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 ABSTRACT  

 

The global energy consumption is expected to grow in a faster rate than the population 

growth. By 2030, an increase of 53% of global energy consumption and 39% of greenhouse 

gases emissions from fossil fuels are anticipated. Therefore, it has become a global agenda 

to develop clean alternative fuels which are domestically available, environmentally 

acceptable and technically feasible. As an alternative fuel, biodiesel seems as one of the 

best choices among other sources due to its environment friendly aspect and similar 

functional properties as diesel fuel. This research aims to produce biodiesel from some 

edible and non-edible oils that are either readily available or have native distribution in 

Malaysia. These oils include; Palm (Elaeis guineensis), Jatropha curcas and Moringa 

oleifera oils. This was followed by a detailed investigation of physic-chemical properties of 

the produced methyl esters such as kinematic viscosity, density, flash point, cloud point, 

pour point, cold filter plugging point, viscosity index and oxidation stability. This research 

also discusses the concept of biodiesel-diesel blending to improve some of the properties. 

Moreover, 5%, 10%, 15% and 20% by volume blends of Palm, Jatropha curcas and 

Moringa oleifera were used to evaluate their performance in a Mitsubishi Pajero 

turbocharged diesel engine. According to the results of the investigation, the produced 

methyl esters meet biodiesel standard specification. Moreover, blending of biodiesel with 

diesel fuel improves their fuel properties. The results of engine performance indicated that 

over the entire range of speed, biodiesel blended fuels give average reduction in torque, 

brake power and increased brake specific fuel consumption values compared to diesel fuel. 

In case of engine emission, biodiesel blended fuels give an average reduction in carbon 

monoxide and hydrocarbon emissions whereas slightly increased nitric oxides and carbon 
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dioxides emissions respectively compared to diesel fuel. Overall, Palm biodiesel blended 

fuel showed better performance than Jatropha curcas and Moringa oleifera biodiesel 

blended fuels. In conclusion, Palm, Jatropha curcas and Moringa oleifera are potential 

feedstock for biodiesel production, and up to 20% of their blends should be considered to 

replace diesel fuel without engine modification to reduce the dependency on petro-diesel 

and produce cleaner exhaust emissions. 
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ABSTRAK 

 

Kadar penggunaan tenaga global dijangka berkembang lebih cepat daripada kadar 

pertumbuhan penduduk. Pada tahun 2030, peningkatan dijangkakan sebanyak 53% dalam 

penggunaan tenaga global dan peningkatan juga dijangkakan sebanyak 39% dalam 

pelepasan gas rumah hijau daripada bahan api fosil. Oleh itu, ini menjadi satu agenda 

global untuk membangunkan bahan api alternatif bersih yang terdapat dalam negara, yang 

mesra alam-sekitar dan yang boleh dilaksanakan secara teknikal. Sebagai bahan api 

alternatif, biodiesel merupakan salah satu pilihan yang terbaik di kalangan sumber-sumber 

lain kerana sifat mesra alam-sekitar dan ia mempunyai ciri-ciri fungsi yang sama seperti 

bahan api diesel. Kajian ini bertujuan untuk menghasilkan biodiesel daripada beberapa 

minyak yang boleh dimakan dan yang tidak boleh dimakan, sama ada yang sedia-ada atau 

yang mempunyai pengedaran di dalam Malaysia. Minyak ini termasuk; minyak sawit, 

Jatropha curcas dan Moringa oleifera. Ini diikuti dengan penyiasatan sifat fizik-kimia 

untuk biodiesel yang dihasilkan, separti kelikatan kinematic, ketumpatan, takat kilat, takat 

tidak-larut, takat boleh-dituang, sejuk penapis memasang mata, indeks kelikatan dan 

kestabilan pengoksidaan. Kajian ini juga membincangkan konsep campuran biodiesel-

diesel untik memperbaiki beberapa ciri-ciri bahan suapan ini. Selain itu, campuran 5%, 

10%, 15% dan 20% sawit, Jatropha curcas dan Moringa oleifera telah dijalankan untuk 

menilai prestasi mereka dalam Enjin Diesel Turbo, iaitu Mitsubishi Pajero. Menurut 

penyiasatan, biodiesel yang dihasilkan memenuhi spesifikasis piawai biodiesel dan 

campuran biodiesel dengan diesel meningkatkan sifat-sifat bahan api tersebut. Keputusan 

prestasi enjin menunjukkan bahawa pada pelbagai kelajuan, bahan api biodiesel yang 

dicampur memberikan pengurangan tork purata, pengurangan kuasa brek dan 
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meningkatkan nilai-nilai penggunaan bahan api brek tertentu berbanding dengan bahan api 

diesel. Dalam kes pelepasan gas enjin, bahan api campuran biodiesel memberikan 

pengurangan yang berpurata dalam pelepasan karbon monoksida dan pelepasan 

hidrokarbon. Manakala terdapat sedikit peningkatan dalam pelepasan nitrus oksida dan 

pelepasan karbon dioksida berbanding dengan bahan api diesel. Keseluruhan, campuran 

bahan api biodiesel menunjukkan prestasi yang lebih baik berbanding dengan campuran 

bahan api biodiesel sawit, Jatropha curcas dan Moringa oleifera. Kesimpulannya, sawit, 

Jatropha curcas dan Moringa oleifera adalah bahan-bahan mentah yang berpotensi untuk 

pengeluaran biodiesel, dan sebanyak 20% daripada campuran bahan-bahan tersebut boleh 

menggantikan bahan api diesel tanpa penguabahsuaian enjin untuk mengurangkan 

pergantungan kepada petro-diesel dan akan menghasilkan pelepasan ekzos yang bersih. 
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CHAPTER 1  

INTRODUCTION 

 

1.0 Introduction 

 

1.1 Overview of Global Energy Scenario 

It is one of the known facts that the advancement in modern economics through 

agricultural, telecommunication, transportation, industrial sectors, etc.  is heavily depends 

upon energy. Consequently, worldwide energy consumption rate is growing faster than the 

population growth rate. For many countries, this ever growing increase of energy demand is 

becoming a critical issue. Usually, global energy demand is fulfilled by natural gas, crude 

oil, coal   and   other resources. Among them, gas and oil are largely used in combustion 

engines and as raw material for manufacturing plastic and other chemicals, too. At the 

present time, transportation sector heavily depends upon petroleum or crude fossil oil. All 

over the world, petroleum has become a dependent source due to having high density and 

better handling facility. They are a vital utility for a country’s industrial economy.  

 

World’s energy map is changing. These changes have potentially persuasive consequences 

over the energy markets and trade. Global energy demand increases by more than one-third 

over the period to 2035 with India, China, and the Middle East responsible for 60% of the 

increase. Although, energy demand barely rises in OECD countries, there is a definite shift 

away from oil, coal (and, in some countries, nuclear) towards natural gas and renewable 
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energy resources. Regardless of the growth in low carbon sources of energy, fossil fuels 

still dominating the global energy mix, supported by large subsidies such as $523 billion in 

2011, 30% more than that of 2010 and six times more than subsidies provided for 

renewable. According to the International Energy Agency (IEA, 2012), by the year 2030 

global energy consumption will increase by 53%. The main source of energy is fossil fuel 

fulfilling 87% of the demand, amongst other energy sources crude oil supplies 33.06%, coal 

30.34% and natural gas 23.67% respectively. Nuclear energy, hydropower and renewable 

energy supplies very small percentages of the energy demand (4.88%, 6.44% and 1.58% of 

total energy usages respectively). The world’s primary fuel consumption has doubled 

within 1980 to 2011. In 1980 energy consumption was 6,630 million tons of oil equivalents 

(Mtoe) which rose to 12274.6 Mtoe in 2011 (BP, 2012).   

 

1.2 Overview of Malaysian Energy Scenario 

According to British petroleum statistics; Malaysia’s primary energy consumption has 

increased to 62.9 Mtoe in 2010 from 48.6 Mtoe in 2001, which is an average increase of 

3.6% per annum. But in this period of time, oil production in Malaysia has decreased to 

32.1 Mtoe in 2010 from 32.9 Mtoe in 2001. But, oil consumption has increased to 25.3 

Mtoe in 2010 from 22 Mtoe in 2001. Contrasting to oil, production of natural gas has 

increased to 59.8 Mtoe in 2010 from 42.2 Mtoe in 2001. Also, an increase in the 

corresponding consumption has been observed. The final energy demand is growing 

considerably high rate of 5.4% per annum. In this rate the final energy demand will be 83.5 

Mtoe in 2020 from 33.9 Mtoe in 2003 (BP, 2012). In Malaysia, annual biodiesel production 

increased at a rate of 26.6% per annum. The production was 1.1 thousand barrel per day in 

2006, which rose to 5.7 thousand barrel per day in 2009 (USEIA, 2010).  
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1.3 Increasing Environment Pollution  

Emissions from burning petroleum derived fuels have a severe consequence on both the 

environment as well as human health (Oener and Altun, 2009). The united nation 

intergovernmental panel reported that, due to the greenhouse gas emission including 

methane, nitrogen oxides and carbon dioxides, global warming is increasing. It is 

forecasted that emission of the greenhouse gases (GHG) from fossil fuels will increase up 

to 39% in 2030 if no strict steps are taken to alleviate it. Air pollution is a phenomenon 

where chemical, physical or biological agents modify the natural characteristics of the 

atmosphere. The types of pollutants are particulate matter and noxious gases such as sulfur 

dioxide, carbon monoxide, nitrogen oxides, and chemical vapors. All over the world, air 

pollution is heavily responsible for huge number of health problems and respiratory 

diseases. Mobile sources e.g. vehicles, stationary sources for instance factories and open 

burning of wastes like municipal and industrial wastes; are the three major sources of air 

pollution in Malaysia, whereby contributing to at least 70–75 %, 20–25 % and 3–5 %, 

respectively. According to the Department of the Environment (DOE, 2010), Malaysia, in 

2010, the major sources of the air emission were motor vehicles (82%), power stations (9 

%), industrial fuel burning (5%), industrial production processes (3%), domestic and 

commercial furnaces (0.2%) and open burning at solid waste disposal sites (0.8 %). Mostly, 

these sources contribute to the air pollution through the combustion of fossil fuels to fulfill 

nation’s overall energy demand. 
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1.4 Background 

Worldwide energy demand,  global environmental concerns, price hiking of   petroleum 

fuels , rapid depletion of fossil  fuel along with numerous other factors  have stimulated to 

find alternative fuel sources that will ensure the clean combustion of diesel engines (M 

Palash et al., 2013;  Shahabuddin et al., 2013). Hence, it has become a worldwide agenda to 

look for clean alternative fuels which are environmentally acceptable, domestically 

available and technically feasible (Liaquat et al., 2010). According to the Energy Policy Act 

of 1992 (EPACT, US), natural gas, ethanol, methanol, biodiesel,  and electricity – these are 

the main potential alternative fuels that can decrease global warming, consumption of fossil 

fuels and exhaust emissions (Jia et al., 2005). As biodiesel is environment friendly and also 

posseses similar operation properties as diesel fuels it is one best choices amongst the 

available alternative fuels. If biodiesel is used in internal combustion engines, it can play a 

massive role in reducing fossil fuel demand, as well as fossil fuel’s adverse effect on 

environment and human health (Mallikappa et al., 2012; Ng et al., 2012; Tan et al., 2012).  

 

Biodiesel, is known as fatty acid methyl ester, is produced from animal fats or vegetable 

oils by using transesterification process in the absence or presence of any catalyst. If 

vegetable oils are used directly in engine, it may cause various engine problems such as 

carbon deposits on both piston and head of engine, injectors coking and also excessive 

engine wear (Srivastava and Prasad, 2000). For these reasons, vegetable oils must be 

refined to turn into the quality fuel. These problems can be overcome by following four 

methods: pyrolysis, dilution with hydrocarbons blending, Micro-emulsion, and 

transesterification (Demirbas and Demirbas, 2007; Demirbas, 2008, Balat and Balat, 2010; 

Chauhan et al., 2010; Lin et al., 2011). The process of thermal fragmentation of the organic 
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substances can be classified in two conditions: absence of oxygen and presence of a catalyst 

is known as Pyrolysis. This process is an effective, waste less, simple and pollution free 

process (Singh and Singh, 2010). The process which is used to reduce the viscosity of the 

vegetable oils and also to improve the performance of the engine is known as dilution 

process. In this process, there is no need of chemical reaction (Balat and Balat, 2010). 

Micro-emulsion is defined as a colloidal equilibrium dispersion of optically isotropic fluid 

microstructure with dimensions generally ranging from 1–150 nm and developed 

impulsively from two typically immiscible liquids and one and more ionic or more ionic 

amphiphiles.  In transesterification process, a chemical reaction is observed between 

vegetable oil and alcohol in the presence of a catalyst. The resultant biodiesel is 

biodegradable, non-explosive, renewable, non-flammable, non-toxic and also environment 

friendly (Lee et al., 2013).  The major advantages of biodiesel are it can be blended with 

diesel fuel at any proportion and there is no need of any kind of engine modification needed 

to use these blends in the engine (How et al., 2012; Shahabuddin M et al., 2012). 

Furthermore, biodiesel contains no sulphur and also produces less harmful emission to the 

environment compared to diesel fuel. Worldwide, there are more than 350 prospective oil-

bearing crops, among which Jatropha curcas, rapeseed, soybean, palm, sunflower, 

safflower, cottonseed and peanut oils are regarded as potential alternative feedstocks 

(Demirbas, 2007; Parawira, 2010; Atadashi et al., 2012). On the other hand, some other 

non-edible oils such as Calophyllum inophyllum, Moringa oleifera, Sterculia foetida, 

Madhuca indica (Mahua), Croton megalocarpus and Pongamia pinnata etc. are also 

gaining popularity all over the world. The specification and technical regulation of 

biodiesel are set by USA as ASTM 6751- 02 or by the European Union as EN 14214. 
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1.5 Research Objectives 

The main objectives of this investigation are: 

1. To produce biodiesel from crude edible (Palm) and non-edible (Jatropha curcas 

and Moringa oleifera) oils 

2. To characterize the Palm, Jatropha curcas and Moringa oleifera oil biodiesel. 

3. To study the effect of blending on physico-chemical properties of Palm, Jatropha 

curcas and Moringa oleifera biodiesel. 

4. To study the performance and emission characteristics of Palm, Jatropha curcas 

and Moringa oleifera biodiesel blended fuel in a multi cylinder diesel engine. 

 

1.6 Scope of the Work 

This study explores the potentiality of available edible and non-edible feedstocks in 

Malaysia from which biodiesel can be produced. At present, in Malaysia, palm oil is the 

main crop for biodiesel. Malaysian Government has agreed to use 40% (~6 million tonnes) 

of palm oil production (15.8 million tonnes) to produce biodiesel. Recently, Jatropha curcas 

has drawn the attention of the Malaysian Government. They have planned to build a 

demonstrative project on cultivation of Jatropha curcas to establish the economic feasibility 

study of the crop for biodiesel production. As Malaysia has sufficient area of land and 

possesses good climatic condition, it is conducive to cultivate Jatropha; this feedstock can 

be the best candidate for future biodiesel production. 

On the other hand, Moringa oleifera have native distribution in Malaysia. The aim of this 

study is to produce biodiesel from palm, Jatropha curcas and Moringa oleifera oil as a 

promising biodiesel feedstock for Malaysia. This was followed by characterizing the fuel 
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properties of produced palm, Jatropha curcas and Moringa oleifera biodiesel and their 

blends with diesel. Finally, engine performance and emission characteristics of palm, 

Jatropha curcas and Moringa oleifera biodiesel blends (B5 to B20) have been conducted in 

an unmodified diesel engine and compared with diesel fuel. Data from all of the tests 

includes crude oil properties, biodiesel production, biodiesel properties, blending effect on 

fuel properties, engine performance and emission analysis will be correlated and a 

conclusion will be made based on the all findings.  

 

1.7 Organization of Dissertation 

This dissertation is made up of five chapters. The chapters are organized as follows:  

Chapter 1 provides a brief introduction or overview of the research topic. It starts with 

giving an introduction to global energy scenario; Malaysian energy scenario, followed by a 

background of the study that shows the potential of biodiesel as a renewable energy sources 

and finally the objectives and scope of the study. 

 

Chapter 2 provides a literature review for the objective based study. It starts with giving a 

brief discussion about the diesel engine combustion followed by historical background of 

biodiesel evolution, the sources of biodiesel, production of biodiesel, standards & 

properties of biodiesel, advantages & disadvantages of biodiesel. The next part 

comprehensively discusses the impact of biodiesel on engine performance & emission 

characteristics. 

 

Chapter 3 explains in detail the research methodology and design of experiments. Besides 

methods which were applied to test the feedstocks’ properties, blending effect on fuel 
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properties, blending, engine performance and emission etc. are explained in brief in this 

chapter.  

 

Chapter 4 is dedicated to present all the results that have been obtained from the 

experimental tests and analysis. Moreover, the findings of the study followed by a detailed 

discussion and analysis of all results presented along with comparing them with the existing 

results presented in the literature. 

 

Chapter 5 provides a summary of the key findings in the light of the research and puts some 

recommendations for the future studies.  
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2 CHAPTER 2  

LITERATURE REVIEW 

 

2.0 Introduction 

Quite a significant number of selective literatures have been reviewed in order to critically 

compare the feasibilities of these target feedstocks (i.e. Palm, Jatropha curcas and Moringa 

oleifera) with other popular biodiesel feedstocks like sunflower, rapeseed, pongamia, 

Calophyllum inophyllum  in different parameters such oil properties, production process, 

biodiesel properties and standards, engine performance and emission. On selecting 

references, only highly rated journals with scientific references, Society of Automotive 

Engineers (SAE) technical notes are taken and some information are gathered from reports 

from renowned organization like International Energy Agency (IEA), Malaysian Palm Oil 

Board (MPOB), National Energy Board (NEB), National Institute of Standards and 

Technology (NIST). The experimental results as well as reason behind of these results are 

analyzed to find the jest.  

  

2.1 Impact of Diesel Engine Emission on Environment and Human Health 

The emissions which are produced due to combustion of petroleum derived fuel have an 

adverse effect on environment and human health. It is reported by the united nation 

intergovernmental panel that global warming is increasing due to the greenhouse gas 

emission including methane, nitrogen oxides and carbon dioxides. Liaquat et al. (2010) 

reported that if the average global temperature is increased by more than 2° C, many people 
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about hundreds of millions of people will lose their lives. Carbon monoxide (CO), 

hydrocarbon (HC) and formaldehyde (HCHO), Oxides of nitrogen (NOx), particulate matter 

(PM) and organic gases other than methane (Non-Methane Organic Gases, i.e. NMOG) 

which are emitted from internal combustion engine has been identified as harmful to the 

human health and environment degradation. Table 2.1 shows the impact of exhaust 

emissions on human health. 

 Table 2.1: Impact of Diesel Engine Emission on Human Health 

Exhaust  

Emissions 

Impact on Health References 

PM Lung cancer and cardiopulmonary deaths (Zhang 2010) 
NOx Irritate the lungs and cause oedema, bronchitis 

and pneumonia; and result in increased 
sensitivity  to dust and pollen in asthmatics 

(Faiz 1990) 

CO Its affects fetal growth in pregnant women and 
tissue development of young children. It has a 
synergistic action with other pollutants to 
promote morbidity in people with respiratory or 
circulatory problems. 

(Faiz 1990) 

HC Eye irritation, coughing and sneezing, 
drowsiness and symptoms akin to drunkenness. 
Some hydrocarbons have a close affinity for 
diesel particulates and may contribute to lung 
disease. 

(Faiz 1990) 

PAHs Eye and nose irritation, coughing, nausea and 
shortness of breath 

(Okona-Mensah 
2005) 

Formaldehyde Eye and nose irritation, coughing, nausea and 
shortness of breath 

(Onursal 1997) 

 

2.2 Development of Biodiesel in Malaysia 

In Malaysia, the production of biodiesel per annum upturned from 1.1 thousand barrel per 

day in 2006 to 5.7 thousand barrel per day in 2009 which shows an average increase of 

26.6% annually (USEIA, 2010). The government of Malaysia had observed the necessity of 

evolving alternative energy resources particularly on biodiesel in the long term since 1980s. 

The country is elevated as one of the pioneers in palm biodiesel industry because it 
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produces and exports largest amount of palm oil in all over the world. The palm biodiesel 

were fortified as an alternative fuel in the Malaysian transport sector, for embracing more 

renewable sources and getting rise of dependency on fossil fuels. From this time onward, 

biodiesel production in Malaysia was seen to grow promptly. In 2006, Malaysian 

government initiated the National Biofuel Policy to boost up the production and 

consumption of biodiesels. The country also professed a pledge to keep apart six million 

tons of crude palm oil to enhance the biodiesel production and make the policy fruitful. 

However, because of introducing of Envo diesel at late’ 2006, biodiesel status again 

solidified as a renewable energy source (Chin, 2011). Nevertheless the country turned back 

to the inventive mandate of utilizing B5 blend. The execution of B5 mandate was being 

delayed till the middle of 2011 and it is also limited to the Central Region of Malaysia 

(Dompok, 2010). A satisfactory status has been achieved by Malaysia in the proper truck to 

use biomass as a renewable energy source. This t can entertain as a model to the countries 

in the world having immense biomass feedstock’s (Ayob et al., 1998). Presently, Malaysia 

owns 25 biodiesel plants with total production capacity of 2.6 million tons. Most of these 

plants are placed in Peninsula Malaysia .   

  

2.3 Sources (Feedstocks) of Biodiesel 

More than 350 oil-bearing crops are recognized universally as potential sources for 

production of biodiesel. The comprehensive variety of prevailing feedstocks for biodiesel 

production is a major vital advantage. As per existing literature, feedstock acquisition 

presently considers more than 75% of biodiesel production costs as represented in Figure 

2.1. Generally, the biodiesel feedstock’s can be distributed into four major categories 

(Silitonga et al., 2011) such as  
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1. Edible vegetable oil: canola, soybean, peanut, sunflower, palm and coconut oil.  

2. Non-edible vegetable oil: Jatropha curcas, Calophyllum inophyllum, Moringa Oleifera 

and croton megalocarpus.  

3. Waste or recycled oil.  

4. Animal fats: chicken fat, pork lard, beef tallow and poultry fat 

The main feedstock for biodiesel production in Malaysia is Palm oil. The preliminary 

assessment for physical and chemical characteristics of edible and non-edible feedstocks is 

of utmost importance to judge their feasibility for imminent biodiesel production. A few 

physical and chemical properties of edible and non-edible oil feedstocks are found in the 

study of (Atabani et al., 2013) and (Sanford et al., 2011). 

 

Figure 2.1: General Cost Breakdown for Biodiesel Production 

  

2.4 Production of Biodiesel 

Currently, there are number of well-established methods which can be used to produce 

biodiesel fuel. In order to use as engine fuel, viscosity of crude oils needs to be reduced. 

This modification can be achieved through several procedures to ensure production of 

better quality biodiesel.  These four primary ways viz. blending of crude oils, thermal 
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cracking, micro emulsions, and transesterification- can be used to achieve the desired 

modification (Jain & Sharma, 2010; Leung et al., 2010). As vegetable oils have low 

volatility, high viscosity, and polyunsaturated characteristics, they cannot be directly 

applied in diesel engines (Srivastava and Prasad, 2000). There is a need of refinement to 

turn those vegetable oils into quality fuel. Four distinct methods; pyrolysis, dilution with 

hydrocarbons blending, Micro-emulsion, and transesterification can overcome the 

constraint well (Demirbas and Demirbas, 2007; Demirbas, 2008; Balat and Balat, 2010; 

Chauhan et al., 2010; Lin et al., 2011).  

2.4.1 Pyrolysis 

In pyrolysis process, in the absence of oxygen, one substance is converted into another with 

help of catalyst or by means of heat. The vegetable oils, natural fatty acids, animal fats, as 

well as methyl ester of fatty acids can be used for pyrolysis. Pyrolysis process is simple, 

effective, pollution free and waste less (Singh and Singh, 2010).  

2.4.2 Blending of Crude Oils or Dilution  

To resolve the problem of high viscosity of crude vegetable oils, they can be blended 

directly or diluted with diesel fuel to increase the viscosity for using in compression 

ignition engines. In 1980, Caterpillar Brazil maintained total power using a 10% mixture of 

vegetable oil without altering the engines. Also, a blend of 20% vegetable oil with 80% 

diesel fuel was also successfully reported by (Singh and Singh, 2010). Dilution is a process 

in which without any chemical reaction reduction of viscosity of the vegetable oils as well 

as improvement in engine performance can be achieved (Balat and Balat, 2010).  

2.4.3 Micro-Emulsification 

Micro-emulsion is demarcated as a colloidal equilibrium dispersion of optically isotropic 

fluid microstructure usually ranging from 1–150 nm dimensions formed instinctively from 
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two normally immiscible liquids together with one or ionic amphiphiles (Moser, 2009). The 

micro-emulsification process can be used to lessen the viscosity of vegetable oil. Micro 

emulsions are clear and stable isotropic fluids containing three types of components such as 

oil phase, aqueous phase and surfactant. A complex mixture of olefins and hydrocarbons 

are the constituent of the oil phase whereas salts are constituents of the aqueous phase. 

Aqua phase also may contain other ingredients. Spray characteristics can be improved by 

this ternary phase through quick-tempered vaporization of low boiling components in 

micelles. Limitation of maximum viscosity can be met by all micro-emulsions using 

butanol, hexanol and octanol (Jain and Sharma, 2010).   

2.4.4 Transesterification 

Adopting the transesterification process, the triglyceride can nicely be converted into 

monoester. In this process, when a catalyst is existent, three consecutive reversible 

chemical reactions, involving triglycerides and alcohol, produce esters and glycerol. The 

inclusive transesterification reaction can be deliberated by three consecutive and reversible 

equations (2.1-2.3) 

Triglyceride (TG) + ROH ↔ Diglycerides (DG) + RCOOR1……………………….. (2.1) 

Diglycerides (DG) + ROH ↔ Monoglyceride (MG) + RCOOR2…………………… (2.2) 

Monoglyceride (MG) + ROH ↔ Glycerol + RCOOR3……………………………… (2.3) 

To reduce the reaction time and to enhance reaction rate usually a catalyst is chosen. There 

are three common kinds of catalysts in the ester reaction: lipase catalysts, acid catalysts, 

and alkali catalysts. Each catalyst has its own advantages and disadvantages in the whole 

reaction process. As transesterification process is reversible, in order to shift equilibrium 

towards product side excess alcohol is used. Hence ester and crude glycerol are produced 

from a fruitful transesterification reaction produces. In this process, glycerin recovery 
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shows its vital importance because of its frequent applications in daily products (Ramadhas 

et al., 2005a). The transesterification reaction can be catalyzed by alkalis, acids or enzymes 

(Demirbas, 2005).   

Amongst the four techniques, transesterification is the most promising technique to resolve 

the higher viscosity issues. At present, transesterification is widely available technique for 

industrialized biodiesel production due to its higher conversion efficiency and lower cost 

(Balat and Balat, 2010; Jain and Sharma, 2010; Parawira, 2010). Details classification of 

transesterification process has shown in Figure 2.2.  

  

2.5 Factors Affecting the Transesterification Process 

The transesterification reaction is affected by several parameters reliant on the reaction 

environments. If the parameters are not optimized, the reaction may either be incomplete or 

the yield is lessened to a momentous amount. The most imperative parameters affecting the 

transesterification process are revealed as below: 

� Moisture, FFA and water content. 

� Kind of alcohol   

� Molar ratio applied 

� Sort and deliberation of catalysts. 

� Reaction temperature  

� Reaction time. 

� Speed and method of stirring. 

� Purification process. 

� Mixing strength. 

� Influence of using organic co-solvents. 
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Figure 2.2: Classification of Transesterification Process 

 

2.6 Standards and Properties of Biodiesel 

Quality standards for producing, storing and marketing of biofuel are being technologically 

advanced and employed worldwide in order to maintain the end product quality and also to 

ensure consumers’ confidence. Austria was the first nation in the world which defined and 

approved the standards for rapeseed oil methyl esters as a diesel fuel. At present the US and 

the EU standards are the most referred standards followed by standards from other biofuel 
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producing countries. The US and EU standards are shown in Table 2.2. The compositions 

of fatty acid in different biodiesel fuels are presented in Table 2.3.   

 Table 2.2: ASTM And EN Specifications for Biodiesel (B100) (Silitonga et al. 2011)  

Properties ASTM D 6751  EN 14214  
  Limit Method     Limit Method 
Density   870–890 kg/m3 ASTM D4052-

91 
860–900 kg/m3 EN ISO 3675, EN 

ISO 12185 
Flash point 130 ◦C minimum ASTM D93 >101 ◦C 

(minimum) 
EN ISO 3679 

Viscosity @ 
40 ◦C 

1.9–6.0 mm2/s ASTM D445 3.5–5.0 mm2/s EN ISO 3140 

Cloud point Report to 
customer 

ASTM D2500 Based on national 
specification 

EN ISO 23015 

Copper strip 
corrosion 

Class 3 
maximum 

ASTM D130 Class 1 rating EN ISO 2160 

Cetane 
number 

47 (minimum) ASTM D613 51(minimum) EN ISO 5165 

Water 
content and 
sediment 

0.050 (%v)  
maximum 

ASTM D2709 500 mg/kg  
(maximum) 

EN ISO 12937 

Acid 
number 

0.50 mg KOH/g 
maximum 

ASTM D664 0.50 mg KOH/g  
(maximum) 

EN 14104 

Free 
glycerin 

0.02% (m/m) 
maximum 

ASTM D6584 0.02% (m/m)  
(maximum) 

EN 1405/14016 

Total 
glycerol 

0.24% (m/m) 
maximum 

ASTM D6548 0.25% (m/m) EN 14105 

Methanol 
content 

0.20% (m/m) 
maximum 

EN 14110 0.20% (m/m)  
(maximum) 

EN 14110 

Distillation 
temperature 

360 ◦C ASTM D1160 -- -- 

Oxidation 
stability 

3 h minimum EN ISO 14112 6 h (minimum) EN ISO 14112 

Carbon 
Residue 

0.05 maximum 
wt.% 

ASTM D 4530 0.30%(m/m)  
(maximum) 

EN OSO 10370 

Iodine 
number 

-- -- 120 g iod/100 g  
(maximum) 

EN 14111 

 

The properties of biodiesel are designated by physicochemical properties such as density, 

viscosity, oxidation stability (OS), flash point (FP), cetane number (CN), Cloud point (CP), 

Pour point (PP), Cold filter plugging point (CFPP) and lubricity etc. Foremost 

characteristics of biodiesel are discussed as follows:  
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 Table 2.3: Fatty Acid Compositions of Different Biodiesel Fuel 

FAME C12:0 C14:0 C 16:0 C18:0 C 18:1 C18:2 C18:3 C20:0 C22:0 C24:0 

Rapeseed 
oil ME 

- - 6 2.4 59.3 28.6 2.7 0.9 - - 

Sunflower 
oil ME 

-  -  8 4.7 28.9 56.5 0.7 - 1.2 - 

Palm oil 
ME 

- 1.3 44.7 5.4 37.2 10.8 - 0.5 - - 

Soy oil 
ME 

- - 13 4.9 23.9 49.6 7.3 0.5 0.8 - 

Milk 
thistle oil 
ME 

- - 10 6.2 22.7 50.7 1.2 4.1 3.9 1.2 

Linseed 
oil ME 

- - 6.1 4.6 17.5 15.9 55.9 - - - 

Camelina 
oil ME 

- - 6.7 3 14.3 18.2 48.4 2.3 0.7 6.5 

Jatropha 
oil ME 

- - 17.7 7.9 37.8 36.6  - - - 

Canola oil 
ME 

- - 5.6 2.4 63.6 23.4 3.2 1 0.8 - 

Animal 
Fat ME 

- 2.3 29.8 17.1 37.7 11.5 1.7 - - - 

Lard ME 0.4 2.3 29.6 20 33.2 13.1 1.5  - - 

 

2.7 Impact of Biodiesel from Various Feedstocks on Engine Performance and 

Emissions Characteristics 

2.7.1 Rapeseed 

Ekrem (2010) investigated the performance, emission and combustion characteristics a 

diesel engine using pure rapeseed biodiesel and 5%, 20% and 70% biodiesel blends at full 

load. The results show that there are no noticeable differences in the measured engine 

power output between diesel and B5 fuels. However, the measured engine power for other 

blends is lower than that of the diesel fuel. Moreover, the use of biodiesel produces lower 

CO and smoke opacity and higher BSFC, higher exhaust gas temperatures and NOx 

emissions compared to diesel fuel. It was found that B20 gives the best brake thermal 

efficiency of engine. The test results indicated that the only low concentration blends in 

terms of performance efficiency and environmentally friendly emissions could be 
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recognized as the potential candidates to be certificated for full scale usage in unmodified 

diesel engines.  

2.7.2 Soybean 

Qi et al. (2010) studied the combustion and performance characteristics of a direct injection 

engine fueled with biodiesel from soybean oil and its different blend (B0, B30, B50, B80, 

B100). The test result showed a small increase in BSFC for biodiesel and its blends due to 

the lower heating value of biodiesel. The BTE of biodiesel and its blends are slightly lower 

than that of diesel at low engine loads keeping the same trend to the higher engine load. 

The significant improvement in reduction of carbon monoxide (CO) and smoke were found 

for biodiesel and its blends at high engine loads. HC emissions of biodiesel and its blends 

have little difference from those of diesel fuel. Nitrogen oxides (NOx) were slightly higher 

for biodiesel and its blends. This is because of the increases the combustion chamber 

temperature due to higher oxygen content in biodiesel. The authors concluded that the 

excess oxygen contents of biodiesel play a key role in engine performance and biodiesel is 

proved to be a potential fuel for complete or partially replacement of diesel fuel. 

 

2.7.3 Mahua (Madhuca Indica) 

 Saravanan et al. (2010) investigated the performance and emission of a diesel engine 

fuelled with Madhuca indica biodiesel. Experiments were conducted on a single cylinder, 

four strokes; air cooled, direct injection, compression ignition engine using Mahua oil 

methyl ester and diesel as fuel. The result showed that at full load, the power loss was 

around 13% along with 20% increase in fuel consumption with Mahua oil methyl ester due 

to the lower heating value and higher viscosity of biodiesel fuel. Emissions such as carbon 

monoxide, hydrocarbons were lesser for Mahua ester compared to diesel by 26% and 20% 
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respectively due to the higher oxygen contents which promoted combustion. Oxides of 

nitrogen were lesser by 4% for the ester compared to diesel due to the lower in cylinder 

temperature. Besides, smoke intensity was reduced by 15% for MOME at full load. It was 

also observed that the exhaust gas temperature lowered for MOME blended fuel 

combustion compared to that of diesel. 

 

2.7.4 Jojoba 

Saleh (2009) studied the performance and exhaust emissions of a two-cylinder, naturally 

aspirated, four-stroke direct injection diesel engine operating with diesel and Jojoba methyl 

ester (JME). This was followed by studying the effect of exhaust gas recirculation (EGR). 

The result showed that the engine power and brake thermal efficiency with JME are slightly 

higher than the diesel. The BSFC with JME is lower (8.2-9.8%) than that of diesel. Author 

also found that JME also give higher concentration of NOx of 14% at 1600 rpm and 16% at 

1200 rpm. At lower engine speed JME produce higher HC and CO emissions. At high 

speed, there is no appreciable difference between HC concentration with JME and diesel 

fuel while CO of JME is lower than diesel. The results also showed that when the EGR rate 

is increased, the NOx emissions decreased. However, CO and HC emissions increased. The 

optimum EGR level is 5-15% for all engine speeds and loads and that may be favorable in a 

trade-off between HC, CO and NOx emissions with little economy penalty. 

 

2.7.5  Neem 

 Sharma et al. (2009) studied the performance and emissions of a direct injection diesel 

engine fueled by Neem-diesel blend. They reported that neem biodiesel gives slightly lower 

brake thermal efficiency (BTE) and higher brake specific fuel consumption (BSFC) than 
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diesel at all loads. A significant reduction in the NOx, smoke density, CO and unburned 

hydrocarbon (UHC) emissions with compare to diesel fuel was observed. 

 

2.7.6 Pistacia Chinensis Bunge 

Zhihao et al. (2011) studied the emission characteristics of a diesel engine fuelled with 

Pistacia Chinensis Bunge Seed biodiesel blend. The result showed that CO, HC and exhaust 

smoke emissions decrease with the increase of the proportions of biodiesel in the blends 

due to the higher oxygen contents and absence of sulphur in the blend. The NOx emissions 

are reduced as the engine operating with B10 and B20, but slightly increased with B30 due 

to the higher oxygen contents which increases the in cylinder temperature. 

 

2.7.7 Beef Tallow 

Selvam and Vadivel (2012) studied the performance and emission of a diesel engine using 

beef tallow biodiesel (B100) and its blends (B5, B25, B50, B75) with diesel at different 

load condition and constant speed of 1500 rpm. The test result indicates that blended fuels 

give a slight decrease in BTE and increase in BSFC compared to that of diesel fuel due to 

the higher density and lower heating value of biodiesel fuel. The emission analysis shows a 

radical reduction in carbon monoxide (CO), unburned hydrocarbon (UHC) and smoke 

density for all biodiesel blended fuel due to the higher oxygen contents in biodiesel fuel. 

The maximum reduction in CO, HC and smoke emission with neat biodiesel are 24.7%, 

32.5% and 63% respectively. However, in the case of oxides of nitrogen, there is a slight 

increase for all the blended fuels and with neat biodiesel (6.35%) compared to diesel fuel. 

The authors concluded that methyl esters of beef tallow and its blends with diesel fuel can 
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be used as an alternative fuel for diesel in direct injection diesel engines without any 

significant engine modification. 

 

2.7.8 Palm 

Karavalakis et al. (2009) investigated regulated, unregulated exhaust emissions and fuel 

consumption of diesel fuel and palm based biodiesel blends at proportions of 5%, 20% and 

40% (v/v). A Euro 3 compliant light duty vehicle was tested on a chassis dynamometer 

over the new European driving cycle (NEDC) and the non-legislated Athens driving cycle 

(ADC). The experimental results showed that the addition of biodiesel increased NOx 

emissions. This increase was more significant with the use of B20 over both cycles (13.7% 

and 23.2% over the NEDC and ADC, respectively). Biodiesel addition resulted to increases 

in CO emissions with the highest increase being 11.78% for B20 over NEDC and 11.62% 

for B40 over ADC. HC emissions increased with biodiesel over the NEDC, while over the 

ADC the addition of biodiesel led to reductions with the highest being with the use of B40 

(about 26.47%). The same observation holds for PM emissions. Over the ADC the most 

beneficial reduction was in the order of 50% for the B40. CO2 emissions and fuel 

consumption followed similar patterns. B20 led to increases up to 6.16% and 2.94% in fuel 

consumption over NEDC and ADC, respectively. Some PAH compounds demonstrated an 

increase with biodiesel, while nitro-PAHs decreased with most of them being almost 

undetectable. Most carbonyl emissions decreased with biodiesel. 

Kalam et al. (2011) studied emission and performance characteristics of an indirect ignition 

diesel engine fuelled with 5% palm (P5) and 5% coconut oil (C5) with diesel fuel at 

constant 85% throttle position. The results show that there are reductions in brake power of 

1.2% and 0.7% for P5 and C5 respectively compared with B0. This reduction is mainly 
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owed to their respective lower heating values. Compared with B0, P5 increases exhaust gas 

temperature by 1.42% and C5 decreases it by 1.58%. However, both C5 and P5 reduce CO 

by 7.3% and 21% respectively and HC by 23% and 17% respectively. However, C5 

reduces 1% and P5 increases 2% of NOx emission. It was noted that P5 produces higher 

CO2 than C5 and B0 fuels. This is mainly the effect of high unsaturated fatty acid in palm 

oil. 

Leevijit and Prateepchaikul (2011) studied the performance and emission characteristics of 

IDI-turbo automobile diesel engine operated using degummed, deacidified mixed crude 

palm oil-diesel blends at various loads and speeds. The test result showed that all blends 

produce the same maximum brake torque and power. A higher blending portion results in a 

little higher brake specific fuel consumption (+4.3% to +7.6%), a slightly lower brake 

thermal efficiency (-3.0% to -5.2%), a slightly lower exhaust gas temperature (2.7% to 

3.4%), and a significantly lower amount of black smoke (-30% to -45%). The CO emission 

of the 20 vol. % blend is significantly lower (-70%), and the NOx emissions of all blends 

are little higher. The authors concluded that blending of degummed, deacidified palm oil in 

diesel up to 40 vol. % has been found to be satisfactory for short-term usage in the IDI-

turbo automotive diesel engine. 

Ng et al. (2012) studied the engine performance using neat palm oil methyl ester, B50 and 

neat diesel (B0) at different speeds and load conditions. The result showed that SFC for 

palm oil methyl ester is higher than diesel fuel due to lower energy contents. They also 

found that neat palm oil methyl ester (B100) reduces tailpipe NO, UHC and smoke opacity 

by 5.0%, 26.2% and 66.7%, respectively due to improved combustion, higher cetane 

number and oxidation of soot. However, it was found that PME content in the fuel blend 

did not significantly affect tailpipe CO emission, with only a maximum 0.89% reduction 

achieved with the B50 blend. The authors concluded that despite the shortcoming of PME 
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in its higher specific fuel consumption, its overall reduction of regulated tailpipe emissions 

makes PME green technically viable alternative to fossil diesel in both neat and blended 

forms for use in light-duty diesel engines. 

 

2.7.9 Jatropha Curcas 

Sahoo et al. (2009) studied the performance and emission characteristics of Jatropha based 

biodiesel as fuel in a tractor engine. During the part throttle performance test they found 

best brake specific fuel consumption (BSFC) improvement with jatropha biodiesel blend. 

They also found the significant reduction in smoke, hydrocarbon (HC), particulate matter 

(PM) with biodiesel and their blend but slightly increase of oxides of nitrogen (NOx) and 

carbon monoxides (CO) emissions. The reason of increasing NOx is the presence of oxygen 

in biodiesel which causes an increase in combustion gas temperature resulting in increasing 

NOx emission. 

Huang et al. (2010) studied the emission characteristic of a diesel engine using jatropha 

biodiesel compared with diesel fuel. They reported that the performance and thermal 

efficiency of the engine run by biodiesel is comparable with that of diesel fuel. Emissions 

are reduced to some extent when using the biodiesels. CO emissions are reduced 20-25% 

when the engine runs at engine high loads and also 17-23% HC emissions are reduced 

compared to diesel fuel. NOx emissions are also reduced at different engine loads. Smoke 

emissions from the engine fuelled by the biodiesels are lowered significantly than that 

fuelled by diesel.  

Rao (2011) studied the performance and emission analysis of pure Jatropha biodiesel and 

preheated jatropha biodiesel fuel in a single cylinder diesel engine and compared with that 

of diesel fuel. The results showed that the biodiesel performance and emissions are lower 
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than that of diesel fuel. However, the NOx emission of Jatropha biodiesel is more than that 

of diesel fuel. These high NOx emissions are due to the presence of unsaturated fatty acids 

and the advanced injection caused by the higher bulk modulus (or density) of Jatropha 

biodiesel. 

Chauhan et al. (2012) evaluated the performance and exhaust emissions using 5%, 10%, 

20% and 30% Jatropha biodiesel blends with diesel fuel on an unmodified diesel engine. 

The experimental results show that engine performance with biodiesel of Jatropha and its 

blends were comparable to the performance of diesel fuel. In case of all fuel blends, brake 

thermal efficiency, HC, CO, CO2 and smoke density were lower while BSFC and NOx were 

higher than that of diesel. The authors concluded that biodiesel derived from Jatropha and 

its blends could be used in a conventional diesel engine without any modification. However 

there are various parameters which can be evaluated in future such as the prediction of best 

blend with respect to the various engine parameters by varying spray time of fuel using 

common-rail fuel injection. 

 

2.7.10 Moringa Oleifera 

Rashid et al. (2008) evaluated the Moringa oleifera oil as a potential feedstock for biodiesel 

production in Pakistan. They produced biodiesel using two-step process including 

pretreatment and esterification process. They found that the methyl esters (biodiesel) 

obtained from Moringa oil exhibit a high cetane number of approximately 67, one of the 

highest found for a biodiesel fuel. Other fuel properties of biodiesel derived from M. 

oleifera such as cloud point, kinematic viscosity and oxidative stability were also meet 

biodiesel standards such as ASTM D6751 and EN 14214. Authors concluded that, M. 

oleifera oil appears to be an acceptable feedstock for biodiesel. 
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Rajaraman et al. (2009) reported on the performance and emission characteristics of 

Moringa oil methyl ester and its blend (B20-B100) in a DI diesel engine at various load 

condition. They reported that, in comparison to diesel fuel Moringa oleifera methyl ester 

blends have lower brake thermal efficiency (BTE) because of having lower heating value, 

higher viscosity and density than diesel fuel. In case of engine emission Moringa oleifera 

methyl ester blend produce lower HC, CO, PM emission but higher NOx emission 

compared to diesel fuel. 

Da Silva et al. (2010) studied the characterization and production of biodiesel from 

Moringa oleifera oil. They collected seeds from the northeast of Brazil, evaluated some 

properties and chemical composition of the oil, as well any potential application in 

biodiesel production. They concluded that the material may be used as a fuel in diesel 

engines, mainly as a mixture to petro diesel. 

Kafuku and Mbarawa (2010) evaluated the Moringa oleifera oil from Tanzania as a 

potential raw material for biodiesel production and identified optimal reaction condition for 

biodiesel production. Experimental results of their study showed that larger catalyst 

amounts favor the saponification process while greater methanol amounts hinder the 

separation of glycerin from methyl esters. Moreover, at optimal catalyst and methanol 

amounts, there is a correlation between reaction time, temperature and agitation speed. At 

higher temperatures and agitation speed the reaction takes a shorter time to complete while 

at lower temperature and agitation speed the reaction needs a longer time to achieve 

completion. The best combination of an alkali-catalyzed transesterification condition is: a 

methanol to oil ratio of 30 wt%; 1.0 wt% of KOH; a temperature of 60°C; an agitation 

speed of 400 rpm and a reaction time of 60 min: with these conditions the optimal MOME 

yield achieved was 82%. Properties of MOME met minimum requirements of both the 
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ASTM D6751 and EN 14214 biodiesel standards despite the finding that MOME showed 

high values of cloud and pour points of 10°C and 3°C respectively. 
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3 CHAPTER 3  

METHODOLOGY AND EXPERIMENTAL SET UP 

 

3.0  Introduction 

 Research methodology is a crucial factor to bring in an effective research with accredited 

results. It can be define in many ways such as procedures, ways, methods and techniques 

that are applied to incorporate and gather all relevant information for the research. 

 

This chapter explains how the whole research was conducted and shows the methods by 

which crude oil collection and crude oils characteristics, biodiesel production, fatty acid 

composition, FT-IR analysis and physical and chemical properties of Palm, Jatropha 

curcas and Moringa oleifera biodiesel were conducted according to the ASTM D6351 and 

EN 14214 standards. The opportunity of biodiesel-diesel blending (10-90% by volume 

blend) to improve some of the properties of each feedstock was also studied in this 

research. The properties of biodiesel blends were estimated using the polynomial curve 

fitting method. Moreover, 13 fuel samples were selected to evaluate their performance in a 

multi-cylinder diesel engine. 

 

3.1  Structure of Research Methodology 

This paper aims to produce biodiesel from various edible and non-edible oils that are 

readily available in the Malaysia or have native distribution to Malaysia. Figure 3.1 gives a 

summary of the implemented flow chart of this paper. 
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Figure 3.1: Flow Chart of the Research Methodology 
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3.2 Selection of Biodiesel Feedstocks 

In this study biodiesel feedstock was selected on the basis of available sources or has native 

distribution in Malaysia. So there are three types of biodiesel feedstocks such as Palm, 

Jatropha curcas and Moringa oleifera have been selected. Figure 3.2 shows some pictures 

of palm, Moringa oleifera and Jatropha curcas. 

 

Figure 3.2: Pictures of Palm, Jatropha Curcas and Moringa Oleifera Feedstocks (Atabani 

et al. 2013) 
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The reason of choosing these feedstocks is that Malaysia is the world’s second largest palm 

produce country and the production of biodiesel in Malaysia is palm oil based. Recently 

Malaysian government has taken initiative to introduce Jatropha curcas as it non edible 

feedstocks and doesn’t create food versus fuel conflict. Moringa oleifera still is not 

introduced in Malaysia as a biodiesel feedstock but it has a native distribution in Malaysia. 

The crude oils of Moringa oleifera oil was obtained from personal communication and 

Palm and Jatropha curcas were purchased from Forest research Institute, Malaysia 

(FRIM).   

 

3.3 Biodiesel Production   

Free fatty acid (FFA) and acid values are the main identifier of production process. If the 

crude oil contains higher acid value then two step processes is required because of forming 

fatty acid salts during the conversion of FFA into FAME (Fatty acid methylester) using 

alkaline catalyst. The fatty acid salt prevents to separate FAME layer from glycerin.  

 

The acid values of crude Palm, Jatropha curcas and Moringa oleifera oils were measured 

to be 3.47, 10.7 and 8.62 mgKOH/g oil respectively. Therefore two step (acid-base catalyst) 

processes were selected to convert crude Jatropha and Moringa oleifera oil into Jatropha 

and Moringa oleifera biodiesel and only transesterification process was selected to convert 

palm biodiesel. The summary of biodiesel production process is given in Table 3.1. 

However, production of biodiesel from these crude oils has been conducted as follow: 

(a) Pre-treatment process. 

(b) Esterification process. 

(c) Transesterification process. 
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(d) Post-treatment process 

 

The apparatus used for biodiesel production was a small scale laboratory reactor consisting 

of 1L three necked round bottom flask, condenser to recover methanol, thermometer and 

heating plate equipped with a magnetic stirrer. A separating funnel with a valve at the 

bottom was used for collection of the final products. 

 

Table 3.1: Summary of Biodiesel Production Process   

 

3.3.1 Pretreatment Process 

In this process, crude Palm, Jatropha curcas and Moringa oleifera oils were entered in a 

rotary evaporator and heated to remove moisture for 1 hour at 95°C under vacuum. 

 

3.3.2 Esterification Process 

In this process, the molar ratio of methanol to refined Jatropha curcas and Moringa 

oleifera oils were maintained at 12:1 (50% v/v). 1% (v/v) of sulphuric acid (H2SO4) was 

added to the pre-heated oils at 60oC for 3 hour under 600 rpm stirring speed in a glass 

reactor. On completion of this reaction, the products were poured into a separating funnel to 

No Process parameter Process specification 
01 Process selected 

Reaction 
temperature 
Catalyst used 

Acid-base catalyst process   
02 60°C 
03 98%  pure sulphuric acid (1%v/v) & 99% pure potassium 

hydroxides (1% m/m) 
04 
05 

Alcohol used 
Molar ratio 

Methanol  
12:1 for esterification and 6:1 for transesterification 

06 Reaction time 
Setting time 

3 hours for esterification and 2 hours for transesterification  
07 15h 
08 Stirring speed  600 rpm 
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separate the excess alcohol, sulphuric acid and impurities presented in the upper layer. The 

lower layer was separated and entered into a rotary evaporator and heated at 95°C under 

vacuum conditions for 1 hour to remove methanol and water from the esterified oil.  

 

3.3.3 Transesterification Process 

 In this process, crude palm oil and esterified Moringa oleifera and Jatropha curcas oils 

were reacted with 25% (v/v) of methanol and 1% (m/m) of potassium hydroxide (KOH) 

and maintained at 60oC for 2 hours and 600 rpm stirring speed. After completion of the 

reaction, the produced biodiesel was deposited in a separation funnel for 15 hours to 

separate glycerol from biodiesel. The lower layer which contained impurities and glycerol 

was drawn off.  

 

3.3.4 Post-Treatment Process 

 Methyl ester formed in the upper layer from the previous process was washed to remove 

the entrained impurities and glycerol. In this process, 50% (v/v oil) of distilled water at 

60oC was sprayed over the surface of the ester and stirred gently. This process was repeated 

several times until the pH of the distilled water became neutral. The lower layer was 

discarded and upper layer was entered into a flask and dried using Na2SO4 and then further 

dried using rotary evaporator to make sure that biodiesel is free from methanol and water.  
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Figure 3.3: Biodiesel Production Process (a) Crude Oil (b) Remove Moisture (c) & (d) 

Esterification (e & f) Removal of Impurities (g) Removal of Methanol and Water (h) 

Transesterification (i) Settling (j) Filtering (k & l) Biodiesel & Glycerol  respectively   
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3.4 Determination of Fatty Acid Composition 

In this test 0.25g of each sample samples was diluted with 5ml n-heptane. The solution was 

then entered into GC (GC 7890A, Agilent technologies). Table 3.2 shows the operating 

condition used to perform this analysis. 

 

Table 3.2: GC Operating Conditions 

Property Specification 

Carrier gas He at 23.878Psi 
Linear velocity 44.124cm/s at 100°C 
Flow rate Air = 450mL/min  

H2 = 40mL/min  
He = 20ml/min 

Detector temperature 250°C 
Column head pressure 23.878Psi 
Column dimensions 30m x 0.25mm x 0.25µm 
Injector Type = split and splitless 

Split ratio 50:1 
Injection volume 0.3µL 

Temperature Ramp 1 100°C hold for 0 min 
Temperature Ramp 2 10°C/min to 250°C hold for 5 min 

 

 

3.5 FT-IR Analysis 

Biodiesel from Palm, Jatropha curcas and Moringa oleifera oils were characterized by FT-

IR, using a Perkin Elmer biodiesel FAME analyzer equipped with the MIR TGS detector in 

the range 4000-400 cm-1 and processed with the computer software program spectrum. The 

resolution was 4 cm-1 and 8 scans.   

3.6 Fuel Properties Measuring Procedure and Equipment 

The quality of oil is expressed in terms of the fuel properties such as viscosity, density, 

calorific value, CCR, flash point, pour point, cloud point and cold filter plugging point etc. 



36 

 

The important physical and chemical properties of the crude oils and their methyl esters 

were tested according to ASTM D6751 standard.   

 

3.6.1 Dynamic Viscosity, Kinematic Viscosity, Density and Viscosity Index 

Measurement 

Density is defined as the ratio of mass to volume and Viscosity is the measure of the flow 

resistance of a fluid. It provides an estimation of the time required for a given volume of 

fuel to flow through a calibrated glass capillary tube under gravity.  In this study, an Anton 

Paar automatic viscometer (SVM 3000) was used as shown in Figure 3.4 to measure the 

dynamic viscosity (mPa.s) and density (kg/cm3) of the fuel according to ASTM D7042. 

From this result, the viscometer automatically calculates the kinematic viscosity and 

delivers measurement results which are equivalent to ISO 3104 or ASTM D445. Biodiesel 

viscosity was measured at +40°C and 100°C. The viscosity index is an important value, 

especially in the automotive industry. The viscosity index is calculated from the kinematic 

viscosity at 40 °C and at 100 °C. The SVM 3000 covers the whole measuring range from 

less than 1 to 20 000 mm2/s. 

However, to calculate the kinematic viscosity from the dynamic viscosity, density result is 

required. For this reason, a density measuring cell in SVM 3000 has been given. Both cells 

are filled in one cycle and the measurements are carried simultaneously. However by using 

mode settings menu, selection of required standard test can be adapted from 10 predefined 

standards settings. After switching ON, a self-test and the initializing procedure will be 

performed by SVM. After that it becomes ready for measurement and will show the first 

measuring window. During the measurement, current repeat deviation for density and 

viscosity can be viewed. If the results of the first repetition are within the limits for the 
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viscosity and density, the state changes to ‘RESULT VALID’ and the display will be 

frozen. If the result is not within the limits, the repeat deviation for viscosity and density 

will be displayed and one more refill will be required unless it becomes within the limit 

automatically. Some technical data is given in Table 3.3. 

 

 

Figure 3.4: Anton Paar (SVM 3000) Viscometer Set Up 

  

Table 3.3: Technical Data for Anton Paar (SVM 3000) Viscometer 

Parameter Values 

Dynamic viscosity (mPa.s) 0.2-20000 
Density (g/cm3) 0.65-3 
Temperature (°C) 15-105 
Repeat deviation of  viscosity 0.1% 
Repeat deviation of density (g/cm3) 0.0001 
Space requirements L×W×H(mm) 440×315×220 
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3.6.2 Flash Point Measurement 

This is the minimum temperature of the fuel at which it gives off enough vapor to produce 

an inflammable mixture above the fuel surface when heated under standard test conditions. 

To obtain the flash point value of the fuel according to the ASTM D93 method, a HFP 380 

Pensky Martens flash point analyser as shown in Figure 3.5 was used. Some technical data 

of the equipment is given in Table 3.4. The flash point is determined by heating the fuel in 

a small enclosed chamber until the vapors ignite when a small flame is passed over the 

surface of the fuel. 

 

Figure 3.5: Flash Point Tester 

The equipment determines the temperature where the vapor formed by the fuel would 

create a vapor which would then be ignited by a flame source. The test is conducted by first 

step is fill the fuel sample within level 70 ml in the cup with handle. The main switch is 

turn ON and the host then connected to the flash point device. Then the cup with fuel 

sample put inside the mold, also the thermometer positioned properly. Turn on the gas and 

light up flames at the test cover with ignition. Heating switch is then turns ON and control 

heating regulator up to boiling point of the sample. Sample was stirred using the hand 
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stirrer and it was checked frequently to ensure when the flash point occurs (the flame 

exiting the device would burn). Temperature reading then recorded at this stage for flash 

point of the fuel sample. 

Table 3.4: Technical Data for Flash Point Tester 

Parameter Values 

Temperature range Approx. +40 to +360 °C 
Ignition type Gas and electric (included) 
Stirring speeds 120 or 250 rpm (selectable) 
Sensing system Differential-thermocouple 
Gas connection  For propane/butane or natural gas (max. 0.05 bar) 
Dimension (L×W×H) 230×470×460 mm 

 

3.6.3 Calorific Value Measurement 

The heating value of all the fuel samples used in this research work was determined using 

IKA C 2000 calorimeter. IKA C 2000 calorimeter system shown in Figure 3.6 can be used 

to determine the gross calorific value of solid and liquid materials in accordance to DIN 

51900, BS 1016 T5, ISO 1928, ASTM 5468 and ASTM 4809. Some technical data of the 

calorimeter can be found from Table 3.5. 

 

 

Figure 3.6: IKA C 2000 Calorimeter 
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The combustion calorimeter measures the heat that rises from burning of fuel sample. The 

sample is weighed into a digestion vessel and filled with oxygen. The burning process is 

started by means of an ignition spark. The experiment ends when the sample is fully 

burned. By measuring the temperature increase, the heating value of the sample can be 

calculated. In more detail, it can be said that combustion process in IKA C 2000 

calorimeter takes place under defined conditions. To fulfill this condition, the 

decomposition vessel is coated with a weighed out quantity of fuel sample, the fuel sample 

is ignited, and the increase in temperature of the calorimeter system is measured. The 

specific gross calorific value of the sample is calculated from the following parameters: 

• The weight of the fuel sample 

• The heat capacity value of the calorimeter system. 

• The increase in temperature of the water within the inner vessel of the measuring 

cell. 

 

 Table 3.5: Technical Data of IKA C 2000 Calorimeter 

Parameters Value 

Duty cycle Continuous operation 
Ambient Temperature 20°C … 25°C (constant) 
Ambient relative humidity 80% 
Usage above sea level 2000 meters above sea level 
Measurement range 40,000 J 
Measuring mode  Isoperibolic 25°C 

Dynamic 30° C 
Isoperibolic 30°C 
Dynamic 25°C 

Isoperibolic measuring time  About 22 min 
Dynamic measuring time About 10 min 
Oxygen operating pressure 30 bar 
Oxygen test pressure 40 bar 
Cooling medium Water via line 
Dimensions 440 x 450 x 500 (W x D x H) 
Weight 30 kg 
Flow quantity Min. 60 liters/hour 

Max. 70 liters/hour 
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However during an experiment, the following processes occur in the measuring cell 

• The measuring cell cover starts closing automatically, once the decomposition 

vessel is immersed with the fuel sample in the inner vessel. 

• Pure oxygen (99.95%) flows into the decomposition vessel through the oxygen 

filling apparatus until the required pressure has been reached (30 bars). 

• Water from an external pressure source flows into the device and is heated up to the 

working temperature (optionally 25° C-30 °C). 

• The inner vessel is filled with temperature-controlled water (at working 

temperature). 

• The temperature of the water in the insulating outer vessel is controlled. 

• With the help of ignition device, fuel sample is ignited. 

  

3.6.4 Oxidation Stability 

Biodiesel which is produced from vegetable oils is considered more vulnerable to oxidation 

at high temperature and contact of air, because of bearing the double bond molecules in the 

free fatty acid. The biodiesel and its blends stability was measured by induction period. 

Oxidation stability of samples was evaluated with commercial appliance Rancimat 743 as 

shown in Figure 3.7 applying accelerated oxidation test (Rancimat test) specified in EN 

14112. The end of the induction period (IP) was determined by the formation of volatile 

acids measured by a sudden increase of conductivity during a forced oxidation of ester 

sample at 110 °C with airflow of 10 L/h passing through the sample. Some technical data is 

given in Table 3.6. 
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Figure 3.7: Rancimat 743   

 However during the experiment following procedure was followed:  
 

� The heating block is heated up to the 110° C temperature. 

� The measuring vessel is filled with 60 mL deionized water and placed on the 

Rancimat together with the measuring vessel cover. For long analysis times (> 72 

h), it is recommended to increase the volume to compensate evaporation loss. An 

evaporation rate of 5 … 10 mL water per day has to be taken into account. It has to 

be ensured that the electrode is immersed into the measuring solution at any time. 

� For each determination, a new reaction vessel is used. To remove particles (e.g., 

from the cardboard box) the reaction vessel is air-cleaned inside and outside by a 

sharp stream of nitrogen. Then sample is weighed directly into the reaction vessel. 

For liquid samples and for samples that melt at elevated temperatures a sample size 

of 3.0 ± 0.1 g is used. For samples with significant water content (> 5%) the sample 

size has to be increased to compensate the decrease in volume when the water 

evaporates. Ensure that the air inlet tube always immerses in the sample. Solid 

samples which do not melt should only cover the bottom of the reaction vessel. In 

this case, 0.5 … 1 g of the powdered sample is weighed into the reaction vessel. 
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� The reaction vessel is closed with a reaction vessel cover assembled with an air inlet 

tube. 

� Before the determination can be started, the temperature of the heating block has to 

be stable. The two tubing’s between Rancimat and reaction vessel and between 

reaction vessel and measuring vessel are connected. Then the reaction vessel is 

placed in the heating block and the measurement is started immediately. 

 

 Table 3.6: Technical Data of 737 Rancimat Instrument   

Parameter Values 

Sample size Liquid samples: 3.0 ± 0.1 g 
Measuring solution 60 mL 
Temperature (°C) 80-160 
Gas Flow 10 L/hr 
Evaluation Induction time 
 Evaluation sensitivity 1.0 

 

3.6.5 Cloud Point and Pour Point 

The pour point describes a procedure for testing the fluidity of a fuel at a specified 

temperature. The cloud point is defined as the temperature of a liquid specimen when the 

smallest observable cluster of wax crystals first appears upon cooling under prescribed 

conditions. An automatic NTE 450 (Norma lab, France) Cloud and Pour point tester as 

shown in Figure 3.8 was used to measure the cloud point and pour point of the samples 

according to the ASTM D2500 and ASTM D93 respectively. Table 3.7 shows some 

technical data of cloud and pour point tester. 
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Table 3.7: Technical Data of NTE 450 Cloud and Pour Point Tester 

Pour Point Cloud point 

Detection by optical fiber Detection by ultrasonic sensor 
Temperature range from -75°C to 51°C   Intervals of 1°C 
 Resolution: 1°C Resolution: 0.1°C 
Tilting intervals: every 3°C or 1°C   Temperature range from -75°C to 49°C  

 

 

Figure 3.8: NTE 450 CP and PP Tester (Norma Lab, France) 

 

3.6.6 Cold Filter Plugging Point 

This test method covers the determination of the cold filter plugging point (CFPP) of fuels 

using automated equipment. The results express an estimation of the lowest temperature at 

which a fuel will freely flow within a fuel system. An automatic NTE 450 (Norma lab, 

France) cold filter plugging point tester as shown in Figure 3.9 was used to measure the 

cold filter plugging point (CFPP) of the samples according to the ASTM D6371 standards. 

Table 3.8 shows some technical data of cold filter plugging point tester. 
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Figure 3.9: NTE 450 CFPP Tester 

  

 Table 3.8: Technical Data of NTE 450 Cold Filter Plugging Point Tester 

Parameter Values 

Detection by  Optical cell 
Temperature range   -80°C to 20°C   
Temperature measurement resolution 1°C 
Tilting intervals every 3°C   

 
 
 

3.6.7 Determination of Acid Value, the Saponification Number (SN), Iodine Value 

(IV) and Cetane Number (CN) 

Acid value is the number of milligrams of potassium or sodium hydroxide necessary to 

neutralize the free acid in 1 g of sample. The acid value can be calculated using the 

following equation: 

 �� �
��	��	�	

�
                  (3.1)         

Where,  
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MW ≡ Molecular weight of potassium hydroxide (KOH) 

N≡ Normality of sodium hydroxide (KOH) solution. 

V≡ Volume of sodium hydroxide (KOH) solution used in titration. 

W ≡ Weight of oil sample 

The saponification numbers (SN), iodine value (IV) and cetane number (CN) of the methyl 

esters of were calculated empirically from its fatty acid methyl ester compositions with the 

help of Eqs. (3.2), (3.3) and (3.4), respectively (Devan 2009b): 

 

CN= 46.3+ (5458/SV) - (0.225⋅IV)…………………………………………………………. (3.2) 

SN= SUM (560⋅Ai)/MWi ………………………………………………………..……………. (3.3) 

IV= SUM (254⋅Ai ⋅D)/MWi …........................................................................................ (3.4) 

 

Where Ai is the percentage of each component, D is the number of double bonds and MWi 

molecular mass of each component. 

 

3.7 Biodiesel-Diesel Blending 

Each test fuel blend was prepared prior to the properties test and engine test. In this respect, 

the test fuels were blended for 20 minutes by using a homogenizer device at a speed of 

2000 rpm. The homogenizer was fixed on a clamp on a vertical stand as shown in Figure 

3.10, which allows changing of the homogenizer’s height. To mix the fuels by using the 

homogenizer, the plug is turned ON and the appropriate speed is selected by using the 

selector which is located on top of the homogenizer.    
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Figure 3.10: Biodiesel Blending Process 

 

In this study the effect of biodiesel-diesel blending by a percentage of (10-90% v/v) on 

some physical and chemical properties has been studied and presented. These include flash 

point, viscosity, cloud point, pour point and cold filter plugging point. In this paper, 

polynomial curve fitting method was used to estimate the properties of other biodiesel 

blends. This method is an attempt to describe the relationship between variable 
 as a 

function of available data and a response	�, which seeks to find a smooth curve that best 

fits the data. Mathematically, a polynomial of order k in 
 is expressed in the following 

form: 

Y= C0 + C1X + C2X
2
 + ………+ CkX

k …………………………………………………. (3.5) 

 

3.8  Engine Set-Up and Engine Performance Procedure  

The experimental investigation was carried out using 13 fuel samples including diesel fuel 

and (B5, B10, B15, B20) of each feedstocks. These blends was chosen based on the reports 

by the researchers that up to 20% of biodiesel blend can be used in a diesel engine without 



48 

 

any modification. The blend compositions of all fuel samples are given in Table 3.9. The 

engine used is a Mitsubishi Pajero (model 4D56T) multi-cylinder diesel engine coupled 

with an eddy current dynamometer. Figure 3.11 shows the test rig of the engine and Figure 

3.12 shows the schematic of experimental set-up. The detailed specification of the engine is 

shown in Table 3.10. In order to carry out engine performance test, the engine was run at 

various speeds range from 1000 rpm to 4000 rpm at an interval of 500 rpm at full load 

conditions.  The engine was connected with test bed and a computer data acquisition 

system which collects signal, rectify, filter and convert the signal to the data to be read.  

 

Table 3.9: Blend Fuel Compositions (% Vol)   

No. Fuel Samples Samples description 

01 B0 Diesel fuel 
02 PB5 5%   Palm biodiesel + 95% diesel fuel 
03 PB10 10% Palm biodiesel + 90% diesel fuel 
04 PB15 15% Palm biodiesel + 85% diesel fuel 
05 PB20 20% Palm biodiesel + 80% diesel fuel 
06 JB5 5%   Jatropha biodiesel + 95% diesel fuel 
07 JB10 10% Jatropha biodiesel + 90% diesel fuel 
08 JB15 15% Jatropha biodiesel + 85% diesel fuel 
09 JB20 20% Jatropha biodiesel + 80% diesel fuel 
10 MB5 5%   Moringa biodiesel + 95% diesel fuel 
11 MB10 10% Moringa biodiesel + 90% diesel fuel 
12 MB15 15% Moringa biodiesel + 85% diesel fuel 
13 MB20 20% Moringa biodiesel + 80% diesel fuel 

 

 

In order to carry out the engine performance tests for this study such as engine torque, 

brake power, brake specific fuel consumptions, brake specific air consumptions, engine test 

conditions were monitored by REO-DCA controller connected through a desktop to the 

engine test bed. All the performance data was measured at step RPM test mode. At every 

500 rpm increments, engine stabilizes for 20 seconds and acquires data for next 20 seconds. 
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For performance test, each fuel sample has been tested for three times and their results are 

averaged. The data logged by the computer are: 

� Engine speed 

� Dynamometer load 

� Throttle position 

� Fuel flow rate 

� Air flow rate 

� Fuel temperature 

� Air temperature 

� Lube oil temperature 

� Coolant temperature 

� Inlet and exhaust manifold temperature 

� Engine torque 

� Brake power 

� Brake specific fuel consumption 

 

Before the engine and dynamometer are started, several precautions had to be taken into 

consideration. 

(a) The motor was switched ON to supply cooling water to the dynamometer and the 

flow out water was controlled to maintain a suitable flow rate by using the water 

outlet valve.   

(b) It was ensured that the water level of the main water tank was always sufficient 

during the engine test. 

(c) The engine lube oil was checked with the dipstick indicator. 
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(d) The cooling water inlet was adjusted by using the valves to control the flow rate in 

order to maintain the inlet temperature. 

 

Table 3.10: Specifications of the Engine   

Parameter                             Unit Description 
Engine type  4 cylinder inline 
Displacement (L) 2.5 
Cylinder bore x stroke (mm) 92 x 96 
Compression ratio  21:1 
Maximum engine speed (rpm) 4200 
Maximum power    (kW) 55 

 Fuel system   Distribution type jet pump (indirect 
injection)  

 Lubrication System   Pressure feed  

Combustion chamber  Swirl type  

Cooling system  Radiator cooling 

 

 

 

Figure 3.11: Engine Test Bed 
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Figure 3.12: Schematic Diagram of Engine Test Bed 

 

3.8.1 Dynamometer 

The dynamometer is used to exert a fixed loading onto the engine for the purpose of 

analysis and it also measures the speed at which the engine is rotating. The dynamometer is 

connected to the engine by a shaft which is enclosed in a steel casing between the test 

engine and the dynamometer. The dynamometer is cooled by the cooling system which is 

located in front of it. The cooling system has a pump which moves the water through the 

dynamometer into the radiator where it will be cooled by the air pushed by the fan and 

enters the dynamometer to complete the cycle. Figure 3.13 shows the dynamometer of the 

diesel engine. 
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Figure 3.13: Dynamometer 

The dynamometer is connected to the controller box where the measured speed and also the 

torque are displayed. The dynamometer is turned ON by switching both the switches at the 

dynamometer controller to ‘ON’. The torque is adjusted by turning the red knob on the 

dynamometer controller. The knob is turned in the counter clockwise direction to increase 

the torque and the knob is turned in the clockwise direction to reduce the torque. Caution 

steps should be taken as not to suddenly increase the torque of the dynamometer which 

could cause the shaft to break under the sudden increase in stress. Also, load should not be 

increased too much that will cause a lot of stress on the engine and would stop the engine.  

 

3.9  Apparatus for Engine Emission Studies 

A BOSCH exhaust gas analyzer (model BEA-350) was used as shown in Figure 3.14 to 

measure the exhaust emission gases emission of NO and HC in ppm while CO and CO2 in 

volume percent. The details of gas analyzer are shown in Table 3.11. In this research work 

exhaust emission was measured at various speeds range from 1000 rpm to 4000 rpm at an 

interval of 500 rpm at full load conditions by inserting probe into the tail pipe. First the 
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engine was run using diesel fuel to get baseline data and other fuel blends were tested 

accordingly. 

To get the average values, all tests were repeated three times. The technology of this 

analyzer consisted of automatic measurements with microprocessor control and self-test, 

auto calibration before every analysis, and a high degree of accuracy in analysis of low 

concentrations of gases found in engine fitted with catalytic converter. After the instrument 

is switched ON it takes three minutes to warm up. During this time no measurement is 

possible. After a system adjustment has been conducted with zero gas, the measurement 

can be taken. Before every measurement the zero point of the analysis system is 

automatically adjusted with zero gas after the pump is switched on. During the first 15 

seconds of the 30 seconds adjustment, zero is indicated in the indicator panels for the gases 

and the particular upper limit of the effective range is indicated for 15 seconds. During the 

test, the water condensed in the hose connecting the probe and it is collected in the 

condensate container and automatically sucked out. However a new condensate filter has to 

be installed by switching of the measured-gas pump, if the present is badly fouled. 

 

Figure 3.14: Bosch Gas Analyzer (BEA 350) 



54 

 

Table 3.11: Details of the Exhaust Gas Analyzer (BEA-350) 

Equipment Method Measurement Upper limit Accuracy Percentage 

uncertainties 

BOSCH gas 
analyser 

Non-dispersive 
infrared 

CO 10.00 vol% ±0.001 vol% 0.002 vol% 

Non-dispersive 
infrared 

CO2 18.00 vol% ±0.001 vol% 0.150 vol% 

Flame ionization 
detector (FID) 

HC 9999 ppm ±l ppm  2 ppm 

Electro-chemical 
transmitter 

NO 5000 ppm ±1 ppm  21 ppm 
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4 CHAPTER 4  

RESULT AND DISCUSSIONS 

 

4.0 Introduction 

In this chapter, the physical and chemical properties of crude edible and non-edible oil 

feedstocks was presented followed by the properties include kinematic viscosity, density, 

viscosity index, cloud point, pour point, and cold filter plugging point, flash point, calorific 

value and oxidation stability of biodiesel synthesized from edible and non-edible 

feedstocks. The physical and chemical properties of biodiesel-diesel blends ratios of (B0-

B100) were fully covered and presented. Moreover, the polynomial curve fitting method 

was used to see the effect of blending on fuel properties and to predict the properties of 

biodiesel blends at any blends ratio. Finally, data of engine performance and emission 

characteristics using a total of 12 fuel samples (B5, B10, B15 and B20 of each biodiesel) 

were presented and compared with that of diesel fuel. 

 

4.1 Physico-Chemical Properties of Crude Palm, Jatropha Curcas and Moringa 

Oleifera Oil 

The feedstock characteristics such as FFA and acid values influence the biodiesel 

production process selection and final properties of biodiesel. Moreover, feedstocks with 

high MIU and titter require extra processing steps like filtration, centrifuging and heating. 

Table 4.1 shows the main findings of the physical and the chemical properties of crude 

palm, Jatropha curcas and Moringa oleifera oil. 
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  Table 4.1: Physico-Chemical Properties of Crude Palm, Jatropha Curcas and Moringa 

Oleifera Oil 

 

From Table 4.1 it can be seen that Moringa oleifera oil has highest kinematic viscosity of 

43.33 mm2/s at 40 °C and 8.91 mm2/s at 100 °C, dynamic viscosity 38.90 mPa.s at 40 °C 

while Palm oil have kinematic viscosity of 40.40 mm2/s at 40 °C and 8.43 mm2/s at 100 °C, 

dynamic viscosity 36.30 mPa.s at 40 °C and Jatropha curcas oil have kinematic viscosity 

of 34.93 mm2/s at 40 °C and 7.81 mm2/s at 100 °C, dynamic viscosity 31.52 mPa.s at 

40 °C.  

It is clear that all crude oil samples have higher viscosity. These high values of viscosities 

can negatively affect the volume flow and injection spray characteristics in the engine. At 

low temperature it may even compromise the mechanical integrity of the injection pump 

drive systems (Jayed et al. 2009). Therefore, it is suggested that oil from the crops should 

be either blended with diesel fuel or transesterified to biodiesel to reduce the viscosity and 

density properties when used in CI engines. 

Properties Units Standards Palm 

oil 

Jatropha 

oil 

Moringa 

oil 

Dynamic viscosity mPa.s ASTM D445 36.30 31.52 38.90 
Kinematic viscosity at 
40 °C 

mm2/s ASTM D445 40.40 34.93 43.33 

Kinematic viscosity at 
100 °C 

mm2/s ASTM D445 8.43 7.81 8.91 

Viscosity Index - N/A 192.1 204.5 193.1 
Density at 15 °C kg/m3 ASTM D4052 898.4 902.5 897.5 
Flash point °C ASTM D93 165 220 268.5 
Pour point °C ASTM D97 9 -3 11 
Cloud point °C ASTM D2500 8 -2 10 
Calorific value MJ/kg ASTM D240 39.44 38.66 38.05 
Acid value  mgKOH/g 

oil 
ASTM D664 3.47 10.7 8.62 
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The density results showed that the Jatropha curcas oil possesses highest density 902 

kg/m3 followed by Palm oil and Moringa oleifera oil which have 898.5 and 897.5 kg/m3 

respectively.   

The flash point results showed that Moringa oleifera oil possesses highest flash point 265.4 

°C followed by Jatropha curcas and palm oil which have 220 °C and 165°C respectively. 

All of these crude oils have very high flash points (>160 °C) which indicate that these oils 

are very safe for transportation, handling and storage.   

Calorific value is an important parameter in the selection of a fuel. If the fuel has higher 

calorific value then it will have tendency to produce more power in the engine. The result 

from Table 4.1 shows that Palm oil possesses highest calorific value 39.44 MJ/kg followed 

by Jatropha oil (38.66 MJ/kg) and Moringa oleifera oil (38.05 MJ/kg) respectively.   

The acid value results showed that the crude Jatropha curcas oil possesses highest acid 

value of 10.7 mg KOH/g oil followed by Moringa oil (8.62 KOH/g oil) and Palm oil (3.47 

mg KOH/g oil) respectively. So it is easier to convert palm oil into palm biodiesel 

compared to Jatropha and Moringa oil respectively.   

 

4.2 Characterization of Palm, Jatropha Curcas and Moringa Oleifera Biodiesel 

4.2.1 Properties Analysis 

The quality of biodiesel depends upon the feedstocks quality, chemical composition of 

feedstock, production process, storage and handling process. Biodiesel quality is assessed 

through the determination of physical and chemical properties. The physical and chemical 

properties of Palm, Jatropha curcas and Moringa oleifera are presented in Table 4.2. 
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 Table 4.2: Physico-Chemical Properties of Palm, Jatropha Curcas and Moringa Biodiesel 

compared with diesel fuel 

 

The main findings from properties test is that Palm biodiesel (PB) possesses the lowest 

kinematic viscosity at 40°C of 4.62 mm2/s followed by Jatropha curcas biodiesel (JB) of 

4.73 mm2/s and Moringa oleifera biodiesel (MB) of 5.05 mm2/s. Therefor palm biodiesel is 

suitable for combustion in a diesel engine compared to Jatropha and Moringa biodiesel. 

The results of density showed that the PB has lowest density of 858.9 kg/m3 followed by JB 

of 865.7 kg/m3 and MB of 869.6 kg/m3. The results of cold flow plugging point properties 

showed that PB has higher CFPP of 10°C followed by the JB of 11°C and MB of 18°C. On 

the other hand, it was found that JB has the CP & PP of 3°C & 3°C, (PB) has the CP & PP 

of 10°C & 11°C, and MB has the CP & PP of 19°C & 19°C respectively. The results of the 

oxidation stability showed that MB has the good oxidation stability of 26 h followed by JB 

Properties Units Standards Palm  

Biodiesel 

Jatropha 

Biodiesel 

Moringa 

Biodiesel 

Diesel 

Dynamic viscosity mPa.s ASTM D445 3.97 4.09 4.34 2.69 

Kinematic viscosity 
at 40°C 

mm2/s ASTM D445 4.62 4.73 5.05 3.23 

Kinematic viscosity 
at 100°C 

mm2/s ASTM D445 1.77 1.81 1.84 1.24 

Density  kg/m3 ASTM D1298 858.9 865.7 869.6 827.2 

Viscosity index - N/A 195.8 214.7 184.6 90 

Flash point °C ASTM D93 182.5 184.5 180.5 68.5 

Cloud point °C ASTM D2500 10 3 19 8 

Pour point °C ASTM D97 11 3 19 0 

Cold filter plugging 
point 

°C ASTM D6371 11 10 18 5 

Sulphur content ppm ASTM D5433 5.23 5.95 5.95 - 

Calorific value MJ/kg ASTM D240 39.90 39.82 40.05 45.30 

Iodine value g I/100g N/A 61 99 77.5 - 

Saponification value - N/A 206 202 199 - 

Acid value mg 
KOH/g 

ASTM D664 0.05 0.05 0.05 - 

Oxidation stability h EN ISO 14112 2.41 3.02 26 >110 

Cetane number - ASTM D613 59 51 56 48 

Carbon Conradson % ASTM D4530 0 0 0 - 
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of 3.2 h and PB of only 2.41 h. Moreover, MB possesses the highest calorific value of 

40.05 MJ/kg compared to PB of 39.90 MJ/kg and JB of 39.82 MJ/kg respectively. The 

results of flash point show that JB has the highest flash point of 184.5°C, followed by PB of 

182.5°C and MB of 180.5°C. So it is seen that Jatropha biodiesel have good cold flow 

properties and is safer to store compared to Palm and Moringa biodiesel. 

 

4.2.2 Fatty Acids Composition of Palm, Jatropha Curcas and Moringa Oleifera 

Biodiesel 

Fatty acid without double bond is known as saturated fatty acids and Fatty acid containing 

double bond is termed as unsaturated fatty acids. The results of FAC of Palm biodiesel 

(PB), Jatropha curcas biodiesel (JB) and Moringa oleifera biodiesel (MB) are shown in 

Table 4.3. It was found that PB contained (44.4%) saturated and (55.6%) unsaturated fatty 

acids, JB contained (22.6%) saturated and (77.4%) unsaturated fatty acids and MB 

contained (18.6%) saturated and (81.4%) unsaturated fatty acids respectively. 

 

Table 4.3: Fatty Acid Composition of Palm, Jatropha and Moringa Biodiesel     

Sl.  
No. 

Fatty acid Molecular  
weight 

Structure Systematic  
name 

Formula PB  
(%) 

JB 
(%) 

MB 
(%) 

01 Lauric 200 12:0 Dodecanoic C12H24O2 - 0.1 0 
02 Myristic acid 228 14:0 Tetradecanoic C14H28O2 - 0.1 0.1 
03 Palmitic 256 16:0 Hexadecanoic C16H32O2 40.5 14.6 7.9 
04 Palmitoleic 254 16.1 hexadec-9-enoic  C16H30O2 - 0.6 1.7 
05 Stearic 284 18:0 Octadecanoic C18H36O2 4.1 7.6 5.5 
06 Oleic 282 18:1 cis-9-Octadecenoic C18H34O2 43.4 44.6 74.1 
07 Linoleic 280 18:2 cis-9-cis-12 

Octadecadienoic 
C18H32O2 12.0 31.9 4.1 

08 Linolenic 278 18:3 cis-9-cis-12 C18H30O2 - 0.3 0.2 
09 Arachidic 312 20:0 Eicosanoic C20H40O2 - 0.2 2.3 
10 Eicosanoic  310 20:1 cis-11-eicosenoic C20H38O2 - - 1.3 
11 Behenic 340 22:0 Docosanoic C22H44O2 - - 2.8 
12 Other     0 0 0 
Saturated  44.6 22.6 18.6 
Monounsaturated  43.4 45.2 77.1 
Polyunsaturated  12.0 32.2 4.3 
Total  100 100 100 
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4.2.3 Structural Analysis 

The structural analysis of Palm, Jatropha curcas and Moringa oleifera biodiesel was done 

by FT-IR analysis. Figure 4.1 shows the Fourier transform infrared (FT-IR) spectrum of the 

Palm, Jatropha curcas and Moringa oleifera biodiesel. The characteristics peaks of the 

Palm, Jatropha curcas and Moringa oleifera biodiesel are shown in Table 4.4.  

 

 

(a) 
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(b) 

 

(c) 

Figure 4.1: FT IR Analysis of (a) Palm, (b) Jatropha Curcas and (c) Moringa Oleifera 

Biodiesel 
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4.3 Effect of Biodiesel-Diesel Blending on Fuel Properties 

It was found that blending of biodiesel with diesel has resulted in much improvement in 

kinematic viscosity, density, calorific value, oxidation stability. However, flash point and 

viscosity index decrease as the percentage of diesel increases in the blend. The next section 

will discuss how to establish a mathematical correlation between the blends ratio and 

physical and chemical properties. 

Table 4.4: Characteristics Peak of PB, JB and MB in FT IR Spectra 

  

4.3.1 Mathematical Relationship between Blends Ratio and Physico-Chemical 

Properties 

Based on the data of all biodiesel-diesel blend in Appendix B, mathematical equations were 

developed for the calculation of oxidation stability (OS), viscosity (KV), density (D), 

viscosity index (VI), calorific value (CV) and flash point (FP) of PB, JB and MB blends 

with diesel. The next section will explain the results of this study in detail. 

Absorption 

bands 

(cm
-1

) 

PB 

Absorption 

bands  

(cm
-1

) 

JB 

Absorption 

bands  

(cm
-1

) 

MB 

Functional 

group 

Absorption 

intensity 

2922.77 2912 2922.78-3004.91 C-H stretching 
vibration 

Strong 

2853.51 2853 2853.5  CH2 asymmetric and 
symmetric vibration 

Strong 

1742 1741 1742.08 C=O stretching 
vibration 

Strong 

1435.80-
1463.47 

1435-1462 1435.7-1462.99 CH2 shear type 
vibration 

Middling 

1361.37 1361 1361.15 CH3 bending vibration Middling 
1118.08-
1195.63 

1169-1195 1119.48-1195.72 C-O-C symmetric 
stretching vibration 

Middling 

1016.74 1016 1016.68 C-O-C anti-symmetric 
stretching vibration 

Weak 

848.86 844 852.39 Epoxy ring vibration Middling 
722.11 722 722.44 CH2 plane rocking 

vibration 
Weak 
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4.3.1.1 Kinematic Viscosity (KV) 

Figures 4.2 (a-c) and Figures 4.3 (a-c) show the correlations between kinematic viscosity at 

40°C and 100°C of PB, JB and MB and their blends with diesel. As can be seen, the 

kinematic viscosities of PB, JB and MB decrease remarkably with the increasing 

percentage of diesel in the blends. The viscosity values of PB, JB and MB and their blends 

with diesel were correlated using Linear Regression Analysis (LRA). The equations 

between kinematic viscosity and blends ratio are: 

 

For (PB-diesel blends): 

KV at 40°C = 1.3841x + 3.2024               x ≡ (%PB-diesel blends)                                 (4.1) 

R² = 0.9948 

KV at 100°C = 0.4976x + 1.2616            x ≡ (%PB-diesel blends)                                  (4.2) 

R² = 0.9941 

For (JB-diesel blends): 

KV at 40°C = 1.4491x + 3.2782            x ≡ (%JB-diesel blends)                                     (4.3) 

R² = 0.997 

KV at 100°C = 0.5409x + 1.2786          x ≡ (%JB-diesel blends)                                     (4.4) 

R² = 0.99 

For (MB-diesel blends) 

KV at 40°C = 1.7446x + 3.2962              x ≡ (%MB-diesel blends)                                 (4.5) 

R² = 0.996  

KV at 100°C = 0.581x + 1.2795             x ≡ (%MB-diesel blends)                                  (4.6) 

R² = 0.9895 

It can be observed that the coefficient of regression values indicate that there is a high 

regression between kinematic viscosity and biodiesel-diesel blends. 
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(a) 

 

(b) 

 

(c) 

Figure 4.2: Effect of (a) PB-Diesel Blending (b) JB-Diesel Blending (c) MB-Diesel 

Blending on Kinematic Viscosity at 40°C 
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(a) 

 

(b) 

 

 (c) 

Figure 4.3:  Effect of (a) PB-Diesel Blending (b) JB-Diesel Blending (c) MB-Diesel 

Blending on Kinematic Viscosity at 100°C   
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4.3.1.2 Density (D) 

Figure 4.4 (a-c) shows the correlations between density of PB, JB and MB and their blends 

with diesel. As can be seen, the densities of PB, JB and MB decrease remarkably with the 

increasing percentage of diesel in the blends. The density values of PB, JB and MB and 

their blends with diesel were correlated using Linear Regression Analysis (LRA). The 

equations between density and blends ratio are: 

 

For (PB-diesel blends): 

D = 0.0238x + 0.8353                            x ≡ (%PB-diesel blends)                                    (4.7) 

R² = 0.9979 

For (JB-diesel blends): 

D = 0.0382x + 0.8269                           x ≡ (%JB-diesel blends)                                      (4.8) 

R² = 0.9985 

For (MB-diesel blends): 

D = 0.0328x + 0.827                             x ≡ (%MB-diesel blends)                              (4.9) 

R² = 0.9993 

It can be observed that the coefficient of regression values show a high regression between 

density and biodiesel-diesel blends. 
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(a) 

 

(b) 

 

 (c) 

Figure 4.4: Effect of (a) PB-Diesel Blending (b) JB-Diesel Blending (c) MB-Diesel 

Blending on Density 
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4.3.1.3 Viscosity Index (VI) 

Figure 4.5 (a-c) shows the correlations between viscosity index of PB, JB and MB and their 

blends with diesel. As can be seen, the viscosity index values of PB, JB and MB decrease 

remarkably with the increasing percentage of diesel in the blends. The viscosity index 

values of PB, JB and MB and their blends with diesel were correlated using Polynomial 

Regression Analysis (PRA). The equations between viscosity index and blends ratio are: 

 

For (PB-diesel blends): 

VI = 254.33x3 - 495.72x2 + 341.41x + 97.911         x ≡ (%PB-diesel blends)                (4.10) 

R² = 0.9658 

For (JB-diesel blends): 

VI = 310.12x3 - 573.53x2 + 384.01x + 98.238          x ≡ (%JB-diesel blends)               (4.11) 

R² = 0.973 

For (MB-diesel blends): 

VI = 97.909x + 91.236                                   x ≡ (%MB-diesel blends)               (4.12) 

R² = 0.9732 

It can be observed that the coefficient of regression values show a high regression between 

viscosity index and biodiesel-diesel blends. 
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 (c) 

Figure 4.5: Effect of (a) PB-Diesel Blending (b) JB-Diesel Blending (c) MB-Diesel 
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4.3.1.4 Calorific Value (CV) 

Figure 4.6 (a-c) shows the correlations between calorific value of PB, JB and MB and their 

blends with diesel. As can be seen, the calorific values of PB, JB and MB increase 

remarkably as the volume of biodiesel in the blend gets smaller. The calorific values of PB, 

JB and MB and their blends with diesel were correlated using Linear Regression Analysis 

(LRA). The equations between calorific value and blends ratio are: 

 

For (PB-diesel blends): 

CV = -5.4651x + 45.1                                      x ≡ (%PB-diesel blends)                        (4.13) 

R² = 0.9917 

For (JB-diesel blends): 

CV = -5.6472x + 45.215                                  x ≡ (%JB-diesel blends)                         (4.14) 

R² = 0.9932 

For (MB-diesel blends): 

CV = -5.361x + 45.279                           x ≡ (%MB-diesel blends)                       (4.15) 

R² = 0.9946 

It can be observed that the coefficient of regression values show a high regression between 

calorific value and biodiesel-diesel blends. 
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Figure 4.6: Effect of (a) PB-Diesel Blending (b) JB-Diesel Blending (c) MB-Diesel 
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4.3.1.5 Oxidation Stability (OS) 

Figure 4.7 (a-c) shows the correlation between oxidation stability of PB, JB and MB and 

their blends with diesel. As can be seen, the oxidation stability values of PB, JB and MB 

increase with the increasing percentage of diesel in the blends. The oxidation stability 

values of PB, JB and MB and their blends with diesel were correlated using  Polynomial 

Regression Analysis (PRA). The equations between oxidation stability and blends ratio are: 

 

For (PB-diesel blends): 

OS = -417.44x3 + 893.48x2 - 641.88x + 165.28           x ≡ (%PB-diesel blends)           (4.16) 

R² = 0.9828 

For (JB-diesel blends): 

OS = -219.76x3 + 471.04x2 - 334.63x + 84.747            x ≡ (%JB-diesel blends)           (4.17) 

R² = 0.9855 

For (MB-diesel blends): 

OS = -533.76x3 + 1010.4x2 - 684.27x + 235.91           x ≡ (%MB-diesel blends)          (4.18) 

R² = 0.9943 

It can be observed that the coefficient of regression values show a high regression between 

Oxidation stability and biodiesel-diesel blends. 
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Figure 4.7: Effect of (a) PB-Diesel Blending (b) JB-Diesel Blending (c) MB-Diesel 

Blending on Oxidation Stability 
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4.3.1.6  Flash Point (FP) 

Figure 4.8 (a-c) shows the correlations between flash points of PB, JB and MB and their 

blends with diesel. As can be seen, the flash points of PB, JB and MB increase with the 

increasing percentage of diesel in the blends. The flash points of PB, JB and MB and their 

blends with diesel were correlated using  Polynomial Regression Analysis (PRA). The 

equations between flash point and blends ratio are: 

 

For (PB-diesel blends):  

FP = 348.33x3 - 370.63x2 + 136.03x + 67.131               x ≡ (%PB-diesel blends)          (4.19) 

R² = 0.9951 

For (JB-diesel blends): 

FP = 76.593x3 - 2.3252x2 + 39.32x + 72.209                x ≡ (%JB-diesel blends)           (4.20) 

R² = 0.9914 

For (MB-diesel blends): 

FP = 170.16x3 - 210.37x2 + 121.64x + 68.15                x ≡ (%MB-diesel blends)          (4.21) 

R² = 0.994 

It can be observed that the coefficient of regression values show a high regression between 

Flash point and biodiesel-diesel blends. 
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Figure 4.8: Effect of (a) PB-Diesel Blending (b) JB-Diesel Blending (c) MB-Diesel 
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4.4 Engine Performance Analysis 

In this study, to evaluate the performance of biodiesel blends 3 sets of fuel (Table 3.9) were 

prepared. 1st set consists of diesel fuel (B0) and Palm biodiesel-diesel blends includes PB5, 

PB10, PB15 and PB20. 2nd set consists of diesel fuel (B0) and Jatropha biodiesel-diesel 

blends such as JB5, JB10, JB15 and JB20. 3rd consists of diesel fuel (BO) and Moringa 

oleifera biodiesel-diesel blends includes MB5, MB10, MB15 and MB20. In order to carry 

out engine performance tests, the engine was run at various speeds range from 1000 rpm to 

4000 rpm at an interval of 500 rpm at full load condition. Engine test conditions were 

monitored by REO-DCA controller connected through a desktop to the engine test bed. 

Engine performance was evaluated in terms of engine torque, brake power (BP) and brake 

specific fuel consumption (BSFC). The engine was run with diesel fuel for several minutes 

to warm it up before biodiesel was tested. Likewise, the engine was operated with diesel 

fuel before it was shut down. The same procedure was used for each fuel test. The 

following section will discuss the obtained results of these parameters. 

 

4.4.1 Engine Torque 

The effect of Palm, Jatropha curcas and Moringa oleifera biodiesel and their blend with 

diesel fuel on the engine torque with respect to the engine speed are shown in Figures 4.9-

4.11. Considering torque performance with all the fuel blends tested, it can be seen that the 

trend of these parameters as a function of speed is almost similar with diesel fuel. It can be 

seen that torque increases steadily with speed up to a maximum value, and then falls with 

further increases in speed. This is mainly attributed to two main reasons. The first reason is 

the mechanical friction loss, and the second is lower volumetric efficiency of the engine 

due to increasing speed. It is also clear that the torque is decreased slightly with the 

increasing percentages of biodiesel in the blend.  
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Figure 4.9: Torque versus Engine Speed for Palm Biodiesel Blended Fuel at Full Load 

Condition   

Over the whole range of speed, for Palm biodiesel blended fuel, the average torque values 

were found 115.82, 114.25, 112.27, 109.98 and 108.02 N-m for the B0, PB5, PB10, PB15 

and PB20 blends respectively. The fuel sample PB5, PB10, PB15 and PB20 blends gives an 

average reduction in torque of 1.35, 3.07, 5.04 and 6.73% respectively compared to that of 

diesel fuel over the entire range of speed.  

 

Figure 4.10: Torque versus Engine Speed for Jatropha Biodiesel Blended Fuel at Full Load 
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For Jatropha biodiesel blended fuel, the average torque values were found 115.82, 113.37, 

110.41, 108.38 and 105.97 N-m for the B0, JB5, JB10, JB15 and JB20 blends respectively. 

The fuel sample B0, JB5, JB10, JB15 and JB20 blends gives an average reduction in torque 

of 3.84, 4.67, 6.42 and 8.51% respectively compared to that of diesel fuel over the entire 

range of speed.  

 

 

Figure 4.11: Torque versus Engine Speed for Moringa Biodiesel Blended Fuel at Full Load 

Condition   

For Moringa biodiesel blended fuel, the average torque values were found 115.82, 113.38, 

111.22, 109.12 and 106.77 N-m for the B0, MB5, MB10, MB15 and MB20 blends 

respectively. The fuel sample MB5, MB10, MB15 and MB20 blends gives an average 

reduction in torque of 2.10, 3.97, 5.78 and 7.81% respectively compared to diesel fuel over 

the entire range of speed.  
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higher calorific values of the diesel fuel. It has been reported that biodiesel have a major 

effect on the engine performance due to higher oxygen contents, higher viscosity and 

density, lower calorific values, higher cetane number and these factors influence on 

injection and combustion system (Özener et al., 2012).  

 

 

Figure 4.12: Average Torque Difference Compared to Diesel Fuel 

 

It can be seen from the Figure 4.12 that the lowest average reduction in the torque values 

compared to diesel fuel was found for Palm biodiesel blended fuel followed by Moringa 

oleifera biodiesel and Jatropha curcas biodiesel blended fuel respectively. The reason can 

be explained that Palm biodiesel have lower viscosity, density and higher calorific value 

compared to Moringa oleifera and Jatropha curcas biodiesel.  
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4.13-4.15. Considering brake power performance with all the fuel blends tested, it can be 

seen that the trend of these parameters as a function of speed is almost similar with diesel 

fuel.  It can be seen that brake power increased steadily with engine speed until 3500 rpm 

then starts to decrease due to frictional force. It is also clear that brake power is decreased 

slightly with the increasing percentages of biodiesel in the blend.  

 

Over the whole range of speed, for Palm biodiesel blended fuel, the average brake power 

values were found 28.72, 28.32, 27.81, 27.24 and 26.73 kW for the B0, PB5, PB10, PB15 

and PB20 blends respectively. The fuel sample PB5, PB10, PB15 and PB20 blends gives an 

average reduction in brake power of 1.38, 3.16, 5.14 and 6.92% respectively compared to 

that of diesel fuel over the entire range of speed.  

 

 

Figure 4.13: Brake Power versus Engine Speed for Palm Biodiesel Blended Fuel at Full 
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For Jatropha biodiesel blended fuel, the average brake power values were found 28.72, 

27.57, 27.32, 26.76 and 26.35 kW for the B0, JB5, JB10, JB15 and JB20 blends 

respectively. The fuel sample JB5, JB10, JB15 and JB20 blends gives an average reduction 

in brake power of 4.0, 4.86, 6.82 and 8.25% respectively compared to that of diesel fuel 

over the entire range of speed.  

 

 

Figure 4.14: Brake Power versus Engine Speed for Jatropha Biodiesel Blended Fuel at Full 

Load Condition   
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respectively. The fuel sample MB5, MB10, MB15 and MB20 blends gives an average 

reduction in brake power of 2.27, 4.22, 5.97 and 8.03% compared to that of diesel fuel over 

the entire range of speed.  
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Figure 4.15: Brake Power versus Engine Speed for Moringa Biodiesel Blended Fuel at Full 

Load Condition   

It can be seen that the brake power values are higher when diesel blended fuel is being 

used, which is supported by the literature (Shahabuddin et al., 2012). The reason for the 

higher brake power of biodiesels compared to diesel can be attributed to their higher 

calorific values and lower viscosities. Both the calorific value and viscosity have an effect 

on the engine combustion system. Additionally, uneven combustion characteristics of 

biodiesel fuel decreased the engine brake power (Muralidharan et al., 2011).   

 

Figure 4.16: Average Brake Power Difference Compared to Diesel Fuel 
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It is seen from the Figure 4.16 that the lowest average reduction in the brake power values 

compared to diesel fuel was found for Palm biodiesel blended fuel followed by Moringa 

biodiesel and Jatropha biodiesel blended fuel respectively. The reason can be explained that 

Palm biodiesel have higher calorific value and lower viscosities than both Jatropha 

biodiesel and Moringa biodiesel.  

 

4.4.3 Brake Specific Fuel Consumptions 

BSFC is the ratio between mass flow of the tested fuel and effective power. The BSFC of 

diesel engine depends on the relationship among volumetric fuel injection system, fuel 

density, viscosity and lower heating value (Qi et al., 2010a). The effect of Palm, Jatropha 

curcas and Moringa oleifera biodiesel and their blend with diesel fuel on the engine brake 

specific fuel consumption with respect to the engine speed are shown in Figures 17-19. 

Considering brake specification fuel consumption performance with all the fuel blends 

tested, it can be seen that the trend of these parameters as a function of speed is almost 

similar with diesel fuel. Compared to diesel fuel the BSFC increased slightly with an 

increase in the biodiesel blend ratio.  

 

Figure 4.17: BSFC versus Engine Speed for Palm Biodiesel Blended Fuel at Full Load 
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Over the whole range of speed, for Palm biodiesel blended fuel, the average brake specific 

fuel consumption values were found 385.71, 388.4, 393.54, 399.4 and 406.62 g/kWh for 

the B0, PB5, PB10, PB15 and PB20 blends respectively. The fuel sample PB5, PB10, PB15 

and PB20 blends gives an average increase in brake specific fuel consumption of 0.69, 

2.02, 3.54 and 5.42% respectively compared to that of diesel fuel over the entire range of 

speed.  

 

Figure 4.18: BSFC versus Engine Speed for Jatropha Biodiesel Blended Fuel at Full Load 

Condition   
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respectively compared to that of diesel fuel over the entire range of speed.  
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Figure 4.19: BSFC versus Engine Speed for Moringa Biodiesel Blended Fuel at Full Load 

Condition   

For Moringa biodiesel blended fuel, the average brake specific fuel consumption values 

were found 385.71, 395.6, 405.51, 411.81, and 418.08 g/kWh for the B0, MB5, MB10, 

MB15 and MB20 blends respectively. The fuel sample MB5, MB10, MB15 and MB20 

blends gives an average increase in brake specific fuel consumption of 2.56, 5.13, 6.76 and 

8.39% respectively compared to that of diesel fuel over the entire range of speed.  

 

 

Figure 4.20: Average BSFC Difference Compared to Diesel Fuel 
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It can be seen that the brake specific fuel consumption values are lower when biodiesel 

blended fuel is being used, which is supported by the literature (Chauhan et al., 2012; 

Shahabuddin et al., 2012; Wang et al., 2013). The reason for the lower BSFC of diesels can 

be attributed to the effects of the lower density, viscosity and higher heating value of the 

diesel (Liaquat et al., 2012). On the other hand, biodiesel fuel is delivered into the engine 

on a volumetric basis per stroke; thus, larger quantities of biodiesel are fed into the engine. 

Therefore, to produce the same power, more biodiesel fuel is needed because biodiesel has 

a lower calorific value compared to diesel fuel (Tsolakis et al., 2007). It is seen from the 

Figure 4.20 that the average BSFC was found higher for Moringa biodiesel blend followed 

by Jatropha and palm biodiesel. The reason can be explained that the Moringa biodiesel 

have higher viscosity and density (Table 4.2) compared to the other biodiesel.   

 

4.5 Engine Emissions Study 

In order to examine emission characteristics of all fuel samples, a portable BOSCH exhaust 

gas analyser (model BEA-350) was used to measure the concentration of exhaust gases of 

the test engine.  The exhaust gases emission of NO and HC was measured in ppm while CO 

and CO2 in volume percent. In this research work, exhaust emission was measured at 

various speeds range from 1000 rpm to 4000 rpm at an interval of 500 rpm at full load 

conditions by inserting probe into the tail pipe.  

 

4.5.1 Carbon Monoxide (CO) Emission 

CO is produced as a result of the incomplete combustion of the fuel. If the combustion is 

complete, CO is converted into CO2 (Gumus and Kasifoglu, 2010). If the combustion is 

incomplete due to shortage of air or due to low gas temperature, CO will be formed. 
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Mostly, some factors such as air-fuel ratio, engine speed, injection timing, injection 

pressure and type of fuels have an impact on CO emission (Gumus et al., 2012). The effect 

of Palm, Jatropha curcas and Moringa oleifera biodiesel and their blend with diesel fuel on 

the CO emission with respect to the engine speed are shown in Figures 4.21-4.23. 

 

 

Figure 4.21: CO Emission versus Engine Speed for Palm Biodiesel Blended Fuel at Full 

Load Condition   

Over the whole range of speed, for Palm biodiesel blended fuel, the average CO emissions 

were found 0.37, 0.32, 0.30, 0.28 and 0.25 vol% for the B0, PB5, PB10, PB15 and PB20 

blends respectively. The fuel sample PB5, PB10, PB15 and PB20 blends gives an average 

reduction in CO emissions of 13.17, 17.36, 23.93, and 32.65% respectively compared to 

that of diesel fuel over the entire range of speed.  
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Figure 4.22: CO Emission versus Engine Speed for Jatropha Biodiesel Blended Fuel at Full 

Load Condition   

For Jatropha biodiesel blended fuel, the average CO emissions were found 0.37, 0.34, 0.31, 

0.30 and 0.27 vol% for the B0, JB5, JB10, JB15 and JB20 blends respectively. The fuel 

sample JB5, JB10, JB15 and JB20 blends gives an average reduction in CO emissions of 

8.02, 14.29, 18.78, and 27.23% respectively compared to that of diesel fuel over the entire 

range of speed.  

 

Figure 4.23: CO Emission versus Engine Speed for Moringa Biodiesel Blended Fuel at Full 

Load Condition   
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For Moringa biodiesel blended fuel, the average CO emissions were found 0.37, 0.35, 0.33, 

0.31 and 0.28 vol% for the B0, MB 5, MB10, MB15 and MB20 blends respectively. The 

fuel sample MB5, MB10, MB15 and MB20 blends gives an average reduction in CO 

emissions of 5.37, 10.60, 14.13 and 22.93% compared to that of diesel fuel over the entire 

range of speed.  

 

It can be seen that the CO emission values are lower when biodiesel blended fuel is being 

used, which is supported by the literature (Lapuerta et al., 2008; Rajaraman et al., 2009; 

Kim and Choi, 2010; Hirkude and Padalkar, 2012). This can be attributed to the higher 

oxygen contents and higher cetane number of biodiesel fuel. It is reported that biodiesel 

fuel contains 12% higher oxygen. As the percentage of biodiesel increased in the blend, the 

higher oxygen contents of biodiesel allow more carbon molecules to burn and combustion 

becomes completed. Thus CO emission is reduced in case of using biodiesel blend in a 

diesel engine. At higher engine speed, the variation of CO emission for biodiesel blended 

fuel is higher because higher cetane number of biodiesel makes combustion more complete 

at higher engine speed and load condition. 

 

 

Figure 4.24: Average CO Emission Difference Compared to Diesel Fuel 
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It can be seen from the Figure 4.24 that the highest average reduction in the CO emission 

compared to diesel fuel was found for Palm biodiesel blended fuel followed by Jatropha 

and Moringa biodiesel blended fuel respectively. The reason can be explained by the degree 

of saturation of the fatty acids. It has been reported that CO emission is decreased as the 

saturation level is increased (Rodríguez et al., 2011). From the Table 4.3 it is seen that palm 

biodiesel have highest saturation level followed by Jatropha and Moringa biodiesel 

respectively. Moreover higher unsaturation level leads to higher density of the fuel. As the 

fuel delivery system is volumetric basis, therefore, palm biodiesel with their lower densities 

would restrict the formation of rich air-fuel mixture within the spray jet as compared to 

Jatropha and Moringa biodiesel blends fuel. This allows more complete combustion which 

helps to reduce CO emission (Ng et al., 2011). 

 

4.5.2 Hydrocarbon (HC) Emission 

Unburned HC is resulted from the incomplete combustion of fuel and flame quenching in 

the crevice regions in the cylinder wall. The HC emission also can be resulted from the 

problems of air and fuel mixing. The effect of Palm, Jatropha curcas and Moringa oleifera 

biodiesel and their blend with diesel fuel on the HC emission with respect to the engine 

speed are shown in Figures 4.25-4.27. 



91 

 

 

Figure 4.25: HC Emission versus Engine Speed for Palm Biodiesel Blended Fuel at Full 

Load Condition   

Over the whole range of speed, for Palm biodiesel blended fuel, the average HC emission 

were found 10.85, 9.85, 8.85, 8.57, and 8 ppm for the B0, PB5, PB10, PB15 and PB20 

blends respectively. The fuel sample PB5, PB10, PB15 and PB20 blends gives an average 

reduction in HC emission of 9.21, 18.42, 21.05 and 26.31% respectively compared to that 

of diesel fuel over the entire range of speed.  

 

Figure 4.26: HC Emission versus Engine Speed for Jatropha Biodiesel Blended Fuel at Full 
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For Jatropha biodiesel blended fuel, the average HC emission values were found 10.85, 

10.14, 9.42, 8.71 and 8.14 ppm for the B0, JB5, JB10, JB15 and JB20 blends respectively. 

The fuel sample JB5, JB10, JB15 and JB20 blends gives an average reduction in HC 

emission of 6.57, 13.15, 19.73 and 25% respectively compared to that of diesel fuel over 

the entire range of speed.  

 

 

Figure 4.27: HC Emission versus Engine Speed for Moringa Biodiesel Blended Fuel at Full 

Load Condition   

For Moringa biodiesel blended fuel, the average HC emission values were found 10.85, 

10.42, 9.85, 9 and 8.28 ppm for the B0, MB5, MB10, MB15 and MB20 blends 

respectively. The fuel sample MB5, MB10, MB15 and MB20 blends gives an average 

reduction in HC emission of 3.94, 9.21, 17.10 and 23.68% respectively compared to that of 

diesel fuel over the entire range of speed.  

 

It can be seen that the HC emission values are lower when biodiesel blended fuel is being 

used, which is supported by the literature (Özgünay et al., 2007; Ozsezen et al., 2009; 

0

2

4

6

8

10

12

14

16

18

20

1000 1500 2000 2500 3000 3500 4000

H
C

 [
p

p
m

]

Engine speed [rpm]

B0

MB5

MB10

MB15

MB20



93 

 

Ulusoy et al., 2009). This can be attributed to the higher oxygen contents and higher cetane 

number of biodiesel fuel. Biodiesel contains higher oxygen and lower carbon and hydrogen 

than diesel fuel which trigger an improved and complete combustion process (Lin et al., 

2009; Qi et al., 2010b). Thus HC emission is reduced in case of using biodiesel blend in a 

diesel engine. 

 

Figure 4.28: Average HC Emission Difference Compared to Diesel Fuel 
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4.5.3 Nitric Oxide (NO) Emission 

NOx is produced during the combustion process when nitrogen and oxygen are present at 

elevated temperatures. The oxides of nitrogen in the exhaust emissions contain nitric oxide 

(NO) and nitrogen dioxide (NO2). The formation of NOx is highly dependent on in-cylinder 

temperatures, the oxygen concentration, and residence time for the reaction to take place 

(Xue et al., 2011). The increase in temperature and oxygen causes more NOX to be 

produced. The effect of Palm, Jatropha curcas and Moringa oleifera biodiesel and their 

blend with diesel fuel on the NO emission with respect to the engine speed are shown in 

Figures 4.29-4.31. 

 

Figure 4.29: NO Emission versus Engine Speed for Palm Biodiesel Blended Fuel at Full 

Load Condition   
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average increase in NO emission of 1.96, 3.38, 5.01 and 6.91% respectively compared to 

that of diesel fuel over the entire range of speed.  
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Figure 4.30: NO Emission versus Engine Speed for Jatropha Biodiesel Blended Fuel at Full 

Load Condition   

For Jatropha biodiesel blended fuel, the average NO emission values were found 210.85, 

218.85, 226.28, 233.57 and 240.85 ppm for the B0, JB 5, JB10, JB15 and JB20 blends 

respectively. The fuel sample JB5, JB10, JB15 and JB20 blends gives an average increase 

in NO emission of 3.79, 7.31, 10.76 and 14.22% compared to that of diesel fuel over the 

entire range of speed.  

 

Figure4.31: NO Emission versus Engine Speed for Moringa Biodiesel Blended Fuel at Full 

Load Condition   
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For Moringa biodiesel blended fuel, the average NO emission values were found 210.85, 

219.28, 228.71, 239.42 and 250 ppm for the B0, MB5, MB10, MB15 and MB20 blends 

respectively. The fuel sample MB5, MB10, MB15 and MB20 blends gives an average 

increase in NO emission of 3.99, 8.46, 13.55 and 18.56% compared to that of diesel fuel 

over the entire range of speed.  

 

It can be seen that the NO emission values are higher when biodiesel blended fuel is being 

used. Same observation was observed in literature (El-Kasaby and Nemit-allah, 2013). This 

can be attributed to the bulk modulus of biodiesel, longer fuel penetration into the engine 

cylinder, decreased the radiative heat transfer due to reduced soot formation, shorter 

ignition delay and higher heat release rate. Thus NO emission is increased for biodiesel 

blend than that of diesel fuel. Moreover, the reason of increasing NO/NOx can be explained 

in terms of adiabatic flame temperature. Biodiesel fuel contains higher percentages of 

unsaturated fatty acids that have higher adiabatic flame temperature which causes higher 

NO/NOx emission (El-Kasaby and Nemit-allah, 2013).    

 

 

Figure 4.32: Average NO Emission Difference Compared to Diesel Fuel 
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It can be seen from the Figure 4.32 that the average highest concentration of NO is 

produced from Moringa biodiesel blended fuel followed by Jatropha biodiesel and Palm 

biodiesel blended fuel respectively. The reason can be explained by the degree of 

unsaturated fatty acids composition. The presence of unsaturated fatty acids in the fuel 

reacts with N2 and produces a NO through a reaction (Rao, 2011). In this regard it is clear 

from the Table 4.4 that Moringa biodiesel have highest percentages of unsaturated fatty 

acid followed by Jatropha biodiesel and Palm biodiesel respectively.   

 

4.5.4 Carbon Dioxide Emission  

CO2 occurs naturally in the atmosphere and is a normal product of hydrocarbon fuel 

combustion. Ideally, combustion of a hydrocarbon fuel should produce only CO2 and water 

(H2O). The effect of Palm, Jatropha and Moringa biodiesel and their blend with diesel fuel 

on the CO2 emission with respect to the engine speed are shown in Figures 4.33-4.35. 

 

 

Figure 4.33: CO2 Emission versus Engine Speed for Palm Biodiesel Blended Fuel at Full 
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Over the whole range of speed, for Palm biodiesel blended fuel, the average CO2 emission 

values were found 8.05, 8.50, 8.99, 9.23 and 9.47 vol% for the B0, PB 5, PB10, PB15 and 

PB20 blends respectively. The fuel sample PB5, PB10, PB15 and PB20 blends gives an 

average increase in CO2 emission of 5.60, 11.73, 14.72 and 17.76% respectively compared 

to that of diesel fuel over the entire range of speed.  

 

 

Figure 4.34: CO2 Emission versus Engine Speed for Jatropha Biodiesel Blended Fuel at 

Full Load Condition   

For Jatropha biodiesel blended fuel, the average CO2 emission values were found 8.05, 
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emission of 3.07, 6.70, 10.25 and 13.82% respectively compared to that of diesel fuel over 

the entire range of speed.  
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Figure 4.35: CO2 Emission versus Engine Speed for Moringa Biodiesel Blended Fuel at 

Full Load Condition   

For Moringa biodiesel blended fuel, the average CO2 emission values were found 8.05, 

8.23, 8.45, 8.61 and 8.88 vol% for the B0, MB5, MB10, MB15 and MB20 blends 

respectively. The fuel sample MB5, MB10, MB15 and MB20 blends gives an average 

increase in CO2 emission of 2.25, 4.96, 6.99 and 10.36% respectively compared to that of 

diesel fuel over the entire range of speed.  

 

 

Figure 4.36: Average CO2 Emission Difference Compared to Diesel Fuel 
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It can be seen that the CO2 emission values are higher when biodiesel blended fuel is being 

used. It is also seen that CO2 emission also increases as the percentages of biodiesel 

increases in the blend. This is happened due to the higher oxygen contents in the biodiesel 

fuel which improves the quality of combustion (Gumus and Kasifoglu, 2010). Moreover, 

from Figure 4.36 it can be observed that highest value of CO2 emission was obtained when 

engine is fuelled with Palm biodiesel blended fuel followed by Jatropha biodiesel and 

Moringa biodiesel blended fuel. The reason can be explained by the highest degree of 

saturated fatty acids composition of Palm biodiesel which produced complete combustion 

compared to other biodiesel. Thus higher CO2 emission is obtained. The production of   

CO2 from the combustion of fossil fuels causes many environmental problems such as the 

accumulation of CO2 in the atmosphere. Although biofuel combustion produces CO2, 

absorption by crops helps to maintain CO2 levels (Ramadhas et al., 2005). Therefore, 

biodiesel combustion can be regarded as definitely causing lower net CO2 emission than 

diesel fuel. 
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5 CHAPTER 5  

CONCLUSIONS AND RECOMMENDATION 

 

5.0 Conclusions 

The main objective of this research work is to study the potential of biodiesel production 

from Palm (Elaeis guineensis), Jatropha curcas and Moringa oleifera oil as a promising 

feedstock that are easily accessible in many parts of the world. Series of experiment were 

sequentially conducted in this research to characterize the physical and chemical properties 

of Palm, Jatropha curcas and Moringa oleifera biodiesel and their 10% to 90% by volume 

blends such as kinematic viscosity, density, flash point, cloud point, pour point, cold filter 

plugging point, viscosity index and oxidation stability. Finally, a total of 12 fuel samples 

(B5 to B20 of each biodiesel) were used to evaluate their performance in an unmodified 

multi-cylinder diesel engine and compared with that of diesel fuel. Based on this research 

work, the following conclusion could be drawn: 

 

1. The properties of Palm, Jatropha curcas and Moringa oleifera and their blends such 

as kinematic viscosity (KV), density (D), viscosity index (VI), cloud point (CP), 

pour point (PP), cold filter plugging point (CFPP), flash point (FP), calorific value 

(CV) and oxidation stability (OS) agree with ASTM D6751 and EN14214 

standards.  

 

2. Due to the blending of biodiesel with diesel fuel, the key fuel properties such as 

kinematic viscosity, density, calorific value and oxidation stability are remarkably 
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improved. Nevertheless, flash point and viscosity index decrease as the percentage 

of diesel increases in the blend. 

 

3. Engine performance results show that engine torque and brake power for biodiesel 

blended fuels decreased compared to diesel fuel due to their higher density, 

viscosity and lower calorific value. The highest average reduction in torque and 

brake power compared to diesel fuel was found for Palm biodiesel followed by 

Moringa and Jatropha biodiesel blended fuels respectively. 

 

4. The BSFC values for biodiesel blended fuels were higher compared to that of diesel 

fuel due to their lower calorific value and density. Among all biodiesel blended 

fuels, Moringa biodiesel blended fuel showed the highest average BSFC followed 

by Jatropha and Palm biodiesel blended fuels. 

 

5. In case of engine emission test, a reduction in CO and HC emissions was found for 

biodiesel blended fuels compared to that of diesel fuel. The highest average 

reduction in CO and HC was found for Palm biodiesel blended fuel followed by 

Jatropha and Moringa biodiesel blended fuels due to the availability of saturated 

fatty acids composition in the fuels. 

 

6. An increase in NO and CO2 emissions was found for biodiesel blended fuels 

compared to that of diesel fuel due to their higher oxygen contents, saturated fatty 

acids, cetane number, in cylinder temperature and pressure etc.  
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In conclusion, Palm, Jatropha curcas and Moringa oleifera are potential feedstock for 

biodiesel production, and up to 20% of their blends can replace diesel fuel without 

modifying engines to reduce dependency on petro-diesel and produce cleaner exhaust 

emissions. Among these three feedstock Palm biodiesel showed better performance and 

emission characteristics. 

 

5.1 Recommendations for Future Work 

 This research work has been carried out to produce biodiesel from available feedstocks and 

to evaluate the performance of biodiesel-diesel blends in a diesel engine. In this regard, the 

following recommendations for the future work can be suggested: 

 

1. This research work only focused on engine performance and emission, so it is 

recommended to focus on combustion characteristics of biodiesel blended fuels in a 

diesel engine along with corrosion, wear and material compatibility studies. 

 

2. In this research work up to 20% by volume blend of biodiesel was used, it is 

recommended to use higher percentages blends and then compare the findings with 

lower blends. 

 

3. In this research work, only regulated emissions were studied, it is recommended to 

focus on unregulated emissions to get more insight on human health and 

environmental effect. 
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APPENDIX B  

FUEL PROPERTIES OF BIODIESEL BLENDS 

Fuel Properties of Palm Biodiesel Blends: 

 
SL Properties PB10 PB20 PB30 PB40 PB50 PB60 PB70 PB80 PB90 B100 

01 Dynamic viscosity at 40°C (mPa.s) 2.84 2.92 3.03 3.15 3.27 3.39 3.54 3.67 3.84 3.97 

02 Kinematic viscosity at 40°C (mm2/s) 3.39 3.47 3.60 3.73 3.85 3.99 4.15 4.29 4.49 4.63 

03 Kinematic viscosity at 100°C (mm2/s) 1.33 1.37 1.41 1.46 1.50 1.55 1.60 1.65 1.71 1.78 

04 Density (kg/m3) 837.9 840.1 842.4 844.5 848.1 849.2 851.8 854.4 856.8 858.9 

05 Viscosity index 140.3 149.8 159.9 167.3 172.7 177.5 185.6 188.0 188.7 195.8 

06 Cold Filter Plugging Point (°C) 6 4 4 3 3 3 6 9 11 11 

07 Cloud Point (°C) 8 7 7 7 6 5 7 8 11 10 

08 Pour Point (°C) -1 -1 -1 2 2 5 8 8 8 11 

09 Flash point (°C) 77.5 78.5 83.5 85.5   93.5 99.7 112.5 143.2 182.5 

10 Calorific value (MJ/Kg) 44.651 43.995 43.325 42.979 42.040 41.726 41.179 40.757 40.183 40.907 

 

 Fuel Properties of Jatropha Biodiesel Blends: 

SL Properties JB10 JB20 JB30 JB40 JB50 JB60 JB70 JB80 JB90 JB100 

01 Dynamic viscosity at 40°C (mPa.s) 2.84 3.03 3.12 3.25 3.39 3.51 3.67 3.79 3.95 4.09 

02 Kinematic viscosity at 40°C (mm2/s) 3.42 3.63 3,72 3.86 4.01 4.13 4.3 4.42 4.58 4.73 

03 Kinematic viscosity at 100°C (mm2/s) 1.34 1.42 1.45 1.51 1.56 1.60 1.68 1.71 1.76 1.82 

04 Density (kg/m3) 831 834.9 839 842.2 846 849.7 854 857.6 862 865.7 

05 Viscosity index 143 159 167 175.7 181 187 194.7 202.6 208 214.7 

06 Cold Filter Plugging Point (°C) 6 6 7 8 9 12 15 15 17 18 

07 Cloud Point (°C) 6 6 6 6 5 5 4 3 3 3 

08 Pour Point (°C) 0 0 0 0 1  2 2 3 3 3 

09 Flash point (°C) 80.3 84 86.5 90 94 112 128 145 160.5 184.5 

10 Calorific value (MJ/Kg) 44.728 44.191  43.549 42.889  42.22 41.543  41.225 40.573  40.278 39.827 
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 Fuel Properties of Moringa Biodiesel Blends: 

SL Properties MB10 MB20 MB30 MB40 MB50 MB60 MB70 MB80 MB90 MB100 

01 Dynamic viscosity at 40°C (mPa.s) 2.94 3,.06 3.19 3.35 3.50 3.66 3.81 3.50 4.19 4.34 

02 Kinematic viscosity at 40°C (mm2/s) 3.55 3,.67 3.82 3.99 4.15 4.32 4.48 4.68 4.89 5.05 

03 Kinematic viscosity at 100°C (mm2/s) 1.36 1.39 1.48 1.52 1.55 1.64 1.66 1.75 1.82 1.84 

04 Density (kg/m3) 830.6 833.6 836.4 840.1 843.4 846.7 849.8 853.5 857.1 859.6 

05 Viscosity index 101.1 111.6  121.1  131 140  150.1 157.6 174.7 181.4 184.6 

06 Cold Filter Plugging Point (°C) 6 6 7 8 9 12 15 15 17 18 

07 Cloud Point (°C) 7 8 9 12 13 14 15 17 18 19 

08 Pour Point (°C) 3 6 9 10 12 14 17 16 19 19 

09 Flash point (°C) 79.5 82.5 90 94.5 98 105.5 108.5 114.5 131 180.5 

10 Calorific value (MJ/Kg) 44.749 43.984 43.869 43.270 42.643 41.842 41.529 40.919 40.389 40.052 
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APPENDIX C 

 

 

 

 Summary of measurements uncertainty 

Measurements Accuracy Relative Uncertainty 

Load ± 1 N ± 0.2 

Speed ± 10 rpm ± 0.1 

BP ± 0.07 kW ±0.243 

BSFC ± 5 g/kWh ±0.013 

CO ±0.001 %vol ±0.003 

NO ±1 ppm ±0.005 

HC ±1 ppm ±0.090 

CO2 ± 0.01%vol ±0.001 

 


