profits by adopting one of two strategies, namely, 

wholesale price rebate or capacity expansion. In the former, the manufacturer 

provided the retailer with a discount for accepting early delivery in an earlier period. 

Chang and Chou (2013) considered a single product coordination system using a 

periodic review policy, where participants of the system, including a supplier and 

one or more heterogeneous buyers, are involved over a discrete time planning 

horizon in a manufacturing supply chain with seasonal demands.  

2.3.3   Lot-Sizing ISLA (LSISLA) 

The Lot-sizing can be defined as the quantity of a product demanded for delivery 

on a specific period (or multi-period) or produced in a single production run. In fact, 

the total items ordered for manufacturing is defined as lot-sizing. Based on (Brahimi 

et al., 2017), planning for ordering the quantity of a single item in different periods 

with different demand values for manufacturing would be considered as lot-sizing 

where the aim is to obtain the production amount of items to satisfy all the demands. 

In this research, the proposed models can be linked to lot-sizing problems. 
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In the literature of lot-sizing inventory problems, there has been a wide range of 

interests with producing due to their large potentials in reverse logistics. The three 

recent works reviewed the modelling of single item and multiple items lot-sizing 

and reverse logistics inventory systems have been studied by (Aloulou et al., 2014; 

Bazan et al., 2016; Brahimi et al., 2017), accordingly. A variable neighborhood 

heuristic algorithm was applied by (Sifaleras & Konstantaras, 2017) to solve a multi-

item multi-period dynamic lot-sizing problem in the reverse logistics where the 

items were recoverable. Due to no benchmark in the literature, they generated data 

randomly to evaluate the algorithm on the problem.  

Carvalho and Nascimento (2016) modeled a multi-plant multi-item multi-period 

lot-sizing problem where plants produced the same items with single machine for 

their own demands in different periods. They used a novel Lagrangian heuristic 

algorithm in addition to several other heuristics to solve the problem where a number 

of numerical examples were generated due to non-availability of the benchmark in 

the literature. Vital Soto et al. (2017) formulated a mixed-integer nonlinear 

programing for a multi-period inventory lot-sizing problem with supplier selection 

where the shortages were allowed and AUD and IQD policies were given by 

suppliers. To solve the problem, an evolutionary algorithm as well as a linear 

programing driven local search were utilized validated on some case studies and 

generated examples. A multiple item capacitated lot-sizing and scheduling problem 

was modeled by (Masmoudi et al., 2016) in a flow-shop system under energy 

consideration to formulate a mixed-integer linear programing. A fix-and-relax 

heuristic was applied to solve the problem while the capacitated lot-sizing problem 

was completely NP-hard. They generated some numerical examples in different 

sizes where the results were compared with different methods graphically, 

statistically and using CPU time.  
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Jiao et al. (2017) studied a multi-item multi-period (finite horizon) incapacitated 

inventory lot-sizing problem under uncertainty and AUD policy in which the 

shortages were allowed. The aim was to minimize the total inventory costs including 

ordering and holding costs where a polynomial time algorithm was applied to obtain 

the optimal order quantities due to the complexity of problem. The 12 generated 

different problems with different sizes were proposed with T ranging 3 to 9 different 

periods. Parsopoulos et al. (2015) used several metaheuristic algorithms as well as 

Differential Evolution, PSO and Sm variants to determine the optimal solutions in a 

multi-item multi-period lot-sizing inventory problem for manufacturing the items 

where some return items should have remanufactured. A mixed-integer programing 

model was formulated by (Boonmee & Sethanan, 2016) for a multiple levels multi-

product multi-period capacitated lot-sizing and scheduling problem where shortages 

were allowed all in lost sale. A modified version of PSO called GLNPSO was used 

to solve the proposed model in which a traditional PSO was applied to validate the 

results of GLNPSO. They evaluated the algorithms’ performances on a case study 

in Thailand and also on 12 generated numerical problems with different sizes where 

the results were compared graphically, statistically and using CPU time.  

Noblesse et al. (2014) investigated a multi-item multi-period lot-sizing for both 

inventory and production systems where a markov chain analysis was applied to 

find out the lead time distribution. Absi et al. (2013) formulated a multi-item 

capacitated lot-sizing inventory problem where some of the demands were lost to 

be considered as shortage costs. In order to solve the problem, a Lagrangian 

relaxation of the capacity limitations was adopted where an adaptation of the O(T2) 

dynamic programming algorithm was also derived for solving the sub-problems. 

Absi et al. (2009) presented a model of multiple products multi-period capacitated 

lot-sizing problem in which setup times, safety stocks and shortages all in lost sale 
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were considered. Due to the complexity of the problem, a Lagrangian relaxation of 

the capacity constraints in addition to a dynamic programing algorithm and an upper 

bound algorithm were used to solve the problem. They generated 72 different 

problems with different sizes to evaluate the solution methods performance. 

Cárdenas-Barrón et al. (2015) formulated a multi-item multi-period lot-sizing 

inventory with supplier selection problem at which a hybrid algorithm integrating 

ROA and a heuristic was applied to solve the model. To validate the performance 

of the algorithm, a CPLEX solver was used where 150 numerical examples 

generated by (Basnet & Leung, 2005) including 75 small-sized, 30 medium-sized 

and 45 large-sized were proposed to evaluate the algorithm performance. 

2.4   Solution Methods for Solving ISLA and LSISLA 

In most inventory systems, due to some unexpected matters, supply chain 

networks face shortages to satisfy customers' demands. This work investigates a 

supply chain model in which the retailers, as the customers of the distributors, with 

variable demands in different periods may face shortages for which a proportion is 

lost sales and the rest is backorders. Mirzapour Al-e-hashem et al. (2013) developed 

a stochastic programming approach to solve a multi-period multi-product multi-site 

aggregate production planning problem in a green supply chain for a medium-term 

planning horizon under the assumption of demand uncertainty where shortages were 

penalized by a general multiple breakpoint function, to persuade producers to reduce 

backorders as much as possible.  Singh and Saxena (2013) presented a closed loop 

structure with remanufacturing for decaying items under shortage rates. The model 

was considered for single item with two different quality standards, where amount 

of product was collected from the user. After the collection process, a ratio of the 

collected items was to be remanufactured. Furthermore, a salvaged option was 

considered within a certain structure.  
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In order to generate the feasible solutions those satisfy all the constraints of the 

proposed models in this study, penalty function technique is used in which a big 

value will be added to the objectives values as a penalty for the infeasible solutions. 

There are many works in the literature used penalty function technique to make 

feasible solutions. In fact, using penalty function approach is a really common 

method in the literature to generate feasible solutions satisfying all the constraints 

(Chambari et al., 2013; Fattahi et al., 2015; Hajipour & Pasandideh, 2012; Hajipour 

et al., 2014; Mohammadi, 2015; Mohammadi et al., 2015; Pasandideh et al., 2013; 

Rahmati et al., 2014; Rahmati et al., 2013; Sadeghi et al., 2014; Sadeghi & Niaki, 

2015; Sadeghi, et al., 2014a; Sadeghi et al., 2014b). 

2.4.1   PSO and GA 

PSO and GA are the most common algorithms in the literature used to solve 

inventory, supply chain and location allocation problems where many researchers 

improved their problems by applying these two algorithms. Roozbeh Nia et al. 

(2013) developed a multi-item economic order quantity model with shortage under 

vendor managed inventory policy in a single vendor single buyer supply chain. The 

model explicitly included warehouse capacity and delivery constraints, bounded 

order quantity, and limited the number of pallets. A multi-product multi-chance 

constraint joint single-vendor multi-buyers inventory problem was considered by 

(Taleizadeh et al., 2012) in which the demand followed a uniform distribution, the 

lead-time was assumed to vary linearly with respect to the lot size, and the shortage 

in combination of backorder and lost-sale was assumed. They solved their problem 

using PSO and GA algorithms where the three different numerical examples were 

generated to evaluate the performance of the algorithms on the model. Mousavi et 

al. (2016) used multi-objective version of GA and PSO called the NSGA-II, 

MOPSO and NRGA to solve a multi-objective multi-item multi-period inventory 
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problem under inflation and time value of money. Three different numerical 

illustrations were generated to validate the performance of the proposed algorithms 

where Taguchi approach was used to tune the algorithms’ parameters as well. Some 

graphical, statistical and CPU time analysis were created to compare the results of 

the algorithms.  

Ahmadzadeh et al. (2017) utilized GA, ICA and FA algorithms in inventory-

location and supply chain problem where a Taguchi method was designed to set the 

parameters of the used algorithms. The authors generated 30 different problems with 

different sizes using a uniform distribution such as the method applied in this 

research. Sadeghi and Niaki (2015) solved a multi-objective fuzzy inventory-supply 

chain problem using multi-objective version of GA i.e. NSGA-II and NRGA 

algorithms in which Taguchi approach was designed to adjust the algorithms’ 

parameters. Dye and Ouyang (2011) used a PSO to obtain the optimal order quantity 

in a deteriorating multi-item multi-period lot-sizing inventory and pricing problem 

where the demands fluctuated in each period. They tested the algorithms on the three 

numerical examples generated randomly with different sizes where all the results 

were compared to each other statistically and graphically for the algorithms. Kundu 

et al. (2017) studied a multi-item multi-period economy production quantity 

problem under discount policy in each period in which the demand values were 

considered fuzzy numbers, where a fuzzy differential equation and the α-cut 

approaches were used. A combination of PSO and GA was employed to obtain the 

optimal solutions to be evaluated on several generated numerical problems. In the 

work presented by (Samal & Pratihar, 2014), a fuzzy multi-period EOQ inventory 

model with and without shortage consideration and variable demands was derived, 

in which PSO and GA were applied to solve the problem. Triangular and Gaussian 
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fuzzy membership function were used to show the fuzzy variables where several 

case studies and the generated data were utilized to evaluate the algorithms.  

Soleimani and Kannan (2015) proposed a multi-item multi-period multi-echelon 

inventory-supply chain and location-allocation problem in which PSO and GA 

algorithms were conducted to solve the model. Some numerical examples including 

10 small-size and 11 large-size problems were generated randomly where the 

algorithms were run on the problems and their results were compared to each other 

graphically, statistically and using CPU time. Hajipour et al. (2014) used MOGA, 

MOHS and SA to solve a multi-server location-allocation problem in which 25 

different problems with different sizes were generated. The performance and quality 

of the algorithms were compared to each other using some statistical and graphical 

approaches. Fattahi et al. (2015) applied five metaheuristic algorithms as well as 

NSGA-II, NRGA, MOVDO, MOICA and MOPSO to solve a multi-objective multi-

product (r,Q) inventory control problem where Taguchi approach was applied to 

tune the algorithms parameters. They generated 10 different problems with different 

sizes to evaluate the algorithms performance while the quality of the algorithms was 

compared to each other statistically and graphically. 

There are also numerous works in the literature optimizing lot-sizing problems 

using GA and PSO. In (Mohammadi, 2015; Mohammadi et al., 2015), a multi-item 

multi-period capacitated lot-sizing inventory and scheduling problem consisted of 

several suppliers, multiple plants and distribution centers was modeled. In the work, 

metaheuristic algorithms as well as PSO, GA, SA and ABC were used to solve 30 

generated numerical examples in small, medium and large sizes each 10 instances 

where Taguchi method was employed to tune the proposed algorithms. The results 

were compared graphically and statistically and also using CPU time. Karimi-Nasab 

et al. (2015) formulated a mathematical modeling of a multi-item multi-period lot 
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sizing and scheduling problem in a job shop where dealt with a main realistic 

assumption of flexible machines to change the working speeds, known as process 

compressibility. The shortages were allowed where demand values were different 

in the different periods. A PSO algorithm was applied to solve the problem in which 

a Lingo solver was used to compare the performance of PSO on several case studies 

in real industry. Duda (2017) utilized a GA algorithm and VNS to solve a multi-

item capacitated lot-sizing multi-facility problem under setup times. They generated 

10 instances in small-size and 10 instances in large-size to evaluate the algorithms’ 

performance where statistical and graphical approaches were used to compare the 

performances of the algorithms. Rahmati et al. (2013) used multi-objective version 

of GA called NSGA-II and NRGA and also a MOHS algorithm to solve a multi-

server location allocation problem where Taguchi was used to tune the algorithm’s 

parameters. Due to novelty of the problem, there was no benchmark in the literature; 

hence they generated 20 different numerical examples to evaluate their algorithms. 

Pasandideh et al. (2013) solved a multi-objective multi-facility problem using GA 

and SA where a MODM approach was applied to combine the objectives into one 

objective. In their work, 20 different numerical problems were generated to evaluate 

the algorithms where the algorithms were compared in terms of CPU time and 

fitness function statistically and graphically. Rahmati et al. (2014) optimized a 

multi-objective queuing multi-facility problem using NSGA-II and NRGA where 

generated 15 different problems to evaluate the algorithms performance statistically 

and graphically. 

There are a wide range of works in the literature used PSO (Akbari Kaasgari et 

al., 2017; Bhunia et al., 2017; Y. Cheng et al., 2015; Dabiri et al., 2017; Dye, 2012; 

Sadeghi et al., 2014b; Soleimani & Kannan, 2015; Srivastav & Agrawal, 2016; Tsai 

& Yeh, 2008; M. Yang & Lin, 2010; T. Zhang et al., 2015) and also GA 
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(Ahmadzadeh & Vahdani, 2017; Alikar et al., 2017; Azadeh et al., 2017; Çelebi, 

2015; Hiassat et al., 2017; Kundu et al., 2017; B. Park et al., 2016; Roozbeh Nia et 

al., 2015; Saracoglu et al., 2014) to solve inventory-supply chain and location 

allocation and also lot-sizing problems. 

2.4.2   FOA  

In this research, a modified version of fruit fly optimization algorithm (MFOA) 

has been employed to solve a mixed binary-integer supply chain problem. This 

algorithm, which was first introduced by (Pan, 2012), is inspired by the behavior of 

fruit fly in finding the food. Recently, this algorithm has been taken into account by 

several authors. Zheng et al. (2013) used a novel fruit fly optimization to solve the 

semiconductor final testing scheduling problem. First, they presented a new 

encoding scheme to represent solutions reasonably. Second, they used a new 

decoding scheme to map solutions to feasible schedules. Finally, they utilized 

multiple fruit fly groups during the evolution process to enhance the parallel search 

ability of the algorithm. Zhang and Wang (2013) applied an improved fruit fly 

optimization algorithm to solve a lot-streaming flow-shop scheduling problem with 

equal-size sub-lots. In their proposed algorithm, a solution was represented as two 

vectors to determine the splitting of jobs and the sequence of the sub-lots 

simultaneously. Ling Wang et al. (2013) applied a novel binary fruit fly optimization 

algorithm to solve the multidimensional knapsack problem in which a binary string 

was used to represent the solution of the problem, and three main search processes 

were designed to perform evolutionary search, including smell-based search 

process, local vision-based search, and global vision-based search process. Li et al. 

(2013) proposed a hybrid annual power-load forecasting model combining fruit fly 

optimization algorithm and generalized regression neural network to solve their 

problem, where the fruit fly optimization was used to automatically select the 
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appropriate spread parameter value for the generalized regression neural network 

power-load forecasting model. Dai et al. (2014) found the necessity of an 

improvement where the smell-concentration judgment value was non-negative in 

(Pan, 2012). Ramachandran  and Thomas Bellarmine (2014) presented a novel state 

estimator for minimizing the size of the phasor measurement unit (PMU) 

configuration while allowing full observability of the network. The proposed 

approach initially finds the best configuration of PMU for observability. They 

employed a novel meta-heuristic algorithm called improved fruit fly optimization to 

determine the minimum number of PMUs that could sustain observability. Table 2.2 

contains a summary of the aforementioned relevant works and the place of the 

current work in comparison with them. 

Ling Wang and Zheng (2013) solved a multi-objective version of a multi-skill 

resource-constrained scheduling problem using FOA to minimize the makespan and 

the total cost simultaneously. Mousavi et al. (2017) used a modified version of FOA 

mixed with fuzzy rule-based systems to optimize the classification accuracy of 

datasets in the literature at which algorithms’ parameters were tuned using Taguchi 

method. A FOA was also improved by (Mousavi et al., 2016) to solve a series-

parallel redundancy allocation problem under AUD and IQD policies where the 

results were compare to PSO, TS and GA algorithms. Taguchi method was designed 

to tune the parameters of the proposed algorithms. Zheng and Wang (2016) applied 

a two-stage knowledge-based FOA to solve unrelated parallel machine scheduling 

problem by some resource limitations where the aim was minimizing the makespan. 

They generated some numerical instances to evaluate the algorithm performance 

since there was no benchmark in the literature in which results were compared to 

another algorithm statistically, graphically and using CPU time. Shen et al. (2016) 

solved a support vector machine parameter tuning approach using FOA where GA, 
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PSO, BFO and Grid algorithms were applied to compare the FOA performance 

graphically, statistically and using CPU time. In (Lin Wang et al., 2015), an 

improved FOA was used to determine numerical functions and solving joint 

replenishment problems. A modified version of FOA also was applied by (Dai et 

al., 2015) to optimize the layout of IMUs in large ship for detecting the deformation 

of the deck. Yu et al. (2016) solved a multi-objective parameter of support vector 

regression to improve the generalization ability of machine learning in prediction 

purpose. A novel FOA was used by (Balasubbareddy, 2016) to solve single and 

multi-objective optimization problems with generation fuel cost, total power losses 

and voltage stability index as objectives. Wu et al. (2015) used a normal fuzzy cloud 

model to improve the performance of FOA as well. Cong et al. (2016) employed the 

FOA to improve the accuracy of the traffic flow forecasting in the field of modern 

intelligent transportation systems where the least squares support vector machine 

was presented along with the heuristic algorithms to find out the value of its two 

parameters. 

2.4.3   Taguchi approach  

It will be considerably time consuming to tune the parameters of the proposed 

metaheuristic algorithms manually while a combination of different values should 

be tested for each parameter one by one. The alternatives of using classical statistical 

optimization tools to set the control parameters, the orthogonal arrays of the Taguchi 

method (Ross, 1988) are usually applied to study more decision variables in smaller 

number of experiments.  

It will take a long time from the algorithms to run them with different values of 

the parameters manually. In fact, when the proposed algorithms are run manually it 

needs to run for each value of the parameters several times individually which it will 
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last a long time to get the best values of the parameters with respect to combination 

of the different values. Determining the best initial parameter values for an 

algorithm, called parameter tuning, is crucial to obtaining better algorithm 

performance (Gümüş et al., 2016). In order to attain the best solutions in lesser time 

in the models formulated in this thesis, Taguchi approach was applied in this section 

to tune the control parameters of the proposed GA, PSO and FOA algorithms. In 

addition, to clarify that Taguchi performs very well especially in seasonal inventory, 

in Mousavi et al. (2014) Taguchi was compared with another common design of 

experiment method i.e. Response Surface Methodology (RSM) for both-single 

objective and multi-objective problems where Taguchi showed better performance 

than RSM in many different problems. In other words, the Taguchi method reduces 

the time spent on finding the combination of the optimal parameter values of the 

GA, PSO and FOA algorithms by running a smaller size of experiments on the 

training instances. Therefore, Taguchi is an efficient design of experiment method 

to tune the parameters of the metaheuristics in seasonal Inventory problem. 

Finding the combinations of the algorithms’ parameters traditionally without 

using Taguchi can highly effect on the performance of the proposed PSO, GA and 

FOA in terms of the run time and the accuracy that lead to find non-optimal 

parameters values and solutions. 

Therefore, it will take the algorithms especially MOPSO and MOGA a long time 

to find the best combination of their parameters without using Taguchi when we 

should use trail and error approach. Furthermore, tuning the parameters of MOPSO 

and MOGA manually and without applying Taguchi will never guarantee to find the 

optimal values of their parameters and also the optimal solutions of the problem 

consequently.  
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Recently, many works in the literature have used Taguchi method to get the best 

values of the parameters of the algorithms applied in different problems. Azadeh et 

al. (2017) used Taguchi to tune GA algorithm, (Vahdani et al., 2017) applied 

Taguchi to tune GA and SA algorithms in a location-inventory problem. Rayat et al. 

(2017) employed Taguchi to set the SA, GA and PSO parameters in a multi-

objective location-inventory. Mousavi et al. (2016) used Taguchi to tune the NSGA-

II, MOPSO and NRGA parameters in a multi-objective inventory problem under 

inflation and time value of money. Ahmadzadeh and Vahdani (2017) utilized 

Taguchi to set the parameters of GA, ICA and FA algorithms in location-inventory 

and pricing problem. Sadeghi and Niaki (2015) used Taguchi to tune the parameters 

of NSGA and NRGA algorithms in fuzzy multi-objective inventory problem. 

Mousavi et al. (2014b) applied Taguchi method to set the PSO and HS algorithms’ 

parameters in a fuzzy multi-objective inventory problem. Mohammadi (2015) and 

Mohammadi et al. (2015) applied Taguchi approach to set the parameters of GA, 

PSO, SA and ABC metaheuristic algorithms in a multi-facility lot-sizing inventory-

supply chain problem. In works published in other fields also show how the Taguchi 

improves the metaheuristic algorithms performance (Alikar et al., 2017; Alikar et 

al., 2017; Sadeghi et al., 2013a).  Rahmati et al. (2013) applied Taguchi approach to 

set the proposed algorithms parameters applied for solving a multi-facility location 

allocation problem. Fattahi et al. (2015) used Taguchi approach to set the parameters 

of five multi-objective metaheuristic algorithms as well as MOPSO, NSGA-II, 

NRGA, MOHS and MOVDO. 

2.5      Summary 

In this chapter, an overall literature review related to the proposed problem has 

been performed. The works accomplished in multi-item multi-period ICP were 

reviewed where some studies relevant to multi-objective version of multi-item and 
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multi-period ICP existed in the literature were given. Then, the ICP works done in 

fuzzy environment were considered. Moreover, the provided inventory-supply chain 

problem was introduced and reviewed where the studies multi-item and multi-period 

were investigated. The works related to supply chain, location allocation and supply 

chain-inventory problems for both cases of with and without shortages available in 

the literature were also investigated in this chapter. Furthermore, the surveys related 

to the proposed meta-heuristic algorithms performed in ICP and ISLAWOS and 

ISLAWS were reviewed. Some recent published works in lot-sizing problem were 

also reviewed. In addition, the works those used the metaheuristic algorithms as well 

as PSO, GA, SA and FOA were reviewed. Finally, some works applied Taguchi 

method for tuning the algorithms’ parameters have been reviewed. 

 According to the review works performed in this chapter, little attention has been 

devoted to ICP, inventory-supply chain and location allocation problems. Hence, 

this research addresses these shortcomings by formulating comprehensive 

mathematical models and solution methods for such problems arising in reality. 
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            Table 2.2: A brief review of the works related to ISLAWS in the literature 

Authors and year 
Single/Multi 

period 

Single/Multi 

product 
Discount  

Space 

Constraints 

(Y/N) 

Design of 

Experiment 

Solving 

method 

Joint supply chain 

and location 

(Y/N) 

Shortages 

(Y/N) 

Budget 

constraints 

(Y/N) 

(Karakaya & 

Bakal, 2013) 
Single Multi AUD N - 

Numerical 

method 
N N N 

(Diabat, Richard, 

et al., 2013) 
Single Multi - N - 

Lagrangian 

relaxation-

based 

Y N N 

(Diabat et al., 

2009) 
Single Multi - N - 

Genetic 

algorithm 
Y N N 

(Ganesh et al., 

2013) 
Single Single - N - 

Simulation 

analysis 
N N N 

(Tsao & Sheen, 

2012) 
Single Multi - N - Heuristic N N N 

(Ramezani et al., 

2014) 
Multi Multi Fixed rate Y - 

Fuzzy 

optimization 
Y N N 

(DZ Zhang, 2013) Multi Multi - N - 
Decision 

making 
N N N 

(Mousavi, 

Hajipour, Niaki, & 

Alikar, 2013) 

Multi Multi AUD, IQD Y Taguchi 
Genetic 

algorithm 
N N Y 

(Rodriguez et al., 

2014) 
Multi Multi - N - Linearization N Y N 

(D, 2013) Multi Single - N - Game theory N N N 

(Lin, 2013) Multi Multi Fixed rate N - Heuristic N Y N 

(Tsao & Lu, 2012) Single Single 
Quantity 

transportation 
N - 

Non-linear 

technique 
Y N N 

(J. Li & Liu, 2006) Multi Single IQD N - Heuristic N Y N 

(Mousavi, 

Bahreininejad, et 

al., 2014) 

Multi Multi AUD Y Taguchi PSO Y N Y 

  

5
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Table 2.2, Continued 

(K.-L. Huang et 

al., 2014) 
Multi Single - N - Heuristic N N N 

(C.-T. Chang & 

Chou, 2013) 
Multi Single - N - 

Exact 

method 
N N N 

(Mirzapour Al-e-

hashem et al., 

2013) 

Multi Multi IQD N - Linear solver N Y N 

(Roozbeh Nia et 

al., 2013) 
Multi Single - Y - 

Ant colony 

algorithm 
N Y N 

(Taleizadeh et al., 

2012) 
Multi Single - N - PSO N Y Y 

(Mousavi, Niaki, et 

al., 2013) 
- - - N Taguchi 

Genetic 

algorithm 
N N N 

 (Mousavi & 

Niaki, 2013) 
- - - N Taguchi 

Genetic 

algorithm 
N N N 

The current work Multi Multi AUD, IQD Y Taguchi MFOA Y Y Y 
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CHAPTER 3: METHODOLOGY 

3.1       Introduction  

This Chapter explains the proposed research methodology applied in this work. 

First, all the stages performed to provide the research are explained in Section 3.2 

where a Flowchart is drawn to show the details step by step graphically. Then, the 

three problems proposed in this research are described in Sections 3.3 to 3.5 

respectively. In Section 3.6 the solution methodologies are expressed in which four 

metaheuristic algorithms as well as GA, FOA, PSO and SA are employed to solve 

the problems. In addition, Taguchi method applied for tuning the parameters of the 

proposed algorithms is explained in Section 3.6. Finally, the summary of the chapter 

comes in Section 3.7. 

3.2       Research Steps  

At the first step of the methodology used in this research, a literature review on 

different aspects of inventory control and supply chain problems was performed. 

Furthermore, a variety of the problems in supply chain and location allocation fields 

was studied in order to identify the gaps and problems existing in the literature. 

Then, the particular problems were identified and classified and for each one of these 

problems suitable solution methods were determined. The proposed problems were 

classified into two types which are multi-objective and single-objective problems. 

At the first part of the research, a multi-objective multi-item multi-period inventory 

planning problem with total available budget under AUD for some items and IQD 

for other items was considered. The orders were assumed to be placed in batch sizes. 

Shortages were allowed and contain backorder and lost sale. Besides, the manager 

decided to build a new or extend the old warehouse for the company to store more 

items there. The objectives were to minimize both the total inventory costs and the 
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total required storage space, for which a fuzzy weighted combination was defined 

as the objective function. The aim of the study was to determine the optimal order 

quantity and shortage quantity of each product in each period such that the objective 

function is minimized and the constraints hold. 

The second part of the research focuses on optimizing two models of inventory-

supply chain network and location allocation (ISLA) for a multi-product multi-

period inventory system with multiple buyers (retailers), multiple vendors 

(distributors) and warehouses with limited capacity owned by the vendors. The 

inventory replenishment starts at a certain time-period and finish at another time-

period where the buyers purchase the products from the vendors during these 

interval periods. The vendors provide (produce) the various products to the buyers 

with variable demand rates under AUD policy since the production capacity of each 

vendor is restricted. The vendors satisfy the buyers’ demands immediately in all the 

periods so that no shortages occur in the first model while shortages are allowed 

during the replenishment as an extension of the model and in case of shortage, a 

fraction of demand is considered backorder and a fraction lost sale. When the 

demands of the buyers are satisfied in a period, the products remained from the 

period in addition to the ordering quantities of the next period enter into the 

warehouses. The total available budget for purchasing the products and also the total 

vendors’ warehouse space are constrained. Moreover, the distance between the 

buyers and the vendors in the model is assumed as Euclidean distance since the 

distance is considered to be Euclidean and Square Euclidean in the extended model. 

The main goal is to find optimal locations of vendors between the buyers and to 

determine the order quantities of the products ordered by the buyers from the 

vendors in different periods so that the total supply chain costs are minimized. 
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At the same time the modeling and classifying process of the problem is being 

done, some solution methods were identified and classified to solve the particular 

problems. While the proposed problems in this research which are multi-item multi-

period inventory control and ISLA problems have been approved to be NP-hard, 

meta-heuristic algorithms were the most appropriate methods to optimize the 

provided problems. Then, the best meta-heuristic algorithms were chosen after 

testing a lot of algorithms on the problems under investigation. In the current 

research, MPSO, PSO, GA, SA and MFOA algorithms are selected to optimize 

inventory control and ISLA problems. The mathematical models proposed in this 

work have been coded in MATLAB programming software. Due to the novelty of 

the models, there has been no benchmark in the literature to compare the results of 

the provided algorithms as well. Therefore, a wide range of numerical examples was 

generated to evaluate the efficiency of the selected approaches. In addition, to make 

the algorithms more effective, Taguchi method was utilized to tune different 

parameters of the algorithms. 

A flow chart that summarizes the overall process of this project is shown in 

Figure 3.1. 
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Figure 3.1: Methodological flowchart of this research 

 

 

3.3       The proposed multi-item multi-period ICP  

One of the models that has been applied extensively to formulate various 

inventory control problems is the EOQ. Many researches refer the history of EOQ 

to Harris (Abdel-Malek, Montanari, & Morales, 2004). This classic model 
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encompasses the planning for one product in a period with several assumptions. 

Although these assumptions make the model simple, the usability of the EOQ model 

in real-world situations is limited. 

In this research, a mixed binary integer mathematical programming model for a 

multi-objective multi-item multi-periodic inventory control model was developed 

where some items were purchased under AUD and the other items were bought from 

IQD. The demands vary in different periods, the budget was limited, the orders were 

placed in batch sizes, and shortages in combination of backorder and lost sale were 

considered. The goal was to find the optimum order quantities of the items in each 

period such that the total inventory cost and the total required warehouse space were 

minimized simultaneously. Since it is not easy for the managers to allocate the crisp 

values to the weights of the objectives in a decision making process, considering 

these weights as fuzzy numbers will be taken as an advantage. Therefore, a FMODM 

approach i.e. FWSM was used to combine the objectives into one objective. In the 

multi-objective problems, all the objectives should be independent from each other 

and hence they are in conflict with each other where FWSM uses the weights to 

make all the objectives in one objective with the same unit (weight type).  

In order to make the problem more understandable, the model was explained 

using the real world example. A company which produces some kinds of fashion 

clothes including trousers, t-shirt, and shirt in a certain period, was considered. The 

customers (wholesales) of this company with different demand rates make the orders 

and receive their products in the pre-specific boxes, each one consisting of a known 

number of these clothes. Moreover, due to some unforeseen matters, such as 

production limitation, the companies were not responsive to all of the demands in a 

period and hence some customers must wait until the next period to receive their 

orders. Furthermore, it was assumed that the company was going to extend the 
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production part and therefore the owner has a plan to build and optimize a new 

storage subject to the available space. As another example in the real world, a 

company that manufactured High Gloss and finishing items in Iran was considered. 

While lot-sizing is defined as the quantity of an item demanded for delivery on a 

particular period (or multi-period) or manufactured in a single production run, the 

current study models a multi-item inventory problem for seasonal items with 

different production run lines which is different than lot-sizing problem in terms of 

formulation and complexity. 

The description of the provided inventory control problem and employed 

algorithms are given in details in Chapter 4. 

3.4       The proposed multi-item multi-period ISLAWOS 

In the inventory control problems, the vendors sell their products under some 

discount policies in order to attract and encourage the customers to purchase more 

items. All unit discount (AUD) is one of the most common policies that has been 

taken into account in the literature, recently. The proposed problem aims to optimize 

a supply chain network for a multi-product multi-period inventory system with 

multiple buyers, multiple vendors and warehouses with limited capacity owned by 

the vendors. The inventory replenishment starts at a certain time-period and finish 

at another time-period where the buyers purchase the products from the vendors 

during these interval periods. The vendors provide (produce) the various products 

to the buyers with variable demand rates under all-unit discount policy since the 

production capacity of each vendor was restricted. The vendors satisfy the buyers’ 

demands immediately in all the periods so that no shortages occur during the 

replenishment.  
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When the demands of the buyers were satisfied in a period, the products remained 

from the period in addition to the ordering quantities of the next period enter into 

the warehouses. The novelty of the problem is that the integrated supply chain 

expressed in this paper simultaneously determines two types of decision variables: 

(i) the locations of the vendors in a certain area among the buyers with fixed 

locations and (ii) the allocation: the order quantities of the products at each period 

made by the buyers from the vendors. The total available budget for purchasing the 

products and also the total vendors’ warehouse space were constrained. Moreover, 

the distance between the buyers and vendors was assumed as Euclidean distance. 

The vendors store the products into their warehouses and then the products were 

transported from these warehouses to the buyers. 

The description of the proposed ISLAWOS and the applied algorithms are given 

in details in Chapter 5. 

3.5       The proposed multi-item multi-period ISLAWS 

Supply chain is an integrated system of facilities and activities that synchronizes 

inter-related business functions of material procurement, material transformation to 

intermediates and final products, and distribution of these products to customers. 

SCM is a set of approaches utilized to efficiently integrate suppliers, manufacturers, 

warehouses, and stores, so that merchandise is produced and distributed at the right 

quantities, to the right locations, and at the right time, in order to minimize system-

wide costs while satisfying service level requirements (Simchi-Levi et al., 2000). 

In the provided model, a mixed binary-integer nonlinear mathematical model was 

developed for a location–allocation two-echelon retailer–distributor supply chain 

problem in which variety of the products were offered by the distributors to retailers. 

The distributors distribute the products and store them in their own warehouses with 

Univ
ers

ity
 of

 M
ala

ya



60 

 

 

limited capacities where there are certain places to hold each item. The retailers 

order different products to different distributors at specific time-periods based on 

their requirements. The products were delivered in certain packets with specific 

number of items using trucks with limited capacities. The planning horizon of the 

problem comprised multiple periods, where the replenishment process is taking 

place at the beginning of these periods. Here, different products in different periods 

may face shortages as a combination of lost sales and backorders. Moreover, it is 

possible the whole quantities of the products cannot be sold in different periods. 

Therefore, a number of items remain in the warehouses. In case of a shortage for a 

product in a period, the retailer should make an order at least as much as the demand 

becomes satisfied. Besides, due to some uncertain constraints, the distributors were 

not able to produce the products more than a specific value and also the total 

available budget was limited. The distributors provide the products to the retailers 

under all-unit and incremental quantity discount policies. The main goal was to find 

the optimal locations of distributors among the retailers and to determine the order 

quantities of the products ordered by the retailers to the distributors in different 

periods so that the total supply chain costs were optimized.  

The description of the investigated ISLA and the used algorithms was explained 

in details in Chapter 6. 

3.6       Solution methods 

In recent decades, scientists have been mimicking natural phenomena to propose 

methods and algorithms for solving complex optimization problems. Based on the 

complexity of real-life optimization problems, one may not be able to use exact 

algorithms.  
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Therefore, typically, meta-heuristic methods are frequently used to find a near 

optimum solution in an acceptable period. Meta-heuristics are kind of near-optimal 

algorithms that were proposed in the two recent decades to integrate basic heuristic 

methods in higher-level structures in order to effectively and efficiently search a 

solution space. Nowadays, these algorithms have a large number of applications in 

optimization of different hard-to-solve problems.  

This thesis formulates the mathematical models for three different problems, 

which are applicable in many real industries with a wide range of constraints as well 

as production limitations, space limitation for storing items, transportation 

limitations and also limitation in packing the items. Therefore, the proposed models 

with such amounts of limitations and mixed-integer binary nonlinear objective 

functions are complicated and it is impossible for them to use normal optimizer 

solvers to find the optimal solutions. While supply chain and inventory problems 

are approved to be strongly NP-hard, in this research several meta-heuristic 

algorithms were used to solve the problems where MOPSO and MOGA were 

applied to optimize the first proposed model, the modified PSO and GA for the 

second model and MFOA, PSO and SA for the third provided model. Based on the 

works reviewed in Chapter 2, these algorithms are found to be the most popular in 

the literature of the fields of Inventory and supply chain problems. The problems 

proposed here are formulated to be mixed-integer binary nonlinear programing with 

several real world constraints which cause the problem becomes really complicated. 

Solving the problems has been performed using standard solvers as well as CPLEX, 

which is the most reliable one in the literature, but the problems were not solved 

after running a few days in a row. Therefore, metaheuristics were the best choice to 

solve the problems while the proposed problems have been approved to be 

considerably NP-hard. 
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To justify the use of different solution methodologies (meta-heuristic algorithms) 

for the different problems proposed in this thesis, the reasons are the following.  The 

first model formulated in the first problem proposed in Chapter 4 is a multi-objective 

extension of the work proposed by (Mousavi et al., 2013) in which a GA, a Branch 

& Bound (B&B) and also a SA were used to solve the problem. The GA was found 

to be the best in terms of total cost value and CPU time. Furthermore, GA was found 

to be one of the most common algorithms in the literature of inventory problem 

according to the works reviewed in Chapter 2. Therefore, a modified version of GA 

is used to be compared with a PSO algorithm to show the quality of the solutions of 

the algorithms. In this work, all the problems have been first coded by using a 

standard solver as well as CPLEX solver like the way done in (Mousavi et al., 2013) 

where the solver couldn’t find the optimal solutions after running a few days in a 

row due to the highly complexity of the problems. The results of CPLEX in 

(Mousavi et al., 2013) also showed the weakness of the solver which was unable to 

solve problems with large size and it was run a long time without any outcome while 

GA reached the near optimal solutions in a very lesser CPU time. Therefore, GA 

was chosen for solving this problem while PSO and FOA also have been used as 

two other efficient metaheuristic algorithms according to the literature reviewed in 

Chapter 2. After running these algorithms on the proposed problem with 40 different 

generated numerical examples with different sizes, and also on the case study, the 

PSO has showed better performance than other algorithms in terms of inventory cost 

and CPU time, where the results of PSO and GA have been brought in Chapter 4. 

PSO, GA, and FOA have been also applied to solve the second and third models 

proposed in Chapters 5 and 6 in which GA and PSO have had better performance 

than FOA in terms of the total costs in Chapter 5. Against, the results have been in 

favor of FOA in comparison with other algorithms applied to solve the problem 
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proposed in Chapter 6. In order to show the quality of the solutions obtained by 

these algorithms in Chapter 6, FOA which is classified as population-based 

algorithm has been also compared to a neighborhood-based algorithm i.e. SA in 

addition to GA in terms of total costs and CPU time. 

3.6.1    Particle Swarm Optimization 

The particle swarm optimization (PSO) proposed by (Kennedy & Eberhart, 1995) 

is a population-based stochastic meta-heuristic algorithm that was inspired by social 

behavior of bird flocking or fish schooling. PSO is a meta-heuristic that requires few 

or no assumptions on the problem being optimized and can search very large spaces 

of candidate solutions. PSO can therefore be used on optimization problems that are 

partially irregular and noisy over time (Gigras & Gupta, 2012). 

 The overall flowchart of the PSO algorithm is shown in Figure 3.2. The PSO 

algorithm improved for the related model is provided in details in Chapters 4 and 5. 
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Figure 3.2: The flowchart of the proposed PSO algorithm 

 

3.6.2    Genetic Algorithm 

GA is similar to computational models inspired by evolution. This algorithm 

encodes a possible solution to a specific problem on a simple chromosome-like data 

structure and applies recombination operators to these structures to preserve critical 

information. GA approach was first developed by (Holland, 1992) using the name 

“genetic plan”, and it attracted considerable attention as a methodology for search, 
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optimization, and learning after Goldberg’s (Holland, 1992) publication. The first 

step in the implementation of any genetic algorithm is to create an initial population. 

Each member of this population will be a string. After creating an initial population, 

each string is then evaluated and assigned a fitness value. One generation is broken 

down into a selection phase and recombination phase. To create the next generation, 

new chromosomes, called offspring, are formed by either crossover operator or 

mutation operator. In short, the steps involved in the proposed GA algorithm are as 

follows: 

I. Setting GA parameters including the crossover probability (Pc), the 

mutation probability (Pm), population size (PS), and number of generation 

(NG). 

II. Initializing the population with the size of PS randomly. 

III. Evaluating the objective function. 

IV. Selecting individual for mating pool by tournament selection method 

and using elitisms. 

V. Applying the crossover operation for each pair of chromosomes 

based on Pc. 

VI. Applying mutation operation for each chromosome based on Pm. 

VII. Replacing the current population by the resulting new population. 

VIII. If stopping criteria is met, then stop. Otherwise, go to Step III. 

In order to clarify the steps involved in the GA implementation of this research, 

only the main features of the algorithm is discussed in more details. One of the most 

important features is the chromosome representation.  

The flowchart of the proposed GA is shown by Figure 3.3 where is going to be 

applied in the first and second models described in Chapters 4 and 5, respectively. 
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Figure 3.3: The flowchart of the proposed GA 

 

3.6.3    Fruit Fly Optimization   

The fruit fly optimization algorithm, first introduced by (Pan, 2012), is inspired 

by the food finding behavior of the fruit fly. The fruit fly itself was superior to other 

species in sensing and perception, especially in osphresis and vision. The osphresis 

organs of fruit flies can find all kinds of scents floating in the air; it can even smell 

food source from 40 km away. Then, after it gets close to the food location, it can 

also use its sensitive vision to find food and the company’s flocking location, and 

fly towards that direction (Pan, 2012).  
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The flowchart of the modified version of the fruit fly algorithm called MFOA is 

given by Figure 3.4. The details of the provided fruit fly algorithm, applied to solve 

the third model, are described in Chapter 6. 

 

Figure 3.4: The flow chart of the proposed MFOA 

 

3.6.4    Simulated Annealing 

Simulated annealing (SA) is a well-known local search meta-heuristic algorithm 

introduced by (Kirkpatrick et al., 1983) who took the idea used to simulate physical 

annealing processes and developed it to solve complicated combinatorial 

optimization models. The SA of this research involves three control parameters b 

(the cooling schedule), A0 (the initial temperature or the stopping rule of the external 
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loop), and Gen (the stopping rule of the internal loop). The solution representation 

and the evaluation in SA are similar to GA. Moreover, the mutation operator of GA 

is used as the neighborhood structure of SA as well. Figure 3.5 shows a pseudo-code 

of the proposed SA algorithm.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: The pseudo-code of the proposed SA 

 

3.6.5    Taguchi method   

However, most researchers often fix parameters and operators manually based on 

the reference values of the previous similar studies. The Taguchi method reduces 

the time spent on finding a good parameter value combination by running a smaller 

size of experiments on the training instances from diff erent domains as opposed to 

evaluating all combinations (Gümüş et al., 2016). 

Select an initial Temperature 
' 0T  ; 

Select an initial solution 
0R  and make it the current solution R and current best solution 

*R

; 

Repeat 

    Set repetition counter 1n  ; 

    Repeat 

          Generate solution 
nR in the neighborhood of R   ; 

          Calculate ( ) ( )nf R f R   ; 

          If ( 0)  then 
nR R ; 

              Else 
nR R  with the probability of 

'/TL e where ' 'T T   ; 

             If 
*( ( ) ( ))nf R f R  then  *

nR R ; 

                1n n   

       Until n   number of repetitions allowed at each temperature level ( )E ; 

       Reduce the temperature 
'T ; 

Until stopping criterion is true; 
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While classical statistical optimization tools are alternatives to tune the control 

parameters, the orthogonal arrays of the Taguchi method (Ross, 1988) are usually 

performed to study more decision variables in smaller number of experiments. 

Taguchi divides the factors into two main classes: controllable and noise factors. 

Noise factors are those that cannot be controlled directly. Since elimination of the 

noise factors is impractical and often impossible, the Taguchi method looks for 

minimizing the effect of noise while determining the optimal level of important 

controllable factors (Phadke, 1995). Taguchi created a transformation of the 

reiteration data to another value that is the measure of variation. The transformation 

is the signal-to noise (S/N) ratio. The term “signal” represents the desirable value 

(mean response variable) and “noise” represents the undesirable value (standard 

deviation). Thus, the S/N ratio implies the amount of variation present in the 

response variable (Phadke, 1995). Taguchi classifies objective functions into three 

groups: the “smaller the better”, the “larger the better”, and “the nominal is best” 

types. Since almost all objective functions in inventory control systems are grouped 

in the “smaller the better” type, its corresponding S/N ratio is: 

2

10/  =-10 Log (  function)S N objective                                                             (3.1) 

The Taguchi results of the optimal levels of the algorithms’ parameters tested on 

the three proposed models are given in Chapters 4, 5 and 6. 

3.7      Summary 

In this chapter, the methodology applied in the current work has been expressed 

and explained by a flowchart. The proposed research was divided into three main 

models, a multi-item multi-period inventory control problem, the multi-item multi-

period ISLA where the shortage were not allowed, and a multi-item multi-period 

ISLA where shortages are allowed.  
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A brief overview of the mechanisms of a number of meta-heuristic approaches, 

namely, PSO, GA, SA, and MFOA was also described, which were used to deal 

with the intricacy of the proposed models and reach near-optimal to optimal 

solutions in a reasonable computation time. 
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CHAPTER 4: MULTI-ITEM, MULTI-PERIODIC INVENTORY 

CONTROL PROBLEM WITH VARIABLE DEMAND AND 

DISCOUNTS: A PARTICLE SWARM OPTIMIZATION ALGORITHM 

4.1       Introduction 

This chapter investigates a novel bi-objective multi-item multi-periodic inventory 

control model where some items were purchased under AUD and the other items 

were bought IQD. The demands vary in different periods, the budget was limited, 

the orders were placed in batch sizes, and shortages in combination of backorder 

and lost sale were considered. The goal was to find the optimum order quantities of 

the items in each period such that the total inventory cost and the total required 

warehouse space were minimized simultaneously. Since it is not easy for the 

managers to allocate the crisp values to the weights of the objectives in a decision 

making process, considering these weights as fuzzy numbers will be taken an 

advantage. 

In order to understand the problem more, the model was explained using a real 

world example. A company, which produces some kinds of fashion clothes 

including trousers, t-shirt and shirt in a certain period, is assumed. The customers 

(wholesales) of this company with different demand rates make the orders and 

receive their products in the pre-specific boxes, each one consisting of a known 

number of these clothes. Moreover, due to some unforeseen matters such as 

production limitation, the companies were not responsive to all of the demands in a 

period and hence some customers must wait until the next period to receive their 

orders. Furthermore, it was assumed the company was going to extend the 

production part and therefore the owner has a plan to build and optimize a new 

storage subject to the available space. 
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The remainder of the chapter is organized as follows. In Section 4.2, the problem 

along with its assumptions is defined. In Section 4.3, the defined problem of Section 

4.2 was modeled. In order to do this, the parameters and the variables of the problem 

were first introduced. A MOPSO algorithm was presented in Section 4.4 to solve 

the model. In section 4.5, a MOGA is also represented for solving the problem as a 

benchmark for comparisons. Section 4.6 proposes the numerical example containing 

both the generated problems and a case study. Finally, conclusion and 

recommendations for future research are presented in Section 4.7. 

4.2       Problem definition, assumptions, and notations 

In the real world problems due to competitive environment in the market, 

companies prefer to produce different products to satisfy all the needs of the 

customers. Besides, these companies plan to manufacture and propose their products 

for a pre-specific time-period (season) and then again try to compete with new 

arrival items in another specific time period. This strategy causes the customers 

always look for new arrival items with new designs in each period (season) which 

highly affects attracting more customers. For a company planning to store and sell 

its products in a certain area, it is really essential that how many Square feet or meter 

of that area should be allocated to the storage so that all the items can be stored in 

the least storage area.  

Due to lack of study in the field in the literature, this chapter investigates a model 

for these sorts of companies to formulate a multi-objective multi-period (seasonal) 

inventory control problem at which the total inventory costs of the items and the 

total required storage space to store these items are minimized, simultaneously.  

The main focus of this study is on the inventory problem with multiple items in 

multi-period (seasonal or in finite horizon). In the problem proposed in Chapter 4, a 
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novel inventory model for those companies producing multiple items is formulated 

to satisfy the demands of the customers during the different periods (seasons). The 

demand values proposed by the marketing team of the companies are variable in the 

different periods.  

In the model considered in this study, the items are ordered based on the demand 

values estimated in each period or season where the prices of the items may vary in 

each period than another. Due to the fluctuations of the order quantities of these 

items during the time, companies should manage the delivering and storing 

processes of these items. Therefore, it is really essential for the companies to find 

out how much least space should be allocated to build a storage so that all the items 

can be placed in that in addition to finding out the minimum of the total costs. 

The chapter investigates a model for these sorts of companies to formulate a 

multi-objective multi-period inventory control problem at which the total inventory 

costs of the items and the total required storage space to store these items are 

minimized, simultaneously. A multi-objective decision making approach called 

Weighted Sum Method which is the most common method in the literature is used 

to set the objectives into a single objective by multiplying each objective with a user 

supplied weight. The weight values of objectives completely depends on the 

objective type and are uncertain. In this study, in order to overcome this uncertainty 

the weights are considered as fuzzy variables. The content of this chapter has been 

published in (Mousavi et al., 2014; Mousavi et al., 2014a). There are also many 

works in the literature used Fuzzy Weighted Sum Method (H. Cheng et al., 2013; 

Ma et al., 2017; Majidi, Nojavan et al., 2017; Stojiljković, 2017; Su, 2017), in 

Supply chain and Inventory (Lee, 2017; Maity & Maiti, 2008) .  

Consider a bi-objective multi-item multi-period inventory control problem, in 

which an AUD policy was used for some items and an IQD policy for some other 
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items. The inventory control problem of this research is similar to the items 

producing in different periods where the planning horizon starts in a period (or 

season) and finish in a certain period (or season). The total available budget in the 

planning horizon is limited and fixed. Due to existing ordering limitations or 

production constraints, the order quantities of all items in different periods cannot 

be more than their predetermined upper bounds. The demands of the products are 

constant and distinct, and in case of shortage, a fraction is considered backorder and 

a fraction lost sale. The costs associated with the inventory control system are 

holding, backorder, lost sale, and purchasing costs. Moreover, due to current 

managerial decision adaptations on production policies (i.e. building a new storage 

area), minimizing the total storage space was required as well as minimizing the 

total inventory costs. Therefore, the goal was to identify the optimal order quantities 

of the items in each period such that the two objective functions, total inventory 

costs and total storage space, were minimized.  

The model formulated in this chapter is an extension of the study proposed in 

(Mousavi et al., 2013) while this model has been improved in several parts 

efficiently as some were mentioned in Table 2.1. In (Mousavi et al., 2013) the 

objective was to minimize total inventory costs while in this chapter the objectives 

are to minimize the total inventory costs and also to minimize the total required 

storage space built for storing the items. Furthermore, in the current model shortages 

are allowed in combinations of backorder and lost sale which are considered as an 

extra costs in the model while in (Mousavi et al., 2013) shortages weren’t allowed. 

The costs were calculated under inflation and time values of money in (Mousavi et 

al., 2013) since in the current model the costs are computed without considering 

inflation and time values of money. Therefore, all formulas of the total costs will be 

different in (Mousavi et al., 2013) than the formula here. In addition, the truck 
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capacity for transferring the items are limited here while this constraint was not 

considered in (Mousavi et al., 2013). Moreover, in this chapter a FMODM i.e. 

FWSM is applied to combine the objectives into one function while a triangular 

fuzzy approach, a α-cut method and centroid defuzzification procedure are also used 

to show the fuzzy numbers and convert the fuzzy numbers to crisp values 

respectively. Additionally, in the work presented by (Mousavi et al., 2013) three 

GA, SA and B&B algorithms were used to solve 15 different problems while in this 

model multi-objective version of PSO and GA are employed for solving 40 different 

problems. Finally, a real case study has been studied in a wood industry in this work 

whilst no case study was performed in (Mousavi et al., 2013). By the way, some of 

these extensions were recommended in the Conclusion section of our previous work 

(Mousavi et al., 2013) (See Conclusion and future research work section of 

(Mousavi et al., 2013). In addition, in the models proposed in Chapters 5 and 6, a 

novel supply chain problems and location-allocations problems of the model 

investigated by (Mousavi et al., 2013)  have been extended. 

In order to simplify the modeling, the following assumptions are set to the 

problem at hand. 

i. The demand rate of an item was independent of the others and was constant 

in a period. However, it can be different in different periods. 

ii. At most, one order can be placed in a period. This order can include or 

exclude an item. 

iii. The items were delivered in a special container. Thus, the order quantities 

must be a multiple of a fixed-sized batch. 

iv. The vendor uses an AUD policy for some items and an IQD policy for others. 

v. A fraction of the shortages is considered backorder and a fraction lost sale. 

vi. The initial inventory order quantity of all items was zero. 

Univ
ers

ity
 of

 M
ala

ya



76 

 

 

vii. The budget was limited. 

viii. The planning horizon was finite and known. In the planning horizon, there 

were N  periods of equal duration. 

ix. The order quantity on an item in a period is greater than or equal to its 

shortage quantity in the previous period (which are, 1i , j i , jQ b  defined below.) 

    Figure 4.1 shows a graphical representation of the problem. 

 

Figure 4.1: A graphical illustration of the proposed inventory control problem 

 

In Figure 4.1, first the customers’ demands of the items are received and then the 

company will order the items based on these demands. The owner of company tries 

to find the optimal required space of a new storage according to the optimal order 

quantity. The items will reach the company by trucks with the specific capacity. In 

order to model the problem at hand, in what comes next we first define the variables 

and the parameters. Then, the problem is formulated in Section 3.  

The indexes, the parameters and the decision variables of the model are defined 

as follows:   

Indexes: 

1,2,...,i m is the index of the items 

1,2,...,j N  is the index of the periods 
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1,2,...,k K is the index of the price-break points 

Parameters: 

N : Number of replenishment cycles during the planning horizon   

m : Number of items 

K : Number of price break-points 

iS : Required storage space per unit of the i-th product 

jT :  Total time elapsed up to and including the j-th replenishment cycle 

'

i , jT : j-th period in which the order quantity of item i  is zero (a decision variable) 

iB : Batch size of the i-th product 

i , jD : Demand of the i-th product in period j 

iA : Ordering cost per replenishment of product i (If an order is placed for one or 

more items in period j, this cost appears in that period) 

i , jI : Inventory position of the i-th product in period j (it is 1 1i , j i , jX Q  , if 0i , jI 

, otherwise equals i , jb ) 

 iI t :  The order quantity of the i-th item at time t 

iH :  Unit inventory holding cost for item i 

i ,kq :  k-th discount point for the i-th product (
1 0i ,q  ) 

i ,km :  Discount rate of item i in k-th price break-point ( 1 0i ,m  )  

iP :  Purchasing cost per unit of the i-th product 

i ,kP :  Purchasing cost per unit of the i-th product at the k-th price break-point 
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i , j ,kU :  A binary variable, set 1 if item i is purchased at price break-point k in period 

j, and 0 otherwise 

i , jW :  A binary variable, set 1 if a purchase of item i is made in period j, and 0 

otherwise 

i , jL :  A binary variable, set 1 if a shortage for item i occurs in period j, and 0 

otherwise  

i :  Percentage of unsatisfied demands of the i-th product that is back ordered 

i , j :     Back-order cost per unit demand of the i-th product in period j 

i , j̂ :     Shortage cost per unit of the i-th product in period j that is lost 

1Z :  Total inventory cost 

2Z :  Total storage space 

TB :  Total available budget 

1M :  An upper bound for order quantity of the i-th item in period j 

2M :  An upper bound for order quantities of all items in each period (the truck 

capacity) 

TMF :  Total multi-objective function value, which is the weighted combination of 

the total inventory cost and the total storage space 

1w : A fuzzy weight associated with the total inventory cost ( 10 1w  )  

2w : A fuzzy weight associated with the total storage space ( 20 1w  ) 

Decision variables:  

i , jQ : Purchase quantity of item i in period j (a decision variable where 
i , j i i , jQ B V

) 

i , jb : Shortage quantity of the i-th product in period j (a decision variable) 
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i , jX : The beginning positive order quantity of the i-th product in period j (in j 1

, the beginning positive order quantity of all items is zero), (a decision 

variable) 

i , jV : Number of the packets for the i-th product order in period j (a decision 

variable) 

4.3       Problem formulation 

A graphical representation of the inventory control problem at hand with 5 

periods for item i was given in Figure 4.2 to obtain the inventory costs. At the 

beginning of the primary period ( 0T ), it was assumed that the starting order quantity 

of item i is zero and that the order quantity has been received and available. In the 

following periods, shortages can occur or not. If shortage occurs, the corresponding 

binary variable is 1, otherwise it is zero. In the latter case, the order quantities at the 

beginning of each period may be positive (Mousavi et al., 2014; Mousavi et al., 

2013; Mousavi et al., 2016). 

 

Figure 4.2: Some possible situations for the inventory of item 𝑖 in 5 periods 

 

4.3.1    The objective functions 

The first objective function of the problem, the total inventory cost, is obtained 

as: 
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1Z Total Inventory Cost=Total Ordering Cost+Total Holding Cost+

Total ShortageCost+Total Purchasing Cost


     (4.1) 

where each part is derived as follows. 

The ordering cost of an item in a period occurs when an order is placed for it in 

that period. Using a binary variable i , jW , where it is 1 if an order for the i-th product 

in period j is placed, and zero otherwise, and knowing that orders can be placed in 

periods 1 to 1N  (no order is placed in the period N) the total ordering cost is 

obtained as: 

1

1 1

m N

i i , j

i j

Total Ordering Cost A W


 

                      (4.2) 

Since it is assumed a shortage may occur for a product in a period or not, the 

holding cost derivation is not as straightforward as the ordering cost derivation. 

Taking advantages of a binary variable i , jL , where it is 1 if a shortages for item i in 

period j occurs and otherwise zero, and using Figure 1, the holding cost for item i in 

the time interval 
1 1

i , j

'

j j i , j i , jT t T ( L ) T L      is obtained as: 

1

1 '
j i , j i , j i , j

j

T ( L ) T L

i i
T

H I ( t )dt


 

                       (4.3)  

where  iI t is the order quantity of the i-th item at time t.  

In Equation (4.3), if a shortage for item i occurs, i , jL  becomes 1 and the term 

1 '

j i , j i , j i , jT ( L ) T L   becomes '

i , jT . Otherwise, 0i , jL   and 1 '

j i , j i , j i , j jT ( L ) T L T   . In 

Figure 4.1, the trapezoidal area above the horizontal time line in each period when 

multiplied by the unit inventory holding cost of an item, iH , represents the holding 

cost of the item in that period. In other word, since  

1 11i , j i , j i , j i , j i , j j j i , j i , jX Q X ( L ) D (T T ) b L                                 (4.4) 
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The Equation (4.3) becomes: 

  
1

1

11
2

'
j i , j i , j i , j

j

T ( L ) T L i , j i , j i , j '

i i j i , j i , j i , j j i
T

X Q D
H I ( t )dt T L T L T H



 



 
        (4.5)  

Therefore, the total holding cost is obtained in Equation (4.6). 

  
1

1

1

1 1

1
2

m N
i , j i , j i , j '

j i , j i , j i , j j i

i j

X Q X
Total Holding Cost T L T L T H






 

  
    

 
  

(4.6) 

The total shortage cost consists of two parts; the total backorder cost and the total 

lost sale cost. In Figure 4.2, the trapezoidal area underneath the horizontal time line 

in each period (shown for the primary period) when multiplied by the back-order 

cost per unit demand of the i-th product in period j, ,i j , is equal to the backorder 

cost of the item in that period. Therefore, the total backorder cost will be: 

1
1

1 1 2

m N
i , j i , j '

j i , j i

i j

b
Total BackorderCost ( (T T ) )







 

              (4.7) 

Furthermore, since (1 )i  represents the percentage demands of the i-th product 

that is lost sale, the total lost sale becomes: 

  
1

1

1 1

1
2

m N
i , j i , j '

j i , j i

i j

ˆ b
Total Lost Sale Cost T T







 

 
   

 
        (4.8) 

where, '

, 1 , ,( )i j i j j i jb D T T    ( ,1 0ib  ). 

In other words, if the inventory level of product i in period j is positive (i.e. 

0)i , jI   we have 0i , jX   and 0i , jb  , otherwise 0i , jX   and 0i , jb  . 

The total purchase cost also consists of two AUD and IQD costs. The purchasing 

offered by AUD policy is modeled by 

  

1 2

2 2 3

0i , i , j i ,

i , i , i , j i ,

i

i ,K i ,K i , j

P ; Q q

P ; q Q q
P

P ; q Q

 


 
 

 

             (4.9) 
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Hence, the purchasing cost of this policy is obtained as: 

1

1 1 1

m N K

i ,k i , j i , j ,k

i j k

AUD Purchasing Cost P Q U


  

                      (4.10) 

A graphical representation of the AUD policy employed to purchase the products 

in different periods is shown in Figure 4.3. In this Figure, the relation between the 

price break-points and the purchasing costs is demonstrated clearly. Moreover, 

, ,i j kU is a binary variable, set 1 if the i-th item is purchased with price break k in 

period j, and 0 otherwise. 

 
Figure 4.3: AUD policy for purchasing the products in different periods 

 

In the IQD policy, the purchasing cost per unit of the i-th product depends on its 

order quantity. Therefore, for each price break-point we have: 

 

1 1 2

2 1 2 2 2 2 2 3

3 1 2 2 3 2 2

0

1

1 1

i , i , j i , j i ,

i , i , i , i , j i , i , i , i , j i ,

i , i , i , i , i , i , i ,K i , j i ,K i ,K i ,K i , j

A P Q ; Q q

A P q P ( Q q )( m ) ; q Q q

A P q P ( q q )( m ) P ( Q q )( m ) ; q Q

  


     


         

     

                                                                                                                                    

                                                                                                                  (4.11) 

Hence, the total purchasing cost under the IQD policy is obtained as: 
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1

1

1 1 1

1

1

1

i , j i ,K i i , j ,K i ,Km N

K

i j i ,k i ,k i i ,k

k

( Q q ) PU ( m )

IQD Purchasing Cost=
( q q ) P ( m )





  



   
 
 
   






     (4.12) 

Figure 4.4 graphically depicts the IQD policy for each product in different periods 

in which A1, A2 and A3 are calculated in Equation (4.11). 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: IQD policy for purchasing the products in different periods 

 

Thus, the first objective function of the problem at hand becomes: 

 

 
1 1

1

1 1

1 1 1 1

1 1 1

1 1 1 1 1 1 1

1
2

1
2 2

m N m N
i , j i , j i , j '

i i , j j i , j i , j i , j j i

i j i j

m N m N m N K
i , j i , j i , j i , j' '

j i , j i j i , j i i , j i ,k i , j ,

i j i j i j k

X Q X
Z A W T ( L ) T L T H

ˆb b
(T T ) (T T )( ) Q P U

 
 

 




   

  

      

  
      

 

   
       

   

 

  

1 1

1

1 1 1

1 1

k

m N K

i , j i ,K i i , j ,K i ,K i ,k i ,k i i ,k

i j k

( Q q ) PU ( m ) ( q q ) P ( m )
 



  



 
     


 

 

(4.13) 

The second objective of the problem is to minimize the total required storage 

space. Since in each period, order quantities i , jQ  enter the storage, and that the 
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beginning inventory of a period is the remained inventory of the previous period, 

i , jX , the second objective function of the problem is modeled by: 

 
1

2

1 1

m N

i , j i , j i

i j

Z X Q S


 

           (4.14) 

Finally, the fitness function is defined as the weighted combination of the total 

inventory cost and the required storage space using FWSM as 

1 1 2 2TMF w Z w Z             (4.15) 

In the multi-objective problems, all the objectives must be independent from each 

other with different types (units) where the objectives are in conflict to each other. 

Therefore, the proposed FWSM is applied to make a single objective problem with 

the same unit or type (weight). 

4.3.2    The constraints 

In real world inventory planning problems, due to existing constraints on either 

supplying or producing goods (e.g., budget, labor, production and carrying 

equipment and the like), objectives are not met simple. This section presents 

formulations for some real-world constraints. 

The first limitation is given in Equation (4.4), where it relates the beginning 

inventory of the items in a period equal to the beginning inventory of the items in 

the previous period plus the order quantity of the previous period minus the demand 

of the previous period. 

The second limitation is due to delivering the items in packets of batches. Since 

i , jQ represents the purchase quantity of item i in period j, denoting the batch size by 

iB  and the number of packets by i , jV , we have: 
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i , j i i , jQ B V                 (4.16)        

Furthermore, since 
i , jQ can only be purchased based on one price break-point, 

the following constraint must hold: 

1

1
K

i , j ,k

k

U


            (4.17) 

The prerequisite of using this strategy is that the lowest i , kq in the AUD table 

must be zero (which are 1 0i ,q   ).   

Since the total available budget is TB , the unit purchasing cost of the product is 

iP , and the order quantity is i , jQ , the budget constraint will be 

1

1 1

m N

i , j i

i j

Q P TB


 

            (4.18) 

In real world environments, the order quantity of an item in a period may be 

limited. Defining 1M an upper bound for this quantity, for 1 2i , , , m   and 

1 2 1j ,  ,  ,  N    we have 

1i , jQ M                         (4.19) 

Moreover, due to transportation contract and the truck capacity, the number of 

product orders and the total order quantities in a period are limited as well. Hence, 

for 1 2 1j ,  ,  ,  N -  , we have 

2

1

m

i, j i , j

i

Q W M


            (4.20) 

where, if an order occurs for item i in period  j, 1i , jW  , otherwise 0i , jW  . Further, 

2M  is an upper bound on the total number of orders and the total order quantities in 

a period. 

As a result, the complete mathematical model of the problem using FWSM is: 
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1 1 2 2Min TMF w Z w Z   

Subject to: 

 
1 1

1

1 1

1 1 1 1

1 1 1

1 1 1 1 1 1 1

1
2

1
2 2

m N m N
i , j i , j i , j '

i i , j j i , j i , j i , j j i

i j i j

m N m N m N K
i , j i , j i , j i , j' '

j i , j i j i , j i i , j i ,k i , j ,

i j i j i j k

X Q X
Z A W T ( L ) T L T H

ˆb b
(T T ) (T T )( ) Q P U

 
 

 




   

  

      

  
      

 

   
       

   

 

  

1 1

1

1 1 1

1 1

k

m N K

i , j i ,K i i , j ,K i ,K i ,k i ,k i i ,k

i j k

( Q q ) PU ( m ) ( q q ) P ( m )
 



  



 
     


 

 

 
1

2

1 1

m N

i , j i , j i

i j

Z X Q S


 

   

1 11i , j i , j i , j i , j i , j j j i , j i , jX Q X ( L ) D (T T ) b L       ;     

1( i 1,2 ,  . . .,m )  and ( j 1,2 ,  . . .,  N )    

'

, 1 , ,( )i j i j j i jb D T T    

i , j i i , jQ B V                          ;   1( i 1,2 ,  . . .,m )  and ( j 1,2 ,  . . .,  N )    

1

1
K

i , j ,k

k

U


                     ;          1( i 1,2 ,  . . .,m )  and ( j 1,2 ,  . . .,  N )         

1

1 1

m N

i , j i

i j

Q P TB


 

                   

1i , jQ M                             ;         1( i 1,2 ,  . . .,m )  and ( j 1,2 ,  . . .,  N )    

 
  0 1i , jW ,                   ;     1( j 1,2 ,  . . .,  N )   

 
  0 1i , j ,kU ,  ;     

1 2 1 2 1 1 2( i ,  ,  . . . ,m ), ( j ,  ,  . . . ,N ), and ( k ,  ,  . . . ,  K )     

2

1

1
m

i, j i , j

i

Q W M ; ( j 1,2, . . ., N )


     

1i , j i , jQ b                                                         (4.21) 
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In more inventory-planning models that have been developed so far, researchers 

have imposed some unrealistic assumptions such that the objective function of the 

model becomes concave and the model can easily be solved by some mathematical 

approaches like the Lagrangian or the derivative methods. However, since the model 

in Equation (4.21), which was obtained based on assumptions that were more 

realistic, is an integer nonlinear programming mixed with binary variables, reaching 

an analytical solution (if any) to the problem is difficult. In addition, efficient 

treatment of integer nonlinear optimization is one of the most difficult problems in 

practical optimization (Lee & Kang, 2008). As a result, in the next section a meta-

heuristic algorithm is proposed to solve the model formulated in Equation (4.21). 

4.4      The proposed MOPSO 

Many researchers have successfully used meta-heuristic methods to solve 

complicated optimization problems in different fields of scientific and engineering 

disciplines; among them, the particle swarm optimization (PSO) algorithm is one of 

the most efficient methods. That is why this approach was taken in this research to 

solve the model in Equation (4.21). The structure of the proposed MOPSO that is 

based on the PSO algorithm for the multi-objective inventory planning problem at 

hand is given as follows. 

4.4.1    Generating and initializing the particles positions and velocities 

PSO was initialized by a group of random particles (solutions) called generation, 

and then searches for optima by updating generations. The initial population was 

constructed by randomly generating R  particles (similar to the chromosomes of a 

genetic algorithm). In a d -dimensional search space, let  1 2

i i i i

k k , k , k ,dx x ,x ,..., x  

and  1 2

i i i i

k k , k , k ,dv v ,v ,...,v  be, respectively, the position and the velocity of 
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particle i  at time k. Then, Equations (4.22) and (4.23) are applied to generate initial 

particles, in which minx and maxx are the lower and the upper bounds on the design 

variable values and RAND is a random number between 0 and 1.  

0 min max min( )ix x RAND x x            (4.22) 

0 min max min( )iv x RAND x x            (4.23) 

An important note for the generating and initializing step of the PSO is that 

solutions must be feasible and satisfy the constraints. As a result, if a solution vector 

does not satisfy a constraint, the related vector solution will be penalized by a big 

penalty on its fitness.  

To guarantee the feasibility of the individuals, a penalty function shown in 

Equation (4.24) was employed to penalize the infeasible solutions those didn’t 

satisfy the constraints. 

0  inequality is satisfied
( )

( ( ) )

if
Y x

K x E otherwise


 


       (4.24) 

In Equation (4.24),   is the severity of the penalty function (here, 10  ) and 

( )K x  and E are referred to a typical constraint ( )K x E .  

4.4.2   Selecting the best position and velocity  

For every particle, denote the best solution (fitness) that has been achieved so far 

as: 

 1 2

i i i i

k k , k , k ,dpbest pbest , pbest ,..., pbest


         (4.25) 

 1 2

i i i i

k k , k , k ,dgbest gbest , gbest ,..., gbest


         (4.26) 
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where i

kpbest


in Equation (4.25) is the best position already found by particle i until 

time k and i

kgbest


in Equation (4.26) is the best position already found by a neighbor 

until time k. 

4.4.3   Velocity and position update 

The new velocities and positions of the particles for the next fitness evaluation 

are calculated using Eqs (4.27) and Equation (4.28) (Shayeghi et al., 2009): 

1 1 1 2 2

i i i i i i

k ,d k ,d k ,d k ,d k ,d k ,dv w .v C .r .( pbest x ) C .r .( gbest x )          (4.27) 

1 1

i i i

k ,d k ,d k ,dx x v             (4.28) 

where 1r  and 2r  are random numbers between 0 and 1, coefficients 1C  and 2C  are 

given acceleration constants towards pbest and gbest , respectively and w is the 

inertia weight. Introducing a linearly decreasing inertia weight into the original PSO 

significantly improves its performance through the parameter study of inertia weight 

(Naka, Genji, Yura, & Fukuyama, 2001). Moreover, the linear distribution of the 

inertia weight is expressed as follows (Naka et al., 2001):  

max min
max

w w
w w iteration

iter _max


           (4.29) 

where iter _max is the maximum number of iterations and iteration is the current 

number of iteration. Equation (4.29) presents how the inertia weight is updated, 

considering maxw and minw  are the initial and the final weights, respectively. The 

parameters  0 9maxw .  and 0 4minw  .  that were previously investigated by (Naka et 

al., 2001) and (Shi & Eberhart, 1999), are used in this research as well. 
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4.4.4    Stopping criterion 

Achieving a predetermined solution, steady-state mean and standard deviations 

of a solution in several consecutive generations, stopping the algorithm at a certain 

computer CPU time, or stopping when a maximum number of iterations is reached 

are usual stopping rules that have been used so far in different research works. In 

the current research, the MOPSO algorithm stops when the maximum number of 

iterations was reached. 

Figure 4.5 shows the pseudo code of the proposed MOPSO algorithm. Moreover, 

since the problem and hence the model is new and there is no other available 

algorithm to compare the results, a multi-objective genetic algorithm (MOGA) is 

developed in this research for validation and benchmarking. MOGA was coded 

using roulette wheel in selection operator, population size of 40, uniform crossover 

with probability of 0.64, one-point random mutation with probability 0.2, and a 

maximum number of 500 iterations. The computer programs of the MOPSO and 

MOGA algorithms were developed in MATLAB software and are executed on a 

computer with 3.80 GHz of core 2 CPU and 4.00 GB of RAM. Furthermore, all the 

graphical and statistical analyses are performed in MINITAB 15. 
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for i = 1 to Pop 

      initialize position(i) 

      initialize velocity(i) 

      if position(i) and velocity(i) be a feasible candidate solution 

        penalty=0 

     else penalty= a positive number 

    end if 

end for 

w=[0.4,0.9] 

do while Iter <= Gen 

     for j=1 to Pop 

         Calculate new velocity of the particle 

         Calculate new position of the particle 

         pbest(iter)=min(pbest(i)) 

     end for 

    gbest(iter)=min(gbest) 

    w=wmax-((wmax-wmin)/iter_max)×iter 

    modifying the velocity and position of the particle  

end while 

 

Figure 4.5: The pseudo code of MOPSO algorithm 

 

4.5      The proposed MOGA 

The fundamental principle of GAs first was introduced by (Holland, 1992). As 

mentioned in Chapter 2, many researchers applied and expanded this algorithm in 

different fields of study. In short, the steps involved in the proposed GA algorithm 

are:  

i. Setting GA parameters including the crossover probability ( cP ), the mutation 

probability ( mP ), population size ( PS ), and number of generation ( NG ) 

ii. Initializing the population with the size of PS randomly 

iii. Evaluating the objective function 

iv. Selecting individual for mating pool by roulette wheel selection method and 

using elitisms 

v. Applying the crossover operation for each pair of chromosomes based on cP  
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vi. Applying mutation operation for each chromosome based on mP  

vii. Replacing the current population by the resulting new population 

viii. If stopping criteria is met, then stop. Otherwise, go to Step iii. 

In order to clarify the steps involved in the GA implementation of this research, 

only the main features of the algorithm is discussed in more detail.  

Basically, for using the most appropriate metaheuristics for solving a problem, 

the most common way is using the recent ones applied in the same field in the 

literature. For each problem, the algorithm parameters and also the most suitable 

operators used in that algorithm are updated and selected in different ways based on 

the problem need and type. The GA applied to solve the problem proposed in this 

chapter was tested on the generated problems with different parameters and different 

operators to get the best solutions where Taguchi method was applied to find the 

best parameters values of the algorithm to improve the GA performance in the 

shortest time. Here are also used both Tournament and Roulette Wheel approach 

individually in selection operator of GA which Roulette Wheel was found with the 

better efficiency than Tournament approach. Several approaches of crossover 

operator existed in the literature as well as N-point, Uniform, and so on (Soni & 

Kumar, 2014; Thakur & Singh, 2014) were also tested on the problem where 

uniform crossover operator was found to be the best for this problem. Moreover, 

several types of mutation operator as well as one-point, uniform and two-point were 

tested on the problem where the one-point mutation approach was chosen as the 

most efficient approach. 

Due to the metaheuristic algorithms are the directed stochastic solution 

methodologies, they completely depend on the problem types and also the user 

ability who applies them. Therefore, the users should apply and update the algorithm 
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based on the proposed problem type to find out the optimal or near optimal solutions. 

With manipulating the parameters and the operators of these algorithms for each 

individual problem, the algorithms can improve their performance on the problems 

as well. 

Therefore, the differences between the GA here and the one applied in the 

previous work are in that the all parameter values and the operators of GA again 

tested and updated according to the problem type. Moreover, the best parameter 

values of GA proposed in (Mousavi et al., 2013) were PC =0.8, Pm=0.2, Pop= 30, 

and Gen= 700 , while here Taguchi method was applied for each of the generated 

and also case study problems individually and therefore each problem has its own 

GA parameters values. Furthermore, in (Mousavi et al., 2013), the elitism operator 

was used in the GA while here elitism operator was found not to be suitable to 

improve the GA performance. 

The figures and operators of GA used in this study have been also updated 

accordingly. Figure 4.6 shows the structure of the chromosome generated by the 

GA. 

 

Figure 4.6: The structure of a chromosome 

 

After testing several kinds of selection approaches existed in the literature as well 

as Roulette Wheel and Tournament approaches on the problem, the Roulette wheel 

selection has been chosen as the most appropriate selection process of the 
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chromosomes in the mating pool. Figure 4.7 depicts the crossover operation of this 

research to mate pairs of chromosomes to create offspring based on 
cP . In Figure 

4.7, 1Chro  and 2Chro  are the parents crossed each time to create 
1Off  and 

2Off  as 

offspring. All the infeasible solutions those do not satisfy the constraints will be 

fined by the penalty function proposed in Eq. (4.24).  

 
Figure 4.7: The uniform crossover operation 

 

In order to reach better solution of the problem, several different forms of 

mutation operator provided in the literature are tested. It has been found that the 

one-point mutation operator was more suitable than the others. In this operations, 

for each chromosome for which 1 Cr P , select two integer numbers 1y  and 2y in 

intervals [1, m] and [1, N], first. Then, generate an integer number randomly 

between 0 and 1M  for row 1y  and column 2y of the chromosome. Figure 4.8 shows 

how to do mutation operator of GA algorithm for a problem with 6m  and 5N   

since 1 3y   and 2 2y  .  
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Figure 4.8: The one-point mutation operator 

At the end, the proposed GA stops after a predetermined number of iteration 

obtained by the parameter-tuning procedure discussed in Section 5.  

In the next section, some numerical examples are given to illustrate the 

application of the proposed MOPSO algorithm in real-world environments and to 

evaluate and compare its performances with the ones obtained by a MOGA method. 

4.6      Numerical illustrations 

The decision variables in the inventory model Equation (4.21) are i , jQ , i , jX , 

i , jV  and i , jb . We note that the determination of the order quantity of the items in 

different periods, which are, i , jQ , results in the determination of the other decision 

variables as well. Hence, we first randomly generate i , jQ , that is modeled by the 

particles' position and velocity. Figure 4.9 shows a pictorial representation of the 

matrix Q for a problem with 4 items in 4 periods, where rows and columns 

correspond to the items and the periods, respectively. 

 

Figure 4.9: The structure of a particle 
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4.6.1   The generated data 

In order to evaluate the algorithms on the proposed model, due to there is no 

benchmark in the literature, hence some data are generated where this method is 

very common in the literature based on the works reviewed in Chapter 2. Table 4.1 

depicts the value ranges of the parameters used to generate the different problems 

to evaluate the algorithms. In other words, in the literature, it is very common for 

those novel models to generate a wide range of problems while there is no 

benchmark in the literature to evaluate their proposed algorithms. In addition, in 

order to clarify how the proposed algorithms perform on different problems with 

different sizes, the algorithms have been evaluated on a wide range of problems with 

different sizes to assess their performance in terms of fitness values and CPU time 

as well. Table 4.2 shows partial data for 40 different problems with different sizes 

along with their near optimal solutions obtained by MOPSO and MOGA. In these 

problems, the number of items varies between 1 and 20 and the number of periods 

takes values between 3 and 15. In addition, the total available budgets and the upper 

bounds for the order quantities 
1( M ) are given in Table 4.2 for each problem. From 

Equation (4.24), in Table 4.2 if a solution doesn’t satisfy even one of the constraints 

(for example here ( )K x E ), the value of ( ( ))E K x  will be added to the 

objective functions so that the value of the objective function will become a very 

big number. Therefore, the both MOGA and MOPSO will remove these infeasible 

solutions automatically to prevent them to enter the final generation. 

In order to illustrate how the results were obtained, consider a typical problem 

with 5 items and 3 periods (the seventh row in Table 4.2), for which the complete 

input data is given in Table 4.3. The parameters of the MOPSO and MOGA 

algorithms are set by Taguchi method where 
1 2C ,C  the number of population ( Pop
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) and number of generations ( Gen ) are the parameters of MOPSO and crossover 

probability and their level values are shown in Table 4.4. Furthermore, the rest of 

MOPSO’s parameters are set as, 0 4 0 9min maxw . ,  w .  , and the time-periods jT 3

for 0j ,1 ,2 ,3 . The above parameter settings were obtained by performing 

intensive runs. Furthermore, the amount of i , jV will be obtained automatically after 

gaining the order quantity i , jQ . 

 

Table 4.1: The input data of the test problems 

m N M1 TB  2M  

(1 to 20)  (3 to 20)  (2000 to115000)  (30000 to 1330000)  (15000 to 2000000)  
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Table 4.2: Different problems and their optimal TMF  values obtained by the two algorithms 

Problem 

No. 
m  N  1M  TB  

Objective values MOPSO   MOGA  

MOPSO MOGA 1C  2C  Pop  Gen  
CPU 

time 
 CP  mP  Pop  Gen  

CPU 

time 
1 1 3 2000 30000 18510 18510 2 2.5 30 200 2.834  0.6 0.1 40 500 4.087 

2 2 3 3000 85000 44622 44943 1.5 2.5 20 200 3.132  0.5 0.08 30 200 4.342 

3 3 3 5000 170000 85830 86089 1.5 2 30 500 4.237  0.6 0.08 50 300 6.539 

4 2 4 3500 130000 92758 93423 2 2 30 100 4.318  0.7 0.2 50 200 6.509 

5 3 4 5000 240000 147480 146450 1.5 2.5 40 100 4.904  0.6 0.2 50 200 7.192 

6 4 3 6000 260000 132910 133400 2.5 1.5 20 200 5.763  0.6 0.08 40 500 8.122 

7 5 3 9000 370000 153840 154550 2 2.5 40 200 6.877  0.6 0.2 50 200 9.213 

8 6 3 8800 360000 214620 215510 1.5 2.5 30 500 7.321  0.5 0.1 30 200 11.205 

9 7 3 10500 400000 265020 266020 2 2 30 200 8.630  0.7 0.1 40 300 12.093 

10 8 5 12000 470000 322850 328250 2.5 2.5 30 500 9.139  0.6 0.08 50 200 13.532 

11 8 8 15000 550000 431245 442100 2 2 20 200 11.590  0.7 0.2 30 300 16.442 

12 9 5 15000 530000 438790 449835 1.5 2.5 40 100 11.346  0.7 0.2 50 300 17.020 

13 9 8 18000 600000 495470 513725 2 2 40 500 13.256  0.7 0.08 50 500 21.324 

14 9 9 20000 630000 553276 571250 1.5 2.5 20 100 14.732  0.5 0.1 40 500 22.967 

15 10 5 20000 620000 579030 593167 2.5 2.5 20 200 12.874  0.5 0.2 30 200 20.134 

16 10 8 25000 700000 642870 665890 1.5 2.5 40 200 15.398  0.7 0.08 30 200 24.321 

17 10 10 34000 780000 710035 731280 1.5 1.5 30 200 21.469  0.5 0.08 50 500 32.539 

18 10 15 45000 900000 823210 852400 2 2.5 20 500 31.231  0.6 0.1 40 500 46.201 

19 11 10 40000 850000 827659 859080 1.5 2.5 30 500 30.137  0.6 0.1 30 500 42.243 

20 11 15 45000 870000 867840 897500 2.5 2 40 100 35.092  0.7 0.2 50 200 49.903 

21 12 10 48000 870000 902720 948956 1.5 2.5 30 200 34.354  0.5 0.2 50 300 49.320 

22 12 12 53000 900000 932760 974380 1.5 2 30 100 36.701  0.6 0.2 40 200 52.430 

 

9
8
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 Table 4.2, Continued  

23 12 15 58000 950000 965470 1023950 2 2.5 20 100 42.132  0.5 0.2 30 200 57.810 

24 13 10 52000 890000 973200 1043569 1.5 1.5 20 500 40.212  0.7 0.08 40 300 56.192 

25 13 13 55000 930000 985439 1089210 1.5 2.5 40 500 42.243  0.6 0.1 30 300 58.111 

26 13 15 62000 980000 1056810 1104325 2 2.5 40 500 44.493  0.5 0.1 40 500 62.002 

27 15 8 57000 900000 1059835 1110360 2 2 20 200 39.702  0.6 0.08 50 500 58.331 

28 15 10 63000 900000 1095430 1176509 2.5 2.5 30 100 42.092  0.6 0.2 30 200 60.217 

29 15 12 68000 950000 1198720 1332900 2.5 1.5 30 500 44.620  0.5 0.1 40 200 63.892 

30 15 15 75000 1000000 1256980 1447905 1.5 2 20 500 48.410  0.6 0.08 50 200 69.200 

31 16 12 70000 940000 1298750 1473400 2 1.5 40 100 45.432  0.7 0.1 50 500 68.793 

32 16 15 80000 1050000 1454328 1772349 1.5 2.5 40 500 51.214  0.7 0.2 40 200 74.231 

33 17 15 87000 1100000 1543890 1809850 2 2 40 200 55.762  0.7 0.1 50 500 80.321 

34 17 17 93000 1140000 1630215 1865780 2.5 2.5 30 500 59.600  0.6 0.1 40 300 87.214 

35 18 10 80000 1000000 1678345 1890437 1.5 1.5 30 100 57.320  0.7 0.08 50 300 87.110 

36 18 15 98000 1150000 1768950 1924670 2 2.5 20 500 59.739  0.5 0.08 40 300 90.129 

37 18 18 103000 1230000 1832450 1987320 1.5 2 30 100 66.002  0.7 0.1 40 200 101.231 

38 20 10 100000 1200000 1876895 1998230 2.5 2.5 20 500 60.243  0.6 0.1 50 500 98.772 

39 20 15 108000 1260000 1904564 2035689 1.5 2 30 500 69.321  0.7 0.2 50 500 102.197 

40 20 20 115000 1330000 1987350 2154670 1.5 1.5 30 100 74.321  0.7 0.08 30 500 109.034 

Mean - - - - 897145 971541 - - - - 31.705  - - - - 46.562 

St.Dev - - - - 581013 652778 - - - - 21.885  - - - - 32.509 

 9
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Table 4.3: The general data for a problem with 5 items and 3 periods 

Product 1i ,D  
2i ,D  

1i ,  2i ,  
1i ,̂  2i ,̂  

iB  iH  iA  
i  iS  

1 1200 800 20 18 9 10 3 5 20 0.5 4 

2 1300 900 20 18 9 10 7 5 15 0.5 6 

3 1500 1200 11 14 8 12 5 6 25 0.8 7 

4 2100 2000 11 14 8 12 8 6 18 0.8 5 

5 1800 1600 12 15 9 11 7 7 19 0.6 6 

 

Table 4.4: The parameters of the two algorithms and their levels 

Algorithms Factors Levels [1,2,3] 

MOPSO 1C ( A)  [1.5,2,2.5] 

 
2C ( B )  [1.5,2,2.5] 

 
Pop(C )  [20,30,40] 

 
Gen( D )  [100,200,500] 

MOGA CP ( A)  [0.5,0.6,0.7] 

 
mP ( B )  [0.08,0.1,0.2] 

 
Pop(C )  [30,40,50] 

 
Gen( D )  [200,300,500] 

 

 

 1
0

0
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The prices of each item in each period under discount policies proposed in Table 4.3 

are shown as follows: 

1

21 0 950

20 950

Q
P

Q

 
 


 

2

21 0 60

19 60 110

18 110

Q

P Q

Q

 


  
 

 

3

25 0 90

23 90

Q
P

Q

 
 


 

4

17 0 120

15 120

Q
P

Q

 
 


 

5

16 0 100

12 100

Q
P

Q

 
 


 

In Table 4.3, the general data for Problem No. 7 of Table 4.2 with 5 items and 3 time 

periods (seasons) is shown. The demand for all five items in the first period is shown by 

1i ,D  and the demand for all five items in the second period is indicated by 
2i ,D  ( 1 2 3 4 5i , , , ,

). Due to the system is closed in the last period no demand for any item is accepted (i.e. 

3 0i ,D  ). To be clear, in Table 4.3 for example the demand for item 1 in the first period 

(season) is equal to 1200 with price 20 while the demand for this item in the second period 

will be 800 with price 21 where the price of this item is proposed under AUD policy as 

follows: 

1

21 0 950

20 950

Q
P

Q

 
 


 

Tables 4.7 and 4.8 show the optimal solutions as well as the optimal order quantities 

for satisfying the demands for each item in each period of Table 4.3 obtained by MOPSO 

and MOGA, respectively. To be clarified, in Table 4.7, the optimal order quantity of item 

1 in the first period (season) is equal to 1215 items ( 1 1 1215,Q  ) to satisfy 1200 demands 

received in this period (
1 1 1200,D  ) while 15 out of these items are kept in the storage (
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1 2 15,X  ) to satisfy the demands will receive in the second period. Therefore, there is no 

demand for item 1 left unsatisfied in the first period. In other words, there is no shortage 

quantity of item 1 in the second period (
1 2 0,b  ) while all the demands for item 1 are 

satisfied in this period. From Table 4.7, the optimal order quantity of item 1 for period 2 

is equal to 159 ( 1 2 159,Q  ) to satisfy 800 demands received in the second period 

(D1,2=800). The order quantity of item 1 in addition to the inventory left from the first 

period mines the demand will get the shortage amount for next period (Q1,2 + X1,2 - D1,2 = 

-626), then we have 
1 3 0,X   and 

1 3 626,b  . It will be explainable in the same way for other 

items. 

The weights associated with the objectives are as triangular fuzzy number 

[ , , ]a b cw w w w  shown in Figure 4.10 where membership function of variable x is given 

by Equation (4.30). 

 

Figure 4.10: The triangular fuzzy numbers 

0

-

-
( )

-

-

0

a

a
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c b

c

x w
x w

w x w
w w

x
w x ww x

w w

w x






  


 
 






                (4.30) 

Now, in order to get crisp interval by α-cut operation, interval w  can be obtained as 

follows ( [0,1]  )     

( ) ( )- -
,

- -

a a c c

b a c b

w w w w

w w w w

 

                    (4.31) 
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We have ( ) ( )( - ) ; - ( - )a b a a c c c bw w w w w w w w         

Therefore, ( ) ( ) ( )[ , ] [( - ) , - ( - ) ]a c b a a c c c bw w w w w w w w w w  

      . While the 

weights of the objectives of the proposed problem are fuzzy numbers the best approach 

to convert the fuzzy numbers to crisp ones will be α-cut approach according to the 

literature reviewed in Chapter 2. In other words, if α-cut approach is not used the results 

of the model will be remained as fuzzy numbers which will be useless. 

where, in all the generated data 
1 2=1-w w ,  2= 0.2,0.3,0.6w and 0.5  . 

In other words, while the weights allocated to each objective are uncertain in the real 

world, in this study these weights are considered as triangular fuzzy numbers. One of the 

common methods to convert (decompose) the fuzzy numbers to crisp (deterministic) 

numbers is α-cut operation which is expressed by formula proposed in Equation (4.31). 

In this study, using the α-cut method shown in Equation (4.31) and triangular fuzzy 

numbers  2= 0.2,0.3,0.6w and 
1 2=1-w w and 0.5  , we have: 

 0.5 = 0.25,0.45w which is shown by Figure 4.11. 

 

 

 

 

  

 

Figure 4.11: The α-cut (α = 0.5) procedure applied for the proposed problems with 

triangular fuzzy numbers 

In this research, α-cut and centroid defuzzification method are used by MATLAB 

2013a to make crisp numbers. Therefore, after using these methods we have 

2 0.3667w  and 1 2=1w w  0.6333. 

1 

α=0.5 

0 
0.2 0.25 0.3 0.6 0.45 
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To perform Taguchi approach in this paper, a 9L design is utilized, based on which the 

results for Problem No. 7 described in Table 4.2 are shown in Table 4.5 as an example. 

The optimal values of the levels of the algorithms’ parameters shown in Table 4.5 were 

presented in Table 4.6. Figure 4.12 depicts the mean S/N ratio plot each level of the 

factors of MOPSO and MOGA for Problem 7 in Table 4.2.  

Table 4.5: The Taguchi 9L design along with objective values of the algorithms 

 Run no. A B C D MOPSO MOGA 

1 1 1 1 1 154040 154980 

2 1 2 2 2 154367 154760 

3 1 3 3 3 154220 155075 

4 2 1 2 3 153944 154875 

5 2 2 3 1 153985 155230 

6 2 3 1 2 154568 155102 

7 3 1 3 2 154215 154780 

8 3 2 1 3 154320 154750 

9 3 3 2 1 154100 155111 

 

Table 4.6: The optimal levels of the algorithms’ parameters for Problem 7 of Table 4.2 

Algorithms Factors 
Optimal 

levels 

MOPSO 

1C  2 

2C  2.5 

Pop  40 

Gen  200 

MOGA 

CP  0.6 

mP  0.2 

Pop  50 

Gen  200 

 

Tables 4.7 and 4.8 show the best result obtained by MOPSO and MOGA for the 

problem with 5 items and 3 periods (Problem 7), respectively including the amounts of 

decision variables and the optimal objective values. In these Tables, TMF is the best value 

of the bi-objective inventory problem, which is given in the last two columns of Tables 

4.7 and 4.8. Similarly, the best values of TMF for the other problems were obtained and 

are summarized in the sixth and seventh columns of Table 4.2.  
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To compare the performances of the MOPSO and MOGA, several statistical and 

graphical approaches are employed. A one-way ANOVA analysis of the means of the 

algorithms in confidence 0.95% is used to compare and evaluate the objective values of 

the generated 40 problems. Table 4.9 shows the ANOVA analysis of the results of the 

two algorithms that demonstrates no difference between both algorithms. Moreover, the 

mean and standard deviation (Std.Dev) of the objective values of the 30 generated 

problems shows that the MOPSO has the better performance in terms of the objective 

values in comparison with the MOGA. In addition, a pictorial presentation of the 

performances of the two algorithms shown by Figure 4.13 displays that the MOPSO is 

more efficient than the MOGA algorithm in the large number of the problems. 

 

 

Figure 4.12: The mean S/N ratio plot for parameter levels of MOPSO and MOGA in 

Problem 7 of Table 4.2 
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Table 4.7: The best result of the MOPSO algorithm 

Product Qi,1 Qi,2 Xi,2 Xi,3 Vi,1 Vi,2 bi,1 bi,2 TMF  

1 1215 159 15 0 405 53 0 626 133958 

2 1162 252 0 0 166 36 138 648  

3 1555 190 55 0 311 38 0 955  

4 1360 864 0 0 170 108 740 1136  

5 1435 420 0 0 205 60 365 1180   

 

Table 4.8: The best result of the MOGA algorithm 

Product Qi,1 Qi,2 Xi,2 Xi,3 Vi,1 Vi,2 bi,1 bi,2 TMF  

1 1221 168 21 0 407 56 0 611 151525 

2 959 392 0 0 137 56 341 508  

3 1220 390 0 0 244 78 280 810  

4 1168 960 0 0 146 120 932 1040  

5 168 2254 0 654 24 322 1632 0   

Table 4.9: The ANOVA analysis of the optimal inventory costs for the algorithms 

Source DF SS MS F P-value 

Factor 1 1.11E+11 1.11E+11 0.28 0.6 

Error 78 3.11E+13 3.99E+11 - - 

Total 79 3.12E+13 - - - 

 

 

Figure 4.13: The pictorial representation of the performances of the algorithms 

 

Figure 4.14 depicts the Box-plot and the individual value plot and Figure 4.15 shows 

the residual plots for the algorithms.  
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A comparison of the results in Table 4.2 shows that the MOPSO algorithm performs 

better than the MOGA in terms of the fitness functions and also CPU time values. 

Figure 4.16 shows the t-test (ANOVA) for the means of both MOPSO and MOGA 

performance in terms of CPU time where the results are in favor of MOPSO. In other 

words, MOPSO is faster than MOGA in finding the optimal solutions in the proposed 40 

different problems shown in Table 4.2. 

 

 
Figure 4.14: The Box-plot and the individual value plot of the performances of the 

algorithms 
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Figure 4.15: The residual plots of the algorithms 
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Figure 4.16: The ANOVA analysis of the CPU time for both the algorithms 

 

In Table 4.7, the details of the costs and TMF obtained by MOPSO are listed as:  

Total Ordering cost = 291 $ 

Total Holding cost = 25,775 $ 

Total Shortage cost = 8444 $ includes 6408 $ backordering cost and 2036 $ lost sale 
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Total Purchasing cost = 148687 $ 

Z1 = Total costs = 183196 $, Z2 = 48890 m2, TMF = 133958 

In Table 4.8, the details of the costs and TMF obtained by MOGA are listed as:  

Total Ordering cost = 291 $ 

Total Holding cost = 35,954 $ 

Total Shortage cost = 21564 $ includes 15666 $ backordering cost and 5898 $ lost sale 

Total Purchasing cost = 150112 $ 

Z1 = Total costs = 207911 $, Z2 = 54112 m2, TMF = 151525 

4.6.2   A Case study 

In order to test and evaluate the model on a real case, some data were collected from a 

wood industry manufacturing-trade company called ORAMAN WOOD Industry (Alikar 

Wood Industry (AWI)) located in Iran manufacturing High Gloss products for building 

some finished items as well as cabinet, decoration board, shelf and etc. The company was 

established in 2003 in a plot with 10000 m2 with only one production line (Finished foils) 

which today has been extended to several other wood products as well as High Gloss. 

The company had more than 100 personnel including 32 experts and about 70 workers. 

Today, the company supports almost the most part of Iran in addition to some of Middle-

East countries.  

To produce High Gloss sheets, the company imports several raw material i.e. MDF 

sheets, Hot Melt Adhesive (HMA), High Gloss film (HGF) and PVC from overseas. All 

the items were imported from Malaysia, Thailand, Turkey, China and Germany. The 

company plans to order the materials every three months (the replenishment cycle is three 

months). Furthermore, the planning horizon is going to be one year or 12 months. The 
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data collected from the company is shown in Table 4.10 where a problem with four items 

and three periods is considered. To validate the data, the real data sheet collected from 

the company is shown in Appendix A. The demand values of the customers are almost 

deterministic and known and have different values in some periods than each other. 

The company faces shortages in some periods because of transportation and sanction 

issues. The values of the other parameters were set as follows

( for  i MDF ,adhesive ,HGF ,PVC )  and ( j 1,2 ,  3 )  , 1 200M  , 2 700M 

and 120 000 000TB , ,  IT . The MDFs are delivered into the boxes each includes 20 

MDF ( 20MDFB  ), adhesives are delivered into the boxes each includes 18 Kg (

18HMAB  ), HGF are delivered into the boxes each includes 4 pieces ( 4HGFB   ) and 

PVC delivered into the boxes each includes 6 pieces ( 8PVCB  ). 

 

The owner of the company wants to obtain minimum of the total costs endured on the 

company by the matters of inventory system. Furthermore, due to assigning the current 

storage to store the items produced by other production lines, for storing the imported 

products as well as MDF ,adhesive ,HGF and PVC , the company needs to build a new 

storage where the owner is looking for the optimal storage space (m2) required for this 

matter.      
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                             Table 4.10: The collected data for the case study with 4 items and 4 periods 

Product 1i ,D  
2i ,D  

3i ,D  
2i ,  3i ,  4i ,  2i ,̂  3i ,̂  4i ,̂  iH  iA  iS  

MDF (sheet) 110 110 180 50000 60000 70000 80000 90000 60000 1000 3000000 500 

HMA (Kg) 50 50 60 50000 60000 80000 70000 90000 50000 100 150000 100 

HGF (120m) 32 32 50 30000 40000 60000 80000 100000 90000 500 1400000 200 

PVC (120m) 32 32 50 40000 20000 40000 160000 40000 60000 500 240000 100 

 

 

 

 

 

 

 

 

 

 

 

 

1
1

1
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The data shown by Table 4.10 was collected from ORAMAN Company in 2016 

where the orders were made each three months started from January 2016 to January 

2017.  

The company purchased all the items (MDF, HMA, HGF and PVC) under AUD 

policy provided by the suppliers with the following prices: 

53000 0 100

52000 100
MDF

Q
P

Q

 
 


 

30000HMAP   

810000 0 70

800000 70
HGF

Q
P

Q

 
 


 

160000 0 70

150000 70
PVC

Q
P

Q

 
 


 

After parameter tuning using Taguchi method, the optimal parameters of 

MOPSO are C1=1.5, C2=2.5, Pop=50 and Gen=500 while the optimal parameters of 

MOGA are Pc=0.5, Pm=0.1, Pop=30 and Gen=500.  

The optimal solutions obtained by both MOGA and MOPSO are shown by 

Tables 4.11 and 4.12, respectively. The total ordering costs according to Iran 

currency (Iran Toman (IT)) obtained by both algorithms are identical and equal to  

Total Ordering Cost (TOC) = 14,370,000 IT  

The other costs obtained by MOGA are listed as follows:  

Total Holding Cost (THC) = 994,400 IT 

Total Shortage Cost (TSC) = 0 

Total Purchasing Cost (TPC) = 353,720,000 IT 

Therefore, the total costs spent by the company which are obtained by MOGA 

are calculated as   

Z1 = TOC + THC + TSC + TPC = 396,084,400 IT. 
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The results obtained by MOGA show that there is no shortage for all items in 

each period (i.e. 0i , jb  (for i MDF ,  HMA ,  HGF; for j=1, 2, 3, 4)  ). The duration of 

each period is equal to 1 (i.e. 1 1j jT T  for j=1, 2, 3, 4  ).  

To calculate the required storage space, each 200 sheets of MDF, each 250 Kg 

of adhesive, each 100 rolls of High Gloss film and also each 100 rolls of PVC are 

accumulated in the storage height. Therefore, the total required space to store the 

ordered items calculated by MOGA is as Z2 = 4,550 m2.  

Since the preference of the manager of the company for both objectives Z1 and 

Z2 are identical (i.e. W1 = W2 = 0.5), hence TMF = 65,744,000. The time elapsed by 

MOGA to find the optimal solutions is 8.624 Seconds. 

Furthermore, the total costs obtained by MOPSO under the optimal solutions 

shown by Table 4.12 are listed as follows: 

The Total Ordering Cost (TOC) is equal to 14,370,000 IT, the Total Holding Cost 

(THC) is equal to 1,169,900 IT. In case of shortages, 10 percent of the customers of 

the company facing the shortage will leave the system without receiving their orders 

(i.e. 0.9i  ). Total Shortage Cost (TSC) = 1,097,000 where the total backorder 

costs are equal to 972,000 IT and the total lost sale costs are equal to 125,000 IT. 

The Total Purchasing Cost (TPC) is equal to 114,020,000 IT. 

Therefore, the total costs spent by the company which are obtained by MOPSO 

are calculated as   

Z1 = TOC + THC + TSC + TPC = 130,656,900 IT. 

Moreover, the total required space for storing the order quantities obtained by 

MOPSO is calculated as Z2 = 3,060 m2. 

Since the preference of the manager of the company on the both objectives Z1 

and Z2 are identical (i.e. W1 = W2 = 0.5), hence the total costs obtained by MOPSO 
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is TMF = 65,330,000. The time elapsed by MOPSO to find the optimal solutions is 

6.711 Seconds. 

Therefore, the results obtained by both MOGA and MOPSO on the case study 

show that MOPSO is a powerful and suitable algorithm to solve the problem in 

comparison with MOGA in terms of TMF and CPU time. 

 

4.7      Summary  

In this chapter, a bi-objective multi-item multi-period inventory problem with 

total available budget under all unit discount for some items and incremental 

quantity discount for other items was considered. The orders were assumed to be 

placed in batch sizes and the order quantities at the end period were zeroes. 

Shortages were allowed and contained backorder and lost sale. It was assumed that 

the beginning order quantity in primary period was zeroes and the order quantity in 

each period was more than the shortage quantity in the previous period. Due to 

adopting decisions related to a certain department of production planning (extending 

warehouse or building a new manufacturing line), the manager decided to build a 

new warehouse for the ordering items. The objectives were to minimize both the 

total inventory costs and the total required storage space, for which a weighted 

combination was defined the objective function. The aim of the study was to 

determine the optimal order quantity and the shortage quantity of each product in 

each period such that the objective function is minimized and the constraints hold. 

The developed model of the problem was shown to be an integer nonlinear 

programming mixed with binary variables. To solve the model, both a multi-

objective particle swarm optimization and multi-objective genetic algorithms were 

applied. The results showed that for the 10 specific problems the MOPSO performs 

better than, the MOGA in terms of the fitness function values.
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Table 4.11: The optimal solutions obtained by MOGA for the case study  

Product Qi,1 Qi,2 Qi,3 Qi,4 Xi,2 Xi,3 Xi,4 Vi,1 Vi,2 Vi,3 Vi,4 bi,1 bi,2 bi,3 bi,4 

MDF 160 160 240 0 50 100 160 8 8 12 0 0 0 0 0 

HMA 72 90 108 0 22 62 110 4 5 6 0 0 0 0 0 

HGF 80 100 150 0 48 116 216 20 25 30 0 0 0 0 0 

PVC 80 120 150 0 48 136 236 10 15 19 0 0 0 0 0 

 

Table 4.12: The optimal solutions obtained by MOPSO for the case study 

Product Qi,1 Qi,2 Qi,3 Qi,4 Xi,2 Xi,3 Xi,4 Vi,1 Vi,2 Vi,3 Vi,4 bi,1 bi,2 bi,3 bi,4 

MDF 140 100 140 0 30 20 0 7 5 7 0 0 0 0 20 

HMA 54 36 180 0 4 0 2 3 2 10 0 0 0 10 0 

HGF 40 20 192 0 8 0 6 10 5 48 0 0 0 8 0 

PVC 88 176 176 0 0 8 46 11 22 22 0 0 0 0 0 

1
1

5
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CHAPTER 5: A MODIFIED PARTICLE SWARM OPTIMIZATION FOR 

SOLVING THE INTEGRATED LOCATION AND INVENTORY 

CONTROL PROBLEMS IN A TWO-ECHELON SUPPLY CHAIN 

NETWORK 

5.1      Introduction 

This Chapter considers a supply chain network in which several vendors 

(manufacturers) are considered to be located in a certain area among numerous 

buyers who own the warehouses and have limited capacity. Furthermore, the 

objective is to find the optimal quantity that each buyer orders from the vendors. In 

a location allocation problem, several new facilities are located in between a number 

of pre-specific customers in a determined area such that the total transportation cost 

from facilities to customers is minimized. In order to optimize the proposed multi-

product multi-period supply chain problem and determine the location of the 

vendors in a specific area among the buyers, two meta-heuristic algorithms which 

are a modified particle swarm optimization (MPSO) and GA were utilized in this 

Chapter. 

The rest of the chapter is organized as follows. In section 5.2, a description of the 

provided problem is explained where the supply chain model was formulated. 

Section 5.3 contains the solution methodologies of the problem in which MPSO and 

GA were explained. In section 5.4, some numerical examples were generated to 

compare the algorithms where Taguchi approach is presented for setting the 

algorithms’ parameters. Finally, a conclusion of the problem was represented in 

section 5.5. 
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5.2      Problem description and formulation 

This chapter aims to optimize a supply chain network for a multi-product multi-

period inventory system with multiple buyers, multiple vendors and warehouses 

with limited capacity owned by the vendors. The inventory replenishment starts at 

a certain time-period and finish at another time-period where the buyers purchase 

the products from the vendors during these interval periods. The vendors provide 

(produce) the various products to the buyers with variable demand rates under all-

unit discount policy since the production capacity of each vendor is restricted. The 

vendors satisfy the buyers’ demands immediately in all the periods so that no 

shortages occur during the replenishment. When the demands of the buyers are 

satisfied in a period, the products remained from the period in addition to the order 

quantities of the next period enter into the warehouses. 

The total available budget for purchasing the products and also the total vendors’ 

warehouse space were constrained. Moreover, the distance between the buyers and 

the vendors is assumed as Euclidean distance. Figure 5.1 shows a graphical 

illustration of the proposed model where the vendors store the products into their 

warehouses and then the products are transported from these warehouses to the 

buyers. 

The model proposed in this chapter is an extension of the inventory model shown 

in Chapter 4 in which a novel mathematical model of the supply chain network of 

the proposed multi-item multi-period (seasonal) inventory problem is considered. In 

the problem provided in Chapter 4, the inventory system of multiple items in a finite 

horizon (multi-period) was formulated without considering where these items come 

from and go to. In other words, the members (upstream and downstream) of the 

system were not considered. In this chapter, a supply chain network of multiple item 

produced and distributed in each period (season) in a finite horizon is considered 
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where the manufacturers produce the different items and then store them into their 

own storages to meet the demand of the customers.  

Therefore, the contributions of the work presented here are as follows. This is for 

the first time in the literature a novel model of supply chain network of multi-item 

multi-period (seasonal) inventory control problem is formulated at which 

manufacturers and buyers are involved. The production process of manufacturers is 

also considered in this work where the production capacity of the items is restricted. 

The owner of the supply chain network aims to find the coordinates of the optimal 

locations of the manufacturers with subject to the customers’ demands and the order 

quantities received from these customers so that the total system costs are 

minimized. The items are delivered from the manufacturers’ storages with limited 

space to customers using trucks with limited capacity where the path (distance) 

between each manufacturer and customer follows Euclidean distance function. In 

order to encourage the customers to stay with the company, the manufacturers 

propose their items under AUD discount policy. Due to the complexity of the 

problem (being Np-hard), while the normal solvers are unable to solve the problem, 

a modified version of the PSO (MPSO) with different type of representation of 

solutions is used. Furthermore, a case study is also performed in a real company to 

evaluate the model on a real problem. 
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Figure 5.1: The illustration of the supply chain model 

5.2.1   Notations and assumptions 

The indexes, notations and assumptions involved in the supply chain model come 

as follows: 

(a)    Indexes 

1 2i , ,...,I is the index of the buyers 

1 2j , ,...,J  is the index of the products 

1 2k , ,...,K is the index of the vendors 

t , 0 1t , ,...,T is the index of the time periods 

p , 1 2p , ,...,P is the index of the price break points 

 

(b)   Notations 

ijktpu : A binary variable that is set to 1 if buyer i  purchases product j from 

vendor k  at price break point j  in period t , and set to 0 otherwise 

ijktd :  Demand of buyer i  for product j  produced by vendor k in period t  

ijktT : Total time elapsed up to and including the 
tht  replenishment cycle 

of the 
thj product ordered by buyer i from vendor k  
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kf :  The production capacity of vendor k  

kS :  The storage capacity of vendor k  

ijkth : Inventory holding cost per unit of 
thj product in the warehouse 

owned by vendor k  sold to buyer i  in period t  

ijktA : Ordering cost (transportation cost) per unit of 
thj product from 

vendor k to buyer i  in period t  

ijktpc : Purchasing cost per unit of 
thj product paid by buyer i to vendor k at 

thp price break point in period t  

ijktpe : thp price break-point proposed by vendor k to buyer i for purchasing 

thj product in period t  ( 0ijkt1e  ) 

ijkts : The required warehouse space for vendor k  to store per unit of 
thj

product sold to buyer i  in period t  

B :  The total available budget  

C :  An upper bound for the available order quantity
 

ijktw  : A binary variable that is set to 1 if buyer i  orders product j  from 

vendor k in period t , and set to 0 otherwise 

TC  :  The total inventory costs 

1 2( )i i ia a ,a :  The coordinates of the location of buyer i  

1 2( )k k ky y ,y :The coordinates of the location of vendor k  (decision variable) 

ijktQ : Ordering quantity of 
thj product purchased by buyer i  from vendor 

k in period t  (decision variable)  
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ijktx : The initial (remained) positive inventory of 
thj product purchased by 

buyer i  from vendor k in period t  ( 1 0ijkx  ) (decision variable) 

I( t ) :  Inventory position in period t  

1 2( , )k kg y y :     The region to locate the vendor k  (here is trapezoidal) 

 

(c)   Assumptions 

i. The shortages are not allowed 

ii. The Replenishments are instantaneous  

iii. The buyers’ demand rates of all products are independent from each other 

and variable in the different periods. 

iv. The initial order quantity of all products ordered by the buyers from each 

vendor is zero (i.e., ijk1x 0 ) 

v. The order quantity of the products from the vendors made by the buyers in 

each period is at least equal to the demand rates in during the period (i.e.

ijkt ijkt ijktQ  d T  ). 

vi. Planning horizon is finite and known. In the planning horizon, there are T 

periods. 

vii. The total available budget to purchase the products, the total warehouse 

space of each vendor and the total production capacity of the vendors are 

limited. 

viii. The distance between the buyers and the vendors is assumed to be Euclidean 

distance. 

ix. The vendors have the limited capacity of producing the items.  
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x. The paths between the buyers and the vendors are connected and the unit 

transportation cost is proportionate of the quantity supplied and the travel 

distance. 

xi. Each vendor has their own warehouse to keep the produced items before 

reaching the demands  

xii. No order is made at the last period 

5.2.2   Problem formulation 

In order to formulate the supply chain problem in hand, Figure 5.2 provides some 

possible scenarios for the inventory system of the problem. The objective function 

of the problem is to minimize the total costs comprising Transportation cost (TrC ), 

Holding cost ( HC ) and Purchasing cost ( PC ). To formulate the objective function, 

first the transportation cost is calculated. The transportation cost is obtained by 

considering the Euclidean distance between the buyers and the vendors using the 

following equation: 

2 2

1 1 2 2

1 1 1 1

( ) ( )
I J K T

ijkt ijkt ijkt k i k i

i j k t

TrC Q w A y a y a
   

                                    (5.1) 

where 2 2

1 1 2 2( ) ( )k i k iy a y a   calculates the Euclidean distance between buyer 

i  with coordinate 1 2( , )i i ia a a and vendor k  with coordinate 1 2( , )k k ky y y . 

According to Figure 4.2, the holding cost in interval [ , 1]T T  is obtained using 

the following equation:  

1
( )

T

T
I t dt

                                                                                                         (5.2)      

and for the whole periods we have: 

1
2

( )
T t

t
t

I t dt




                                                                                                    (5.3) 
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Therefore, the total holding cost becomes: 

1

1

1 1 1 1

( ) / 2
I J K T

ijkt ijkt ijkt ijkt ijkt

i j k t

HC x Q x T h




   

                                                 (5.4) 

 

 

 

 

 
Figure 5.2: Some possible scenarios for the available inventory system 

 

In the proposed supply chain problem, the buyers purchase the products in each 

period under the discount strategy provided by the vendors. In this work, the 

products are bought under AUD policy since the price-break point suggested by the 

vendors is as: 

1 1 2

2 2 3

              

ijkt ijkt ijkt ijkt

ijkt ijkt ijkt ijkt

ijktP ijktP ijkt

c e Q e

c e Q e

c e Q

 


 


 

                                                                      (5.5) 

Then, the total purchasing cost under AUD policy is obtained as Equation (5.6). 

1I J K T P

ijkt ijktp ijktp

i j k t p

PC Q c u



                                                                                  (5.6) 

Therefore, the objective function of the total cost comes as:  

Tc TrC HC PC                                                                                                            (5.7)

 

The supply chain model proposed in this paper is formulated as follows: 

… 
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2 2

1 1 2 2

1 1 1 1

1 1

1

1 1 1 1 1 1 1 1 1

( ) ( )

( ( ) / 2)

I J K T

ijkt ijkt ijkt k i k i

i j k t

I J K T I J K T P

ijkt ijkt ijkt ijkt ijkt ijkt ijktp ijktp

i j k t i j k t p

MinTc Q A w y a y a

x Q x T h Q c u

   

 



        

    

  



 
         (5.8) 

S.t. 

1ijkt ijkt ijkt ijkt ijktx x Q d T                                                                                         (5.8-1) 

1 1

( )
I J

ijkt ijkt ijkt k

i j

Q x s S
 

                                                                               (5.8-2) 

1 1 1

I J T

ijkt k

i j t

Q f
  

                                                                                                   (5.8-3) 

1

1 1 1 1 1

I J K T P

ijkt ijktp ijktp

i j k t p

Q c u B


    

                                                                                 (5.8-4) 

ijktQ C                                                                                                                             (5.8-5) 

1  Q 0

0

ijkt

ijkt

if
w

otherwise


 


                                                                                                  (5.8-6) 

1

1  Q 0

0

P
ijkt

ijktp

p

if
u

otherwise


 


                                                                                             (5.8-7) 

1 2, 0; , ;  ( , ) 0;

(  1,2,..., ;  1,2,..., ;  1,2,..., ;  1,2,..., ) 

ijkt ijkt ijkt ijktp k kQ x w u binary g y y

for i I j J k K t T

   

   
 

In Equation (5.8), there are several constraints that can increase the complexity 

of the model. The restriction (5.8-1) obtains the initial inventory of each buyer in 

each period remained from the previous period. Equation (5.8-2) determines that 

each vendor’s warehouse has a limited capacity. Also, each vendor has a limited 

production capacity that is shown by Equation (5.8-3). The total available budget to 

purchase the products is restricted where the relevant limitation is proposed by 

Equation (5.8-4). Furthermore, Equation (5.8-5) shows an upper bound (due to the 

production limitations) for the order quantities. Equation (5.8-6) represents a binary 
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variable for making an order and Equation (5.8-7) says each buyer must purchase 

each item maximum at a price break point in each time. 

5.3      Solution methodologies 

In the current section, in order to solve the proposed two-echelon supply chain 

model, a MPSO is applied where a GA algorithm is used to compare and evaluate 

the performance of the proposed algorithm. The MPSO is explained as the following 

stages. 

5.3.1   Initializing the parameters 

Firstly, the parameters concerned with the MPSO including the number of 

particles ( NoP ), the number of generations ( NoG ) and two parameters 1  and 2

, are defined. Additionally, the position and velocity, which are two variables in 

PSO algorithm, are initialized using Equations (5.9) and (5.10), respectively. In 

Equation (5.9), 0

lz is the initial position of particle l ( 1,2,...,l NoP ), minz is the 

lower and upper bound on the design variables (here, min 0z 
 
and 

maxz C
 
for Q ) 

and rand is a random number in the interval (0,1) . Also, in Equation (5.10) 0

lv is 

the initial velocity of the particle l ( 1,2,...,l NoP ) and   is the constant time 

increment and assumed 1. These parameters are also adjusted using the Taguchi 

method which is explained in the next section. Figure 5.3 shows a representation of 

the particles, where the values of the order quantity are generated randomly in the 

interval of  0,  C  and the number of particles in each generation is set to NoG . 

Moreover, the vendors and customers are assumed to be located into a certain region 

with coordinates 
1 [0,100]y   and 

2 [0,100]y  . 

0 min max min( )lz z rand z z                                                                              (5.9) 
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0
0

l
l z

v


                                                                                                           (5.10) 

 

 
Figure 5.3: The presentation of a particle 

 

 

5.3.2    Evaluating the particles 

In this stage, we evaluate each of the particles by using Equation (5.8). Figure 5.4 

represents a population of the particles since the objective value of the particles is 

depicted byTC . 

 

Figure 5.4: The representation of a population of the particles 

 

5.3.3   Updating the velocities and positions 

In order to search the solutions in the feasible area of the problem, the velocity 

and position of the particles in each generation of PSO are updated as the following 

formulas.  

1 1 1 2 2. . .( ) . .( )l l l l l

n n n n n nv w v r pBest z r gBest z                                        (5.11) 

1 1.l l l

n n nz z v                                                                                                (5.12) 
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In Equation (5.11), 1r  
and 2r are two numbers generated randomly in the interval 

of (0,1) , the coefficients 1  
and 2  

are the given acceleration constants towards 

pBest and gBest , respectively, and w  is the inertia weight where is expressed 

as Equation (5.13) (Naka et al., 2001). Furthermore, 
l

npBest and ngbest
 
are the best 

fitness value for particle l  until time n , ( 1,2,...,n NoG ) and the best particle 

among all until time n , respectively. 

max min
max

( )
.

w w
w w n

NoG


                                                                             (5.13) 

In Equation (5.13), NoG  is the maximum number of iterations and n  is the 

current number of iteration. (Shi & Eberhart, 1999) and (Naka et al., 2001) have 

claimed the best result will be obtained since. 
min max[ , ] [0.4,0.9]w w   

An important aspect of generation and initializing the particles is that solutions 

must be feasible and satisfy the constraints. A penalty function approach is used for 

those particles that do not satisfy all the constraints given in Equation (5.14). 

( )R x L                                                                                                  (5.14)  

Therefore, the corresponding penalty function is defined as follows: 

0  inequality is satisfied
( )

( ( ) )

if
F x

R x L otherwise


 


                                          (5.15) 

where   is the coefficient of the penalty function (here, 10  ). 

5.3.4    Stopping criteria 

In a meta-heuristic algorithm, the stopping criterion can be reached by specifying 

CPU time, a specific value of the objective value, or a specefied number of 
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generation. In this research, the number of generation ( NoG ) has been adopted to 

stop the optimization process.  

Furthermore, in order to validate the performance of MPSO, a GA is applied 

based on the following steps. 

I. Initialize the chromosomes, the number of generation ( NoG ), the number 

of population ( NoP ), the probability of crossover ( CP ) and the probability 

of mutation ( mP ). 

II. Evaluate the chromosomes by using Equation (5.8). 

III. Select the chromosomes based on the tournoment method to enter the 

production pool (each time select two chromosomes and one with the best 

objective value is selected). 

IV. Perform crossover operator on the chromosomes. First, for each 

chromosome, generate a random number between 0  and 1 . Those are 

selected for the crossover operator that their related random numbers are set 

to less or equal to CP . Next, two chromosomes out of the selected 

chromosomes are chosen for the crossover operator randomly. If 1chro and 

2chro
 

are the two chosen chromosomes (parents), the offsprings are 

generated as: 

1 1 2. (1 ).off rand chro rand chro    

2 1 2(1 ). .off rand chro rand chro                                                            (5.16) 

where rand is a random number between 0 and 1 and 1off and 2off  are the 

offspring. 

V. Perform mutation operator. In this operator, a random number is also 

generated between 0 and 1 for each chromosome for which the 1s are 
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selected for mutation operator that have values less or equal to 
mP . Hence, 

the mutation operator generates the new chromosomes from the selected 

chromosomes as follows: in each chromosome a variable is selected 

randomly and is changed in the range randomly. 

VI. Perform elitism operator. Those chromosomes that are not selected for both 

crossover and mutation operators enter directly to next generation in the 

order of their objective values while the number of population reaches 

NoP . 

VII. Stop the algorithm based on is reaching a specific number of generation. 

5.4      Data generating, Parameter setting and computational results 

In this section, first a range of random numerical examples is generated to 

evaluate the algorithms on the supply chain model. Secondly, we design a Taguchi 

method to tune the parameters of the algorithms where MINITAB software version 

15 is used to analyze the data. Finally, a case study is considered to evaluate the 

model on a real world case. In order to solve the model proposed by Equation (5.8), 

MATLAB (R2013a) software is used to code the algorithms on a PC with RAM 

4GH and CPU 2.5 dual cores. 

5.4.1    Generating data 

The examples were constructed by generating values for the parameters provided 

in this study. Parameter generation was summarized in the list shown in Table 5.1. 

Table 5.1 depicts the value ranges used to generate the different problems which are 

classified in three categories of small, medium and large. In other words, the value 

ranges of all parameters are shown in Table 5.1. For example according to Table 

5.1, (20 to 50)  means the minimum demand values for all items that each customer 

can order in all periods (seasons) are equal to 20 and the maximum demand values 
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would be 50, respectively. For each generated problem shown in Tables 5.5, 5.6 and 

5.7, the demand values for each item in each period are variable while these values 

can be changed for each item in different periods (seasons) like those explained in 

Table 4.3. Table 5.1 uses the strategy applied in (Dayarian et al., 2016; Diewert et 

al., 2009; Mogale et al., 2017; Saracoglu et al., 2014; Tanksale & Jha, 2017) to 

generate data randomly. In addition, according to (Costantino et al., 2016), demands 

in seasonal items can be random. 

 

Table 5.1: The input data of the test problems 

ijktd  ijktT  ijkth  ijktA  C  ia  ijktpc  

(20 to 50)  (1 to 3)  (1 to 20)  (1 to 20)  (1 to 150)  (1 to 100)  (10 to 20)  

 

A very common approach to generate data is to generate a wide range of 

numerical examples with different sizes randomly to show how the algorithms 

perform on different problems with different sizes (Dayarian et al., 2016; Diewert 

et al., 2009; Saracoglu et al., 2014; Tanksale & Jha, 2017). In this study, three 

categories based on size each one with 10 instances were generated randomly. The 

Small-scale instances were generated with 5 to 10 buyers, 1 to 5 products and 

vendors and 1 to 3 periods. The Medium-scale instances were generated with 11 to 

20 buyers, 6 to 10 products, 1 to 10 vendors, and 1 to 5 periods since in Large-scale 

instances these values are 20 to 30 for buyers, 11 to 15 for products and vendors and 

6 to 10 for periods. Additionally, the number of price-break point for all the three 

categories is considered to be 4. 

Table 5.2: Sizes of the proposed instances 

Description Buyers (I) Products (J) Vendors (K) Periods (T) 
Price-break 

point 

Small-scale [5-10]  [1-5] [1-5] [1-3] 4 

Medium-scale [11-20] [6-10] [1-10] [1-5] 4 

Large-scale [20-30] [11-15] [11-15] [6-10] 4 
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5.4.2    Parameter setting 

One of the major problems in using meta-heuristic algorithms is that the 

algorithm parameters can take different values for different problems. A searchable 

space refers to the possiblity of measuring the distance (similarity) between any two 

candidates so that a sensible search space (landscape) could be defined. In other 

words, for any candidate, it should be possible to find out which candidates are close 

to it and which candidates are far from it (Yuan & Gallagher, 2005). In this work, 

in order to reduce the computational time to obtain the best solution, the proposed 

MPSO and GA algorithms were tuned using the Taguchi method. The Taguchi 

method is a fractional factorial experiment introduced by Taguchi applied as an 

efficient alternative for full factorial experiments (Shavandi et al., 2012). The 

Taguchi method is also one of the most well-known approaches that is utilized for 

tuning the meta-heuristic parameters used in the literature recently (Mousavi et al., 

2013; Mousavi et al., 2013; Mousavi & Niaki, 2012; Mousavi et al., 2013; Peace, 

1993; Sadeghi et al., 2013b). As aforementioned, MPSO and GA were applied to 

find the optimal solutions of the two-echelon supply chain network in Equation (5.8) 

at which 1 , 2 , NoP  and NoG are the input parameters of MPSO and CP , mP , 

NoP  and NoG  are the input parameters of GA. In this research, the “Smaller is 

Better” type of response has been employed (since the goal is to minimize S/N), 

where S/N is given as. 

1/ 10 log( )
l

l
ratio

Y

S N




  


                                                                         (5.17) 

In Equation (5.17), Y and  (here, 1  ) are the response and the number of 

orthogonal arrays, respectively. To design the Taguchi for both meta-heuristic 
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algorithm parameters, we used 9L design where the values and levels of the 

parameters are given in Table 5.3. The values in Table 5.3 were obtained after 

numerous tests and analyses on the current instances of the categories using the 

frequent runs of the algorithms. We represented the experimental design for 

Problem No. 1 of Small-scale category in details in order to show how the 

parameters were tuned in each of instances. Table 5.4 represents the orthogonal 

arrays along with their responses for both MPSO and GA for Problem Number 1 

(No. 1) of Small-scale shown in Table 5.5. In Table 5.4, A and B show the factors of 

1 and 2 in MPSO and CP and mP  in GA respectively since C and D are 

equivalent to NoP  and NoG  in both MPSO and GA. Moreover, the sixth and 

seventh columns of Table 5.4 represent the responses of MPSO and GA approaches 

for Problem No. 1 of Small-scale category respectively. Figures 5.5 and 5.6 display 

the mean S/N ratio plot of the MPSO and GA for Problem No. 1 of Small-scale 

respectively. According to Figures 5.5 and 5.6, the optimal levels of the MPSO’s 

factors are 1 2.5  , 2 2  , 20NoP   and 100NoG   where these levels for GA’s 

factors are 0.6CP  , 0.2mP  , 40NoP   and 500NoG   for GA. 

Table 5.3: The MPSO and GA parameters’ levels 

Algorithm Parameters 1 2 3 

MPSO 

1  1.5 2 2.5 

2  1.5 2 2.5 

NoP  20 30 40 

NoG  100 200 500 

GA 

CP  0.5 0.6 0.7 

mP  0.08 0.1 0.2 

NoP  30 40 50 

NoG  200 300 500 
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Table 5.4: The experimental results on the MPSO and GA parameters for Problem 

No. 1 of Small-scale 

Exp. No. A B C D MPSO GA 

1 1 1 1 1 30456 31416 

2 1 2 2 2 28953 29356 

3 1 3 3 3 28091 32431 

4 2 1 2 3 31371 33253 

5 2 2 3 1 32646 31098 

6 2 3 1 2 31467 31829 

7 3 1 3 2 30633 29809 

8 3 2 1 3 34968 30963 

9 3 3 2 1 34894 32646 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: The mean S/N ratio plot of the MPSO on Problem No. 1 of Small-scale 

 

 
Figure 5.6: The mean S/N ratio plot of the GA on Problem No. 1 of Small-scale 
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5.4.3    The results and comparisons 

In this section, we compare the results obtained from both MPSO and GA with 

each other on the 10 instances generated from the three aforementioned categories 

to find the best methodology for solving the proposed two-echelon supply chain 

model. Tables 5.5, 5.6 and 5.7 demonstrate the input parameter and the objective 

values of both MPSO and GA for each one of the instances of the three categories 

generated in the range given in Table 5.2. In these Tables, the optimal values of the 

algorithm parameters are obtained using the Taguchi method with 9L  design. 

Furtheremore, the optimal values of the objective function for MPSO and GA 

(which are TC ) resulted from each instance of the three categories are also shown 

in the columns 14 and 19 of Tables 5.5 to 5.7, respectively.  

In order to compare the performance of MPSO and GA in terms of the objective 

function, several approches were employed in this research. First, we have taken the 

average and standard deviation (St. Dev) of each 10 instances for all the category 

problems showing in the last two rows of Tables 5.5, 5.6 and 5.7. The results of 

average and St. Dev of the instances in the three categories demonstrate that MPSO 

has outperformed GA. 

A graphical approach shown in Figure 5.7 is also secondly applied to compare 

the performance of the algorithms on the 10 generated instances of Small-scale, 

Medium-scale and Large-scale categories. According to Figure 5.7, in each three (a) 

Small-scale, (b) Medium-scale and (c) Large-scale, the proposed MPSO seems to 

have a better efficiency than GA. 
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Table 5.5: The input parameters and the objective function of MPSO and GA for Small-scale problems 

Problem 

No. 
Buyer product vendor Period 

Price-break 

point jS  B  kf  
MPSO   GA 

1  
2  NoP  NoG  TC    CP  

mP  NoP  NoG  TC  

1 2 2 2 2 4 2500 18000 500 2.5 2 20 100 26367  0.6 0.2 40 500 28936 

2 3 3 3 3 4 19000 125000 1500 2.5 2.5 20 200 434250  0.7 0.1 40 300 457312 

3 5 2 3 2 4 4000 75000 900 2 2.5 30 100 222371  0.7 0.1 30 300 247460 

4 5 3 3 3 4 15000 210000 2500 2.5 2.5 30 200 824325  0.7 0.08 40 300 886870 

5 5 2 2 2 4 3000 55000 700 2 2.5 20 200 142930  0.6 0.1 30 200 165640 

6 5 5 5 2 4 16000 290000 1900 2 2 30 500 1129720  0.7 0.2 50 500 1383900 

7 8 2 2 2 4 3500 70000 1400 2.5 2.5 30 200 348390  0.6 0.1 30 300 453462 

8 8 3 3 3 4 17000 350000 3700 2 2.5 20 100 1159504  0.6 0.1 30 200 1392806 

9 10 2 3 3 4 15000 270000 3500 2 2.5 30 100 1229134  0.7 0.1 30 200 1421100 

10 10 4 5 2 4 16000 450000 3200 1.5 2 30 200 1897425   0.6 0.2 50 300 1958302 

Average - - - - - - - - - - - - 741441.6  - - - - 839578.8 

St. Dev - - - - - - - - - - - - 605014.8  - - - - 662608.1 

 

 

 

 

 

 

 1
3

5
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Table 5.6: The input parameters and the objective function of MPSO and GA for Medium-scale problems 

Problem 

No. 
Buyer product vendor Period 

Price-break 

point is  B  kf  
MPSO   GA 

1  
2  NoP  NoG  TC    CP  

mP  NoP  NoG  TC  

1 12 6 6 4 4 120000 4000000 21000 1.5 2 30 200 15747123  0.7 0.1 30 300 16817032 

2 15 6 6 4 4 130000 4050000 22000 2 2 40 500 20956050  0.6 0.08 50 500 21646300 

3 15 6 6 5 4 200000 5400000 30000 2 2.5 50 500 36222230  0.7 0.1 40 500 36649110 

4 15 6 10 4 4 210000 6800000 22500 2.5 1.5 40 500 36885490  0.6 0.2 40 300 40413290 

5 20 6 2 2 4 9000 580000 9600 2 2.5 30 200 2775400  0.7 0.2 30 300 2977320 

6 20 6 3 3 4 35000 1850000 20000 2.5 2.5 20 100 10260430  0.7 0.2 30 200 10774120 

7 20 7 2 2 4 110000 720000 11000 2 1.5 20 100 3126310  0.6 0.1 30 300 3499230 

8 20 7 3 3 4 46000 2100000 23000 1.5 2.5 40 200 12290540  0.6 0.2 40 300 13117650 

9 18 8 2 2 4 17500 715000 12200 2.5 2.5 30 500 3249270  0.5 0.2 50 500 3570419 

10 18 8 3 4 4 100000 3300000 36500 2.5 2 40 100 14889710   0.7 0.08 30 300 14964700 

Average - - - - - - - - - - - - 15640255  - - - - 16442917 

St. Dev - - - - - - - - - - - - 12559251  - - - - 13207845 

 1
3

6
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Table 5.7: The input parameters and the objective function of MPSO and GA for Large-scale problems 

No. 

Problem 
Buyer product vendor period 

Price-break 

point is  B  kf  
MPSO   GA 

1  
2  NoP  NoG  TC    CP  

mP  NoP  NoG  TC  

1 21 11 11 6 4 170000 8000000 45000 1.5 1.5 30 500 27456901  0.6 0.1 20 300 30234321 

2 22 11 11 6 4 170000 8000000 45000 2.5 2 30 200 28092034  0.7 0.08 30 500 31092340 

3 25 12 11 6 4 180000 8500000 48000 2.5 1.5 50 100 31003290  0.7 0.2 50 300 33785005 

4 25 12 12 6 4 205000 880000 50000 2 2 30 200 31980245  0.5 0.1 30 300 34098210 

5 27 11 11 6 4 180000 850000 45000 2.5 2 30 200 30900700  0.6 0.2 40 200 33109230 

6 28 12 12 6 4 200000 880000 47500 2 1.5 50 500 32980134  0.7 0.08 30 300 34561200 

7 29 11 11 7 4 160000 820000 44000 2.5 2.5 30 500 31003410  0.7 0.2 40 300 34789123 

8 30 11 11 6 4 170000 810000 46000 2 2 50 100 29891360  0.6 0.1 40 200 33421876 

9 30 12 12 6 4 210000 890000 50000 2.5 2 40 200 33209130  0.7 0.2 50 300 36490080 

10 30 15 15 10 4 450000 1100000 75000 2 2 30 500 48710900   0.6 0.2 50 500 52082400 

Average - - - - - - - - - - - - 3466347.5  - - - - 3567944.6 

St. Dev - - - - - - - - - - - - 5986070  - - - - 6139669.1 

 

 

 

 1
3

7

4
 

Univ
ers

ity
 of

 M
ala

ya



138 

 

 

Finally, to compare the performance of the algorithms, we have performed an 

independent two-sample t-test with a 95% confidence for the instances of the 

categories where a hypothesis test for means of MPSO and GA when their standard 

deviations are unknown is as:  

0 0H :  MPSO GA     versus  1 0H :  MPSO GA                                  (5.18) 

at which MPSO

and GA are the means of the objective values of the two algorithms 

and 0  is the hypothesized difference between the means of the algorithms. Tables 

5.8, 5.9 and 5.10 depict the results of t-test for the instances of Small-scale, Medium-

scale and Large-scale categories respectively. From Tables 5.8 and 5.9, it is clear 

that P-values are greater than commonly chosen -levels. Hence, there is no 

evidence for a difference in the performance of the algorithms on the instances of 

Small-scale and Medium-scale categories. However, the P-value in Table 5.10 also 

shows that there is a no difference between the two algorithms for the instances of 

Large-scale category. Therefore, MPSO has performed efficiently for solving the 

integrated location allocation two-echelon supply chain problem. 

For more understanding of the solutions, the optimal order quantity and location 

of the vendors obtained by MPSO for Problem No. 1 of Small-scale category are 

shown in Figure 5.8. Furthermore, in order to clarify the trend of the solutions 

obtained from the first generation to the last, Figures 5.9 and 5.10 demonstrate the 

convergence path of the objective values for the MPSO and GA for Problem No. 10 

of Medium-scale category, respectively. Figure 5.11 also shows a representation of 

the optimal locations of the vendors among the buyers obtained by MPSO for 

Problem No. 7 of Medium-scale category. 
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Figure 5.7: The graphical representation of the objective function resulted from 

MPSO and GA on the generated instances of (a) Small-scale, (b) Medium-scale and 

(c) Large-scale 
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Table 5.8: The ANOVA for the instances of Small-scale category 

Methodology N Mean St-Dev SE-Mean T-Value P-Value 

PSO 10 741442 605015 191322 -0.35 0.734 

GA 10 839579 662608 209535  -  - 

 

Table 5.9: The ANOVA for the instances of Medium-scale category 

 Methodology N Mean St-Dev SE-Mean T-Value P-Value 

PSO 10 15640255 12559251 3971584 -0.14 0.891 

GA 10 16442917 13207845 4176687  -  - 

 

 

Table 5.10: The ANOVA for the instances of Large-scale category 

Methodology N Mean St-Dev SE-Mean T-Value P-Value 

PSO 10 32522810 5986070 1892962 -1.05 0.309 

GA 10 35366379 6139669 1941534 -  -  

 

 

 
Figure 5.8: A representation of the optimal solution obtained by MPSO for Problem 

No. 1 of Small-scale category 

 

 

Figure 5.9: The convergence path of MPSO for Problem No. 10 of Medium-scale 

category 
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Figure 5.10: The convergence path of GA for Problem No. 10 of Medium-scale 

category 

 
Figure 5.11: The optimal location of the vendors among the buyers obtained 

by MPSO for problem No. 7 of Medium-scale category 
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problem. The company imports a number of products as well as MDF, HMA, HGF 

and PVC from the countries of Malaysia, Turkey, Thailand, China and Germany 

every three months. There are three main buyers located in the cities of Tehran, 

Kerman and Shiraz purchasing the items from the company as well where their 

demand rates are almost deterministic and known. Furthermore, the planning 

horizon is considered to be one year (12 months) including four periods (months), 

where the replenishment process is taking place every three months. The warehouse 

spaces and the purchasing costs of all the buyers were the same. The company aims 

to locate two vendors in the potential locations so that the total inventory costs are 

minimized. In addition, based on the data proposed by the company which is shown 

in Appendix B the area of the study is supposed to be a square area with coordinates 

distributed in the interval 0 100[ ,  ] in 10 Km where the buyers and the vendors are 

connected to each other with the paths.  

Tables 5.11 to 5.13 show the data collected from the first, second and third buyers 

located in Tehran, Kerman and Shiraz respectively which are presented in Appendix 

B. The locations coordinates of the buyers are proposed by the company to be (22, 

19), (18, 68) and (59, 65) in 10 Km. Figure 5.12 shows the coordinates of the buyers’ 

locations placed in Tehran, Kerman and Shiraz in Iran which are proposed by the 

marketing team department of the company (ORAMAN) where Mahshahr city is 

assigned to be placed in the location with coordinates (0, 0). Univ
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Figure 5.12: The coordinates of the buyers’ locations proposed by the marketing 

department of ORAMAN Wood Industry shown on Google Maps (Appendix B) 

 

The values of the other parameters are given as follows: 600C  , 18000kf 

(the production capacity of each vendor 1 2k , ), 25600kS m , and  

192 000 000 ITB , , . The price of each item is proposed under AUD policy which 

is the same for all vendors as follows: 
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Furthermore, the ordering costs and holding costs for all the items are as the same 

proposed in Table 4.9.
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Table 5.11: The data for a real problem collected from the first buyer located in Tehran 

Product 1 11jd  
1 12jd  

1 13jd  
1 21jd  1 22jd  

1 23jd  
1 1j tA  1 2j tA  

1 jkth  2
1 1j ts ( m )  2

1 2j ts ( m )  

MDF (sheet) 110 110 120 190 100 110 2999 2999 1990 592  250 

Adhesive (Kg) 90 100 90 70 40 110 299 299 190 199 100 

HGF (120m) 90 85 80 90 55 119 1999 1909 1990 300 300 

PVC (120m) 70 70 50 65 79 100 390 390 1990 400 400 

 

Table 5.12: The data for a real problem collected from the second buyer located in Kerman 

Product 2 11jd  
2 12jd  

2 13jd  
2 21jd  2 22jd  2 23jd  

2 1j tA  2 2j tA  
2 jkth  2

2 1j ts ( m )  2
2 2j ts ( m )  

MDF (sheet) 100 100 170 190 110 130 2199 2999 1190 259 250 

Adhesive (Kg) 50 95 80 80 70 65 180 299 190 199 100 

HGF (120m) 60 70 70 65 80 89 1999 1109 990 300 300 

PVC (120m) 60 80 70 70 75 95 320 390 990 400 400 

 

Table 5.13: The data for a real problem collected from the third buyer located in Shiraz 

Product 3 11jd  
3 12jd  

3 13jd  
3 21jd  3 22jd  3 23jd  

3 1j tA  3 2j tA  
1 jkth  2

3 1j ts ( m )  2
3 2j ts ( m )  

MDF (sheet) 100 90 105 110 80 105 2299 2299 1290 259 250 

Adhesive (Kg) 100 105 90 80 110 110 299 199 190 199 100 

HGF (120m) 115 105 100 100 105 129 1999 1209 1190 300 300 

PVC (120m) 89 99 80 85 99 115 390 390 1990 400 400 

 1
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The total optimal supply chain cost, the optimal locations of the vendors and 

the optimal order quantities obtained by MPSO were obtained as follows, where 

the CPU time elapsed by MPSO was 36.506. 

393 637 000 ITMPSOTC , ,  includes: 

Transportation costs (TrC ) = 137,700,000 IT 

Holding cost ( HC ) = 67,500,000 IT 

Purchasing cost ( PC ) = 187,800,000 IT 

1 32 44y ( ,  ) ; 2 42 25y ( ,  )  

1 [490, 520, 460, 490, 450, 530]MDFktQ   

1 =[520, 480, 450, 490, 530, 440]HMAktQ  

1 =[480, 500, 460, 440, 530, 480]HGFktQ  

1 [460, 440, 480, 500, 470, 460]PVCktQ   

2 [520, 480, 460, 460, 470, 510]MDFktQ   

2 [460, 520, 440, 450, 440, 470]HMAktQ   

2 [490, 500, 460, 530, 480, 470]HGFktQ   

2 [450, 480, 490, 460, 500, 470]PVCktQ   

3 [450, 500, 450, 490, 470, 500]MDFktQ   

3 [500, 450, 510, 520, 520, 450]HMAktQ   

3 [510, 440, 440, 470, 530, 480]HGFktQ   

3 [480, 520, 530, 520, 450, 490]PVCktQ   
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The total optimal supply chain cost, the optimal locations of the vendors and 

the optimal order quantities obtained by GA were computed as follows, where the 

CPU time elapsed by GA was 44.832. 

490 730 000GATc , , IT includes: 

Transportation costs (TrC ) = 193,220,000 IT 

Holding cost ( HC ) = 107,040,000 IT 

Purchasing cost ( PC ) = 190,470,000 IT 

1 31 59y ( ,  ) ; 2 40 37y ( ,  )  

1 450 530 480 480 470 520MDFktQ [ ,  ,  ,  ,  ,  ]  

1 490 490 510 470 510 480HMAktQ [ ,  ,  ,  ,  ,  ]  

1 460 470 490 510 530 470HGFktQ [ ,  ,  ,  ,  ,  ]  

1 480 460 520 510 480 450PVCktQ [ ,  ,  ,  ,  ,  ]  

2 500 510 480 450 520 510MDFktQ [ ,  ,  ,  ,  ,  ]  

2 450 490 480 520 500 480HMAktQ [ ,  ,  ,  ,  ,  ]  

2 510 530 480 480 490 480HGFktQ [ ,  ,  ,  ,  ,  ]  

2 480 480 470 470 520 500PVCktQ [ ,  ,  ,  ,  ,  ]  

3 510 520 440 480 480 490MDFktQ [ ,  ,  ,  ,  ,  ]  

3 530 470 500 510 490 490HMAktQ [ ,  ,  ,  ,  ,  ]  

3 510 470 480 460 510 490HGFktQ [ ,  ,  ,  ,  ,  ]  

3 480 500 470 530 520 510PVCktQ [ ,  ,  ,  ,  ,  ]  

Figures 5.13 and 5.14 show a representation of the optimal locations of the 

vendors among the buyers obtained by MPSO for the proposed case study. 
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Figure 5.13: The optimal location of the vendors among the buyers obtained 

by MPSO for the case study  

 

Figure 5.14: The optimal location of the vendors among the buyers obtained 

by GA for the case study 

 

5.5       Summary  

In this chapter, a two-echelon supply chain network for a inventory control 

problem was investigated where the vendors stored the produced products into their 

warehouses. The retailers made the orders for these products under all unit discount 

policy.  The main goal of the problem was to find the optimal order quantity of the 

products purchased by the buyers in addition to determining the optimal locations 

of the vendors among the known location of buyers so that the total supply chain 
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cost comprising transportation, holding and purchasing costs is minimized. The 

distances between the buyers and the vendors were supposed as the Euclidean 

distance. To solve the proposed supply chain model, a MPSO algorithm was 

employed where a GA was utilized to validate the results of the proposed algorithm. 

Taguchi method was also applied to set the parameters of the two algorithms. The 

results of the algorithms showed the MPSO has a better performance than the GA 

in terms of the objective function on both the generated instances of the three 

categories and the case study. 
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CHAPTER 6: OPTIMIZING A LOCATION ALLOCATION INVENTORY 

PROBLEM IN A TWO-ECHELON SUPPLY CHAIN NETWORK: A 

MODIFIED FRUIT FLY OPTIMIZATION ALGORITHM 

6.1      Introduction 

In this current Chapter, a mixed binary-integer nonlinear mathematical model is 

developed for a location-allocation two-echelon retailer-distributor supply chain 

problem in which a variety of the products are offered by the distributors to retailers. 

The distributors manufacture the products and store them in their own warehouses 

with limited capacities where there are certain places to hold each item. The retailers 

order different products from different distributors at specific time-periods based on 

their requirements. The products are delivered in certain packets with specific 

number of items using trucks with limited capacities. The planning horizon of the 

problem comprises multiple periods, where the replenishment process is taken place 

at the beginning of these periods. Here, different products in different periods may 

face shortages as a combination of lost sales and backorders. Moreover, it is possible 

the whole quantities of the products cannot be sold in different periods. Therefore, 

a number of items remain in the warehouses. In case of a shortage for a product in 

a period, the retailer should make an order at least as much as the demand becomes 

satisfied. Besides, due to some uncertain constraints, the distributors are not able to 

produce the products more than a specific value and also the total available budget 

is limited. The distributors provide the products to the retailers under all-unit and 

incremental quantity discount policies. The main goal is to find the optimal locations 

of distributors among the retailers and to determine the order quantities of the 

products ordered by the retailers from the distributors in different periods so that the 

total supply chain costs are minimized. Figure 6.1 depicts the supply chain network 

proposed in this work. Figure 6.2 shows a graphical illustration of the replenishment 
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process of the inventory system in the proposed supply chain network. In Figure 6.2, 

it is clear that in some periods there are items (inventory) available (the trapezoids 

above the line) and there are also shortages in some periods (the trapezoids below 

the line). 

This chapter is an extension of the previous work presented in Chapter 5 where 

the problem has been improved in some concerns significantly. In this model, the 

shortages are allowed for some items where some customers will stay to receive 

their ordered items (a fraction 
ijkt of customers are backorder) and some other 

customers will go to another company to get their orders (a fraction (1 )ijkt of 

customers are lost sale). Therefore, the shortage costs are added to the total system 

costs. In Chapter 5, shortages are not allowed. To encourage customers to buy more 

items, two discount policies as well as AUD for some items and IQD for other items 

are proposed by distributors where in the previous model only AUD policy was 

given. In addition, the items are delivered in the special boxes with pre-specific 

number of items where the items are not sent using the special boxes in the model 

of Chapter 5. Moreover, the proposed model is formulated and solved for two 

Euclidean and Square Euclidean distance functions among the distributors and 

retailers separately where the prior model is formulated only with Euclidean 

distance. Finally, for the first time in the literature FOA is improved for solving an 

inventory-supply chain and location allocation problem where the FOA showed 

better performance than other algorithms in terms of objective function and CPU 

time graphically and statistically while PSO was the best in Chapter 5.  

The rest of the chapter is organized as follows. In Section 6.2, the two-echelon 

retailer–distributor supply chain problem is defined. Also, the problem was 

formulated in this section. The solution algorithms come in Section 6.3 where a 
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modified fruit fly optimization algorithm (MFOA) was proposed. Some numerical 

examples are generated in Section 6.4 where the Taguchi approach is applied to tune 

the parameters of the algorithms. Furthermore, a case study is considered in Section 

6.4. Finally, the conclusion is settled in Section 6.5. 

 
Figure 6.1: The proposed supply chain network 

 

 

 

 
Figure 6.2: The graphical illustration of the inventory system in the proposed 

supply chain network 

 

6.2      Modeling the proposed problem 

To model the problem, let first introduce the assumptions of the supply chain 

model. Then, the parameters and the variables of the model are defined next. 

The assumptions involved in the supply chain problem at hand are: 
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i. Replenishment is instantaneous, i.e. the delivery time is assumed negligible. 

Based on other inventory research works, this assumption is made for the 

sake of simplicity and will not impose considerable influence on the 

modeling aspects.    

ii. The retailers demand rates of all products are independent of one another 

and are fixed in a period.  

iii. Retailers receive all products from the distributors in the certain packets with 

specific capacities, which are the ordered quantity of products is delivered 

in packets of a fixed-sized batch. 

iv. In case of shortage, a fraction of demand is considered backorder and a 

fraction as lost sales.  

v. The initial order quantity of all products is considered zero. 

vi. The planning horizon, a future time-period during which departments that 

support production plan production work and determine material 

requirements, is finite and known. In the planning horizon, there are periods 

of an equal length. 

vii. The retailers are located in a certain region.   

viii. The distance between the retailers and distributors are assumed to be either 

Euclidean or square Euclidean. 

6.2.1   Indices, parameters, variables, and decision variables 

In order to formulate the problem, the indices, the parameters, the variables, and 

the decision variables were defined as: 

(a)   Indices: 

 1 2i , ,...,I   An index for the retailers 

1 2j , ,...,J    An index for the products 
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1 2k , ,...,K   An index for the distributors 

t , 0 1t , ,...,T   An index for the periods 

m , 1 2m , ,...,M  An index for the price break points 

(b)  Parameters and variables: 

ijktm : A binary variable that is set to 1 if product j  is purchased by retailer 

i  from distributor k  at price break point m  in period t ; 0 otherwise 

ijktD :  The demand of retailer i  for the 
thj product from distributor k  in 

period t  

ijktT : Total time elapsed up to and including the order of 
thj product by 

retailer i  from distributor k  in the tht  period 

'

ijktT : The time length of period t  at which the demand of product j  

purchased by retailer i  from distributor k  reaches zero 

ijkth :  Inventory holding cost per unit time of the 
thj product produced by 

distributor k  for retailer i  in period t  

kf :  The production capacity of distributor k  

ijktn :  The fixed batch size of the 
thj product ordered by retailer i  from 

distributor k  in period t  

ijktO :  Transportation cost per unit of the
thj product carried out from 

distributor k  to retailer i  in period t  

ijktmc :  The cost paid by retailer i  to purchase one unit of the 
thj product 

from distributor k  at thm price break point in period t  
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ijktmq :  thm  price break-point offered by distributor k  to retailer i  for the 

thj product in period t  (here, 0ijkt1q  ) 

ijkts : The required warehouse space of retailer i  to store one unit of the 

thj product purchased from distributor k  in period t  

kS :  Total available space of the storage belongs to distributor k  

1 2( )i i ia a ,a :  The coordinates of the location of retailer i  

1 2( , )k kP x x :  The potential region of distributor k  

( , )k id x a :  A function indicating the distance between the locations of 

distributor k  and retailer i  

B :  The total available budget of the supply chain network 

ub :  An upper bound for the available number of boxes 

ijktv  : A binary variable set to 1 if retailer i  purchases product j  from 

distributor k in period t ; 0 otherwise 

TC  :  The total supply chain costs 

ijkt :  Backorder cost per unit of the 
thj product ordered by retailer i  to 

distributor k  in period t  

'

ijkt :  Lost sale cost per unit of the
thj product ordered by retailer i  to 

distributor k  in period t  

ijkt :  The percentage of backorder demand of the 
thj product ordered by 

retailer i  to distributor k  in period t  

(c)   Decision variables: 

1 2( )k k kx x ,x : The coordinates of the location of distributor k   
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ijktR : Number of packets of the 
thj product ordered by retailer i  to 

distributor k  in period t   

ijktb :  Shortage quantity of the 
thj product ordered by retailer i  to 

distributor k  in period t  

ijktQ :  Ordering quantity of the 
thj product ordered by retailer i  to 

distributor k  in period t  

ijkty :             The initial positive inventory of the 
thj product ordered by retailer i  to 

distributor k  in period t  (in 1t  , the beginning inventory of all 

products is zero) 

6.2.2   The supply chain cost 

The objective function of the proposed model is minimizing the total supply chain 

costs including transportation, holding, shortage, and purchase costs. The 

transportation cost, TrC ,  that includes the ordering cost as well was formulated as: 

1 1 1 1

( , )
I J K T

ijkt ijkt ijkt k i

i j k t

TrC Q O v d x a
   

            (6.1)         

where the function ( , )k id x a is either the Euclidean or the square Euclidean distance 

shown in Equations (6.2) and (6.3), respectively.   

2 2

1 1 2 2( , ) ( ) ( )k i k i k id x a x a x a              (6.2) 

2 2

1 1 2 2( , ) ( ) ( )k i k i k id x a x a x a                                                                      (6.3) 

According to Figure 6.2, the holding cost, HoC ,  was obtained as 

 
1

'

1( )( ) 2
I J K T

ijkt ijkt ijkt ijkt ijkt ijkt

i j k t

HoC y Q y T T h


            (6.4) 
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where it is calculated using the sum of the trapezoidal areas of the positive order 

quantities in Figure 6.2. Moreover, the shortage cost ShC , as a combination of 

backorders and lost sales costs, was derived using the sum of the trapezoidal areas 

of the negatives as 

'1
' '( ) ((1 ) )

2 2

I J K T
ijkt ijkt ijkt ijkt

ijkt ijkt ijkt ijkt

i j k t

b b
ShC T T

 
 

   
   

  
                               (6.5) 

To formulate the purchasing cost under the all-unit discount policy (AUD), let 

the price break points be considered as 

1 1 2

2 2 3

              

ijkt ijkt ijkt ijkt

ijkt ijkt ijkt ijkt

ijktM ijktM ijkt

c q Q q

c q Q q

c q Q

 


 


 

                      (6.6) 

Then, the total purchasing cost under the AUD policy (TpA) is given by 

1

1

I J K T M

ijkt ijktm ijktm

i j k t m

TpA Q c 




            (6.7) 

In the incremental quantity discount policy, the purchasing cost offered by 

distributor k  to retailer i  for each unit of the
thj product in period t  depends on its 

ordered quantity, where in each price discount-point, it is obtained by 

1 1 2

1 1 2 2 3

1 1 2 2

( )

              

... ( )

ijkt ijkt ijkt ijkt

ijkt ijkt ijkt ijkt ijkt ijkt ijkt

ijkt ijkt ijkt ijkt ijktM ijkt ijktM ijktP ijkt

c q Q q

c q Q q q Q q

c q c q c Q q q Q

 


   


     

                   (6.8) 

Therefore, the total purchasing cost under this policy (TpI ) is 

1 1

1

1 1 1 1 1

(( ) ) ( )
I J K T M

ijktm ijktm ijktm ijktm ijkt ijktM ijktM ijktM

i j k t m

TpI q q c Q q c 
 



    

 
    

 
     (6.9) 

Therefore, with the assumption that the total purchasing cost is Pc=TpA+TpI , 

the total supply chain cost, considered the fitness value thereafter, is obtained by 
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TC TrC HoC ShC Pc             (6.10) 

6.2.3    The constraints 

Several constraints are presented based on the assumptions made in Section 6.2. 

First, the inventory of product j  ordered by retailer i  from distributor k  in period t

, which are ijkty , can be either positive denoted by ijkty , or negative denoted by ijktb  

(the shortage quantity in period t ). In other words, 
0  y 0ijkt

ijkt

ijkt

if
y

y otherwise


 


 and 

 y 0

0

ijkt ijkt

ijkt

y if
b

otherwise

 
 


. Furthermore, the beginning inventory of product j  

ordered by retailer i  to distributor k  in period 1t   is equal to its beginning 

inventory in the previous period t  plus the ordered quantity minus a coefficient of 

the demand that is sold. Or  

'

1 ( )ijkt ijkt ijkt ijkt ijkt ijkty y Q D T T                             (6.11) 

As the ordered quantity of product j  by retailer i  from distributor k  in period t , 

ijktQ , is delivered in ijktR  packets, each containing ijktn  products, the next constraint 

is 

ijkt ijkt ijktQ n R            (6.12)  

Moreover, the number of available packets to deliver product j  to retailer i  by 

distributor k  in period t  is limited, we have, 

ijktR ub                        (6.13) 

The total budget to buy the products is limited to B . Hence 

 TpA TpI B            (6.14)  
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The warehouse space of the distributor k for products is limited to kS . Thus 

1 1 1

( )
I J T

ijkt ijkt ijkt k

i j t

Q y s S
  

            (6.15) 

Besides, due to some production limitations the distributors were not able to 

produce the products more than a certain quantity, which are 

1 1 1

I J T

ijkt k

i j t

Q f
  

                       (6.16) 

Finally, as at most one order can be placed by each retailer to each distributor for 

a product in a period, and that the product can be purchased at one price break point, 

we have 

1

1  Q 0

0

P
ijkt

ijktp

p

if

otherwise





 


                       (6.17) 

Therefore, the complete mathematical model of the supply chain problem is: 

 

1 1 1 1

1
'

1

( , )

( )( ) 2

I J K T

ijkt ijkt ijkt k i

i j k t

I J K T

ijkt ijkt ijkt ijkt ijkt ijkt

i j k t

MinTC Q O v d x a

y Q y T T h

   





 

  





 

'1 1
' '

1 1 1 1 1
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2 2

I J K T I J K T M
ijkt ijkt ijkt ijkt

ijkt ijkt ijkt ijkt ijkt ijktm ijktm

i j k t i j k t m
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T T Q c

 
  

 

    

  
    

  
 

1 1

1

1 1 1 1 1

(( ) ) ( )
I J K T M

ijktm ijktm ijktm ijktm ijkt ijktM ijktM ijktM

i j k t m

q q c Q q c 
 



    

 
    

 
   

Subject to: 

'

1 ( )ijkt ijkt ijkt ijkt ijkt ijkty y Q D T T                                                                                     (6.18) 

1 1 1

( )
I K T

ijkt ijkt ijkt k

i k t

Q y s S
  
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1 1 1

I J T

ijkt k

i j t

Q f
  

  

1

1 1 1 1 1

I J K T P

ijkt ijktp ijktp
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Q c B


    

  

ijktR ub  

ijkt ijktQ b  

ijkt ijkt ijktQ n R

 

1  Q 0
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ijkt
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if
v

otherwise
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 
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1  Q 0

0

P
ijkt

ijktp
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if

otherwise
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


 

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0  y 0ijkt

ijkt

ijkt

if
y

y otherwise


 
  

 y 0

0

ijkt ijkt

ijkt

y if
b

otherwise

 
 
  

1' ijkt

ijkt

ijkt

b
T

d


  

1 2

, 0; , , ;(  1,..., ;  1,2,..., ;

 1,2,..., ;  1,2,..., ;  1,2,..., ); ( , ) 0;

ijkt ijkt ijkt ijktp ijkt

k k

Q y w u Z binary for i I for j J

for k K for t T for m M P x x

   

   
 

1 10; 0; 0;ijk ijk ijkTb y Q    

While the shortage values 1ijkb are decision variables, based on the proposed 

formula in Equation (6.18), i.e. '

1 ( )ijkt ijkt ijkt ijkt ijkt ijkty y Q D T T      , when the value 

y 0ijkt   we have shortage for item j in period t otherwise we don’t have shortage 

(see 
 y 0

0

ijkt ijkt

ijkt

y if
b

otherwise

 
 


 ). Furthermore, ijkt is the fraction of the shortages 
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considered to be backorder (i.e. 
ijkt ijktb ) and  (1 )ijkt ijktb is considered to be lost 

sale. 

In other words, when the inventory level of an item in a period i.e. yijkt
is negative 

it means that a shortage happens. 

6.3       Solving methodologies 

The model derived in (6.18) is a mixed binary-integer mathematical formulation 

that is hard to solve using an analytical approach. Hence, a modified fruit fly 

optimization algorithm (MFOA) is proposed in this section for solution. In addition, 

as there is no benchmark available in the literature to validate the results obtained, 

two other meta-heuristics called particle swarm optimization (PSO) and simulated 

annealing (SA) are utilized as well.  

The procedure of the original fruit fly optimization algorithm is summarized as 

follows: 

i. Initialize parameters, including maximum number of generations and 

population size. 

ii. Initialize a population of fruit fly groups randomly 

iii. Construct several fruit flies randomly around the fruit fly group using 

osphresis for the foraging to generate a population 

iv. Evaluate all the flies of the population to obtain the smell concentration 

values (fitness value) of each fruit fly 

v. Find the best fruit fly with the maximum smell concentration value using 

vision for the foraging, and then let the fruit fly group fly towards the best 

one. 

vi. End the algorithm if the maximum number of generations is reached. 
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The modified fruit fly optimization of this research is expressed in the following 

steps. 

6.3.1    Initializing and representing the flies  

In the MFOA, each fly is a solution of the problem shown in Figure 6.3. This 

solution consists of the number of packets for each product ordered by each retailer 

from each distributor in each period i.e. 
ijktR along with to the location coordinate 

of the distributors i.e. kix . The number of packets are generated uniformly in the 

range [0, ]ub . The location coordinates of the distributors in the area 1 2( , )k kP x x  are 

also uniformly generated with 1 [0,100]kx   and 2 [0,100]kx  . The population of the 

fruit flies (group) is initialized as shown in Figure 6.4. 

 
Figure 6.3: The representation of a fruit fly 

 

 
Figure 6.4: The representation of a population of the flies 

6.3.2   Smell-based and vision-based search 

In the smell-based search process, first NP fruit flies were generated around each 

fruit fly group to construct a sub-population using the position and velocity of the 

flies in PSO algorithm. The positions of the flies were obtained using 

1 1

ld ld ld

e e eX X v               (6.19) 
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where ld

eX  is the position of thl fly in dimension d  and iteration e ,  1 to l NS ,  

1,2,...,d D , 1

ld

ev   is its velocity, and NS  is the number of fillies. Moreover, the 

velocities of the flies used in Equation (6.19) are calculated based on the equation 

derived in Equation (6.20). 

1 1 2. . .( ) . .( )ld ld ld ld d d

e e e e e ev wv Rand pB X Rand gB X                       (6.20) 

In Equation (6.20), w is the inertia weight to control the magnitude of the old 

velocity 
ld

ev  in calculation of the new velocity 1

ld

ev  , 
ld

epB  and 
d

egB  are the position 

of the best local and the best global fly respectively, 1  and 2  determine the 

significance of epB  and 
d

egB  and Rand is a uniformly distributed real random 

number between 0 and 1.  

After the positions were updated in Equation (6.19), the neighborhood search 

technique make sure that the searching takes place within the boundary areas 

defined by the inequality constraints given in (6.18). In this regard, often, the newly 

generated individuals may not satisfy the capacity constraints. To guarantee the 

feasibility of the individuals, a penalty function shown in Equation (6.21) was 

employed to penalize infeasible solutions. 

0  inequality is satisfied
( )

( ( ) )

if
F x

R x L otherwise


 


       (6.21) 

In Equation (6.21),   is the severity of the penalty function (here, 10  ) and 

( )R x  and L  are referred to a typical constraint ( )R x L .  

6.3.3   Global vision-based search 

In this search, the algorithm finds the best fly among the best flies found in sub-

populations in terms of their fitness values. 
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6.3.4    Stopping criterion 

While several stopping criteria such as reaching a specific CPU time, converging 

to a specific value of the fitness function, or having a specific number of generations 

are common to stop a meta-heuristic, the third criterion is used to stop the algorithm 

in NG  generations.  

6.4      Testing and comparisons 

In this section, two kinds of problems are tested on the problem to evaluate the 

algorithms as well. 

6.4.1   The generated data 

Thirty numerical examples of three-sizes, small, medium, and large are randomly 

generated in this section to assess the performance of the MFOA. In small-size 

problems, the number of retailers were randomly generated in the range from 2 to 

5, where the number of products, distributors, periods, and price break-points all 

were generated in (1 to 5). In the medium-size problems, the range for the number 

of retailers was (5 to 10), for products is (6 to 9), for distributors was (5 to 9), for 

periods was (6 to 10), and for the number of price-break points was (5 to 6). These 

ranges for the large-size problems are (10 to 50), (9 to 30), (9 to 20), (9 to 50), and 

(5 to 6), respectively. 

To validate the results obtained using MFOA and to evaluate its performance in 

terms of the fitness function, two other meta-heuristics are utilized to solve the 

problems. All algorithms have been coded on MATLAB R2013a and the codes have 

been executed on a computer with 3.80 GHz and 4 GB of RAM. In these codes, both 

the Euclidean and the square Euclidean distances are used. 
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Tables 6.1 to 6.3 contain general data of the 20 problem instances along with the 

fitness functions resulted using the three algorithms with Euclidean and square 

Euclidean distances on small-size, medium-size, and large-size problems, 

respectively. Moreover, the parameters of all algorithms are tuned by the Taguchi 

method. To be more specific, consider Prob. No. 11 of the medium-size category 

with Euclidean and square Euclidean distances. The number of parameters is 5 in 

MFOA ( 1 , 2 , NS , NP , and NG ), 4 in PSO ( 1C , 2C , NP , and NG ) , and 3 in 

SA algorithms ( Alpha  (the cooling schedule), inlo (internal loop), and NG ). The 

parameters of the algorithms and their levels for this problem are shown in Tables 

6.4 and 6.5, respectively. 

The 27L  array of the Taguchi method has been used to tune the parameters of 

MFOA while the 9L  array was used to calibrate the parameters of the other two 

algorithms. For this problem, the optimal levels of the parameters of the three 

algorithms have been given in Tables 6.6 and 6.7 for Euclidean and square 

Euclidean, respectively. In order to determine the optimal levels of the parameters 

of the algorithms of this study, Taguchi used the “smaller is better” case in its (S/N) 

formula. Moreover, Figures 6.5 and 6.6 show the mean signal to noise ratio (S/N) 

plot of each level of the factors for Prob. No. 11 of medium-size problems for the 

MFOA, PSO, and SA algorithms with Euclidean and square Euclidean distances, 

respectively. 

To evaluate and to compare the performance of the MFOA with the ones of PSO 

and SA algorithms, two graphical and statistical approaches were used. Figures 6.7 

and 6.8 display the graphical representation of the fitness values for the three 

category problems with Euclidean and square Euclidean distances, respectively. The 

algorithms have different performance on different problems, which are not based 
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on a specific pattern, but it is based on the ability of each algorithm to solve each 

problem with different size. Because of this, the three algorithms have different 

fitness values and CPU time on different problems with different sizes for both 

Euclidean and Square Euclidean functions. For example in Problem No. 18 of Table 

6.1, MFOA algorithm has an impressive performance than other algorithms in terms 

of fitness value for Square Euclidean distance while the results are near each other 

in other problems. In other words, MFOA has been found to be a powerful algorithm 

than others in terms of fitness value and CPU time for solving a problem with five 

retailers, three types of product, three distributors, three periods and also three price-

break points. Moreover, the results of this algorithm are better but near the results 

obtained by PSO and SA on other problems in terms of fitness value and CPU time. 

The detailed costs obtained by three algorithms on Problem No. 18 of Table 6.1 for 

Square Euclidean distance are as follows: 

The results obtained by MFOA are: 47730TC  including 28763TrC  , 

8157HoC  , 6750ShC  and 4060Pc  . 

The results obtained by PSO are: 58762TC   including 33322TrC  , 

10436HoC  , 10034ShC  and 4970Pc  . 

The results obtained by SA are: 59134TC  including 34734TrC  , 

10168HoC  , 9192ShC  and 5040Pc  . 

To compare the results obtained by the algorithms for Problem No. 18 of Table 

6.1, there is a considerable gap between the total costs obtained by MFOA and those 

optimized by PSO and SA as much as 11032 and 11404, respectively. The main 

concern of this gap comes from Transportation Cost (TrC) where TrC obtained by 

MFOA, is 4559 less than TrC obtained by PSO and 5971 less than the one obtained 

by SA. Therefore, the transportation cost of items considerably affects the 
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performance of MFOA directly to be better than SA and PSO. Furthermore, shortage 

cost (ShC) obtained by MFOA is also calculated to be 3284 less than PSO and 2442 

less than SA which is the second more effective cost on the performance of MFOA. 

There is also a gap of 2279 between MFOA and PSO and a gap of 2011 between 

MFOA and SA in terms of holding cost (HoC). There is a very low gap between the 

purchasing cost (Pc) obtained by MFOA and both PSO and SA the gap is less than 

1000. As a result, the TC performance of MFOA on Problem No. 18 of Table 6.1 is 

directly affected by three parameters TrC, HoC and ShC while the effect of Pc on 

the MFOA performance is not too much. 

According to these figures, it can be concluded that MFOA has better 

performance than both PSO and SA in terms of fitness value. Figures 6.9 and 6.10 

that represent the box plots of the fitness values for the 30 problem instances of the 

three categories with Euclidean and square Euclidean distances can also affirm this 

conclusion, where it seems that MFOA has the best efficiency in comparison with 

the two other algorithms in terms of fitness value.  

However, based on the analysis of variance (ANOVA) results shown in Tables 

6.8 to 6.13 for all the problem instances using both the Euclidean and square 

Euclidean distances, the hypothesis on the equality of algorithms’ means, which are 

0H :  MFOA PSO SA     cannot be rejected at 95% confidence level in favor of the 

alternative 1H :  MFOA PSO SA    . In other words, the three algorithms do not 

have differences in terms of fitness values in all the problem instances of different 

sizes. This validate the results obtained using MFOA. Note that based on the results 

in Tables 6.14 to 6.16 that show the CPU times taken by each algorithm to solve 

small, medium, and large-size problems, respectively, the MFOA has the faster 

algorithm to solve the problems in all the three problem categories. 
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Table 6.1: General data for small-size problems and the fitness values of the algorithms with Euclidean (EUD) and square Euclidean (SEUD) distances 

Prob. No. I J K T M ub  B  kf  kS  
SA  PSO  MFOA 

EUD SEUD  EUD SEUD  EUD SEUD 

1 1 2 2 2 2 50 1000 450 550 15014 18139  14551 17982  14489 17854 

2 1 3 2 3 2 50 1200 500 700 16781 20170  15980 19332  15321 18715 

3 1 3 3 3 3 50 1500 550 800 18329 23412  17142 22892  17901 22329 

4 1 4 3 4 3 50 1700 610 850 19488 24937  19120 24200  18842 23849 

5 1 4 4 4 4 50 1800 750 900 21579 27331  20325 26879  19753 26056 

6 2 2 2 2 2 50 2100 840 1000 23560 28620  23114 28201  22705 27800 

7 2 3 3 3 3 50 2400 890 1200 24773 29781  24142 29119  23650 28689 

8 2 4 4 3 3 50 2600 1050 1400 26890 32711  26367 32319  25617 31614 

9 2 4 4 4 4 50 2700 1150 1500 30142 34720  29761 34429  29130 33860 

10 3 2 3 2 3 50 3000 1450 1650 33672 38721  33249 38317  32741 37872 

11 3 3 3 3 3 70 3400 1500 1800 36412 40543  36030 39654  35653 39160 

12 3 4 3 4 3 70 3800 1600 1900 37509 43094  37205 42720  36548 42106 

13 3 2 3 4 3 70 4200 1750 2100 39540 46832  39209 46320  38651 45764 

14 3 4 4 4 4 70 4500 1830 2300 42319 50830  41750 49430  40983 48880 

15 4 3 3 2 2 70 4400 1800 2300 43138 51560  42798 51107  42257 50794 

16 4 4 4 4 4 70 5000 2000 2500 45721 55391  45340 54970  44803 54572 

17 5 2 3 2 3 70 4600 1900 2450 46728 57321  46410 57003  45807 56672 

18 5 3 3 3 3 70 5100 2050 2600 48542 59134  48116 58762  47608 47703 

19 5 4 4 4 4 70 5800 2200 2600 51478 63098  51101 62780  50632 62195 

20 5 5 5 5 5 70 6700 2500 2900 55730 68921  55202 68430  54872 67832 

 1
6

7
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Table 6.2: Some general data for medium-size problems and the fitness values of the algorithms with Euclidean (EUD) and square Euclidean (SEUD) 

distances 

Prob. No. I J K T M ub  B  kf  kS  
SA  PSO  MFOA 

EUD SEUD  EUD SEUD  EUD SEUD 

1 5 6 5 6 5 50 7500 2600 3000 58430 69356  57890 68832  57210 68167 

2 5 6 6 6 6 50 7700 2800 3200 60326 72317  59698 71873  59120 71254 

3 6 2 2 4 4 50 7000 2400 2800 57980 68432  57458 67943  56812 67218 

4 6 3 3 3 3 50 7200 2600 3100 59725 69319  59209 68801  58725 68193 

5 6 4 4 4 4 50 7500 2700 3300 63428 72140  62872 71659  62046 70899 

6 6 5 5 5 5 50 7700 3000 3500 65872 75879  65231 75132  64753 74603 

7 6 6 6 6 6 50 8000 3200 3700 68932 78610  68120 77983  67645 77319 

8 7 3 3 3 3 50 7500 2900 3600 66329 75439  65874 74973  65184 74306 

9 7 4 4 4 4 50 7700 3100 3700 69372 78519  68726 78078  68104 77453 

10 7 5 5 4 4 50 7900 3400 3800 71256 80325  70783 79790  70073 79135 

11 7 5 5 5 5 70 8400 3800 4300 76320 89178  75760 88523  74897 87806 

12 7 6 6 6 5 70 9000 4300 4850 83456 97206  82679 96645  81860 95890 

13 7 7 7 7 7 70 9400 4700 5250 88732 103573  88011 102861  87325 102181 

14 8 2 3 5 4 70 7500 3200 4100 76084 87230  75380 86523  74720 85972 

15 8 5 3 3 3 70 8300 3900 4650 84620 96289  84056 95789  83467 95010 

16 8 8 3 6 5 70 9300 4400 5200 95412 111981  94689 110238  93823 109378 

17 8 8 8 8 5 70 10300 4800 5800 108092 124672  107459 123098  106249 122143 

18 10 5 5 10 5 70 12800 5600 6700 128930 149806  127800 148720  126870 147689 

19 10 8 7 10 5 70 13500 6200 7100 143987 187940  142138 186287  140356 184787 

20 10 9 9 10 5 70 13800 6500 7400 152769 194250  151670 192893  150054 191200  

1
6

8
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Table 6.3: Some general data for large-size problems and the fitness values of the algorithms with Euclidean (EUD) and square Euclidean (SEUD) 

distances 

Prob. No. I J K T M ub  B  kf  kS  
SA  PSO  MFOA 

EUD SEUD  EUD SEUD  EUD SEUD 

1 10 9 9 9 5 50 15000 7300 7900 172300 218943  170871 217219  169104 215672 

2 10 10 10 10 5 50 16500 8100 8600 183025 238932  182092 237134  180893 235793 

3 15 5 4 4 5 50 14000 7500 8400 187340 268334  186132 267298  185056 266109 

4 15 5 4 8 5 50 15000 7600 8600 195629 288378  194210 287117  192879 285459 

5 15 8 5 8 5 50 17500 7900 9200 213298 329568  211753 327985  209658 325195 

6 15 10 5 10 5 50 19500 8200 9500 236643 379602  234786 376894  232100 374289 

7 15 12 8 10 5 50 23000 9200 11000 267940 456732  264568 453487  262520 450132 

8 15 15 10 10 5 50 26500 10700 13200 305632 523981  298317 519873  296745 516890 

9 15 15 10 15 5 50 28000 12000 14500 332180 567532  329812 564786  327240 562098 

10 30 5 5 5 5 50 26500 11600 13500 327935 557829  325231 555637  323467 553542 

11 30 8 5 6 5 70 29000 13000 15500 343678 589760  341265 587943  339834 585378 

12 30 10 5 8 5 70 32000 15000 17500 367823 632345  364790 629845  362145 626790 

13 30 15 5 10 5 70 36000 16500 19500 442135 813945  439421 808457  436712 805783 

14 30 20 5 10 5 70 45000 20000 25000 463214 867234  459811 864589  457121 861789 

15 30 20 10 10 5 70 49500 23000 29000 497812 967321  494679 962478  491893 958620 

16 40 10 10 10 6 70 53500 26500 33500 543760 1102340  538760 1098654  534271 1095387 

17 40 20 10 20 6 70 60000 33000 39000 597290 1432500  593670 1428756  590980 1425721 

18 40 30 10 20 6 70 65000 38000 44000 658930 1753205  654237 1749890  650678 1700980 

19 40 40 20 40 6 70 74000 45000 51000 820987 2234670  814567 2187643  810983 2150300 

20 50 30 20 50 6 70 86000 53000 59000 1078900 3157904  1072598 3152340  1068934 3148930 
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Table 6.4: The parameter levels of the three algorithms for Prob. No. 11 of medium-

size with Euclidean distance 

MFOA 

Level 1  
2  NS  NP  NG  

1 1.5 1.5 3 30 200 

2 2 2 5 40 500 

3 2.5 2.5 7 50 1000 

PSO 

Level 1C  2C  NP  NG  - 

1 1.5 1.5 50 300 - 

2 2 2 70 500 - 

3 2.5 2.5 100 1000 - 

SA 

Level   Inlo  NG  - - 

1 0.85 10 50 - - 

2 0.9 20 70 - - 

3 0.95 30 100 - - 

 

 

 

Table 6.5: The parameters levels of the three algorithms for Prob. No. 11 of 

medium-size with square Euclidean distance 

MFOA 

Level 1  
2  NS  NP  NG  

1 1.5 1.5 5 30 300 

2 2 2 7 40 500 

3 2.5 2.5 10 50 1000 

PSO 

Level 1C  2C  NP  NG  - 

1 1.5 1.5 60 400 - 

2 2 2 70 500 - 

3 2.5 2.5 100 1000 - 

SA 

Level Alpha  Inlo  NG  - - 

1 0.8 20 50 - - 

2 0.9 30 70 - - 

3 0.95 40 100 - - 
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Table 6.6: The optimal levels of the parameters of the three algorithms for Prob. 

No. 11 of medium-size with Euclidean distance 

Algorithms Factors 
Optimal 

levels 

MFOA 

1  1.5 

2  1.5 

NS  7 

NP  40 

NG  500 

PSO 

1C  1.5 

2C  2.5 

NP  70 

NG  500 

SA 

Alpha  0.9 

Inlo  30 

NG  50 

 

 

Table 6.7: The optimal levels of the parameters of the three algorithms for Prob. 

No. 11 of medium-size with square Euclidean distance 

Algorithms Factors 
Optimal 

levels 

MFOA 

1  2 

2  2 

NS  10 

NP  40 

NG  300 

PSO 

1C  2.5 

2C  2.5 

NP  100 

NG  1000 

SA 

Alpha  0.9 

Inlo  40 

NG  70 
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Figure 6.5: The mean S/N ratio plot for different levels of the parameters for Prob. 

No. 11 of medium-size for MFOA, PSO, and SA algorithms with Euclidean distance 
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Figure 6.6: The mean S/N ratio plot for different levels of the parameters for Prob. 

No. 11 of medium-size for MFOA, PSO, and SA with square Euclidean distance 
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Figure 6.7: The graphical illustration of the fitness values of the algorithms with 

Euclidean distance for (a1) small-size, (b1) medium-size, and (c1) large-size 

problems 
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Figure 6.8: The graphical illustration of the fitness values of the algorithms with 

square Euclidean distance for (a2) small-size, (b2) medium-size, and (c2) large-size 

problems 
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Figure 6.9: The box-plot of the proposed algorithms for (S1) small-size, (M1) 

medium-size, and (L1) large-size problems with Euclidean distances 
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Figure 6.10: The box-plot of the proposed algorithms for (S2) small-size, (M2) 

medium-size, and (L2) large-size problems with square Euclidean 
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Table 6.8: The one-way ANOVA to compare the algorithms for small-size 

problems with Euclidean distance 

Source DF SS MS F P-value 

Factor 2 9495163 4747582 0.03 0.971 

Error 57 9124042403 160070919 - - 

Total 59 9133537566 - - - 

 

 

Table 6.9: The one-way ANOVA to compare the algorithms for small-size 

problems with square Euclidean distance 

Source DF SS MS F P-value 

Factor 2 24799330 12399665 0.05 0.947 

Error 57 12985626072 227818001 - - 

Total 59 13010425402 - - - 

 

 

Table 6.10: The one-way ANOVA to compare the algorithms for medium-size 

problems with Euclidean distance 

Source DF SS MS F P-value 

Factor 2 23675893 11837947 0.01 0.985 

Error 57 45161958934 792315069 - - 

Total 59 45185634827 - - - 

 

 

Table 6.11: The one-way ANOVA to compare the algorithms for medium-size 

problems with square Euclidean distance 

Source DF SS MS F P-value 

Factor 2 25373700 12686850 0.01 0.991 

Error 57 79790907182 1399840477 - - 

Total 59 79816280883 - - - 
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Table 6.12: The one-way ANOVA to compare the algorithms for large-size 

problems with Euclidean distance 

Source DF SS MS F P-value 

Factor 2 322846471 161423235 0 0.997 

Error 57 3.16E+12 55521298438 - - 

Total 59 3.17E+12 - - - 

  

Table 6.13 The one-way ANOVA to compare the algorithms for large-size 

problems with square Euclidean distance 

Source DF SS MS F P-value 

Factor 2 98370821830 49185410915 0.09 0.916 

Error 57 3.20E+13 5.61E+11 - - 

Total 59 3.21E+13 - - - 

 

Table 6.14: CPU times (s) taken by each algorithm to solve small-size problems 

Prob. 

No. 

SA  PSO  MFOA 

EUD SEUD  EUD SEUD  EUD SEUD 

1 12.82 12.43  9.86 9.63  8.89 8.74 

2 13.23 13.12  10.11 9.94  9.67 9.42 

3 15.4 15.08  13.33 13.19  11.83 11.78 

4 17.32 16.88  14.49 14.38  12.59 12.29 

5 18.13 17.91  16.87 16.59  15.69 15.38 

6 14.34 14.06  12.37 11.93  10.53 10.48 

7 16.83 16.66  15.21 14.88  13.72 13.4 

8 18.08 17.73  16.29 16.12  15.38 15.26 

9 22.88 22.59  19.63 19.27  18.33 18.05 

10 21.75 21.38  19.42 19.28  17.63 17.34 

11 23.6 23.44  20.89 20.67  18.63 18.45 

12 25.81 25.39  21.77 21.63  20.12 19.84 

13 24.79 24.43  21.2 20.96  19.83 19.62 

14 26.72 26.54  22.39 22.18  21.4 21.25 

15 25.61 25.42  22.11 21.82  20.92 20.63 

16 29.33 29.12  24.81 24.51  23.61 23.38 

17 34.72 33.89  26.22 25.77  24.32 24.19 

18 31.72 31.45  25.19 24.88  23.96 23.69 

19 33.27 33.12  25.89 25.72  24.21 23.92 

20 41.13 40.37  29.39 28.68  28.31 28.03 
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Table 6.15: CPU times (s) taken by each algorithm to solve medium-size problems 

Prob. 

No. 

SA   PSO   MFOA 

EUD SEUD   EUD SEUD   EUD SEUD 

1 56.81 56.2  48.71 47.89  44.54 44.21 

2 59.63 59.27  49.73 49.32  45.39 45.19 

3 49.73 49.44  46.53 46.11  43.21 42.78 

4 50.46 49.71  47.23 47.02  43.88 43.56 

5 57.96 57.37  48.34 48.19  44.61 44.25 

6 61.39 60.87  50.43 50.16  47.76 47.41 

7 65.19 64.83  53.95 53.72  51.11 50.76 

8 59.43 59.21  50.32 50.01  47.61 47.32 

9 63.11 62.81  52.44 52.19  50.69 50.45 

10 66.29 65.88  55.29 54.79  51.13 50.98 

11 68.49 68.12  58.71 58.17  53.58 53.29 

12 71.99 71.69  62.44 62.28  56.43 56.32 

13 74.12 73.8  65.39 65.14  59.59 58.95 

14 68.88 68.37  60.48 60.21  55.74 55.36 

15 71.13 70.79  63.45 62.99  56.78 56.49 

16 75.44 74.87  66.91 66.37  58.22 57.74 

17 79.33 78.86  70.09 69.67  63.44 62.93 

18 83.77 83.32  74.45 73.91  69.56 69.23 

19 86.22 85.71  76.23 75.87  71.29 70.82 

20 89.62 89.32   78.21 77.89   73.77 73.34 

 
 

 

 

Table 6.16: CPU times (s) taken by each algorithm to solve large-size problems 

Prob. 

No. 

SA   PSO   MFOA 

EUD SEUD   EUD SEUD   EUD SEUD 

1 93.22 92.67  80.72 80.21  76.26 75.88 

2 98.56 98.06  83.55 83.18  78.93 78.41 

3 86.26 85.78  73.45 73.11  65.39 64.94 

4 87.77 87.33  74.32 73.89  66.23 65.89 

5 90.33 90.04  76.55 76.18  69.49 69.05 

6 94.22 93.85  78.37 77.9  71.78 71.26 

7 98.82 98.37  82.53 82.24  74.93 74.52 

8 103.28 102.82  86.77 86.39  78.49 78.27 

9 109.03 108.79  92.91 92.61  83.86 83.47 

10 100.32 99.79  89.03 88.78  81.3 80.88 

11 103.69 103.42  91.49 91.09  84.63 84.18 

12 108.72 108.25  94.55 94.31  86.77 86.39 

13 113.19 112.83  98.48 97.82  89.82 89.51 

14 122.88 121.09  108.76 108.17  99.26 98.89 
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Table 6.16 Continued 

15 131.49 130.74  117.34 116.93  108.39 107.91 

16 135.39 134.88  121.64 121.27  111.25 110.83 

17 152.65 152.22  137.32 136.56  125.75 124.86 

18 174.92 174.04  159.83 158.91  141.77 140.82 

19 212.33 210.67  188.49 187.21  172.09 171.37 

20 215.28 214.51   191.98 191.15   176.81 175.85 

 

6.4.2     A Case Study 

An extension of the case study considered in the previous chapter is investigated 

in this section where the shortages were allowed. The distances among the retailers 

and the distributors were assumed to be Euclidean. Table 6.17 shows the 

backordering and lost sale costs of the case study explained in section 5.4.3 where 

the data sheet collected from the company is displayed in Appendix B. The rest of 

parameters values are given as the same proposed in Chapter 5. In case of shortage, 

90 percent of the customers facing shortages stay in the system to receive their 

orders to be considered as backorder ( 0.9  ) and the rest of customers (1 0.1  ) 

leave the system to receive their orders somewhere else to be considered as lost sale. 

 

Table 6.17: The backordering and lost sale costs of the case study explained in 

section 5.4.3 

Product 1 1jk  
1 2jk  

1 3jk  
'

1 1jk  
'

1 2jk  '

1 3jk  

MDF (sheet) 50000 60000 70000 90000 60000 800 

Adhesive (Kg) 50000 60000 80000 90000 50000 800 

HGF (120m) 30000 40000 60000 100000 90000 600 

PVC (120m) 40000 20000 40000 40000 60000 400 
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The total supply chain cost, the optimal locations of the vendors and the optimal 

order quantities purchased by retailers from distributors obtained by MFOA are 

obtained as follows, where the elapsed CPU time is equal to 35.632 seconds.  

472 000 000 ITMFOATc , ,  includes: 

Transportation cost (TrC ) = 201,550,000 IT 

Holding cost ( HoC ) = 96,180,000 IT 

Shortage cost ( ShC ) = 0 

Purchasing cost ( Pc ) = 174,270,000 IT 

1 30 53y ( ,  ) ; 2 36 61y ( ,  )  

1 [330, 400, 380, 330, 400, 490]MDFktQ   

1 [500, 380, 410, 420, 520, 430]HMAktQ   

1 [460, 450, 470, 450, 430, 420]HGFktQ   

1 [450, 480, 500, 530, 450, 470]PVCktQ   

2 [450, 390, 380, 410, 510, 480]MDFktQ   

2 [490, 440, 430, 470, 500, 490]HMAktQ   

2 [480, 470, 450, 420, 440, 480]HGFktQ   

2 [520, 470, 450, 420, 460, 450]PVCktQ   

3 [480, 420, 400, 380, 510, 450]MDFktQ   

3 [470, 460, 420, 490, 440, 430]HMAktQ   

3 [500, 490, 400, 440, 490, 450]HGFktQ   

3 [400, 430, 490, 500, 510, 390]PVCktQ   

Figure 6.11 shows a representation of the optimal locations of the producers 

among the retailers obtained by MFOA for the proposed case study. 
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Figure 6.11: The optimal location of the producers among the retailers 

obtained by MFOA for the case study  

The total supply chain cost, the optimal locations of the vendors and the optimal 

order quantities purchased by retailers from distributors obtained by PSO are 

obtained as follows, where the elapsed CPU time is equal to 46.127 seconds.  

516 450 000 ITPSOTc , ,  includes: 

Transportation cost (TrC ) = 239,240,000 IT, 

Holding cost ( HoC ) = 93,375,000 IT, 

Shortage cost (TrC ) = 6,535,000 IT consists of 5,175,000 IT backordering cost and 

1,360,000 IT lost sale cost, 

Purchasing cost ( Pc ) = 177,300,000 IT and 

1 33 29y ( ,  ) ; 2 51 38y ( ,  )  

1 [70, 580, 570, 100, 580, 570]MDFktQ   

1 [90, 90, 550, 490, 510, 490]HMAktQ   

1 [440, 530, 490, 30, 540, 560]HGFktQ   

1 [80, 560, 530, 80, 490, 580]PVCktQ   

2 [90, 60, 540, 540, 540, 520]MDFktQ   
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2 [530, 540, 590, 520, 570, 580]HMAktQ   

2 [540, 560, 490, 580, 580, 400]HGFktQ   

2 [30, 590, 540, 490, 530, 570]PVCktQ   

3 [80, 530, 570, 530, 580, 590]MDFktQ   

3 [550, 520,550, 520, 580, 590]HMAktQ   

3 [530, 590, 590, 470, 510, 480]HGFktQ   

3 [40, 40, 480, 580, 560, 550]PVCktQ   

Figure 6.12 shows a representation of the optimal locations of the producers 

among the retailers obtained by PSO for the proposed case study. 

 

Figure 6.12: The optimal location of the producers among the retailers obtained 

by PSO for the case study 

The total supply chain cost, the optimal locations of the vendors and the optimal 

order quantities purchased by retailers from distributors obtained by SA are obtained 

as follows, where the elapsed CPU time is equal to 73.503 seconds.  
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Shortage cost (TrC ) = 5,240,000 IT consists of 4,185,000 IT backordering cost and 

1,055,000 IT lost sale cost, 

Purchasing cost ( Pc ) = 179,980,000 IT and 

1 33 29y ( ,  ) ; 2 51 38y ( ,  )  

1 [60, 590, 570, 100, 580, 570]MDFktQ   

1 [80, 70, 580, 530, 510, 490]HMAktQ   

1 [440, 530, 490, 40, 540, 580]HGFktQ   

1 [80, 590, 530, 80, 540, 580]PVCktQ   

2 [90, 70, 540, 560, 520, 520]MDFktQ   

2 [530, 540, 590, 520, 570, 580]HMAktQ   

2 [540, 560, 500, 580, 580, 400]HGFktQ   

2 [50, 590, 540, 490, 530, 570]PVCktQ   

3 [80, 530, 570, 530, 580, 590]MDFktQ   

3 [550, 520, 550, 520, 580, 590]HMAktQ   

3 [530, 590, 590, 470, 510, 480]HGFktQ   

3 [40, 280, 490, 580, 580, 560]PVCktQ   

Figure 6.13 shows a representation of the optimal locations of the producers 

among the retailers obtained by SA for the proposed case study. 

 
Figure 6.13: The optimal location of the producers among the retailers 

obtained by SA for the case study 
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    From the results obtained by three algorithms on the case study, FOA has shown 

to be better algorithm than PSO and SA in terms of the total supply chain cost and 

CPU time.  

6.5      Summary  

In this chapter, a mixed binary-integer programming model was developed for a 

two-echelon distributor-retailer supply chain network problem with multiple 

products producing in multiple periods (seasons) and shortages as a combination of 

backorders and lost sales. The distributors produced the products and stored them in 

their warehouses to respond to the orders made by the retailers in different periods, 

where the products were sold under two all-unit and incremental quantity discount 

policies. The distributors’ warehouse spaces, the total budget for purchasing the 

products, and also the production capacity of the distributors were limited. The aim 

was to find the optimal order quantities and the optimal location coordinates of the 

distributors among the retailers so as the total cost of the supply chain network 

including transportation, holding, shortage, and purchases was minimized. To solve 

the problem, a MFOA was utilized. As there was no benchmark available in the 

literature, two other meta-heuristics, namely PSO and SA was employed to validate 

the results obtained. Some problem instances of three sizes were randomly 

generated in addition to a case study were to evaluate the efficiency of the 

algorithms, after parameter calibration of the parameters of all algorithms using 

Taguchi method. Statistical comparisons of the means of the fitness functions in all 

problem instances in which Euclidean and square Euclidean distances were used 

showed that there were no differences. In other words, the results obtained using 

MFOA were validated by the other two algorithms. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

7.1      Conclusion 

In this work, first a mixed-integer binary mathematical programming model was 

developed for a multi-objective multi-item multi-period inventory control problem 

with AUD and IQD discount policies. To make the model more realistic, budget and 

order quantity were constrained where the shortages were allowed and contained 

backorder and lost sale. In the proposed mathematical model, a binary variable was 

used to model the order quantity of an item in a period. The model was close to the 

inventory control models in which order and sale processes were carried out in the 

same season. Due to adopting decisions related to a certain department of production 

planning (extending warehouse or building a new manufacturing line), the manager 

decided to build a new warehouse for the ordered items. We followed to minimize 

the total inventory system cost over a finite horizon in addition to minimizing the 

total storage space to determine the optimal order quantities of the products for 

which a fuzzy weighted combination was defined as the objective function. The 

weights of the objectives were considered as triangular fuzzy numbers. Two meta-

heuristics called MOPSO and MOGA were utilized to solve the proposed NP-hard 

problem. Furthermore, not only MATLAB software was applied to code the 

proposed meta-heuristic algorithms, but also Taguchi method was implemented to 

calibrate the parameters of the meta-heuristics. The results showed that for the 10 

specific problems and the case study the MOPSO performed better than the MOGA 

in terms of the fitness function values. 

Next, the model was developed to formulate a mixed-integer binary two-echelon 

inventory-supply chain system for a facility location allocation problem in which 

each vendor had his/her own warehouse. The products were produced by the 
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vendors and then sent to their warehouses to meet a demand. The buyers purchased 

the products under AUD discount strategy proposed by the vendors where the total 

available budget was restricted. The model was formulated under the constraints of 

the total warehouse capacity and the production limitation of each vendor. The 

distance among the buyers and vendors were supposed to be Euclidean. The aim 

was to obtain the optimal order quantities purchased by the buyers from vendors in 

addition to determining the optimal locations of vendors such that the total 

inventory-supply chain costs including transportation cost, holding cost and 

purchasing cost were minimized. To solve the proposed supply chain model, a 

MPSO algorithm was employed where a GA was utilized to validate the results of 

the proposed algorithm. Taguchi method was also applied to set the parameters of 

the two algorithms. The results of the algorithms showed the MPSO has a better 

performance than the GA in terms of the objective function on the generated 

instances of the three categories. 

Third, a multi-product multi-period inventory-supply chain was derived for a 

location allocation problem to be considered as a mixed-integer binary nonlinear 

mathematical programming model. The total budget, the truck capacity and the 

warehouse and production capacities of each distributor were restricted. The 

distributors sold their products under both AUD and IQD discount policies. Also, 

the distances among the distributors and retailers were considered to be Euclidean 

and Square Euclidean. Shortages were allowed and included backorder and lost sale. 

The objective was to determine the optimal coordinates of the distributors among 

the retailers and also the optimal order quantities purchased by retailers from the 

distributors so that the total inventory-supply chain costs became minimized. To 

solve the problem, a modified fruit fly optimization algorithm (MFOA) was utilized. 

As there was no benchmark available in the literature, two other meta-heuristics, 
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namely PSO and SA were employed to validate the results obtained. Some problem 

instances of three sizes were randomly generated to evaluate the efficiency of the 

algorithms, after parameter calibration of the parameters of all algorithms using 

Taguchi method. Statistical comparisons of the means of the fitness functions in all 

problem instances in which Euclidean and square Euclidean distances were used 

showed that there were no differences. Additionally, the results of the algorithms on 

a case study showed that the MFOA had better performance than the other 

algorithms. 

The achievements of the objectives proposed in Chapter 1 were addressed 

accordingly in this thesis where the first and second objectives were addressed in 

Chapter 4 and 5 respectively. Furthermore, the third objective was addressed by the 

proposed algorithms explained in Chapters 4, 5 and 6 as well. 

7.2      Contributions  

The contributions of the study are discussed into three parts as follows: 

The first contribution of the problem is considering a new bi-objective multi-item 

multi periodic inventory control model where some items were purchased under 

AUD and the other items are bought from IQD. The demands vary in different 

periods, the budget is limited, the orders were placed in batch sizes, and shortages 

in combination of backorder and lost sale are considered. The goal was to find the 

optimum order quantities of the items in each period such that the total inventory 

cost and the total required warehouse space were minimized simultaneously. Since 

it is not easy for the managers to allocate the crisp values to the weights of the 

objectives in a decision making process, considering these weights as fuzzy numbers 

will be taken as an advantage.  
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The second novel contribution of the study is that the integrated supply chain 

expressed in this work simultaneously determines two types of decision variables: 

(i) the locations of the vendors in a certain area among the buyers with fixed 

locations and (ii) the allocation: the order quantities of the products at each period 

made by the buyers from the vendors. The total available budget for purchasing the 

products and also the total vendors’ warehouse space are constrained. Moreover, the 

distance between the buyers and the vendors was assumed as Euclidean distance. 

The third contribution of this research study was briefly expressed as follows. 

Firstly, a novel mixed-integer binary nonlinear model of a two-echelon supply chain 

network for multi-product location allocation-inventory control problem in multiple 

periods was provided where several constraints are considered to make the model 

applicable to a closer to reality problem. Also, the shortages are allowed where a 

fraction of products were satisfied as backordering and a fraction was lost sale. 

Secondly, for the first time in the literature a modified version of the Fruit Fly 

optimization algorithm called MFOA was developed to solve inventory-supply 

chain and location-allocation problem. Lastly, a design of experiment method, i.e. 

the Taguchi approach, was applied to tune the parameters of the MFOA. 

7.3      Implementations to the study 

The applications of the proposed models in the real world can be described as 

follows: 

I. Fashion companies those producing the clothes for satisfying the demands 

for some particular periods. In this case, the items will arrive to the market 

in a specific period and will be out of stock in another period. 
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II. Heating and cooling companies those manufacture products for some 

particular seasons. Air-conditioners are produced for the hot seasons and 

heating equipment to be used for the cool seasons.  

III. Those companies have two-echelon supply chain network and schedule their 

manufacturing process for several products for a specific time-period. The 

case study performed in this study is a good example for these sorts of the 

companies. 

IV. Those companies aim to locate a number of branches in some potential 

locations where the potential demands are identified already.  

7.4      Recommendations for Future Research 

Some recommendations for future works are to expand the model to cover some 

terms as follows:  

i. A multi-echelon supply chain environment of the inventory problem can be 

considered. 

ii. Both of the proposed inventory control problem and inventory-supply chain 

problem can be investigated for the models with fuzzy or stochastic 

demands. 

iii. The inflation and the time value of the money rates will be another 

recommendation for future works that can be taken into account. 

iv. To find the locations of the vendors among the buyers, the inventory-supply 

chain location allocation problems can be modeled with different kind of 

distance functions such as Rectilinear distances, Manhattan and d-norm 

instead of using Euclidean and Square Euclidean.  

v. In order to simplify the proposed inventory and supply chain problems, a 

zero lead for replenishment/production time was assumed. As a 
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recommendation for the future, lead time can be considered for inventory-

supply chain location allocation problem in both stochastic and deterministic 

environments. 

vi. Redundancy allocation problem (RAP) is a common problem which has 

recently been taken into account by many researchers. A mixed inventory 

RAP problem or inventory-supply chain RAP model can be attended as a 

recommendation for the future study. 

7.5      Shortcomings and Strengths 

The shortcomings of the thesis can be as: 

- Finding a real life company in Malaysia to collect data 

- Increasing the number of dimensions (variables) of the problem causes a 

increase in running time of algorithms 

The main strength of the study is: 

The models are applicable for many companies in the real world. 
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