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A STUDY ON THE SPATIAL-TEMPORAL DYNAMICS OF WORMHOLES IN A 

BRANEWORLD MODEL 

ABSTRACT

The dynamic wormhole models that were previously introduced focused on the dynamics 

of the wormhole itself of either rotating or evolutionary in characteristics and in various 

frameworks. In this thesis we show the dynamic factor that represents the spatial 

dynamics in terms of spacetime expansion and contraction in braneworld cosmology 

framework affects the changes at the throat of the wormhole by either decreasing or 

increasing the stress energy tensor respectively. This implies an interesting finding 

concerning the effects of cosmological expansion and contraction of the universe or in 

general the surrounding space of wormholes that is expanding or contracting from and 

toward the wormholes respectively. Furthermore, the gravitational lens of a wormhole 

was also introduced by various researchers. Their treatment was focused basically on the 

lens signature that describes wormhole geometrical character such as the differences from 

a black hole or between any various types of wormhole models. The braneworld scenario 

provides the idea of spacetime with underlying extra-dimensions. The inclusion of extra-

dimensional terms in the gravitational lens object spacetime line element will result in 

some variation in the expression for its gravitational lens deflection angle. In this thesis 

we investigate such variation by deriving this deflection angle expression. Thus this study 

not only shows the existence of such variation but also suggests the potential utilization 

of gravitational lensing to prove the existence of extra dimensions by studying the 

deflection angle characteristic in accordance with the spacetime expansion rate of the 

universe. 

Keywords: General Relativity, Brane, Gravitational Lens, Wormhole. 
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PENGAJIAN KEATAS DINAMIK RUANG-MASA LOHONG RUANG DALAM 

MODEL MEMBRANA ALAM 

 

ABSTRAK 

Model-model lohong-ruang  dinamik  sebelum ini telah diperkenalkan lebih tertumpu 

kepada kedinamikan lohong-ruang itu sendiri samada perihal lohong-ruang yang berputar 

atau berevolusi dan di dalam pelbagai kerangka kerja. Dalam tesis ini kami menunjukkan 

faktor dinamik yang mewakili dinamik ruang dalam terma pengembangan dan 

pengecutan ruang-masa dalam kerangka kerja kosmologi dunia membrana yang masing-

masing memberi kesan kepada perubahan pada rangkungan lohong-ruang samada 

pengurangan atau penambahan tensor bebanan tenaga. Ini mengimplikasikan suatu 

penemuan baru yang menarik perihal kesan kosmologi pengembangan dan pengecutan 

alam atau ruang di sekeliling lohong ruang-lohong ruang yang mengalami pengembangan 

menjauh dari atau pengecutan kearah lohong ruang tersebut. Selanjutnya, perihal kanta 

graviti lohong-ruang juga telah di perkenalkan oleh pelbagai penyelidik.  Perbincangan 

tertumpu pada kesan kanta yang memperlihatkan sifat geometri lohong-ruang seperti 

perbezaan di antara lohong hitam atau di antara pelbagai jenis model-model lohong-

ruang. Senario dunia membrana membangkitkan idea ruang-masa yang didasari dimensi-

dimensi tambahan. Pemasukan terma dimensi tambahan dalam unsur bentuk ruang-masa 

objek kanta graviti akan menghasilkan variasi dalam ungkapan sudut lencongan kanta 

graviti. Maka dalam tesis ini kami telah mengkaji variasi tersebut dengan menerbitkan 

ungkapan matematik sudut lencongan, maka dalam penyelidikan ini bukan sahaja 

membuktikan kewujudan variasi ungkapan tersebut malah telah mencadangkan potensi 

penggunaan kanta graviti dalam pembuktian kewujudan dimensi tambahan dengan 

mengkaji sifat sudut lencongan selaras dengan kadar pengembangan ruang masa alam.  

Kata kunci: Kerelatifan Umum, Membrana, Kanta Graviti, Lohong Ruang. 
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CHAPTER 1 : INTRODUCTION 

 

1.1  Introduction 

 

Modern physics is based on the two pillars of established theories namely quantum 

mechanics and theory of general relativity. The former describes the physics at 

microscopic atomic scale, while the latter describes the macroscopic world of 

cosmology. These theories are pushing the boundaries of physical sciences by 

countless research areas that explore the possibilities of physical realities e.g. from the 

study of the Higgs boson in elementary particles physics to the study of exotic 

spacetime curvatures characteristic of black hole and wormhole, from the study of 

what is possibly happening at the core of a black hole or at the throat of a wormhole, 

or at extremely minutes seconds after the big bang and toward more philosophical like 

question such as what is the fate of the universe? These feats of research have 

ultimately motivate physicists to the necessity of exploring more deeper fundamental 

framework such as combining the two pillars as grand unification of physics. And to 

date among successful effort of grand unification is the M-theory which consequently 

triggering research works in its framework that considerably pushing its boundaries.  

 

The solution to the Einstein field equations by Schwarzschild had paved the way to 

a spherically symmetric solution which inspired the ideas of wormholes. The 

pioneering works from Einstein-Rosen (Einstein and Rosen, 1935) on relating particle 

with spacetime, Fuller-Wheeler (Fuller and Wheeler, 1962) on connecting spacetime, 

Ellis (Ellis, 1973) on particle model in General Relativity as continuation to Einstein-

Rosen’s works to Morris-Thorne (Morris and Thorne, 1988) were on static spherically 

symmetric solutions. The generalization of the solution, the works of Teo (Teo, 1998) 
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and Khatsymovsky (Khatsymovsky, 1998)  introduced the rotating solution, while 

Lemos (Lemos et al., 2003)  worked on a solution with a cosmological constant.  

Combining the methodology of the solutions a case study of the generalized solutions 

for a slowly rotating spherically symmetric wormhole with a cosmological constant 

was proposed by our previous works (Anuar et al., 2005). However, all these studies 

were done in the framework of classical general relativity. The emerging of the string 

and consequently M-theory leads to the introduction of braneworld models in the 

1990s. It is based on the idea that the universe is a 3-brane embedded in a five-

dimensional bulk. Works by Bronnikov and Kim (Bronnikov and Kim, 2003) were 

among the pioneers in the attempt to study wormhole in the frameworks of 

braneworld. More generalized class of braneworld wormholes was introduced 

recently by Lobo (Lobo, 2007). 

 

Wormhole in general relativity framework violates null energy condition, however 

braneworld framework naturally support the existence of the exotic structure with 

topological defect such as wormholes without violating energy condition (Bronnikov 

et al., 2003). Most wormholes framework do not consider dynamic factor of the 

surrounding space of either expansion or contraction. Thus a more generalized time 

dependent dynamic can be embedded in the spacetime metric. Wormholes in dynamic 

space and its physical characteristic induced by the extra-dimension in braneworld 

framework may show some differences in its gravitational lens effect in contrast to 

wormhole cosmology in model based on classical general relativity. Some differences 

or discrepancies have not been proposed in current gravitational lens calculation. 

There could be the signature of the existence of large extra-dimension that may have 

been overlooked while observing gravitational lens.  
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1.2  Objectives 

 

 There are two main objectives of our research. The first objective is to formulate 

three main expressions in the stress energy tensor that will represent the physical 

characteristic of the dynamic braneworld which are the energy density, radial pressure 

and lateral pressure. This will establish the governing terms of the spatial dynamics 

surrounding the wormhole so that its dynamics effect toward and from the wormhole 

can be studied. The second objective is more of introducing possible observational 

method of proving the existence of the spatially dynamics extra-dimension due to its 

effects on the wormhole. It is the formulation of the extra term expression of 

deflection angle that is considered as the braneworld wormhole gravitational lens 

correction due to the bulk term in the braneworld spacetime metric which may 

provide the signature of extra-dimension illusively embedded in braneworld 

wormholes gravitational lens curvature. Thus, the result of our work may suggest the 

application of the derived deflection angle expression as observational method of 

searching for the existence of higher extra-dimension as predicted in the braneworld 

cosmological model. 

 

1.3  Motivation 

 

One of the motivations to study wormholes in an M–theory framework, is to search 

for realistic matter source that will support the ‘exotic’ characteristic of the wormhole 

spacetime. The theoretical possibilities of the existence of wormhole may generate 

‘exoticity’ concerns in cosmology such as the dark energy, exotic matter energy 

condition violations that imply negative energy density which repulsively expand 

localized spacetime and even influence the topological characteristic of the universe 
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itself. With M-theory (Schwarz et al., 2007) describing the fundamental framework of 

physics that can be influenced by extra-dimensional of spacetime, one may explore 

the concerns of exoticity in order to reduce or eliminate the requirement of exotic 

matter influence on the physical properties of the wormhole.  

 

In string theory (Zwiebach, 2004), there are basically two types of strings. A string 

that intra-connecting between two different points on a single brane and a string that 

inter-connecting between two different points of two different branes (West, 2012). In 

M-theory, a one-dimensional representation of a string can be expanded to two-

dimensional cylindrical like hypersurface representation of a string intra-connecting 

between two regions on a single brane or inter-connecting between two regions of two 

different branes (Schwarz et al., 2007). Thus, these representations can be natural 

state of inter-connecting and intra-connecting two regions of spacetime similar to that 

of wormhole theories, whereas the latter requires energy condition violation material 

such as dark energy or cosmological constant in the form of theoretical ‘exotic matter’ 

to expand the throat to become a traversable wormhole. So there are several research 

motivation to explore the possibilities, where in a brane cosmology a traversable 

wormhole can exist naturally without the requirement of energy condition violation. 

There are also possible scalar or vector fields that may exist on a brane cosmology 

that suit the characteristic of exotic matter to ‘fuel’ the traversable wormhole throat 

(Barcelo and Visser, 2000). The effects of brane dynamics on toward wormholes and 

possible observational indication for the existence of extra-dimension due to the extra-

dimensional effects on the wormholes in braneworld are the subjects of interest which 

may contribute to suggestion for experimental evidence of the subject. The subject of 

wormhole, is currently gaining attention since its relation with the known quantum 

phenomenon that is the entanglement via ER=EPR (Susskind, 2014). Leonard 
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Susskind recently has put wormhole topics in the lime light as not just bridge between 

spaces but also as "bridge" of unification between quantum mechanics and general 

relativity (Susskind, 2014). The braneworld scenario derived from string and M-

theory provides the idea of spacetime with underlying extra-dimensions. It is 

interesting to study the effect of the underlying extra-dimensions toward the 

spacetime that by itself has dynamics characteristic where the universe is in dynamics 

condition as currently in expanding phase or during contraction phase if big crunch 

theory is taken into consideration. Thus it is compelling to investigate the effect of 

dynamic factor toward the wormhole characteristics. Gravitational lens is significant 

as probing method for massive structures of celestial object or in general object that 

inflicts severe spacetime curvature. Since underlying extra-dimension such as bulk in 

the braneworld scenario affecting the behavior of spacetime characteristic in the 

universe thus it is reasonable to study how the extra-dimension affecting the 3 D 

spatial dimension surrounding wormhole affecting the gravitational lens characteristic 

due to the wormhole in the braneworld scenario. 

 

1.4  Outline of the thesis 

 

After a brief introduction in Chapter 1, we give a review on the braneworld, 

wormhole and gravitational lens in Chapter 2. In this chapter, we introduce the extra-

dimensional concept based on proposal by Kaluza Klien (KK), Arkani Hamed, 

Dimopoulos and Dvali (ADD) (Arkani-Hamed et al., 1999) to Randall Sundram (RS) 

(Randall and Sundram, 1999) braneworld, which will be the basis of our research. We 

also show elaborately the works of Shiromizu (Shiromizu et al., 2000) Bronnikov 

(Bronnikov and Kim, 2003) on how the braneworld model naturally provides 

sustainable material to hold a traversable wormhole intact without the requirement of 
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'exotic' matter. On wormhole, we discuss the origin of the idea, elaborating the 

various ideas from non traversable wormhole to traversable wormhole types and show 

the effect of energy condition violation of wormhole toward wormhole traversability. 

We also introduce the geometrical concepts of gravitational lens and how the 

deflection angle is derived from spacetime metric of Schwarzschild objects such as 

massive star, blackhole to wormhole. Gravitational lens with underlying braneworld 

model will also be briefly introduced in Chapter 2. We will show how from the 

deflection angle expression of lens object in braneworld can be separated by general 

relativity term and the extra terms signifying deflection angle due to brane factor. 

 

The main contributions of this study are presented in Chapter 3 and 4. In Chapter 3 

we analyzed on the spacetime metric that is representing brane with one spatial 

dimensionally higher bulk protruding perpendicularly from 3+1 brane spacetime. We 

extract the physical characteristic representing the wormholes that exist in such a 

braneworld model. Confirmation of finiteness and smoothness using Shiromizu 

(Shiromizu et al., 2000) and Bronnikov (Bronnikov et al., 2003) methods will show 

that the wormhole is geometrically possible and may exist naturally without 

requirement of exoticity. Here we highlight an interesting finding regarding the effect 

of the surrounding dynamics of spacetime toward wormholes. In Chapter 4, we 

calculate the deflection angle expression representing the wormhole model 

gravitational lens following the metric framework discussed in Chapter 3. In the 

expressions, we will include the dynamic factor terms that will represents the 

dynamics of braneworld spacetime surrounding the wormhole. The theoretical 

derivation of the deflection angle is another highlight of this study and we propose a 

new method to validate experimentally the existence of extra-dimension in the 

universe. Chapter 5 concludes the study with some perspective for future works. 
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CHAPTER 2 : BACKGROUND AND LITERATURE REVIEW 

 

2.1  Introduction 

 

In the framework of General Relativity, the quest for a realistic mechanism from a 

source of matter to support the exotic spacetime physical characteristic of a wormhole 

has met with challenges of energy condition violations . The source of mechanism, 

even if it is physically possible to exist, is so exotic which then coined as exotic 

matter. To solve the challenges of exotic matter several proposals have been 

suggested which among them are scalar fields, semi classical gravity, Brans-Dicke 

theory and some extra dimensional frameworks. Among the many suggestions,  one 

interesting formalism is braneworld cosmology framework which will be the basis of 

this study. In this cosmological model, the universe is viewed as a 3-brane embedded 

in a five-dimensional bulk (Lobo, 2007). The idea that contributes toward the physics 

of wormhole came from the fact that cosmologically inhomogeneities could exist 

through gravitational instabilities. This implies that cosmological background density 

fluctuation may allow the conditions for wormholes to exist naturally. It has been 

shown that the radial dependent equation of state such as the stress energy tensor may 

self-sustain a wormhole (Morris and Thorne, 1988). The gravitational field concept in 

braneworld cosmology can be influenced by higher-dimensional space of bulk. This 

implies that a natural resource of a wormhole geometry can also be influenced by the 

higher dimensional bulk. These were inspired by the progresses made in string and M 

theory, which are the foundation of the  braneworld ideas. 
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2.2  Braneworld 

 

The concept of braneworld is that the observable world is analogously a membrane 

or just a surface to a bulk of multidimensional space with large or infinite extra 

dimensions (West, 2012). Technically, the membrane or brane is  a domain wall in a 

multidimensional space. The domain wall or brane is where all the standard model 

fields in which we live in are confined to, which is a 4 D spacetime floating in a 

higher dimensional bulk.  The extra-dimensional could be very large or even infinitely 

large. This is a large extra-dimensional scenario. This idea is an alternative to the 

traditional string theory ideas of which the higher dimensional space are compactified 

on a small scale as suggested by the traditional model of extra-dimensional space by 

Kaluza and Klien (Wesson, 1999)    

 

There are two main types of braneworld models namely the Arkani Hamed, 

Dimopoulos and Dvali (ADD) braneworld (Arkani-Hameed et al., 1999) and Randall-

Sundram (RS) braneworld (Randall and Sundram, 1999). These models proposed that 

extra-dimension can be large in contrast to the early notion that extra dimension is a 

compactified space curled up or wrapped up into a Planck length. The ADD 

braneworld model is a generalization of the compactified Kaluza-Klien (KK) model 

where it represents combinations of n  flat compact extra-dimensions in which 

confine all the standard model fields. Only gravity is not constrained by the brane and 

could propagate through the higher dimensional bulk  due to the close string type of 

graviton that is the quantize form of gravity, whereas all the other fields in standard 

model are open string type that always attached to the brane. The same constraint 

characteristics of string are also applied in another braneworld model which was  

introduced later by Randall and Sundram (Randall and Sundram, 1999). The Randall 
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Sundram model suggests that the bulk of higher extra-dimension may dynamically 

influence the brane where it can be gravitationally interact with the bulk. This model 

interestingly may link the braneworld model with general relativity. Since general 

relativity theory is originally responsible for the idea of wormhole, thus Randall and 

Sundram model can be used to expand the theory of wormhole in a framework that is 

fundamentally based on elegant theory of string and M theory (Schwarz et al., 2007)  

which  is among major concepts that unify physics at the most fundamental level.  

The first model of RS model (RS1) (Randall and Sundram, 1999) was meant to solve 

the hierarchy problem. However it was still represented as compactified extra 

dimension, thus the bulk would just be Planck scale extra-dimension that may only 

prone to locally influence object in the brane not as what our research intent for a 

cosmologically type of influence. Then the 2nd Randall and Sundram model (RS2) 

had captured our curiosity that matches with model that could operate in cosmological 

aspect.  

                               

           

                        Figure 2.1 : RS2 model of a braneworld. 
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The RS2 suggest an extra dimension that can be infinite in size thus an alternative to 

all the previous compactified models of extra-dimension.  RS2 model is represented 

by a single positive tension brane in a non-compact and infinite extra dimension 

where the metric can be written as a combination of protruding y bulk coordinate and 

null metric tensor n multiplied with elements of bulk coordinate /y l which can be 

arranged accordingly to represent a specific metric. It can be written as  

 

                     
2 /2 2y l

ds e dx dx dy 




  ,                                    (2.1) 

 

For this metric, the 2Z  symmetry is applied  for representing the domain wall or the 

brane. The reflection symmetry is positioned at 0y   (Maarten, 2004) 

 

                                 

              

               Figure 2.2 : Brane bending due to matter and bulk. 

 

The bulk which is one spatial dimension higher than the brane has an influence on 

brane (universe)  cosmological constant  . This can be considered as product of high 
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dimensional gravitational constant nG  where n  representing the dimension of the 

bulk. The bulk cosmological constant   are the main contributor to the cosmological 

constant  , thus  ,nG     as appear in this universe is considered as  attachment 

of brane tension that is fined-tuned against itself. Moreover, an interesting property 

about the behavior of graviton in 5 D bulk gravity in non compact extra-dimension of 

the RS2 model. This relates to the normal 4 D brane gravity were also discovered 

through this model. All these imply the influence of the bulk toward the brane. 

Therefore, RS2 is enticing for our works due to its interesting extra-dimension  model 

which is geometrically simpler yet elegant concept, thus we had considered the 

Randall Sundram braneworld second model (RS2) (Randall and Sundram, 1999)  as 

the basis framework for this thesis.  

 

2.3  Braneworld gravity 

 

 

General relativity is the basis for describing gravity and the physics of wormholes. 

In the desired limit it shall reproduces the Newton's law of gravity. Therefore by 

limits approximation the braneworld theory of gravity shall also reproduces signature 

of general relativity. The limits approximation method in general relativity is known 

as linearised general relativity. Therefore the same method of limits approximation of 

linearised braneworld gravity can be shown to reproduce a general relativistic results. 

The linearised braneworld gravity to the least has shown how the bulk influence the 

brane to reproduce gravity but however, its only limited to weak field realms.  

Therefore, not all gravitational phenomena can be described by this method. 

Gravitational phenomena of the strong field kind such as black hole and perhaps 

wormhole which is our subject of research require more elegant treatment as provided 
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by Shiromizu, Maeda and Sasaki (Shiromizu, et al., 2000). The treatment not only 

describes the spacetime curvature due to mass or presence of matter on brane which is 

in congruence with the classical general relativity, but also shown that condition when 

matter on brane is absence that is the vacuum condition.  This is very interesting 

concept for the physics of wormhole because it has suggested that the spacetime 

curvature could exist without the presence of matter whether ordinary or exotic as 

required by classical general relativity to create spacetime curvature as exotic as 

wormhole. The bulk by itself can directly influence the brane even without emerging 

in a form of matter or exotic matter. Thus braneworld wormhole does not require 

exotic matter for its throat sustainability.  

 

The  braneworld gravity model by Shiromizu, Maeda and Sasaki (Shiromizu et al., 

2000) shows wider perspective about relationship between the 5 D bulk and the 4 D 

brane. The approach is about projecting the bulk curvature along the brane. The 

higher dimensional bulk influencing the brane directly. In more rigorous explanation, 

our universe as 4 D brane is described as 3+1 brane consist of 3 D spatial and 1 D 

time. The 3 D spatial brane can be represented by metric q and the 5 D spacetime 

can be represented by g . Thus in general the metric relation can be written as  

 

          vq g n n     ,                                                                       (2.2) 

 

where n  is the vector normal to the 3 D space (the universe). From this metric using 

the method from Shiromizu, Maeda and Sasaki (Shiromizu et al., 2000) the 

gravitational equation on 3+1 brane can be derived. This may show an interesting  

result that can be applied in our wormhole sustainability model.  
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2.4  Bulk influencing gravity  

  

In this section, we elaborate in detail the derivation method by  Shiromizu, Maeda 

and Sasaki (Shiramizu et al., 2000) to show how the higher dimensional bulk 

influencing the spacetime curvature in this universe. We start from the Gauss-Codazzi 

equations that represent 4 dimensional spacetime curvature in term of an intrinsic 5 D 

geometry and extrinsic curvature (Mannheim, 2005).  

The Gauss-Codazzi equations are  

 

          
   4 5 v

vR R q q q q K K K K      

             ,                                   (2.3)  

and 

           vD K D K R n q  

      ,                                               (2.4) 

 

where D  is the covariant differentiation with respect to the brane metric vq  and 

K is the extrinsic curvature of the brane which is the 3 D spatial space of 4 D 

spacetime. It is denoted by 

 

  K q q n 

       .                                                                       (2.5) 

 

Contracting Equation (2.3) by     

 

          
   4 5 v

vR R q q q q K K K K      

              ,                                  (2.6) 
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which then becomes  

 

          
   4 5 v

vR R q q q KK K K   

           ,                                           (2.7) 

 

by Equation (2.2) , we expand the mixed metric tensor of a brane in Equation (2.7)  

that is uvq g q 

   to be  v u vq g g n n 

   . Thus the result of multiplying 

convariant and contravariant metric of metric tensor and normal tensors gives the 

brane metric tensor expression more elaborately as the following 

 

          q g n n  

       .                                                      (2.8) 

 

Applying Equation (2.8), it can be shown that Equation (2.7) can be extended as the 

following 

 

         
     4 5 v

vR R g n n q q KK K K    

            ,   

                   
 5 v v

v vR g q q R n q n q KK K K      

              ,  

                    
 5 v v

v vR q q R n q n q KK K K    

               ,                      (2.9) 

Rearrange the indices, Equation (2.9) can be rewritten as  

          
   4 5

v v vR R q q R n q n q KK K K      

             ,                     (2.10) 

 

Then from Equation (2.10) the same pattern can be initiated for the Einstein tensor on 

4 D 3 +1 brane where     

  

          
     4 5 5

v v vG G q q G n q n q KK K K      

             ,                 (2.11) 
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where the 5 D Einstein tensor components  can be written as 

          

                5 5 51

2
G R g R      ,                           (2.12) 

and  

               5 5 5 51

2
v vG n q n q R n q n q g R n n n n           

           ,           (2.13) 

 

so Equation (2.11) can be rewritten as   

    

           4 5 5 5 5 51 1

2 2
v vG R g R q q R n q n q g R n n n n         

         

 
    
 

 

                                                                                vKK K K

      ,           (2.14) 

since    

           
     5 51 1

2 2
vg R n n n n q n n R n n n n       

         

                        
1 1

2 2
vq R n n n n R n n n n n n       

            .                 (2.15) 

 

It can be shown from Shiromizu et al., (Shiromizu, et al., 2000)   

 

    
     5 5 21 1

2 2
g R n n n n R n n q q K K K      

           ,          (2.16) 

 

thus Equation (2.14) becomes 

       4 5 5 21 1

2 2
vG R g R q q q K K K R n n q    

       

 
     
 

      

                            
 5

v vKK K K R n q n q    

        ,                    (2.17) 
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which shows that the Einstein curvature tensor in 4 D brane is always influenced by 

the higher dimensional bulk of 5 D. The 5 D Einstein tensor, in relation with the 5 D 

energy momentum tensor of the bulk T can be written as  

 

         5 5 2

5

1

2
R g R T     .                                                         (2.18)    

        

so Equation (2.17) becomes  

  

     
   4 2 2

5

1

2
vG T q q R n n q q K K K    

           

                                       
 5

v vKK K K R n q n q    

            .                 (2.19) 

 

It can be proven from where we start by defining Ricci tensor in term of stress energy 

tensor as   

   

       
2

5 1

3 2
R n n T n n T    

  

  
  

 
, 

       
2

5 1

3 2
R n n q T n n T q    

    

  
  

 
, 

       
2 2 2

5 5 52

3 3 6
R n n q T n n q T n n q T q      

       

  
    . 

Adding up both sides of the equation above with component representing Bulk energy 

momentum tensor  

2 2 2
2 2 5 5 5
5 5

2

3 3 6
v vT q q R n n q T q q T n n q T n n q T q          

           

  
      . 
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Rewritten the mixed brane metric tensor on the right side of the equation above in 

term of normal tensors to represent the right hand side of the equation as protruding 

energy momentum tensor from the bulk space that is 

2 2 2
2 2 5 5 5
5 5

2

3 3 6
vT q q R n n q T n n q T n n q T n n q T q          

           

  
     

 

which is 

            
2 2 2

2 5 5 5
5

2 2

3 3 6
vT q q R n n q T q q T n n q T q        

          

  
      ,  

and thus finally becomes 

 

2
2 5
5

2 1

3 4
v vT q q R n n q T q q T n n T q        

        




  
     

  
 .        (2.20) 

 

From Equation (2.19) and Equation (2.20) the 4 dimensional Einstein tensor in the 

presence of bulk can be written as  

 

   
2

4 252 1 1

3 4 2
vG T q q T n n T q q K K K     

       

   
      

  
 

                vKK K K E

           ,                                                           (2.21) 

 

where  

 

          
   5 5

v vE R n q n q C n q n q       

           ,                         (2.22) 

 

which is the projection of the 5 D Weyl tensor onto the brane.  This is the tensor term 

that connects the brane with the bulk which also known as the tidal SET because it 
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will reduce to sets of equations that will not become nullify or close, thus ensuring the 

presence of bulk effect to the brane even if the brane is at vacuum condition. That is  

further explained since the E  term, Equation (2.22) is traceless which represent the 

bulk entity at the minimal state in the absence of other terms that representing the bulk 

(Bronnikov et al. 2003 and Shiromizu et al. 2000). This shows that the spacetime 

curvature in our 3+1 brane has always been influenced by the bulk even at the 

minimal level where the Einstein curvature tensor can be related to the bulk term as 

the following. The Einstein curvature tensor and the Bulk term tensor or defined as 

the Bulk traceless entity can be written as 

 

        G E   .                                                                                        (2.23) 

 

From the Codazzi Equation (2.4) and 5 D curvature tensor Equation (2.18)      

              

       2

5

1

2
vD K D K T n q g Rn q    

        .                               (2.24) 

 

At the most fundamental state where spacetime is flat that is Ricci tensor is null the 

Codazzi  equation becomes 

 

      
2

5vD K D K T n q  

     .                                              (2.25) 

 

For more detail treatment of braneworld scenario we have to consider a particular 

symmetry or form of the energy momentum tensor. Let begin with defining 

hypersurface coordinate that coincide with a brane is when 0Y  , thus the general 

expression describing the coordinate in term of the vector normal to the 3 D space (the 
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universe) can be written as n Y y

    thus n dY dy

  . This implies that  

 

         0va n n 

   ,                                                                     (2.26)    

 

which represents the condition on the coordinate in the extra-dimension direction. 

Considering that the 5 D metric has the form similar to Equation (2.1) we may write 

in explicit representation, the metric as components in 4 D spacetime and 1 extra-

dimensional higher bulk protruding coordinate y  as 

 

       2 2ds q dx dx dy 

  .                                                    (2.27) 

 

We may consider 5 D energy momentum tensor in general as 

 

        vT g S y       ,                                                                      (2.28) 

 

where   is the cosmological constant of the bulk spacetime and 

 

       vS q       ,                                                                                (2.29) 

 

consists of  vacuum energy   and energy momentum tensor  . Since  is 

representing energy momentum tensor on a 3 D brane thus in relation with the vector 

normal to the brane it can be written as 0n  . S represents stress energy tensor 

of the normal matter in 4 D spacetime. Normal is considered here, because only 

gravity is not constrained to the brane whereas the normal matter is constrained or 
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living only on the brane where 0Y  . Consider junction condition where  

         0 0: lim limY YX X X X X 

     , 

       
0 0: lim limY Y vq q q q q    

 

 
       , 

while Y  coordinate approaching the brane the vector normal to 3 D space vanishes 

thus since metric of both sides of the brane are equal fundamentally g g 

   

therefore  0q
    . For the extrinsic curvature (Mannheim, 2005) 

 

         
0 0: lim limY Y vK K K K K    

 

 
       , 

                     2

5

1

3
vK K S q S      

    
 

, 

 

thus           2

5

1 1

2 3
vK K S q S      

    
 

    .                                               (2.30) 

 

Substituting Equation (2.30) into Equation (2.21) gives  

 

        2

5

7

6 2

K
G T E



     ,                                                         (2.31)  

                                                                                                             

From Equation (2.28), (2.29) and (2.30), the Equation (2.31) becomes  

 

             
2

2 5
5

7

6 6
G q y g q E      


            .        (2.32) 

 

The Equation (2.32) above represents the ordinary Einstein curvature tensor 

influenced by the higher dimensional bulk of 4+1 brane. Extending Equation (2.32) 
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we have 

 

   
2 2

2 2 2 5 5
5 5 5

7 7 7

6 6 6 6 6
G y q y g q E      

 
               . 

                             (2.33) 

Rearrange Equation (2.33)  

 

    
2 2

2 2 5 5
5 5

7 7
7 1

6 6 6 6
G g q y q y E     

 
              , 

   2 2 2

5 5 5

7 7 7

6 6 6
vG g g y n n y               

                                    
2 2

5 5 7 1
6 6

q y E  

 
        ,         

   2 2 2

5 5 5

7 7 7

6 6 6
vG g n n y g y               

        
2 2

5 5 7 1
6 6

q y E  

 
      , 

    2 2

5 5

7 7

6 6
vG g n n y g y              

         
2 2

5 5 7 1
6 6

q y E  

 
      .         (2.34) 

 

Let  y    and 2

5 4

7

6
     thus 

 

 2 2

5 5

7 7

6 6
vG g n n g           

                                     
2 2

5 5 7 1
6 6

q y E  

 
        ,                      (2.35) 
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since from Equation (2.2) then Equation (2.35) can be rewritten as  

 

  
2 2

2 2 5 5
5 5

7 7
7 1

6 6 6 6
G q g q y E     

 
             ,          (2.36) 

then let  2

5 4

7

6
     thus 

    
2 2

5 5
4 4 7 1

6 6
G q g q y E     

 
            .                (2.37) 

 

At the most fundamental level where we consider there exist only pure bulk as the 

background of the brane that consist nothing else than just membrane that is when 

0  , 0  and 
4 0   thus  it has been shown to reduce to equation (2.23) which 

implies that the higher dimensional bulk may influence spacetime curvature of the 

brane without the requirement of matter as well as exotic matter. 

 

2.5  Wormholes 

 

The possibility of the existence of wormholes has long been considered as a 

topologically non-trivial exact solution to the Einstein field equations. Einstein field 

equations are derived from general relativity theory that shows the relation between 

spacetime-curvature and the energy momentum tensor that represent gravitation and 

matter or energy respectively.  The equations are nonlinear and are therefore very 

complicated. However, Schwarzschild (Dirac, 1996) had considered a special case, 

which provides an exact solution to the equations; namely, the static spherically 

symmetric field produced by a spherically symmetric body at rest. Later it has been 

shown as highlighted by Einstein and Rosen that the Schwarzschild solution has a 

singularity (Einstein and Rosen, 1935). The idea of singularities was then propagated 
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towards further research on black holes. Not satisfied with the possibility of the 

existence of singularity, Einstein and Rosen (Einstein and Rosen, 1935), build a 

geometrical model of a physical elementary “particle” that was everywhere finite and 

singularity-free to oppose some ideas during the era that material particles might be 

considered as singularities of the field. Einstein and Rosen solutions provide the 

mathematical representation of physical space of two identical sheets where a particle 

is represented by a “bridge” connecting these sheets. This model of elementary 

particle however was considered a failure but it had generated the idea of Einstein-

Rosen bridge and as coined later with the term “wormhole” by Wheeler (Wheeler, 

1962) whom ideas concerning “spacetime foam”, were then introduced. Kerr 

wormhole (Kerr, 1963) can be considered as the firstly introduced rotating wormhole 

derived from the rotating blackhole spacetime metric. A slowly rotating Kerr 

wormhole still possesses the event horizon whereas a rapidly rotating Kerr wormhole 

even though eliminates the event horizon but still possesses the singularity and thus it 

is non-traversable. 

 

The idea of a traversable wormhole, was firstly introduced by Morris and Thorne 

(Morris and Thorne, 1988). Unlike the Einstein-Rosen bridge, which was meant to 

represent an elementary particle, or the Wheeler’s wormhole described as a 

microscopic charged-carrying wormhole, a traversable wormhole (Karasnikov, 2002) 

by definition, permits the two way travel of objects.  Despite the questionable 

existence of such wormholes either naturally or constructed by an advanced 

civilization (Ford and Roman, 2000), their study has generated newly exciting areas 

of research involving its fundamental properties, the application for faster-than-light 

travel and the associated problems of causality violation as suggested in Hawking’s 

paper concerning the chronology protection conjecture (Hawking, 1988 and 1992). 
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2.6  Wormhole spacetime geometry  

 

The Einstein field equations are complicated due to its non-linearity even for 

vacuum without cosmological constant. However, the simplest non-trivial solution to 

the equations is the Schwarzschild geometry, which is a unique spherically symmetric 

vacuum solution. The solution describes a spherically symmetric body at rest that 

produce a static spherically symmetric field. The static condition means that, with a 

static coordinate system, the metric tensor g  are independent of the time 0x  or t  

and also 00 g  (where   represents spatial coordinate indices; 1, 2 and 3). The 

spatial coordinates may be taken to be spherically polar coordinates where ,1 rx   

,2 x  3x . The most general form for 2ds  compatible with spherical symmetry 

is  (D’ Inverno, 1992) 

 

2 2 2 2 2 2 2( sin )ds Adt Bdr Cr d d      ,                 (2.38) 

 

where A , B , and C  are functions of r  only. Therefore without loss of generality or 

disturbing the spherical symmetry we can replace A , B andC  by any function of r . 

By virtue of this freedom, the expression for 2ds  may be written as (D’ Inverno, 

1992)  

 

                   2 2 2 2 2 2 2 2 2sinds e c dt e dr r d r d        ,                 (2.39) 

 

with   and   are functions of r  only.  
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From Equation (2.39) we can define the metric tensor  

 

                   2 2 2 2, , , sing diag e c e r r 

        ,                                   (2.40) 

 

and for the diagonal matrix, the conjugate metric tensor will simply be 1g g

 . 

Thus  

 

                    2 2 2 2, , , sing diag e c e r r               .                      (2.41) 

 

Further calculations are carried out for the affine connection by using (2.41) and we 

obtain the non-zero affine connections listed below: 

 

0

00
2


     ;   0

01

'

2


    ; 

  0

11 22

e

c

 




   ;   1 2

00 '
2

e
c

 




   ; 

  1

01
2


   ;   1

11

'

2


    ; 

  1

22 re     ;   1 2

33 sinre      ; 

  2

12

1

r
   ;   2

33 sin cos     ; 

  3

13

1

r
   ;   3

23 cot    .       (2.42) 

 

Here we denote derivatives with respect to time t  and radius r  as dot and prime 

respectively. These expressions are to be substituted in the Ricci tensor expression 
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R      

                  for obtaining the components of Ricci tensor. 

The results are  

 

                  
2 2 2

00

' ' ' 2 '
''

2 2 2 2 4 4

e c
R

r

        


  
       

 
 ,           

       
01R

r


   ,                

       
2 2

11 2

" ' ' ' '

2 2 2 2 4 4

e
R

c r

        


  
       

 
 ,                    

       22 ' ' 1
2 2

re re
R e

 
  

 
      ,                  

       2

33 22sinR R  .                                     (2.43) 

 

From these Ricci tensor components we can derive the Ricci scalar by contracting the 

Ricci tensor R with the conjugate metric tensor g   ; R g R

  as to obtain the 

following equation 

 

 
2 2

2 2 2

' ' ' 2 ' 2 ' 2 2
"

2 2 2 2

e
R e

r r r c r


       
 


   

           
   

  .    (2.44) 

 

Using 
1

2
G R g R    , we obtain the following Einstein curvature tensor 

  

                    
2

2

00 2 2

' 1 e c
G e c

r r r


    

   
 

, 

                    01 01G R
r


   , 
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                 11 2 2

' 1e
G

r r r


    , 

                  
2 2 2

2

22

' ' '
' ' "

2 2 2

e r r
G r r r

   
  

  
     

 
  

          
2 2 2

2

22 2 2

e r r
r

c

  


  
   

 
  

2

33 22sinG G .                                                  (2.45) 

 

The mixed Einstein tensor can be derived from G g G 

  and the results are  

 

0

0 2 2

' 1 1
G e

r r r

   
   

 
 ,       

1

0

e
G

r






  ,    

1

1 2 2

' 1 1
G e

r r r

   
    

 
 ,     

2
2

2

' ' ' ' '
"

2 2 2

e
G

r r

     


  
     

 
    

          
2

22 2 2

e

c

  


  
   

 
,             

3 2

3 2G G  .                                                 (2.46) 

  

Any generic static spherically symmetric spacetime can be expressed in general 

canonical form as (Dirac, 1996) 

                               2 2 2 2 2

00 11
ds g r dt g r dr r d     . 

If the spacetime metric contains a horizon it is of convenience for similarity with the 

Schwarzschild geometry to choose       2

00 1
r

g r e b r r
 

   and 
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    
1

11 1g r b r r


  . The horizon can exist in this metric when ( )b r r . The 

presence of horizon in this type of geometry indicates that the geometry may describe 

a black hole. In the absence of horizon in the geometry it is advantageous to set  

 

   2

00

r
g r e


 ,                (2.47) 

 

and thus the spacetime metric will be (Visser, 1995) 

 

                    

 

2
22 2 2 2

1

r dr
ds e dt r d

b r

r


    



.                                     (2.48) 

 

Morris and Thorne (Morris and Thorne, 1988) have chosen the form given by (2.48) 

for a traversable wormhole. The profile of the wormhole spacetime metric is shown in 

Figure 2.3 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 : Wormhole spacetime metric profile. 

 

 

0r  
Wormhole throat exist 

in the absence of 

singularity and the 

event horizon Univ
ers

ity
 of

 M
ala

ya



                      

 

 

 

29 

2.7  Traversable wormhole physical characteristics   

 

The Einstein-Rosen bridge and the Wheeler wormhole discussed previously are 

non traversable. The solution by Einstein and Rosen, even though it has no 

singularity, however shows the existence of the event horizon. Therefore, the 

wormhole is non-traversable since once a test particle enters the region of the event 

horizon there is no way for the particle to escape from that region. A problem for 

traversability if the event horizon exists is the effect of time dilation similar to the 

case of a black hole where the observer will see the traveler approaching the event 

horizon in an infinite amount of time. Wheeler wormhole on the other hand is simply 

too small. It exists only in a microscopic scale.  Kerr wormhole can eliminate the 

event horizon at high speed rotation but the naked singularity makes it still non-

traversable. 

 

Morris and Thorne (Morris and Thorne, 1988) introduced the solution for a 

traversable wormhole. It is possible, at least in principle, to construct a suitably 

behaved traversable wormhole spacetime. From the above discussion besides the 

absence of singularity, the absence of event horizon can be regarded as the minimum 

requirement for traversability. In their approach, they assumed the existence of a 

suitable geometry based on the Schwarzschild line element. Riemann tensor (Morgan, 

1998 and Srivastava, 1992) associated with this geometry is then calculated. Then, 

from the Einstein field equations, the stress energy terms which are distributed at the 

wormhole are deduced as shown below (Karasnikov, 2002):- 

The energy density 

2 '

8

c b

G r



  ,                                  (2.49) 
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the radial pressure 

                    
4

3

'
2 1

8
rad

c b b
p

G r r r

   
    

  
 ,                                       (2.50) 

the lateral pressure  

       
4

2

2 3

' ' '
1 " ' '

8
2 1 2 1

c b b r b b r b
p

b bG r r
r r

r r




 
    
         

           
    

 .     (2.51) 

 

The tangential pressure or lateral pressure p p  is measured in the tangential 

directions orthogonal to the radial direction. The radial tension is the negative of the 

radial pressure, that is r radp p     . The stress energy terms can be depicted in the 

following wormhole spacetime profile embedding diagram of Figure 2.4. 

 

                    

                      Figure 2.4 : Stress energy terms. 

   

From the stress energy terms, Morris and Thorne found that the energy condition is 

violated at the throat of the wormhole where the radial tension (opposite of radial 

pressure) 0 0p    is larger than the energy density term 0 .  
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This can be written as 

0 0 0   ,                     (2.52) 

and thus, 

                   0 0 0p   .                                                (2.53) 

 

This shows that the energy condition is violated. From the classical perspective, the 

violation of the energy condition is impossible, however through quantum mechanics, 

the null energy condition in particular can be violated. Thus the possibility of an 

existence of a traversable wormhole is always there for us to explore. 

 

In classical general relativity, there are seven types of energy conditions (EC) 

normally discussed (Visser, 1995). These are: the null (NEC), the weak (WEC), the 

strong (SEC), the dominant (DEC) energy conditions and the averaged null (ANEC), 

the averaged weak (AWEC) and the averaged strong (ASEC) energy conditions. From 

the energy momentum tensor of Hawking-Ellis type (Hawking and Ellis, 1987), the 

tensor components are given by 

 

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

p
T

p

p



 
 
 
 
 
  

,                 (2.54) 

 

which consist of the energy density and the three principal pressure i.e. the radial 

pressure ( 1p ), radial tension ( 1p ) and the tangential pressure ( 2p  and 3p ). The 

traversable wormhole throat condition violates the WEC, NEC, DEC, and SEC as 
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found by Morris and Thorne. Thus, we define the respective energy conditions as 

follows. 

 The null energy condition (NEC) states that for any null vector k   

 

0T k k 

  .               (2.55) 

In term of the principal pressure, it is 

 

                  0jp    , j ,  j   1, 2, 3.             (2.56) 

 

The weak energy condition (WEC) states that for any timelike vector 

 

0T V V 

  .                                     (2.57) 

 

Thus, this also implies the null energy condition. In addition, the local energy density 

as measured by any timelike observer is positive. Therefore, in terms of the principal 

pressure  

 

              0    and   

       0jp   , j ,  j 1, 2, 3.                                  (2.58) 

 

The strong energy condition (SEC) states that for any timelike vector  

 

0
2

T
T g V V 

 

 
  

 
 ,              (2.59) 
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where T is the trace of the stress energy tensor given by T T g

 . The strong 

energy condition implies the null energy condition, however, it does not implies in 

general the weak energy condition. In terms of the principal pressure  

 

            j

j

T p   ,  0jp      and   0j

j

p   ,  

          j ,  j 1, 2, 3.                   (2.60)

  

The dominant energy condition (DEC) states that for any timelike vector  

0T V V 

     where  T V

   is not spacelike. This shows that the locally measured 

energy density is always positive and the energy flux is timelike or null.  The 

dominant energy condition implies the weak energy condition and thus the null 

energy condition.  

In terms of the principal pressure 

 

0     and    ,jp     ,      j ,  j 1, 2, 3.                                (2.61) 

 

Comparing all these principal pressures with Equation (2.53), it shows clearly that the 

traversable wormhole condition at the throat violates the WEC, NEC, DEC and SEC.  

 

There are examples of physical system theoretically or experimentally that are 

known to violate the energy condition and thus allows the possibility that the 

conditions of a traversable wormhole to exist. The case of the Casimir effect is a good 

experimental example, while the Hawking evaporation is a good theoretical example 

concerning quantum effects that violates the energy condition. In addition, the 
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observation and theoretical study of the cosmological inflation are the best examples 

concerning the existence of the negative energy that in principle violates the energy 

condition.  

 

The definition of the energy condition and the examples of the energy condition 

violation mentioned above together with the analysis of the traversable wormhole by 

Morris and Thorne shows that for a wormhole to be a traversable system (Visser, 

1995) 

 

          *r         0 *,r r r  ,     0p     or    0     ,                       (2.62) 

 

where *r  is at any finite radial distance. Thus, it specifically shows that the energy 

density at the throat  0 0r   is smaller than the radial tension at the throat where 

 0 0r  , therefore, it can be written as 

 

0 0 0    .                                                           (2.63) 

 

This in particular shows that the null energy condition is violated over the finite 

range  0 *,r r  near the traversable wormhole throat which implies the violations of the 

weak, strong and the dominant energy condition. Therefore for traversability, the 

throat must be threaded by exotic matter whose definition is the matter that violates 

the energy conditions. Morris and Thorne (Morris and Thorne, 1988) introduced the 

dimensionless function “exoticity” (Lemos et al., 2003) which is the ratio of the 

difference between  radial pressure and energy density 2c   that represent the 
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energy condition violation over the modulus the energy density 2c  that can be 

expanded in terms of the wormhole shape function and red shift function as the 

following 

          
 2

2

' 2 '

'

b
b r b

c r

bc

 




   


  .                                             (2.64) 

 

In the presence of the cosmological constant Lemos et al. (Lemos et al., 2003) 

suggested that 

 

 
2

' 2 '

'

b
b r b

r

b r


   




 .                       (2.65) 

 

This expression shows that when it is positive, the matter presence in the traversable 

wormhole system is “exotic”. 

 

However subject of "exoticity" can be eliminated by brane cosmology as discussed 

earlier.  Equation (2.23) implies that the spacetime which is the 3+1 brane is a 

projection of 5 D Weyl tensor. It represents the connection between gravity on the 

brane and the bulk geometry. Thus the projection of 5 D Weyl tensor E  which itself 

is a traceless tensor may represent the most natural matter to support the wormhole 

without considering "exoticity" of exotic matter as discussed earlier by Lemos et al. 

(Lemos et al., 2003). Consider a general spherically symmetric line element with the 

form of   

 

  
   2 22 2 2 2 2 2 2 2 2sin
r r

ds e c dt e dr r d r d
 

       .        (2.66) 
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The metric tensor of this line element Equation (2.66) provides mixed projected Weyl 

tensor that directly represent the stress energy tensor in a braneworld (Shiromizu et 

al., 2000) namely the energy density t

tE   the radial pressure r

rad rp E   and the 

lateral pressure p E E 

       as the following  

 

        2

2 2

2 ' 1 1
e

r r r

 
   
     

  
 ,                                  (2.67) 

       2

2 2

2 ' 1 1
radp e

r r r

   
    

 
 ,                                  (2.68) 
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r r

  
   





 
     

 
.                                  (2.69) 

 

These has shown that the traceless tensor that connects gravity on the brane can be  

representing the physical characteristic of the spacetime metric directly.  

 

The most recent traversable wormhole in brane framework is the braneworld 

wormhole model  base on  DGP (Dvali-Gabadadze-Porrati) (Dvali et al., 2000)  

braneworld scenario proposed by Ming and Wang (Ming and Wang, 2017).  The DGP 

braneworld traversable wormhole spacetime configurations are supported by the 

effects of gravity leakage into extra dimensions. Ming and Wang (Ming and Wang, 

2017) explored the energy conditions from observational cosmology perspective 

where they have obtained some general conclusions that are about classes of exotic 

matter threading the wormhole since the beginning of the evolutionary process of the 

universe, wormhole spacetime structure restriction by current astrophysical 

observation and about the evidence from astrophysical observation that support the 

wormhole structure i.e. the dark energy or the MOG (Modified Gravity) (Clifton et 

al., 2012) spacetime curvature effects signature. Energy conditions at astrophysical as 
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well as at cosmological scale has been investigated. Energy conditions and the 

wormhole structure relationship has been derived through observational cosmology 

perspective where WEC and DEC are satisfied within certain range representing z 

axis of wormhole. The works of Ming and Wang (Ming and Wang, 2017) has shown 

the dynamics relationship between the universe of cosmological scale with the energy 

conditions characteristic that affects wormhole structure at an astrophysical scale 

supported by observational evidence signifying the relationship. The idea of finding 

relationship between cosmological scale and astrophysical scale has been introduced 

also by the works of Ming and Wang (Ming and Wang, 2017) and thus has also 

inspired the next two chapters of these thesis that deal with the relationship of 

cosmological dynamics of the universe in brane cosmology (Maarten, 2000) and the 

stress energy tensor of the wormhole as astrophysical scale supporting by propose 

observational evidence through gravitational lens characteristic. 

 

2.8  Gravitational lens of wormholes 

 

The bending of light from a distance star way behind the sun proven by 

astronomers was in fact the first experimental method to verify Einstein’s theory of 

General Relativity (GR) (Dyson et al., 1919).  In fact, the deflection of light rays by 

massive celestial objects have been noticed even by the 17th century astronomers in 

the era of Newton, and was described by the Newtonian deflection angle. However 

the Newtonian era deflection angle was not accurate enough and there was not any 

profound explanation for the reason of the deflection, until Einstein introduced the 

theory of general relativity that describes precisely the effect that is now known as 

gravitational lensing. Light follows the shortest path, optimized as a geodesic of 

spacetime curved or warped through the large energy-momentum tensor representing 
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a massive nearby object such as the sun. 

 

Wormhole, just like any other celestial objects that warp the surrounding 

spacetime, show the astrophysical signature of gravitational lensing. The expression 

for the deflection angle due to gravitational lensing, derived from various spacetime 

line elements, by itself can show some small variation which depends on the character 

of the lens object spacetime line element, whether it be of a Schwarzchild object with 

singularity, as with a blackhole, or with flaring out effects, as with a wormhole. The 

braneworld scenerio derived from string and M theory provides the idea of spacetime 

with underlying extra dimensions. The inclusion of extra-dimensional terms in the 

lens object spacetime line element will result in some variation in the expression for 

its gravitational lens deflection angle. Thus  in the Chapter 4 we investigate such 

variation by deriving this deflection angle expression. We will not only show the 

existence of such variation but also suggest the potential search for the existence of 

extra dimensions as predicted in the braneworld. 

 

Gravitational lensing occurs in many astrophysical circumstances and is becoming 

significant in modern cosmology. The effect of the lensing is the distortion of an angle 

of observation ̂  from an angle normally measured without the presence of 

deflection,  , that is  

 

̂    ,                              (2.70) 

 

this angle is related to the actual deflection angle   that occurs at the lens in relation 

with  distance components.  
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It is defined as  

                   ˆ LS

OS

d

d


  ,                                                    (2.71) 

 

where  LSd and OSd  are distances between the lens and the source, and the observer 

and the source respectively, and   is basic deflection equation given by 

  24GM c    where   is impact parameter in term of distance toward the center 

of the gravitational lens source. This gives the lens equation as  

 

       LS

OS

d

d


    ,                                               (2.72) 

 

which came from the ratio that angle of observation over angle of deflection is the 

same as ratio between distance of the lens from the source over the distance from the 

observer to the source. This also describes ray-tracing in a perturbed spacetime by 

showing the relation between the position of the source and position of the image. All 

these parameters can be depicted in the following diagram. 

                           

                Figure 2.5 : Gravitational lens parameters.  
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Figure 2.5 shows the setup of the gravitational lensing where light emitted from the 

source S  which could be any far distance celestial object such as a star. The emitted 

light from the star is deflected by lens L  which is in this paper we would consider it 

as a wormhole in a braneworld framework. Due to the deflection, from the perception 

of the observer O  the star apparently located as an image I  at an angle ̂  from the 

original angle   toward the true position of the star, that is the source.  We may also 

derive the trigonometric expression  relating the angles of  ,   and â . From Figure 

2.5   

 

       1 2 3D d d d    ,                                                (2.73)  

 

which trigonometrically shows  

 

      1 tan
OS

d

d
 , 2 tan

LS

d

d
 , 3 LS

OS

d d

D d
  and tan

OS

D

d
  ,                     (2.74)  

  

thus Equation (2.73) can be rewritten as   

 

      tan tan tan tanOS OS LS LSd d d d          ,                                 (2.75)  

 

and as       so we may write the gravitational lens equation (Virbhadra et al., 

2000) as   

 

         tan tan tan tanLS

OS

d

d
             .                                       (2.76)  
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Thus it can be shown trigonometrically the geometric set up of a gravitational lensing. 

Considering a spherically symmetric spacetime with the generic line element as the 

following, 

 

             2 2 2 2 2 2sinds A x dt B x dx C x d d                               (2.77) 

 

the closest approach of light tracing toward the object that causes the deflection can 

be defined as  

 

      
2

o
o

r
x

m
  .                                                                        (2.78) 

 

where r0 is the event horizon radius for the case of black hole (Virbhadra and Ellis, 

2000)  and m is the mass of the object. The deflection angle can be written as function 

of 0x   

           o ox I x    .                                               (2.79) 

 

With the integral term  0I x which actually represents a deflected axial angle close to 

the object that causes the deflection. To derive the integral equation representing the 

deflection angle near the lens, we may start by considering the null geodesic character 

of light emitted from the source traced through the spacetime that is 
2ds g dx dx 

 . 

So from Equation (2.77), for the null geodesic character of a wormhole shape with 

respect to time we may write  

 

          2 2 0A x dt C x d   ,                                   (2.80)  
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which is represented by time and the wormhole longitudinal or polar angle  . For null 

geodesic character of a wormhole spacetime warping with respect to the wormhole 

radii we may write 

 

          2 2 2sin 0B x dx C x d   ,                                                         (2.81) 

 

which is represented by the wormhole radii and the wormhole latitudinal or lateral 

angle (also defined as axial angle  ). From Equation (2.80) and Equation (2.81)  

 

       
 

 

2
A xd

dt C x

 
 

 
  ,                                                          (2.82)  

and 

        
 

 

2

2sin

B xd

dx C x





 
  

 
.                                                                       (2.83) 

 

The lens impact parameter is defined as   1 d dt u   which is the ratio of metric 

tensors 22 00u g g  so from Equation (2.82)    u C x A x . The impact parameter 

is larger toward the lens when 
0x x  at the region closer toward the source of the 

lens than at a region a little away from the lens that is  o region away
u u




  
and thus  

              o oC x A x C x A x   ,                                             (2.84) 

 

or we may write         o oC x A x C x A x  where the relation between the radius 

nearer to the lens and radius a little further away from the lens in response to the 
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curvature angle   as the light from the source S  comes nearer toward the lens L  can 

be depicted as 

                                     

         

     Figure 2.6 : The effect of curvature angle in relation with impact parameter.  

 

thus we may write   

 

                
1

2
0oC x A x C x A x    ,                                                       (2.85)  

 

and since from Figure 2.6    sin oC x A x   thus from Equation (2.85) it can be 

shown 

 

         
   

   
2sin 1

o

o

C x A x

C x A x
                                                                          (2.86)  

 

From Equation (2.83) and Equation (2.85), since   2oI x   , the integral term can be 

written with respect to the spacetime line element (2.77) as the following integral 

expression (Tejiero and Larranaga, 2012) 
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                 
 

 
   
   

2

1o

o

o
x

o

B x
I x dx

C x A x
C x

C x A x






  .                                 (2.87) 

 

Implying Equation (2.87) on spacetime line elements around gravitational lens 

objects, the deflection angle terms representing each type of object can be derived. 

For a Schwarzschild object e.g. a massive planet, a star and a black hole, where its 

line element is  

 

       
12 2 2 2 2 2 2 21 2 1 2 sinds Gm r dt Gm r dr r dr r d 


               (2.88) 

 

Then by Equations (2.77), (2.79), (2.87) and Equation (2.88) the deflection angle can 

be shown to be consist of the metric tensor of a line element arranged accordingly as 

pattern build to represent the deflection angle  
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
 
 

 

  ,                                             (2.89) 

 

where u  is the gravitational lens impact parameter that is the ratio of the lensing 

object’s extreme curvature radius or  (event horizon radius in the case of a black hole) 

over its redshift function term 1 2 oGm r , that is  1 2o ou r Gm r  . The 

analysis can be extended  to a wormhole spacetime metric given by (Lemos et al., 

2003) 
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            
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2
22 2 2 2 2 2 2sin

1

r dr
ds e c dt r d d

b r

r

  

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

,          (2.90) 

 

so that the deflection angle for a wormhole can be shown to be  
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 
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
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where in this case or  is the radius of the wormhole throat for a wormhole and the 

redshift function term at the throat is  ore


, giving 
 or

ou r e


 .  

 

2.9  Gravitational lens in braneworld 

 

Gravitational lens can be used as method of determining the characteristic of 

celestial objects in astrophysical aspect as well as providing signature of the 

underlying cosmological characteristic behind the astrophysical object such as the 

universe dynamics of expansion or contraction, modified gravity model,  extra-

dimensions and braneworld. For example in determining celestial objects 

characteristic gravitational lens can be used to distinguish between black hole and 

wormhole (Tsukamoto et al., 2012).  In testing the viability of modified or alternative 

gravity theory  as well as brane, gravitational lensing can be used as testing formalism 

by Keeton (Keeton and Petters, 2005) and Kar (Kar and Pal, 2008) respectively.  
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Spherically symmetric spacetime metric representing the brane in the weak field 

limit can be expressed in isotropic coordinates as shown by Kar (Kar and Pal, 2008) 

 

        

2

2 2 2 2

2 2

2 2 2
1 1ds c dt dX

c c

      
       

   
,                                 (2.92) 

 

where  r  is the Newtonian potential and  r  is the relativistic potential.  r  

as the correction term from braneworld gravity adds into the equation. From Equation 

(2.92) using the same calculation method to find the deflection angle, the following 

expression can be obtained  

 

      
2

1 ˆ
s

R
o

dl
c

      ,                                                            (2.93) 

where R , is the original value from GR alone. The extra term can be labeled for  

representing the brane as   where 

      R     .                                                                                        (2.94)  

 

Since the relation with the integral term I  is I    then  the deflection angle in 

the braneworld must contain both the GR term and the extra-dimensional term, 

 

      RI I     .                                                           (2.95) 

 

This shows the braneworld correction, where there exists small deviation of light ray 

on the brane in comparison to deflection due to general relativity (GR) only.  This 

motivates further elaboration of the extra term which signify the existence of extra 

dimensions in the braneworld wormhole gravitational lens model.  
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2.10  Summary 

 

The universe is the braneworld that is the 3+1 brane. The idea of extra-dimensions 

were originated since the attempt of basic forces unification effort between 

electromagnetism and gravity as in the Kaluza-Klein (KK) model. Then more 

comprehensive model which were among effort for unification through string theory 

between standard model and gravity sparks ideas of explaining gravity hierarchical 

problems through a compactified extra dimension as of the ADD model. It was the 

generalization of the compactified KK model. However the most intriguing extra 

dimension idea that has been the foundation of our studies is the RS braneworld 

model derived from M theory which is a more comprehensive string theory base idea. 

What was intriguing, is that the bulk of extra-dimensional space can directly influence 

the brane represented by the projected Weyl tensor E . This has eliminated the 

requirement of exotic matter to influence the wormhole geometry on brane. In this 

review we have shown detail derivation of the scheme of how from the concept of 

braneworld gravity the surrogate of "exoticity" can be shown to produce the same 

physical characteristic to sustain a traversable wormhole. The brief overview of all the 

essentials of  wormholes from Einstein and Rosen (Einstein and Rosen, 1935) that 

was the first original wormhole idea to the topic that represent the most challenging 

aspect of the physics of wormhole that is the violation of the energy condition and the 

requirement of exotic matter as the solution of the energy conditions violation. We 

reviewed the discussion about traversable wormhole physical characteristic namely 

the derivation of the stress energy tensors, their relation with the energy conditions 

violation and how the brane concept may eliminate the requirement of the exotic 

matter.  The influence of bulk onto the brane may not only manifested by the 

projection of Weyl tensor upon the stress energy tensors of wormhole but also its 
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relations with the gravitational lens of the warped passage of brane due by the 

presence of the wormhole. Important concept of gravitational lens were discussed as 

review and introductory purposes. In the next Chapter 3 and Chapter 4 more elaborate 

discussions on these aspects will result into interesting findings concerning the effect 

of surrounding spacetime dynamics and gravitational lens characteristic that signify 

the existence of extra-dimension. 
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CHAPTER 3 : EFFECTS OF SPATIAL DYNAMICS ON WORMHOLES 

 

3.1  Introduction 

 

General relativity theory is the driving factor that generates ideas for wormhole 

physics. In solving for an exact solution in the Einstein field equations in general 

relativity, Schwarzschild (Dirac, 1996) had shown a solution for a static spherically 

symmetric object warping the spacetime surrounding it. This solution had paved the 

ways to the first idea of the black hole where the spherically symmetric object 

collapse gravitationally to become singularity and creating the region known as event 

horizon within its Schwarzschild radius. Manipulating the Schwarzschild line 

element, we can show that the singularity and the event horizon in the solution can be 

discarded where this methodology had given birth to the idea of traversable wormhole 

as shown by Morris and Thorne (Morris and Thorne, 1988).  

 

The emergence of the String and consequently M-theory leads to the introduction 

of braneworld models in the 1990s. It is based on the idea that the universe is a 3+1 

brane embedded in a five-dimensional bulk. Works by Bronnikov and Kim 

(Bronnikov and Kim, 2003) were among the pioneers in the attempt to study 

wormhole in the frameworks of braneworld. More generalized class of braneworld 

wormholes was introduced by Lobo (Lobo, 2007).  

 

In the braneworld scenario the standard model fields which constitute the 

electromagnetism, nuclear strong and weak are confined on the brane but gravity is 

freely propagating from a brane through the bulk of higher dimension (Rodrigo, 

2006). Argument shown by Lobo (Lobo, 2007) has shown that the braneworld gravity 
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provides a natural scenario for the existence of traversable wormhole possibly without 

the requirement of exotic matter.  

 

In this chapter we begin with a form of bulk metric since we consider the bulk is a 

higher dimensional spacetime that influence the brane (Wong et al., 2011). The extra-

dimension term represents coordinate in the bulk that is time independent applied in 

the metric as protruding position from the brane of 4 D universe inward the 5 D bulk 

space.  

 

             

                Figure 3.1 : Bulk influencing the brane surrounding the wormhole. 

 

As the x  represents 3+1 (4 D) brane terms, the extra-dimensional term y  as shown 

in Figure 3.1 is a wormhole radius-dependent parameter    y Y r y r   in a (5 D) 

bulk. By the introduction of a projected Weyl tensor E onto a brane by Bronikov 

(Bronnikov and Kim, 2003) we shall obtain the stress energy tensor of a wormhole in 

a braneworld derived from Einstein tensor G  which is influenced by the projected 

Weyl tensor elaborately described in Chapter 2 for Equation (2.23) and as depicted in 
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Figure 3.1. From the metric we expand the calculation by deriving physical 

components representing the wormhole model, namely the energy density, radial 

pressure and lateral pressure. It is a natural criterion to regard the geometry of the 

wormhole in a brane as finite. Thus the Kretschmann can be extracted from the 

Riemann tensor so as to ensure the finiteness criterion achieved. From the Ricci scalar 

we develop a general solution in the form of integral expression that will be very 

useful in further study of  wormhole in a braneworld. Then we consider to include the 

evolution or dynamic factor of the wormhole and reworks on the geometry from Ricci 

tensor to Einstein tensor and finally the stress energy tensor which distinguish 

between the classical (static) and the dynamic terms. This will lead to an interesting 

properties concerning wormhole characteristic during expansion or contraction of the 

universe. 

 

3.2  Field equations on the brane  
 

 

 

Universe expansion is described as the motion of brane in a higher dimensional 

bulk (Bowcock et al., 2000 and Mukohyama et al., 2000). Initially, before we get into 

dynamics characteristic in this chapter, we consider that the bulk is static, thus the 

bulk term is time independence so that we may compare with the dynamic terms later. 

The bulk term represents the extra-dimension where in bulk metric the  term is 

embedded in a spacetime metric that behave like ordinary spacetime metric since it 

has the same signature of red shift and shape function terms. Thus it can be written as 

follows   

 

     
22 2 2 2 2 2 2 2 2 2 2 2

,sin rds M dt N dr P d P d Q Y dr        ,           (3.1)     
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where M  represents the redshift function of the brane, N and Q  represent the shape 

function term of brane and bulk respectively, P  as the braneworld wormhole radii. 

 y Y r  represents as the brane position (Wong et al., 2011) in the higher 

dimensional bulk, thus 
,rdy Y dr  that is ,rY dY dr as Y  is a function of r  only.  

Rearrange Equation (3.1) we have metric form that explicitly shows the shape 

function term  

 

                   2 2 2 2 2 2 2 2 2 2 2 2

, sinrds M dt N Q Y dr P d P d        ,           (3.2) 

 

with M , N ,Q , Y and P  are functions of r  only since we consider a static bulk. 

From Equation (3.2)  we can define the metric tensor    

 

                 2 2 2 2 2 2 2

,, , , sinrg diag M N Q Y P P       .                        (3.3) 

 

and for the diagonal matrix, the conjugate metric tensor will simply be 1g g

 .   

 

Further calculations are carried out for the affine connection 

 
2

g
g g g




           , and we obtained the non-zero affine connections 

listed below: 

 

         
,0 0

01 10

rM

M
    ,   

,1

00 2 2 2

,

r

r

MM

N Q Y
 


,  

         

2 2

, , , , , ,1

11 2 2 2

,

r r r r r r

r

NN QQ Y Q Y Y

N Q Y

 
 


 ,  

,1

22 2 2 2

,

r

r

PP

N Q Y


 


 , 

Univ
ers

ity
 of

 M
ala

ya



                      

 

 

 

53 

         

2

,1 1 2

33 222 2 2

,

sin
sin

r

r

PP

N Q Y





   


 ,     

,2 2

12 21

rP

P
     ,   

         2

33 sin cos    ,    
,3 3

13 31

rP

P
    ,    

        3

32 cot       .                                                                                      (3.4) 

 

These expressions are to be substituted in vR      

                  

 

for the components of Ricci tensor. The results are  

 

 

 

 
 

   

2 2
, , , , , , ,, , , ,

00 2 2 2 2 2 2 22 2 2
, ,,

2r r r r r r rr r r r

r rr

MM NN QQ Y Q Y YM P MM
R

N Q Y P N Q YN Q Y

 
  

 

,  

              

 

2 2

, , , , , , , , , ,

11 2 2 2

,

2r r r r r r r r r r

r

NN QQ Y Q Y Y M P M
R

N Q Y M P M

   
   

  
,   

          

 
 

   

2 2 2
, , , , , , , , , ,

22 2 2 2 22 2 22 2 2
,,,

1
r r r r r r r r r r

rrr

PP NN QQ Y Q Y Y PP M P
R

N Q YM N Q YN Q Y

 
   


, 

    

  
2

33 22 sinR R   .                                                      (3.5) 

 

From these Ricci tensor components we derive the Ricci scalar by contracting the 

Ricci tensor R , with the conjugate metric tensor g that is 

 

       
00 11 22 33

00 11 22 33R g R g R g R g R g R

          .                                (3.6) 

 

From Equation (3.5) and metric tensor g of Equation (3.3) we have the Ricci scalar 
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   

2

, , , , ,

2 2 2 22 2 2 2 2 2
,, ,

2 4 2
1

r r r r r

rr r

M P M P
R

P N Q YM N Q Y MP N Q Y

 
         

 
 

 

2 2

, , , , , , , ,

2
2 2 2

,

2
2

r r r r r r r r

r

NN Y Y Q Y QQ M P

M PN Q Y

   
  

 
 ,                     (3.7) 

 

which then resulting the Einstein curvature tensor components by  

2G R g R     where we obtain the non zero expression as the following 

 

       
 

 

2 2 22
, , , , , , ,, ,2

00 22 2 2
2 2 2

,
,

2
1

r r r r r r rr r

r
r

PP NN QQ Y Q Y YP P
G M

P N Q Y N Q Y

           

,  

         , , 2 2 2 2

11 , ,2

2 1r r

r r

M P
G P N Q Y

MP P
     , 

       

 
 2

22 , , , ,2 2 2

,

1
r r r r

r

G PP M M P
M N Q Y

 


                                                

   
 

 

2 2 2
, , , , , , ,

,2
2 2 2

,

r r r r r r r

r

r

NN QQ Y Q Y Y M P
PP

MN Q Y

   
   

  
, 

        
2

33 22 sinG G   .                                                   (3.8) 

 

In braneworld (Randall and Sundram, 1999, Rubakov and Marteens, 2001) 

framework, a natural resource of wormhole geometry is inspired by the superstring 

and M theory (Horova  and Witten, 1996) where the universe is viewed as domain 

wall in multidimensional space. Adopted from the Randall-Sundram model, only the 

gravitational field propagates through the bulk and all other standard model fields 

remain attached to the brane, which is the universe. When matter on a brane is 

absence where we consider the condition as vacuum, the field equation is given by 

Univ
ers

ity
 of

 M
ala

ya



                      

 

 

 

55 

relationship of Einstein tensor derived by Shiromizu, Maeda and Sasaki (Shiromizu et 

al., 2000) and the projected Weyl tensor onto the brane (Bronnikov and Kim, 2003), 

the equations as shown from Equation (2.11) to (2.22) reduced to (2.23) that is 

 

     G E      ,                                                                 (3.9) 

 

where E  can be a natural matter in a brane world that support a wormhole. Consider 

a general spherically symmetric wormhole line element of Equation (3.2) and 

contracting the projected Weyl tensor with metric tensor of Equation (3.2) we will 

have the mixed projected Weyl tensor that represents the stress energy tensor in a 

braneworld (Bronnikov and Kim, 2003) 

 

    E g E 

   .                                                             (3.10) 

 

The energy density is represented by time component of the mixed tensor, 

 

       
0

0

t

tE E      ,                                                                              (3.11) 

 

the radial pressure by the radial component, 

                 1

1

r

rad rp E E      ,                                                       (3.12) 

 

and the lateral pressure by the angular components 

 

 

                
2 3

2 3p E E E E 

            ,                                                          (3.13) 

 

since E G   thus g E g G 

    implies  

                E G 

    .                                                                                  (3.14) 
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From the Einstein curvature tensor components of Equation (3.8), thus by Equation 

(3.14) we derive the physical characteristic expressions. From Equation (3.11) for the 

energy density 

 

       0 0

0 0E G    .                                                           (3.15)  

 

By the metric in line element equation of Equation (3.2), the conjugate metric tensor 

of Equation (3.3), and expanding the mixed Einstein tensor of 0

0G    

0 00 01 02 03 00

0 00 01 02 03 00G g G g G g G g G g G      where 00

2

1
g

M
   thus by Equation  

(3.15), 

 

   
 2 2 2 2

, , , , , , ,, ,

2 2 2 2 2 2

, ,

2
1

r r r r r r rr r

r r

PP NN QQ Y Q Y YP P

P N Q Y N Q Y


    
         

  .        (3.16)  

 

           

From Equation (3.12) for the radial pressure  

 

 

       1 1

1 1radp E G   .                                                                      (3.17) 

 

 

By the conjugate metric tensor of Equation (3.3), and expanding the mixed Einstein 

of 1

1G , 1 10 11 12 13 11

1 10 11 12 13 11G g G g G g G g G g G      where 
11

2 2 2

,

1

r

g
N Q Y




,  

thus by Equation (3.17) 

      
 

 

2 2

, , , , , ,,

2
2 2 2

,

2 r r r r r rr

rad

r

NN QQ Y Q Y YP
p

P N Q Y

 



   

                            
 

, , ,

22 2 2

,

2 1r r r

r

P M P

M P PP N Q Y

 
   

  
.                     (3.18) 
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From Equation (3.13) for the lateral pressure  

 

 
 

       
2 2

2 2p E G     .                                                                            (3.19) 

 

By the conjugate metric tensor of Equation (3.3), and expanding 2

2G , 

 2 20 21 22 23 22

2 20 21 22 23 22G g G g G g G g G g G      where 22

2

1
g

P
  , 

thus by Equation (3.19), 

 

      
 

, ,

, ,2 2 2

,

1 r r

r r

r

P M
p M

PM N Q Y


 
  

  
   

   
 

 

2 2

, , , , , , , ,

2
2 2 2

,

r r r r r r r r

r

NN QQ Y Q Y Y M P

M PN Q Y

   
  

 
  ,             (3.20) 

 

where these represents the time independent classical terms of stress energy tensor 

that are   ,classic
    ,rad rad classic

p p and   ,classic
p p 

 derived from braneworld 

model of Wong metric tensor (Wong et al., 2011) combined with Bronnikov’s 

analytical method (Bronnikov and Kim 2003) that represent bulk effect toward the 

brane. We will show later in this chapter that the surrounding spatial dynamics will 

affect the stress energy tensor of the wormhole. 

 

3.3  Geometry finiteness  

 

To ensure finiteness of wormhole geometry as to avoid singularity to exist we may 

begin by extracting the Kretschmann scalar from spacetime metric of the wormhole.  
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The Kretschmann scalar is defined as  

 

R R 
   .                                                           (3.21)  

 

hence, in term of the metric tensor and Riemann tensor   

 

       g R g R   

   .                                               (3.22) 

 

From the general  wormhole spacetime line element Equation (3.2) and by Riemann 

tensor expression R      

                 we have the non-zero terms 

as the following 
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N Q Y


  
 
 
  ,

 

      

2
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,

1 sin
r

r

P
R

N Q Y


 
    

 .                                             (3.23) 

 

Hence, the available Kretschmann scalar Equation (3.22) components that can be 

derived from these non zero Riemann tensor terms of Equations (3.23) are 

   

       
2

11 0 2

1 101 1g R K     thus  
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  .             (3.24) 
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Expanding the Kretschmann scalar    

                            

 0 1 2 3

0 1 2 3R R R R R R R R R R         
               ,      (3.25) 

 

where after an obviously non-trivial calculation of expanding Equation (3.25), we 

may have the non-zero result  

 

     01 01 10 01 01 10 10 10

01 01 01 10 10 01 10 10R R R R R R R R       

     02 02 20 02 02 20 20 20

02 02 02 20 20 02 20 20R R R R R R R R     

    03 03 30 03 03 30 30 30

03 03 03 30 30 03 30 30R R R R R R R R      

                          12 12 21 12 12 21 21 21

12 12 12 21 21 12 21 21R R R R R R R R     

                          13 13 31 13 13 31 31 31

13 13 13 31 31 13 31 31R R R R R R R R     

    23 23 32 23 23 32 32 32

23 23 23 32 32 23 32 32R R R R R R R R     .               (3.26) 

 

By Riemann tensor identity abcd cdab dcab abdcR R R R      thus  abcd abdcR R   

multiply with metric tensors c dg g  , we have c d c d

abcd abdcg g R g g R     , therefore it 

is a proof of an identity where  

 

       ab abR R    .                                               (3.27) 

 

By using this identity and Kretchmann scalar in the form of metric and Riemann 

tensors, after non-trivial calculation it can be shown that the Kretchmann scalar can 

be finalized as  

 

           
2 2 2 2 2 2

11 0 22 0 33 0 33 1 22 1 33 2

101 202 303 313 212 3234 4 4 4 4 4g R g R g R g R g R g R      

                            ( 3.28) 
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In term of the scalar components by Equation (3.28) it can be shown 

 

 

 

      2 2 2 2

1 2 3 44 8 8 4K K K K         ,                                                 (3.29) 

 

thus    as proven by calculating Equation (3.29) using Equation (3.24) which is a 

necessary and sufficient condition for finiteness of all algebraic curvature invariants.  

 

As we consider a spherically symmetric wormhole with spacetime metric of 

Equation (3.2) situated in a region in the universe where matter on the brane is 

absence (vacuum), thus the Ricci scalar that represents the 4-dimensional scalar 

curvature in this region would  be zero; 0R   (Dadhich et al., 2002) . As in the 

Schwarzschild solution (with regards  to a  general spherically symmetric spacetime) 

by the Equation (3.2) non zero Ricci tensors of Equation (3.5) we may acquire its 

Ricci scalar of (3.7) to be expanded, become zero and rewritten as the following 
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,                (3.30) 
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where we have taken  into consideration that the character of  radii P  is that  

            P P r ,  0P  , P r , 2

,1 rP  ,       2 3

, , , , ,1r r r r rP P P P P      

and   thus we may also write          
2 22 2 4

, , , , ,1r r r r rP P P P P   . 

Let generalize Equation (3.2) in the form of   

 

         2 2 ( ) 2 2 ( ) 2 2 2 2 2sinr rds e dt e dr r d d           ,                          (3.31) 

 

where ( )re M   , 
2 ( ) 2 2 2

,

r

re N Q Y    and ,rr P P  Since the non-zero Christoffel of 

the metric of Equation (3.2) and metric of Equation (3.31) are related as the following 
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  


, 

      
,1

22 2 2 2 2

,

r

r

PP r

N Q Y e 
    


,     

1 1 2

33 22 sin    , 

       
,2 2 3 3

12 21 13 31

1rP

P r
         , 

        
2

33 sin cos    ,         
3 3

32 23 cot     .                     (3.32) 

 

Then for integral solution convenience, Equation (3.30) can be rewritten as  

 

        
2 2 2 2 24

2 '' 2 ' 2 ' ' 'R e e e e
r

                

         
2 2

2 2

4 2 2
' 0e e

r r r

       .         (3.33) 
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It can be shown that from Christoffel terms above of Equations (3.32), metric tensor 

of Equation (3.31) relations with Equation (3.7) which has been expanded to equation 

(3.30) are as the following, where for the 1st term in the equation (3.30) 

 

2

, , , , , , ,

2 2 22 2 2
,,

2
2

r r r r r r r

rr

P M P PP M

P N Q Y MM N Q Y

    
            

 that is in relation with the metric 

tensor of Equation (3.31)  as  the term 

2 2

, , , , , , 2

2 2 2
'' '

r r r r r rM MM M M

M M M M
       

and      
 

 
2

, , , 2

22 2 2

,

2 1
2 '' '

r r r

r

P M r

r eM N Q Y


 
 

    
  

   

 thus, expanding the right side of the equation above we have  

       
 

2

, , , 2 2 2

2 2 2

,

2
2 '' 2 '

r r r

r

P M
e e

M N Q Y

      


   ,                                         (3.34) 

 

which is the 1st two terms of Equation (3.33).   For the 2nd term in Equation (3.30)          

   

 

23

, , , , ,

2 2 22 2 2
,,

4
4

r r r r r

rr

P M M P PP

M P N Q YMP N Q Y

   
            

 where in relation with the metric 

tensor Equation (3.31)      
 

 
23

, ,

22 2 2

,

4 1
4 '

r r

r

P M r

r eMP N Q Y



   

     
    

    thus 

       
 

3

, , 2

2 2 2

,

4 4
'

r r

r

P M
e

rMP N Q Y

  


       ,                                                  (3.35) 

 

which is the 5th term of Equation (3.33).   For the 3rd term in Equation (3.30)    

 
 

 

2 2

, , , , , ,2

, , 2
2 2 2

,

2
r r r r r r

r r

r

NN Y Y Q Y QQ
P M

M N Q Y

 


    

                                               
 

  

2 2

, , , , , , ,, ,

2 2 2 2 2 2

, ,

2
r r r r r r rr r

r r

PP NN Y Y Q Y QQP M

P M N Q Y N Q Y

   
   

   
 , 
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where the relation between the metric tensor of Equation (3.31)  

  
 

 

2 2

, , , , , ,2

, , 2
2 2 2

,

2
r r r r r r

r r

r

NN Y Y Q Y QQ
P M

M N Q Y

 


  2

1
2 ' '

r

r e 
 

   
    

   
. 

Thus 

        
 

 

2 2

, , , , , ,2 2

, , 2
2 2 2

,

2 2 ' '
r r r r r r

r r

r

NN Y Y Q Y QQ
P M e

M N Q Y

 
 




     ,                        (3.36)  

which is the 3rd term of Equation (3.33). Finally for the last three terms of Equation 

(3.30) ,      
 

 

 

3 2 22 4
, , , , , , ,, ,

22 2 2 2 2 2 2 2
, ,

42 2 r r r r r r rr r

r r

P NN Y Y Q Y QQP P

P P N Q Y P N Q Y

 
 

 
 

     
 

2 2 2

, , , , , , , , , ,

2 2 2 2 2 22 2 2
, ,,

2
2 1

r r r r r r r r r r

r rr

P P PP PP NN Y Y Q Y QQ

P P N Q Y N Q YN Q Y

   
         

, 

where in relation with the metric tensor  

        
 

 

 

3 2 22 4
, , , , , , ,, ,

22 2 2 2 2 2 2 2
, ,

42 2 r r r r r r rr r
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P NN Y Y Q Y QQP P

P P N Q Y P N Q Y

 
 

 
 

          

2

2 2

1 1 2
2 1 '

r r

r r e e 


    
      

    
, 

which is the last two terms and the 4th terms of Equation (3.33) that are  

        
 

 

 

3 2 22 4
, , , , , , ,, ,

22 2 2 2 2 2 2 2
, ,

42 2 r r r r r r rr r

r r

P NN Y Y Q Y QQP P

P P N Q Y P N Q Y

 
 

 
        

         
2 2

2 2

2 2 4
'e e

r r r

       .                               (3.37) 

 

Combination of Equation (3.34) to Equation (3.37) have shown that we can 

transformed Equation (3.30) to (3.33) for conveneince to proceed with further 

calculation of the integral expression.  
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To find the integral expression we first require to derive Equation (3.33) as a linear 

first order equation with respect to  f r  where   2f r re   . From Equation (3.33)  

 

      
2 2 2 2 24

2 '' 2 ' 2 ' ' 'e e e e
r

              

      
2 2

2 2

4 2 2
'e e

r r r

        ,            (3.38) 

hence 

 

        
2 2 2

2 '' 2 ' 2 ' ' 4 ' 4 ' 2e r r r r
r

        
      

 
     ,                      (3.39) 

 

since   2f r re   thus  2 2' 2 'f e e r r     and if we multiply with 2 'r  we 

will have 

 

        
2

' 2 ' 2 ' ' 4 ' 'f r f r
r

    
 

      
 

    .                                     (3.40) 

 

From Equation (3.39) we may write 

 

       
2 2

2 '' 2 ' 3 ' 2 ' ' 4 ' ' 2f r r r
r

      
 

       
 

,                           (3.41) 

 

then   2 2
2 '' 2 ' 3 ' 2 ' ' 4 ' ' 2f r r f r

r
      

 
        

 
   therefore   

 

         22 '' 2 ' 3 ' ' 2 ' 2f r r f r           ,                                        (3.42) 
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which is the Ricci scalar of the wormhole in a braneworld  in the form of linear first 

order differential equation with respect to  f r  thus  

 

      

22 '' 2 ' 3 ' 2
'

2 ' 2 '

r r
f f

r r

  

 

  
  

  
   .                                           (3.43) 

Let       
22 '' 2 ' 3 '

2 '

r r
a r

r

  



 



   and     

2

2 '
b r

r



 thus (3.43) can be written 

as    'f a r f b r   where we multiply by an integrating factor 
 a r dr

e  hence 

 
    

 
'

a r dr a r dr
e f a r f b r e    and the left hand side of the equation as a 

differentiation with respect to r  thus 
 

 
 a r dr a r dr

d fe dr b r e
 

 
 

  .  Integrating both 

sides yields 

 

      
 

 
 a r dr a r dr

f e b r e dr
     .                                                                (3.44) 

 

For convenience  a r  integral term can be separated from new term  r  as 

 

      
22 '' 2 '

3
2 '

r r
a r dr dr

r

 




  

   ,                                   (3.45) 

 

where  
'

2 '
r dr

r




 

   but the term 2'' 'r r   can be factorized as     
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2
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it can be shown that the term 

2

2
2'

2 ' 2

d
r

r dr
dr dr d

r dr rd






 

 
 
  

 
 by considering 

2dr rd rd    where infinitesimal difference of red shift function   of a 

wormhole is much bigger than the infinitesimal difference of its corresponding radius, 

therefore Equation (3.45) becomes 

 

          2 3 2 3a r dr d         .                                             (3.46) 

 

So by Equation (3.44) and Equation (3.46)  the integral solution is shown to be 

 

        

2 3
2 32

2 '

e
f e dr

r






 
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 ,                                               (3.47) 

 

which was similarly concluded but in different manner by Bronikov (Bronnikov and 

Kim, 2003) as general solution for the condition of 0R   

 

        
 

 
2 3

2 3

2

2
2 '

2 '

e
f r e dr

r






  
  


 .                                  (3.48) 

 

By proving this general integral solution, it shows the Ricci scalar Equation (3.7) has 

the smoothness of metric behavior as symmetric wormhole and will provide several 

other solutions (Bronnikov and Kim, 2003) which concludes that wormholes are not 

always connected with negative energy density thus implies that the braneworld 

gravity of the wormhole metric Equation (3.2) provides a natural scenario for the 

existence of wormhole without the requirement of exotic matter. 
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3.4  Spatial dynamic effects 

 

Consider a dynamic factor  a t  with spacetime is included in the spacetime metric 

component of Equation (3.1) representing a dynamic braneworld metric. It can be 

shown as a separable form of metric tensor terms where we consider uniformity 

nature of the surrounding space dynamics of expansion or contraction with respect to 

wormhole physical shape. The spacetime metric components can be written as  

 

          , ( )N r t a t N r , 

          , ( )Q r t a t Q r , 

          , ( )P r t a t P r ,                                                                     (3.49) 

 

so Equation (3.2) can be rewritten as it has the same signature of red shift and shape 

function terms 

 

             2 22 2 2 2 2

,( ) ( ) rds M dt a t N r a t Q r Y dr     

         
2 22 2 2( ) ( ) sina t P r d a t P r d    ,        (3.50) 

thus 

            2 22 2 2 2 2 2

,( ) rds M dt a t N r Q r Y dr     

        
22 2 2 2( ) sina t P r d d    .        (3.51) 

 

This spacetime metric represents the spatial dynamics terms of warped space 

surrounding the wormhole.  Equations (3.49) to (3.51) have shown that we have 
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explicitly embedded the time dependence dynamic factor into the shape function and 

radial terms only. The metric tensor of time term M  remain time-independence. 

Preserving the metric tensor of the time term only to be time-independence indicates 

that the metric preserves the wormhole geometry itself as time independence whereas 

letting the shape function and radial terms time dependence indicate that the bulk 

space influencing the wormhole's surrounding brane may evolve dynamically. Ricci 

tensor with the dynamics factor can be separated neatly as time-independence (static) 

or “classic” terms with the dynamic terms  . They can be represented as the 

following 

 

       00 00( ) 002

1
classicR R

a
  , 

       11 11( ) 11classicR R   , 

       22 22( ) 22classicR R   ,   and 

       
2

33 22 sinR R  ,                                     (3.52)  

where  

       00

3a

a
   , 

       
 

 
2 2 2

, 2

11 2
2

rN Q Y
aa a

M



  , 

                    
2

2

22 2
2

P
aa a

M
   .                                    (3.53)  

 

Detail calculations are elaborated further in Appendix A. Einstein tensor with 

dynamic factor  

         00 00( ) 002

1
classicG G

a
  , 
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         11 11( ) 11 ( ) 112

1

2
classic classicG R g R

a
   , 

         22 22( ) 22 ( ) 222

1

2
classic classicG R g R

a
   , 

         
2

33 22 sinG G  ,                                     (3.54) 

where  

       

2

00 3
a

a

 
   

 
, 

        
2 2 2

, 2

11 2
2

rN Q Y
a aa

M


    , 

         
2

2

22 2
2

P
a aa

M
    .                                           (3.55) 

 

Detail calculations are elaborated further in Appendix B. Orthonormalized Einstein 

tensor with dynamic factor by using ˆˆ ˆ ˆvG G 

        

where 
 

ˆ 1 2
2 2 2

,

1 1 1 1
, , ,

sin
r

diag
M aP aPa N Q Y






 
  
 
 

  which results to  

 

        ˆˆ ˆ ˆ

1

2
vG R g R



 

   

 
    

 
   ,                       (3.56) 

 

after operating the Einstein tensor it can be shown to consist of the dynamic terms as 

the following; 

 

        ˆ ˆ ˆ ˆ ˆ ˆ200 00( ) 00

1
classic

G G
a

  , 

          ˆ ˆ ˆ ˆ ˆ ˆ211 11( ) 11

1
classic

G G
a

  , 
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          ˆ ˆ ˆ ˆ ˆ222 22( ) 22

1
classic

G G
a

     

and          ˆ ˆ ˆ ˆ33 22
G G   .                                                (3.57) 

which generally is   ˆ ˆ ˆ ˆ ˆ ˆ( )2

1
v v classic vG G

a
    . Detail calculations are elaborated 

further in Appendix C. 

 

Energy momentum tensor represents the following components of stress energy 

tensor; 

         ˆ ˆ ( )00 dynamicT  ,  

          ˆ ˆ11 rad dynamic
T p   , 

and               ˆ ˆ ˆ ˆ22 33 dynamic
T T p


   . 

These terms defined the components as the energy density ( )dynamic , radial pressure 

( )rad dynamicp  and lateral pressure  ( )dynamicp  of the wormhole surrounded by dynamic 

region of space of either expansion or contraction. By Equation (3.57) and  Einstein 

field equation ˆ ˆˆ ˆ8G GT   the energy momentum tensor components can be 

represented as 

         ˆ ˆ ˆ ˆ ˆ ˆ200 00 00

1 1 1

8 8classic
T G

a G G 

 
   

 
  which is  

         ( ) 2

1
dynamic classic

a
      ,                                  (3.58) 

 

that represents energy density with dynamic factor, 

 

        ˆ ˆ ˆ ˆ ˆ ˆ211 11 11

1 1 1

8 8classic
T G

a G G 

 
   

 
  which is  
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          2

1
radrad prad dynamic classic

p p
a

  ,                                              (3.59) 

that represents radial pressure with dynamic factor, 

                   ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ222 33 22 22

1 1 1

8 8classic
T T G

a G G 

 
    

 
 which is 

       2

1
pdynamic classic

p p
a




   ,          (3.60) 

that represents lateral pressure with dynamic factor where 
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, 

                  
 2

22
ˆ ˆ 2 2 2 222

21

8 8
p

a aa
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       ,                                     (3.61) 

 

with 8 G   which are residual dynamic factor terms that also contribute to smaller 

or higher dynamic stress energy tensor components during space expansion or 

contraction respectively. Detail elaboration of the Einstein tensor dynamics terms 

relation between ˆ̂   and   is shown in Appendix C. 

 

 

3.5  The effects at the wormhole throat 

 

 

The condition at the throat (Visser and Hochberg, 1997)  is where  0 0r r b r   

and 0a a   thus, the stress energy tensor dynamic factor will never become infinite 

but will be nullified at the throat. At the throat, the dynamic factor does not 
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contributes to the extra residual term of stress energy tensor. There is no change to the 

dynamic factor with respect to time at the throat, thus the residual terms 
0

ˆ ˆ 0
r r


  , 

thus 

 

                  
00 0 0 00

ˆ ˆ ˆ ˆ ˆ ˆ00 11 22
0pr rr r r r r r r rr r       

   
        .                         (3.62) 

 

From Equations (3.58) to (3.61) the stress energy tensor components at the throat with 

dynamic factor can be shown reduced to simpler expression in relation to their 

classical terms as the following 

 

         
0

0

( ) 2

1
dynamic classicr r

r ra
 




 , 

         
0

0

( ) 2

1
rad dynamic rad classicr r

r r

p p
a



 , 

         
0

0

( ) 2

1
dynamic classicr r

r r

p p
a

 


 ,                                   (3.63) 

 

where conclusively where ( , , ) ( , , )rad dynamic rad classicp p p p   when ( ) 1a t   which 

is the dynamic-expanding factor  when the universe is expanding as in big bang or 

bounce model (Gielen and Turok., 2016) or more generally the surrounding space of 

the wormhole is expanding as in regional space expansion model and 

( , , ) ( , , )rad dynamic rad classicp p p p    when  0 1a t   which is the dynamic-

contraction factor when the universe is contracting as in big crunch model or the 

surrounding space of the wormhole is contracting as in regional space contracting 

model. These can be depicted in the following diagrams  
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            Figure 3.2 : Expanding universe or space. 

  

 

 

                               
 

 

                         Figure 3.3 : Contracting universe or space. 

 

The stress energy tensor decrease inversely by the dynamic factor as the space of the 

universe expand as depicted in Figure 3.2 since the dynamic factor may be at ( ) 1a t  , 

but then it is interesting to consider a contracting space of the universe as depicted in 

Univ
ers

ity
 of

 M
ala

ya



                      

 

 

 

75 

Figure 3.3 that is collapsing toward big crunch where the dynamics factor may be at 

 0 1a t   . At this condition when universe is contracting the stress energy tensor 

increase exponentially which significantly affect negatively the wormhole throat 

sustainability to exist, on the contrary in the condition where the universe is 

expanding the stress energy tensor decrease thus affect positively the wormhole throat 

sustainability to exist.   These show that a wormhole is easier to exist in an expanding 

universe rather than in a contracting universe. In general, these are also applicable to 

similarly affect wormholes that exist in some regions of space that are either 

expanding (Livio, 2000) or contracting (Gielen and Turok, 2016). 

 

3.6  Conclusion of result 

 

Spacetime metric of a wormhole in a braneworld can also be modeled based on 

standard general relativity spacetime metric such as that of the Schwarzschild’s.  In 

this paper we have shown that this feat can be achieved by equating the projected 

Weyl tensor with the Einstein tensor where we can obtain the governing equation of a 

wormhole namely the stress energy tensor in the form of the energy density, radial 

pressure and lateral pressure which are physical characteristics required for wormhole 

traversability. As in general relativity the Kretschmann scalar can also be used to treat 

the finiteness of the spacetime . From the Riemann tensor we derived the general 

integral equation similar to that of Bronikov which is the solution to the null Ricci 

scalar expression representing an empty brane scenario, a pure brane condition, that is 

without any form of dark energy.  This equation can be a platform for further 

characteristic study of wormhole in braneworld. Finally we include the dynamic 

factor in the wormhole metrics at all parameters related to wormhole radius that 

concerns with shape function and its spherical geometric terms.  In developing the 
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standard calculation it can be shown that the classical terms can be separated nicely 

with the dynamic terms of the wormhole.  By separating  the distinguishable terms we 

have shown that dynamic-expansion factor when   1a t   
will reduce the amount of 

stress energy tensors thus a traversable wormhole is easier to exist in an expanding 

universe (Livio, 2000) which is perhaps the expanding brane. Dynamic-contraction 

factor when  0 1a t   will increase the amount of stress energy tensors physical 

characteristic required for wormhole traversability thus a traversable wormhole is 

difficult to exist in a contracting brane universe. This model of spatial dynamic factor 

affecting a wormhole  can be applied on the cyclic or the bounce universe model 

(Gielen and Turok, 2016) as there exist some period of expansion (bounce or big 

bang) and contraction (big crunch) of space in the model. It can also be applied in a 

cosmological model with regional space expansion and regional space contraction. 
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CHAPTER : 4 GRAVITATIONAL LENSING SIGNIFYING BRANEWORLD  

 

4.1  Introduction 

 

Gravitational lens is increasingly become importance (Schneider et al. 1992, 

Narayan and Bartelmann, 1996)  as to probe massive structures or celestial objects 

such as galaxies, galaxy super clusters, neutron stars and super-massive black holes. It 

also provides precision in the study of illusive subjects such as the distribution of dark 

matter as well as dark energy in the universe, or can even be used to investigate 

alternative theories such as modified gravity (Garratini and Lobo, 2013) and to look 

for signatures of large extra-dimensions (Randall and Sundram, 1999). 

 

The brane cosmology model that formed the basis of our work is the RS II 

braneworld model because the model provides a realistically flat Minkowski 

spacetime metric as background, yet with the underlying higher brane interacting 

large extra-dimensional bulk spacetime. Unlike other brane models, the RS II model 

in general, allows the bulk geometry to be curved. This allows dynamic interactions 

between the bulk and the brane making this model very significant for work with 

high-end concepts in General Relativity such as black holes, and for our case, 

wormholes.   

 

The interaction of the bulk with the brane may provide interesting signatures of 

extra dimensions via equations derived for celestial objects in a braneworld 

framework. Thus it is interesting to investigate mathematically the extra term that 

emerge when deriving wormhole gravitational lens effect with extra dimensional 

scenario as in the RS II model. The extra term may provide the signature of extra 
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dimension illusively embedded in the wormhole gravitational lens curvature. In this 

work, we have started by reviewing the derivation of classical gravitational lens 

theory which is purely in the framework of GR as well as some previous works in 

braneworld gravitational lens in Chapter 2. From the general expression we adapt this 

for black holes in general and for wormholes specifically without the existence of 

singularity. In this chapter, we expand the derivation by including extra dimensional 

terms in the wormhole metric in order to obtain the extra terms that would be 

considered as the braneworld wormhole gravitational lens correction. 

 

4.2  Braneworld gravitational lens extra terms 

 

We start by considering spacetime line element of Equation (3.2) that represents 

not only spherically symmetric but also the extra dimension term of  braneworld. To 

associate it with a line element characteristic of a wormhole, we consider the red shift 

function   

    

            
 r

M e


  , 

 

shape function, where  

             

           
 

2
22

,

1

r

a
N QY

b r

r

 



 , 

and the radial term  

    

                 P ar .                                                   (4.1) 

 

Let the shape function 2 2 2

,rW N Q Y  , hence  

 

                  2 2 2 2 2 2 2 2 2 2sinds M dt W dr P d P d         .                           (4.2) 
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Let 2 0ds  as considering light travels from a distance star along light-like path that is 

the null geodesic  so we may write  

 

                   2 2 2 2 2sin 0W dr P d    ,                                                    (4.3)     

thus it can be shown that  

       

2 2

2 2

d W

dr P sin





 
  

 
.                                                                       (4.4) 

 

For the relation between d dt , we consider the red shift function term 
 r

M e


  and 

the expansion factor of the wormhole radius P ar , since we have taken the light-

like condition 2 0ds  , thus we may also write  

 

                   2 2 2 2 0M dt P d    ,                                                                       (4.5) 

 

which then yields 

 

        

2 2
d M d M

dt P dt P

    
     

   
      and  

d M e

dt P ar

 

   ,                       (4.6) 

  

where o oar e u P M    which is defined as the gravitational lens impact parameter 

near a wormhole u   . The gravitational lens impact parameter is larger near the 

wormhole than at region slightly away from the wormhole that is 

 region away
u u


 where 

 region away
u P M


  therefore we may write o oP M P M  and 

thus o oP M PM  
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Figure 4.1 : Wormhole throat curvature angle and impact parameter.    

 

From Figure 4.1, the relation between the radius nearer to the wormhole and radius a 

slightly away from the wormhole in relation with the curvature angle   (also known 

as longitudinal or polar angle) can be simplified as     
1

2 2 2

o oP M PM   . Since 

0sin P M   and thus 2 2 2 2sin 1 P u M    ,therefore from Equation (4.4) the rate 

of change of the wormhole axial angle   with respect to the wormhole radius is 

 

      
1

2 2

2 2
1

d W

dr
P

P
u M




 
 

 

 ,                                                (4.7) 

with the shape function term in Equation (4.2),  then Equation (4.7) becomes  

   

      

1

2

2 2 2

,

2

2 2

1

1

rN Q Yd

Pdr P

u M


 
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  
  
 

 ,                                                                       (4.8) 
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thus  

    

1

2

2 2 2

,

2

2 2

1

1

rN Q Y
dr

PP

u M



 
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  
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 

 .                                                          (4.9) 

 

The wormhole axial angle   can be depicted as in the following Figure 4.2  

                            

                              

        Figure 4.2 : The effect of wormhole axial angle on the deflection angle. 

 

From Figure 4.2 it is obvious that the deflection angle  can be written as a function 

of the wormhole axial angle 

 

      2    .                                                           (4.10) 

 

By Equation (4.9) and Equation (4.10) we may write the expression for the deflection 

angle as 
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1

2

2 2 2

,

2

2 2

1
2

1
o

r

r

N Q Y
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PP

u M

 

  
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  
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 

 .                                  (4.11) 

 

We may rewrite Equation (4.11) as deflection angle in terms of the wormhole axial 

angle function  I   as 

    

       I    ,                                                       (4.12) 

where the axial angle function is 

                   

1
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2 2 2

,

2

2 2

1
2

1
o

r

r

N Q Y
I dr

PP

u M



  
 

  
  
 

 .                                  (4.13) 

We factorize the  
1

2 2 2 2
,rN Q Y  term as 

1
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Q
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 and expand 

1
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1 r

Q
Y

N

 
 

 
by binomial series      

1
2 2 4 62

, , , ,1 1 1
1 1 .....

2 8 16

r r r rQY QY QY QY

N N N N
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                                      (4.14)

 

 

Thus by Equation (4.14), Equation (4.11) can be rewritten as   
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which can be rewritten to show the respective classical (without brane) and brany (the 

effect of brane) contributions.  
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                                                              (4.16) 

 

This shows that the wormhole axial function has two terms, which are the “classical” 

and the “brany”, respectively  
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                  (4.18) 

 

From the shape function and radii terms in the line element Equation (4.2) and radii 

Equation (4.1) we may let  
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as purely representing classical general relativistic wormhole and    
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

 ,                                               (4.20) 

 

as purely representing the extra-dimensional term of the braneworld wormhole. Hence 

a complete deflection angle integral expression due to a wormhole in a braneworld is 
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which can be rewritten as follows 
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Let  2 1a    and  

 

                   
2 3 4 55 7

....
2 8 16 128 256

O
    

        .                                        (4.23) 

 

Hence Equation (4.22) can be rewritten as the deflection angle of the braneworld 

wormhole  
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If evolution or spatial dynamic factor 1a   therefore 0   meaning that there is no 

evolution at all, then the expression will resort back to the deflection expression for a 

purely general relativity background without the need for the existence of extra-

dimensional braneworld terms, as the classical deflection angle expression of 

Equation (2.91). Hence, this also shows that the evolutionary (dynamics) model by 

itself suggests the existence of the extra-dimensional braneworld. The dynamic factor 

or expansion rate  a a t  can be very slightly higher than 1 at the wormhole 

vicinity. This can be shown by considering the simplest relation with Hubble constant 

H that is       

 

        
 

 

a t
H

a t
 ,                                                                                             (4.25) 

 

Thus, in term of the spacetime expansion rate (dynamic factor) we may write  

 

       ( ) Hta t e .                                                                          (4.26) 
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So, if there exist Hubble constant, as in the dynamics of the universe, there exist an 

expansion factor which at the very least is slightly higher than 1. Now as 2 1Hte  

then we may write  

       
   
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2 3
2 22 1 11

...
2 8 16

Ht HtHt e ee
O Ht

 
     .  (4.27) 

which shows that the existence of Hubble constant indicates a dynamic universe and 

thus by itself, signify a braneworld cosmology. 

4.3  Numerical estimation 

We may expand Equation (4.24) accordingly under the boundary conditions of the 

wormhole, for the interior region where the domain of the integral is 0( , )sr r  and the 

exterior region of the wormhole where the domain of the integral is ( , )sr   as 
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This consist of the "classic" general relativity (GR) term and the brane extra term 

      brane GR braneExtra    ,  (4.29) 
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where the GR term is  
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and the brane extra term is 
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The wormhole interior region is represented by the radial domain o sr r r   that is the 

region between the wormhole throat and the wormhole Schwarzschild radius. In this 

region the shape function can be written as   

 

            1 sr r r
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where  
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and the red shift function can be written as   
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thus from Equations (4.32), (4.33) and (4.34)   
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   .                                           (4.35) 

 

The wormhole exterior region is represented by the radial domain sr r    that is 

the region just outside the wormhole Schwarzschild radius to the open and flat 

spacetime. In this region, the shape function is a constant and represented as  
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o
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 ,                     (4.36) 

 

and the red shift function is represented by  
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thus from Equation (4.36) and Equation (4.37)  
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 .                       (4.38)  

 

The wormhole regions and its corresponding parameters  sB b r ,  0 0r b r  that 

are the shape function value at Schwarzschild radius and throat radius respectively are 

depicted in the following Figure 4.3. The figure shows the region between the 

wormhole throat radius and the Schwarzschild radius is the interior region while the 
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exterior region of the wormhole is region beyond its Schwarzschild radius toward the 

surrounding space. 

                     

                    Figure 4.3 : Wormhole regions corresponding parameters. 

 

By assuming numerical value of the wormhole throat, its Schwarzschild radius (m) 

and red shift function error term as the following; 5250,or   10000,sr   and 1,   

where the ratio between those radiuses must always in accordance to wormhole 

geometric characteristic which is not to represent a severely curved spacetime as 

black hole or too lightly curved as ordinary Schwarzschild celestial object. The impact 

parameter is defined as 
 or

ou r e


 thus by Equation (4.34)  
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since  0 0b r r  thus                      

                    
2

oru


  .                                                              (4.40) 
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Using Equation (4.28), Equation (4.30) and Equation (4.31) we may tabled up the 

relationship between the brane deflection angle with its classical general relativity 

terms and its extra brane terms as the following 

 

                        

     Table 4.1 : Deflection angles (radian) with respect to space expansion rate. 

 

Using this numerical values from Table 4.1 the relation of deflection angle  , with 

respect to expansion rate a  as shown in Figure 4.4 

 

                        

 

Figure 4.4 : Deflection angles correspond to the increases of spatial expansion 

rate. 
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From Table 4.1 at the low spacetime expansion rate, the result shows that there exist 

only small variation between the classical GR base deflection angle and the brane 

extra term deflection angle. However as we explore various spacetime expansion 

rates, the influence of brane extra-dimension is increasingly significant as the 

expansion rate is increases as depicted in Figure 4.4. Table 4.1 also interestingly 

shows that as the rate of expansion increases, if the deflection angle calculation is 

totally based on classical general relativity (GR), the deflection angle will be reduced 

significantly. This implies as if gravitational lensing is gradually becomes a minimal 

occurrence in a purely classical general relativity base model in a region or period of 

accelerating expanding spacetime, whereas if the deflection angle calculation is based 

on our brane deflection angle formulation of Equation (4.28) the gravitational lensing 

is still remain a significant occurrence to be observed even at an increasing rate of 

expansion. 

     

4.4  Conclusion of result 

 

The deflection angle of a gravitational lens showed the character of the lens object 

since it is derived from its spacetime line element expression. Some slight variation of 

the angle expression, which depends on its mass and its spacetime curvature, is 

presented. If the mass is assumed to be fixed, the surrounding spacetime characteristic 

of any two different lens object will show the difference e.g. in the case between a 

black hole with singularity and event horizon, and a traversable wormhole without 

singularity and event horizon, will show the difference. As the spacetime 

characteristic plays an important role on deflection angle hence it is discernible that 

the extra-dimensional braneworld will have influence on the spacetime curvature and 

thus on the gravitational lensing, with the deflection angle showing differences by 
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some extra terms. Our derivation has shown that the existence of the extra-dimension 

braneworld influencing the extra term in deflection angle expression is closely related 

to and in fact dependent on the spacetime evolution factor or the spatial dynamic 

expansion rate. Moreover if we consider different expansion rates, where as the rate 

increases it is shown that the main contribution of gravitational lensing is due to the 

brane terms.  This is plausible, as we can relate the evolution factor with the 

accelerating expansion of the universe fueled by dark energy while the existence of 

dark energy (Amendola and Tsujikawa, 2010) is very much influenced by the 

existence of large extra-dimension as in the RS II model braneworld.  
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CHAPTER 5 : SUMMARY AND CONCLUSION  

 

5.1  Summary 

 

In the framework of braneworld cosmology we have introduced a case study of a 

spherically symmetric wormhole in a surrounding spacetime represented by 3+1 brane 

"floating" in one additional extra higher dimension perpendicularly projected from the 

brane's "plane" described firstly by Wong (Wong et al., 2011). It is indeed originated 

from the pioneering works of Bronnikov,  RS II model until the recent works of Wong 

et al.  We have derived the field equation of the wormhole and used Shiromizu et al. 

postulation that directly equate the projection of Weyl tensor with the wormhole 

physical characteristic itself namely the energy density, radial pressure and the lateral 

pressure. The geometry finiteness and smoothness were also tested using Kretchmann 

scalar and Bronnikov's integral solution for using these concept upon Wong type 

wormhole on 3+1 brane floating in 4 D spatial bulk which has proven that the 

Shiromizu and Bronnikov postulates for our model still work, where the finiteness and 

smoothness were preserved thus indeed it shows to be naturally imparted with the 

extra-dimensional bulk effect to maintain wormhole traversable sustainability without 

the requirement of spacetime "exoticity". The spatial dynamics terms of space 

surrounding the wormhole were considered by just explicitly embedding time 

dependence dynamic factor into the shape function terms and the radial term only, 

while preserving the metric tensor of time term to indicate the metric preserving the 

wormhole geometry as time independence but yet letting the shape function and radial 

terms to represent bulk space influencing the wormhole's surrounding brane that 

evolve dynamically  which is therefore as far as the wormhole geometry is concerned 

the wormhole itself is time independent. 
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It is interesting to consider the observable evidence of the existence of extra-

dimension manifested by the curvature-intense celestial object as our works on 

wormholes. Light path in the vacuum of space is purely manifesting the "shape" of 

spacetime. The existence of extra-dimension may influence the shape. Gravitational 

lens has been the first prediction of the Einstein theory of General Relativity which 

was by itself the first theory to predict the existence of the first extra-dimensional 

concept known to physics historically with its introduction to the idea of warped 

spacetime describing gravity. Thus the idea that gravitational lens may predict or 

signify the existence of extra-dimension is expected. 

 

5.2  Conclusions 

 

As the result of deriving the physical characteristic from the spacetime metric of 

spherically symmetric wormhole in a surrounding spacetime represented by 3+1 

brane, it has been shown to be distinguishable neatly between the classical terms of 

general gelativity and brane terms with its surrounding brane-bulk influence 

dynamics. This has resulted into the interesting findings where there exist correlation 

between the surrounding wormhole spatial dynamics and the wormhole physical 

characteristics required for wormhole traversability. The dynamic expansion factor 

  1a t   will reduce the amount of stress energy tensor namely the energy density, 

radial pressure and the lateral pressure implying that the formation of traversable 

wormholes is easier in an expanding spatial region. 

 

In cosmological aspect, during the period where universe is expanding e.g. during 

the inflationary period or as per currently, which seems like the period where the 

universe is acceleratingly expanding, the formation of traversable wormholes are 
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easier to occur. The dynamic contraction factor when  0 1a t  on the other hand 

will increase the amount of stress energy tensors physical characteristics thus 

implying that the formation of traversable wormhole is harder in a shrinking spatial 

region or in cosmological aspect, during the period of contracting universe e.g. the big 

crunch. This model of spatial dynamic factor affecting wormholes can be applied on 

the cyclic or the bounce universe model as there exist some period of expansion 

(bounce or big bang) and contraction (big crunch) of space in the model. It can also be 

applied in a cosmological model with regional space expansion and regional space 

contraction. 

 

As for the idea that gravitational lens may signify the existence of extra-dimension, 

the main observable parameter that can be used to detect the fringes of the 

gravitational lens resulted by the presence of bulk underlying the brane is the 

deflection angle. The deflection angle of gravitational lens shows the character of the 

lens object since it is derived from its spacetime metric expression which is the 

underlying warp passage of light travelling in vacuum space. As the spacetime metric 

physical characteristic of the red shift, the shape function and radial terms contribute 

to the deflection angle expression, hence the extra-dimension term that is specifically 

embedded in the shape function term will definitely affects the spacetime curvature 

which therefore may influence the gravitational lensing. As the result to the extra-

dimensional term influence, the deflection angle shows the slight differences by some 

extra terms.  

 

Our derivation has shown not only that the existence of the spatial extra-dimension 

of braneworld influencing the extra term in deflection angle expression but also the 

effects of spatial dynamic factor.  The result implies interesting findings where it can 
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be shown that the effects of different expansion rates correlate with the influence of 

the extra-dimension on the gravitational lens deflection angle in which as the 

expansion rate increases, the result suggest that the main contribution of gravitational 

lensing is more due to the brane terms.  This is very much related to the idea that 

accelerating expansion of the universe is fueled by dark energy while the existence of 

dark energy can also be manifested by the existence of large extra-dimension as in the 

RS II braneworld model. 
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