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ABSTRACT 

The extensive use of digital images at this age has led to the content manipulations that 

misrepresent the information with malicious intent. This issue demands the requirement 

of digital image investigation to verify the sources and validate trustworthiness. One of 

the image manipulation techniques is called copy-move forgery (CMF). It is a process 

of duplicating one or more regions in an image before being pasted to another location 

within the same image. The CMF is mainly comprised of translation attacks and 

commonly combined with other attacks, such as scaling, rotation, compression and 

Gaussian noise addition. In this thesis, the research is divided into two stages. The first 

stage looks into the performance analysis of the existing CMF detection methods, while 

the second stage focuses on proposing detection methods for reflection-based attacks in 

CMF. At present, CMF detection performance is evaluated, either through image-level 

evaluation, pixel-level evaluation, or both. Since there is no evaluation standard, the 

analysis also studies the effects of these evaluations towards the result interpretation. 

The study shows that both image and pixel-level evaluations are dependent, therefore, 

must be incorporated together to ensure fair evaluation. These evaluations are then 

applied to study the effects of reflection-based attacks in the second stage of research. 

Methods called SIFT-Symmetry and CMF-iteMS are proposed to alleviate the 

reflection-based problems in CMF. The SIFT-Symmetry incorporates symmetry 

matching in a keypoint-based CMF detection while the CMF-iteMS uses a block-based 

approach that includes iterative means of region size. To evaluate the performance of 

the two proposed methods, they are compared with state-of-the-arts methods, based on 

keypoint, block, and a combination of both approaches. The evaluations involve 

CombineTranslation, CPHALL, NB-Casia, and NBr-Casia datasets which include 

translation, scale, rotation, and reflection attacks. The results are measured using 

multiple F-score values which are for image, pixel, and both, image and pixel. The 
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image score shows the ability of the detection methods in distinguishing the original 

image and CMF image, while the pixel score defines the reliability of determining the 

exact location of the CMF detection. Both scores are multiplied to get the overall 

percentages of the detection. The CMF-iteMS surpassed the minimum value of 96% for 

image score and 88% for both pixel score and percentages of detection for simple 

translation attacks, while having maintained the highest percentages for rotation, simple 

reflection, and a mix of attacks with the minimum value of 87%, 76%, and 62%, 

respectively. In terms of reflection-based CMF, the CMF-iteMS achieved the highest 

percentages in all reflection cases even if the reflection is combined with scale attacks. 

Alternatively, the SIFT-Symmetry obtained the highest image score with a value of 

94% for simple reflection and 75% for reflection with scale attacks. Moreover, the 

results also proved that the combination of the existing CMF detection methods with the 

iterative means of region size increases the performance of the block-based approach. 

The combination with other approaches, on the other hand, is able to reduce the 

spurious matching even though the percentages of both image and pixel-levels are 

dropped. 
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ABSTRAK 

Penggunaan imej digital yang meluas pada era ini telah membawa kepada aktiviti 

memanipulasi kandungan imej untuk memberi maklumat yang salah di samping tujuan 

yang tidak baik. Isu ini menjadikan penyiasatan imej digital amat diperlukan untuk 

mengesahkan kebolehpercayaan dan sumber imej tersebut. Salah satu teknik untuk 

memanipulasi imej dikenali sebagai copy-move forgery (CMF). CMF ialah satu proses 

menyalin satu atau lebih kawasan di dalam satu imej dan menampal kawasan tersebut di 

tempat yang berbeza di dalam imej yang sama. Teknik ini mengandungi sekurang-

kurangnya operasi gerakan dan kebiasaannya digabungkan dengan operasi yang lain 

seperti pembesaran, pemusingan, pemampatan dan penambahan gangguan Gaussan. Di 

dalam tesis ini, kajian dibahagikan kepada dua peringkat. Peringkat pertama melibatkan 

analisis prestasi kaedah pengesanan CMF yang sedia ada. Manakala peringkat kedua 

memberi penumpuan kepada cadangan kaedah pengesanan CMF yang mengandungi 

operasi pemantulan. Pada ketika ini, prestasi kaedah pengesanan CMF dinilai melalui 

penilaian tahap imej, penilaian tahap piksel, atau keduanya. Oleh kerana tiada 

penyeragaman di dalam teknik penilaian tersebut, analisis dijalankan untuk menguji 

kesan teknik-teknik penilaian ini kepada tafsiran keputusan. Analisis menunjukkan 

bahawa penilaian tahap imej dan piksel memerlukan antara satu sama lain, dan perlu 

digabungkan bersama untuk memastikan penilaian yang adil. Kedua-dua tahap penilaian 

ini digunakan untuk mengkaji kesan operasi pemantulan di peringkat kedua kajian. 

Kaedah yang diberi nama SIFT-Symmetry dan CMF-iteMS dicadangkan untuk 

mengatasi masalah operasi pemantulan di dalam CMF. SIFT-Symmetry 

menggabungkan teknik padanan simetri di dalam kaedah pengesanan CMF berasaskan 

pendekatan keypoints. Manakala CMF-iteMS menggunakan kaedah berasaskan 

pendekatan blok yang mengandungi proses pengulangan purata saiz kawasan. Untuk 

menilai prestasi kedua-dua kaedah yang dicadangkan, kaedah-kaedah tersebut 

Univ
ers

ity
 of

 M
ala

ya



vi 

dibandingkan dengan kaedah pengesanan CMF yang sedia ada berasaskan keypoints, 

blok, dan gabungan keduanya. Penilaian ini juga melibatkan empat set data CMF iaitu 

CombineTranslation, CPHALL, NB-Casia, dan NBr-Casia yang mengandungi imej 

CMF dengan operasi gerakan, pembesaran, pemusingan dan pemantulan. Keputusan 

penilaian diukur menggunakan pelbagai nilai F-skor yang terdiri daripada skor imej, 

skor piksel, dan kedua-dua skor. Skor imej menunjukkan keupayaan kaedah pengesanan 

dalam membezakan imej asal dan imej CMF. Skor piksel pula memberi maksud 

kebolehpercayaan tentang ketepatan lokasi pengesanan kawasan CMF. Kedua-dua skor 

didarabkan untuk mendapat keseluruhan peratus pengesanan CMF. CMF-iteMS berjaya 

melepasi nilai minimum 96% untuk skor imej dan 88% untuk skor piksel dan 

kesuluruhan peratus bagi operasi gerakan mudah. Manakala bagi operasi pemusingan, 

pantulan mudah, dan campuran operasi, CMF-iteMS berjaya mengekalkan nilai peratus 

tertinggi dengan nilai minimum 87%, 76% dan 62% untuk setiap satu operasi. Untuk 

operasi pemantulan di dalam CMF pula, CMF-iteMS mendapat skor tertinggi di dalam 

semua operasi pemantulan walaupun pantulan tersebut digabungkan bersama operasi 

pembesaran. SIFT-Symmetry pula memperoleh skor imej tertinggi dengan nilai 94% 

untuk pantulan mudah, dan 75% untuk pantulan dengan operasi pembesaran. Tambahan 

lagi, keputusan juga membuktikan bahawa gabungan antara kaedah pengesanan CMF 

dengan proses pengulangan purata saiz kawasan meningkatkan prestasi kaedah 

pengesanan CMF berasaskan pendekatan blok. Bagi gabungan antara kaedah 

pengesanan berasaskan pendekatan lain pula, keputusan menunjukkan pengurangan 

kesalahan padanan walaupun prestasi kedua-dua skor imej dan piksel menurun.  
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CHAPTER 1: INTRODUCTION 

In this chapter, an introduction is presented by discussing the development of image 

manipulations and the importance of image forensics in the community. Next, due to 

the simplicity and effectiveness of the copy-move forgery (CMF) image manipulation 

technique, this research is focused directly on the CMF and its detection methods. The 

current problems in the existing CMF detection methods are briefly explained while the 

research questions, objectives, and scope are defined. Furthermore, this chapter also 

describes the contribution and significance of this research, as well as the outline of this 

thesis.  

1.1 Introduction 

The advancements of photo editing software in the market today, such as Photoshop, 

Paint, Pixlr Editor and Photoscape have led to the development of image manipulations. 

Furthermore, with the rapid growth of digital imaging devices, the digital images 

captured are being duplicated and manipulated at ease without degrading the quality or 

leaving any visible clues. Thus, these manipulated images are easily and widely shared 

over the internet to misrepresent the information and altering the meaning with 

malicious intent. 

CMF becomes a popular image manipulation technique because of its simplicity and 

highly visual effects representation. Also known as region duplication or cloning, CMF 

copies one or more regions in an image and paste the regions into other positions within 

the same image. The CMF manipulations typically occur by hiding an object in an 

image to conceal unwanted information or by emphasizing a large crowd to show the 

impression of great support. 

In recent years, the detection of CMF has become one of the most active research 

topics in image forensics. To detect the CMF image, the CMF detection methods are 
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primarily evaluated by looking at their sensitivity to various possible attacks. Al-Qershi 

& Khoo (2013) divided the attacks into two groups, namely intermediate and post-

processing attacks. Intermediate attacks (also known as geometrical transformation) is a 

process of spatial manipulation changes created to the copied region, purposely meant 

to match its targeted neighborhood in the image. The basic transformation in the CMF 

is translation, however, translation can be combined with other attacks, including scale 

and rotation. Conversely, the post-processing attack is normally (but not necessarily) 

applied after the transformation process, to improve the blending of visual effects that 

can prevent the manipulations from being detected. These attacks are comprised of Joint 

Photographic Experts Group (JPEG) compression, noise, and blurring effects. 

Based on the literature review, the earlier CMF detection methods started with the 

block-based approach, which aims to find the identical features among blocks in an 

image. In this research, the features in the approach are categorized into four extraction 

techniques, namely frequency, texture & intensity, moment invariants and log-polar 

transform. Fridrich et al. (2003) first applied frequency, specifically, Discrete Cosine 

Transform (DCT) features in their block-matching scheme to find the identical 

quantization values. They believed that the resaved and recompressed image changes 

the artifact values in the original image. Then, the approach evolved by proposing other 

features, such as intensity patterns (Langille & Gong, 2006) and blur-invariant moments 

(Mahdian & Saic, 2007) to also include the resistance ability against Gaussian noise, 

blurring and contrast changes. In the subsequent report, the block-based approach is 

enhanced by looking at the sensitivity of the methods against geometrical 

transformation attacks. For instance, Myna et al. (2008) implemented log-polar 

mapping to withstand the rotation attacks, however, the performances are restricted to a 

certain degree of rotation while being less effective against scale attacks. 
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Next, the keypoint-based approach sparked a turning point in CMF detection 

methods in 2008. Due to the reason that Scale Invariant Feature Transform (SIFT) is 

known to be robust against both scale and rotation, Huang et al. (2008) initiated an 

approach that is able to find the similarity through an exhaustive search of the SIFT 

features in an image. A few years later, the method proposed by Amerini et al. (2011) 

became the most popular CMF detection method, as their method is superior to other 

SIFT-based CMF detection methods, especially for scale and rotation attacks. Instead of 

improving the keypoint features detection, researchers started to combine the keypoint-

based approach with block-based approach to improve the performance in the flat areas 

and highly uniform zones. The example of the method is proposed by Ardizzone et al. 

(2015) which employs several triangle segmentation techniques after the keypoint 

extraction, either SIFT, Speeded-Up Robust Features (SURF) or Harris points. 

Despite the rapid development of the CMF detection method for years, two main 

problems are addressed in this research. The first problem will look into the requirement 

of image and pixel-level evaluations in measuring the performance of the existing CMF 

detection methods. The second problem, on the other hand, concentrates on the 

reflection attacks, which are not highlighted in the previous evaluation. 

To analyze the problems, this research examined the effects of image and pixel-level 

evaluations to the performance of existing CMF detection methods against various 

CMF attacks. Based on the analysis, both image and pixel-level evaluations are relying 

on each other and should be combined together to obtain a fair evaluation. Therefore, a 

set of evaluation steps with the calculation to measure the percentages of both levels of 

performance is used in the overall CMF detection comparison. 

To continue with the performance analysis against various attacks in CMF, three 

existing CMF detection methods are selected with each method representing each 
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approach. In particular, the Amerini et al.’s method (2011) indicates the keypoint-based 

approach, the Cozzolino et al.’s method (2015) with two features (Zernike moments and 

Fourier-Mellin Transform (FMT)) signifies the block-based approach, and the Silva et 

al.’s method (2015) denotes the combination of both approaches. In the analysis, the 

selected methods are compared against various CMF attacks using four datasets. Two of 

those datasets are collected from the publicly available CMF datasets, which comprised 

of CombineTranslation (only translation attacks) and CPHALL (common attacks 

without reflection). Furthermore, the other two datasets are the newly created data, 

namely NB-Casia and NBr-Casia that are designed specifically to include reflection 

attacks in the CMF image. The NB-Casia considers common types of CMF attacks, 

including reflection. Meanwhile, the NBr-Casia contains a set of reflection data 

combined with other CMF attacks. 

As the existing CMF detection methods show reduction of performance when 

dealing with reflection-based CMF images, two CMF detection methods are proposed 

using keypoint and block-based approaches, to cover the CMF with reflection attacks. 

The performances are measured using multiple F-score values which are meant for 

image, pixel and both levels of evaluations. 

1.2 Problem Statement 

Presently, the performances of the CMF detection methods are evaluated, either 

through image-level, pixel-level, or both levels. The image-level evaluation is 

performed to measure the ability of the detection methods in distinguishing an original 

and a CMF image. Since the CMF detection methods are primarily concerned with 

blind detection (which the original images are assumed to be unknown), the detection 

methods should be able to recognize any input image, either as original or forged. 

However, solely image-level evaluation does not guarantee the identified location is 

true, even if the methods are able to detect the CMF image. Thus, the pixel-level 
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evaluation is required to confirm the trustworthiness of the detection of locations. Due 

to the reason that each level of evaluation has their own significance, this research 

examined the effects of both level of evaluations to the performance of the existing 

CMF detection methods. The purpose of the study is to get an insight of the trade-off 

between the individuality and relevance of each level of evaluation technique. 

Apart from studying the influence of image and pixel-level evaluations, the second 

problem concentrates on the effect of reflection to the CMF detection. To date, very 

limited studies have considered the reflection-based attacks in CMF. The attack is 

believed to have similar destructive effects as other CMF attacks and therefore worth to 

be studied. 

As mentioned before, there are three common approaches in detecting CMF, called 

keypoint-based, block-based and the combination of the two approaches. From the 

performance analysis, the combination of the two approaches (as in Silva et al. (2015)) 

does not show much improvement over the two aforementioned methods. Thus, this 

research only concentrates on proposing methods related to keypoint and block-based 

approaches. 

Initial tests show that the current keypoint-based CMF detection methods are not 

robust to the reflection attacks. As reflection attacks change the features organization, 

the properties of the keypoint features between the original regions and the reflected 

regions are different. Thus, existing keypoint matching techniques could not find the 

similarity, resulting in lower performance against the attacks. Therefore, a method 

based on keypoint features, called SIFT-Symmetry is proposed by introducing a 

symmetry matching technique to withstand the reflection-based attack. 
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 The research continues with the consideration of the block-based approach. Similar 

tests are conducted to evaluate the performance of the existing block-based CMF 

detection methods. The block-based methods show convincing results in detecting 

direct reflection attacks, but the performance degraded when the reflection is combined 

with scaling attacks. One of the reasons is due to the static threshold selection technique 

used in prior CMF detection methods. Therefore, a method called iterative means of 

region size for the CMF detection (CMF-iteMS) is proposed to reduce the effects of the 

static threshold selection technique. 

1.3 Research Questions 

This research is developed to answer the following questions for a CMF detection 

method: 

i. Do the image-level and pixel-level evaluations effect the performance of 

CMF detection methods? 

ii. Is the symmetry matching technique able to improve the performance of 

existing keypoint-based CMF detection methods against reflection attacks in 

CMF?  

iii. Does an automatic threshold selection for final verification process will 

increase the performance of existing block-based CMF detection methods 

against various attacks?  

iv. Can the proposed CMF detection methods improve the robustness of the 

existing CMF detection methods against various CMF attacks, for both 

image and pixel-level evaluations?  
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1.4 Research Aims and Objectives 

The aim of this research is to develop a CMF detection method that is capable to 

detect CMF image with exact detection locations against various attacks, including 

translation, scale, rotation, reflection, and combinations of each attack. 

In this research, three research objectives are addressed as follows: 

I. To examine the effects of image and pixel-level evaluations to the performance 

of existing CMF detection methods against various CMF attacks, including 

reflection. 

II. To propose CMF detection methods based on keypoint-based and block-based 

approaches that cover various attacks in CMF. 

To be specific, this objective is divided into two sub-objectives: 

a) To propose an improved CMF detection method based on keypoint approach 

using a symmetry matching technique that is not only robust against 

translation, scale and rotation, but also to the reflection. 

b) To propose an improved CMF detection method based on block approach by 

introducing iterative means of region size to replace the static threshold 

selection technique in the prior CMF detection method. 

III. To evaluate the F-score performance of the proposed CMF detection methods 

for image, pixel, and both levels of evaluation. 

1.5 Thesis Contribution 

This research proposed two detection methods based on keypoint and block-based 

approach for CMF with reflection attacks. The methods are compared and analyzed 

with the existing CMF detection methods for both image and pixel-level evaluations 
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against various possible attacks. The lists of the contributions to the image forensics 

field are stated below: 

1. The literature discovers the limitations of the existing CMF detection methods. 

2. The limitations of the existing CMF detection methods against various possible 

CMF attacks are proven by a set of performance analysis. 

3. An improved method based on keypoint approach is implemented using a 

proposed symmetry matching technique for the detection of CMF image with 

reflection attacks. 

4. Another improved method based on block approach is proposed by combining 

the most robust feature extraction and thresholding techniques with an iterative 

means of region size as a threshold selection technique to increase the detection 

performance of the CMF image with various attacks. 

5. Finally, a method with the highest performance is selected as the most efficient 

detection method for CMF. The future research directions in the CMF detection 

field are also provided. 

1.6 Significance of Research 

This research provides two detection methods that are implemented to identify CMF 

images with various possible attacks (including reflection) while comparing the 

performance with the existing approaches for both image and pixel-level evaluations. 

The output of this research will assist the societies which conduct research in the field 

of image forensics, specifically in CMF detection. The current issues associated with 

CMF detection are discussed in detail in the literature review section. Moreover, this 

research may act as a forensic tool to help digital investigators to determine the 

authenticity of image evidence in legal action. Additionally, the tool may also be a new 

technique to validate any uploaded image over social media with an accurate detection 

result. 
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1.7 Thesis Organization 

This research is divided into eight chapters. The research flow diagram is illustrated 

in the Figure 1.1 while the summary of each chapter is described as follows: 

 

Figure 1.1: Research flow diagram of this thesis 
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 Chapter 1 (Introduction) 

Chapter one presents an introduction to the research field, issues, motivation, and their 

importance. Furthermore, the problem statement, the research questions, the research 

objectives, and the outline of the research is also stated. 

 Chapter 2 (Literature Reviews)  

Chapter two reviews and studies previous literatures relevant to the field of image 

forensics. The chapter gives an overview of the image forensics and their various 

components. Related works in CMF detection methods are discussed. The limitations of 

each method are put forward while two major problems are identified as an output of 

the review. 

 Chapter 3 (Research Methodology and Design) 

Chapter three provides a general discussion of the research methodology used, 

including research design, proposed methods, collection of data, and procedures 

employed in carrying out the research study. 

 Chapter 4 (Performance Analysis I) 

Chapter four studies the current performance evaluations of the existing CMF detection 

methods. A set of evaluation steps is used and explained. The performance of the three 

CMF detection methods (which represents keypoint-based, block-based and a 

combination of both approaches) are compared using the steps. The problems for each 

approach are analyzed. 
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 Chapter 5 (Method I: SIFT-Symmetry) 

Chapter five describes and discusses the proposed keypoint-based approach that is able 

to detect the CMF image with reflection attacks and any combination of reflection. 

Several analysis are conducted to evaluate the robustness of the proposed solution 

against various possible attacks especially for reflection. 

 Chapter 6 (Method II: CMF-iteMS) 

Chapter six explains the proposed block-based CMF detection method. Four block-

based feature extraction techniques are studied to see their effectiveness on various 

CMF attacks. Five thresholding techniques are explored to be combined with an 

iterative means of region size to automatically select a threshold value for the final 

verification of the CMF detection. Several experiments are carried out to evaluate the 

results of the feature extraction, conventional thresholding and automatic threshold 

selection techniques against various CMF attacks, including reflection. The 

combination of feature extraction, conventional thresholding and automatic threshold 

selection technique with the highest performance is considered in the proposed CMF-

iteMS. 

 Chapter 7 (Performances Analysis II) 

Chapter seven compiles the performances of the existing and the proposed CMF 

detection methods. In this chapter, the most efficient CMF detection method is 

determined. 

 Chapter 8 (Discussion, Conclusion and Future Works) 

Chapter eight summarizes the whole thesis while discussing the implications of this 

research. This chapter also includes a suggestion for future works in CMF detection. 
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CHAPTER 2: LITERATURE REVIEW 

In this chapter, the importance of image forensics field is discussed to present the 

significance value of this research. The background of image forensics is introduced, 

including its related components. Since Copy-Move Forgery (CMF) is the most popular 

of image manipulation techniques, this chapter primarily focused on the detection area. 

Firstly, a new workflow of the CMF detection methods is established. Then, the 

methods are reviewed based on its category in the pre-processing stage, which are 

block-based and keypoint-based approaches. The abilities and limitations of each 

method are identified and analyzed. Lastly, two major problems are discussed in detail. 

This chapter is based on the publication title “Copy-move forgery detection: Survey, 

challenges and future directions” (Warif et al., 2016) and has been reformatted to follow 

the university guidelines. 

2.1 Introduction 

Owing to the reason that imaging devices with high resolution are available 

inexpensively, there have been extensive use of digital images for various purposes. The 

purposes include fashion, publication, medicine, crime prevention and etc. In addition, 

people may also capture their moments at ease, anytime and anywhere. Furthermore, 

with the advanced photo editing and Internet of things, the image also can be altered, 

shared, and spread widely over the internet. These facilities have led to several 

disadvantages in some situations, although they offer many benefits to society. The 

example of the disadvantages is the digital image content is often manipulated to 

misrepresent the information with mischievous plans. 

Surprisingly, academic papers were also exposed to such manipulation. Mike 

Rossner, the managing editor of the Journal of Cell Biology reported that as many as 

Univ
ers

ity
 of

 M
ala

ya



13 

20% of accepted manuscripts in his journal contain figures with inappropriate 

manipulations and at least 1% of each have fraudulent manipulations (Farid, 2006). 

Furthermore, based on the survey conducted by Tijdink et al. (2014), 15% of the 

Flemish biomedical scientists admitted that they have been involved in scientific 

misconduct such as fabricating, falsifying, plagiarizing, or manipulating data in the past 

three years. As a result, the credibility and value of images are often argued when used 

in academic papers and also in scientific fraud cases. Therefore, these issues have 

encouraged the development of research in image forensics to verify the authenticity in 

every single image. 

2.2 Overview of Image Forensics 

The issues highlighted in the previous section demand for methods that allow the 

investigation of a digital image to validate the truthfulness and verify the sources. 

Basically, there are two possible questions regarding the credibility of an image. Firstly, 

was the image truly produced by the claimed device? Secondly, is the scene in the 

image portrayed the real situation? To find the answers to these questions, researchers 

developed the interest by proposing several methods in image forensics. 

Generally, image forensics is an area of studies that identifies the origin and the 

authenticity of an image. The study basically derives from multimedia security-related 

research, which require additional information from the image. To expand the research, 

image forensics aims to provide tools for blind investigation, specifically to expose 

evidence in a crime. As both acquisition and manipulation processes in an image are 

likely to leave subtle traces, existing knowledge of image processing and analysis tools 

are exploited to discover information about the image’s history. An overview of the 

components in image forensics is illustrated in Figure 2.1. The details are divided into 

two main components; active and passive approaches, while the discussion of each is 

presented in the following section. 
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Figure 2.1: Overview of components in image forensics field 

2.2.1 Active Approach 

As the previous discussion mentioned that image forensics basically is a combination 

of multimedia security-related research with image processing tools, this category 

represents one of them. By applying the multimedia security principle, the active 

approach considered steganography and cryptography in their analysis tools. 

Steganography is an art of embedding information to an irrelevant image, while 

cryptography is an art of conveying secret writing as a code. 

In image forensics, digital watermark theoretically applied the steganography art in 

the image content. Instead of hiding information to an image as a message, digital 

watermark hides the owner’s information into the image to authenticate the owner and 

determine the originality, specifically for copyright protection (Piccinnano, 2014). 

Most of the research in the digital watermarking mainly concerns two concepts, 

namely, perceptibility and robustness (Huynh-the, Banos, Lee, Yoon, & Le-tien, 2016). 

The perceptibility refers to the degree of watermarks being noticeable by a mind or 

sense after the process of embedding. Instead, the robustness denotes the ability of 
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watermarks being changed for common image manipulation during the process of 

extraction. For that reason, Tsai et al.’s (2011) simulated several attacking procedures 

using some predefined attacks to evaluate the robustness of the watermarks. 

Digital signature, on the other hand, takes the idea from cryptography by encrypting 

the unique secret code in an image to authenticate the sender and verify the 

trustworthiness. Furthermore, the digital signature in an image is commonly created by 

using a one-way hash function to make it difficult to be copied. Signature-based 

methods can work on both the integrity protection of the image and disclaimer 

prevention of the sender (Saad, 2009). In contrast to other approaches, digital signature 

assigns a private key in an image and requires a public key to verify the image. The 

procedures should be secure enough to prevent any attacked image from passing the 

authentication while being robust enough to accept some acceptable manipulations (e.g. 

compression) during the transmission (Sun & Chang, 2005). 

In conclusion, the active approach is proposed in the past by computing either digital 

watermark or signature to the camera and is inserted later on the acquisition of an 

image. According to Lin (2000), digital watermark is more convenient as the 

information is always associated with the image, while digital signature requires an 

additional file which has to be requested from an authorized person to validate the 

image. Any modification of the image after the acquisition can be detected by 

comparing the value of the digital watermark or signature. Therefore, this approach 

requires additional information about the original image, however, if the information is 

unknown, the active approach seems impossible or ineffective. 

Despite the difficulties, researchers started to propose blind watermarking techniques 

which do not require any original image information. By maintaining the quality in 

perceptibility and robustness, the Al-Nabhani et al.’s method (2015) is superior to 
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existing methods when proposing a blind image watermarking based on Probabilistic 

Neural Network (PNN) in the wavelet domain. The authors proposed to embed a 

watermark in the middle-frequency coefficient decomposition before the PNN is 

applied to train the relation between the embedded watermarks, with the corresponding 

image. 

2.2.2 Passive Approach 

Turning to the passive approach, the main difference between the active and passive 

approaches is that the passive approach does not require the original image nor 

additional information about the image or the acquisition device which produces the 

image. Also called as blind analysis, the passive approach does not need any specific 

hardware to make the techniques practically feasible, however, it requires a study of 

statistical variations of the images. 

Lin et al. (2013) classified blind detection techniques into two categories; visual and 

statistic. Visual category is based on visual clues like inconsistencies in images and 

light deformation of an object in the image. Aside from visual, the statistical category is 

considered to be robust and convincing as the pixel values of the image will be 

analyzed. 

Instead of classifying the passive/blind approach into visual and statistic, this 

research categorized the approach into two main categories, namely source device 

authentication and forgery detection. The source device authentication is purposely used 

to identify the origin of an image based on detection of intrinsic image regularities. 

Conversely, forgery detection is more about revealing artifacts leftover due to specific 

manipulation operations in a forged image. The explanation of both categories is 

presented in the next subsections. 
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2.2.2.1 Source Device Authentication 

For source device authentication, a forensic analyst may verify the authenticity of an 

original image by analyzing the regularities and anomaly of an image source. 

Furthermore, each source model is identified by its intrinsic and unique features to 

differentiate each device class (Kot & Cao, 2013). In a court of law, the origin of a 

particular image can be represented as a crucial evidence and the validity of this 

evidence might be compromised by a statistical analysis that confirmed the image has 

been captured from the claimed device. 

The common features used in device classification are optical and sensor regularities. 

The optical regularities is often associated with some digital processing modules, 

including illumination, lens distortion, chromatic aberrations, and blurring, which are 

introduced in the optical domain. In contrast, the sensor regularities refer to sensor 

noise, dust characteristics and camera response function which are introduced when the 

light signals are converted to digital signals (Hong & Kot, 2009). 

The research on source device authentication includes three aspects, which are 

imaging device identification (e.g. printer, digital camera, scanners, and mobile phone), 

imaging device brand identification (e.g. Nikon camera model), and imaging device 

individual identification (e.g. Nikon D70, and Nikon D70s). Most of the prior work 

focused on imaging device brand identification which classified the images based on the 

presence and inconsistencies of device attributes or data processing related 

characteristics. The examples of attributes are sensor pattern noise, camera response 

function, resampling artefacts, Color Filter Array interpolation artefacts, JPEG 

compression, lens aberration, etc. (Chang-Tsun Li, 2010) 

In spite of that, since the current imaging device brands have numerous models itself 

(which have different attributes for each model), current research focus is emphasized 
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on imaging device individual identification. Recently, Xu et al. (2015) and Qiao et al. 

(2017) proposed methods based on image texture features from selected color model 

and channel, and improved signal-dependent noise model, respectively. 

2.2.2.2 Forgery Detection 

Another main aspect of the operations performed in passive image forensics is 

forgery detection. In contrast to source device authentication (which identifies the origin 

of an image), forgery detection presents an attempt to discover evidence of tampering. 

Additionally, the attempt should able to locate the forged area in an image. There are 

two types of forgery which are classified by Redi et al. (2010), namely dependent, and 

independent of forgery. These types of forgery are categorized based on the 

manipulation techniques done by the counterfeiter. Next subsections describe both 

forgeries precisely. 

(a) Dependent 

The first type of forgery is dependent in which the detection methods are designed to 

detect only certain types of forgeries which require a duplication process depending on 

the number of images involved. In view of the fact that the image manipulation 

technique is able to change the significant content of an original image, it will cause 

critical social impacts if these images are manipulated with malicious purpose. With the 

advanced image editing software, the forged images become common in our daily life 

that will lead to the untrustworthy record of an event. Therefore, the detection methods, 

specifically for the dependent-type has become a vital important technology for digital 

image authentication. There are two categories of forgery-dependent, namely, copy-

move (single image), and splicing (multiple images). 
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i Copy-Move Forgery (CMF) Image 

One of the simple yet effective image manipulation techniques in forgery is CMF 

image. In CMF, a region of an image is duplicated and pasted to another position within 

the same image to hide undesired objects or to replicate objects. This research focused 

on this category due to the reason that only one image is involved (which is practical), 

thus, gives important changes to a forged image. Hence, the primary mission of CMF 

detection is to detect the presence of two or more similar regions in a single image, and 

to locate them if there is any. The detailed explanations, discussions, limitations, and 

challenges in existing CMF detection methods are presented in Section 2.3. 

ii Image Splicing 

As an alternative to CMF, image splicing presents more complex image 

manipulation techniques. Also known as composite image, image splicing is a process 

of duplicating regions from different source images to an image. In other words, this 

kind of manipulation technique refers to one or more regions of an image from other 

images. Figure 2.2 shows an example of the image splicing where image of the person 

has been combined with image of the building. Despite the complexity of the process, 

this technique is widely seen in the community, since the massive amount information 

content might attract people’s interests. Therefore, the detection of image splicing aims 

at detecting the composite regions between cutting and joining two or more pictures. 

There are two groups of techniques in image splicing detection, which the first group 

considers detection on specific operations in the boundary between spliced regions and 

original regions. For this group, researchers assumed that the spliced region will be 

blurred or resampled to match its targeted neighborhood in the original image. 

Meanwhile, the second group of technique searching for differentiation of certain 

Univ
ers

ity
 of

 M
ala

ya



20 

intrinsic fingerprints in the original image. A typical example of this technique is the 

recognition of the inconsistencies in camera Photo Response Non-Uniformity. 

 

Figure 2.2: Example of image splicing where two images have been combines in 

another one image 

Recently, there is one technique that can be classified into either group, namely 

noise-based localization. This technique derives from the assumptions that an image 

from a different origin usually has different noise levels. For instance, Zeng et al. 

(2016) proposed a method based on Principal Component Analysis (PCA) noise level 

estimation method. However, due to the noise level being always affected by brightness 

and textures, Pun et al. (2016) proposed a noise level function with multi-scale analysis 

to deal with noise fluctuations. In contrast to the noise-based groups, researchers 

improved the Markov model in DCT by avoiding color distortions and eliminating 

redundancy from the quantized transform coefficients using Contourlet transform 

domain (Q. Zhang, Lu, & Weng, 2016) and quaternion in a whole manner (C. Li, Ma, 

Xiao, Li, & Zhang, 2017). 

(b) Independent 

As discussed in previous sections, forgery-dependent requires the knowledge of the 

kind of forgery that compromised the image. Conversely, forgery-independent type is a 
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more universal approach which may act as stand-alone attacks without the process of 

duplication. Otherwise, as the primary purpose of the forgery-independent is to enhance 

the blending of visual effects and to smooth its manipulation content, this type of 

forgery will also be applied after the process of forgery-dependent. There are many 

open source software that provides independent types of forgery without the necessities 

of supplementary image editing-related skills. 

In the event that forgery-independent takes place after the forgery-dependent 

manipulations, the forgery-dependent detection methods should consider to be robust to 

this type of forges. Or else, if the forgery-independent is working alone, then the 

detection is based on artifact traces left, either by resampling, compression or 

inconsistencies in the acquisition of fingerprints. The forgery is traced by analyzing 

proper artifacts introduced by JPEG recompression occurring when the forged image is 

created. This is showed by Bianchi and Piva (2012) which proposed a block-grained 

analysis of JPEG artifacts in the presence of double JPEG compression. 

Instead of analyzing the JPEG traces, researchers attempt to analyze the 

inconsistencies in illumination color (Carvalho et al., 2013) or statistical properties of 

natural images (Lyu & Farid, 2005; P. Zhang & Kong, 2009). Recently, a blind de-

convolution application has been extended to image resampling detection that also can 

be used for forgery-dependent manipulations (Su, Jin, Zhang, & Chen, 2017). 

2.3 Copy-Move Forgery (CMF) 

Copy-move forgery (CMF) is a forgery-dependent type in forgery detection, which 

belongs to the passive approach in image forensics area. Also known as region 

duplication or cloning, CMF involves only one image in which one or more regions 

have been copied and pasted to other locations within the same image. Due to the 

reason that both source and target regions are from the same image, the properties such 
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as color temperature, illumination conditions and noise will generally be well-matched 

between the forged region and the image. As a result, this type of forgery is easy to 

perform and relatively effective with highly visual effects to be used for information 

exploitation. 

Regardless of the characteristics, the CMF may be used to give a false impression to 

favor an individual’s personal agenda, including hiding an element in the image (e.g. 

steganography) or emphasizing a particular object (e.g. a crowd of demonstrators). 

Figure 2.3 shows an example of CMF image, where the grass has been copied and 

pasted to another location with the intention of hiding the house in the image. 

 

Figure 2.3: An example of CMF (a) original image (b) forged image 

To reduce the chances of the forged regions from being discovered, the CMF 

manipulations are often combined with other image processing operations. In the CMF 

detection field, these operations are known as attacks, which are divided into two 

categories, namely post-processing and geometrical transformation as demonstrated in 

Figure 2.4.  

Basically, the CMF detection methods are initiated by investigating the robustness 

against post-processing attacks (e.g. JPEG compression, noise, and blurring effects) that 

occur after the duplication process. Similar to forgery-independent types (explained in 

Section 2.2.2.2(b)), these attacks could reduce the visual manipulation footprints and 
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blends the CMF effects. Geometrical transformation attacks, on the other hand, applied 

spatial manipulation changes on the region that match its targeted neighborhood in the 

image. The attacks are translation, rotation, scale, and reflection. 

 

Figure 2.4: Categories of image operations/attacks in CMF  

This research focused directly on CMF detection mainly because CMF has found 

significant interest from the scientific community in recent years. This is evident from 

the Figure 2.5 which located a total of 226 scientific papers related to CMF detection 

indexed by Web of Science over the last 10 years. 50% of the total papers consist of 

“Copy-Move Forgery Detection” as a title, while the remaining papers may use other 

terms, including region duplication or cloning. Otherwise, the topic of CMF may be 

discussed in the research paper for both dependent and independent-type of forgery 

detection. 
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Figure 2.5: Scientific papers located by searching for “copy-move forgery 

detection” on Web of Science website 

2.3.1 Common Workflow of CMF Detection Methods 

In spite of the wide range of methods that have been proposed for CMF detection, 

most of the methods adhere to a common pipeline recognized by Christlein et al. 

(2012). Given an input image, the image will go through the pipeline, comprised of pre-

processing, keypoint detection or block tiling, feature extraction, matching, filtering, 

and post-processing. Additionally, Al-Qershi et al. (2013) also developed the pipeline, 

however, replaced the filtering and post-processing steps with verification and detection 

map, respectively.  

Owing to the reason that variations of pipeline are documented, this research 

generalized the pipelines into an established CMF detection workflow (presented in 

Figure 2.6). According to the workflow, the main stages are feature extraction and 

matching, which determine the efficiency of a CMF detection method. Nonetheless, 

pre-processing becomes optional as it is dependent on the techniques in the main stages, 
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while visualization combines filtering, post-processing, verification, and detection map, 

compatibly. Each stage is discussed as follows. 

(a) Pre-processing 

The first stage in the CMF detection workflow is pre-processing. The aim of pre-

processing is to enhance the image information content for further tasks. The typical 

enhancement of the image data includes suppressing of undesired distortions or 

increasing the image features (Miljkovi, 2009). 

 

Figure 2.6: Common workflow of CMF detection methods 

In CMF detection, researchers implemented the pre-processing technique depending 

on their feature extraction techniques. For example, if SIFT (Lowe, 1999) is employed 

as the feature extraction technique, the input image will first be converted into 

grayscale. In the conversion, the RGB channels are merged using 𝐼 = 0.228𝑅 +

0.587𝐺 + 0.114𝐵 to represent the grayscale component. The main reason of the 

conversion is that grayscale image simplifies the image features and reduces the 

computational costs, while color image will contain unnecessary information that could 
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increase the complexity and affect the performance (Kanan & Cottrell, 2012). 

Furthermore, the grayscale conversion also appears to be the most frequently used pre-

processing technique in CMF detection methods (e.g: (Amerini et al., 2011; E 

Ardizzone, Bruno, & Mazzola, 2010; Edoardo Ardizzone, Mazzola, Informatica, & 

Università, 2009; Cao, Gao, Fan, & Yang, 2012; H. Huang et al., 2008; Myna et al., 

2008). 

In view of the fact that the human visual system is more sensitive to luminance 

component, traces of forgery may be left in chrominance components. For that reason, 

the chrominance is suitable for extracting features that are sensitive to tampering traces 

(Hussain, Saleh, Aboalsamh, Muhammad, & Bebis, 2014). Alternatively, instead of 

grayscale conversion, several researchers attempt to convert the RGB image into 

YCbCr color system to operate on the luminance (Y), and chrominance components 

(Cb and Cr).  

Apart from color conversion, there are several dimensional reduction techniques 

applied in the pre-processing stage, including Discrete Wavelet Transform (DWT) 

(Edwards, 1992) and PCA (Kroonenberg, 1983). These techniques are used to find the 

best low-dimensional representation of the original high-dimensional data based on 

image energy (Bhullar, Budhiraja, & Dhindsa, 2014) or least mean-square error (Gan & 

Cang, 2013) to select a few important variables, intentionally to reduce the 

dimensionality. Otherwise, these techniques can also be used in the feature extraction 

stage due to the reason that the techniques may be robust to certain operations in CMF. 

In spite of the capability of color conversion and dimensional reduction, researchers 

started the pre-processing stage by dividing the input image into several blocks of 

squares or circles to increase the performance of matching techniques. The block 

division can reduce the computational time for matching process in order to find the 
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similar feature vector in an image compared to an exhaustive search. Moreover, because 

of the compatibility with various feature extraction and matching techniques, block 

division approach becomes popular in CMF detection methods. 

(b) Feature Extraction & Matching 

Next, the main stages for CMF detection workflow are feature extraction and 

matching techniques. Feature extraction is a technique of selecting relevant information 

that represent the characteristics of interest in the image (Chora, 2007). The features are 

represented in many forms, comprising frequency, color, texture, moments, and 

keypoint. Meanwhile, each feature has their own selection techniques that determine the 

number of characters selected. For instance, frequency have DCT (Narasimha & 

Peterson, 1978), DWT and Fourier Transform (Bochner & Chandrasekkharan, 1949) 

extraction techniques. Another example is keypoint, in which there are SIFT, Speeded-

Up Robust Features (SURF) (Bay & Ess, 2008) and Harris points (Harris & Stephens, 

1988) techniques in the literature. 

In view of the fact that the CMF image will consist of at least two similar regions 

(from duplication process) in an image, each extracted feature is matched with other 

similar properties in the image to locate the forged areas. This is where the matching 

stage is required to seek out the similarities between two or more features in the image. 

Furthermore, the manipulations of CMF in the image are defined in this stage. 

In order to determine the most identical properties of each feature, several similarity 

criteria (e.g. the Euclidian distance) are matched as pairs. However, the techniques 

might be different according to the pre-processing stage, either by block division or 

exhaustive search. As most of the feature extraction techniques preferred to divide the 

input image into block-based techniques, the blocks are matched by sorting the feature 

vectors, lexicographically or by calculating the nearest neighbor determination in a kd-
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tree. Alternatively, keypoint features are matched by calculating the distance of the 

nearest neighbor from all points in the feature space. This research further divided the 

CMF detection methods into block-based approach and keypoint-based approach in 

Section 2.3.2.1 and Section 2.3.2.2, accordingly. 

(c) Visualization 

Finally, the process of CMF detection is visualized to display and locate the forged 

regions in the image. In this stage, the visualization techniques consist of filtering, post-

processing, verification and detection map. Because the matching techniques are often 

included with spurious and irrelevant information (considered as noise), the results from 

the techniques should be verified and filtered before the forged areas are localized. Both 

block-based and keypoint-based approaches will go through this stage to validate their 

results. 

For filtering and verification, researchers often predefined at least one threshold 

value to remove the outliers. There are four thresholds identified in the filtering process, 

specifically distance, cluster, size, and range. The match features with attributes above 

(or below) the threshold value are preserved, while the rest are removed. The block-

based approach commonly allocated distance threshold value to find the most identical 

blocks (Mahdian & Saic, 2007). In the subsequent report, Huang et al. (2011) impose a 

minimum number of similar shift vectors between matched blocks in the CMF image. 

On the other hand, keypoint-based approach generally assigned a threshold value for 

a number of point features between each cluster (Amerini et al., 2011; Yu, Han, & Niu, 

2014). The image is verified as a CMF, if each cluster has achieved several number of 

matching points. Alternatively, researchers employed threshold for region size 

specifically for dense-based point features (Amerini et al., 2013; Cozzolino et al., 2015; 

J.-M. Guo, Liu, & Wu, 2013). In contrast, a range threshold is utilized by Jaberi et al. 
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(2013) who defined a range threshold between high and low threshold to detect strong 

edges and weak edges, respectively. 

To finalize the detection map, the block-based approach may be presented by 

coloring or mapping the region of the matching blocks. The keypoint-based approach 

on the other hand, is commonly displayed by line transformation between each cluster 

point. However, both approaches can also be further refined by morphology operation 

using the shapes properties of the features such as contours, skeletons and convex hulls, 

to fill the holes on the marked regions and remove the isolated regions (Amerini et al., 

2013; Cao et al., 2012; Jaberi et al., 2013; Pan & Lyu, 2010; Peng, Nie, & Long, 2011; 

Zhao & Guo, 2013). 

2.3.2 CMF Detection Methods 

As discussed in the previous sections, the main stages of CMF detection workflow 

are feature extraction and matching techniques. The stages are categorized depending 

on their pre-processing stage, either block division or exhaustive search techniques. If 

there is block-division process, the CMF detection methods are defined as block-based 

approach while keypoint-based features normally will go through exhaustive search. In 

the recent years, both approaches are combined together to improve each other while 

providing more robust detection. The overall overview of the category is drawn in the 

Figure 2.7 while the explanation is discussed in the following. 
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Figure 2.7: Overview of the categories in CMF detection methods 
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2.3.2.1 Block-based Approach 

In block-based approach, the input image will be converted into either grayscale or 

YCbCr color to simplify the image information and reduce the computational cost. 

Then, the image is split into blocks either squares or circles by overlapping or non-

overlapping depending on the proposed methods. For feature extraction stage, there are 

various features that can be extracted from each block. The features are grouped based 

on each form, comprising frequency, texture & intensity, moments invariant, and log-

polar transform. To find the identical blocks, sorting techniques are employed and the 

distance is measured. Finally, the blocks with the highest similarity measurement will 

be mapped, and the holes are filled by morphology operations. Figure 2.8 illustrates the 

workflow of block-based approach and each group of features is explained in the 

following section. 

 

Figure 2.8: Workflow process for CMF detection in block-based approach 

(a)  Frequency 

Firstly, the CMF detection methods are started by detecting compression operations 

that normally (but not necessarily) occur after the CMF. The compression can smooth 

the tone and color variations of the forged images, so that the image will look natural. 

By assuming that the CMF images are usually resaved and recompressed as a new 

image, the CMF can be detected via the compression artifacts that change the artifact in 

the original image. Fridrich et al. (2003) initiated the methods by extracting DCT 

quantization value for each block. To improve the execution speed, Huang et al. (2011) 
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truncated the feature vector to the nearest integer, while Cao et al. (2012) applied circle 

block matching that can reduce the feature dimension. For the similar reason, Zhao and 

Guo (2013) represented each block by Singular Value Decomposition (SVD) after the 

DCT extraction. Despite the several numbers of improvement on DCT-based methods, 

the methods can only be robust to JPEG compression, Gaussian blurring and noise 

addition. 

Instead of DCT, Zhang et al. (2008) attempted to employ DWT as their feature 

extraction technique. Though the method can reduce the computational cost, the speed 

depends on the location of CMF region. The detection process needs to be repeated into 

smaller blocks, if the region is located between two blocks. Furthermore, due to the 

reason that Undecimated Dyadic Wavelet Transform (DyWT) is shift invariant 

compared to DWT, the features is applied by Muhammad et al. (2012). Consequently, 

their method is not only robust to JPEG compression, but also invariant to (below) 

20° of rotation. Turning to the rotation, Shao et al. (2012) proposed to calculate the 

Fourier transform of the polar expansion on overlapping blocks, which results on 

robustness to −180° and 180° of rotation. 

(b) Texture & Intensity 

In contrast to frequency group, the texture and intensity group attempts to cater the 

CMF region that exists in natural scenes or the background. The scenes are ideal for 

CMF regions because the areas will likely blend with the image and make it harder to 

detect (Fridrich et al., 2003). As the scenes may represent the texture contents, 

including grass, cloud, ground, and image properties such as smoothness, coarseness 

and regularity, texture and intensity can be utilized as features to locate the identical 

regions in the forged image. The early work in this group was performed by Langille 

and Gong (2006) who proposed to use intensity from patterns as their feature extraction. 
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Other pattern-based methods are implemented by Davarzani et al. (2013) and Tralic et 

al. (2016) who applied histogram of orientated Gabor magnitude (HOG) and multi-

resolution Local Binary Pattern (LBP), and Cellular automata and LBP, respectively. 

However, these methods could only robust to a small degree of rotation (6°) and 5% of 

scaling (0.95–1.05). 

Alternatively, researchers studied the color features in the forged images. Lynch et 

al. (2013) proved that the average value of gray from each block can robust to JPEG 

compression, Gaussian blurring and illumination variations. In the subsequent report, 

Gan & Zhong (2014) combined the average gray value with Tamura texture. These 

combinations are able to resist with fixed angle of rotation and 20% of scaling (0.8–

1.2). Recently, although Bi et al. (2016) fused the color texture descriptor with moment 

descriptor (named as Multi-Level Dense Descriptor), the method could only resists to 

10° degree of rotation, and 10% of scaling (0.9–1.1). 

(c) Moments Invariant 

Image moment is a measurement of image intensity over the whole image. In view of 

the fact that moments have the ability to represent global features of the image, the 

moments can also classify shape and recognize object in binary images. In CMF 

detection, Mahdian and Saic (2007) initiated the utilization of moment features in their 

method. The authors proposed blur invariant functions in central moments, specifically 

to resist with blur degradation, additive noise and arbitrary contrast changes. In another 

report, Liu et al. (2011) extracted Hu moments from circle blocks particularly to 

overcome the effect of rotation in CMF. As a result, the method could only resist to 

certain angles of rotation. 
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To further analyze the moment features, Ryu et al. (2013) recommended Zernike 

moments feature to resilient rotation. The method achieved high robustness to rotation, 

Gaussian blurring and noise addition, for both textured and smooth CMF regions. 

(d) Log-polar Transform 

Log-polar transform works by projection mapping from the points on the Cartesian 

plane (𝑥, 𝑦), to points in the log-polar coordinate system. The coordinate system is a 

representation of two dimensions, which are the logarithm of the distance to a certain 

point, 𝑙𝑜𝑔 (𝑥), and angle, 𝜃. The authors who proposed this group of features believed 

that the CMF region would be rotated, scaled, or blurred before pasting it, to reduce the 

visual artifacts in the forged image. In CMF, this group is originated by Myna et al. 

(2008) which proposed to map the low frequency sub-band block (extracted from 

DWT) to log-polar coordinate. Then, Bravo and Nandi (2011) improved the method by 

producing one dimensional descriptor (1-D) invariant to reflection and rotation. Even 

though the results increased the robustness to various degrees of rotation, the detection 

is less effective to small CMF regions. While improving the small CMF region 

detection, the method proposed by Park et al. (2016) significantly reduced the 

performance for either high degree of rotation or large scale of factor. 

On the other hand, Bayram et al. (2009) first introduced Fourier-Mellin Transform 

(FMT) (Sheng & Arsenault, 1986) in CMF detection. Owing to the reason that the 

detection is limited to 10° of rotation and 10% of scale factor (0.9–1.1), researchers 

adopt the orthogonal transform that belongs to the family of Polar Harmonic 

Transforms (PHT) (Yap, Jiang, & Kot, 2010). The PHT family is comprised of Polar 

Complex Exponential Transform (PCET), Polar Cosine Transform (PCT), and Polar 

Sine Transform (PST). As Emam et al. (2016) employed PCET, their performance 

decreased for 90° degree of rotation and above. However, the result is better than PCT 
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that was implemented by Li (2013). Otherwise, Li et al. (2014) who utilized PST, show 

good results of simulation for CMF with rotation, reflection, and scale. 

In the subsequent report, Cozzolino et al. (2015) explored the function of Circular 

Harmonic Transform (Hsu, Arsenault, & April, 1982) which consists of Zernike radial 

function, PCT and FMT. As the authors preferred to use Zernike Polar features, the 

method works well with all degrees of rotation, but is limited to 10% of scale factor of 

(0.9 to 1.1). 

2.3.2.2 Keypoint-based Approach 

Since the block-based approach solely relies on block comparison (which is variant 

to certain degrees of rotation and scale), keypoint-based approach started to be 

considered in CMF detection. In CMF detection, keypoint-based approach is defined as 

any keypoint feature extraction technique that matched each other without the block-

division process. In view of the fact that keypoint features are seen to have outstanding 

computational cost and robustness, researchers have drawn much attention to these 

features. 

In contrast to the block-based approach, the keypoint-based approach does not 

perform any block division technique. Figure 2.9 illustrates the workflow of keypoint-

based approach in CMF detection. Firstly, the input image will be converted to 

grayscale to improve the distribution of salient point features. The salient points are 

extracted from the distinctive local features (e.g. corners, blobs and edges) and assigned 

with a set of descriptors which are generated within a region around the features. The 

purpose of the descriptor is to describe the points’ neighborhood, subsequently, to 

increase the reliability against affine transformation. Both points and descriptors are 

matched by calculating the nearest neighbor of each point in the whole image. The 

identical points will be further analyzed to determine the forged area in the image. In 
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this research, the keypoint features are grouped according to the point detector 

techniques, particularly SIFT, SURF and Harris points. 

 

Figure 2.9: Workflow process for CMF detection in keypoint-based approach 

(a) SIFT 

Basically, the keypoint-based approach is motivated by the SIFT (Lowe, 1999) 

feature extraction technique. SIFT is the most popular keypoint feature extraction 

technique in object recognition area. SIFT detects salient points at different scales from 

Difference of Gaussian (DoG) pyramid in scale-space representation. The DoG is used 

to improve the computational speed during the extraction process in an image (Juan & 

Gwun, 2009). Subsequently, the SIFT descriptor is built from the gradient orientation 

histogram in each SIFT point to be rotation invariant. By providing a full set of features 

(point detector and descriptor), the technique also has its own matching technique 

which is 2-nearest-neighbors (also known to be 2NN). Since both point detector and 

descriptor are designed to be scale and rotation invariant, researchers attempt to explore 

such technique in CMF detection. Huang et al. (2008), the pioneer of SIFT-based CMF 

detection methods, proved that the SIFT technique could find identical regions in a 

CMF image. However, the technique is sensitive to small forged regions and 

computationally expensive. 

With the aim to improve the limitations on the Huang et al.’s method, Pan & Lyu 

(2010) proposed a putative keypoint matching procedure and affine transformation 

parameter estimation. In the following year, Amerini et al. (2011) introduced the g2NN 

matching technique to increase the number of matching points in detecting multiple 
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CMF regions. Then, the method is upgraded by adopting J-Linkage clustering technique 

to provide more accurate forgery location (Amerini et al., 2013). In the similar year, He 

et al. (2013) reduced the false matching by applying the Least Median of Square 

estimation, while Jaberi et al. (2013) recommended to dense the feature pixels using 

hysteresis thresholding. 

Despite the promising results (especially on scale and rotation), the SIFT-based 

methods do not perform well on flat surfaces and highly uniform features. As a result, 

the methods could not detect CMF if the forged regions are located at flat areas. 

Furthermore, the methods may also assume that uniform areas in the natural image as 

forged regions. Therefore, these limitations developed an open issue for further 

analysis. 

(b) SURF 

Instead of SIFT features, the SURF technique is another version of keypoint-based 

features. Generally, SURF is originated by Bay et al. (2008) to provide faster keypoint 

features, while maintaining its robustness. In CMF detection, Bo et al. (2010) first 

introduced the SURF features and matched the features between two subsets. 

Otherwise, Shivakumar and Baboo (2011) improved the matching procedure with KD-

tree technique, thus, the detection is vast to various sizes of forged regions. A more 

convincing method is shown by Mishra et al. (2013), who applied SURF features with 

2NN matching and verified by Hierarchical Agglomerative Clustering technique. 

Though the method could reduce the false matching features, the recall rate is also 

reduced. 

(c) Harris points 

Originally, the keypoint features were started by Harris and Stephens (1988), before 

SIFT feature extraction technique was invented in the field of computer vision. Also 
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known as Harris Corner Detector, the keypoint features are represented as corners and 

edges, that are extracted from the regions based on local auto-correlation function. In 

CMF detection, Harris detector frequently combined with other compatible potential 

descriptor to resist affine transformation. Moreover, the distribution of points is 

enhanced to increase the reliability in detecting the forgery. 

Chen et al. (2013) was able to improve the SIFT and SURF-based CMF detection 

methods, with the combination of Harris detector and step sector statistics descriptor. 

Meanwhile, Zheng and Chang (2014) reported that the combination of Harris detector 

with SURF descriptor has better accuracy than Chen’s method. 

Regardless of the issues with SIFT-based methods, the keypoint-based approach in 

CMF detection is further investigated. To improve the misdetection in highly uniform 

features, Kakar and Sudha (2012) adapted content-based image retrieval tools which 

applied Laplacian of Gaussian (with Harris filter) and circular region descriptor. 

Recently, Uliyan et al. (2016) enhanced the performance by using Harris detector and 

angular radial partitioning. 

To increase the distribution of points on a flat surface, researchers implemented the 

dense-based point features. Among them are Guo et al. (2013) and Zhao and Zhao 

(2013) who employed Adaptive Non-Maximal Suppression with DAISY dense-

descriptor and dense Harris point with LBP descriptor, correspondingly. However, the 

combination of Non-Maximal Suppression with Multi-support Region Order-based 

Gradient Histogram (MROGH) and Hue Histogram (HH) descriptor is able to cover 

both limitations on a highly uniform texture and flat surface (Yu et al., 2014). 
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2.3.2.3 Combination Approach 

Based on the previous discussion, the dense-based point features are gaining more 

intention in CMF detection. Thus, researchers started to combine block-based approach 

with keypoint-based approach. This is evidenced by Silva et al. (2015) who preferred to 

use SURF features with multi-scale analysis through the block comparison scheme. 

Another example is presented by Pun et al. (2015), which introduced adaptive over-

segmentation scheme using irregular shapes in pre-processing stage before SIFT feature 

extraction. Instead of using irregular shapes, Ardizzone et al. (2015) proposed triangle 

segmentation, however, the detections undergo missing regions due to the segmentation 

being triangle-based. 

Though the previous three methods were able to increase the detection performance, 

the methods do not solve the distribution point problem in homogeneous regions. 

Therefore, Zheng et al. (2016) employed adaptive segmentation to segregate the smooth 

region and keypoint region. The smooth region will be analyzed using Zernike moment 

features while SIFT features is extracted for the keypoint region. Consequently, the 

method is performed well for both smooth and homogenous areas. 

In contrast to all CMF detection methods, Ferreira et al. (2016) proposed a new 

scheme based on machine learning. Since machine learning algorithms work by 

learning and predicting data, the authors fused output of eight CMF detection methods 

as their learning data and predict the CMF image using multi-scale behavior knowledge 

analysis in the decision making process. Nonetheless, the CMF classification solely 

relies on the trained features which are built on the eight CMF detection methods that 

have limitations on certain operations. Instead of image classification, Bappy et al. 

(2017) proposed pixels classification by training the boundary discrepancy between 

manipulated and non-manipulated regions with the combination of Long-Short Term 
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Memory (LSTM) which is based on deep learning algorithms. The method able to 

localize the manipulated regions not only for CMF image, but also for image splicing.  

2.3.3 Current Problems of the existing CMF Detection Methods 

In spite of the growing number of improvements in CMF detection, there are several 

problems identified through these reviews. Firstly, this research realized that the CMF 

detection methods are evaluated either by three techniques. The techniques comprised 

of image-level, pixel-level, or both image and pixel-levels. Due to the various levels of 

evaluation techniques, the CMF detection methods face difficulties in establishing the 

comparisons. 

The second problem, on the other hand, is that the reflection attacks are not 

highlighted in most of the methods’ evaluations. This is evidenced by the shortage 

amount of CMF datasets which include the attacks. Therefore, the proof or verifications 

for the reflection attacks are limited. In order to include the reflection attacks as one of 

the attacks’ evaluations, this research also considers two common drawbacks 

recognized by Al-Qershi et al. (2013). The first drawback concerns the ability of the 

CMF detection methods to deal with all possible types of attacks, particularly, JPEG 

compression, Gaussian noise, blurring, rotation, scale, and reflection that are used in 

CMF image. As the second drawback, the CMF detection methods are mainly 

determined by several thresholds, which the values require a lot of experiments and 

development. 

This research incorporates the identified problems and the drawbacks to turns as 

several characteristics for evaluations of each method. In particular, the characteristics 

are evaluation techniques, robustness to all possible attacks, including reflection and 

amount of threshold selection for the final verification stage. For comparison purposes, 

several CMF detection methods along with their characteristics are listed in Table 2.1 
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(sorted by year). The discussion and explanation of each problem are provided as 

follows:  

2.3.3.1 Evaluation Techniques 

According to the comparison table, there are various evaluation techniques done by 

the existing CMF detection methods. 5/14 methods in the table prefer image-level 

evaluation, 4/14 methods employed pixel-level evaluation, while the remaining 5/14 of 

the methods consider both image and pixel-level evaluations. This situation has led to 

inconsistencies of detection performance. For example, although the methods achieve 

the highest score on image-level, the forgery detection might be included with falsely 

matching regions. In another case, the whole detection might show the wrong forgery 

location entirely based on the features’ sensitivities. Pixel-level, on the other hand, 

might not identify the original image, even though the method has the highest score of 

exact forgery location. Figure 2.10 shows the example of the results from the image-

level detection with falsely matching regions and the highest score of pixel-level 

performance. 

 

Figure 2.10: The example of detection results. From left: image-level detection 

includes the falsely matching regions, and the highest score pixel-level 

performance 
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Table 2.1: A comparison between selected CMF detection methods in term of their characteristics 

Author(s) 

Feature 

Extraction 

Technique 

Evaluation Robustness against CMF Attacks Amount of 

Thresholds 

(Visualization 

stage) 
Image/Pixel 

JPEG 

Compression 

Gaussian 

Noise 

Addition 

Variation of 

Illumination 

/blurring 

Rotation Scale Reflection 

(Mahdian & Saic, 

2007) 

Central 

Moments 
Pixel 

   

× × × 2 

(Y. Huang et al., 

2011) 
DCT Image 

   

× × × 2 

(Bravo-Solorio & 

Nandi, 2011) 

1-D descriptor 

Log Polar 
Image & Pixel 

   

↓ ↓ 
 

2 

(Amerini et al., 

2011) 
SIFT Image  

     

× 2 

(Muhammad et al., 

2012) 
DyWT Image 

   

↓ × × 1 

(Lynch et al., 2013) 
Average Gray 

Value 
Image 

   

× × × 1 

(Davarzani et al., 

2013) 

HOG + multi-

resolution LBP 
Pixel 

   

↓ 
 

× 1 

(Ryu et al., 2013) 
Zernike 

Moments 
Image & Pixel 

    

↓ × 4 

(Zhao & Guo, 2013) SVD + DCT Image & Pixel 
   

× × × 2 

(Yu et al., 2014) 

NMS + 

(MROGH + 

HH) 

Image 
    

↓ × 1 

(Silva et al., 2015) 
SURF + multi-

scale & voting 
Pixel 

   

↓ ↓ × 1 

(Cozzolino et al., 

2015) 
Zernike Polar Image & Pixel 

    

↓ 
 

4 

(Emam et al., 2016) PCET Pixel 
   

↓ ↓ × 1 

(Bi et al., 2016) 

Texture + 

Moments 

Descriptor  

Image & Pixel 
   

↓ ↓ × 2 

Legend : Robust    ×  Not Robust    ↓  Robust, but, limited to several parameters 

Univ
ers

ity
 of

 M
ala

ya



 

43 

Furthermore, a standard dataset should consider both level of performances in order 

to execute the evaluations. For image-level evaluation, the total number of original and 

forged images must be balanced to avoid preference measurement. Evenly, the forged 

images, including various possible attacks in CMF should be delivered with its ground 

truth, specifically for pixel-level localization. This is to ensure that the detections are 

accurate with exact forgery position. Unfortunately, the current CMF datasets (which 

are publicly available) are inconsistent, due to the various evaluations applied by the 

methods. In image-level dataset, the forged images, together with its attacks are 

combined with the original images. Consequently, the total number of original and 

forged images is unbalanced, because one original image may have more than one 

attack in CMF image. For that reason, the researchers added a number of original 

images that might not relate to forged images. Moreover, the ground truth of each 

forged image is occasionally included. Conversely, in the pixel-level dataset, although 

the locations of forged regions are delivered, the original image is not examined. Thus, 

the objective to differentiate the original and forged images is not achievable. This has 

led to the development of new datasets that cover all requirements. Otherwise, the 

methods should be tested with a variety of datasets to achieve the desired results. 

2.3.3.2 Robustness against CMF Attacks 

As translation attack seems compulsory in CMF manipulations, the CMF detection 

methods are normally evaluated by looking at their sensitivity, specifically towards 

geometrical transformation attacks. Nonetheless, the methods are incapable of detecting 

all possible attacks that could be applied in a CMF image. According to the comparison 

table, each method has limitations on certain attacks. For instance, if the methods are 

robust to rotation, they are sometimes being sensitive to scale. Similarly, when the 

methods are robust to scale, they are variant to rotation. Or else, if the methods are 

resilient to both attacks, the robustness is limited to certain parameters. After all, there 
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are a small number of studies on CMF detection methods who investigated the 

reflection attack. 

Reflection Attack in CMF 

Reflection is a process of transmitting each point to its mirror image in a plane 

(Birkhoff, 1933). Ideally, the transmitted point has the similar distance as well as size 

with the original region. Furthermore, there is a central line (which is known as axis) 

between the reflection and the original region. Similar to flipping, the region is reversed 

along the axis. In CMF, since the reflection attack able to change the form of specific 

regions, the attack is placed under geometrical transformation, similar to translation, 

rotation and scale, which is highlighted in Figure 2.11.  

 

Figure 2.11: Reflection is placed under the geometrical attacks in CMF  

Due to the reason that the threats of reflection attack are inevitable, there is an urgent 

need to provide a CMF detection method that is robust against this type of attack. 

According to the website (http://www.appbrain.com), there are around 300 free 

applications related to mirror photo that are available for Android smartphones. The 

example of the application is Mirror Image - Photo Editor (AppBrain, 2014), which has 

been downloaded more than 10 million times in three years. Such applications could be 

a solution to users in creating a CMF with reflection image, without the need to perform 

any manipulating activity. Figure 2.12 shows the example of the CMF with reflection 

attacks produced by the Android application. 
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Figure 2.12: Example of original image (left) and CMF with reflection produced 

by the Mirror Image – Photo Editor application (right) 

The Amerini et al.’s method (2011), for example, provides the most stable 

performance for all parameters of rotation and scale, however, the method is reflection 

variant. As Bravo and Nandi (2011) were the first to highlight the reflection attacks, the 

method could not detect small CMF regions and large scale factors. In addition, even 

though Cozzolino et al. (2015) is robust to reflection, the authors did not consider the 

attack in their evaluation. 

Several Thresholds Selection 

Turning to the Cozzolino et al.’s method, the method presents the highest threshold 

selection in the final verification stage of detection. The method assigned four 

thresholds, specifically the affine transformation estimation, thresholding, size and 

distance. Similarly, Ryu et al. (2013) also stated the identical number of thresholds, 

which include one value for minimum rotation angle estimation, and three values for 

affine transformation estimation. 

As discussed in Section 2.3.1(c), the current practice of the existing CMF detection 

methods requires a filtering and verification of the preserved matching features. The 

purpose is to remove the spurious matching results and unwanted noise to get a more 
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precise detection. The selection of an ideal filtering threshold value is important to 

determine the exact location of the region being forged, while increasing the robustness 

into various CMF attacks. 

Due to the reason that the threshold is predefined to a static value, this will cause 

difficulties when various characteristics of CMF data that consist of diverse image 

qualities, sizes, and other elements are applied to the detection process. Generally, the 

existing CMF detection methods obtained the threshold value through trial & error and 

several experiments. However, the process becomes more challenging when the range 

value for each image in a dataset is large. For this reason, a dynamic threshold value is 

needed to suit the possibility of having diverse input characteristics. Nonetheless, there 

is a lack of studies on the selection of threshold value in the final stage of detection 

(visualization). Even though Ustubioglu et al. (2016) automatically defined their 

threshold value based on the compression history of each input image, their method is 

limited to post-processing attacks. This is because of the features applied in the whole 

process of CMF detection is based on DCT. Despite that, their method is the only 

method that proposed an automatic threshold in CMF detection. 

2.4 Chapter Summary 

In this chapter, a general overview of image forensics is discussed. Each component 

in the field is briefly explained. A general review of related literature for CMF detection 

methods was reported with a new workflow formation. According to the workflow, the 

methods are described based on the pre-processing stage, namely block-based and 

keypoint-based approaches. From the methods discussed, two major problems are 

identified and analyzed in terms of the detection ability and limitations. 
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CHAPTER 3: RESEARCH METHODOLOGY & DESIGN 

This chapter describes the research methodology and design used to achieve the 

stipulated goals for this research. A structure of the research methodology is 

established, the data collected is briefly defined, two proposed methods that solve the 

research problems are introduced, and the evaluations for analysis are explained. Lastly, 

both methods are combined together with the existing CMF detection methods to 

discuss the final results. This chapter explained the linkage between Chapter 4, 5, and 6 

which then will be further integrated in Chapter 7. 

3.1 Introduction 

Various CMF detection methods have been reviewed and explained together with 

their advantages and drawbacks in Chapter 2. However, it is noted from the outcome of 

the literature review that the current CMF detection methods still suffer from two major 

problems that need to be examined. The first problem looks at the necessity of both 

image and pixel-level evaluations in the performance measurement, while the second 

problem will look into reflection-based CMF attacks. The reflection-based CMF attacks 

have not been included in prior geometrical transformation analysis. With respect to the 

problems identification, three objectives have been specified accordingly, as a guide to 

the selection of methodology and design of this research. 

After considering the research problems and questions, experimental-type research 

design is implemented to achieve the research objectives. The experimental design 

specifies the control environment and predicts what may occur (independent variable) 

that affects the result of an experiment (dependent variable) (Anastas, 1999). The 

control environments are stated while the results are discussed to make a conclusion. In 

this research, the control variables are the data for the image and pixel-level evaluations 

and reflection-based CMF attacks. Meanwhile, the performance of each method towards 
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the variables are discussed and analyzed. Therefore, the methodology and design used 

in this research include the procedures used to collect the data, develop an algorithm, 

validate and analyze the results. 

3.2 Research Methodology and Design 

There are three objectives specified in this research. In order to achieve all the 

research objectives, this research follows a structure as illustrated in Figure 3.1. The 

figure also summarized all the processes involved in each phase for a general 

explanation. For detail clarification, this section is divided into five sections, comprising 

data collection, performance analysis for the existing CMF detection methods, 

proposing two CMF detection methods, compilation of performance for both existing & 

proposed CMF detection methods and system requirement. The first phase of the 

structure (which is Requirement Study) is excluded in this chapter, since the phase has 

been discussed in the previous chapter (Literature Review). The identified problems 

from the chapter are the main factors for each selection in the overall process of each 

phase. 

3.2.1 Data Collection 

Referring to the first research objective, this research aimed to examine the effects of 

the image and pixel-level evaluations of CMF detection methods against various 

possible attacks in the CMF image. Therefore, this research collects and analyzes all the 

available CMF data in the community. Some of the publicly available datasets are listed 

in Warif et al. (2016). From the data collections, two datasets are selected which are 

CombineTranslation and CPHALL that represent simple translation CMF and common 

CMF attacks, respectively. 
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Figure 3.1: Structure of the research methodology and design 

The CombineTranslation dataset is a combination of three datasets comprising GRIP 

(Cozzolino et al., 2015), D0 (Edoardo Ardizzone et al., 2015), and NB-Casia (newly 

created). This dataset is named as CombineTranslation because all the forged images in 

the dataset consist of CMF image with translation attack only. The aim of the 

compilation is to acquire various types, qualities and sizes of the CMF images, 

especially for image-level evaluation. This is because the original images are related 

with the forged images as their ratio is 1 to 1 (1 original image produced 1 translation 

CMF image). Since the locations of the forged regions are also included, this dataset is 

also measured by the pixel-level evaluation. This research believes that the biasness on 

the CMF data could be avoided by combining the three datasets. Alternatively, this 

research also considers CPHALL (Silva et al., 2015) dataset that covers various 

common CMF attacks in the collection. However, owing to the reason that the original 

images are not provided, the performances are evaluated based on pixel-level only. 
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From the data analysis, the only dataset that considers the reflection-based CMF 

image in the collection is CASIA v2.0 (Jing & Wei, 2011). However, the dataset 

consists of 12614 images comprising original, CMF, and splicing images. The images 

are mixed together, hence, it is difficult to differentiate the types of image and attacks 

involved. Therefore, two datasets, namely NB-Casia, and NBr-Casia are created, 

specifically to include the reflection-based CMF attack. The NB-Casia is comprised of 

the CMF with common attacks, which are the combination of CMF translation with 

either rotation, scale, or reflection and mix of the attacks. The NBr-Casia, on the other 

hand, is allocated to specifically assess the results against the combination of CMF 

reflection with translation, rotation, scale, and mixture of the attacks. Furthermore, the 

datasets also include original images for image-level evaluation, and mask of the CMF 

region locations for the pixel-level evaluation.  

3.2.2 Performance Analysis for the Existing CMF Detection Methods 

This phase of performance analysis is discussed in Chapter 4, specifically for the 

first objective. The problems identified in the literature review are assessed and 

analyzed in detail. Several experiments have been carried out to investigate the effects 

of the image, pixel-level evaluation, and various possible attacks (including reflection), 

to the existing CMF detection methods. A set of evaluation steps which include both 

image and pixel-level performance is illustrated and used in the comparative studies. As 

the literature review divided the existing methods into three approaches, this research 

replicates the most established method to represent each approach. In particular, 

Amerini et al. (2011), Cozzolino et al. (2015) and Silva et al. (Silva et al., 2015) 

signifies the keypoint-based, block-based, and combination of both approaches, 

respectively. In the experiments, all four datasets are employed as the input image to 

ensure the reliability of the methods against various types of CMF image.  
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To validate the performance of each CMF detection method, a shared quantitative 

way is measured and evaluated. There are several evaluation parameters performed by 

the researchers in CMF Detection, which are F-score, precision, recall, TPR and FPR. 

Precision often paired with recall, meanwhile, TPR needs to be paired with FPR. Since 

precision represents a more perfect value (due to the falsely detected images/pixels are 

identified), recall rate is also preferred to ensure all CMF images/pixels are detected. 

Owing to the reason that this research considers various levels of evaluation, only F-

score is chosen to get an average of both, precision and recall rates. F-score measure 

metric is applied to the whole experiments in this research. The F-score indicates an 

average between precision and recall rate, as defined in Equation (3.1).  

where true positive (TP), false negative (FN), and false positive (FP) count, 

respectively, the number of detected CMF images/pixels, undetected CMF 

images/pixels, and falsely detected original images/pixels. F-score is also preferred by 

recent researchers (Jin & Wan, 2017; F. Yang, Li, Lu, & Weng, 2017). 

Since there are three evaluation techniques employed in the experiments (which are 

image-level, pixel-level, and both image and pixel-level), each technique will achieved 

different F-score results.  Image-level evaluation (termed as image score) will employ 

the image definition, while pixel-level evaluation (termed as pixel score) will use the 

pixel definition. The image score shows the ability of the detection methods in 

distinguishing the original image and CMF image, while the pixel score defines the 

reliability of determining the exact location of the CMF detection. For a fair evaluation, 

the image score is multiplied by the pixel score, in order to obtain the percentage of 

detection. An efficient CMF detection method should be able to achieve the highest 

F =  
2TP

2TP + FN + FP
 (3.1) 
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percentage of detection based on the two scores. This evaluation will determine the 

ability of the detected CMF image to localize at the exact CMF region. Such metric will 

be very helpful in comparing the different methods.    

For comparison purpose, the three replicated CMF detection methods are tested with 

three datasets (CombineTranslation, NB-Casia, and NBr-Casia) for image and pixel-

level performance, while the CPHALL dataset is limited to pixel-level evaluation only 

(due to the reason that the original images are not provided). 

Instead of comparing the scores on the whole dataset, several analysis on the 

performance against various attacks are also performed. The analysis are divided into 

two sections, which are geometrical transformation and post-processing attacks. For 

geometrical transformation, this research grouped the attacks as simple translation, 

scale, rotation, simple reflection, reflection-based, and a mix of the attacks. The scores 

were calculated by averaging the results of each parameter in each group of attacks. 

Subsequently, for the post-processing attacks, the images in the datasets were applied 

with four quality factors for JPEG compression and four variances for Gaussian noise 

addition. The performance for each parameter are also discussed. 

3.2.3 Proposing Two CMF Detection Methods 

Based on the performance analysis, each approach shows significantly lower results 

for the newly created datasets (NB-Casia and NBr-Casia) that concern reflection attacks 

in CMF. Furthermore, the analysis also identifies the limitations of each approach, 

which the combination approach demonstrates the weakest performance among the 

tested methods. 

Further investigation on reflection-based CMF attacks should be explored, especially 

for the keypoint and block-based approaches which have the potential to robust on such 

attacks. As the second objective, this research develops two improved methods (based 
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on keypoint and block-based approaches) for the CMF detection, specifically to cover 

the reflection attacks. The proposed methods are explained in Chapters 5 and 6, 

individually. Additionally, each phase will undergo similar structure as illustrated in 

Figure 3.2 and the general overview of each approach is discussed in the following 

subsections. Since the purpose of the proposed methods is to cover the reflection-based 

CMF attacks, NB-Casia and NBr-Casia datasets were selected as the input image for 

both methods. 

3.2.3.1 Method I - Keypoint-based Approach: SIFT-Symmetry 

This section briefly describe the flow of the proposed keypoint-based approach 

(SIFT-Symmetry), from pre-processing until evaluation. The name of the SIFT-

Symmetry is given because the SIFT features with symmetry matching technique is 

implemented in the method. The SIFT-Symmetry is inspired by the keypoint-based 

CMF detection method (Amerini et al., 2011), since the method provides stability and 

good performance in scale and rotation. The existing design of the method is modified 

by including the symmetry matching technique specifically to cater the reflection 

attacks. 

Firstly, the input image will be converted to grayscale to increase the distinctive 

visual features of salient point. As reflection could change the feature properties of a 

region, the manipulated region represents as a new region instead. For that reason, the 

g2NN matching techniques from the prior methods couldn’t find the identical features 

between the original and the CMF regions. Therefore, the main contribution of the 

SIFT-Symmetry is the conversion of feature extraction and matching phase to deal with 

reflection-based attacks. The mirror-SIFT features (paired with symmetry matching 

technique) will only be commenced if the combination of SIFT features with g2NN 

matching technique is unable to detect at least five matching points in the image.  
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Figure 3.2: Structure of the proposed methods 

Finally, the flow ends with the final verification of forgery localization by applying 

Hierarchical Agglomerative Clustering technique with six linkages. To improve the 

pixel-level detection, the SIFT-Symmetry is applied with mathematical morphology to 

form the CMF regions. The whole design of the SIFT-Symmetry is further described in 

Chapter 5. 
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For the evaluation, the six linkages of the clustering technique are trained and tested 

using the six-fold cross validation technique. The highest parameter and linkage are 

selected as the established parameter setting. The analysis based on each CMF attack 

and its parameters is also included. 

3.2.3.2 Method II - Block-based Approach: CMF-iteMS 

Other than proposing SIFT-Symmetry, this research also recommends a block-based 

approach in CMF detection method which is known as CMF-iteMS. The CMF-iteMS is 

primarily concerned with threshold value which is assigned at the final stage of CMF 

detection. Based on the literature, the filtering process in the existing CMF detection 

methods requires at least one threshold value to remove spurious matching and 

irrelevant data (considered as noise) before the morphological process. The threshold 

value should be properly determined to obtain the exact location of the forged region. 

Nonetheless, most of the threshold values are static, which is troublesome, especially 

when various characteristics of CMF data exist. Furthermore, the image data may 

consist of diverse image qualities, sizes, and other elements that can affect the detection 

process. For this reason, a dynamic threshold value is needed to suit the possibility of 

having diverse input characteristics. 

This section briefly describes the flow of the CMF-iteMS, from pre-processing until 

evaluation. The name of the CMF-iteMS is given because the method proposed an 

iterative means of region size as a new automatic threshold selection, specifically to 

improve the CMF detection. Furthermore, the CMF-iteMS is inspired by the block-

based CMF detection (Cozzolino et al., 2015) and the conventional thresholding 

techniques. The method is selected because of its stability and good performance in 

various possible attacks, particularly rotation, reflection and a mix of the attacks. 

Moreover, this research also investigates several feature extraction and conventional 
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thresholding techniques to be combined with the proposed automatic threshold selection 

technique to enhance the robustness, especially to the reflection attacks. 

In the design, four feature extraction techniques are adapted, including Zernike 

moments, FMT, Steerable Filter and Dense SIFT for the feature extraction phase. As the 

method is primarily aimed to improve the threshold selection of the block-based CMF 

detection method, the similar PatchMatch technique in the Cozzolino et al.’s method is 

applied in the matching phase. Lastly, to verify the CMF regions detection, a new 

automatic threshold selection technique is proposed based on the performance of four 

types of conventional thresholding techniques, such as iterative means (Ridler, T.W. 

Calvard, 1978), class variance (Otsu, 1979), and maximum entropy (Kapur, Sahoo, & 

Wong, 1980; Yen, Chang, & Chang, 1995). The details of the CMF-iteMS’s design 

method are described in Chapter 6. 

For the evaluation phase, several experiments were conducted to find the most robust 

feature extraction techniques against various CMF attacks. The best match between the 

feature extraction, conventional thresholding, and the new automatic threshold selection 

technique that could localize the best detection of the CMF regions is established as the 

final design of the CMF-iteMS method. Furthermore, the CMF-iteMS is also tested with 

the high resolution image dataset (namely FAU (Christlein et al., 2012)) to verify the 

effectiveness of the methods towards larger size of images. Similar to the SIFT-

Symmetry, the analysis is based on each CMF attack and its parameters are also 

included. 

3.2.4 Compilation of Performance 

In the subsequent analysis, the two proposed methods are also evaluated with other 

datasets (CombineTranslation and CPHALL), while the results are compiled with the 

performance analysis in Chapter 4. The processing time for all methods are also 
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discussed. As the additional evaluation, this research attempts to combine all individual 

methods (Amerini et al., Cozzolino et al., Silva et al., and SIFT-Symmetry) with the 

new iterative means of region size, (iteMS) procedures as an automatic threshold 

selection in the final verification stage. The results before and after the implementation 

are compared and discussed thoroughly with the proposed CMF-iteMS. The findings 

are discussed and concluded to get the most efficient CMF detection method that covers 

all attacks, including reflection, for image and pixel-level evaluations. 

3.2.5 System Requirement 

The CMF images were created using Adobe Photoshop and MATLAB R2014b. 

Besides that, all the proposed CMF detection methods were simulated using MATLAB 

R2014b. All experiments were performed on the following machine: 

 Intel Core i5 processor (1.60 GHz) with 4 GB memory  

3.3 Chapter Summary 

In this chapter, the research methodology and design are presented which describe 

the whole implementation of the proposed methods for CMF detection. A more specific 

detail for each method and results are discussed in the next four chapters. 

Univ
ers

ity
 of

 M
ala

ya



 

58 

CHAPTER 4: PERFORMANCE ANALYSIS I 

In this chapter, the problems identified in the literature review are verified and 

established. To verify the problems, the level of evaluations used in measuring the 

performance of the existing CMF detection methods are analyzed. Next, the 

performance of the existing CMF detection methods are measured and analyzed based 

on a set of evaluation steps that include both image and pixel-level of evaluations 

against various CMF attacks in four different datasets. Three state-of-the-art methods 

(Amerini et al. (2011), Cozzolino et al. (2015), and Silva et al. (2015)) were replicated 

to represent the three approaches that are available in the literature. The performances 

are further analyzed based on each group of attacks in each dataset.  

This chapter is divided into six main parts: in the first section (Section 4.1), both 

levels of evaluations are discussed while the experimental setup is briefly introduced. 

Then, each level of evaluation is analyzed in the second section (Section 4.2). Based on 

the analysis, a set of evaluation steps (with a new calculation) is described in the third 

section (Section 4.3). By implementing the evaluation steps, the experimental results are 

discussed based on each group of CMF attacks in the fourth section (Section 4.4). 

Lastly, the fifth section (Section 4.5) concludes with a final discussion and summarized 

the whole chapter in the sixth section (Section 4.6).  

4.1 Introduction 

Based on the review in Chapter 2, the existing CMF detection methods are evaluated 

by two types of levels. The first level is image-level evaluation, while the second level 

is pixel-level evaluation. Although there are methods that consider both levels of 

evaluations, most of the methods only prefer one type of evaluation (e.g solely rely on 

either image or pixel-level evaluation). 
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This research analyzed each level of evaluation and a set of evaluation steps that 

include both levels is suggested to compare the performance of the existing CMF 

detection methods. In view of the fact that each level of evaluation has different 

meaning, a CMF detection method supposedly satisfies adequate performance for both 

image and pixel-level evaluations. Therefore, the percentage of detection that cover 

both levels of evaluations is also measured. 

In this chapter, the performances of the existing CMF detection methods are assessed 

with various types of attacks which may be possible in CMF. Two CMF datasets, which 

are publicly available in the websites were selected to cover the various characteristics 

in CMF image, comprising CombineTranslation and CPHALL. Furthermore, as the 

reflection-based CMF data is limited in the community, this research designed two new 

datasets, namely NB-Casia and NBr-Casia to highlight the second problem of this 

research. The NB-Casia contains the common CMF attacks, including reflection while 

the NBr-Casia consists of reflection-based CMF attacks. Subsequently, the results of the 

image, pixel, and percentages of both levels against the attacks are examined. 

4.2 Analysis of the Performance Evaluations 

In the meantime, there are three evaluations of performance in the existing CMF 

detection, either through image-level, pixel-level and both image and pixel-levels. The 

image-level evaluation is performed to measure the ability of the CMF detection 

methods in differentiating an original image and a CMF image. Meanwhile, the pixel-

level evaluation is implemented to verify the detection location of the CMF. 

Generally, the selection of the level-evaluation will determine the data collections in 

the experiment. For image-level evaluation, the data involved original and CMF images 

while for pixel-level evaluation, the data should deliver the CMF images together with 

the exact location of the forged regions. Consequently, if the researchers chose image-
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level evaluation, the CMF data for pixel-level can’t be appointed. Similar situations 

occurred if the researchers select pixel-level evaluation, where the CMF data for image-

level evaluation is excluded. Furthermore, if the researchers want to consider both 

levels of evaluation, they need to select the CMF data that contains both original image 

and locations of the forgery. These conditions have encouraged other researchers to 

develop a new dataset since the available datasets are not suitable for their preferred 

level of evaluation. For that reason, numerous CMF detection methods and data later 

could be abandoned for comparisons, since the process of adjustment of the existing 

CMF detection methods required several efforts and becomes more challenging. 

Regardless of the situations, it is important to establish the level of evaluations in 

measuring the performance of the CMF detection. Therefore, this section analyzed each 

level of evaluation, and illustrated a set of evaluation steps to be followed by future 

researchers. The ideas and limitations of each level of evaluation are described in the 

following subsections. 

4.2.1 Image-level Analysis 

Referring to the purpose of the image-level evaluation (which is to differentiate the 

original and forged images), the performance relies on the number of images in the 

dataset, which the higher number of images will produce more precise results. In 

addition, the current practice of the image-level evaluation requires the total number of 

CMF and original images to be balanced in a dataset. However, since the CMF images 

are often tested with several categories of attacks, the original images that are included 

in the dataset might not be related to the CMF images. The example is shown by the 

MICC-F220 dataset (Amerini et al., 2011). The dataset consists of 220 images, from 

which 110 are the original images and another 110 are the CMF images. In spite of the 

equal quantity of the two types of image, only 11 images have been selected (from the 
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original images) to be applied with another 10 parameters of attacks; which 1/10 

parameter is for simple translation, 4/10 parameters are for scale, 3/10 parameters are 

for rotation and the remaining 2/10 parameters are for mix of rotation and scale. This 

has led to the biased evaluation, since most of the examined original images are not 

originated from the forged images. As a suggestion, although the number of images is 

equal, the original images should be paired with its forged images (with any categories 

of attacks) to avoid any preference evaluation. 

Another limitation on the image-level evaluation is the detection of the CMF does 

not guarantee the location of the forged regions is true. This is because researchers are 

focusing on the forged image identification, not the location of the forged region. Table 

4.1 lists and presents three examples of false detection results by the methods from 

Amerini et al. (2011) and Silva et al. (2015). From the table, the first example shows 

that the CMF image is correctly detected as CMF, but the detection of locations include 

wrong forged pixels. This is due to the spurious matching arisen by both methods. The 

second example is the worst case scenarios, in which all the detected pixels are wrong, 

even the image is successfully identified as a CMF image. In the third example, a 

genuine unforged image is detected as original image. However, some false detection 

pixels still visible in both Amerini et al.’s and Silva et al.’s output.  

Owing to the reason that the three examples (might be more than three) often happen 

in a detection, the methods that solely rely on image-level evaluation can be doubtful. 

That is the reason why pixel-level evaluation is required, which is discussed in the next 

section.  
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Table 4.1: Example of false detection results by Amerini et al.’s and Silva et al.’s 

methods 

 

4.2.2 Pixel-Level Analysis 

Since the image-level evaluation becomes unconvincing due to the false detection 

results that might be occurred, a number of researchers improved the evaluation by 

validating the detection by pixel-level evaluation. In this case, a set of ground truth 

images that contain the exact locations of the forged regions has to be created in the 

dataset. The current practice of the ground truth image creation is by providing a binary 

image with at least two regions (with a white area) as the copied and pasted areas. 

Therefore, in order to calculate the performance, the detected pixel should also be in 

binary form to be compared with the ground truth. 

To measure the performance, the metrics are defined as true positive (TP) for the 

number of detected forged pixels, whereas false negative (FN) refers to undetected 

forged pixels, and false positive (FP) describes the falsely detected original pixels. The 

score is averaged to the whole CMF images in a dataset to obtain the whole 
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performance for a full dataset. Figure 4.1 illustrates the measure metrics definition for 

one image.  

 

Figure 4.1: Example of ground truth (left) and the detection result with each 

measure metric 

Even though the pixel-level evaluation gives positive effects on the forgery 

localization, this level of evaluation could not be applied to the keypoint features. This 

is because the keypoint features are detected by points (in which one point represents 

only one pixel), not the regions. Although the point detected was densed to certain 

pixels, the covered area could not include the whole detected region that will resulting 

on low recall rate. Therefore, a human interpretation might be needed in order to 

compare the results with the ground truth image. However, the human interpretation is 

not preferred due to the reason that the decision is affected by human desired results. 

Figure 4.2 shows the detection results by the Amerini et al.’s method that uses keypoint 

features for clustering-based, dense-based and human interpretation-based. 
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Figure 4.2: Example of detection results by Amerini et al. for (from left) 

clustering-based, dense-based, and human interpretation-based 

4.3 A set of Evaluation Steps 

Based on the analysis in the previous sections, both levels of evaluations are 

significant. Hence, this research believed that a CMF detection method should be 

measured for both image and pixel-level evaluations for a fair evaluation. Therefore, a 

set of evaluation steps that cover both levels is illustrated, which later, all new creation 

of the CMF data should satisfy the steps. Figure 4.3 presents the evaluation steps for a 

CMF detection method that describe the idea of each level. The explanation of each step 

is described in the next paragraphs. 

Firstly, the methods should be able to detect any input image either as original or 

CMF. According to the figure, a CMF detection method will define the status of the 

input image. The number of CMF images, which truly detected as CMF images (TP), 

and undetected as CMF images (FN), together with the number of original images that 

are falsely detected as CMF images (FP) is recorded to measure the performance. 

Therefore, the performance solely relies on the number of original and CMF images in a 

dataset. The image-level dataset should have at least an equal number of both original 

and CMF images. If possible, the CMF image should be paired with its original image 

to avoid a biased evaluation. 
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Figure 4.3: A set of evaluation steps for a CMF detection method 

Then, once the image is considered as a CMF, pixel-level evaluation is required to 

ensure the detection location is true. The pixel-level evaluation compares the detection 

regions with the exact locations of the CMF regions. To obtain the score for the whole 

dataset, the average score for each image is summed and divided with the number of 

images in the dataset.  

Both performances are multiplied to get the overall percentages of the detection. 

Table 4.2 lists the example results for the image score, pixel score and percentage of 

both scores. The summarized results are: 

1. If image score is 90% and pixel score is 90%, the percentage of the detection is 81% 

2. If image score is 90% and pixel score is 60%, the percentage of the detection is 54%  

3. If image score is 60% and pixel score is 60%, the percentage of the detection is 36%  

4. If image score is 90% and pixel score is 20%, the percentage of the detection is 18%  

5. If image score is 20% and pixel score is 60%, the percentage of the detection is 12% 
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Table 4.2: List of example results for image score, pixel score and percentage of 

detection 

Example Image Score Pixel Score Percentage of Detection 

1 0.900 0.900 0.810 

2 0.900 0.600 0.540 

3 0.600 0.600 0.360 

4 0.900 0.200 0.180 

5 0.200 0.600 0.120 

The results show that the image-level is the highest importance, while the false 

detection in the CMF location is able to reduce the percentages. Furthermore, even if 

the location of detection is correct, the percentage will be dropped if the methods unable 

to detect an original image. 

4.4 Experimental Results and Performance Analysis 

To verify the analysis, the set of evaluation steps and the percentage of detection are 

implemented in this evaluation studies. The purpose of this evaluation studies is to 

measure the performance of the existing CMF detection methods against various 

possible attacks in CMF by using the evaluation steps. For the experimental setup, three 

existing CMF detection methods were replicated with each method representing the 

three approaches available in the literature. To be specific, the Amerini et al.’s (2011), 

Cozzolino et al.’s (2015) and Silva et al.’s (2015) method is selected to indicate the 

keypoint-based, block-based, a combination of both approaches, respectively.   

This research compares two features, comprising Zernike moments and FMT 

particularly for the Cozzolino et al.’s method. It is also noted that based on the 

literature, the Amerini et al.’s method is designed specifically for image-level 

evaluation, while the Silva et al.’s method is measured in pixel-level performance. 

Therefore, the detected SIFT points which obtained from the Amerini et al.’s method 

are thickened (densed) for 10 pixels and applied with the mathematical morphology 

(dilation) to form a region. Meanwhile, for Silva et al.’s method, an input image is 
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defined as a CMF image when there is at least one pixel detected as forged in the 

evaluation. 

The overall performance were tested on four datasets, which two of those are the 

publicly available CMF datasets while the remaining two datasets are the newly created 

datasets. The results were also studied based on several groups of attacks in CMF. The 

details of the experimental results and analysis are discussed in the following 

subsections. 

4.4.1 Datasets 

To assign the input images for CMF detection, the CombineTranslation and the 

CPHALL datasets were selected from the available CMF datasets. The 

CombineTranslation was chosen specifically to obtain a fair evaluation for image-level, 

while the CPHALL was appointed to verify the performance against various CMF 

attacks in an available dataset. The details of the datasets are described as follows: 

(a) CombineTranslation 

CombineTranslation is comprised of simple translation CMF images. In order to 

obtain various qualities and sizes, three datasets which are publicly available for CMF 

were combined. The datasets are GRIP (Cozzolino et al., 2015) (160 images), D0 

(Edoardo Ardizzone et al., 2015) (100 images) and NB-Casia (30 images) which the 

resolutions are 768×1024, 700×1000, 240×160 and 900×600, respectively. A total of 

290 images were collected, including 145 CMF-translation images and 145 original 

images. As the only attack involved is translation, the ratio of the original images and 

the CMF images is 1:1, therefore, could provide an equitable evaluation for image-level 

performance. Due to the availability of both original image and ground truth, the 

performance is measured by image and pixel-level. 
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(b) CPHALL 

In contrast with CombineTranslation dataset, CPHALL is comprised of CMF images 

with its combination of geometrical transformation attacks. However, CPHALL is only 

limited to non-reflection CMF images, while the original images are not provided. 

Hence, the detection performance was measured by pixel-level, which matched with the 

ground truth images. The total images in the dataset are 108, comprising 23 images for 

simple translation, 26 images for scale, 25 images for rotation, and 34 images for mix of 

attacks. The resolutions of the images in the dataset vary from 845×634 to 1296×972. 

4.4.1.2 Newly Creation Datasets 

Instead of focusing on the image and pixel-level evaluations, this analysis includes 

the second problem stated in this research as one of the criteria in the CMF image. To 

recap, the second problem identified in the literature review is the CMF with reflection 

attack has not been focused and evaluated in the existing research. This is proven by the 

shortage amount of available datasets that provide the attacks in the collection. 

Based on the previous chapter (Chapter 3), the only dataset that provides the CMF 

image with reflection attacks is Casia v2.0, however, the images are mixed with other 

types of image manipulation techniques. For that reason, this research creates two new 

datasets, namely NB-Casia and NBr-Casia which are comprised of common CMF 

attacks (translation, scale, rotation), including reflection and reflection-based attacks 

(simple reflection, reflection with scale, reflection with rotation and mixture of the 

reflection), respectively. Figure 4.4 shows two examples of original images, CMF with 

a simple transformation in NB-Casia and reflection-based attacks in NBr-Casia dataset. 

The setup of all datasets is described in the following: 

Univ
ers

ity
 of

 M
ala

ya



 

69 

 

Figure 4.4: From left: examples of original image, simple transformation CMF 

image and reflection-based CMF image 

(a) NB-Casia 

This dataset is composed of 510 images: 255 are original images and 255 are CMF 

images, which the original images were taken from the CASIA v2.0 (Jing & Wei, 2011) 

dataset. The resolution of the images may varies from 240×160 (the smallest) to 

900×600 (the highest). 15 images from the original images were selected to create the 

17 parameters of CMF images as listed in Table 4.3. A region on an image was copied 

and applied with the simple transformation attacks, comprising translation, scale, 

rotation, reflection and a mix of the attacks before being pasted on the image. 

According to the table, the CMF images were divided into five groups of attacks, 

namely, simple translation, scale, rotation, simple reflection, and the mixture of simple 

translation, scale, and rotation. 𝒔𝒙 and 𝒔𝒚 refer to the scale factor when the copied 

region is scaled horizontally and vertically, respectively. On the other hand, 𝜽° denotes 

the degree of rotation, while axis defines the flipped axis for the reflection attack. The 

dataset is freely available at the following website: https://github.com/nurbaqiyah/CMF-

Dataset. 
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Table 4.3: Different combinations of geometrical transformation applied to the 

CMF image in the NB-CASIA dataset 

Parameter / Group of 

Attack 
𝒔𝒙 𝒔𝒚 𝜽° axis 

Simple Translation 1 1 0 0 

Scale 

0.6 0.6 0 0 

0.8 0.8 0 0 

1.2 1.2 0 0 

1.4 1.4 0 0 

1.6 1.6 0 0 

Rotation 

1 1 20 0 

1 1 40 0 

1 1 60 0 

1 1 120 0 

1 1 240 0 

Simple Reflection 1 1 0 𝑦 

Mix of attacks 

1.2 0.8 0 0 

1.2 1.4 0 0 

1.2 0.8 20 0 

1.2 1.2 40 0 

1.6 0.8 330 0 

 

(b) NBr-Casia 

Instead of NB-Casia, this research also created a new dataset for reflection-based 

CMF images, called NBr-CASIA. This dataset consists of 480 images: 240 are original 

images and 240 are reflection-based CMF images. The overall setup of the dataset was 

similar to the NB-CASIA, except that all copied regions were horizontally flipped 

(summarized in Table 4.4). The CMF images were divided into four groups composed 

of simple reflection, reflection with scale, reflection with rotation, and the combination 

of reflection with scale and rotation manipulation. 
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Table 4.4: Different combinations of geometrical transformation applied to the 

reflection-based CMF image in NBr-CASIA dataset 

Parameter / Group of 

Attack 
𝒔𝒙 𝒔𝒚 𝜽° axis 

Simple Reflection 1 1 0 𝑦 

Reflection with Scale 

0.6 0.6 0 𝑦 

0.8 0.8 0 𝑦 

1.2 1.2 0 𝑦 

1.4 1.4 0 𝑦 

1.6 1.6 0 𝑦 

Reflection with 

Rotation 

1 1 20 𝑦 

1 1 40 𝑦 

1 1 60 𝑦 

1 1 120 𝑦 

1 1 240 𝑦 

Combination of 

Reflection with other 

attacks 

1.2 0.8 0 𝑦 

1.2 1.4 0 𝑦 

1.2 0.8 20 𝑦 

1.2 1.2 40 𝑦 

1.6 0.8 330 𝑦 

4.4.2 Performance Evaluation 

In this section, the results of the existing CMF detection methods (Amerini et al., 

Cozzolino et al. (Zernike moments and FMT) and Silva et al.) were compared against 

four datasets (CombineTranslation, CPHALL, NB-Casia, and NBr-Casia). Table 4.5 

lists the overall results for image-level, pixel-level, and percentages of both detections 

in all datasets, except CPHALL, which is only evaluated using pixel-level performance. 

According to the table, the Cozzolino et al.’s method with Zernike moments features 

achieved the highest score for CombineTranslation and NBr-Casia datasets for all, 

image-level, pixel-level, and percentage of both levels. For NB-Casia dataset, the 

Amerini et al.’s obtained the highest score, but is limited to image-level only, while the 

Cozzolino et al.’s with FMT features is much better for pixel-level and percentages of 

both levels. Furthermore, the FMT features also performed the best in CPHALL dataset. 

Among all tested CMF detection methods, the Silva et al.’s doesn’t show much 

improvement compared to others, even with their dataset (which is CPHALL). 
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Table 4.5: Performance of the existing CMF detection methods in four datasets 

All Datasets/Methods 

Amerini 

et al. 

(2011) 

Cozzolino 

et al. (2015) 

--ZM 

Cozzolino 

et al. (2015) 

--FMT 

Silva 

et al. 

(2015) 

CombineTranslation 

Image Score 0.724 0.896 0.880 0.737 

Pixel Score 0.574 0.901 0.884 0.740 

Percentage 

of Detection 
0.416 0.807 0.778 0.545 

NB-Casia 

Image Score 0.814 0.654 0.745 0.667 

Pixel Score 0.549 0.557 0.634 0.548 

Percentage 

of Detection 
0.447 0.364 0.472 0.365 

NBr-Casia 

Image Score 0.004 0.593 0.496 0.226 

Pixel Score 0.003 0.491 0.325 0.010 

Percentage 

of Detection 
0.000 0.291 0.161 0.002 

CPHALL Pixel Score 0.551 0.825 0.859 0.647 

Based on the performance results, the FMT features improved the Zernike moments 

features in terms of scale and variations of illuminations attacks only because the 

Zernike moments features is variant to scale and illumination changes (Kim & In-So, 

2002). In spite of that, the SIFT features applied by the Amerini et al.’s show superior 

performance in term of image-level evaluation, however, due to the reason that the 

SIFT features are unable to form a region, the Amerini et al.’s scores were decreased for 

pixel-level evaluation and percentage of detection. For further analysis on each method 

against each dataset, the results listed in the table were further divided according to the 

five groups of geometrical transformation attacks. The detail analysis are discussed in 

the next subsections. 

4.4.2.1 Analysis against Geometrical Transformation Attacks 

In this section, this research analyzed the performance based on five groups of 

attacks, which are simple translation, scale, rotation, reflection, and mix of attacks. The 

performance for CombineTranslation, NB-Casia and NBr-Casia datasets are measured 

by image score, pixel score, and percentages of both scores, while the analysis are 

verified by the CPHALL dataset in pixel score. The analysis is divided into four 
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subsections, specifically, simple translation attack, common CMF attacks (scale, 

rotation, simple reflection, and mix), reflection-based CMF attacks and common attacks 

in CPHALL. 

For the NB-Casia dataset, the images were grouped based on the attacks. 1/17 of the 

images is simple translation, and another 1/17 is for simple reflection. Meanwhile, the 

remaining 15/17 of the images are divided into other groups, which 5/17 images are for 

scale, 5/17 images are for rotation, and another 5/17 are for mix groups. The image-

level performance were calculated by averaging the results of 15 original images with 

its 15 CMF images for each parameter in each group of attacks. Furthermore, the 

CombineTranslation dataset was discussed in simple translation attack subsections, 

while the NBr-Casia dataset was explained under the reflection-based CMF attacks 

subsections. It is also noted that the original images in all datasets were excluded for the 

pixel-level evaluation. 

(a) Simple Translation 

Basically, simple translation attack in CMF is the simplest operation in CMF 

manipulations. However, the detection performance are dependent on the types of 

images and CMF regions in a dataset. Before analyzing the simple translation attack, 

this research studies the images in both, CombineTranslation and NB-Casia datasets to 

come out with the analysis. CombineTranslation, which are the combination of three 

datasets (GRIP, D0, and NB-Casia) have diverse image resolutions. The majority of the 

images is belonging to GRIP dataset, which the CMF regions in the images often 

consists of flat, uniform and natural regions. Meanwhile, the CMF regions in D0 and 

NB-Casia datasets are more rigid and simple. Nonetheless, the images in NB-Casia 

dataset has small resolutions with various illuminations that are harder to be detected. 

Univ
ers

ity
 of

 M
ala

ya



 

74 

Figure 4.5 presents the results of image score, pixel score, and percentage of both 

scores for the existing CMF detection methods against simple translation attack in both, 

CombineTranslation and NB-Casia datasets. According to the figure, this research 

confirmed that all the existing CMF detection methods work well with simple 

translation CMF image, which were able to achieve a minimum image score of 72% 

and 80% for CombineTranslation and NB-Casia dataset, respectively. Nevertheless, due 

to the reason that the Amerini et al.’s method has low recall rate for the pixel-level 

evaluation, the minimum percentages of detections were dropped to 42% for the 

CombineTranslation dataset. 

 

Figure 4.5: Comparative results (image score, pixel score, and percentages of 

both scores) for the existing CMF detection methods against simple translation 

attack in CombineTranslation and NB-Casia datasets 

In particular, the Cozzolino et al.’s method with Zernike moments features achieved 

the highest score of all level evaluations for the CombineTranslation dataset, compared 

to other methods. The reason is the Zernike moments features has distinctive ability that 
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may reduce the redundancy in features, while being able to describe the shape of objects 

very well (Q. Yang, 2014). In contrast, the SIFT point features in the Amerini et al.’s 

method is sensitive to flat and uniform regions (Amerini et al., 2011). Thus, the method 

couldn’t detect any CMF with flat region, while regularly detecting the uniform regions 

as CMF. In addition, as Silva et al.’s improves the keypoint detection by block 

segmentation, they are able to improve the recall rate in the pixel-level compared to 

Amerini et al.’s method. 

On the other hand, the performance of the Cozzolino et al.’s method with Zernike 

moments was dropped for the NB-Casia dataset. This is because the Zernike moments 

were unable to detect three images in the dataset, which have small and various 

illuminations. Since the Mellin transform has the advantages on scale and illumination 

invariant (Carkir & Cetin, 2010), the method with FMT features was able to improve 

the detection in the dataset. Furthermore, several predefined thresholds in the final 

verification steps of the Cozzolino et al.’s method has limit the performance of the 

method from being higher, especially when dealing with small resolution images. 

Hence, the results of both Amerini et al.’s and Silva et al.’s were higher than the 

Cozzolino et al.’s method due to the reason that keypoint features is robust to 

illumination changes (Mishra et al., 2013) while not being affected by the image size. 

(b) Common CMF Attacks (Scale, Rotation, Simple Reflection and Mix Attacks) 

The performance of the existing CMF detection methods against NB-Casia dataset 

were continuously analyzed based on the common attacks in CMF. Figure 4.6 shows 

the results of image score, pixel score, and percentages of both scores for the existing 

CMF detection methods against common attacks, specifically scale, rotation, simple 

reflection and mix attacks in NB-Casia dataset. 
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Even though the Amerini et al.’s method achieved the highest performance against 

simple translation attack in NB-Casia dataset, the results were dropped when dealing 

with other attacks in CMF. They maintained the highest percentage of detection for 

scale and rotation attacks, but obtained the lowest percentage for simple reflection and 

mix of attacks. This is because the matching technique was not able to find any similar 

features for the reflection attacks and the performance will be dropped whenever large 

scale was combined with large rotation. The performance of Silva et al.’s method, on 

the other hand, was the lowest for rotation due to the reason that SURF features are 

sensitive to the large rotation degrees (Juan & Gwun, 2009).  Furthermore, even though 

the Silva et al.’s method was able to obtain 29% of image score for simple reflection, 

they actually detects wrong CMF regions. Meanwhile, for the scale attacks, the 

detection often includes several false alarms, even they achieved the second highest 

performance. Figure 4.7 presents the examples of the false alarms in the detection of the 

Silva et al.’s method for simple reflection and scale attacks in NB-Casia dataset.   

 

 

Univ
ers

ity
 of

 M
ala

ya



 

77 

 

Figure 4.6: Comparative results (image score, pixel score, and percentages of 

both scores) for the existing CMF detection methods against scale, rotation, simple 

reflection and mix attacks in NB-Casia dataset 

 

Figure 4.7: Examples of the (from left) CMF images, ground truth, and 

detection results by the Silva et al.’s method against reflection (top) and scale 

(bottom) in the NB-Casia dataset 

On the contrary, although the performance of Cozzolino et al.’s method for both 

Zernike moments and FMT obtained the lowest performance for scale attacks, they 

were able to maintain at least 57% percentage of detection for rotation and simple 
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reflection, while having achieved the highest performance for mix of attacks. However, 

since the FMT features is resistant to various illumination, the features demonstrate the 

higher performance than Zernike moments against all CMF attacks, except reflection. 

(c) Reflection-based CMF Attacks  

Based on the previous analysis, the Zernike moments features in the Cozzolino et 

al.’s method shows the highest performance when dealing with simple reflection in 

CMF image. Therefore, this research continuously examined the method against 

reflection combination in CMF. Figure 4.8 displays the performance of the existing 

CMF detection methods against reflection with scale, reflection with rotation, and 

mixture of reflection. The figure proved that the performance of the Zernike moments is 

able to maintain the highest percentage of detection in all groups of reflection 

combination in CMF. Nevertheless, the performance on reflection with scale and mix of 

reflection were limited to 8% and 30% of detection because of the employed predefined 

thresholds. An ideal threshold may be able to improve the results. Meanwhile, the 

performance of the FMT features in Cozzolino et al.’s method was dropped whenever 

the reflection is involved. 

The keypoint features, on the other hand, show the lowest performance for both 

Amerini et al.’s and Silva et al.’s method. These situations happened due to the reason 

that keypoint features, either SIFT or SURF, are not robust against reflection attacks. 

The feature coordinates between the original regions and the reflected regions are 

changed, hence, have led to the matching results failing. 
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Figure 4.8: Comparative results (image score, pixel score, and percentages of 

both scores) for the existing CMF detection methods against reflection with scale, 

reflection with rotation, and mix of reflection attacks in NBr-Casia dataset 

(d) Simple Translation, Scale, Rotation and Mix Attacks (CPHALL dataset) 

In view of the fact that the CPHALL dataset does not provide the original image in 

the collection, this research couldn’t combine the performance with the NB-Casia 

dataset. Thus, this dataset was used to verify the previous analysis against the common 

attacks, except for reflection. Figure 4.9 presents the pixel score for the existing CMF 

detection methods for simple translation, scale, rotation, and mix of the attacks group in 

the dataset. The figure proved that the Amerini et al.’s method has the limitations when 

evaluated with pixel-level performance, while the performance of Silva et al.’s method 

was dropped with attacks other than simple translation. Hence, the Cozzolino et al.’s 

method shows the most efficient method among all the existing CMF detection 

methods. For features comparison, the FMT features show a higher performance 

compared to the Zernike moments in all attacks, mainly because the CMF regions in the 

dataset are too small to be detected by the Zernike moments. 
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Figure 4.9: Pixel score for the existing CMF detection methods against simple 

translation, scale, rotation, and mix attacks in CPHALL dataset 

4.4.2.2 Analysis against Post-Processing Attacks 

Instead of analyzing the existing CMF detection methods against geometrical 

transformation, the performance against post-processing attacks was also measured. The 

performances were evaluated based on the image-level only, since the level is the 

highest importance and should be firstly measured compared to the pixel. Two sets of 

experiments were implemented to examine the robustness against JPEG compression 

and Gaussian noise addition. For the experiments, all images in CombineTranslation 

dataset were distorted by JPEG compression and Gaussian noise with four different 

parameters. In the first experiment, the images were compressed with various JPEG 

quality factors ranging between 80–20. Meanwhile, for the second experiment, four 

variances of Gaussian noise ranging between 0.01–0.04 were added to the images. The 

results are also compared with the results obtained without distortion in Section 

4.4.2.1(a). 

Figure 4.10 illustrates the image score values for the two experiments of post-

processing attacks in image-level evaluation. Figure 4.10(a) shows the overall 
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performance of the CMF detection methods against compression attack for each quality 

factor. Based on the figure, the Silva et al.’s shows the lowest performance for all 

quality factors. Even though the performance were increased, especially when dealing 

with the lowest quality factor, the method actually extracted more false matching 

features. The authors are aware of the drawback, as the results reported in their paper 

shows the lower performance compared to the Amerini et al.’s against the attacks. 

Furthermore, although the performance of the Amerini et al.’s method was higher than 

the Silva et al.’s method, the score was also decreased when compression was applied. 

Some artifacts, namely blockiness, may interrupt the amount of reliable keypoints in 

SIFT detection process each time compression were applied (Pan & Lyu, 2010). 

Despite the challenges faced by other methods, only the Cozzolino et al.’s method 

could be maintained above 80% of image score, but only limited to 60 and 80 quality 

factors. Furthermore, the performance of the Zernike moments features was 

significantly dropped compared to the FMT for the lower quality factor. Similar results 

occurred with the method proposed by Ryu et al.’s (2010), which also applied Zernike 

moments features in their method. The authors notified that their method has low 

detectability for low quality of images. Subsequently, the performance of all methods 

continuously decreased for Gaussian noise addition. Figure 4.10(b) illustrates the image 

score values for all methods against Gaussian noise addition. In the figure, the results 

show that all scores tended to decrease when the variance of Gaussian noise was 

increased. However, the performance of the Amerini et al.’s method and FMT features 

achieve the highest score and demonstrate similar effects towards the attack. 
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(a) 

 

(b) 

Figure 4.10: Image score values of the existing CMF detection methods against (a) 

JPEG compression (b) Gaussian noise addition in CombineTranslation dataset 

4.5 Discussion 

There are two major problems recognized in the literature review, which are the 

requirement of both image and pixel-level evaluations in the CMF detection methods 

and the lack of evaluation on the reflection-based CMF attacks. Therefore, this chapter 

analyzed the problems through several experiments to prove the literature studies. For 

the first problem, a set of evaluation steps that include both levels is illustrated and used 

in the whole experiments. To deal with the second problem, two new datasets, NB-
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Casia and NBr-Casia were created specifically to include reflection attacks in the 

evaluation. 

Both evaluation steps and new datasets are the two important elements in this 

performance analysis. The elements are used to compare the performance of the 

existing CMF detection methods. The experiments proved the importance of both level 

evaluations, instead of solely relying on one level evaluation. For example, as the 

Amerini et al.’s method preferred only image-level evaluation, the pixel-level 

performance shows the reduction score even though they were the highest in the image-

level. Contrarily, the Silva et al.’s method which considered only pixel-level 

performance, is not able to differentiate the original image and CMF image since the 

detected CMF images often localized the forged regions, incorrectly. 

The performances of all CMF detection methods were analyzed based on 

geometrical transformation and post-processing attacks. For the geometrical 

transformation, the attacks were divided into five groups, comprised of simple 

translation, scale, rotation, simple reflection and mix of attacks. Based on the analysis, 

the Silva et al.’s method does not show much improvement in all attacks compared to 

the Amerini et al.’s and Cozzolino et al.’s method. Furthermore, the Amerini et al.’s 

method, performed the highest performance against scale and rotation groups, even 

though the method is not robust against reflection attacks. The Cozzolino et al.’s 

methods, on the other hand, is able to maintain the performance for simple translation, 

rotation, and reflection attack groups. However, several predefined thresholds in the 

final verification steps in their method has limit the performance from being higher, 

especially when dealing with small resolution of images. Finally, as the CMF image 

may be applied with the low quality of images, the Cozzolino et al.’s and the Amerini et 
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al.’s method demonstrates the first and second best results for both JPEG compression 

and Gaussian noise. 

Based on the performance analysis, both, keypoint (Amerini et al.’s) and block-based 

(Cozzolino et al.’s) approaches have their own merits and weaknesses against each 

CMF attack. Moreover, the performance towards the newly created datasets, NB-Casia 

and NBr-Casia show the lowest score due to the reason that reflection attacks are 

included. Hence, this research attempts to improve the score of the existing methods 

using both datasets. The following chapters will explain and describe the proposed 

methods, while the performance against both datasets are analyzed. 

4.6 Chapter Summary 

This chapter discusses the importance of both image and pixel-level evaluation 

techniques in CMF detection methods. A set of evaluation steps, which include both 

levels of evaluations is used to measure all methods’ performance. This chapter 

examined the effects of both image and pixel-level evaluations to the three existing 

CMF detection methods using four different datasets. The results are discussed based on 

geometrical transformation (including reflection-based CMF attacks) and post-

processing attacks. Moreover, the advantages and the limitations of each method are 

also analyzed to come-out with improved solutions in the next chapters. 
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CHAPTER 5: METHOD I SIFT-SYMMETRY 

This chapter presents the SIFT-Symmetry that is proposed to improve the robustness 

against CMF with various attacks including reflection. The experimental and 

comparison results are discussed and explained. The key contribution is the introduction 

of symmetry detection technique as a matching technique for the detection of CMF 

images with reflection attacks. Since the detection method proposed by Amerini et al. 

(2011) shows high performance for CMF with scale and rotation attacks, the method is 

combined with the symmetry matching to obtain better results in detecting reflection-

based CMF images. The advantage of the symmetry matching is the technique could 

discover identical regions that involved almost all cases of reflection-based attacks in a 

CMF image. 

This chapter is divided into five main parts: the first section (Section 5.1) briefly 

introduced the method, while the second section (Section 5.2) presents the proposed 

flowchart for the SIFT-Symmetry with explanation of each phase. The experimental 

results and analysis are presented in the third section (Section 5.3), whereas the fourth 

section (Section 5.4) concludes with the final discussion. The last section (Section 5.5) 

summarized the whole sections in the chapter. This chapter is based on the article’s title 

“SIFT-Symmetry: A Robust Detection Method for Copy-Move Forgery with Reflection 

Attack” (Warif, Wahab, Idris, Salleh, & Othman, 2017). 

5.1 Introduction 

Based on the performance analysis in the previous chapter, the score for the existing 

keypoints-based CMF detection method was significantly dropped when dealing with 

reflection-based CMF, although they achieved the highest score for both scale and 

rotation attacks. The results show that the Amerini et al.’s method was unable to detect 

any matching features whenever reflection is involved. Figure 5.1 displays the detection 
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results produced by the method on simple translation with scale attacks compared with 

simple reflection attacks. 

 

Figure 5.1: Detection results produced by the Amerini et al.’s method for CMF 

with simple translation and scale (left) and CMF with simple reflection (right) 

Because of the stability, robustness and distinctiveness of the SIFT features, this 

research attempts to enrich the keypoint-based CMF detection method with reflection-

based invariance while preserving existing merits. Basically, reflection is one type of 

symmetry, which could present itself in all forms and scales (Y. Liu, Hel-Or, Kaplan, & 

Gool, 2008). Furthermore, the symmetry is also invariant for various scales (Hauagge & 

Snavely, 2012) that has potential to maintain the performance on scale attacks. These 

properties have motivated this research to adopt the symmetry as a matching technique 

to discover the CMF with reflection attack. Therefore, a method, named as SIFT-

Symmetry is proposed to incorporate the symmetry matching with the keypoint-based 

CMF detection method, specifically to solve the reflection-based problem in CMF. In 

the design, the SIFT feature extraction is changed to the mirror-SIFT features, while the 

g2NN matching technique is replaced with the symmetry matching technique.  

To quantify the performance of the SIFT-Symmetry, the NB-Casia and NBr-Casia 

are selected as the input image. Then, the performances are compared with the existing 
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CMF detection methods based on each group of attacks. The advantages and limitations 

are discussed thoroughly. 

5.2 SIFT-Symmetry 

Owing to the reason that the keypoint-based CMF detection method (Amerini, 

Ballan, Caldelli, Bimbo, & Serra, 2011) shows good performance in detecting CMF 

translation with scale and rotation, the SIFT-Symmetry is aimed particularly to detect 

the combination of reflection with translation, scale, and rotation. In the design, the 

SIFT-Symmetry is innovatively combined and modified the keypoint-based CMF 

detection to be included with the symmetry matching technique. The flowchart of the 

whole design of the SIFT-Symmetry is illustrated in the Figure 5.2 where the blue color 

represents its unique characteristics. The processes are categorized into three phases, 

specifically (i) keypoint extraction, (ii) keypoint matching, and (iii) clustering and 

forgery detection. For the first and second phases (keypoint extraction and keypoint 

matching), each phase consists of two different techniques. Specifically, the SIFT 

feature extraction is paired with the g2NN matching technique to resist the non-

reflection attacks, while the mirror-SIFT feature extraction are combined with the 

symmetry matching technique to discover the reflection-based attacks. The flow ends 

with the final verification of forgery localization in the third phase, and the explanation 

of the three phases is covered in the following section. 

5.2.1 Keypoint Extraction 

In the first phase, the keypoint extraction techniques are comprised of SIFT and 

mirror-SIFT feature extraction. The SIFT feature extraction technique, which is initially 

proposed by Lowe (1999) has been verified to be robust against CMF with scale and 

rotation attacks (Amerini et al., 2011). A set of SIFT point vectors representing the 

location, scale, and orientation is assigned to each feature point, 𝑝𝑖 =  {𝑥1, 𝑥2, … , 𝑥𝑛 } in 
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each image. The point detection is derived in scale space by looking at the maxima or 

minima of difference in Gaussian function to be robust to scale and Gaussian blurring. 

Moreover, each point generates a set of SIFT descriptors, 𝑑𝑖 =  {𝑥1, 𝑥2, … , 𝑥128 } from a 

normalized histogram of local gradients in a neighborhood of pixels for each point, 𝑝𝑖. 

𝑑𝑖 is formed from 4 × 4 array of histogram with eight orientation bins that resulted in 

128 element vectors to increase the rotation invariant properties. This means that the 

vectors are used to describe the local image regions of the feature points. 

 

Figure 5.2: Flowchart of the SIFT-Symmetry method 

To find the matching points, the SIFT descriptors are calculated and compared based 

on the distance of each features’ neighborhood. However, since the SIFT technique is 

not robust against reflection attacks, the reflected SIFT descriptors are distinct from the 

original SIFT descriptors, which may lead to the matching result failing. Therefore, to 

cover the reflection-based attacks in CMF, the SIFT features is modified by 

reorganizing the descriptor, 𝑑𝑖, to form a new set of mirror-SIFT descriptors, 𝑑𝑗 (X. 

Guo & Cao, 2012). By assuming that the given image was flipped at the axis that has 

been aligned with the dominant orientation of each feature point, 𝑝𝑖, the sequence of the 

elements in the SIFT descriptor, 𝑑𝑖, is reordered, and a new mirror SIFT descriptor, 𝑑𝑗, 
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is formed. The example of the descriptor reorganization is presented in Figure 5.3. 

Furthermore, as the main factor of matching results failure is the descriptor, the mirror 

point, 𝑝𝑗, is expected to be similar to the location of SIFT point, 𝑝𝑖. The illustration of 

the whole process of mirror-SIFT is shown in Figure 5.4. 

𝑑𝑖  = 1 2 3 ABCDEFGH 5 6 . . . 15 16 
 

𝑑𝑗  = 13 14 15 . . . . 1 2 3 AHGFEDCB 
 

Figure 5.3: Example of reorganization between SIFT descriptor, 𝒅𝒊 and mirror-

SIFT descriptor, 𝒅𝒋 

 

Figure 5.4: Illustration of the whole reorganization between SIFT point, 𝒑𝒋 and 

mirror-SIFT point, 𝒑𝒋 

5.2.2 Keypoint Matching 

In the second phase, both points and descriptors from the feature extraction phase 

were calculated to remove their distinctive point. Meanwhile, identical points were 

classified and matched to each other to discover the duplicated regions in the CMF 

image. It is a very challenging task to match the points in one image since the features 

are compared to similar identity, thus, will lead to high computational complexity. 

Therefore, the standard matching technique for SIFT features is enhanced with two 

techniques, namely g2NN and symmetry matching. As previously mentioned, the SIFT 
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features are paired with the g2NN matching for CMF with non-reflection attacks, while 

the mirror-SIFT is matched with the proposed symmetry matching technique to cover 

the CMF with reflection attack. For clarification, this phase is divided into two 

categories of matching which are g2NN and symmetry matching. 

5.2.2.1 g2NN 

The standard matching technique of SIFT (which is delivered by David Lowe 

(2004)) is 2NN, finds a ratio between the closest neighbor, 𝑑𝑠1 and the second-closest, 

𝑑𝑠2, before comparing the ratio with a predefined threshold, 
𝑑𝑠1

𝑑𝑠2
⁄ < 𝑇. Instead of 

comparing only two distances, g2NN, which is proposed by Amerini et al. (2011) 

iterated the procedure between 𝑑𝑠𝑖/𝑑𝑠𝑖+1 until the ratio is greater than the threshold, 

𝑑𝑠𝑖
𝑑𝑠𝑖+1

⁄ > 𝑇 (note: the threshold value is set to 0.5). The points are considered as a 

match if the corresponding distance in {𝑑𝑠𝑖,…., 𝑑𝑠𝑥} satisfies 1 ≤ 𝑥 < 𝑛, where 𝑥 is 

the value on which the procedure stops. This iteration is performed on all keypoints, 𝑝𝑖, 

which finally will produce a set of matched points. All matched points are retained for 

further evaluation, while the unwanted points are discarded. From the procedure, the 

number of matched points will lead to the better estimation of geometrical 

transformation and increases the ability to detect multiple similar features in a CMF 

image. 

Furthermore, due to the dissimilarity of SIFT descriptor between the original and 

reflection regions, the g2NN matching technique is unable to find any identical points. 

To protect against reflection attacks, a new threshold is predefined to convert the 

matching techniques from g2NN to symmetry. Symmetry techniques are initiated only 

if the g2NN detects less than five matched points. The value is set to at least five pairs 

because the value is the least amount that g2NN could match for the common CMF 
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attack. This is evidenced by the Figure 5.5 which shows the results of g2NN (non-

reflection and reflection) and symmetry (reflection). 

 

Figure 5.5: From left: examples of g2NN (non-reflection and reflection) and 

symmetry (reflection) results 

5.2.2.2 Symmetry Matching 

Symmetry is a consistent transformation which retained its component elements and 

remained unchanged as a whole (Hargittai & Hargittai, 2000). The transformation 

involved could be a translation, rotation, and reflection. As the CMF image should 

involve at least one transformation, this research made use of the symmetry properties 

to find the region’s transition. Nonetheless, owing to the reason that this research is 

dedicated to the CMF with reflection attacks, only reflection transformation in 

symmetry (known as bilateral symmetry) is considered. This section describes the steps 

involved in symmetry matching technique after the flow changed from g2NN to 

symmetry matching. 

Initially, the idea of the symmetry matching is started from Loy et al. (2006), which 

proposed a symmetry constellation features detection in an image. The authors grouped 

the feature points who underlie symmetry in an image. Instead of grouping the 

symmetry features, this research modified the technique to obtain symmetry points for 

clustering. The symmetry points are produced based on the dominant symmetry axis 
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generated by the Hough transform from the matching feature vectors of SIFT points, 𝑝𝑖, 

with mirror points, 𝑝𝑗 (consists of SIFT descriptor, 𝑑𝑖, and mirror SIFT descriptor, 𝑑𝑗). 

The steps are described comprehensively as the following and summarized in 

Algorithm 1. 

Algorithm 1: Symmetry matching procedure 

Input:  

𝑝 (A set comprising all keypoint pairs. Each pair is composed by a source point, 𝑝𝑖 and a mirror point, 𝑝𝑗)  

𝑆𝑇(percentage by which the scale can vary within a matched pair)  

𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (angular and radial tolerances for symmetry particles associated with the same 

symmetry axis)  

Output: 𝐴 (coordinate of the left and right associations with the symmetry axis) 

for each pair, 𝑝 do  

Calculate the correspondence scale weighting, 𝑆𝑖𝑗 relative to 𝑝; 

if 𝑆𝑖𝑗 < 𝑆𝑇 then  

Create a new group of matching points, 𝑀 (a set of index values for 𝑝 that match with the scale) 

end if 

for each index, 𝑀 ∈ 𝑝 do 

Calculate the phase weighting, 𝜌𝑖𝑗 relative to 𝑝; 

if 𝜌𝑖𝑗 > 0 then 

Create a new group of matching points, 𝜌 (a set of pairs based on phase weighting)  

end if 

for each value, 𝜌 do 

Calculate the mean for each coordinate 𝑥 and 𝑦 relative to 𝑝; 

Create a new group of matching points, 𝐻 (a set of mean coordinates 𝑝 with angles, 𝜃𝑖𝑗  and 

symmetry magnitudes, 𝑀𝑖𝑗) 

for each value, 𝐻 do 

Cast a vote in Hough space, (𝑟𝑖𝑗,𝜃𝑖𝑗) weighted by 𝑀𝑖𝑗 to determine the dominant symmetry 

axis 

Create a new group of dominant symmetry axis, 𝐷 (a set of maximum 𝑟𝑖𝑗 and maximum 𝜃𝑖𝑗) 

for each value, 𝐷 do 

  if 𝐷 < 𝑔𝑟𝑜𝑢𝑝𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then 

  Create a new group of symmetry points, 𝐴 (a set of left and right associated with 𝐷) 

end if 

end for 

end for 

end for 

end for 

end for 

return 𝐴. 

Firstly, the SIFT features, 𝑝𝑖 are paired with the mirror-SIFT features, 𝑝𝑗. To 

measure a relative similarity in scale, the pairs are filtered per a scale weighting, 𝑆𝑖𝑗 as 

computed in Equation (5.1) where the parameter, 𝑆𝑇 is a defined percentage to control 

the variety of scales. Next, phase weighting, 𝜌𝑖𝑗 from the Generalized Symmetry 

Transform (computed in Equation (5.2)) is adapted as an angular symmetry constraint. 

The value of the ∅𝑖, ∅𝑗, and 𝜃𝑖𝑗, is calculated based on the angles of SIFT point, ∅𝑖, 
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mirror point, ∅𝑗, and the angles that determine the orientation of the line joining the 

pairs, 𝜃𝑖𝑗, presented in Figure 5.6. 

𝑆𝑖𝑗  = exp (
− |𝑠𝑖 − 𝑠𝑗|

𝜎𝑠(𝑠𝑖 +  𝑠𝑗)
) < 𝑆𝑇  

(5.1) 

Where 𝑠𝑖 =  𝑝𝑖, 𝑠𝑗 =  𝑝𝑗, 𝜎𝑠 = 1 and 𝑆𝑇 ∈  [0, 1]  

𝜌𝑖𝑗  =  1 − cos (∅𝑖 + ∅𝑗 − 2𝜃𝑖𝑗) (5.2) 

 

Figure 5.6: The angles used in Equation 5.2 between each pair 

In order to extract the dominant symmetry axis between each pair, the symmetry 

magnitude, 𝑀𝑖𝑗 is calculated as in Equation (5.3). The magnitude is comprised of the 

combination of scale weighting, 𝑆𝑖𝑗 and phase weighting, 𝜌𝑖𝑗 as long as the phase 

weighting, 𝜌𝑖𝑗 is greater than 0. 

𝑀𝑖𝑗  =  {
𝑆𝑖𝑗𝜌𝑖𝑗  𝑖𝑓 𝜌𝑖𝑗 > 0

  0      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

(5.3) 

Each pair, (𝑝𝑖, 𝑝𝑗), weighted by its symmetry magnitude, casts a vote (𝑟𝑖𝑗,𝜃𝑖𝑗) in 

Hough space. 𝑟𝑖𝑗 is computed as in Equation (5.4) where (𝑥𝑐, 𝑦𝑐) is the center 

coordinates of midpoint between the line joining 𝑝𝑖 and 𝑝𝑗, while 𝜃𝑖𝑗 is the angle that 

this line subtends with the x-axis, similar to Figure 5.6. 

𝑟𝑖𝑗  =  𝑥𝑐 cos 𝜃𝑖𝑗 +  𝑦𝑐 sin 𝜃𝑖𝑗  (5.4) 
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The dominant symmetry axis is described by the maxima generated in the Hough 

space that is blurred with a Gaussian. Points located close to these maxima represent the 

symmetric pairs that are associated with this axis of symmetry. Meanwhile, the angular 

and radial tolerances are specified for points associated with the same symmetry axis to 

obtain the left and right identical points. The illustration of the symmetry matching is 

presented in Figure 5.7(a), while the real result is shown in Figure 5.7(b). 

 

(a) 

 

(b) 

Figure 5.7: (a) Illustration and (b) real result of dominant symmetry axis 

creation in Hough space 

It should be noted that symmetry matching would face several challenges. Owing to 

the reason that nature environments often is recognized as symmetry, symmetry is 

sometimes defined as a kind of accident of geometry (Stewart & Golubitsky, 2010). 

From the definition, the authors are aware that there are several images in the nature 

that are occasionally symmetry by coincidence. This is evidenced by the butterfly 

behavior, in which the body is acting as the symmetry axis, while the patterns of the 

wing is sometimes reflected.  

Logically, two different objects should have a unique feature in most of the natural 

behavior cases, as there is no transformation involved. For instance, although human 

face is expected to be symmetry, it is actually nearly symmetrical (Hoffman, 2003), in 

which the eyes, lips, and everything else are not reflective of each other. This is also 

agreed by Funk & Liu (2017) which mentioned that the growth of plants, insects and 
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mammals with perfectly symmetrical objects and scenes are rare while approximate 

symmetries are readily observable in both natural and man-made worlds.  

Another example is the effect of shadow in an object. The reflection object will show 

different features due to the combination of shadows’ plane and object resulted with 

diverse features. Fortunately, this shadow effect should not be a problem since there are 

various algorithms related to shadow detection (Nguyen et al., 2017). These three 

examples have led to the failure of recognizing an original image, by means, if the 

image is symmetry in nature; the symmetry matching could wrongly detect the image as 

forged. Therefore, in view of the fact that there are several characters in symmetry, a 

behavior analysis should be conducted to produce basic principles of symmetry for each 

science area (e.g. animal, human, and physics behavior) (Jackson Marr, 2006). Figure 

5.8 shows the example result of symmetry matching in a butterfly, and the asymmetry 

in a human face, and a shadow. Nonetheless, this is a very well-known open issue in 

symmetry-related scientific literature. 

 

Figure 5.8: From top: example of symmetry in butterfly, and asymmetry in 

human face and shadow 
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5.2.3 Clustering and Forgery Detection 

Finally, the results of the matching points, either by g2NN or symmetry matching are 

verified in this phase. Since the matching points generated may be scattered, thus, 

making it difficult to localize the CMF region, a Hierarchical Agglomerative Clustering 

(Hastie, 2009) technique is applied. This technique is performed on the spatial location, 

(𝑥, 𝑦) of the associated points with several linkage parameters. Then, these processes 

iteratively find the closest pairs among the clusters and merge them into a single cluster, 

in which the parameters were tested and the results are presented in Section 5.3.1, to 

obtain the best threshold setting for forgery detection. The image will be considered as 

forged, if the condition of at least three pairs in one cluster is linked to another cluster. 

In order to identify the linking cluster, RANSAC is performed to estimate the 

geometrical transformation between each cluster. A standard method of data 

normalization for homography estimation is used by randomly selecting a set of three 

pairs of points from each cluster. Figure 5.9(a) presents the scattered result produced by 

the symmetry matching, in which blue points represent the left association of the 

symmetry axis and red points indicate the right association. After all, the final CMF 

detection results after the RANSAC process is depicted in Figure 5.9(b). For image-

level evaluation, the SIFT-Symmetry is verified with the clustered points. The pixel-

level, on the other hand, thick (dense) the points in the cluster for 10 pixels, while a 

morphology (dilation) process is performed to segment the points’ region. Univ
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(a)  

 

(b)  

Figure 5.9: (a) An example of the points scattered due to maxima creation, and 

(b) the final points after clustering to verify the detection result   

5.3 Experimental Results and Analysis 

The performance of the SIFT-Symmetry was analyzed through a comprehensive set 

of experiments using two datasets, NB-Casia and NBr-Casia. Firstly, a six-fold cross 

validation technique was applied to identify the best parameter setting for clustering and 

forgery detection phase. Then, the parameter was established for all experiments in this 

research. To validate the results, a standard metric (F-score) was applied for image-

level, pixel-level, and percentage of detection to compare with three existing CMF 

detection methods (Amerini et al. (2011), Cozzolino et al. for Zernike moments and 

FMT (2015), and Silva et al. (2015)). The overall performance were analyzed based on 

the CMF with geometrical transformation and post-processing attacks. The details of 

the experimental results and analysis are discussed in the following subsections. 

5.3.1 Parameters Setting 

As highlighted in Section 5.2.3, an image will be verified as forged, if the matching 

points satisfy the condition of at least three pairs in one cluster is linking to another 

cluster. For that reason, a suitable linkage and parameter setting should be performed to 

obtain the highest number of pairs among clusters. Six common linkages were tested, 

comprising centroid, average, ward, complete, median and weighted. To obtain the best 

combination of parameter and linkage, the six-fold cross validation technique was 
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executed. The cross validation technique was used to specify the number of training and 

testing involved, in which the higher number of folds will produce more accurate results 

compared to a single fold validation. The validation was performed on NB-Casia 

dataset and the combination (parameter and linkage) with the highest score was 

established for all experiments and comparisons. 

This section describes the procedures involved in the cross validation process. The 

validation process was performed on each parameter for each linkage. Firstly, 5/6 of the 

images in NB-Casia (510 images), which is a total of 425 images, were randomly 

selected and used as the training set. The best parameter for each linkage was used in 

the testing set with the remaining 1/6 of the images, which is a total of 85 images. Next, 

the experiment was repeated six times with different training and testing sets. Then, the 

training results were averaged and listed as in Table 5.1, while the average testing 

results were summarized in Table 5.2. 

Both tables show that the SIFT-Symmetry was effective in detecting CMF images by 

exceeding 80% image score values for all parameters in each linkage. The complete 

linkage with parameter 2.2 was selected, since it produced the highest score in the 

validation process. The combination of parameter and linkage was used in all 

experiments and the results are reported in the next section. 

Table 5.1: Average image score results of the training set for each linkage 

clustering method 

Linkage/ 

Parameters 
Centroid Average Ward Complete Median Weighted 

2.2 0.829 0.825 0.829 0.835 0.815 0.819 

2.0 0.823 0.829 0.822 0.812 0.817 0.818 

1.8 0.818 0.821 0.816 0.816 0.818 0.821 

1.6 0.821 0.815 0.805 0.811 0.827 0.815 

1.4 0.809 0.797 0.803 0.817 0.809 0.806 
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Table 5.2: Average image score results of the testing set for the best threshold 

parameter of each linkage clustering method 

Linkage Centroid Average Ward Complete Median Weighted 

Parameters 2.2 2.0 2.2 2.2 1.6 1.8 

Image 

Score 
0.830 0.829 0.830 0.835 0.827 0.821 

 

5.3.2 Analysis of Robustness against Geometrical Transformation Attacks 

In view of the fact that the existing CMF detection methods predominantly concern 

geometrical transformation attacks, an analysis and comparison should be performed to 

prove the results of the SIFT-Symmetry. This section presents the performance analysis 

of the SIFT-Symmetry in detecting CMF images with the combination of geometrical 

transformation attacks in the NB-Casia dataset. The complete linkage with parameter 

2.2 was employed to both SIFT-Symmetry and the Amerini et al.’s method. The images 

that is detected as forged will be evaluated at pixel-level, before further calculated its 

percentage of detection. 

Table 5.3 recorded the image score, pixel score, and percentage of both scores for 

each method in NB-Casia dataset. Remarkably, the SIFT-Symmetry achieved the 

highest image score and percentage of detection compared to other methods, however, 

the performances were dropped when measured by pixel. This situation is expected, as 

the previous analysis in the previous chapter has mentioned that the points’ detection in 

the keypoint features are not able to recognize their exact region. 

Since the SIFT-Symmetry has significant image score value, this research further 

analyzed the image-level performance for each method. Table 5.4 records the TP, FP, 

TN, and FN values that are used to calculate the image score for each method. The 

results from the table indicate that the SIFT-Symmetry was efficient in detecting CMF- 

translation with other transformation attacks, which are rotation, scale, and reflection, 
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even when these attacks were applied together in the same image. Nevertheless, the FP 

value was slightly higher than others because the original images may contain highly 

uniform feature representations especially with a symmetry axis. Alternatively, the 

Amerini et al.’s method may be employed to the original image to improve the 

detection since their FP value is much lower than the SIFT-Symmetry. 

Table 5.3: Image score, pixel score, and percentages of detection for each CMF 

detection method in NB-Casia Dataset 

Dataset/Method 

NB-Casia 

Image 

Score 

Pixel 

Score 

Percentage of 

Detection 

Amerini et al. (2011) 0.814 0.549 0.447 

Cozzolino et al. (2015)---ZM 0.654 0.557 0.364 

Cozzolino et al. (2015)---FMT 0.745 0.634 0.472 

Silva et al. (2015) 0.667 0.548 0.365 

SIFT-Symmetry 0.835 0.581 0.485 

Among all state-of-the-art methods, the Silva et al.’s method shows the highest FP 

value, which means that the detections actually contain several false matching pixels, 

though their score is higher than the Cozzolino et al.’s method with Zernike moments 

features. In regards to the lowest FP value, the method of Cozzolino et al.’s is able to 

reduce the false matching regions, despite their difficulty in recognizing CMF with 

small regions. 

Table 5.4: The comparison of image score with TP, FP, TN and FN values for 

each CMF detection method using the NB-Casia dataset 

The results are further divided according to the five groups of geometrical 

transformation attacks to see the effectiveness on such attacks. For image score, the 

performances were calculated by averaging the results of 15 original images with its 15 

Method TP FP TN FN F-score 

Amerini et al. (2011) 215 9 246 40 0.814 

Cozzolino et al. (2015)---ZM 168 2 253 87 0.654 

Cozzolino et al. (2015)---FMT 195 7 248 60 0.745 

Silva et al. (2015) 190 30 225 65 0.667 

SIFT-Symmetry 232 23 232 23 0.835 
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CMF images for each parameter in each group of attacks. Meanwhile, the detection 

locations in the CMF image are compared with the exact location to obtain the pixel 

score value. Both image and pixel scores are multiplied to obtain the percentages of 

detection. 

Figure 5.10 presents the image score, pixel score, and percentage of detection for all 

CMF detection methods in each group of attacks. It is noted that because the SIFT-

Symmetry is a modification of Amerini et al.’s method (which combined the mirror-

SIFT and symmetry matching technique), the pixel performance of the SIFT-Symmetry 

was slightly similar to Amerini et al.’s in terms of non-reflection attacks. For image 

score, on the other hand, the performance of the SIFT-Symmetry was diminished since 

the method might also misinterpret an original image (which has a symmetry axis) as a 

CMF image. Despite that, although the score of the SIFT-Symmetry was lower than the 

Amerini et al.’s, the method outperformed other methods for all groups of attacks by 

exceeding the minimum value of 90% image score, except for a mix of attacks which 

obtained 70% of image score. This is because the performance of the SIFT-Symmetry 

dropped whenever a higher parameter of scale and rotation degree are involved. In spite 

of the limitation, the SIFT-Symmetry showed the highest performance for simple 

reflection with 94% of image score compared to all state-of-the-art methods. 
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Figure 5.10: Comparative results between SIFT-Symmetry and the Existing 

CMF Detection methods for each group of geometrical transformation attacks 
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5.3.2.1 Analysis of Robustness against Reflection Attacks 

Based on the analysis in the previous section, the SIFT-Symmetry showed the 

highest achievement (in image score) upon dealing with reflection attack in CMF 

compared to other methods. Therefore, the method was explored and examined on the 

reflection-based CMF image. Due to the shortage of reflection-based CMF image 

datasets, a new dataset, called NBr-Casia, particularly for reflection-based CMF images 

was created. Table 5.5 lists the image score, pixel score and percentage of detection for 

all state-of-the-art methods using NBr-Casia dataset. According to the table, the SIFT-

Symmetry achieved the highest score for image-level. Due to the reason that only a few 

points were detected as symmetry, the pixel performance was dropped. This is shown in 

Figure 5.11, in which the few symmetry points were not able to detect the exact regions, 

resulting in a low recall rate. Regardless of the disadvantage on pixel-level 

performance, the clustering-based in image-level performance is enough to show the 

manipulated regions in the image. 

Table 5.5: Image score, pixel score, and percentages of detection for each CMF 

detection method in NBr-Casia Dataset 

Dataset/Method 

NBr-Casia 

Image 

Score 

Pixel 

Score 

Percentage 

of Detection 

Amerini et al. (2011) 0.004 0.003 0.000 

Cozzolino et al. (2015)---ZM 0.593 0.491 0.291 

Cozzolino et al. (2015)---FMT 0.496 0.325 0.161 

Silva et al. (2015) 0.226 0.010 0.002 

SIFT-Symmetry 0.698 0.214 0.149 

 

Table 5.6 shows the image score with TP, FP, TN, and FN values for each method 

using NBr-CASIA dataset. From the table, the SIFT-Symmetry outperformed other 

methods while the Amerini et al.’s method reported the lowest F-score value. The 

Amerini et al.’s, on the other hand, could detect only one image out of 240 reflection-

based CMF images, due to the reason that the SIFT features are not reflection invariant.  
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 Simple Reflection   

 
Reflection with Scale 

 

  

Reflection with Rotation 

 

 

 Combination of Reflection 

 

Figure 5.11: Examples of CMF image (left), and the detection results of SIFT-

Symmetry for image-level (middle) and pixel-level (right) in four groups in NBr- 

CASIA. From top: simple reflection, reflection with scale, reflection with rotation 

and combination of reflection 

In addition, the g2NN matching technique was not established to protect against the 

attack. Similarly, the performance of the Silva et al.’s method also confirmed that they 

could not locate the exact position of the forged regions even when the images were 

detected as forged. Therefore, the Cozzolino et al.’s method presented the highest F-

score value among all state-of-the-art methods tested, but it was lower than the 
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performance of the SIFT-Symmetry in image level. Further performance analysis 

between the Cozzolino et al.’s and SIFT-Symmetry is discussed in the next section. 

Table 5.6: The comparison of image score with TP, FP, TN and FN values for 

each CMF detection method using the NBr-Casia dataset 

Method TP FP TN FN F-score 

Amerini et al. (2011) 1 7 233 239 0.004 

Cozzolino et al. (2015)—ZM 143 1 239 97 0.593 

Cozzolino et al. (2015)---FMT 120 2 238 120 0.496 

Silva et al. (2015) 61 30 210 179 0.226 

SIFT-Symmetry 183 22 218 57 0.698 

The overall performance of all scores (in each group) for the reflection-based CMF 

dataset (NBr-Casia) are illustrated in Figure 5.12. The figure shows that the SIFT-

Symmetry achieved the highest score for image-level in all groups of attacks, except for 

the reflection with rotation. The performance is able to maintain the results for 

reflection with scale and a combination of reflection with 78% and 75% of image score, 

respectively. Nevertheless, the score continuously decreased for reflection with rotation 

with a value of 58% image score. Meanwhile, the performance of the Cozzolino et al.’s 

methods were significantly reduced in detecting reflection with scale and combination 

of reflection, although they are able to maintain all scores for simple reflection and 

reflection with rotation. Further investigations were performed in the following 

paragraphs. 

Next, the image score for each group of attacks are analyzed based on parameters. 

For the reflection with scale, the copy-reflected regions were scaled between 0.6–1.6 

and applied in steps of 0.2 parameters. Figure 5.13(a) depicts the image score values for 

each parameter. The SIFT-Symmetry maintained a minimum score value of 81% for 

0.8, 1.2, and 1.4 factors, but the values were reduced for large scales up (1.6) or down 

(0.6). Fortunately, the percentage of the scale weighting (as in Equation 1) can be 

changed to improve the scale performance. 
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Figure 5.12: Overall performance of image score, pixel score, and percentages 

of detection results of each group for reflection-based CMF (NBr-CASIA) dataset 

For the Cozzolino et al.’s method, the Zernike moments was higher than FMT in all 

reflection combinations since the Zernike moments is reflection invariant. Nevertheless, 

the results of the Cozzolino et al.’s method with Zernike moments features only had a 

steady performance for a scale-up (1.2), while the performance consistently reduces for 

the other scales. Despite a weak performance for the reflection with scale group, they 

showed specific achievement by maintaining an 80% score value for reflection with 

rotation, as shown in Figure 5.13(b). The results confirmed that their method worked 

well with all degrees of rotation while the SIFT-Symmetry was limited to only small 

degrees of rotation with reflection. The SIFT-Symmetry had difficulties to find the 

symmetry axis due to the large change in position in the event rotation occurred after 

reflection. This is the reason for the low performance in the combination of reflection 

with other attacks. The results were decreased if the combination of large scales and 

large degrees of rotation is applied, as depicted in Figure 5.13(c). However, the results 

may be improved if rotation symmetry implementation is developed. Overall, the SIFT-
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Symmetry provided almost perfect detection in all cases of reflection, except for high 

degrees of reflection with rotation. 

 

(a) 

 

(b) 
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(c) 

Figure 5.13: Image score values for the Amerini et al., Silva et al., Cozzolino et 

al., and SIFT-Symmetry for (a) reflection with scale, (b) reflection with rotation, 

and (c) combination of reflection 

5.3.3 Analysis of Robustness against Post-Processing Attacks 

As the post-processing attacks normally occurred after the geometrical 

transformation attacks, this research continuously analyzed the image-level 

performance against such attacks. Two sets of experiments were implemented to 

examine the robustness against JPEG compression and Gaussian noise addition, 

respectively. For the experiments, all images in NBr-CASIA dataset were distorted by 

JPEG compression and Gaussian noise with four different parameters. In the first 

experiment, the images were compressed with various JPEG quality factors ranging 

between 80–20. Meanwhile, for the second experiment, four variances of Gaussian 

noise ranging between 0.01–0.04 were added to the images. The results were not only 

compared with other state-of-the-art methods, but also with the results obtained without 

distortion in Section 5.3.2.1. 

Figure 5.14 illustrates the image score values for the two experiments of post-

processing attacks. For compression attack, Figure 5.14(a) shows the overall 
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performance of the CMF detection methods for each factor. Although the performance 

of the SIFT-Symmetry was decreased especially for the low quality factor, the method 

was able to maintain the highest score with minimum value of 63% score for each 

factor. Subsequently, the performance of all state-of-the-art methods continuously 

decreased for Gaussian noise addition. Figure 5.14(b) illustrates the image score values 

for all state-of-the-art methods against Gaussian noise addition. In the figure, the results 

show that all scores tended to decrease when the variance of Gaussian noise was 

increased. 
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(b) 

Figure 5.14: Image score values of the Amerini et al., Silva et al., Cozzolino et 

al., and SIFT-Symmetry against (a) JPEG compression (b) Gaussian noise 

addition in NBr-CASIA dataset 

5.4 Discussion 

Based on the performance analysis I in the previous chapter, the existing CMF 

detection methods have limitations when dealing with CMF with reflection attacks. In 

view of the fact that the keypoint-based CMF detection method has promising results 

against common geometrical transformation CMF attacks, which are translation, scale, 

and rotation, this research attempts to include symmetry matching technique to enhance 

the method for reflection-based CMF image. In particular, an improved CMF detection 

method, namely SIFT-Symmetry has been proposed in this research. Basically, it is a 

combination of keypoint-based CMF detection method with symmetry matching 

technique. The results showed that the SIFT-Symmetry obtained the highest image 

score, and percentage of detection in NB-Casia dataset. Even though the performance 

was diminished for non-reflection attacks compared to the Amerini et al.’s, the 

performance of the simple reflection attacks was able to outperform the Amerini et al.’s 

method. For the reflection-based CMF attacks in NBr-Casia dataset, the SIFT-

Symmetry presents the highest image score compared to other state-of-the-art methods. 
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Furthermore, due to the reason that both SIFT-Symmetry and the Amerini et al.’s 

methods have low recall rate of pixel score, the performances were further analyzed 

based on image-level only. 

Despite the good performance of both datasets, the SIFT-Symmetry has a limitation 

to differentiate the original image and CMF image because an original image sometimes 

has symmetry by chance. This was the reason for 22–23 value of the false-positive 

results acquired in the experiments, hence, further behavior analysis may be needed. In 

addition, the results of the Amerini et al.’s also confirmed that the SIFT technique also 

has misdetection rate which is caused by the similarity between two or more natural 

properties in the same image. An example of such detection is two original bottles with 

similar properties in an image that are detected as forged even when they are not 

tampered. Therefore, human interpretation may be required to differentiate a region as 

natural or forged. 

Regardless of the disadvantages, the SIFT-Symmetry presents the most promising 

results in reflection-based CMF images, higher than the other three state-of-the-art 

methods. The results show that the method outperforms existing methods by exceeding 

a minimum value of 75% image score values for almost all cases of reflection-based 

CMF attacks, including simple reflection, reflection with scale, and mix of reflection. 

However, the performance for reflection with rotation dropped with an average score of 

58%. The reason for the score reduction in reflection with rotation is because the 

method is unable to extract any symmetry axis when rotation was applied after 

reflection (large change in position). Remarkably, the results were still applicable for 

small degrees of rotation with reflection. Finally, as image manipulation may have 

occurred due to the low quality of images, the SIFT-Symmetry was able to detect CMF 
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images with only 5% reduction in score from without distortion values, even with low 

quality compression. 

5.5 Chapter Summary 

This chapter discusses a contribution that presents a method in detecting CMF with 

reflection attacks by utilizing the symmetry detection as a matching technique. 

Experiments performed in this research have demonstrated that the existing CMF 

detection methods have limitations in detecting reflection-based CMF images; hence, 

the utilization of the symmetry matching technique has altogether enhanced the 

detection performance, especially for the image-level evaluation. 
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CHAPTER 6: METHOD II CMF-ITEMS 

In this chapter, a method named with CMF-iteMS that proposed an iterative means 

of region size is presented. The experimental and comparison results are discussed and 

explained. The key contribution of this chapter is the introduction of the new automatic 

threshold selection based on iterative means of region size (called as iteMS), in the final 

verification of CMF detection. Since the detection method proposed by Cozzolino et al. 

(2015) provides the highest detection performance for CMF with various attacks, the 

predefined thresholds assigned at the final verification process is replaced by the iteMS 

procedure to obtain better results for both image and pixel-level evaluations. 

This chapter is divided into five main parts: the introduction of the method is briefly 

described in the first section (Section 6.1). Then, the design of the CMF-iteMS (with its 

flowchart) is presented in the second section (Section 6.2). Each phase in the flowchart 

is explained in the section. In the third section (Section 6.3), the experimental results 

and analysis are discussed, whereas the final discussion is drawn in the fourth section 

(Section 6.4). Lastly, all sections are summarized in the Section 6.5 (chapter summary). 

6.1 Introduction 

The performance analysis in Chapter 4 verified that the existing block-based 

approach has limitation on the threshold selection. As a result, the Cozzolino et al.’s 

method was not able to detect any CMF regions with small resolution images, even 

though they performed well in various CMF attacks, including reflection. In the 

method, they assigned at least four thresholds in the final verification process, including 

median filtering, thresholding, size, and distance. For that reason, the predefined 

thresholds require several efforts and become challenging for various input images. 
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Threshold refers to the least value of a parameter or variable that will produce an 

identified effect (Threshold, 2009). It is a quantitative value that is used to set the limit 

of desired result. In CMF detection, threshold is used in various stages, either in feature 

extraction, matching, or visualization. Even though both stages, feature extraction and 

matching have their own threshold selection, the CMF detection demands another 

threshold, particularly to verify the matching results. To be specific, the threshold is 

assigned due to the reason that several noise and irrelevant information are normally 

preserved by the matching technique. Therefore, by setting the limit of the matching 

features, the detection performance produces an accurate result with the exact forged 

location. Moreover, the spurious matching features will also reduce, thus, this has led to 

better original image detection. 

Unfortunately, due to the reason that many thresholds need to be defined, the values 

are often specific to a static value. The current practice of the threshold selection is by 

manually assigning a value which is obtained through several experiments and 

observations. This is a very challenging task, especially when various image types, 

qualities, sizes and related attacks are considered in the data collection. Figure 6.1 

shows the example of detection results based on the static threshold value. From the 

figure, the top image should be assigned with threshold 100–400 pixels, while threshold 

400–1200 is suitable with the bottom image. A wrong specified threshold value will 

lead to the reduction in the method’s performance. Furthermore, as the CMF detection 

methods are aimed to blindly detect an image in forensics, a dynamic threshold value 

becomes a prerequisite to deal with homogeneous image data. 
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Figure 6.1: Detection results with various predefined thresholds for various 

types of CMF image 

To automate the threshold selection for each input image, this research introduced an 

iterative means of region size (named as iteMS) procedure for the methods. The iteMS 

procedure works by iteratively calculating the means of the preserved regions (that is 

produced by the matching technique) into the smallest value. In addition, as the 

previous analysis has discussed the advantages of the Zernike moments and FMT 

features in the Cozzolino et al.’s method, this research continuously explores the 

features together with another two, including Steerable filter and Dense SIFT. Four 

conventional thresholding techniques based on iterative means, class variance, and 

maximum entropy are also studied to compare with the thresholding fitting error. Based 

on the investigation, the combination of the Zernike moments, thresholding fitting error, 

and iteMS procedure with limit value 325 pixels are selected as the final design of 

CMF-iteMS method. The method should be able to detect CMF with any combination 

of attacks without the need to predefine a threshold value for various inputs of CMF 

images. The results of the method are compared with the existing CMF detection 

methods while the performance are discussed thoroughly. 

6.2 CMF-iteMS  

Basically, the goal of the CMF-iteMS is to enhance the block-based CMF detection 

method by automatically selecting a threshold value for final verification process. The 

block-based CMF detection method (Cozzolino et al., 2015) is selected, since it 
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provides stability and good performance in various possible attacks, particularly 

translation, scale, rotation, reflection and a mix of the attacks. In spite of its good 

performance, the method is sensitive to various illumination changes and scale attacks. 

Furthermore, the threshold value is fixedly defined, specifically for their dataset. Thus, 

the threshold is occasionally unsuitable to other datasets and in turn, leads to reduction 

in performance.  

In the new design of CMF-iteMS, four feature extraction techniques are investigated, 

including Zernike moments (Teague, 1980), FMT (Sheng & Arsenault, 1986), Steerable 

filter (Freeman & Adelson, 1991), and Dense SIFT to obtain the most invariant features. 

Then, the existing PatchMatch CMF detection design is modified by exploring 

conventional thresholding techniques and introducing a new automatic threshold 

selection technique based on iterative means of regions size (iteMS). This is to replace 

the predefined threshold selection in most of the CMF detection methods. The flowchart 

of the whole design of the proposed method is illustrated in Figure 6.2 where the blue 

color represents its unique characteristics. The details are divided into five phases, 

specifically (i) feature extraction, (ii) PatchMatch, (iii) thresholding (iv) automatic 

threshold selection, and (v) mathematical morphology (MM).  

The feature extraction techniques investigated are explained in the first phase. Then, 

the techniques are adapted and combined with PatchMatch CMF detection method 

(Cozzolino et al., 2015). Next, the results of the matching patch are applied with four 

conventional thresholding techniques, particularly iterative means, class-variance, 

maximum entropy I and II of intensity together with thresholding fitting error to study 

their efficiency. To remove the small unrelated features, the thresholding results are 

further refined and filtered by a new automatic threshold selection technique based on 

iteMS procedure, which is introduced in the fourth phase. The flow ends with the final 
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verification of forgery localization in the fifth phase by segmenting the remaining 

regions using a MM operation. The explanations of the five phases are covered in the 

following subsections.   

 

Figure 6.2: Flowchart of the CMF-iteMS method 

6.2.1 Feature Extraction 

In the first phase, the sensitivities of four feature extraction techniques towards 

various attacks in CMF are studied. The most invariant features are then included in the 

design of the CMF-iteMS. According to Chora (2007), feature extraction is a process to 

select relevant information that represents the characteristics of interest in the image. 

Each feature extraction technique has its own specifications to determine the interest in 

an image. These specifications describe the performance either as advantages or 

limitations when it deals with CMF and its combination attacks. In this section, Zernike 

moments is firstly discussed. Then, other three feature extraction techniques are 

included to observe the effects in detecting CMF images. 

(a)  Zernike Moments 

Firstly, the input image, (𝑟 × 𝑐) is divided into a predefined patch size, 𝑆𝑍𝑧 which is 

16 × 16 as computed in Equation (6.1). 
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𝑆𝑍𝑧 (𝑢, 𝑣)  =  (
𝑟

16
,

𝑐

16
) 

(6.1) 

Then, each patch size, 𝑆𝑍𝑧 is transformed to a polar coordinate, where 

𝐼 (𝑢, 𝑣) represents 𝐼 (𝜌, 𝜃), which the 𝜌 𝜖 [0, ∞] while 𝜃 𝜖 [0,2𝜋]. A polar sampling 

procedure is employed by resampling the basic functions, 𝐾𝑛,𝑚(𝜌, 𝜃) at the grid 

points (𝑥, 𝑦) of the analysis patch, 𝑊. With the use of multiple sampling steps, ∆𝜃, the 

procedure provides a rotation invariants performance with a good estimation of it in all 

other cases. The basic function, 𝐾𝑛,𝑚(𝜌, 𝜃), is the product of radial profile (which is 

Zernike) and a circular harmonic as in Equation (6.2). 

𝐾𝑛,𝑚(𝜌, 𝜃) =  𝑅𝑛,𝑚(𝜌) (6.2) 

Zernike radial function, 𝑅𝑛,𝑚(𝜌) is computed based on polar sampling procedure 

with a finite number of (𝑛, 𝑚) couples as computed in Equation (6.3) and (6.4), 

respectively. 

𝑅𝑛,𝑚(𝜌) =  ∑ 𝐶𝑛,𝑚,ℎ𝜌𝑛−2ℎ

𝑛−|𝑚|
2

ℎ=0

 

 

(6.3) 

∑ = 5

(𝑛−|𝑚|)/2

ℎ=0

 

(6.4) 

where 𝜌 ∈ [0, 1] and 𝐶𝑛,𝑚,ℎ is the coefficients that ensure orthonormality of the 

basic functions. 𝑊 represents the number of sampling along radius and angles in polar 

grid, 𝜌 ≤ 8, which the radius equal to 26 and the angles equal to 32. 

Lastly, with the length of 12, Zernike polar function, 𝑓(𝑧) resulting the feature 

vector, 𝑢 × 𝑣 × 12 for the whole image, (𝑟 × 𝑐). To sum, 𝑓(𝑧) basically is the 

collection of magnitudes of each coefficient, 𝐹𝐼
′(𝑛, 𝑚) in polar coordinates (referring to 

Equation (6.5). 
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𝐹𝐼
′(𝑛, 𝑚) =  ∑ 𝐼(𝑥, 𝑦)𝐾𝑛,𝑚

∗ (𝜌(𝑥, 𝑦), 𝜃(𝑥, 𝑦))

(𝑥,𝑦)∈𝑊

 

with 𝜌(𝑥, 𝑦) = √𝑥2  + 𝑦2 and 𝜃(𝑥, 𝑦) = ±𝑎𝑟𝑐𝑡𝑎𝑛(𝑦/𝑥) 

(6.5) 

In view of the fact that common CMF image is comprised of simple translation with 

a combination of geometrical transformation and post-processing attacks, a feature 

extraction technique used in the design should be robust to the attacks. Turning to 

accuracy, the whole CMF-iteMS will be less effective if the feature extraction used is 

variant to various types of attacks. Since many image types are available, the suitable 

features may be needed to cater different images. For example, Zernike moments has 

limitations in detecting CMF with numerous luminance changes in an image. Hence, 

three different types of feature extraction are studied to be adapted with the PatchMatch 

method, namely FMT, Steerable Filter (StF) and Dense SIFT (DS). The parameters 

used in the features are listed in Table 6.1 and the usage is described in the next section. 

Table 6.1: Parameter used for FMT, StF and DS features 

Parameter Value Definition 

𝑺𝒁𝑭𝑴𝑻 24×24 Patches of 24×24 are used with features of FMT, |𝑓|𝐹𝑀𝑇 

|𝒇|𝑭𝑴𝑻 25 Length of FMT features 

𝑺𝒁𝑺𝒕𝑭 12×12 Patches of 12×12 are used with features of Steerable filters, 

|𝑓|𝑆𝑡𝐹 

|𝒇|𝑺𝒕𝑭 19 Length of Steerable filters features 

𝑺𝒁𝑫𝑺 12×12 Patches of 12×12 are used with features of dense SIFT, |𝑓|𝐷𝑆 

|𝒇|𝑫𝑺 128 Length of dense SIFT features 

(b) FMT 

Primarily, the development of the CMF-iteMS is focused on the limitations of the 

Zernike moments. Although Zernike moments is known to be rotation invariant, 

however, the feature is sensitive to scale and illumination changes (Kim & In-So, 2002). 

Since the Mellin transform has the advantages on rotation, scale and illumination 

invariant (Carkir & Cetin, 2010), FMT (Sheng & Arsenault, 1986) is considered. 

Similar procedure of Zernike moments is applied by considering the polar sampling 
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procedure, 𝐹𝐼
′(𝑛, 𝑚) to resample the basic functions of FMT, 𝑓(𝑓). The 𝐾𝑛,𝑚(𝜌, 𝜃) 

represents the FMT radial function, while 𝑅𝑣(𝜌) is computed as in Equation (6.6) for 

each predefined patch, 𝑆𝑍𝐹𝑀𝑇. According to the equation, the values of (𝑛, 𝑚) couples 

differ with Zernike moments, thus, resulting in the difference of length of FMT feature, 

𝑓(𝑓). The length of the features and the patch size, 𝑆𝑍𝐹𝑀𝑇 applied in the CMF-iteMS 

are listed in the Table 6.1. 

𝑅𝑣(𝜌) =  
1

𝜌2
𝑒𝑗𝑣 log (𝜌) 

𝑣 =
2𝑛𝜋

𝑙𝑜𝑔
𝜌𝑚𝑎𝑥

𝜌𝑚𝑖𝑛

 

𝑛 = 0, ±1, ±2 

𝑚 = 0, 1, 2, 3, 4 

 

(6.6) 

(c) Steerable Filter (StF) 

Instead of using CHT family, comprising Zernike moments and FMT, the methods 

of steerable filters (Freeman & Adelson, 1991) that is commonly described as texture 

features is also adopted. The input image, (𝑟, 𝑐) is divided into a predefined patch size, 

𝑆𝑍𝑆𝑡𝐹  which is 12 × 12. Each patch size is applied with the circularly symmetric 

Gaussian function, 𝐺 which is written in Cartesian coordinates, 𝑥 and 𝑦 for 2-D 

distribution that only can be achieved by convolution. However, since an input image 

only has pixel values, the convolution process requires a discrete approximation to the 

Gaussian function. Therefore, a first derivative of Gaussian, 𝐺1
0° and the rotated 90° 

version, 𝐺1
90° is computed at an arbitrary orientation, 𝜃 which are synthesized by 𝐺1

𝜃. 

(note that: 𝜃 is a directional derivatives evenly-spaced from 0 degrees to 360 degrees in 

20° increments). Equation (6.7) summarized the basic calculation of the steerable filter 

with the length of 19 (also known as filter bank). 

𝐺(𝑥, 𝑦) = 𝑒−(𝑥2+𝑦2) (6.7) 
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𝐺1
0° =  

𝜕

𝜕𝑥
 𝑒−(𝑥2+𝑦2) =  −2𝑥𝑒−(𝑥2+𝑦2) 

𝐺1
90° =  

𝜕

𝜕𝑦
 𝑒−(𝑥2+𝑦2) =  −2𝑦𝑒−(𝑥2+𝑦2) 

𝐺1
𝜃 = cos(𝜃) 𝐺1

0° +  sin (𝜃)𝐺1
90°  

(d) Dense SIFT (DS) 

In order to be adapted with the PatchMatch method, the filter bank procedure is 

continuously explored with different types of features. By seeing the potential of SIFT 

feature extraction (Lowe, 1999) towards scale, rotation and illumination changes, this 

research modified the features in a filter bank form. Similar to Steerable filter, the input 

image is divided into a predefined patch, 𝑆𝑍𝐷𝑆 which is 12 × 12. The feature detection 

phases are discarded, while 128 descriptors are extracted on each predefined patch, 

𝑆𝑍𝐷𝑆. For each pixel, 𝑆𝑍𝐷𝑆 the neighborhood is divided into 4 × 4 array of histogram 

with 8 orientation bins which resulted in 128 elements vector. 

6.2.2 PatchMatch  

To find a match for each patch, the PatchMatch method are implemented in the 

second phase. Both zero-order and first-order predictors are employed as computed in 

Equation (6.8) for a set of candidates, 𝛿(𝑠), in Equation (6.9). Zero-order is useful for 

rigid translations while First-order predictors could help in detecting CMF image with 

scale and rotation.  

0𝑥(𝑠)𝛿
~    =  𝛿(𝑠𝑥  ) 

1𝑥(𝑠)𝛿
~ =  2𝛿(𝑠𝑥) − 𝛿(𝑠𝑥𝑥) 

 𝑥 ∈ {𝑟, 𝑑, 𝑐, 𝑎} 

(6.8) 

where 𝑠𝑥𝑥 is the pixel for 𝑠𝑥 along direction 𝑥 in the scanning order, 𝑑 and 𝑎, are the 

diagonal and antidiagonal directions, respectively. The whole set of predicted offsets is 

shown in Equation (6.10). 
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                                𝛿(𝑠) = arg min 𝐷( 𝑓 (𝑠), 𝑓 (𝑠 + 𝜑)) 

𝜑 ∈ ∆𝑃(𝑠) (6.9) 

where ∆𝑃(𝑠)  = {𝛿(𝑠), 𝛿(𝑠𝑟 ), 𝛿(𝑠𝑐)}, and 𝑠𝑟 and 𝑠𝑐 are the pixels for s, in the 

scanning order, along rows and columns, respectively. 

∆𝑃(𝑠) = {𝛿(𝑠), 0𝑟(𝑠),𝛿
~  0𝑑(𝑠),𝛿

~ 0𝑐(𝑠),𝛿
~ 0𝑎(𝑠),𝛿

~  1𝑟(𝑠),𝛿
~  1𝑑(𝑠),𝛿

~ 1𝑐(𝑠),𝛿
~ } (6.10) 

To sum, the PatchMatch will quickly propagate to the rest of the interested region 

whenever a correct offset field is found over a couple of neighboring pixels within two 

iterations.  

6.2.3 Thresholding 

Subsequently, the offset field produced by the PatchMatch algorithm might be 

scattered and cluttered because of the presence of noise, compression, illumination 

changes and uniform regions. For that reason, an affine transformation is applied to 

remove the outliers and thresholding with a new automatic threshold selection to single-

out the CMF regions. The affine transformations and thresholding techniques are 

explained in the next subsections, while the new automatic threshold selection are 

followed after this section.  

6.2.3.1 Thresholding Fitting Error 

Ideally, the existing CMF detection methods applied the RANSAC or SATS 

algorithm to estimate the affine transformation between the identical features. However, 

in view of the fact that the PatchMatch resulting adequate offset field, dense linear 

fitting is enough to fit in the offset. A suitable N-pixel neighborhood of the true offset 

field 𝛿(𝑠) is fitted through an affine transformation model, 𝐴 similar to Equation (6.11), 

to minimize the sum of squared errors in Equation (6.12). Moreover, by assuming that 

the homography is symmetry and unchanged, the results of the homogenous coordinates 

in 𝜀2(𝑠 ) (when assigning the circular radius neighborhood, 𝑠 as 6 pixels) is filtered for 

Univ
ers

ity
 of

 M
ala

ya



 

123 

several times in quadratic form to obtain two offset components. In spite of the 

simplicity of the fitting error, the errors are sensitive to outliers. Hence, median filtering 

is firstly applied to the matching patch, specifically to remove the outliers and 

inconsistency of noise in the image before generate the fitting error. The final detection 

results for the median filtering and dense linear fitting are shown in Figure 6.3. 

𝛿′(𝑠𝑖 )  =  𝐴𝑠𝑖  , 𝑖 =  1, . . . , 𝑁  (6.11) 

𝜀2(𝑠 ) =  ∑||𝛿(𝑠𝑖 ) − 𝛿′(𝑠𝑖 )||2

𝑁

𝑖=1

     
 

(6.12) 

 

Figure 6.3: Detection results (a) median filtering (b) dense linear fitting 

Based on the figure, the results of the dense linear fitting are able to generate two 

regions with several noise (denoted by black color). Thus, simple thresholding fitting 

error is performed by converting the pixels below 300 (RGB value with hue 60°) with 

black color, while the above pixels are changed to white color. Typically, thresholding 

techniques are designed to select a threshold value from the intensity of the pixels on 

the frontier between object and background. As a result, the output is a binary image 

where one part of the threshold will represent the foreground objects while the opposite 

part will relate to the background. 

6.2.3.2 Conventional Thresholding Techniques 

Instead of performing the simple thresholding fitting error, this research explores 

several conventional automatic gray-level thresholding techniques including iterative 
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means (Ridler, T.W. Calvard, 1978), class variance (Otsu, 1979), and maximum entropy 

(Kapur et al., 1980; Yen et al., 1995). The techniques work by assuming that the object 

and the background of the image are in unimodal gray distribution, where the gray 

value between neighboring pixels within the object or background is highly relevant. 

The four techniques are originally taken from several information theories in statistics, 

comprising probability distribution, means, variances, and maximum entropy that are 

implemented to the intensity of an image. The example results for each thresholding 

techniques are shown in Figure 6.4. 

 

Figure 6.4: The example results of each thresholding technique against CMF 

image 

Firstly, in order to generate the unimodal gray distribution between the object and 

the background, a histogram of the image is computed as two different probability 

distributions (𝑝𝑑) specifically for foreground, 𝑓 and background, 𝑏. One 𝑝𝑑 is defined 

for discrete values, 1 to 𝑠 and the other 𝑝𝑑 is for values from, 𝑠 + 1 to 𝑛. The two 

distributions are shown in Equation (6.13) and       (6.14), respectively. These equations 

represent the basis function of 𝑃 for the thresholding techniques based on iterative 

means, class variance and maximum entropy. 
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𝑓 =  
𝑃1

𝑃𝑠
 ,

𝑃2

𝑃𝑠
 , … … … … .

𝑃𝑠

𝑃𝑠
 

𝑃𝑓 =  ∑ 𝑃𝑖

𝑠

𝑖=1

 

(6.13) 

𝑏 =  
𝑃𝑠+1

1 − 𝑃𝑠
 ,

𝑃𝑠+2

1 − 𝑃𝑠
 , … … … … .

𝑃𝑛

1 − 𝑃𝑠
 

𝑃𝑏 =  ∑ 𝑃𝑖

𝑛

𝑖=𝑠+1

 

      (6.14) 

(a) Iterative means 

Referring to the 𝑝𝑑, this research adopted the technique by Ridler et al. (1978) who 

firstly introduced an iterative scheme procedure. The mean, 𝑚(𝑠) for 𝑓 and 𝑏, are 

calculated as in Equation (6.15). 

𝑚𝑓 (𝑠) =  ∑ 𝑖𝑃𝑖

𝑠

𝑖=1

 

𝑚𝑏 (𝑠) =  ∑ 𝑖𝑃𝑖

𝑛

𝑖=𝑠+1

 

(6.15) 

Then, the means value is calculated iteratively, 𝐼𝑡𝑒𝑟𝑚 using Equation (6.16). The 

procedure will stop when the threshold value, |𝑠𝑚 − 𝑠𝑚+1| become sufficiently small. 

The final 𝑠𝑚 value is assigned as the threshold. 

𝐼𝑡𝑒𝑟𝑚 =  lim
m→∞

(
𝑚𝑓 (𝑠𝑚) − 𝑚𝑏 (𝑠𝑚)

2
) 

(6.16) 

(b) Class variance 

The second thresholding technique investigated is class variance (Otsu, 1979). The 

author improved the iterative means by replacing the means value with the second-order 

statistics (variances) class. The inter-class variances, 𝜎𝑏
2(𝑠) is maximizing as in 

Equation (6.17). The optimal threshold value, 𝑠 is obtained by referring to 𝜎𝑚
2 (𝑠)1≤𝑠<𝑛

𝑚𝑎𝑥 . 

𝜎𝑏
2(𝑠) = {

𝑃𝑠 [1 − 𝑃𝑠 ][𝑚𝑓 (𝑠) − 𝑚𝑏 (𝑠)]2

𝑃𝑠𝜎𝑓
2(𝑠) + [1 − 𝑃𝑠]𝜎𝑏

2(𝑠)
} 

(6.17) 
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(c) Maximum Entropy 

Next, in view of the fact that the maximum entropy theory represents the most 

informative distribution that is acceptable by signal processing, this research explores 

the technique in thresholding. The maximum entropy technique based on probability 

distribution suggested by Kapur et al. (1980) is adapted to the dense linear fitting result. 

The sum of the two entropy probability distribution, 𝐻(𝑓) and 𝐻(𝑏) are calculated as 

𝜑𝑠 represents in Equation (6.18). 

𝜑𝑠 = 𝐻(𝑓) + 𝐻(𝑏) 

𝐻(𝑓) =  ∑
𝑃𝑖

𝑃𝑠
log

𝑃𝑖

𝑃𝑠

𝑠

𝑖=1

  

𝐻(𝑏) = − ∑
𝑃𝑖

1 − 𝑃𝑠
log

𝑃𝑖

1 − 𝑃𝑠

𝑛

𝑖=𝑠+1

 

(6.18) 

On the other hand, a technique by Yen et al. (1995) which is based on maximum 

entropy correlation is also implemented as the threshold value in this research. The 

probability distribution suggested by Kapur et al. is changed to correlation, where sum 

of the two entropy correlation, 𝐶(𝑓) and 𝐶(𝑏) are computed as 𝜑𝑠 in Equation    (6.19). 

𝜑𝑠 =  𝐶(𝑓) +  𝐶(𝑏) 

𝐶(𝑓) = −log {∑ [
𝑃𝑖

𝑃𝑠
]

2𝑠

𝑖=1

} 

𝐶(𝑏) =  − log { ∑ [
𝑃𝑖

1 − 𝑃𝑠
]

2𝑛

𝑖=𝑠+1

}  

   (6.19) 

Both techniques of maximum entropy assigned the maximum information of 𝜑𝑠 as 

the threshold value. 

6.2.4 Automatic Threshold Selection 

Referring to the Figure 6.4, the figure shows that the single thresholding techniques 

may not able to separate the CMF region and original region. The single thresholding 
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techniques would increase the misdetection and reduce the performance of CMF 

detection. Therefore, instead of determining single thresholding, an automatic threshold 

selection technique, which able to change the value based on the input images is 

proposed. Since most of the predefined threshold in CMF detection is typically based on 

the regions size, the conventional thresholding techniques based on iterative means is 

adopted by replacing the intensity value with the regions size. The regions size are 

obtained from the output of the thresholding techniques from previous subsection 

(Section 6.2.3). Due to the reason that each CMF image has different CMF regions, the 

proposed automatic threshold selection is able to automatically change the threshold 

value based on the input image. This section described the proposed automatic 

threshold selection technique based on iterative means of regions size (iteMS) 

procedure. 

6.2.4.1 Iterative Means of Regions’ Size. iteMS 

Since the thresholding techniques only able to read the information of intensity 

histogram, which do not help to discover the exact CMF region, the final results of the 

CMF detection will include the false match that is considered as a foreground object. 

Eventually, it will reduce the CMF performance by increasing the false positive value. 

Hence, a new automatic threshold selection technique based on iterative means (Ridler, 

T.W. Calvard, 1978) is proposed. However, instead of the intensity histogram, the 

region size has been chosen, thus, called as iterative means of regions size, iteMS. In 

the iteMS procedure, a flood-fill algorithm is applied to the connected-component in the 

binary image of the thresholding result (where the target color is zero), particularly to 

obtain the size of each region, 𝑟𝑎. The mean of all regions size, 𝑚𝑠, is calculated 

iteratively to find the ultimate threshold value, 𝑠𝑚. Similar to Ridler’s technique, the 

iteration will stop when the threshold value, |𝑠𝑚 − 𝑠𝑚+1| is equal or more than 1. The 

calculation is summarized in Equation (6.20).  
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𝑟𝑎 =  {𝑟1, 𝑟2, 𝑟3, … … 𝑟𝑠} 

𝑚𝑠 (𝑠) =  ∑ 𝑖𝑟𝑖

𝑠

𝑖=1

=  𝑠𝑚 

𝐼𝑡𝑒𝑟𝑚 =  lim
m→∞

(
𝑟𝑏𝑒𝑙𝑜𝑤 (𝑠𝑚) + 𝑟𝑎𝑏𝑜𝑣𝑒  (𝑠𝑚)

2
) 

 

(6.20)  

Although the iteMS procedure is feasible for all image resolutions, the detection is 

only effective for the CMF images (forged images), but not to the original images. In 

practice, the computed iterative means will calculate the average of all regions from the 

thresholding results in order to get some threshold value. Thus, it will only work if there 

is a major difference in size between the copied region and the background region. 

Contrarily, most of the original images will produce a small size of matched regions 

which is commonly caused by the uniform background in an image. The examples of 

the preserved size (after the iteMS procedure) between original and CMF images are 

shown in Figure 6.5. 

 

Figure 6.5: Two examples of the preserved region size (after iteMS is applied) 

for original images (left) and CMF images (right) 

Therefore, the threshold value obtained from the iteMS procedure is proposed to 

limit the value for original image. Each combination of the thresholding techniques with 
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the iteMS procedure will produce different limit threshold value, 𝐿𝑇. The procedure for 

the acquisition of 𝐿𝑇 value is described in the next subsection.  

6.2.4.2 Limit Threshold, 𝑳𝑻, for Original Image Detection 

To identify the limit threshold value, 𝐿𝑇, for the original images, the iteMS values of 

the original images are accumulated. From the accumulated value, mean, µ, and 

standard deviation, 𝑠, are calculated as in Equation (6.21).  

µ =  
∑ 𝑇𝑜

∑ 𝑜
 

𝑠 =  √
∑(𝑇𝑜 −  µ)2

∑ 𝑜 − 1
 

 

(6.21)  

where 𝑜 is the original images in an image-level dataset, and 𝑇𝑜 is the iteMS value of 

the original images. To fix the limit value, all images in the dataset are resized into two 

resolutions comprising 600 pixels and 2400 pixels. The mean and error, 𝑒, value for 

both resolutions are assigned as the potential iteMS limit, 𝐿𝑇, which computed in 

Equation (6.22).    

𝑒 =  µ + 1𝑠 

𝐿𝑇 =  {µ2400, µ600, 𝑚𝑒𝑑𝑖𝑎𝑛, 𝑒2400, 𝑒600, } 

(6.22)  

 Then, the methods allocated the values in the 𝐿𝑇 as the possible limit threshold 

value. If the iteMS value for the input image is less than the 𝐿𝑇 value, the images will 

be considered as an original image. The 𝐿𝑇 value with the highest F-score are used as 

the final iteMS limit value. Since the original images are supposed to be unknown, the 

limit value is obtained through GRIP dataset (Cozzolino et al., 2015). The dataset is 

selected because the images have a variety of types and features, which involves only 

simple translation attacks. Thus, the value will not be affected by other CMF attacks. 
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The whole process of the acquisition of limit threshold value, 𝐿𝑇, is illustrated in Figure 

6.6. 

 

Figure 6.6: The whole process of the acquisition of limit threshold, 𝑳𝑻, value 

6.2.5 Mathematical Morphology 

In the final phase of detection, MM is applied to finalize the shape of CMF regions 

and localized the forged areas. MM is a set of mathematical theory (based upon logical 

which is related to pixels and geometric feature extraction) applied to a shape or 

structure in the image for analysis. After the filtering process by the automatic threshold 

selection technique, a morphological dilation is applied with a circular structuring 

element of radius (equal to ten pixels) to the identified copied regions. Finally, the 

forgery detection is identified, if the number of copied region equals to at least one 

pixel. Figure 6.7 shows the results before morphology has taken and after the 

morphology process. 
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Figure 6.7: Detection results before (left) and after (right) the process of 

mathematical morphology 

6.3 Experimental Results and Analysis 

The performance of the CMF-iteMS was analyzed through several extensive sets of 

experiments using two datasets, NB-Casia and NBr-Casia. Firstly, several investigations 

on the four feature extraction and four conventional thresholding techniques were 

implemented to identify the best combination settings in the CMF-iteMS. Similar to the 

SIFT-Symmetry, the CMF-iteMS is compared with three related state-of-the-art 

methods (Amerini et al. (2011), Cozzolino et al. (2015) for Zernike moments and FMT, 

and Silva et al. (2015)) by using multiple F-score measure metrics (image, pixel and 

percentage of detection). Furthermore, the scores were also analyzed based on CMF 

with geometrical transformation and post-processing attacks. The details of the 

experimental results and analysis are discussed in the following subsections. 

6.3.1 Initial Evaluations 

In view of the fact that the existing block-based CMF detection method has 

limitations on feature extraction and threshold selection, this section aimed to verify the 

weaknesses and provide a solution to improve the methods. For that reason, the design 

of the CMF-iteMS involved three phases in this section. In the first phase, four feature 

extraction techniques were studied to analyze the most invariant technique, especially 

for reflection-based attacks. Then, the selected feature extraction technique was 

examined with five thresholding techniques that were combined with the proposed 
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iteMS procedure in the second phase. In the phase, the performances of each technique 

were analyzed and discussed, which the best combination of feature extraction and 

thresholding technique with the iteMS procedure will be selected as the ultimate design 

of CMF-iteMS in the third phase. This design was established for all experiments and 

comparisons with the existing CMF detection methods.  

6.3.1.1 Performance Evaluation Feature Extraction 

In the first experiment, four feature extraction techniques comprising Zernike 

moments, FMT, Steerable filter and Dense SIFT were assigned with two predefined 

thresholds. Table 6.2 lists the image score, pixel score and percentage of detection 

values for each feature extraction technique with each threshold. According to the table, 

the performance of all feature extraction techniques for both NB-Casia and NBr-Casia 

were increased when the value of 400 is employed compared to 1200. This is happened 

because the threshold of 1200 is efficient for images with resolution of 1000 pixels and 

above. Since the NB-Casia and NBr-Casia datasets have resolutions of below 1000 

pixels, a smaller threshold may be required for the datasets. 

To observe the performance of each feature extraction technique against various 

attacks in CMF, the NB-Casia dataset was divided into five groups of attacks, 

specifically simple translation, scale, rotation, simple reflection and mix of attacks, 

while the NBr-Casia is grouped under reflection-based attacks. Figure 6.8 presents the 

comparison results of the feature extraction techniques based on the percentage of 

detection for each group of attacks with threshold value 400. As can be seen from the 

figure, all feature extraction techniques achieved a minimum 76% of detection for 

simple translation attacks. However, the performance were decreased depending on the 

attacks and the capability of feature extraction techniques.  
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Table 6.2: F-score values for each feature extraction technique for two predefined 

thresholds tested on the NB-Casia and NBr-Casia datasets 

Predefined 

Threshold 
Dataset 

Zernike 

Moments 
FMT 

Steerable 

Filter 

Dense 

SIFT 

1200 

NB-

Casia 

Image Score 0.654 0.745 0.113 0.395 

Pixel Score 0.561 0.634 0.072 0.304 

Percentage 

of Detection 
0.367 0.472 0.008 0.120 

NBr-

Casia 

Image Score 0.593 0.496 0.000 0.004 

Pixel Score 0.491 0.325 0.000 0.004 

Percentage 

of Detection 
0.291 0.161 0.000 0.000 

400 

NB-

Casia 

Image Score 0.804 0.849 0.242 0.467 

Pixel Score 0.666 0.701 0.110 0.349 

Percentage 

of Detection 
0.535 0.595 0.027 0.163 

NBr-

Casia 

Image Score 0.756 0.614 0.050 0.027 

Pixel Score 0.592 0.402 0.000 0.005 

Percentage 

of Detection 
0.448 0.247 0.000 0.000 

Average 

Image Score 0.702 0.676 0.101 0.223 

Pixel Score 0.578 0.516 0.046 0.166 

Percentage 

of Detection 
0.405 0.348 0.005 0.037 

Regardless of the decrement performance, the score of Steerable Filter was 

significantly dropped when dealing with other attacks, even though the features perform 

well in simple translation attacks. Meanwhile, although Dense SIFT works well with 

scale attacks, the performance was also diminished for rotation and reflection attacks. 

Thus, Zernike moments and FMT were competing with each other in each group of 

attacks. Under this circumstance, the FMT is good in scale and illumination changes, 

while the Zernike moments is good in rotation and reflection attacks. Furthermore, due 

to the reason that FMT is also good in rotation, the performance on the mix of attacks 

group was higher than Zernike moments features. Both, Zernike moments and FMT 

features are considered in the next evaluation, to find the most invariant features against 

all groups of attacks. 
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Figure 6.8: Overall performance of feature extraction techniques (with predefined 

threshold = 400) for each group of attacks in NB-Casia and NBr-Casia datasets 

6.3.1.2 Performance Evaluation Thresholding and iteMS 

Secondly, five thresholding techniques including the thresholding fitting error, 

iterative means (Ridler, T.W. Calvard, 1978), class variance (Otsu, 1979), and 

maximum entropy (Kapur et al., 1980; Yen et al., 1995) were combined with the 

iterative means of region size (iteMS) to evaluate the efficiency towards CMF image 

and to further obtain the most effective techniques. A total of 20 designs of method 

(four feature extractions combined with five conventional thresholding techniques) 

together with the iteMS procedure were tested on similar datasets (NB-Casia and NBr-

Casia) that cover all possible attacks in CMF, including reflection. . The purpose of this 

experiment was to obtain the best combination of feature extraction and thresholding 

technique with the iteMS procedure.  

Figure 6.9 presents the example of the detection results of each thresholding 

technique. From the figure, all the conventional thresholding techniques may retain 

several noise and false features in the CMF image. This is because the techniques only 

concern gray-level value between 0 − 255, while the thresholding fitting error takes the 

hue degrees into considerations. Moreover, owing to the reason that the class variance 

technique proposed by Otsu (1979) often generates 0 (black value) as the threshold, the 
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preserved regions show incorrect locations compared with other techniques. Thus, it 

verifies that the technique does not work for CMF. The predefined threshold presents in 

the figure also proved that the threshold may not suit certain images because of the 

availability of numerous feature sizes. 

 

Figure 6.9: Example results of each thresholding technique combined with iteMS 

procedure. From top: forged image, ground truth image, predefined threshold, 

fitting error, iterative means, class variance, Maximum Entropy 

Instead of proving the detection on a single image, this research measures the pixel 

scores of each technique. The pixel scores of the 20 designs of feature extraction and 

thresholding techniques are reported in the table attached in Appendix A. Table 6.3 

extracted the information of the Zernike moments and FMT features from the appendix. 
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Table 6.3: Pixel score of the combination of feature extraction, conventional 

thresholding techniques and iteMS procedure using NB-Casia and NBr-Casia 

datasets 

Combination Feature 

Extraction+Conventional 

Thresholding+iteMS 

NB-Casia NBr-Casia Average 

ZMfittingItems 0.676 0.605 0.641 

ZMIterativeMItems 0.669 0.589 0.629 

ZMCVarianceItems 0.111 0.077 0.094 

ZMMaxEntKItems 0.337 0.274 0.306 

ZMMaxEntYItems 0.340 0.267 0.304 

    

FMTfittingItems 0.734 0.411 0.573 

FMTIterativeMItems 0.719 0.392 0.556 

FMTCVarianceItems 0.067 0.019 0.043 

FMTMaxEntKItems 0.376 0.192 0.284 

FMTMaxEntYItems 0.371 0.189 0.280 

According to the table, the combination of Zernike moments features with 

thresholding fitting error achieved the highest pixel score, while the combination of 

Zernike moments with iterative means thresholding technique shows the second highest 

score. The FMT features, on the other hand, is less robust against reflection attacks, 

although the performance on NB-Casia dataset was a success. Therefore, this research 

further investigates the Zernike moments with thresholding fitting error to assign the 

limit threshold, 𝐿𝑇, for image-level performance that is covered in the next subsection. 

This was the turning point of the final CMF-iteMS design, where the design with the 

highest scores was established for all experiments and comparisons.  

(a) Limit Threshold, 𝑳𝑻, for the iteMS Procedure 

Referring to the iteMS procedure in Section 6.2.4, the procedure has limitation on 

recognizing the original image. Therefore, a limit threshold value, 𝐿𝑇, is suggested to 

differentiate the original and CMF image. Based on the limit procedure in Section 

6.2.4.2, each combination of thresholding techniques with the iteMS procedure will 

have their own limit value. Since the combination of the Zernike moments, thresholding 

fitting error with the iteMS procedure achieved the highest score in pixel-level 
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performance for all conditions in CMF, the combination is further evaluated for the 

image-level performance. Table 6.4 lists the mean, µ, and the standard deviation, 𝑠, 

values of the original image in the GRIP dataset for 600 pixels and 2400 pixels 

resolution that is obtained from the combination. From the mean, µ, and the standard 

deviation, 𝑠, the values are sorted based on mean, µ, error, 𝑒, and median for the 600 

and 2400 resolutions. Each value is assigned as the 𝐿𝑇 values for the complete dataset 

(original and CMF images). 

Table 6.4: Mean, µ and standard deviation, 𝒔,  of iteMS value for original 

images with size (600 pixels and 2400 pixels) 

Resolution 600 2400 

Mean 122 88 

SD 203 89 

 

Table 6.5 records the image-level performance tested with GRIP dataset for both 

resolutions when applied with the 𝐿𝑇 values, which is obtained from the Table 6.4. The 

value of 325 gives the highest average score, thus, the input image will be considered as 

original if the iteMS value is less than 325 pixels for the image resolution between 600 

to 2400 pixels. If the resolution of the input image is less than the range, the input 

image will be rescaled to the size accordingly. 

Table 6.5: F-score values for threshold 88, 122, 149.5, 177 and 325 for both 

original and CMF images with size 600 pixels and 2400 pixels 

 min  median  max 

Threshold/Resolution 88 122 149.5 177 325 

2400 0.784 0.808 0.851 0.860 0.976 

600 0.716 0.785 0.791 0.744 0.739 

Average score 0.750 0.797 0.821 0.802 0.857 

 

Table 6.6 lists the final results (image score, pixel score, and percentage of detection) 

for the proposed approach and their comparison to the existing Cozzolino et al.’s 

method (which employed Zernike moments as feature extraction techniques, 

thresholding fitting error and predefined 1200 as threshold) using the two datasets, NB-
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Casia and NBr-Casia. Referring to the table, the iteMS procedure with the limit value 

able to improve the existing Cozzolino et al.’s method for both levels of evaluation. It is 

also noted that the pixel-level performances of the limit procedure decreased compared 

to the results in Table 6.3 due to the reason that the limit procedure requires the image 

to be resized to 600 (the smallest) or 2400 pixels (the largest). Despite that, the 

proposed iteMS procedure still performed the highest in both levels compared to the 

Cozzolino et al’s method. The iteMS procedure able to automatically calculate the 

means of the regions size for each input image and defined the original images by the 

limit value. Therefore, the proposed design for the CMF-iteMS is Zernike moments 

combined with thresholding fitting error and iteMS, while 325 was selected as the limit 

of the iteMS procedure. 

Table 6.6: Results for the iteMS limit for the Zernike moments with fitting 

error and previous Cozzolino et al. using NB-Casia and NBr-Casia 

6.3.1.3 The Design of the CMF-iteMS 

Since the initial evaluations verified that the combination of Zernike moments, 

thresholding fitting error and iteMS procedure with 325 as the limit threshold value 

presented the most efficient combination for various characteristics in CMF, the method 

has been chosen in this research and named as the CMF-iteMS. CMF-iteMS offers the 

most robust CMF detection method against all attacks while being effective for any size 

of images. Figure 6.10 illustrates the final design of the CMF-iteMS where blue color 

represents the original contributions of the proposed method. Firstly, the size of the 

input image will be checked. The image will be resized with the resolutions between 

Dataset/ 

Method 

NB-Casia NBr-Casia Average 

Image 

Score 

Pixel 

Score 

Percentage 

of 

Detection 

Image 

Score 

Pixel 

Score 

Percentage 

of 

Detection 

Image 

Score 

Pixel 

Score 

Percentage 

of 

Detection 

ZMfitting 

iteMS325 
0.808 0.656 0.530 0.758 0.582 0.441 0.783 0.619 0.485 

Cozzolino 

et al. 

(ZM) 

0.654 0.557 0.364 0.593 0.491 0.291 0.624 0.524 0.328 
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600 to 2400 pixels. Next, Zernike moments features are extracted for each patch 

described in Section 6.2.1(a). After the patch are matched using PatchMatch algorithm, 

the matching patch will undergo the affine transformation estimation and thresholding 

fitting error. The remaining regions left by the process will then be calculated using the 

proposed iteMS procedure. 325 is assigned as the limit threshold value, LT, to recognize 

the original images in the CMF datasets.  

 

Figure 6.10: The final design of the CMF-iteMS 

(a) Large Image Dataset Verification 

According to the previous subsection (Section 6.3.1.3), the image is considered as an 

original image if only the iteMS value is below 325 for image size 600–2400 pixels. To 

verify the limit procedure, this research examined the methods against another dataset 

(namely FAU) that consists of higher resolution images. FAU dataset (Christlein et al., 

2012) is comprised of 48 original images and 48 simple translation-CMF images. The 

average sizes of the images in the dataset is 3000 × 2300 which is large enough 

compared with other datasets. 

To evaluate the procedure in different sizes, the images in the dataset were resized 

into three factors which are 0.5, 0.25 and 0.17. Table 6.7 lists the results of the 

Univ
ers

ity
 of

 M
ala

ya



 

140 

Cozzolino et al.’s method (which employed Zernike moments as feature extraction 

techniques and predefined 1200 as threshold) and the CMF-iteMS against the FAU 

dataset with four image sizes (original size, resized to 0.5, 0.25 and 0.17). According to 

the table, the threshold value assigned by Cozzolino et al. was perfectly determined for 

the original size in the dataset. However, the performance will be decreased if the 

images were resized to the smaller size, hence, the threshold value should also be 

reassigned. Subsequently, the CMF-iteMS achieved adequate results for the original 

size while performed the highest scores than the Cozzolino et al. for all resized images 

in all scores (image, pixel and percentages of detection), except for image score with 

resized value of 0.5. Nevertheless, the pixel score and percentage of the detection is also 

led by the CMF-iteMS. 

Table 6.7: Performance of the Cozzolino et al. and CMF-iteMS for FAU dataset 

in four sizes (original, resize 0.5, resize 0.25 and resize 0.17) 

Method/Dataset 
Cozzolino et al. 

(ZM) 
CMF-iteMS 

Original 

Size 

Image Score 0.940 0.902 

Pixel Score 0.940 0.871 

Percentage 

of Detection 
0.884 0.786 

Resize = 

0.5 

Image Score 0.863 0.849 

Pixel Score 0.821 0.853 

Percentage 

of Detection 
0.708 0.724 

Resize = 

0.25 

Image Score 0.660 0.745 

Pixel Score 0.636 0.711 

Percentage 

of Detection 
0.420 0.530 

Resize = 

0.17 

Image Score 0.551 0.686 

Pixel Score 0.507 0.709 

Percentage 

of Detection 
0.279 0.486 

6.3.2 Analysis of Robustness against CMF Attacks 

To validate the results of the CMF-iteMS with the existing CMF detection methods, 

this research analyzed the method through a comprehensive set of experiments and 

compared with three state-of-the-art methods: Amerini et al. (2011), Cozzolino et al. 
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(2015) for Zernike moments and FMT, and Silva et al. (2015). Table 6.8 summarizes 

the image score, pixel score and percentage of detection results for all CMF detection 

methods which are carried out using NB-Casia and NBr-Casia datasets. 

Table 6.8: Image score, pixel score, and percentages of detection for each CMF 

detection method using NB-Casia and NBr-Casia Dataset 

Dataset/ 

Method 

NB-Casia NBr-Casia average 

Image 

Score 

Pixel 

Score 

Percen 

tage of 

Detection 

Image 

Score 

Pixel 

Score 

Percen 

tage of 

Detection 

Image 

Score 

Pixel 

Score 

Percen 

tage of 

Detection 

Amerini et 

al. (2011) 
0.814 0.549 0.447 0.004 0.003 0.000 0.409 0.276 0.113 

Cozzolino et 

al. (2015)---

ZM 

0.654 0.557 0.364 0.593 0.491 0.291 0.624 0.524 0.327 

Cozzolino et 

al. (2015)---

FMT 

0.745 0.634 0.472 0.496 0.325 0.161 0.621 0.480 0.298 

Silva et al. 

(2015) 
0.667 0.548 0.365 0.226 0.010 0.002 0.446 0.279 0.125 

CMF-iteMS 

(ZM) 
0.808 0.656 0.530 0.758 0.582 0.441 0.783 0.619 0.485 

Referring to the table, the CMF-iteMS obtained the most valuable results in all 

datasets with an average of 49% of detection for both datasets. This value improved the 

prior Cozzolino et al.’s method which was only able to reach an average of 33% for 

Zernike moments and 30% for FMT features. These results proved that the Cozzolino et 

al.’s method has limitations on the features and threshold selection techniques. 

Meanwhile, the Amerini et al.’s and Silva et al.’s methods show the average of 11% and 

13%, respectively. Although the image score of the Amerini et al.’s method shows the 

highest result for NB-Casia, the performance was dropped when a per-pixel basis was 

measured owing to the reason that their method is only working on image-level basis. 

This also indicates that the scores of the CMF-iteMS satisfy both image and pixel-level 

evaluation, resulting in the highest percentage of detection, even though the image score 

was lower than the Amerini et al.’s method. On the other hand, the Silva et al.’s method 

shows the moderate results in NB-Casia, but continuously decreased for NBr-Casia, 

similar to the Amerini et al.’s method. Each method was further analyzed according to 
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each group of attacks, including geometrical transformations and post-processing 

attacks. The details are discussed in the following subsections. 

6.3.2.1 Geometrical Transformation Attacks 

The results for the NB-Casia dataset were further divided according to the five 

groups of geometrical transformation attacks to see the effectiveness on each attack. 

Figure 6.11 compares all scores of the CMF-iteMS with the state-of-the-art methods for 

each group of attacks in the dataset. Based on the figure, the CMF-iteMS was able to 

exceed the performance of the Cozzolino et al.’s methods in all groups of attacks by 

exceeding the minimum value of 62% of detection, except for the scale attacks. This is 

because the Zernike moments have limitations on scale and illumination changes, 

therefore, the CMF-iteMS results on the scale attack being improved if the features are 

replaced by the FMT. This also proved that the iteMS procedure provides a significant 

result compared to the predefined thresholds suggested by Cozzolino et al. Furthermore, 

although the Amerini et al.’s method achieved the highest scores for the scale attacks 

with 67% of detection, the method could not detect any CMF image with reflection 

attacks. It is contrasted to the CMF-iteMS that obtained 17% of detection for the scale 

attacks, while performed the highest scores (77% of detection) for the reflection attacks. 

Since the CMF-iteMS has the perfect scores for reflection attacks, the performance on 

the reflection-based CMF attacks were analyzed in the next subsections. 

6.3.2.2 Reflection-based Attacks 

Basically, the NBr-Casia dataset only consists of reflection-based CMF image. The 

image was grouped into four groups, which are simple reflection, reflection with scale, 

reflection with rotation, and mix of reflection. It is noted that the images under the 

simple reflection is similar to the group of simple reflection in the NB-Casia dataset. 

Hence, Figure 6.12 shows the image score, pixel score and percentage of detection for 

Univ
ers

ity
 of

 M
ala

ya



 

143 

all CMF detection methods against each group of reflection-based attacks except simple 

reflection. The figure shows that the performance of the CMF-iteMS outperformed 

other methods for all groups of reflection, even when the reflection was combined with 

scale attacks. In particular, the CMF-iteMS achieved 11% of detection for reflection 

with scale, 80% of detection for reflection with rotation, and 47% of detection for mix 

of reflection. Furthermore, even though the FMT features are good for scale attacks, the 

performance was dropped when combined with reflection. 

For further evaluation, this research investigates the performance of image score per 

parameter basis, particularly for reflection with scale, reflection with rotation, and mix 

reflection attacks. The image score was employed in this analysis because the 

performances were adequate enough to represent the performance of the CMF-iteMS. 

Figure 6.13(a) depicts the image score values for scale factors from 0.6 to 1.6. The 

CMF-iteMS could maintain an 80% (and above) of image score for 0.8 and 1.2. 

However, the performance continuously dropped by a huge scale either up or down. 

This limitation could be improved by using other feature extractions that are robust to 

reflection and scale attacks.  

With respect to the weak performance for scale, the CMF-iteMS presented 

achievement by maintaining at least 88% of image score value for reflection with 

rotation as shown in Figure 6.13(b). This confirmed that the method worked well with 

all degrees of rotation and the rotation combination. Meanwhile, the performance 

maintained 94% of image score value for mix reflection, as long as the scale factor is in 

the range of 0.8 and 1.4, which displayed in Figure 6.13(c). Despite the limitations, the 

performances were higher than all CMF detection methods. In view of the fact that 

Zernike moments and predefined threshold have limitations on the scale and variation 
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of illumination, the CMF-iteMS provided almost perfect detection in all cases of 

reflection-based attacks, except for high or low scale factor of attacks. 

  

 

Figure 6.11: Comparative results between CMF-iteMS and the Existing CMF 

Detection methods for each group of geometrical transformation attacks 

Univ
ers

ity
 of

 M
ala

ya



 

145 

 

Figure 6.12: Comparative results between CMF-iteMS and the existing CMF 

detection methods for each group of reflection-based CMF attacks 

 

 

(a) 
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(b) 

 

(c) 

Figure 6.13: Image score values for the Amerini et al., Silva et al., Cozzolino et al., 

and CMF-iteMS for (a) reflection with scale, (b) reflection with rotation, and (c) 

combination of reflection 

6.3.2.3 Post-Processing Attacks 

Instead of comparing the methods for geometrical transformation attacks, this 

research also includes the post-processing attacks in the evaluation. A new set of 

experiments was conducted to assess the performance of the CMF-iteMS with the three 

state-of-the-art methods against JPEG compression and Gaussian noise addition. All 
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images in NBr-Casia dataset were distorted by JPEG compression and Gaussian noise 

with four different parameters. For the first experiment, various JPEG quality factors 

ranging from 20 to 80 were applied to the images. Meanwhile, for the second 

experiment, the images were added with four variances of Gaussian noise ranging from 

0.01 to 0.04. 

The results were not only compared with the state-of-the-art methods, but also with 

the results obtained without distortion in Section 6.3.2.2. Figure 6.14 shows the image 

score values for both experiments of post-processing attacks. As illustrated in Figure 

6.14(a), the image score values for all methods were diminished when compression was 

applied. Despite that, the CMF-iteMS was still able to maintain at least 66% of image 

score for compression above 40 quality factor, resulting in the highest performance than 

other methods. 

For the Gaussian noise attack, Figure 6.14(b) demonstrates the image score values 

for all methods. The methods tend to decrease when the variance of Gaussian noise was 

increased. However, the performance of the CMF-iteMS decreased and is lower than 

the Cozzolino et al. likely because the iteMS procedure is not able to preserve reflection 

regions when various noises were added. Despite that, the CMF-iteMS still 

outperformed the Amerini et al.’s and Silva et al.’s methods. 
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(a) 

 

(b) 

Figure 6.14: Image score values for Amerini et al., Silva et al., Cozzolino et al. and 

CMF-iteMS against (a) JPEG compression (b) Gaussian noise addition in NBr-

Casia dataset 

6.4 Discussion 

Based on the performance analysis done in Chapter 4, the block-based CMF 

detection method (which is the Cozzolino et al.) shows promising results on various 

CMF attacks, including reflection. Nonetheless, the method requires several predefined 
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thresholds to be set in the final verification process, which led to the reduction 

performance, if the value assigned is not suitable for certain image. Therefore, this 

research introduced an iterative means of region size to replace the static thresholds 

selection. This research also studies and investigates four feature extraction and 

conventional thresholding techniques for the formulation design of the CMF-iteMS. 

As the Zernike moments features provide the most efficient feature extraction 

technique that can robust to various attacks, especially reflection, the CMF-iteMS 

considered the features in the designs. Furthermore, the thresholding fitting error 

suggested by the Cozzolino et al. obtained the highest performance compared to the 

conventional thresholding techniques due to the reason that the fitting error considers 

hue degree in the RGB value into consideration. In spite of the highest performance of 

the CMF-iteMS, the method only works for CMF image, not the original image. This is 

because the iteMS procedure often calculates the small matching regions left by the 

original image. Hence, this research provides a statistical analysis (means and standard 

deviation) to limit the iteMS value. 

The purpose of this research is to achieve the best performance against CMF with 

any combination of possible attacks without a predefined threshold value for various 

inputs of CMF images. This research believes that the automatic improvement methods 

will be particularly valuable in big data applications of image forensics, where the huge 

heterogeneous data is a critical component in the recent years. 

In comparison with the existing CMF detection methods, the CMF-iteMS presents 

the most promising results in almost all cases of attacks. The results proved that the 

method was able to outperform existing methods by exceeding the minimum score of 

62% of detection, except for scale attacks. Despite the difficulty on the attack, the 

results are still applicable for scale within range 0.8 to 1.4 factor, resulting in 17% of 
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detection from the whole images in the group. Furthermore, the CMF-iteMS shows the 

highest performance in all reflection-based CMF cases, which exceeds the minimum 

score of 11% of detection for reflection with scale, 80% of detection for reflection with 

rotation, and 47% of detection for mix of reflection. As image manipulation can be 

concealed by post-processing attacks, the CMF-iteMS was outperformed the other 

methods by exceeding 66% of image score with quality factor above 40 of compression. 

6.5 Chapter Summary 

This chapter presents CMF detection method with a new automatic threshold 

selection procedure called iterative means of region size, iteMS. The iteMS procedure is 

proposed to increase the detection of the existing CMF detection performance for both 

image and pixel-level evaluations. Experiments are conducted to investigate the 

performance of iteMS procedure when combined with four feature extraction (e.g. 

Zernike moments, FMT, Steerable Filter, and Dense SIFT) and five conventional 

thresholding (e.g. thresholding fitting error, iterative means, class variance and 

maximum entropy I and II) techniques. From the investigation, the combination of 

Zernike moments feature extraction, thresholding fitting error and iteMS procedure 

yields the highest results, therefore, are considered in the proposed CMF-iteMS. The 

experiments also confirmed that the existing CMF detection methods, which require at 

least one predefined threshold for final verification, have difficulties in detecting CMF 

image with various characteristics; hence, with the proposed automated procedure, have 

altogether enhanced the detection performance even against CMF with various attacks, 

including reflection.  
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CHAPTER 7: PERFORMANCE ANALYSIS II 

This chapter discusses and compiles the performance of the existing CMF detection 

methods and the proposed methods. The time taken for each experiment is also recorded 

and analyzed in this chapter. Furthermore, the existing CMF detection methods are also 

applied with the iteMS procedure, while the results are also explored as an added value. 

There are four parts in this chapter, which the introduction of the analysis is briefly 

described in the first section (Section 7.1). Then, the performance of each method is 

presented in the second section (Section 7.2). In the section, the results are analyzed 

based on each category of attack. In the third section (Section 7.3), the performance of 

the existing CMF detection methods when combined with the iteMS procedure are 

examined. Lastly, the forth section (Section 7.4) summarized the chapter. 

7.1 Introduction 

Based on the performance analysis I, the Amerini et al.’s method (representing 

keypoint-based approach) is good in CMF detection for scale and rotation, however, the 

method is not robust against reflection attacks. On the other hand, the Cozzolino et al.’s 

method (representing block-based approach) is less effective to small resolution images 

although it is good in reflection. Furthermore, the Zernike moments features that is used 

in the method is less effective when dealing with scale and illumination changes, 

despite the fact that the features have distinctive properties and able to describe shape 

efficiently. These limitations can be improved by the FMT features that is good in 

rotation, scale and various illuminations. In contrast, the combination approach as in the 

Silva et al.’s method, does not present much improvement compared to both 

approaches. The method is sensitive to all types of attacks in CMF, except for simple 

translation. 
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Based on the analysis, this research proposed SIFT-Symmetry that improved the 

keypoint-based approach, and CMF-iteMS that enhanced the performance of the block-

based approach, that were already discussed in Chapters 5 and 6, respectively. 

Therefore, this chapter compiled the performances of all methods, existing and 

proposed, against all four different datasets, to determine the most efficient CMF 

detection methods. Furthermore, the time performance for each method is also 

discussed. As an added value, this research attempts to combine the proposed iterative 

means of region size with the existing CMF detection methods. The results are 

discussed in the following sections. 

7.2 Performance Evaluation 

Table 7.1 lists the results of the existing CMF detection methods and the two 

proposed methods using all four datasets. The green color highlighted in the table 

presents the previous achievement, while the blue color emphasized the current 

accomplishments. According to the table, the CMF-iteMS achieved the highest 

performance for almost all datasets, except CPHALL. The lower performance in the 

CPHALL dataset mainly because the image are required to be resized to 600–2400 

pixels to cope with the limit threshold. Despite that, the performance was still able to 

maintain 81% value of the pixel score. 

The SIFT-Symmetry, on the other hand, reached the highest image score for NB-

Casia dataset compared to other methods. However, since the keypoint features are 

unable to identify points’ region, the pixel score of the SIFT-Symmetry was dropped, 

thus, resulting in low percentage of detection. Moreover, in spite of the good 

performance on reflection attacks, the symmetry matching technique has difficulty to 

differentiate the forged symmetry with original symmetry images. This is the reason for 
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the low performance in other datasets. The following section will further discuss the 

processing time listed in the table. 

Table 7.1: Comparative scores for image, pixel and percentages of detection 

with Average CPU-Time (in seconds) per image for the existing CMF Detection 

Methods and the proposed methods against Four Datasets 

All Datasets/Methods 

Amerini 

et al. 

(2011) 

Cozzolino 

et al. 

(2015) --

ZM 

Cozzolino 

et al. 

(2015) --

FMT 

Silva 

et al. 

(2015) 

SIFT-

Symmetry 

CMF-

iteMS 

Combine 

Translation 

Image 

Score 
0.724 0.896 0.880 0.737 0.689 0.960 

Pixel 

Score 
0.574 0.901 0.884 0.740 0.577 0.932 

Percentage 

of 

Detection 

0.416 0.807 0.778 0.545 0.398 0.895 

Time per 

image 
11.418 16.441 30.441 12.993 57.714 16.245 

NB-Casia 

Image 

Score 
0.814 0.654 0.745 0.667 0.835 0.808 

Pixel 

Score 
0.549 0.557 0.634 0.548 0.581 0.656 

Percentage 

of 

Detection 

0.447 0.364 0.472 0.365 0.485 0.530 

Time per 

image 
2.729 4.455 6.961 2.283 7.173 11.494 

NBr-Casia 

Image 

Score 
0.004 0.593 0.496 0.226 0.698 0.758 

Pixel 

Score 
0.003 0.491 0.325 0.010 0.214 0.582 

Percentage 

of 

Detection 

0.000 0.291 0.161 0.002 0.149 0.441 

Time per 

image 
1.815 4.417 9.208 1.363 8.417 14.325 

CPHALL 

Pixel 

Score 
0.551 0.825 0.859 0.647 0.551 0.814 

Time per 

image 
17.750 15.750 34.194 21.259 60.843 25.843 

7.2.1 Processing Time 

One of the performance measurements in experimental-type research design is 

processing time. Thus, this research continuously analyzed the time taken for each CMF 

detection method when evaluated on all four datasets. According to the table, the 

processing time was strongly dependent on the complexity and size of the image. 
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Taking the two characteristics into the account, the CombineTranslation and CPHALL 

require extra time than other two datasets. This is because most of the images in both 

datasets are comprised of the high resolution images with maximum 1024 pixels and 

1296 pixels, respectively. In contrast, the NB-Casia and NBr-Casia contain more small 

images with the minimum 160 pixels to the maximum of 900 pixels. 

Instead of the two characteristics, the ability of the methods against dataset could 

also affect the processing time. For instance, if the method could not extract any 

features in the first phase, the process after the feature extraction phase was discarded. 

This is the reason why the Silva et al.’s method appears to be the smallest processing 

time in the NBr-Casia datasets among all CMF detection methods. Followed by the 

Amerini et al.’s method, both methods show the lowest performance results when tested 

with the reflection-based CMF datasets despite their achievement in the processing 

time. In contrast, due to the reason that the SIFT-Symmetry is the combination of the 

Amerini et al.’s method with the symmetry matching technique, the method requires the 

highest processing time among other CMF detection methods. In the method, the 

symmetry matching will initiate if only the Amerini et al. could detect less than five 

matching points. Therefore, the method requires the Amerini et al. to be run first, before 

the SIFT-Symmetry could handle the undetected CMF image. 

For the Cozzolino et al.’s method, since the FMT features require double patch size 

and feature length compared to Zernike moments, the FMT features shows an extra time 

than the Zernike moments features. (Noted that patch size and feature length for FMT 

are 24 and 25, respectively, while the patch size and feature length for Zernike moments 

are 16 and 12, accordingly). The time performance of the CMF-iteMS, on the other 

hand, may be increased if the input image needs to be resized. This is shown in the NB-

Casia and NBr-Casia datasets, in which the method requires extra time compared to the 
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Cozzolino et al.’s method. Nevertheless, if the input image is within 600 to 2400 pixels, 

the processing time able to improve the Cozzolino et al.’s method.  

After all, the processing time might differ according to the CPU capability. For 

example, the highest specification of CPU will generate the smallest processing time 

than the lowest specifications. Besides that, the processing time will also increase if the 

CPU performed several activities at one time. Therefore, parallelizable methods for 

increasing the computational efficiency appear to be promising. 

7.2.2 Performance against Geometrical Transformation attacks 

The performances of both proposed methods were further analyzed based on each 

group of geometrical transformation attacks. Figure 7.1 presents the performance of all 

CMF detection methods based on image score, pixel score and percentages of detection 

in all groups of CMF attacks. 
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Figure 7.1: Comparative results (image score, pixel score, and percentages of 

both scores) for all CMF detection methods against scale, rotation, simple 

reflection and mix attacks in NB-Casia dataset 

For simple translation attacks, the figure shows that the CMF-iteMS achieved the 

highest scores for all levels. The CMF-iteMS exceeded the minimum value of 96% 

image score and 88% for both pixel score and percentage of detection in both 
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CombineTranslation and NB-Casia datasets. Moreover, the CMF-iteMS was also able 

to maintain the highest percentage of detection for rotation, simple reflection, and mix 

of attacks with the minimum value of 87%, 76%, and 62% score, respectively. 

Alternatively, the SIFT-Symmetry obtained the highest image score with a value of 

94% for simple reflection attacks, despite the weak performance on pixel-levels. In spite 

of the achievement of both proposed methods, the performance on the scale attacks are 

lower than Amerini et al.’s method. This is because the SIFT-Symmetry may detect 

natural symmetry image as CMF, while the CMF-iteMS employed Zernike moments 

features who is variant to scale attacks. 

As this research focused on reflection-based CMF attacks, the performances were 

further analyzed based on reflection-based groups of attacks in NBr-Casia. Figure 7.2 

presents the results of all CMF detection methods for group reflection with scale, 

reflection with rotation, and mix of reflection. Based on the figure, the CMF-iteMS was 

able to achieve the highest percentage of detection for all reflection combinations. To be 

specific, the scores are 11% for reflection with scale, 80% for reflection with rotation, 

and 47% for mix of reflection. Furthermore, the SIFT-Symmetry also performed well 

with the highest image score equal to 75% for reflection with scale attacks. In addition, 

since reflection is a process of points’ transformation in a mirror plane, the detection 

methods should be able to identify all reflection in every direction, either it is 

horizontal, vertical, or tilt. Figure 7.3 shows the examples of detection by SIFT-

Symmetry and CMF-iteMS for the three directions (horizontal, vertical, and tilt). 
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Figure 7.2: Comparative results (image score, pixel score, and percentages of 

both scores) for all CMF detection methods against reflection with scale, reflection 

with rotation, and mix of reflection attacks in NBr-Casia dataset 

 

Figure 7.3: Examples of detection by SIFT-Symmetry and CMF-iteMS for CMF 

with reflection attacks in horizontal, vertical and tilt axis 

The pixel score of all CMF detection methods for the CPHALL datasets are also 

presented in the Figure 7.4. The figure shows that the CMF-iteMS improved the 

performances of the Cozzolino et al. (Zernike moments) against all types of attacks, 

except the simple translation. The performance is decreased for the simple translation 
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due to the reason that the images may be resized to the smaller resolutions. Nonetheless, 

the results were still able to achieve 93% of the pixel score. In spite of the achievement 

of the CMF-iteMS, the Cozzolino et al. (FMT) outperformed the other methods for the 

scale and mix of attacks. The results may be improved, if the CMF-iteMS applied the 

FMT features, instead of Zernike moments, specifically for the attacks. 

 

Figure 7.4: Pixel score for the existing CMF detection methods against simple 

translation, scale, rotation, and mix attacks in CPHALL dataset 

7.2.3 Performance against Post-Processing attacks 

Instead of analyzing the CMF detection methods against geometrical transformation, 

the performance against post-processing attacks are also measured. Figure 7.5 presents 

the image score for all methods for each parameter of JPEG compression and Gaussian 

noise addition using CombineTranslation dataset. The figure shows that although all 

performances were dropped compared to without distortion, the CMF-iteMS achieved 

the highest image score in all parameters, except for 20 quality factor of JPEG 
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compression. This is because the Zernike moments is known to be more sensitive than 

FMT for the low compression. 

 

(a) 

 

(b) 

Figure 7.5: Image score values of all CMF detection methods against (a) JPEG 

compression and (b) Gaussian noise addition in CombineTranslation dataset 

7.3 Combination with iteMS procedure 

In view of the fact that iteMS procedure is specifically designed to automatically 

remove spurious matching and noise based on the input image, this research believed 
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that the procedure can be combined with the existing CMF detection methods. To prove 

the assumption, the iteMS was tested with the four CMF detection methods, including 

Amerini et al., Cozzolino et al. (Zernike moments and FMT), Silva et al., and SIFT-

Symmetry. Table 7.2 demonstrates two examples of detection results before and after 

the iteMS procedure is combined with the methods. According to the table, the noise 

that is preserved by the Amerini et al., SIFT-Symmetry, and Silva et al. was discarded 

by the iteMS. The Cozzolino et al.’s method, on the other hand, was able to increase the 

possibility of forged detection since their method previously defined a wrong threshold 

value. 

Table 7.2: Examples of detection results for the CMF detection methods before 

and after iteMS procedure is combined 

 

Figure 7.6 shows the performance for image score, pixel score, and percentage of 

detection against CombineTranslation dataset for the CMF detection methods, before 

and after the iteMS procedure was combined. From the figure, all scores of the 

Cozzolino et al.’s method after the combination with iteMS procedure appears to be 

promising. This is because of the iteMS procedure could assign an ideal threshold value 

for each input image. Otherwise, the performance of the Amerini et al.’s, Silva et al.’s 
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and SIFT-Symmetry were decreased, especially for pixel score, due to the reason that 

the methods often include the spurious matching in their detection.  

 

Figure 7.6: The results of the CMF detection methods before and after iteMS 

procedure is combined for CombineTranslation datasets 

7.4 Chapter Summary 

This chapter accumulates the results from the performance analysis I, the perrmance 

of SIFT-Symmetry, and the performance of the CMF-iteMS in one glance. The results 

are discussed based on overall performance in four datasets, processing time, 

geometrical transformation (including reflection-based CMF attacks) and post-

processing attacks. Moreover, the iteMS procedure was also examined with the 

individual CMF detection methods to assess the efficiency of the automated threshold 

selection in the final verification CMF detection process. The CMF-iteMS shows the 

most efficient method among the established CMF detection methods.  
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CHAPTER 8: DISCUSSION AND CONCLUSIONS 

This thesis is concluded by reappraising the research objectives and answering the 

research questions that have been set in Chapter 1. The goal of this chapter is to provide 

an important summary of the contribution of this research and also provide a direction 

of future research. 

8.1 Reappraisal of the Research Objectives 

The first objective of this research is to examine the effects of image and pixel-

level evaluations to the performance of existing CMF detection methods against 

various CMF attacks, including reflection. This objective has been achieved by 

investigating the effects of each level of evaluation for the existing CMF detection 

methods. There are two-level evaluations commonly used by prior researchers to 

evaluate CMF detection performance. They are image-level evaluation and pixel-level 

evaluation. The image-level evaluation only evaluates whether an image has been 

forged or not. However, this evaluation does not evaluate the exact locations of the 

forged regions in an image. The exact locations of the forged regions can be evaluated 

through pixel-level evaluation. However, all images are treated as forged in the pixel-

level evaluation.  

Since many of the prior researchers conduct the two evaluations separately, exact 

performance of the methods may not be evaluated correctly. For this reason, three 

methods, comprise of Amerini et al., Cozzolino et al. (for Zernike moments and FMT), 

and Silva et al. that represent keypoint, block, and combination-based approaches, 

respectively are selected. The methods are tested on four different datasets, with each 

dataset containing different attacks, comprised of simple translation, scale, rotation, 

simple reflection, reflection-based and a mix of CMF attacks. From the experiments and 

observations, it can be seen that methods with high pixel-level performance may not 
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have high image-level performance. To ensure acceptable performance, high accuracy 

of pixel evaluation should only follows after getting high accuracy of image-level 

evaluation. Therefore, a set of evaluation steps which include both levels is used in the 

whole experiment for this thesis. The results are measured using multiple F-score values 

which are for image, pixel and percentage of both detections.    

 The second objective is to propose CMF detection methods based on the 

keypoint-based and block-based approaches that cover various attacks in CMF. 

Based on the performance investigations of the existing CMF detection methods (which 

is prepared for the first objective), the keypoint-based approach shows good 

performance on CMF with various attacks, especially scale and rotation, but the method 

is not robust against reflection attacks. Meanwhile, the block-based approach suffers 

from threshold selection. Though the block-based approach is invariant to translation, 

rotation, and reflection attacks, the static threshold has limit the detection of CMF in 

various input images which have different resolutions, sizes and types. Therefore, this 

objective is divided into two sub-objectives: 

a) To propose an improved CMF detection method based on the keypoint-based 

approach using a symmetry matching technique that is not only robust against 

translation, scale and rotation, but also to the reflection 

The main contribution of this method is to increase the robustness of the keypoint-

based approach against CMF with reflection attacks. A method called SIFT-Symmetry 

is proposed that combine the symmetry matching technique with the Amerini et al.’s 

method, specifically to cover the reflection attacks in the keypoint-based approach. In 

the method, mirror-SIFT features are paired with the symmetry matching technique and 

will commence if the Amerini et al.’s method only able to detect less than five matching 

points. The symmetry matching technique computes the symmetry magnitude in the 
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image to generate the dominant symmetry axis. Then, the symmetry points which 

associate with the axis are clustered to verify the forged region. The results show that 

the SIFT-Symmetry is able to maintain at least 70% of the image score for all 

geometrical transformation cases, including simple reflection. Meanwhile, the CMF-

iteMS is only able to achieve minimum value of 51% of image score among all 

geometrical transformation cases, while the performance of the Amerini et al.’s method 

is dropped to 0% for the simple reflection. Similar outcomes happened to the reflection-

based CMF attacks, which the SIFT-Symmetry is able to outperform existing methods 

with 94% of image score for simple reflection, and 75% of image score for reflection 

with scale. However, the image scores for reflection with rotation and mix of reflection 

are less than the CMF-iteMS, which are 58% and 78%, respectively.  

b) To propose an improved CMF detection method based on block approach by 

introducing iterative means of region size to replace the static threshold 

selection technique in prior CMF detection method  

The main contribution of this method is to automate the static threshold value which 

often predefined in the existing CMF detection methods in the final verification process. 

The reason for the threshold selection is to remove the unrelated and wrong features 

which are extracted during the matching techniques. Instead of defining a static value, a 

method called CMF-iteMS is proposed by iteratively computes the means of the region 

size preserved by the matching techniques. Hence, an ideal threshold value could be 

assigned to each input image with various image resolutions, sizes and types. Several 

feature extraction and conventional thresholding techniques are also explored to be 

combined with the iteMS procedure to evaluate the effects towards a CMF image. From 

the studies, the combination of Zernike moments, thresholding fitting error and iteMS 

procedure achieved the highest result, therefore, are selected as the final design and has 
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been named as CMF-iteMS. Furthermore, this research also implemented a statistical 

analysis (means and standard deviation) to limit the threshold value for the image-level 

evaluation. The results proved that the method is able to outperform existing methods 

by exceeding the minimum value of 88% of detection for simple translation, while 

maintaining the highest percentages for rotation, simple reflection, and mix of attacks 

with the value of 87%, 76%, and 62%, respectively. Previously, the Cozzolino et al.’s 

method with the static thresholds is only able to achieve the minimum value of 58% of 

detection for simple translation, 59% of detection for rotation, 58% of detection for 

simple reflection and 41% of detection for mix of attacks. Furthermore, the CMF-iteMS 

also shows the highest percentage of detection in all reflection-based CMF cases, which 

exceeds the minimum score of 11% detection for reflection with scale, 80% of detection 

for reflection with rotation, and 47% of detection for mix of reflection.  

The third objective, which is the last objective of this research, is to evaluate the F-

score performance for the proposed CMF detection methods. The score is not only 

calculated for image and pixel-level evaluations, but, also percentage of detection which 

is obtained by multiplying both scores. 

As the main goal of this research is to develop the efficient CMF detection method 

for both image and pixel-level evaluations against various attacks, including 

translation, scale, rotation, reflection, and combinations of each attack, the CMF-

iteMS shows the most efficient methods. They are able to achieve the highest 

percentage of detection for both non-reflection and reflection-based attacks, except for 

the scale attacks. This proved that both image and pixel scores of the method are 

satisfied, which is able to differentiate the original and CMF image with exact region 

locations.  
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8.2 Implications of Research 

The implications of this research include having the set of evaluation steps likely 

applied to measure the performance of future CMF detection methods. Secondly, the 

two methods proposed for CMF detection would help in ensuring the authenticity of a 

digital image, particularly CMF-manipulation without the requirement of the original 

image (like the digital watermarking do). Furthermore, the methods proposed would 

also help in differentiating the original image and CMF image, while providing the 

exact location of the CMF region. In addition to this, new researchers in CMF detection 

can also make use of the result from the proposed methods as a benchmark for newer 

methods. 

8.3 Originality and Contribution  

The original contributions of this research are the performance analysis of the 

existing CMF detection methods; the employment of a symmetry matching technique to 

a CMF image with reflection attacks; and the implementation of a new automatic 

threshold selection using an iterative means of region size in the final verification of 

CMF detection. From the analysis, the research problems are verified, that has led to the 

development of both proposed methods in the CMF detection. As a final conclusion, the 

proposed methods are able to outperform the existing CMF detection methods against 

various CMF detection methods including reflection. In addition, the automated 

threshold selection technique is beneficial to this digital era, since the big data (which 

involve the heterogeneous data) is rapidly developing. 

8.4 Future Research Directions 

With regards to the first contribution to the CMF detection, this research employs a 

symmetry matching technique using a keypoint-based approach. However, issues may 

arise if the keypoint techniques used for the detection process have an original identical 
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features, while the features are naturally symmetrical at the same time. To be specific, 

the SIFT features have limitations on differentiating the highly uniform features in the 

image, either as an original or forged image. This has led to the symmetry matching 

techniques being too sensitive in detecting natural symmetry image. Therefore, it could 

be useful if another distinctive feature can be used to enhance the reliability of the 

proposed method. 

Concerning the second contribution for the CMF detection (which is to automate the 

threshold selection for final verification), future research can extend the proposed 

method for original image detection. The method proposed in this research can only 

detect the CMF image, hence, it will be of great benefit if the proposed method is 

extended to deal with the original image without the need to limit the value. 

Despite of the achievements presented by both proposed methods towards 

geometrical transformation attacks, there is another area that may be looked into which 

is the effect of the post-processing attacks. The post-processing attacks, including JPEG 

compression and Gaussian noise addition will affect the visual detection and prevent the 

forged being detected. Although, the proposed method will also be useful in the case of 

the post-processing forged images, however the performance of the method would be 

reduced.  

Finally, looking for both implementations, the consolidation of the two proposed 

methods for CMF detection, as an integrated module, will also be of great benefit. This 

will give profits by exploiting the advantages of various feature extraction and matching 

techniques, and further increase overall detection performance. 
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